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Abstract

Topological Recursion began its life as a series of recursive equations aimed at
solving constraints which occur in matrix models of Quantum Field Theory. After
its inception, Topological Recursion was given a more abstract formulation in terms
of Quantum Airy Structures and has since been of help to Gromov-Witten theory,
the study of Quantum Curves, enumerative geometry, integrable systems, Hurwitz
Theory, and Knot Theory, for example, by revealing a common structure within
the solutions to all of these varied problems. We recount the history of Quantum
Airy Structures, present the cornerstone theorems upon which their theory depends,
and show that these theorems remain true when passing to increasingly broad
generalizations. Many of the interesting connections which ignited and maintain
engagement with Quantum Airy Structures are put on display.
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Chapter 1

Introduction

1.A Motivation

In enumerative geometry, one frequently encountersVirasoro constraints. Whatever

sequence of invariants Fn[α1, . . . , αn] is in question, it is worthwhile to consider

its generating seriesF =
∑∞

n=0

∑∞
αi=0 Fn[α1, . . . , αn]xα1 · · · xαn or the exponential

Z := eF . Whatever recursion exists among theFn, or whatever relations they satisfy

in virtue of their combinatorial meaning, can often be written as a list of differential

equations HiZ = 0. Generically, the operators Hi form a representation of some

subalgebra of the famous Virasoro algebra.

One may turn this around, asking the following question: supposing instead that

you had in hand a collection of operators Hi, do there exist some conditions on

them that would guarantee a solution Z of HiZ = 0 to exist and to be unique? If

so, would the resulting Z have coefficients with any special meaning? Topological

Recursion, in the form developed by Kontsevich and Soibelman [31], can be viewed

as answering in the positive. The collection {Hi} must form a Quantum Airy

Structure, which is (along with some other data) a Lie algebra represented as
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differential operators. Then Topological Recursion is an iterative algorithm that

begins with any Quantum Airy Structure and produces the unique solution Z.

Asking such a question, and being hopeful about its answer, had been motivated

by Witten’s Conjecture. Through his belief that two different approaches to two-

dimensional quantum gravity must be equivalent, Witten conjectured [40] a relation

between the hierarchy of Korteweg-deVries equations and the intersection theory on

amoduli space ofRiemannianmanifolds. TheKorteweg-deVries hierarchy is a series

of differential equations, all of which are integrable, meaning that solutions admit

descriptions in terms of a tau-function [17]. The content of Witten’s Conjecture is

that at least one tau-function for the KdV hierarchy is also the generating function

for intersection numbers on Mg,n, the [compactified] moduli space of genus-g

Riemann surfaces with nmarked points. This conjecture was proven by Kontsevich

in 1992 [30]. The more general problem outlined above, then, solved by Topological

Recursion, can be seen as a generalization of Witten’s Conjecture.

For the original Quantum Airy Structures the operators were restricted to have

degree at most two, but this requirement was lifted in a recent paper that named

the resulting possibilities "Higher Quantum Airy Structures" [8]. Higher Quantum

Airy Structures can arise in connection with larger so-called W-algebras [4, 25],

extensions of theVirasoro algebra, and once again the functionZ can be constructed.

The additional generality allows for the coefficients of such a Z to capture a wider

array of enumerative specimens. The story of Higher Quantum Airy Structures is

related to the study of Vertex Operator Algebras (VOAs) [8, 33], objects that are

implicated in Borcherd’s proof of the Monstrous Moonshine conjecture [7, 26] and

have made their way into the foundations of String Theory [35]. When Borot et

al defined the Higher Quantum Airy Structures [8] they constructed a number of

examples, all of them arising in the same way: from modules of a VOA. In fact, all
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examples descended from modules of one: the Heisenberg VOA.1

Topological Recursion and Higher Quantum Airy Structures are at the centre

of broad questions concerning models of gravity [24], mirror symmetry [20], the

passage from classical to quantum physics [31], integrable systems, matrix integrals

[21], and enumerative geometry of all kinds [23]. The additional generality afforded

by them over Quantum Airy Structures has begun to see its need in many new

contexts.

1.B Outline

The most important theorem concerning Quantum Airy Structures is the existence

and uniqueness of a power series Z, the Partition Function, which is annihilated by

all its members. To be precise, we have:

Theorem 1. Let H = {Ĥi} ⊂ O~ be a Quantum Airy Structure. Then, among all

Z = eF with F ∈ S~ of the form (1.1), there is a unique solution to the system of

equations ĤiZ = 0 for i ∈ I .

In the theorem statement, S~ is simply a space of formal power series and

"Quantum Airy Structure" is made precise by Definition 4. Our paper reviews

alternative proofs of Theorem 1, with increasing degrees of generality. There are

two main proofs. One is conceptual [31], using symplectic methods and making

contact with the geometric notions at the heart of classical physics. The other is a

more blindly computational proof. We present the computational proof twice, both

a simpler version [3] which only proves a special case, and also a more complicated

version [8] for full generality.

1Strictly speaking, from modules of orbifolds of a Heisenberg VOA.
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A novel step that we take is to introduce a purely notational alteration. This

simplifies some expressions, but most importantly it makes apparent a massive

simplification of the conceptual proof, which in fact is also a generalization. Our

new convention is a rescaling of variables. The Partition Function, Z, is a formal

Laurent series in n + 1 variables {~, x1, x2, . . . , xn}, one of which is singled out.

In its connection to geometry, each term admits visualization as a certain marked

Riemann surface. The special variable’s (~’s) duty is to bear as its exponent the

genus of that surface, while the other variables are related to marked points. The

partition function can be written:

Z := eF := exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~g−1

n!
Fg,n[α]xα1 · · · xαn


For some coefficients Fg,n[α] ∈ C. Naturally enough, when we begin solving the

constraints upon this F we find that χ := 2 − 2g − n, the Euler characteristic of

the corresponding surface, emerges as extremely important. Knowing this, that χ is

more important than g or n separately, we opt to rewrite F so that ~ instead bears

−χ in its exponent. We write:

Z := eF := exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα1 · · · xαn

 (1.1)

Expressions of this form do not have the same extension as expressions of the earlier

form without also re-defining the variables, but they are in correspondence, and

we do the work of carrying all things through the correspondence. Because the

parameters g and n have been mixed together in this way, what in [31] had been a

double-induction over both becomes, in our presentation, a single induction over−χ.
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Not only this, but our adaptation skips entirely all mention of symplectic geometry,

Lagrangian manifolds, and their cronies. The presence of those objects is important

toKontsevich and Soibelman, whose aim in part is to draw tight connections between

quantum and classical. The absence of them, however, is important as well because

our proof can establish its result for a wider class of Quantum Airy Structures than

those in Definition 4.

The Quantum Airy Structures presented in Definition 4 are collections {Ĥi}i∈I

of power series over C in ~, xi, and ∂/∂xi (for i ∈ I). Among other requirements,

they must have a certain form:

Ĥk = −~ ∂

∂xi
+
∑
m≥2

~mPm,k (1.2)

The constant and linear terms [in ~] are completely prescribed. The Pm,k are power

series over C in xi, ∂i having degree less than or equal tom, so that all terms can be

realized as polynomials in ~xi, ~∂i over C[[~]]. The significance of this requirement

will emerge when we discuss the classical limit, but it is exactly what we have lifted

in our generalization. If "Quantum Airy Structure" is relaxed so that the Pm,k of

(1.2) have no limitations at all on their degree, allowing even that they have infinite

degree, we can still prove the following:

Theorem 2. Suppose we have a Quantum Airy Structure H = {Ĥi} ⊂ O~. Then,

among all

Z = exp

∑
g∈ 1

2
Z

2g−2+n>0∑
n∈N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα


there is a unique solution to the system of equations ĤiZ = 0, i ∈ I .

Unsurprisingly, the additional structures falling under our broadened scope all

have a trivial classical limit. This original result occurs in Chapter 4, and its

5



consequences are taken up in Chapter 5. In Chapter 2 we review some background,

including a history of QuantumAiry Structures, their existence/uniqueness theorem,

their significance to other areas, and a few methods of their construction. Chapter 3

reviews what is known about the special case of quadratic Quantum Airy Structures.

Chapter 6 concludes.
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Chapter 2

Background

2.A History

A Quantum Airy Structure is a collection of differential operators with a mild pre-

scription as to their form as well as a closure property regarding their commutators.

Their utility inheres in their relationship to Topological Recursion, which was dis-

covered initially as a way to solve the loop equations of a matrix model [19,21–23].

Matrix models can be viewed variously as zero-dimensional Quantum Field The-

ories, as realizations of quantum gravity via random surfaces, or as representing

other stochastic processes. Shorn of context, one common type of matrix model

boils down to the study of some integral with the form [34]:

ZN :=

∫
N×N HermitianM

e−N trV (M)/tdM (2.1)
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for some analytic function V (the potential), which we take to be a polynomial.1

When the integral converges, its integrand is taken as giving the relative probability

that its argument,M , be drawn from the urn. When the integral does not converge

one may take it to define, instead of a number, a formal power series in N/t [34].23

In this case the connection to probability is strained, despite its being the case

generically for quantum field theories. Either way, it has been recognized as the

generating function which enumerates closed, discrete surfaces. We will see an

example of this in section 2.D.1. As is quite usual in combinatorics, the logarithm

FN := − log(ZN) enumerates connected discrete surfaces. This logarithm admits

what is known as a topological expansion, FN =
∑∞

g=0(N/t)
2−2gFg, so called

because the Fg count the connected, discrete surfaces of genus g.

In Quantum Field Theories one encounters the Schwinger-Dyson equations, an

infinite family of constraints that relate the theory’s correlation functions to one

another. In the case of zero-dimensional Quantum Field Theory – i.e. a matrix

model – these equations are instead known as the Loop equations [18, 34]. We

define first the correlation functions:

Wn(x1, . . . , xn) :=

〈∏
i

Tr(Ixi −M)−1

〉

in which the expected value is taken using the probabilitymeasure described earlier.4

Giving names to the coefficients ofWn’s N -expansion,

Wn(x1, . . . , xn) :=
∞∑
g=0

(
N

t

)2−2g−n

Wg,n(x1, . . . , xn)

1The measure, dM , is that induced by the Haar measure on U(N) when realizing the Hermitian
matrices as a symmetric space.

2This is accomplished by non-rigorously commuting the integration with the Taylor expansion.
3At best, it can be taken to be an asymptotic series.
4This "expected value" may be purely formal.
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and defining also:

Pn(x1, . . . , xn) :=

〈
Tr
[
(V ′(x1I)− V ′(M))(x1I −M)−1

] n∏
i=2

Tr(xiI −M)−1

〉

:=
∞∑
g=0

(
N

t

)2−2g−n

Pg,n(x1, . . . , xn)

we can express the Loop Equations as:

V ′(x)Wg,n+1(x, J) = Pg,n+1(x, J) +
n∑
j=1

∂

∂xj

Wg,n(x, J\xj)−Wg,n(J)

x− xj

+

g∑
h=0

∑
I⊂J

Wh,|I|+1(x, I)Wg−h,1+n−|I|(x, J\I) (2.2)

These equations result as consistency conditions after demanding that the matrix

integral (2.1) retains a constant value throughout a continuous change in integration

parameter. This explanation leaves us without reason to think that (2.2) holds when

it describes a purely formal power series, and yet this is indeed true (Theorem 3.1

in [34]).

For n = 0 and g = 0, this reads (W0,1(x))2 = V ′(x)W0,1(x) − P0,1(x). Since

W0,1 is a function it represents only one solution to that quadratic equation. We

may instead construe W0,1 and x as bearing a two-to-one relation described by

the algebraic equation y2 − (V ′(x)/2)2 + P0,1(x) = 0, which is implied by the

previous equation on W0,1 if we take y = 1
2
V ′(x) −W0,1(x). The natural setting

for W0,1, and all the later correlations, is in fact a two-sheeting Riemann surface

x : L → CP1 covering the Riemann sphere. This surface is known as the Spectral

Curve associated to the matrix model. This is preferable, since the Loop Equations

do not uniquely constrain any of theWg,n. EachWg,n – if taken to be defined only

by the Loop Equations – will end up being a multi-valued function of x unless we
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reinterpret it as a function on L instead. One can show ( [34], section 4.5) that each

Wg,n gives a well-defined meromorphic differential on Ln according to:

ωg,n(z1, . . . , zn) := Wg,n(x(z1), . . . , x(zn))dx(z1) · · · dx(zn)

+ δn,2δg,0
1

(x(z1)− x(z2))2
dx(z1)dx(z2)

with a minor correction that is necessary for ω0,2. We can solve the Loop Equations

if we cast them as a recursion for the ωg,n, which will themselves be uniquely

determined thereby.5 The equationswhich result, now called Topological Recursion,

are: [34]

ωg,n(z0, J) =
∑
i

Resz→aiK(z0, z)

[
ωg−1,n+2(z, z, J) +

g∑
h=0

′∑
I⊂J

ωh,|I|+1(z, I)ωg−h,1+n−|I|(z, J\I)

]
(2.3)

This requires some information about L. The i-sum is taken over the ramification

points ai of x : L → C; these are the points where sheets cross, or equivalently

dx(ai) = 0. The automorphism z 7→ z is the non-trivial operation such that

x(z) = x(z); in words, it swaps the sheets. Finally, with y : L → CP1 such that

{x, y} generate the function field on L,6 the recursion kernel is:

K =
−
∫ z′=z
z′=z

B(z0, z
′)

2(y(z)− y(z))dx(z)

withB the Bergmann kernel.7 The recursion is initialized viaω0,1(z) = −y(z)dx(z)

5Relative to a choice of basis for L’s first homology [23].
6IfL is realized withinC2 as the Riemann surface associated to some multi-valued function, then

y is simply the horizontal projection (i.e., the function itself).
7The Bergmann kernel is a bidifferential that is idiosyncratic to L, and depends upon a choice of

basis for its first homology, with respect to which it is "normalized" [23]. It is, among other things,
a Reproducing Kernel for the space of multi-differentials on L – with a suitable inner product, the
linear functional it defines coincides with point-evaluation.
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and ω0,2(z1, z2) = B(z1, z2).

