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Abstract

The utility system plays an important role in efficient plant operations of chemical

processes. In this thesis, economic optimization of steam utility system is investigated

in detail. The objective is: 1) to calculate the optimal generation amount of steam

and electricity under uncertainty in process and electricity market; 2) to distribute

the generated steam in a most efficient way throughout the steam network.

In this work, steam distribution system is represented as a network with dynamic

process equipment models. Operating constraints and uncertain process disturbances

are included to accurately represent plant operations.

A cost-benefit analysis reveals that electricity price plays an important role in

optimal plant operations. Thus, to maximize the economic profit of a steam plant in

the long term, a high quality electricity price prediction model is developed based on

a robust switched system identification algorithm. The algorithm is formulated us-

ing Expectation-Maximization (EM) algorithm to estimate parameters in prediction

model, noise distribution and switching dynamics.

Dynamic process models and electricity price prediction models are integrated

into a linear programming problem that uses plant profit as the performance objec-

tive. Random process variables are included to represent process uncertainty. The

optimization effect is evaluated by comparing the plant profit from routine operations

and from optimized operations. The distribution of optimized plant profit is obtained

by solving the distribution problem of stochastic linear programming (SLP). A met-

ric based on Earth Mover’s Distance (EMD) is introduced to measure the difference

between plant profit distributions.

Based on the validation results of developed models and proposed performance

evaluation method, the optimized steam plant operations show significant advantage

over the routine ones when electricity prices vary considerably.
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Chapter 1

Introduction

In process industries, utility systems are crucial components that supply energy for

plant operation, usually in the form of steam and electricity. The steam plant has

high degrees of freedom to allow significant opportunity for cost reduction through

optimization [4]. Functionally, the most important task of steam plant is to meet

the fluctuating process steam demand. Economically, the cost of steam plant comes

from the energy and capital consumption in steam generation, and the profit comes

from the sales of generated electricity to electricity grid. Thus, for efficient operation

and maximal profit of steam plant, the following aspects are essential to consider:

modelling the steam plant and process equipment accurately, responding to electricity

market changes in operation, meeting steam user demand and generating electricity

in an optimal way.

1.1 Thesis objective and scope

Steam plant operation problems are widely formulated as optimization problems with

operating constraints. The objectives are to minimize energy consumption, minimize

operating cost and maximize economic profit [5], [2], [6], [7], [8]. This requires deep

understanding of the steam network connection and input-output models for the

process equipment, which is the focus of Chapter 2.

For the optimization of steam plant operation, if only current operating condi-
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tions are taken into account, long term optimality cannot be guaranteed [9]. Thus, a

predictive optimization framework is required, in which the influence of current oper-

ation on future profit will be included. This naturally requires knowledge about the

future electricity market, future user demands and process equipment dynamics. A

high quality electricity price prediction model will be discussed in Chapter 3 and the

predictive optimization framework containing future electricity market and process

information will be discussed in Chapter 4.

After solving the steam plant operation problem, a method to evaluate the opti-

mization effect is developed (i.e., how much better the optimal operation is compared

to the routine operation). This method, based on the distribution problem of stochas-

tic linear programming, is discussed in Chapter 4. It is to quantify the added value

of the optimal operation over routine ones and to introduce a bounded performance

index.

The flow chart for the steam plant optimization problem in this thesis is shown

in Figure 1.1.

Dynamic LP/ 

Optimal Tracking 

Controller 

Prediction 

Models 

Electricity market info 

Historical user demand 

Process random variables 

Operating constraints 

Optimal operation 

Steam Plant 

Process info 

Economic profit 

Routine operation 

Evaluation 

Method 

Optimization effect 

Figure 1.1: Steam plant optimization flow chart
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1.2 Robust switched system identification

In this thesis, for accurate electricity price prediction, a robust switched system iden-

tification algorithm will be developed.

Linear time-invariant (LTI) models are widely used in many fields of science and

engineering, such as spectroscopy, signal processing and electrical circuits, due to

their structural simplicity and well developed supporting theories. In the traditional

chemical process industries, LTI models are also the most used; however, due to

inherent complexity of chemical processes, in many cases, it is difficult to capture

complete dynamics of chemical processes and control them via a single LTI model [10].

Reasons for this include inherent physicochemical discontinuities (e.g., phase changes,

flow reversals, shocks and transitions), the use of discrete actuators and sensors (e.g.,

on/off valves, pumps and binary sensors), and the use of logic-based switching for

safety control tasks [11]. Hybrid modelling becomes a natural choice [12] in cases

where the process switches among discrete operating states (usually unknown), and a

different local continuous model describes the system in each state. In the literature,

various approaches to hybrid system modelling have been developed. In [12], four

methods are discussed for identifying switched affine and piecewise affine systems,

namely: the algebraic, Bayesian, cluster-based and bounded error approaches. In [13],

Jin and Huang (2010) proposed a method to identify a class of piecewise ARX model

(PWARX), where the switching among various operating points is assumed to be

random. To further model patterns in switching dynamics, the authors [14] proposed

an extended method based on Expectation-Maximization (EM) algorithm, to identify

switched ARX models where switching dynamics is assumed to be a first order hidden

Markov model. As a powerful approach for maximum likelihood estimation, the

EM algorithm has been widely used in different disciplines after its advent in 1970s

[15]; however, in the process modelling and control literature, application of EM

algorithm is relatively new. Goodwin and Aguero (2008) applied the EM algorithm

to nonlinear and switched system parameter estimation [16]. As discussed earlier, Jin

and Huang (2010, 2011) applied the EM algorithm to switched system identification

by assuming first-order Markov switching dynamics [13], [14], [10]. Deng and Huang
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(2012) further extended the previous work to identification of nonlinear parameter

varying systems with missing output data [17]. The EM algorithm based method

in [14] provided a good framework to model hybrid system dynamics using switched

Markov ARX (SMARX) model, and it provided an estimation approach for both

discrete and continuous dynamics at the same time. In addition, the closed form

analytical update equation also makes this method attractive.

In the above EM based switched system identification methods, noise has been

assumed to be single Gaussian distributed. This assumption has limited the flexibil-

ity when handling data with non-Gaussian distribution noise, or more commonly, low

quality data with outliers. The authors in [13] provided a relatively robust way to

handle outliers by dividing noise into a regular portion and irregular portion; however,

in this method, prior knowledge about outliers is required, and the outlier pattern

cannot be more than one. In cases where non-Gaussian distributions or multiple out-

lier patterns are present, the algorithm [13] cannot properly handle them. In general,

due to existence of outliers and non-Gaussian distributed noise in industrial data, a

single Gaussian distribution is insufficient to describe various noise characteristics.

Instead, the Gaussian mixture model (GMM) can be used in modelling non-Gaussian

noise because of its ability to approximate a rich class of distributions, analytical

tractability, and conciseness in form [18]. The Gaussian mixture noise distribution is

introduced in switched system identification in Chapter 3, which can naturally han-

dle outliers and approximate a rich group of non-Gaussian noise distributions such as

uniformly distributed noise [19].

In the literature, outlying observations (i.e., outliers) are measured values that

deviate seriously from normal range of measured data, and existence of outliers in

data can degrade performance of data driven models significantly [20]. It can be

expected that by assuming Gaussian mixture distributed noise, outliers will naturally

be modelled as components whose mixing probabilities are relatively small, and mean

or variance values deviate from normal noise range significantly.

Another merit of Gaussian mixture noise assumption is its ability to represent a

rich class of noise distributions. GMM can approximate arbitrarily well any density

function, and the resulting class of density functions is abundant for engineering use

4



[19],[21]. This would increase the flexibility of proposed switched system identification

algorithm.

In addition to noise distribution, a higher-order hidden Markov model may have

potential in SMARX modelling for better performance in capturing more complex

switching dynamics. Compared with the first-order HMM, a higher-order HMM cap-

tures more information contained in historical data and thus, is a more general and

descriptive approach to model complex switching dynamics like periodicity. In [22],

a comparative study has shown that a second-order Markov chain is more descriptive

than its first-order counterpart in wind speed modelling. In the speech recognition

literature, the higher-order hidden Markov model is also investigated [23], [24], [25].

1.3 Distribution problem for stochastic linear pro-

gramming

Linear programming (LP) is a popular tool that is used for decision making, schedul-

ing and planning in various industries, such as transportation, manufacturing and

energy dispatch. Due to the stochastic nature of complex industrial operating en-

vironment, the coefficients in constraints and objective function of LP problems are

usually random rather than constant. Stochastic linear programming (SLP) is the

tool to deal with LP problem with random variables in formulation. Hansoia [26]

states that chance-constrained LP and LP under uncertainty are two main fields

where randomness is introduced into LP [27]. In this thesis, the third main research

topic of SLP is considered, namely the distribution problem. The distribution prob-

lem of SLP was first introduced by Babbar [28], Tintner [29] and Wagner [30]. The

aim of distribution problem is to solve for the distribution of objective function and

decision variables in SLP, so that perfect information about the objective function

and decision variables under uncertainty can be uncovered.

In the optimization of utility steam systems, where steam and electricity are gen-

erated to meet steam user demand or sell to the electricity grid, LP is a popular

technique [7], [9]. There are unknown process parameters, such as missing or faulty
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measurements in the steam network, and thus the operation constraints in LP gener-

ally have unknowns in right hand side (RHS). The RHS of these constraints is always

random, and is at most known in distribution estimated from historical mass and en-

ergy balances. The solution to the distribution problem is important as: 1) it provides

an estimation of the added value of optimal operation under process uncertainty; 2)

by knowing the distribution of plant profit and decision variables, it is possible to

compare and classify different plant operating modes given appropriate probability

distribution metric; 3) knowing the distribution for decision variables simplifies the

sensitivity analysis for SLP and therefore simplifies the determination of bottleneck

in steam plant.

As stated in [27], the solution for the distribution of objective function in a closed

form is generally not possible. Note that even in relatively simple case depicted

in (4.16), no easy solution can be derived. As an analytical solution to distribu-

tion problem is generally difficult or impossible to derive, the author in [31] suggests

three alternative methods, namely: the simulation method, the discretization method

and the incomplete description method. In this thesis, a Monte Carlo simulation ap-

proach is used to solve for the distribution of objective function and decision variables.

Bracken and Soland [32], and Sarper [27] used the Monte Carlo simulation methods

to solve the distribution problem of SLP. One of the drawbacks of Monte Carlo simu-

lation based methods is the heavy computational load in estimating the distributions

based on histograms of objective function. Since in most cases the resulting distribu-

tion family is unknown, only a non-parametric method can be used.

For the steam plant optimization problem, it is meaningful to compare the opti-

mized operation with the routine ones. This comparison can be made by measuring

the difference between the distribution of optimized plant profit and that of routine

operations. This calls for a metric between probability distributions. Among different

probability distribution metrics, the Earth Mover’s Distance, indicating the minimal

cost to transform from one distribution to another, is widely used. Its merits can be

summarized as: 1) it accounts for perceptual similarity better than other metrics; 2)

it can be calculated effectively using an LP solver; and 3) it is a true metric under

mild restrictions, which is important for optimization purpose [33]. Defining the EMD
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between two distributions requires a defined ‘distance’ between the basic features that

form distribution, and this distance is generally referred to as ground distance in the

literature [33]. In this thesis, the Hellinger distance is used as the ground distance for

EMD as: 1) the ground distance can be derived in a closed form using the Hellinger

distance to avoid high computational load; 2) the Hellinger distance is a true metric

bounded between 0 and 1, which makes the upper layer EMD a true metric between

0 and 1; and 3) in this thesis, the Hellinger distance can be modified so that it is

adjustable according to different user requirements.

1.4 Thesis contributions and outline

An optimization framework is proposed in this thesis to maximize the operating profit

in steam utility systems under process and market uncertainty. The proposed frame-

work integrates: 1) LP problem using profit as the objective, and incorporating pro-

cess/market information and operating restrictions into constraints; 2) high-quality,

hour-ahead electricity price prediction model which allows the plant operation to

hedge risk in peak price hours; and 3) probability density estimation of the missing

process measurements from historical data using mass balances. Under this frame-

work, the potential profit in utility systems can be assessed quantitatively, and can be

maximized based on random missing measurement distribution and electricity price

prediction. Cross validation shows good prediction accuracy in electricity price, and

benefit analysis by industrial partner shows promising results of proposed optimiza-

tion approach.

The main contributions of this thesis are:

1. Models of the steam network connection and dynamic process equipment under

process uncertainty.

2. Introduction to Alberta’s electricity market, and proposal of a robust switched

electricity price prediction model. The characteristics of the proposed method

are: 1) introducing Gaussian mixture noise distribution to model outliers and to

approximate non-Gaussian noise distributions; 2) solving the formulated prob-
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lem by EM algorithm and deriving a closed form solution; 3) extending the

switching dynamics to second-order hidden Markov model; and 4) proposing a

novel initialization strategy for EM algorithm to include prior process knowl-

edge.

3. Formulation of a predictive optimization framework integrating the dynamic

process equipment models and electricity price prediction models into an LP

problem.

4. Design of controllers to track the optimal boiler load trajectory calculated by

LP and development of an optimization performance index.

The remainder of this thesis is organized as follows:

Chapter 2 describes the complete steam network connection and process equip-

ment models, which will be used in the predictive optimization framework.

Chapter 3 introduces Alberta’s electricity market, and develops a robust switched

electricity price prediction model to capture the electricity market dynamics for op-

timization use.

Chapter 4 integrates the process equipment models and electricity price prediction

to form a unified predictive optimization framework and proposes a novel approach

to evaluate the optimization performance.

Chapter 5 concludes the thesis and provides perspectives for future work.
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Chapter 2

Steam Plant Model

In this chapter, the process equipment models that will be used for plant optimization

are developed in detail. Section 2.1 discusses the mass balances in each steam common

header, the steam distribution constraints, and models for random process variables.

Section 2.2 describes the turbine generator model which links the process operation

with electricity generation. Section 2.3 provides the drum boiler dynamic model,

which is used in predictive optimization framework in Chapter 4.

2.1 Plant-wide steam mass balances

In this section, the steam plant layout and mass balances will be discussed. The

steam suppliers and users connected to each common header will be introduced. The

plant-wide operational constraints, as well as the models for random process variables

are developed.

2.1.1 Steam network connection

The process flow diagram for steam plant considered in this thesis is given in Fig-

ure 2.1.

In the steam plant, there are a total of four steam headers connected together: 1)

#900 steam common header; 2) #450 steam common header; 3) #160 steam common

9
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Figure 2.1: Steam plant process flow diagram
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header; and 4) #35 steam common header. Two steam boilers are connected to #900

header. They consume boiler feed water (BFW) and natural gas (NG) to produce

900 psi steam. Another source of 900 psi steam is the sulfuric acid production units.

Changes in user demand, steam leaks and other plant operations will influence the

pressure in the common headers, and the automatic control system will manipulate

the BFW and NG flow rates to compensate for this change. In the steam supply

system, there are equipment that transform steam from high pressure to low pressure,

such as pressure let-down stations (PLS), turbine generators, and process turbines.

The optimal steam plant operation requires that the amount of steam generated at

each operating instant satisfies the user demand, maximizes the profit via electricity

generation, and distributes the generated steam in a plant-wide optimal fashion. The

cost of the steam production results from: the energy and material consumed to

generate steam, (i.e., water and natural gas), the labour cost and the operation,

maintenance and depreciation cost of process equipment. The profit of the steam

plant is from the following aspects: the value ascribed to a user demand for the

steam and the generated electricity sold to the electricity grid. Thus, the key for the

steam plant optimal operation are the fluctuation of electricity price and the steam

user demand, which will be modelled in detail in Chapters 3 and 4, respectively.

2.1.2 Steam distribution constraints

To optimize the steam plant operation, the mass balance constraints need to be

respected for each common header. In practice, the amount of steam flowing into

each common header should be slightly more than or equal to the total user demand

from that header. They are not equal when there are leaks along the pipelines.

The actual measured input and output flows for each common header are shown in

Figure 2.2 from process data.

From Figure 2.2, it can be seen that the input and output steam amount for each

common header do not balance each other. The missing measurements could be leaks

along the pipeline or unmeasured steam flows. To be specific:

1. In the #900 common header, the input is sometime more and sometime less
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Figure 2.2: The input-output mismatch in common headers

than the output, and the average absolute difference is around 104lb/hr. Since

no abnormality in the flow meters or large amount leakage is reported, there

may be unmeasured steam flow, or missing measurements on both supply and

the demand side of #900 common header. The imbalance amount changes

from time to time, which can be modelled by a random variable from a certain

distribution.

2. In the #450 common header, the input always exceeds the output, and the

amount is relatively constant, which can be explained as the missing measure-

ment on the demand side of #450 steam, and the missing demand amount can

be approximately taken as a constant offset in modelling.

3. In the #160 common header, the input always exceeds the output, and the

amount changes slightly from time to time, which can be explained as the miss-

ing measurement on the demand side of #160 steam, and the missing demand

can be modelled by a random variable following a certain distribution.

