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Abstract

In this dissertation, we study two network coding problems. First, we con-

sider a class of networks that we call funnel networks. In this class of networks

the total capacity of the incoming links to each intermediate node is not less

than the total capacity of its outgoing links. We then prove that any feasible

non-multicast problem on funnel networks is solvable by routing. This proves

that a linear network coding solution exist for any non-multicast problem on

funnel networks. The desirability of network coding in funnel networks may

be justified by the other benefits that coding offers. However, we see that in

funnel networks, the conventional random approach to linear coding fails with

high probability. Hence, we provide a new random linear network coding solu-

tion for these non-multicast problems. Second, we study multicast problems in

arithmetic network coding (ANC) in which, finite field arithmetic operations

are replaced by real or complex arithmetic operations. A major issue in random

ANC is that the condition number of the network grows quickly with the net-

work size, hence, small errors in links can cause substantial decoding mistakes

at sinks. We propose a new encoding method based on subspace coding along

with a rank deficient decoding method. Our simulation results show significant

improvements over conventional ANC.
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“I prefer a short life with width to a narrow one with length.”

- - Avicenna
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Chapter 1

Motivation

Communication networks are among the most influential technologies in the

past few decades. The Internet has become the crucial technology of this age.

Internet of Things (IoT) is one of the major growing technologies in the last few

years. The number of interconnected devices exceeded the number of people in

2011 [1] and it is estimated to reach 100 billion by 2020 [2]. This has lead to

new ways of sharing information and knowledge between people or devices for

various purposes such as scientific research, multimedia broadcasting, online

gaming and automation.

Global network traffic is growing at an exponential rate. In a study con-

ducted by Cisco, it is predicted that the global IP traffic will increase nearly

threefold over the next five years. Table 1.1 from [3] shows the statistics of

Internet users from 2000 to 2014. Handling this amount of traffic is a major

issue since, available bandwidth is limited.

In addition to the bandwidth limitations, another major concern is the

energy consumption of communication systems and networks, which is directly

related to the amount of traffic that they handle.

Communications networks are among the major consumers of energy on the

planet. According to [4], in 2013, the worldwide electricity power usage related

to the ICT was around 109 GW, which represents 6% of the world electricity

1



Table 1.1: The statistics of global Internet users per year from 2000 to 2014

Year Internet Users Penetration(% of Pop) WorldPopulation Non-Users(Internetless) World Pop.Change
2014 2,956,385,569 40.7 % 7,265,785,946 4,309,400,377 1.17 %
2013 2,728,428,107 38 % 7,181,715,139 4,453,287,032 1.19 %
2012 2,494,736,248 35.1 % 7,097,500,453 4,602,764,205 1.2 %
2011 2,231,957,359 31.8 % 7,013,427,052 4,781,469,693 1.21 %
2010 2,023,202,974 29.2 % 6,929,725,043 4,906,522,069 1.22 %
2009 1,766,403,814 25.8 % 6,846,479,521 5,080,075,707 1.22 %
2008 1,575,067,520 23.3 % 6,763,732,879 5,188,665,359 1.23 %
2007 1,373,226,988 20.6 % 6,681,607,320 5,308,380,332 1.23 %
2006 1,162,916,818 17.6 % 6,600,220,247 5,437,303,429 1.24 %
2005 1,030,101,289 15.8 % 6,519,635,850 5,489,534,561 1.24 %
2004 913,327,771 14.2 % 6,439,842,408 5,526,514,637 1.24 %
2003 781,435,983 12.3 % 6,360,764,684 5,579,328,701 1.25 %
2002 665,065,014 10.6 % 6,282,301,767 5,617,236,753 1.26 %
2001 502,292,245 8.1 % 6,204,310,739 5,702,018,494 1.27 %
2000 414,794,957 6.8 % 6,126,622,121 5,711,827,164 1.28 %
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consumption in that year. Any solution in data transmission that reduces the

traffic, data overhead, and computational complexity can have a significant

impact on the global energy consumption and directly affects the environment

and the future of our economy. Next generation networks are responsible to

handle much larger data traffic as the number of devices and services that use

these networks increase.

1.1 Network Coding Definition

In the case of communication networks, there are various applications that uses

broadcasting or multicasting. Network coding has shown promising results in

terms of improving the throughput and energy consumption in such cases.

In their seminal paper [5], authors describe network coding as any coding

performed at network nodes, where, coding itself is an arbitrary mapping from

input(s) to output(s). The basic idea is to instead of simply storing and for-

warding incoming packets in intermediate network devices like routers, packets

can be combined in an intelligent way such that at the destination, each user

could extract the information intended to be delivered to it by some decoding

function.

1.2 Benefits

Network coding has many advantages over the commonly used routing for re-

laying data in networks. It has been shown that network coding can improve

throughput, robustness, complexity, security and more [6]. Let us consider each

in turn.

3



1.2.1 Throughput

By performing coding, intermediate nodes of a network can relay more informa-

tion with less usage of communication links. This can be illustrated using the

famous two way relay channel. Consider the structure depicted in Figure 1.1 in

which two devices want to communicate via a relay node (e.g. a wireless access

point). Using conventional methods, this can be done in four stages. However,

with a simple technique, we can reduce the number of stages to three. Instead

of broadcasting each message separately, the relay can get both packets in two

channel use, compute and broadcast their XOR sum. Since each device has its

own message, it can compute the other device’s message with a simple XOR

operation. Fig. 1.1 shows the stages in both scenarios.

Can we do even better than three stages? By using physical layer network

coding we can communicate in two stages. Although our research may be

applicable to physical layer network coding, details of this method is out of

the scope of this thesis. An interested reader can refer to [7] and [8] and their

references for more information on this topic.

1.2.2 Robustness

Consider a reasonably large network consisting of many nodes and links. This

network is responsible for relaying information from a set of sources to a set of

receivers. An important issue in such networks is packet loss due to link outages

and/or malicious transmission by some adversary nodes. In the case of routing,

since each link is transmitting only one message at a time, the probability of

loosing information due to these issues would be relatively high. In contrast,

since in a network coding scenario information is encoded in several packets,

we may still be able to decode information even if there are a few errors or

erasures in transmission.

4
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Figure 1.2: (a) Unsecured transmission. (b) Security against wiretapping.

1.2.3 Complexity

Although network coding can improve the throughput, there are cases where

the optimal routing solution has the same outcome [9]. However, even in these

cases, finding the optimal routing solution is an important issue that has been

widely studied in the literature (see [10, 11, 12] and their references). On the

other hand, as discussed in the following chapters, the optimal network coding

solution can be as simple as using random linear coding at the intermediate

nodes.

1.2.4 Security

While network security is an important and interesting topic of research and is

often implemented regardless of using network coding or routing, it is notewor-

thy to mention how network coding can provide an extra layer of protection

in the network. The best way to explain this is by an example. Consider the

simple network of Fig. 1.2 in which node A wants to send two messages to node

D. Evidently, if an adversary could access one of the links in the network, it

would not gain any useful information.
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1.3 Structure of the Thesis

In this thesis, we first examine a type of network in which the sum of capacities

of all incoming links to an intermediate node is greater than or equal to the

sum of capacities of all outgoing links from that node. Such networks are called

funnel networks. We prove that for any general non-multicast problem defined

on such networks, if the Min-Cut Max-Flow condition is satisfied, routing and

network coding have the same throughput. However, as mentioned earlier, net-

work coding has other benefits apart from throughput. Therefore, we propose

a method based on randomized linear network coding that can be implemented

for any non-multicast problem defined on funnel networks.

We then consider arithmetic network coding in which finite field opera-

tions are substituted by arithmetic operations. This kind of network coding

has application in physical layer communication and multi-resolution multicast

problems [13, 14]. We propose a new technique based on subspace coding [15]

which will significantly reduce decoding error in arithmetic network coding.

The structure of this thesis is as follows. A detailed discussion on the graph

model of networks along with basic network coding operations is presented

in Chapter 2. In Chapter 3 we introduce funnel networks and present our

algorithm for implementing network coding on these networks. In Chapter 4

we present our new technique based on subspace coding for arithmetic network

codes along with simulation results. Finally, Chapter 5 concludes the thesis.

