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ABSTRACT
Hypettropl;ic scars (HSc), which frequently develop as a result of deep
dermal injury, are characterized by an extracellular matrix (ECM) of altered
composition and organization and activated fibroblasts with altered
morphology. I hypothesized that changes in the physicochemical properties
of ECM during wound healing and remodeling affect the morphology of the
resident fibroblasts and hence their activity.

The morphology of human dermal fibroblasts grown on plastic was
altered by detachment with trypsin or EGTA followed by replating, or by
treatment of confluent cells with cytochalasin C. These treatments all
increased the expression of transforming growth factor-betal (TGF-81),
collagenase and tissue inhibitor of metalloproteinases-I (TIMP-1) but had no
effect on the expression of fibronectin or procollagen type I, demonstrating
that alterations in morphology of fibroblast selectively modulate the activity
of genes involved in structure and metabolism of ECM.

Fibroblasts were cultured in three types of collagen matrix (CM):
Anchored (ACM), stress-relaxed (St.rCM) or floating (FCM), environments
which more closely mimic the in vivo situation than does culture on plastic.
The expression of TGF-81 mRNA was elevated in all three when compared to
culture on plastic but highest in FCM. Collagenase mRNA was elevated to a
similar extent in all three types of CM. Fibroblasts continued to grow in



ACM but proliferated more slowly than on plastic. A reduction in cell
number was seen in FCM. Apoptotic cells were detected in St.rCM and FCM
but not in ACM or cultures on plastic, indicating that the mechanical status of
the matrix, or the cells’ ability to re-organize it, can regulate growth and
survival of the resident fibroblasts.

This work has revealed new insights into cellular mechanisms which
could be involved in the pathogenesis of HSc and may have implications for

better control of the fibrotic response.
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I
INTRODUCTION

A. OVERVIEW OF WOUND HEALING

Wound healing is (defined as) a series of highly regulated events
leading to reconstitution of the integrity of damaged tissue following
injury. These events are dependent on each other during the
physiologic healing process and involve both cell-cell and cell-
matrix/molecular interactions. To orient this overview, the wound
healing process is divided into three phases: inflammatory, granulation

tissue formation, matrix deposition and remodeling.

Inflammation

Severe injury results in blood vessel disruption and exposure of
blood components to the extravascular tissue. The exposure of
subendothelial components promotes the adhesion of platelets (to
subendothelial components) resulting in aggregation and (triggers)
blood coagulation. Immediately after wounding, fibrinogen is
converted to fibrin and polymerized fibrin is deposited in the tissue,
sealing off the injury and providing an appropriate matrix for

migrating cells.



Activated platelets not only trigger blood coagulation, but also
release a variety of biologically active compounds from their alpha and
dense granules which promote non-specific inflammation. These
factors include fibronectin, fibrinogen, thrombospondin, and Von
Willebrand factor, which are necessary for platelet aggregation and
binding to exposed subendothelial components, platelet derived

growth factor (PDGF), transforming growth factor (TGF) -a and -8

which are necessary for recruitment of inflammatory cells and the

vasoactive substances such as serotonin, adenosine diphosphate (ADP)

and Ca**, which are necessary for vasoconstriction to stop bleeding

(Wahl and Wahl, 1992).

Neutrophils are the first defensive cells which arrive in the
wound site. They are attracted by a variety of chemotactic factors
produced by activated platelets and tissue disruption. = Activated
neutrophils attack the bacteria which may be present at the wound site
by phagocytosis, as well as by secretion of toxic molecules and enzymes.
Granular contents of neutrophils released in the extracellular space
enhances the degradation of the connective tissue and leads to further
tissue damage. The influx of neutrophils seems to be a regulated event

in non-specific inflammation since in the absence of bacterial



contamination, the influx of neutrophils ceases shortly after the arrival
of monocytes.

Having arrived in the inflammatory site, monocytes differentiate
into tissue macrophages and increase their phagocytic and pinocytic
activities. Moreover, macrophages are an important paracrine source of
different growth factors and cytokines including PDGF, tumor necrosis
factor (TNF-a), interleukins (ILs), and TGF-8 (Wah! and Wahl, 1992).

These factors play important roles in cell migration, cell proliferation,
differentiation, angiogenesis and deposition of extracellular matrix
(ECM) which are the main events in wound healing. The high level of
Production of cytokines and growth factors, particularly TGF-8, at the
site of inflammation suggests a significant role for these factors in
injured and inflamed tissue (Cromack et al., 1987). In the case of
microbial contamination which prolongs the inflammatory phase, the
influx and activation of mononuclear leukocytes drive the acute
inflammation into the chronic state resulting in further tissue damage

and delay in new matrix formation and remodeling.