4. In the #35 common header, the input always exceeds the output, and the
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amount changes significantly from time to time, which can be explained as

the missing measurement on the demand side of #35 steam, and the missing

demand can be modelled by a random variable following a certain distribution.

The missing measurements in each common header could be from some hidden

steam users or suppliers. Thus, if they are neglected in the steam plant optimization,

the calculated optimal steam input amount for each common header might be insuf-

ficient or excess, which in both cases deviates from the optimization objective. The

missing measurements will also challenge the optimization performance assessment

process, which will be discussed in Chapter 4. Thus, accurate models for missing

measurements and fluctuating user demands are essential to the success of the overall

steam plant optimization.

2.1.3 Random process variables

In previous subsection, there are missing measurements in all of the common headers,

and the future missing amount of steam is not known directly, which yet will be

useful in the predictive optimization framework. Nevertheless, using the mass balance

relationship, the historical values of missing measurements can be calculated as the

difference between the input and output amount of steam in each header. Therefore,

taking the missing measurements as random variables, the distribution of each missing

element can be estimated from the historical input-output difference. Another source

of uncertainty in the steam plant is the fluctuating user demands. Unlike the missing

measurements, the user demands are directly known in the optimization; however,

from a long term point of view, the user demand data are random, and for the purpose

of predictive optimization and performance assessment afterwards, they need to be

properly modelled.

To model the random process variables appropriately, first the histograms of these

process variables are plotted, and distribution families are chosen to represent the

histograms. For performance assessment of the steam plant optimization under un-

certainty, all of the random process variables in each header are lumped into one

random variable. The histograms for each of lumped random variable can be found

13
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Figure 2.3: Histograms for the lumped random variables in each steam header

in Figure 2.3.

The histogram for the #900 header shows multiple modes, and it may be possible

to model each of the mode by a local Gaussian distribution. The histogram for the

#450 and #35 headers are similar to Gaussian. The histogram for #160 header

appears asymmetric with a long tail to the right.

Based on the shape of histogram in each common header, the Gaussian mixture

model is chosen to represent their distributions. In probability density estimation, the

Gaussian mixture model (GMM) is widely used in modelling non-Gaussian distribu-

tions because of its parsimony, its ability to approximate a rich class of distributions,

and its analytical tractability [18]. A general form of Gaussian mixture model can be

14



expressed as follows [34]:

p (x|θ) =
M∑
i=1

wig (x|µi,Σi)

g (x|µi,Σi) = 1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)TΣ−1

i (x− µi)
} (2.1)

where: x is D-dimensional continuous valued data; g(x|µi,Σi) is the local Gaussian

component, with mean µi and covariance matrix Σi; and wi is the mixing weight with∑M
i=1wi = 1. θ represents the set of parameters {wi, µi,Σi} to be estimated from

the historical observations of lumped random variables. The Gaussian mixture can

naturally handle outliers and approximate a rich group of non-Gaussian distribution

features such as long tail and asymmetry [19].

Since a Gaussian mixture is chosen to approximate the distributions of the random

variables in each common header, it is essential to find an effective algorithm to

estimate the parameters {wi, µi,Σi}. Expectation-Maximization (EM) algorithm is

one such algorithm.

The EM algorithm is a popular solution for maximum likelihood estimation prob-

lem with hidden information. An EM algorithm consists of two steps, E-step and

M-step, and the algorithm updates the estimated parameters iteratively by these

two steps, until convergence. In the E-step, conditional expectation of the likelihood

function over hidden information (in this case, the membership of local Gaussian dis-

tribution to which each data point belongs) is calculated, and the result is normally

referred to as the Q function in the literature [15], [35]. Mathematical formulation of

the Q function for Gaussian mixture parameter estimation can be expressed as [36]:

Q
(
θ|θold

)
= EY |X,θold {lnP (X, Y |θ)}

= EY
{

lnP ((x1, y1) , (x2, y2) , ..., (xn, yn) |θ) |X, θold
}

= EY

{
ln

n∏
i=1

P ((xi, yi) |θ)|X, θold
} (2.2)

where: X is the observed data collected from historical database for each common

header; and Y is treated as hidden variable, denoting the Gaussian component from

which each xi comes. Thus, yi = 1, 2, ...,M , assuming M local Gaussian components.

The final equality in equation (2.2) follows the assumption that the historical data are
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independent from each other. From (2.2), the Q function can be re-written as [36]:

Q
(
θ|θold

)
= EY

{
n∑
i=1

ln (wyig (xi|µyi ,Σyi))|X, θold
}

=
n∑
i=1

M∑
j=1

{P
(
yi = j|xi, θold

)
(lnwyi + ln g (xi|µyi ,Σyi))}

(2.3)

where P
(
yi = j|xi, θold

)
is generally referred to as membership probability in the lit-

erature on Gaussian mixture parameters estimation [37], and it is the key probability

that connects the E-step and M-step of the EM algorithm. By the Bayes’ formula, it

can be expressed as:

P
(
yi = j|xi, θold

)
=
f
(
xi, yi = j|θold

)
f (xi|θold)

=
woldj g

(
xi|µoldj ,Σold

j

)
M∑
j=1

woldj g
(
xi|µoldj ,Σold

j

) (2.4)

Substituting (2.4) into (2.3), and in M-step, taking derivatives of the Q function

over θ under probability measure constraints, yields the parameter update equation:

wj =

n∑
i=1

P
(
yi = j|xi, θold

)
n

,

µj =

n∑
i=1

P
(
yi = j|xi, θold

)
xi

n∑
i=1

P (yi = j|xi, θold)
,

Σj =

n∑
i=1

P
(
yi = j|xi, θold

)
(xi − µj)T (xi − µj)

n∑
i=1

P (yi = j|xi, θold)

(2.5)

For detailed intermediate derivation steps and analysis of the EM algorithm in

Gaussian mixture parameter estimation, see the Bilmes tutorial [36].

The estimated GMM distributions for the four common headers are shown in

Figure 2.4. After estimation of these distributions, performance assessment of the

steam plant optimization can be conducted using method proposed in Chapter 4.

2.2 Turbine generator model

A model of the turbine generator is required as it is a potential profit maker in the

steam plant due to electricity generated during peak price hours. Thus, knowing the
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Figure 2.4: Estimated Gaussian mixture distributions for steam headers

relationship between steam passing through the turbine generators and the electricity

generated is an essential element of steam plant optimization.

A simplified structure of the turbine generator and its connection to different

steam common headers is shown in Figure 2.5 [2].

In [2], two approaches are introduced to model electricity generation using the

amount of steam flowing through the turbine generator and the amount of #900

steam reduced to #35 steam. The first method is based on first principles or physical

laws in the electricity generation process, namely the mass and energy balances,

thermodynamics and so forth. Note that the turbine generator transforms the energy

in the #900 steam to the electrical energy and the energy contained in #35 steam

plus condensed water. The first principles model for the turbine generator can be
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Figure 2.5: Turbine generator [2]

represented as (2.6), [2]:

∆Eactual = ηoverall (H900xtg −H35xtgex35) (2.6)

where: H900 and H35 are the enthalpy of corresponding steam, which are inherently

non-linear functions of steam temperature and pressure; xtg is the amount of #900

steam flowing into the turbine generator; xtgex35 is the flow-rate of steam reduced to

#35 steam; and ηoverall is the efficiency of the turbine generator [2]. The parameters

in equation (2.6) can be found in steam tables or calculated from turbine generator

operation data as discussed in detail in [2].

The second approach is a data driven modelling method, based on equation (2.6).

Given that the temperature and pressure of each steam common header are well con-

trolled, the enthalpy of the steams are roughly constant, and the amount of electricity

generated is approximately a linear function of xtg and xtgex35. After collecting the

historical operating data for xtg, xtgex35 and the amount of electricity generated, a lin-

ear regression analysis is performed to estimate the unknown parameters. Following

this method, the data driven model for turbine generators can be expressed as in [2]:

Xe1 ∝ 0.0400Xtg1ex35 + 0.0905(Xtg1 −Xtg1ex35) (2.7)

Xe2 ∝ 0.0435Xtg2ex35 + 0.1074(Xtg2 −Xtg2ex35) (2.8)
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The above turbine generator models will be used in the predictive steam plant

optimization in Chapter 4.

2.3 Steam boiler model

In this section, a drum boiler dynamic model will be developed. First a model based

on mass and energy balance equation is developed, and then a data based modelling

procedure is used to estimate the parameters for the boiler dynamic model. The

boiler dynamics will be combined with other elements models for the steam plant

predictive optimization studies in Chapter 4.

2.3.1 First principles model

The motivation to include a steam boiler dynamic model in the optimization is from

practical consideration. Although the optimal boiler load at each optimization step

can be calculated, the steam boiler cannot adjust its input variables to achieve this

load immediately due to relatively long response time of the boiler system. Thus,

knowledge of the boiler dynamics can improve the effect of steam plant operating

optimization.

The objective of the dynamic boiler model is to build a dynamic relationship be-

tween the steam generation and the boiler input variables: natural gas flow (NG),

boiler feed water (BFW) and header pressure (P), which is a disturbance input vari-

able. According to [38], based on the mass and energy balances, the first principles

dynamic boiler model can be represented as:

d

dt
[ρsVst + ρwVwt] = qf − qs

d

dt
[ρsusVst + ρwuwVwt +mtCptm] = Q+ qfhf − qshs

(2.9)

where: Vst and Vwt are the total steam and water volumes, respectively; ρs and ρw are

the densities for steam and water at operating temperature and pressure, respectively;

qf and qs are the BFW flow-rate and the steam output, respectively; us and uw are

the specific internal energy of steam and water, respectively; hf and hs are the specific
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enthalpy of BFW and steam output, mt is the mass of boiler; Cp the specific heat of

boiler’s metal; tm is the temperature of the boiler metal; and Q is the external energy

for heating, which is due to the burning of natural gas in the steam plant.

By further simplifying equation (2.9), the boiler dynamic model can be expressed

as:

e11
dVwt
dt

+ e12
dp

dt
= qf − qs

e21
dVwt
dt

+ e22
dp

dt
= Q+ qfhf − qshs

(2.10)

where eij are parameters in the approximate linear state space model, treated as

constants around steady-state operating point. Furthermore, in the above equations:

qs is taken as the system output; p is taken as the disturbance variable; NG is directly

proportional to Q and is an input variable; and qf represents the BFW flow and

is another input variable. Combine equations in (2.10) to eliminate dVwt
dt

. After

elimination of dVwt
dt

, equation (2.10) can be expressed as a transfer function with qf

and qNG as input, p as disturbance, and qs as output. Notice here Q is expressed as

proportional to the NG flow qNG:

e21

e11

[qf (s)− qs (s)− e12sp (s)] + e22sp (s) = CqNG (s) + hfqf (s)− hsqs (s) (2.11)

Equation (2.11) indicates that the steam generation can be represented by a dynamic

model of natural gas flow(qNG), boiler feed water(qf ) and pressure (P ) through a

transfer function. In practice, the boiler dynamics may not be as simple as in equa-

tion (2.11), because the parameters e21, e11, e12 is only constant within certain op-

erating region and may vary if the operating condition changes dramatically. The

parameter estimation of the dynamic boiler model will be discussed in next sub-

section.

2.3.2 Model derived from system identification

In the previous section, we discussed the dynamic boiler model in a transfer function

form between the steam generation and BFW, NG, P, with P as a disturbance input.

After collecting input-output data, and pre-processing them for system identifi-

cation purposes, different model structures were tested. The results of our analysis
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yielded an Output Error (OE) model as the desired model structure [39]:

y (t) =
B (q)

F (q)
u (t− nk) + e (t) (2.12)

where B(q) and F (q) are polynomials of the back-shift operator to be estimated. For

the multiple input, single output system in this case, B(q) and F (q) are vectors of

polynomial coefficients, where in the steam boiler model, B(q), F (q) ∈ R3.

After taking into consideration the estimation error and the parsimony principle,

the optimal orders for the polynomial coefficient vectors B(q), F (q) and time delay

vector were determined to be: nb = [2, 2, 2], nf = [3, 1, 1], nk = [0, 0, 0]. Using the

MATLAB OE model estimation function, the estimated parameters are calculated

as:

B1(q) = 0.8293(±0.0093)− 0.8297(±0.0095)q−1

B2(q) = −0.2524(±0.0056) + 0.2813(±0.0056)q−1

B3(q) = −628.6(±25.56) + 705.5(±20.16)q−1

F1(q) = 1− 0.7697(±0.012)q−1 − 0.4378(±0.019)q−2 + 0.2338(±0.012)q−3

F2(q) = 1− 0.9719(±0.0028)q−1

F3(q) = 1 + 0.3651(±0.029)q−3

(2.13)

where the ± numbers in the parentheses are the standard deviations of the estimated

parameters.

The cross validation results for the identified boiler dynamic model will be pre-

sented in the next subsection.

2.3.3 Boiler model validation

Figure 2.6 shows the residual test results for the identified model. From the residual

test results, the identified model passed all of the cross correlation tests between

inputs and prediction error; however, it failed the autocorrelation test for prediction

error. This is as expected, since the choice of OE model structure cannot ensure

the prediction error to be white noise. Although OE model misses some dynamics

according to the auto-correlation test, it is still an ideal model structure due to its
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Figure 2.6: Residual test results: Top left: autocorrelation of prediction error;

Top right: cross-correlation between prediction error and BFW; Bottom left: cross-

correlation between prediction error and NG; Bottom right: cross-correlation between

prediction error and P

parsimony and good fitting performance. The cross-validation fitting result is shown

in Figure 2.7. The step test results of three inputs are shown in Figure 2.8.

Figure 2.7 shows that the cross validation fitting rate is as high as 91.15%. The

step tests for NG flow, BFW flow and pressure are shown in Figure 2.8. In the NG

step test result (top sub-figure in Figure 2.8), the steam generation increases at first,

and then it drops to 0. As when the natural gas flow increases, the boiler load will

increase first and then it drops because eventually there is no sufficient boiler feed

water supply to balance the extra energy. In the BFW step test result (middle sub-

figure in Figure 2.8), the steam generation increases smoothly. As the boiler drum

level increases with BFW flow and when new mass balance is achieved, the steam

generation will increase accordingly. In the P step test result (bottom sub-figure in

Figure 2.8), steady state following oscillation can be observed.

The prediction performance and residual test results are reasonable. The cross

fitting accuracy is more than 90%, the missing dynamics might be because of mea-

surement error, model plant mismatch and other practical reasons; however, it is safe

to use the dynamic boiler model at such accuracy from empirical point of view.
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Chapter 3

Electricity price prediction model

In this chapter: first, a brief introduction to Alberta’s deregulated electricity market

will be made, the characteristics of the market and motivation of the multiple elec-

tricity price prediction model are explained; then, a switched Markov ARX model

identification approach is proposed and illustrated by simulation and experiment re-

sults; and in the final section of this chapter, the application of proposed method to

the development of a multi-model electricity price prediction method is discussed in

detail.

3.1 Alberta’s electricity market

Since 1996, Alberta has begun to operate its electricity market in a deregulated

approach that increasingly relies on the generation and selling competition, [40]. This

type of deregulated electricity market has more flexibility in electricity pricing, and

thus grants more opportunities for generation units to optimize operation in response

to market changes. There are some basic rules for electricity generation and selling in

Alberta that are essential to understanding the predictive model construction. These

contents are discussed in the following sections, as are some key facts of Alberta’s

electricity market.

In Alberta, all wholesale electrical energy from generation that is not consumed on

site must flow through the Power Pool, which is operated by Alberta’s independent
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system operator (ISO), named the Alberta Electric System Operator (AESO). One of

the most important tasks of AESO is to operate the Power Pool such that the market

operates in a fair, efficient and openly competitive manner [40]. All trading of power

through the AESO is by a process of offers and bids according to a ”merit order”.

The order is established to meet the forecast pool demand by ranking offers and bids

from low to high in cost on an hourly basis. The last bid, or offer, that is dispatched

every minute sets the System Marginal Price (SMP) and the time-weighted average

of SMP at the end of each hour is calculated as the Pool price, which is the wholesale

settlement price [41].

A wealth of information is available on the AESO website giving insight into

current state of the market, such as SMP, Pool price, current supply-demand report,

forecast demand, forecast Pool price and so forth. Actually the data used to build

the electricity price prediction model in following sections comes from AESO website.

The following characteristics of Alberta’s electricity market are summarized from the

literature [41], [42], [40]:

1. Obvious on-peak and off-peak electricity price patterns can be observed. Ac-

cording to the Alberta Energy Utilities Board, the on-peak period is from 8:00

to 21:00 Monday through Friday inclusive, except statutory holidays.

2. Pronounced periodic effects are observed. There are hourly, daily, intra-daily,

and weekly repeating patterns. Within 24 hours of a day, prices increase as

demand increases with a distinct hourly pattern. Electricity prices are normally

higher when demand is greater. In Alberta, about 78% of demands are from

industrial and commercial use, 18% from residential and 4% from farm.