7



Chapter 2

Network Coding Preliminaries

In this chapter, we present the needed background, including modeling a com-

munication network as a graph, finite fields, and some of the existing approaches

to network coding.

2.1 Graph Model of a Network

We model a communication network by a directed acyclic graph G(V,E) where,

V is the set of vertices representing nodes of the network and E ⊆ V ×V ×Z+

is the set of directed edges.

There are two designated subsets of nodes S, T ⊆ V called the set of sources

and the set of sinks, respectively. A node v ∈ V − (S ∪ T ) is called an inter-

mediate node. We use N (G(V,E), S, T ) to denote a communication network

with the above properties. Although in a general settings there may be several

sources in a network, the main focus of this thesis is on the networks with a sin-

gle source namely, S = {s}. The task of the source is to generate information

messages and inject them to the network.

A communication link between two nodes in a network can be modeled with

a careful choice of directed edges in E. Each edge e = (v, v′, i) ∈ E represents

a single directed communication between nodes v and v′. We call v′ and v head

8



Figure 2.1: The butterfly network of Example 1

and tail of e respectively. The index i is to allow having parallel edges between

two nodes. Parallel edges are sometimes used to generate a variety of channel

capacities between two nodes using unit-capacity links [6]. The set of incoming

edges to a node v is defined as IN (v) = {e ∈ E : head(e) = v}. Likewise, we

define the set of outgoing edges from a node by ON (v) = {e ∈ E : tail(e) = v}.

If no confusion arises, we drop the subscript N for simplicity. The in-degree

and out-degree of a node v are the cardinality of its set of incoming edges

(|I(v)|) and outgoing edges (|O(v)|) respectively. Without loss of generality,

we assume that I(s) = ∅ and, for any sink t ∈ T , O(t) = ∅. A path P between

two nodes v, v′ is a set of edges {(v, vi1), (vi1 , vi2), . . . , (vij , v
′)} that connects v

to v′.

Example 1. Consider the network shown in Fig. 2.1. The source is depicted

by the node s. Nodes v1, v2, v3, v4 are the intermediate nodes and t1, t2 are

the sinks. A path from source s to sink t1 is highlighted in the figure. This

particular topology is known as the butterfly network.

A cut between two disjoints sets of nodesW ,W ′ in the graphG is a partition

of the vertices of the graph G into two disjoint subsets W,V − W such that

W ⊆ W and W ′ ⊆ V −W . The set of edges that have one endpoint in each

subset of a cut is called a cut-set and is denoted by CW . The value of a cut-set

is defined as the number of edges that belongs to the cut-set and is denoted

9



Figure 2.2: The butterfly network of Example 2 with three differnet cuts

by val(CW ) = |CW |. The minimum cut between two disjoint set of nodes in a

graph is defined as the minimum value of all cut-sets between two set of nodes

and is denoted by mincut(W ,W ′).

Example 2. Consider the butterfly network shown in Fig. 2.2. Three different

cuts between source s and sink t1 are shown in this figure. In this network, the

minimum cut between s and t1 is equal to 2.

2.2 Finite Fields

A finite field or Galois field is a finite set of elements in which we can perform

addition, subtraction, multiplication and division in a way that a certain set

of rules called field axioms are satisfied. A mathematical definition of a field is

given in [16] as,

Definition 1. Consider a set F with two binary operations addition “+ ” and

multiplication “ · ” such that:

1. F is a commutative group under “ + ”, with identity element 0.

2. The set of nonzero elements of F is also a commutative group under “ ·”.

10



3. Multiplication is distributive over addition, i.e.,

∀a, b, c ∈ F a · (b+ c) = a · b+ a · c. (2.1)

Under these conditions F is called a field.

We call F a finite field if, the underlying set is finite. Consider a prime

number q. The set of integers {0, . . . , q − 1} together with modulo-q addition

and multiplication form a finite field [16]. We denote such a field with Fq. For

every prime number q and positive integer n, we can construct finite fields of

order qn with the help of an irreducible polynomial of degree n. For these fields,

we call q the characteristic of the field. Although there may be more than one

finite field of order qn (based on the choice of irreducible polynomial), all fields

of that order are isomorphic. Therefore, we can use Fqn to denote all fields of

order qn. Elements of Fqn can be represented by polynomials of the form:

p(x) = pn−1x
n−1 + pn−2x

n−2 + · · ·+ p0,

where, pi ∈ Fq. This way, addition and subtraction in Fqn can be performed

by adding or subtracting two polynomials and reducing the coefficients of the

result modulo q. As for multiplication, the result must be first reduced modulo

an irreducible polynomial of degree n and then, the coefficients must be reduced

modulo q.

In this thesis we are interested in another sort of multiplication in which

we multiply an element of Fq with an element of Fqn . Let the polynomial p(x)

be an element of Fqn . We have,

∀λ ∈ Fq λ p(x) =
n−1
∑

i=0

(λ · pi)x
i, (2.2)

where, pi is the coefficient of xi in p(x).

11



Another way of representing p(x) ∈ Fqn is by using row vectors of the form:

P =
[

pn−1 pn−2 . . . p0

]

.

This way, addition, subtraction and multiplication in (2.2) are done similar to

those of vectors arithmetic with an additional reduction modulo q. We use this

representation throughout the rest of this thesis.

2.3 Vector Representation of Packets

The set of messages generated at s is denoted by M = {m1,m2, . . . ,mr} in

which each mi is a row vector of length n over a finite field Fq. Associated with

each sink t ∈ T is a set of demands D(t) that is a non-empty subset of M , i.e.,

D(t) ⊆ M . Each message mi is an element of at least one D(t) for some t ∈ T

otherwise, the source could exclude that message from M .

We assume that each edge e represents a communication link with unit

capacity between two corresponding nodes in the sense that it can carry, free

of error and with zero delay, one vector x(e) from Fqn per channel use. Such a

network is called a delay-free network. This way, links with integer capacity can

be modeled with parallel edges. Links with fractional capacity can be modeled

with an arbitrary degree of accuracy by a proper choice of n and the number

of channel uses.

2.4 Linear Network Coding

In a network coding scenario, each intermediate node collects the data from

its incoming edges and puts a function of that data into each of its outgoing

edges. In other words, for an edge e ∈ O(v),

x(e) = fe(x(e1), x(e2), . . . , x(e|I(v)|)), (2.3)

12



Figure 2.3: The butterfly network with local encoding coefficients.

where, ei is an incoming edge to v and x(ei) is an element of Fqn . In the case of

linear network coding, for each outgoing link, an intermediate node generates a

linear combination of messages received on its incoming links, i.e., for an edge

e ∈ O(v),

x(e) =
∑

e′∈I(v)

αe′,ex(e
′), (2.4)

where, αe′,e are some elements from Fq. In a similar fashion, the source s

computes a linear combination of the messages in M for each of its outgoing

links, that is, for every e ∈ O(s),

x(e) =

|M |
∑

i=1

βi,emi. (2.5)

Figure 2.3 shows the butterfly network with local encoding coefficients at

each node. For simplicity, coefficient subscripts are changed to numbers.

A special case of linear network coding is routing in which each edge carries

only a single message from M .

13



2.5 Max-flow Min-cut Condition

In a directed graph, the max-flow min-cut theorem states that the maximum

amount of flow from a source s to a sink t is mincut(s, t). In a communication

network, the admissible rate (information flow) between a source s and a sink t

is upper bounded by mincut(s, t). In other words, the demands set must satisfy

the max-flow min-cut bound.

The demands set satisfy max-flow min-cut bound if the union of demands

sets for each subset of sinks has cardinality less than or equal to the minimum

cut between the source and that subset of sinks,

∀T ′ ⊆ T
⋃

t∈T ′

|D(t)| ≤ mincut(s, T ′). (2.6)

According to Menger’s Theorem [17], mincut(s, t) is the maximum number

of pairwise edge-disjoint paths from s to t.

Example 3. Consider the butterfly network of Example 1. In this network,

the minimum cut between the source and each sink is equal to 2. Moreover, the

minimum cut between the source and the set of sinks is also equal to 2. This

means that D(t1) = D(t2) = D and |D| ≤ 2. In other words, the maximum

number of messages that can be transmitted from the source to any subset of

sinks is bounded by 2.

