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ABSTRACT

Two methods involving curve fiiting techniques for locating transmissio: .. 1e faults
are studied and tested. The first method is based on the least error square approach, while

the second is based on the least absolute value approach.

Using the above methods, a simulation program is developed in order to determine
the fault location on a ransmission line. Two power system mcdels are used. The first
model is a single phase power system, while the second one is a three phase power sys-
tem model. Only the symmetrical three-phase fault is tested in the three-phase power sys-
tem model. The effect of the fault resistance as well as the shunt capacitance on the accu-
racy of both techniques is studied. Also the effect of using different orders of low-pass

filter is investigated. As well, a comparison between these two teckniques is conducted.
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CHAPTER 1

INTRODUCTION

Transmission lines are a critical part of a power system. They are exposed to
different environmental conditions and are spread over a large geographical area. As a
result, they experience more faults than other power system components. Hence a line
protection scheme is essential to any electric power network. The types of line faults are
mainly classified as short circuit and open circuit. Short circuits are mairly due to insula-
tion failures, h.man error, lightning and storm damage [1]. Open circuits may occur for a
variety of reasons, including broken conductors and malfunctions of circuit breakers. The
detection, location and removal of line faults in the shortest time p ~ssible is of the utmost

importance in the design of line protection.

The prime concern of every power utility from economical and safety considerations

is the fast and accurate fault location of short-circuited transmission lines.

In the past few years, new short-circuit fault location algorithms based on modern
techniques have been developed. These methods employing measured electrical quanti-

ties at one or more points on the transmission line can be divided into four categories.

The first method is based on the distributed parameter line model in which the fault
location is deduced by analyzing voltage and current travelling wave measurements.
Vitins [2] presented a correlation methcd for transmission line protection. He  ggested

that the transient phenomena initiated by the occurrence of a fault on a power transmis-



sion line can be described by the telegraph equation. It was shown that the fault distance
appears as a time delay between the instantaneous value of the forward travelling wave
and the backward travelling wave at the measurement site. Filtering is a necessary step
for this method. The presence of the fault resistance has been taken into account in the
development of the algorithm. However, a lossless transmission line has been assumed

and the computational effort to analyze is rather large the wave phenomenon.

Kohlas [3] used the telegraph equation to represent a line model (as Vitins did), how-
ever, he approached the problem differently. In his method, a voltage profile is used to
estimate the location of the fault. The measured data from one end of the transmission
line enables the instantaneous profile of the line voltage to b. obtained using the wave or
telegraph equation. A major drawback of this approach is that the effect of a non-zero
fault resistance is neglected. The disadvantage of the above two methods is that their
complexity and accuracy rely heavily on the extent of simplification of the overall system

configuration.

The - ond method is based on solving 1 non-linear equation using the Newton-
Raphson technique. The Newton-Raphon meikod is a w:ll known iterative method for
solving non-linear systems of equations and it has been successfully applied to many
power system problems [4]. Takagi, Yamakoshi, Baba, Uemura and Sakaguchi [5] pro-
posed a new type of fault location algorithm using the Fourier transformation method. In
this algorithm non-linear algebraic equations, which contain the unknown variable
corresponding to the fault distance, are formulated by applying the law of superposition

to the faulted transmission line. Fourier analysis is used to extract the fundamental

to



frequency components from: the measurements available at the sending end of the line.
The extracted components are required by the Newton- Raphson method in solving the
set of non-linear equations. No communications channels are required between the two
ends of the line, and the algorithm is able to locate the fault accurately without being
affected by non-zero fault resistance. The disadvantages of this method are that an unreal-
istic lossless line is assumed and the type of source impedance at the sending and receiv-

ing end must be carefully studied to ensure the algorithm is applicable.

Another iterative approach to fault location for power transmission lines was
presen >d by Westlin and Bubenko [6]. This approach is based on sampled voltage and
current at the sending end. A set of non-linear equations is formulated by using a suitable
Thevenin equivalent model for the receiving end of the line. Each type of fault results in
a different set of equations. The fault distance, receiving end current and the fault resis-
tance can be determined from the solution of the receiving end equations using the
Newton-Raphon method. A low-pass filter is required to eliminate any high frequency
component present in the post-fault transient waveforms. The algorithm is readily applied
to situations where the fault resistance cannot be neglected. The disadvantages of this
approach is that the Thevenin equivalent circuit at the receiving end of the line must be
known prior to the calculation of the fault distance. Also, the iteration process is time
consuming and hence extensive computational time is needed to locate-the fault accu-

rately.

The third method is based on treating the fault location problem as a dynamic system

parameter estimation problem [7,8]. Richards and Tan [8] introduced a lumped-parameter
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mathematical model to compare its response with that of the real physical system during
the occurrence of the fault. The fault location, fault resistance and transformer saturation
parameters were computed by varying the model’s parameters until an adequate match is
obtained between the real system and the model responsc. The accuracy of the algorithm
is not affected by the presence of a fault resistance. Tifferent types of fault result in
different configurations of the reference model*, which increases the complexity of the
analysis. The disadvantages of this approach are that the sequence model can be very
complicated in the presence of simultaneous faults. In addition, a time consuming itera-
tive approach is employed in estimating the parameters and hence the proposed algorithm

is not suitable for on-line applications.

The fourth method is based on calculating the complex impedance of a transmission
line in the direction of the fault as seen from the measurement site, after which fault dis-
tance is to be deduced. Different algorithms were developed to determine the impedance
accurately. One algorithm suggested by Mann and Marrison [10] used the fact that the
peak magnitude of a sinusoid can be determined from its value and its rate of change at
any arbitrary sampling rate. The impedance as seen from the measurement site is equal to
the ratio of the voltage and the current sinusoidals at the measuring location. The values
of the derivatives at any instant are approximated by the effect of the presence of a fault
resistance and the decaying dc components alter the accuracy of the calculated
impedance. Also, a very small sampling time is required in order to have an accurate

approximation for the difference equations.

* The symmetrical component transformation was used to formulate the reference mathematical model.



Gilcrest, Rockefeller and Urden [11] introduced a slightly different approach. In their
approach, the authors used the first and the second derivatives to calculate the instantane-
ous values and the first derivative to calculate the peak magnitude of the sinusoidal
waveforms instead of using the instantaneous values and the first derivatives [10]. Three
sets of sampled current and voltage values are required by the algorithm to determine the
complex impedance of the faulted line. The advantage of this approach is that the decay-
ing dc components presence in the samples does not aFect the accuracy of the algorithm.
The disadvantage of this approach is that the high frequency components introduce errors

into the final result and thus the fault location is subject to inaccuracies.

Breingan,Gallen and Chen [12] proposed an algorithm to locate the fault for a
lumped-parameter transmission line model in which the shunt capacitance is neglected.
The advantage of this approach is that the decaying dc component is implicity taken into
account by the series R-L model of the transmission line. The disadvantage of this
method is that it is only for short transmission lines in which the shunt capacitance can be

neglected.

Another algorithm suggested by Brooks [13] used the least square estimation tech-
nique, with the assumption that the voltage and the current waveforms contain at most a
constant plus a fundamental harmonic. In general, the distorted waveforms, after the
occurrence of a fault, contain a decaying dc component and components of the funda-
mental plus higher harmonic frequencies. Sachdev and Baribeau [14] took these transient
phenomena into account and came up with a different algorithm to calculate the

impedance of a transmission line. The authors calculated the impedance based on the

w



current and the voltage measurements at the sending end of a power transmission line.
No special line coupling is required between the two ends of the line. The fault distance
is deterrnined by assuming that the line reactance is proportional to the line length
between the measuring point and the fault points [15,16]. The advantage of this method is
that the vxistence of the fault resistance or shunt capacitance does not affect the accuracy
of the aizurithm, the dc component does not affect the accuracy of the fault either and

there is 1.0 tieration which require less computation time.

Solimiw A Christensen [17] proposed the least absolute value curve fitting tech-
nique which has the same advantages as the least square value technique introduced by
Sachdev and Baribeau [14] and on top it is more accurate than the least squarc value

technique.

The objective of this work is to implement an existing fault location algorithm based
on current and voltage measurements at the sending end of a transmission line. The least
absolute value technique is used. The fault distance is determined by assuming that the

line reactance is proportional to the line length between the measuring and the fault point.

A comparison between the least absolute value and the least square value techniques

will be made.

Chapter 2 presents both techniques suggested in [14,17]. The mathematical back-
ground of each technique is presented and how each technique ‘an be implemented to
determine the fault location based on the voltage and the current measurements at the

sending end.

O



Chapter 3 describe« ~~~ two transmission line models that are used to implement the
least absolute value : as well as the least square value technique. The design of a

low-pass filter is also presented.

Chapter 4 gives the numerical results of both techniques. A comparison between the
least absolute value technique and the least square value technique is made. The effect ¢

the fault resistance as well as shunt capacitance is also prescnted.

Finally, chapter 5 presents the conclusions to be drawn from this work, as well as

some directions for the future.



CHAPTER 2

THEORY OF THE FAULT LOCATION ALGORITHM

The mathematical theory and how the curve fitting technique can be used to deter-
mine the fault location of a power system will be shown in this chapter. Since the
impedance of a transmission line is proportional to its length, this chapter will show how

to apply cu ve fitting techniques to determine the impedance of a transmission line.

2.1 Curve Fitting Techniques

Two techniques will be studied in this section, the least square value technique (LSV)
and the least absolute value technique (LAV). The problem is to find a functional rela-
tionship between a series of values "a’ and their corresponding functional values 'r’. This
" relationships could be linear, quadratic etc. Of concern he.e are linear relationship whict.

generally have the form below [14].
r; =al,-x1+a7_,-x2+. oY a, X,
Where,
i=1,2,..,n
@y;....A3y,; , T are the known vanables,

X,....x, are the unknown parameters.

Given r; and x; for 1<i <n , equation (2.1) can be put in matnx form as shown below:

(2.1)
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where,
R isan nx1 column vector
A is an nXn square matrix

X is an nx1 column matrix

If A is non-singular, then from equation {2.3)

X=A"R (2.4

Using (2.4), the unknown vector X is determined. However, in practice the number of
known variables R is usually greater than the number of unknown variables X. Such a
system is said to be overdetermined. Therefore, the matrix A, being rectangular, is
singular and, therefore (2.4) is not usable. To overcome this problem, the curve fitting

approach is used.

The two sections following show the use of curve fitting techniques in overcoming

this problem.

2.1.1 Least Error Square Technique



The least error squrare curve fitting technique is based on minimizing the sum ot the

square of th~ residuals. In equation (2.3) the error between the estimated value and the

measured one ¢ be wriiten as:

€= mdy X

Where,

j=l,...n
The error squarc expression is:

Z_ 2
e; =(r; 'a"]‘ XI)

The sum of all the errors square is given by:

s

(2.5

By differentiating (2.6) with respect to x; for i=1.2,...,n ; and equating the resuit to /270,

the set of equations in (2.7) is nbtained.

r m 1
dy e (0]
i=1

ox
8%(3‘2
i=l

~8x2

(2.7)
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By substituting equations (2.5) and (2.6) in (2.7) and rearranging the terms the normal

equations [6] below are obtained:

m m 2 m nt

(_Z’i a;y 241 a1 4y - 2918 | rx,

i=1 i=1 i=1 =1 !

m m m 2 m x2

2T aip a4 Xq 2424,

=1 i=1 i=1 i=1

= . . . . : (2.8)

”m m m m 2

37 Gin Yanay Yanap ... Xbin .

i=l i=1 i=1 i=1

x’l

(2.8) can be written as
Where,

R is an nx1 column vector
A is an nxn square matrix

X is an nx1 column vector

It should be noted that R in (2.9) could be written as:



m -
FEr,- a1
i=1
m F(111 a21...a1' 'rll
2T a2 "
i=1 a2 A - - - Am2 r2
R-: =

m a a ... a r
27 Gin i T i I
i=1
L

_ R=R

Substituting (2.10) in (2.9) gives

ATR=AX
Substituting (2.3) into (2.11) gives

By substituting (2.10) and (2.12) into equation (2.9),then

ATR=ATAX

Premultiplying by the inverse* of (A Té ), equation (2.13) becomes:

*  Matrix A must have a rank of n to ensure that A7 A is non-singular {10).