Granulation Tissue Formation
This phase, also known as the proliferative phase or phase of
fibroplasia, is characterized by the migration of fibroblasts and

endothelial cells to the wound site and their proliferation. It is now
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known that cytokines including PDGF, fibroblast growth factor (FGF),
TGF-8, TGF-a, epithelial growth factor (EGF), TNF, and small fragments
of matrix components, play important roles in the regulation of this
Phase of wound healing. Unlike mature scar and normal dermis,
granulation tissue is hypercellular and hypervascular and contains high
levels of locally-made fibronectin and an elevated level of type I
collagen. Fibroblasts deposit a transient loose ECM to fill the wound
space. The chemical composition of matrix has a significant effect on
the physical properties of tissue which may subsequently modulate
morphology, growth and activity of resident cells. Migratory cells use
this fibronectin-rich matrix for migration. Migratory endothelial cells
divide and differentiate to form the capillary sprouts which finally

assemble to form a new vascular network which provides oxygen and

nutrients for tissue. Amongst the cytokines, FGF and TGF-a are known
to stimulate angiogenesis directly. Although TGF-a mediates all of its
biological effects through the EGF receptor, it has been shown that TGF-

@ is a more potent angiogenic stimulator than EGF in vivo (Schreiber

etal,, 1980). The effect of TGF- is paradoxical in angiogenesis. TGF-8 is
known as an angiogenic factor in vivo, while in vitro, it inhibits
migration and proliferation of endothelial cells (Orlidge et al., 1989;
Tsukada et al., 1995). It seems that, depending on the concentration and
the composition and organization of the ECM, TGF-8 modulates the

4



endothelial cell phenotype in vitro . Madri et al. (1988) have shown
that TGF-8 at a concentration of 0.5 ng/ml or greater induces formation
of capillary-like networks of endothelial cells grown in collagen gels but
not of endothelial cells grown on plastic.

Wound contraction is another biological event of this phase of
wound healing. It is believed that some of the migrating fibroblasts
and/or perivascular satellite cells differentiate to myofibroblasts and
express filamentous actin in the form of stress-fibers which are arranged
parallel to the axis of the cell (Kischer et al., 1982a). The force of
contraction has been attributed to these cells (Gabbiani et al., 1972). The
role of growth factors such as TGF-8 and PDGF in myofibroblast
generation and wound contraction has been studied. Pierce et al. (1989)
reported that both TGF-8 and PDGF stimulate granulation tissue
formation but not myofibroblast generation in an open wound. Using
light and electron microscopic examination of biopsies taken from an
open wound model, described by Mustoe et al. (1991), they reported that
myofibroblasts were not detected in the growth factor treated wound at
10 days, but 12% of the fibroblasts in the control wound were
myofibroblasts at this time. They concluded that acceleration and
enhanced granulation tissue formation induced by these growth factors
may reduce the need for myofibroblast formation and subsequent

wound contraction. Interestingly, they detected collagen fibers in TGF-8

s



treated wounds but not in PDGF treated and untreated control wound
at this time. These findings suggest that TGF-8 may play a significant
role in the remodeling and transition of granulation tissue to mature
scar. It has been shown that fibroblasts from granulation tissue vary in
morphology, cytoskeletal proteins, gene expression, and response to
growth factors (Gabbiani et al., 1972; Skalli et al., 1989, Finesmith et al.,
1990).

Matrix Deposition and Remodeling

The final phase of wound healing is the remodeling and
evolution of granulation tissue. Fibroblasts are believed to be
predominantly responsible for this phase. This phase is characterized
by changes in the composition and architecture of the ECM and a
decrease in the number of cellular elements of granulation tissue such
as fibroblasts and endothelial cells. Programmed cell death (apoptosis)
has been shown to be involved in the elimination of the expanded
fibroblast and endothelial cell populations (Desmouliere and Gabbiani,
1996). As the matrix matures, fibronectin and hyaluronic acid are
replaced by fibrous bundles of collagen and proteoglycans. Alterations
of the chemical composition of the matrix in turn change the physical
characteristic of the matrix and activity of fibroblasts, resulting in the
formation of scar tissue. During the remodeling of scar tissue,

rearrangement and reorientation of newly synthesized collagen fibers

6



leads to the formation of a strong mature scar in which both
organization of fibrous elements and the proportion of matrix
components differ from normal dermis. As in the other phases of
wound healing, cytokines appear to affect remodeling of granulation
tissue and scar formation. The indispensable role of fibrogenic growth
factors in the regulation of matrix deposition during wound healing
supports the idea that aberration in the expression of these growth
factors, and/or abnormal responses to them, play an important role in
the outcome of tissue repair process. Amongst them TGF-8 is believed

to be prominent.
B. TRANSFORMING GROWTH FACTOR-BETA (TGF-8)