2.6 Network Equation

If we neglect the effect of delay between the source and the sinks, each sink

receives a set of linear combinations of source messages from its incoming links.

We show the relation between the source messages and the received vectors for

sink t ∈ T with a system of linear equations as follows,

Yt = Gt ×Xs (2.7)

14



In this equation, Yt is the received vectors by sink t, Gt is the global transfer

matrix between the source and the sink t, and Xs = (P1, P2, . . . , P|O(s)|)
τ is the

vector consisting of every output message x(e), e ∈ O(s).

A standard state-space model for linear network coded networks is given in

[18] as,

X = AX +BXs

XI(t) = CtX
(2.8)

where, X = (x(e1), x(e2), . . . , x(e|E|)
τ is the network state, A is a matrix whose

(i, j)th component equals to the transmittance coefficient from ei to ej (i.e.

αei,ej), B is the |E| × |O(s)| matrix of coefficients from each input packet to

each edge e ∈ E, and Ct is an |I(t)| × |E| matrix projecting X onto observed

packets at sink t. With this state-space model we can obtain Gt, the global

transfer matrix at source t, as,

Gt = Ct(I − A)−1B. (2.9)

It is easy to show that A is nilpotent i.e. for a sufficiently large number L,

AL = 0. Thus, we can obtain,

(I − A)−1 = I + A+ A2 + · · ·+ AL−1 (2.10)

To better illustrate this relation between the source and the sinks, we pro-

vide the following example from [18].

Example 4. Consider the line graph depicted in Figure 2.4. This line graph

is associated with the butterfly network of Figure 2.3. The source transmits

two messages m1 and m2. By regarding the line graph as a signal flow graph

with no feedback loop and m1 and m2 as inputs, we can find the global transfer
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Figure 2.4: The line graph associated with the butterfly network of Fig. 2.3

matrix for each sink using the Mason’s formula [19],

Gt1 =

⎡

⎣

β11α1 β12α1

β11α2α5α7 + β21α3α6α7 β12α2α5α7 + β22α3α6α7

⎤

⎦ (2.11)

Gt2 =

⎡

⎣

β11α2α5α8 + β21α3α6α8 β12α2α5α8 + β22α3α6α8

β21α4 β22α4

⎤

⎦ (2.12)

2.7 Network Problems

A network problem on N (G,S, T ) is denoted by (N ,D) where,

D = (D(t1), D(t2), . . . , D(t|T |)), (2.13)

and D(ti) is the set of demands associated with sink ti.

The network problem (N ,D), is the problem of finding a network coding

solution in which each sink t can receive messages in D(t) with a decoding

scheme. A special case of this problem is when for each t ∈ T , D(t) = M .

Such a problem is called a multicast problem. A linear network coding solution

for (N ,D) exists, if there are a set of coefficients β and α such that each sink
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t can decode messages in D(t) from its incoming packets. A more detailed

discussion on the multicast problem and its linear network coding solution is

given in Section 2.8

2.8 Capacity and Code Construction

2.8.1 Multicast Capacity

For a multicast problem defined on a network N (G,S, T ), the multicast rate

R(S, T ) is achievable if,

R(S, T ) < min
t∈T

mincut(S, t). (2.14)

This upper bound is referred to as multicast capacity of N and is achievable via

network coding [5]. Moreover, Li et al. have shown that the multicast capacity

is achievable via linear network coding, provided that the packet alphabet size

is a sufficiently large finite field [20].

2.8.2 Random Linear Network Codes for Multicasting

Finding a linear network coding solution for a multicast problem has been the

subject of various studies [21, 22, 23]. Notably, Ho et al. [24] have shown

that using a sufficiently large alphabet size, if we simply choose the set of

coefficients in (2.4) and (2.5) at random, sinks can decode the received packets

with high probability. This method, which is called random linear network

coding (RLNC), has many advantages including the ability to operate in a

decentralized manner in which the intermediate nodes can construct their local

encoding matrices without the need to communicate to each other, robustness

to the changes of the underlying network structure (for example, the highly

dynamic wireless networks). However, it also brings about an important issue

that is discussed in Section 2.9
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2.9 Non-coherent Transmission

A very important issue that arises by using random linear network coding is the

decoding procedure. Note that in this method, neither source nor sinks have

prior knowledge of the local encoding coefficients and even in some cases (e.g.

dynamic networks), the underlying network structure. Two different solutions

for this problem have been proposed. We describe each in turns.

2.9.1 Transmission with Headers

In this approach, the source transmits its data stream in a series of generations.

Each generation is a cycle in which a number of packets are transmitted. During

a generation, the source maps a sequence of data into |O(s)| n-dimensional row

vectors over Fq and puts them on its outgoing links. For simplicity let us

assume |O(s)| = r. Therefore Xs in Equation 2.7 becomes,

Xs =

⎡

⎢

⎢

⎢

⎣

P1

...

Pr

⎤

⎥

⎥

⎥

⎦

, (2.15)

where, Pi ∈ Fqn is an n-dimentional vector over Fq that is transmitted on

ei ∈ O(s).

With random linear network coding performed in each intermediate node,

each sink t collects |I(t)| randomly combined n-dimensional row vectors from

its incoming links and forms them into the matrix Yt,

Yt = GtXs, (2.16)

where, Gt is the |I(t)| × r global transfer matrix for t.

Assuming that t knows Gt and Gt is left invertible, it can reconstruct the

injected source vectors (and subsequently the original data) by multiplying G−1
t
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with the received matrix Y|I(t)|×n conditioned on noise matrix Zt being zero.

A simple method for finding Gt is to set the first r by r part of Xs to the

identity matrix and use the remainder of Xs as the means of communication.

In other words, we set

Pi = (ui, P̂i), (2.17)

where, the header ui is the ith unit vector and P̂i is the payload. By replacing

Xs in (2.7) we have,

Yt = Gt

[

Ir×r Xr×(n−r)

]

(2.18)

= [Gt GtX] . (2.19)

Sink t can use the left part of Yt to decode the right part if and only if Gt

has rank r. In this method, by each transmission, the source s can transmit

log2 q
r(n−r) bits of information to sink t.

2.9.2 Transmission with Subspace

An interesting approach for transmission of data in RLNC is that instead of

placing information on the elements of Xs, we can map each set of possible

messages to a vector space spanned by the rows of Xs. Provided that Gt is

full rank, row space of Yt and Xt are the same. Even if Gt is not full rank, we

can design a codebook of row spaces such that this kind of erasure would be

potentially correctable.

Motivated by the non-coherent transmission in C-linear multiple antenna

channels [25], Koetter and Kschischang [15] proposed this method. One of the

advantages of this method is the ability of designing error correction codes for

network coded information without the need of an outer layer encoder/decoder.

In addition, the authors showed that with this approach, the source can trans-

mit more bits of information compared to the conventional transmission with

19



header method.

Let W be an n-dimenstional vector space over Fq. The row space of an r×n

matrix whose elements are from Fq is an r-dimensional subspace of W . The set

of all subspaces of W is denoted by P(W ) The random linear network coding

channel with network equation (2.7) can be regarded as an operator channel

defined as follows.

Definition 2. An operator channel C on vector space W is a channel whose

input and output alphabet is P(W ).

In this approach, the source maps an input sequence of information bits to

a distinct β ∈ P(W ). Then, the source injects packets to the network in a way

that β is spanned by the row space of the corresponding Xs. Since only linear

combination of packets is performed at each intermediate node, regardless of

the local encoding coefficients, x(e) on each edge e ∈ E is a vector in β.

With a suitable metric defined on P(W ), each sink can decode β with

a minimum distance decoding scheme. Also, the process of coding for the

operator channel turns into finding a set of subspaces as a codebook that has

the desired properties. Lemma 1 in [15] suggests a metric on P(W ) as follows:

Lemma 1. The function

d(A,B) := dim(A+B)− dim(A ∩ B)

is a metric for the space P(W ).

Proof. The full proof is given in [15].

