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Abstract

Grade control establishes the final destinations for mined material (plant,

stockpile, waste dump, etc.) at the time of mining. Correct decisions bring

profit to a mining company while incorrect decisions bring losses. There are

several potential sources of misclassification of mined material: i) unreasonable

prediction of grade, ii) failing to account for the consequences of incorrect

decisions, iii) ignoring blast movement of rocks, and iv) imprecise selection of

mined material using large polygons.

This thesis provides tools for addressing some sources of misclassification.

A reasonable range of grid sizes for grade control models is determined. The

use of simulation and utility theory for grade control classification are illus-

trated with a series of examples. A program for predicting approximate blast

movement of rocks is developed. Grade control dig limits are replaced with

truck-by-truck determination of the optimal destination. The new selection

paradigm combines all of these considerations in a unified approach.
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Chapter 1

Introduction

1.1 Background

The success of a mine is dependent on correct grade control. Grade control is

the process of determining the final destination of mined material; it directly

influences the profitability of the operation. Any errors will be a direct cost

or loss of profit. Thus, it is of great concern to mine operators. Appropriate

grade control starts from quality assurance and quality control programs for

collecting, storing and assaying geological data. The next step is obtaining the

best possible predictions of all required grade variables. Then, these predictions

are used to determine the optimal destination, that is, the destination with the

least loss and greatest profit. The final step is for mine operators to correctly

move the material to the planned destination.

The predictions are obtained using samples from drillholes (DH) and blast-

holes (BH). DH samples are a reliable but expensive source of information ob-

tained using diamond and/or reverse circulation drilling. Due to the high cost

of drilling, DH samples are widely spaced. The most closely spaced source of

information for daily grade control tasks is BH samples. Blastholes are closely

spaced due to blasting technology requirements (Rossi & Deutsch, 2014).

After obtaining samples, a grid is chosen, the grades are estimated for grid
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blocks, and the destination of mined material is determined. Blasting causes the

movement of rocks. Thus, the pre-blast positions of grades should be adjusted

according to the post-blast muckpile geometry. The selectivity of excavation

depends on the available data and the working parameters of the excavating

equipment. The destination for mined material should be established on a truck

load basis. The scale of selectivity cannot be smaller and could be larger if the

blastholes are not well sampled or if the blast movement is not understood.

Grade control should be a flexible procedure accounting for the uncertainty

of the prediction and site specific characteristics of mining operation.

1.1.1 Problem Definition

In common grade control practice, there are several potential reasons of the

misclassification errors:

i) Geostatistical estimation is done on a grid of blocks. Each node corre-

sponds to a center of a block unit. Each block is estimated based on the chosen

algorithm. The blocks are commonly chosen to correspond to a specified se-

lective mining unit (SMU), which could be the bench height by 10×10 meters

(Dimitrakopoulos & Godoy, 2014) or larger. The SMU size is often larger than

the blasthole sample spacing (4-7 meters). Considering also the bench height

is 10 meters or more, the volume of an SMU block could be much larger than

the volume of one truck load; at the time of grade control the selectivity may

be smaller than the chosen SMU size.

ii) Grade control typically relies on estimation methods (Dimitrakopoulos

& Godoy, 2014; Verly, 2005) such as Inverse distance (ID), Nearest Neighbor

(NN), Simple or Ordinary Kriging (Dimitrakopoulos & Godoy, 2014; Detour

Gold, 2012). These methods provide deterministic estimates and do not ac-

count for non-linear recovery and uncertainty in profit. Therefore, they may

not be suitable for multiple variables and complex profit calculations. They

may not provide optimal decisions when the penalties for different types of
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misclassification errors are complex.

iii) Grade estimates are typically used to develop boundaries (dig limits)

for delimiting ore and waste or different destinations including leach pads and

stockpiles (Dimitrakopoulos & Godoy, 2014; Verly, 2005). It is difficult to

delimit ore and waste zones precisely accounting for the mining practice; this

can lead to increased dilution and ore loss. The use of dig limits is improved

using expected profit maps, optimization, and accounting for mine specific

selectivity constraints (Norrena, 2007; Isaaks, Treloar, & Elenbaas, n.d.).

iv) In some cases, conventional grade control does not account for blast

movement. Most mines use drilling and blasting to break rocks prior to ex-

cavation and hauling. Due to the energy of explosion, the rock moves with

blasting. Depending on the type of rocks, the displacement of grades can be

up to 10-15 meters (Thornton, Sprott, & Brunton, 2005; Thornton, 2009b).

This means the pre-blast estimates are not final. The post-blast mapping of

grades is of great importance for grade control.

v) Misclassification errors may be introduced by the excavating process

itself. Navigation and human errors are inevitable. They impact the quality

of grade control for different types of equipment. Generally, several scoops

of the excavating equipment comprise a truck load. The profit from these

scoops determines the profit of the entire truck load. Therefore, the geometric

parameters of shovels and working constraints significantly impact the final

grade control decisions. This impact should be understood beforehand and

taken into account.

vi) Sampling errors are inevitable. They reduce the quality of the estimates

for grade control. The influence of sampling errors on simulation and truck-

based selection of rocks should be understood. The possibility of incurring

sampling error should be taken into account.
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1.1.2 Problem Solution

This thesis addresses the problems outlined above. It serves as a guide for the

implementation of simulation and other aspects for improved grade control.

The optimal estimation grid size is studied. A range of different grid sizes

is considered relative to a reference model. A number of influencing factors are

taken into consideration. Recommendations on the optimal estimation grid

size are provided.

Stochastic methods are an alternative to the deterministic approach. The

use of multiple realizations appears challenging due to the ambiguity introduced

by multiple realizations, but the grade control decisions could be optimized over

all realizations simultaneously. Many researchers attempt to adapt stochastic

methods for better classification of mined material (Isaaks, 1991; Glacken, 1996;

Godoy, Dimitrakopoulos, & Costa, 2001; Deutsch, Magri, & Norrena, 2000;

Dimitrakopoulos & Godoy, 2014; Verly, 2005; Neufeld, Norrena, & Deutsch,

2007). A minimum loss/maximum profit grade control approach is adjusted

to current practice. Simulation is used to obtain multiple realizations and

assess the uncertainty in profit. The selection decisions can be based either

on maximum expected profit or minimum expected loss. This approach is

adjustable and capable of handling many variables and complex processes.

A solution is provided for blast movement assessment. A program for map-

ping the pre-blast grades onto post-blast muckpile geometry is introduced. The

program works in 3-D with the pre- and post-blast topographies of any com-

plexity. It is possible to calibrate the program for any particular mine site. A

series of examples on how to use the program are provided.

A truck-by-truck (TBT) selection paradigm is presented. The use of dig

limits is replaced by the truck-based classification of grades. The method uses

the expected profit of each truck load for making the grade control decisions.

TBT eliminates the errors introduced by arbitrary dig limits and more closely

models the actual selection process at the mine site.
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The selection of mined material by different types of excavating equipment

is modeled. The mined volumes and the sequence of each consecutive scoop

in the course of digging is simulated. Dispatching GPS errors are investigated

by assigning random offsets to the position of each scoop. The results of the

simulation are summarized by the amount of misclassification errors. Recom-

mendations on improving grade control at this stage of mining process are

provided.

The influence of sampling errors on grade control is taken into account using

the method from Neufeld, Lyall, and Deutsch (2006). A random error is added

to the sample values. The impact of the sample errors on the amount of the

misclassified mined material is estimated. In practice, of course, we would not

add errors and would work with the mine and laboratory staff to ensure that

errors are minimized.

A new integrated grade control system is introduced. A comprehensive case

study using all the elements of the system is presented. Different aspects of the

system could be used, depending on the needs of a particular mine.

1.2 Thesis Statement and Outline

The new integrated system for grade control is based on the maximum prof-

it/minimum loss classification of mined material by means of simulation. It

accounts for the displacement of grades after blasting and the working param-

eters of excavating equipment. Sampling and navigating errors are addressed.

Limitations of the research are summarized.

Chapter 2 contains an overview of the existing estimation and simulation

techniques in the context of grade control. Literature references addressing the

blast movement issue and the maximum profit/minimum loss grade control

paradigm are provided.

Chapter 3 is devoted to determining the optimal estimation grid size. A
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numerical experiment is followed by practical recommendations.

Chapter 4 presents a numerical study on the effectiveness of different estima-

tion techniques versus simulation. The performance of the estimation methods

and simulation is measured by their ability to correctly classify ore and waste

blocks. The results are repeated for different loss functions. Recommendations

on estimation methods and conditional simulation are provided.

Chapter 5 introduces a new program for mapping grades onto the post-blast

muckpile geometry. The principle is explained in detail and demonstrated with

a series of examples.

Chapter 6 discusses the truck-by-truck (TBT) selection paradigm compared

to the conventional dig limits approach.

Chapter 7 presents a case study using data from Red Dog Mine, Alaska.

A mine block is classified either ore or waste at the optimal grid size. Then,

the influence of the blast movement of grades on the ore/waste selection is

estimated. Three types of excavating equipment is simulated for both the TBT

and dig limit approaches. The profitability of each method and the optimal type

of equipment are determined. Dispatching and sampling errors are considered.

Chapter 8 discusses limitations of this research. It also provides conclusions

and recommendations on improving grade control in open pit mines.
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Chapter 2

Literature Overview

2.1 Geological Characterization

There are number of methods to construct geological models of deposits. They

vary from simple deterministic estimation methods to complex multivariate

simulation techniques.

Inverse distance (ID) is a simple interpolation method. It estimates unsam-

pled locations using nearby data weighted by distance. Usually, the estimation

is limited by a search neighborhood. Further information can be found in

Shepard (1968). Nearest Neighborhood interpolation is another simple deter-

ministic method. The unknown locations are estimated by assigning the value

of the closest sample data available.

Kriging techniques are widely used in geostatistics. Kriging is similar to ID

in terms of calculating the estimate by weighting data. Kriging uses spatial

correlations between the data and is often referred to as BLUE (Best Linear

Unbiased Estimator). Kriging estimates are smooth and, therefore, should

not be used for applications where extreme values are important. As men-

tioned earlier, kriging estimates are not able to address the non-linearity of

some technological processes (e.g. metal recovery). Ordinary kriging (OK) is

a robust estimator and can be used in grade control when the economic con-
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sequences of the underestimation and overestimation decisions are nearly the

same (Vasylchuk & Deutsch, 2015a). The theory of kriging is formulated in

numerous publications (Matheron, 1963; Journel & Huijbregts, 1978; Isaaks &

Srivastava, 1989; Cressie, 1990; Deutsch & Journel, 1998).

Simulation is a way to model the uncertainty in grades. It generates mul-

tiple equiprobable realizations and captures the extreme values. A popular

simulation technique is Sequential Gaussian Simulation (SGS) (Isaaks, 1991).

The data are transformed to Gaussian space (normal score transformation).

Then, a distribution conditional to nearby data and previously simulated val-

ues is constructed using the normal equations (simple kriging). A value is

drawn from the conditional distribution. The path through all node locations

is chosen randomly. SGS reproduces uncertainty, histograms, variograms and

multivariate relationships. Most of these techniques are in the GSLIB software

(Deutsch & Journel, 1998). The ways to use simulation in grade control are

explained in the next subsection and Chapter 4.

Geostatistical resource estimation often requires modeling multiple vari-

ables. For example, the recovery of a metal of interest may be dependent on

the concentration of other metals or non-metal chemical compounds in mined

material.

Estimation of multiple variables directly is possible by means of cokriging.

Cokriging is usually used when a variable of interest is sparse but a secondary

data is abundant (Rossi & Deutsch, 2014). It needs a linear coregionalization

model (LMC) to model the mutual behavior of the variables. The method

differs from kriging only in the number of variables. More information on

cokriging is available in Journel (1989) and Isaaks and Srivastava (1989). Col-

located cokriging is a form of cokriging with substantial simplifications. The

LMC model is replaced by the Markov model (Zhu, 1991) or the approximate

model of coregionalization (AMC)(Wang & Deutsch, 2009).

Cosimulation could be performed in the GSLIB program sgsim. It allows
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co-simulating up to two variables. The cosimulation of more variables may

require specialized techniques. Multivariate transformation/decorrelation of

variables have been developed. A short outline of the existing multivariate

transformation techniques is provided below (J.L. Deutsch, personal communi-

cation, March 24, 2015). The most popular multivariate transformation meth-

ods include: i) principal component analysis (PCA), ii) minimum/maximum

auto-correlation factors (MAF), iii) multivariate density estimation (MDE), iv)

stepwise conditional transformation (SCT), v) projection pursuit multivariate

transform (PPMT).

SCT and PPMT are, perhaps, the most advanced transformation techniques

in geostatistics at the moment. They allow modeling complex multivariate

relationships between variables, relationships with constraints, non-linear re-

lationships and other features. SCT employs a stepwise normal score (NS)

transformation of variables with respect to a reference variable. Then, the

NS variables are simulated and back-transformed to the original values in the

reverse stepwise manner. Advantages and disadvantages of using this transfor-

mation technique are outlined in (Leuangthong, 2003; Rossi & Deutsch, 2014).

PPMT is a fast and easy way to transform multiple variables. The method

uses aspects from Projection Pursuit Density Estimation algorithm (PPDE)

(Friedman, 1987). It normal score transforms and decorrelates any number of

variables at once. The reader will find more information in Barnett, Manchuk,

and Deutsch (2014).

The resolution of geological models is another issue. Usually, it is chosen

to correspond to the working parameters of the excavating equipment used at

a mine; which is expressed by a selective mining unit (SMU)(Leuangthong,

Neufeld, & Deutsch, 2003). Short-term models, however, are a different case.

Grade control requires the boundaries to be defined; mining does not extract

large blocks, but mines with specific loading equipment.

There is a rule of thumb related to geostatistical modeling of predictions:
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estimation grid size should be about 1/3 or 1/4 (David, 1977, p. 283) of the

sample spacing. It will be useful to check this rule and define the optimal

estimation grid size/sample spacing relation (see Figure 2.1) (Vasylchuk &

Deutsch, 2015c).

Figure 2.1: Schematic illustration of the problem of optimal estimation grid size

2.2 Valuation and Decision Making

Decision making is an important part of grade control. The basis of economic

decisions in presence of uncertainty is important. D. Bernoulli proposed his

hypothesis of expected utility in 1738 (Bernoulli, 1954). Before, mathemati-

cians hypothesized that humans made their economic decisions based on the

expected value. The expected value in this case is the monetary value of an

event multiplied by the probability of this event to occur. There are cases,

such as the St. Petersburg Paradox (Bernoulli, 1954), when the expected value

principle does not explain human decision making. Bernoulli conjectured that

people made their decisions based on the utility they can take from them.

The expected utility principle can be used in grade control. The classifica-

tion decision at mines is linked to economic consequences. For example, it can
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be more expensive to process waste as ore than put ore on a waste dump. On

a small scale, some of our decisions inevitably will be erroneous. The idea is to

incur the minimum economic loss possible (Vasylchuk & Deutsch, 2015a).

The economic consequences of the decisions can be characterized by loss or

profit functions, which determine how much the decision is penalized or how

much profit it brings. An example of a loss function is presented in Figure 2.2.

It is possible to minimize the expected loss. For example, the minimization of

the quadratic and absolute loss functions are well established and exact (Giles

(n.d.) and University of Colorado (n.d.) respectively). The loss functions may

be various in shape and complexity reflecting technological processes and the

level of the company’s risk tolerance. The use of loss functions for geostatistical

applications is established in Journel (1984) and Srivastava (1987).

Figure 2.2: An example loss function (Vasylchuk & Deutsch, 2015a)

Numerous research consider optimization of grade control with simulation

(Isaaks, 1991; Srivastava, 1987; Glacken, 1996; Deutsch et al., 2000; Godoy et

al., 2001; Verly, 2005; Neufeld et al., 2007; Dimitrakopoulos & Godoy, 2014).

Conditional simulation is used as the tool for obtaining the expected profit or

expected loss. Two basic approaches use minimum expected loss (Isaaks, 1991)

and maximum expected profit (Glacken, 1996) as the basis for the grade control

decisions. These two approaches are the same in principle. They both are able

to incorporate recovery, cutoff grades, the price for commodities, and the costs

for mining into decision making. The difference is in a way the uncertainty is

processed for decision making. A common way is to use utility and penalty
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functions.

Glacken (1996) does not use the cost of mining in the utility function cal-

culations and incorporates additional coefficients for wrong decisions. The

coefficients reflect the company’s attitude to the treatment of waste material

as ore (risk aversion) and to the lost opportunity cost due misclassifying ore

as waste. For example, setting the coefficient for underestimation to 0 means

the company cares less about the potential ore loss than treating the waste

material as ore.

Deutsch et al. (2000) suggest setting both the risk aversion and lost oppor-

tunity cost coefficients to 1. In this case, the lost opportunity cost is also taken

into account when making the grade control decisions. Other values for both

coefficients could be used.

A ’cost of processing waste’ coefficient is used in Neufeld et al. (2007). The

coefficient scales up or down the loss for underestimation depending on the

price of treating waste as ore. Neufeld et al. (2007) also offer the maximum

profit approach using operational costs of mining ore and waste.

A more recent study on using the minimum loss principle in grade control

is in Vasylchuk and Deutsch (2015a). The method is similar to Isaaks (1991)

but it does not take into account the mining and operational costs, recovery

and the commodity price. A simpler logic is used: if the decision is correct,

it is not penalized; if the decision is wrong, the penalty is dependent on the

magnitude of the error with respect to the cutoff grade. The simplification is

made in order to determine the best and the most reliable method for grade

control. The risk aversion and the lost opportunity cost coefficients are used in

the calculations. The coefficients determine the way the underestimation and

overestimation decisions are penalized.

The above methods are straightforward to implement when a decision is

based on a cutoff grade. The decision making principle remains the same

in presence of complex rules: the decision should bring the minimum loss or
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maximum profit (Vasylchuk & Deutsch, 2015a). For multiple variables, each

decision criteria should be incorporated as a utility or penalty function. Any

number of variables can be used for obtaining the final decision. An example

of handling multiple variables in grade control using simulation is presented in

Chapter 7.