TGFs-8 are products of a subset of a large gene family that is
conserved from Drosophila to human (Padgett et al., 1987). Several
other structurally related gene products including inhibins and activins,
mullerian inhibitory substance, decapentaplegic gene product, product
of Vgl mRNA and several isoforms of bone morphogenic proteins
have been identified. Thus far, five isoforms of TGF-8 have been
isolated in vertebrates and three isoforms have been identified in
mammals. Althbugh TGF-8 was defined initially for its ability to
induce a reversible phenotypic transformation of normal rat kidney

fibroblast (Roberts et al., 1981), it is now well-documented that TGF-8s
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are multifunctional secretory proteins that are involved in the
regulation of cell growth and death, differentiation, modulation of
immune responses and regulation of matrix formation, events which
are important in many physiological processes including wound
healing. In this overview the term TGF-8 is used as a generic term
where the precise form(s) is (are) not specified.

Chemical Structure and Processing

In 1983 transforming growth factor beta (TGF-8) was purified from
human platelets, human placenta and bovine kidney (Assoian et al.,
1983; Frolik et al. 1983). Using human TGF-81 with a purity of 2 95%,
Derynck et al. (1985) showed that non-reduced TGF-8 migrates as a 25
kDa protein in a SDS polyacrylamide gel and reduction with 8-
mercaptoethanol shifts the molecular weight to 12.5 kDa. Moreover
they confirmed that TGF-8 consists of two identical disulfide-linked
monomers. Using direct protein sequencing and cDNA cloning, they
established that the C-terminal segment of the 390 amino acid precursor
is processed to the 112 amino acid fragment which represents

monomeric TGF-8. TGF-8 is a highly acid resistant polypeptide. Since

its full activity is retained in 1 M acetic acid at 95° C, the acid ethanol
extraction is an appropriate method to isolate this growth factor from

tissues and cell cultures.



It has been shown that the sequences of mature processed TGF-£81
from human, swine, and bovine sources are identical and differ by only
one amino acid residue, the substitution of serine for an alanine at
position 75, from those of murine TGF-8 (Derynck et al., 1986).
Although TGF-82 and TGF-83 seem to be less abundant than TGF-81,
some evidence shows that certain cell types secrete predominantly one
of these isoforms (Ikeda et al., 1987). The mature processed forms of
TGF-82 and TGF-83 display a 70% to 80% sequence identity with TGF-81
(Derynck et al., 1985; 1987; Marquardt et al., 1987). Very recently, Hinck
et al. (1996) have reported the detailed three-dimensional structure of
TGF-B1. In spite of similarity in the backbone of TGF-81 and TGF-82,
several notable differences have been discovered in positional
structure and flexibility of the molecules that may be related to
differences in receptor binding and biological activities of the isoforms.
In contrast to mature forms, the precursor sequences show greater
differences, however, particular regions within the precursor are
preserved. Interestingly, the arginine-glycine-aspartic acid (RGD)
sequence, a general cell recognition signal sequence of the major ECM
components, is present in both TGF-81 and TGF-83 precursors but not
in TGF-82. Also, three cysteine residues in the proregion of the TGF-8
precursor at position 33, 223, and 225 are highly conserved. Brunner et

al. (1989) showed that these cysteine residues are involved in



dimerization of the precursor proregion. The role of these cysteine
residues in the latency of TGF-8 will be discussed.