Part of this formalism’s massive utility is that it easily delivers symplectic

invariants of the spectral curve L. For each g ≥ 2, and for any local primitive Φ of

ydx, the following Free Energies

ωg,0(L) :=
1

2− 2g

∑
i

Resz→aiΦ(z)ωg,1(z)

are invariants of any conformal mapping (L, x, y) 7→ (L̃, x̃, ỹ) as long as dx∧ dy =

dx̃ ∧ dỹ [19, 23, 34].

Topological Recursion, however, has much broader scope. Many Riemann

surfaces E may be inserted into it, even those that are not the spectral curve of

any matrix model. The ωg,0 are still symplectic invariants, and the ωg,n often

compute important geometric quantities such as intersection numbers [23], Hurwitz

numbers [9, 10], and Weil-Petersson volumes [20]. The only requirement we ask is

that E has a realization as a branched cover x : E → CP1 such that only two sheets

meet at any ramification point. This allows us to define the involution z 7→ z, but only

locally near each ramification. In fact, this restriction has been lifted [13]. Also,

the Topological Recursion has been given a manifestly global formulation [11].

The generalization resulting from these works is known as the Bouchard-Eynard

topological recursion, in contrast to the earlier Checkhov-Eynard-Orantin recursion.

We do not have to work with differentials, if we prefer. It can be seen inductively

that each ωg,n has poles only at the ramification points, ai. This gives a privileged

basis of differentials, with poles at the ramifications, into which the ωg,n can be

expanded with coefficients Fg,n[k1, . . . , kn]. With them, we construct the Partition

11



Function:

Z := exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
k∈In

~2g−2+n

n!
Fg,n[k1, . . . , kn]xk1 · · · xkn


which, in this case, does not come from any matrix model.8 The topological

recursion for the ωg,n can be recast equivalently as a system of differential equations,

V iaZ = 0, in which a indexes the ramification points and i is a natural number. As

shown in [3, 8, 23, 31], it turns out that for each a the collection {V ia} forms a

representation of a subalgebra of the Virasoro algebra.

This is all very non-trivial, although the general outline is easy to believe.

Stringing up recursive sequences into power series and giving their recursion the

guise of a differential constraint is a standard combinatorial gambit, and Virasoro

constraints have been endemic to the study of matrix models for a very long time.

(However, it is worth noting that the Virasoro constraints obtained here are not the

same as the traditional constraints satisfied by partition functions ofmatrixmodels.9)

This last formulation, though, is the one that the remainder of our paper will most

closely resemble. To get, at last, to Quantum Airy Structures, we need only ask a

question inverse to the one just contemplated: if you happened to have on hand a

collection of differential operators {Vi}, what would it take to guarantee that there

exists a solution to the equations ViZ = 0 for all i? What would it take for that

solution to be unique? Thanks to the Existence and Uniqueness theorem (Theorem

2.4.2, [31]), it suffices that {Vi} form a Quantum Airy Structure. Fantastically, just

as Topological Recursion continues to prove invaluable outside of its connection to

8In fact, if you began with a partition function defining a matrix model, derived the corresponding
Fg,n via topological recursion on its spectral curve, and placed them into the above Z, you would
not have the partition function that you began with.

9We have already noted that our present usage of “partition function" is distinct from that in
matrix models.
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matrix models, Quantum Airy Structures continue to produce solutions Z that are

rich with geometric content despite, a priori, there being no longer a reason for this.

Recently, a significant generalization of Quantum Airy Structure has been intro-

duced byBorot et al in [8]. One boon of this innovation is that their "HigherQuantum

Airy Structures" bear the same relationship as did the original QASs toVirasoro con-

straints, although they also make contact with more generalW-constraints [4, 25].

A W-algebra is an extension of the Virasoro algebra, finding purpose in multiple

areas of enumerative geometry as well as physics [27]. The paper [8] gives con-

structions of severalW-algebras and provides examples of their significance, which

include applications to Fan-Jarvis-Ruan theories, r-spin intersection numbers, and

Brezin-Gross-Witten theory (see section 6 therein).

2.B Lemmas and Definitions

In this paper we always take N to be the strictly positive integers. We will use N0 to

denote the non-negative integers.

Definition 1. Fix a finite or infinite indexing set, I := {1, 2, 3, . . . , N} or I = N,

for the remainder of the paper and set:

S := C[[{xi}i∈I ]]

S~ := C[[~]][[{xi}i∈I ]]

Define the operators xi and ∂i on S,S~ as follows:

• xi · F := xiF

• ∂i ·xj := δi,j , and each ∂i satisfies the Leibniz Law along withC[[~]]-linearity

13



Lastly, set:

O := C[[{xi, ∂i}i∈I ]]

O~ := C[[~]][[{xi, ∂i}i∈I ]]

in which it is understood that xi and ∂i are not commuting variables, but instead

satisfy [xi, ∂j] = δij . The rings O, O~ are free otherwise.

These distinctions will allow us to leave ~-dependence implicit or make it ex-

plicit. The role that ~ plays in this paper is that which was played by (N/t) in the

previous section: it is the formal variable utilized in our generating functions to

hang the genus on. Additionally, in the following, for any multi-index J ∈ In we

will write xJ :=
∏

j∈J xj and ∂J :=
∏

j∈J ∂j .

Definition 2. For polynomials F ∈ S,S~,O,O~ let ~-deg(F ), x-deg(F ), and

∂-deg(F ) refer to the degree in ~, the degree in all x, and the degree in all ∂,

respectively.10 For O ∈ O,O~, the "degree" or deg(O) with no qualifications is the

total degree in all x and ∂, or x-deg + ∂-deg.

Remark 1. Note that for O ∈ O,O~ the degree does not coincide with its degree as

a homogeneous operator on S,S~.

Definition 3. The degree on polynomials in O gives them a natural Z2-grading,

O0 ⊕ O1 ⊂ O, with O0 and O1 being spanned by the monomials of odd and even

degree, respectively.11

We will also make use of operators [~m] : F 7→ [~m]F on S~ which extracts the

10The ∂-degree is not well-defined. In actuality, it refers to the number of ∂ factors in any
representation of F for which all ∂ occur to the right of all x in all terms.

11The indexes here may be any integer, but are taken modulo 2.
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~-degree m term. When we want to extract the x-constant term of F we will write

F |0.

Definition 4. A Quantum Airy Structure in Normal Form is a collection H =

{Ĥk}k∈I ⊂ O~ of polynomial12 operators such that:

1. Ĥk = −~∂k+
∑Dk<∞

m=2 ~mPm,k for each k, where Pm,k ∈ Om has degree≤ m

2. With O~ ·H the left ideal generated by H and [O~ ·H,O~ ·H] the collection

of all [s, s′] for s, s′ ∈ O~ ·H, we have [O~ ·H,O~ ·H] ⊂ ~2O~ ·H

We may refer to the former of these as the "degree condition" and the latter

as the "subalgebra condition." What we call a Quantum Airy Structure is what [8]

introduced as a Higher Quantum Airy Structure. This is not the standard definition;

for the correspondence, see section 2.E.

Definition 5. We collect a few generalizations and special cases.

1. A Quantum Airy Structure (QAS) with “Normal Form" omitted refers to any

collection {K̂i}i∈I ⊂ O~ which can be “diagonalized" into normal form,

which is to say that there exists a QAS in Normal Form {Ĥi}i∈I generating

the same left-ideal in O~.

2. The special case that our Ĥi contain only Pm,k withm = 2 will be referred to

as the Quadratic Case. This is the only case that was originally defined [31],

and was referred to simply as a Quantum Airy Structure.

3. If we drop the requirement that Pm,k belongs to Om (that being equivalent to

Pm,k’s degree having the same parity as m), we obtain what are known as

12Not power series.
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Cross-Capped Airy Structures. In the original conventions (refer to section

2.E), this amounts to the allowance of half-integer ~ powers.13

Definition 6. The solution Z = eF to Ĥi · Z = 0 (if it exists) is known as the

Partition Function of the Quantum Airy Structure, and its exponent F is known as

the Free Energy. The only restriction we place on the Free Energy when seeking

solutions is that F ∈ S~ and that it have no ~-deg = 0 term or x-deg = 0 term. The

most general form, then, for F is

F =

2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα (2.4)

for some coefficients Fg,n[α] ∈ C.

2.C Existence and Uniqueness Theorems

The existence and uniqueness theorem (Theorem 2.4.2, [31]) asserts that any Quan-

tumAiry Structure has a partition function, and tells alsowhen that partition function

is unique. Precisely,

Theorem 3. Suppose we have a Quantum Airy Structure H = {Ĥi} ⊂ O~. Then,

among all Z = eF with F ∈ S~ having the form (2.4), there is a unique solution to

the system of equations ĤiZ = 0 for i ∈ I .

The interest in Quantum Airy Structures comes primarily from this theorem,

as it provides an association between QASs and formal power series. Formal

power series bearing interesting enumerative coefficients will satisfy a collection

13The diagrammatic representation of topological recursion in this case necessarily involves the
“cross-cap", a quotient surface with a fundamental group of odd rank (and thus containing “half of
a hole").
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of differential constraints, often Virasoro constraints. The reverse is also true:

the partition functions assigned to Quantum Airy Structures frequently come with

important quantities as their coefficients.

2.D Significance

As mentioned, the significance of matrix models, Topological Recursion and Quan-

tum Airy Structures ranges over many disparate regions of geometry and physics.

In enumerative geometry, instances of Topological Recursion can formulate the

relations holding of the Weil-Petersson volumes [20, 23], or of the Hurwitz num-

bers [9,10], or the intersection numbers onMg,n14 [23], as well as the quantities of

discrete surfaces at a given genus [23].

The enumeration of discrete surfaces on its own has a natural application to physics,

since "random surfaces" constitutes one approach to quantum gravity [28,29]. Topo-

logical Recursion can aid physics in other ways, however. The WKB method was

developed by physicists (Wentzel, Kramers, and Brillouin) to solve Schrödinger’s

Equation with an asymptotic series in ~ [15, 32, 39], and in some cases this solu-

tion can be solved for order-by-order using a suitable Topological Recursion [12].

QuantumAiry Structures have been interpreted as a "quantization" of Classical Airy

Structures [31], with quantization being a large and ongoing project for physicists

and mathematicians alike. The partition function of a QAS has a WKB form, as it

provides an asymptotic solution in ~ to the equations Ĥi · Z = 0.

14The compactification of the moduli space of genus-g Riemann surfaces with n marked points.
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2.D.1 Enumeration of Surfaces

Here we intend to unearth Topological Recursion within the enumeration of discrete

surfaces. This material can be found in section 7 of [23].

Consider producing a surface of genus g by gluing together n3 triangles, n4 squares,

..., and ni i-sided polygons. We also include n polygons, the i-th having li sides,

which are called boundaries. One can imagine that the boundaries represent holes

in the surface, as if we had instead added a cycle that bounds no face. One of the

edges in each boundary is considered marked. For each v ∈ N,Mg,n(v) is the set of

connected orientable surfaces of genus g produced by gluing polygons as mentioned,

with n marked points and v vertices. We have, then (theorem 7.1, pg. 88 of [23]):

Theorem 4. There are finitely many members of Mg,n(v).

Proof. Computing the Euler characteristic using the number of vertices, edges, and

faces will give the relation:

1

2

∑
j≥3

(j − 2)nj +
1

2

n∑
i=1

li = 2g − 2 + n+ v

which forces all of the nj and the li to be bounded.

If we write:

Wg,n(x, t) :=
t

x1
δn,1δg,0 +

∞∑
v=1

tv
∑

S∈Mg,n(v)

1

|Aut(S)|
t
n3(S)
3 · · · tni(S)i

x
l1(S)+1
1 · · · xln(S)+1

n

then the generating function for genus-g surfaces that contain n marked faces that
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are li-gons is:

T gl1,...,ln(t) = (−1)nResx1→∞ · · ·Resxn→∞xl11 · · · xlnnWg,n(x, t)dx1 · · · dxn

It is not entirely hard to obtain a recursion between the coefficients. Tutte [37, 38]

observed that the elimination of a marked edge could result in one of three things:

1. If the marked edge bordered a non-boundary face, we simply have removed

the latter and increased the side-count of this boundary. There is the same

number of boundaries and the same genus.

2. If the marked edge belonged to two boundaries, we now have one fewer

boundary and a boundary that has increased it’s side-count. The genus is the

same.

3. If a single marked face lies on both sides of our marked edge (i.e., the edge

was a bridge across two blobs) then the boundary has become disconnected.

This can disconnect the surface, giving two surfaces that share the total genus

amongst themselves, or the surface can remain connected but goes down in

genus (if the blobs had been connected by another bridge).

Formulating these possibilities more carefully, as Tutte did, would give a recursion

for the T gl1,...,ln(t). Casting this recursion in terms of theWg,n(x, t) gives:

V ′(x)Wg,n(x1, L) =

Pg,n(x1, L) +
n∑
j=2

∂

∂xj

Wg,n−1(x1, L\j)−Wg,n−1(L)

x1 − xj

+

g∑
h=0

∑
J⊂L

Wh,|J |+1(x1, J)Wg−h,n−|J |(x1, L\J) +Wg−1,n+1(x1, x1, L)
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in which Pg,n is a specific but complicated polynomial in x (see eq. 7-10 of [23])

and V ′(x) = x −
∑
tjx

j−1. But these are the Loop Equations of a particular

matrix model! Topological Recursion, applied to the corresponding spectral curve

(which, recall, is nothing but the Riemann surface affiliated with the n = 0, g = 0

Loop Equation), would produce meromorphic differentials ωg,n(x) = Wg,n(x)dx

that completely solve these relations.

