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Abstract

In multimedia sharing networks such as YouTube, and Fljok&, users actively
participate and interact with each other, which influencesamly each individ-
ual but also the entire system performance. Successfubgseints of multimedia
sharing networks show that user cooperation helps pro¥idesat and highly scal-
able platforms for multimedia distribution. However, ngsers are selfish, their
cooperation cannot be guaranteed. In this thesis, we airegigulincentive mech-
anisms to stimulate user cooperation and also optimizeytsters performance.

Without loss of generality, we use two multimedia applicat as examples
to show how to achieve our research goals. We first study ahtypoeooperative
wireless multicast system, where after the base staticadoests a packet, a relay
node who receives the packet correctly helps forward it éodtiners. We model
user interaction in this system as a multi-seller multidiugayment based game,
where users pay to receive relay service and get paid if teyforward a packet.

We then study an interactive multiview video streaming (IS)\éystem, where
an user can select one out of many available views for obsemnand switch views
frequently. With the advances of multiview video codingheicues, users can
cooperatively download videos even if they are watchintedéint views. We then
model user interaction as an indirect reciprocity game anudilate users’ decision
making associated with their view switching as a Markov sieci process.

In these two examples, our analysis shows that user belimypaicts the system
performance significantly. Thus, we optimize our incentiwechanisms, which
drive the games to desired stable equilibria, where usergearate with each other

and the system performance is maximized at the same time.
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Chapter 1

Introduction

1.1 Motivation

In the past ten years, we witness the emergence of large-sualtimedia shar-
ing networks. For example, users can upload and browse sreage videos on
Flickr [1] and YouTube [2], download music from Napster, avatch online videos
through peer-to-peer (P2P) live streaming softwares sadPPdive [3], PPstream
[4], and Sopcast [5], etc. In these networks, millions ofrasal over the world
participate to create and share multimedia data with edoérowhich produces
massive multimedia data for distribution. From the studjlii in Feb. and Mar.
2012, the daily upload volume of Flickr has reached 1.8 omllphotos per day.
In addition, with the emergence of high-speed cellular anBiWetworks and the
increasing popularity of advanced mobile devices such astgghones and tablets,
users can easily create, share and browse multimedia datdare and anytime.
From [2], the traffic downloaded to or uploaded from mobileides was tripled
at YouTube in 2011, and currently, more th2iV; browse requests are sent from
mobile devices. The massive production and frequent exgghahmultimedia data
pose great challenges to multimedia distribution over avaed wireless networks.
Thus, technologies that can support efficient and reliakth@nge of multimedia
date are in demand.

Different from traditional multimedia systems, in multidia sharing networks,



users do nopassivelyreceive provided service, battivelyparticipate in and con-
tribute to the systems. A lot of studies (e.g. [6]-[10]) hakewn that users play a
key role in multimedia sharing networks. For example, in R@Psharing systems,
when downloading files, users will simultaneously uploag downloaded data to
others. Thus, their average downloading time can be eftdgtshorten when com-
pared with the traditional client-server based model. ldittah, a higher level of
user participation (e.g., more upload bandwidth they doute), the system can
provide more efficient service. Furthermore, users camléam others or their
own past experience in multimedia sharing networks. Fomgie, in YouTube
users can read the comments of a video wrote by others, andidogde whether to
watch it. If users find most of videos published by a user hpgood ratings, they
may even subscribe to this user for all future videos. Howegweople may also
manipulate the recommendation service provided by muttimeharing networks
to promote their own content for profits. As shown in [10],ta@fre programs were
developed for scammers, which can mimic legitimate YouTwakic and provide
positive feedbacks for any video they want to promote. Adisth examples show
that users in multimedia sharing networks interact withheatbhers, which signif-
icantly influences not only each individual’'s decision bigoathe entire system
performance. Thus, for a better design of multimedia skyanetworks, we need
to take human factor into consideration, understand howsusarn from and in-
fluence each other, and analyze how such user behavior dgmaffect the system
performance. The ultimate goal of such investigation isttwvigle important guide-
lines for designing a multimedia sharing network with datiory, efficient and
personalized service.

From the above discussion, user behavior dynamics inteodifferent issues
to be addressed in multimedia sharing networks, such aatimeanechanisms for
higher level of user participation, social learning, sé@guand privacy issues, etc.
In this thesis, we focus on designing incentive mechanisnssinulate user coop-
eration. The studies in [6]-[8] show that user cooperatamitelp provide efficient

and highly scalable platforms for multimedia exchange asttidution. For exam-



ple, the work in [8] provides a measurement study of a reallR2Rtreaming soft-
ware, PPLive, which provides live broadcast of hundredstoh€se TV channels.
On May 12th, 2010, one of these channels, HunanTV, was basselt via PPLive
to over 1600 users over the Internet at a bit rate of 400 klhgrsesponding to an
aggregated bit rate of more than 600 megabits per secondhisliexample, peers
cooperatively download/upload video packets from/to ezttler so that everyone
can receive a high quality video. Thus, cooperation allogessito access available
resources in the entire network, and therefore, the systéenachieve much higher
throughput than the traditional client-server based model

In multimedia sharing networks, users receive gains frooesging others’ net-
work resources. However, sharing their own network ressito help others’
downloading may incur some cost. Since users are intelliged rational, they
have the ability to choose optimal actions towards maxingjzheir utilities! and
the optimal actions may not always be playing cooperativélystudy [12] on a
P2P file sharing system, Gnutella, shows thdto2% users are free riders, who
only download from other peers but do not share any file atHilis is because
users areselfish[13], and only care about their own utilities. If free ridimgn
result in a higher utility, they will tend to free ride rath&an cooperate.

To address this problem, we need to study user interactidrdasign incen-
tive mechanisms to stimulate user cooperation. Game tHédiy [15] provides
the fundamental tools to model user interaction, and sthdy strategic decision
making. In particular, we are interested in the Nash Equilib of a game, from
which no user has incentive to deviate. When designing inemechanisms for
multimedia sharing networks, there are several challengisues that need to be
addressed.

i) In the current state-of-arts, incentive mechanisms fortimedia sharing net-

works mainly study the point-to-point interaction, wherear of users establish

In practical multimedia sharing systems, users use sofsvauich as PPlive and Sopcost pro-
vided by the systems for video downloading and uploading.stMi such softwares force user
cooperation in the networks. However, the work in [11] asssitihat intelligent users can manipu-
late the software and develop their own protocols to intesdgtt other users.



partnership and cooperate with each other. In such systeoser can choose dif-
ferent strategies towards different partners. Thus, amatiuser will only cooperate
with cooperative users, and free-riders can be easilytsmlaHowever, in reality,
there is one-to-many interaction, especially in wirelessmunication. If one user
transmits a message, due to the broadcast nature of wiessiunication, all
nearby users can hear it. In this case, a user cannot sefiecedt strategies to-
wards different users, since even if he/she only wants tpete with one user,
other users can overhear and free ride. In this scenar®yifleng is much easier,
and cooperation stimulation is a more challenging problem.

i) In the literature, many incentive mechanisms consider tkeaio where users
face the same game every time they interact with each othes.igbecause they as-
sume that user states, such as available network resodocest change over time.
However, this assumption may not be true. For example, in bilsnaultimedia
sharing system, mobile devices all have energy constra8itee their remaining
energy will change over time, their strategies may also gbaf hus, understand-
ing how user state change affects their strategies and gtermsyperformance is
important in designing incentive mechanisms to stimulatr @ooperation.

i) In multimedia sharing networks, users many join and leageystem from time
to time. User membership dynamics may also impact theitegfies, and thus, the
system performance. For example, given that a group of nensyast join the
network, and the existing users do not know how those nevswgéibehave in the
system, whether the existing users should continue thep&ation is a problem
that should be addressed.

iv) Each user may have private information, which other usensadd&nown, e.g.,
his/her own available network resources. Selfish users mabbut their private
information if cheating can improve their performance. Egample, a user may
claim that he/she has very low upload bandwidth, so thataaasontributing to the
system. Thus, we should address users’ cheating behavimptove the system
efficiency.

In this thesis, we focus on these challenging issues in degjgncentive mech-



anisms for multimedia sharing networks.

1.2 Thesis Contribution and Outlines

From the above discussion, we know that user behavior hagisant impacts on
multimedia sharing networks, and also know the four impurissues that should
be addressed in designing incentive mechanisms. With@st &b generality, in
this thesis, we study two multimedia applications, whicl gpical applications
raising those four challenging issues. The first applicaisa two-hop cooperative
wireless multicast system, where all users receive the saaiémedia data for
observing, and it raises issgeandiv) to be addressed. The second application is
an interactive multiview video streaming (IMVS) system,es users receive not
exactly the same but correlated multimedia data for obsgnand it raises issue
i) andiii) to be addressed. We use these two applications as exampaswo
how user behavior impacts the system performance, and haledign incentive
mechanisms to address the four important issues. Our batitms are summarized

as follows:

1.2.1 Incentive Analysis for Two-Hop Cooperative Wireles$/ul-

ticast

In two-hop cooperative wireless multicast, all users nexéihe same multimedia
data. After the base station (BS) broadcasts a video pasketessful users who
receive the packet correctly can help forward the packehéorést unsuccessful
users. Due to the broadcast nature of wireless communigatioen a user relays
a packet, he/she actually helps all nearby users who carhireélrer. Thus, itis a

typical one-to-many interactoin model in multimedia shgmetworks.

In Chapter 3, we study the incentive mechanism to stimula& cooperation
in this system. We first model the interaction among usensigslystem as a multi-

seller multi-buyer payment based game, where users paycévesrelay service



and they will get paid if they help forward packets. We alsowdethe optimal
price, which drives the game to the desired Nash Equilibyiwhere unsuccessful
users have low free-riding probability and the system tghput is maximized.

We then consider that users may have different cost to uglnaghacket, which
is their private information. To address their cheatingdwédr, we design a second-
price sealed-bid auction game. In this game, bidding theedost is their dominant

strategy, which everyone will choose.

1.2.2 Incentive Analysis for Cooperative Interactive Muliview

Video Streaming

In recent years, Free Viewpoint Video [16] becomes popwhere the same scene
is captured by a large array of cameras (e.g. more than 108rearm [17]) from
different viewpoints, and an audience can interactivelgdeone interested view
for observing. In such systems, users are likely to watdemiht views. Thus, they
do not receive exactly the same but correlated multimedia. davith the frame
structure proposed in [18], users can cooperatively doshjmackets even if they
are watching different views. In this system, due to diffengopularity of views,
we observe that users watching different views may recafferent utilities from
others’ help, and thus, may take different actions accgiginSince users switch
views frequently, their actions may also change frequeniligus, it is a typical
example of user interaction with state change.

In Chapter 4, we model users’ state transition and decisiakimg as a Markov
decision process (MDP) in cooperative IMVS. From the ganayeis, we observe
that users may cooperate at some views but not others. Fuadhe, we observe
that the game may have multiple Nash Equilibria correspanth different coop-
eration levels, (e.g., in the full cooperation Nash Equillitn, users cooperate at
all views, while in the partial cooperation Nash Equilibripusers only cooperate
at certain views.). We then propose a Pay-for-Cooperattd@)(scheme to drive

the game to the desired full cooperation Nash Equilibriurmiprove the system



efficiency.

We then investigate the impact of user membership dynanmagser coopera-
tion, and observe that as long as the percentage of new gseetow a predeter-
mined threshold, cooperation is still a dominant strateQtherwise, cooperation

will be interrupted, and the PfC should be used to resumeagsgreration.

1.2.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, we firsbihice the prior arts
on cooperative wireless multicast, IMVS and related workge then introduce
the fundamental concepts of game theory. In Chapter 3, waogsan incentive
mechanism for two-hop cooperative wireless multicast tmgate one-to-many
cooperation, and encourage users to tell their true costhhpter 4, we introduce
the game model for cooperative IMVS and show how to stimulag¥ cooperation
with state change, and then study how user membership dgeafiect user co-
operation. Conclusions and potential future researctcsopie drawn in Chapter
5.



Chapter 2

Background and Literature Survey

In this chapter, we will first introduce the background of pemtive wireless mul-
ticast, IMVS and related works. We then introduce the funelatal concepts of

game theory.

2.1 Cooperative Communication in Wireless Networks

In wireless communication, the fading effect of wirelesarfels is a feature im-
pediment that limits the channel capacity and transmissaoge. The recent ad-
vances in 3G/4G networks do have significantly improved thenael capacity,
while it is still not sufficient for the even faster increaseconsumers’ demand
(e.g., high bandwidth for the transmission of high qualiigeos). A lot of works
have been proposed to address this issue, and cooperatalessicommunication
emerges as a promising approach. The work in [19] first prepbdso-hop coop-
erative wireless communication with relay, where any p&iusers have a direct
link. The transmission of one packet takes two phases. IfirSighase, the source
node transmits to the destination node, and both the déstinaode and the relay
node can hear the signal. In the second phase, the relay oodadls the received
signal to the destination node. The destination node thembowes the two sig-
nals for decoding. This scheme explores the spatial diyeseffectively improve

the channel capacity. Multi-hop cooperative wireless camication is then pro-



posed mainly for mobile ad hoc networks [20], [21], where sloeirce node and
the destination node do not necessarily have a direct lifle Source node relies
on intermediate relay nodes to form a multi-hop route to tb&tidation for packet
transmission. Thus, this scheme can effectively extenttémsmission range.

In the literature, based on the number of intended recipjerttoptative wire-
less communication schemes can be divided into two caegounicast and mul-
ticast. In unicast, a source node has a single destinatide, and different source-
destination pairs transmit different messages. In mugtj@source node has mul-
tiple destination nodes who receive the same messagese foltbwing, we sum-
marize the previous works on cooperative wireless comnatioic for both unicast

and multicast .

2.1.1 Cooperative Wireless Unicast

In this section, we discuss both two-hop and multi-hop coaipes wireless unicast.

2.1.1.1 Two-Hop Cooperative Wireless Unicast

In the literature, two-hop cooperative unicast scheme$o#dtbw the framework
in [19] as discussed earlier. The work in [22] studies thedolound of the channel
capacity with relay. The work in [23] proposes two cooperapirotocols: amplify-
and-forward (AF) and decode-and-forward (DF). With the ARtegy, the relay
simply amplifies the received signal from the source nodd, taen forwards to
the destination node. In the DF strategy, the relay decdueseceived signal,
re-encodes it and then forwards to the destination node.

The works in [24], [25] study the optimal relay selection&source-destination
pair among a group of potential relay nodes at differenttioos. The works
in [26]-[29] study the scenario, where a single relay nodeesemultiple source-
destination pairs of nodes. For example, the work in [26§ligtsl the optimal re-
source allocation at the relay node to maximize the netwapacity, which is the

summation of all source-destination pairs’ channel cdjgaci



2.1.1.2 Multi-Hop Cooperative Wireless Unicast

Multi-hop cooperative wireless unicast is mainly used inbiteoad hoc networks,
which have many design issues to be addressed, such agr@atrity and energy
management, etc.

In ad hoc networks, nodes may move, which will change the orwopolo-
gies. The works in [20], [21], [30], [31] focus on designinfi@ent routing pro-
tocols to adapt to dynamic network topologies. For examiie,work in [31]
proposes a routing on demand algorithm, where if a sourosnas to a destina-
tion without existing route, the source will broadcast aeaequest to its neighbors.
Those neighbor nodes will also forward this message uridigstination is reached
or a route is found to the destination.

Ad hoc networks are vulnerable to attacks. For example,tacksr may create
ablack hole[32], which attracts packets by transmitting faked routimfigrmation,
and always drops packets without forwarding. The works 8}HB5] are proposed
to address security issues. Energy management is alsdaraiag issue due to the
energy constraints at mobile nodes. The work in [36] prop@sbalanced energy
consumption scheme so that the network can maintain a rabkolifetime for a

certain task.

2.1.2 Cooperative Wireless Multicast

Due to the broadcast nature of wireless communication)egsamulticast is a very
efficient way for media distribution to a group of users whowhe same data. In
this section, we review previous works for both two-hop andtirhop cooperative

wireless multicast.

2.1.2.1 Two-Hop Cooperative Wireless Multicast

Two-hop cooperative wireless multicast [37]-[44] alsoemkwo phase for one
packet transmission. In the first phase, the source nodeltasts the message.

In the second phase, successful users who receive the gackattly will forward



it to the rest unsuccessful users.

The work in [37] proposes a time-division multiple accesBA) based two-
hop cooperative wireless multicast system. In the secoadglthe BS randomly
selects several successful users to serve as relays, artdkbdurns to forward the
packet to the rest users. To maximize the system througtifugptimal time allo-
cation between the two phases and the optimal number ofsal@yderived. Their
simulation results show that the cooperative multicasesehcan significantly im-
prove the system performance.

The work in [40] investigates cooperative wireless muklitcaith both dis-
tributed and genie-aided cooperation schemes. In thaldistd model, all suc-
cessful users serve as relays, and forward the packet sinealtisly in the second
phase. In the genie-aided model, only a fixed number of usgusedetermined
locations can be relays, and they will forward the packdtefjtreceive it correctly.
Given a total power constraint in the two stages, this woehttierives the optimal
power allocation between the BS broadcast and the relayafoling to minimize
the average outage probability, which is the probabiligt the received signal-to-
noise ratio (SNR) is below a predetermined threshold at seestiside.

A similar work is proposed in [38], where the randomizedriistted space time
coding (RDSTC) technique is employed. In the second phasegssful users en-
code the received packet using RDSTC and forward the enqoalgdts simulta-
neously. This work also uses scalable video coding to peoslitferential service.
In scalable video coding, the video is coded into the baserlagd enhancement
layers. With the base layer only, the video can be decodeu tvé lowest video
quality. Enhancement layers can refine the base layer andvwafhe video quality.
In this scheme, the cooperative multicast is used to trartembase layer to ensure
that all users can receive the base layer and reconstrugtibe. The enhancement
layers are broadcasted by the BS without cooperative nasttiand only users with
good channel conditions can receive it correctly to imprineevideo quality.

Another work in [39] exploits the network coding technique.this work, the

packets are divided into groups. In the first phase, the B&dwasts a group of



packets to all users. In the second phase, each user enbedastectly received
packets into one repair packet using network coding, anal fibvevards this repair
packet to others. For a user with packet loss in the first pleasepair packet is
novel to him/her if this repair packet is encoded by packefsie is missing. As
long as he/she can receive enough novel repair packets (imemmehe number of
packets he/she is missing) from different users, he/shaleaade all the missing

packets in the packet group.

2.1.2.2 Multi-Hop Cooperative Wireless Multicast

The multi-hop cooperative wireless multicast is also mastudied in ad hoc net-
works, where the challenge is how to find efficient and robuslticast route to
reduce transmission redundance with dynamic topologies.

The works in [45], [46] propose tree-based routing protoadlere a multicast
tree is constructed to deliver packets to each destinatiorj45], a Shared Tree
Ad-hoc Multicast Protocol is proposed, where the tree isgo@t thecore, which
is a special node to manage the tree structure. The coredtrete is shared by all
source nodes, who transmit multicast packets to the corgyuke shortest path,
and the core forwards packets along its tree. Though thistsire is simple and
efficient, it may suffer from topology dynamics, since aftedes move, multicast
packets have to be dropped before the tree is reconstructed.

Mesh-based multicast protocols are proposed in [47], [48]r example, the
work in [47] proposes an On Demand Multicast Routing Protogbere the source
node initiates the path searching process by sending aatioit packet. The inter-
mediate nodes help forward this message and find the routkinggall destination
nodes. This protocol can cope well with network topologyawics, while it may
cause high control overhead.

There are also works [49]-[51] that take energy managenméatconsidera-
tion. For example, the work in [49] proposes an energy-efficimulticast tree,
which balances the energy consumption over the network iatena a long net-

work lifetime.



2.2 Cooperative Video Streaming

Cooperative video streaming has proven to be successha jpast ten years, where
the system can access the network resources of partigjpasiers, and provide
video streaming service with satisfactory quality to themds of users simultane-
ously. Typical cooperative video streaming applicatioredude P2P live streaming
and P2P video on demand. In P2P live streaming, all usershwhaé&clive video
with similar playback time, and they help each other upldadhload packets. In
P2P video on demand, users may join the video at differerd thretances. Since
they are all likely to watch the video from the beginning ythisually have different
playback time. In this case, only users who join earlier daare their downloaded
video and help users who join late. Thus, the ways user catgar these two ap-
plications are different. In this section, we will focus o2RPlive streaming, since
it is more related to IMVS we study in this thesis. We thenadtrce IMVS, and
its recent advances in video coding techniques that suppogerative multiview

video distribution.

2.2.1 Single View Video P2P Live Streaming

In the literature, there are three types of P2P live stregmtructures: tree-push

based, mesh-pull based and pull-and-push hybrid stristure

2.2.1.1 Tree-Push Based P2P Live Streaming

Tree-Push [52] based structure is proposed in the early £tBB2P live streaming
development. In this structure, the streaming server igsdbeof the tree, and all
users are organized at different layers in this tree stractEach node (including
the root node) may have more than one child nodes dependihdgstrer upload
bandwidth. The server then pushes the video stream fronotiteand each inter-
mediate node forwards the stream to his/her child nodess,Ttha video stream is

transmitted in a top-down manner.



In this system, once the tree is built, each video packetigdaled by an inter-
mediate node once he/she receives it. Thus, the playbaciclafthe playback time
difference between the server and the bottom nodes) is laweMer, as studied
in [53], this structure has two major drawbacks, which digantly limit its appli-
cation. First, this structure cannot handle user memheidymamics well. Once
an intermediate node leaves the tree, all his/her child abdee to find new par-
ents. [53] shows that with frequent user churn, the treettra has to be changed
frequently and the system performance is reduced. In addithe leaf nodes do
not connect to any child node, and thus, their upload bantivaéa@nnot be utilized.

However, the leaf nodes take a huge portion of the entireoritw

2.2.1.2 Mesh-Pull Based P2P Live Streaming

In mesh-pull P2P live streaming [6], a compressed videastires divided into
small data chunks, all of which are available at the stregragrver. When a peer
joins the system, he/she fetches from the streaming servanitél list of peers,
who are currently watching the video. Then, he/she can camuate with peers in
the list and obtain additional peer lists in a gossip mangkeach user maintains a
buffer (called “streaming buffer”) to store received dalaicks that have not been
decoded. Each user also keeps a buffer map to record themadidhe received
chunks. Users periodically exchange buffer map infornmaticth each other, so
that they know who have which chunks. Then, each user caatseissing chunks
to request either from the server or from other peers who trese chunks. When
a user receives chunk requests, he/she can either accapttite upload the re-
guested chunks or reject the requests. In this way, usersa@rerate with each
other to spread the video content and everyone can enjoyitle® \at the same
time. Note that when a user joins the network, he/she hasffterkenough con-
tinuous data chunks before launching the video player fodeeng. Then, he/she
periodically moves the received chunks in the streamindebufith the earliest
playback time to the video player for rendering.

In this system, users have the freedom to select any nodbesimists to estab-



lish partnership and exchange video chunks. Users’ arpit@nections make the
system form a mesh-like network structure, which can hangés churn and large
scale P2P networks very well. Currently, most of the sudaedsployments, such
as PPlive, and PPStream, etc, are based on this structureevidg this structure
also has some drawbacks. First, since each user needs ta seqdest for each
single chunk, this may cause high signaling traffic overhdadaddition, there is

high playback latency between the streaming server andithesthat are far away

from the streaming server, due to the hop-to-hop accuntulatency.

2.2.1.3 Hybrid Pull-and-Push Based P2P Live Streaming

From the above discussion, the tree-push based and thepubdiased schemes
have different advantages and drawbacks. The hybrid paHpush based P2P live
streaming proposed in [54] combines the two schemes toahidustness to peer
churn, low playback latency and low signaling traffic ovextie

The network structure is also mesh based to handle peer.chline video
chunks are divided into transmission groups with equal remdd chunks per
group. The first chunk in each group is called a pull chunk]evtiie rest are push
chunks. When a userrequests a transmission group, he/she asks one of his/her
neighbors, usef, who has the pull chunk of that group in the buffer. As long as
user;j agrees with useis request and sends the pull chunk, usalso forwards ev-
ery push chunk in this transmission group to usence usejj receives that chunk.
If there is packet loss due to network congestion, the loghkk will be requested
in a pull-based manner. Thus, in this system, most of churk$oawarded with-
out being requested, which results in low signaling traffierbead and also helps

reduce the playback time latency.