3. Although there is strong correlation between demand and Pool price, interest-

ingly, demand is not the most important driver of Pool price. Rather, it is

always the unplanned (or forced) unit outages along transmission lines that

drive the Pool price to high level.

4. Generators are free to make changes to their offer prices (but not offered vol-

umes) as the market unfolds; however, two hours before the final price releases
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all price changes must stop and the only allowable changes are those associated

with operational issues at the units. Therefore, it is reasonable to predict the

electricity price two hours ahead based on the current final offers from gen-

eration units. Note that AESO website publishes the two hour ahead Pool

price prediction result, which is an important reference for the electricity price

prediction model proposed later.

5. Price ‘spikes’. As shocks in demand and supply are common, the electricity

Pool prices are extremely volatile. It is not unusual to see the price as high as

$500/MWh or more. If the steam plants can foresee such spikes in electricity

market and operate the steam generators accordingly, a considerable amount of

profit can be made during ‘spike hours’.

6. Price-dependent variance. Note that there is empirical evidence suggesting that

the volatility of electricity prices is high when the demand is high and vice versa.

Since Pool price and demand are highly correlated, the volatility of electricity

prices is dependent on the Pool price as well. This implies that at different price

levels, the electricity price prediction models should be different.

7. Non-negativity. There are cases where portions of electricity generation are

offered at $0/MWh to avoid being dispatched off at low Pool prices; however,

there are no negative electricity price offerings in Alberta. On the other end,

the upper limit of electricity price in Alberta is $1000/MWh.

Figure 3.1 shows the hourly electricity price change within a typical month, from

August 20th 2012 to September 20th 2012. From Figure 3.1, the periodic charac-

teristics of electricity price can be observed. The on-peak hours in this month are

generally from 14 to 16 in each day. The relationship between electricity price and

demand can be found in Figure 3.2. From Figure 3.2, it can be seen that the correla-

tion between the electricity demand and price is not linear. Thus, data preprocessing

is necessary to capture such correlation if a linear model structure such as linear ARX

model is chosen to model the electricity market dynamics.
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Figure 3.1: Alberta electricity price fluctuation within a month

Due to the characteristics of Alberta’s electricity market discussed above, it is nec-

essary to develop a multiple model approach to describe the electricity price during

peak hours and off-peak hours, respectively. In section 3.2 derivation of the proposed

method is presented and illustrated by simulation and experiment. Specific applica-

tion of the proposed method to Alberta’s electricity price prediction is provided in

section 3.3.

3.2 Switched Markov ARX identification with Gaus-

sian mixture noise

This section is organized as follows: 1) derivation of switched Markov ARX model

with Gaussian mixture noise (SMARX-GMM) identification algorithm based on EM

algorithm, extension to second-order Markov switching dynamics and a novel initial-

ization strategy are introduced in subsection 3.2.1; 2) numerical simulation examples,

CSTR simulation example and pilot-scale experiment illustration are demonstrated
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Figure 3.2: Alberta electricity price and demand correlation

and analyzed in subsection 3.2.2; and 3) comparative study and cross validation re-

sults are shown to support the proposed method.

3.2.1 Formulation and analytical solution for SMARX-GMM

identification problem

In this subsection, a mathematical formulation of a switched Markov ARX model

with Gaussian mixture noise is presented, and an EM algorithm based solution is de-

veloped. Both process models and noise distributions, in both discrete and continuous

valued dynamics will be estimated.

The following problems will be solved in an SMARX-GMM identification frame-

work: (1) determining which sub-model each data point is from (hidden model identi-

ties); (2) identifying parameters for each local ARX model; (3) identifying switching

parameters such as the transition matrix of hidden Markov model; (4) determining

which noise distribution each data point is disturbed with (hidden noise member-

ships); and (5) identifying parameters for each local Gaussian noise component.
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A general formulation and parameter estimation for SMARX-GMM model will

be presented and followed by analysis of two special cases. Application to modelling

with outliers will be explained thereafter. In the last part of this subsection, an

extension of SMARX identification to second-order Markov switching dynamics will

be developed.

SMARX model with Gaussian mixture noise

In this part, a general SMARX-GMM model will be formulated and the parameters

will be estimated. The following assumptions are made: 1) each local model is au-

toregressive eXogenous (ARX) model since a high-order ARX model is capable of

approximating any linear dynamic model [43]; 2) the orders of local ARX model and

number of local sub-models are known a priori [44], [13] and [14]; 3) switching dynam-

ics among local models is governed by a Hidden Markov model (HMM); 4) the noise

distribution is approximated by a Gaussian mixture model (GMM); 5) the number

of Gaussian components is known a priori and this number can be determined by the

required accuracy for the noise distribution approximation; and 6) switching among

local noise distributions is random.

It is convenient to consider the SMARX identification problem assuming a GMM

noise distribution, since difficulties encountered in traditional identification methods,

such as handling outliers, can be solved naturally in this framework. Taking advantage

of the EM algorithm allows both process and noise model parameters to both discrete

and continuous switching dynamics, be estimated in a unified way. The problem

formulation is as follows:

yk =


θT1 xk

...

θTMxk

+


e1,k

...

eL,k

, k = 1, 2, . . . , N (3.1)

where yk ∈ R, xk ∈ Rn are the output and regressor variables of the system, respec-

tively at kth time instant. The regressor xk can be further expressed as (3.2):

xk =
[
yk−1, yk−2, . . . , yk−na, u

T
k−1, u

T
k−2, . . . , u

T
k−nb, 1

]T
(3.2)
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where: na and nb are the orders of the output and input dynamics, and are assumed to

be known a priori; u ∈ Rm is the input variable and n = na+m·nb; Ik = 1, 2, . . . ,M is

defined as the hidden model identity at the time instant k, and its switching dynamics

follow first-order hidden Markov model; θIk ∈ Rn+1 is the parameter vector for Ikth

local model; Mk = 1, 2, . . . , L is defined as the noise distribution membership of time

instant k, and its switching dynamics are random; and eMk,k ∈ R corresponds to

noise value at kth time instant from Mkth Gaussian distribution component with

mean µMk
and variance σ2

Mk
. At any time instant, one of M local models and one of

L noise distributions govern the behaviour of the switched system. To proceed, the

EM algorithm needs to be revisited in the switched system identification context.

An EM algorithm consists of two steps: the E-step and the M-step. The algorithm

updates the estimated parameters iteratively using these two steps until convergence.

In the E-step, the conditional expectation of the likelihood function over hidden states

is calculated, and the result is normally referred to as the Q function in the literature

[15], [35]. The mathematical formulation of the Q function for SMARX system can

be expressed as:

Q(Θ|Θold) = EI|(Θold,Cobs){logP (Cobs, I|Θ)} (3.3)

where: Θ are the parameters of the SMARX model, including both process and noise,

in both discrete and continuous valued dynamic models; Θold are the parameters

estimated from last iteration; I is the model identity of each time instant, which is

treated as hidden variable; and Cobs are the observed data set, including output and

regressor, which can be further denoted as ZN , ZN−1, . . . , Z1 for each time instant. By

assuming that the evolution of hidden variable is governed by the following first-order

Markov property:

P (Ik|Ik−1, . . . , I1) = P (Ik|Ik−1); (3.4)

and that the conditional probability of observing Zk is dependent on the hidden model

identity at time instant k:

P (Zk|Zk−1, . . . , Z1, Ik, Ik−1, . . . , I1,Θ) = P (Zk|Zk−1, . . . , Z1, Ik,Θ); (3.5)
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Following [14], at the end of E-step, the Q function can be written as:

Q (θ|θold) =
M∑
i=1

N∑
k=1

P
(
Ik = i|θold, Cobs

)
logP (Zk|Zk−1, ..., Z1, θi)

+
M∑
i=1

M∑
j=1

N∑
k=2

P
(
Ik = i, Ik−1 = j|θold, Cobs

)
logαij

+
M∑
i=1

P
(
I1 = i|θold, Cobs

)
log πi

(3.6)

where: αij is the transition probability from hidden state i to hidden state j, governed

by the hidden Markov model; and πi is the probability that ith local model takes

effect as initial state. Both αij and πi are elements of Θ. In the M-step, the Q

function is maximized over Θ to derive the update equation for each continuous

model parameter. Estimation of discrete model parameters, such as model identity

and noise membership at each time instant, will be explained shortly. The analytical

update equations are calculated using optimality condition and probability measure

constraints via the Karush-Kuhn-Tucker (KKT) conditions [45], [46]. The solution

strategy is to separate the coupled estimation problem of process models and noise

distributions: 1) update process model parameters based on GMM noise distribution

using EM algorithm at each step; 2) calculate the estimation error sequence based on

newly updated model parameters; 3) model the error sequence as a Gaussian mixture

model, using EM algorithm to estimate the noise distribution parameters; and 4)

repeat these steps until convergence. Therefore, the estimation problem will now

be split into process model parameter estimation and noise distribution parameter

estimation. Following the optimization procedure using KKT condition, the update

equations for local process model parameters and model identity switching dynamics

can be determined.

The update equation for model parameters are only relevant to the first term in

equation (3.6), which is:

θi = arg

max


N∑
k=1

P
(
Ik = i|θold, Cobs

)
log

 L∑
j=1

pj
1√

2πσj
exp

(
(yk − xkθi − µj)2

2σ2
j

)


(3.7)
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It is found that the direct solution for θi from equation (3.7) is difficult, and thus

rather than maximizing the expression in (3.7) over θi, we try to maximize its lower

bound using Jensen’s inequality:

N∑
k=1

P (Ik = i|θold,Cobs) log

 L∑
j=1

pj
1√

2πσj
exp

(
(yk − xkθi − µj)2

2σ2
j

)
≥

N∑
k=1

P
(
Ik = i|θold, Cobs

) L∑
j=1

pj log

(
1√

2πσj
exp

(
(yk − xkθi − µj)2

2σ2
j

))
(3.8)

and θi is thus updated by:

θi = arg

max


N∑
k=1

P
(
Ik = i|θold, Cobs

) L∑
j=1

pj log

(
1√

2πσj
exp

(
(yk − xkθi − µj)2

2σ2
j

))


= arg

max


N∑
k=1

P
(
Ik = i|θold, Cobs

) L∑
j=1

pj
(yk − xkθi − µj)2

2σ2
j




(3.9)

After taking the derivative with respect to θi, θi is solved to be:

θi = −
A

N∑
k=1

P
(
Ik = i|θold, Cobs

)
xk −B

N∑
k=1

P
(
Ik = i|θold, Cobs

)
xTk yk

B
N∑
k=1

P (Ik = i|θold, Cobs)xTk xk

A =
L∑
j=1

pjµj
σ2
j

; B =
L∑
j=1

pj
σ2
j

(3.10)

where pj, µj and σj can be substituted using the noise parameter estimation from

last step. The transition probability and initial probability of HMM can be updated

as follows:

αnewij =

∑N
k=2 P

(
Ik = i, Ik−1 = j|Cobs, θold

)∑M
i=1

∑N
k=2 P (Ik = i, Ik−1 = j|Cobs, θold)

(3.11)

πNewi = P
(
I1 = i|Cobs, θold

)
(3.12)

where: P (Ik = i, Ik−1 = j|θold, Cobs) is the probability that at the kth time point, the

ith local model takes effect; and at the k − 1th time point, the jth local model takes

32



effect. It can be further expanded as (3.13) following Bayes’ rule,

P (Ik = i, Ik−1 = j|Cobs, θold)

=
P(Zk,Ik=i,Ik−1=j|Zk−1,...,Z1,θold)

P(Zk|Zk−1,...,Z1,θold)

=
P(Zk|Ik=i,Ik−1=j,Zk−1,...,Z1,θold)P(Ik=i,Ik−1=j|Zk−1,...,Z1,θold)∑M

m=1

∑M
n=1 P(Zk|Ik=m,Ik−1=n,Zk−1,...,Z1,θold)P(Ik=m,Ik−1=n|Zk−1,...,Z1,θold)

=
P(Zk|Ik=i,Zk−1,...,Z1,θold)P(Ik=i|Ik−1=j,θold)P(Ik−1=j|Zk−1,...,Z1,θold)∑M

m=1

∑M
n=1 P(Zk|Ik=m,Zk−1,...,Z1,θold)P(Ik=m|Ik−1=n,θold)P(Ik−1=n|Zk−1,...,Z1,θold)

=
P(Zk|Ik=i,Zk−1,...,Z1,θold)αoldjiPj,k−1∑M

m=1

∑M
n=1 P(Zk|Ik=m,Zk−1,...,Z1,θold)αoldnmPn,k−1

(3.13)

where the model identity probability P (Ik = i|θold, Cobs) is denoted as Pi,k in (3.13)

and (3.14). The first two equalities in (3.13) follows from Bayes’ rule, the third equal-

ity follows from first order Markov properties (3.4) and (3.5), and the final equality

uses the notation of model identity probability Pi,k and the transition matrix element

αji. Using the law of total probability P (A) =
∑M

j=1 P (A|B)P (B) to marginalize

the probability (3.13) to P (Ik = i|θold, Cobs), namely Pi,k, following equation can be

derived:

P (Ik = i|θold, Zk, ..., Z1) = Pi,k

=
∑M

j=1
P
(
Ik = i, Ik−1 = j|Cobs,θold

)
=

∑M
j=1 P

(
Zk|Ik = i, θold, Zk−1, ..., Z1

)
αoldji Pj,k−1∑M

m=1

∑M
n=1 P (Zk|Ik = m, θold, Zk−1, ..., Z1)αoldnmPn,k−1

(3.14)

The identity probability is updated inductively using (3.14), starting from P (I1 =

i|Z1, θ
old), which is initial state probability (3.12). This Bayes’ rule based induction

method, compared to updating methods based on propagation of Markov chain in

the SMARX identification literature [14]:

Pi,k−1 = [(αij)
i−2πold]ith (3.15)

can include both process information and switching dynamics in the updating equa-

tion, so that better model identity clustering performance can be expected.
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Following definition (2.1) and SMARX-GMM problem formulation (3.1), the GMM

model can be expressed as:

ek ∼
L∑
j=1

pjN
(
µj, σ

2
j

)
(3.16)

where: pj is mixing probability indicating how frequent each local Gaussian compo-

nent takes effect; N represents the Gaussian density function; and µj, σ
2
j are local

Gaussian mean and variance, respectively. The probability of observing Zk given the

model identity Ik, historical data and parameter θIk can be written as

P (Zk|Ik = i, θIk , Zk−1, ..., Z1) =
L∑
j=1

pj
1√

2πσj
exp

(
−(ek,i − µj)2

2σ2
j

)
(3.17)

where ek,i = yk − θTi xk is the error when the ith local model takes effect at time

instant k. For estimation of noise distribution parameters, µj and σj, substitute (3.17)

to (3.6) (where Ik = i and θIk are together denoted to be θi). First-order derivative

of Q function is taken over each µj and σj, respectively, and then equating the results

to zero:

∂
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs) log

(
L∑
j=1

Pj
1√

2πσj
exp

(
− (ek,i−µj)2

2σ2
j

))
∂µj

= 0
(3.18)

∂
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs) log

(
L∑
j=1

Pj
1√

2πσj
exp

(
− (ek,i−µj)2

2σ2
j

))
∂σj

= 0
(3.19)

For notational simplicity, following probabilities are defined:

q (j, ek,i) = pj
1√

2πσj
exp

(
−(ek,i − µj)2

2σ2
j

)
(3.20)

p (j|ek,i) =
q (j, ek,i)

L∑
m=1

q (m, ek,i)
(3.21)

In the Gaussian mixture estimation literature [37], (3.21) is referred to as the mem-

bership probability, representing the possibility that jth Gaussian component takes
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effect at kth time instant given the estimated noise observation ek,i. Using the nota-

tion in (3.21), and the optimality condition (3.18), (3.19), the update equation for µj

and σ2
j can be derived as:

µj
new =

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)p (j|ek,i) [yk − (θNewi )Txk]

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)p (j|ek,i)
(3.22)

(
σ2
j

)new
=

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)p (j|ek,i) (ek,i − µnewj )2

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)p (j|ek,i)
(3.23)

The estimation of mixing probability pj is relatively complicated, since there are

probability measure constraints: pj ≥ 0 and
L∑
j=1

pj = 1. Unlike in (3.11) and (3.12),

optimization under these constraints is difficult, and therefore a transformation tech-

nique is applied to form an unconstrained optimization problem [37]. Transformation

of pj is:

pj =
eγj

L∑
m=1

eγm

∂pj
∂γm

=

 pj − p2
j , ifj = m

−pjpm, else

(3.24)

where eγj is exponential function of γj. Given the unconstrained variables γj, pj must

always satisfy the properties of probability measure, so instead of optimization over

pj, the Q function can be optimized over γj to get the update equation:

∂
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs) log

 L∑
n=1

eγn

L∑
m=1

eγm

1√
2πσn

exp
[
− (ek,i−µn)2

2σ2
n

]
∂γj

= 0

(3.25)

and the corresponding pj for the maximized Q function is:

pj
new =

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)p (j|ek,i)

N

(3.26)
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In the update equations for µj,σj and pj, the model identity probability, namely

P (Ik = i|θold, Cobs), has been used, and it can be updated using induction equa-

tion (3.14) and conditional probability (3.17). For estimation of the noise membership

probability p (j|ek,i), definition (3.20) and (3.21) are used. Notice that the update of

process model and noise distribution parameters (3.10), (3.11), (3.12), (3.22), (3.23),

(3.26) depends on identity and membership probabilities (3.14) and (3.21), and the

estimation of these probabilities in turn depends on model and noise parameters.