2.3 Blast Movement of Rock

Blast-induced movement of grades influences the effectiveness of grade control.

All geostatistical models are pre-blast by default. Their effectiveness is reduced

if they are translated onto the post-blast muck pile incorrectly. In some cases,

blasting of rocks is not needed at all. Blasting may also be performed so

that the rocks movement is relatively insignificant or the displacement vectors

of blasted rock mass are very simple. In many cases, however, modeling or

measuring the blast movement is required.

There are different ways to account for blast movement (La Rosa & Thorn-

ton, 2011): i) visual, ii) theoretical, iii) remote measurements, and iv) cautious

blasting (for reduced movement of rocks). The visual methods are the least

reliable. Usually, some markers (bags, sticks, balls, dyes, etc.) are placed

within the bench volume before blasting and recovered afterwards. The main

challenges with this method include: i) the difficulty of recovering markers (a

large part of them are never recovered), ii) the difficulty of accounting for the

movement in 3-D, and iii) labor intensiveness.

Purely theoretical models have always been attractive to scientists. In blast-

ing, there are theoretical problems that are well understood; and some useful

developments are provided to solve them (e.g. the problem of the concentrated

blast in the ground (Lavrentev & Shabat, 1973, pp. 387-390)). Many other con-

tributions to mathematical modeling of blasts were made during 1950’-1980’. A

great deal of attention is paid to the statistics of post-blast fragments (Kutuzov
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& Rubtsov, 1970; Kuznetsov, 1977), the theory of detonation (Persson, Holm-

berg, & Lee, 1993) and the behavior of stress waves in rocks (Field & Ladegaard-

Pedersen, 1971; Shapurin & Eschenko, 1970). Some of these theoretical devel-

opments find their implementation in modern software (Maerz, Palangio, &

Franklin, 1996; Franklin & Katsabanis, 1996) and statistical blast fragmenta-

tion models (Cunningham, 2005; Ouchterlony, 2005).

Unfortunately, neither mathematicians nor mining engineers are able to

completely understand the physics of the blast fragmentation and movement

of rocks. A full-scale blast involves many variables and aspects that are difficult

to define and control due to the short time frame and randomness of blasting.

Attempts are made to model blasts using computer methods. Some simple

2-D models of blast movement are presented in Preece, Tidman, and Chung

(1997) and Yang, Kavetsky, and McKenzie (1989). The common approach for

modeling blast movement is discretizing the pre-blast mine bench into small

elements (Tordoir, Weatherley, Onederra, & Bye, 2009; Preece, Tawadrous,

Silling, & Wheeler, 2015) and then modeling the trajectory of each pre-blast

particle during blasting. The 3-D modeling approach looks realistic but needs

calibration with real data. A study shows that a method from Tordoir et al.

(2009) may produce significant errors in the prediction of horizontal displace-

ment of rocks (La Rosa & Thornton, 2011).

Cautious blasting, undoubtedly, is the best way to prevent rocks from sig-

nificant displacement. The reader can find the information on the principles

of cautious (or controlled) blasting in Konya and Walter (1991, pp. 176-193).

Using this method may require precise blast initiation systems coupled with

programmed electronic detonators (Lusk, Silva, & Eltschlager, 2013). The en-

ergy of a cautious blast is reduced and, therefore, fragmentation is decreased.

This makes cautious blasting cost more than regular blasting.

Full control of blast movement is not possible. Some displacement of blasted

material will occur. Cautious blasting should be combined with blast movement
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measurement. A system for measuring blast movement consists of transmitters

placed inside the pre-blast bench and a detecting equipment able to determine

the coordinates of transmitters before and after blasting (La Rosa & Thornton,

2011; Thornton, 2009b). Software uses the coordinates of the transmitters for

constructing blast movement models.

A 2-D method of translating the pre-blast dig limits onto post-blast muck-

pile is presented in Firth and Taylor (2003). Magnetic targets are used to

obtain the pre- and post-blast coordinates of the displacement vectors of rocks.

A more advanced way to measure blast movement in 3-D has been developed by

the Julius Kruttschnitt Mineral Research Centre (JKMRC). It is called Blast

Movement Monitor system (BMM). Initially, it was developed for improving

grade control but brought a significant amount of new knowledge about blast-

ing in rocks in general (Thornton, 2009b). The system consists of transmitters,

detecting equipment and software. A comprehensive research and new findings

about the nature of blasting are provided in Thornton (2009b) and Thornton

(2009a). More information on BMM is in Engmann, Ako, Bisiaux, Rogers, and

Kanchibotla (2013) and Thornton et al. (2005).

BMM opens new prospects for grade control if the system is cheap enough

for use on a regular basis. The software documented in Isaaks, Barr, and

Handayani (n.d.) is able to work with pre- and post-blast topographies in 3-D.

It discretizes pre- and post-blast topographic surfaces and assigns a unique

trajectory for each pre-blast unit. The pre-blast units are then associated to

corresponding post-blast units. It also accounts for the collisions between the

pre-blast units during blasting.

The main problems with the blast measurement paradigm are the following:

i) Limited amount of transmitters. If rocks change their position during

blasting significantly, a large amount of data is needed to build post-blast

models of grades. It is problematic to use sparse movement vectors for char-

acterizing the entire geology of the mine bench. Increasing the amount of
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transmitters leads to increasing the cost of measurement.

ii) The cost of measuring blast movement (transmitters, dedicated drill

holes, additional manpower).

iii) Dig limits themselves bring a lot of errors to estimation (Chapters 6 and

7). Sparse blast movement vectors plus inherent errors of dig limits can lower

the benefits from using blast movement measurements.

2.4 Ore and Waste Zone Delimitation

Grade control requires delimitation of ore/waste zones using dig limits. An

example of dig limits is in Figure 2.3. It is very difficult to handle 3-D models

with such simplistic polygons.

In grade control optimization, many researchers aim to optimize the algo-

rithm of drawing the dig limits. The blast movement vectors (Isaaks, Barr,

& Handayani, n.d.; Thornton et al., 2005; Engmann et al., 2013; La Rosa &

Thornton, 2011) or mining equipment limitations with respect to maximum

expected profit (Norrena & Deutsch, 2001; Norrena, 2007; Isaaks, Treloar, &

Elenbaas, n.d.) serve as a basis for this optimization.

Figure 2.3: Typical dig limits (Rossi & Deutsch, 2014). This figure is not to scale,
but is approximately 100 m in the Y direction.

Norrena (2007) offers a method to optimize dig limits accounting for the

’digability’ of excavating equipment. Digability is the ability of the equipment

to follow the dig limits. Norrena and Deutsch (2001, p. 45) demonstrate
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a program to optimize the dig limits with respect to a digability factor and

maximum expected profit. The simulated annealing algorithm (Kirkpatrick,

Gelatt, & Vecchi, 1983) is used to maximize the total profit using an objective

function.

In Wilde and Deutsch (2007a) and Wilde and Deutsch (2007b), the authors

propose another optimization algorithm. The method is developed for grade

control at the feasibility stage. It replaces the dig limits with a truck-by-truck

(TBT) approach. A mine block is discretized by the units representing scoops of

excavating equipment. Several scoops comprise a single truck load represented

as a mining unit. The authors provide software for optimizing the sequence

of the scoops. The authors also use the simulated annealing algorithm for

optimizing the total profit.

One more research on optimizing the dig limit outlines minimizing expected

loss and accounting for excavation constraints is presented in Isaaks, Treloar,

and Elenbaas (n.d.). A program for the dig limits optimization is presented.

It optimizes the excavation process using the simulated annealing procedure.

The program is similar to the one in Norrena (2007) in terms of the iterative

optimization of dig limits. The optimization in Isaaks, Treloar, and Elenbaas

(n.d.) is constrained by minimum mining width.

A short discussion on the expediency of using the dig limits approach versus

a truck-by-truck method is started in Vasylchuk and Deutsch (2015d). Then,

this topic is further developed in Chapters 6 and 7 of this thesis.
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Chapter 3

Optimal Grid Size for

Estimation

3.1 Motivation

Local estimation of mineral resources could be performed at different grid sizes.

The center of each block is called a node. The denser the grid of nodes the

higher the resolution. Theoretically, the higher resolution the more information

is available about the spatial distribution.

There is a limit after which increasing the resolution would not help resolve

any spatial features. The model will not be worse, but using high resolution

requires more computational time.

As mentioned in Chapter 2, there are no specific rules for choosing the

optimal resolution. The sizes of blocks can correspond to selective mining unit

(SMU) size or a fraction of the drillhole (DH) spacing.

The optimal estimation grid size is determined with respect to the sam-

ple spacing. Optimal is defined based on the most precise numerical model

without excessive use of computer resources; it is not the result of an explicit

optimization process. It could be replaced with the term ’reasonable grid size’.

The estimation grid size/sample spacing ratio (GSS) is a reasonable parameter
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for optimizing the estimation. GSS helps to obtain as much information as

possible from geologic samples within a reasonable time.

3.2 Methodology

A numerical experiment is established to build the relationship between the

estimation grid size and sample spacing (Vasylchuk & Deutsch, 2015c). Ordi-

nary kriging is chosen as the estimation method. The setup of the experiment

consists of the following main steps:

i) The construction of a reference distribution or the ”truth”. It is a single

unconditional sgsim (Deutsch & Journel, 1998) realization on a unit 1×1 node

grid.

ii) The reference distribution is sampled at 10×10 nodes grid. No informa-

tion on sampling at less than 1/10th the data spacing is possible.

iii) Ordinary kriging (OK) is performed at different grid sizes in the range

from 0.1 to 2 times the sample spacing.

iv) The estimates are regridded to 1×1 node resolution.

v) The effectiveness of estimation is measured through the amount of mis-

classification errors: either true ore classified as waste or true waste classified

as ore. A cutoff grade is used to distinguish between ore and waste at each

unsampled location (see Figure 3.1).

iv) The impact of different influencing factors on the quality of estimation

is checked.

v) All results are averaged over 100 realizations with different geologic con-

ditions to ensure their reliability.

vi) Final conclusions and recommendations are summarized.

Misclassification errors are also called Type 1 and Type 2 errors in statistical

hypothesis testing. The reader can find information on hypothesis testing in

Sheskin (2003). The null hypothesis: the unsampled location is ore. If an
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Figure 3.1: Misclassification errors

unsampled location is waste but estimated as ore, it is the Type 1 error (false

positive). If the unsampled location is ore but estimated as waste, it is the

Type 2 error (false negative). Another way of thinking is to consider two null

hypothesis: i) the unsampled location is ore, ii) the unsampled location is

waste. Hypotheses are the OK estimates. In this case, we have only the type

1 errors for both hypotheses. The hypotheses can only be falsely accepted.

In either approach, the amount of falsely estimated locations is counted. The

total amount of the misclassification errors is the summation of these two types

of errors. The percentage of the misclassification errors (PME) is expressed as

follows:

PME =
Errorstype1 + Errorstype2

Number of nodes
× 100 % (3.1)

The influence of different parameters on PME is checked. These parameters

include: i) the variogram range (from 10 to 100 nodes with step 10), ii) the

nugget effect contribution (from 0 to 0.5 with step 0.1), iii) the type of the

data distribution (normal or log-normal), iv) kriging block discretization (3×3,

4×4, 5×5). Only one influencing parameter changes at a time; others remain

at their default values: i) the variogram is omni-directional with a range of

50 nodes, ii) the variogram model is spherical with one nested structure, iii)
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the nugget effect contribution is 0.1, iv) the reference distribution of data is

normal. The reference distribution is constructed in 2-D. Several Fortran codes

are developed to perform the calculations and obtain the final results.

3.3 Experimental Results

PMEs are obtained for each influencing factor. As expected, PME increases

with increasing the GSS ratio. PME-OK grid size relation shows a similar trend

for all the influencing factors (Figure 3.2).

(a) Default parameters (b) Nugget effect: 0.3

Figure 3.2: PME versus OK grid size for 2 set of parameters

In all cases, the amount of the misclassification errors starts from some

initial PME value and then increases. In Figure 3.2, two graphs are increas-

ing but with different minimum PMEs. In order to summarize all results, a

general graph is developed to illustrate the relationship between the misclassi-

fication errors and the GSS ratio. The misclassification errors are expressed as

increments from the initial PME (Vasylchuk & Deutsch, 2015c). The graph in

Figure 3.3 is the summary of all the results obtained during the experiment.
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The optimal kriging grid size is the one that ensures the best possible esti-

mation with the least amount of misclassification errors (PME). The optimal

kriging gird size expressed with respect to sample spacing (GSS ratio) ensures

that the incremental error (Figure 3.3) is close to 0 percent (minimum PME).

Figure 3.3: Experimental results for error with different grid size (Vasylchuk &
Deutsch, 2015c)

The impact of the influencing factors on PME is expressed as the change in

the average PME (over all the grid sizes):

i) The average PME decreases more than twofold with increasing the vari-

ogram range from one sample spacing to 10.

ii) The average PME increases twofold with increasing the nugget effect

contribution from 0.1 to 0.5.

iii) Using block disretization does not influence the average PME.

iv) The average PME for log-normal data distribution is slightly higher than

for the normally distributed data.

Practical recommendations for a better grade control and achieving the

least possible PME are the following:

i) The GSS ratio should be in the range from 0.25 to 0.40 (grid size is 25-40

percent of the sample spacing).
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ii) The GSS ratio should not exceed 0.5. After this point the incremental

error starts growing rapidly.

3.4 Limitations

The reference distributions are synthetic. Real reference distributions of grades

were not available. Even though the real geology is rarely so ideal, the synthetic

distributions are a good way to determine general trends.

There are a small number of the influencing factors. Many different ex-

periment repetitions have been considered for different input parameters. Still,

more influencing factors may be added and the final conclusions can be refined.

Despite the limitations, the recommendations made here address the prob-

lem of a reasonable grid size in a practical manner. An example using real data

is described in Chapter 7.
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Chapter 4

Simulation versus Estimation

4.1 The Concept of Utility in Grade Control

Grade control requires predictions of all grade variables that influence the eco-

nomic consequences of the grade control decisions. The number of sampled

locations is always limited and there is some uncertainty in the grade predic-

tions.

Estimation methods have evolved during the last decades. Mining engi-

neers and geologists used to employ the simplest approaches such as nearest

neighbor (NN) or the method of averaging grade within polygons. Kriging

was formulated to account for correlations between data and provide the best

possible estimates (SK or OK). Kriging and the inverse distance (ID) methods

make the predictions using a weighted average of the available data. They pro-

vide smoother estimates and are good for revealing geologic trends (Rossi &

Deutsch, 2014). Because of this smoothness, Kriging and ID estimates are not

always suitable for the determination of geological resources. These methods

for the characterization of deposits are deterministic because they produce a

single estimate for each unsampled location. They do not directly quantify

uncertainty.

A common practice at mines is to estimate the variables of interest sep-
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arately using kriging (Teck Cominco Alaska Inc., 2009; Dimitrakopoulos &

Godoy, 2014; Verly, 2005). Then, these estimates undergo some post-processing

for defining the destinations for mined material. These deterministic methods

become less effective when the decision is dependent on the non-linear recov-

ery functions; especially, when several variables are involved. All the variables

must be considered together with their variability to ensure the optimal eco-

nomic decision. Cokriging might be used for modeling several variables at once.

Unfortunately, cokriging estimates are also deterministic.

If a grade control decision is wrong, there is some particular loss; if it is

correct, there is a profit. It is difficult to check if the estimates were right

or wrong after the blasted rocks are excavated. The effectiveness of quality

control can be measured only on a larger scale when the production reports are

summarized. The purpose of grade control is to maximize profit or minimize

loss.

Utility functions could be used to express the profit a company obtains

from mining ore. In the simplest case, a utility function would be expressed as

follows:

Utility(u) = z(u)× r(z(u))× price− cm(u)− cp(u) (4.1)

where u is the location; Utility(u) is the profit or loss value at a location

u; z(u) is the grade at the location u; r(z(u)) is the recovery at the location

u; price is the value of one unit of the final product; cm(u) and cp(u) are the

costs of mining and processing ore respectively.

The utility function can be depicted as a line (see Figure 4.1) or some more

complex function in other circumstances. In this case the utility is determined

by the equation of this line (f(x) = kx+ b).

When several variables are considered, the total utility at a location com-

prises the utilities of multiple components. They can be positive or negative

(penalties) depending on their roles in the recovery process. The total utility
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Figure 4.1: A simple utility function

at a location may be expressed as follows:

Total utility (u) = U 1(u) + U 2 (u) + U 3 (u) − P 1 (u) (4.2)

where Total utility (u) is the profit or loss obtained at the location u; U

1-3 (u) are some three utility functions; P 1(u) is a penalty function. The

variables may interact with each other, that is, a combination of two variables

could lead to more penalty.

The above Equations 4.1 and 4.2 express the profit (if the total utility

is positive) or the loss (if the total utility is negative) for each location. The

grade control procedure should choose the decision dependent on the maximum

utility. The total utility can be optimized by using conditional simulation.

4.2 Decision Making Using Uncertainty

The main characteristics and features of grade control decision making by

means of simulation are the following:

i) Simulation reproduces uncertainty, histograms, variograms and multivari-

ate relationships.
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ii) A single realization cannot be used for decision making.

iii) The decision should be based on multiple realizations and the prof-

it/penalty function optimization.

iv) The decision should be based either on the maximum profit or minimum

loss.

v) Simulation uses multiple realizations and is able to incorporate multiple

variables to account for uncertainty in profit.

Loss functions are another way to illustrate the consequences of grade con-

trol decisions (Isaaks, 1991). They represent the penalties associated with the

grade control decisions. The simplest types of loss functions are the quadratic

and absolute penalty to error. As both these loss functions are symmetric, the

decision is penalized equally for both underestimation and overestimation. In

reality, the underestimation and overestimation decisions incur different losses.

Some simple asymmetric linear loss functions are shown in Figure 4.2.