2.2.2 Cooperative IMVS

Free viewpoint video [56] is becoming popular in recent geand it provides

IMVS service, where an audience can select one viewpoirti@iideo to watch



Fig. 2.1. A scene is captured by a large array of closely spaced camé&has figure is
from [55].

and switch views interactively and frequently. Thus, andés have a 3D visual
experience known asotion parallax[57]. To capture a 3D video, the traditional
3D modeling [58] uses 3D scanners to scan and process theecswf a 3D sub-
ject. It is very time consuming and computation intensivieiclr makes it difficult
to achieve the real time video capture, compression andgresion. Alterna-
tively, in most of the prototypes of free viewpoint video ®yss, a large array of
closely spaced cameras are used to capture a scene froremliffagles, as shown
in Fig. 2.1. For example, in [17], an array of more than 100 exas are used. All
the captured videos are collected by a server for compmessid streaming, and a
client can periodically select one out of many views for etaagon. In response,
the server sends only pre-encoded data for the single resglsasw (rather than all

the captured views) to reduce the streaming rate.

2.2.2.1 Advances in IMVS Using Distributed Source Coding

In IMVS, a straightforward video coding scheme is to encodé @ansmit each
view independently. However, it will cause a large view sWwihg delay, i.e., a
user has to wait for a long time to switch to a different viewisTlis because video

frames are divided into groups of pictures (GOP) [59], anche@OP is a video



compression unit. In each GOP, the first frame (called I-&pimencoded indepen-
dently and can be directly reconstructed once being redelzach remaining frame
is encoded with differential coding schemes [59] to achl@gler compression ef-
ficiency, and can be reconstructed only when it prior frameeisoded correctly.
Thus, a user has to wait till the end of a GOP to switch to amottesv, and the
average waiting time is the length of one GOP. Since a large &@ucture is usu-
ally required to achieve high video coding efficiency, userfer from large view
switching delay.

To address the tradeoff between view switching delay anthgaefficiency, the
works in [60]-[62] design frame structures using distrdaisource coding (DSC)
[63], [64] for IMVS to achieve low bit rate video with low viewwitching delay.
DSC states that several correlated information sourcebeaeparately encoded at
the encoder side and jointly decoded at the decoder sidég wiazian still achieve
similar coding efficiency to the joint source encoding. Towlow the DSC works,
we consider a simple example with two correlated source sysn¥ andY to be
encoded, where each of them has 7 bits, and the Hamming cisketween them
is at most 1. At the encoder side, we encode them separatetst, ¥ can be
transmitted to the decoder using 7 bits without compresswia then encode&.
SinceY is available at the decoder side and we know that the Hammigigrate
betweenX andY is at most 1, then)Y” can be considered as a noisy version of
X and a few parity bits is enough to retrieve from Y. For example, if (7,4,3)
Hamming code is used, 3 parity bits are generated as the iegcogsult of X
Finally, 10 bits are used to represexitandY after DSC. To decode then, can
be retrieved directly. Then, with” and the 3 parity bitsX can also be correctly
decoded.

The works in [60]-[62], [65] extend the idea of DSC to IMVS tgoport low bit-
rate video with low view switching delay. For example, [6@bposes a multiview
video coding structure shown in Fig. 2.2 witlv + 1 views, where the horizontal
index is the view index, and the vertical index is the timeedT he frames of each

view is divided into segments withlV, frames per segment, and each audience is



Fig. 2.2. Multiview coding structure that supports low delay view whi This figure is
from [60].

allowed to switch views at the end of each segment. Thusietermines the view
switching delay. To support low delay view switching (i.&/, is small) without
significantly increasing the number of bits for the codedewaidthis work proposes
to inserta DSC frame (the shaded rectangles in Fig. 2.2)/&nyeV, frames instead
of an I-frame, and a DSC frame is much smaller than an I-fraffteunderstand
how the DSC frame supports view switching, in Fig. 2.2, a D&@#eX is encoded
using the prior frameg;; from all views ¢ — N < i < N + v) as predictors. Then,
frame X can be decoded with a prior frame from any view. Specificatlygncode
X, eachy; can be considered as a noisy versioXofLet Y,,,.. denote the one prior
frame with the largest difference frotii. Then, the target of the DSC scheme is
to encodeX with enough parity bits, which can help retrieXefrom Y,,,... Thus,

those parity bits are also enough to retrigfdrom any other prior framé’;.

2.2.2.2 Cooperative Multiview Video Multicast in A Wireless Network

The work in [18] extends the above coding scheme to a codperatltiview video
wireless multicast system, which can help stop error prafyag and improve the
system reliability. In this system, video is also dividetbisegment withV, frames
per segment, where the first frame of a segment is a DSC fraheeB¥ multicasts

all the views through different channels (frequency bamds) wireless wide area



network (WWAN) to all users at the same time. Each user caonstone view
to decode and watch, and freely switch views at the end of meerty Due to the
fluctuation of wireless channels, a usenay receive the next segment correctly but
not the current segment. However, without the last framdéndurrent segment,
he/she cannot decode the next segment. To improve the syslaibility, users
who decode the current segment correctly share the lasefraith others via a
wireless local area network (WLAN). Then, usecan decode the next segment

and the error propagation is stopped.

2.3 Incentive Mechanisms for Cooperative Wireless

Communication and Cooperative Video Stream-

ing
From the discussion in Chapter 2.1 and Chapter 2.2, uselecatin plays a fun-
damental role in improving the system performance in botbpeoative wireless
communication and cooperative video streaming. Howe\sat aooperation can-
not be guaranteed in such decentralized systems, since aigeselfish and only
care about their own performance. In the literature, maogntive mechanisms are
proposed to simulate user cooperation. In this section, isedivide these mech-
anisms into two categories: incentive mechanisms withadtwith state change.
For the incentive mechanisms without state change, wedudivide them into two
classes: incentive mechanisms for point-to-point intssacand for one-two-many
interaction. In the following, we first discuss the two ckes®f incentive mech-

anisms without state change, and finally discuss incentieehanisms with state

change.

2.3.1 Incentive Mechanisms for Point-to-Point Interactian

In the literature, there is a big body of research on incentiechanisms for coop-

erative wireless unicast and P2P live streaming that fooysomt-to-point interac-



tion. In this section, we classify those incentive mechasigto three types.

e Direct reciprocity schemes in repeated games. In thesersddt is assumed
that a pair of users interact with each other for indefiniteetduration, that is, they
are not sure the exact time when they stop interacting with e¢her. Users who
deviate from cooperation will be punished with a long terfitytioss. Thus, this
scheme is more effective if users expect to interact witthezber for a longer
time. Tit-for-tat [14] is a typical direct reciprocity schme. Suppose that two users
interact with each other and both of them cooperate at thmbieg of the game.
Then, they replicate the same action taken by his/her opytanehe last round.
Thus, if either of the players deviates from cooperationdoe round, this will
result in non-cooperation and both of the users receive faties for the rest of
the game.

Tit-for-tat based schemes are proprosed in [66]—[70] fapevative wireless
unicast. For example, the work in [66] proposes a tit-forstaategy for ad hoc
networks, taking the network topology into consideratibmode: is on nodej’s
route and can help nodeforward messages, but nogles not on node’s route,
node: will not help nodej, since node cannot receive any reciprocity in future
interaction. Only when the pair of hodes can help each othdrtlaey both play
tit-for-tat strategy, they will cooperate to forward megss.

The direct reciprocity mechanisms [11], [71]-[74] are gsoposed for P2P
live streaming. The work in [73] provides incentive usinglable video coding
with a tit-for-tat strategy, where if uséican get a high download rate from a neigh-
bor j, i will reciprocate;j by providing a larger fraction ofs upload bandwidth.
Therefore, a peer who contributes more upload bandwidthoierikely to obtain
a larger share of neighbors’ upload rates, thus receives hagers and has better
video quality.

In P2P live streaming, packets may be dropped due to netvemidsestion, and it
is difficult to differentiate packet drop from intentionam-cooperation. To address
this issue, the work in [11] proposes a credit-line mechanis this scheme, user

1 calculates the difference between the number of packeshéelploaded to a



neighborj and the number of packets ugarploaded to him/her. Uséicontinuous
cooperate with usef as long as this difference does not exceed a predetermined
credit line.

e Payment based schemes. In these schemes, virtual currgoglates in the
network. Users need to pay to receive others’ help, and tisat$ielp others will

get paid to compensate their cost. When compared with tleetdieciprocity game
that is effective when each pair of users expect to intergbteach other for a long
time, the payment based scheme can stimulate user coapeeatn if they know
that they will not interact with each other from next round.

The works in [75]-[81] propose payment based schemes fquerative wire-
less unicast. For example, in [76], the currency circugatmthe network is called
nuglet Each user in the network is equipped with a tamper-redistourity hard-
ware, callechuglet countetto record the nuglet each user possesses. If a user gets
help from others, his/her nuglet counter is decreased./$sheehelps others, his/her
nuglet counter is increased. Since everyone has to keeputjietrcounter non-
negative, each user needs to help others to earn nuglet. yégvilis scheme re-
quires the tamper-resistant hardware at each mobile d&vtcack the transactions,
which may not be satisfied in all mobile networks.

To address the above problem, the work in [75] proposes adypaodtware
based payment scheme with the credit clearance service)(@©%ded by the
central bank. In this work, after a user helps others forvgckets, he/she keeps
a receipt. When the channel condition to the central bankdlghe/she reports
those receipts to the CCS. The CCS then processes the tiansand determines
the payment or credit each user needs to pay or gets paid.

The payment based schemes are also proposed for P2P |sastgg82]-[84].

In [82], users can earn internal currency calpeint by uploading stream chunks to
other users. Then, they use earned points to compete foecting peers with high
link capacities in a first price auction game, where the usgrtive highest bid will
connect with the peer with the highest link capacity, and thil receive the video

with high quality. Furthermore, this system encouragesseffsion users (who are



not receiving the streaming service or watching the vide&gep forwarding pack-
ets to accumulate their points for later use, which can g¥fely improve the system
efficiency.

¢ Reputation based indirect reciprocity schemes. In thdserses, users help oth-
ers to accumulate good reputations, and users with goodatsms are likely to
receive others’ help. Therefore, nodbelps node with a good reputation is not
because/ helped: directly in previous interactions, byt helped someone else.
Users’ reputations can be updated in either centralizedstriltlited way. In the
centralized system, a central authority will monitor uggefaction, update their
reputations and then broadcast to all players. In the Higed system, each user
updates others’ reputations based on both direct expersgamtindirect testimonies
that he/she requests from neighbors.

When compared with the direct reciprocity game, the indireciprocity game
is more suitable in the scenario where users change paftaqrently (i.e., a pair
of users expect to interact with each other for a short tim&jhen compared
with the payment based game, it does not require tampestaeshardware at each
user’s side or the CCS provided by the central bank. Howévereputation based
system requires extra singling traffic for reputation updat

The works in [85]-[89] propose reputation based schemesfoperative wire-
less unicast. For example, the work in [87] proposes a mesmmacalled “CON-
FIDANT" in a mobile ad hoc network, which is a distributed végtion system. A
scheme calledieighborhood watcls used, where each user monitors and reports
neighbors’ behavior to other users. Each user gathersenidifect experience and
others’ reports to identify misbehaving users.

The work in [89] proposes a centralized reputation updaatgme. A user will
receive a high reputation if he/she cooperates with highitegmn users or does
not cooperate with low reputation users, and he/she wikiveca low reputation
otherwise. Thus, users will only cooperate with high repateusers.

The reputation based mechanisms are also proposed forne2Rrikaming sys-

tems [90]-[93]. In [90], a rank based peer selection medmaim proposed. In this



scheme, a user who contributes more upload bandwidth isdegavith a higher
rank/priority to select peers, and thus, has better chamcerinect to peers with
high link capacities to receive a high quality video.

The work in [92] proposes an adaptive reputation updatihgise to stimulate
users to keep cooperating, where for a user who has accued@dtigh reputation,
if he/she stops uploading, his/her reputation will dropcgflyi. Thus, users need to

keep cooperating with others to maintain a high reputation.

2.3.2 Incentive Mechanisms for One-to-Many Interaction

In this section, we review incentive mechanisms for codpegavireless multicast
and P2P live streaming in a local area network (LAN), which far one-to-many
interaction.

The works in [78], [94] first propose a payment based methoddoperative
wireless multicast in an ad hoc network, where a source nagle mtermediate
nodes for relaying messages to multiple destination notleshese works, each
intermediate node claims the cost to relay a packet. Basdideociaimed cost, the
source calculates a multicast tree spanning all destmataoes with the minimum
total payment. Then the source uses this multicast treeliseedpackets, and pays
the intermediate nodes on the tree for relay service. Tovatgtintermediate nodes
to report their true cost, a cheat-proof payment based sehemroposed, where
reporting the true cost is the dominant strategy for eadrimédiate node.

The above incentive mechanism describes a scenario whergsenneeds mul-
tiple users’ help. In this thesis, we are more interestechotteer scenario, where
multiple users need one user’s help. For example, in twodogperative wireless
multicast [95], after the BS broadcasts a packet, one ssftdesser is selected and
he/she will decide whether to forward the packet as a relagee/she relays the
packet, the transmission can be overheard by all unsuctessirs. Thus, the relay
cannot choose different actions towards different unsasfoéusers.

To stimulate user cooperation in this scenario, the worR%j proposes a direct

reciprocity game with the worst behavior tit-for-tat segy. In this system, time is



divided into slots. In each slot, each user has the same Ipitity#o be a successful
user and be selected to relay the packet. Each selectedhaseyes a transmission
power to forward the packet. A higher transmission poweegj& higher probabil-
ity for others to receive the packet correctly, but introgibigher cost to the relay.
Since he/she cannot choose with whom he/she cooperatebghedes the lowest
observed transmission power. Specifically, each user wrsrtite forwarded pack-
ets by others, and estimates their transmission power.heeliscovers the lowest
transmission power among all relays in previous rounds used that power when
being selected. Thus, if any user deviates to a low powestladrs will use the same
low power for a long time as penalty, which lowers everyomegoff. Therefore,
no one has incentive to deviate from the high transmissiovepo

The work in [96] proposes an incentive mechanism to studyotieto-many
interaction for a P2P live streaming system in a LAN. In tlyistem, each user can
decide whether to be an agent, who requests the video damatlfre server, and
the video data will be shared in the LAN. Thus, an agent usgbdt own network
resources to request video, while all others can free ridethik case, users tend
to free ride rather than to be an agent. However, if there iagemt, everyone has
no video to watch and thus receives a low utility. To addréssissue, the work
in [96] proposes an evolutionary game for users to learn loawdtress this tradeoff
between lowering the cost and receiving the video, and derdvstable Nash Equi-
librium, where even if players may sometimes deviate frors éguilibrium, they
will still move back, since users who take strategies in tipiléorium will always

receive a higher utility.

2.3.3 Stochastic Game for User Interaction With State Chang

In the literature, stochastic game is used to model useictien with state change.
Suppose that the game is currently at a state S (S is the state set.). There are
N players, and a playerselects actiom; from his/her action set;. Based on
current state and all players’ actions, each player resesveimmediate payoff

u; S X A X ... x Ay — (—00,400), and the game will transit to another state



with a state transition probability; : S x A; x ... x Ay xS — [0, 1]. Then, users
take actions at the new state, and this process is repeatiedimie horizon. For
each player in the game, his/her goal is to find the optimabagiolicy (an action
policy defines his/her action at each state) to maximizexpeaed lifetime utility

E zjgg numﬂ}. Here,n is a discounting factor that values how users care the
future payoffs, and + j is the time index. At the Nash Equilibrium of a stochastic
game, no one has incentive to unilaterally deviate fromhkiséaction policy at any
state of the game.

For example, the work in [97] considers a cooperative comoation scenario
with three nodes, where two nodes transit packets to a condlestimation and they
also help each other forward packets. Each of them also aiagd buffer to store
packets that have not been transmitted. With the classatligion channel, only
one node can transmit in a time slot. Thus, they need to dedideto transmit. In
this system, the states are the numbers of packets in theddeshbuffers, since
with more packets in the buffer, they have higher desire andive higher utility to
transmit packets. With decisions made by the two nodeg, stetes change, which
also affects their future decisions. The works in [97], [PB}pose a stochastic game
to formulate the above decision making process, and denw@ptimal strategies
for the two nodes to maximize the expected lifetime utiditie

The works in [99], [100] formulate stochastic games for @$aghted resource
reciprocity problem in P2P live streaming. For example9@][ a user’s state is the
bandwidth he/she gets allocated from the neighboring uséetshe then needs to
take an action on how to allocate his/her own bandwidth tghisring users for
reciprocity. Since this action may change the neighbors®ysi responses, he/she
will receive different bandwidth allocation and transitaieother state. To estimate
the state transition probability, he/she can learn fronhieispast experience, and

then the optimal reciprocity strategy is found to maximigghrer lifetime utility.
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Fig. 2.3. An example of Stackelberg game. There are two playdrand B. A has two
strategies/. andR. B has two strategie§ and D.

2.4 Game Theory Review

Game theory [14], [15] provides important tools to studyrusehavior in dynamic

networks. In a game, there are three essential componmdayer setstrategy sets

and utility functions Player set defines the players that play in the game. Each

playeri has a strategy set;, including the strategies he/she can use in the game.

He/she chooses a strategyfrom S; to play with others, and alV players’ strate-
gies form a strategy profile = {si, so, ..., sy }. Each player has a utility function
U;(£), which measures his/her payoff based on all players’ gfies€.

To analyze a game, game theory provides a very importanepbialledNash
Equilibrium. A Nash Equilibrium is defined as a strategy profile where each
player:'s strategys; is the best response to the others’ strategies in the prpfde,
& =A{s1....5/_1,551...., sy }) and we have
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In other words, for a player if all other players keep their strategt€s unchanged,
¢+ will receive a lower utility when he/she unilaterally detda froms;. Thus, in a

Nash Equilibrium, no rational player has incentive to cletganother strategy.



2.4.1 Stackelberg Game and Subgame Perfect Nash Equilibmmol

In practice, users in a game do not necessarily make desisibthe same time.
For users who make decisions first, their actions may be ebddry others, and
thus, may affect other players decision making. In gamerthegnamic gamean
be used to model such interaction, where players make mollewing a certain
predetermined order and select their strategies seqiignfitackelberg game is an
example of dynamic game, which typically has two stagesyd?tawho move at the
first stage are called leaders. The other players are fotkpweno make decisions
after observing leaders’ actions. Figure 2.3 shows an elawifpa Stackelberg
game with two playersA and B. A has two strategied, and R, and makes a
move first. B also has two strategies] and D. After observingA’s action, B
selects his/her strategy. Their payoffs are enumeratdueabdttom of the figure.
For example, ifA choosed. and B choosed/, As payoff is 2, whileB’s payoff is
0.

To analyze the Stackelberg game, a concept c&8lldshame Perfect Nash Equi-
librium (SPNE) is used. A strategy profile is a SPNE if a user cannoease
his/her payoff by unilaterally deviating to any other stiat from any stageBack-
ward Inductionis used to find the SPNE of the Stackelberg game. It starts tinem
last stage of the game, which is playBls game in the above example, and finds
player B’s optimal strategy for each possible outcome in stage 1.idnZE3, if A
selectsL in stage 1, playeB’s optimal strategy i9 that gives a higher payoff of
1. Similarly, if A choosesR in stage 1, playeB should select/. Then, the game
analysis moves one stage up and analyzes pldigestrategy. IfA selectsL, from
the previous analysis, playét will selectsD, which gives playeA a payoff of 1.

If A selectsR, playerB will selectU in stage 2, which results in a payoff of O for
player A. Comparing these twol will select L, and the strategy profile, D) is
the SPNE of this game. The same idea can be used to analyze gathanore

than two stages.



2.4.2 Evolutionary Game Theory

In a game, it is possible that there are more than one Nashilizguiand to which
equilibrium players will converge is an interesting prable Furthermore, some-
times, players may only have limited information, and thegynmot know what
the Nash Equilibrium is or how other players will play, whiotay result in non-
rational behavior due to uncertainties. To address thislpno, evolutionary game
theory [101], [102] provides tools to study a stable Nashldaium, where play-
ers can learn from others or past experience, adjust thhategtes towards higher
payoffs and finally converge to the stable equilibrium.

In evolutionary game, an important concept, callealutionarily Stable Strat-
egy(ESS) [102], states that under the condition that a strategsevalent (i.e., itis
taken by most of players in the system), it is an ESS if it caiste small group of
mutant players with any other strategy (i.e., this smallgrof mutant players will
finally be extinct during the evolution). Mathematicallygwave the definition as

follows:

Definition 2.1. A strategyz* is an ESS if and only if{z # z*, z* satisfies
e equilibrium condition:U(z, z*) < U(z*, z*), and
e stability condition: ifU(z, z*) = U(z*, 2*), U(z, z) < U(z*, 2).

whereU(z1, z2) is a player’s utility when he/she uses strategyand the other

player uses strategy.

From the equilibrium condition of Definition 1, we observatltan ESS has
to be a Nash Equilibrium. From the stable condition, we oles@mn important
property of ESS, i.e., even if at some time instance, somegptadeviate from the
ESS, they will still come back to the ESS, since the one whg &S receives a
higher payoff.

To derive the ESS, evolution game theory provides a veryulisedl, called
replicator dynamic$102]. Let S be a strategy set with siz§/|. Let x; be the pop-

ulation share playing strategy € S, wherez; € [0,1]. Letz = {x1, 2o, ..., 2|5/}



By replicator dynamics, the dynamic of is given by the following differential
equation:

i =n(U(s:) — U())z, (2.2)

wheren is a constant step sizé](s;) is the average payoff of individuals using
strategys;, and U(z) denotes the average payoff of the entire population. The
intuition behind this differential equation is that if pkeng using strategy; have a
higher payoff than the average payoff of the entire popoigtthe corresponding
population share; should increase. At the stable state, this differentialaéiqn
should be equal to 0. If there is only one non-zero itenx iat the stable state,
e.g.,x; = 1, this means all players finally take the pure strategywhich is the
ESS. If there are more than one non-zero item,im can be interpreted as a mixed
strategy [102], where; in = denotes the probability that a player uses stratgegy
Then, this mixed strategyis the ESS.

2.4.3 Auction Game

In auction games, the auctioneer has a good to sell to a griobigders, and the
auctioneer decides the bidder who will buy the good and tiez fhe bidder will
pay following predetermined auction rules. In practicestemn has been proven to
be effective in allocating a good to the bidder that valuésgbod with the highest
price, even though bidders’ values about the good are thigatp information. In
auction theory [103], there are four well known auctionsgksh auction, Dutch
auction, first-price sealed-bid auction and second-peedesl-bid auction.

In English auction, the auctioneer increases the pricelfergood round by
round. A bidder will stay in the auction until the price is thggh for him/her.
When the second last bidder leaves, the auction ends anditimemis the last
bidder and he/she will pay the price when the auction endfielDutch auction, the
auctioneer reduces the price round by round until one biddegpts the price. This
bidder wins the auction and pays the price he/she acceptefirst-price sealed-

bid auction, each bidder put his/her bid in a sealed enveldglaen submits to the
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Fig. 2.4. An example of MDP.

auctioneer. Then, the bidder with the highest bid is the @ipand he/she will pay
his/her bid. In second-price sealed-bid auction, the blustiing is the same as
the first-price sealed-bid auction. The winner is still tiader with the highest bid,
but he/she only needs to pay the second-highest bid.

[103] shows that English auction and the second-price ddattauction are
equivalent, while Dutch auction and the first-price sedledauction are equiva-
lent. When comparing the second-price and the first-prieéedebid auctions, the
second-price sealed-bid auction is a true-telling auctidrere each bidder bids the
true value is a dominant strategy. This property is usefukteal users’ private

information.

2.4.4 Stochastic Game and Markov Decision Process

As discussed earlier, stochastic game models playersaictien with state change.
In a stochastic game, if a player’s state transition and thigyuunction rely on
his/her own action but not othershis/her strategy selection can be simplified as
an MDP, which is discussed as follows.