(2.10)

(2.11)

(2.12)

(2.13)



x=aTa)y'aT R

A’A )1 A7 is called the left pseudoinverse of matrix A [14], (for more details see

appendix E).

It is shown above how to estimate the state X using the least square error technique,
in the next section it will be shown how to estimate the state X using the least absolute

value.

2.1.2. Least Absolute Value Technique

The least absolute value technique is obtained by minimizing the sum of the absolute
values of the residuals. That is, by first finding the least square error optimal solution,
secondly determining the residuals of the least square error estimate, thirdly select n
measurements corresponding to the smallest residuals and then solve equation (2.4) to get
the optimal solution of least absolute value technique. This section below shows how the

least absolute value technique is used.

In m-dimensions the norm of a vector E is defined as:

m lip
HE I =(3 1E; 1P) p21

i=1

If p=1, then equation (2.15) is:

m
HEN =3 IE |

i=1

According to the norm axioms, we have

(2.14)

(2.15)

(2.16)
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HEII =0 if and only ife; =0  i=1,2,....m

Then, the best least absolute value estimation is given by:

R=AX (2.17)

Using the least square error technic -+ equation (2.17) is solved* and the best estimate X *

is given by:

X" =@Tay'@’r) (2.18)

Calculating the residuals of X * using :he absolute value of equation (2.5) and rearrang-
ing the residuals such that the points w1 smallest residual will be at the top of the vector

E ** [17] , and it could written as:

E
E=|..
E+
and
A
A=|..
A+

*  equation (2.17) is overdetermined.

** E =the residual in equation form, i.e
E=IR-@Tay"'ATR |
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Where,
E is an nx1 vector containing the smallest n residuals
E* is an (m—n)x1 vector containing the remainder of the residuals

A is an nxn matrix with rank n and containing clements corresponding to R

A" is an (m—n)xn matrix containing the elements corresponding to R*

Then using _E: and é equation (2.17) can be solved* for&" as:

16,

X" =41 (2.19)

Equation (2.19) is the best estimate using the least absolute value technique.

2.2 Application of Curve Fitting Techniques

The impedance relay is one of the relays used to protect transmission lines. If the
relay is located at the sending end, the impedance can be determined from the knowledge
of the voltage and current at this end. The fact that the impedance is proportional to the
distance from the fault location to the relay location, can be used to determine whether

the fault is in a protection zone or not. The next section will show how to determine this

impedance using the current and voltage at sending end.

2.2.1 Impedance Calculation

* A a square matrix  ith rank n (i.e non-singular).
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During a short-circuit fault, the current and the voltage waveforms at the sending end
of a transmission line, are composed of decaying dc components and many harmonic

components. The voltage and the current at time t are represented by equations (2.20) and

(2.21) respectively:
N
v=kg, e "+ ¥ ky, sin(nwgt +6,,) (2.20)
n=1
N
imko; e + 3 ky sin(nwot +9,;) (2.21)
n=1
where,

v is the instantaneous voltage at time t

i is the instantaneous current at time t

T is the time constant of the decaying d.c. component

N is the highest order of the harmonic component present in the signal
w is the fundamental frequency of the system

kg, is the magnitude of the d.c. voltage component at t=0

ko, is the magnitude of the 4.c. current component at t=0

k,, is the peak value of the n** voltage harmonic component

k,; is the peak value of the n *h current harmonic component

8, is the phase angle of the n** voltage harmonic component

8, is the phase angle of the n'* current harmonic component



17

Not only does the time constant T depend on the ratio of the reactance to the resis-

tance, X/R, but also on the resistance of the arc at the point of the fault.

!

By e: ~anding e ~*'" using Taylor series, we have

1

_t/‘r 1 1
=1—(=)1+
e (t) (2!

w2 —¢ >+ (4—3;5):%.... (2.22)

1 3173

We assume that all the fifth and higher harmonics present in the waveform have been

eliminated by either a low-pass analog or digital filter. Also assume that the post-fault
current and voltage signals do not contain of even harmonic components. By using

(2.22), equation (2.20) and (2.21) become:

kOv kOv 2 kOv 13
v=ky - (— N+ —)N—(—5)t
ov = () s
+ klein (W0t+61v) -+ k3v sin (3w0t+93v) (223)

ko K ko;
i =koi = (= )r+<2$)r2—(6:3)z3

+kh-sin(w0t+91,j)+k3‘-sin (3W0[+e3‘) (224)

The two sinusoidal terms in equations (2.23) and (2.24) can be expanded as follows:

k 1v Sin(WQt'*'elv) =k v Sin(WOt )COS(GIV) +k 1v COS(W()I )Sin(elv ) (225)

k3, sin(3wqr +83,) = k3, sin(3wt Jcos(B3, ) + k13, cos(3w gt )sin(Bs, ) (2.26)



klisin(w0t+9“) = k“ S.ln(Wot)COS(eli) + kuCOS(Wot)Sin(e“)

k5; sin(3wot +03;) = k3;sin(3w o )cos(0;) + k4; cos(Bw gt )sin(03;)
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(2.27)

(2.28)

Substituting (2.25) and (2.26) in (2.23), and (2.27) and (2.28) in (2.24), v and i could

be respectively rewritten as:

—k g,

k Fo — )3
= — ) + t +
v Ov+( )t ( T) (6 !

+ b, sin(wt Jcos(8y, ) + k1, cos(wo! )sin(B1,)
+ k=, sin(Bw gt Jcos(83,)

ko + ( ko ) (k ) ( 03
i =kg; +(—)t+ 12+
0i 61

+ ky;sin(wgt )cos(8,;) + ky;cos(wol )sin(@,,)

+ k4;5in(3w ot )cos(B3;)

The voltage and the current are sampled at £=ty, f5, ...

where,
ty=1t)+ 41,
ty=t+2/
Iy =1

,ampling times,

(2.29)

(2.30)

,tm



and At is the sampling intervai.

By defining the coefficients and states as follows:

a; (1) =1
ajt) =t
a;3(1) =12
;) =1

(st(t) =sinw gt
a;e(t) = coswl
aj-,(t) =sin3wy

ajg(r) = cos3wyt

X1y =k0v
—kOv
Xoy = T
kOv
Xq, = —5
3v 212
-kOv
X4, =
YT et

xs, = ky,c0s0y,
Xey = le Sinelv
x7, = k3,€0883,

Xgy = k3v Sin93v

Xy =

X2

X3

X4

X5

X6i

X7

19

=k11C0591" (231)
= kl,smelz

= k3,~ C0593i _

;= k3i Sin63,-



Equations (2.29) and (2.30) can be written as:

V(tj )=aj1(!)x1V+aj2(t)x2v-+aj3(t)3v+aj4(r)x4v

+a;5(t)x s, +a;4(tx g, +a;7(1)x 7,

i(tj)=aj1(t)x1,-+aj2(t)x2‘~+aj3(t)3i+aj4(t)x4‘~

+aj S(t )x 5 +aj 6(t)x 6i +aj7([ )X 7

In matrix form

'V(tl)'\ ’au(tl) alz(tl) A
V(I2) azl(tz) azfz(fz) Coe
Lv (t) An2tm) Amoly) - .
Ora

Z,) =AM,

Or,

- A 7(tm)

'l.(tl)T -au(tl) 012(11) R
i([z) a21(t2) (122(12) ...
i(ty,) Am2(t) Am2(ty) - .

ayy(ry)

a(ty)

ay(ty) ]

ap(ry)

-x1v1

X2y

- A 7(tm)

Lx Tv
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(2.3M

(°.34)

(2.35)

(2.36)



Z;)y=A@)X; (2.37)

where,
Z,(t)1is an mx] voltage vector measurement
Z;(t) is an mx1 current vector measurement
X! is an 7x1 unknown vector
XL- is an 7x1 unknown vector

A (¢) is an m x7 matrix

The elements of the matrix A depend on the time reference and the sampling rate
uscd and can be predetermined off-line. To find the impedance at the sending end, the

fundamental corr -onents of the voltage and current will be defined as:
Vi=k,e™ (2.38)
[, =ky e’ (2.39)
By expanding /9 equation (2.38) and (2.39) will be:

Vl =k1vCO'S1v +Jk leinelv (240)

11 = kliCOSu +jk1,'SiIl91" (2.41)

Using equation (2.31), equation (2.40) and (2.41) can be written as:

Vl =Xs5y +jx6v (2-42)



Iy =x5 + jxg

The impedance Z is given by:
Vv
Z=
I

Which is,

X5y +j.’( 6v

Xs;+jXgi

From (2.44) the real and imaginary components of Z are:

X5y X5itX g, X6

Re(Z)=
X5 Xs5;tXgXg;

X5 X gy —Xs5,Xg;
X5iX5;+XgiXg;

Im(Z)=

Now, the objective is to solve for the impedance, i.e snlve (2.45) and (2.46). The two

sections following describe the use of curve fitting techniques to solve these equations.

2.2.2 Least Error Square Solution

In the previous section, we discussed how to get the impedance at the relay location.

In this section we will discuss how to solve for the impedance using the least square error

technique.

(2.43)

(2.44)

(2.45)

(2.46)



Recall, the least error square technique i, used when the inverse of a rectangular
matrix A has to be obtained to solve a set of equations (i.e R =A X, A is rectangular
matrix), in this case the ps ¢ nverse of matrix A has to be obtained solving for the
unknown X .

X=@Ta)y'a™r

Here, the matrix A (¢) in equation (2.35) and (2.37) is a rectangular matrix with m rows
and 7 columns where m >7, using the least error square technique, the sum of the squares

of the errors is minimized as:

J, =(Z, 0 -A@X) (2, (0)-A@)X,)

Ji = EGayrA OX)TZ (0O)-A0X,)

By differentiating equations (2.47) and (2.48) with respect to X, and X;, we respectively

have:

aJ, AT
x4 @) Z,()-A@)X,)

3,

i AT\ .
5% AT OGO-ANK)

By equating (2.49) and (2.50) to zero to get the minimum of J:

o, —o dJ; _o
X, oK;

(2.49)

(2.50)



AT ) 2Zv(n-A ()X,) =0

ATNZi()-A X)) =0
Or,

X, =14 waml] 'at wig,u)

X =1aT0A@ AT )2 (0)

Where (A T(t A (¢ )]""15T(r) is the left pseudoinverse of A (¢) and is detined as:

AT =[ATOAOI!AT @)
Substitution of (2.55) in equations (2.53) and (2.54) yields:

X, =[AO]'Z, ()

X =[AOIZ)

By calculating )_{: and X", the impedance can be determined.

The disadvantage of this technique, however, is that it is not suitable when the meas-
urement vector Z (¢) contains "bad data points”, which is the case in practice. In general,
the least square error technique gives best estimate when the set of measurement has a

Gaussian error distribution, otherwise the result is not that accurate.