Figure 4.2: Asymmetric loss functions

Loss functions can be treated for any number of possible decisions. In the

case of many decisions, the loss functions are similar to the ones in Figure

4.2. There is any number of possible decisions. The x axis can be discretized

at any step, and the consequences of each decision can be calculated. The

discretization of the axis x is illustrated in Figure 4.3. Each blue tick is a

probable decision. All the ticks comprise the range of possible decisions.

There are a number of existing maximum profit/minimum grade control

methods based on conditional simulation. All the methods are using the same
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Figure 4.3: Range of possible decisions

principle of optimizing the grade control decisions. A short outline is provided

in Chapter 2. The method used in this thesis is based on the minimum loss and

similar to the one developed by Isaaks (1991); but the way to assign penalties

is different. It uses coefficients for the risk aversion and lost opportunity cost

similar to the method developed by Glacken (1996). The coefficients are always

non-zero and dependent on the shape of the loss function.

The original minimum loss method expressed by Isaaks (1991) in mathe-

matical notation.

The loss function for the ore decision:

g(z) =

⎧⎨
⎩

−cm − (prz − cm − cp), z ≤ zc;

(prz − cm − cp)− (prz − cm − cp), z > zc;
(4.3)

where g(z) is a loss function; cm is the cost of mining for ore and waste; cp

is the cost of processing metal; p is the price of metal; r is the metal recovery;

z is the grade of metal; z c is the cutoff grade, z c=cp/pr.

The expectation of the loss under the ore decision is expressed as follows:

Loss|ore = E[g(Z)] = E[i(Z, zc)× (−prZ + cp)] (4.4)

where Z is a random variable; i(z,z c) is 0 if the estimate is ore and 1 if the

estimate is waste.
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The loss function for the waste decision:

g(z) =

⎧⎨
⎩

(−cm)− (−cm), z ≤ zc;

(prz − cm − cp)− (−cm), z > zc;
(4.5)

The expectation of the loss under the waste decision is expressed as follows:

Loss|waste = E[g(Z)] = E[(1− i(Z, zc))× (prZ − cp)] (4.6)

The decision is penalized only if it is incorrect. There is no profit or loss, if

the decision is correct.

Simulation provides any number of equiprobable realizations that could be

considered as possible truth values. The decision bringing the least of loss

on average is chosen. In the case of the quadratic loss function, the optimal

decision is the mean of all the simulation values. For the asymmetric loss

functions, the optimal decision will be shifted depending on the asymmetry.

Two cases are considered in this thesis: ore and waste. There is no a

fundamental difference in the methodology if more than two destinations are

considered. The optimal grade control decision brings a minimum amount of

penalties. In mathematical notation, the two decisions case is expressed below.

The loss function for the ore decision:

g(z) =

⎧⎨
⎩

(zc − z)× b2, z ≤ zc;

0, z > zc;
(4.7)

where b2 is the penalty coefficient for overestimation decisions.

The expectation of the loss under the ore decision is expressed as follows:

Loss|ore = E[g(Z)] = E[i(Z, zc)× (zc − Z)× b2] (4.8)

29



The loss function for the waste decision:

g(z) =

⎧⎨
⎩

0, z ≤ zc;

(z − zc)× b1, z > zc;
(4.9)

where b1 is the penalty coefficient for underestimation decisions.

The expectation of the loss under the waste decision is expressed as follows:

Loss|waste = E[g(Z)] = E[(1− i(Z, zc))× (Z − zc)× b1] (4.10)

The cutoff grade splits the two decisions and determines the amount of

penalties. The cutoff loss function for the two grade control decisions case is

illustrated in Figure 4.4.

Figure 4.4: Two grade control decisions case loss function

The extension to the many decision case is performed in a similar fashion:

the expected loss is calculated in all cases and the decision with the least loss

is chosen.
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4.3 Profitability of Estimation Versus Simula-

tion

A numerical experiment is conducted to assess the effectiveness of estimation

versus simulation in grade control. The experiment consists of 2 basic cases:

many grade control decisions case and two grade control decisions case. Similar

to previous numerical experiment, a synthetic reference distribution is built,

sampled and then estimated. The reference distribution (or the truth) is a single

unconditional realization. The parameters of the reference distribution are the

following: i) the resolution is 1×1 nodes, ii) the variogram is omni-directional

with a range of 12 nodes, iii) the variogram model is spherical with one nested

structure, iv) the nugget effect contribution is 0.1. The truth distribution is

constructed in 2-D. The experiment is repeated for normal and log-normal

distributions of reference data. In order to decrease the computational time,

the size of the theoretical mine bench is chosen smaller than the one in Chapter

3. It does not influence the results of the experiment as all the parameters for

simulation and estimation are reduced as well.

The main steps of the experiment:

i) Simulate 2500 nodes of the truth distribution on 1×1 nodes grid.

ii) Sample the truth on 5×5 nodes grid.

iii) Construct estimates with ID, NN, SK, OK, and simulation (SIM) on

3×3 nodes grid.

iv) Re-grid the estimates to 1×1 nodes resolution.

v) Compare the truth value and the estimate values at each node.

vi) Repeat the above procedure 100 times for the stability in the results.

vii) Repeat all the previous steps for two basic cases.

viii) Repeat all the above steps with the normal and log-normal distributions

of the truth

ix) Check a series of different loss functions.
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x) Summarize results.

The results of the experiment are presented in Tables 4.1-4.4 and Figure 4.5.

The tables contain the losses for each estimation method and simulation. The

numbers under the ’Loss function’ headers define the shape of loss functions.

For example, ’30-30’ means that it is a symmetric absolute loss function with

the angles of inclination equal to 30 degrees for both underestimation and

overestimation sides. ’50-30’ is an asymmetric linear loss function with the

angle of inclination for the underestimation part equal to 50 degrees, and the

angle of inclination for the overestimation part equal to 30 degrees.

In the tables, there are also total losses for all the methods under each loss

function. These losses are obtained after comparison with the true value and

an estimate at each node. The penalty is zero if the decision is correct; the

penalty depends on the magnitude of the error if the decision is incorrect.

Summary Tables 4.1-4.4 are below. A paper on the research is in Vasylchuk

and Deutsch (2015a).

Table 4.1: Effectiveness of ore/waste selection for the case with many grade control
decisions and normal distribution of data (Vasylchuk & Deutsch, 2015a)

Methods
Loss functions

Average
80-30 70-30 60-30 50-30 40-30 30-30 30-40 30-50 30-60 30-70 30-80

NN 5335.5 2849.6 1983.5 1522.2 1220.9 997.2 1225.4 1532.8 2003.4 2886.8 5422.6 2452.7

ID 4469.2 2389.2 1664.7 1278.7 1026.6 839.4 1032.6 1292.8 1691.3 2439.3 4586.4 2064.5

OK 4405.6 2354.6 1640.1 1259.4 1010.8 826.3 1016.1 1271.9 1663.4 2398.5 4508.4 2032.3

SK 4348.4 2321.6 1615.6 1239.5 993.8 811.4 996.7 1246.4 1628.5 2346.0 4405.4 1995.8

SIM 1871.7 1528.6 1309.4 1133.7 975.8 816.0 974.4 1131.7 1307.6 1526.0 1869.4 1313.1

Table 4.2: Effectiveness of ore/waste selection for the case with many grade control
decisions and and log-normal distribution of data (Vasylchuk & Deutsch, 2015a)

Methods
Loss functions

Average
80-30 70-30 60-30 50-30 40-30 30-30 30-40 30-50 30-60 30-70 30-80

NN 4435.9 2369.0 1649.0 1265.4 1014.9 828.9 1018.6 1274.0 1665.1 2399.3 4506.7 2038.8

ID 3832.9 2048.3 1426.5 1095.4 879.0 718.4 883.4 1105.6 1445.9 2084.6 3917.9 1767.1

OK 3800.9 2030.8 1414.1 1085.6 871.1 711.8 875.1 1095.0 1431.7 2063.8 3878.2 1750.7

SK 3764.0 1932.1 1396.3 1070.4 857.6 699.6 858.6 1072.7 1400.6 2016.2 3783.1 1713.8

SIM 2344.9 1669.7 1371.5 1060.7 856.3 670.0 750.3 821.3 893.6 973.7 1077.6 1135.4
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Table 4.3: Effectiveness of ore/waste selection for the case with two grade control
decisions and normal distribution of data (Vasylchuk & Deutsch, 2015a)

Methods
Loss functions

Average
80-30 70-30 60-30 50-30 40-30 30-30 30-40 30-50 30-60 30-70 30-80

NN 1199.3 641.6 447.3 343.7 276.1 229.1 278.1 348.4 456.1 658.2 1238.2 556.0

ID 949.3 509.9 356.9 275.4 222.1 182.6 225.8 283.9 373.0 540.3 1020.3 449.0

OK 920.0 493.1 344.4 265.1 213.4 175.0 215.8 270.9 355.1 513.3 967.4 430.3

SK 895.9 479.8 334.9 257.6 207.2 169.8 209.3 262.4 343.9 496.8 935.6 417.6

SIM 365.6 308.0 269.4 236.6 205.5 172.0 205.5 238.5 275.6 319.0 390.4 271.5

Table 4.4: Effectiveness of ore/waste selection for the case with two grade control
decisions and log-normal distribution of data (Vasylchuk & Deutsch, 2015a)

Methods
Loss functions

Average
80-30 70-30 60-30 50-30 40-30 30-30 30-40 30-50 30-60 30-70 30-80

NN 1217.5 625.6 419.4 309.6 237.8 184.6 215.0 255.9 318.6 436.2 773.8 454.0

ID 851.9 449.8 309.7 235.1 186.4 150.2 182.0 225.0 290.7 414.0 768.1 369.3

OK 835.4 440.5 303.0 229.7 181.8 146.3 177.0 218.5 281.9 401.0 742.8 359.8

SK 828.0 435.0 298.1 225.2 177.6 142.2 171.3 210.5 270.4 383.0 706.2 349.8

SIM 311.7 261.5 225.9 194.7 168.0 139.6 167.1 195.6 223.8 264.5 319.5 224.7
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(a) Many grade control decisions (normal

distribution)

(b) Many grade control decisions (log-normal

distribution)

(c) Two grade control decisions (normal dis-

tribution)

(d) Two grade control decisions (log-normal

distribution)

Figure 4.5: Penalties for estimation and simulation (Vasylchuk & Deutsch, 2015a)

A graphical representation of the information contained in Tables 4.1-4.4 is

in Figure 4.5. It is seen from the graphs that simulation incurs the least amount

of penalties on average and for every particular loss function. It is observed in

all four cases. The shapes of the graph lines also show that the effectiveness of

simulation increases when the overestimation and underestimation errors are

penalized asymmetrically.

4.4 Limitations and Recommendations

The experiment is synthetic and, therefore, the results show an ideal case.

Nevertheless, the conditions of a real life grade control process are preserved.
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The goal is to define the most profitable way for ore/waste classification.

Grade control is performed only for one variable in the example. As a result,

the loss functions are simplistic. Usually, grade control involves more variables.

In this case, the loss functions would be more complex. However, involving

more variables will, most likely, make the difference between simulation and

the deterministic methods even bigger.

Conclusions:

i) Simulation incurs the least penalty/loss in all the cases presented in the

experiment.

ii) Nearest neighborhood and inverse distance methods showed the worst

results in many cases and may be considered as the least suitable methods for

the short-term grade control.

iii) Simple and ordinary kriging showed very similar results and are the best

deterministic methods for the short-term grade control.

iv) The more asymmetric the loss functions become, the more difference

between deterministic estimation and simulation. The author assumes that

the more complex loss function is, the more unsuitable deterministic estimation

becomes for grade control.

v) The difference between simulation and deterministic estimation is slightly

higher for log-normal distribution of grades, which is more realistic. It may

indicate that simulation can be even more beneficial for real life grade control.

v) All mining sites have their unique geology. Mining companies may use

different approaches for treating ore and obtaining the final product. Author

recommends using simulation, which is proven to be the most flexible method

able to address any unique mining and economic conditions.

vi) A lack of robustness of simulation highlighted in this chapter appeared

to be not a big problem. Simulation outperformed deterministic practically in

all the cases. Theoretically, grade control decisions can be even more improved

using more simulation realizations. This, however, requires more computational
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time.

Simulation is expected to work in circumstances that are completely station-

ary, multi-Gaussian and with the exact correct input histogram and variogram.

In the situations where this is not true, ordinary kriging might perform slightly

better than simulation and simple kriging.

More research should help to establish guidelines for using simulation for

different applications and different mining conditions. Currently, it is believed

that it is worth additional effort to set up simulation for the situations with

asymmetric penalizing underestimation and overestimation errors. Simulation

is also beneficial for modeling multivariate relationships between many variables

involved in the technological process, especially when these relationships are

complex.
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Chapter 5

Background of the Blast

Movement Problem

Before excavation, rocks should be fragmented by drilling and blasting. Blast-

holes are made throughout the mine bench and filled with explosive. Blastholes

(BH) are situated on a rectangular or staggered pattern to evenly distribute

the energy of explosive inside the bench volume. Plan views of rectangular and

staggered drilling patterns are in Figure 5.1. The BH are usually bored slightly

below the elevation of bench bottom (subdrill) to ensure fragmentation in the

lower part of the bench. The upper portion of the BH is filled up with inert

material (stemming) to prevent fly rock.

Figure 5.1: A schematic illustration of rectangular (left) and staggered (right)
drilling patterns

The column of charge is usually initiated at the bottom of BH by a primer.
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The primer can be a dynamite cartridge or packaged emulsion explosive. Bot-

tom initiation is used to allow detonation uninterruptedly going along the col-

umn of charge. Detonation causes an instantaneous chemical reaction in the

explosive. It follows the front of detonation releasing heat and detonation

gases. The detonation gases create a shock pressure on the walls of the BH.

This initial impulse creates a zone of plastic deformation. The energy of the

shock wave decreases going through the rock mass and turns into a stress wave

traveling with the velocity of sound for the particular medium. The velocity

of detonation for emulsion explosives is usually from 3500 to 6000 m/s. The

higher the velocity of detonation the faster the gases are released and, conse-

quently, the higher the impact on the walls of BH. This initial impulse also

creates cracks going radially from BH. After the stress wave has reached a free

face, it is reflected from it as a tensile wave. The tensile strength of rocks is

much lower than the compression strength. Therefore, the rocks are deemed

to be destroyed mostly by the reflected waves. Blasting movement of rocks

is performed by the gases going inside the radial cracks and expanding them

(Figure 5.2). More information on detonation theory, the stress and reflected

waves created by blasting in rocks can be found in Persson et al. (1993, pp.

87-143) and Field and Ladegaard-Pedersen (1971).

The free face of the mine bench can be any surface which is not confined by

intact or previously blasted rocks. The blasted rocks move in the direction of

the nearest free surface after the blast initiation. For example, if a mine bench

is completely confined from all the sides, the rocks tend to move upward. If the

blasted rocks are layered or split by principal systems of faults, the surfaces of

the layers can also serve as free faces (Shapurin & Eschenko, 1970).

Mutual behavior of stress and reflected waves in rocks can be more complex

if there are multiple free faces, rock types, and the systems of faults.

Blasting at mines is performed using short-time delays between blastholes.

The sequencing of blasts significantly impacts blast movement. Usually, blasted

38



Figure 5.2: A schematic illustration of the detonation wave passing through the
column of charge. Image is adapted from Bender (1999, p. 6)

rocks move in the direction perpendicular to timing contours if there is no free

face close to blastholes (Thornton, 2009a).

Geology, topographic surfaces, fracturing, sequencing of firing, properties of

explosive, powder factor, drilling pattern, and the design of BH, among other

aspects, should be taken into consideration to theoretically model the blast

movement of grades.

5.1 Accounting for Blast Movement in Grade

Control

The primary concern of grade control is to reduce dilution and ore losses.

Accounting for blast movement in turn is an important part of grade control.

The simplest approach to excavate blasted rocks selectively involves using

different visual methods (markers) for defining the direction of blast move-
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ment. Usually, it requires using additional drillholes. The markers are placed

inside the drillholes and their coordinates are surveyed before and after blasting

(Taylor, 1995). After dig limits are defined, colored tape and stakes with flags

are often used to delimit ore/waste zones on the muckpile surface.

There were several attempts to theoretically model the blast heave and

the shape of the post-blast muckpile. A 2-D kinematic model is proposed

to model the muckpile formation in Yang et al. (1989). Due to simplicity,

the model is easy calibrated to field data. A semi-empirical model for blast

movement calculation is in Leite et al. (2014). Some solutions for modeling the

2-D and 3-D motion of rocks are proposed in Preece et al. (1997) and Tordoir

et al. (2009). The Distinct Motion Code (DMC) from Preece et al. (1997) is

further developed by the authors and now allows processing millions of discrete

particles to model dilution in 3-D (Preece et al., 2015).

Another modern way to decrease dilution and ore losses is measuring blast

movement directly. Blast Movement Monitors (BMM) are described in Chapter

2. Reportedly, the BMM system provides a precise and cost-effective way to

measure blast-induced displacement of grades (Yennamani, 2010). The system

uses disposable transmitters, which are put into dedicated blastholes. That

is, special drillholes should be drilled to certain depths (Yennamani, Aguirre,

& Mousset-Jones, 2011) to measure the blast movement of rocks at different

elevations. The accuracy of BMM’s measurements is from 0.1 to 0.2 m and

dependent on the depth of a transmitter. Some BMM transmitters are not

found during reading their post-blast coordinates due to damage or a significant

depth (Yennamani et al., 2011). BMM systems have been used in multiple

case studies (Yennamani, 2010; Thornton et al., 2005; Engmann et al., 2013;

Fitzgerald, York, Cooke, & Thornton, 2011) and provide new knowledge on

the processes occurring during blasting. A summary of these findings is given

below (Thornton, 2009a):

i) During a free-faced blast, the lower part of mine bench moves more than
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the upper part. The horizontal displacement is commonly from 5 to 15 m

(La Rosa & Thornton, 2011; Thornton, 2009a). A free face during blast follows

a classical D-shape outline. Therefore, using visual markers close to the surface

of pre-blast mine bench does not show the actual movement. In the case of

confined blasting, the blasted rocks move preferentially upward.

ii) Post-blast swell is uniform for the entire muckpile.

iii) Blast movement is almost perpendicular to timing contours. In Figure

5.3, the theoretical movement of rocks is shown by blue arrows.