An MDP [104] is a mathematic model of decision making proce8suser

makes decisions at different states, and the impacts of @akion involve ran-

1This is true when we verify whether an strategy profile is asiNBAquilibrium, where we study
a user’s strategy selection given that others all take stedtegies in the profile. Thus, from this
user’s perspective, given others’ strategies are fixedhdiistate transition and the utility function
depends on his/her own action only.



domness. The goal of an MDP is to find the optimal decision el state to max-
imize the expected payoff of the entire process. Specijicai MDP is defined as
afour-tuple,M = (S, A, P,U), and we have

S, the state space.

A, the action space.

P2, the state transition functio® x A x S — [0, 1], which calculates the

probability of transiting to a staté€ € S when an actiom € A is taken at

states € S.

U¢, the expected short-term payoff functiofi:x A — (—o0, +00), which

calculates the expected short-term payoff for an actitaken at state.

Fig. 2.4 shows an example of an MDP with infinite horizon, veheach circle and
square represent a state and an action, respectively. g &ta player is at a state
s € §. Suppose that he/she takes actiog .A. He/she will receive an expected
short-term payoftV? and the state will randomly transit to another stéte the
next stage following the state transition probabilf®y . Then, for each state
he/she may transit to at stage 2, he/she needs to selectian actl this process
is repeated at each stage to infinity. In the MDP, an actioicyd$ defined as
m = {as|s € S}, which determines the actiany at each state. For eachr, the

corresponding lifetime utility can be written as a Bellmauation [104],

Wy(m) =U2 +n Z P We(n), (2.3)
s'eS
where the second term is the expected lifetime utility sith@enext stage anglis
the discounting factor. This equation recursively defiredakpected utility of the
entire decision making process, and dynamic programmindyeaused to find the

optimalr to maximizelV(x) .



Chapter 3

Two-Hop Cooperative Wireless
Multicast: Incentive Mechanism and

Analysis

From the literature survey in Chapter 2, the issue of onexamy interaction raised
in wireless multicast systems is seldom addressed. The wd€6] proposes the
worst behavior tit-for-tat strategy to address this problevhich is effective when
users expect to interact with each other for a long time. Hewen wireless mul-
ticast, users may frequently join and leave the multicastice, which makes this
method impractical. Furthermore, the work in [95] assunmadgenous users who
have the same cost to forward a packet. However, in realiti, dfferent mobile
devices, users may have heterogenous cost to forward atpadkeh is their pri-
vate information. They may cheat if cheating can help gegadr payment.

In this chapter, to address the one-to-many interactionpweéel user interac-
tion as a multi-seller multi-buyer payment based game, /lisuccessful users
pay to receive relay service and successful users will gdtipéney forward pack-

ets as relay$.0Our game can stimulate user cooperation even if they knotttiest

1In wireless multicast systems, the BS can provide the sewith different Quality-of-Service
(QoS) depending on the agreement between the BS and inteedeiders. One example is the
BS charges the intended receivers for subscription feesaaoordingly, it has to provide reliable
multicast service. In this case, the BS can pay a successéulta ensure his/her cooperation as
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will leave the multicast service in the next round. Thus, sclieme works in dy-
namic wireless networks, where users can frequently jothleave the system. To
address the problem where users have different cost and Ineay on such infor-
mation, we formulate the sellers’ game as a second-prideds&ad auction game.
It is a truth-telling auction, where each user are encowrageid their true cost,
since bidding the true cost is a weakly dominant strategy.

In our payment based game, we model the buyers’ game as antiewaky
game, and derive the ESS. It is a stable equilibrium, wheea &évsome players
may deviate from it at some time, they will still move backhe €SS, since using
the ESS gives a higher utility. Unlike the work in [105], wether investigate how
the price affects users’ decisions and the system perfarenaWe observe that at
different prices, the buyers’ game can converge to diffielsS5, where unsuccess-
ful users have different probabilities to free ride (i.ef buy but overhear the relay
bought by others), resulting in different system throughgtrom the system de-
signer’s point of view, we aim at selecting the optimal ptizcenaximize the system
throughput. For the simple scenario with homogeneous wgeoshave the same
cost, we derive the closed-form optimal price, under whickuccessful users can-
not free ride, and they will share the cost of the relay andtpggther to afford the
relay service, while the system throughput is maximizedhatsame time. For the
scenario with heterogeneous users who have differentwegtyopose an efficient
algorithm to find the optimal price, under which unsuccesséers have very low

probability to free ride and the system throughput is alsgimeed.

3.1 System Model

In this section, we will introduce the cooperative wirelasglticast system and the

multi-seller multi-buyer payment based game model.

a relay so that the BS can maintain a high QoS. Another exaisplat the BS does not charge
from receivers, only provides the service with the bestreffand does not guarantee any QoS. In
this case, users in the service has to decide by themselweb&ther and how to cooperate. The
problem in the later example is more complicated and moegeasting than the first one, which we
will study in this work.



Fig. 3.1. System model.
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Fig. 3.2. The procedure of a segment transmission.

3.1.1 Two-Hop Cooperative Wireless Multicast

A BS provides multicast service to a group of users, who aseecto each other
in a circular area as shown in Fig. 3.1. We consider a dynamtiwark, where
users frequently join and leave the multicast service. X @), or in its short form
N (for presentation simplicity), be the number of users aetimThe data traffic
is divided into segments, and for the transmission of eagmsat, we consider a
two-portion wireless multicast as shown in Fig. 3.2. In theaudlcast portion, the
BS broadcasts a segment. Then, the users who receive thersegonrectly are
successful users, and they decide whether to provide relajce to unsuccessful
users. In this work, we consider a simple scenario where at ame successful user
forwards the segment in the relay portion. At the beginnifithe relay portion,
there are some information exchanges among the users, tetéiéed in Chapter
3.1.2. Similar to the work in [39], we assume that all comngations in the relay
portion, including information exchanges and segmenietp are on a different
frequency band from the band used by the BS. Therefore, wielB$ finishes
broadcast of one segment, it can start broadcasting thesagrient immediately.
In this work, it is assumed that the distances from the BSaaers are much

larger than those between users. Therefore, each user éasutie probability,



denoted by, to receive a segment from the BS successfully. Since userdase
to each other, we assume that all information exchanges egrdent relaying in
the relay portion are received correctly with probabilitipyiall users.

To evaluate the system performance, we define the relayopdhroughput/ 'z,
as the average percentage of unsuccessful users who rédoeisegment correctly

in the relay portion.

3.1.2 Payment Based Game Formulation

In this systems, relays use their own power to forward segsreerd help others, but
they cannot benefit during this process. To stimulate usgpe@tion, in this work,
we model users’ interaction as a multi-seller multi-buyayment based game,
where each successful user decides whether to sell releigeseand each unsuc-
cessful user decides whether to purchase it. To implemenithing process, we
assume that there exists a trusted local agent, who listetie tdata transmission
in the relay portion, charges fees from buyers, and pay<lhg.r

Our multi-seller multi-buyer cooperative multicast garseai4-stage Stackel-
berg game as described in details below.
Stage 1: The Sellers’ Gamé. After the broadcast portion, suppose that there
are Ny, successful users. Each of them decides whether to sell selajce. Let
{S, NS} denote their strategy set, including being a self§rand not being a seller
(NS). Suppose thalv; (< Ny,) successful users decide to be sellers. They will
send feedbacks to the local agent attached with their IDgrendyclic redundancy
check (CRQj bits of the received segment. Note that they send these gesssa
simultaneouslyin the selling part at the beginning of the relay portion asahin
Fig. 3.2, which can prevent a successful user from obsentimgy sellers’ messages

and adjusting his/her own decision.

2In this work, we arrange the sellers’ game in the first stageesrevealing the number of
sellers in this stage can help in the later optimal pricersgtb maximize the system performance.

3Letting sellers attach the CRC bits of the received segmamiprevent an unsuccessful user
from pretending to be a successful user.

4This can be achieved by code-division multiple access (CPM#hnology. Each node is
assigned a unique code. The code is used to spread the noglsage. The local agent monitors
codes of all the users.



Stage 2: The Price Setting Game. If N > N, > 0,° the local agent selects a
seller to provide relay service if there are more than onersgland selects a relay
priceq that will be charged to each buyer for the relay service, aed innounces

to all users the numbeW, of sellers, the user ID of the selected seller, and the
relay priceg, in the price announcement part in Fig. 3.2. Details of selhel price
selections are given in subsequent sections.

Stage 3: The Buyers’ Game. In Stage 3, each unsuccessful user decides whether
to purchase the relay service at prige Let { B, NB} denote their strategy set,
including being a buyerR®) and not being a buyerN(B). All buyers broadcast
their IDs simultaneously using CDMA technology in the buyipart in Fig. 3.2.
The selected seller hears the buyers’ messages and knowsirtiieer of buyers,
denotedV, (< (V- Ny)), and thus knows the total paymen,q, that unsuccessful
users provide for the relay service.

Stage 4: The Transaction Game. For the selected seller, if forwarding the
segment is profitable, i.e., the selected seller can gainnanegative net utility,
then he/she will forward the segment in the relaying partign B.2; otherwise,
he/she will not forward. After the relaying, the local ageharges from the buyers
and pays to the relay node.

This game is repeated for the transmission of all segments.

3.1.3 Utility Functions

For each user, let g denote the utility gain of receiving a segment correctly] gn
denote his/her cost to forward one segment. In the 4-stag&&berg game, if user
1 is a successful user, his/her utility function is his/heeieed payment minus if
he/she is the selected seller and forwards the segment, ath@Qvise. If user is
an unsuccessful user, his/her utility functiorigs- ¢)1, ..., if he/she is a buyer, and
91,e1qy Otherwise (i.e., useris a free-rider). Heré, ., is a binary valueZ, ., = 1

if there is relay service in the relay portion, ahd,, = 0 otherwise. Note that we

ignore the cost of information exchanges in the selling andryg parts, since the

5If N, = N, all users are successful after the broadcast portiaN, K- 0, there is no seller. In
either scenario, there is no need for the following stageslam game ends.



amount of related information exchanges is small.

3.2 Game Analysis with Homogeneous Users

We start with a simple scenario where the users are homogsnee., they have
the same cost of providing relay service with= ¢ being a positive constant. In
addition, when there are more than one sellers, the localtagk randomly select
one to forward the segment, and all sellers have the samalpiitypto be selected.
We use backward induction to find the SPNE of the game. Tylpidzdckward
induction first analyzes the last stage of the game, movesage 9y stage, and
studies the first stage the last. However, the result of thesaction game can
simplify the sellers’ game and we can easily find the selleptimal strategy that
belongs to the SPNE. Thus, we will study the sellers’ gamer dfte transaction
game. The result of the analysis for the sellers’ game cgmreeluce the number
of possible outcomes of the sellers’ game, and simplify thalyssis of the price

setting game and the buyers’ game.

3.2.1 The Transaction Game

After buyers broadcast their decisions, the selectedrdeitmvs the amount of pay-
ment buyers offer)V,q. The selected seller will forward the segmeniifq > ¢,
and will not forward otherwise. Therefore, the transactiame ensures that the
selected seller will always receive a non-negative netyighin in the game. After
the relaying, the local agent charges prickom each buyer and pays,q to the

relay node.

3.2.2 The Sellers’ Game

Since the selected seller will make a non-negative netyughin in the transaction
game, the sellers’ game has an obvious solution belongingetSPNE, i.e., all
successful users take strategyand become sellers. This is because by taking the
strategyS and being a seller, a successful user’s utility gain in tteyrportion is

no less than zero, while by taking the stratégy and not being a seller, his/her

utility gain in the relay portion is zero. Thereforg,is a weakly dominant strategy



over N S, and every successful user should choose it. Thus, aftesetllers’ game
we haveN, = N,,, i.e., the number of sellers equals the number of successful
users. As the local agent will announce (in the price settjage) the number
N, of sellers, all unsuccessful users will know the value\gf = N, before the
buyers’ game.

Given the above analysis on the transacting game and Sejlrge, we then
study the stage 2, the price setting game, and stage 3 thesbggene. With back-
ward induction, we first analyze stage 3 under any pyiselected in stage 2. We

then move upwards to stage 2 and study the optimal pricetaeiec

3.2.3 The Buyers’ Game

Given the relay price decided by the local agent and the numbgy, of sellers,
unsuccessful users decide whether to purchase the reldgeseRecall that when
the total payment from all buyers,q is no less than the cost the selected seller
will relay the segment. Due to the broadcast nature of wssel®mmunications,
unsuccessful users who do not pay may overhear the segmerardted by the
relay and enjoy a free ride. Here, unsuccessful users fadkerarda: everyone
wants to free ride the relay service bought by others and pé#yimg, while there
will be no relay service if there are not sufficient buyers] avery unsuccessful
user will gain nothing. To solve this problefye model the buyers’ game as an
evolutionary game [102], and derive the ESS, which is a sthlalsh Equilibrium.
This means that, even if some players deviate from the E®$, il still come
back to the ESS, since using the ESS gives a higher payoff.

To derive the ESS, as discussed in Chapter 2.4.2, weepseator dynamicsin
our game, each unsuccessful user has two strategiesN B. For all unsuccessful
users, letr be the population share playing strateywherex < [0, 1], and the

rest(1 — x) population share plays stratedy53. By replicator dynamics, we have

60ne alternative solution is using encryption, where only luyers can receive the correct
key to decrypt the segment sent by the relay. However, thihaderequires sophisticated key
management mechanisms to ensure that only the buyers cainverdlce correct key. Furthermore,
since for different segment the intended recipients afergint, the key should be updated for each
segment transmission, which introduces a large amounttcd @¥ormation exchange.



the following differential equation:

i = n(Up(x) - U(x))z =n[Us(x) — 2Up(z) — (1 — 2)Unp(2)]
= nr(l—)f(z), (3.1)

where: is the population increase of strate@jy  is a constant step siz&(z)

is the average payoff of using pure strategy Uy () is the average payoff of
using pure strategW B, U(z) = 2Ug(z) + (1 — 2)Uyxp(x) denotes the average
payoff of the population, and(x) = Up(x) — Uxg(x). The intuition behind this
differential equation is that if using pure strategyntroduces a higher payoff than
the average payoff of the entire population, the populalware of pure strategy
should increase. At the stable statethis differential equation should be equal to
0. As discussed in [102], [105], [106], the population sharean be interpreted
as a mixed strategy, which denotes the probability thatgulagdopt pure strategy
B. Since any unsuccessful user gets the same g#ihe/she correctly receives
a segment, all unsuccessful users are symmetric and shawidthe same mixed
strategyz, denotedr*, when they reach the ESS. For presentation simplicity, we
say ESS ig*. In the following, given the numbe¥,, of sellers, and for any relay
price ¢ selected by the local agent, we derivg(x) andUy () for unsuccessful
useri, and then find the ESS".”

3.2.3.1 Analysis of/p(z) and Uy ()

GivenN,, sellers, for unsuccessful usetet X_; denote the set of all other unsuc-
cessful users. Spt_;| =1 2N - N,, — 1. Recall that each unsuccessful user

purchases the relay service with probabilityTherefore, the number of buyers in

“In games with incomplete information, each user has privdtgmation, which is unknown
to the others. Replicator dynamics can help solve gamesimétimplete information (e.g. [106]),
where the game is repeated for multiple shots, and usens fean the interactions with others,
adjust their strategies towards a higher payoff, and fimaty reach the ESS. Unlike the game with
incomplete information, our game is a one-shot game withpieta information, where each user’s
gaing, the number of unsuccessful usefé — N, ), and the relay costare all public information.
Thus, similar to [105], the ESS can be derived directly byisg (3.1), and there is no learning
process involved in our game analysis.



X_;, denoted, follows Binomial distributionB (i, x).

In this context, if usel decides to be a buyer, the total number of buyers is
(k+ 1), and thus, the total payment from all buyerskst 1)q. If (k+1)g > ¢, this
payment can afford the relay service, and useceives the segment correctly and
pays the price; otherwise, there is no relay service and u&eutility in the relay

portion is 0. Therefore, in the relay portion, ugsraverage utility of strategys is

G0 = g0 X, J - 1G4 ez d, @2

k=0

where[-] is an indicator function. If usei decides not to be a buyer, the total
number of buyers i%, and the total payment is;. If kg > ¢, this payment can still
afford a relay. After the relay portion, usecan overhear the relay and receive the

segment correctly. Therefore, the average utility of thategy N B is

Uvp(z) =9 (é)xk(l — )" Ikq > . (3.3)

k=0

Then, we have

f(x) = Up(x) — Unp(x)

l

_ (li)xm _ x)(l_k){ <I[(k: F1)g>d - kg > c]>g [k +1)g > c]q}

k=0

= g(lj*>xk*(1 — x)(l_k*) —q zl: (é) (1 - x)(l_k), (3.4)

k=k*

wherek* = [¢/q] — 1, and|-] is the ceiling function. Here|c/q] is the minimal

number of buyers required to afford the relay service atepyic

3.2.3.2 The ESS Solution

From (3.1), at the stable state= 0, there are three possible solutions:= 0,
r = 1, andz that satisfiesf(x) = Ug(z) — Uyp(z) = 0. In our game, the relay
priceq plays an important role in the unsuccessful users’ decisiaking process,

and all those three solutions can be ESSwhich will be discussed as follows. The
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Fig. 3.3. Examples of price intervals. (g)= 14 andc = 12. (b) g = 8, ¢ = 12 andI';
does not exist in this case.

analysis results are summarized in Theorem 3.1 followiegtmalysis.
Definej = [c¢/g]+1 > 1, where[-] is the floor function. We partition the price

rangel0, +oo) into the following subintervals:

C

[o=1g,00),I'; = E,g) , andl’; = l;,j%) for j > j. (3.5)

When the price is in rangel’; with j > j, at leasy buyers are needed to afford the
relay servicely is the range of the price that equals or exceeds usersygdin of
receiving a segment correctly. Fig. 3.3 shows exampleseoptite intervals when
g andc take different values.

e Case 1g € Iy, i.e.,q > g: From (3.4), for allz € [0, 1], we have

flx) = <k*>xk(1 — )"y — Xl: <l>xk(1 —2)"Mg

k
< (,;)ff*(l — ) (g —q) <0. (3.6)

e

Thus, the strategy B always outperforms3 and users will converge to* = 0,
which is the ESS. This is because giver g, the price is too high when compared
to the utility gain from receiving the relay service. Thusbody will buy.
eCase2gc'jwithje {j,j+1,..,N— N, — 1}: Inthis case, we analyze the
ESS whery = j = 1 (which happens only when< g) andwhenl < j < N—N,,
separately.

Whenj = j = 1,i.e.,,q € I'y = [c, g), one buyer is sufficient to buy the relay
service and* = [¢/q] — 1 = 01in (3.4). Thereforef(x) in (3.4) can be simplified
asf(zr) = (1—a) Mg —gwith f(0) = g—¢ > 0andf(1) = —¢ < 0. In
addition, f'(z) = —g(N—N,—1)(1—x)"~"=2 < (0 and thus f () is a decreasing
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Fig.3.4. (@)q € I'j, wherej = j = 1. (b)q € I'j, wherel < j < N — Ng,.

function forxz € (0,1), as shown in Fig. 3.4a. Thug(z) = 0 has a single root
Ty =(1— \/g) € (0,1), which is the ESS. To understand this, dedeviate from
zs. If x € [0,27), we havef(x) > 0, which means strategi can give a higher
utility than NB. Therefore, users will increase the probability of usiBgnd x
will move towardsz ;. Similarly, if z € (2, 1], we havef(z) < 0, which means
strategyB will give a lower utility. Thus, users will reduce the prolildly of using
strategyB and adjust their strategy towardlg. Thus,z* = 7, is the ESS.

Wheng € I'; with 1 < j < N — Ny, i.e.,q € [£,-%), at leastj buyers are

0 -1

required to afford the relay service, ahtl= [c/q]| —jl ; 0. From (3.4),f(0) =0

and f(1) = —¢ < 0. In addition, we prove in Appendix A that'(z) = 0 has a
single rootz s in the rang€0, 1), wheref’(x) > 0 whenz € (0,Z) and f'(z) < 0

whenz € (Zy,1), as shown in Fig. 3.4b. Thereforg(z;) > 0, andf(xz) = 0 has
a single rootr; in the ranggz s, 1). Same as the analysis in Fig. 3.44,= 7, is

the ESS.

e Case 3g € I'n_n., = [N_CNM, N_Ncsu_l): In this price range, the relay price
requires at leagtN — N, ) buyers, while there areV — N, ) unsuccessful users
and thus at mostV — N, ) buyers. Therefore, there is no chance to free ride, and
all unsuccessful users will buy with* = 1. Mathematically, whey € I'y_y,,,

k* = [e/q] —1 = N — Ny — 1 = [ and f(z) in (3.4) can be simplified as
f(z) = (g — @)V "N=1 > (0 forall = € [0,1]. Therefore, the strategy always
outperforms strategy B, andx* = 1.

e Case 4g € I'; with j > N — N, +1: In these price ranges, at legst N — N,

buyers are required to afford the relay service, while theeeonly (N — Ny,)



unsuccessful users. Therefore, there are not sufficiergrbuy afford the relay
service, and the game ends.

In summary, we have the following theorem.
Theorem 3.1.Given N, sellers in stage 1 and the relay prige
» Case 1,when > g (i.e.,q € I'y), z* = 0 is the ESS and no one buys;

« Case 2, wheR—F—— <¢<g(e,gel; Ul U..UlN N,-1) for
x € (0,1), f(x) = 0 has a single root ¢, which is the ESS, i.ex} = Z;

« Case 3, wheR—5— < ¢ < y—x—— (i.e,,¢ € I'y_n,,), " = listhe ESS

and all unsuccessful users buy;

» Case 4, whep < Nowo (e, e 'n_n.yr1UDN_N,,+2U...), there are not

sufficient buyers, and the game ends.

Note that in the above discussion and Theorem 3.1, we asfiahg£— < g.

When—5— > ¢, if ¢ > 55 = g, following the discussion in Case 17 = 0

and no one buys; while if < <5, following the discussion in Case 4, there are

not sufficient buyers to afford the relay service. Therefovith —5— > g, the

game will end with the relay portion throughput being zero.

Fig. 3.5 shows an example of ESS at different priceq and with different
number(N — Ny, ) of unsuccessful users. The total number of users in the mketwo
is N = 12. The cost to forward one segmentds= 2 and the gain of correctly
receiving one segment is = 1. We first studyz* at different price with a fixed
number of unsuccessful users and U¥e— N,,) = 5 as an example. We observe

that wheng <

~v—~_ = 0.4 (i.e., in price rangekg, I'7...), the number of buyers is
not sufficient and the game ends with no relay service. 4f [0.4, 1), we observe
that at a lower price, the game requires more buyers to pakethg service, and
thus, unsuccessful users have a smaller probability torfdeewith a largerz*.
Forg > g = 1, no user buys and the ESSa$ = 0. Fig. 3.5 also shows the
ESS with a different number of unsuccessful uséré,— N,,) = 8. It can be

seen that for a given pricgin the price rangd’s to I';, more unsuccessful users
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Fig. 3.5. An example ofr*.

give a smaller ESS*. This is because when the number of unsuccessful users is
large, each unsuccessful user expects other unsuccessfslta purchase the relay

service and he/she has a higher tendency to free ride.

3.2.4 Price Setting Game and Throughput Optimization

From the previous discussion, at different priceelected by the local agent, we
may have different ESS, and thus different relay portiomdlghput. Therefore,
x* is a function ofg.® In the following, we will analyze the optimal price that
maximizes the system throughput.

Given(N — Ny, ) unsuccessful users and prigeeach unsuccessful user follows
the ESSe* to play the buyers’ game, and the relay portion throughput is
V& (N — Ny

Tr(z*|Now) = >, )
k=[c/q]

)(Jf*)k(l _J:*)N—Nsu—k7 (37)

where the summation term denotes the probability that theresufficient buyers

to afford the relay service. The local agent aims to find thiénogd ¢* that can

8For presentation simplicity, we usé to represent*(q) in the sequel.
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maximizeTr(z*|Nyy),
q* = arg max Tr(2"|Ngy). (3.8)

From Theorem 3.1, wheq > ¢, z* = 0 andTg(z*|Ns,) = 0. Wheng <
~—~_» the number of buyers is insufficient and the game ends al$ozero relay
portion throughput. Therefore, the optimal priges in the range{m, g).