2.D.2 Quantization and WKB

In physics, the problem of quantization is that of providing a quantum description

for a physical system with the knowledge of its classical description. An incredible

amount of beautiful mathematics has emerged from this pursuit, which is perhaps

surprising since there is not and cannot ever be a 1-to-1 function from classical

models to quantum models. The methods that we have often provide a remarkably

good best-guess, which may require slight modification in some cases or none in

others. The first of these was Dirac’s heuristic [16].

The state of the art in classical physics is to describe the passage of time as a

foliation of some Poisson manifold (P , {−,−}), often a cotangent bundle T ∗M, by

dimension-one curves [1]. Each such curve gives the past and future history of one

possible physical arrangement. This foliation must be of the form d
dt

= {−, H},

with t the parameter along a curve andH some function P → R (the Hamiltonian).

The Darboux theorem gives us, locally, coordinates {xi, yi, zi} such that the Poisson

brackets are {xi, yj} = δi,j and all others zero. Following Dirac, we seek a complex

representation (ρ, V ) of the algebra of functions onM,15 which is to say that we

15Or, at least, the polynomial algebra generated by those special coordinate functions. Or, at least,
some Poisson sub-algebra thereof.
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desire [ρ(f), ρ(g)] = i~{f, g}idV .16 Ordinarily V is taken to be some Hilbert space

of functions. The quantum dynamics, now, is given by ~ d
dt
Z = ρ(H)Z for all

Z ∈ V . If one tries to find a Z which is stationary in time, one looks to solve

ρ(H)Z = 0. If Z is homogeneous in other ways, e.g. across space or through

rotation, then one demands ρ(O)Z = 0 for additional functions, O. This problem is

very similar to the problem of finding a QuantumAiry Structure’s partition function.

Indeed, one perspective on Quantum Airy Structures is that they are a quantiza-

tion of Classical Airy Structures.

Definition 7. Let V be an |I|-dimensional vector space, and {xi, yi}i∈I a set of

coordinates adapted to the canonical symplectic structure on V ⊕ V ∗. A Classical

Airy Structure is a Lagrangian subspace ofV ⊕V ∗ given by |I| equationsLi(x, y) =

0 such that:

• Li = yi + Pi(x, y) for some polynomial Pi without linear or constant terms.

• The C-span of the Li is closed under {−,−}.

Definition 8. The classical limit of a Quantum Airy Structure is a Classical Airy

Structure. Fixing V as well as adapted coordinates {xi, yi}i∈I , it is defined as the

zero locus of equations Hi(x, y) = 0 for i ∈ I . Here Hi is the polynomial obtained

from Ĥi via the C-ring homomorphism ~xi 7→ xi and ~∂i 7→ yi (and excess factors

of ~ mapped to zero).

Given a classical Airy Structure, one important question is whether it can be

realized as the image of any Quantum Airy Structure under its classical limit. As

expected, should such a QAS exist, it cannot be unique.

16We have modified somewhat the bracket that is native to P .
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The significance of the partition function Z in this setting is that it gives a

WKB solution to the differential equations Ĥi · Z. In others’ conventions, to be in

WKB form is to be written Z(x) = exp
[
1
~
∑∞

n=0 ~nSn(x)
]
and the classical limit is

equivalently expressed as the zero-locus of lim~→0 Z
−1Ĥi · Z = H(x, ∂S0).17 This

explains the factor of 1/~: if a higher power were taken, the limit would be trivial;

if a lower power, the limit would not exist.

2.E Dictionary to Standard Definitions

The notation that we use does not coincide with any of the existing literature. In

other works the operators Ĥk of a Quantum Airy Structure are defined as certain

polynomials in the operatorsxi and~∂i (i ∈ I). Thismirrors the "position-space rep-

resentation" of the Canonical Commutation Relations, those being the equations18

[ρ(xi), ρ(yi)] = i~δij from quantum mechanics, which serve to constrain a choice

of unirep ρ : C ⊗R C
∞(T ∗M,R) → End(H). Here M is a finite-dimensional

differentiable manifold andH, a Hilbert space, is taken to be L2(M) in the position

rep. This choice can be convenient, as the values19 of |f(x)|2 for f ∈ L2(M)

have interpretation as probability densities over the outcomes – spatial locations

– of interventions which localize the modeled system. However, any choices of

representation for the Canonical Commutation Relations are ultimately equivalent20

17This yields that the classical limit, a Lagrangian submanifold, is given by the image of x 7→
(x, dSx) for some function S : V → C. Proceeding backwards, from submanifolds of this form to
functions solving relevant equations, is the starting point of Geometric Quantization [5].

18In canonical, or Darboux, coordinates
19There is not such a thing as a value for an element of an L2 space. We mean the values that

integration functionals take on f .
20One prefers to work with the Weyl Relations, non-rigorously the exponentiation of the commu-

tation relations, but unburdened by issues of unboundedness. In this setting, one can make a precise
statement: all strongly continuous unitary irreps of the Weyl Relations are unitarily equivalent, and
their corresponding infinitesimal reps will implement the commutator relations. This is the content
of the Stone von Neumann Theorem [36].
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and so we have chosen instead x̂i =
√
~xi, ŷi =

√
~∂i. This brings a degree of

simplicity to certain expressions and theorems. To avoid many radicals, we also

relabel ~ 7→ ~2, giving ~xi and ~∂i. Our Ĥi are indeed polynomials (over C[[~]]) in

these two.

We have also adjusted the free energy to match. In other literature the free en-

ergy is written [31]:

F = ~−1
∑
n≥3

∑
α∈In

1

n!
F0,n[α]xα +

∑
(g,n)∈ 1

2
N×N

∑
α∈In

~g−1

n!
Fg,n[α]xα

So that −1 is the only allowed negative ~ power. What prevents us from combining

the two sums is that, to ensure unique solutions, we must search only amongst series

whose ~−1 part (g = 0) have no linear or quadratic terms.

Applying our conventions, we first send ~ 7→ ~2 and then xi 7→ ~xi, yielding:

F = ~n−2
∑
n≥3

∑
α∈In

1

n!
F0,n[α]xα +

∑
(g,n)∈ 1

2
N×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα

=

2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα

which has a more uniform appearance. The necessary requirement that n ≥ 3 when

g = 0 has become something more natural: the stipulation that ~’s powers be strictly

positive. One result of this is that Z = eF is now a genuine power series in ~, rather

than a Laurent series, and so no awkward exceptions need be made on its behalf.
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2.F Examples

A multitude of Quantum Airy Structures have been constructed and studied. Sec-

tion 7 of [3] contains a full list of quadratic Abelian Quantum Airy Structures in

dimensions two and three, as well as a full list of non-Abelian quadratic QASs in

dimension two, and a strong showing of non-trivial non-Abelian quadratic QASs

in dimension three. Section 8 produces Quantum Airy Structures from Froebenius

algebras, again all of them quadratic. As far as non-quadratic structures, one system-

atic way of producing them was offered in [8], which locates the Ĥi within a module

of a Vertex Operator Algebra (VOA). Another work [14] constructs an additional

class of non-quadratic Quantum Airy Structures, although we will not summarize

that method.

2.F.1 From Frobenius Algebras

We follow section 8 of [3].

A Frobenius algebraF is a finite-dimensionalC-vector space with an associative

product and a linear map φ : F → C such that 〈a, b〉 := φ(ab) is a non-degenerate

pairing and φ([a, b]) = 0. They are implicated in, among other things, Topological

Quantum Field Theories [2]. These are theories, germane to pure mathematics as

well as to physics, that study functors into the category of Frobenius algebras from

that of n-cobordisms. The cobordisms, n-manifolds interpolating (having as their

oriented boundary) two other (n− 1)-manifolds, are taken as some sort of process

occurring in spacetime, the affiliated algebras representing a quantum-mechanical

state space and implementing the dynamics thereon.

Let [·, ·] and {·, ·} be the commutator and anti-commutator, respectively. Pick a
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Frobenius algebra,F , and name any orthonormal basis, {ei}. Then there is straight-

forward recipe for quadratic Quantum Airy Structures. We write, without loss of

generality, Ĥi := −~∂i + ~2(Aijkxjxk +Bi
jkxj∂k + C i

jk∂i∂k +Di).

Proposition 1 (Prop. 8.7, page 53, [3]). Let θA, θB, and θC be central elements in

F satisfying θ2B + θAθC = 0. Take anyD ∈ F such that θBD lies in the orthogonal

complement of [F ,F ]. Then:

Aijk := φ(θA{ej, ek}ei)

Bi
jk := φ(θB[ei, ej]ek)

C i
jk := φ(θC{ei, ej}ek)

along with the components Di of D defines a Quantum Airy Structure.

Proof. We note that equivalent conditions (3.11)-(3.16) will later be derived in

Lemma 5. Those conditions are, for all i and p, with implicit sums on all unquantified

variables,

Apik − A
i
pk = 0 ∀k

Bp
ik − B

i
pk = fkip ∀k

2(Apj′kB
i
jj′ − Aij′kB

p
jj′) + 2(Apjj′B

i
kk′ − Aijj′B

p
kk′) = faipA

a
jk ∀j, k

2(ApjkC
i
jk − AijkC

p
jk) = faipD

a

4(Apj′jC
i
kj′ − Aij′jC

p
kj′) + (Bi

jk′B
p
k′k − B

p
jk′B

i
k′k) = faipB

a
jk ∀j, k

2(Bp
j′kC

i
j′j − Bi

j′kC
p
j′j) + 2(Bp

j′jC
i
j′k − Bi

j′jC
p
j′k) = faipC

a
jk ∀j, k

which, eliminating fkip everywhere, amount to the i, p-symmetry of (with repeated
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indices summed over I):

Apik

2Apj′kB
i
jj′ + 2Apjj′B

i
kk′ − B

p
iaA

a
jk

2ApjkC
i
jk − B

p
iaD

a

4Apj′jC
i
kj′ +Bi

jk′B
p
k′k − B

p
iaB

a
jk

2Bp
j′kC

i
j′j + 2Bp

j′jC
i
j′k − B

p
iaC

a
jk

Each of these can be borne out by direct computation. Just recall the basic linear

algebra fact that v = 〈v, ei〉ei = φ(vei)ei for all vectors v, as well as the cyclic

permutation symmetry of φ implied by the condition φ([a, b]) = 0. For example,

ApjkC
i
jk = φ(θA{ej, ek}ep)φ(θC{ei, ej}ek)

= φ(θAejekep)φ(θCeiejek) + φ(θAejekep)φ(θCejeiek)

+ φ(θAejekep)φ(θCeiekej) + φ(θAejekep)φ(θCekeiej)

= 〈ej, θAekep〉φ(θCeiejek) + 〈ej, θAekep〉φ(θCejeiek)

+ 〈ej, θAekep〉φ(θCeiekej) + 〈ej, θAekep〉φ(θCekeiej)

= φ(〈ej, θAekep〉θCeiejek) + φ(〈ej, θAekep〉θCejeiek)

+ φ(〈ej, θAekep〉θCeiekej) + φ(〈ej, θAekep〉θCekeiej)

= φ(θAθCeiekepek) + φ(θAθCekepeiek)

+ φ(θAθCeiekekep) + φ(θAθCekeiekep)

which is symmetric. Since our hypothesis onD givesBp
iaD

a = 0, we have the third

condition. Total symmetry of A is immediate. The other three are similar; two of

them are symmetric identically, and the last is symmetric save for a term involving

26



θ2B + θAθC , which is why we ask that it be zero.

2.F.2 From Vertex Operator Algebras

We follow chapter 3 of [8].

Vertex Operator Algebras can be introduced as a distillation of the central fea-

tures common to Conformal Field Theories [35].21 In particular, Conformal Field

Theories allow for an Operator Product Expansion [6]: for two operator-valued

functions A(x) and B(y) onM, their product A(x)B(y) onM×M has a Laurent

expansion22 in powers of x (or y) near the diagonal x = y. This allows a detailed

understanding of singular behavior as evaluation points collide.23 Another major

upshot of Conformal Field Theories is that they posses conformal symmetries; in

two dimensions the conformal group is infinite-dimensional, which strongly con-

strains the possible field theories with those symmetries.

One now abstracts the algebra of these Laurent expansions A(x)B(y) −−−→
x,y→z∑

k Okz
−k, taken formally. The central role of the conformal group suggests that

representations of the Virasoro algebra on the space of states belong to the essential

core we are extracting. Foregoing motivation of a VOA’s other aspects, we record

the definition:

Definition 9 (Vertex Operator Algebra). A Vertex Operator Algebra is a tuple

(V, Y,0,w), with the following properties:

• V :=
⊕

k∈K Vk is a Z-graded vector space, withK ⊂ Z having finitely many

21More precisely, the chiral sector of Conformal Field Theories.
22The reason that this is a bigger deal in Conformal Field Theories than generally is that, in that

setting, one can prove a positive radius of convergence for these expansions.
23This much success is valuable, as properly defining products of distributions evaluated at the

same point has been a perennial thorn in the side of Quantum Field Theories.
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negative members and dim(Vk) being finite for all k ∈ K.

• Y (−, z) : V → End(V )[[z, z−1]] is linear. The endomorphisms vk defined by

Y (v, z) :=
∑

k∈K vkz
−k−1 are called the modes of v ∈ V .

• Y (v, z)0 − v belongs to zV [[z]], and Y (0, z) = id. We refer to 0 as the

vacuum state.

• The conformal state w ∈ V has four properties:

1. For all v ∈ V , the series Y (v, z)w has finitely many terms.

2. The modes wk of w form a representation of the Virasoro algebra, i.e.

[w`+1,wm+1] = (`−m)w`+m+1 + cδ`,−m
`3 − `

12

for some "central charge" c ∈ C.