In the next section, the least absolute value technique will be illustrated. In this tech-

nique, if the measurement vector contains some bad data points, including points of

(2.55)



interest, the estmator will rejects these bad data points, fitting only the good oncs, and

subsequently generates correct values for the bad data points.

2.2.3 Least Abs "ute Value Solution

The main idea here is to minimize the cost function which is the absolute value of the

error. If the error is defined as:

E=Z()-AMmX (2.58)

the cost function to be minimized is:

J=1Z@)-A@)X | (2.59)

Here the cost function of the current and the voltage are to be minimized. Equation

(2.60) and (2.61) will define the cost function for the voltage and current respectively.

~
<
il

1Z, ()4 @)X, | (2.60)

Jo=1Z)-AGX; | (2.61)

According to equation (2.16) and the norm axioms, the best least absolute value estima-

tion is given by:
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Z,()=A®X, (2.62)

Z() =AM (2.63)

Since this system is overdetermined, the left pseudoinverse (i.e. LSV technique) has to be

used. For convenienc . equation (2.14) is rewritten below:

X" =[ATOAOT'AT(Z () (2.14)

Solving for X, and X/ yields:

X, =[ATOAOIAT®Z, @)

Or,
X, =[AOIZ, @) (2.64)
X' =AToAOAT(OZ: ()
Ora
X =[AOZ¢) (2.65)

Substituting (2.64) into (2.58) to get the minimum voltage residual yields:

E; =Z,t)-AMIA@)]Z, () (2.66)

Substituting (2.65) into (2.58) to get the minimum current residual yields:
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E’=Z@)-A®A@]Z () (2.67)

Rearranging the elements in the residual matrix such that the points with smallest resi-

dual will be at the top of the vector £~ , could be written as:

E
E*={.. (2.68)
+
.E ]
7
z" = . (2.69)
A '
= |
and,
A
A" = .. (2.70)
A+
Where,

E is an nx] vector containing smallest residuals

E *is an (m -n)x1 vector containing the remainder of the residuals

Z is an n x1 measurements vector corresponding to the smallest residuals
Z* is an (m—n)x1 vector containing the remainder of the measurements
A is an nxn matrix corresponding to the smallest residuals

A" is an (m ~n )xn matrix containing the remainder of the elements of A)

These matrices and vectors will be used to solve for the optimal solution of X, (z) and



}_fi (¢t) in equation (2.64) and (2.65) respectively™®, which gives:

X 0=1[A0ONZ,0) 2.71)
X'o=1Edor'Zo (2.72)

By using (2.71), (2.72), (2.45), and (2.46) the solution of the impedance is obtained.

Equations (2.73) and (2.74) gives the real and imaginary part of the impedance respec-

tively as:
X5, X5 +X g, Xg;
R = (2.73)
X5;X5;+Xg; Xgj
and,
Xe: X, X X
X = S5i-*6v Sv+6i (2.74)

X5iX5;tX¢g; Xg;

As alluded from the discussion above, this method is more accurate than the least

square error method, and we expect it to give more accurate results,

2.3 Determination of The Fault Location from The Impedance

Because the line length is proportional to the line reactance [14], the calculated reac-

tive component of the apparent impedance using (2.74) is used to locate the short circuit

* The matrix /_f(t) is a square matrix (i.e non-singular)



fault. Fault distance Y is determined by the following relationship:

where,

Y, is the distance from the sending end to the faulted point.

Y, is the total length of the line

X/ is the apparent line reactance from the sending end to the faulted point

X, is the total reactance of the line

Y, and X; are known values, ¥, can be determined once X is calculated.

2.4 Advantages of LSV and LAYV Techniques.

Having introduced the curve fitting techniques to be used in this thesis, some of the

advantages of these techniques are presented:

(i)No iteration is required and hence results in less of a computational burden.
(ii) Flexibility in choosing the sampling rate and the data window size.

(iii) The Pseudoinverse of a matrix A can be calculated in an off line mode since

the element of the matrix are known prior to the existence of the fault itself.

(iv) No prior knowledge of source impedance at either the sending end or receiving

end is required.



(v) The freedom in choosing the number of equations of conditions which result in

the presence of decaying dc component and any desired harmonic component.



CHAPTER 3

THE TRANSMISSION LINE MODEL

In this chapter two models of a power system are discussed. These two systems are
set up in an off-line mode which provide transient fault data, in which both the prefault

and the postfault conditions are used.

To attenuate the high frequency harmonics which are present in the postfault
waveforms, a low-pass filter is required. Three different orders of a low-pass filier and

their effects on the algorithm will be also discussed in this chapter.

3.1 Modelling of The Systems.

Two simple power systems are used to test the fault location techniques. The first sys-
tem is a single-phase one which is represented by a series equivalent R-L. model. The
second cne is a three-phase system which is represented by a three pi equivalent circuit

[18].

3.1.1 Single-Phase Power System.

The single-phase power system is selected to represent a practical situation. The sys-
tem, as shown in figure 3.1, consists of a generator feeding into a load through two
transformers, and two transmission lines. The line which has been chosen to test the algo-

rithm is a short, alumininium cable-steel reinforced (ACSR) [19] overhead transmission
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line, and its length is 30 niles. All the Aata of the system components are given in

Appendix A.

The system components are modelled using equivalent impedances. The impedances
are converted to per unit base, the base voltage is 31.5 KV and the base power is 17
MVA. The prefault equivalent circuit (steady state) is shown in figure 3.2. From figure
3.2, vg, and i;, which are the initial conditions of the fauited voltage and the faulted

current, can be determined easily as:

P, =V, I} cosd
Where,

o=tan"! Q, /P,
Thus,

IL =PL/VL COSQ)
Then,

Vg1=Vy +1 [(Rypy + Ryp ) (Xqp + X790+ X7 2)]

E, =Vgy+1I j [(X +X11+X,)]

Hence,

e =V2E, sin(w, t+p)

» Ifo is the inital condition of the faulted current.

| )
1o

(3.1)

(3.2)

(3.3)

(3.9)

(3.5)

(3.6)
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V= Vp **

The pre-fault, converted to per unit base, circuit is shown in figure 3.3. Next, the
post-faulted circuit is presented. As mentioned earlier, and as shown in figure 3.1, the
fault was assumed to be on transmission lin~ number one (30 miles). If the fault could

occur at any point of the transmission line, the post-fault circuit will be as shown in

figure 3.4.
From figure 3.4
3i
e =if [Ry+R; 1+ [Ly+L +Ly +L, ] —a{— (3.7)

Since this circuit in figure 3.4 is a simple R-L circuit, the solution of equation (3.7) [17]
is:
. 0 Rt t/Liat Vma.x .
i =I¢e + — sin (w, (+0,+p) (3.8)
Where,
If = initial condition of the faulted current
Rtoml = Ry +Rf
Lyptar =Lg +Ly+Lp, +Ly

Vinax = V2 E,

zZ= \/R,ﬁ,al + (W, Liga )°
p=angle of E,

w,L
-1 o ~total
¢, =tan ("R—)
total

o Vfo is the initial condition of the faulted voltage.



By differentiating equation (3.8) wth respect to t, equation (3.9) is obtained.

aif “Riotal -R /L V max
_5?_ — L [/Q e toual ¥/ loal + Wo ; COS(WOI+¢'—p)

total

From figure 3.4, v is given by:

. ol
Vf ‘—‘lf (Ry +Rf)+Ly —ét—

%

Substituting 3

from equation (3.7) in (3.10):

e ~if B +Ry)

Vf —_-lf (Ry+Rf)+Ly[ I3

total

Thus the faulted voltage and the faulted current are known.

3.1.2 Three Phase Power System.

The three phase power system is exactly the same as the single-phase system
except now each element consists of three components phase A, phase B and
phase C. Traiusmission line number one is replaced by a three phase 133.5 miles
long overhead copper conductor transmission line. The three conductors are

spaced 15.8 feet apart. For simplicity no mutual coupling is assumed between the

three phases.

Because a symmetrical three phase fault will be discussed, the system will be

assumed in a balanced three phase state. A one line diagram of this balanced sys-

tem is shown in figure 3.5.
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(3.9)

(3.10)

(3.11)




As mentioned earlier, the three phase system is represented by a three-pi sec-
tions, each section corresponds to 44.5 miles of transmission line number one.
The single-phase equivalent circuit of the three-phase system is shown in figure
3.6. The various components are modelled by their equivalent impedances.
Impedances are converted to per unit base, the base voltage is V126/3 KV and the

base power is 100 MVA. The three phase system data are given in appendix B.

When a fault exists  point on transmission line number one, two
equivalent circuits will ¢ e prefault equivalent circuit and the post fault
equivalent circuit (transient response). The next section will discuss both circuits

in detail.

3.1.2.1 Prefault Circuit.

Figure 3.6 shows the steady state condition of the single-phase equivalent circuit of
the three phase system. From figure 3.6, the prefault voltage and the prefault current, the

initial conditions, can be determined as shown below:

Eg =VBI+IBl U(Xl +XT1+Xg )

e =V2E, sin(w, t +p)

and the initial faulted current and faulted voltage are:

Because v, is known and the series impedance and the shunt impedance are calcu-

(3.14)
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lated, the initial faulted current and the initial faulted voltage can be easily determined.
Appendix B shows the series impedance and the shunt impedance as well as the initial

faulted voltage and the initial faulted current.

3.1.2.2 Post-Fault Circuit.

Since only a balanced three phase fault is considered, the single-phase equivalent cir-
cuit is used to study the transient response.Now consider figure 3.6; two cases are dis-
cussed, the first, when the fault occurs at A (i.e. at 44.5 miles from the sending end of the
transmission line),the second, when the fault occurs at B (i.e. at 89 miles from the send-

ing end of the transmission line).

Figure 3.7 shows the single-phase post fault equivalent circuit when the balanced
three phase fault occurs at A (in figure 3.6). From figure 3.7 these equations are casily

obtained:

ai
e =Vf +(L1+L/[-1+Lg )T

le.
dis \
_—at =(e"Vf)/(L1+l/rl+Lg) (3.15)
and,
lf =il+i2
ov
. - f
=i +C| —
lf i 1 3t

ie.
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an ‘f —il
L =L - 3.
Jt C, (3.16)
and,
. i)
Ve =Rppiiy+ Loy -
i.e.

ail _ vf—RTLlil

o L

(3.17)
Equations (3.15),(3.16) and (3.17) can be solved numerically using the Runge Kutta

method. The initial conditions of the faulted voltage and the faulted current are deter-

mined using the pre-fault equivalent circuit. In this case, the fault resistance was

neglected, but not in the practical case when the fault resistance (Ry) exists. So, by

assuming there is no load current, the current i | flows into ground completely through the

fault resistance. Figure 3.8 shows the equivalent post-fault circuit when the fault occurs

at A and there is a fault resistance(R f)
The following equations follow from figure 3.8

ai,
e =vf+(L1+L,-1+Lg) —é-t—

i.e.
ai,
-a‘t—=(e—vf)/(L1+br1+Lg) (3.18)
and,
ov
. ovy
lf—ll+C1 at



vy ip=h
ot ¢,
and,
. al 1
Vf =(RTL1 +Rf) 1 +LTL1 ?
ie.

ail _ Vf_(RTL1+Rf)i1
ot - LLTl

It is obvious that equations (3.18),(3.19) and (3.20) are almost the same as equations
(3.15),(3.16) and (3.17) except for the existance of the fault resistance in equation (3.20).
Equations (3.18),(3.19) and (3.20) will be used to solve numerically for the faulted vol-

tage and the faulted current using the Runge Kutta method.