From Theorem 3.1, wheg—5— < ¢ < g, there are two possible ESE, = 1

when—5— < ¢ < y——— andz” € (0,1) when——— < ¢ < g. Comparing

the relay portion throughput wheri = 1 andz* € (0, 1), we have

N N — Nsu
TR(x*|Nsu)|x*:1 = Z < k >1k(1 - 1)N_Nsu_k = ]-7 (39)
k=lc/q]
and
* N N - NSU * * — —
TR(IL' |Nsu) a*e(0,1) = < I )([L’ )k(l — T )N Ny —k
k=lc/q]
N—Ngy, o
< (N Nsu) (x*)k(l — g*)N"Nw=k — 1 (3.10)
k=0 k

Thereforex* = 1 gives a higher relay portion throughput, and the optimalepyi

should be in the price randéy_y,, that givese* = 1.



Fig. 3.6 shows an example of and7’z(z*|Ny,) at different priceg with N —
Ny, = 10, ¢ = 3, andg = 1. Following the previous discussion, the optimal price
should lie inI"y_y,,, Which corresponds tf#.30, 0.333) in Fig. 3.6. In this price
range, we observe that = 1, andTz(z*|N,,) = 1, which is the maximum relay
portion throughout. In this scenario, all unsuccessfursid@ave to buy together
to afford the relay service. Any free riding behavior wilktdt in the failure of
purchasing a relay, which lowers the utilities of all unsegsful users. Thus, the
optimal price drives the buyers’ game to the equilibrium vehall unsuccessful

users buy and share the cost to afford the relay service.

3.2.5 Equilibrium of the Stackelberg Game

To summarize, the SPNE of the Stackelberg game is

Stage 1, the sellers’ gamg.is a weakly dominant strategy, and all successful

users decide to be sellers.

» Stage 2, the price setting game. GiveM — N,,) unsuccessful users, if

~—~v_ < g, the optimal price can be any value in the rahge v,,. Other-

wise, the game ends.

» Stage 3, the buyers’ game. At the optimal pri¢eselected in Stage 2, all

unsuccessful users decide to be buyers with probabitity 1.

» Stage 4, the transaction game. Since under the optimad grjcll unsuc-
cessful users are buyers afid N — N, ) > ¢, being a relay is profitable, and

the selected seller forwards the segment, and gets payfént— Ny, ).

At this SPNE, the relay portion throughput is 15— < g, and 0 otherwise.

3.3 Wireless Multicast With Heterogeneous Users

In wireless multicast, users may use different mobile devjievhose cost to forward

a segment are different. For example, the cost to forwardjaent using a smart



phone is much higher than that when using a laptop due torttieeti power avail-
able. In this section, we will study cooperative wirelesdtioast with heterogenous

users, who have different cost of forwarding a segment.

3.3.1 Game Model for Heterogeneous Users

In this work, we assume that each user’s cost is his/herteriméormation, which is
independent and identically distributed following the gadhistributione.(c) in the
range[c;, c,], wherec; andey, are the lower and upper bounds of a user’s cost. Thus,
successful users may request different payments to foravaebment. Since the
cost is their private information, they may lie to othersh&ating can help improve
their own utilities. For example, successful users mayntlaigh cost so that to
ask high payments for providing the relay service. Howeavéne asked payments
are too high, unsuccessful users may not be able to affodtitrars, the system
efficiency may be reduced. To encourage successful useedl their true cost,
we use the second-price sealed-bid auction, which is a-teliihg auction [103].
To help readers have the whole picture of the system, théetkigame model is
illustrated below.

Stage 1: The Sellers’ Auction Game.After the broadcast portion, assume that
there areV,, successful users. Each of them decides whether to sell selaice.
Let {S, NS} denote their strategy set, including being a self8rgnd not being a
seller (V.S). Assume thatV,(< Ny,) successful users decide to be sellers. They
will enter the auction game, where a seller, say ussubmits to the local agent
his/her bid including his/her ID and the paymefthe/she asks for. In our work,
messages from the sellers are encrypted and then sentan@oltsly using CDMA
technology in the selling part in Fig. 3.2. So only the loagdat can decrypt them,
which can prevent others from overhearing the transmisaimahavoid potential
leak of their bidding information.

Stage 2: The Price Setting Game. The local agent, as the host of the auction,
decides the winner of the auction, and the winning bid, deshdty ¢, that the

winner will get paid after relaying the segment. Followihg second-price sealed-



bid protocol, the winner is the seller with the lowest bidj &t is the second lowest
bid or the reserve bid"(V,), whichever is less. Her# (Ny) is a function of N, and
denotes the highest payment that buyers will accept. Frerdiitussion in Chapter
3.2.3, no user will buy ity > g. Heregq is still the relay price that will be charged
to each buyer, and is still the utility gain of correctly receiving a segmentivén
that there aréV; sellers, the number of buyers is no more tdh— N,), and the
highest total payment from all buyers is less tiah— N )g. Thus, the reserve bid
should satisfyl"(N;) < (N — N;)g. In this work, we setl”(N) = (N — Ny)g — ¢,
wheree is an arbitrarily small positive number. Note that if thedaf all the sellers
are larger tham” (V,), there is no winner of this auction game, and the game ends
with no relay service.

The local agent also selects a relay prdbat will be charged to each buyer for
the relay service, and then announces (in the price annmerdgart in Fig. 3.2) to
all users the numbev, of sellers, the winning bidder’s ID, the winning hi¢f, and
the relay price;. The local agent selects the optimal relay prjde maximize the
system throughput. As will be shown in our analysis in Chapi&.2.3, the optimal
price ¢ depends on the number of users who do not participate in tttealgame
(i.e.,(N — Ny)) and users’ cost distributiap.(c).

Stage 3: The Buyers’ Game. Based on information announced by the local
agent, unsuccessful users decide whether to be buyers.uydrr broadcast their
IDs simultaneously in the buying part in Fig. 3.2. The wirmioidder listens to
buyers’ messages, and knows the numBgpof buyers and the total paymentq
the buyers offer.

Stage 4: The Transaction Game. For the winning bidder, say user if the
winning bid d* is not less than his/her cost, user: is willing to forward the
segment. However, the local agent pays usenly when the total paymeny,q
from the buyers is not less than the winning Bfdand usei forwards the segment.
Thus, usef will forward the segment ifV,g > d* > ¢;, and the local agent charges
g from each buyer and pay®§’ to useri. Otherwise, userwill not relay the segment

and the game ends.



Note that after the transaction, there might be extra unpagthent of( N,q —
d"). The local agent will keep this unused payment and accumitifitom each
segment transmission. Once the accumulated amount is thegethe winning bid
d™ in one round, the local agent uses it to pay the relay servidealh unsuccessful
users enjoy a free segment forwarding in that round. In thaskywwe consider
the scenario where users frequently join and leave the casliservice. They may
leave before the next free relay service. Thus, we ignorentipact of free relay

service on buyers’ utility in our analysis.

3.3.2 SPNE Analysis

Note that the transaction game ensures that the relay withyed receive a non-
negative net utility gain in the game. This result can sifgghe sellers’ auction
game. Thus, similar to the analysis in Chapter 3.2, next wegiudy the sellers’

auction game, followed by the buyers’ game and the pricengegame.

3.3.2.1 The Sellers’ Auction Game

In this stage, each successful user decides whether to didh@m to bid in the
auction game. Note that in this stage, the reserveibid’;) is unknown (as the
numberN, of sellers is unknown), and a successful user’s decisiolalgib affect
d"(Ns), which should be taken into consideration when choosinfhéisstrategy.

For a successful usérwe have the following proposition.

Proposion 3.1.For a successful userwith costc; to forward a segment, if; >
d"(1), he/she should not enter the auction game. Otherwise, &éefsbuld partici-

pate in the auction game and bil = ¢;. This is a weakly dominant strategy.

Proof: We first show that a successful user, say useshould not enter the
auction game if; > d"(1), and he/she should participate in the game otherwise.

Note thatd"(1) is the highest possible reserve bid (i.e., the reserve biehwh
there is only one successful user), and thus, it is the highssnent a seller can
receive. If user’s costc; is larger thani” (1), he/she cannot benefit from serving as

arelay, and thus should not enter the auction game. Whend" (1), if user: takes



strategyN.S and does not bid, his/her utility in the relay portion0is However,
if he/she participates in the auction, he/she has a pogtiokability to win the
auction and make a non-negative net utility gain by forwagdhe segment. Thus,
using strategys, his/her expected utility in the relay portion is non-néggtandS
is a weakly dominant strategy ovarS. Therefore, user should enter the auction
game as long ag < d"(1).

In the following, we prove that when the successful usdecides to partici-
pate in the auction game, bidding his/her real cost is a weddininant strategy.
To illustrate this, we defind; = min,_; d; as the smallest bid excluding, and
consider two different scenarios.

e ¢; < min(d’(N,),d;): In this case, usefcan win the auction by bidding any
value in the rang<<0, min(d’(N,), d)|, and this range includes his/her true cgst
Then, his/her winning bid ig* = min(d"(N,),d;). Thus, he/she has the chance
to make a net utility gain off* — ¢; > 0. However, if he/she bids a price higher
thanmin(d’(N,), d), he/she cannot win the auction, and his/her utility in tHayre

portion is zero. Thusj; = ¢; is a weakly dominant strategy.

e ¢; > min(d"(N,),d;): In this case, usercannot win the auction by bidding any
value in the range< min(d’“(Ns),cZi),+oo), and this range includes his/her true
costc;. Then, his/her payoff in the relay portion is zero. On theeothand, if
he/she bidsl; < min(d"(N,), d;), he/she can win the auction, but will not relay, as
the payment for relaying i§” = min(d"(N,), d;) which is less than his/her cost
¢;. Thus, his/her payoff is also zero. Therefore, in this sdenéor anyd;, useri’s
payoff is zero.

From the above discussions, the successful ustould bidd;, = ¢; if ¢; <
d"(1), and it is a weakly dominant strateds.

From Proposition 3.1, each seller bids his/her real coshénauction game.
Thus, if there is a winner of the auction (i.e., the lowestisidio larger than the
reserver bidd"(Ny)), the winning bidder is the bidder who has the lowest cost
among all bidders, and the winning bidf is no less than the winner’s cost. Thus,

in the transaction game, as long&g; > d%, the winning bidder will forward the



segment.

3.3.2.2 The Buyers’ Game

In the buyers’ game, based on the numiepf bidders, the winning bid“, and the
priceq determined by the local agent, each unsuccessful useredesigether to be

a buyer. Similar to the game with homogeneous users, we asielmnsuccessful
users’ interaction as an evolutionary game, while the aislg more complicated.
This is because givel, bidders, the restN — N;) users include unsuccessful
users who may or may not purchase the relay service as well@essful users
who do not bid in the sellers’ auction game. Unsuccessfulsusieould take this
into consideration when choosing their strategies. Spadlfi given N, bidders,

for unsuccessful user let J_, denote the set of all other unsuccessful users and
successful users who do not bid in the sellers’ auction gaBe|)_;,| = I £
N — N, — 1. Recall that a successful user will bid if his/her cost isolet”(1).
Since each user’s cost follows the probability distribatig.(c), the probability
that a successful user does not bid is ®.(d"(1)), whered,(-) is the cumulative
distribution function ofp.. Then for each user iY_;, the probability that he/she is

a successful user is

n {1 _ cpc(dru))]

. (3.11)
p|1= @@ ()| + (1 -p)

Ps =

Letn be the number of unsuccessful userd’in, and it follows Binomial distribu-
tion B(l, 1 — py).

Based on the above discussion on the number of unsuccessfsl| €ollowing a
similar analysis in Chapter 3.2.3, for each unsuccesséirliyge first derive his/her
average utilityVz(z) and Vyp(x) by using the strategys and N B, respectively,
and then find the ESS*.°

9Similar to the homogeneous case, the evolutionary gameihdterogenous case is also a one-
shot game with complete information, where each user’s gahme probability distribution function
of the number of unsuccessful users, and the winningitii@re all public information. Thus, we
can directly derive the ESS by solving (3.1).




Recall that each unsuccessful user purchases the relagesanth probability
x. Thus, givem unsuccessful users §i_;, the conditional numbe of buyers in
Y_; follows Binomial distributionB(n, z). In this context, if use¥ decides to be
a buyer, the total number of buyersfist+ 1, and thus, the total payment from all
buyers is(k + 1)q. If (k+ 1)g > d*, the winning bidder forwards the segment,
and user receives the segment correctly and pays the pricgherwise, there is
no relay service and usés utility in the relay portion is 0. Therefore, in the relay

portion, user’s average utility of strategys is

Ve(z) = (9—q) > (i) (L—po)mpi™

n=0

X {zn; (Z)ﬁu —2)" Ik +1)g > dw]} : (3.12)

k=0

Similarly, if useri chooses the strategy B, its average utility is

Vyg(z) = ¢ Z (i)(l —ps)npls_n
x {zn; (Z)xk(l — 2)" * kg > dw]} . (3.13)

k=0

Let h(z) = Vg(z) — Vyg(z), and Appendix B shows that

W) = 9(,;) (1 = p) " [1 = 2(1 = po)] )

_ DN 1201 — Y FIL — (1 — )]0
03 () P10 )

— (1 =pa). (3.14)

In (3.14),k* = [d¥/q|—1where[d" /q] is the minimum number of buyers required
to afford the relay service, anf{x) is defined in (3.4).

Similar to the analysis in Chapter 3.2.3, at the stable statee haveir =
nz(l — z)h(x) = 0. Thus, we have three possible solutions= 0, z = 1, and
x satisfiesh(x) = 0, all of which can be ES$*. To study the ESS™* at different

prices, similar to the analysis in Chapter 3.2.3.2, wg let L%J + 1 and partition



the whole price rangf), +c0) into subintervals

d” av dv
Ty = [g, +00),T; = [—,,g), andl’; = l—,, ,
0 [ ) J j J j j_l

) for j > j. (3.15)

In price rangel’; with j > j, at leastj buyers are required to afford the relay
service.

e Case 1g € Iy, i.e.,q > g: Similar to the analysis in the game with homogeneous
users, no user buys and = 0 is the ESS.

e Case 24 € I'; with j < j < N — N, — 1. Similar to Chapter 3.2.3.2, we
study the ESS whep = j = 1 (which happens only whed” < g) and when

1 < j < N — N, separately.

Whenj = j =1, i.e,q € [d",g), we havek* = [d”/q] —1 = 0. From the
analysis in Chapter 3.2.3.2, whén = 0, f(z) in (3.4) is a decreasing function
of z for0 < z < 1, and f(z) = 0 has a single roat; € (0,1). Fromh(z) =
f<(1 — ps)x), h(z) is a decreasing function of in the interval (0, ﬁ) and
h(xz) = 0 has a single root in the intervé[), ﬁ) given asi;, = 13”_—; When
Zy > 1—p,, orequivalentlyh(1) = f(1—ps) > 0, as shown in Fig. 3.7a, we have
h(z) > 0forall 0 < x <1, and strategyB gives a higher utility than strategy .
So all unsuccessful users buy with = 1 being the ESS. Wheh; < 1 — p,, that
is, h(1) = f(1 —ps) < 0, &y is in the interval(0, 1). Similar to the homogeneous
user casey* = 1y, is the ESS, as shown in Fig. 3.7b.

Wheng € I'; with 1 < j < N — N, we havek* = [d¥/q] — 1 > 0. From the
analysis in Chapter 3.2.3.2, whéh > 0, f’(x) = 0 has a single roat; € (0, 1),
wheref'(z) > 0 when0 < x < Z7, andf'(x) < 0 whenz > z;. Also, f(z) =0
has a single root/ in the interval(z s, 1). Note that'(z) = (1—ps)f’((1—p5)9:>.

Therefore,i/(z) = 0 has a single roat;, = 1?; in the interval(0, ﬁ) h(x)is

an increasing function of when0 < = < Z;, h(z) is a decreasing function when
Ty

Ip <@ < 1=, andh(z) = 0 has a single root, = 1~£-

in the interval(z,, 1=-).
If £ > 1 — p,, or equivalently,h(1) = f(1 — ps;) > 0, as shown in Fig. 3.8a,

h(z) > 0forall 0 < z < 1andz* = 1 is the ESS since strategy always



h(x) h(x)

0
0 =1 g>1""% *
(a)
Fig.3.7. ¢ € I'1. (@): h(1) > 0, (b): h(1) < 0.
1 x

(b)

Fig.3.8. ¢ € I';, wherel < j < N — N. (a): h(1) > 0, (b): (1) < 0.

outperforms strategW B. If &y < 1 — ps, or equivalentlyh(1) = f(1 — ps) < 0,
as shown in Fig. 3.8by,, is in the interval(0, 1). So similar to the homogeneous
user casey* = 1y, is the ESS.

e Case 3g € I'y_n, = [355, 7—%—): In this price range, at leagtv — N,)
buyers are required to afford the relay service, while tlageeat mostN — Nj)
possible buyers. Therefore, there is no chance to free aide,all unsuccessful

users will buy withz* = 1. Mathematically, whery € Ty_x., h(z) = f(x(l -
p5)> = (g9 — q)[x(1 — py)]" > 0 forall z € [0,1]. Therefore, the strateghy always
outperforms strategy B, andx* = 1.

e Case 4g € I'; with j > N — N, +1: Atleast(N — N, + 1) buyers are required to
afford the relay service. However, the number of total ptiakibuyers is no more
than(N — Ny). Thus, there are not sufficient buyers to afford the relayisey and
the game ends.

In summary, we have the following theorem.

Theorem 3.2.GivenN, bidders in Stage 1, the winning bitf, and the relay price



q,

» Case 1, whery > g (i.e.,q € I'y), z* = 0 is the ESS, and no unsuccessful

user buys;

* Case 2, when=h— < ¢ < g (i.e,q € T,Ul; 1 U..UTy y, ), if
h(1) > 0, z* = 1 is the ESS and all unsuccessful users buy:(1f) < 0,

for x € (0,1), h(z) = 0 has a single root) < i, < 1, which is the ESS,

T = Ty,

» Case 3, when’y- < ¢ < y=%— (i.e.,¢ € I'y_y,), z* = 1is the ESS and

all unsuccessful users buy;

« Case 4, when < N‘waS (i.e.,q € I'y_n.o1 UTy_n.42 U...), there are not

sufficient buyers to afford the relay service, and the ganas.en

3.3.2.3 The Price Setting Game

In the price setting game, the local agent finds the optimeépt to maximize the
relay portion throughput. Given the numhb¥r of bidders and the winning bid”,
with the ESSt* (which is a function of relay pricg) from Theorem 3.2, the relay
portion throughput is

N—N,
* w ° N_NS n —Ns—n
o) = 3 (7 g

n=0

« { 3 (Z) (z)5(1 — x*)”_k} . (3.16)
k=[d" /q]

To maximizeTr(z*| N, d"), based on Theorem 3.2, the optimal prg¢eshould be
in the rangd“i U Pz+1 U---UIy_n, Wherex* > 0.

Fig. 3.9 shows an example of and the corresponding throughpiit where
there are a total oV = 12 users in the system, and, = 2 of them bid in Stage
1 with the winning bidd®” = 2. For each user, the probability to correctly receive
the segment in the broadcast portiopis= 0.4, and the gain of correctly receiving

the segment ig = 1. Users’ cost{¢;} is uniformly distributed in the range;, =
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Fig. 3.9. An example ofr* andT.

1, ¢, = 17]. From (3.11), the probability that a user who does not bidsisaessful
user isp, = 0.2. From Fig. 3.9, whery < d¥/(N — N,) = 0.2 (i.e., in price
ranged ' 1, I'12, ...), there are not sufficient buyers and the relay portion tiinguit
is zero. Wherny € [0.2,1.0) (i.e., in price range$'y, ..., ['3), we observe that at
a low price (e.g., inl'yy), the game requires a large number of buyers to afford
the relay service. However, since there are some successftd who do not bid
in the sellers’ auction game, even if all unsuccessful usayswith z* = 1, it is
still possible that the total paymen\,q is smaller than the winning bid”, and
therefore, the relay portion throughput is small. At a higice e.g., whery € T3,
the minimum number of required buyers is small. Thus, unsssftl users have a
high tendency to free ride, and the probability that theeerant sufficient buyers is
high, which also results in a low relay portion throughpuhefefore, the optimal
price should be appropriately selected to address thistfgcndl; is maximized
wheng = d¥/7 = 0.286 in this example.

To efficiently find the optimal price, we have the followingoposition, whose

proof is in Appendix C.

Proposion 3.2.1n each price rangé’; with j € {j,..., N — N,}, Tr(z*| Ny, d*) is

a non-increasing function of.

This can also be observed from the example in Fig. 3.9. In eack range



I'; with 3 < j < 10, Tk is a non-increasing function aof and is maximized
at the left boundaryy = d*/j. Based on this observation, we propose Algo-
rithm 1 to efficiently find the global optimal price that maxzes the relay portion
throughput. Specifically, Algorithm 1 comparég(z*| Ny, d¥) atq = d“/j when

j =14, , N—N,, and chooses the optimal prigethat maximize§'r (z*| Ny, d*).

Algorithm 1: Optimal Price Selection
1 T5=0,¢=0
2: for j=jto(N — N;)do
Setq = d*/j and use Theorem 3.2 to find, and use (3.16) to calculate
Tr(z*|Ng, d™)
4:  if Tgr(x*|Ns,d™) > T} then
5: T3 = Tr(z*|N,, d¥) andg* = d*/j
6
7

w

end if
: end for

We then discuss the properties of the optimal priceWe first study the ESS
x* at the optimal pricg* when(N — N,) takes different values. For the system in
Fig. 3.9, we vary the value ¢fV — N) from 5 to 11, and other parameters are the
same as in Fig. 3.9. In Table 3.1, for differ¢nt — N), we list(N — N)(1 — ps),
the average number of unsuccessful users amongXhe ;) users who do not
bid, [d¥/q¢*], the minimal number of users required to afford the relayiser and
the ESSc* at the optimal price*. From Table 3.1, we observe that at the optimal
price, [d"/q¢*] has a similar value tON — N;)(1 — py). It means that the optimal
price is chosen carefully to let each unsuccessful user siast or zero probability
to free ride (i.e.x* is close to 1 as shown in Table 3.1), while ensuring that tted to
payment from unsuccessful users is sufficient to pay thg sdavice.

We then study the optimal prige at different values of N — N;) (the number of
users who do not bid) and (probability that a user who does not bid is a successful
user). For the system in Fig. 3.9, we vary — N;) from 4 to 10, and vary; so
thatp, is 0.2, 0.4, or 0.6. Other parameters are the same. The dgimoa ¢* is
shown in Fig. 3.10. We can see that given a fixed winning b&d,{d = 2 in the

example), the optimal price increases wtéh— N,) decreases. This is because,



TABLE 3.1
2™ AT THE OPTIMAL PRICE WITH DIFFERENT NUMBERN, OF BIDDERS

(N = N,) 5 (6 |7 |8 |9 |10 |11
(N—-N,)(1—p,) |4 |48 |56 |64 |72 |8 |88
[d” /q*] 4[5 |5 [6 |7 |7 |8
o 1.0 | 1.0 [ 0.90] 0.99] 1.0 | 0.93] 0.99

Fig. 3.10. An example of the optimal pricg*.

with a smallef N — N,) and thus potentially fewer unsuccessful users, each buyer
needs to pay more to purchase the relay service. Similaitlyavargerp,, there are
fewer unsuccessful users, and each buyer also has to palex pigce to purchase
the relay service. Note that, in Fig. 3.10, wh@si — N,) andp; vary, ¢* takes
values from a common finite set. This is because from Prapasit2, the optimal
price can only take values in the finite set-, I, - - -, %5 }

RETSE » N—Ns

3.3.2.4 SPNE of the Stackelberg Game with Heterogeneous Wse

To summarize, the SPNE of the multi-buyer multi-seller gamiteé heterogeneous

users is:

» Stage 1, the sellers’ auction game. Successful users vwdossés no larger

thand” (1) will enter the auction game, and bid their true cost.