Figure 5.3: A schematic movement of rocks for the V-cut firing sequence. Image is
adapted from Konya and Walter (1991, p. 160)

iv) The blast movement of rocks along the timing centerline is chaotic.

Therefore, echelon blasting is preferable for grade control.

v) The mine bench height does not have a significant influence on the hor-

izontal displacement.

vi) The back of mine bench is a special case for blasting. The rocks on the

top of mine bench do not move forward but instead fall down into the void left

after the top and middle level rocks moved forward. A so called ’power trough’

is formed.
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5.2 Common Problems for Blast Movement Mea-

surement

Ore and waste zones are delimited manually or by computer means based on

grades from blasthole samples before the blast. The pre-blast dig limit lines

are then modified onto the post-blast 3-D geometry.

The current blast movement measurement approach has two main draw-

backs related to grade control:

i) There is a limited amount of transmitters and, therefore, the data on

the new positions of grades. For example, only six transmitters were used for

the blast movement measurements in Yennamani et al. (2011) during one of a

series of blasts. It may provide enough data to change positions and shape of

the pre-blast dig limits, but more samples may be required to model the entire

post-blast geology of mine bench. The issues related to the dig limits grade

control paradigm are discussed in Chapters 6 and 7.

ii) It is not clear how the sparse blast movement vectors are used to address a

diverse topography of the post-blast muckpile, that is, the post-blast geometry.

It is difficult to match the pre- and post-blast topographies of the mine bench,

even if the blast movement vectors are known. Drawing the dig limit lines at

some complex muckpile surface may be challenging.

These two issues above are addressed in Isaaks, Barr, and Handayani (n.d.).

The program presented there uses pre- and post-blast topographic surfaces for

creating 3-D models of the mine bench before and after blasting. Both mod-

els are discretized at high resolution. The post-blast grid size is obtained by

multiplying the cubed root of the swell factor to the pre-blast grid size. Data

obtained from the BMM system are used to calculate the vectors of displace-

ment for each single block of the pre-blast model. A series of BMM measure-

ments provide means and standard deviations of horizontal displacements for

different heights of the mine bench. Then, the horizontal displacement for each
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pre-blast unit is randomly drawn from an appropriate normal distribution of

horizontal displacements. The directions of blast movement vectors for each

unit of the pre-blast model are calculated perpendicular to timing contours.

Thus, each block of the pre-blast model obtains a unique movement vector and

the distance of displacement. Having all the displacement vectors, it becomes

possible to account for the collisions of particles and internal dilution.

The displacement data are used to find new locations of each pre-blast block

and, consequently, re-define initial dig limits.

5.3 Calculating Approximate Blast Movement

This thesis provides another solution to the blast movement problem in grade

control. The approach utilizes a principle similar to Isaaks, Barr, and Han-

dayani (n.d.) in terms of using pre- and post-blast topographies for the con-

struction of pre- and post-blast 3-D models. As practice shows, direct the-

oretical modeling of blasts is a complex task. Nevertheless, a reliable grade

control practice requires accounting for blast movement. Some reliable input

data should be used to find probable post-blast positions of grades.

Unfortunately, the behavior of blasted rocks may be different even in pre-

sumably similar conditions due to physical properties of rocks, fracturing,

shapes and numbers of free faces, among other aspects. Blasting engineers

do not have a full knowledge of the deposit or the technological parameters

and performance of blast initiating systems. For example, there are always

errors in the delays of non-electric blast initiating systems (Lusk et al., 2013).

The most reliable source of information for blast movement assessment is

topography. Pre- and post-blast topographic surfaces are usually stored as dig-

ital elevation models. Therefore, the shapes and volumes of pre- and post-blast

3-D models are known. The challenge is defining how pre-blast blocks with

assigned grades should be mapped into the post-blast geometry. The shapes of
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the 3-D models can be very different and the mapping should be performed in

3-D space.

A program for predicting blast movement (bmov) has been developed us-

ing a simple principle (Vasylchuk & Deutsch, 2015b): the more a unit of the

pre-blast model of mine bench is confined before blasting, the more it will be

confined afterwards. The pre- and post-blast topographies may be discretized

at any resolution. Having a bottom bench elevation, it is straightforward to

obtain discretized pre- and post-blast 3-D models of a mine bench.

Blocks of the pre-blast 3-D model are associated with blocks of the post-

blast 3-D model using their relative positions inside the models. The relative

position (position index) of a block inside the 3-D model is defined as the sum-

mation of distances from the center of this block to the edges of the model in

three orthogonal directions. These distances are calculated in the North (y),

East (x), and vertical (z) directions for each particular block at a location u

within the 3-D model. The spacial orientations of the pre- and post-blast 3-D

models should be aligned with one of the three main orthogonal directions. As

the boundaries of the pre- and post-blast 3-D models are defined by the pre-

and post-blast polygons and topographic surfaces submitted by the user, we

always know where the edges of each model are in any direction. For example,

the vertical distance for some block of the pre-blast model is calculated as the

difference between the elevation of this particular block at the location u and

the surface elevation. The same procedure is done for the two of remaining

directions, as we know the coordinates of each block in the North and East

directions and coordinates of the edges of the models in these directions as

well. The position indices of all the the blocks of the pre-and post-blast 3-D

models are calculated according to the expression below:

Position index (u) = Distx(u)+ Disty(u)+ Distz(u) (5.1)
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where Distx(u), Disty(u), Dist z(u) are the distances to the edges in the

three orthogonal directions at each particular location u of the pre- and post-

blast 3-D models.

The principle of mapping the pre-blast grades onto the post-blast muckpile

is illustrated in Figure 5.4. The grades assigned to the pre-blast blocks are

translated to the post-blast blocks with respect to their position index values.

The pre- and post-blast models should be aligned along the x or y coordinate

and with the burden and spacing in the horizontal plane. The first point, for

which the distances to the edges of the models are calculated, is indicated in

Figure 5.4. It is the lower left corner of the 3-D model. For this particular

point in this particular model, the distances in the North, East, and vertical

directions are the largest. It is obvious that the block at the starting point is

situated at the maximum possible distance from the the edges of the model

in any of the three directions. The distances to the edges for each subsequent

block are calculated as their coordinates are read by the program according to

the GSLIB conventions.

45



Figure 5.4: A schematic illustration of the mapping principle of bmov

The input data for bmov include:

i) Pre- and post-blast topographic surfaces. An example is in Appendix 1.

ii) Pre- and post-blast polygons outlining the pre-blast mine bench and

the post-blast muckpile respectively. The polygons should also be stored in

ASCII-format text files. The files should only contain the coordinates of the

vertices. The first vertex should be repeated as the last vertex in order to

’close’ the polygon.

iii) Bottom bench elevation for creating 3-D models should be defined by

user. It should be 1 m less than the lowest elevation coordinate value in the

pre-blast topographic file.
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v) Discretization constant (the grid size of topographic surfaces).

vi ) A matching number to fit the pre- and post blast models (this parameter

is explained below).

The reader can refer to Appendix 1 for an example of the parameter file to

bmov.

The main steps of the bmov program are the following (Vasylchuk & Deutsch,

2015b):

i) Create pre- and post-blast 3-D models of rock that was blasted. Topo-

graphic surfaces of pre- and post-blast areas are used to create the models. The

resultant models are discretized at a user defined grid size.

ii) Create pre- and post-blast 3-D bench models. The program automat-

ically crops the topographic surfaces using the pre- and post-blast polygons.

The models represent the mine bench before and after blasting. The grid size

is the same as for the 3-D area models.

iii) Change the pre-blast grid to match the post-blast geometry and vol-

ume. The directions of displacement of grades are automatically determined.

Resultant post-blast 3-D models have volumes defined solely by the post-blast

topographic surfaces and polygons. The model’s grid size is increased in each

direction based on displacement. The grid size of the post-blast 3-D model

could be decreased as well. For example, the elevation of a post-blast muck-

pile can be lower than the elevation of a pre-blast mine bench model due to a

significant spread of rocks during blasting. It uses the ratios between pre- and

post-blast dimensions for defining the post-blast grid. For example, a pre-blast

width of a mine bench is 50 meters, length 70 meters, and height 15 meters,

initial grid sizes for both models are 1 m. After blasting, a post-blast maximum

width of the muckpile is 65 meters, maximum length 70 meters and maximum

height 17 meters. The ratio between pre- and post-blast widths is 65/50 = 1.3;

the ratio between pre- and post-blast lengths is 70/70=1.0; the ratio between

pre- and post-blast heights is 17/15=1.13. This means the pre-blast grid should
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be expanded in two directions (the ’width’ direction and the ’height’ direction)

as the third is unchanged (the ’length’ direction). The ’expansion’ of the pre-

blast model is performed by changing (decreasing or increasing) the grid size

in all the three principal directions. For our example above, the grid size in

the ’width’ direction tends to be increased from 1 to 1.3 and in the ’height’

direction from 1 to 1.13. The exact ratios are not always achieved depending

on the complexities of the geometries of the pre- and post-blast models. The

program aims to achieve the fit of the nodes in both models changing the initial

grid size. As a result of changing the grid size, we receive new grid dimensions

for the post-blast model in our example: 1.3×1.0×1.13 m3.

The change of the pre-blast grid size is performed gradually. Increasing or

reducing the grid size in one direction honors increasing or reducing the grid

size in other directions. It is done by adding a small number to the pre-blast

grid size. The small number us by default 0.0001 and is re-calculated for each

direction if it changes. For instance, if the height and width ratios are as

calculated above, the small number for the width of the post-blast muckpile

is re-calculated as follows: (1.3-1)/(1.13-1)×d=0.00025, where d is the initial

small number. The d value for the height remains 0.0001. As a result, the

width grid size increases faster than the height grid size.

iv) Calculate the position index values of each block of the pre- and post-

blast 3-D models for further manipulations.

v) Assign input grades data to the pre-blast 3-D model. The program

considers simulation or estimation input.

vi) Map the input data on the post-blast 3-D model using the position index

value of each block. A grade of the pre-blast block with the largest position

index values is attached to a correspondent block of the post-blast model with

the largest position index value. This process is performed for each block of the

post-blast 3-D model. In practice, multiple blocks with equal position index

values might occur. The program uses an additional restriction using the pre-
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and post-blast coordinates of each block of both models. The program uses

a loop though all the pre-blast blocks and assigns the pre-blast grade to the

post-blast block if the condition below is true. The process is repeated for each

post-blast block.

Post-blast blocki ←− pre-blast gradej if abs(xpost−blast
i − xpre−blast

j )

+ abs(ypost−blast
i − ypre−blast

j ) + abs(zpost−blast
i − zpre−blast

j )

+ abs(Position indexpost−blast
i − Position indexpre−blast

j ) = Minimum

(5.2)

where x i
post-blast and x j

pre-blast are the x coordinates of the pre- and post-blast

blocks of the 3-D models; y i
post-blast and y j

pre-blast are the y coordinates of the

pre- and post-blast blocks of the 3-D models; z i
post-blast and z j

pre-blast are the

z coordinates of the pre- and post-blast blocks of the 3-D models; Position

index j
pre-blast and Position index i

post-blast are the position index values of the

pre- and post-blast blocks of the 3-D models.

5.4 Examples of Blast Movement Modeling

The program’s work is shown on three simple examples and one realistic exam-

ple are shown. The program distinguishes three principle directions for blast

movement calculations. By default, the East direction is the x axis; the North

direction is the y axis; the height is expressed as the z axis (it complies with

GSLIB conventions). The rocks can move in any direction along these 3 axes:

positive or negative. The main direction of blast movement should be aligned

with one of orthogonal axes (either x or y). Three simple examples represent

3 different cases: i) the pre-blast model expands along the x axis, remains the

same along the y axis and contracts along the z axis, ii) the pre-blast model

expands along the x and y axes, but contracts along the z axis, iii) the pre-

blast model expands along the z axis, but remains the same along the x and

y axes. In other words, these three examples represent the cases when the
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pre-blast mine bench is confined in one direction, unconfined in any direction

and confined in two directions respectively.

For the first simple example, the discretization constant is 1.0 m and the

bottom bench elevation is 2035.0 m. Topographic surface files represent 250×250

m2 (nodes2) pre- and post-blast areas: the coordinates in the North direction

(the y axis) change from 10500 to 10150 m; the coordinates in the East direc-

tion (the x axis) change from 26000 to 26250 m. The pre- and post-blast 3-D

models of mine surfaces are shown in Figure 5.5. The pre-blast mine bench for

the first example is a rectangular parallelepiped (100×100×15 m3). As a result

of blasting, the pre-blast volume (150 000 m3) is expected to increase 1.3 times

to 195 000 m3. If the height reduces to 12 m, the post-blast parallelepiped

should have the following dimensions: 163×100×12 m3 (195600 m3 ≈195 000

m3, which is close enough for our case).
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(a) Pre-blast model

(b) Post-blast model

Figure 5.5: 3-D models of mine area before and after blasting (first simple example)

The pre- and post-blast 3-D models with the illustration of position index

values are in Figure 5.6. The color is changing from red to blue with decreasing

the position index value.
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(a) Pre-blast model

(b) Post-blast model

Figure 5.6: 3-D models colored according to the position index value (first simple
example)

A matching number is a parameter controlling the fit of two models. The

simpler the pre- and post-blast geometries, the smaller the matching number

is needed. In the case of the first simple example, the matching number can be

as small as 0. The geometry of the pre- and post-blast models in Figures 5.6

is very simple: one model can be easily converted to another just by altering

the grid size. If the 3-D geometry is more complex, the process of choosing

an appropriate matching number is iterative. The closer the match, the less
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information is lost for grade control.

In the final step, the pre-blast grades are mapped on the post-blast 3-D

model of muckpile. The pre- and post-blast 3-D muckpiles with assigned grades

are illustrated in Figure 5.7. The grades are obtained from an unconditional

sgsim realization. Geological structure is preserved. The topography of mine

surface in this simple example is ideal.

(a) Pre-blast model

(b) Post-blast model

Figure 5.7: 3-D models with assigned grades (first simple example)

The second simple example represents a less common pattern of blast move-

ment when a mine bench is expanding along the x and y axes during blasting.

53



The pre- and post-blast volumes are preserved (accounting for the swell factor

of approximately 1.3) similar to the first example. The dimensions of the pre-

and post-blast models are 100×100×15 m3 and 127×127×12 m3 respectively.

Bmov automatically determines that the pre-blast grid should be increased

along the x and y axes and decreased along the z axis. The pre- and post-blast

3-D models with assigned grades are in Figure 5.8.

(a) Pre-blast model

(b) Post-blast model

Figure 5.8: 3-D models with assigned grades (second simple example)

The third simple example represents the case when the mine bench is con-

fined from all the sides. It can be surrounded either by intact rocks or previ-
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ously blasted material. The only free face in this situation is the top of the

bench. Therefore, the rocks do not have any other direction to move but up.

Again, the directions of blast movement are completely governed by the pre-

and post-blast topographies of the mine area. The dimensions of the pre- and

post-blast models are 100×100×15 m3 and 100×100×19 m3 respectively. The

swell factor is 1.27. The pre- and post-blast 3-D models with assigned grades

are in Figure 5.9.

(a) Pre-blast model

(b) Post-blast model

Figure 5.9: 3-D models with assigned grades (third simple example)

The last example represents a case with more complex pre- and post-blast

55



topographies. The topographic files are artificially developed. This example

illustrates a very common situation when blasted rocks move preferentially in

the direction of the free face (East). Due to the swell factor of approximately

1.3, a post-blast heave is slightly higher than the top elevation of the pre-blast

mine bench. The pre- and post-blast 3-D models of the mine area are illustrated

in Figure 5.10. The areas with the same elevations are colored identically.

(a) Pre-blast model

(b) Post-blast model

Figure 5.10: 3-D models reperesenting the mine area before and after blasting (more
complex example)

Due to complexity of the pre- and post-blast mine bench configurations,

their dimensions are calculated as rectangular boxes. The pre- and post-blast
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models are inscribed inside these boxes. It is done only to calculate the ratios

between pre- and post-blast dimensions similar to the simple examples. For

the simple examples, the dimensions of these boxes coincide with the actual

dimensions of the 3-D pre- and post-blast models. The dimensions of the pre-

and post-blast rectangular boxes for the last example are 79×165×16 m3 and

125×163×19 m3 respectively. The discretization constant is 1 m. An initial

number of blocks is displayed on the screen. The initial numbers of blocks for

the pre- and post blast models are 147 313 and 188 087 accordingly. The pro-

gram increases the grid in the East direction and achieves a satisfactory match

for the pre- and post-blast 3-D models: 147 313 versus 147 306. Even though

the pre- and post-blast geometries are complex, only 7 units of information are

lost.

It should be mentioned that the number of blocks is not equal to the volume

of models. It is determined solely by topography. Therefore, the volumes are

always correct. The pre- and post-blast 3-D models of the mine bench with

assigned grades for this example are in Figure 5.11. The bottom views of the

same 3-D models are in Figure 5.12.
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(a) Pre-blast model

(b) Post-blast model

Figure 5.11: 3-D models with assigned grades (more complex example, top view)
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(a) Pre-blast model

(b) Post-blast model

Figure 5.12: 3-D models with assigned grades (more complex example, bottom view)

Due to complex configuration of both models, the blast movement pattern is

not so obvious as for the simple examples. Nevertheless, the general principle is

the same: the grades are assigned to the post-blast blocks with respect to their

position index values and coordinates. Pre-blast high valued and low valued

grades appear in the correspondent places of the post-blast 3-D model. It can

be mentioned looking in Figures 5.11 and 5.12 that the pre-blast geological
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continuity is largely preserved for the post-blast muckpile.