This fact results in two different EM algorithm initialization strategies.

Even though the EM algorithm is proven to converge, there is the possibility

that the convergent point is only stationary rather than a global maxima. Thus, the

initialization of EM algorithm is important with respect to the convergence point

[35], [47]. Due to the fact that in SMARX-GMM identification, the update equations

for parameters and several important probabilities are closely related to each other,

one can either choose to directly initialize model and noise parameters or choose to

initialize probabilities (3.14) and (3.21) instead. Traditionally, direct initialization

of parameters is widely used, and strategies such as pre-running EM algorithm with

random initial guesses for multiple times are very popular [47],[13]. This strategy,

though simple in implementation, is an ad-hoc method and cannot make good use of

prior process information to facilitate calculation.

For example, in a biological fermenter, it is known that different temperatures can

result in different operating points. Although the influence of temperature on system

dynamics is only fuzzily known, it is worth investigating how this information can be

used in initialization of EM algorithm for better convergence performance.

In the method proposed in this section, initializing identity/membership probabil-

ities is adopted instead of the traditional approach to initializing parameters directly,

because in this way prior process and noise information can be used. The specific

initialization procedures are:

1. After specifying the number of sub-process models M , the variable(s) most

representative of hidden operating states is classified to different membership

symbols. For example, in the biological fermenter case, temperature is chosen
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as the variable to indicate operating point, and the temperature measurement

sequence is discretized into HIGH, MIDDLE, and LOW, according to their rel-

ative values. Based on prior knowledge, at each operating point, the occurrence

pattern of these symbols should be different.

2. A Hidden Markov model (HMM) is trained based on the discretized measure-

ment sequence of symbols, and the corresponding transition probability matrix

and emission probability matrix are estimated.

3. Process the estimated transition matrix and emission matrix, together with the

sequence of symbols in (1) using an inference algorithm for HMM, such as α−β

algorithm [48]. Initial values of identity probabilities are calculated as a result.

The returned identity probability sequence is the most probable inference of

local models at each time instant based on the indication of representative

variable(s).

4. After initialization of the identity probability, run the EM algorithm once as-

suming single Gaussian distributed noise. Local model parameters and switch-

ing dynamics will be calculated. Use these parameters together with input-

output data to calculate the estimation error.

5. As items in 1., 2. and 3., classify the error sequence to symbols representing

different noise levels, and train the HMM using the symbol sequence to get a

sequence of initial values for membership probability by α − β algorithm. Use

the membership probability to initialize the EM algorithm in estimating the

GMM parameters for the error sequence.

6. Run the EM algorithm until convergence with initialization of identity proba-

bility, membership probability and the noise parameters estimated in item 5.

The initialization strategy and SMARX-GMM identification algorithm flowcharts

are shown in Figure 3.3.

For the clustering of model identities and noise memberships at each time instant,

the calculation is based on the model identity and noise membership probabilities at
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Figure 3.3: SMARX-GMM initilization strategy and algorithm flowchart
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the final iteration of algorithm. The candidate for model identity/noise membership

with the highest calculated probability based on equation (3.14) and (3.21) is inferred

as the true model identity/noise membership at each time instant.

Two special cases in SMARX-GMM identification

In this part, the proposed method is approved to two special cases of the SMARX-

GMM model.

First of all, a single Gaussian distributed noise case is considered. In this case,

j = 1, pj = 1 and thus the parameters to be estimated reduce to:

µnew =

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)[yk − (θNewi )Txk]

N

(3.27)

(
σ2
)new

=

M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs)(ek,i − µnew)2

N

(3.28)

and accordingly, the conditional probability of observing Zk reduces to:

P
(
Zk|Ik = i, θold, Zk−1, ..., Z1

)
=

1√
2π(σ2)new

exp
− 1

2(σ2)new
(ek,i−µnew)

2

(3.29)

Substituting these reduced results to (3.14), (3.13), and then to (3.10), (3.11),

(3.12) (notice that in this simple case, the parameter A in (3.10) reduces to µ and

B reduces to 1). The resulting update equations are the EM solution to the single

Gaussian noise SMARX identification problem. As expected, this result is consistent

with traditional single Gaussian noise SMARX identification in the literature [14].

The second special case of SMARX-GMM model is the SMARX model with

operating-point-dependent noise. In industrial operations, valves, meters or sensors

have limited operating range, and out-of-range operations will lead to inaccurate

results. These factors can introduce different noise distributions around different op-

erating point. As a result, it is reasonable to assume that noise distributions will

change with different process operating points. In this case, it is assumed that pro-

cess model and noise distribution switching occurs at the same time (i.e., each process
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model has a corresponding noise distribution). To be specific, the problem is:

yk =


θT1 xk + e1,k, if Ik = 1;

...

θTMxk + eM,k, if Ik = M ;

k = 1, 2, . . . , N (3.30)

where the notations is the same as that introduced in subsection 3.2.1, and eIk,k

is assumed to be white noise with zero mean and variance σ2
Ik

. Applying the EM

algorithm to this formulation, the E-step result is the same as in Equation (3.6). So

the update equations for process parameters (3.10), (3.11), (3.12) still hold (in (3.10),

A reduces to 0 and B reduces to 1 in this case). In this formulation, the probability

of observing Zk, given the model identity Ik, historical data and θold can be written

as:

P
(
Zk|Ik = i, θold, Zk−1, ..., Z1

)
=

1√
2πσi

exp
− 1

2σi
2 (yk−θTi xk)

2

(3.31)

Notice that the subscript of model parameter θ and noise parameter σ are the

same. Following similar procedures as in subsection 3.2.1, the estimation of σi re-

quires:

∂
M∑
i=1

N∑
k=1

P (Ik = i|θold, Cobs) log
[

1√
2πσi

exp
(
− e2k,i

2σ2
i

)]
∂σi

= 0
(3.32)

and:

(σnewi )2 =

∑N
k=1 P

(
Ik = i|Cobs, θold

) [
yk − (θNewi )Txk

]T [
yk − (θNewi )Txk

]
N∑
k=1

P (Ik = i|Cobs, θold)
(3.33)

As the noise mean is assumed to be zero, σi is the only noise parameter to be

estimated. Therefore, at this point, SMARX-GMM identification of the second special

formulation is completely solved. After taking the initialization strategy discussed

previously, the EM algorithm will run iteratively and parameters are updated at each

iteration until convergence.

High-order SMARX model

In previous subsections, a first-order hidden Markov model is assumed to govern

the evolution of process sub-models. This assumption, widely used in modelling,
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control and optimization in chemical process research fields [49],[50], though concise

in formulation, has its limitation in describing complex patterns of switching dynamics

[23], [24], [25]. [22] .

In this part, a second-order hidden Markov model is adopted to govern the switch-

ing dynamics. In this case, both the E-step and the M-step in the EM algorithm need

to be re-derived due to the structural difference in problem formulation. White noise

is assumed as the noise distribution. The corresponding high-order SMARX-GMM

model identification results can be derived in a similar way by combining results of

this part and subsection 3.2.1.

Some properties of the second-order SMARX model are given in following equa-

tions:

P (Ik|Zk−1, ..., Z1, Ik−1, ..., I1, θ) = P (Ik|Ik−1, Ik−2)

P (Zk|Zk−1, ..., Z1, Ik, Ik−1, ..., I1, θ) = P (Zk|Zk−1, ..., Z1, Ik, θ)

(3.34)

The first equality in (3.34) follows second-order Markov property and the second

equality implies that an observation at time instant k is solely dependent on the Ikth

local model and historical data. Using these equations, the Q function is:

Q (θ|θold) = EI|(θold,Cobs) {logP (Cobs, I|θ)}

= EI|(θold,Cobs) {logP (ZN , ZN−1, ..., Z1, IN , ..., I1|θ)}

= EI|(θold,Cobs)

{
log

N∏
k=1

P (ZK , IK |ZK−1, ..., Z1, IK−1, ..., I1, θ)

} (3.35)

Equation (3.35) is derived from the definition of Q function, and use of the prob-

ability chain rule. Then, the Q function can be further written as:

Q (θ|θold) = EI|(θold,Cobs)

{
log

N∏
k=1

P (ZK |ZK−1, ..., Z1, IK , IK−1, ..., I1, θ)P (IK |IK−1, IK−2)

}

= EI|(θold,Cobs)


∑N

k=3 [logP (ZK |ZK−1, ..., Z1, IK , θ) + logP (IK |IK−1, IK−2)]

+ logP (Z2|Z1, I2, θ) + logP (I2|I1)

+ logP (Z1|I1, θ) + logP (I1)


(3.36)

Equation (3.36) expands the final equality in (3.35) using the conditional probabil-

ity formula and then uses second-order SMARX model properties (3.34) to simplify
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the expression. The final equality in (3.36) separates the first two terms from the

summation for convenience in defining initial conditions. The Q function can then

be derived as:

Q (θ|θold) =
∑
I

P
(
I|θold, Cobs

)


N∑
k=1

logP (ZK |ZK−1, ..., Z1, IK , θ) +
∑N

k=3 logP (IK |IK−1, IK−2)

+ logP (I2|I1) + logP (I1)


=
∑
I1

...
∑
IN

P
(
I1, ..., IN |θold, Cobs

)


N∑
k=1

logP (ZK |ZK−1, ..., Z1, IK , θ) +
∑N

k=3 logP (IK |IK−1, IK−2)

+ logP (I2|I1) + logP (I1)


=

M∑
i=1

N∑
k=1

P
(
Ik = i|θold, Cobs

)
logP (ZK |ZK−1, ..., Z1, θi)

+
M∑
l=1

M∑
i=1

M∑
j=1

N∑
k=3

P
(
Ik = i, Ik−1 = j, Ik−2 = l|θold, Cobs

)
logαlj,i

+
M∑
i=1

M∑
j=1

P
(
I1 = i, I2 = j|θold, Cobs

)
log πji +

M∑
i=1

P
(
I1 = i|θold, Cobs

)
log πi

(3.37)

For the second-order hidden Markov model, the transition probability is defined as the

probability that the hidden variable jumps from two consecutive states to a new one,

denoted as αlj,i. Thus, the transition matrix is an M2 ·M dimensional matrix with row

elements summing up to 1. Equation (3.37) follows from the definition of statistical

expectation and terms irrelevant in the summation indices are marginalized so that

P
(
I1, ..., IN |θold, Cobs

)
reduces to probabilities such as P

(
Ik = i|θold, Cobs

)
, where only

Ikth term is relevant in the summation, and P
(
Ik = i, Ik−1 = j, Ik−2 = l|θold, Cobs

)
,

where Ik, Ik−1, Ik−2 are relevant to the summation. Also notice that in second-order

HMM, the model identity probabilities for several consecutive time instants are in-

troduced in the Q function, and this includes P
(
Ik = i, Ik−1 = j, Ik−2 = l|θold, Cobs

)
,

P
(
I1 = i, I2 = j|θold, Cobs

)
, and also P

(
Ik = i|θold, Cobs

)
as in previous subsections.

Two initial conditions πji and πi are as expected due to higher switching dynamics

order (i.e., first-order requires one initial condition, and second-order requires two

initial conditions). In the M-step, the Q function in (3.37) along with optimality

conditions and probability measure constraints are used together to derive the closed

form analytical update equations for the process model, noise and switching dynamics
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parameters:

(θNewi )T =

∑N
k=1 P

(
Ik = i|Cobs, θold

)
xTk yk∑N

k=1 P (Ik = i|Cobs, θold)xTk xk

αnewlj,i =

∑N
k=3 P

(
Ik = i, Ik−1 = j, Ik−2 = l|Cobs, θold

)∑M
i=1

∑N
k=3 P (Ik = i, Ik−1 = j, Ik−2 = l|Cobs, θold)

πNewi = P
(
I1 = i|Cobs, θold

)

πNewji = P
(
I1 = i, I2 = j|Cobs, θold

)

(σnew)2 =

∑M
i=1

∑N
k=1 P

(
Ik = i|Cobs, θold

) (
yk − (θNewi )Txk

)T (
yk − (θNewi )Txk

)
N

(3.38)

As mentioned earlier, model identity probabilities for consecutive time instants are

needed for the parameter estimation in (4.35). These probabilities can be derived

using Bayesian induction in a similar fashion to that in (3.13) and (3.14). Details of

the derivation are shown in the following equations:

P (Ik = i, Ik−1 = j, Ik−2 = l|Cobs, θold)

=
P(Zk,Ik=i,Ik−1=j,Ik−2=l|Cobs,θold)

P(Zk|Cobs,θold)

=
P(Zk|Ik=i,Ik−1=j,Ik−2=l,θold,Zk−1,...,Z1)P(Ik=i|Ik−1=j,Ik−2=l,θold)P(Ik−1=j,Ik−2=l|Cobs,θold)

M∑
m=1

M∑
n=1

M∑
s=1

P(Zk,Ik=m,Ik−1=n,Ik−2=s|Cobs,θold)

=
P(Zk|Ik=i,θold,Zk−1,...,Z1)P(Ik=i|Ik−1=j,Ik−2=l,θold)P(Ik−1=j,Ik−2=l|Cobs,θold)

M∑
m=1

M∑
n=1

M∑
s=1

P(Zk|Ik=m,θold,Zk−1,...,Z1)P(Ik=m|Ik−1=n,Ik−2=s,θold)P(Ik−1=n,Ik−2=s|Cobs,θold)

=
P(Zk|Ik=i,θold,Zk−1,...,Z1)αoldlj,iP(Ik−1=j,Ik−2=l|Cobs,θold)

M∑
m=1

M∑
n=1

M∑
s=1

P(Zk|Ik=m,θold,Zk−1,...,Z1)αoldsn,mP(Ik−1=n,Ik−2=s|Cobs,θold)

(3.39)
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By marginalizing (3.39), identity probabilities for the reduced model identity in-

dices are:

P (Ik = i, Ik−1 = j|Cobs, θold)

=
M∑
l=1

P
(
Ik = i, Ik−1 = j, Ik−2 = l|Cobs, θold

)
=

M∑
l=1

P(Zk|Ik=i,θold,Zk−1,...,Z1)αoldlj,iP(Ik−1=j,Ik−2=l|Cobs,θold)
M∑
m=1

M∑
n=1

M∑
s=1

P(Zk|Ik=m,θold,Zk−1,...,Z1)αoldsn,mP(Ik−1=n,Ik−2=s|Cobs,θold)

P (Ik = i |Cobs, θold)

=
M∑
j=1

M∑
l=1

P
(
Ik = i, Ik−1 = j, Ik−2 = l|Cobs, θold

)
=

M∑
j=1

M∑
l=1

P(Zk|Ik=i,θold,Zk−1,...,Z1)αoldlj,iP(Ik−1=j,Ik−2=l|Cobs,θold)
M∑
m=1

M∑
n=1

M∑
s=1

P(Zk|Ik=m,θold,Zk−1,...,Z1)αoldsn,mP(Ik−1=n,Ik−2=s|Cobs,θold)

(3.40)

Notice that in equation (3.39) and (3.40), identity probabilities can be expressed

in a unified way as functions of P
(
Ik−1 = n, Ik−2 = s|Cobs, θold

)
. Therefore, follow-

ing the same Bayesian induction update strategy as in Section 3.2.1, a sequence of

P
(
Ik, Ik−1|Cobs, θold

)
can be updated first using induction. P

(
Ik, Ik−1, Ik−2|Cobs, θold

)
and P

(
Ik|Cobs, θold

)
can then be calculated based on (3.39), (3.40). The proposed

initialization strategy introduced in Section 3.2.1 can also apply to second-order

SMARX identification algorithm, by merging each two consecutive operating-point-

representative symbols to form a new sequence, and then applying α − β algorithm

to calculate initial values of P
(
Ik, Ik−1|Cobs, θold

)
.

3.2.2 Simulation and experimental verification

In this subsection, several examples will illustrate the proposed method. One ex-

ample for general SMARX-GMM identification and one for data with outliers will

be presented to show the robustness of proposed method. In addition, one example

of a CSTR identification and one pilot-scale physical experiment validation will be

presented to explore the proposed method with a benchmark problem and a physical

system.