» Stage 2, the price setting game. The local agent followssdw®nd-price



TABLE 3.2
OVERALL THROUGHPUT COMPARISON WITH AND WITHOUT PROPOSED INENTIVE

MECHANISM.
A 0.5 0.67 1
Incentive 81% 95% 99%

No incentive | 37% 37% 37%

sealed-bid auction protocol to select the winner of theian@nd the winning

bid d“. Then the local agent uses Algorithm 1 to select the optimeég*.

» Stage 3, the buyers’ game. Based on the numeof sellers, the winning
bid d, and the price;* selected by the local agent, each unsuccessful user
follows Theorem 3.2 to find the ESS, and decides to be a buyer with prob-
ability x*.

» Stage 4, the transaction game. Given the nunifjeof buyers, if¢*N, >
d", the auction winner relays the segment, and receives a pdayohe".

Otherwise, there is no relay and the game ends.

3.4 Simulation Results

In our simulation, we consider a multicast network with a B a group of users
who dynamically join and leave the multicast service. Faheaser, the probability
p1 of receiving a segment correctly from the BS is 0.37, and tilgyugain of
receiving a segment correctlygs= 1. The initial number of users is 10. Users join
the multicast service according to a Poisson process widvarage arrival rate of
A users per segment duration (i.e., the length of the broagoason in Fig. 3.2).
The sojourning period of each user in the system follows @oe&ntial distribution
with an average gf segments. In our simulation, we fix= 20 and test the system
when\ = 0.5, 0.67 and1, which correspond to the average network sizeVof
9.8, 13.6 and20.2, respectively.

Table 3.2 first compares the overall throughpytwith and without our incen-
tive mechanism. Here, the overall throughpytis defined as the average percent-

age of users who receive the segment correctly after thedbasa and the relay
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Fig. 3.11. Relay portion throughput with homogeneous users undegrdiftc and arrival
rate\.

portions. With our price based system, users follows the SRSl discussed in
Chapter 3.2.5. In the case without any incentive mechanapp$ied, users who
cooperate consumes their own transmission power only witrexeiving any re-
ward. Thus, they do not have incentive to cooperate, ane tisemo relay in the
relay portion. In this simulation, we fix the cost as 8, and therent \. Table
3.2 shows the average results of 5000 segment transmisd®observe that with
our payment based scheme, users will cooperate and relayeségy which can
significantly improve the overall throughput, when complangth the case without
incentive mechanisms, where there is not relay and the ib¥leraughput is very
low.

Fig. 3.11 shows the relay portion throughput with homogeseasers when we
have different: and . For each segment transmission, users follow the SPNE as
discussed in Chapter 3.2.5. Fig. 3.11 shows the averaghsrésu5000 segment
transmissions. From this figure, we observe that whercreases, the relay por-
tion throughput decreases. This is because, whiegreases, the probability that

the condition—5— < g is not satisfied increases. Recall that, if the condition

~—~— < g is not satisfied, there is no relay service, as shown in Ch&pge5.
So a higher leads to a lower relay portion throughput. In Fig. 3.11, wsoadb-
serve that when increases, the relay portion throughput increases. Thisdause

a larger\ will on average give a larger network size, and thus more coessful
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Fig. 3.12. Relay portion throughput with heterogeneous users unffereintc;, and arrival
rate\.

users. Then, the probability that the number of buyers ifscseifit increases, which
gives a higher relay portion throughput.

Fig. 3.12 shows the relay portion throughput with heteregers users with dif-
ferentc, and\. In this simulation, users’ cost is uniformly distributetterandomly
generated iric;, ¢, ] with a fixed¢; = 4, and we test the system performance with
different¢,. For each segment transmission, users follow the SPNE esssisd
in Chapter 3.3.2.4, and we also test the system for 5000 segmamsmissions.
From this figure, we observe that whenincreases, the relay portion throughput
decreases. This is because whgnncreases, on average, each user has a higher
cost to relay a segment. Therefore, the winning dfdincreases, and it requires
more buyers to afford the relay service. Thus, with a highethe probability that
the number of buyers is sufficient decreases, causing aasecie the relay portion
throughput. Furthermore, we observe from Fig. 3.12 thatrwhéncreases, the
relay portion throughput increases. This is because arlargeves, on average, a
larger network sizeV (thus a larger!” (1) = (N — 1)g — €) and more successful
users (a largenN,,). From Proposition 3.1, a successful user will bid if itstass
lower thand”(1). So with a larger\, more successful users will bid, resulting in a
lower winning bidd™. In addition, a largen gives on average more unsuccessful
users, which, together with the fact that the winning Bfddecreases, increases

the probability that there are sufficient buyers to afforel tblay service, and thus,



Fig. 3.13. System throughput with homogeneous users, when we hawesetifp; andc.
(a) The relay portion throughput. (b) The overall throughpu

increases the relay portion throughput.

In this payment based game, the numbers of buyers and seleash round are
affected by the probability;. A largerp; will on average give a larger number of
sellers but a smaller number of buyers, which may affect yiséesn performance.
Fig. 3.13 compares the relay portion and the overall thrpugin homogeneous
case when: andp; vary. The simulation setup is similar to that in Fig. 3.11. We
fix A = 0.67, and other parameters are the same. From this figure, wiseiow,
the relay portion and the overall throughput increases ascreases. However, for
a largec, for examplec = 5, whenp; increases from 0.2 to 0.6, the relay portion
throughput first increases and then decreases. This is $®evderp, is small, for
examplep; = 0.2, the probability that there are successful users who cavigeo
relay service is small. Ag; increases, the probability that successful users exist
increases. Thus, the relay portion throughput increaskghwalso helps increase
the overall throughput. However, askeeps increasing, the relay portion through-
put starts to decrease. This is because when the cost istheghequired number
of buyers is also large. When becomes large, there are fewer unsuccessful users.
Thus, the probability that there are sufficient buyers desge, and the relay portion
throughput decreases. The overall throughput also dexseakich means that, for

a largerp,, the decrease in the relay portion throughput dominategtirease in



the broadcast portion throughput. Therefore, if the BS gores high power for a
largep;, it may not always be the optimal decision, especially whenhigh. For
a given range op;, the BS can search the optimglin this range, which gives the
maximal overall throughput while keeping the consumeddmnaission power of the
BS low.

3.5 Summary

In a wireless multicast system, the cooperation among wsgrsignificantly im-
prove the system performance. However, successful useranotebe willing to
help unsuccessful users, as forwarding costs their traassom power. In addition,
due to the broadcast nature of wireless communicationgjcgessful users may
prefer to free ride rather than buying the relay service.hla work, to stimulate
user cooperation, we formulate the interaction among wsessmulti-seller multi-
buyer payment based game, where users pay to receive relagesand get paid
if they forward their successfully received segments te@rsth In either homoge-
neous user case or heterogeneous user case, we derive tbétB88uyers’ game,
and further derive the optimal price to maximize the relaytipa throughput. It
is shown that, under the optimal price, there is no chancararsuccessful user
to free ride in the homogeneous user case, while there isyasveall probability
for an unsuccessful user to free ride in the heterogene@rsase. Therefore, our
mechanisms have the merits of improving system efficiencystimulating users

to cooperate (i.e., successful users sell, and unsuctessiis buy).



Chapter 4

Incentive Analysis for Cooperative
Interactive Multiview Video

Streaming

From the literature survey in Chapter 2, there are very fewkev@addressing the
issue of user interaction with state change raised in an IMdy$em, where users
may switch views and change corresponding strategies dreétyu Besides this
issue, there are two more challenges in design incentivéamesms for a high di-
mensional IMVS system. First, a small number of peers in allacea are likely
watching different views among a large number of availaldevg, making it dif-
ficult for a peer to find partners watching the exact same vewobperate. To
address this problem, following the frame structure disedsn Chapter 2.2.2.1,
we use a DSC based multiview video coding structure to fatécooperative view
switching where users can help each other even if they are watchifegetit views.
Second, since users switch views frequently and indepeiydéns hard for
them to maintain partnership. In Chapter 2.3 we review tleentive mecha-
nisms for single view video cooperative video streaming.e Tirect reciprocity
schemes [11], [71]-[74] are not suitable for IMVS, sincesthechemes work only
when users expect to interact with each other for a long tifie payment based

game proposed in [82]-[84] works for the scenario wheresusbhange partners

64



frequently. However, in such schemes, users make decib@sed on short-term
payoffs only, where a user will cooperate when the gain frahers’ payment is
higher than the cost to help. In this chapter, similar to {983], we model user
interaction as a reputation based indirect reciprocitygahtis scheme also works
for users who change partners frequently. We will show thadhis scheme users
make decisions taking future utility into consideratiomdahey may cooperate
even if the short-term gain is lower than the cost. Thereftiie scheme is more
effective in cooperation stimulation than the payment dastheme. To study how
users’ view switching and reputation updating affect tl@ioperation, we model
users’ action selection as an MDP. We then summarize therroapdributions of
this work as follows:

e To the best of our knowledge, this is the first work that presgidheoretical
analysis on how the multiview video affects user behaviocaoperative video
streaming. In this work, we derive users’ strategies in N&ghilibria, and observe
that users may cooperate at some views but not others. Theceuse peers can
predict their future view navigation paths probabilisligeand thus, can estimate
the probability that he/she needs others’ help in the futlfra peer is at a view
leading to a view-navigation path not requiring others’phéie/she also has less
incentive to cooperate.

e We show that a large number of reputation levels providedrigitentive for user
cooperation. We first observe that the 2-level reputati@besy is memoryless, and
each user makes decisions only based on his/her expectedesimo utility. Thus,

if a user is at a view, where cooperation only results in a tegaxpected short-
term utility, he/she will not cooperate. In tlie¢level reputation system witR > 3,

a user needs to take his/her future utility into consideratand may still cooperate
even if the expected short-term payoff is negative. Thigtsalise cooperation helps
him/her maintain a high reputation and get others’ help enfttiure. If the future
payoffs can compensate his/her current loss, he/she nllagostperate.

e We observe that the game may have multiple Nash Equilibrigesponding to

different cooperation levels (e.g., users cooperate ateidls in the full cooperation



equilibrium, while users only cooperate at certain viewshie partial cooperation
equilibrium.). The final equilibrium the game will converggedepends on the ini-
tial cooperation level of the game. To address this issuepiyeose a PfC scheme
at the beginning of the game to drive the game to the desiteddoperation equi-
librium to improve the system efficiency.

¢ |n addition, we also study the impact of user membership ghycsgon user co-
operation and system performance. From our theoreticdysinand simulations,
we observe that as long as the percentage of new users iesthalh a predeter-
mined threshold, full cooperation is a dominant strategyafbusers, and they will
all cooperate. Otherwise, user cooperation will be infged and the PfC scheme

should be used to resume user cooperation.

4.1 System Model

In this work, we consider an IMVS system, where a scene isucagtby a large
one-dimensional array df/ evenly spaced cameras. A server compresses video of
each view into coding segments &f frames each, and provides IMVS service to
a group of N users who are synchronized in playback time. Once a usatsele
view, he/she remains in this view for one segmenkofonsecutive frames. At the
end of this segment, he/she can switch to another view.

Based on this IMVS system, in the following of this sectiorg first describe
an interaction model that captures users’ view switchirfgper, and a multiview
video coding structure that facilitates cooperative vigitching among peers. We
then propose an indirect reciprocity game to stimulate cseperation. Finally, we

model users’ optimal action selection as an MDP.

4.1.1 View Switching Model

Views are divided into two categorieanchor viewsandnormal views Suppose
that there are,, anchor views, which evenly divide normal views inftg, + 1) view

sets ofn,, = (M —n,)/(n, + 1) views per set. When seeking interested views, a



user first browses views coarsely through anchor views. @Qatshe reaches an in-
terested anchor view, he/she can switch to neighboring aloriews to refine view
selection. In this work, we assume that users switch intedegews frequently.
After finding an interested view and remaining for one segmerey will likely
seek another interested view from the next segment. Thahoaniews are more
frequently selected (more popular) than normal views.

At each view, a user can only switch to his/her nearby anciews/with proba-
bility P,, or nearby normal views with probability — P,). Specifically, we model
the view transition as a discrete time Markov chain, and tansaM x M tran-
sition matrixT, whereT' (v, v’) is the probability of a user selecting viawin the

next segment after viewing and it is defined as follows:

P,/|Z.] if v eZ,,
T(v,v') =8 (1= P,)/|Z,| if v € Z,, (4.1)
0 otherwise

where Z, is the set including’s nearby anchor views, and, is the set includ-
ing v's nearby normal views. Specifically, ifis an anchor viewZ, includesv’s
left/right closest anchor views anditself, andZ,, includesuv’s left/right adjacent
normal view sets. Ib is a normal view,Z, only includesv’s left/right closest an-
chor views, andz, is the normal view set where belongs. Given the one-step
transition matrixT, the [-step transition matrix i&' (T raised to thdth power),
whereT!(v,v") is the probability to transit to view’ in [ segments after viewing.
The steady state view probability distributiomvissatisfyingvT = v, wherev(v)

is the probability that a user is at viewat the steady state.

For example, for @/ = 3 views with a single anchor view in the middle, the



View 1

View 2

View 3

Fig. 4.1. Example of our multiview video coding structure fd = 3 views, segment siz& = 3.
Circles, squares and diamonds denote I-, P- and DSC framsggsectively. Each framé’. , is
labeled by its frame index and vieww.

one-step and two-step transition matrices are

1 2 3
1{ 1-P, PR, 0
T=2\(1-P)2 P (1-P)/2]| and
3 0 P, (1-PR)
1 2 3
L[ (1=P)1—%) P Pt
T? = 2 1=k P, Lh (4.2)
3 P P, (1-P)(1—5)

respectively, and the steady state view distribution is [1‘213 C A } .

4.1.2 Multiview Video Coding Structure and Cooperative Viev
Switching

To address the issue that users have difficulty in estahlygtertnership for cooper-
ation in a high dimensional IMVS, we use a frame structurdlamo that in [18].
It supports cooperative view switching, where users mayeoate with each other

even they are in different views. Fig. 4.1 shows an exampteeframe structure



used in this work. Each view is encoded into segment& dfames. We encode
the first segment using an intra-coded I-frame with- 1 trailing P-frames. For
the next segment, for view switching we encode the first frdme; , into two
versions. The first version is an intra-coded I-frame, widah be decoded inde-
pendently. The second version iD&C framg107]. To encode the DSC frame, we
use the I-frame of the same frame as target, and use at mestdbcoded P-frames
Fr maz(1,0-1)s - - -+ Fr min(ar,0+1) @S predictors (i.e., if the DSC frame is in view 1, it
only has two predictorst’x ; andFi ». Similarly, if the DSC frame is in view/, it
also only has two predictorsiyx y,—1 andF j,. If the DSC frame is in view that

is other than 1 and/, it has three predictorst'x ,—1, Fix, and Fi ,.41). As long
as one of the predictor frames is available at the decodé&bttie DSC frame can
be correctly decoded, and the decoded frame is bit-by-hiivatent to the frame
decoded from the I-frame. Fran#g., , is followed by K — 1 trailing P-frames.
The following segments have the same structure. Averagealy;frame is much
larger than a DSC frame and a DSC frame is larger than a P-frame

This structure can support cooperative view switching. ngdrig. 4.1 as an
example, suppose that a peswitches from view 1 to view 3 after the first segment.
If another peer watches view 2 in the first segment and wolll b share the
reconstructed framéy ,, then: only needs to ask the server for the DSC frame of
F, 5 and the following K — 1) trailing P-frames to reconstruct the video in view 3.
If no one helps user(either no user watches view 2 or view 3 in the first segment,
or the users who can help are not willing to help), useas to request the I-frame
of F, 3 from the server.

As studied in [6], [53], user cooperation plays the key rolmke the streaming
service be able to scale to large networks with thousandsesu In this work, to
motivate users to seek others’ help, we assume that ther'sempéoad bandwidth
is limited and expensive. Thus, it charges virtual currefioyn peers that pull
video data as subscription fees to compensate its costy @wtotes the price for
the transmission of each single bit from the server. As dised above, when a

peer switches to a non-adjacent view, if he/she can get neip bthers, he/she



will download the last reconstructed frame in the previcgnsent from the helper
for free, and will only download a DSC frame from the servestéad of an I-
frame. Thus, he/she can receive a gaimfize; — sizepgc) for paying less to
the server, whereize; andsizepgce denote the number of bits of one I-frame and
one DSC frame, respectively. However, uploading a recoatgd frame will incur

a cost to the helper due to the consumed bandwidth, CPU tiime]rethis work,
we consider the scenario with homogeneous users with the sast to upload a
frame. In the following discussion, without loss of geniyalwe normalize the
gain of receiving a reconstructed frame to 1, and é¢note the normalized cost to

upload a reconstructed frame to a peer.

4.1.3 Indirect Reciprocity Game

Since users are selfish, they want to receive others’ helpgdomot want to help
others. To address the issue that users change partneueritBg we design a
reputation-based mechanism to stimulate user cooperatioere peers who keep
helping others will keep high reputations, and peers wigfhleputations also tend
to receive others’ help. In this mechanism, pédelping peer; is not because

j directly helpedi previously, but; helped someone else. Thus, it is an indirect

reciprocity game.

4.1.3.1 Peer Reputation and Interaction

In this system, each peérs assigned a discrete reputatiore R = {1,2, ..., R},
where a larger; indicates a higher reputation and peés more likely to receive
others’ help. Users’ reputations change as they interattt @ach other. When a
peer needs help, he/she first needs view information of gibens to find a suitable
helper. To implement this, we can either let peers exchamgetiew information
and seek help in a distributed way, or have a central coetrtiibt tracks peers’ up-
to-date view information and assigns helpers to peers ted help. For simplicity,
we assume that there is a trustworthy local agent close td'tpeers, who tracks

peers’ view switching, helps each peer find helpers, obseltver interactions,



and updates their reputations. Specifically, in this céiméd system, when peer
needs help, the local agent randomly selects péem peers that can help, and
sends a request. Upon receiving a request, peates an threshold-based action
a; € A=1{1,2,..., R+ 1}, with A as the action space. Here, the actigns not

a direct answer of whether to help or not, but a threshold pategion of peers
whom peeri is willing to help, i.e., usef is willing to help users whose reputation
is at leastu;. If a; = R + 1, user: will not cooperate with anyone, and = 1
means useris willing to help all users. Aftef sends the action; back to the local
agent, the local agent compargs reputation-; with a;. If a; < r;, the local agent
informs to upload the requested datajto Otherwise, the local agent informjs
to pull the I-frame from the streaming server. The ratiormlthis threshold-based
action is that if usef is willing to help others with reputatiom;, user: should also
be willing to help others with reputation higher than With the threshold based
action, user does not have to know from whom he/she receives this reqaedt,
thus, it is more suitable to our system, since as discusseqd &ach user needs to
select actions for future interactions, and he/she doekmaw with whom he/she

will interact at a later time.

4.1.3.2 Social Norm and Reputation Update

Based on the previous observed interaction betweeni e receives the request
and; who sends the request, the local agent updaesputation following the pre-
determined social norm that defines reputation update,rulkie j’s reputation
remains the same. In this work, we use the social norm sittaldrat in [93], since
it is effective in user cooperation stimulation.

In this reputation system, we have a pre-determined thiéshec ¢, < R.
If useri has reputation; > t,, he/she has high reputation and is likely to get
others’ help. Thus, he/she is called a beneficial user. @iker he/she has low
reputation and is not likely to get others’ help. Thus, hefsta non-beneficial user.

If -, > ¢, — 1 (i.e., user is a beneficial user or may become a beneficial user after



this interaction);’s reputation is updated following the social norm,

T > t, r; < t,
a; < r;, uploadin min{r; + 1, R 1
Q- j> up g | { } |  @3)
a; > r;, not uploading 1 min{r; + 1, R}

From (4.3), if usei cooperates with a beneficial user or defects with a non-bzalkefi
user,i’s behavior complies with the social norm, and he/she is réecby one-step
increase of his/her reputation. Otherwise, his/her bemaaes not comply with the
social norm, and he/she is punished by lowering his/hertatijom to1. Therefore,
with this social norm, peers are encouraged to help benlaigéas, but discouraged
to help non-beneficial users.

If useri has reputatiom; < t, — 1 (i.e. he/she is a non-beneficial user and
cannot become beneficial after this interaction), his/Bputation will be increased
by one-step tdr; + 1) no matter how he/she responses to yserequest. This
is because the reputation < ¢, — 1 means that userdid not comply with the
social norm in a previous interaction and was punished wgéhreputation being
updated to 1. Similar to [108], the system takes time to fa&dis/her misbehavior.
During the forgiveness period, he/she has reputatient, — 1 and hardly receives
others’ help, which may result in loss of utility. Here,determines the duration of
the forgiveness period and thus determines the punishreesitdf the reputation
system, since usémeeds to receive. — 2 requests to let his/her reputation climb
from 1tot, — 1. At ¢, — 1, he/she is forgiven by the system, and has the chance to
become a beneficial user again after one interaction. Torered larget, means it
takes a longer time for the system to forgive a misbehavidrthas gives a harsher
punishment. Note that when users make decisions, in additithe social norm,
they also take other factors into consideration, which kélidiscussed in details in
Chapter 4.2, 4.3 and 4.4.

In this work, we consider the scenario that when users magisidas on the
current requests, they also take the future interactidnsionsideration. Since they

do not know with whom they will interact at a later time, théommation of peers’



reputation distributiorx helps in their decision making, whexgr € R) denotes
the probability that a user has reputationSince we consider homogeneous users
in this work, all users should follow the sameat the stationary state. Given that
the local agent has the record of all peers’ reputationsffarent time instances, it
can estimate using

e SN It =
X(’f’) — t_lzzjz/if [rz ’I“]

,VreRr (4.4)

whereT. is the current segment index, af{d] is the indicator function. The local

agent broadcaststo all peers periodically to assist their decision making.

4.1.4 Optimal Action Selection with Markov Decision Proces

(MDP)

In our cooperative IMVS system, users may frequently swiielvs and their rep-
utations may also change from time to time. Thus they may d#kerent actions
at different views and reputations. To address this issuy/oédmic environment,
we use Markov Decision Process (MDP) [104] to study user ewaijon, where
the game is played in a sequence of stages. In our IMVS, a stggesents an
instance when a user receives a request and needs to maksiargemnd there are
L > 1 segments of video playback between two neighboring st&ggs4.2 shows
an example where a user receives a request at segimamd will receive another
request two segments latertat= ¢, + 2 with L = 2. Following the work in [93],
to simplify the analysis, we let be the average interval between two consecutive
requests received by a user in our work.

An MDP is defined as a four-tuple: the state spagethe action paceA,
the state transition functio® and the expected short-term utility functiéh In
our cooperative IMVS, a state = (r,v) represents a user’s reputationand
view v when he/she receives a request. In the following sectiorswilt inter-
changeably use and (r,v) to denote a state. Hence, the state space is denoted
asS = R x V, whereV = {1,..., M} is the view space an® = {1,2,..., R}



is the reputation space. At each stéatev), a user can select actian, from the
action spaced = {1,---, R + 1}. In the example in Fig. 4.2, there alé¢ = 3
views andR = 3 reputation levels with, = 3. The state space includes a to-
A={1,2,3,4}.

A user receives a request at timand he/she is at state, v). He/she takes ac-
tiona,, and transits to another staté, +') with state transition probability; " .. .,
when he/she receives another request dfteggments of video playback in the next
stage. By taking action, ,, the user receives an expected short-term utility-,
which contains two parts. First, this action may result inaarfe upload to another
peer, which incurs an expected c6st-» immediately at time. In addition, this
actiona,.,, results in the update of the user’s reputation’tat timet + 1, and he/she
keeps reputation’ from timet + 1 to ¢t + L until he/she receives another request.
This updated reputation affects whether others are willmbelp him/her in the
following L segments (i.e., from time+ 1 to ¢ + L), and thus his/her gain in these
L segments. Given the updated reputatioand the view that he/she is watching
attimet, letd(t+1) be the expected gain he/she receives at timkfor 1 <1 < L,
and definegz,, , = > | n'0(t +1) as the expected short-term gain, where (0, 1)
is the discounting factor that quantifies how much usersa&aoait their future pay-
offs. Then, the expected short-term utility functionlis;» = G,., — C*. In
the example in Fig. 4.2, when the user receives a requeshatij he/she is at
state(r = 3,v = 1). He/she selects an actiane {1, 2, 3,4}, receives an expected
short-term utilityUs ;, and transits to another state = (+',v') with probability
P& 1)) When he/she receives another request dfter 2 segments in the next
stage at time,. This process is repeated until the end of the game.