5.5 Conclusions

A current version of bmov is not an ultimate blast movement program. It only

shows the basic principle of work. The idea is to use the current template and

adjust it to conditions of a particular mine. In principle, other influencing and

constraining factors can be incorporated. The concept is that the numerical

mapping scheme of pre- to post-blast locations would be changed as additional

data becomes available. The main conclusions on the blast movement assess-

ment:

i) The blast movement issue in grade control is addressed. A new program

for approximate blast movement prediction is developed.

ii) The estimation of the blast movement of grades with bmov consider

direct measurements, but would in the future if that data were available.

iii) A simple principle of mapping pre-blast grades onto the post-blast 3-D

model according to their relative positions inside 3-D models is used: the more

a unit of a pre-blast mine bench is confined before blasting, the more it will be

confined after blasting. The displacement of grades during blasting is defined

by topographic data.

iv) The program accounts for the blast movement in different directions. It

is achieved by changing the post-blast grid size according to post-blast topog-

raphy.

v) Only pre- and post-blast topographic surface files and digitized polygons

are required.

vi) The mapping function of bmov is flexible. Additional data would be

incorporated in the future to refine the coordinates of displaced grades.

The current version of the program is just a starting point. Real data

should be used for tuning the program. A function to account for direct blast
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movement measurement data should be embedded in the code. The firing

sequence of blastholes and other considerations will be important in practice.
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Chapter 6

Truck-By-Truck Selection

6.1 Motivation

Short-term grade control is an ongoing process in open pit mines. A destination

must be chosen for all mined material at the time of excavation. Errors in grade

control decisions mean a direct loss of profit. In a simple case, a cutoff grade

is a basis for making these decisions: if the grade of mined material exceeds

the cutoff value then, it is ore; otherwise, it is waste. Depending on different

treatment options and geology, multiple destinations for mined material are

possible: plant, stockpile, leach pad, waste dump, etc. The major reasons

for misclassification errors include: i) unreasonable estimation parameters of

grade control models, ii) inappropriate estimation methods, iii) not accounting

for blast movement of grades, and iv) imprecise delimitation of ore/waste zones

using large or unmineable dig limit polygons.

Many developments in grade control have been aimed at improving dig

limits for better selection of grades (Isaaks, Barr, & Handayani, n.d.; Thorn-

ton et al., 2005; Engmann et al., 2013; La Rosa & Thornton, 2011; Norrena

& Deutsch, 2001; Norrena, 2007; Isaaks, Treloar, & Elenbaas, n.d.). Unfortu-

nately, the dig limits approach is inflexible. That is, the grade control decisions

must be made for large areas (polygons) at a mine bench not considering that
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each truck moves a relatively small volume. Using polygons, often defining tens

or even hundreds of thousands of tonnes, does not permit precise selectivity of

grades. Major sources of misclassification for grade control with dig limits are

the following: i) internal dilution and ore losses, ii) misclassification errors on

the edges of the polygons, iii) blast-induced displacement of rocks (Thornton,

2009a), iv) ignoring equipment constraints, and v) using large polygons.

The truck-by-truck method (TBT) implies making decisions based on ex-

pected profit or loss of each truck load. The grade control decisions are made

before mining. However, the technological parameters and constraints of the

excavating equipment are accounted for in decision making. That is, the profit

of each scoop of a shovel or an excavator is considered. The TBT method should

be used with a robust dispatching system and accurate position information on

the equipment and for blast movement.

In Wilde and Deutsch (2007b) and Wilde and Deutsch (2007a), a Feasibility

Grade Control method (FGC) is used for prediction of recoverable reserves on

the feasibility stage of a mine life using a truck-by-truck basis. The maximum

profit principle is used for defining ore/waste indicators of each mining unit.

Each mining unit, in turn, consists of several blocks nominally corresponding

to scoops of the excavating equipment. The method accounts for the shape of

mining units and the direction of mining. A simulated annealing procedure is

used to optimize the geometrical parameters of the mining units and maximize

the total profit of a reserve model. The method offers a way to mimic grade

control at the feasibility stage to more accurately predict recoverable reserves.

This truck-by-truck idea can be used to improve short-term planning at the

moment of grade control. More data are available at this stage, which allow

establishing reliable simulation models. Simulation allows constructing unbi-

ased and precise predictions that are appropriate for correct profit estimations.

Appropriate scale for profit calculations must consider the mining equipment

and other site specific conditions. The best selectivity in open pit mines is a

63



truck load. The selectivity of such a the truck-by-truck scheme is demonstrated

below.

6.2 The Importance of a Flexible Grade Con-

trol

Data from an existing grade control study are used to analyze probable errors

in the classification of mined material (Vasylchuk & Deutsch, 2015d). Data

are originally obtained from a copper-molybdenum Ujina open-pit in Chile,

which is operated by Compani Minera Dona Ines de Collahuasi (CMDIC). A

case study is described in Rossi and Deutsch (2014, pp. 231-234). It is an

example of a complicated grade control task with 12 probable destinations

for mined material. Several grade control methods are used to classify the

mined material of the bench 4270 with dimensions 250.0×187.6 m3. Two actual

deterministic estimates are analyzed to understand how different they might

be. The estimates are obtained using Break Even Indicator Method (BEI)

(Douglas, Rossi, & Parker, 1994) and the inverse distance cubed method (ID).

Figure 6.1 represents the same bench 4270 estimated by the ID and BEI

methods. Figure 6.2 illustrates the ID estimate (dashed lines) superimposed

on the BEI estimate. The height of the bench is assumed 15.0 m. The numbers

at each polygon indicate their volumes. Different colors of the models indicate

different directions for mined material. Even visually, it is evident than both

estimation methods classify some parts of the bench differently. Both these

estimates might be used for an actual short-term grade control procedure at

the mine. The discrepancies in classification between these two methods can

be defined.
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(a) ID cubed estimate (b) BEI estimate

Figure 6.1: Bench 4270 estimated by ID cubed and BEI method. The image is taken
from Rossi and Deutsch (2014, pp. 232-233)

Figure 6.2: The ID cubed estimate (dashed lines) superimposed onto the BEI esti-
mate. The image is taken from Rossi and Deutsch (2014, p. 233)

Simple calculations allow determining a total volume of the mine bench:

250×187.6×15 = 703 500 m3. Figure 6.2 shows the areas where grade control

polygons from two models mismatch. There are two cases: i) the mismatch

of ore types is not taken into account, and only the outlines of polygons are

compared (first case) , ii) the mismatch of ore types is considered (second case).

Green areas in Figure 6.3 represent the parts of the mine bench where the grade

panels of two models match in shape (first case) or in both shape and the type

of ore (second case), and red areas represent the places where the mismatch
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occurs.

(a) First case (b) Second case

Figure 6.3: Bench 4270 with green areas representing the parts where two estimates
coincide and brown areas where they do not

The percentages of mismatch of the polygons are calculated and presented

in Table 6.1 along with other information.

Table 6.1: Comparison of two estimation methods

Summary items First case Second case

Total volume(bcm) 703 500 703 500

Total volume of match (bcm) 466 052 389 982

Total volume of mismatch (bcm) 237 448 313 518

The percentage of mismatch 33.75% 44.56%

According to mining-technology.com (n.d.), the blasted rock mass at Col-

lahuasi copper mine is being hauled by Komatsu 830 with the payload equal

to 221.6 tonnes and heaped capacity of 147 lcm (Komatsu, n.d.). Assuming

the swell factor of 1.3, the total volume of loose rocks is 703 500 m3×1.3=914

550 lcm. The total number of truck operating cycles is calculated as: 914

550/147≈6221 cycles by volume. Nevertheless, assuming the density of 2 700
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kg/m3 for intact rock, one truck is not able to carry this amount of the mined

material (703 500 m3/ 6221 cycles = 113m3×2 700 kg =305 tonnes). The

number of truck cycles is restricted by the tonnage instead of volume leading

to: (703 500 m3×2 700)/221.6 tonnes = 8569 cycles.

The calculations above allow illustrating the selectivity of the TBT ap-

proach compared to dig limits polygons. Bench 4270 can be discretized by

units representing one truck load. The units are square in shape with dimen-

sions: 46900 m2 / 8569 cycles =
√
5.47m2 = 2.3 m. Bench 4270 is discretized

by 2.3×2.3 m2 units is in Figure 6.4.

Figure 6.4: Bench 4270 is discretized by units representing one truck load

It is obvious that the truck-based unit represents much smaller area than

any of the dig limit polygons in Figure 6.3. Therefore, the truck-based units are

prospectively much more selective than the dig limits. The TBT method allows

decision making at the smallest scale available. The next step is to account

for the shape of truck-based units and adapt making grade control decisions

based on maximum profit or minimum loss. The benefits of the truck-by-truck

approach would only be realized by a precise blast movement model and precise

knowledge of the rock being mined.
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6.3 Choice of truck-based units

A small numerical experiment is constructed to check the relationship between

the size of a truck-based unit and the total profit of a mine bench. It is

reasonable to use the dimensions of the mine bench and the truck-based units

from the previous section of the chapter as a starting point. The idea is to

check how the total profit of the bench changes for the truck-based units with

the dimensions from 2.3×2.3 m2 to 40×40 m2 and compare it to the profit

obtained using dig limits. The expected profit in this case is used with the

TBT method instead of the expected loss (Equations 4.7-4.10 in Chapter 4). It

is the same in principle; instead of assigning a loss when a grade control decision

is incorrect, a profit is assigned when the decision is correct. Both methods

work the same in terms of giving more priority to a certain decision when

coefficients are used for adjusting penalty or profit. The coefficients b1 and b2

from Equations 4.7-4.10 in Chapter 4 serve for this purpose. The coefficients

could be replaced with functions to represent more complex relationships. For

this small experiment, the priority is to ’restrict’ overestimation decisions. It

is done to model a situation when a mining company cares more about sending

waste rock to the plant than losing ore. Grade control decisions are shifted to

underestimation in this case. In order to tune simulation to this task, the profit

for correct ore grade control decisions is reduced twice in comparison with the

profit from correct waste decisions.

Two cases are considered: i) a case with big and simple polygons and a low

nugget effect, ii) a case with complex and erratic polygons and a higher nugget

effect. The idea of the case with big polygons is to represent a mine bench that

is easy to delimit to ore and waste zones. The traditional polygonal approach

is expected to perform effectively, and the selectivity of grades is expected to

be very high. A reference model for this case is constructed using the following

parameters: i) the variogram is omni-directional with the range of 150 m ,
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ii) the variogram model is spherical with one nested structure, iii) the nugget

effect contribution is 0.05. It is illustrated in Figure 6.5. Brown areas and

green areas represent ore and waste zones respectively. Ore/waste delimitation

for a reference variable is performed using a cutoff grade of 0.

Figure 6.5: Reference model for simple grade control case

The idea of the second case is to represent a more complex grade control

situation. The geological structure of the deposit is constructed erratic with

ore and waste zones mixing with each other. A reference model for this case is

constructed using the following parameters: i) the variogram is omni-directional

with the range of 25 m , ii) the variogram model is spherical with one nested

structure, iii) the nugget effect contribution is 0.2. The model is illustrated in

Figure 6.6.

69



Figure 6.6: Reference model for complex grade control case

Dig limits for both cases are drawn using ordinary kriging estimates at

a reasonable resolution. Then, the ore/waste indicator maps, obtained using

dig limit polygons, are assessed and the profit from this type of estimation

is calculated. The mine benches with dig limits are also mined using trucks

and the excavating equipment. Therefore, the total profit is also calculated

inside the truck-based units with dimensions from 2.3×2.3 m2 to 40×40 m2.

Of course, the truck-based units more than 7×7 m2 are unrealistic but they

are used for comparison. The ore/waste indicators inside each truck-based unit

are calculated. A unit is assigned ore when the probability of being ore is more

than 50 percent, and waste otherwise. The ore/waste maps for the two grade

control cases are in Figure 6.7
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(a) Easy case (b) Complex case

Figure 6.7: Ore/waste maps for two grade control cases

The main steps of the experiment are the following:

i) Construct the reference distribution at 1×1×15 m3 resolution.

ii) Sample the reference distribution at 10×10×15 m3 resolution.

iii) Estimate and simulate the area of interest at 2.5×2.5×15 m3 resolution

using ordinary kriging (OK) and sequential Gaussian simulation (SGS) respec-

tively. SGS is used to obtain 100 realizations for the calculation of profit.

iv) Regrid estimates to the resolution of the reference models.

v) Construct the TBT and dig limits ore/waste maps for the truck-based

units with dimensions from 2.3×2.3 m2 to 40×40 m2. A random offset of 4 me-

ters from modeled position is assigned to each unit to simulate poor navigation

and poor knowledge of the precise bucket location.

vi) Compare the reference ore/waste map with the TBT and dig limits

ore/waste maps and assign profit for each grade control decision.

vii) Repeat the above steps for both grade control cases.

viii) Compare the performance of the two grade control methods.

The TBT method produces ore/waste estimates delimited by the truck-

based units. Final dig limits ore/waste maps are also delimited by truck-based

units, but they are obtained from the dig limits ore/waste maps. The exam-

ples of the these ore/waste maps for the simple and complex grade control
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cases are in Figure 6.8. The dimensions of the truck-based units for these maps

are 2.3×2.3 m2. Due to a significant random offset of 4 meters from modeled

positions, some errors occur in the classification of mined material.

(a) TBT method. Simple case (b) TBT method. Complex case

(c) Dig limits method. Simple case (d) Dig limits method. Complex case

Figure 6.8: Ore/waste for two grade control methods

The effectiveness of each grade control method for both cases is calculated

as the percentage of the maximum possible profit. The maximum profit is

achieved for a perfect selection of mined material when each portion of the

material is sent in a correct destination. Figures 6.9 and 6.10 illustrate the

performance of the TBT and dig limits grade control methods for both grade

control cases.
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(a) TBT method (b) Dig limits method

Figure 6.9: Percentage of maximum profit across the range of TBT sizes for simple
grade control case

(a) TBT method (b) Dig limits method

Figure 6.10: Percentage of maximum profit across the range of TBT sizes for complex
grade control case

As expected, both grade control methods perform well in the straightfor-

ward grade control situation with just two big ore zones. The TBT and dig

limits methods reach 98.03 and 97.85 percent of maximum profit respectively.

For both methods, the most optimal size of the truck-based units is 5×5 m2.

The effectiveness of both methods is lower for the complex grade control case.

The TBT method reaches 82.72 percent of the maximum profit for this bench

while the dig limits method reaches 80.39 percent. The optimal sizes of the

truck-based units are 2.3×2.3 m2 and 4×4 m2 for the TBT and dig limits

methods respectively.

The bar charts in Figure 6.11 show the difference in performance of the

TBT and DL methods for the simple and complex cases with respect to profit.
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(a) Simple case (b) Complex case

Figure 6.11: Difference with respect to profit between two grade control methods
for both grade control cases

Figure 6.11 illustrates that the effectiveness of the TBT over the dig limits

method increases with the increase in the size of the TBT units. The difference

is generally much more significant for the complex grade control case. It reaches

up to 8-9 percent for some large sizes of the TBT units. The dig limits approach

shows a slightly better performance (0.02-0.22 percent) for some three large

TBT sizes. The TBT still performs better than the dig limits method on

average over all the TBT unit sizes for both grade control cases.

6.4 Conclusions and Limitations

This chapter advocates the truck-by-truck (TBT) method of selection versus

polygonal dig limits. Synthetic examples are used to compare the performance

of the traditional grade control method with dig limits and the proposed TBT

method. Two grade control cases represent real life grade control situations

with simple and complex geological settings of the mine benches. The results

of the experiment allow concluding the following

i) The TBT method outperforms the traditional grade control method for

both simple and complex grade control situations.

ii) The difference between two methods is higher for the complex grade

control situation.
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iii) The average improvement of the TBT method is 4.4 percent with respect

to the maximum profit for the complex grade control case and 0.38 percent for

the simple grade control case.

iii) The optimal size of the truck-based units is smaller for the complex grade

control cases with erratic geological settings. For simple grade control cases

with well-defined and few ore/waste zones, larger selection units are preferable.

iv) The TBT method is compatible with simulation. Grade control deci-

sions could be obtained using multiple realizations and complex expected profit

calculations

The synthetic examples above do not fully represent the challenges of grade

control at mines. The complexity of grade control cases in the experiment is

only controlled by different geological settings. Only one variable and a very

simple profit calculation principle are used. The parameters of the reference

distributions are known and used for qualitative estimation and simulation.

Different situation could occur if several variables were involved with complex

non-linear relationships. The TBT method is expected to perform better in

such situations due to the properties of simulation. Nevertheless, the results

above represent possible advantages of using the TBT method instead of the

dig limits approach.
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Chapter 7

Red Dog Case Study

7.1 Purpose

This chapter presents a new workflow for short-term grade control in open

pit mines. Four major aspects of the new grade control procedure comprise

a new paradigm providing better estimates in terms of expected profit for

each unsampled location: (1) a reasonable resolution for grade control models

is defined, (2) simulation is used for making grade control decisions based on

economic factors, (3) the impact of the blast movement of grades on short-term

grade control is evaluated and addressed, and (4) final grade control decisions

are based on the expected profit of each truck load. All the aspects outlined

above help to better define final destinations of mined material (plant, waste

dump, leach pad, etc.).

A case study is constructed to show the main steps of the new grade control

procedure. An existing grade control practice is compared to the new paradigm

using real data and a series of assumptions. The structure of the case study

consists of the following main steps:

i) Construct a reference distribution.

ii) Define a reasonable grid size range for short-term grade control models.

iii) Compare the effectiveness of estimation versus simulation for short-term
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grade control.

iv) Compare the effectiveness of measuring blast movement versus using

pre-blast dig limits onto post-blast muckpile surface.

v) Compare the truck-by-truck (TBT) ore/waste selection versus dig limits

approach (DL).

vi) Assess the impact of sampling and dispatching errors on grade control

and the performance of TBT and DL.