The second case in which the fault occurs at B (i.e. 89 miles . ~mn the sendii ., <o a0 01

the transmission line), the single-phase post fault equivalent circuit when a balanced
three phase fault occurs at B and a fault resistance exists (in figure 3.6) is shown in figure

3.9.

From figure 3.9 the following equation can be verified:

av,
or

i2=2C1 +i4

1.e.

Rh

RIS

Los
[
)

~-



aVc @ Z_i 4)

ot 2C,
and,
. di g
Vc=(RTL1+Rf)‘4+LTLIE"
i.e.
or Lt
and,
. di,
"f=RTL112+er—a;"+Vc
1.e.
aiz Vf —Rnl iz""VC
or Lt
and,
. f .
lf~—-C1_a_t—+12
i.e.
an if—iZ
o C,
and,
N
e=vf +(L1+L/I°1+Lg)—at—‘

i.e.
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(3.21)

(3.23)

(3.24)



alf
B =(e—ve)(Ly+Lry +L,)

Using the Run: > Kutta method equation (3.21) through equation (3.25) can be solved
numerically, and by using the prefault data, the initial conditions, the faulted voltage and

the faulted current can be solved for numerically.

The single-phase equivalent circuit can be used when a balanced three phase sym-
metrical fault occurs. If an unbalanced fault occurs such as single phase to ground fault or
double fault to ground ... etc, this method can‘t be used and all three phases have tc con-

sidered in order to determine the transient response.

3.2 Design of Low-Pass Digital Filters.

As mentioned earlier, because of the high frequency harmonics which are preseit in
the post fault waveform, a low-pass digital filter is needed to attenuate these high fre-

quency harmonics.

There are many methods to develop a low-pass digital filter*. The method which has
been chosen to design a recursive low-pass filter is the " Direct synthesis of digital
filters", which has a special feature such as the Bilinear Transformation [20]. The Bil-
inear [ransformation is a feature required to transform a transfer function from S-domain
to Z-domain. The direct design method is used to find a particular function to ag ;roxi-

mate the ideal "brickwall"” characteristic* [21].

*  For more detail see appeagix F.
* Thedeal low-pass filier with cutoff frequency f . has a “brickwall” shape. Sce figure 3.10
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Depending on the degree of approximation, different particular functions are required
in the design analysis. One such function is to simulate a low-pass digital filter
corresponding to that of a Butter worth-type low-pass filter. This function has a magni-
tude spectrum which decreases monotonically in both passband and stopband. Also, the
magni-ude is decreased by 3dB at the cutoff frequency. The design procedures of the

direct approach is shown below [20]:

1. Evaluate the order of the filter from the given design specifications.

2. Determine the poles positions on the Z ~! plane and choose those that lie outside

the unit circle to ensure that a stable filter results.

3. An n** order zero exists and is located atz

4. Construct the transfer function in terms of «ic .2~} or Z-domain.

Because the low-pass digital filter has to be included in the fault location techniques, and
equation (2.32) and (2.33) has a specific condition, the following specifications have to

be satisfied in the design of any desired digital filter:

1. The fifth and higher harmonic components present in the post-fault transient

waveforms are attenuated.

2. The sampling rate of the filier has to be at least twice thz third harmonic fre-

quency (180 HZ).
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Three different order filters of the Butterworth-type have been designed. The design
procedure of each filter is given in appendix C. The following paragraph will describe

each filter in detail.

1. Fourth Order Low-Pass Filter.

Cutoff frequency = 203 HZ

Transition frequency= 285 HZ

Sampling frequency = 720 HZ
Attenuation at transition frequency better than 30dB

The transfer funcrion G(Z‘l) 1S:

6078 (1+2Z°1H*

Gzhs= ) ] ) 1
(Z7°+0638Z7 +2.2)(Z7°+4212Z27" +20.127)

2. Eighth Order Low-Pass Filter,

Cutoff frequency = 200 HZ

Transition frequency = 295 HZ

Sampling frequency = 1440 HZ
Attenuation at transition frequency better than 30dB.

The transfer function G(Z7}) is:

0.023 (1 +Z7H®

G(Z-l)z -2 -1 2 -1
(Z72-1.512Z7" + 1.351) (272~ 2.238 27! + 2.482)
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1
(Z272-3.541Z71+4.509) (Z72-5.170 Z"! + 7.043)

(3.27)

3. Tenth Order Low-Pass Filter.

cutoff frequency = 218 HZ

Transition frequency = 290 HZ

Sampling frequency =  1440HZ
Attenuation at fransition frequency better than 30dB

The transfer function G(Z71) is:

0.032(1+2Z~H10

G@EZ™h= 2 1 2 1
(Z7°=1.331Z27"+1.292)(Z7“-1.842Z27"+2.173)

1
(Z272-2.737Z7143.713)(Z"%-4.230Z"1+6.283)

1
: 3.28)
(Z72-5.928Z149.209) (

A time delay is associated with each filter. The delay is longer for higher order filters.
This increases the time required to locate the fault. The three designed filters are used in
the proposed techniques and the delay caused by each filter will be discussed in chapter

4.
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Figure 3.2: Pre-Fault Equivalent Circuit of The Single-Phase Model.

45



46

Xlotaﬂ R o Xlolaa
{
L 0 —7\—’\/\/\/—_%6\'_'7\
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E, Y51
1% = I = 1.0[=28.07° p.u. Xiown = X+ X + X
v, =10pu = 0.04099 + 032387 + 0.01161
R =R +
VP =v, = 11321 6.944° p.u. total i1 * Rppy
= 6.39°10"* + 0.02569

E, = 1.1829/10.32°

Xiowan = X7y + Xppy + Xpg
e =1.6729sin (w, 1 + 10.32)

=6.64°10"* + 05654 + .1026

Figure 3.3: Pre-Fault Converted Circuit of a Single Phase Power System Model.
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Where,
V= Faulted Voltage
i = Faulted Current
Lg = Generator Inductor
L, = Shost Circuit Inductor
Ly = Transformer number 1 Inductor
Ly = Transmission Line number 1 Inductor®

— - . - . ‘
Ry = Transmission Line number 1 Resistance®

R = FaultResistance

Figure 3.4: Post-Fault Circuit (Transient Response Circuit) of The Single-Phase Model.

L y = inductor per mile*the distance at which the fault occurs; or, Ly = L*%y.

e Ry = resistance per mile*the distance at which the fault occurs; or Ry = R*y.
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Figure 3.7: The Equivalent Post-Fault Circuit When The Fault Occurs at A (i.e. 44.5 miles from

sending end), Fault Resistance Does not Exist.

Figure 3.8: The Equivalent Post-Fault Circuit When The Fault Occurs at A (i.e. 44.5 miles from

sending end), Fault Resistance Exists.
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CHAPTER 4

NUMERICAL RESULTS FROM THE FAULT LOCATION TECHNIQUES

The previous two chapters discussed the theory of the least absolute value technique,

In this chapter the numerical results and the implementation of these techniques are
presented. First, the single phase system is studied. The circuit for the initial conditions
(i.e. prefault circuit) and the circuit for the post fault condition were discussed in detail in
chapter 3. Our study here will concern the fault location and its impedance. Different
parameters are to be changed and a study of the effect of each parameter on the calcula-
tion of the fault location will be conducted. In [14],the least square error technique was
used to determine the location of a fault. The fact that the impedance of the line (i.e.
transmission line) is proportional to the length of the line was considered. The authors
study [14] concemed the following parameters: the time reference, the number of equa-
tions and the sampling frequency. The conclusion they reached was: to get the most accu-
rate fault estimation using the least square error technique, the parameters below have to
be considered.

1. The time reference (T=0.0) is at the second sample.

2. The sampling frequency = 720 HZ.

3. Number of equations = 9 equations.

Numerical results of the fault location of the single phase system using the least
square error technique as well as the least absolute value technique are shown. The effect

of the sampling rate, the number of equations and the time refererce are discussed. Also,
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the effect of the arc resistance at different fault locations is studied.

Second, a three phase fault is studied. The initial condition circuit as well as the post
fault circuit were discussed in chapter 3. The minimum time required to locate the fault
when using a low-pass filter, the arc resistance and the change in fault location are stu-

died.

The next section will discuss the numerical results for a fault on a single-phase power
system and on a three phase power system using the least square error technique and the

least absolute value technique.

4.1 Numerical Results of The Single-Phase Power System.

In this section a comparison between the LSV* and the LAV** technique is pro-
vided. The two techniques are applied to a 30 miles long overhead ransmission line. A
short-circuit ground fault is applied at a four different distances 0.25, 10, 15 and 20 miles
from the sending end of the line. For each case, the arc resistance is varied from zero to
30 ohms. In the case where the arc resistance equals to 0.0 and there is no line shunt reac-
tance present in the faulted model, a high degree of accuracy is expected in the fault dis-

tance measurement.

The effect of changing the sampling rate, number of equations and the time reference
using those two techniques are discussed. Finally, the arc resistance and its effect on the
fault location is studied.

* LSV is the least square value technique.
** LAV is the least absolute value technique.



For this special case, there is no high frequency component present in the unfiltered
post-fault waveform of a single phase power system, a low-pass digital filter is not neces-

sary for this specific model.

4.1.1 Effect of The Sampling Rate

There are two factors that have to be considered in determining the sampling rate.
First, the highest frequency present in the equation of condition*** determines the lower
limit of the sampling rate. Theoretically, the sampling frequency must be at least twice
the largest frequency present in the signal to avoid alaising. From equation (2.32) and
(2.33), the sampling rate has to be at least 360 Hz since the equations consist of up to
third harmonic components (360 Hz). In practice, a sampling rate larger than 360 Hz is
desired to ensure that the alaising effect is totaily eliminated from the digitized values.
The second factor to be considered is the upper limit of the sampling rate. If the sampling
rate is too high, the determinant of matrix ATA becomes small and hence the inverse
becomes large. A fast sampling rate is undesirable since the elements of the matrix
(ATA)™ have to be multiplied with the sampled values and any noise present in the sig-
nal would be amplified. Hence, the above two factors must be considered in choosing the

sampling rate.

Table (4.1) shows a comparison of the LSV and LAV techniques in estimating the
fault location for different sampling rates, under the following conditions:

1. The fault resistance = 0.0.

*** The equation of condition are equations (2.32), (2.33) in chapter 2.



2. Number of equations = 7
3. Fundamental frequency = 60 Hz
4. Number of unknowns = 7

5. Time reference (T=0.0) is at the first sample.

Referring to table (4.1), it is observed that as the sampling rate decreases the LAV
technique gives more accurate results. Thus, for the LAV technique the best estimates are
at sampling rate = 720 Hz. For the LSV technique the most accurate estimate of fault
location is at sampling rate = 1440 Hz. The LAV technique is still more accurate thaa the
LSV technique though. Table (4.1) clearly shows that the LAV technique gives more

accurate estimation of the location of a fault than the LSV technique.

At high sampling rates, the LAV tecknique is not as accurate. For instance, at sam-

pling rate = 4320 Hz the LAV technique gives strange results which are riot related to the
fault location at all. The reason being, as mentioned earlier, that as the sampling rate
increases, the inverse of the matrix (A Ta )™! becomes large, and because (ATA ) has to be

multiplied with the sampled values, any noise present in the signal is amplified. -

Tzble (4.2) gives the estimated fault location with the number of equations = 8. from
the table, it is observed that as the sampling rate decreases, both techniques give more
accurate results, Indeed, both techniques have their most accurate estiznate of the fault
location at sampling rate = 720 Hz. The LAY technique is still more accurate compared
to the LSV technique. Also, it is observed that at sampling rate =4320 Hz the LAV tech-

nique gives an unrelated fault estimation. The reason for this was mentioned earlier.
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Similiar results are observed when the number of equations is increased to 9, see table

(4.3).