The action policy in MDP is defined as= {a,, € A|(r,v) € S} that defines
the actiona,., at each staté¢r,v). The goal of MDP is to find the optimal action

policy that maximizes the expected lifetime utility, whishrecursively defined as

Wr, =Us+n0" > Phy Wiy V(rv) €S, (4.5)
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Fig. 4.2. An example of MDP withM = 3 views andR = 3 levels in the reputation
system. All circles represent states, while all squaresesgmt actions. The action space is
A ={1,2,3,4}, and the average interval between two consecutive reqisebts- 2.

where the second term denotes the user’s lifetime utilitgesthe next stage. In our
cooperative IMVS, we consider the scenario with homogemsass, and thus their
optimal action policies at the Nash Equilibrium are the saifeexam whether a
policy 7 gives a Nash Equilibrium, for each user, we assume othes adldaker,
and if 7 also maximizes his/her lifetime utility, he/she has no irte to deviate

andr is an equilibrium policy.

4.2 MDP Analysis and Equilibrium Action Policy Dis-

cussion

In this section, we first analyze the state transition prdibglthe expected short-
term utility and the lifetime utility of the MDP. We then disss the equilibrium

action policy that maximizes each user’s lifetime utility.



4.2.1 MDP Analysis

4.2.1.1 State Transition Probability

We first analyze the probability that a ugdransits from statér, v) to (1, v’) after

L segments of video playback in the next stage. Note that inMWMS, the view
and reputation transition probabilities are independégitzen the one-step view
transition matrixT in (4.1), the probability that usernransits from view to v’ in

L segments iT (v, v'). In the example in Fig. 4.2 with = 2, useri is at view 1 at
timet,. From (4.2), afted. = 2 segments, he/she will transit to view 1, 2 and 3 with

probabilitiesT?(1,1) = (1 — P,)(1 — £2), T*(1,2) = P, andT?(1,3) = P, 5=,

respectively.

To find the reputation transition probability, suppose tseri at state(r, v)
takes action, , as the response to a requegteand uset’s reputation is updated to
r’. From Chapter 4.1.3.2, if usés reputation is" < ¢,.—1, then his/her reputation is
always increased by 1, and we hav€:” ., = 1andP."’, = 0for+’ # r+1. When
r > t,. — 1, user’s reputation is updated using social norm in (4.3) and thaatgxd
reputation is eithemin{r + 1, R} or 1. The updated reputation is 1 whedefects
with j who is a beneficial user (i.ez,, > r; > t,) or i cooperates withy who is
a non-beneficial user (i.e1,, < r; < t,). Inaddition, P} ;) p =1 — P
andP,_,» = 0forr’ # 1 andr’ # min{r + 1, R}.

Since uset does not know usej’s reputationr;, < assumes that; follows the

reputation distributiorx and calculates the reputation transition probability gsin

te—1
F—ar x(r;) r>t. —1la., <t,

PLi = Yom'x(r) r>te—Lag, >t
0 otherwise
By = 1 — Po,and P, = 0V # 1,0'# min{r + 1, R}.(4.6)

In summary, the state transition probability#§", . ,» = T"(v,v') - P}

r—r!*

In the example in Fig. 4.2 (with. = 3), if the user takes action 1 at stéte= 3, v =



1) (with » > ¢, — 1) and cooperates with all users, he/she will help a non-beakfi
user and his/her reputation will be lowered to 1 with probgbix(1) + x(2)).
Thus, he/she will transit to state’ = 1,v" = 3) in the next stage with probability

P,5F2(x(1) +x(2)), and the probability to transit to other states can be caled|

in the same way.

4.2.1.2 Expected Short-term Utility and Lifetime Utility

We now analyze the expected short-term and the lifetimayufiinctions in (4.5),
and start with the expected short-term utility.

From the discussion in Chapter 4.1.4, the expected shontdélity U, con-
tains two parts: the expected immediate €d%t” and the expected short-term gain
G, . If useri chooses action,.,, assuming the requestgs reputation follows

the distributionx, the probability that he/she uploads the frame and thugsnao
R

rj=aro

immediate cost of at timet is >
Clary — CZR':am) X(’I“j).

Tj

x(r;).t Therefore, his/her expected cost is

To analyzeG, ,,, note that taking action, , makes usei’s reputation updated
tor’ attimet + 1 and he/she keepsfor the following L segments (i.e., from time
t+1totimet+ L). We then derive the gain he/she receives at eachitimigwith
1 <1 < L) given that he/she watches vievat timet. Attimet + [, user: receives
a positive normalized gain 1 if and only if he/she switchea twn-adjacent view
(i.e., he/she needs help) at time- [ and there is a user who can and is willing to
help him. Otherwise, his/her gain is 0. LBt , (¢ + [) denote the probability that
user; switches to a non-adjacent view at time/ and there is a user who can and is
willing to help him/her. Thus, we hav@,., = X%, ' P, (t + [). We then derive
P, ,(t +1) step by step.

Letw;(t+() denote the view that uséwatches at time+ /. For a given view/,
let Vvé{max(z/ —1,1),¢,min(M, v+ 1)} be the set including all adjacent views

of v’. In the example in Fig. 4.2/, = {1,2}, V, = {1,2,3} andV; = {2,3}.

Y, x(r) =0ifan, = R+1.



Then, we have

Boalt D) = 3 {P (B0 PELG)
x P

(it +1) = o 0t +1— 1) & Vy |vl()—v]}, (4.7)

whereP [v;(t +1) = v, v;(t + 1 — 1) € Vi |vs(t) = v] is the probability that given
that user is at viewo at timet, he/she switches to view at timet + [ from a non-
adjacent view and needs helfi; (v') is the event that there is at least one helper
who can help user switch to view' at timet + [ (i.e., there is at least one user
who is watching a neighboring view of at timet + [ — 1), andH), is the event that

the selected helper is willing to help. Note that

Plot+1) =00t +1—1) & Vylv(t) = v]

= Y Plt+l) =0yt +L—-1)=0"]Pu(t+1—1) =0"|v;(t) = v]
AV,

= > TE )T (v,0"). (4.8)
v gV

To find P [H; (v")], given the stationary view distribution we have

N—-1
PH;(v")]=1- (1 - > V(v”)) . (4.9
W EV,,

To find the probability that the selected helpeas willing to help, helpek will help
user; if useri’s current reputation’ is larger than or equal to helpgis decision
ary 0 (t+1), Which depends on helpgis reputation, and vieww, (¢ +1) at timet +1{

whenk receives the request. Therefore, we have

PHGH,(v)] = > 3 x(re)pu (uelt + D) |ap, 000 < 7]

re=1 v (t+1)=1
wherep, (vx(t +1)) = Plog(t + Dlve(t +1—1) € V]

— 3 [Pt 1= =

’l)”EVv/

WP [op(t +1—1) = o |og(t+1 — 1) € V] }



_ ; | T, ve(t + z»%. (4.10)

v

Here,x is user’s reputation distributior, is the steady state view distribution, and
pw (vi(t + 1)) is the probability that given helpérwatches a neighboring view of
v" attimet + [ — 1, he/she switches to view.(¢ + [) at timet + [. Therefore, we

have

Gr’,v

w:ﬂﬁh

o 3 { P ) P )
(t+

st +1) =, vi(t+1—1) &V, m()_v]}. (4.11)

Based on the above discussi6#), , is affected by usei’s view navigation path in
the nextL segments starting from view If he/she has a low probability to switch
to non-adjacent views during the nektsegments, he/she will also tend to have
a smallG,.,. It is also easy to observe th&t. , is an increasing function aof,
since a higher’ gives a higher probability to get others’ help. Note that4dri(),

if P[H,|H,(v")]is always 1, that is, helpers are always willing to help usénen

G, becomes

G v= Go anZP[Hl NPt +1) =0 v;(t +1—1) & V|vi(t) = v](4.12)

Thus,g, is a user's maximum expected short-term gain if he/shesstatv switch-
ing from v, where he/she always receives help when needed. Based abdtie
analysis, together with the fact that the updatechn only bemin{r + 1, R} or 1,

we can derive usefs expected short-term utility after taking actiop, as

R
Ul = —c > x(rj) + (1= P75 Gringra1,m).0 + P G (4.13)

Tj=0rv

Thus, following (4.5), we have the lifetime utility’", following the action policy



Ty

M
erv = U;},ZU + ,r]L Z TL<U7 Ul) [(1 - P;l:vl)wrgin(r—i—l,R),v’ + P;l:vlwffv’} (414)

v'=1

4.2.2 Discussion on the Equilibrium Policies
4.2.2.1 Elimination of Non-Equilibrium Policies

In this work, we aim to derive the equilibrium action poliey from which no

one has incentive to unilaterally deviate. In our MDP, thee gif the state space is
|R||V| = RM, and we hav¢R+1)%M possible action policies. To avoid examining
all these policies, we need to first eliminate non-equilibriones using Theorem

4.1, which we will discuss one by one in the following.
Theorem 4.1.1n an equilibrium action policyr,

a) Forallr <t, —landallv eV, a,, =R+ 1.

b) Forallr > ¢, —1andallv € V, a,, € {t,, R+ 1}.

c) For any viewy, a user will take the same action with all reputations ¢, — 1,

lL.€.,a¢, 10 = At p = ... = ARy

4.2.2.1.1 Proof of Theorem 4.1a) Theorem 4.1a) says if a user is not a benefi-
cial user and cannot become a beneficial user after thisideckse/she will not co-
operate no matter which view he/she is watching. This isleeavhen < ¢, — 1,

no matter what action he/she takes, his/her reputationbwiklways increased by
one, whilea, , = R + 1 gives him/her zero cost since he/she will not help anyone.

Thus,a, , = R + 1 dominates the other actionsrif< ¢, — 1.

4.2.2.1.2 Proof of Theorem 4.1b) Theorem 4.1b) says if a user is a beneficial
user or may become a beneficial user after this decisiomh&e/dl either cooperate
with beneficial users (i.eq, = t,.) or do not cooperate with anyone (i.e.—= R+1).

It takes two steps to prove this. We will first show that théarct, , = ¢, dominates



all actionsu,., < t,. We then show that any action policy with actigr-1 < a,., <
R cannot be an equilibrium action policy. From these two tssu} , can only be
t,or R+ 1.

We first compare the actiom., = ¢, with a,, < t, in terms of the incurred
costC» and the updated reputatieh First, with actiona, , = ¢,, the expected
cost to upload i€ = Czizn x(r;), and witha,,, < t,, the cost to upload is

Car,v <tr =c ZR

Tj=0rv

x(r;) > C'. Second, with action,., = t,, from (4.6), the
user’s reputation is rewarded with one-step increase withability 1. However,
with a,.,, < t,, his/her reputation is rewarded with one-step increase gribbabil-
ity 1 — (X7 2., x(r;)) < 1. Thereforeq, , = t, introduces a lower cost, but gives
a higher probability to be rewarded with one-step incredse wser’s reputation.
Thus,a,, = t, is a dominant strategy over all , < ¢,, and in the equilibrium, we
should have:, , > t,.

Then, to show that action. + 1 < a,, < R cannot be in an equilibrium
policy, we use th®©ne-shot Deviation PrinciplgL09], which says a strategy profile
(including all users’ action policies) is an equilibriurraind only if no one can gain
by one-shot deviation when others keep their strategiebanged. Here, one-
shot deviation of a given action policy means that a userstakdifferent action
rather than the one defined in the action policy only for theent response to a
request, but still follows the given action policy in thedtd responses. We have

the following proposition and its proof is in Appendix D.

Proposion 4.1.For a policyr with ¢, +1 < a,,, < R for the reputation > ¢, —1,
one-shot deviation to either,, = ¢, or a, , = R + 1 will give a higher lifetime

utility and thus thisr cannot be an equilibrium policy.

Thus, from Proposition 4.1 and the fact that, = ¢, dominates all action
a,, < t., a,, can only be eithet, or R + 1 in an equilibrium policy, i.e., either

cooperate with all beneficial users or do not cooperate wijloae.

4.2.2.1.3 Proof of Theorem 4.1c) We first define a reputation subspake=

{r|t, — 1 <r < R} including all reputations no less than— 1. Then, we define



a state subspac®; , = {(r,v)|r € R,v € V} thatincludes all states with view
and reputations no less than— 1. Theorem 4.1c) says that for all statesSg,,

a user should take the same action (either cooperating witlefizial users with
a,, = t, Or not cooperating with anyone with, = R + 1), i.e., for any viewo,
we haveu,, 1, = a, ., = ... = ag, IN an equilibrium policy. To prove this, we use

the concept oBisimilarity [110], which is defined bellow.

Definition 4.1. (Bisimilarity) In an MDP, suppose that the state space is divided
into m non-overlapping subspace$: = S UJUS:U...US,,. ForanysS; (1 <i <

m), and any two states € S; ands’ € S; (s # '), if for any actiona, we have i)
Yses; Pomsn = Xgres, Py forall 1 < j <m (i.e., with the same actiom, the
two statess and s’ have the same probability to transit to another state subspa
S;); and i) U? = U¢, (i.e., with the same actiom the two states ands’ have the
same expected short-term utility), then all states in theesatate subspacg have

the bisimilarity relationship, i.e., they are equivalemicacan be aggregated as one

stateg;.

To study states with bisimilarity relationship in our MDPe\irst divide the
state spaces into subspaces. For any view € V, we haveSy , defined ear-
lier, which includes all states with view and reputations no less thapn— 1.

For any viewv € V and reputationl < r < ¢, — 2, the state(r,v) forms

a state subspacg(r,v)} with a single element. All these subspaces are non-
overlapping and we haug, ¢y ({(l,v)} U...U{{t —2,v)} US']iv) = §. For the
example in Fig. 4.2 with 3 views and 3-level reputation sys(&heret, = 3),

Fig. 4.3a shows the corresponding states partition wittb8saceg(1,1)}, Sz ; =
{(2,1), 3, )}1,{(1,2)},Sro = {(2,2), (3,2)}, {(1,3)},andSr 5 = {(2..3), (3,3)}.
We then have the following proposition, and the proof is irpApdix E.

Proposion 4.2. Following the above state partition, all statesd , have bisimi-

larity relationship, and can be aggregated as one state.

In the example in Fig. 4.3a, after state aggregation, theré aggregated states:
(1,1), (R, 1), (1,2), (R,2), (1,3) and (R, 3), and the MDP in Fig. 4.2 becomes
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Fig. 4.3. Example of the state classification and aggregation witheSvsiand 3-level
reputation systemtf = 3). (a) The state classification, where the stdtes) and (2, v)
forms a subspacsy, , and staté1, v) forms a subspac§(1, v)} with a single element. (b)
The MDP after aggregating the state spage, as one statéR, v). The action can only be
selected from{¢,, R + 1} = {3, 4}.



the one shown in Fig. 4.3b.

The next step is to find the transition probability and theested short-term
utility function for the updated MDP. Following DefinitionX, given the aggregated
states{&,, - - - , &}, by taking actiorz, a user transits from stagg to state¢; with
probability Pé e, = Yoes, Py for any s € S;, and the expected short-term
utility at the aggregated statg is Ug, = U¢ for anys € ;. In our MDP, the
view and the reputation transition are independent, andttite aggregation here
affects the reputation transition probability only. THere, we need to first find the
updated reputation transition probabilBt -, P;_ , andPS_ - for+’ <t — 1.
First, if v’ = t, — 2, since the reputation will always be increased by one step to

t. — 1 € R regardless the action, thus, we have??_, = 1. Fory’ < t, — 3,

—R
we haveP’ . = 0. As discussed in Chapter 4.1.3.2, with a reputatios R,
the updated reputatiorf can only be 1 omin{r + 1, R} € R. Therefore, we

haveP; - = 1- P  andP} = 0for2 < ¢ < t. — 2. The proof of

—r!

Proposition 4.2 shows thdt® , is the same for any > ¢, — 1. Thus, we have

Ps | = P, foranyr € R. Then, we can find the updated state transition
probability P ,, vy = P TH(v,0') forallr, e’ € {1,--- 1, — 1, R}.

In the MDP in Fig. 4.3b, when a user is at the aggregated §Rite), from
Theorem 4.1b), he/she will take either actios- ¢, = 3 or actiona = R+ 1 = 4.
With a = 3, he/she conforms with the social norm in (4.3) and his/hputaion
will be updated to 3 with probability 1, that i€: ™"~ = P¢=% = P§=3 = 1, and
P& = pg=3 = P¢=3 = 0. Thus, we can calculate the updated state transi-

R—1
) = PE=3 T (v,0) = TE(v,0') and Pgg? _

. g a:3
tion probabiliiesP), (R,v)—(10)

R
Pg=3 T (v,v') = 0. Similarly, we can find the state transition probabilitieishw
actiona = 4 for the MDP in Fig. 4.3b.

The last step is to update the expected short-term utilitgtion Uk . Proposi-
tion 4.2 shows that with the same actien’, is the same for alt € R and thus,

Ug , = Uz, foranyr € R.



4.2.2.2 Lifetime Utility Functions

In the following, we will study how the state aggregatioreats the lifetime utility
functions. From Theorem 4.1, when a user’s reputation igtdhant, — 1, his/her
only equilibrium action iss = R + 1 (does not cooperate with any one). Therefore,
we will focus on the action selection for reputatior R = {t, — 1,..., R} in the
following section. In addition, from Theorem 4.1c, where R, the equilibrium
actions are the same for al>> ¢, — 1 and depend on viewonly. Thus, to simplify
the notation, we omit the reputation indexn the action and the action policy
becomesr = {a;, as,...ap }, Wwherea, € {t,., R + 1} is the action at view € V
with r € R.

With the above simplification of notations, we then study lifetime utility

with the aggregated states, and (4.14) can be rewritten as

Wi, =Ug, +n" % T (v,0) [(1 = Py )Wg, + Pe Wi, | . (4.15)
v'=1

Note that (4.15) has a recursive teii ,(7) that we need to solve first. Since a
user with reputatiom < ¢, — 1 always uses actioR + 1 and does not help anyone,
his/her expected immediate cost is zero. In addition, frdmdfem 4.1, with the
equilibrium policy, no one helps users with reputation derahant,. Therefore,
he/she does not receive any expected short-term gain frioensdtelp withG, , =
0. Thus, his/her expected short-term utility is always zdrarthermore, his/her
reputation always increases by 1 every time he/she recaiveguest, until his/her
reputation climbs te, —1, i.e., toR. ThereforeJV; , () can be expanded following
(4.14) as

M
Wi, = 0+n"Y THo, o)W,

v'=1

o M
= 77L Z TL(U, 'U,) 0+ T]L Z TL('Ulv 'U”)W?:v"
v =1 v''=1
o M
— T2 (0, 0"\ Wiy = oo = plir=2L N =2k (g, V)W 1

V=1 v'=1



M
,r](tr-—Z)L Z r:[\(tr-—Q)L(U7 ’U,)W,]%

v'=1

o (4.16)
Note that in (4.15) and (4.16)R is a common reputation index in the subscripts
of Wz, and U’%U,v' We can further simplify the notation by omitting this commo

reputation index, substitute (4.16) into (4.15), and rea4.15) as

M M
Wr= U+ n"(1 — P& )Y T o )WJ +yPe S T DE (v oYW (4.17)
v'=1 v'=1
wherey = n*(=1 is the discounting factor after receiving— 1 requests.
To determine if a policyr is a Nash Equilibrium, we need to show that it can
resist any one-shot deviation, where the user takes acfiather than the action
a, defined int only for the current response to a request, and he/she Walxar

in all later responses. The lifetime utility with the onessHeviation to action, is

M M
W m=Uge+ n™(1 = Pg> V> THo, o ) Wi+~ Pg S T D 0w, 0" )W) (4.18)
v'=1 v'=1
Comparing (4.17) and (4.18), one-shot deviationfayives a different expected
short-term utilityU/%> and a different reputation transition probabiliﬁgg;l. We
then use the one-shot deviation principle to examine whetlpelicy 7 is an equi-
librium policy, that is, from a user’s perspective, giveattiother users all take

unchangedy is an equilibrium policy if and only ii¥" > W2 for anyv andda’,.

4.2.3 Stationary Reputation Distribution

From the previous analysis, users’ reputation distrimpwherex(r) being the
probability that a user has reputationaffects the state transition probability and
users’ expected short-term utilities. Thus, it affectsreisgecision making. If an
equilibrium exists in the game, in the simple scenario widimbbgeneous users, all
users should use the same strategy in the equilibrium, aisceitpected that the
reputation distribution should also converge to a statipstate. In the following,
given a policyr adopted by all users, we determine whether there existsiorsiey

reputation distributior.



We first lety = >-%, x(r) be the probability that a user is a beneficial user.
Assume that userreceives a request from usgrand both of their reputation dis-
tribution followsx. Then, following the social norm in Chapter 4.1.3.2, if ugsr
current reputation is < ¢, — 2 (with probabilityx(r)), his/her reputation will be
increased te + 1 for any action he/she takes. Thus, in the updated reputdisbii-
butionx’, we should have’(r) = x(r—1) for2 < r < t¢.—1. If the stationary state
exists, the reputation distribution should remain the sanmx’(r) = x(r). There-
fore, we havex(1) = x(2) = ... = x(t,—1). In addition, givery+ > ' x(r) = 1,
we havex(1) = --- =x(t, — 1) = (1 —y)/(t, — 1).

If useri’s reputation is- € R (which happens with probability + x (¢, — 1)),
his/her actiom,, = {t¢., R + 1} only depends on his/her viewwhen receiving a
request, and at the stationary state he/she is at viawith probability v(v). i's
reputation will then be updated to either lrom{r + 1, R}. Given his/her possible
actiona, = {t,, R + 1} and from (4.6), his/her reputation is updated to 1 if and
only if he/she takes actioR + 1 and user; who sends the request is a beneficial
user (i.e., usef has reputation no less thar). Therefore, given useris at viewv
when he/she receives the request, his/her reputationuseddo 1 with probability
Pg | = Ila, = R+ 1]y, and he/she becomes (or remains) a beneficial user with
probabilityl — P2 . Therefore, after the reputation update, usisra beneficial

user with probability

y o= ly+xt 1) Z;)V(v)(l - PR’)
= [y+x(t - 1] v(v) (1 —ylla, = R+1]). (4.19)
veY

For a given policyr = {a,}, if the stationary state exists, we should hate- v,

andy should satisfy

y —y= (y+ tl —_y1> ZV(U) {1 —-ylla, = R+1]} —y=0. (4.20)
T vey

We first observe that given, the left hand side (LHS) of (4.20) is a quadrature



function ofy. Wheny = 1, LHS = ¥ cpv(v){l —I[a, =R+ 1]} =1 <
YeevV(v) =1 = 0, and wheny = 0, LHS = 5,y v(v) > 0. Thus,
(4.20) has a single root in the ranfiel]. Therefore, givemnr, there exists a unique
stationary reputation distributiox. To find x for a given policyr, we first solve

(4.20) and findy, and then calculate(1) = ... = x(t, — 1) = %

t—1"

4.3 Equilibrium Action Policy Derivation

In this section, we analytically derive the equilibriumiaatpolicy of the game. We
first consider a simple scenario with a single anchor viewamalyze the equilib-
rium policy in Chapter 4.3.1. We then extend our analysifhieogeneral case with

multiple anchor views in Chapter 4.3.2.

4.3.1 Game Analysis with A Single Anchor View

4.3.1.1 View Switching Model with A Single Anchor View

Following the view switching model described in Chapter. 4, ith a single an-
chor view as shown in Fig. 4.4, this anchor view is in the megdid partitions the
rest)M — 1 normal views into two normal view sets wifld/ — 1)/2 views per set.
(Here, we assumé/ is an odd number.) Let = (M + 1)/2 denote the anchor

view index. Following Chapter 4.1.1, the one-step viewdsron matrix is

1 v o0—1 o o+1 .- M
2(1-P,) 2(1—P,)
1 M—1 =i la 0 0
2(1-P,) 2(1—Py)
e I i La 0 0
- (1—Pa) (1—Pa) (1—Pa) (1—Pa)
T= o ) R p o BB U2 (4.21)
2(1-P,) 2(1—P,)
o+1 0 0 Fo S54 M-1
2(1-P,) 2(1—P,)
1 0 0 P, M—1 M—1
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Fig. 4.4. ¥ = {0 — 1,0,0 + 1}, which denotes the view set including the anchor view
and its left and right adjacent view¥. = V' \ V, which denotes the view set including the
rest views.