Nascent TGF-8 undergoes several post-translational processing
events (Figure I-1). The 29 amino-acid hydrophobic signal sequence is
cleaved at the Gly-Leu peptide linkage resulting in pro-TGF-8 (Gentry et
al., 1988). In addition, oligosaccharide units are added to pro-TGF-8 at
three potential glycosylation sites within the amino-terminal portion of
the molecule. During transit through the Golgi complex further
processing (mannose-6-phosphorylation) produces a phosphorylated
glycoprotein  containing  complex type sialyated  N-linked
oligosaccharides (Purchio et al, 1988). Since mannose-6-phosphate is a
marker that cells use to sort lysosomal proteins intracellularly, the
phosphorylated sugars on the TGF-8 precursor may be important for
intracellular sorting. However, Dennis and Rifkin (1990) have shown
that they may be involved in the cellular activation of the latent form
of TGF-8. Although the biological significance of glycosylation and
phosphorylation of pro-TGF-8 needs to be further studied, it has been
shown that the carbohydrate moieties within the precursor sequence
are essential for the latency of TGF-8 released by cells in culture
(Miyazono et al., 1989).
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At some stage during synthesis or transit, the TGF-8 monomer is
cleaved from the pro-TGF-8 at an Arg-Arg dipeptide (dibasic cleavage
site, amino acid residue 287 and 288) resulting in the amino-terminal
glycopeptide, which is known as the latency associated peptide (LAP). It
has been confirmed that this dibasic cleavage sequence is located within
a hydrophilic region. Therefore, it is accessible to a trypsin-like protease
{Gentry et al., 1988).

Evidence provided by Miyazono at al. (1988), Wakefield et al.
(1988) and Okada et al. (1989) confirmed that the disulfide-linked
mature TGF-8 homodimer released by platelets during thrombin-
induced degranulation remains non-covalently associated with a
disulfide-linked dimer of the LAP to form the " Latent TGF-8 complex"”.
In an elegant study Brunner et al. (1989) showed that site-directed
mutagenesis of cysteine residues 223 and 225 in the precursor molecule
prevents the dimerization of the precursor proregion resulting in
synthesis of a monomeric precursor and biologically active form of
TGF-8 by transfected COS cells. Therefore, they concluded that
dimerization of the precursor proregion may be necessary for latency of
the TGF-8 molecule. In 1987 O’'Connor-McCourt and Wakefield
reported that the biological latency of TGF-8 in serum is due to the

interaction with a-2-macroglobulin, a serum protease inhibitor. One
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year later this group (Wakefield et al, 1988) showed that the latent form
of platelet TGF-8 cannot bind to a-2-macroglobulin, but that the
activated form of TGF-8 does bind. Based on these observations they
suggested that a~2-macroglobulin scavenges excess active TGF-8 from
the extracellular fluid and thereby limits the systemic effects of this
growth factor and confines its action to those target tissues capable of

activating it.

Gene, Promoter and Regulatory Elements

The genes and cDNAs for mammalian TGF-81, TGF-82, and TGF-
£3 have been cloned and sequenced (Derynck et al., 1985, 1986;
Marquardt et al., 1987; De Martin et al., 1987). The loci of these genes
have been identified in the human on chromosomes 19, 1, and 14
respectively (Fujii et al., 1986; Barton et al., 1988). According to Derynck
et al. (1987), the human TGF-81 gene has been estimated to span more
than 100 Kb and is divided into 7 exons and 6 introns (Figure I-2). The
coding sequence corresponding to the 390 amino acid human TGE-81
(hTGF-8) precursor, pre-pro TGF-8, has been also deduced.

Kim et al. (1989a) have sequenced and characterized the 5’ flanking
region of the TGF-81 gene. They have identified several regulatory

regions including two different promoter regions, one region with
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enhancer-like activity and two negative regulatory regions (Figure I-2,
A). Apparently, the negative regulatory regions correspond to fat-
specific element 2 (FSE2) and interferon responsive element (IRE) and
the positive regulatory regions possess several binding sites for putative
transcription factors such as nuclear factor 1 (NF-1) SP1 and activator
protein-1 (AP-1) complexes. In contrast to the coding region, the
promoter region of the mammalian TGF-8 genes exhibit minor
similarity in sequence indicating differential regulation of TGF-8
isoforms. Using an SP1 expression plasmid in a cell background devoid
of any SP1 homology (Drosophila melanogaster cell culture system),
Geiser et al. (1993) have shown that TGF-81 and TGF-83 promoters were
responsive to the SP1 transcription factor while the TGF-82 promoter

was completely unresponsive.

In spite of intensive investigation in defining the biological
activities of TGF-8, the mechanism(s) by which expression of this
multifunctional growth factor is regulated is not yet fully understood.
Apparently, expression of TGF-81 is largely governed by the AP-1
complex, a heterodimer of c-fos and ¢-jun or a homodimer of c-jun
protooncoproteins. In 1988, Obberghen-Schilling et al. reported that
TGF-81 increases.its own expression in both normal and transformed
cells. Later, Kim et al. (1989b) showed that the autoinduction of TGF-£1
is mediated through the AP-1 binding elements. Moreover, the
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