The number of distinct r-dimensional subspaces in an n-dimensional vector

space ove Fq is given by the q-ary Gaussian coefficient [ nr ]q defined as,

⎡

⎣

n

r

⎤

⎦

q

:=
(qn − 1)(qn−1 − 1) . . . (qn−r+1 − 1)

(qr − 1)(qr−1 − 1) . . . (q − 1)
=

r−1
∏

i=0

qn−i − 1

qr−i − 1
. (2.20)
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Lemma 4 in [15] gives an upper and lower bound on the Gaussian coefficient,

Lemma 2. The Gaussian coefficient [ nr ]q satisfies

qr(n−r) <

⎡

⎣

n

r

⎤

⎦

q

< 4qr(n−r)

for 0 < r < n.

Proof. For full proof, see [15]

An interesting result of this lemma is that the number of information bits

that can be transmitted with this method is more than that of the transmission

with header. For more details on code construction methods and bounds, see

[26, 27, 28, 29].

2.10 Arithmetic Network Coding

While in the majority of studies, linear network coding operations are per-

formed over a finite field, there are cases where real and/or complex arithmetic

operations are considered. For example, in [13], authors introduced the concept

of arithmetic network coding (ANC) and have shown that it can be advanta-

geous in some particular cases such as wireless multicast and multi-resolution

multicast. In the latter scenario, receivers are assumed to have different down-

load capacities. Network coding is then performed in a way that receivers with

higher download capacities can receive data with a better quality of service

(QoS).

2.11 Summary

In this chapter, we first presented a mathematical model based on graph the-

ory for communication networks. Then, we provided a brief introduction to
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finite fields and discussed its usage to model data packets. We formally defined

network coding along with different kind of network problems and discussed

the theoretic bounds on achievable transmission rates in networks. We then re-

viewed a very useful code design for the multicast problem called RLNC. Next,

we discussed about the issue of non-coherent transmission due to the usage

of RLNC and presented two different solutions in the literature for this issue.

Finally, we explained another network coding method called ANC in which

information packets are represented by floating point real or complex numbers

instead of vectors from a finite field and the network arithmetic operations are

done accordingly.
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Chapter 3

On Network Coding for Funnel

Networks

3.1 Introduction

In this chapter, we study single-source networks in which summation of the

capacities of the incoming links to each intermediate node is not less than the

summation of the capacities of its outgoing links. We refer to these networks

as funnel networks. This configuration has been the subject of study in graph

theory as well [6, 30]. Beside the theoretical interest, this class of networks

is of practical importance because such a configuration may appear as a part

of larger communication networks. For example, local network between an

internet service provider (ISP) and its clients or a server and clients’ connection

in a local area network can be modeled using this configuration.

For any general non-multicast problem on a funnel network, we prove there

exists a routing solution if and only if demands satisfy the Max-flow Min-cut

bound. In other words, routing and by extension, linear network coding is suffi-

cient for this class of non-multicast problems. Note that, on a general network,

non-multicast problems may not have a linear network coding solution[31, 32].

Linear network coding has many other advantages compared to routing [6].
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For example, by eavesdropping on a limited number of network coded links,

an adversary may not be able to recover the content of the source messages.

Thus, it might be of interest to design a network code for a given problem even

when routing achieves the same throughput. Unfortunately, as we show later,

conventional random linear network coding performs poorly in the considered

non-multicast problem. Therefore, we provide a new random design approach

for funnel networks.

3.2 Related Work

Although network coding can be potentially advantageous in many network

communication scenarios, there are known cases where, either network coding

brings no benefit over traditional routing or there is not any straightforward

method for finding a network code. Finding the limitations of network coding

is of practical interest and has been the subject of many studies in the liter-

ature. For example, Li et al. [33, 34, 35] show that in the case of networks

with undirected links, the benefit of network coding over routing in terms of

throughput is at most a constant factor 2 for multicast and 1 (no additional

throughput) in single unicast and broadcast.

Dougherty et al. [31, 32] have presented examples of network communica-

tion problems where linear network coding is insufficient to achieve the max-

imum transmission rate. In other words, they have shown that for a general

non-multicast problem, where the receivers have different sets of demands, lin-

ear network coding is insufficient to achieve the full capacity of the network.

Solving these problems often requires finding more complicated nonlinear net-

work codes.

More recently, authors in [9] have studied benefits of network coding over

routing in various scenarios. They have shown that for several networks, net-

work coding provides no additional gain in terms of throughput or energy sav-

24



ing. As for code construction for non-multicast problems, a quasi-linear network

coding method has been proposed in [36] in which, an approximate solution is

found with arithmetic network coding [13]. With some careful restrictions over

possible source messages and a fixed point representation, receivers can recon-

struct their demanded messages. However, the achievable rates and the exact

method for finding optimum codes are not discussed.

3.3 Routing vs Network Coding in Funnel Net-

works

In this section we prove that for funnel networks, routing achieves the Max-flow

Min-cut bound of any non-multicast problem. In other words, network coding

brings no additive value in terms of throughput in this class of networks.

Let us first formally define a funnel network. A funnel network is a network

in which the in-degree of each node except the source is greater than or equal to

its out-degree, i.e., for each v ∈ V − S, |I(v)| ≥ |O(v)|. Theorem 1 states that

any feasible non-multicast problem on funnel networks has a routing solution.

Theorem 1. Consider an acyclic (but not necessarily connected) delay-free

network N (G(V,E), S, T ) with S = {s} such that ∀v ∈ V −S, |I(v)| ≥ |O(v)|.

This network has a routing solution if and only if the Max-flow Min-cut bound

is satisfied between the source s and each t ∈ T . Moreover, the minimum cut

between s and each t ∈ T is equal to |I(t)|.

Proof. To prove this theorem we show that when the in-degree is greater than or

equal to the out-degree, the Max-flow Min-cut bound simplifies to the following:

• Minimum cut between the source s and each arbitrary set of sinks, Ti ⊆ T ,

is equal to
∑

t∈Ti
|I(t)|.

To do so, using induction on number of sinks |T | , we prove that there are

|I(t)| edge-disjoint paths from s to any sink t ∈ T . Moreover, these paths
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can be chosen in a way that any two paths ending in two different sinks are

also edge-disjoint. Note that, this simultaneously proves the aforementioned

simplification of Max-flow Min-cut bound and that there is a routing solution

if the Max-flow Min-cut bound is satisfied. Converse statement comes from the

Max-flow Min-cut theorem [37, 38]. For the base of the induction, we assume

|T | = 1. Then we have the following lemma:

Lemma 3. In every acyclic (but not necessarily connected) delay-free network

N (G(V,E), S, T ) with a single source s and a single sink t in which ∀v ∈ V −S,

|I(v)| ≥ |O(v)|, minimum cut between s and t is |I(t)|.

Proof. We seek to prove this lemma by induction on |I(t)|. If |I(t)| = 1 we

should find one path from s to t. To do this, we start by picking the only

incoming edge to t, say ed = (vd−1, t). Then, we pick another edge from set of

incoming edges to vd−1 (i.e., I(vd−1)), say ed−1 = (vd−2, vd−1). This is possible

because |I(vd−1)| ≥ |O(vd−1)|. Then we repeat this process until we reach a

point, say after d iterations, that we cannot pick any edge. This only happens

if |I(v0)| < |O(v0)| which only happens if v0 = s.

For the induction step, assume that the statement of lemma is true for any

network with |I(t)| = k. We show that this is also true for any network with

|I(t)| = k+1. For this purpose, we choose one of the k+1 incoming edges of t.

Similar to the above argument, we pick edges until we find a path from source

to the sink. Then we remove all the edges of this path from the graph. By

this removal, it is straightforward to show that the resulting graph still satisfies

|I(v)| ≥ |O(v)| for each v ∈ V − S. Note that in this graph |I(t)| = k. Thus,

we can find k other edge-disjoint paths in the graph.