With the above one-step view transition mafiixit is easy to show that the steady-
state view distribution is’(¢) = P, andv(v) = (1 — B,)/(M — 1) for all other

views.

4.3.1.2 Expected Short-term Gain with A Single Anchor View

For IMVS with a single anchor view, we first study the expectbdrt-term gain
G, for different views. In Appendix F, we show that with a singlechor view,

G, in (4.11) can be rewritten as

R M
Gy, = ( > X(Tk)) (Z v(vg) I ay, gﬂ]) Go,s (4.22)

Tk:tr—l Ukzl

whereg, defined in (4.12) is the maximum expected short-term gairest ¥ when
helpers always help, and it is the only term in (4.22) thaffiscéed by viewwv. In
the following, we compare, with differentv’s.

We first divide the view spac® into two setsY = {¢ — 1,0,0 + 1} and
V = VY \ Y as shown in Fig. 4.4.V includes the anchor view and its left and
right adjacent views, an® includes the rest views. Then, we have the following

Proposition 4.3, and the proof is in Appendix G.

Proposion 4.3.1n a high dimensional IMVS (where the total number of vieWs,
is large, e.g.M > 30) with a single anchor view, all views ¥ have approximately

the samey,’s, and for views in, their g,’s are also approximately the same.

We first Ietgzé Y wev 9»/|Y| denote the averagg of all v € V, and similarly,

A _ o —min o .
we letgp=3",cp g,/|V]. We then lets; & m=uspfe et denote the relative

maximum difference of, in V with respect to the averagg. Similarly, we also
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Fig. 4.5. (a)0dy anddy, with different M. (b) A with different P,.

definesy, & DmXveps—miveyd: pig 4 5 plots, anddy with different 1/ from 11

gy

to 101. In this figure, we hav& = 10 users, the forgetting factor ig = 0.95.

We test the probability to switch to the anchor viély= 0.2 and0.8. We observe
that for bothP, = 0.2 and0.8, when the number of viewa/ increasesy, anddy
decreases. For example, with = 0.8 andM = 101, we haved,, = 0.001 and
dp = 0.006. In the following analysis, we consider the scenario whefrés large
and the difference of, in the same se¥ (or V) is very small and can be ignored.
Thus,gy andgy can be used to denote thgfrom V andV, respectively. We then

defineA £ i:% as the relative difference g@f; and gy with respect tayy; + gy.

Fig. 4.5b shows\ with different P,. We observe that for a largét,, the difference
betweeryy andgy is even larger. This is because whenis larger, users at views
in ) have a higher probability to switch to the anchor view, whdckes not require
others’ help and thus results in a lower expected short-gam, g,,. Meanwhile,
with a largerP,, users at views ity have a higher probability to switch to the non-
adjacent anchor view, and also have a higher probabilitytbdihelper, since other
users are more likely at the anchor view. Thus, it gives adrigikpected short-term

gain,gy. Therefore, a largeP, gives a larger\.
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Fig. 4.6. Example of the state classification and aggregation Witlviews and 3-level
reputation systemtf = 3). (a) The state classification, where we have 4 state subspac
Sy, 819y Sgy andSg 5. (b) The MDP after state aggregation, where we have only 4
states in the state space. The action can only be selected ffoR + 1} = {3,4}.



4.3.1.3 State Aggregation

With the above observation, we can aggregate more statég iMDP to further
simplify the analysis. We first classify the state space. &oyr < ¢, — 2,

we defineS,., = {(r,v)[v € V} andS,y = {(r,v)[v € V}. We then define
Sry = {(R,v)lv € V} andSzy = {(R,v)lv € V}. Those state subspaces
are non-overlapping, anfl; , USz p Ur<i,—2 (SQUSM—;) = S. Fig. 4.6a shows
an example of the state classification withviews and 3-level reputation system,
wheret, = 3 andR = {2, 3}. In Figure 4.6a, there are four non-overlapping state
subspaces, y, S; y, Sgy andSz p.

We then have the following proposition with proof in Appexé.

Proposion 4.4.With the above state classification, states in each subspace

bisimilarity relationship and can be aggregated as oneestat

From Proposition 4.4, all states in the same subspace caggbegated into one
state. Thus, for the example in Fig. 4.6a, there are foureggded states denoted
as(1,V), (1,V), (R,V) and(R,V), and Fig. 4.6b shows the updated MDP after
state aggregation. From Theorem 4.1 and the discussionapté€h4.2.2, for the
aggregated state with reputation< ¢, — 1, users will always take actiom =
R + 1 and do not cooperate with anyone. Therefore, we only needrisider the
aggregated state$R,V) and (R,V), and letay anday; denote actions taken at
these two aggregated states, respectively.

The next step is to study the state transition probabilityHe aggregated states.
Note that the reputation and view transition probabilibes independent, and the
reputation transition probabilities are the same as in @ap2.2.1. Therefore, we
only need to analyze the updated view transition prob&slitNote that given the
one-step view transition matrix in (4.21), starting fronyatew v € V, after one
segment, it will transit to views i with the same probability",, ., T'(v,v") =

P,+20-F2) "and to views inV with the same probability,, .y T(v,v') = 1— P, —

2(1—P,)
M—1

ity is denoted a¥" (V, V) = P,+ (M_l !, which is the probability that a user transits

. Therefore, with the aggregated states, the one-step ra@sition probabil-




fromY (i.e., from any view in)) to views in). Similarly, we also havd (f/ V) =
P, + 2 and T (Z, 17) =T (T/, T}) =1- P, — 2022 Also, with the aggre-
gated states, the steady-state view distribution(i8) = T (v, V) = P, + 21-F)
andv (]7) =T (v,fi) =1- P, — 2L for anyw € {V,V}.2 Therefore, with
the aggregated states, the state transition probabilif}f.is_. . ., = P, v v(v')
forallr,7 € {1,--- ¢, —2,R} andv,v’ € {V, V}.

In the example in Fig. 4.6b, given the current sté V) at stage 1, from

Theorem 4.1, the possible equilibrium actionsate t, = 3 anda =t,. + 1 = 4.

When taking actio. = 3, the user follows the social norm, and his/her reputation

stays atR with probability PE= _?R = 1, and the state transition probabilities are
Pe iy = VOV, PeS ryy = v(V), and Pigs, () = 0 for any v’ €

{v,V}. Similarly, we can derive the rest of the state transitiavbabilities.

The next step is to derive the expected short-term utilitthef updated MDP
after state aggregation. From the proof of Proposition dllyiews in the same
view set) (or V) give the same expected short-term utility. Deflrﬁ,e“ U~ for

CLVA

anyv € ¥, andU, U foranyv € V.

After this state aggregation, the lifetime utility in (4)lcan be written as

R—1

Wg = Uy + [nF(1 = Pe2) + 7P| YOO W + vV ], .23
WE = Up¥ + [nb(1 = PR”.) + vPR”,| [vOOWE + v(V)WE],

% R—1

and we only need to study the action poliey= {ay, ay} for r € R.

4.3.1.4 Equilibrium Analysis with 2-Level Reputation Sysem

In this section, we consider a simple scenario with a 2-leselitation system (i.e.,
R = 2), and derive the equilibrium action policies of the game.th\k =

if ¢, = 1, users with the lowest reputation can also get help, whisbalirages
users to cooperate with each other. Therefare; t, < R = 2 andt, can only

be 2. Note that the 2-level reputation system is memoryl&bss is because if a

°Here, we still usev to denote the steady state view distribution over those tiew sets for
notation simplicity.



user’s behavior complies with the social norm, his/her tafon is updated tQ.

Otherwise, his/her reputation is updated t@gardless of his/her past reputation.
Note that witht, = R =2, R = {r > t, — 1} = {1,2} = R. Therefore, after

state aggregation in Chapter 4.3.1.3, there are only twoeggted statéR,))

and (R, V) with corresponding action,, and ay, respectively. Hereqy,ay €

{t., R+ 1} = {2,3}, wherea = 2 means cooperation with beneficial users, and

a = 3 means no cooperation with anyone. Thus, we have 4 possiiiba golicies

{ay = 2,ap = 2}, {ay = 2,ap = 3}, {ay = 3,ap = 2} and{ay = 3,ay = 3}.

By examining each of them, we have the following Proposidds and the proof

is in Appendix I.

Proposion 4.5.For an IMVS with a single anchor view and 2-level reputatiga-s

tem,

a) If gy > ¢, {ay,ap} = {2,2} is an equilibrium policy, where users cooperate at

all views (ull cooperation.

b) If gpv(V) > ¢ > gyv(V), {ay,ap} = {3,2} is an equilibrium policy, where
users only cooperate at views Jhwith high expected short-term gains but not

at views in) with low expected short-term gainga(tial cooperatin).

) {ay,ap} = {3, 3} is always an equilibrium policy, where users do not cooperat

at all (no cooperation
d) {ay,ap} = {2, 3} is not an equilibrium policy.

From Proposition 4.5, there are multiple Nash Equilibricosxisting. In ad-
dition, from Proposition 4.5.a, with a 2-level reputatigrstem, users cooperate at
views inY only wheng, > c. This is because the 2-level reputation system is mem-
oryless, and users decide their actions only based on tleetgshort-term utility.

If cooperation at views iV gives a negative expected short-term utiligy (< ¢),

users will not cooperate.



4.3.1.5 Equilibrium Analysis with R-level (R > 3) Reputation System

The R-level (R > 3) reputation system is non-memoryless, and users needdo tak
their future utilities into consideration. As discussedhe previous section, we
only need to study the policfay, ay;} for reputationr > ¢, — 1, whereay, ay €

{t,, R + 1}. Thus, we also have 4 possible policigs, = t,,ap = t,}, {ay =
troap = R+ 1}, {ay = R+ 1l,ap = t,} and{ay = R+ 1,ay = R+ 1}. By

examining each of them, we have the following proposition.

Proposion 4.6. For an IMVS with a single anchor view anf-level reputation

system wheré& > 3,

a) 1t o, 21 = Doy~ g)v(V)
L
policy, where users cooperate at all vievisl{ cooperation.

+ gy > ¢, {ay,ap} = {t,, ¢, } is an equilibrium

b) If

[y +x(t — DIVV) [(1 = 7)gy — (" = )v)(1 = y)(gy — 9v))]
L=n*+nty —yy

v

y+x(t = DIVV) VO =) (g9 — gv) + (1 = 7)gy]
L=n*+nty —yy

v

. (4.24)

{ay,ap} = {R+1,t,.} is an equilibrium policy, where users cooperate at views
in V with high expected short-term gains but not at views inith low expected

short-term gainsgartial cooperation

c) {ay,ap} = {R+1, R+ 1} is always an equilibrium policy, where users do not

cooperate at allifo cooperation
d) {ay,ay} = {t,, R+ 1} is not an equilibrium policy.

Proof: In the following, we will prove Proposition 4.6.a, and thestref the
proof is in Appendix J.
For the policy{ay, ay} = {t,,t,}, we determine when it is an equilibrium. To

do this, we first assume that all users use this policy andygtu corresponding



stationary reputation distributianfollowing the discussion in Chapter 4.2.3. Then,
using the one-shot deviation principle, we exam whetherea bias incentives to
unilaterally deviate to any one-shot deviation at any view.

As discussed in Chapter 4.2.3, by solving (4.20), we have 1 andx(1) =

- = x(t, — 1) = 0. This is because all users keep cooperating with beneficial

users and thus have the highest reputatton

We then exam the one-shot deviation principle. First, thempolicy isay =
ay = t,. When a user receives a requestat {V, V}, by taking actiom, = t,
following the given policy, he/she will upload the requesteame with probability
1, since all other users have reputatiBn Thus, the expected immediate cost is
C*=t» = ¢. In additiona, = t, complies with the social norm in (4.3), the user’s
reputation will be lowered to 1 with probabilili‘;if-{_)1 = 0, and he/she is a beneficial
user with probability 1. Since others also take poligy= ay = t,, he/she will
always receive others’ help and have the maximum expectat-tdrm gairy, for
v € {V,V}. Therefore, with actiom, = t,, his/her expected short-term utility is
Us=tr = —c + g, forv € {V¥, V}. Thus, with the policys, = ay = t,, the lifetime
utility (4.23) becomes

Wg=—c+gy+n- [V(M)Wﬁ + VW)W‘Z’T} ’ (4.25)

W5 =—c+gp+n- [V(M)Wg + V(?)Wg} .

Note that (4.25) is a linear system with two unknow#i§ and V7, which can be

solved easily,

r _ gv—ctntv(V)(gp—gv)
e R (4.26)
Wr — gp—c—n"v(V)(gp—gv)

Vv 1—nk ’

Now we examine the user’s lifetime utility if he/she take®shot deviation.
As discussed in Chapter 4.2.2, actigrand R + 1 dominate other strategies, and
thus, we only need to exam the one-shot deviatio®te- 1. First, witha! =

R+ 1 with v € {V,V}, this user does not help anyone and the immediate cost is



0. Since all other users have reputati@nthe actiona, = R + 1 makes his/her

reputation lowered to 1 with probabilitlyflij}”rl = 1. Thus, he/she cannot receive

others’ help in the followind. segments, and the expected short-term gaif is=
0. Therefore, the expected short-term utility by one-shotiat®n to R + 1 is
Uas=F+1 — 0, Thus, with one-shot deviation 8 + 1, the lifetime utility in (4.18)

can be rewritten as

WELZRHJ _, [V(Z)Wﬁ + V(V)Wﬂ ) (4.27)

R [V(M)Wg + V(D)Wg}

Substitute (4.26) into (4.27) and compaF& with Wa=F+Lm for y € {V, V}.

We have

=R (n” =gy —gv)v(V) = (¢ = gy)(1 =)

WE — Wy = T + (99 —9v),
’_ L _ - — V) _ 1 _
Wy — R (n" =) (gv 9_)1V£ n)L (c—g)(t—7) (4.28)

It is easy to observe that — Wi~ """ > Wi — Wi~ Thus, as long

(" =gy —gp)v(V) — (c—gp)(1 =)
1—nt
L _ v — v(V ah,= ™ a,= ™
(77 7)(19& ng) ( )Jrgk > ¢, we haveWg—W\-;/ R+1, > Wﬁ_Wf R+1, >
0, and{ay,ap} = {t.,t.} is an equilibrium policy. This completes the proof of

p=R+1, ; - A
asWy — Wka = >0,i.e.,¢ =

Proposition 4.6.a8

From Proposition 4.6, same as the single anchor view IMV$egysvith a 2-
level reputation system, wheh > 3, there are multiple Nash Equilibria coexisting.
Also, comparing Proposition 4.6a and Proposition 4.5alerdonditions for full
cooperation, we observe that irfialevel reputation system witR > 3, a user may
still cooperate at views i¥ whengy, < ¢ < ¢, where cooperation gives him/her a
negative expected short-term utility. This is because#evel reputation system is
non-memoryless, and a user needs to consider his/her futilities when making
a decision. Although cooperation Bitgives a negative expected short-term utility,

this cooperation help him/her maintain a high reputatichkeep receiving others’



help in future view switching. As long as the expected futyase can compensate
his/her current loss, he/she will still cooperate.

From Proposition 4.5&;; plays an important role in cooperation stimulation,
and a largeg; allows a larger range of cost for users to have full coopenadis
an equilibrium, i.e., provides more incentive for user camgpion. In¢;, we have
the termy = n**~YL wheret, reflects the punishment a user will receive if he/she
deviates from cooperation with a beneficial user, gnig determined by the rep-
utation system. It is easy to show that, /0t, > 0. Thus, the reputation system
should select the highest = R (that gives the harshest punishment), to provide

the most incentive and give the largesb have full cooperation as an equilibrium.

4.3.2 Game Analysis with Multiple Anchor Views

For the general IMVS with multiple anchor view attilevel (R > 3) reputation
system, similar to the analysis in Chapter 4.3.1.5, norpeaation at all views is
still an equilibrium, and partial cooperation and full ceogtion may be equilibrium
policies in certain scenarios. With a large view spacand different views with
differentg,’s, we have many partial cooperation policies, and the amafpr each
partial cooperation policy is also complicated. Note thatrf the system designer’s
perspective, the full cooperation equilibrium makes a#rgscooperate whenever
possible, minimizes the consumed upload bandwidth at theese side, and thus
is the desired equilibrium policy. In the following, we wilerive the conditions
for full cooperation to be an equilibrium policy in an IMVS thimultiple anchor
views.

Similar to the proof in Proposition 4.6.a, we first assume #dibhusers take
the full cooperation policyr = {ay,as,...,an} = {t,,t.,...,t,} and derive the
corresponding reputation distribution We then exam whether can resist the
one-shot deviation ta), = R + 1 for anyv € V.

If all users cooperate with the poliay, they will keep the highest reputatidt
and the reputation distribution is= 1 andx(1) = ---x(¢, — 1) = 0. For a user

receiving a request at view € V, he/she will help upload with probability by



following w. Thus, the expected immediate cost.idn addition, WithPf{_}1

=0,
his/her reputation remains to & Therefore, he/she always receives others’ help,
and therefore receives the maximum expected short-term¢gai Thus, his/her

expected short-term utility i§2*=" = —c + g,, and his/her lifetime utility is

M
Wi = —c+g,+n" Y THo, o )Wi, Vo e V. (4.29)

v'=1

Here, the only difference between (4.29) and (4.25) is th@tsummation term in
(4.29) is over allM views instead o aggregated view sets in (4.25). To solve

(4.29), we expand the recursive tef#ry, at the right side of (4.29) and have

M
Wi = —c+g, ""UL Z TL(U7U/)(_C+QU’)
M M o=t

+?E Z Z T (v, 0" )TE (W, 0" )W,

v'=10v"=1

M M
= —c+go+n" > T, )(—c+gw) +n** Y. T (v, 0" )W),

v'=1 v'=1

0o M
= o=t g 20 ) T, ) (—et gv)
n=1 v/ =
00 M ! 00 M
= Gv + Z 77NL Z THL(Ua 'U,)gv’ —Cc—=C Z 77NL <Z THL(Ua UI))
n=1 v'=1 n=1 v'=1
£G,
= Gy— —o (4.30)
v 11— 77L . .

In (4.30), G, is the maximum lifetime gain a user can receive (when helpkrs

ways help him/her) if he/she starts view switching from vizﬁvandl_an is his/her

lifetime cost to help others and upload frames wheneverdaskérom (4.30), a
necessary condition for the full cooperation policy= (t,,--- ,t,.) to be an equi-
librium is to enable a non-negative lifetime utility with" = G, — ﬁ > ( for

all views, that is¢ < (1 — n*) min, {G, }. Otherwise, users have no incentive to
cooperate.

Similarly, we also derive the lifetime utility with one-shdeviation toa!, =

%In (4.30), G, includes an infinite series. Sinee < 1, it is easy to show that this series
converges, ant, is finite, which users can calculate offline.



R+1

M
WS:J:R—H’W S Z TL(tr_l)(U,U/)W;S- (4.31)

v'=1

We then substitute (4.30) into (4.31), comp#rg andW=f+17 and have

W™ — Wa,’U:R—i—lﬂr
) Z f: L(t 1)( ) C
= Gy———~ T (v,v (GUI—7>
1 - 77L v'=1 nL
C

M
= G,—~v Y TH D ()G, —

¢ I L(tr—1) /
nL—i-“yZT " (v,0")

v'=1 1 - v'=1 I - nL
= G,—7), TLED (4, )Gy — TEAL (4.32)
v'=1 -1

Therefore, ifc < % min, {Gv — M TL(t"_l)(U,U,)GU/} 2 ¢ (e, Wr —
W=+l > ( for all v’s and the one-shot deviation always gives a lower lifetime
utility), together with the condition < (1 — %) min, {G, } being satisfied, the full
cooperation policyr = {t,,t,,...,t,} can resist any one-shot deviation and is an

equilibrium policy.

4.4 Reputation System Optimization and Coopera-
tion Initiation

In this section, we first study the optimal parameter sadactor the reputation
system to stimulate user cooperation as much as possibte aptimize the system
performance with the minimum consumed bandwidth at theessrgide. Given
that there are more than one equilibrium policies in the gantethe initial state
of MDP determines the final equilibrium to which the game @rges, we then
propose a Pay-for-Cooperation (PfC) scheme to drive theegarthe desired full

cooperation equilibrium.
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Fig. 4.7. ¢ with ¢, under different system setul = 45 level reputation systemy = 10
users andy = 0.95. (a) P, = 0.6. M varies from 20 to 44 and the number of anchor views
varies from 2 to 4. (b = 31 with 3 anchor views P, varies from 0.4 to 0.8.

4.4.1 Optimalt,. and R of The Reputation System

For single anchor view IMVS, as discussed in Chapter 4.34dll&rgert, punishes
the non-cooperative behavior by a larger amount and prewvigeare incentive for
users to fully cooperate with each other. For the multi-anchew IMVS, from
the analysis in Chapter 4.3.2, the first necessary condmiofull cooperationc <

(1 — »)min, {G,} does not depend of or R. In the second conditiorz, is

a function oft,, which affects not only the term but also the summation term
> TEHE=Y (v, 0")G,, which makes the analysis difficult. In Fig. 4.7, we show
the numerical results a@f, with ¢, under different system setup. In this simulation,
we have aRk = 45 level reputation systermy = 10 users and the discounting factor
isn = 0.95. In Fig. 4.7a, users switch to anchor views with a fixed prdigb
P, = 0.6, and we exam, with ¢, under different numbers of viewd and different
numbers of anchor views. For example, if we have= 31 views and 3 anchor
views, the 3 anchor views are viegiy16 and24. Fig 4.7a shows, always increases
with ¢, under different)/ and different number of anchor views. In Fig. 4.7b, we
haveM = 31 views with 3 anchor views, and we examwith ¢, under different
P,. We also observe that always increases with for different P,. Thus, similar

to the IMVS with a single anchor view, a larger also provides more incentive
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Fig. 4.8. An example of the coexistence of multiple equilibrium piggfor a single anchor
view IMVS.

for user cooperation and gives a largeffor full cooperation being an equilibrium
policy in the multi-anchor view IMVS. Sincg. is no larger tharR, the optimalt,

is R. Given thatt, is constrained byR, we should select the large&t which is
infinite. However, for a practical reputation systeffizannot and also does not have
to be infinite. This is because from Fig. 4.7, we can obseraedfter:, = R = 25,
the increase of, for each step increase 6f = R is very small. For example, in
Fig. 4.7b, whenP, = 0.6, the increase of, is 0.01 whent,, = R increases from
25 to 45. Thus, a finite reputation system, etg.— R = 25 in this example,
provides almost the same level of incentive for user codjmeravhen compared
to thet, = R approaching infinite. Furthermore, if we set= R approaching
infinite, a user who deviate once from the social norm willerdvave a chance to
be a beneficial user again. Howevert,if= R is a reasonably large number (e.qg.,
25 in Fig. 4.7), the system will punish a user harshly forHes/deviation from
the social norm, while he/she still have the chance to redugéher reputation and
cooperate with others. Thus, this can accommodate thersoghaere the network
error happens and the reputation system may punish usdekemnsy. Based on the
above analysis, a reasonably large= R provides enough high incentive for user

cooperation and can also resist network errors, and therefbould be selected.

4.4.2 Full Cooperation Initiation

From the discussion in the previous sections, for both eiegid multi- anchor view
IMVS, we may observe multiple equilibrium policies. Fig84&hows an example
for a single-anchor view IMVS with\/ = 101 views, N = 10 users,R = 10

levels of reputations with. = 10. In the view switching model, users switch to the



single anchor view with probability?, = 0.5. The discounting factor is = 0.95,
and the expected short-term gains for the view)detnd ) areg; = 0.82 and
gy = 0.33, respectively. From Fig. 4.8, whene [0,0.56], the full cooperation
policy is an equilibrium. Whemr € [0.30,0.36], the partial cooperation policy is
an equilibrium. The non-cooperation policy is always anildgrium for all ¢ > 0.
Thus, we have three equilibrium policies where [0.30, 0.36], and we have two
equilibrium policies whem € [0, 0.30) J(0.36, 0.56].