3. All homogeneous v ∈ Vn are eigenvectors of w1 with eigenvalue n.

4. For all vectors v, we have Y (w0v, z) = d
dz
Y (v, z).

• For every u, v ∈ V there is anN ∈ N such that (z− y)N [Y (u, z), Y (v, y)] =

0.24

Only one family of VOAs will concern us: the Heisenberg VOAs. First we

define some auxiliary paraphernalia. Take any lattice L with an inner product

〈·, ·〉 : L× L→ Z, and produce a Lie algebraHL out of the vector space:

H :=

(⊕
`∈Z

(L⊗Z C)⊗ t`
)
⊕ C1

24Note the nontriviality of this axiom, as rings of formal power series are not integral domains.
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using the bracket:

[ξ⊗ t`, η⊗ tm] = 〈ξ, η〉`δm,−`1 [K, η⊗ t`] = 0 ∀ ξ, η ∈ L⊗ZC, `,m ∈ Z

Taking H−L := {ξ ⊗ t` : ` < 0} to be the negative elements of this Lie algebra,

the Heisenberg VOA’s underlying vector space will be the symmetric algebra V :=

Sym(H−L ). We will also want a linear representation of HL on V . Any member

of H−L acts in a natural way, by concatenation. For any non-negative element,

ξ ⊗ t` with ` ≥ 0, we define its action on V by declaring that it annihilates the

constant polynomials. This, along with the fact that the Lie bracket is taken onto

the commutator by the representation, is sufficient. From here on, elements ξ ⊗ t`

should be regarded in their role as linear operators on V . The normal-ordered

product N (A1, . . . , An) of series:

Ai := A+
i + A−i :=

∑
`>0

A`iz
−`−1 +

∑
`≤0

A`iz
−`−1 ∈ End(V )[[z, z−1]]

can be defined viaN (A1, A2, . . . , An) := A−1N (A2, . . . , An) +N (A2, . . . , An)A+
1

as well as N (A) = A. Effectively, in all monomials resulting from the product

A1A2 · · ·An, the factors are reordered so that negative modes occur to the left of

positive modes.

Definition 10. The Heisenberg VOA is comprised of the following:

• The vector space V := Sym(H−L ),
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• The linear map Y , defined by:

Y (1, z) := id

Y (ξ ⊗ t−1, z) :=
∑
m∈Z

(ξ ⊗ tm)z−m−1

Y (Πi(ξ
i ⊗ t−ki), z) := N

(
. . . ,

1

(ki − 1)!

dki−1

dzki−1
Y (ξi ⊗ t−1, z), . . .

)

• The vaccum state 0 := 1, which is simply the unit polynomial, and

• The conformal state, w := 1
2

∑
i(ξ

i ⊗ t−1)(ξi ⊗ t−1), where {ξi} is any

orthonormal basis for L⊗Z C.

Our interest in the Heisenberg VOA is due to the fact that a certainW-algebra,

calledW(gln), can be realized as a sub-VOAof theHeisenbergVOA.25WithW(gln)

so realized, we plan to find a representation of it within a module of the Heisenberg

VOA. The represented images of its strong generators26 will have modes forming a

Quantum Airy Structure – up to a certain corrective conjugation.

The Heisenberg VOA module we will define happens to be a twisted module,

although we will not need to know that this is so. It will become untwisted once

we restrict it to theW(gln) representation. Pick an idempotent automorphism σ of

(L⊗Z C) with order r, as well as a basis {va} which diagonalizes it. Then (W,Yσ)

is an example of a σ-twisted Heisenberg module, in which:

• W := C[[~]][[{xi}i∈I ]]

25We will soon see a set of strong generators for W(gln) in its presentation as a Heisenberg
sub-VOA, however see [8] page 26 for its general definition.

26A set of vectors vi ∈ V strongly generate a VOA if the underlying vector space, V , is spanned
by vectors of the form v1−k1 · · · v

n
−kn0, with all ki > 0.
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• Yσ(·, z) : V → End(W )[[z1/r, z−1/r]] satisfies

Yσ(va ⊗ t`, z) =
∑

n∈a
r
+Z

Qrkz
−k−1

with those modes being (for ` > 0) Q` = ~∂x` and Q−` = ~`x`, and Q0 = 0.

Also, Yσ satisfies conditions perfectly analogous to those (the first and third)

of Y in the Heisenberg VOA.

The Quantum Airy Structures that we seek are in sight. The steps are simple,

although cannot be easily motivated in the time we will dedicate to them (see

Theorem 4.9, page 39, [8]):

1. Define a new basis, χb := 1
r

∑r−1
a=0 e

−2πiba/rva

2. LetEi ∈ V be the elementary symmetric polynomials in the vectors χb⊗ t−1.

These are strong generators forW(gln).

3. Define W i(z) := ri−1Yσ(Ei, z) for i between 1 and r. These form the

representation ofW(gln)’s strong generators.

4. Expand into modes: W i(z) :=
∑

n∈ZW
i
nz
−n−1

27

5. For any r ≥ 2, any s ∈ {1, . . . , r+1} such that r ≡ ±1 mod s, the operators

Ĥ i
k := e−Js/s~W i

ke
Js/s~ indexed by i ∈ I and k ≥ i− 1− b s(i−1)

r
c+ δi,1 form

a Quantum Airy Structure.

A few comments are worth making. Although the effort to get to this point may

seem great, it has many benefits. Firstly, this constructs non-quadratic QASs, which

27Although, ostensibly, this sum should be taken over integer multiples of 1/r, the vectors that we
are putting through Yσ are suitably restricted that these fractional powers do not occur. This is the
meaning of the sub-module having become untwisted.
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was a limitation of all other mentioned methods. Secondly, the attention paid to this

strange parameter r pays off in that the operators Ĥ i
k are of degree r, allowing us

complete control over, say, returning to the quadratic case, or ascending arbitrarily

high. From the geometrical point of view outlined in Section 2.1 the automorphism

σ replaces z 7→ z, and so this procedure corresponds to cycling the sheets of a

covering that has r of them meeting at its branches. The subalgebra condition of

a QAS is already fulfilled by the W i
k, and the remaining step of conjugation is

required only to get to degree condition right. This requirement that arises at the

end, allowing us to choose s only among those such that r ≡ ±1 mod s, remains

rather mysterious. Lastly, this construction makes explicit the connection Quantum

Airy Structures have toW-algebras.
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Chapter 3

Quadratic Case

In this section we discuss two proofs of the Existence and Uniqueness theorems for

QuantumAiry Structures, in the special case of a quadratic QuantumAiry Structure.

One proof is deferred to Chapter 4, and the other is described in detail. The latter

proof is broken up into existence and uniqueness results.

The assumption of quadratic Ĥi amounts to assuming, without loss of generality,

the form:

Ĥi = −~∂i + ~2(Aijkxixj +Bi
jkxj∂k + C i

jk∂j∂k +Di) (3.1)

with implied summations on j and k. We are presently omitting the cross-capped

Quantum Airy Structures, which forces the degree of all operators in parentheses

to have the same parity as 2, i.e. even. We take these Ĥi to be a Quantum Airy

Structure in Normal Form, which places several relations upon the A,B,C,D that

will later be important. For now, it is clear that A and C can be taken as symmetric

in their lower indices.
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3.A A Few Lemmas

We will often be seeing expressions such as e−FQ · eF with Q ∈ O~, and so the

following lemmas will be very handy. Firstly, three definitions.

Definition 11. For any multi-index L := (L1, L2, . . . , Lm) ∈ Im, the notation

J |= L denotes that J is an index-partition of L. By this we mean that J is an

ordered collection of multi-indices ((Lj)j∈J`)
|J|
`=1 in which {J`}|J|`=1 are pair-wise

disjoint possibly empty sets whose union is {1, . . . ,m}. All this amounts to is

that the concatenation of the (Lj)j recovers [a permutation of] L. The (Lj)j are

themselves ordered such that j is increasing.

The first lemma is very easy to see, but convenient to keep in mind.

Lemma 1. For any multi-index L and any Ξ,Ψ ∈ S , we have

∂L(ΞΨ) =
∑

(A,B)|=L

∂A(Ξ)∂B(Ψ)

In general, of course, for {Ψk}k∈K ,

∂L

(∏
k∈K

Ψk

)
=

∑
(Ak)k∈K |=L

∏
k∈K

∂Ak(Ψk)

Remark 2. Lemma 1 holds even for K = ∅, because the product and sum become

empty.

Lemma 2. For any multi-index β ∈ Im say that ni(β) ∈ N0 of its entries are i ∈ I ,

so thatP (β) := m!∏
i ni(β)!

counts the permutations of β. Then we have ∂β(xβ) = m!
P (β)

.
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Proof. Notice that ∂β =
∏

i ∂
ni(β)
i , so that

∂β(xβ) =
∏
i

[∂
ni(β)
i x

ni(β)
i ] =

∏
i

[ni(β)!] =
m!

P (β)

Definition 12. Let α ∼ β denote the fact that α is a permutation of β.

Lemma 3. Consider F :=
∑

n∈N0

1
n!

∑
α∈In Fn[α]xα ∈ C[[{xi}i]], a formal power

series with each Fn[α] ∈ C completely symmetric under permutations in α. For any

multi-index β ∈ Im, we have ∂β(F )|0 = Fm[β].

Proof. Applying |0 will kill any term not constant in the x, so we retain only those

terms for which α is a permutation of β:

∂β · F |0 =
1

m!

∑
α:α∼β

Fm[α]∂β(xα)

=
1

m!

∑
α:α∼β

Fm[α]
m!

P (β)

Each of these terms are equal to one another, and there are P (β) of them.

Remark 3. We can replace C with any commutative ring.

Definition 13. For L := (L1, . . . , L|L|) ∈ I |L|, we write J ` L to indicate that J is

an un-ordered collection of multi-indices {(Lj)j∈J`}
|J|
`=1 in which {J`}|J|`=1 are pair-

wise disjoint non-empty sets whose union is {1, . . . , |L|}. Again, the concatenation

of the (Lj)j recovers [a permutation of] L, and they are each ordered such that j is

increasing.

The main difference between this definition and that of |= is that none of the sub-

indices (Lj)j can be empty here. Additionally, J is un-ordered here; two partitions

J1 ` L and J2 ` L are the same if they have the same members.
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Lemma 4. For any finite multi-index L ∈ I |L| and any F ∈ S~, we have:

e−F∂L · eF =
∑
J`L

∏
J∈J

∂JF

Example 1. If we take L = (k, j, i), then:

e−F∂L · eF = [∂kF ][∂jF ][∂iF ]

+ [∂k∂jF ][∂iF ]

+ [∂jF ][∂k∂iF ]

+ [∂kF ][∂j∂iF ]

+ [∂k∂j∂iF ]

Proof. It can be proven by induction. Suppose that it holds for all L of length n,

and consider (WLOG) the set L ∪ {b}. Then:

∂b∂L · eF = ∂be
F e−F∂L · eF = ∂b

[
eF
∑
J`L

∏
J∈J

∂JF

]

= (eF∂b · F )

(∑
J`L

∏
J∈J

∂JF

)
+ eF

∑
J`L

∂b ·

(∏
J∈J

∂JF

)

= (eF∂b · F )

(∑
J`L

∏
J∈J

∂JF

)
+ eF

∑
J`L

∑
J ′∈J

(∂b∂J ′ · F )
∏

J∈J\J ′

∂JF

= eF
∑

J`L∪{b}

∏
J∈J

∂JF

The second and third lines aremerelyLeibniz Law. In the final line, we’ve recognized

that line three presents all possible partitions of L∪{b}: in a partitionK ` L∪{b},

either:

• The new member b is by itself (the lefthand term),
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• Or b occurs grouped with some other indices, collectively K. But then K,

with the remaining members of K, form a partition of L. Each case occurs

exactly once in the righthand term.

This lemma is much stronger than we have any right to use in this chapter,

although its additional generality will be necessary later on.

3.B Conceptual Proof

In the paper of Kontsevich and Soibelman [31] they prove both the existence and the

uniqueness of a formal power series Z which is annihilated simultaneously by all

operators Ĥi, subject to the Ĥi forming a Quantum Airy Structure. Their theorem

(Theorem 2.4.2 on page 13) is equivalent to the following:

Theorem5. Supposewe have a quadraticQuantumAiry StructureH = {Ĥi} ⊂ O~.

Then, among all Z having the form (3.2), there is a unique solution to the system of

equations ĤiZ = 0 for i ∈ I .

This proof does not actually assume that H is quadratic. Also, it is much more

convenient to prove if one allows H to be possibly cross-capped. For both of those

reasons, we defer it to Chapter 4.

3.C Computational Proof

We now present an alternative proof of Theorem 5, which can be found in [3]. It

makes use of naught but combinatorics and raw computation. In the following, re-

peated indices (usually j and k) will be summed over with range I . The expression
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γ\j, if j is a component of γ, refers to any of the multi-indices which could result

after deleting a copy of j from γ; the expression is 0 otherwise.

What will be proven is in fact Theorem 5 along with this corollary:

Corollary 1. Writing

Z = exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα

 (3.2)

for the solution referenced in Theorem 5, the coefficients Fg,n[α] ∈ C are related to

one another by the Quadratic Topological Recursion:

F`,ρ+1[i, γ] = 2Aiγ1,γ2δρ,2δ`,0 +Diδρ,0δ`,1

+ nj(γ)Bi
jkF`,ρ[γ\j, k] + C i

jkF`−1,ρ+2[γ, j, k]

+ C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+1[k,K]

where, as earlier, nj(γ) is the number of components in γ that are equal to j.

Theorem 5 as well as this Corollary follow from two propositions (the first of

which is Proposition 2.1, [3] pg. 7):

Proposition 2 (Uniqueness). For any quadratic Quantum Airy Structure {Ĥi}i∈I ⊂

O~, among all Z having the form (3.2), the system of equations ĤiZ = 0 has either

zero or one solution.