From the above discussion, it can be concluded that:
1. The LAV technique is more accurate than LSV technique.
2. The sampling rate that gives the most accurate estimation of the fault
location using both techniques = 720 Hz.
3. If the sampling rate is too high the estimation of the fault location
will be inaccurate when using both techniques.
4. As the number of equations varies, the estimion of the fault location

varies in both techniques*.

The results in table (4.1) through table (4.3) were obtained under the condition that
there is no fault resistance (i.e. K f =(}.0). Let us now consider the case where the fault
resistance exi~ts and is equal to 30 ohms {i.e. R r =30.0). Table (4.4) shows the estimated
fault locaton while varying the sampling rate at different location of the fault, under the
following conditions:

1. Number of equations = 7

2. Number of unknowns = 7

3. Fundamental frequency= 60 Hz
4. Fault resistance = 30 ohms

5. Time reference (T=0.0) at ihe first sample

e

* This point will be discussed in details later on .



From table (4.4), it is observed that =5 the sampling rate decreases, the accuracy of
the estimated fault location using LAV increases. Indeed, it is observed that th: riost
accurate fault location using LSV techraugue is ar sampling rate = 720 Hz. As noted ear-
lier, the LAV technique stll gives more accurate fault locaton est- ~tion than the LSV

technique.
By comparing table (4.1) and table (4.4), the following comments can be made:

1. The existence of R, doesn’t have a great effect on the accuracy of the estimated
fault distance, which is expected due to the fact that the line length is propor-
tional to the line reactance [6] not to the whole impedance, which makes the

effect of the fault resistance small.

2. Even though the fault resistance doesn’t have a great effect in estimating the
fault locadon, it affects the LSV technique more than the LAV technique espe-
cially at a sampling rate less than 4320 Hz. As a r=sult, the LAV technique is

more accurate than LSV technique when an arc resistance exists.

3. There is an improvement in the fault location estimation, when the LAV tech-
nique is used, at sampling rate =4320Hz. The reason fcr this improvement is due
to the variation on the d.c. component of the line respoi.se. Referring to equation
(3.8), if Ry, is small then (R, /L,y 1s small, which means that the d.c. com-
i ~nt has a great effect in this case, but if R,,,; is large then tR,,, /L 50 15
large, which indicates that the d.c. component has little effect in this case. That

is exactly what happens when the fault resistance exists, the d.c. component has
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little effect which means that only the steady state value of the current is
affecting the circuit. So when a fault resistance exists the location of the fault

using LAYV technique at sampling rate = 4320 Hz was improved.

Table (4.5) shows the estimation of the fault location under the same conditons as in

table (4.4) except that the number of equations = §.

It is obvious from table (4.5) that at sampling rate = 720 Hz both techniques gives
their most accurate results, and still the LAV technique is more accurate than the LSV
techrique. The comments which were mentioned when comparing table (4.1) and table
(4.4) are also valid when comparing table (4.2) with table (4.5), there is no need to repeat

them here.

Now by increasing the number of equations by 1, and by having the same conditions
as in table (4.5), table (4.6) shows the estimated fault location under these conditions.
Again, the fault location estimation is more accurate at sampling rate = 720 Hz when

using both techniques.

From the above discussion, a conclusion was reached. That is the existence of the
fault resistance has almost no effect on the accuracy of the fault location when using a
reasonable sampling rate. This indicated that the sampling rate has a great effect on
estimacing the fault location. The sampling rate which gives the most accurate results for
this model is at 72C Hz. From now on, the sampling rate which will be uséd for this
rnodel is 720 Hz. It has to mentioned that the LAV technique is more accurate than LSV

technique which - :2~r {rom the results discussed.



The next section will study the effect of changing the time reference (T=0.0) on the
accuracy of estimating the fault location using the LSV technique as well as the LAV

technique.

4.1.2 Effect of Time Reference.

A parameter which is yet to be discussed is the time reference. The time reference is
the instant at which T=0.0. Thus the time reference is chosen to be at the first sample,
that is T=0.0 at the first sample; if the time reference is chosen at the second sample that
is, T=0.0 at the second sample and T= - window size at the first sample. In our case, three
time references are studied. The sampling rate is constant in these three cases and is 720
Hz. The change in the time reference is studied with the number of equations and the
fault resistance varying. Of course, this study is for different assumptions of the fault

location.

Table (4.7) through table (4.9) shows the fault location estimated at different assump-
tion of fault location, using the LSV technique and the LAV technique, under the follow-
ing conditions:

1. Sampling rate = 720 Hz
2. Number of unknowns = 7
3. Fundamental frequency = 60 Hz

4. Fault resistance = 0.0

The only parameter which varies among these tables is the number of equations. That

is the number of equations = 7 in table (4.7), the number of equation = 8 in table (4.8),
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and the number of equations =9 in table (4.9).

It is observed from table (4.7) through Table (4.9) that thc most accurate fault loca-
tion estimation using LAYV technique is at the first sample, while the most accurate fault
location estimation using LSV technique is at tirne reference = the second sample. Even
when the time reference is at the first sample for LAV technique and the time reference is
at the second sample for LSV technique, the LAV technique still is more accurate than

the LSV technique.

It has to mentioned, referring to table (4.7) through table (4.9), while the number of
equations changes, the accuracy of both techniques changes, this point will be discussed

in details in the next section.

Tables (4.10) through (4.12) show results under the same conditions as that in tables
- (4.7) through (4.9), except for the fault resistance which exists in this case and is 30

ohms. now the study will be on the effect of this fault resistance on both techniques.

It is observed from table (4.10) through table (4.12) that the LAV technique gives its
most accurate results when the time reference is at the first sample, while the LSV tech-
nique gives its ‘nost accurate results when the time reference is at the second sample for
table (4.10) and table (4.11), but for table (4.12) the LSV technique has its most accurate

results at the first sample.

When comparing tables (4.7) with (4.10), (4.8) with (4.11), and (4.9) with (4.12), it
¢nuld be concluded that the fault resistance has almost no effect on the accuracy of both

techniques, which is expected.
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From the above discussion, it is seen that the time reference at the first sample is the
most accurate for LAV technique and the time reference at the second sample is the most
accurate for the LSV tcchnique. Because the LAV technique had the more accurate
results than the LSV technique, the time reference at the first sample will be used for the

rest of the thesis.

The next section will study the effect of the number of equations on the accuracy of

both techniques.

4.1.3 Effect of Varying The Number of Equations.

One of the parameters that affects the techniques accuracy is the number of equation.
In equation (2.34) and (2.36) the number of equations is a variable. Here, the number of
equations will be varied. The goal of this section is to study the effect of the number of

equations on the LAYV and the LSV techniques.

As mentioned carlier, the sampling rate chosen is 720 Hz and the time reference
(T=0.0) is at the first sample. Since the LSV technique has its most accurate results at the

second sample, a special run was made to insure that our results are still more accurate.

Tables (4.13) and (4.14) show the error* of the estimated fault location at different
assumptions of the fault location using both techniques, LSV and LAV. The conditions
under which the runs on table (4.13) and (4.14) were made are: sampling rate = 720 Hz,
fundamental frequency = 60 Hz, number of unknowns = 7 and there is no fault resistance.

The only condition that is different in the results in table (4.13) from the results in table

* The error of the estimated fault location = the assumed fault location - the estimated fault location.

62



(4.14) is that in table (4.13) the time reference is at the first sample while in table (4.14)

the time reference is at the second sample.

By obscrving toble (4.13), it is noticed that the most accurare results for the LAV
technique is when number of equations = 8, while the most accurate results for the LSV
technique is when number of equation = 9. Of course, the fewer equations, the less the
computation time is, which decreases the time required to locate the fault. Another obser-
vation which has to be mentioned is that the LAV technique is more accurate than the
LSV technique, when using number of equations = 8 for LAV technique and number of
equat.ion =9 for LSV technique. Thus, the LAV technique provides more accurate results

with less computation time.

Now, taking the time reference at the sccond sample as shown in table (4.14). It is
obvious that the LSV technique has its most accurate results at number of equations = §
and the LAV technique has its most accurate results at number of equations = 9. When
comparing the results of the LAV technique when number of equations = 9 with the
results of the LSV technique when number of equations = 8, the LAV technique gives

more accurate results than the LSV technique.

From the above discussion, it could be concluded that the number of equation which
was chosen for the rest of the thesis is 8 (i.e. number of equations = 8), when the time
reference is at the first sample and the sampling rate = 720 Hz. This procedure was made
for the case where the fault resistance does not exists. The same procedure was used

when the fault resistance exists and the same conclusion was reached.
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As a result of these studies, it can be concluded that the parameters producing the

most accurate results (and this will be used for this model) are:

1. The sampling riic =720 Hz.
2. The time reference is at the first sample.

3. Number of equations = 8.

Now after confirming these parameters our next study will concern the estimuted
impedance of the line, in other words the resistance and the reactance of the line. The
estimation of the impedance of the line has a great effect on estimating the fault location,

due to the fact that the impedance of line is proportional to its length [14].

Results are shown for different assumptions of fault location and two values of fault
resistance (0.0 and 30.0 ohms). Because the samples of three cycles are stored on every
estimation of the fault locaton, these samples were used to estimate the fault location.
The program was adjusted to get the estimated fault location from 8 samples, then to skip

these 8 samples and use the following 8 samples till the three cycles are finished.

Figure 4.1 through figure 4.4 shows the estimated resistance versus the estimated
reactance using LSV technique, under the condition that there is no fault resistance. Each
figure is for a different fault location. It is observed from these figures that the resistance
versus the reactance are scattered on the figure. For the LAV technique, the resistance
and the reactance does not change at all, which means that there is only one point on the
figure. From this observaton, it could be concluded that the LAV technique is more

accurate than LSV technique in estimating the impedance.
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Figure 4.5 dsough figure 4.8 show the estimated resistance versus the reactance
estimated using the LSV technique, under th~ co~:tion that the fault resistance exists.
Each figure has its owt. fan', location assumption. It is also cbserved that the impedances
are scattered on the R-X plane. When the same procedure was made using T AV tech-
nique, the resistance and the reactance do not change and they is only one point on the
figure.

Thus it seems the LSV techniqu= chang- its estimation depending on the time the
samples are taken. Oa the othe- hand, the LAV technique was not affected by these

changes.

From the above discussion the following comments are in order:

1. The LAV technique gives an accurate estir ation of the resistance and tie reac-
tance regardless of the point the samples were taken at as lor.g as it is within the
first three cycles. This indicates that the fault location estimated is alsc accurate

and it does not depend on the point the samples were taken from.

2. The LSV technique gives an estimation of the resistance and the veactance near
the actual value, but these are scattered round the actual value, which is not as

accurate as the LAYV technique.
3. The LAYV technique is more accurate than the LSV technique.

4. The fault resistance does not have a great effect on the accuracy of the estimated

impedance for both techniques.



The last parameter which was studied is the effect of the fault resistance on estimating
the fault location. It was concluded earlier thar the fault resistance has no great effect on
the accuracy of the fault location. But our study was concemed wirh two cases only, the
case where th=re is no fault resistance, and the case where the fault resistance exists. The
next paragraph will discuss the eiect of changing the fault resistance from 0.0 to 30

ohms gradually (i.e. 5 ohms at a time) on the estimated fault location.