All the parts of the case study represent the elements of the new short-term

grade control workflow. Dispatching and sampling errors are incorporated and

taken into account. A real life grade control procedure would not involve the

construction of reference distributions; it is done only for having a basis for com-

parison. All the aspects of the new grade control procedure are separate. It

means each aspect of the this procedure is possible to use individually depend-

ing on needs of a mine. For example, a company may have a blast movement

measuring or modeling system, which is properly calibrated and precise. In this

case, the data from an existing blast movement system could be incorporated

into the new workflow.

The TBT approach presented in this thesis allows better selectivity on the

stage of excavation. It could be fitted to an existing grade control practice.

A reasonable grid size allows decreasing ore/waste misclassification without

spending additional costs and working hours. Simulation allows accounting

for complex relationships between different variables involved in grade control.

These are only some of the examples of using the new short-term grade control

paradigm. The author aims to show that the existing grade control procedure

is not ultimate and may be improved.

The case study is fashioned after some data from Red Dog Mine; however,

this was done independently of the operator and is meant to show the devel-

opments of this thesis. Actual application to the mine and other site-specific

economic and mining considerations would be required for definitive conclu-
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sions.

7.2 Background

The Red Dog mine is located in an isolated area 150 km from Kotzebue, Alaska,

USA. It is one of the world’s biggest producers of Zinc. It also produces a signif-

icant amount of Lead and Silver (Teck Cominco Alaska Inc., 2009). The mine

is partially owned by a Canadian metals and mining company Teck Resources

Limited.

The Red Dog mineral resources consist of three main deposits suitable for

a surface mining method: 1) Main open pit, ii) Aqqaluk deposit, and iii)

Qanaiyaq deposit. There are also two deposits adjacent to the Main open

pit: Paalaaq (a deeper zone of Aqqaluk deposit) and Anarraaq (Teck Com-

inco Alaska Inc., 2009). They are situated deeper below the surface than the

three main deposits and, therefore, might be economically mined only by un-

derground mining method.

All the deposits were originally a single formation. This original formation

was then divided by tectonic forces into separate parts. The Red Dog deposit

consists of three ore-bearing rock types: silica, barite rock, and sulphide rock.

The main part of the Red Dog deposit consists of four structural plates: up-

per, median, lower, sub-lower plate (Teck Cominco Alaska Inc., 2009). More

information on the geological formation of the Red Dog deposit can be found

in Teck Cominco Alaska Inc. (2009) and Moore, Young, Modene, and Plahuta

(1986).

For this case study, only some production data from the Main open pit are

used. The idea is to simulate the short-time grade control procedure on an

example of one mine bench.

Available Data of Grade Control

For the main deposit, there are four variables important for metallurgical
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recovery: Zn, Pb, Fe, Ba. Siliceous ore type accounts for 70 percent of the

Main deposit’s reserves. The Fe content in the siliceous ore influences its met-

allurgical recovery. The higher the content of iron, the lower the recovery of

Zn. Another influencing factor is the content of Ba (Teck Cominco Alaska

Inc., 2009). The Red Dog mine developed a recovery formula that is used for

calculating recovery.

The actual Red Dog recovery formula is not used for this case study. Some

approximate utility functions are assigned to each of the four main elements

according to stockpile blending criteria (constraints) established by the com-

pany (Teck Cominco Alaska Inc., 2009):

Zn/Fe ≥2.5

Zn/Pb ≥3.5

Ba ≤10 %

Total Organic Carbon ≤0.65 %

Weathered Ore ≤5 %

Only the first three criteria are used for ore/waste delimitation. Addition-

ally, a minimum Zn criteria is added: the content of Zn should not be less than

5 % (Zn ≥5 %). Totally, these four constraints are used for constructing a ref-

erence ore/waste indicator map. The utility and penalty functions representing

an influence of each constraint on final profit are in Figure 7.1.

Figure 7.1: A schematic illustration of stockpile constraints at Red Dog
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7.3 Construction of Reference Distribution

Long- and short-term grade control models at the Main Red Dog open pit

are constructed using Ordinary Kriging (OK) interpolation. Each variable of

interest is modeled separately using available drillhole (DH), reverse circulation

(RC) and blasthole data (BH). Only DH and RC data are used for the long-term

models. For the short-term models, closely spaced BH data are also used (Teck

Cominco Alaska Inc., 2009). Existing short-term models are constructed at

25’×25’×25’ resolution. BH assays provide information on the content of SPb,

but it is not used for this case study. The BH data are on 14’×14’ grid.

The reference ore/waste map is constructed using BH assay data of four

main elements and the stockpile blending criteria provided above. A single

realization of sgsim conditional to the BH data is used to construct refer-

ence models for each variable. The forward normal score transformation is

performed using ppmt program (Barnett et al., 2014; Barnett, 2015). It allows

preserving multivariate relationships between variables. Simulation is then per-

formed for each variable separately. Back-transformation is performed using

ppmt b program. The standard normal score transformation is applied to the

BH data prior the PPMT transformation using nscore program (Deutsch &

Journel, 1998). It is done to improve reproducing univarite statistics for all the

variables. This approach is proposed in (Barnett, 2015).

Back-transformed variables reproduce multivariate relationships in data.

Accurate modeling of these relationships could be very important for ore/waste

delimitation, as the metallurgical recovery of Zn at Red Dog is dependent on

the content of multiple variables. A deterministic method is not suitable for

such a complex modeling task.

Ore/waste indicators are used to compare a conventional and the new grade

control procedures. Grade control models are converted to ore (1) or waste (0)

indicators at each location. Each location is then compared to a reference
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model, which is also expressed as the ore/waste indicators. Final reference

ore/waste indicator maps reflect all the univariate and multivariate relation-

ships between data in order to mimic the reality. Constructing the reference

distribution is a very important procedure and consists of the following steps:

i) Choose a mine bench for the case study.

ii) Decluster data if needed. This procedure is not required for the current

case study, as the data are situated on a regular grid.

iii) Calculate variograms of original data for estimation.

iv) Perform the standard normal score transformation of each variable sep-

arately.

v) Calculate variograms of standard normal score data.

vi) PPMT-transform all four variables at once.

vii) Perform simulation for each variable separately using normal score var-

iograms. It is done to improve the reproduction of variograms in resultant

simulated models (Barnett, 2015).

viii) Back-transform the simulated models in a reverse order: PPMT back-

transformation, then NS back-transformation.

ix) Validate the reference model.

x) Combine all four simulated variables into one ore/waste indicator map

using the stockpile blending criteria.

Bench 20177 (further ’bench’) on the bottom of the Main Pit is chosen for

the case study. The bench contains ore and waste zones, which are relatively

easy to delimit manually. The bench consists of 193 blastholes situated on

a staggered pattern with grid dimensions of 14’×14’. The dimensions of the

bench are 252’×134’×25’. BH maps colored according to the content of four

main chemical elements are in Figure 7.2.

Declustering

Declustering is a procedure for obtaining representative first order statistics

of a set of data. It is necessary when data are situated irregularly throughout
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 7.2: Mine Bench 20177 with BH colored according to contents of each variable

an area of interest. In this case, each sample might represent different areas

and, as a result, receive a higher or lower weight in the resultant statistics.

The BH at the bench are bored at a regular staggered pattern. Therefore,

each sample out of 193 has approximately the same weight; declustering is not

needed.

Normal score and PPMT forward transformation of data

NS transformation of the data prior to PPMT transformation helps to re-

produce univariate statistics in resultant simulated models. After NS trans-

formation, the data are normally distributed with the mean of 0 and variance

of 1 (standard normal distribution). A function to enforce simulated data to

be standard Gaussian is included in the PPMT back-transformation program.

This step is performed because the reproduction of histograms can be compro-

mised for simulated models after PPMT back-transformation. The simulated

data are then back-transformed to original values using normal score back-

transformation program.

As mentioned before, the PPMT normal score transformation of all four
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variables is performed using ppmt program (Barnett, 2015). The bi-variate

scatter plots of normalized variables show practically zero correlation. Using

the first NS transformation ensures the reproduction of both univariate and

multivariate statistics. The comparison of the scatter plots of original and

PPMT-transformed variables is in Figure 7.3.
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(a) Original Zn-Pb (b) PPMT Zn-Pb

(c) Original Zn-Fe (d) PPMT Zn-Fe

(e) Original Zn-Ba (f) PPMT Zn-Ba

Figure 7.3: Comparison of bi-variate plots of original and PPMT transformed vari-
ables
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Variogram calculation and modeling

Variogram is a common tool for characterizing spatial continuity. The BH

samples do not provide information on vertical variability. Therefore, the var-

iograms are calculated only in the horizontal plan in 2 principal directions.

For regular patterns, variograms in major and minor directions of continuity

are usually calculated along the rows of BH. In the case of staggered pattern,

it is also reasonable to consider the directions N45E and N135E. Tolerance

parameters for lag distances in this case should be reasonably increased. All

the variables are normal score transformed before calculating variograms. The

variograms of standard normal score data are used instead of variograms of

the PPMT-transformed data. The PPMT-transformed data are forced to be

uncorrelated at h=0 distance. It may cause a loss of continuity and difficulties

during fitting a vaiogram model (Barnett, 2015). The NS variograms for the

four variables are shown in Figure 7.4.

Sgsim is used to obtain the reference models of all four PPMT variables. NS

values are then back-transformed using transformation tables of each variable

and ppmt b. Output simulation models are shown in Figure 7.5.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 7.4: Variogram models for all four variables in normal scores

86



(a) Reference model. Zn (b) Reference model. Pb

(c) Reference model. Fe (d) Reference model. Ba

Figure 7.5: Simulated reference models for all four variables

Data reproduction

Distributions of original BH and simulated data after back-transformation

are compared using Q-Q probability plots. 100 realizations of simulated data

are checked. Values corresponding to the same quantiles of two distributions

are plotted against each other. The closer a point to a 45 degrees line at a Q-Q

plot, the better data reproduction is. The Q-Q plots for each variable are in

Figure 7.6. They show a good data reproduction for all four variables.
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(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 7.6: Q-Q plots between original and simulated data for all four variables

Histogram reproduction

The reproduction of the histogram shape as well as mean and variance of

the original data are important checks. The means and standard deviations of

simulated values should be similar to the means and standard deviations of the

original BH data with some insignificant fluctuations. The shapes of histograms

should also be close. The check is performed over 100 simulation realizations.

In Figure 7.7, the histograms of BH data are plotted against the histograms

of simulated data of all four variables. Overall, the shapes of histograms and

accompanying statistics are reproduced reasonably good.
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(a) Histogram. BH Zn (b) Histogram. Simulated Zn

(c) Histogram. BH Pb (d) Histogram. Simulated Pb

(e) Histogram. BH Fe (f) Histogram. Simulated Fe

(g) Histogram. BH Ba (h) Histogram. Simulated Ba

Figure 7.7: Comparison of histograms of original and simulated data for all four
variables
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Variogram reproduction

Some statistical fluctuations are expected. The variograms of ten simulated

realizations are compared to the NS variograms (Figure 7.8). The major and

minor directions of continuity of the NS variograms are represented by purple

and green point respectively. The major and minor directions of continuity

of the variograms of the simulated realizations are represented by red and

blues dashed lines respectively. Each pair of the green and blue dashed lines

corresponds to one simulated realization. It is clear from the figure that the

NS variograms are reproduced very good.

(a) Zn (b) Pb

(c) Fe (d) Ba

Figure 7.8: Variogram reproduction for all four variables

Reproduction of bivariate relationships
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After simulated models are back-transformed to original units, bivariate re-

lationships between data are checked. One of the advantages of simulation over

estimation is the ability to reproduce bivariate statistics between all variables

along with univariate. In this particular case study, the recovery of Zn is depen-

dent on the content of other chemical elements and the relationships between

them. For example, the stockpile blending criterion Zn/Pb ≥ 2.5 indicates that

it is not desirable for grade control to ignore the bivariate relationships between

Zinc and Lead. According to the stockpile blending criteria, it is important for

the simulated models to reproduce univariate statistics for Zn and Ba as well

as Zn-Pb and Zn-Fe bivariate relationships. Of course, all the bivariate and

univariate statistics could be important for grade control decisions and should

be addressed in the resultant simulated models. The most important bivari-

ate relationships between Zn, Pb, and Ba are illustrated in Figure 7.9. The

scatter plots of the BH data are shown against the scatter plots of simulated

data. Overall, the bivariate relationships between the variables of interest are

reproduced in the simulated models.
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(a) BH Zn-Pb (b) Simulated Zn-Pb

(c) BH Zn-Fe (d) Simulated Zn-Fe

(e) BH Zn-Ba (f) Simulated Zn-Ba

Figure 7.9: Bi-plots of data in original units versus bi-plots of simulated data

After the reference model is validated, all four simulated models are merged

in one ore/waste indicator map according to the stockpile blending criteria

mentioned above. The stockpile blending criteria illustrated in Figure 7.1 are
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coded inside a small Fortran code as follows:

U(Zn(u)) =

⎧⎨
⎩

0, Zn(u) <5 (%);

tan a1 × Zn(u)- 5 (%), Zn(u) ≥5 (%);
(7.1)

where U(Zn(u)) is the utility function of Zn; a1 is the angle of inclination of

the U(Zn) line from Figure 7.1; Zn(u) is the grade of Zn at a location u.

P1(Zn/Pb(u)) =

⎧⎨
⎩

0, Zn/Pb(u) ≥2.5;

tan a2 × (2.5 - Zn/Pb(u), Zn/Pb(u) <2.5;
(7.2)

where P1(Zn/Pb(u)) is the penalty function for not complying with the first

stockpile blending criterion; a2 is the angle of inclination of the P1(Zn/Pb) line

from Figure 7.1; Zn/Pb(u) is the value of the stockpile blending constraint at

the location u.

P2(Zn/Fe(u)) =

⎧⎨
⎩

0, Zn/Pb(u) ≥3.65;

tan a3×(3.65 - Zn/Fe(u)), Zn/Fe(u) <3.65;
(7.3)

where P2(Zn/Fe(u)) is the penalty function for not complying with the second

stockpile blending criterion; a3 is the angle of inclination of the P2(Zn/Fe(u))

line from Figure 7.1; Zn/Fe(u) is the value of the stockpile blending constraint

at the location u.

P3(Ba(u)) =

⎧⎨
⎩

0, Ba(u) <10 (%);

tan a4 × (Ba(u)- 10 (%)), Ba(u) ≥10 (%);
(7.4)

where P3(Ba(u)) is the penalty function for not complying with the third

stockpile blending criterion; a4 is the angle of inclination of the P3(Ba) line

from Figure 7.1; Ba(u) is the grade of Ba at the location u.
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The total utility function is expressed as follows:

T. utility(u)|decision = U(Zn(u))− P1(Zn/Pb(u))− P2(Zn/Fe(u))− P3(Ba(u))

(7.5)

where T. utility(u)|decision is the total utility or loss at a location u given

a grade control decision. These functions and parameters are illustrative, but

not what Red Dog Mine considers.

The reference map is illustrated in Figure 7.10. This reference is used

throughout the case study for comparison and further manipulations.

Figure 7.10: Reference ore/waste map for the Red Dog case study

7.4 Optimal Grid Size

As mentioned above, the short-term grade control models at Red Dog mine

are constructed using ordinary kriging (OK) at 25’×25’×25’ resolution. The

variograms in original units are calculated and modeled for using with OK.

According to the information from Teck Cominco Alaska Inc. (2009), the OK

kriging interpolation is performed in 2 passes separately for each variable. The

first pass is performed using 100’×100’×60’ search ellipses and from 3 to 7

sample data. The second pass is performed using a two times smaller search
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of 50’×50’×30’ and from 4 to 7 sample data. This 2 pass-technique is used for

conducting short-term grade control models at the Red Dog mine.

The purpose of this section is defining a reasonable kriging grid size for a

particular Red Dog mine bench. The procedure consists of the following steps:

i) Calculate and model the variograms of original data.

ii) Perform the 2-pass kriging interpolation at different grid sizes in the

range of 0.1-1.9 of sample spacing (14 feet) or 1-25 feet.

iii) Re-grid estimates to the resolution of the reference model.

iv) Apply stockpile blending criteria to OK estimates to obtain ore/waste

indicator maps.

v) Compare the estimates to the reference model at each node.

vi) Summarize results.

Examples of the ore/waste indicator maps obtained using OK are in Figure

7.11.

(a) 1’×1’×25’ grid size (b) 25’×25’×25’ grid size

Figure 7.11: Ordinary kriging ore/waste indicator maps

Even looking at these two maps, it is possible to say that the coarser grid

is losing some information. For instance, the ore zone at the top right corner

is misclassified. The effectiveness of estimation at different grid sizes is sum-

marized in Table 7.1. The percentage of misclassified blocks for the reasonable

range of grid sizes (10-50 % of the BH sample spacing) varies from 10.3 to 11.2

% of all the blocks of the mine bench. The reasonable range of grid sizes can

be reduced to 10-40 % of the sample spacing for this case study. Looking at

95



a graph in Figure 7.12, it is possible to confirm that after exceeding a thresh-

old of 0.39 for GSS (5.5’×5.5’ grid size), the percentage of misclassified blocks

increases (Chapter 3).

(a) 1’×1’×25’ grid size

Figure 7.12: Percentage of misclassified blocks for different grid sizes (Red Dog case
study)

Table 7.1: Effectiveness of ore/waste classification at different grid sizes for the Red
Dog mine

Grid size, feet 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 15.0 20.0 25.0

Kriging grid

size/sample spacing

ratio (GSS)

0.07 0.11 0.14 0.18 0.21 0.25 0.29 0.32 0.36 0.39 0.43 0.46 0.50 0.54 0.57 0.61 0.64 0.68 0.71 1.07 1.43 1.79

Number of

misclassified blocks
3601 3615 3585 3598 3631 3663 3637 3645 3653 3506 3747 3750 3783 3804 3841 3692 3733 3912 3729 4199 4081 5102

Percentage of

misclassified blocks, %
10.66 10.71 10.61 10.66 10.75 10.84 10.77 10.79 10.82 10.38 11.09 11.11 11.21 11.26 11.37 10.94 11.05 11.58 11.04 12.44 12.09 15.11

Conclusions

The data from Table 7.1 and 7.12 show that with increasing the GSS ratio

the percentage of misclassified blocks consistently increases. Overall, the graph

in Figure 7.12 resembles the shape of the curve from Figure 6 in Chapter 3. The

incremental error from Chapter 3 is just a residual of some initial percentage of

misclassified blocks. The experimental points at Figure 7.12 are sparse because

they are not averaged over many realizations as in Chapter 3.