Proposition 3 (Existence). For any quadratic Quantum Airy Structure {Ĥi}i∈I ⊂

O~, the system ĤiZ = 0 does have solutions Z having the form (3.2).

The first of these is nothing more than applying Ĥi to Z and then sorting out

the mess in terms of both ~-degree and x-degree. One obtains a recursive formula
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for the coefficients Fg,n[α] of Z’s exponent, and so a would-be solution cannot do

other than obey the recursion. The reason that this does not also provide existence

is subtle, and stems from the fact that the recursion does not necessarily produce

symmetric Fg,n[α]s without the aid of further assumptions. We will see how this all

turns out. For now, the proof of Proposition 2:

Proof. If we simply compute the action of each Ĥi on Z and separate the resulting

terms by both ~-deg and by x-deg, we obtain equations expressing Fg,n[α] in terms

of other Fg′,n′ [α′]s with strictly smaller values of the quantity 2g − 2 + n; i.e., a

recursion. This will guarantee uniqueness, as we will also see the theorem statement

has removed all choice of initial data.

Let’s do that. Recalling:

Ĥi = −~∂i + ~2(Aijkxjxk +Bi
jkxj∂k + C i

jk∂j∂k +Di)

and that Z is given by (3.2), we get:

Z−1ĤiZ = −~∂iF + Aijk~2xjxk +Bi
jk~2xj∂kF + C i

jk~2((∂jF )(∂kF ) + ∂j∂kF ) + ~2Di
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If we sift these terms by x-deg, then at x-deg = ρ we find:

−
∑
g∈ 1

2
N

~2g+ρ
∑

α∈Iρ+1

1

(ρ+ 1)!
Fg,ρ+1[α]∂ixα + ~2Aijkxjxkδρ,2

+
∑
g∈ 1

2
N

~2g+ρBi
jk

∑
α∈Iρ

1

ρ!
Fg,ρ[α]xj∂kxα +

∑
g∈N

~2g+ρ+2C i
jk

∑
α∈Iρ+2

1

(ρ+ 2)!
Fg,ρ+2[α]∂j∂kxα

+
∑

g,g′∈ 1
2
N

~2g+2g′+ρC i
jk

∑
n+n′=ρ+2

∑
α′∈In′ ,α∈In

(
1

n!
Fg,n[α]∂jxα

)(
1

n′!
Fg′,n′ [α′]∂kxα′

)

+ ~2Diδρ,0

In which it is understood that Fg,n with n < 1 should be considered zero. Now we

sift by ~-deg, finding at ~-deg = 2`+ ρ the terms:

−
∑

α∈Iρ+1

1

(ρ+ 1)!
F`,ρ+1[α]∂ixα + Aijkxjxkδρ,2δ`,0 (3.3)

+Bi
jk

∑
α∈Iρ

1

ρ!
F`,ρ[α]xj∂kxα + C i

jk

∑
α∈Iρ+2

1

(ρ+ 2)!
F`−1,ρ+2[α]∂j∂kxα (3.4)

+ C i
jk

∑
g,g′=`

∑
n,n′=ρ+2

∑
α′∈In′ ,α∈In

(
1

n!
Fg,n[α]∂jxα

)(
1

n′!
Fg′,n′ [α′]∂kxα′

)
(3.5)

+Diδρ,0δ`,1 (3.6)

Finally, we wish to apply ∂γ • |0 to the above, for some multi-index γ ∈ Iρ. The first

and fourth terms can be handled immediately by applying Lemma 3 with β = (γ, i)

and β = (γ, j, k) respectively. The second and sixth terms are trivial. The third
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term is modified by ∂γ to:

∂γ

[
Bi
jk

∑
α

1

ρ!
F`,ρ[α]xj∂kxα

]∣∣∣∣∣
0

=
∑

(J,K)|=γ

∑
α

Bi
jk

1

ρ!
F`,ρ[α](∂Jxj)(∂k,Kxα)

∣∣∣∣∣∣
0

=
∑

(J,K)|=γ

∑
α

Bi
jk

1

ρ!
F`,ρ[α](δJ,j)(∂k,Kxα)|0

=
∑
α

nj(γ)Bi
jk

1

ρ!
F`,ρ[α](∂k,γ\jxα)|0

= nj(γ)Bi
jkF`,ρ[k, γ\j]

which is handled by Lemma 3. As for the remaining term, line (3.5), we write:

∂γ(3.5)|0 = C i
jk

∑
(J,K)|=γ

∑
g+g′=`

∑
n+n′=ρ+2

∑
α′∈In′ ,α∈In

(
1

n!
Fg,n[α]∂j,Jxα

)(
1

n′!
Fg′,n′ [α′]∂k,Kxα′

)∣∣∣∣∣∣
0

Using Lemma 3 in each factor gives:

∂γ(3.5)|0 = C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+1[k,K]

Altogether, ∂γ[(3.3)− (3.6)]|0 is:

−F`,ρ+1[i, γ] + 2Aiγ1,γ2δρ,2δ`,0 +Diδρ,0δ`,1

+ nj(γ)Bi
γjk
F`,ρ[γ\j, k] + C i

jkF`−1,ρ+2[γ, j, k]

+ C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+1[k,K]

Where ρ = |γ|. The equations ĤiZ = 0 are equivalent to the vanishing of the above
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expression for all ρ, γ, `, or:

F`,ρ+1[i, γ] = 2Aiγ1,γ2δρ,2δ`,0 +Diδρ,0δ`,1 (3.7)

+ nj(γ)Bi
γjk
F`,ρ[γ\j, k] + C i

jkF`−1,ρ+2[γ, j, k] (3.8)

+ C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+1[k,K] (3.9)

Since the quantity 2g − 2 + n is strictly larger in the lefthand side than in the right-

hand side, we have derived a recursion for the Fg,n[α].

The smallest value of the recursion parameter, 2g − 2 + n, is 1. The recursion,

then, is based on F0,3, F 1
2
,2, and F1,1. We find:

F0,3[i, j, k] = 2Aijk F 1
2
,2 = 0 F1,1 = Di (3.10)

Remark 4. When g is a non-integer, the equation for Fg,n only involves Fg′,n′ with

g′ a non-integer – or, it only involves terms which have at least one Fg′,n′ factor for

non-integer g′. Therefore the initial condition F 1
2
,2 = 0 propagates upward and we

find that Fg,n = 0 whenever g /∈ N. This is due to our dismissal of cross-capped

QASs. Only in the cross-capped case can one have Fg,n 6= 0 for g /∈ N.

In our derivation, we simplified matters many times by using the permutation

symmetry of the Fg,n[α] in their α-argument. If we use the recursion to construct

a sequence, not knowing in advance whether they are symmetric, we find that (for

example) Fg,n[i, j, γ] and Fg,n[j, i, γ] have very different-looking definitions. Their

equality is not at all obvious, and in fact not even guaranteed without some crucial

relations that constrain A,B,C,D. This is the reason that Proposition 2 does not
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on its own provide existence.

Put another way: if one constructed a sequence of Fg,n[α]s using (3.7)-(3.9),

placed them into a series F =
∑

g,n,α Fg,n[α]xα, and then checked the vanishing of

Ĥie
F order-by-order as we’ve just done, they would end up at equations (3.7)-(3.9)

again – involving not theirFg,n[α]s but instead the symmetrizations1 of theirFg,n[α]s.

Unfortunately, (3.7)-(3.9) holding for some Fg,n[α]s cannot imply that (3.7)-(3.9)

holds for their symmetrizations, due (among other things) to non-linearity. Propo-

sition 3, the existence of F , is implied by Proposition 2 along with the following

(which is Proposition 2.4, [3] pg. 13):

Proposition 4 (Symmetry). Each member of the sequence {Fg,n[α]} constructed

by the quadratic topological recursion (3.7)-(3.9) is completely symmetric in the

α-argument.

First, some necessary algebaric manipulations.

Lemma 5. The subalgebra condition on a quadratic Quantum Airy Structure (in

the form of (3.1)) is equivalent to the following conditions (for all i, p ∈ I):

Apik − A
i
pk = 0 ∀k

Bp
ik − B

i
pk = fkip ∀k

2(Apj′kB
i
jj′ − Aij′kB

p
jj′) + 2(Apjj′B

i
kk′ − Aijj′B

p
kk′) = faipA

a
jk ∀j, k

2(ApjkC
i
jk − AijkC

p
jk) = faipD

a

4(Apj′jC
i
kj′ − Aij′jC

p
kj′) + (Bi

jk′B
p
k′k − B

p
jk′B

i
k′k) = faipB

a
jk ∀j, k

2(Bp
j′kC

i
j′j − Bi

j′kC
p
j′j) + 2(Bp

j′jC
i
j′k − Bi

j′jC
p
j′k) = faipC

a
jk ∀j, k

Proof. Schematically, a member of a QAS in the quadratic case is of the form

1Over α.
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Ĥi = Ii + Ai +Bi + Ci +Di. The commutator is:

[Ĥi, Ĥp] =
1

2
[Ii, Ip] + [Ii, Ap] + [Ii, Bp] + [Ii, Cp] + [Ii, Dp]

+
1

2
[Ai, Ap] + [Ai, Bp] + [Ai, Cp] + [Ai, Dp]

+
1

2
[Bi, Bp] + [Bi, Cp] + [Bi, Dp]

+
1

2
[Ci, Cp] + [Ci, Dp]

− (i↔ p)

= [Ii, Ap] + [Ii, Bp] + [Ai, Bp] + [Ai, Cp] +
1

2
[Bi, Bp] + [Bi, Cp]

− (i↔ p)

= −~3(2Apikxk)− ~3(Bp
ik∂k)− ~4(2AijkB

p
j′jxj′xk)

− ~4(2AijkC
p
jk + 4AijkC

p
j′jxk∂j′)

+ ~4Bi
jkB

p
j′k′(δkj′xj∂k′ + xjxj′∂k∂k′)

− ~4(2Bi
jkC

p
j′j∂k∂j′) − (i↔ p)

The subalgebra condition informs us that this must belong to the ideal ~O~ · H,

44



which is to say that:

− ~(2Apikxk)− ~(Bp
ik∂k)− ~2(2AijkB

p
j′jxj′xk)

− ~2(2AijkC
p
jk + 4AijkC

p
j′jxk∂j′)

+ ~2(Bi
jkB

p
j′k′xjxj′∂k∂k′ +Bi

jkB
p
kk′xj∂k′)

− ~2(2Bi
jkC

p
j′j∂k∂j′) − (i↔ p)

=

faip(−~∂a + Aajkxjxk +Ba
jkxj∂k + Ca

jk∂j∂k +Da)

For some elements faip ∈ O~. The top expression contains−~(Bp
ik−Bi

pk)∂k, which

is impossible to locate in the bottom expression unless the faip are scalars in C.

Therefore, we can match coefficients on the various O~ elements that we see:

Apik − A
i
pk = 0 ∀k (3.11)

Bp
ik − B

i
pk = fkip ∀k (3.12)

2(Apj′kB
i
jj′ − Aij′kB

p
jj′) + 2(Apjj′B

i
kk′ − Aijj′B

p
kk′) = faipA

a
jk ∀j, k (3.13)

2(ApjkC
i
jk − AijkC

p
jk) = faipD

a (3.14)

4(Apj′jC
i
kj′ − Aij′jC

p
kj′) + (Bi

jk′B
p
k′k − B

p
jk′B

i
k′k) = faipB

a
jk ∀j, k (3.15)

(Bi
jkB

p
j′k′ − B

p
jkB

i
j′k′) + (Bi

j′k′B
p
jk − B

p
j′k′B

i
jk) = 0 ∀j, j′, k, k′

2(Bp
j′kC

i
j′j − Bi

j′kC
p
j′j) + 2(Bp

j′jC
i
j′k − Bi

j′jC
p
j′k) = faipC

a
jk ∀j, k (3.16)

In each line, variables unbound by universal quantification are summed (with implied

universal quantification over i and p). Note also that in order to match coefficients

correctly one must sometimes symmetrize some of the bound variables.

Corollary 2. Using (3.12) to eliminate faip in each of (3.11)-(3.16), we obtain
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the following relations that are satisfied in any quadratic Quantum Airy Structure

(written in the form of (3.1)), for all i, p, j, k:

4Apj′jC
i
kj′ +Bi

jk′B
p
k′k +Bi

paB
a
jk = (i↔ p) (3.17)

2Bp
j′kC

i
j′j + 2Bp

j′jC
i
j′k + 2Bi

paC
a
jk = (i↔ p) (3.18)

Bi
pkD

k + C i
j′kA

p
j′k = (i↔ p) (3.19)

2(Bi
p,k′A

k
j,k′ +Bi

k,k′A
p
j,k′ +Bi

j,k′A
p
k,k′) = (i↔ p) (3.20)

Now on to the proof of Proposition 4.

Proof. The proof is convoluted, but uncomplicated. We will apply the recursion

twice to an arbitrary F`,ρ+1[i, p, γ] (with γ ∈ Iρ−1) and argue that all resulting terms

are themselves symmetric. This proof is inductive; we take the liberty of assuming

that all Fg,n[α]s with 2g − 2 + n < 2`− 2 + (ρ+ 1) are already symmetric.
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Inductive Step

Recalling (3.7)-(3.9),

F`,ρ+1[i, p, γ] = 2Aip,γ1δρ,2δ`,0 +Diδρ,0δ`,1

+ nj(p, γ)Bi
jkF`,ρ[(p, γ)\j, k] + C i

jkF`−1,ρ+2[p, γ, j, k]

+ C i
jk

∑
(J,K)|=(p,γ)

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+1[k,K]

= 2Aip,γ1δρ,2δ`,0 +Diδρ,0δ`,1

+Bi
pkF`,ρ[γ, k] + nj(γ)Bi

jkF`,ρ[p, γ\j, k]

+ C i
jkF`−1,ρ+2[p, γ, j, k]

+ C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+2[j, p, J ]Fg′,|K|+1[k,K]

+ C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j, J ]Fg′,|K|+2[p, k,K]

= 2Aip,γ1δρ,2δ`,0 +Diδρ,0δ`,1

+Bi
pkF`,ρ[γ, k] + nj(γ)Bi

jkF`,ρ[p, γ\j, k]

+ C i
jkF`−1,ρ+2[p, γ, j, k]

+ 2C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+2[j, p, J ]Fg′,|K|+1[k,K]
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At this point, any F·,·[•] with p ∈ •will be expanded again (and also the green term).