44



Numerical simulation

To illustrate the proposed algorithm, an SMARX model with two sub-system models

and two Gaussian component noise distributions:

yk =



[1, yk−1, yk−2, uk−1, uk−2]



10

0.5

0.3

−0.2

0.5


, Ik = 1

[1, yk−1, yk−2, uk−1, uk−2]



100

−0.5

−0.3

0.2

−0.5


, Ik = 2

+ ek, k = 1, 2, . . . , N (3.41)

where the noise distribution is:

ek ∼ 0.7N(3, 0.25) + 0.3N(−7, 1) (3.42)

The hidden model identity Ik can take values of 1 or 2, and transition matrix for

these two states are

 0.95 0.05

0.1 0.9

. The input u(t) is generated from a Gaussian

distribution: N(0, 100), and 1500 data points are generated for identification use.

Part of the simulated SMARX model output with Gaussian mixture noise is shown

in Figure 3.4.

From Figure 3.4, it can be seen that SMARX outputs are noisy and thus the

identities of the underlying hidden models are difficult to observe directly from the

data sequence. Applying the proposed identification algorithm, the estimation results

are shown in Table 3.1. The clustering result for model identity and noise membership
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Figure 3.4: SMARX system output from simulation

are shown in Figure 3.5 and Figure 3.6. In Table 3.1, symbols without a hat denote

the true model/noise parameters, symbols with a hat denote the estimated parameters

using the proposed method. It can be seen from the results that the proposed method

gives accurate estimation. From the clustering results in Figure 3.5 and Figure 3.6,

both model identities and noise memberships are clustered accurately compared to

their true counterparts. To be specific, the rate of successful clustering is 97.64% for

model identity, and 99.07% for noise membership.

Now consider application of the proposed algorithm to switched system identifi-

cation when data contain outliers. With the model given in (3.41), the histogram of

noise in this case is shown in Figure 3.7. It can be seen that in most cases, the noise

follows a Gaussian distribution centered near zero but occasionally, large value out-

liers appear. The influence of outliers on the output data can be seen in Figure 3.8.

It can be observed from Figure 3.8 that the output data are severely contaminated

by outliers and this can significantly affect traditional identification algorithms [14],

as shown in comparison results in Table 3.2. In Table 3.2, the symbols without a hat

denote the true model/noise parameters, symbols with a hat and p in the parentheses
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Table 3.1: EM algorithm identification results

θ1 θ̂1 θ2 θ̂2 p p̂ µ µ̂

10 9.41 100 97.2 0.7 0.71 3 2.87

0.5 0.45 -0.5 -0.45 0.3 0.29 -7 -6.94

0.3 0.38 -0.3 -0.30 σ σ̂ αij α̂ij

-0.2 -0.31 0.2 0.16 0.5 0.59 0.95 0.05 0.95 0.05

0.5 0.43 -0.5 -0.45 1 1.09 0.1 0.9 0.12 0.88
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True model identity
Estimated model identity

Figure 3.5: Model identity clustering result

denote the estimated parameters using the proposed method, and symbols with a hat

and t in the parentheses denote the estimated parameters using a traditional method

when the noise is assumed to be of single Gaussian distribution. It can be seen

from the comparison results that for data with 5% outliers, the traditional method

gives unreliable parameters estimation in both local model dynamics and switching

dynamics; however, the proposed method gives accurate estimation. For instance, for

the estimation of transition matrix elements αij, the traditional method results in a

matrix with a dominant first column, indicating that the system tends to operate more

in the first sub-model, while the proposed method gives a diagonally dominant matrix
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Figure 3.6: Noise membership clustering result

Table 3.2: SMARX-GMM v.s. traditional method in modelling data with outliers

θ1 θ̂1(p) θ̂1(t) θ2 θ̂2(p) θ̂2(t) p p̂(p) p̂(t) µ µ̂(p) µ̂(t)

10 10.68 15.16 100 102.72 52.54 0.95 0.94 1 1 1.15 0

0.5 0.50 0.50 -0.5 -0.51 -1.13 0.05 0.06 NA -19 -18.70 NA

0.3 0.28 0.24 -0.3 -0.33 0.92 σ σ̂(p) σ̂(t) αij α̂ij(p) α̂ij(t)

-0.2 -0.12 -0.08 0.2 0.24 -0.12 0.5 0.63 3.28 0.95 0.05 0.96 0.04 0.94 0.06

0.5 0.46 0.05 -0.5 -0.65 -0.06 1 1.06 NA 0.10 0.90 0.11 0.89 0.77 0.23

which is consistent with the actual transition dynamics. For clustering accuracy, the

proposed method gives a 97.85% successful clustering rate for model identity and

99.86% for noise membership, while traditional method gives only 67.1% clustering

accuracy for model identity.

In summary, based on the numerical simulation results for the proposed method,

the clustering performances for both model identity and noise membership have

been satisfactory. Moreover, compared with a traditional SMARX identification

method, the proposed algorithm gives more reliable parameter estimation results for

model/noise parameters and switching dynamics, especially when data are of poor

quality and contain outliers.
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Figure 3.7: Noise distribution with outliers

CSTR simulation example

In this part, identification of a nonlinear CSTR process is considered at several repre-

sentative operating points. Gaussian mixture noise is added to the output data. The

proposed SMARX-GMM algorithm is used to identify the approximate local linear

models.

In the CSTR, an exothermic irreversible reaction A→ B takes place in a constant

volume reactor with single coolant taking effect. The first principles model [1] can be

expressed as:

dCA(t)
dt

= q(t)
V

(CA0 (t)− CA (t))− k0CA (t) exp
(
−E
RT (t)

)
dT (t)
dt

= q(t)
V

(T0 (t)− T (t))− (−∆H)k0CA(t)
ρCp

exp
(
−E
RT (t)

)
+ρcCpc
ρCpV

qc (t)
{

1− exp
(
−hA

qc(t)ρCp

)}
(Tc0 (t)− T (t))

(3.43)

The variables and parameters used above can be found in Table 3.3 [1].

The output is product concentration CA, the input is the coolant flow rate qc, and

T is the CSTR temperature, an intermediate state. qc also represents operating point,

as discussed in [1], and different operating points show different step responses and

thus indicate different process dynamics. In this simulation example, three different
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Figure 3.8: SMARX output with outliers

operating points are chosen, namely qc = 97, 103 and 109L/min. To apply the

proposed algorithm, an input random binary sequence (RBS) is designed based on

local model dynamics from a step response test, and potential model switching is

designed to happen every 300 sampling units. Gaussian mixture noise ek ∼ 0.7N(1.5×

10−3, (1 × 10−3)2) + 0.3N(−3.5 × 10−3, (1 × 10−3)2)) is added to output data. Part

of the input-output data is shown in Figure 3.9. The cross validation results are

shown in Figure 3.10. It can be seen from the cross validation result, that the

identified model, using the proposed algorithm, captures local model dynamics and

model switching dynamics well.

Pilot scale experimental verification

In this part, a pilot scale experiment is conducted to illustrate the performance of

the proposed algorithm. The schematic of the process is shown in Figure 3.11 [3],

where three tanks are connected in series and bottom reservoir is connected to an

adjustable DC pump. Notice that the cross section of the three tanks are different:

the top tank has constant cross section; the middle one is conical; and bottom tank

is spherical. The variability in cross section area leads to non-linearity of the system.
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Table 3.3: CSTR model parameters, [1]

Process flow rate (q) 100 L/min

Feed concentration (CA0) 1 mol/L

Feed temperature (T0) 350 K

Inlet coolant temperature (Tc0) 350 K

CSTR volume (V ) 100 L

Heat transfer term (hA) 7× 105 L

Reaction rate constant (K0) 7.2× 1010 min−1

Activation energy term (E/R) 1× 104 K

Heat of reaction (−δH) −2× 105 cal/mol

Liquid density (ρ, ρc) 1× 103 g/L

Specific heats (Cp, Cpc) 1 cal/gK

During the experiment, certain operating points are chosen so that linear models

well approximate the actual local non-linear system. Three tanks are connected via

manipulable valves and by changing valve opening, different operating modes can be

achieved.

The first principles model of this three-tank non-linear system is [3]:

dH1

dt
=

1

β1 (H1)
q − 1

β1 (H1)
C1H

α1
1

dH2

dt
=

1

β2 (H2)
C1H

α1
1 −

1

β2 (H2)
C2H

α2
2

dH3

dt
=

1

β3 (H3)
C2H

α2
2 −

1

β3 (H3)
C3H

α3
3

(3.44)

where C1,C2,C3 are resistance coefficient of output orifice for the three tanks, respec-

tively; H1,H2,H3 are fluid levels in each tank; q is the inflow from the DC pump into

top tank; β1,β2,β3 are cross section areas of tanks, which are function of water levels

in the lower two tanks; and α1,α2,α3 are flow coefficients for the different tanks. By

assuming that the inlet flow for each tank is small enough, the outlet flow from each

tank can be considered to be laminar, and α1,α2,α3 takes the value of 0.5.
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Figure 3.9: CSTR input-output data

In this experiment, q is taken as input and H2 is taken as output, by changing

opening of C1 and C2, two different operating modes can be achieved. A first-order

Markov chain is designed to govern the switching dynamics of C1 and C2, with tran-

sition probability matrix

 0.8 0.2

0.1 0.9

.

A random binary sequence is generated as the input signal to excite the system

based on step test results given in Figure 3.12. All positive responses are in the

operating mode when C1 is more open (80%), and C2 is less open (80%), and negative

responses are in the operating mode when C1 is less open (60%), and C2 is more open

(100%).

From Figure 3.12, the steady state water levels for these two sub-models are

different and calculations based on step test results show that the time constant for

the faster system is approximately 40 seconds and for the slower one is approximately

120 seconds. The input-output data are collected as shown in Figure 3.13.

First, direct identification using experimental data is conducted by the proposed

algorithm, and through various trials, it was found that a single Gaussian noise model

can describe the noise structure quite well. The cross validation results of the identi-
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Figure 3.10: CSTR identification using SMARX-GMM algorithm, cross fitting result

fied model are shown in Figure 3.14 and Figure 3.15. It was determined that 83.12%

of data are correctly clustered. Although the model identity clustering accuracy is

not as good as in the simulation examples, the cross validation result looks good in

Figure 3.14. Also, the estimation of transition matrix is

 0.75 0.25

0.08 0.92

, and this

shows the ability of proposed algorithm in identifying the switching dynamics among

sub-models.

To further test the proposed algorithm when data are contaminated by outliers,

Gaussian mixture noise is added to the output measurement as:

ek ∼ 0.7N(−0.6, (0.2)2) + 0.3N(1.4, (0.5)2) (3.45)

Using the proposed algorithm, the identification results are shown in Table 3.4, in

comparison with results using a traditional single noise distribution method. The

cross validation and clustering results are shown in Figure 3.16 and Figure 3.17, re-

spectively. It can be seen that with outliers in the data, the clustering performance is

significantly influenced. This is because the sub-models’ dynamics are similar to each

other, and the outliers make the model identities even harder to cluster; however,

the proposed method still gives good cross validation results and reliable parameter
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Figure 3.11: Multi tank system schematic, [3]

estimation such as transition probability matrix and noise model parameters. The

difference in noise variance estimation is the added noise superimposed by the mea-

surement noise in the raw data. On the other hand, the traditional identification

algorithm suffers and gives unreliable parameters estimation. For example, the es-

timated transition matrix using the traditional method is a matrix dominated by

second column, indicating that the system always tends to operate in state 2, while

the true transition matrix is diagonally dominant, indicating that the system tends

to stay in one state rather than to jump elsewhere.

Table 3.4: SMARX-GMM identification results for three-tank system

αij α̂ij(p) α̂ij(t) p p̂ µ µ̂ σ σ̂

0.8 0.2 0.67 0.33 0.17 0.83 0.7 0.69 -0.6 -0.62 0.2 0.59

0.1 0.9 0.09 0.91 0.29 0.71 0.3 0.31 1.4 1.40 0.5 0.76
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Figure 3.12: Step response of middle tank level in two operating modes

3.3 Electricity price prediction model

In this section, the method proposed in section 3.2 will be applied to the prediction of

electricity price in Alberta. Based on the characteristics summarized in section 3.1,

first the input variables selection and feature extraction are conducted and then, the

model developed using proposed method is validated in subsection 3.3.3.

3.3.1 Input variables selection and data pre-processing

From section 3.1, the following facts are known: 1) the electricity price in Alberta has

a strong periodic pattern; 2) the forecast Pool price will reflect future electricity price;

3) the actual demand correlates with the Pool price; and 4) the day ahead forecast

demand will influence the bidding prices from generation units which is related to the

Pool price.

Therefore, we choose the forecast Pool price, day ahead forecast system demand,

actual system demand and time itself as input variables to predict the real time Pool

price. In section 3.2, an approach to model multiple switched Markov ARX model is

proposed. To use this method for Pool price prediction, there are two key issues to
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Figure 3.13: Top figure shows the pump input RBS signal; middle figure is level

output; bottom figure is model identity at each time instant

consider:

1. From Figure 3.1 and 3.2, the relation between Pool price and system demand,

time sequence are obviously non-linear. Thus, to use switched linear ARX

models to predict Pool price, a preprocessing procedure is necessary to transform

the input variables so that the transformed variables have linear correlation with

the Pool price.

2. Since multiple models will be used in the prediction of Pool price, the data for

system identification need to be segmented for initialization of the proposed

algorithm as discussed in subsection 3.2.1. Therefore, the features of different

Pool price levels need to be extracted to segment the input-output data.

The issue in item 1. will be discussed in this subsection, and item 2. in next

subsection.

First the time sequence is pre-processed to construct a linear correlation with the

Pool price. Due to the periodic pattern in the Pool price, we need first to transform

the time sequence to be periodic by making it to time o’clock form, and different
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Figure 3.14: Cross fitting result using SMARX-GMM algorithm with single noise

distribution

weights need to be put on peak and off-peak hours. The designed weighting formula

are:

F (t) = k (t, N) e−
(t−tp)2

2σ2

tp ∼ PMF

k (t, N) = f (P (S (t) = N |Obs, Trans, Emis))

(3.46)

where: F (t) is the preprocessed time sequence, weighted by a Gaussian function

e−
(t−tp)2

2σ2 ; tp is the highest-price hour in each day, and is a random variable with

probability mass function PMF (PMF can be learnt from price data); σ is a tuning

parameter, determining the duration of the peak-price hours; and k(t, N) is the peak-

price magnitude, determined by the probability P (S(t) = N |Obs, Trans, Emis) that

at t o’clock, how possible the price is governed by peak or off-peak model given

electricity price observation Obs and estimated HMM parameters: transition matrix

Trans and emission matrix Emis.

For the preprocessing of the demand sequence, it is found that in most cases, only

when the system demand is over 9000MW, a high level Pool price will be triggered.

Thus, the demand sequence should be preprocessed in a way that the parts over 9000
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Figure 3.15: Model identity clustering result

are emphasized while the low demand intervals are flattened. After preprocessing,

the correlation between Pool price and time sequence, system demand are shown in

Figure 3.18.

3.3.2 Feature extraction

In last subsection, the problem of preprocessing the input sequence is discussed to

form linear correlations between Pool price and input variables. In this subsection,

the feature extraction of Pool price sequence is discussed to segment data for the

initialization of EM algorithm as discussed in subsection 3.2.1.

Based on the Pool price sequence, first the data are divided into three types: peak-

up, peak-down and off-peak (this is classified simply based on the absolute value and

tendency of the sequence). Then Hidden Markov model is trained based on the

symbol sequence resulted from this division to cluster the input-output data for the

initialization of EM algorithm as introduced in 3.2.1.

To be specific, the data segmentation are conducted with the following rules:

1. First divide the Pool prices into five groups based on their absolute value;
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Figure 3.16: Cross fitting result of SMARX-GMM identification

group indices from low to high represent: group #1: less than $30/MWh,

group #2: from $30/MWh to $100/MWh, group #3: from $100/MWh to

$300/MWh, group #4: from $300/MWh to $500/MWh, and group #5: more

than $500/MWh.

2. Calculate the group index differences of each two neighbouring Pool prices. If

the difference is greater than 2, then the first Pool price is classified to be the

peak-up data; if it’s less than -2, the first Pool price is classified to be the

peak-down data; else if the group index itself is greater or equal to 4, it will be

classified to be either peak-up or peak-down data with probability; else it will

be classified to be off-peak data.

3. Even in the peak hours, low prices and the off-peak characteristics may occur;

on the other hand, in the off-peak hours, sometimes extremely high prices can

show up. Therefore hidden Markov model is trained given the classified Pool

price sequence in item 2. to estimate the transition probability and emission

probability among peak-up, peak-down and off-peak prices.