Lemma 3 provides the base of our induction. For induction step, we assume

that for any network with |T | = k, minimum cut between the source s and

each arbitrary set of sinks, Ti ⊆ T , is equal to
∑

t∈Ti
|I(t)|. Consider a network

N (G(V,E), {s}, T ) with T = {t1, t2, . . . , tk+1}. We keep one of the sinks, say
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tk+1, and remove the rest of the sinks along with their incoming edges. The

resulting network is N ′(G′(V ′, E ′), {s}, T ′) where, T ′ = {tk+1} and

V ′ = V − (T − {tk+1}),

E ′ = E −
k
⋃

i=1

I(ti).
(3.1)

This network satisfies the assumptions of Lemma 3. Thus, we can find |I(tk+1)|

edge-disjoint paths from s to tk+1. Define the set of these paths by Pk+1 and all

edges in these paths by Ek+1. Remove tk+1 along with all edges in Ek+1 from

G(V,E) in order to get N ′′(G′′(V ′′, E ′′), {s}, T ′′) such that T ′′ = T − {tk+1}

and,

V ′′ = V − {tk+1},

E ′′ = E − Ek+1.
(3.2)

It is straightforward to show that G′′(V ′′, E ′′) still satisfies |I(v)| ≥ |O(v)| for

each v ∈ V ′′ − {s}. Note that G′′ has k sinks. By induction assumption, for

each i ≤ k, there is a set of edge-disjoint paths Pi from s to ti such that for any

i, j ≤ k, i ̸= j paths in Pi and Pj are also edge-disjoint. Note that, any pair of

paths from P1, P2, . . . , Pk+1 are edge-disjoint, which proves the theorem.

Note that the set of demands in Theorem 1 should not be necessarily dis-

joint.

3.4 Linear Network Coding for Funnel Net-

works

Beside increasing throughput in a communication network, (linear) network

coding may offer other advantages. For instance, consider a case that an ad-

versary has access to a limited number of links in a network and can eavesdrop
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Figure 3.1: (a) A simple single-source non-multicast network with two sinks.
(b) The inverse network.

the packets transmitting over those links. From a security standpoint, even

without using any additional encryption, he will not be able to extract content

of the original source messages unless he can collect a solvable system of equa-

tions. In such cases, a network coding solution is more preferable than routing.

Another advantage of network coding over routing is adaptability to network

changes. Therefore, it is suitable for dynamic structures. Here, we propose

a technique based on random linear network coding to design linear network

codes for networks considered in Section 3.3.

It is worth noting that the random linear approach of [24] is only suitable for

multicast problems and may not work here. To better understand this point,

consider the following example.

Example 5. Consider the network of Fig. 3.1a. There are four messages

M = {m1,m2,m3,m4} at the source s. Each message is a vector in Fql . For

the sinks {t1, t2}, we have D(t1) = {m1,m2} and D(t2) = {m3,m4}. Fig.
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3.1a also shows a routing solution for this particular problem. However, it is

straightforward to show that if all αe′,e are chosen uniformly at random from

Fq, the probability that ti cannot decode D(ti) is greater than q−1
q
, for both

i = 1, 2.

This means a random approach to linear network coding is not suitable

here.

Instead of random selection, one can design a network coding solution which

works for the given network. However, specific code designs are not flexible and

cannot adjust to dynamic networks. Hence, here, we present a probabilistic

method to find coefficients of a linear network code for funnel networks.

For a network N (G(V,E), S, T ) with |IN (v)| ≥ |ON (v)| for all v ∈ V − S,

we proceed as follows. We first define the inverse network N ′(G′(V,E ′), S ′, T ′)

such that S ′ = T , T ′ = S and E ′ = {(v′, v, i) : (v, v′, i) ∈ E}.

Note that this is a multi-source single-sink network which is a particular

case of multi-source multicast network problems. Each sink ti in N is one

source in N ′. The set of messages at ti as a source in N ′ is M(ti) = D(ti). The

set of demands at the sink s is D(s) = M =
⋃|S′|

i=1 M(ti).

As shown in [39, Ch. 2], a random linear network code in which every β′
i,e

and α′
e,e′ is chosen uniformly at random from Fq is a solution with probability

arbitrary close to one if q is sufficiently large. Thus, if we let any node v ∈ V −S ′

inN ′ to put a random linear combination of its incoming packets on its outgoing

edges, with high probability the sink s has a solvable system of linear equations

and can find all messages in D(s).

By solving this system of equations, s can findM = {m1,m2, . . . ,mr}. Now,

coding coefficients for N are chosen as follows. The source s in N chooses the

coefficients such that the output messages on ON (s) are exactly equal to the

incoming packets to the sink s in N ′. This can be done by choosing the global

transfer matrix obtained from N ′ as coding coefficients for the source s in N .

At each node v ∈ V in N , since |IN (v)| ≥ |ON (v)|, if the packets on the
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incoming edges are exactly those output packets that were transmitted by v in

N ′, we can reproduce packets on the incoming edges of v in N ′ on the outgoing

links of v in N with high probability. This can be done by left inversion of

the local transfer matrix at v in N ′1. Note that, if |IN (v)| < |ON (v)|, we may

not be able to do that. Considering a topological order on the vertices V in

N , we can each time pick a vertex v ∈ V that all of its incoming packets on

IN (v) are exactly equal to the corresponding packets in N ′ and set the coding

coefficients accordingly.

This way, each sink t ∈ T in N would be able to reproduce D(t). To

better understand this approach, we demonstrate our approach in the following

example.

Example 6. The inverse of the network shown in Fig. 3.1a, is illustrated in

Fig. 3.1b. The coding coefficients in the inverse network are chosen from F3 as

follows:

L′
t1
=

⎡

⎣

β′
1,e7

β′
2,e7

β′
1,e9

β′
2,e9

⎤

⎦=

⎡

⎣

1 1

1 2

⎤

⎦

L′
t2
=

⎡

⎣

β′
3,e8

β′
4,e8

β′
3,e10

β′
4,e10

⎤

⎦=

⎡

⎣

1 1

2 1

⎤

⎦

L′
v3
=

⎡

⎣

α′
e9,e5

α′
e10,e5

α′
e9,e6

α′
e10,e6

⎤

⎦=

⎡

⎣

0 1

1 2

⎤

⎦

L′
v2
=

⎡

⎣

α′
e6,e3

α′
e8,e3

α′
e6,e4

α′
e8,e4

⎤

⎦=

⎡

⎣

1 0

0 1

⎤

⎦

L′
v1
=

⎡

⎣

α′
e5,e1

α′
e7,e1

α′
e5,e2

α′
e7,e2

⎤

⎦=

⎡

⎣

0 1

1 0

⎤

⎦

1Note that the left inversion exists with high probability if q is chosen to be sufficiently
large. Nevertheless, with careful investigation of the coding coefficients in the first step, we
can make sure that the left inversion is possible.

30



and node s receives the following linear combinations of the messages in the

inverse network
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0

0 0 2 1

1 2 1 2

0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m1

m2

m3

m4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.3)

We can obtain the coding coefficients in the original network by using global

transfer matrix given in (3.3) and inverting2 Lv1 , Lv2 , Lv3 . Thus, we set

Ls =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β1,e1 β2,e1 β3,e1 β4,e1

β1,e2 β2,e2 β3,e2 β4,e2

β1,e3 β2,e3 β3,e3 β4,e3

β1,e4 β2,e4 β3,e4 β4,e4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0

0 0 2 1

1 2 1 2

0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.4)

Lv1 = (L′
v1
)−1, Lv2 = (L′

v2
)−1, Lv3 = (L′

v3
)−1. Thus, the global transfer matrices

at sinks t1 and t2 are Gt1 = L′
t1
and Gt2 = L′

t2
respectively.

3.5 Summary

In this chapter, we showed that for any non-multicast problem on single-source

networks in which summation of the capacities of the incoming links to each

intermediate node is greater than or equal to the summation of the capacities

of its outgoing links, there exists a routing solution that achieves the Max-flow

Min-cut bound. This mean linear network coding solutions should also exist

and since network coding offers other benefits, finding a linear network coding

solution may be of interest for these problems. We discussed that, with high

probability, conventional random linear network coding fails for the considered

non-multicast problems. We then proposed a random linear network coding

2In general, since in-degree can be greater than the out-degree for intermediate node, the
left inversion should be performed.
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approach that, with high probability, achieves the Max-flow Min-cut bound.
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Chapter 4

Decoding for Arithmetic

Subspace Network Coding

4.1 Introduction

In this chapter, we develop a subspace arithmetic network coding (ANC) frame-

work based on the subspace coding of [15, 40] for the arithmetic network coding

environment of [13]. To achieve this, we first model the network input-output

relation. Through studying the properties of the network noise, we develop

the maximum likelihood decoding algorithm for our framework. We show that

our approach can efficiently handle both the quantization noise and additive

noise in physical layer. Our simulations show that our approach significantly

outperforms ANC in terms of bit error rate.