This amounts to making the following substitutions for the colour terms:

F`,ρ[γ, k] = 2Akγ1,γ2δρ,3δ`,0 +Dkδρ,1δ`,1

+nj′(γ)Bk
j′k′F`,ρ−1[γ\j′, k′] + Ck

j′k′F`−1,ρ+1[γ, j
′, k′]

+Ck
j′k′

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j
′, J ]Fg′,|K|+1[k

′, K]

F`,ρ[p, γ\j, k] = 2(Apγ1,k + Apγ2,k)δρ,3δ`,0 +Dpδρ,1δ`,1

+nj′(γ\j, k)Bp
j′k′F`,ρ−1[(γ\j, k)\j′, k′] + Cp

j′k′F`−1,ρ+1[γ\j, k, j′, k′]

+Cp
j′k′

∑
(J,K)|=(γ\j,k)

∑
m+m′=`

Fm,|J |+1[j
′, J ]Fm′,|K|+1[k

′, K]

= 2(Apγ1,k + Apγ2,k)δρ,3δ`,0 +Bp
kk′F`,ρ−1[γ\j, k

′] +Dpδρ,1δ`,1

+nj′(γ\j)Bp
j′k′F`,ρ−1[γ\{j, j

′}, k, k′] + Cp
j′k′F`−1,ρ+1[γ\j, k, j′, k′]

+2Cp
j′k′

∑
(J,K)|=γ

∑
m+m′=`

Fm,|J |+1[k, j
′, J\j]Fm′,|K|+1[k

′, K]
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F`−1,ρ+2[p, γ, j, k] = 2Apjkδ`−1,0δρ,1

+nj′(γ, j, k)Bp
j′k′F`−1,ρ+1[(γ, j, k)\j′, k′] + Cp

j′k′F`−2,ρ+3[γ, j, k, j
′, k′]

+Cp
j′k′

∑
(J,K)|=(γ,j,k)

∑
m+m′=`−1

Fm,|J |+1[j
′, J ]Fm′,|K|+1[k

′, K]

= 2Apjkδ`−1,0δρ,1 +Bp
kk′F`−1,ρ+1[γ, j, k

′] + Bp
jk′F`−1,ρ+1[γ, k, k

′]

+nj′(γ)Bp
j′k′F`−1,ρ+1[γ\j′, j, k, k′] + Cp

j′k′F`−2,ρ+3[γ, j, k, j
′, k′]

+Cp
j′k′

∑
(J,K)`γ

∑
m+m′=`−1

2Fm,|J |+1[j
′, j, k, J ]Fm′,|K|+1[k

′, K]

+Cp
j′k′

∑
(J,K)|=γ

∑
m+m′=`−1

2Fm,|J |+1[j
′, j, J ]Fm′,|K|+1[k

′, k,K]

Fg,|J |+2[j, p, J ] = 2Apj,Jδ|J |,1δg,0

+nj′(j, J)Bp
j′k′Fg,|J |+1[(j, J)\j′, k′] + Cp

j′k′Fg−1,|J |+3[j, J, j
′, k′]

+Cp
j′k′

∑
(J ′,K′)|=(j,J)

∑
m+m′=g

Fm,|J ′|+1[j
′, J ′]Fm′,|K′|+1[k

′, K ′]

= 2Apj,Jδ|J |,1δg,0 +Bp
jk′Fg,|J |+1[J, k

′]

+nj′(J)Bp
j′k′Fg,|J |+1[J\j′, j, k′] + Cp

j′k′Fg−1,|J |+3[j, J, j
′, k′]

+Cp
j′k′

∑
(J ′,K′)|=J

∑
m+m′=g

2Fm,|J ′|+1[j, j
′, J ′]Fm′,|K′|+1[k

′, K ′]

resulting in:
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F`,ρ+1[i, p, γ] = 2Aip,γδρ,2δ`,0 +Diδρ,0δ`,1

+Bi
pk

(
2Akγ1,γ2δρ,3δ`,0 +Dkδρ,1δ`,1

+nj′(γ)Bk
j′k′F`,ρ−1[γ\j′, k′] + Ck

j′k′F`−1,ρ+1[γ, j
′, k′]

+Ck
j′k′

∑
(J,K)|=γ

∑
g+g′=`

Fg,|J |+1[j
′, J ]Fg′,|K|+1[k

′, K]

)

+ nj(γ)Bi
jk

(
2(Apγ1,k + Apγ2,k)δρ,3δ`,0 +Bp

kk′F`,ρ−1[γ\j, k
′] +Dpδρ,1δ`,1

+nj′(γ\j)Bp
j′k′F`,ρ−1[γ\{j, j

′}, k, k′] + Cp
j′k′F`−1,ρ+1[γ\j, k, j′, k′]

+2Cp
j′k′

∑
(J,K)|=γ

∑
m+m′=`

Fm,|J |+1[k, j
′, J\j]Fm′,|K|+1[k

′, K]

)

+ C i
jk

(
2Apjkδ`−1,0δρ,1 +Bp

kk′F`−1,ρ+1[γ, j, k
′] + Bp

jk′F`−1,ρ+1[γ, k, k
′]

+nj′(γ)Bp
j′k′F`−1,ρ+1[γ\j′, j, k, k′] + Cp

j′k′F`−2,ρ+3[γ, j, k, j
′, k′]

+Cp
j′k′

∑
(J,K)|=γ

∑
m+m′=`−1

2Fm,|J |+1[j
′, j, k, J ]Fm′,|K|+1[k

′, K]

+Cp
j′k′

∑
(J,K)|=γ

∑
m+m′=`−1

2Fm,|J |+1[j
′, j, J ]Fm′,|K|+1[k

′, k,K]

)

+ 2C i
jk

∑
(J,K)|=γ

∑
g+g′=`

Fg′,|K|+1[k,K]×(
2Apj,Jδ|J |,1δg,0 +Bp

jk′Fg,|J |+1[J, k
′]

+nj′(J)Bp
j′k′Fg,|J |+1[J\j′, j, k′] + Cp

j′k′Fg−1,|J |+3[j, J, j
′, k′]

+Cp
j′k′

∑
(J ′,K′)|=J

∑
m+m′=g

2Fm,|J ′|+1[j, j
′, J ′]Fm′,|K′|+1[k

′, K ′]

)



This is going to be easier than it looks! Let’s re-group:

F`,ρ+1[i, p, γ] = F`−1,ρ+1[γ, j
′, k′]

(
Bi
pkC

k
j′k′ + C i

j′kB
p
kk′ + C i

jj′B
p
jk′

)
+ F`,ρ−1[γ\j′, k′]nj′(γ)

(
Bi
pkB

k
j′k′ +Bi

j′kB
p
kk′ + 4C i

jk′A
p
jj′

)
+

∑
(J,K)|=γ

∑
m+m′=`

Fm,|J |+1[j
′, J ]Fg′,|K|+1[k

′, K]
(
Bi
pkC

k
j′k′ + 2C i

jk′B
p
jj′

)

+ F`−1,ρ+1[γ\j, k, j′, k′]nj(γ)
(
Bi
jkC

p
j′k′ + C i

j′kB
p
jk′

)
+

∑
(J,K)|=γ

∑
m+m′=`−1

2Fm,|K|+1[k
′, K]Fm′,|J |+3[j, j

′, k, J ]
(
C i
jkC

p
j′k′ + C i

jk′C
p
j′k

)
+

∑
(J,K)|=γ

∑
m+m′=`

2Fm,|J |+1[J\j, j′, k]Fm′,|K|+1[k
′, K]

(
nj(γ)Bi

jkC
p
j′k′ + C i

j′k′nj(J)Bp
jk

)
+

∑
(J ′,K′,K)|=γ

∑
g+g′+g′′=`

4Fg,|K|+1[k,K]Fg′,|J ′|+1[j, j
′, J ′]Fg′′,|K′|+1[k

′, K ′]
(
C i
jkC

p
j′k′

)
+ F`,ρ−1[γ\{j, j′}, k, k′]nj(γ)nj′(γ\j)

(
Bi
jkB

p
j′k′

)
+ F`−2,ρ+3[γ, j, k, j

′, k′]
(
C i
jkC

p
j′k′

)
+

∑
(J,K)|=γ

∑
m+m′=`−1

2Fm,|J |+1[j
′, j, J ]Fm′,|K|+1[k

′, k,K]
(
C i
jkC

p
j′k′

)

+ 2
(
Bi
pkA

k
γ1,γ2

+ nj(γ)Bi
jk(A

p
γ1,k

+ Apγ2,k)
)
δρ,3δ`,0

+ 2C i
jkA

p
jkδ`,1δρ,1 −Dδρ,0δ`,1

+ nj(γ)Bi
jkD

pδρ,1δ`,1 +Bi
pkD

kδρ,1δ`,1

Taking ` > 1 momentarily eliminates the final three lines – we will have to check

F0,4 and F1,2 manually (F1,1 is obvious). The middle seven lines are all manifestly

symmetric in i and p (assuming, inductively, that the previous Fg,n are). We concern

ourselves now with the expressions within the round brackets of the first three lines,
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each of which will turn out to be symmetric:

Bi
pkC

k
j′k′ + C i

j′kB
p
kk′ + C i

jj′B
p
jk′ (3.21)

Bi
pkB

k
j′k′ +Bi

j′kB
p
kk′ + 4C i

jk′A
p
jj′ (3.22)

Bi
pkC

k
j′k′ + 2C i

jk′B
p
jj′ = Bi

pkC
k
j′k′ + C i

jk′B
p
jj′ + C i

jj′B
p
jk′ (3.23)

We have observed that (3.23) can be re-written, and is equivalent to (3.21). These

are the relations (3.17) and (3.18), thus they are symmetric as a result of Corollary 2.

The Base Case

The smallest value of the recursion parameter, 2g− 2 +n, is 1. The recursion, then,

is based on F0,3, F 1
2
,2, and F1,1. We saw in the proof of Proposition 2 that the second

of these was zero, and the third is clearly symmetric. As for F0,3[i, j, k], we saw

that it is proportional to Aijk and so its symmetry results from (3.11) along with the

assumed symmetry of A’s lower indices.

We must also check F0,4 and F1,2:

F0,4[i, j, k, s] = nj′(j, k, s)B
i
j′k′F0,3[(j, k, s)\j′, k′]

= Bi
j,k′F0,3[k, s, k

′] + Bi
k,k′F0,3[j, s, k

′] + Bi
s,k′F0,3[j, k, k

′]

= 2(Bi
j,k′A

k
s,k′ +Bi

k,k′A
j
s,k′ +Bi

s,k′A
j
k,k′)

F1,2[i, j] = Bi
jkF0,1[k] + C i

j′kF0,3[j, j
′, k]

= Bi
jkD

k + C i
j′kA

j
j′k
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These are the expressions (3.19) and (3.20), thus they are symmetric by Corollary 2.
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Chapter 4

Higher Airy Structures

Higher Quantum Airy Structures – or, in our terminology, simply [not-necessarily-

quadratic] Quantum Airy Structures – were first defined and studied in [8] by Borot

et al. Thinking about enumerative problems characterized by Virasoro constraints

leads to the quadratic Airy structures, and in similar fashion higher Airy structures

were introduced to handle problems characterized instead by W-constraints. A

W-algebra is an extension of the Virasoro algebra, and this additional generality

allows the partition functions constructed by higher structures to capture a wider

array of geometric specimens. Situations in which W-constraints crop up include

Fan-Jarvis-Ruan theories and open intersection theory (see [8]).

We will review here the cornerstone theorem, existence and uniqueness, in the

non-quadratic case. The logical sequence of the proofs are similar, although the

computations are much more involved.
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4.A Conceptual Proof

We now present the proof which we had deferred in Chapter 3. It is a significantly

abridged adaption of the proof available in [31]. Our new conventions, which

mix up both g and n into the exponent of ~, has allowed us to approach more

straightforwardly, using one induction over the ~-degree where there had been

two inductions over g and n. It manages to avoid all talk of a "Classical Limit"

for a Quantum Airy Structure, although that concept remains quite important for

Kontsevich and Soibelman’s broader point of view.

Theorem 6. Suppose we have a Quantum Airy Structure H = {Ĥi} ⊂ O~. Then,

among all Z ∈ S~ of the form (4.1), there is a unique solution to the system of

equations ĤiZ = 0 for i ∈ I .

It will be more convenient to prove this statement for Quantum Airy Structures

that are possibly cross-capped. We will be making use of notation such as P [x > 3]

or P [∂ = 0] which indicate an arbitrary series in O~ with, respectively, no terms

of x-deg ≤ 3 and no terms of ∂-deg > 0. P may refer to a different polynomial

in each instance until it gains an index, after which point it is taken to indicate one

particular polynomial.