Figures 4.9 through figure 4.11 shows the fault resistance versus the error of the
estimated fault location at different assumptions of fault location, using the LSV tech-
nique and the LAV technique. Because the fault resistance has no great effect on estimat-
ing the fault location, i.e. the error is small, it is changed to meters rather than miles to
make it clear to the reader. From the figures, it is shown that with respect to LSV tech-
nique, as the fault resistance increases the error of the estimated fault decreases and as the
assumed distance of the fault location increases, the error of the fault location increases,
so the range of the error for LSV for all the curves together is from 90m to above 330m;
but for the LAV technique the error does not increase when increasing th: assqmed fault
location and the range of error is small (0.0 to 30m) compared to LSV technique. Also
the increases in the error that occur when the fault resistance increases are relatively
small. Then it could be concluded that the fault resistance does not relatively wfect the

LAYV technique as it does relatively affect the LSV technique.

From the results of the single phase model it can be concluded that:
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1. The LAV technique is more accurate than the LSV technique in estimating the

fault lecation.

2. The three parameters which provide the most accurate results are:
A. sampling rate = 720 Hz.
B. Number of equations = 8 .

C. Time reference at the first sample.

3. The fault resistance does not have a great effect on the accuracy of the fault loca-

tion using both techniques.

Next, the results of the three-phase system are presented.

4.2 Numerical Results of The Three Phase System .

From the study of previous section, it is reasonable to chnose the following parame-
ters, sarnpling rate is 720 Hz, number of equations are equal to 8 and the time reference is

at the first sample.

Because our study is only concemed with the symmetrical three phase fault, the
three- phase system considered does not differ from single phase system in the previous
section except that the transmission line number 1* is now 133.5 miles long. This

transmission line is divided into three pi sections, each section represents 44.5 miles.

The single phase system did not require the use of a low-pass filter, but the three

phase system requires a low-pass filter**. The three filters used were designed in chapter

*  See chapter 3 for more details.
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3. The effect of these filters on the location of the fault will be studied, as well as the
effect of the shunt capacitance. Then the effects of the fault resistance on the fault loca-

tion will also be studied.

4.2.1 Effect of The Low-Pass Fiiter.

1118 Lnown that as the order of the filter increases, its effect in attenuating high fre-
quency harmonics increases. Thus, tie effect of increasing the order of the filter on the
accuracy of the fault location techniques will be studied as well as the estimated
impedance. Then the time delay that is caused by the filter will be discussed. Finally, a

comparison between the LAV technique and the LSV technique is made.

4.2.1.1 Effect of The Order of The Filter.

Three different order filters were designed, the 4™ order filter, the 8 order filter and
the 10 order filter. Figures 4.12 through figure 4.14 shows the estimated fault location
versus the time delay at 44.5 miles (i.e. one pi section) from the sending end, using the

LAYV technique and the LSV technique.

It is obvious that, as the order of the filter increases, the accuracy of the estimated

fault location increases.

Figure 4.18 through 4.23 show the corresponding :mpedances using LSV technique
and LAV iechnique. The tme impedance for the first pi section is 0.061+j0.236 p.u., if

this true 1mpedunce is corrpared with calculated ones, it is concluded that as the order of
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the filter increases the impedance converges to its true value. Thus, the 10 order filter

gives the highest accuracy in calculating the impedance of the line and thus locating the

fault.

4.2.1.2 Effect of Time Delay.

It is known that the presence of a filter introduces a time delay. This time delay
differs as the order of the filter changes. By looking at figures 4.12,4.13 and 4.14, it is
noticed that the 4 order filter has the shortest time delay compared to the other filters.
The time delay for the 4" order filter is 0.0125 second, before this period both techniques
give unrelated fault location results. As the order of the filter increases, the time delay
increases. This delay has tc be minimized in order to increase the availability of power
transfer. But, as discussed earlier, as the order of the filter increases the accuracy of the

techniques increases. As a result, there is a trade off between speed and accuracy.
4.2.1.3 A Comparison Between The LAV and LSV Techniques.

In comparing the LAV technique and LSV technique, it was found that:

1. The LAYV technique is more accurate than the LSV technique, this can be seen

from the results shown in figure 4.12, 4.13, and 4.14.

2. By comparing the figures of the impedances for the LAV technique and LSV
technique, it can be concluded that the LAV technique gives more accurate

results than the LSV technique does.
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3. The tme delay that is caused by the use of filter is less when the LAV technique

is used.

4.2.2 Effect of Line Shunt Capacitance.

In the previous section, the assumed fault location was at 44.5 miles from the sending
end, which is the length of one pi section*. To be able to see the effect of the line capaci-
tance, another location of the fauli is introduced. Let the fault be at 83 miles from the
sending end (i.e. 2 pi sections*), a comparison was made in the ac. .y of th> fault loca-
tion, betweer. the rault that occurs at 44.5 miie and the fault that occurs at 89 rmii=s. A

comparison between their impedances was also discussed.

When comparing figure 4.12 with 4.185, figure 4.13 with 4.16 and figure 4.14 with
4.17, it is found that both techniques converges to the true fault location when the fault is
at 44.5 miles from the sending end. However, the results of both techniques when the
fault occurs at 89 miles from the sending end is not as accurate, but still within a reason-
able range. This is due to the line shunt capacitance. However, it _..ould be noted that the
effect of the line shunt capacitance has relatively small effect on estrnating the fault loca-

tion.

Now when comparing figure 4.18 with 4.24, figure 4.19 with 4.25, figure 4.20 with
4.26, figure 4.21 with 4.27, figure 4.22 with 4.28 and figure 4.23 with 4.29, it is obvious

that the impedances converges to its true value in the case where the fault is at 44.5 miles

*  Which is only one shunt capacitance.
*  Which is two shunt capacitances.



from the sending end, specially for the case of the fourth order filter, it converges to its
true value when the fault occurs at 44.5 miles from sending end and it is scattered or the

figure when the fault accurs at 89 miles from the sending end. This is because of the

effect of the line shunt capacitance.

4.2.3 Effect of Fault Resistance.

The : .ults in the above section all were computed with no fault resistance (i.e.
Rf =0.0). In this section, the effect of the fault resistance is studied. Three differ ~nt fault
resistances w~-c studied with the fault a; 44.5 miles from the sending end and the gth
order filter 1sed, the fault resistance was changed from 10 ohms to 20 ohms to 30 ohms.
The estimated fault location (for the three fault resistance) versvs the time delay is shown
in figure 4.30 and figure 4.31 using LSV technique and LAY «cchnique respectively. It
* was observed that the eff =t of the fault resistance is relatively small. However, when the
fault resistance is small the accuracy of thc estimated fault increases. By comparing
figure 4.30 with figure 4.31, it is observed that the LAV technique is more accuraic than

the I SV technique.

From the above resulis, it i5 concluded that:

1. As the order of the filter increases, the accuracy of both algorithmis increases and
the time delay increases. As a result, the choice of the filter is a trade off between

speed and accuracy.
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2. The .ae shunt capacitance does not have a great effect on the accuracy of both

techniques specially when using a high order filter.

3. The fault resiscance does not have a great effect on the accuracy of the LAV
technique and LSV technicue. However, when the fault resistance does not cxist

the results are relatively more accurate.

4. The LAV technique gives morc accurate results than the LSV technique.



F Estimated Fault Location (in miles) o
Y=25 Y =10 Y=15 | Y =20
Sampling rate

(Hz) LSV LAV LSV LAV LSV LAY v | LAY
4320 25710 | 29.433 | |23.929 | 4166 | [19.622 | 60.694 | |26.944 | 156.189
2160 21019 | .32295 | [11.144 | 10.15 14.24 | 1554 | {19.423 | 20.543
1440 22710 | 26613 | |9.711 | 10.099 | [15.015 | 15.051 | |20.596 | 20.143

| 720 28508 | .24999 | |11.590 | 10.000 | [17.500 | 15.000 | |23.465 | 20.000

Table 4.1: The Estimates of Fault Location at Different Values of Sampling Rate.

Fault "esistance = 0.0
No. of Equations = 7
Fundamental frequency = 60 Hz.
No. of Unknowns = 7

Time Reference (T=0.0) at The First Sample.
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Estimated Fault Location (in miles)

Y- 20

15.000

Y=.25 Y =10 Y=15
Sampling rate
(Hz) LSV LAY LSv LAV LSV LAV LoV LAV
1320 29909 | 8.737 18.-190 4.166 -0.0415 ‘50.J45 23“381 | 46.599
2160 33391 32958 | [11.5441 | 10.151 18.818 15.414 | (2.5 | 20.665
1440 1.939 24123 48,63 9.947 58.845 14.970 ébf.‘ 20.004
720 25205 | .24999 10.054 10.940 15..48 I:ZU.ZC.'G 19.999

Table 4.2: The Estimates of ault Location at Different Values of Sampling Rate.

Fault Resistance = 0.0

No. of Equations = &

Fundamental frequency = 60 Hz.

No. of Unknowns = 7

Time Reference (T =0.0) at The First Sampile.



“stimated Fault Location (in miles)

Y=15

Y=.25 Y =10 Y=20
Sampling rate
(H:, LSV LAV Lsv LAV LSV LAV LSV LAV
4320 20423 | 29.433 | ]12.96 6.617 13.008 | 60.694 | |17.652 | 156.189
2160 .25403 26413 | |11.163 10.336 | {16.765 | 15.18% | (22.987 | 20.541
1440 156 25627 6.497 10.019 9.932 15.017 | |13.491 | 20.181
720 .25018 .25000  |10.008 | 10.001 | |15.012 | 15.001 | {20.017 | 20.002

Table 4.3: The Estimates of Fault Location at Different Values of Sampling Rate.

Fault Resistance = 0.0

No. of Equations = 9

Fu: zl frequency = 60 Hz.

No. of Unknowns = 7

Time Reference (T=0.0) at The First Sample.
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Estimated Fault Location (in miles)
Y=.25 Y=10 Y=15 T Y =20
Sampling rate
(Hz) LSV LAV LSV LAV LSV LAV LSv LAV
4320 25165 .30083 12316 8.483 19.904 ; 24129 38.233 36.673
2160 .25067 .25034 1 |10.895 10.C44 | |16.837 | 15.164 | {23.003 | 20.262
1440 25100 25010 | |11.344 10.011 17.803 | 15.015 | [24.647 | 20.027
720 .25022J .25000 | |10.329 10.006 | |15.703 | 15.009 | 21.177 | 20.020

Table 4.4: Estimates of Fault ucation ai Different Values of Sampling Rate.

Fault Resistance = 30.0 ohms
No. of Equations = 7
Fundamental frequency = 6y Hz.
No. of Unknowns = ~

Time Reference (T=0.0) at The First Sample.
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Estimated Fault Location (in miles)
i Y=.25 ¥ =10 Y=15 Y =20
Sampling rate
(Hz) LSV LAV LSV LAV LSV LAV LSV LAYV
4320 .25191 .38008 12.689 8.973 20.712 15.575 29.631 13.095
2150 24004 .24943 9.303 9.995 13.595 15.129 17.747 20.228
1440 .24766 25017 6.949 10.011 8.812 15.020 10.039 20.046
720 .25002 .25001 10.025 9.993 15.055 14.992 20.094‘1 19.993

Table 4.5: Estimates of Fault Location at Different Values of Sampling Rate.

Fault Resistance = 30.0 ohms
No. of Equations = §
Fundamental frequency = 60 Hz.
No. of Unknowns = 7

Time Reference (T=0.0) at The First Sample.