By combining ANC and subspace network coding we get two main benefits.

First, subspace decoding allows intermediate nodes to estimate the transmitted

subspace. This way, noise is reduced, allowing for ANC to be applied to larger

networks. On the other hand ANC allows for multi-resolution multicast in

subspace decoding.
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Two major problems in random ANC are: (i) the condition number1 of the

network grows quickly with the network size, hence, noise (e.g. quantization

noise due to finite representation of real numbers) can significantly reduce the

performance in larger networks; (ii) similar to other random network coding

solutions, decoding cannot start unless enough number of packets are received,

i.e., rank deficient decoding [42] is not possible. Since subspace network coding

is an efficient solution for both error correction and rank deficiency [43], we may

handle these problems by applying subspace coding to ANC. However, existing

subspace network coding solutions are based on finite field operations. That is,

they cannot be used with ANC. Some of the difficulties of applying subspace

coding to ANC are: (i) with real arithmetic there are infinite subspaces to chose

from; (ii) the effect of noise is on all links, where the noise strength gradually

increases every time packets are coded at intermediate nodes; and (iii) the

existing decoding algorithms for subspace decoding are not directly applicable

to arithmetic operations.

4.2 Related Work

The idea of using real fields instead of finite fields for linear network coding

was first introduced in [14] and further developed in [13] and it has been the

subject of many studies since then. In [44], authors presented a compression

scheme called quantized network coding for sparse sources by combining real

network coding and concepts of compressed sensing.

Due to the similarities between the end-to-end channel model of ANC and

non-coherent MIMO systems, similar studies have been done in the field of

non-coherent MIMO channels (for example, [25, 45, 46, 47, 48]). However,

the nature of our communication channel is very different. Hence, we cannot

1Condition number of a system of linear equations is a measure to describe how sensitive
the solution is to changes in the inputs[41].
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directly apply their results to our problem. Also, in communication networks,

since we have control over some properties of the network (e.g. local encoding

vectors), we have more freedom in designing encoding/decoding procedures

which in turn can be used in our advantage.

4.3 System Model

In this section we present a system model slightly different from the model

described in Chapter 2. The graph model is still applicable in this context.

However, in certain scenarios including ANC, we must consider some kind of

error in transmission. For example, in an ANC scenario, each link carries a

vector of floating point real numbers instead of elements in Fq. Intermediate

nodes collect these vectors from their incoming links and perform finite preci-

sion linear arithmetic operations on them. We can regard this finite precision

operations as some kind of quantization before transmission over a communica-

tion link. This rounding operation creates a quantization error in each link that

propagates and accumulates through the network. Thus we must improve our

model by considering this quantization error (and any other types of error for

that matter). Addressing errors in a network coding scenario is of utmost im-

portance because, even a single erroneous packet may propagate through the

network and cause more errors in other messages due to message combining

operations of network coding.

4.3.1 Error Model

We model error by adding an imaginary source s′ to the network. For each link

e ∈ E, s′ is connected to tail(e). This way, we can rewrite 2.7 as,

Yt = Gt ×Xs + Zt (4.1)
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where, Zt is the matrix of noise packets received at sink t. Based on the above

noise model Zt can be written as,

Zt = Tt × E , (4.2)

where, E is the matrix modeling error (noise) injected by the imaginary source

s′ to each e ∈ E and Tt is the transfer matrix between s′ and t.

As mentioned earlier, we consider single source networks in this thesis, i.e.,

S = {s}. Also, without the loss of generality, we assume that the network

has only one sink, namely t (the results provided in this chapter can be easily

generalized to networks with multiple sinks). Hence, we can rewrite (2.7) as,

Ym×n = Gm×rXr×n + Zm×n, (4.3)

Z = Tm×|E|E|E|×n, (4.4)

where, m is the number of incoming edges to sink t, r is the number of outgoing

edges from source s, n is the length of network packets, G is the global transfer

matrix from source s to the sink t, T is the transfer matrix from the imaginary

error source s′ to t, X is the input matrix generated by the source s, Y is

the received matrix by t and E is the noise matrix, modeling the overall effect

of different kinds of noise. Be it quantization noise or physical layer additive

noise, elements of E are i.i.d zero mean random variables.

Throughout this chapter, we assume that local encoding vectors at each

intermediate node are chosen randomly. Hence, the channel is non-coherent,

i.e., neither source nor the sink has prior information aboutG and T . Therefore,

their elements are random variables.

Distribution of the elements of G and T depends on the design procedure

of local encoding vectors at each intermediate node and characteristics of the

network. Assuming that the network is dynamic and sufficiently large, we can

reasonably assume elements of T are i.i.d zero mean random variables.
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In Section 4.4, we show that the elements of Z are uncorrelated. In addition,

since each element of Z is a linear combination of elements of E , if the network

is sufficiently large, elements of Z can be approximated by i.i.d zero mean

Gaussian random variables.

4.3.2 Real Operator Channel

Let P(n, q) denote the set of all q-dimensional subspaces over the vector space

R
n. Similar to the finite field operator channel discussed in Chapter 2, we

define a real operator channel for the purpose of arithmetic network coding as

follows:

Definition 3. A real operator channel C is a channel with a finite set Λ ⊂

P(n, q) as input alphabet and P(n, q′) as output alphabet where, q′ ≤ q

In a sense, a real operator channel acts like a discrete-input continuous-

output channel. Every element β ∈ P(n, q) can be described using a q by n

matrix B which we call the base matrix where its rows are a basis of β. Asso-

ciated with each subspace β is another subspace β⊥ that contains all vectors

in R
n that are orthogonal to every vector in β. In other words, β⊥ is the null

space of β. We define Nβ as an n by n − q matrix where its columns are an

orthonormal basis for β⊥.

4.4 Proposed Method

As discussed earlier in Chapter 2, a method for transmitting information in

a non-coherent random linear network coding scenario is transmission with

headers. In this method, the first r × r part of the input matrix in (4.3) is

set to be the identity matrix and information is then put on the remaining

(n−r) ·r elements of the matrix. After transmission, each sink can retrieve the

global encoding matrix from the output and solve a system of linear equations
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(perform a matrix inversion) in order to decode the original messages. However,

as we demonstrate through simulation in Section 4.5, condition number of this

system of linear equations grows with the size of the network [13] which means

small noises can significantly deteriorate the performance. We propose two

alternative coding method in this section.

4.4.1 Scale and Forward Subspace Coding

If we consider the row space of X and Y in (4.3) as the means of communication

between the source and the sink in the network, we can model (4.3) as a real

operator channel C with input alphabet Λ ⊂ P(n, q) and output alphabet

P(n, k) where, q is equal to the rank of network input X and k is equal to the

rank of the global encoding matrix G. Note that if k is less than q, erasure

has happened and if k is equal to q and m is greater than q, we can consider

additional rows as diversity and use them to reduce the effect of noise. Without

loss of generality, unless otherwise mentioned, we assume q is equal to the

number of outgoing edges from the source s i.e. q = r.

A codebook C for C is defined as a finite set of base matrices. There is a

one to one correspondence between elements of C and Λ where, each element

B ∈ C is a base matrix for a distinct input symbol β ∈ Λ. Although the process

of codebook design is an interesting and important topic of research, it is out

of the scope of this thesis. Instead, we put our main focus on the decoding.

Therefore, we assume n, r are predefined and C is given.

In a single channel use, the source encodes a sequence of information bits

into a distinct input symbol β ∈ Λ and sets its corresponding base matrix B

as the network input Xs. Each intermediate node v ∈ V − (S ∪ T ) simply

forwards a combination of messages from its incoming edges to each outgoing

edge according to

x(e′) = λe′

∑

e∈I(v)

αe′,ex(e), (4.5)
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where αe′,es are zero mean uniformly random coefficients and λe′ is a scaling

factor to insure the resulting numbers are in the range of quantization. Upon

receiving Y , the sink estimates the transmitted input symbol according to the

following decision rule

β̃ = argmax
β∈Λ

P (β|Y ) (4.6)

= argmax
β∈Λ

f(Y |β)P (β)

f(Y )
, (4.7)

where f(Y ) denotes the joint probability density function of the elements of Y .