Proof. The proof is by induction on 2g − 1 + n. We write:

Z = exp(F ) = exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0 ×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα

 (4.1)

for some coefficients Fg,n[α] ∈ C. Secondly, replace Ĥie
F = 0 with the equivalent

equations e−F Ĥie
F = 0, which are easier to analyze. Thirdly, we need to answer

a question about the expression e−F Ĥie
F : what is the minimum ~-degree to which
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a given Fg,n contributes any terms? Considering a generic term ~AxI∂J within Ĥi

(with A > |I|+ |J |1), its contribution to e−F Ĥie
F is:

~AxI
∑
K`J

∏
K∈K

∑
g,n,α

~2g−2+n

n!
Fg,n[α]∂K(xα)

Every term in the right-most sum has ~-degree ≥ 1, so the minimum is obtained

when the product has just one factor, or K = {J}. We may as well take I = ∅ and

A = |J | = 1. The result is that the ~-minimal term with a particular Fg,n[α]-factor

has, at least, ~-deg = 2g − 1 + n. This is saturated only by Ĥi’s linear term.

For any `, the partial sum:

S` :=

2g−1+n≤`∑
g,n,α

~2g−2+n

n!
Fg,n[α]xα

is such that e−F Ĥie
F and e−S`Ĥie

S` agree in all terms at or below ~-degree `. The

desired equation e−F Ĥie
F = 0 is equivalent to the conditions that, for each `, we

have e−S`Ĥie
S` = P [~ > `].2

Inductive Step in `

Fix `. Suppose we have shown, for any (possibly cross-capped) QAS, the existence

and uniqueness of a sum:

S` =

2g−1+n≤`∑
g,n,α

~2g−2+n

n!
Fg,n[α]xα

1This condition is, of course, true of any Quantum Airy Structure. But we will see that it is not
at all necessary.

2This is an existence/uniqueness condition on the S`, but we also require that each S` is an initial
segment of later S`′>`.
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such that:

e−S`Ĥie
S` = P [~ > `] (4.2)

The target equation, e−F Ĥie
F = 0, is equivalent to:

e−F
′
Ĥ ′ie

F ′
:= e−F+S` [e−S`Ĥie

S` ]eF−S` = 0

F ′ := F − S` Ĥ ′i := e−S`Ĥie
S`

with the primed operators trivially forming another QAS3. Therefore we may search

for F ′ instead of F , knowing that they agree in all ~-degrees above `−1. The benefit

is that our induction hypothesis gives us uniqueness ofF ′g,n whenever 2g−1+n ≤ `,

which proves that S ′` is necessarily zero. Since we know also that it satisfies (4.2)

with primes inserted, we learn the form of the Ĥ ′ must be:

Ĥ ′i = −~∂i + Pi[∂ = 0, ~ > `] + Yi[∂ > 0, ~ ≥ 2]

= −~∂i +Qi[∂ = 0, ~ = `+ 1] + Ri[∂ = 0, ~ > `+ 1] + Yi[∂ > 0, ~ ≥ 2]

The operator Yi will only produce terms of ~-degree `+ 2 or more when we insert

S ′`+1 =

2g−1+n=`+1∑
g,n,α

~`

n!
F ′g,n[α]xα =

2g−1+n=`+1∑
g,n,α

~`

n!
Fg,n[α]xα

into e−S′
`+1Ĥ ′ie

S′
`+1 . Thus our present aim (demanding it be equal to P [~ > ` + 1])

amounts to ~∂iS ′`+1 = Qi for each i.

3This is the reason we must include cross-capped QASs; conjugation of a strict QAS does not
result necessarily in another QAS.
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For any two Ĥ ′, their commutator has the form:

[Ĥ ′i, Ĥ
′
j] =− ~([∂i, Qj] + [∂i, Rj] + [∂i, Yj]) + [Qi, Yj] + [Ri, Yj] +

1

2
[Yi, Yj]

− (i↔ j)

The ∂ = 0 part of this4 is:

[∂0][Ĥ ′i, Ĥ
′
j] =− ~(∂iQj + ∂iRj)− (Yj ·Qi + Yj ·Ri)

− (i↔ j)

The action of Y · increases ~-degree by at least two, so the [~ = ` + 2] part of the

above is ~(∂iQj − ∂jQi). This commutator must also belong to the ideal ~2O~ ·H,

which requires its ∂-degree zero part to be P [~ > `+ 2], forcing that ∂iQj = ∂jQi.

Momentarily taking I finite, the Poincare lemma gives existence as well as unique-

ness (up to an additive constant ∈ C[[~]], which we must choose to be zero) of an

S ′`+1 such that ~∂iS ′`+1 = Qi for each i. And, of course, it has the appropriate

~-degree.

By separating the terms of S ′`+1 according to x-monomials and assuming α-

symmetry, we get uniqueness for each Fg,n[α] whenever 2g − 1 + n ≤ ` + 1.

The inductive hypothesis has been extended to `+ 1.

We must handle the case I = N. Although Ĥi may have infinitely many terms,

there are only finitely many at each ~-degree. Therefore each Qi is a polynomial.

4It may seem this is not well-defined. What is the ∂ = 0 part of ∂x = x∂ + 1? It is well-defined
if the operation is "commute all ∂ to the far right and then take the ∂ = 0 part." In other words,
quotient O~ by the left-ideal 〈∂〉, not the right ideal. Another way to define [∂0]F would be as [the
natural inclusion S~ ↪→ O~ of] F · 1.
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However, there are infinitely many Qi.

Consider a finite initial segment {1, . . . , J} ⊂ I . Then {Qj : j ≤ J} is a finite

set, belonging to a finite-dimensional subspace of C[[{xi}i∈I ]], and the Poincare

lemma yields an SJ` such that ~∂jSJ` = Qj for all j ≤ J . We can similarly find

SJ+1
` . Note that ∂j(SJ+1

` − SJ` ) = 0 for all j ≤ J , which means that SJ+1
` is

obtained from SJ` by the addition of a polynomial involving only xk with k > J .

The sequence of polynomials SJ` yields a power series S∞` , defined such that its

{xj : j ≤ J}-nonconstant part agrees with SJ` , which serves in the role of S` above.

Base Case in `

The smallest value that ` = 2g− 1 + n can take is 2. We would like to establish the

uniqueness and existence of a sum:

S2 =
∑

2g−1+n=2

∑
α

1

n!
~Fg,n[α]xα = ~

(
1

6
F0,3[i, j, k]xixjxk +

1

2
F 1

2
,2[i, j]xixj + F1,1[i]xi

)

such that e−S2Ĥie
S2 = P [~ > 2]. This amounts to (we have provided names for the

coefficients of the monomials 1, xj , and xjxk in Ĥi):

~∂iS2 = ~2 (Ai[∅] + Ai[j]xj + Ai[j, k]xjxk)

Giving, in turn, F1,1[i] = Ai[∅], F 1
2
,1[i, j] = Ai[j], and F0,3[i, j, k] = 2Ai[j, k].

Clearly, once the QAS and thus the Ai are chosen, S2 is uniquely fixed.
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4.B Computational Proof

Despite having an existence and uniqueness proof already, it does not lay out the

recursion formula explicitly. This can be done, and has been in [8]. First, two

definitions. We adopt a uniform notation for both x and ∂.

Definition 14. For any K = (k1, k2, . . . ) ∈ Im, set K := (−k1,−k2, . . . ). Define

I := I t I , as well as

Qa :=


∂a a > 0

x−a a < 0

for any a ∈ I.

Definition 15. We say that a multi-indexW ∈ Im is normally ordered if all of its

negative values Wi < 0 occur before [at smaller i than] any of its positive values.

In this case, an operator QW has all x-factors to the left of all ∂-factors5. IfW is a

multi-index, let N (W ) refer to any permutation that is normally ordered.

We can present an expression for the general form of a Higher Quantum Airy

Structure:

Ĥi = −~Qi +
∑
m≥2

∑
0≤`≤m

~m

`!

∑
α∈I`

C(m)[i|α]QN (α) i ∈ I (4.3)

Given aHigherQuantumAiry Structure, we can express the recursion for its partition

function in terms of its coefficients, the C(m)[i|α]. Recalling Definition 11 for the

symbol |=, we make one simplification. Instead of writing (Ak)k∈K |= β we write

A : K |= β, treating A as a function on K. To refresh, this means that the images

A(k) are (possibly empty) tuples (βj)j∈J` which are pair-wise disjoint6 and whose

5At least, it has one or more such representations
6Meaning, strictly, that the J` are pair-wise disjoint.
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concatenation is β.7

Definition 16. Given a sequence {C(m)[i|α] : m > 2, 0 6 ` 6 m,α ∈ I`, i ∈ I},

the Topological Recursion refers to the equations, for each i ∈ I , β ∈ I |β|, and

G ∈ N0 such that 2G− 2 + (|β|+ 1) > 0,

FG,|β|+1[i, β] =
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α]
∑

J`N (α)

′′∑
A:J|=β

∼∑
g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

(4.4)

relating themembers of a sequence {Fg,n[α] : g ≥ 0, n ≥ 1, 2g−2+n > 0, α ∈ In}.

The g-sum is restricted so that
∑

J∈J(2g(J)− 2 + |A(J)|+ |J |) = 2G−m+ |β|,

notated with a ∼. The double primes indicate a restriction on the A-sum such that

A(J) = ∅ does not occur at the same time as J ∩ Z− 6= ∅.

What we aim to prove in this section is

Theorem 7. Let H := {Ĥi} be a Quantum Airy Structure. Among all power series

Z of the form:

Z = exp

 2g−2+n>0∑
(g,n)∈ 1

2
N0×N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα

 (4.5)

the solution to the equations ĤiZ = 0 for i ∈ I , if any, is unique. Furthermore, the

Fg,n[α] ∈ C are given by the Topological Recursion.

This will follow easily after a straightforward lemma. First we expand the

definition of each Fg,n[α] to allow α ∈ In: each Fg,n8 vanishes whenever it takes

negative arguments. We also introduce F0,2[a, b] := δa,−b. In the following we

7Strictly, the union of the J` is {1, . . . , |β|}.
8Except F0,2, obviously.
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briefly suppress the g-summation by writing:

F [α] :=

2g−2+|α|>0∑
g∈ 1

2
N0

~2g−2+|α|Fg,|α|[α]

for any α ∈ In.

Lemma 6. For any n andW ∈ In, we have

∂β(e−FQN (W ) · eF )|0 =
∑
J`W

′′∑
A:J|=β

∏
J∈J

F [A(J), J ]

The double prime notation indicates that the A-sum has been restricted in such a

way that A(A) = ∅ does not occur at the same time as A ∩ Z− 6= ∅.
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Proof. Let’s write QN (W ) := xK∂L for some K,L and compute:

∂β(e−FxK∂L · eF )|0 =
∑

B:Kt{L}|=β

(∏
k∈K

∂B(k)xk

)(
∂B(L)

(
e−F∂L · eF

))∣∣∣∣∣∣
0

=
∑

B:Kt{L}|=β

(∏
k∈K

∂B(k)xk

)(
∂B(L)

∑
J`L

∏
J∈J

∂JF

)∣∣∣∣∣∣
0

=
∑

B:Kt{L}|=β

(∏
k∈K

∂B(k)xk

)∑
J`L

∑
L:J|=B(L)

∏
J∈J

(∂L(J),JF )|0


=

∑
B:Kt{L}|=β

(∏
k∈K

δB(k),k

)∑
J`L

∑
L:J|=B(L)

∏
J∈J

F [L(J), J ]


=

∑
B:Kt{L}|=β

∏
k∈K

F0,2[k,B(k)]

∑
J`L

∑
L:J|=B(L)

∏
J∈J

F [L(J), J ]


=
∑
J`L

∑
B:Kt{L}|=β

∑
L:J|=B(L)

∏
k∈K

F0,2[k,B(k)]

(∏
J∈J

F [L(J), J ]

)
(4.6)

?
=
∑
J`L

∑
A:KtJ|=β

∏
J∈KtJ

F [A(J), J ] (4.7)

Lets argue on behalf of this final equality. An A is equivalent to a (B,L) as follows:

for k ∈ K set B(k) := A(k), as well as B(L) := {A(J) : J ∈ J}; then put

L(J) := A(J) for all J ∈ J. However, line (4.6) only includes terms wherein

negative indices occur nowhere except F0,2, and that each F0,2 contains exactly one

negative index. Luckily, such are the only non-zero terms of line (4.7), thanks to

our extended definitions of the F . We continue just a few more steps:

=
∑
J`L

∑
A:KtJ|=β

∏
J∈KtJ

F [A(J), J ] (4.8)

?
=
∑

J`LtK

∑
A:J|=β

∏
J∈J

F [A(J), J ] (4.9)
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We would like to replace the sum over J ` L with a sum over J ` L tK, getting

line (4.9). This would add additional terms, but almost all of them are zero. The

possible cases are these:

• Every time J partitions LtK in such a way thatK’s elements are sequestered

in singletons, we recover a term that was in (4.8) – and each term in (4.8)

occurs this way, once.

• All terms vanish in which J has partitioned more than one element of K

together.

• All terms vanish in which an element ofK has been grouped with more than

than one element of L.

• Remaining are cases in which some elements of K are grouped with exactly

one element of L. These pairs (k, `), as they contain a negative index, can

only be used as the argument of F0,2. This forces that A(k, `) = ∅.

Cases described in the final bullet are the additional terms we would add if we made

our intended replacement. We simply omit them: the A-sum is restricted such that

A(J) = ∅ does not occur at the same time as J ∩ Z− 6= ∅. This restriction is

notated by a double-prime over the A-sum. We continue, striking out (4.9) and

writing instead:

=
∑

J`LtK

′′∑
A:J|=β

∏
J∈J

F [A(J), J ]

Using the uniform operator notation, we can write

∂β(e−FQN (W )e
F )|0 =

∑
J`W

′′∑
A:J|=β

∏
J∈J

F [A(J), J ]
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for any n ∈ N andW ∈ In.

At this point, it is quite simple to give the proof of our theorem.

Proof. The dirty work has already been done. The equation Ĥi · eF is equivalent to,

for all N ∈ N0 and all β ∈ I |β|, having [~N ]∂β(e−F Ĥi · eF )|0 = 0. Now, we know

that

[~N ]∂β(e−F Ĥi · eF )|0 = [~N ]∂β

[
−~e−FQi · eF +

∑
m≥2

∑
0≤`≤m

~m

`!