According to the data from Table 7.1 and Figure 7.12, the reasonable grid
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size for grade control models is in the range from 1’×1’×25’ to 5.5’×5.5’×25’.

It corresponds to the GSS ratio in the range from 0.1 to 0.4.

The average percentage of misclassification in the optimal range of grid sizes

is 4.4 % less on average than the percentage of misclassification for the reported

25’ block size.

7.5 Estimation Versus Simulation

Multiple realizations are used for developing grade control ore/waste indicator

maps. The stockpile blending criteria are incorporated in calculations in a

similar manner as in Equations 7.1-7.4. The only difference is that the final

ore/waste classification is made according to an expected total utility value. It

is obtained from 100 realizations. The expected total utility can be expressed

as follows:

Expected utility l(u)|decision =
1

L

L∑
l=1

(U(Zn l(u)) − P1(Zn/Pb l(u))

− P2(Zn/Fe l(u)) − P3(Ba l(u)))

(7.6)

where Expected utility l(u)|decision is the expected profit or loss obtained at

a model’s location u in a realization l given a grade control decision; L is a total

number of realizations; U(Zn l(u)) is the is the utility of Zn at the location u in

the realization l given the grade control decision; P1(Zn/Pb l(u)) is the penalty

for not complying with the first stockpile blending criterion at the location u in

the realization l given the grade control decision; P2(Zn/Fe l(u)) is the penalty

for not complying with the second stockpile blending criterion at the location u

in the realization l given the grade control decision; P3(Ba l(u))) is the penalty

for not complying with the third stockpile blending criterion at the location u

in the realization l given the grade control decision.

Estimation and simulation models are constructed at the same resolution.
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The previous section provides recommendations on the reasonable grid size for

the current mine bench. The reasonable resolution for grade control models is

chosen to be 3’×3’×25’. The construction of grade control models at this grid

size does not require extensive computational time and theoretically provides

a minimum amount of misclassification. In order to compare the effectivenes

of estimation and simulation for short-term grade control, the following steps

are performed:

i) Define a grid size for estimation and simulation.

ii) Perform estimation using ordinary kriging.

iii) Re-grid the models of each variable to the resolution of the reference

distribution.

iv) Obtain estimation ore/waste indicator maps using Equation 7.5 at each

location.

v) Simulate 100 realizations for each variable.

vi) Re-grid the models of all the variables and all the realizations to the

reference resolution.

vii) Obtain simulation ore/waste maps using Equation 7.6.

viii) Compare simulation and estimation ore/waste maps to the reference

model at each location.

Estimation and simulation ore/waste indicator maps at 3’×3’×25’ resolu-

tion are provided in Figure 7.13.

(a) Ordinary kriging (b) Simulation

Figure 7.13: Ore/waste indicator maps at 3’×3’×25’ resolution
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Conclusions and discussion

Simulation provides more selective and precise grade control models. Sim-

ulation and estimation produced 9.86 % and 10.75 % of misclassified blocks

respectively. The difference between methods is 0.89 % or 7 513 ft3 more

mined material sent in the correct destination.

The amount of loss and dilution is not discriminated for this case study.

The utility functions in Figure 7.1 are chosen arbitrarily. Therefore, they may

incorrectly reflect the penalties for processing waste or losing ore.

7.6 Blast Movement

The blast movement program (bmov) is used for this part of the case study to

approximately assess the influence of the displacement of grades during blasting

on the effectiveness of short-term grade control. An OK kriging ore/waste

indicator map at the resolution of 25’×25’×25’ is used as a reference estimate.

The available BH data provide elevations of each blasthole’s collar. These data

can be used to create a pre-blast topographic surface needed as an input to

bmov. The elevation values are interpolated using inverse distance method in

order to get a gridded surface file. The dimensions of the mine bench define

a pre-blast polygon. The mine bench is aligned with the Y axis. It has 2 free

faces: in the South and the vertical directions. This causes the movement of

rocks during blasting preferentially along the Y axis in the South direction and

upward.

The post-blast topographic surface is created artificially. The synthetic

post-blast geometry aims to mimic a real post-blast muckpile. The spread of

rocks is assumed to be significant with the swell factor of approximately 1.35.

A post-blast polygon outlines the post-blast muckpile. The pre- and post-blast

topographic surfaces are illustrated in Figure 7.14.
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(a) Pre-blast

(b) Post-blast

Figure 7.14: Topographic surfaces for Bench 20177

The purpose of this part is comparing a model obtained using the dig limits

approach with the output model of bmov. Thus, some post-blast 3-D model

with the dig limits translated onto it should be constructed. A Fortran code is

developed to transfer pre-blast dig limits onto the post-blast muck pile surface.

This grade control dig limits model is also constructed in 3-D.

After the bmov and dig limits models are obtained, it is possible to compare

ore/waste indicators at all locations. The models are constructed at the same

resolution.
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The workflow of this part of the case study can be summarized as follows:

i) Obtain pre- and post-blast topographic surfaces and polygons.

ii) Use bmov to obtain the pre- and post-blast 3-D models.

iii) Construct a 3-D model for the dig limits case.

iv) Compare the output post-blast models at each location at 1’×1’×1’

resolution and assess a percentage of mismatch.

v) Summarize results

The pre-blast reference estimate and the post-blast muckpile with dig limits

are shown in Figure 7.15.

101



(a) Pre-blast

(b) Post-blast

Figure 7.15: 3-D models for the dig limits case

The bmov output model is in Figure 7.16.
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Figure 7.16: The output of BMOV

Bmov achieved a satisfactory fit of nodes between the pre- and post-blast

models: 844 200 versus 844 175. The mismatch between two 3-D grade control

models is 44.3 % out of all the nodes. Such a significant difference is mostly due

to incorrect ore/waste volumes of the post-blast dig limits model. Accounting

for the swell factor of 1.35, the difference between the ore volumes is 17.1 %; the

difference between the waste volumes is 9.1 %. Another factor is the manual

transformation of the shapes of the pre-blast dig limits onto the post-blast

muckpile surface.

The pre-blast 3-D model with dig limits evidently shows more ideal picture

when the dig limit lines are translated at the post-blast muckpile directly.

Nevertheless, it is challenging to match the ore/waste volumes of the pre- and

post-blast models; manual matching the volumes of the polygons could be an

iterative and time consuming process.

The bmov model is built using the pre- and post-blast topographic surfaces.

It accounts for the details of the post-blast geometry. The ore/waste volumes of

the post-blast 3-D model are correct because they are automatically transferred

from pre-blast 3-D model. The synthetic post-blast topographic surface cannot

provide the correct blast movement model. It only shows the approximation
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of bmov. The post-blast model in Figure 7.16 shows some artifacts at the top

of the muckpile. They could appear due to a non-optimal artificial post-blast

topography or due to using bmov without tuning to real mine’s conditions.

Therefore, a real life blast movement pattern could be different. It is not

known, for example, how far a small ore zone at the middle of the mine bench

should be moved. Additional data could help to correct the blast movement

pattern.

It would be necessary to further adjust bmov to the real conditions of blast-

ing at Red Dog. The current example serves only as an illustration of the blast

movement assessment procedure.

7.7 Truck-by-Truck Selection

Dig limit lines or polygons are drawn manually or using computer-aid design

(CAD) programs. The dig limits may be adjusted to the outlines of ore and

waste zones with respect to equipment limitations or some expected profit

calculations. Usually, practitioners tend to use geometrically simple polygons

without acute angles to delimit different types of mined rocks. Small zones of

waste material inside ore polygons are usually disregarded as well as small ore

zones inside waste polygons. Once the dig limit polygons are obtained, they

are approximately translated onto the post-blast muckpile. An example of such

a translation is in Figure 7.15.

The biggest disadvantage of the dig limits (DL) approach is using manual

limits. Chapter 3 reviews new approaches for adjusting dig limits to post-blast

3-D muckpile using blast measurements (Isaaks, Treloar, & Elenbaas, n.d.) and

pre- and post-blast 3-D models. Dig limits are expressed as coordinates onto the

surfaces of these 3-D models. Following digitized dig limits at the post-blast

surface of the mine bench by excavating equipment requires a precise GPS

dispatching system.
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Having such a GPS system allows changing the way grade control decisions

are made. It is not expedient to make decisions for big polygons. The decisions

should be made for a smaller amount of mined material. The smallest amount

of rocks that is possible to extract selectively is one truck load. Therefore

short-term grade control decisions should be made based on this minimum

amount of mined material and the way it is excavated. That is, the sequence

and shape of each scoop should be modeled throughout all the mine bench. A

profit from several scoops should be averaged for a truck load.

A theoretical experiment has been conducted to compare the DL and TBT

methods. An ore/waste indicator map for the dig limits case is developed using

an OK estimate at 3’×3’×25’ resolution. It is used for defining destinations

for each truck load. It is done by calculating the probability of being ore for

each truck-based unit. After the mine bench is delimited by the truck-based

units, it is checked against the reference ore/waste indicator map. For the TBT

method, no dig limits are needed. Grade control decision are made using the

total profit of each scoop over 100 realizations. This part of the case study

includes the following steps:

i) Choose the equipment for excavating and hauling mined material.

ii) Determine geometrical shapes and the sequences of scoops for each piece

of the excavating equipment.

iii) Delimit the mine bench to ore and waste zones manually for the dig

limits case and obtain a digitized dig limits map.

iv) Delimit the mine bench by truck-based units using the TBT and dig

limits approaches.

v) Compare the resultant ore/waste maps to the reference ore/waste indi-

cator map at 1’×1’×25’ resolution.

vi) Check different types of the excavating equipment.

vii) Incorporate random offsets to the positioning of scoops in the course of

excavation (dispatching errors).
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viii) Check the influence of sampling errors on the performance of both

methods.

ix) Summarize the results of the TBT- and dig limits-based selection for

both methods and all types of equipment.

Three types of the excavating equipment are compared for this case study:

Caterpillar 992G front loader, Caterpillar 6018 hydraulic excavator and P&H

1900AL electric rope shovel. The Red Dog mine actually uses Caterpillar 992G

loaders and Caterpillar 777D haul trucks (Teck Resources Limited, n.d.). Each

piece of excavating equipment in combination with the Caterpillar 777D haul

truck constitutes a unique selection scheme. Equipment specifications are taken

from Caterpillar (n.d.-b), Caterpillar (n.d.-a), Caterpillar (n.d.), Joy Global

(n.d.) and Red Dog documentation Teck Resources Limited (n.d.). Some of

assumptions include (Teck Resources Limited, n.d.): i) swell factor is 1.3, ii) the

bulk density of rocks is 12.25 ft3, and iii) CAT777d payload is 83.6 tonnes/load.

Important parameters are summarized in Table 7.2.

Table 7.2: Technological parameters of equipment related to the TBT selection

Bucket volume, ft3 Bucket fill factor Dimensions of cut, ft3 Number of passes

Caterpillar 992G 335.48 1 15.82×0.8×25 4

Caterpillar 6018 301.8 0.85 3.5×3.5×25 4

P&H 1900AL 315.9 0.83 3×3×25 4

The ore/waste map with hand drawn digitized polygons for the dig limits

case is in Figure 7.17. These ore/waste indicators are then used to calculate

the probabilities of being ore inside the truck-based units.
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(a) OK estimate (b) Dig limits map

Figure 7.17: Ore/waste indicator map with digitized dig limits for the selection of
ore

The dimensions of cuts in Table 7.2 define geometrical parameters of each

scoop for each type of the excavating equipment with some reasonable approxi-

mations. Several scoops comprise a truck load. The reference ore/waste map is

delimited by the truck-based units for each type of the excavating equipment,

as it is shown in Figure 7.18.

(a) Front end loader (b) Hydraulic excavator

(c) Electric rope shovel

Figure 7.18: Reference ore/waste indicator maps discretized by the units equal to
one truck load
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Dispatching errors

In a real life excavation process, some random offsets from designed posi-

tions could occur. A precise dispatching system is very important for the TBT

method. It should be mentioned that accurate navigation is very important for

advanced dig limits methods as well; it is used to follow optimized and complex

dig limits lines.

A random offset is added to each scoop of the excavating equipment to assess

the influence of imprecise navigation. Schematically, the directions of possible

offsets are illustrated in Figure 7.19 for each type of excavating equipment.

(a) Front end loader (b) Hydraulic excavator

(c) Electric rope shovel

Figure 7.19: Possible directions of displacement from modeled positions for each type
of excavating equipment

Some precautions are set inside the code ’performing’ excavation. They

prohibit the scoops from overlapping and digging material already excavated.

These preventive measures may be described as follows: i) the origin of each

scoop (blue color in Figure 7.19) cannot go beyond the boundaries of the mine

bench (Figure 7.20), ii) the scoops cannot overlap in both horizontal and ver-

tical directions in order not to account for the same data multiple times. For

example, if the origin of a scoop is shifted to the direction 5, the next scoop in
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the line cannot shift in the directions 3 or 4. (Figure 7.21). The directions 9,

8, and 7 are possible only if there is a material there to excavate. In practice,

the plan would not consider navigation errors; it would consider the best pos-

sible positioning and best possible decision. Nevertheless, this approach allows

checking how navigation errors influence the quality of ore/waste selection.

Figure 7.20: A mine block boundary constraint

Figure 7.21: An overlap constraint

Decision making

Grade control decisions are based on each truck load unit. A profit is

calculated within each truck unit over 100 realizations similar to the simulation

grade control method. The profit inside all the truck units is calculated using

the formula below.

Expected utility l(b)|decision =
1

L

1

B

L∑
l=1

B∑
b=1

(U(Zn l(b)) − P1(Zn/Pbl(b))

− P2(Zn/Fel(b)) − P3(Bal(b)))

(7.7)

where Expected utility l(b)|decision is the expected profit or loss obtained
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from a truck unit with an origin b in a realization l given a grade control de-

cision; B is the number of blocks inside the truck unit with the origin b; L is

a total number of realizations; U(Zn l(b)) is the is the utility of Zn obtained

from the truck unit with the origin b in the realization l given the grade control

decision; P1(Zn/Pbl(b)) is the penalty for not complying with the first stock-

pile blending criterion obtained from the truck unit with the origin b in the

realization l given the grade control decision; P2(Zn/Fel(b)) is the penalty for

not complying with the second stockpile blending criterion obtained from the

truck unit with the origin b in the realization l given the grade control decision;

P3(Bal(b)) is the penalty for not complying with the third stockpile blending

criterion obtained from the truck unit with the origin b in the realization l

given the grade control decision.

The effectiveness of the ore/waste selection for the TBT and DL methods

with dispatching errors is calculated as follows:

i) Each scoop of the excavating equipment is randomly shifted from its

project position (Figure 7.19).

ii) A number of blocks inside each scoop is counted and an expected profit

over 100 realizations is calculated. The expected profit from each shifted scoop

is considered to represent a random error.

iii) The profits of all scoops inside one truck selective unit are averaged and

a final profit value is assigned to each truck unit. For example, the profits from

6 scoops in Figure 7.20 (b) are averaged inside one truck unit (outlined by blue

color).

iv) The influence of the offsets from 1 to 4 feet are checked for each type of

excavating equipment.

v) The results are averaged over 100 realizations. With change of a seed

number of a random number generator, the direction of offsets are changed for

each scoop.

v) The process is performed for TBT and DL approaches.
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Sampling errors

The idea is to check how random sampling errors influence the quality of

ore/waste selection. The following formula from Neufeld et al. (2006) is used

to introduce random errors to the assays of all variables:

Zwith errors = (1 + y × 0.05)× Zoriginal (7.8)

where y is a standard normal deviate; Z original is original sample data;

Zwith errors is the data with random errors.

The errors are normally distributed and unbiased. The value of errors ranges

from 0 % to more than 10 %. After the errors are introduced, OK estimates, dig

limits lines and expected profit are re-calculated. A new ore/waste indicator

map with digitized dig limits is in Figure 7.22. It is again obtained from an

OK estimate. The OK estimate in this case is calculated using the BH samples

with errors.

(a) OK estimate (b) New dig limits map

Figure 7.22: Ore/waste indicator map with digitized dig limits for the selection of
ore (case with sample errors)

Figure 7.23 shows the mine bench discretized by the front end loader-truck

scoops. The cases without dispatching errors and with 3’ offset from a project

position are provided. Each scoop is colored according to the expected profit.

Then, the profit of each scoop is averaged and the final ore/waste indicator

maps are obtained (Figure 7.24).
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(a) Perfect navigation (b) 3’ offset

Figure 7.23: Change in expected profit for each scoop of excavating equipment due
to 3’ offset

(a) Perfect navigation (b) 3’ offset

Figure 7.24: Change of ore/waste indicator maps for ’front end loader-truck’ units
due to 3’ offset (TBT method)

The ore/waste indicator maps for dig limits case obtained in a similar way.

Ore/waste indicators from the reference ore/waste maps (Figures 7.17 (b) and

7.22 (b)) serve as a basis for the selection of the bench. A truck unit is con-

sidered ore if it has more than 50 % probability of being ore. The bench is

delimited by truck units similar to the TBT method (Figure 7.25). Irrespec-

tive to a grade control method, mined material is selected by truck units.
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(a) Perfect navigation (b) 3’ offset

Figure 7.25: Change of ore/waste indicator maps for ’front end loader-truck’ units
due 3’ offset (DL method)

Figures 7.26 and 7.27 represent the TBT and DL ore/waste indicator maps

respectively obtained using ’hydraulic excavator-truck’ units.