Estimated Fault Location (in milas)

Y=.25 Y=10 [ y=ls Y=20
Sampling rate
(Hz) LSV LAV LSV LAV LSV LAV LSY LAV
4320 25035 .30083 11.735 10.0435 15.908 24.139 21.466 36.673
2160 25127 25034 10.017 10.010 18.625 15.164 26.022 20.262
1440 25005 .24987 10.017 10.010 15.007 15.015 | 119,079 20.028
720 25000 2502, 10.00s 10.013 15.011 14.996 J!:U.019 19.99s

Table 4.6: Fsumates of Fault Location at Different Values of Sampling Rate,

Fault Resistance

30.0 ohins

No. of Equations = 9

Fundamental frequency = 60 Hz.

No. of Unknowns = 7

Time Reference (T=0.0) at The First Sample.
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Fstimated Fauit Location (in miles)

i e

Y=.25 Y=10 Y=15 Y =20
Time Refe:.n:
(T=0 LSV LAV LSV LAV LSV | LAV LSV LAV
First sample .28508 .24999 11.590 10.000 | {17.500 | 15.000 | [23.465 | 20.000
Second sample .25266 .25000 10.079 | 9.999 15.099 | 14.998 | {20.111 19.998
Third sample 23528 .24999 9.380 9.999 14.056 | 15.001 18.729 { 20.003

Table 4.7: Estimates of Fault Location at Different Values of Time Reference,

Fault Resisicic 2z = 0.0
No. of Equations == 7
Fundamental Frequency = 60 Hz.
No. of Unknowns = 7

Sampling Frequency = 720 Hz.



Table 4.8: Estimates of Fault Location at Different Values of Time Refercnce.

Fault Resistance = 0.0

No. of Equations = §

Fundamental Frequency = 60 iiz,

No. of Unknowns = 7

Sampling Frequency = 720 Hz.

© Estimated Fault Location 1. miles)
T Y=.25 Y =10 1=1S Y =20
Time Reference
(T=0.0) LSV LAV LSV LAV LSV LAV LSV LAV
First sample 25205 | .24999 | [10.094 Tg@ 15.148 | 15.000 | [20.206 | 19.999
Second sample 25007 | .24995 | 110.001 | 9.999 15.001 | 14,998 | 119.995 | 19.998
Third sample 24959 | .249% 9.982 10.000 | [14.972 | 14.999 | |19.963 | 20.002




Estima ed Fault Location (in miles)

F Y=.25 Y=10 Y=15 Y=20
Time Reference
(T=0.0) LSV LAV LSV LAV LSV LAV LSV LAV
First sample -25018 | .25000 | {10.008 | 10.000 | [15.012 | 15.001 | |20.017 | 20.002
Second sample 25010 | .25002 | [10.005 | 9.999 15.008 | 14.999 | [20.011 | 20.000
Third sample .24992 | .25001 9.997 10.000 | {14.995 | 14.999 | {19.994 | 20.000

Table 4.9: Estimates of Fault Location at Different Values of Time Reference.

Fault Resistance = 0.0

No. of Equations = 9

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.




Estimated Fzult Location (in miles)

Y=.25 Y =10 Y =15 Y=20
Time Reference
(T=0.0) LSy LAV LSV LAV LSV LAV LSy LAV
First sample .25022 | .25000 { (10.329 | 10.007 | |{15.703 | 15.015 | [21.177 | 20.028
Second sample .24997 | .25001 9.970 10,009 | [14.945 ' 15.022 | {19.918 | 20.042
Third samnle 24996 | .25002 9.940 10.010 | 14.879 | 15.023 | {19.789 | 20.046

Table 4.10: Estimates of Fault Location at Different Values of Time Reference.

Fault Resistance == 30.0 ohms

No. of Equations = 7

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.




Estimated Fault Location (in miles)

Y=.25 Y =10 Y=15 Y =2
Time Reference
(T=0.0) LSV LAV LSV LAV LSV LAV LSV LAV
First sample 25002 | .25001 | |10.025 | 9.993 15.055 | 14.992 | 120.094 | 19.993
Secon.d sample 25000 | .25001 | {10.006 | 10.009 | {15.014 | 15.022 | |20.026 | 20.042
Third sample .25000 | .25000 | ]10.007 | 10.009 | |15.015 | 15.023 | [20.037 | 20.056

Table 4.11: Estimates of Fault Location at Different Values of Time Reference.

Fault Resistance = 30.0 ohms

No. of Equations = 8

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.




Estimated Fault Location (in miles)

.

Y =.25 Y =10 Y=15 Y=20
Time Reference
(T=0.0) LSV LAV LSv LAV LSV LAV LSV LAV
First sample .25000 | .25001 | [10.005 | 10.009 | [15.011 | 14.996 | {20.019 | 19.998
Second sampie .25000 | .25001 | |10.008 | 10.013 | [15.019 | 15.021 | {20.034 | 20.041
Third sample .25000 | .25001 | (10.009 | 10.026 | {15.022 | 15.030 | [20.042 | 20.091

Table 4.12: Estimates of Fault Location at Different Values of Time Reference.

Fault Resistance = 30.0 ohms

INo. of Equations = 9

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.




The Error of Estimated Fault Location (in miles)

Y=.25 Y =10 Y=15 Y =20
No. Of Equations
(T=0.0) LSV LAV LSV LAV LSV LAV LSV LAV
7 03508 | .00001 1.590 .00028 2.500 .00067 3.465 .000%0
8 .00205 | .00001 | [.09409 | .00028 .148 00067 | .2063 | .00037
9 00018 | 0.0 00788 | .0007 01223 | 06121 | |.01662 | .00203

Table 4.13: The Error of The Estimated Fault Location at Different Number of Equations.

Fault Resistance = 0.0

Time Reference (T=0.0) At The First Sample.

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.




The Error of Estimated Fault Location (in miles)

Y=.25 Y =10 Y =15 Y=20
No. Of Equations
(T=0.0) LSV LAV LSV LAV LSV LAV LSV LAV
7 .00266 | 0.0 .0786 | .00092 | |.0994 [ .00177 | [.11131 | .00211
8 .00007 | .00005 | |.00123 | .0011 00061 | .00216 | |.00041 | .00185
9 .0001 .00002 | |.00475 | .00039 | {.00773 | .00031 | {.01106 | .00015

Table 4.14: The Error of The Estimated Fault Location at Different Number of Equations.

Fault Resistance = 0.0

Time Reference (T=0.0) At The Second Sample.

Fundamental Frequency = 60 Hz.

No. of Unknowns = 7

Sampling Frequency = 720 Hz.
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Figure (4.27): IMPEDANCE of the line using LAV technique.
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Figure (4.29): IMPEDANCE of the line using LAV technique.
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Figure (4.30): Estimated distance versus time delay using LSV technique



The esumared distance (miles) Ly

| [
45 |- ~
LN
. e ey e
ul - DDE _
- F]
+ B HEE
L W3y
43 O -
k>
a2 -
41 |- —
0

40 - —

39 |- —

38 + . Rf= 10.0 ohms -
+ Rf = 20.0 ohms
OR;= 30.0 ohms

37 —
Y =44.5 miles
8‘h order filter

36 1 1 | | |

0.01 0.015 0.02 0.025 0.03 0.035 0.4

Time (sec)

Figurc (431): Estimated distance versus time delay using LAV technique.



CHAPTER 5

CONCLUSION

5.1 Summary

Two mecthods involving curve fitting techniques for loci - | ransmission line faults
were studied and tested. The first method is the least square error technique proposed by
Sachdev and Baribeau [14], the second one is the least absolute value technique proposed
by Soliman and Christznsen [17]. The fault location is determined by making use of the
fact that the line reactance is proportional to the length between the measuring point and

the fault location [14].

Two models of the power system were presented. The single-phase model and the
:uree phase model. The three phase model was limited to the symmetrical three phase

fault.

Simulation results show that the LAV technique is more accurate than the LSV tech-
nique. The results also show that the fault resistance and the shunt capacitance do not

greatly affect the estimation of the fault location.

5.2 Future Work

In this thesis, the voltage and current were determined in an off-line mode. A
worthwhile extention is to use an on-line approach, since it would allows at least some

connectivety of the power system while repair is undergoing.
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Recall that the three-phase mode! was limited to the symmeu.
direction for future work is to consiaer the applicability of the LAV technique in estimat-
ing fault locations for all types of fault (i.c. symmetrical fault and unsymmetrical fault),
This model will make the LAV technique mare practical, since the fault location could be

estimated for any type of fault.

Finally, a fauit detection routine must be associated with the fault locating technique
described in this thesis. To detect the occurrence of a fault, a fault detection routine must
exist. In practice, fault detection is important, since the occurrence of a fault will not be

known without this detector.

5.3 Concluding Remarks

The work in this thesis shows that:

1. The LAYV technique is more accurate than the LSV technique.

2. The fault resistance does not have a great effect on the accuracy of
either technique.

3. The line shunt capacitance does not affect the accuracy of either technique.
Indeed, if a high order filter is uscd the results provided by
both techniques are almost perfect.

4. The order of the filter affects the accuracy of both techniques, as well as
the time delay that is caused by using a filter.

5. The three parameters that give the most accurate results when using LAV

technique are:
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A. Sampling rate = 720 Hz.
B. No. of equations = 8 .

C. Time reterence (T=0.0) at the first sample.
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APPENDIX A

Data for the single phase system (i.e. is given in figure 3.1) is outlined in this appen-

dix. This data is taken from reference [18]:

(1]

(2]

(3]

[4]

[5]

Generator G ;:
105 MW capacity at 0.9 p.f. rated at 22 KV.

18.1 percent reactance on 105/0.9 MVA.

Short-circuit limiting reactor:

X, =0.237 ohms.

Transformer T ;:
Transformer ratio 142/22
Load carrying capacity of 60 MVA.

8.2 percent reactance on 60 MVA base at 142 KV tap setting.

Transmission line Li ;:
30 miles-long overhead aluminium-cable-steel reinforced conductor.
Series resistance of 0.5438 ohms/mile.

Series reactance of 0.5650 ohms/mile.

Transformer T ,:

124



(6]

(7]

Transformation ratio 126/33

Load carrying capacity of 20 MVA.

11 percent reactance on 20 MVA base at 126 KV tap setting,

Transmission Line Li,:
5 miles-long over head copper conductor line.
Total series resistance of 1.5 ohms.

Total series reactance of 3.3 ohms.

Load L 1
Real power of 15 MW.
Reactive power of § MVA.

Terminal Voltage of 31.5 KV.
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APPENDIX B

The data for the three phase system is the same as the single phase system except for

transmission line number 1 which is 133.5 miles-long, and is divided into three pi sec-

tions which is represented in figure 3.6. The data for figure 3.6 are:

Series impedance Z [y = 9.54 + j37.4 ohms.
Shunt impedance Z; = -j8860 ohms.

Initial pre-faulted voltage (Vg )=V, +1,Zp
Initial pre-faulted current (/5 ,) = / 1+,

=[1 +VBl/Zﬂr
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APPENDIX C

C.1 Fourth Order Filter.

Cutoff frequency  f,. =203 Hz
Transition frequency f, =285 Hz.

Sampling frequency f, =720 Hz.

Hence, the sampling interval is given by:

T=1/f
T =1/720 sec.
and,
285x2
12) = ————)=294 )
tan (w,T/2) =tan( 22720 ) = 2.945905
and,

tan (w,T/2) = 1.223939

By considering the amplitude chracteristic and at the transition frequency the following

equation is obtained.

tan (w, T/2) &
lOg (1 +(m ) =30

i.e.

n = 2.999565
log (2.999565/1.223939)
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n=39317=4

Where n is the order of the required filter.