∑
α∈I`

C(m)[i|α]e−FQN (α) · eF
]∣∣∣∣∣

0

= −[~N−1]∂β(e−FQi · eF )|0 +
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α][~N−m]∂β(e−FQN (α) · eF )|0

= −[~N−1]F [i, β] +
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α][~N−m]
∑

J`N (α)

′′∑
A:J|=β

∏
J∈J

F [A(J), J ]

(4.10)

We should work out what power of ~ emerges from
∏

J∈J F [A(J), J ]. We will make

use of the interchange rule
∏

j∈J
∑

k∈K aj,k =
∑

k:J→K
∏

j∈J aj,k(j), of which one

may easily become convinced. Lets see:

∏
J∈J

F [A(J), J ] =
∏
J∈J

∑
g∈N0

~2g−2+|A(J)|+|J |Fg,|A(J)|+|J |[A(J), J ]

=
∑

g:J→N0

∏
J∈J

~2g(J)−2+|A(J)|+|J |Fg(J),|A(J)|+|J |[A(J), J ]

=
∑

g:J→N0

~
∑
J∈J(2g(J)−2+|A(J)|+|J |)

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]
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Extracting the ~N−m term, we get

[~N−m]
∏
J∈J

F [A(J), J ] =

∑
J∈J(2g(J)−2+|A(J)|+|J |)=N−m∑

g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

:=
∼∑

g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

Returning to (4.10), we can see

[~N ]∂β(e−F Ĥi · eF )|0

= −[~N−1]F [i, β] +
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α][~N−m]
∑

J`N (α)

′′∑
A:J|=β

∏
J∈J

F [A(J), J ]

= −F 1
2
(N−|β|),|β|+1[i, β] +

∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α]
∑

J`N (α)

′′∑
A:J|=β

∼∑
g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

:= −FG,|β|+1[i, β] +
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α]
∑

J`N (α)

′′∑
A:J|=β

∼∑
g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

We have substituted G := 1
2
(N − |β|), and as before the ∼ refers to the condition

on g that
∑

J∈J(2g(J) − 2 + |A(J)| + |J |). Therefore, the system of equations

Ĥi · eF = 0 is equivalent to the system

FG,|β|+1[i, β] =
∑
m≥2

∑
0≤`≤m

1

`!

∑
α∈I`

C(m)[i|α]
∑

J`N (α)

′′∑
A:J|=β

∼∑
g:J→N0

∏
J∈J

Fg(J),|A(J)|+|J |[A(J), J ]

(4.11)

for all i ∈ I , all β ∈ I |β|, and all G ∈ N0 such that 2G− 2 + (|β|+ 1) > 0.

This system is recursive. Again, the sum on g is restricted in such a way that∑
J∈J(2g(J)− 2 + |A(J)|+ |J |) = N −m. Each summand in the lefthand side of

that expression is non-negative, since g(J) ≥ 0 and |A(J)|+ |J | ≥ 2. Therefore, for
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eachJ , we have 2g(J)−2+|A(J)|+|J | ≤ N−m = 2G+|β|−m < 2G−2+(|β|+1)

as long as m > 1, which is always the case. The familiar expression “2g − 2 + n"

is greater on the lefthand side than in any term on the righthand side.

To complete a treatment of Higher Topological Recursion in parallel to that of

Chapter 3, we would now have to give the computational proof of symmetry. And

although symmetry is guaranteed, since partition functions exist for Higher Airy

Structures as a result of Theorem 6,9 this explicit calculation remains unperformed.

We cannot give that calculation here, but it should proceed in very roughly the same

way as in the quadratic case.

It is not hard to twice expand, as we did in Chapter 3:

Fg,n[k, i, γ] =
∑
`,j≥0

1

`!

∑
α∈I`

Cj[k|α]
∑
J`α

`+j+
∑

J h(J)=g+|J|∑
h:J→N

×

′′∑
µ`J(i,β)

(∏
J∈J

Fh(J),|J |+|µ(J)|[J, µ(J)]

)

=
∑
`,j≥0

1

`!

∑
α∈I`

Cj[k|α]
∑
J`α

`+j+
∑

J h(J)=g+|J|∑
h:J→N

×

′′∑
µ`Jβ

∑
J ′∈J

Fh(J ′)[J
′, µ(J ′), i]

∏
J∈J\J ′

Fh(J)[J, µ(J)]



9The partition function can clearly be chosen to have symmetric coefficients, which satisfy the
recursion, and since the Fg,n constructed by the recursion are unique they must be these symmetric
coefficients. Of course, the partition function can just as easily be chosen not to have symmetric
coefficients, however those would not satisfy the recursion – their symmetrizations would.
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=
∑
`,j≥0

1

`!

∑
α∈I`

Cj[k|α]
∑
J`α

`+j+
∑

J h(J)=g+|J|∑
h:J→N

′′∑
µ`Jβ

∑
J ′∈J

[
∑
`′,j′≥0

1

`′!

∑
α′∈I`′

Cj′ [i|α′]
∑
K`α′

`′+j′+
∑

K h
′(K)=h(J ′)+|K|∑

h′:K→N

×

′′∑
µ′`Kβ

(∏
K∈K

Fh′(K)[K,µ
′(K)]

) ∏
J∈J\J ′

Fh(J)[J, µ(J)]

]

To mimic the earlier proof (of Proposition 4), one would perhaps try to separate

out the different J ′ terms according to the size of J ′. This corresponds to the

separation of terms on page 45 according to whether nothing was removed from

γ, one thing was removed, or γ became partitioned across factors of F . Since the

i, p-symmetry worked slightly differently in each of these cases, it is expected that a

careful separation like that will need to be done again. As well, in the previous proof

we had to dig through the subalgebra condition to find no less than six quadratic

relations, each of which was necessary to establish the result. In this case, then,

we expect to engage in the analogous but much more difficult process. This is an

undertaking for the future.
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Chapter 5

Generalization

In both the original quadratic case and the higher-order case, we limited the terms

~mPm,k occurring in the Ĥk in such a way that the degree of Pm,k was not more than

m. This restriction makes sense in light of a QAS’s role as a quantization. However,

none of the proofs presented in this paper make essential use of that criterion. We

could have defined Higher Airy Structures in the following way:

Definition 17. A Quantum Airy Structure in Normal Form is a collection H =

{Ĥk}k∈I ⊂ O~ of operators such that

1. Ĥk = −~∂k +
∑

m≥2 ~mPm,k for each k, with Pm,k ∈ O arbitrary1

2. With O~ ·H the left ideal generated by H and [O~ ·H,O~ ·H] the collection

of all [s, s′] for s, s′ ∈ O~ ·H, we have [O~ ·H,O~ ·H] ⊂ ~2O~ ·H

The same existence and uniqueness theorem could have been stated. This

requires a generalization of the form of F : we must allow g to take negative values.

1This is tricky, actually, allowing everything to be a series instead of a polynomial. For example,
what is the constant term of (∂ + ∂2 + ∂3 + . . . )(x + x2 + x3 + . . . )? One would find it is
1! + 2! + 3! + 4! + . . . , which is not an element of C. However, if we require that at each ~-degree
and each x-degree there are only finitely many powers of ∂, we will successfully define a function
on S~. That is, we consider series

∑
m∈Z

∑
n>0

∑
α∈In ~mxαPm,α(∂) for any polynomials Pm,α.
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The Theorem statement becomes the following:

Theorem 8. Suppose we have a Quantum Airy Structure H = {Ĥi} ⊂ O~. Then,

among all

Z = exp

∑
g∈ 1

2
Z

2g−2+n>0∑
n∈N

∑
α∈In

~2g−2+n

n!
Fg,n[α]xα


there is a unique solution to the system of equations ĤiZ = 0, i ∈ I .

Proof. We begin with the base case. Since we still require 2g− 2 +n > 0, the least

value that 2g − 1 + n can take on is 2. We want the existence and uniqueness of a

sum (defining n(g) := 3− 2g):

S2 =
∑
g∈ 1

2
Z

2g−1+n=2∑
n∈N

∑
α∈In

1

n!
~Fg,n[α]xα = ~

∑
g< 3

2

∑
α∈In(g)

1

n(g)!
Fg,n(g)[α]xα


such that e−S2Ĥie

S2 = P [~ > 2]. If we write Ĥi = −~∂i + ~2Oi then we can tell

that no term of Oi which is non-constant in ∂ will contribute to our equation; these

will bring down at least one factor of S2 which, along with the additional ~2, will

give them ~-degree 3 or more. For a similar reason, no term inOi with any ~ factors

can contribute. Everything else (except for the leading linear term) is commutative,

and so it is easy to see that:

[~2]e−S2Ĥie
S2 = −~∂iS2 + ~2

(∑
n∈N

∑
α∈In

1

n!
C(2)[i|α]xα

)

Therefore we wish to satisfy:

∑
g< 3

2

∑
α∈In(g)

1

n(g)!
Fg,n(g)[α]∂ixα =

∑
n∈N

∑
α∈In

1

n!
C(2)[i|α]xα
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This gives F1− 1
2
|α|,1+|α|[α, i] = C(2)[i|α] for all n ≥ 0, α ∈ In, and i.

The inductive step is nearly unaffected. The definition of each S` will change

slightly, as they now have additional terms. However, it remains that each term in

each S` has ~-deg ≥ 1, which is what did most of the lifting.

It also remains that ∂iQj = ∂jQi for all i, j ∈ I . We are still trying to satisfy

~∂iS` = Qi for all i ∈ I and some series S` with ~-degree = ` − 1 . In this

case, however, not only may there be infinitely many Qi, but each Qi may also have

infinitely many terms.

Fix a finite initial segment {1, . . . , J} ⊂ I . Define QJ
i by truncating Qi at

degree J , and then setting all xk to zero for k > J . Then {QJ
j : j ≤ J} is a finite

set of polynomials in finitely many variables, and the Poincare lemma yields a SJ

such that ~∂jSJ = QJ
j for each j ≤ J . We can form a power series S∞, defined

such that its {xk : k > J}-constant terms of x-degree ≤ J + 1 agree with those of

SJ . This S∞ can play the role of S` in the inductive step of the proof.

We need only check consistency. That is, we require that SJ and SK>J agree in

their {xk : k > J}-constant, x-degree ≤ J + 1 terms. The S are determined only

up to an overall constant, which we are forced to take as zero. So this requirement

amounts to, for all j, ρ < J , that [xρ]∂j(S
K − SJ) is equal to (if not zero, then)

terms non-constant in {xk : k > J}. Since that expression is just [xρ](QK
j − QJ

j ),

we have the result.

Any additional structuresH permitted by this new definition are purely quantum

in the sense that they have no well-defined classical limit. The classical limit, as

earlier, is an algebra homomorphism that (in our conventions) would send ~xi 7→ xi
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and ~∂i 7→ yi2, interpreted respectively as linear coordinates on a vector space V

and the corresponding dual coordinates on V ∗. Each Ĥk is taken to a polynomial

Hk(x, y) ∈ Sym(V ⊕V ∗). Their collective zero-locus is a Lagrangian submanifold

of V ⊕ V ∗, because the QAS’s subalgebra condition ensures that they generate a

Poisson ideal. It can further be argued [31] that this submanifold is the image of V

under x 7→ (x, dSx) for some function S : V → C. This S is known in the physics

setting as the Classical Action. It is a supremely important object classically, but it

is also connected to the phase of a quantum-mechanical wavefunction. This con-

nection is explored in depth by the industry of Geometric Quantization [5].

The issue with the new structures is easy to see. If Pm,k has a degree higher thanm,

then we cannot realize it as a polynomial in {~xi, ~∂i} and we do not have an instruc-

tion to map xi or ∂i to anything without their ~-factors. We cannot change the way

the classical limit is defined, because the purpose in this point of view is a certain

relationship between classical and quantum structures. Specifically, the preimages

of xi and yi under the classical limit mapmust have a certain prescribed commutator.

In the older conventions, our generalization amounts to the allowance of (arbi-

trary, but finitely many) negative ~-powers within the Ĥk. Their classical limit in

that notation had been defined as the quotient of C[[~]][[{xi, ~∂i}]] by 〈~〉,3 which

makes clear that introducing an inverse for ~ would trivialize it. In these same

conventions the free energy began with a term ~−1, which meant that it could be

taken as a wavefunction in WKB form. This interpretation, too, would be lost in our

generalization, which amounts to filling out F with further negative powers for ~.

2And remaining factors of ~ to 0.
3This is a left and right ideal.
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Of course, as the difference is purely aesthetic, neither can our partition function be

taken as a WKB wavefunction; it does not behave properly under our classical limit.

The lack of a classical limit does unmoor these structures from some of Topo-

logical Recursion’s origins and purposes, however it still makes perfect sense to

wonder what sort of coefficients may turn up within those generating series. Do

they admit a similar connection to Riemann surfaces, to matrix models, Virasoro

constraints, or other areas? This is so far not known to us.
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Chapter 6

Conclusion

Much well-known and yet fascinating ground has been traversed, its wonders in-

spected and filed away. Many forms of existence and uniqueness have been displayed

for all manner of variations on the Quantum Airy Structure theme, objects that have

urgent duties in the realms of enumerative geometry, quantum gravity, string the-

ory, matrix integrals, conformal field theory, and others. Just as much, however,

has not been said. Can a direct, computational proof be found for the existence

(i.e. symmetry) of partition functions in the general case? If, from an intrinsic

perspective, we have no reason not to generalize Quantum Airy Structures, can such

a generalization find its own use in enumerative geometry and other fields? Do their

partition functions have worthwhile geometric content? Can their accompanying

recursion be formulated as proceeding from a spectral curve? Is there any modified

notion of a classical limit that could service even them? It is our sincere hope that

these questions find satisfying answers which beget more questions.
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