(a) Perfect navigation (b) 3’ offset

Figure 7.26: Change of ore/waste indicator maps for ’hydraulic excavator-truck units
due 3’ offset (TBT method)

(a) Perfect navigation (b) 3’ offset

Figure 7.27: Change of ore/waste indicator maps for ’hydraulic excavator-truck’ units
due 3’ offset (DL method)
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Figures 7.28 and 7.29 show the TBT and DL ore/waste indicator maps

respectively obtained using ’electric rope shovel-truck’ units.

(a) Perfect navigation (b) 3’ offset

Figure 7.28: Change of ore/waste indicator maps for ’electric rope shovel-truck’ units
due 3’ offset (TBT method)

(a) Perfect navigation (b) 3’ offset

Figure 7.29: Change of ore/waste indicator maps for ’electric rope shovel-truck’ units
due to dispatching errors (DL method)

Tables 7.3 and 7.4 contain the comparison results of the TBT and DL

methods without sample errors.

Table 7.3: Percentage of misclassified blocks produced by the TBT method with
different degrees of navigation accuracy

Equipment
Misclassification errors for different degrees of

navigation accuracy, % (over 100 realizations) Average, %

TBT method

Offset, feet 0.00 1.00 2.00 3.00 4.00

Front end loader 10.38 10.49 10.55 10.71 10.85 10.60

Rope shovel 11.21 11.14 11.21 11.31 11.46 11.26

Hydraulic excavator 10.36 10.32 10.20 10.29 10.44 10.32
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Table 7.4: Percentage of misclassified blocks produced by the DL method with dif-
ferent degrees of navigation accuracy

Equipment
Misclassification errors for different degrees of

navigation accuracy, % (over 100 realizations) Average, %

DL method

Offset, feet 0.00 1.00 2.00 3.00 4.00

Front end loader 11.32 11.30 11.41 11.62 12.24 11.58

Rope shovel 12.02 12.19 12.36 12.35 12.56 12.30

Hydraulic excavator 11.29 11.33 11.49 11.53 11.68 11.46

In some cases, due to random chance, grade control results improve after

introducing dispatching errors. This is unrealistic and due to chance.

The above approach for calculating the percentage of misclassification is re-

peated for a data set with errors. All calculations for DL method are performed

using the changed dig limits map from Figure 7.22 (b). For the TBT method,

the total profit at each location is altered due to changes in the sample BH

data. The resultant ore/waste indicator maps, delimited by the ’excavating

equipment-truck’ units, are compared to the initial ore/waste reference indica-

tor map. The results are provided in Tables 7.5 and 7.6.

Table 7.5: Percentage of misclassified blocks produced by the TBT method with
different degrees of navigation accuracy (accounting for sampling errors)

Equipment
Misclassification errors for different degrees of

navigation accuracy, % (over 100 realizations) Average, %

TBT method

Offset, feet 0.00 1.00 2.00 3.00 4.00

Front end loader 12.01 11.91 11.91 12.01 12.10 11.99

Rope shovel 12.20 12.26 12.39 12.49 12.47 12.36

Hydraulic excavator 11.17 11.28 11.57 11.70 11.72 11.49
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Table 7.6: Percentage of misclassified blocks produced by the DL method with dif-
ferent degrees of navigation accuracy (accounting for sampling errors)

Equipment
Misclassification errors for different degree of

navigation accuracy, % (over 100 realizations) Average, %

DL method

Offset, feet 0.00 1.00 2.00 3.00 4.00

Front end loader 11.58 11.66 11.77 11.88 12.25 11.83

Rope shovel 12.36 12.36 12.49 12.56 12.67 12.49

Hydraulic excavator 11.63 11.66 11.51 11.66 11.87 11.66

Summary of the results and discussion

The truck-by-truck selection method is more flexible than dig limits ap-

proach. It implies making grade control decisions based on the expected profit

of each scoop of excavating equipment. For this particular case study, the TBT

method produced 8.9 % less misclassified blocks than the dig limits approach.

This part of the case study does not aim to compare existing grade control

procedure at Red Dog to the TBT approach. Therefore, a more reasonable

resolution for short-term grade control models is used instead of the actual

resolution used at Red Dog (25’×25’×25’). The effectiveness of grade control

models at the actual resolution would be worse compared to the TBT grade

control method.

The most effective excavating equipment for the short-term grade control is

hydraulic excavator due to its maneuverability and the geometrical parameters

of its bucket. Hydraulic excavator showed the best performance in all the

cases. Rope shovel is considered to be the worst excavating equipment for

grade control due to its digging constraints.

Sample errors impact the effectiveness of the TBT method more than DL

method for this particular mine bench and modeling workflow. Sample errors

caused 11.99 % decrease in the effectivenes of ore/waste classification for the

TBT method and only 1.87 % for the DL method on average. It should also

be mentioned that the current method to introduce sample errors might cause

more than 10 % error for a sample. An appropriate assaying procedure does
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not normally produce such large errors.

The size of the mine bench is relatively small compared to the size of the

truck-based units. Therefore, the diversity of geological features does not have

a significant impact on selectivity here. The dimensional parameters of scoops

are too large compared to the ore/waste zones. For bigger benches with more

complex geologic features and a larger number of ore/waste categories, the re-

sults of deterministic techniques would be worse compared to the TBT method

(i.e. Chapter 6). The multivariate modeling workflow also may cause an impact

on the effectiveness of TBT. The sensitivity of PPMT plus NS transformation

in grade control has not been studied extensively.

7.8 Conclusions and Limitations

The effectiveness of each part of the case study is estimated separately on the

example of one mine bench. It is done for a better control over results. It is

difficult to objectively assess a combined effect of all grade control improve-

ments, as the case study is partly artificially modeled. The results of such an

assessment might not be representative. Overall, each part of the case study

showed a significant improvement. The effectiveness of each part of the new

grade control workflow is estimated by the total amount of misclassified blocks.

The results can be summarized by the following statements:

i) The grid size of short-term grade control models have a significant im-

pact on the correctness of the classification of mined material. The amount of

mislassified mined material at the Red Dog mine may be decreased on 29.1 %

by using a reasonable grid size for short-term grade control models.

ii) Using simulation instead of estimation at one of the reasonable grid sizes

further improves the effectiveness of the ore/waste classification on 8.27 % (9.86

% and 10.75 % for simulation and estimation respectively)

iii) The impact of the blast movement displacement of rocks on the ore/waste
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selection of mined material may be very significant depending on a particular

blast. A simple and adjustable method for predicting post-blast positions of

grades is offered.

iv) The TBT selection method represents the same principle as the simula-

tion ore/waste classification approach but uses the selective units corresponding

to one truck load. Using the TBT method instead of ordinary kriging in com-

bination with dig limits results in 1.05 % less misclassified block on average

among different types of excavating equipment.

v) The effectiveness of excavating equipment for grade control is governed

by the geometrical parameters of shovel and the sequence of scoops.

vi) Dispatching errors impact both the TBT and DL methods: with in-

creasing the distance of random offset from modeled position, the percentage

of misclassified blocks increases.

vii) Sample errors may significantly affect the effectiveness of the TBT

method over the DL method. This impact is believed to be dependent on the

multivariate transformation scheme. For different transformation approaches,

the impact of sample errors could be different. Nevertheless, even with a sig-

nificant amount of sample errors, the performance of the TBT grade control

method is still better than the performance of the dig limits grade control

method on average.

It should be noted that a many assumptions are used for this case study.

A reference model used for assessing the effectiveness of new developments is

artificially constructed. It is a single realization of sequential Gaussian simu-

lation. Nevertheless, all the univariate and multivariate relationships, as well

as first and second order statistics, are reproduced in the reference models for

each variable and the final ore/waste indicator map.

Utility functions for developing the reference ore/waste indicator map and

for further calculations are assumed. Actual recovery equations for the variables

of interest are not available for this case study. Therefore, final results do not
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necessarily reflect the actual Red Dog philosophy for grade control.

Post-blast topography is artificially constructed. Actual post-blast topo-

graphic data are not available for this case study. An actual blast movement

grade control would involve tuning bmov using additional input data.

Dig limits for the last part of the case study are hand drawn. There is

no standard for developing the dig limit lines. The results are subject to the

author’s idea of appropriate dig limit polygons.
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Chapter 8

Conclusions

A workflow for improved grade control is developed and presented. A new

grade control paradigm addresses major sources of misclassification errors of

mined material in open pit mines. A series of theoretical examples and a case

study with real production data are constructed. Practical recommendations

for improved grade control in open pit mines are provided. They may be used

together or separately depending on the needs of a mine.

8.1 Summary of Contributions

Grade control decisions are based on limited data obtained from drillhole (DH)

and blasthole (BH) samples. Grades at each unsampled location are pre-

dicted using estimation or simulation techniques. Practitioners usually con-

struct grade control models using deterministic estimation methods and large

grid sizes. Large grid sizes are used for obtaining grade control models at a

resolution comparable to a selective mining unit (SMU) size. Low resolution

of grade control models (large blocks) also allows easier drawing dig limit lines

used in ore/waste selection. Theoretical experiments in this thesis show that

using large grid sizes causes a loss of profit. Grade control models constructed

using reasonable grid sizes show better results in grade control. The grid size
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for grade control models should be considered with respect to the sample spac-

ing. Theoretical experiments in Chapter 3 and the case study allow concluding

that a reasonable grid size for grade control models should be in the range from

25 to 40 % of sample data spacing. It is not recommended to exceed 50 % of

the sample data spacing. In most cases, the amount of missclasified material

increases after this limit. An ordinary kriging grade control model for the Red

Dog case study, constructed using a reasonable grid size, resulted in 4.4 % less

misclassified blocks than the model constructed using the actual Red Dog grid

size for grade control models.

Estimation is traditionally used for grade control at mines. Kriging meth-

ods are particularly popular. They produce robust predictions of grades at

unsampled locations. Unfortunately, the estimates produced using kriging or

other deterministic interpolation techniques are smooth and do not reproduce

all the uncertainty in input grades. Estimation models for grade control are

often constructed for each variable separately and then used for developing dig

limit lines. This approach does not account for complex multivariate relation-

ships between variables important for the recovery of metals. Simulation allows

accounting for all the variables important for grade control at once. Multiple

realizations of simulation are used to calculate the expected profit or loss of

each grade control decision. The final decision brings the largest expected profit

or the smallest expected loss. A theoretical experiment in Chapter 4 and the

Red Dog case study in Chapter 7 illustrate different ways of using simulation

for grade control. Simulation allows adjusting the grade control decisions de-

pending on a particular technological process or technological constraints. In

all provided examples, the simulation approach for grade control outperforms

estimation compared to a reference distribution of grades: it produces less mis-

classified blocks. Once set up, the simulation approach for grade control can

be used as easily as estimation. All important relationships between variables

of interest and other aspects can be addressed by simulation. For the Red Dog
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case study, simulation produced 0.9 % less misclassified blocks than estima-

tion (even using a reasonable grid size). The more complex the relationships

between variables and the more complicated the recovery formula, the more

profitable simulation is for grade control.

Post-blast displacement of grades is, probably, the most important issue for

improved grade control. All improvements in grade control can be compro-

mised if a precise post-blast grade control model is not constructed. A method

for predicting blast movement should be adjustable to different conditions and

easy to use. A way to translate the pre-blast grades onto the post-blast sur-

face without using dig limits is proposed in this thesis. Bmov program allows

constructing pre-and post-blast 3-D models of mine bench using the pre- and

post-blast topography. Pre- and post-blast user-defined polygons outline the

boundaries of the pre- and post-blast 3-D models. The program applies an easy

but robust principle of mapping the pre-blast grades onto the post-blast 3-D

model. A block of a pre-blast 3-D model is associated to a correspondent block

of a post-blast 3-D model using relative positions (indices) of the blocks inside

the 3-D models. The indices are calculated with respect to the edges of the

models in three orthogonal directions. It is possible to incorporate constraints

and additional data to adjust the blast movement pattern according to site

specific conditions.

Ore/waste delimitation of a mine bench using dig limits is replaced by the

truck-by-truck (TBT) paradigm. Similar to simulation method for grade con-

trol, TBT implies making grade control decisions based on the expected profit

from many realizations. The expected profit is then averaged inside grade con-

trol units representing one truck load. These truck-load units are developed

beforehand with respect to particular excavating and hauling equipment. A

way a particular piece of excavation equipment scoops a mine bench is taken

into account. Having truck-load units placed in a correct order throughout the

mine bench, it is possible to calculate the profit of each scoop and each truck
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load. Therefore, the actual excavation process is modeled and the positions

of each scoop are defined beforehand. A precise GPS dispatching system is

required for this method. It should be mentioned that modern grade control

methods with dig limits also require precise navigation. The TBT method is

expected to be less effective in comparison to the DL method for very continu-

ous grade distributions. The TBT method resulted in 1.05 % less misclassified

blocks for the Red Dog case study. Both methods are used with optimized

parameters for grade control models. Several types of excavating equipment

are compared. The most effective type of the excavating equipment for grade

control is determined to be a hydraulic excavator. Technological parameters of

this type of excavating equipment permit flexible and selective excavation.

8.2 Limitations

Thousands of reference distributions are used for obtaining the recommenda-

tions in Chapter 3. Artificial reference and sample data is the only way to

perform such a theoretical study. The effectiveness of estimation using real

data may departure from the provided results due to the complexity of a real

life geological settings. The distribution of data is known beforehand and sta-

tistically ideal. The amount of influencing factors could be increased. Some

factors might be added or removed depending on a particular mine. Therefore,

the reasonable range of grid sizes may be altered for each particular case; but

the difference from the results provided in Chapter 3 is not expected to be

significant.

The effectiveness of simulation over estimation is also checked using syn-

thetic and partially conditioned distributions. Theoretically, simulation always

outperforms estimation irrespective of the simulation workflow or a number of

variables. However, real life results for grade control, especially, with only one

variable may be different. Some cases may occur when estimation (i.e. ordinary
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kriging) outperforms simulation. It specifically may happen when penalties for

estimation and underestimation are equal. For asymmetric penalties, the ef-

fectiveness of simulation over estimation is more evident.

Simulation with more variables require a different approach. The impact

of all variables on the recovery of a metal of interest or the quality of a final

product should be properly accounted for. Correct utility and penalty functions

for each variable should be developed for accurate profit and loss calculations

for each grade control decision. Another issue is related to the process of

multivariate modeling. Different multivariate transformation workflows can

be used. The influence of different multivariate transformation techniques on

short-term grade control could be studied more thoroughly.

The work of the blast movement program (bmov) is checked only for arti-

ficial topographic surfaces. It allows visualizing the principle of the post-blast

mapping of grades. However, it is necessary to check the performance of the

program with real data. The program uses gridded topography and user-defined

polygons outlining the boundaries of pre- and post-blast benches. Therefore,

the performance of bmov with the real data is controllable and expected to

be stable. The program should be tuned to specific technological parameters

of blasting and geological data. Some additional data such as blast measure-

ment vectors are possible to incorporate into the program’s code. Due to the

complexity of the pre- and post-blast topographies, it is difficult to match the

resolution of both models (number of nodes) in all directions. A better fit of the

pre- and post-blast 3-D models is achieved for the topographic data gridded at

a higher resolution. Working with high resolution models, in turn, will require

more computation time.

The truck-by-truck (TBT) selection of grades uses the same principle as

the simulation approach for grade control. It makes grade control decisions

based on the expected profit of the units of mined material comparable to each

truck load. The grade control decisions are made accounting for the actual
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excavating process; each truck load is modeled beforehand. Therefore, it is

very important to have a precise dispatching system to take advantage of more

precise ore/waste classification.

Sample errors may adversely effect the effectiveness of the TBTmethod with

simulation. It is not known how sensitive the TBT method is to particular

multivariate transformation workflows. Currently, it is believed that sample

errors are very important for optimal TBT performance.

8.3 Future Work

A more comprehensive research may be conducted to obtain the reasonable

range for grid sizes relative to sample data. Theoretical results should be

checked with real data from different types of deposits. Practical recommen-

dations for different geological types of deposits could be developed.

Simulation is a more effective tool for grade control provided it is used

properly. A number of different factors may influence its performance. More

information should be gathered on the performance of simulation in different

conditions. More practical recommendations for using simulation for short-

term grade control should be developed. Prospectively, simulation should be-

come a primary tool for grade control. Some new software may be developed

to implement simulation for any number of variables.

The TBT method is an extension of the simulation approach. Different

types of equipment are easy to implement with the TBT method. The in-

fluence of sample errors on the performance of the TBT method should be

thoroughly investigated. The sensitivity of the TBT method to different mul-

tivariate transformation techniques should be studied and practical recommen-

dations provided.

The computational time for the blast movement program can be improved

using parallel processing and an optimized code. The principle of mapping
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the pre-blast grades onto the post-blast 3-D models could be improved to fit

with different blast movement scenarios. A function should be added into the

program’s code to incorporate additional blast movement measurement data.
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Appendix A

Input for Blast Movement

Program

Table A.1: Parameter file for BMOV program

Parameters for Blast Movement Program

*********************************

START OF PARAMETERS:

sgsim.out - data file

pre.dat - pre-blast surface file

post.dat - post-blast surface file

pre-vert.dat - pre-blast polygon vertices

post-vert.dat - post-blast polygon vertices

2035 - project elevation of the bench bottom

1 - discretization constant

20 - matching number

bmov.out - blast movement output
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Table A.2: An example of vertices file

Data

2

x

y

10558.5 26157.5

10721.5 26157.5

10721.5 26057.5

10558.5 26057.5

10558.5 26157.5

Table A.3: An example of surface file

Surface file

4

X

Y

Elevation

10500.5 26000.5 2036.0

10501.5 26000.5 2036.0

10502.5 26000.5 2036.0

10503.5 26000.5 2036.0

10504.5 26000.5 2036.0

10505.5 26000.5 2036.0

10506.5 26000.5 2036.0

10507.5 26000.5 2036.0

10508.5 26000.5 2036.0

10509.5 26000.5 2036.0

10510.5 26000.5 2036.0
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