If we assume that all elements of Λ are chosen with equal probability, we have

β̃ = argmax
β∈Λ

f(Y |β). (4.8)

On the other hand, by conditioning on β, noise can be regarded as a combina-

tion of parallel and perpendicular components to the transmitted subspace β.

Since the parallel component of the noise does not change the subspace of the

transmitted codeword, we may just consider the perpendicular component in

decoding. Using (4.3) and (4.4), we can define Z⊥β as follows

Z⊥β : = Y Nβ (4.9)

= GBNβ + ZNβ. (4.10)

Now we can rewrite (4.8) as follows

β̃ = argmax
β∈Λ

f(Z⊥β). (4.11)

Calculating the above expression depends on the distribution of Z. The fol-

lowing lemma states that elements of Z are uncorrelated.

Lemma 4. Let Z denote the product of two matrices Tm×n and En×n′ with

independent zero mean random elements. Then, the elements of Z are uncor-

39



related. In addition, if elements of T and E are i.i.d with variances σ2
T and σ2

E

respectively, then, elements of Z have equal variance defined as

σ2
Z =

n
∑

k=1

σ2
Tσ

2
E.

Proof. Let T = [tij]m×n and E = [eij]n×n′ . We prove that Cov(zij, zi′j′) =

0 if (i, j) ̸= (i′, j′).

E[zij] = E

[

n
∑

k=1

tikekj

]

=
n
∑

k=1

E[tik]E[ekj] = 0.

Therefore

Cov(zij, zi′j′) = E[(zij − z̄ij)(zi′j′ − z̄i′j′)]

= E[zijzi′j′ ]

= E

[(

n
∑

k=1

tikekj

)(

n
∑

k=1

ti′kekj′

)]

=
n
∑

k=1

n
∑

k′=1

E[tikti′k′ ]E[ekjek′j′ ].

It is evident that the above expression has a nonzero value only if both i = i′

and j = j′. Also, if elements of T and E are i.i.d with variances σ2
T and σ2

E

respectively, then

σ2
Z = E[(zij − z̄ij)

2]

=
n
∑

k=1

n
∑

k′=1

E[tiktik′ ]E[ekjek′j]

=
n
∑

k=1

E[t2ik]E[e2kj] =
n
∑

k=1

σ2
Tσ

2
E.
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In addition, by assuming that the network is sufficiently large, since each

element of Z is a linear combination of noise in all of the links in the network,

and because elements of E satisfy Lyapunov condition, we expect each element

of Z to have a Gaussian distribution. Therefore, according to the above lemma,

we can reasonably assume that the elements of Z are i.i.d zero mean Gaussian

random variables. Thus, projecting Z into a subspace of Rn does not change

the distribution of the elements of Z. Therefore

β̃ = argmax
β∈Λ

m
∏

i=1

n−k
∏

j=1

f(Z⊥β(i, j)) (4.12)

= argmin
β∈Λ

m
∑

i=1

n−k
∑

j=1

Z⊥β(i, j)
2 (4.13)

= argmin
β∈Λ

∥Z⊥β∥F , (4.14)

where Z⊥β(i, j) denotes the element in the ith row and jth column of Z⊥β and

∥·∥F is the Frobenius norm of a matrix.

4.4.2 Project and Forward Subspace Coding

In order to reduce the effect of noise, we can let the intermediate nodes who

have enough received vectors to first estimate which subspace is transmitted

by the source. These nodes can then project their received vectors onto this

subspace to remove the noise of previous links. Hence, we propose the following

procedure for relaying information at the intermediate nodes. First, based on

the number of incoming edges, we partition the set of intermediate nodes into

two subsets V1 and V2 defined as

V1 = {v ∈ V − (S ∪ T )| |I(v)| ≥ τ} (4.15)
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and

V2 = V − V1 − (S ∪ T ).

The nodes in V2 cannot decode the transmitted subspace since they do not

receive enough incoming packets. Hence, each node v ∈ V2 performs only scale

and forward according to (4.5). Nodes in V1 on the other hand, can estimate

the network input β according to (4.14). These nodes then can construct their

output vectors as follows

x(e′) = λe′

∑

e∈I(v)

αe′,e projβ̃ (x(e)) , (4.16)

where λe′ is the scaling factor and projβ̃(·) denotes the projection of a vector

in the estimated subspace β̃.

4.5 Simulation Results

4.5.1 Example

In order to examine the effectiveness of our method, we present a simple code-

book design method for the line and stacked butterfly networks [13] depicted

in Fig. 4.1. In the stacked butterfly network, q = k = 2. For the case of line

network, m = k and we set q = 2. We use additional rows to examine the effect

of diversity in our proposed decoding method.

We design our codebook for the simple case of n = 2. Thus, the input

alphabet Λ is a set of 2-dimensional planes in the 3-dimensional space. The
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Figure 4.1: (a) Line network with d stages. (b) Stacked butterfly network with
d stages.

codebook is a set of 2l base matrices constructed according to

C = {Vt | t = 1, . . . 2l, },

Vt =

⎡

⎣

0 0 1

−sin( t∗π
2l
) cos( t∗π

2l
) 0

⎤

⎦

(4.17)

Note that each element of the codebook is a rotation of the yz-plane around

the z-axis. This procedure is similar to the PSK modulation. Encoding is done

in a way that the l-bits sequences assigned to adjacent symbols are different in

only one bit. In the next section, for these settings, we simulate the bit error

rate.
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Figure 4.2: BER versus number of quantization bits for different methods in
stacked butterfly network for l = 2.

4.5.2 Results

Simulations are done using MATLAB for the line and stacked butterfly network

using codebook construction of Section 4.5.1. Local encoding vectors for each

node are chosen uniformly random from U(−1, 1). Quantization is done on

every edge after construction of output vector in its corresponding node. In

the stacked butterfly network for the case of project and forward we set τ in

(4.15) equal to two.

Fig. 4.2 shows the bit error rate (BER) versus the number of bits represent-

ing each real number (b) in the stacked butterfly network with different number

of stages d = 5, 10, 20 and for a codebook of size 4, i.e., l = 2. Evidently, our

method significantly improves the BER compared to ANC.

Using the line network, we simulate multi-resolution multicast aspect of our

method in the presence of both quantization noise and additive white Gaussian
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Figure 4.3: Effect of different download capacities in terms of BER in line
network for l = 2.

noise. For this purpose, we set d = 20 and σ2 = 1/b (so that we can provide a

2D plot), where σ2 is the variance of additive white Gaussian noise. BER for

sinks with different download capacities (differentm) is presented in Fig. 4.3 for

l = 2 when intermediate nodes project and forward. As illustrated our scheme

also improves the BER compared to ANC in the presence of quantization and

additive white Gaussian noise.

Finally, we examine our method for different number of subspaces (2l).

Fig 4.4 shows the bit error rate for d = 20 and different values of l in the

stacked butterfly network.

4.6 Summary

While arithmetic network coding can be a useful technique for some particular

network problems such as multi-resolution multicast, a major problem with
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Figure 4.4: Different number of subspaces 4, 8 (l = 2, 3) in stacked butterfly
network with d = 20.

ANC is noise accumulation, which can result in a lot of errors in large networks.

Subspace coding is shown to have error correction abilities. In this chapter, we

first discussed why subspace coding for ANC is a challenging task. Through

modeling the network noise and studying its properties, we were able to suggest

a framework for subspace coded ANC and its decoding. Our methods allows

intermediate nodes to project and forward, resolving the noise accumulation

problem. We simulated an example of subspace coded ANC and observed that

our solution outperforms conventional ANC significantly.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this thesis, we studied different problems associated with network coding

and presented our solutions.