Figure 3.19 shows the data segmentation and feature extraction result from hidden
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Figure 3.17: Model identity estimation result in Gaussian mixture noise case

Markov model training. State 1 means peak-up Pool price, state−1 means peak-down

Pool price, state 0 means off-peak price:

3.3.3 Model identification and validation

After input variables selection, feature extraction and data segmentation, the multiple

Pool price SMARX model is developed using the proposed method in section 3.2. First

we initialize the EM algorithm with the probabilities that each Pool price belongs to

one of three sub-models from HMM training, and run the EM algorithm to estimate

the model parameters for the three local Pool price models: peak-up, peak-down and

off-peak. After obtaining the model parameters for each local Pool price model, the

prediction formula for the expected value of next hour’s Pool price are expressed as:

E (Pe (i+ 1)) =
3∑

k=1

3∑
j=1

P (S (i) = j|Obs, Trans,Θ)Trans (jk)Pek (i+ 1)

Trans (jk) = P (S (i+ 1) = k|S (i) = j)

(3.47)

where: P (S (i) = j|Obs, Trans,Θ) is the model identity probability denoting that at

i o’clock, how possible Pool price is governed by the jth sub-model given the input-

output data Obs, model parameters Θ and transition probability Trans; and Pek(i+1)
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Figure 3.18: Correlation between Pool price and preprocessed inputs

is the predicted Pool price by the kth sub-model. The left hand side of equation (3.47)

is the expected Pool price for the coming hour, and it is calculated as the summation

of the product of each sub-model prediction times its identity probability in next hour.

The identity probability in next hour is calculated as the product of current identity

probability times transition probability to a potential sub-model in next hour.

The above prediction of Pool price relies mainly on the transition of hidden Markov

model, and thus might be insufficient for long term prediction as first-order Markov

transition cannot capture long term dynamics; however, for the prediction of hour

ahead Pool price, the proposed method has very good prediction accuracy compared

to the forecast Pool price released by AESO website, comparison results are shown

in Figures 3.20 and 3.21.

Figure 3.20 is the fitting result based on the training data using proposed method,

compared with the actual Pool price and forecast released by AESO. Figure 3.21 is the

cross fitting result using Pool price data in the month after fitting data set. From the

figures, it can be seen that both the AESO forecast and proposed prediction are quite

accurate when electricity price is low (actually the AESO forecast data are slightly

more accurate in off-peak hours from the figures); however, during peak hours, the

AESO forecasts are sometimes several hundred dollars away from the actual Pool

price, while the proposed method predicts accurately with much closer prediction
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results. The quantitative comparison for the proposed method and AESO forecast

can be shown in Table 3.5: where MAE stands for mean absolute error, RMSE stands

Table 3.5: Cross validation performance comparison

Results MAE RMSE Correlation Fitting rate

AESO 28.83 83.12 92.7% 58.25%

Proposed 26.48 57.66 95.7% 71.04%

for root-mean-square error, correlation is the correlation between the predicted prices

and the actual prices, fitting rate is the cross fitting percentage. From performance

comparison in the table, it can be seen that in terms of the quantitative indices,

the proposed method has significantly better performance especially with respect to

RMSE and cross fitting rate.
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Figure 3.20: Electricity price fitting result with training data. Red: actual price;

Blue: predicted price; Green: forecast from AESO
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Figure 3.21: Electricity price fitting result with cross validation data. Red: actual

price; Blue: predicted price; Green: forecast from AESO
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Chapter 4

Predictive steam plant

optimization

In this chapter, a linear optimization problem is formulated that includes the pre-

dicted Pool price and steam boiler dynamics. This method maximizes a profit function

over time. Two solution approaches are proposed to solve the optimization problem:

1) the first approach is an open-loop strategy that integrates the dynamic boiler model

directly into the problem and solves for boiler manipulation variables via a dynamic

linear programming (DLP) problem; and 2) the second approach is a closed-loop

strategy that solves the optimization to obtain the optimal boiler load trajectories

and designs controllers to track them. In the final section of this chapter, a per-

formance assessment method is proposed to evaluate the effect of the steam plant

optimization under uncertainty.

4.1 Problem formulation

In this section, a linear optimization problem is formulated that includes the predicted

Pool price and boiler dynamics. Objective function, constraints and the random

process variables will be discussed.
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4.1.1 Economic objective function

The main objective for steam plant optimization is maximizing the operating profit,

given the electricity price and process steam demand. The steam plant profit arises

from two sources: 1) steam users pay for the amount of steam consumed at retail

price set by company’s financial department; and 2) the plant produces electricity

through turbine generators to support the processes and sell to the electricity grid at

real time Pool price. The operating cost of the steam plant comes from the energy

and materials consumed to generate the steam and equipment operation costs. To

be specific, the optimization objective function for the steam plant in Figure 2.1 is

expressed as:

C900 (Xboi1 +Xboi2) + C160Xpkg − (V900uP900 + V160uP160 + V35uP35 +Xe1Pe +Xe2Pe)

(4.1)

where: C900, C160 represents the cost to generate the 900 psi and 160 psi steam as

provided by the financial department, in $/lb; P900, P160, P35 represents the retail

prices for each type of steam charged to the users as provided by the financial de-

partment, in $/lb; V900u, V160u, V35u represents the user demands in different headers,

from process measurements and mass balance calculations, in lb; Pe represents the

real time Pool price as provided by the AESO website and prediction model developed

in Chapter 3, in $/kw; Xboi1, Xboi2 are boiler loads, representing the amount of steam

generated by the drum boilers, in lb; Xpkg represents the amount of steam generated

by the back-up package boiler, in lb; Xe1 and Xe2 are electricity generation amounts,

representing the turbine generator’s electricity output, in kw.

Furthermore, the electricity generation Xe1 and Xe2 can be expressed in terms

of steam distribution operations, including the amount of 35 psi steam extracted,

Xtg1ex35, Xtg2ex35, in lb and the amount of 900 psi steam passing through the tur-

bine generators, Xtg1 and Xtg2. As derived in Chapter 2, the following grey box

turbine generator models are used to relate the electricity output and plant operation
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variables [2]:

Xe1 = −362.7790 + 0.0400Xtg1ex35 + 0.00905Xcond1

Xe2 = −603.0405 + 0.0435Xtg1ex35 + 0.1074Xcond2

(4.2)

where Xcond is the water condensed in the turbine generators. Note that in mass

balance equation, the input steam to turbine generators should match the output (i.e.,

the condensed water plus extracted 35 psi steam). Thus, the following relationship

holds:

Xcond1 = Xtg1 −Xtg1ex35

Xcond2 = Xtg2 −Xtg2ex35

(4.3)

In the economic objective function (4.1): all of the steam prices are treated as con-

stants; V900u, V160u and V35u come from process measurements; and Pe is determined

by the electricity market. To include boiler dynamics, plant operation is optimized

based not only on current profit, but also on potential profit in the future, which re-

quires Pool price prediction as part of future profit function. The Pool price prediction

is provided by the prediction model introduced in Chapter 3.

4.1.2 Constraints with random process variables

The operating constraints for the dynamic steam plant optimization include:

1. a mass balance constraint for each steam common header, which requires that

the input steam flow-rate should be no less than the output steam flow-rate,

with the possibility of leakage along steam pipelines:

Xboi1+ Xboi2 + VH2SO4 ≥

X9t4 +X9t1 +Xprv9t3 +Xtg1 +Xtg2 + Vtc + Vtt + V900u + ∆900

(4.4)

where: VH2SO4 represents the #900 steam supply from the sulfuric acid produc-

tion unit; X9t4 represents the amount of steam transformed from #900 steam

to #450 steam via pressure let-down station (PLS); X9t1 represents the amount

of steam transformed from #900 steam to #160 steam via the PLS; Xprv9t3

represents the amount of steam transformed from #900 steam to #35 steam
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via the PLS; Vtc represents the steam used to run the turbine compressor; Vtt

represents the steam used in the Terry turbine; and ∆900 represents the unac-

counted for steam in #900 steam common header, which is a random variable

known only in its distribution during optimization.

v9t4EX9t4 + VWasteHeat1 + VWasteHeat2 ≥

X4t1 +X4t3 + V4t1 + Shift+ ∆450

(4.5)

where: v9t4E is the efficiency of the PLS to transform #900 steam to #450

steam, usually assumed to be 1 during optimization process; VWasteHeat1 and

VWasteHeat2 are the amounts of steam supply from waste heat boilers; X4t1 and

X4t3 are transformed steam via PLS; V4t1 is the amount of #450 steam used by

the process turbines; Shift is the major user of #450 steam; and ∆450 is the

amount of unaccounted for steam in the #450 steam common header, and its

density function has been modelled in Chapter 2.

v4t1EV4t1 + v9t1EX9t1 +RpkgXpkg +X4t1 ≥

V160u +X1t3 +Xpkgt3 + ∆160

(4.6)

where: v4t1E, v9t1E are the transformation efficiencies of PLSs, from #900

and #450 steam to #160 steam; Rpkg is the percentage of steam generated by

the package boiler flowing into the #160 steam common header; X1t3 is the

transformed steam via PLS from #160 steam to #35 steam; ∆160 represents

the unaccounted for steam in the #160 steam common header, and its density

function is modelled in Chapter 2.

X1t3 + (1−Rpkg)Xpkg+X4t3 +Xprv9t3 +Xtg1ex35

+Xtg2ex35 + EttVtt + EtcVtc +Xpkgt3 ≥ V35u + ∆35

(4.7)

where: Ett and Etc are the transformation efficiencies of Terry turbine and turbo

compressor; and ∆35 represents the unaccounted for steam in the #35 steam

common header, and its density function is modelled in Chapter 2.

2. operational restrictions: this type of constraints are the physical limitations of

industrial equipment, such as boiler capacity, turbine generator load limits and
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so forth. These restrictions are collected from the equipment data sheets and

process knowledge. Unlike the mass balance constraints, which include random

elements, the operational constraints are deterministic. As they are largely

based on the physical properties of process equipment, which are considered to

be stable over time. The operational constraints are listed as follows:

Xtg1 ≤ 51000

Xtg2 ≤ 51000

0 ≤ Xtg1ex35 ≤ 30000

0 ≤ Xtg2ex35 ≤ 30000

10000 ≤ Xtg1 −Xtg1ex35 ≤ 19000

10000 ≤ Xtg2 −Xtg1ex35 ≤ 19000

(4.8)

In the above constraints and objective function, all the variables with capital X are

the decision variables for optimization purposes. Variables with capital V and ∆ are

time-varying process information, which are known from process measurements or

estimations. Other variables with capital E, P or C are parameters, and are derived

from prior knowledge or prediction models.

4.1.3 Optimization with steam boiler dynamics

From subsection 4.1.1 and 4.1.2, the random variables in the right hand side (RHS) of

constraints can be determined at any instant of time from historical data; however, to

include their future values for predictive optimization purpose, we use the estimated

values based on their distribution. Pool price and steam price are available from

the prediction model or from statistics provided by the financial department. In

real time optimization, since all estimations of the uncertain coefficients in the linear

optimization problem are available, the resulting problem is a deterministic linear

program, and efficient solvers are available to solve such problems.

In practice, for implementation of the optimization results, some of the decision

variables are manipulated instantaneously, such as the pressure let-down station open-
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ing and the turbine generators’ load change. On the other hand, for equipment like

drum boilers, the system response time is relatively long due to the slow heating

process. These differences in dynamics must be considered when implementing the

optimization results. Thus, an optimization approach incorporating boiler dynamics

is necessary to ensure that the large range of dynamics are properly reflected in the

determination of optimal operations.

From Chapter 2, the boiler steam generation is dependent on the amount of natu-

ral gas flow (NG), boiler feed water (BFW) and the disturbance from common header

pressure (P). According to equation (2.12), the dynamic boiler model can be repre-

sented in a general form as follows:

y =
A (z−1)

B (z−1)
u1 +

C (z−1)

D (z−1)
u2 +

E (z−1)

F (z−1)
ud (4.9)

where: u1 is NG flow, and is a manipulated variable; u2 is BFW flow, and is another

manipulated variable; and ud is P, and is a disturbance input. From a step test

result between each input and steam output in subsection 2.3.3, the time constants

range from several to tens of minutes. This means that at the beginning of each hour

when the Pool price is released, the drum boiler cannot achieve the optimal loads

calculated by the optimization algorithm for a considerable amount of time. Thus,

a predictive optimization method is needed to adjust the boiler operation and steam

distribution in advance, using the predicted Pool price and boiler dynamics. In this

way, NG and BFW flow can be manipulated so that the long time dynamics of steam

boilers are reasonably negated. Once the actual Pool price is released (and is not too

different from the prediction), the optimal load can be achieved quickly. A moving

horizon framework might be useful to compensate for the Pool price prediction error

and influence of process disturbances. The specific dynamic optimization solution

strategies incorporating boiler dynamics and predicted Pool price will be explained

in detail in next section.
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4.2 Solution strategies

The solution strategies incorporating Pool price prediction and drum boiler dynamic

model are introduced in this section. The first one includes the truncated dynamic

boiler model directly in the optimization process, so that the boiler manipulated

variables and steam distribution operations are calculated all at once. The other

strategy separates optimization from boiler control by designing tracking controller

for optimal boiler load trajectories.

4.2.1 Dynamic linear programming, an open-loop approach

The first solution strategy is to integrate the boiler dynamics directly into the lin-

ear optimization problem formulation, so that the manipulated variables NG and

BFW can be calculated directly via optimization in an open-loop control fashion:

specifically, replacing the boiler load decision variables Xboi1, Xboi2 by NG and BFW

through drum boiler dynamic models, and solving the resulting linear optimization

problem with respect to NG and BFW to determine the optimal boiler manipulation

and steam distribution. To illustrate this solution strategy, an example problem with

small number of decision variables and simple dynamics is given below:

min 0.5x0 + 0.7x2

s.t.

3x0 + 8x2 ≤ 100

5x0 + 3x2 ≤ 75

x0, x2 ≥ 0

x0 = z−1

1−0.5z−1x1

(4.10)

where: x0 is the decision variable (think it as boiler load) related to a manipulated

variable x1 (think it as NG or BFW) through a dynamic model. Replacing x0 in the

original problem with the manipulated variable, x1, by expressing the dynamic model

in an impulse response form:

x0 = z−1x1 + 0.5z−2x1 + 0.25z−3x1 + 0.125z−4x1... (4.11)
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In this case, as multiple-step decisions influence optimal solution at each time

instant, we minimize the summation of profit function over some time horizon to best

reflect operating performance instead of minimizing the objective function at only

individual time instant. By truncating equation (4.11) at an appropriate length after

which the influence of previous x1 to x0 can be omitted, we keep the first 4 terms

in (4.11) to approximate x0:

min
∑s+n

t=s [
∑i=4

i=1 0.5ix1(t− i) + 0.7x2(t)]

s.t.

3
∑i=4

i=1 0.5i−1x1(t− i) + 8x2(t) ≤ 100

5
∑i=4

i=1 0.5i−1x1(t− i) + 3x2(t) ≤ 75∑i=4
i=1 0.5i−1x1(t− i), x2(t) ≥ 0

t = s, s+ 1, ..., s+ n

(4.12)

where n is the optimization horizon, analogous to the prediction horizon in Model

Predictive Control (MPC). Once n is set, the resulting problem is a linear program

with 2n − 1 decision variables (i.e., x1(s), x2(s), · · · , x1(s + n − 1), x2(s + n)) and

4n constraints. This problem can be solved efficiently by LP solvers. The resulting

LP includes the boiler dynamics within the optimization problem. Once the LP

problem is solved, only the first moves of manipulated variables x∗1(s) and x∗2(s) are

implemented following an MPC philosophy. At next round optimization, we shift s

to s + 1, and use the newly updated information in the RHS of constraints (such as

newly updated steam user demands) and in the objective function parameters (Pool

price). The truncation length of equation (4.11) can also be adjusted to serve user

requirements on the accuracy of dynamic model approximation.

Figure 4.1 shows the accuracy of this solution strategy to an example problem.

The time constant of the dynamic system in this example is approximately several

time instants, and thus the prediction horizon n is set to be 20 so that influence of

early past inputs on current output can be reasonably neglected. Figure 4.1 shows

the difference between the solutions based on the truncated dynamic model and the

optimal solution (i.e., using a very long truncation length) within prediction horizon.

71



2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

 

 

2−norm of the solution error

Figure 4.1: 2-norm of the error between the truncated DLP and the globally optimal

solution within prediction horizon

It can be seen from Figure 4.1, when setting prediction horizon as 20, decision

variables for the first 14 steps are almost the same as that of the globally optimal

solution(i.e., 2-norm of the solution error is almost 0). In the last several steps, the

truncated solution deviates from the globally optimal one since the truncated DLP

does not have access to future information in RHS. As the DLP solution strategy

follows MPC philosophy, only the decision variables for the first step is implemented.

Thus, the deviation in the last steps will not influence the truncated solution’s per-

formance if appropriate prediction horizon is selected.

For the drum boiler dynamics, the time constant can be as long as half an hour. In

this case, the prediction horizon must be set sufficiently large for good approximation

accuracy. This may result in a relatively large scale dynamic LP problem to solve,

and the computational burden might be an issue for real time optimization. On the

other hand, the effect of DLP strategy depends on the quality of future predictions of

constraints’ RHS and objective function’s parameters. In steam plant optimization,

high quality predictions for steam user demand, unaccounted for steam flow and future
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Pool price are required for this solution strategy. The advantage of this method is that

the optimal manipulated variables are computed directly from the optimization, and

this ensures the best possible performance if the knowledge is perfect about future

process behaviour and electricity market.