From the value of tan (w. T/2), it can be shown that the poles, which lie on the Z~!

plane, have the following X and Y coordinates.

- 104637  +.196817
-.144995  +.658432
-318989  +1.448533

-2.105975  +3.961229

Note that four poles lie inside the unit circle of the Z~! plane and the other four lie
outside the unit circle. Therefore, the four poles which yield a stable function are:
-.318989+j1.448533

-2.1059754+j3.961229

The corresponding polynomial due to the stable poles given by:

AZ™y  =(Z7'+.31899+j1.44853)(Z 1 +.31899-j1.44853)
% (Z7142.10598+j3.96123)(Z ' +2.10598-j3.96123)

=(Z7%+.6380 Z~1+2.20)(Z2+4.2120 Z~1+20.1265)

Thus, the required transfer function is:



~1y4
Gz Yy =k A )
Z™ Az

Where, K is a gain constant and is given by:

4
1=K = 2;‘_ -
(3.8579%)(7 7.33842)

i.e.

K =6.07802

C.2 Eighth Order Filter.

Cutoff frequency f. = 200 Hz.

Transition frequency f, = 295 Hz.

Sampling frequency f, = 1440 Hz.

Hence, the sampling interval is given by:

T = 1fs
T = 1/1440 sec.
and,
wil 2057
tan ( > )-tan(1440 =.75014
and,
wcT _ 200« -
tan ( 5 )=tan ( '440)-.46631

n is obtained from,
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_ 2999565
75014
log(- e631’

n=726=8

w. T
From the calculated values of tan (——%——), it can be shown that the X and Y coordi-

o

nates of the poles which lie on the Z~! plane are:

367027  +.085336
392673 +.259994
450890  +.446794
559212 +.653643
755727  +.883342
1.119040  +1.108873
1.770487  +1.172254

2.58465  +.600985

The eight poles which yield a stable function are:

0.755727+j0.883342
1.119040+j1.108873
1.770487+j1.172254

2.58465 +j0.600985



Therefore, the polynomial in terms of Z~! which corresponds to the stable poles is:

A(Z™Y=(Z72-1.5115Z741.354)(Z"2-2.2381Z "'+2.4819)

*(Z72-3.5410Z144.5088)(Z ~2-5.1697Z~'+7.0427)

Hence, the required transfer function is givet by:

-148
g U+Z27)°

G2 ™H=
27) Az

Where K is a gain constant and is given by:

28
t=K (0.83996)(1.24377)(1.96783)(2.87298)

ie.

K =10.02307

C.3 Tenth Order Filter.

Cutoff frequency  f,. =218 Hz.

Transition frequency f; =290 Hz.

Sampling frequency f, = 1440 Hz.

Hence, the sampling interval is given by:
T=1/f,
T=1/1440 sec.

And,
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200
=. 3
) =733

tan (wT/2) = tan (
And,

218
1440

tan (w T/2) = tan ( ) =.51503

Hencee, n 1s calculated from:

2.999565
73323 )
51503

log(

ie.

n=9.78=10

Using the calcu. <~ [ue of tan(w, T/2), .~ and Y coordinates of the poles are

shown 1o be:

(oS
9



321884 +.070592
336568 +214714
368548 +.365347
423998 +.529629
515107 +.713253
665457  +.921438
921173 +1.150664
1.368509  +1.356622
2.114579  +1.345853

2964173  +.650062

The ten poles which yield a stable transfer function are:

0.665457+j.921432

0.9211734+j1.150664
1.368509+j1.356622
2.1145794j1.345853

2.9641734j.650062

Therefore, the corrusponding pclynomial due to the stable poles is given by:

AZ7Y =(Z7%1.3309Z271+1.2919)(Z 2-1.8423Z"142.1726)
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* (272273702 7'+3.7132)(Z "2-4.2292Z "' +6.2828)

*(Z-2-5.9283Z149.2087)

Hence, the required transfer function is given by:

(1+z H'°

G@EZhH=K
A@Z™
Where K is given by:

210
=K (.96097)(1.33024)(1.97622)(3.0536)(4.28042)

i.e.

K =.032246



APPENDIX D

COMPUTER IMPLEMENTATION

In this appendix the fault location algorithm program will be discusse s, vhis no.
gram is divided into three separated segments. The block diagram shown in figurs D.i
shows that these three segments are linked together. The fir:t program finds the pseudoin-
verse of a matrix A (see chapter 2), and this pseudoinverse mairix will be an input to che
main program. The second program finds the initial conditions of the faulted voltage and
the faulted current, then from these initial conditions finds the unfiltered voltage and the
unfiltered current, then from these and by using the low-pass filters the filtered faulied
voltage and the filtered faulted current are found. (see the block diagram in figure D.2).
The output of this program will be an input to the main program. The main program finds
the impedance of the line and the fault location for a specific input from progra-- ' and

program 2,

These programs were imple~.ented on the MTS sys.em. These p. >gzams are written
in a high level language Fortran 77 [22]. The IMSL library was also used for ease of the

development of these programs.

The next section describes the details of each program and its flow chart as well as

the efficiency of dividing the program into three separated programs.

D.1 Pseudoinverse Program: (Program 1)
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This program calculates the pseudoinverse of a matrix A in chapter 2. the rational
behind having the computation of the matrix A as a separate program is that, the pseu-
doinverse of the matrix A need only be caiculated once, thus it is inefficient to calculate it

in every run of the main program. The flow chart of this program is shown in figure D.3.

D.2 Filtered Faulted Voltage And Filtered Faulted Current Program:

(Program 2)

This program is used to simulate the simple ransmission line system under both pre-
fault and post-fault conditions. The test model is either a single- phase or three-phase sys-
tem. In both cases, a single-phase equivalent circuit is used to obtain the transient

ro: ez of the faulted system as discussed in chapter 3.

"Tis program contains two subroutines. The model simulation (i.e. the inidal condi-
tion and the uniiltered voltage and the unfiltered current subroutine) and the low-pass
digital filter (i.e. the filtered voltage and the filtered current subroutine). The flow chart
of the model simulation of the initial condition and the unfiltered \;oltage and current is

shown in figure D.4.

D.2.1 Model Simulatior: Routine:

The routine is straight forward, starting by setting the dimensions and the sampling
rate, then the prefault voltage and current phases (which are obtained from the prefault
steady state model), required to calculate the instantaneous current and voltage prior to

the occurrence of a fault. The fault location is also an input to the program and can be



varied according to the user choice. According to the location of the fault, the differential
equations of the faulted system are formulated. The equations which find the prefaulted
voltage and current are solved using Runge-Kutta method. Then these quantities are

stored and then used as an input to determine the filtered voltage and current.

D.2.2 Low-Pass Digital Filter Routine:

The 1-w-pass digital filter is required to attenuate the high frequency harmonics
which are present in the post-fault waveforms. A flow chart of the low-pass digital filter
subroutine is shown in figure D.5. Difference equations of the three developed filters are
formulated from their corresponding transfer functions. From these difference eauations
the filtered response is obtained. These filtered responses are stored to be used as an input

to the main program in order to determine the fault location.

D.3 Main Program: (Program 3)

This program is used to locate the fault of the faulted model which is simulated in
program 2. This program con._ins two subroutines, the impedance calculation subroutine
and the fault location subroutine. The flow chart of the main program is shown in figure
D.6. The inputs to this program are the total line length, entire line impedance, the order
of the filter, the pseudoinverse matrix and the total number of the post-fault samples
along with the respective current and voltage values. Equations (2.73) and (2.74) are used
to calculate the impedance seen between the sending end of the line to the faulted point.
The location of the fault is then determined from the computed reactance ratio using

equation (2.75). This program continuously locates the fault till the last set . samples is
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reached.

D.4 Summary

This appendix discusses the fault location techniques program briefly. A flow chait
for each segment of the program is provided. As well an explanation of the details of
each program is discussed. These programs were implemented on the AMDAHL/MTS
system using FORTRAN as the programming language. Finally, the objective of the pro-
grams was to study the performance of the LAV and the LSV techniques in estimating

fault locations in transmission lines.
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Pseudoinverse
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Program 1

Calculates the Impedance

and Fault Location

Output

e narcareefii

Fault Location

Filtered Voltage

and Current

Program 2

Program 3

Figure D.1: A block diagram shows how the three programs are linked together.
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Initial Conditions

Unfiltered Voltage and Current

Filtered Voltage and Current

Figure D.2: A block diagram for program 2.
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¥

Initialize Arrays

Y

Set the Sampling Rate

Y

Formulate the A matrix

1]
Calculate AT

Y

Multiply ATe4

|

Find the Inverse of
ATe 4

i
Multiply the Inverse of

AT*A by AT
(AT'A)—l'AT

l

Store the Pseudoinverse

Figure D.3: Program 1, the flow chart of the pseudoinverse program.
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( Start )

j

Set Dimensions

v
Set Sampling Rate

Y

Read the Pre—fault phasor

| |
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Voltage and Current
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Voltage and Current using

Runge-Kutta method
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Store the Prefiltered

Current and Yoltage

Y

=D

142

Initial Conditions

Unfiltered Voltage
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Figure D.4:.Flow chart to determine and store the initial conditions and the unfiitered voltage and

current.
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for the difference equations
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Obtain the Filtered response
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Store the Filtered
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Figure D.5: Flow chart of low-pass digital filter routine.




Read Pseudoinverse 1

Read Line Impedance

Rcad Line Length
Read Order of the Filter

\
Set the Current Sample

to the first Sample

!
lculate Summation using the

samples and the Pseudoinverse

]
Calculate R and X using

(2.45) and (2.46)

1
Locate the Fault using

equation (2.75)

Store the Calculated

Impedance and Fault location

Print the Final Solution

)

Figure D.6: Flow chart for the main program.
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APPENDIX E

PSEUDOINVERSE

If a matrix is square, its inverse exists if it is a full rank matrix. For example, if we
have the system below:
Y=AX &1
Where,
Y is a known vector
A is an rxn known matrix

X is an unknown vector

If r=n and A is a full rank matrix, then the inverse of A exists and we can solve for X .

But if r is not equal to n, then A is a rectangular matrix and the pseudoinverse solu-

tion must be used.

For instance, if r > n, the system is called an overdetermined system and the left
pseudo inverse is used. On the other hand, if r < n, the system is called an underdeter-

mined system and the right pseudoinverse is used.

Thus if r > n in equation E. 1, the left pseudoinverse is used.

Multiply equation E.1 by AT
ATy=aTAy

Premultiplying both sides by (4T 4)™!
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X=@aTa)y'aTy (E2)

Where (AT A) AT is the left pseudoiunverse of the matrix A .

If r <n in equation E.1, the right pseudoinverse is used.

by noting th~*:

X=4T 4 aT)'y (E.3)
Where A7 A4A Tylis the right pseudoinverse of A

equation E.2 and E.3 both reduce to the conventional inverse equation when r=n,



APPENDIX F

The discre:c system is more useful in this thesis than the continuous system. To
transfer a system from the time domain to the frequency domain, either the Loplace
transform (continuous) or the Z-transform can be used. It is efficient to use Laplace
ud:-{form (i.e S-transform) for continuous signals and Z-transform for sampled signals.
Recause *~ . ontinuous signal is to transfered to Z-domain, it must be transfered first to

S-doma.  .d then to Z-domain and vise-versa.

The differences, which are our concern here, between S-domain and Z-domain are
listed below:
First, for the S-domain:
1. Uses differential equations.

2. Signals are continuous.

Second © - 7-domain:
+ 'Jses difference equations.
2. Signals are sampled.

3.Z=¢e*T in terms of S.
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