In Chapter 3 a class of networks that we call funnel networks has been

studied. In this particular class of networks the incoming capacity of each

intermediate node is not less than its outgoing capacity. We proved that for

any general single-source non-multicast problem on funnel networks, routing

achieves the max-flow min-cut bound. In other words, network coding bring no

additional value in terms of throughput. The desirability of coding in funnel

networks may be justified by other benefits that network coding offers. We

also studied the problem of finding linear network codes for funnel networks.

Since in a general non-multicast problem conventional random linear network

coding fails with high probability, we proposed a method based on RLNC for

finding coding coefficients in each node. Our results can be very useful in

practical scenarios where designing network codes in a deterministic fashion is

not feasible e.g. dynamic networks.

In Chapter 4 the problem of error accumulation and large condition num-

bers in an arithmetic network coding scenario is considered. Because of its
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powerful ability in error correction, we suggested a subspace coding framework

to overcome this issue. We proposed our rank deficient decoding method for

receiver(s) and a relaying approach similar to amplify and forward that we

call scale and forward. We took this idea a step further and proposed another

approach called project and forward in which, similar to decode and forward

relaying, intermediate nodes help with error correction. Also, because in our

decoding method no matrix inversion is needed, large condition numbers do

not jeopardize the quality of our communication.

5.2 Future Work

5.2.1 Funnel Networks

As mentioned earlier, finding the limits of network coding is of interest. This

can help us identify coding advantage and cost of using network coding in

different scenarios which in turn helps us better utilize our resources and find

methods to make an acceptable trade-off between coding advantages and its

cost.

Examining our random linear network coding technique in different scenar-

ios would be another interesting direction for future research. We conjecture

that we can apply our technique to other types of network with some modifi-

cations. To this end, one may also look into the relationship between funnel

networks and other types of networks.

5.2.2 Arithmetic Subspace Coding

To further extend this research, we suggest finding efficient code design for our

subspace coding framework and decoding function. To this end, some results

in the field of non-coherent MIMO transmission may be interesting. Find-

ing similarities and differences between random linear ANC and non-coherent
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MIMO can be very helpful for this purpose. As an example, in MIMO systems,

characteristics of the channel is determined by many factors that cannot be

controlled. In contrast, some components of the network may be changed in

favor of better outcome such as the packet length and local encoding operations

at intermediate nodes.

Another direction would be examining different techniques for dimension

reduction at the receivers in order to combine information received from differ-

ent paths in the network (diversity). Utilizing additional received packets from

network is also interesting in conventional network coding methods since, in

practical networks, download capacities for each sink may be different. There-

fore, finding feasible methods may result in providing better quality of service.

In Chapter 4, we showed that for large dynamic networks, the noise received

at each sink can be reasonably modelled by i.i.d Gaussian random variables.

However, for other type of networks, this assumption may not be accurate.

Examining the accuracy of this approximation and finding better models for

other types of networks should be considered as well.
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[28] Michael Braun, Patric RJ Österg̊ard, and Alfred Wassermann. New lower

bounds for binary constant-dimension subspace codes. Experimental Math-

ematics, pages 1–5, 2016.

[29] Elisa Gorla and Alberto Ravagnani. Subspace codes from ferrers diagrams.

Journal of Algebra and Its Applications, page 1750131, 2014.

[30] Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and

increasing local edge-connectivity in mixed graphs. SIAM Journal on Dis-

crete Mathematics, 8(2):155–178, 1995.

[31] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in

network information flow. In Proc. of IEEE Int. Symp. on Inform. Theory

(ISIT), pages 264–267, Sep. 2005. doi: 10.1109/ISIT.2005.1523335.

[32] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding

in network information flow. IEEE Trans. Inf. Theory,, 51(8):2745–2759,

Aug. 2005. ISSN 0018-9448. doi: 10.1109/TIT.2005.851744.

53



[33] Zongpeng Li and Baochun Li. Network coding in undirected networks.

CISS, 2004.

[34] Zongpeng Li, Baochun Li, and Lap Chi Lau. On achieving maximum

multicast throughput in undirected networks. IEEE/ACM Transactions

on Networking (TON), 14(SI):2467–2485, 2006.

[35] Zongpeng Li, Baochun Li, and Lap Chi Lau. A constant bound on through-

put improvement of multicast network coding in undirected networks. In-

formation Theory, IEEE Transactions on, 55(3):1016–1026, 2009.

[36] M. Schwartz and M. Medard. Quasi-linear network coding. In Network

Coding (NetCod), 2014 International Symposium on, pages 1–6, June

2014. doi: 10.1109/NETCOD.2014.6892126.

[37] Dimitri P. Bertsekas, Cover Design, Ann Gallager, C Dimitri P. Bertsekas,

and Bertsekas Dimitri P. Network optimization: Continuous and discrete

models, athena scientific, 1998.

[38] P. Elias, A. Feinstein, and C.E. Shannon. A note on the maximum flow

through a network. IRE Trans. Inf. Theory, 2(4):117–119, Dec. 1956. ISSN

0096-1000. doi: 10.1109/TIT.1956.1056816.

[39] Tracey Ho and Desmond Lun. Network Coding: An Introduction. Cam-

bridge University Press, New York, NY, USA, 2008. ISBN 052187310X,

9780521873109.

[40] Danilo Silva, Frank R Kschischang, and Ralf Koetter. A rank-metric ap-

proach to error control in random network coding. Information Theory,

IEEE Transactions on, 54(9):3951–3967, 2008.

[41] Lloyd N Trefethen and David Bau III. Numerical Linear Algebra. SIAM,

1997.

54



[42] Zhiyuan Yan, Hongmei Xie, and Bruce W Suter. Rank deficient decod-

ing of linear network coding. In Acoustics, Speech and Signal Process-

ing (ICASSP), 2013 IEEE International Conference on, pages 5080–5084.

IEEE, 2013.

[43] D. Silva and F.R. Kschischang. Universal secure network coding via rank-

metric codes. Information Theory, IEEE Transactions on, 57(2):1124–

1135, Feb 2011. ISSN 0018-9448. doi: 10.1109/TIT.2010.2090212.

[44] Mahdy Nabaee and Fabrice Labeau. Quantized network coding for sparse

messages. In Statistical Signal Processing Workshop (SSP), 2012 IEEE,

pages 828–831. IEEE, 2012.

[45] Zoran Utkovski and Juergen Lindner. On the construction of non-coherent

space time codes from high-dimensional spherical codes. In Spread Spec-

trum Techniques and Applications, 2006 IEEE Ninth International Sym-

posium on, pages 327–331. IEEE, 2006.

[46] Oliver Henkel. Sphere-packing bounds in the grassmann and stiefel mani-

folds. IEEE Transactions on Information Theory, 51(10):3445–3456, 2005.

[47] Ramy H Gohary and Timothy N Davidson. Noncoherent mimo communi-

cation: Grassmannian constellations and efficient detection. IEEE Trans-

actions on Information Theory, 55(3):1176–1205, 2009.

[48] Ramy H Gohary and Halim Yanikomeroglu. Grassmannian signalling

achieves tight bounds on the ergodic high-snr capacity of the noncoher-

ent mimo full-duplex relay channel. IEEE Transactions on Information

Theory, 60(5):2480–2494, 2014.

55


	Motivation
	Network Coding Definition
	Benefits
	Throughput
	Robustness
	Complexity
	Security

	Structure of the Thesis

	Network Coding Preliminaries
	Graph Model of a Network
	Finite Fields
	Vector Representation of Packets
	Linear Network Coding
	Max-flow Min-cut Condition
	Network Equation
	Network Problems
	Capacity and Code Construction
	Multicast Capacity
	Random Linear Network Codes for Multicasting

	Non-coherent Transmission
	Transmission with Headers
	Transmission with Subspace

	Arithmetic Network Coding
	Summary

	On Network Coding for Funnel Networks
	Introduction
	Related Work
	Routing vs Network Coding in Funnel Networks
	Linear Network Coding for Funnel Networks
	Summary

	Decoding for Arithmetic Subspace Network Coding
	Introduction
	Related Work
	System Model
	Error Model
	Real Operator Channel

	Proposed Method
	Scale and Forward Subspace Coding
	Project and Forward Subspace Coding

	Simulation Results
	Example
	Results

	Summary

	Conclusion & Future Work
	Conclusion
	Future Work
	Funnel Networks
	Arithmetic Subspace Coding