4.2.2 MPC and LQI tracking controller

In previous subsection, the manipulated variables NG and BFW are formulated into

the dynamic linear programming problem, and the algorithm calculates the optimal

manipulated variables directly. In this subsection, the steam plant optimization and

the control of boiler load are separate: 1) the optimization is solved first with appro-

priate prediction horizon, and the optimal boiler load trajectory as well as the steam

distribution operation variables are calculated; 2) a controller is designed to track the

optimal steam load trajectory by manipulating NG and BFW . For this approach,

an optimal linear quadratic integral (LQI) control law and an MPC control law are

designed to serve the tracking purpose.

For the LQI tracking controller, at each control interval, the optimal boiler load

trajectory is updated based on the newly released process and market information.

The NG and BFW are calculated by the LQI controller to track the boiler load

trajectory with minimal error, see Figure 4.2. Controller gain K is calculated by

MATLAB LQI control function lqi. First the dynamic boiler model is expressed as a

discrete state space equation:

x (k + 1) = Ax (k) +Bu (k)

y (k) = Cx (k) +Du (k)
(4.13)

where: A, B, C and D are parameters representing the boiler dynamics; x(k) are the

states; u(k) includes NG and BFW, while P is the disturbance variable; and y(k) is

the steam generation amount. The control law is u = −Kz = −K[x;xi], where xi

is the augmented state representing the integrated tracking error. This control law

minimizes the following objective function [51]:

J (u) =
∞∑
k=0

[
zT (k)Qz (k) + uT (k)Ru (k) + 2zT (k)Nu (k)

]
(4.14)
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Figure 4.2: Optimal tracking controller framework

In equation (4.14), Q, R, and N are tuning parameters. Figure 4.3 shows the

tracking error of designed LQI controller for a trajectory of the optimal boiler load.

Notice that the boiler load’s order of magnitude is 105lb/hr , and the standard de-

viation of the tracking error is about 1252.5lb/hr. The relatively small variance in

tracking error illustrates the tracking performance using LQI controller.

The second approach uses a model predictive controller (MPC) for the optimal

boiler load tracking. The prediction horizon is set long enough so that sufficient

market information and process dynamics can be included. The tracking performance

of MPC is shown in Figure 4.4. In this case, the standard deviation of the MPC

tracking error is 822.9lb/hr, which is smaller than the LQI tracking controller.

The advantage of the tracking controller method is that it can track any calculated

boiler load trajectory once the controller is designed, and it can negate the disturbance

in common header’s pressure. The disadvantage of this method compared to the

open-loop DLP solution is that the control result in this method may deviate from

the optimal trajectory because of the existence of tracking error.
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Figure 4.3: Tracking error of the LQI tracking controller

4.3 Performance assessment of the steam plant op-

timization

In this section, the performance assessment of the proposed optimization approach

is formulated as the distribution problem of stochastic linear programming (SLP).

The distribution problem of SLP is first introduced by Babbar [28], Tintner [29] and

Wagner [30], and its general expression is [27]:

min Z =CTx =
n∑
j=1

cjxj

s.t.

ATx =
n∑
j=1

aijxj ≥ bi, i = 1, 2, ...,m

(4.15)

where xj ≥ 0 and some or all of LP coefficients cj, aij and bj are random variables

with known probability distributions [27]. The decision variables x∗j and the optimal

objective function Z∗ depend on the realizations of A, b, and c through the solution

of LP. Thus x∗j and Z∗ are random variables with distributions determined by the

distributions of cj, aij and bj. The objective of distribution problem is to solve for
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Figure 4.4: Tracking error of MPC controller

the distribution of Z∗ and x∗, so that perfect knowledge about the objective function

or decision variables of SLP is available. In this section, based on the formulation

of steam plant optimization, the distribution problem is considered for the following

type of SLP:

min Z = CTx

s.t.

Ax ≤ b (ξ)

x ≥ 0

(4.16)

where A and c are constants, representing process mass balances and Pool prices.

The uncertain terms are the RHS of constraints, which are the random steam user

demands and missing measurements as discussed in Chapter 2. The special case

where b(ξ) follows a Gaussian distribution is important as analytical results can be

derived.

The significance of solving the distribution problem is: 1) it provides the perfect

information about optimal plant operation under process uncertainty; 2) through

knowledge of the distribution of steam plant profit function, it is straightforward to
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compare and classify different operating modes with proper distribution metric; and

3) knowledge of the distribution of the decision variables facilitates sensitivity analysis

of the SLP, and thus it is possible to explore bottlenecks in the steam plant operation.

4.3.1 Distribution problem for SLP with Gaussian RHS

In this subsection, a basic theorem for the distribution problem of SLP with Gaus-

sian RHS will be proposed and proven. Monte Carlo simulation is used to solve the

distribution problem, and it requires the parameter estimation of Gaussian mixture

distribution. This is done via Expectation-Maximization algorithm in this subsec-

tion. After that, a distribution metric based on earth mover’s distance (EMD) with

adjustable Hellinger distance is introduced to measure the difference between two

probability distributions.

Gaussian mixture solution to distribution problem

Theorem 4.3.1. In a stochastic linear programming problem with a RHS vector

that follows a Gaussian distribution in the constraints (as expressed in (4.16)), the

distribution for the decision variables and objective function follow the distributions

of Gaussian mixture under assumptions that there are unique optimal solutions for

realizations of b(ξ), i.e.

b (ξ) ∼ N (µ,Σ)

x∗ ∼
M∑
i=1

piN (µi,Σi)

z∗ ∼
L∑
j=1

pjN (µj,Σj)

(4.17)

where the parameters for each local Gaussian component are functions of µ and Σ.

Assuming b ∈ Rm, and x ∈ Rn, then the number of local Gaussian components is

bounded above by:

L ≤ M

L ≤ Cn
m+n−bn+1

2 c
+ Cn

m+n−bn+2
2 c

M ≤ Cn
m+n

(4.18)
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Proof. According to the fundamental theorem of linear programming, the optimal

value of z must be achieved at one of the vertices of the convex polyhedron defined

by the constraints of linear programming:

P = {x ∈ Rn|Ax ≤ b, x ≥ 0} (4.19)

In the case where b (ξ) ∼ N (µ,Σ) is a random variable, for different realizations of

b(ξ), x(i)(b) is denoted as the vertices of polyhedron given b(ξ), and all of the possible

vertices for different realizations of b(ξ) is denoted as a finite set

S = {x(1)(b), ..., x(r)(b)} (4.20)

each with the probability P (Ax(i)(b) ≤ b(ξ)), i = 1, 2, ..., r to exist. Denote x∗(b) as

the optimal decision variable given b(ξ), and all the vertices x∗(b) make a set S∗:

x∗(b) ∈ S∗ ⊆ S (4.21)

and the probability that vertex x∗(b) is the optimal decision variable is:

P{Ax(∗)(b) ≤ b(ξ), CTx∗(b) ≤ CTx(i)(b), i = 1, 2, ..., r} (4.22)

As b(ξ) varies, the geometrical shape of the polyhedron P will change. Following

the assumption that for each realization of b(ξ), the optimal solution to resulting LP

is unique:

A0x
∗(b) = b0(ξ) (4.23)

where A0 is an invertible matrix corresponding to the active constraints, and b0(ξ)

is the corresponding RHS of active constraints, also from a Gaussian distribution.

Thus:

x∗(b) = A−1
0 b0(ξ)

z∗(b) = cTA−1
0 b0(ξ)

(4.24)

Since b0(ξ) follows a Gaussian distribution, x∗(b) and z∗(b) also follows a Gaus-

sian distribution as they are linear combinations of b0(ξ). Due to the variation in

RHS, b(ξ), the active constraints set will change, namely selection of A0 and b0 will

change; however, there are only finite many possible selections of A0 and b0, each
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with a probability in (4.22). That is, with a Gaussian RHS, b(ξ), the optimal de-

cision variables and objective function x∗(b) and z∗(b) follow Gaussian distribution

with probability (4.22), which proves the result in (4.17). Notice that x∗ ∈ S∗, and

pi = P{Ax(∗)(b) ≤ b(ξ), CTx∗(b) ≤ CTx(i)(b), i = 1, 2, ..., r}, and pi and pj do not nec-

essarily be one-one correspondence in (4.17) because linear combination of different

Gaussian random variables may sum up to be the same in (4.23). Thus, L ≤M .

The number of Gaussian components for x∗, namely M in the Gaussian mixture

distribution is the cardinality of set S∗, and M is thus bounded by the cardinality of

S.

The upper bound of cardinality for S is Cn
m+n, which is the combination of choosing

n constraints to construct a vertex from m + n constraints. Note that many of the

vertices constructed in this way will be infeasible, and thus not in P . Furthermore,

far more vertices do not have a chance to be the optimal one (i.e., probability (4.22)

is 0 for all possible realizations of b(ξ)). Therefore, this upper bound will be very

loose.

For the upper bound of L, the dual problem of (4.16) needs to be considered

min z
′
= bT (ξ)y

s.t.

ATy ≥ c

y ≥ 0

(4.25)

Since the optimal value will be the same for the primal problem (4.17) and the

dual (4.24), for each realization of b(ξ), the distribution for z∗ and z
′∗ will be the

same. The number of Gaussian components for the mixture distribution of z
′∗ is

bounded above by the number of vertices in the convex polyhedron:

Q = {y ∈ Rm|ATy ≤ c, y ≥ 0} (4.26)

Therefore, the rough upper bound for L will be Cm
m+n, same as the value Cn

m+n,

while from the Upper Bound Theorem of McMullen, [52], [53], the maximum number

of vertices of polyhedron Q is expressed as Cn
m+n−bn+1

2 c
+ Cn

m+n−bn+2
2 c

.
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Therefore, the upper bound for the number of Gaussian components in the dual

problem is Cn
m+n−bn+1

2 c
+Cn

m+n−bn+2
2 c

, and this is also the upper bound for the primal

problem’s distribution, which is the upper bound for L.

Notice that the upper bound for L and M are only dependent on m and n, which

may be very loose in practice. A relatively tighter upper bound for L is the actual

number of vertices in the dual problem polyhedron Q, which can be estimated by the

algorithm proposed by Avis and Devroye [52].

Following Theorem 2.1, the distribution of objective function and decision vari-

ables in the SLP problem with Gaussian RHS constraints, are Gaussian mixture dis-

tributions. Since the direct analytical formula to determine the Gaussian mixture’s

parameters are generally not possible [32], Monte Carlo methods become a natural

alternative. The specific procedures are as follows:

1. Draw samples from Gaussian distribution of b(ξ) (the distribution parameters

can be estimated from historical data). The necessary number of samples can

be inferred from the upper bound of L and M .

2. Solve for resulting LPs by replacing random b(ξ) with its realizations to obtain

the optimal decision variables and objective functions, and collect data.

3. Estimate the parameters of Gaussian mixture distribution for the objective

function and decision variables, where the number of Gaussian components is

bounded above by M and L.

For parameter estimation, the EM algorithm is used as discussed in subsection

2.1.3.

Distribution metric between Gaussian mixtures

Once the Gaussian mixture distribution is estimated, it is reasonable to ask a question:

how different are two or several such distributions? For example, in the case of steam

plant optimization, it is valuable for the decision maker to know how much better the

profit distribution under optimization is than that for routine operation. Comparison
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of the expected value or variance of profit, although simple, is an incomplete approach

to evaluating the steam plant’s performance. A distribution metric that can capture

difference over the whole distribution is attractive, especially in the Gaussian mixture

case, where each local component usually stands for a specific operation mode. If the

metric can take into account the difference between local Gaussian components, it

would be very helpful to the decision makers.

Earth Mover’s Distance (EMD) will be introduced as the distribution metric be-

tween Gaussian mixture distributions to evaluate the performance of steam plant

optimization. The definition of EMD is expressed as follows [33]:

min : work (P,Q, F ) =
m∑
i=1

n∑
j=1

fijdij

s.t.

fij ≥ 0
n∑
j=1

fij ≤ wpi

m∑
i=1

fij ≤ wqj

m∑
i=1

n∑
j=1

fij = min

(
m∑
i=1

wpi,
n∑
j=1

wqj

)
(4.27)

where P = {(p1, wp1), ..., (pm, wpm)}, Q = {(q1, wq1), ..., (qn, wqn)} are two Gaussian

mixture distributions, with different mixing probability [wp1 , ..., wpm ] and [wq1 , ..., wqn ],

and different local Gaussian parameters [p1, ..., pm] and [q1, ..., qn]. The calculation of

EMD is based on the a transportation problem, which is formulated as an LP. The

problem is to find a flow F = [fij] that minimizes the overall cost with fij denoting

the ‘amount of earth’ moved between the ‘earth piles’ wpi and wqj , with the ‘moving

cost’ dij.

Using the calculated flow from LP solution, the normalized EMD can be expressed

as:

EMD (P,Q) =

m∑
i=1

n∑
j=1

fijdij

m∑
i=1

n∑
j=1

fij

(4.28)

The physical interpretation of EMD in the case of Gaussian mixture distributions

is the minimum cost needed to transform from one Gaussian mixture to another given
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the defined cost dij between local Gaussian components.

In the literature of EMD [33], dij is referred to as ground distance, denoting

the distance between the basic features (in Gaussian mixture are the local Gaussian

components) of distributions.

The problem here is to choose a proper ground distance between local Gaussian

components so that the resulting EMD has appropriate properties for optimization,

clustering and analysis.

Hellinger distance is chosen as such ground distance for EMD between Gaussian

mixtures. The definition of the Hellinger distance for continuous distribution P and

Q can be expressed as [54]:

H (P,Q) =

[
1

2

∫ (√
p (x)−

√
q (x)

)2

dx

]1/2

(4.29)

The Hellinger distance is chosen for the following reasons [54]:

1. The value of Hellinger distance is bounded between 0 and 1. This is convenient

as performance index.

2. H(P,Q) = 0 if and only if p(x) = q(x) everywhere along the distribution, which

means distribution P = Q; H(P,Q) = 1 if and only if p(x)q(x) = 0 every-

where on the distribution, which implies disjoint P and Q. This property gives

Hellinger distance clear physical meaning as the dissimilarity of distributions.

3. Hellinger distance is a true metric, and satisfies symmetry, non-negativity, and

the triangle inequality. This means the resulting EMD must be a true metric

too [33], which is very appealing for applications based on this metric, such as

optimization and clustering.

The Hellinger distance is closely related to the Bhattacharyya coefficient by equa-

tion (4.30), specifically, the Hellinger distance between two Gaussian distributions

can be expressed as equation (4.31) [55].

H (p, q) =
√

1−BC (p, q)

BC (p, q) =
∫ √

p (x) q (x)dx
(4.30)
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P = Σ0+Σ1

2

BC (G (x;µ0,Σ0) , G (x;µ1,Σ1)) = exp
(
−1

8
(µ0 − µ1)TP−1 (µ0 − µ1)

)√√
|Σ0||Σ1|
|P |

(4.31)

Gaussian mixture is composed of local Gaussian distributions, and the EMD be-

tween two Gaussian mixtures can be calculated by taking the Hellinger distance be-

tween local Gaussian distributions as ground distance. Direct analytical expression

for Hellinger distance between two Gaussian mixtures is not available; however, the

Hellinger distance between Gaussian distributions can be written in a closed form

as in (4.31). The upper layer EMD can be efficiently solved by LP, and lower layer

Hellinger distance can be solved from analytical expression in (4.31), and thus the

EMD between two Gaussian mixtures can be calculated efficiently in this way.

The adjustable Hellinger distance is developed by introducing one additional pa-

rameter α into equation (4.31) as follows:

BC (G (x;µ0,Σ0) , G (x;µ1,Σ1)) = exp
(
−1

8α(µ0 − µ1)TP−1 (µ0 − µ1)
)√√

|Σ0||Σ1|
|P |

P = Σ0+Σ1
2

0 ≤ α ≤ ∞
(4.32)

After introducing α, the adjustable Hellinger distance between two Gaussian compo-

nents (4.32) can be treated as the original Hellinger distance between N(
√
αµ0,Σ0)

and N(
√
αµ1,Σ1). Therefore all the desirable properties of Hellinger distance men-

tioned previously will hold. If set α ≤ 1, the user shrinks the influence of the difference

in mean values between the two Gaussian distributions. In the extreme case, when

α = 0, all the emphasis is put on the difference in variance. If α ≥ 1, the user

amplifies the difference in the mean value, so that even tiny difference in mean value

can be reflected by the adjustable Hellinger distance.

4.3.2 Simulation example and application to steam plant op-

timization

In this subsection, the application of proposed performance index to an example

problem and the evaluation of steam plant optimization will be discussed.
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Numerical simulation for an example problem

Example: Company A decides to invest in a new production line for product α, and

the sources of raw material for α are from two different suppliers, with daily supply

amount denoted as x1 and x2. To set the purchasing plan, and to know the optimal

daily net profit of this new product under constraints of daily budget, labour force

limit, and market demand, a deterministic linear programming problem is formulated

as:

max z = 8.5x1 + 6.5x2 (daily net profit)

s.t.

2.5x1 + 1.5x2 ≤ 1250 (Daily budget)

4x1 + 3.5x2 ≤ 2500 (Labour force limit)

x1 + x2 ≤ 750 (Daily market demand)

x1, x2 ≥ 0

(4.33)

where the parameters in the objective function represent net profits using raw materi-

als from different suppliers, and the parameters in the constraints represent different

limitations on the two types of raw material. For example, in the daily budget

constraint, 2.5 and 1.5 stands for the unit purchasing price of raw materials from

suppliers.

This is a standard LP problem, where the solution is z = $4886.4 and x1 = 227.3,

x2 = 454.5. Due to the uncertainty in budget, available labour force and market

fluctuation, it is impossible to estimate the net profit as a specific number. The

resulting optimal objective function and decision variables will be random variables

with known distribution to the best knowledge, when some of the problem parameters

are unknown and randomly varying.

From previous experience running company A, and uncertainty analysis of this

new investment on product α, the decision makers of the company find that from

probability distribution point of view, the RHS of constraints in equation (4.33) can

be approximated by Gaussian distributions centering at the nominal RHS value given
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in (4.33):

max z = 8.5x1 + 6.5x2 (daily net profit)

s.t.

2.5x1 + 1.5x2 ≤ 1250 +N(0, 3002) (Budget uncertainty)

4x1 + 3.5x2 ≤ 2500 +N(0, 5002) (Labour force uncertainty)

x1 + x2 ≤ 750 +N(0, 1502) (Market demand uncertainty)

x1, x2 ≥ 0

(4.34)

Now the problem is, with Gaussian distributed RHS of constraints, what is the

distribution of the optimal z∗ and x∗1, x∗2. Knowing these allows the decision makers

to assess the expected net profit and its variance with perfect information to make

more reliable profit/risk analysis.

First draw 1000 samples from the Gaussian RHS, and then solve the resulting LPs

to obtain optimal z∗ and x∗1, x∗2. Follow the procedures in Chapter 2 and estimate

the GM distributions of z∗ and x∗1, x∗2 using EM algorithm. By Theorem 4.3.1, the

maximum possible number of Gaussian components for z∗ is C2
3+2−1 +C2

3+2−2 = 9, for

(x∗1, x
∗
2) is C2

3+2 = 10. While in practice, some or most of the Gaussian components

may not exist or only occur with negligible probabilities.

After the estimation procedure, the distributions for the optimal objective func-

tion and decision variables are given in the Figure (4.5) and Figure (4.6). From Fig-

ure (4.5), it can be seen that the distribution for objective function is non-Gaussian.

For Figure (4.6), it seems the joint distributions are Gaussian lying at two different

points on the x1, x2 plane; however, from the estimation result, the joint distributions

in Figure (4.5) should be GMs rather than single Gaussian. This contradiction is from

the non-negativity constraints of problem (3.37), which is deterministic and makes the

estimated Gaussian component degenerate on the boundary. A degenerate Gaussian

component has the variance almost 0 along some direction in the decision space, and

thus has dominant amplitude. To make other Gaussian components in Figure (4.6)

obvious for a better illustration, the non-negativity constraints are relaxed with a

Gaussian RHS as x1, x2 ≤ 0.5 +N(0, 0.12), shown in Figure (4.7).

The expectation of the optimal objective function is calculated based on the es-
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timated GM distribution, as E(z∗) = $4445.2. The added value of knowing z∗’s

distribution can be calculated as the expected value of perfect information (EVPI),

which is the difference between the deterministic solution to (3.36) and the expected

value of z∗ for (4.34) [32].

EV PI = |4886.4− 4445.2| = $441.2 (4.35)
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GM distribution for objective function

Figure 4.5: Estimated GM distribution for the optimal objective function z

Thus, the estimation based only on the mean value of RHS in (4.34) will be $441.2

more optimistic on the potential daily net profit of the new product line, which is

9.92% more than the expected profit based on perfect information (the entire profit

distribution). The variance of daily profit can be calculated as $799.1 by the following

closed form variance formula for mixture distribution:

V ar(z) = E[z − µ(z)]2 = E(z2)− µ(z)2

=
L∑
j=1

pj(µ
2
j + σ2

j )− (
L∑
j=1

pjµj)
2

(4.36)

From the distribution of the objective function, the decision makers can also cal-

culate different quantiles in which they are interested, when making the decision or

doing profit/risk analysis.
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Figure 4.6: Estimated GM distribution for the optimal decision variables x∗1 and x∗2

The next problem to consider is: if the estimated Gaussian mixture is taken as the

benchmark purchasing plan, as time goes by, when the uncertainty of the constraints

changes, how can the difference between the benchmark and actual purchasing activity

be quantified?

EMD with Hellinger distance as the ground distance is used to measure the differ-

ence between two Gaussian mixture distributions representing the purchasing plans

under uncertainty. The figures (4.8) to (4.10) show the calculated EMD between

different purchasing plan pairs.

Figure (4.8) shows the decision variables’ distributions under same RHS uncer-

tainty from two rounds of Monte Carlo simulation. The estimated distribution should

be very similar as shown in Figure (4.8), and actually the resulting EMD is 0.051

which is very close to 0 as expected. Figure (4.9) shows the difference between the

benchmark distribution and the one with different RHS uncertainty (in this case,

shifted mean value), the resulting EMD with Hellinger as ground distance is 0.558,

showing the dissimilarity of the two distributions. If the adjustable parameter α is
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Figure 4.7: Estimated GM distribution for the optimal decision variables x∗1 and x∗2

with relaxed non-negativity constraints

set to be 0, the EMD will shrink to 0.3428; however, if α = 10, the result will increase

to 0.8528. Figure (4.10) shows the difference between the benchmark and the one

with increased RHS Gaussian variance, the resulting EMD with Hellinger as ground

distance is 0.411, showing the dissimilarity of the two distributions. If the adjustable

parameter α is set to be 0, the EMD will shrink to 0.3513, it is not a big change since

the mean values of the two distributions are relatively close after all; if α = 10, the

result will increase to 0.5667.

Application to steam plant optimization performance assessment

In this section, the application of proposed performance index to steam plant opti-

mization will be shown. The routine operation of steam plant pays more attention

to satisfy the process users’ demand, while does not adjust the steam generation in

response to the change in electricity price.

After solving the steam plant optimization problem using LP as explained pre-

88



Figure 4.8: GM distribution for benchmark purchasing plan from two runs of Monte

Carlo simulations, EMD = 0.051

ciously, the Monte Carlo simulation is run to draw samples from the RHS of constraint.

The comparison of profit from routine operation and the optimized operation can be

made using proposed performance index. For the deregulated electricity market in

Alberta, the price can vary from several dollars per MWh to $1000/MWh, and

the higher the electricity price is, the more profit the optimization can contribute.

Figure (4.11) to Figure (4.14) show the comparison of hourly profit from routine op-

eration and optimized operation at different electricity price. At the same time, EMD

is calculated to quantify the difference between the optimized operation and routine

one. From Figure (4.11) to Figure (4.14), it can be seen that at each electricity price

level, the optimized operation leads to less loss (if the profit turned out to be negative)

or more profit. When the electricity price is relatively low, as in Figure (4.11) and

Figure (4.12), the routine operation result and optimized operation result is compa-

rable with small portion of overlapping; however, when the electricity price is high,

as in Figure (4.13) and Figure (4.14), the added value of the optimized operation is
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significant, with thousands dollar’s improvement per hour. The resulting EMD for

the first two figures are already close to 1, indicating a quite improved hourly profit.

For the last two figures, it is 1, indicating overwhelmingly improved hourly profit.

Notice that using adjustable Hellinger distance as ground distance for EMD, these

numbers can be adjusted to be smaller if more resolution is required in the perfor-

mance index. A threshold EMD can be set to detect if the current operation is within

the acceptable range near the optimal operation so that the steam plant operation

can be monitored in a cost efficient way.
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Figure 4.9: GM distributions comparison (different mean value of RHS). EMD =

0.558; α = 0, EMD=0.3428; α = 10, EMD=0.8528

Figure 4.10: GM distributions comparison (increased variance of RHS). EMD =

0.411; α = 0, EMD=0.3513; α = 10, EMD=0.5667
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Figure 4.11: Hourly profit distribution at electricity price $20, the expected improve-

ment is $312.73/h, EMD = 0.9538
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Figure 4.12: Hourly profit distribution at electricity price $100, the expected improve-

ment is $195.40/h, EMD = 0.8003
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Figure 4.13: Hourly profit distribution at electricity price $500, the expected improve-

ment is $813.52/h, EMD = 1.00
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Figure 4.14: Hourly profit distribution at electricity price $900, the expected improve-

ment is $1930.9/h, EMD = 1.00
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Chapter 5

Conclusion

In this chapter, the work for this thesis is summarized, conclusions are drawn and

future research directions are proposed.

5.1 Summary of this thesis

This thesis focuses on economic optimization of steam utility plant operation, in

which the plant generates steam and electricity for process use as well as sales to the

electricity grid.

A predictive optimization approach is proposed in this thesis to improve the steam

plant profit. This approach incorporates steam plant models and electricity price pre-

diction so that not only current but also future information can be used to maximize

the long term profit.

Process models are developed in Chapter 1, such as the mass balances for each

common header, random process variable models, turbine generator models and the

steam boiler models. Multiple methods are used to develop the models: probability

density estimation using EM algorithm, first principles modelling based on physical

laws and system identification using process data. This chapter is the foundation

for the predictive optimization, and the developed models are accurate in terms of

fitting-rate or cross validation results.

Electricity price prediction model is developed in Chapter 2. A robust switched
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system identification method is proposed to build the price prediction model. This

method introduces Gaussian mixture noise distribution to handle outliers robustly.

The application of proposed method to electricity price prediction shows better perfor-

mance than the forecast price published by AESO website, especially when electricity

price is very high.

In Chapter 4, the steam plant model, random process variables, process equip-

ment dynamic models and electricity price prediction are integrated to be a predictive

optimization framework based on linear program. To implement the optimal boiler

load trajectory calculated by the optimization, two control strategies are proposed:

the dynamic linear programming approach is an open-loop control strategy and calcu-

lates the optimal manipulation variables directly from the steam plant optimization;

and the optimal tracking controller approach is a closed-loop control strategy, which

tracks the optimal boiler load trajectories via LQI or MPC control law. To evaluate

the added value of the proposed optimization, a quantitative performance assess-

ment approach is developed. It compares the optimized plant profit with the profit

under routine plant operation by calculating the EMD between the distributions rep-

resenting the profits. Based on the performance assessment result, the optimized

plant operation is significantly better than the routine operation especially when the

electricity price varies a lot.

5.2 Directions for future work

In this thesis, the steam plant optimization problem is solved under process uncer-

tainty, including process dynamic models and the electricity price predictions. To

further improve the performance of steam plant operation, following aspects can be

considered in future work:

1. In this thesis, varying electricity price is taken into account on the profit side of

the economic objective function, and the cost of natural gas is treated as a constant

in steam generation. In reality, natural gas price does change with time and energy

market situation. The prediction model for natural gas price will be a direction to

improve the profit of steam plant.
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2. The user demands for each steam header are assumed to be random variables.

While in reality, the user demands for different units can be modelled based on the

production schedule. With such models, the future user demand can be predicted in

a more accurate way for better optimization effect.

3. Based on the distribution metric defined in Chapter 4, routine operation and

optimal operation of steam plant can be compared using earth movers’ distance.

Following this way, the plant operation data can be clustered in real time such as

optimal operation, normal operation, uneconomic operation, abnormal operation and

so forth. An alarm/guidance system can be developed based on the clustering results

for operators’ and engineers’ convenience.
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[7] Andrés Collazos, François Maréchal, and Conrad Gähler. Predictive optimal

management method for the control of polygeneration systems. Computers &

Chemical Engineering, 33(10):1584–1592, 2009.

[8] Giancarlo Ferrari-Trecate, Eduardo Gallestey, Paolo Letizia, Matteo Spedicato,

Manfred Morari, and Marc Antoine. Modeling and control of co-generation power

97



plants: a hybrid system approach. Control Systems Technology, IEEE Transac-

tions on, 12(5):694–705, 2004.

[9] Chi-Wai Hui and Yukikazu Natori. An industrial application using mixed-integer

programming technique: a multi-period utility system model. Computers &

chemical engineering, 20:S1577–S1582, 1996.

[10] X. Jin, B. Huang, and D.S. Shook. Multiple model lpv approach to nonlinear

process identification with em algorithm. Journal of Process Control, 21(1):

182–193, 2011.

[11] N.H. El-Farra and P.D. Christofides. Coordinating feedback and switching for

control of hybrid nonlinear processes. AIChE Journal, 49(8):2079–2098, 2004.

[12] S. Paoletti, A.L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identification of

hybrid systems: A tutorial. European Journal of Control, 13(2-3):242–260, 2007.

[13] X. Jin and B. Huang. Robust identification of piecewise/switching autoregressive

exogenous process. AIChE Journal, 56(7):1829–1844, 2010.

[14] X. Jin and B. Huang. Identification of switched markov autoregressive exogenous

systems with hidden switching state. Automatica, 2011.

[15] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society. Series

B (Methodological), pages 1–38, 1977.

[16] R.B. Gopaluni. Identification of non-linear processes with known model structure

under missing observations. In Proceedings of the IFAC 17th World Congress,

Seoul, Korea, July 6, volume 11, 2008.

[17] J. Deng and B. Huang. Identification of nonlinear parameter varying systems

with missing output data. AIChE Journal, 2012.

[18] S.J. Roberts. Novelty detection using extreme value statistics. In Vision, Image

and Signal Processing, IEE Proceedings-, volume 146, pages 124–129, 1999.

98



[19] N Kostantinos and D. Hatzinakos. Gaussian mixtures and their applications to

signal processing. University of Toronto, 2010.

[20] S. Khatibisepehr and B. Huang. Bayesian methods for process identification with

outliers. In American Control Conference (ACC), 2012, pages 3516–3521, 2012.

[21] H.W. Sorenson and D.L. Alspach. Recursive bayesian estimation using gaussian

sums. Automatica, 7(4):465–479, 1971.

[22] A. Shamshad, MA Bawadi, WMA Wan Hussin, TA Majid, and SAM Sanusi.

First and second order markov chain models for synthetic generation of wind

speed time series. Energy, 30(5):693–708, 2005.

[23] Scott M Thede and Mary P Harper. A second-order hidden markov model

for part-of-speech tagging. In Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on Computational Linguistics, pages

175–182. Association for Computational Linguistics, 1999.

[24] Brett Watson and A Chung Tsoi. Second order hidden markov models for

speech recognition. In Proceedings, Fourth Australian International Conference

on Speech Science and Technology, pages 146–151, 1992.

[25] J-F Mari, J-P Haton, and Abdelaziz Kriouile. Automatic word recognition based

on second-order hidden markov models. Speech and Audio Processing, IEEE

Transactions on, 5(1):22–25, 1997.

[26] Behram J Hansotia. Stochastic linear programming with recourse: A tutorial*.

Decision Sciences, 11(1):151–168, 1980.

[27] Hüseyin Sarper. Monte carlo simulation for analysis of the optimum value dis-

tribution in stochastic mathematical programs. Mathematics and computers in

simulation, 35(6):469–480, 1993.

[28] MM Babbar. Distributions of solutions of a set of linear equations (with an appli-

cation to linear programming). Journal of the American Statistical Association,

50(271):854–869, 1955.

99



[29] Gerhard Tintner. Stochastic linear programming with applications to agricul-

tural economics. In Proceedings of the Second Symposium in Linear Program-

ming, volume 1, pages 197–228. National Bureau of Standards: Washington, DC,

1955.

[30] Harvey M Wagner. On the distribution of solutions in linear programming prob-

lems. Journal of the American Statistical Association, 53(281):161–163, 1958.

[31] Ion M Stancu-Minasian and Victor Giurgiutiu. Stochastic programming with

multiple objective functions. Editura Academiei, 1984.

[32] Jerome Bracken and Richard M Soland. Statistical decision analysis of stochastic

linear programming problems. Naval Research Logistics Quarterly, 13(3):205–

225, 1966.

[33] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance

as a metric for image retrieval. International Journal of Computer Vision, 40

(2):99–121, 2000.

[34] Douglas Reynolds. Gaussian mixture models. Encyclopedia of Biometric Recog-

nition, 2(17.36):14–68, 2008.

[35] G.J. McLachlan and T. Krishnan. The EM algorithm and extensions, volume

382. 2007.

[36] Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application to

parameter estimation for gaussian mixture and hidden markov models. Interna-

tional Computer Science Institute, 4(510):126, 1998.

[37] C. Tomasi. Estimating gaussian mixture densities with em–a tutorial. Duke

University, 2004.
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