We observe that the MDP’s initial state is critical on theigraum to which the
game will converge. For example, if no user cooperates,dheser who unilaterally
cooperate receives a negative utility due to the cost of érapload, and thus, is
unwilling to cooperate. In this work, to initiate user coog@n, we propose a PfC
scheme at the beginning of the game.

Specifically, first, the local agent assigns each user a reputaficat the be-
ginning of the game. This is because users may cooperatewdrdy they have
reputationr > ¢, — 1, and assigning each user the highest reputatiomakes
him/her have cooperation as an option.

Secondthe local agent randomly selegts percentage of users, and pays them
for their cooperation with other beneficial users. Heregach frame upload, the
payment is at least their castand thus, cooperation with beneficial users becomes
the weakly dominant strategy for the selected users. Tla &ment also announces
yin t0 the other unselected users, who are not paid for coopardt assist their
decision making. As the game goes, users interact with ethen and their reputa-
tions are updated using the social norm in (4.3). Once tha bigent observes that
all unselected users have started to cooperate, we calidbatration ignitiated.
Then, the local agent will gradually stop paying the selécigers one by one. Note
that once a selected user is stopped from being paid, he&shtolestimate other
users’ actions and makes his/her own decision on whethemnte cooperation.
If the local agent stops paying all selected users at the sameeach selected user
may have different estimation of other selected usersbasti Thus, their behav-

ior may be unpredictable, which may also affect the unseteasers’ cooperation.



The proposed strategy where the local agent stops payirggteeted users one by
one can avoid this problem. This is because if at a time oné/seiected user is
stopped from being paid, he/she considers that the othes egher still get paid
for cooperation or have started to cooperate. In such a casgnuing cooperation
is a dominant strategy for him/her.

In the proposed PfC scheme, the local agent wants to selesa €nough
¥in to initiate user cooperation, while it also tries to kagp as low as possible
to minimize its payment in the initial period. In the follawg analysis, we study
each unselected user’s action selection at the beginnitfieajame, and derive a
sufficient condition to guarantee cooperation initiation.

For an unselected user, since he/she does not know how tbe wibkelected
users behave at the beginning of the game, we consider th& vase scenario
where he/she assumes that all other unselected users doapatrate at all. Thus,
an unselected user makes his/her decision based on thegssuthat all selected
users take the full cooperation poliey = {¢,,t,,...,t.} and all others take the
non-cooperation policy,, = {R+ 1, R+ 1,..., R + 1}. We then use the one-shot
deviation principle to exam his/her action selection andgtvhether the coopera-
tion policy m. is his/her optimal policy.

Since all users have reputatidhat the beginning, by taking actian, he/she
will cooperate and upload a frame with probabilityvhen requested and his/her
reputation is lowered to 1 with probabilit%’;1 = 0. Furthermore, since he/she
assumes that only the selected users cooperate, his/reatesdshort-term gain is
Guw¥in- Thus, his/her expected short-term utilityli§ = —c + g,v:,, and his/her

lifetime utility using policyr, is

M
Wre = —c+gym+n" > THov, o )Wie. (4.33)

v'=1

Same as in (4.30), we also expand the recursive #&fmin (4.33), and have

c
1—nk

0o M
Wie=—c+ guyin +y_ 1" T (0,0')(=¢ + gurtin) = YinGo —

n=1 v'=1

(4.34)



whereG, is defined in (4.30).

Similar to the proof of Proposition 4.6a, when studying flfetiime utility with
one-shot deviation, we only need to study the one-shot tlemitoa, = R+ 1. By
taking actionR + 1, he/she will upload with probability and his/her reputation is
lowered to 1 with probabilityf’f-g_)1 = 1. Thus, he/she cannot receive others’ help
in the next, segments and the expected short-term gain is 0. Therefisfaeh
expected short term utility is also zero. Since his/her t&an is lowered to one, it
takes(t, — 1)L segments for his/her reputation to climetto- 1 again. Following
the same analysis in Chapter 4.2.2.2, during tligsel) L segments, he/she always
receives zero expected short-term utilities. Thus, thegiiife utility with one-shot

deviationtoa, = R+ 11is
, M
Wn=trtme — o 3 = (g )W e (4.35)
v'=1

We then substitute (4.34) into (4.35), compare (4.34) argband have
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We can show that (4.36) is an increasing functionygf By solving W —

Wee=R+lme > ( for all views, we have

(1—=9)e '
(1 — n%) min,ey [Gv — M TLED (g, v’)Gv/}

If (4.37) is satisfiedr. is the optimal strategy for all unselected users, and théy wi
start cooperation immediately after the game begins. Tiherlpcal agent can stop
paying the selected users one by one. Sincewgngatisfying (4.37) can initiate
user cooperation, we should select the smaljgssatisfying (4.37) to minimize

the local agent’'s payment. In (4.37), we observe that itistrignd side (RHS) is



an increasing function of, and with a higher cost, we need to select and pay
more users at the beginning of the game. This is because dbrneeelected user,
with a higher cost, he/she requires more selected user to cooperate with é&im/h

to compensate his/her cost for cooperation.

4.5 Simulation Results

This section evaluates the system performance by simaokatitn the simulation
setup, we have & = 10 level reputation system and select the optimat R as
discussed in Chapter 4.4.1. The server provides IMVS With= 31 views to a
group of N = 10 users, and each user is assigned reputation 10 at the begipmi
the game. In the view transition model, users switch to anelews with proba-
bility P, = 0.5. The discounting factor i8 = 0.95. Since an IMVS with a single
anchor view is a special case of that with multiple anchowsign this section, we
only show the results with multiple anchor views, and letwi 16 and24 be the

three anchor views.

4.5.1 Cooperation Initiation Verification

In this simulation, following the discussion in Chapter.2,3ve find that the con-
dition for full cooperation to be an equilibrium policy is< 0.7. We then select
¢ = 0.65 < 0.7 as an example where full cooperation is an equilibrium gokol-
lowing (4.37), the sufficient condition to initiate user geoation isy;, > 0.72. In
the following, we test differeng;,, to verify our theoretical analysis. In our experi-
ments, once the local agent observes all unselected userstaated to cooperate,
it will stop paying selected users one by one, and the locahiagill stop paying
after the 50th segment in all scenarios.

Fig. 4.9 shows the simulation results whgn = 0.8. Sincey;, = 0.8 > 0.72
satisfies the condition (4.37), it can initiate user coopena Fig. 4.9b shows the
percentage of users who use action= ¢, = R (i.e. cooperation) when their
reputations are no less than-1. We observe that all users cooperate, and thus they
all have reputatior? = 10 as shown in Fig. 4.9a. We then tegt = 0.5 < 0.72,
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Fig. 4.9. The reputation and action distribution in the network, when = 0.8. (a)
The reputation distribution of the network. (b) The pereget of users that use actidéh
(cooperation) and? + 1 (non-cooperation), respectively, when their reputat®na less
thant, — 1.
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Fig. 4.10. The reputation and action distribution in the network, whgn = 0.5. (a)
The reputation distribution of the network. (b) The pereget of users that use actidéh
(cooperation) and? + 1 (non-cooperation), respectively, when their reputat®na less
thant, — 1.



and the results are in Fig. 4.10. We observe that it cannti@iuser cooperation.
From Fig. 4.10b, we observe that after the 50th segment, eéleeted users are
stopped from being paid, and percentage of users who talecative action starts
to decrease. Thus, the probability of a user’s reputatiamgae also drops as shown
in Fig. 4.10a.

4.5.2 User Membership Dynamics

In the last section, we consider a fixed group of users intieiaevith each other.
Once cooperation is initiated, they will fully cooperatetiuthe end of this game.
However, in a real video streaming system, users may joinleane the system
from time to time, which may also affect their cooperation.

Consider a scenario where a group of existing users havefbyeoooperating
with each other and they all have reputatiBn Then, some existing users may
leave, while several new users join the system with assigepdtationR. Let
y. € [0, 1] denote the percentage of existing users after this memperkange.
Since existing users have established cooperative pahipeeach of them assume
other existing users still use. and keep cooperating. However, since they do not
know how the new users will behave, we assume that they cemntéid worst case
scenario, where new users use poligyand do not cooperate at all. We assume
that each new user has the same assumption about existirsgamk other new
users’ behavior. We then exam whether an existing user wfitinue cooperation
and whether a new user will start to cooperate. In fact, thedlem is similar to
that in Chapter 4.4.2. Here, all users have reputalipandy. percentage of users
take policyr. and the rest users take poliay. Following the same analysis, if
y. satisfies (4.37) for all views, then all users will cooperdtet ™" denote the
minimum value that can satisfy (4.37) for all views. yif < y™" users may not
cooperate after the membership update.

In this section, we test how user membership dynamics aifesmt cooperation.
In this simulation, we let = 0.25 so that full cooperation is an equilibrium policy.

At the beginning of the game, we selggt = 0.8 that is high enough to initiate user



cooperation. For the membership dynamics, the initial remolbusers is 10. Users
arrive the IMVS according to a Poisson process with an aeceagval rate ofA
users per segment duration. The sojourning period of eaghfaolbows an expo-
nential distribution with an average pfsegments. Thus, a highgrand a smaller
w1 result in more frequent membership update. In our simuiatiave use batch join
where new users can only join the streaming service at perradments, called
batch moments. All new users coming between two neighbdraigh moments
will join and start receiving the streaming service at thms#&®atch moment. In our
simulations, the interval between neighboring batch mdamisn30 segments, cor-
responding to a maximum of 10 seconds waiting time for a nawdiyal user. For
existing users in the streaming service, they can leaveydirae instance. At each
batch moment, the local agent will update the number of umedsthe percentage
of existing userg., and broadcast to everyone.

From the previous analysis, at each batch moment, as lopgas/™", users
will still cooperate. Note that (4.37) includes the te@iy, which is affected by the
number of users. Thus, with user membership dynamjés, also changes. In the
following, we test different\ andy, and study how. impacts user cooperation at
each batch moment.

Fig. 4.11 shows the simulation results with less frequeninirership update
with A = 0.1 andp = 100. Fig. 4.11a gives the number of users at each time
instance. Fig. 4.11b showg"" andy, at each batch moment. Singgeis always
higher than,™", user cooperation will not be affected at each batch monTénis,
from Fig. 4.11d users will always cooperate, and they wibamaintain the repu-
tation R as shown in Fig. 4.11c.

Fig. 4.12 shows the simulation results with more frequentimership update
with A = 0.33 andp = 30. Comparing Fig. 4.12a with Fig. 4.11a, we observe
A = 0.33 andp = 30 result in much more frequent membership update. From
Fig. 4.12b, we observe that at the 90th segments much smaller thap™™".
Thus, user cooperation is interrupted after this batch nmbmErom Fig. 4.12d,

we observe that users start to play non-cooperatively #iee®0th segment, and
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Fig. 4.11. The simulation results with low frequent membership update= 0.1 and

p = 100. (a) The number of users in the network. {f§}* andy. at each batch moment.
(c) The reputation distribution. (d) The action distriloutifor users with reputation no less
thant, — 1.
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the probability of a user’s reputation beirdgalso drops as shown in Fig. 4.12c.
Since user cooperation has been interrupted, even if we jaavey™" at a later
batch time, users still do not cooperate. Here, the reutéitictuation is due to the
new users who are assigned with the highest reputdtien 10 when joining the
system. Since they do not cooperate, the probability of tlegiutations being?
decreases rapidly. To overcome the cooperation inteonliie to the membership
dynamics, the local agent should resume the PfC schemegvithierst reset all
users reputation a&, and randomly selectg,, percentage users to pay for their
cooperation withy,;,, satisfying (4.37), and announgg, to other unselected users

to assist their decision making.

4.6 Summary

In this work, we propose an IMVS system that supports codperagiew switching.

To stimulate user cooperation, we model user interacticanasdirect reciprocity
game. From the game analysis, we observe that users com@grabme views
but not others. Since peers can predict their future viewgadion paths proba-
bilistically, a peer likely to enter a view switching pathtrrequiring others’ help
will receive low utility from cooperation, and thus has léssentive to cooperate.
Furthermore, we observe that a larger number of reputatieeld provides more
incentive for user cooperation, and thus should be useddditian, we observe
that the game may have multiple equilibria with differenbperation levels. To
initiate user cooperation, we propose a PfC scheme. Fjnaflystudy how user
membership dynamics affect user cooperation. We obseate@thiong as the per-
centage of new users is smaller than a predetermined thdesisers will continue

cooperation. Otherwise, the PfC scheme should be usedimeasser cooperation.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Multimedia sharing networks attract thousands of usersvat the world to create
and share multimedia data, and user behavior significamghacts the system per-
formance. Thus, the understanding of human factor providpsrtant guidelines
for designing a multimedia sharing network with satisfagt@and efficient service.
In this thesis, we model user interaction in such systemsaaseg, and focus on
designing incentive mechanisms to stimulate user codparatn this thesis, we
investigate four challenging issues in the design of ingemhechanisms. i) One-
to-many interaction, where users tend to free ride ratheem ttooperate since free
riding is so easy. ii) User interaction with state changeemghusers take different
strategies at different states, which affects the systeromeance. iii) Member-
ship dynamics, which affect existing users’ cooperation¢es they do not know
how the new users behave in the game. iv) Cheating on prindemation, which
may reduce the system efficiency.

Specifically, we first study the incentive mechanism for a-tvap coopera-
tive wireless multicast network. It is a typical example aketo-many interaction,
where one successful user relaying can help multiple uesstal users at the same
time. We then model their interaction as a multi-seller iroiltlyer payment based

game, where unsuccessful users pay to receive relay semwitéhe selected suc-
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cessful user will get paid if he/she helps forward packetenfthe game analysis,
we observe that at different prices, the game may converd#éfévent Nash Equi-

libria, where unsuccessful users have different proltédslio free ride, resulting in
different system throughput. In this work, we also studyapg#mal price selection,

which drives the game to the desired Nash Equilibrium, whiersiccessful users
have low free-riding probability and the system throughpunhaximized. There-

fore, the price is a very powerful tool in the payment basdwswe, which can be
exploited by the system designer to achieve desirablersyséeformance.

We also address the issue that users have different costtarth packets, and
it is their private information. They may cheat if cheatirgnchelp them gain a
higher payment. We then design a second-price sealed-bttbawgame, which is
a truth-telling auction, and users’ dominant strategy isitbtheir true cost.

We then investigate an IMVS supporting cooperative viewtawng. Since
users may take different actions when they switch to differgews, and they
switch views frequently, it is a typical example to studymisgeraction with state
change. We then analyze the game based on an MDP formulisholeserve that
users cooperate at some views but not others. This is bepaasgcan predict their
future view navigation paths probabilistically. A peerdii to enter a view switch-
ing path not requiring others’ help will receive less gaonfrcooperation, and thus,
has less incentive to cooperate. To stimulate user cooperatall views, we show
that more reputation levels provide higher incentive f@ruoperation, and thus,
should be used. Furthermore, we observe that the game maynmaltiple Nash
Equilibria corresponding to different cooperation levelfie final equilibrium the
game will converge to depends on the initial cooperatioelley the game. We
then propose a PfC scheme to drive the game to the full cobperquilibrium to
improve the system efficiency.

In addition, we also study the impact of user membership ehycson user co-
operation and system performance. From our theoreticdysieand simulations,
we observe that as long as the percentage of new users iesthalh a predeter-

mined threshold, full cooperation is a dominant strategyafbusers, and they will



all cooperate. Otherwise, PfC should be used to stimulateasoperation.

5.2 Future Work

Behavior modeling and analysis is still at its young age &medd are many impor-
tant and interesting problems that require further ingasgton.

In Chapter 3, we study user cooperation in a small circulgioreas shown
in Fig. 3.1, where a moderate number of users (e.g. 25 uselg)elach other to
forward video segments. This is because users close to ¢aehlmve wireless
channels with high capacity for cooperation. In cellulatwagks, a BS covers a
big cellular area with hundreds of users, and it is not beiafic let a pair of users
who are far away from each other to cooperate. Thus, to applycooperative
scheme in the entire cellular area, we need first find a mesimato divide the
cellular area into small circles, and apply our method irhearccle. Furthermore,
consider the case that a user is close to the boundary ofehisiitle. He/she
may overhear messages from neighboring circles as welthwhiy affect his/her
cooperative behavior. Thus, it will be an interesting peoblto study user behavior
dynamics due to the boundary effect. Also, in Chapter 3, vgeirag this is local
agent to facilitate the billing service and the auction. um tuture work, we will
also investigate how to select such a local agent in the catipe network.

In Chapter 4, we study user cooperative behavior in an IMViSesg. As in-
troduced in [111], our IMVS system only suppodgnamic view switchingvhere
users are all synchronized in playback time. [111] propasegher IMVS system
supportingstatic view switchingwhere each user can pause the video in time, and
browse different views at the same time instance to gaireb8® visual experi-
ence. In this system, users are probably watching the vitdddfarent views and
different time instances, which makes it even harder for ageperation. To make
users be able to cooperate with each other, each user caneelowifer to store pop-
ular frames to assist others’ downloading. Payment andaépn based incentive

mechanisms may be applied to simulate user cooperatioa pgers change part-



ners frequently. Also, in Chapter 4 we use a centralizedtegjom system, while
in the literature, distributed reputation systems with encomplicated reputation
update rules are proposed. In our future work, we would lkevestigate how
other reputation systems affect the system performance.

In this thesis, we assume users are intelligent and selfibb, always try to
maximize their own utilities. However, in reality, usersyraso take actions emo-
tionally and irrationally, and some users may even would tik contribute volun-
tarily. In our future work, we also plan to investigate howlswser behavior impact
our system.

In online media sharing networks, such as YouTube and Hliclsers rely on
the attached information of multimedia data, such as tagsneents and ratings,
etc, to search and retrieve desired content for browsingveder, the noisy and
spam information wildly existing in such systems may redingeperformance of
the searching service. The work in [112] shows that only &dfaiags in Flicker
provide truly related information for images. Among all tingorecise tags, some
of them areunintentionallymade by careless users, while the restiatentionally
made by scammers. Usually, scammers make imprecise tagsmare frequently
than careless users. User trust modeling [113] may takengalya of this observa-

tion to identify scammers and reduce spam to improve thekedy service.
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Appendix A

Forg € T; with 1 < j < N — N, f/(x) = 0 has a single root; € (O, ﬁi_l)
andf’(z) > 0 whenz € (0,7) andf’(z) < 0 whenz € (zy,1).

Proof: From (3.4), we have

o) =a( )+ 0= <03 () )k - ) = (o) - Vipa)

k=k*

2X(x) 2V (z)

wherel = N — Ny, — 1l andk* = [¢/q] —1 = j—1withl < k* < N —

Ny, — 2. We then study the monotonicity of (z) andY (z), respectively. First,
we haveX'(z) = g(kl*)x(k*_l)(l — 2)F =D (g — [2), and thus X’(x) > 0 when
x € (0,k*/1), and X'(z) < 0 whenz € [k*/[,1). Similarly, we haveY'(z) =

¢ Sk (1)2* D (1=2)FD (k—lz). Whenz € (0, k*/1), we have(k—lz) > 0,

and thusY”’(z) > 0. Whenz € [k*/I, 1), sincelx > 0,1, ..., k* — 1, we have

Y,([L’) ( ) (k—1) Z’)(l_k_l)(k‘—lflf)

12
k=0 .

k=0

Therefore, we hav&”’(z) > 0 for z € (0, 1).
Based on the above analysis, whene [k*/I,1), we haveX’(x) < 0 and
Y'(z) > 0, and thereforef’(x) = X'(z) — Y'(z) < 0. Whenz € (0,k*/l), we
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haveX'(z) > 0 andY’(z) > 0. Thus, we need to further investigatéx), and

have

f'(x)

. x)(l—k*—l) (k,*

— )W (x).

In the last line of (A.3), when: € (0, £*/1), except for the termil/(z), all the other

terms are larger than zero. To stud¥y(x), we have

v = -ty (f(5) e
- (k—k*) *
* (1—x> H}

(A.4)

Sincek > k* andz € (0,k*/1), we havel/’(z) < 0. We then study the function

value of W (x) whenz approache® andk*/l, respectively. Sincg € I'; with

l

2<j<N-— N, —1,we have; < g. Then we have
l g l\k*—0
lim W (x) = - = =
iy W) (k) g<k*>k*—0 <

lim W(zx)=

x—k*/l

[
k*

k*

)
I

Therefore,IW(z) = 0 has a single rooty, in the range(0, £*/1).

- 2) >0, (A.5)
g

(A.6)

From (A.3),

Zy is also the single root of’(z) = 0. Thus, wherz € (0,%), W(z) > 0, and

f'(z) > 0. Whenz € (z,k*/1),

(0,k*/1) (k* = j—1andl =
f(x) <0Owhenz € (z7,1). B

W(x) <0,andf’(x) <0
Based on the above analysig(z) =
N - Nsu -

0 has a single rootg,, in the range
1), andf(xz) > 0 whenz € (0,2;) and

Z <]i> (k—1) $)(l—k—1)(/€ . ZCL‘)
[ 4 Z l ( x )(k_k*) k—lx
k* 9= \k) \1-u k* —lx
2W (@)
(A.3)



Appendix B

Proof of (3.14)

Proof:

ps)x)- (B.1)

Proof: h(x) = Vp(x) — Vyp(x). Letk* = [d*¥/q] — 1, and we have

o) = 3 (L) () a0y

LG (2)

- 3 (a-pre{ 3 (1) - )
LH(z)
= G(x)— H(z) (B.2)
! [! n_l—n n! k n—k
Gl) = gﬂ; A= TP e e ()
I e (1 — k*)!
mLn—k ! L (R )] ke
o )= 3 - - o
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) g(zf) 21 =P [(L = p)(1 = o) + pJ 0. B3)

similarly, H (x) = ¢ X { (})[(1 = po)al*[(1 = p.) (1 — x) + pJ =0 }. Thus,

e g(zf it = 11 -0 - pop
q Z ( ) 1 — py)z]*[1 — x(1 —ps)](l_k). (B.4)

k=k*

When comparind(z) with f(x) in (3.4), it is easy to observe thatz) = f((l -

ps)x). [ |



Appendix C

Proof of Proposition 3.2

Proof: Forq € I'; with j € {j,..., N — N,}, we first prove that,%gﬁ > 0, and

then prove tha8.- < 0. Therefore, we havdl: = 292 < () and Ty is a
q q €z q

non-increasing function af.
To prove that)Ty/0z* > 0, we first define/ (n, 2= S5y (3) (2%)F(1 —
2*)"~* and rewrite (3.16) a8 (v*| N, d*) = SNV (V) (1=pa)"pN N I (n, 2%).

The first derivative of/ (n, z*) overz* is,

aJ(TL,[L‘ ) _ Z <n> (Jj*)(k_l)(l o x*)(n—k—1)<k o nx*) (Cl)
Ox* _ k
k=[d"/q]

Similar to (A.2), we can prove that/(n,z*)/0z* > 0 for z* € [0, 1]. Therefore,

we have

0T N (N — N, N OJ (0, )
= (1 = p)pN N A L >, 2
o > < . )( ps)"Ps 5 2V (C.2)

n=0

We then prove fog € I'; with j € {j, ..., N—N.}, % < 0. First,ifg € Ty_n,
(Case 3in Theorem 3.2} = 1 foranyq € I'y_y,. Therefore, whelg € I'y_n,
we havedz*/0q = 0.

If g € T'; withj € {j,..., N — N, — 1} (Case 2 in Theorem 3.2), from Theorem
3.2, it can be seen that is the non-zero root, denoted, of h(z) = 0if &, < 1,

andz* = 1 otherwise. When the pricgincreases withil’;, £* keeps the same,
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and thush(x) decreases based on (3.14). From Fig. 3.7 and Fig. 3.8, iteaadn
that, if (z) decreases, the non-zero rootwi) = 0 decreases. Therefore, when
increases, the ES8 either keeps at* = 1, or decreases. This means*/0q < 0.
|



Appendix D

Proof of Proposition 4.1

Proof: As discussed in Chapter 4.2.2, one-shot deviation of a gaetion policy
means that a user takes a different action rather than theefireed in the action
policy only for the current response to a request, but sllbfvs the given action
policy in the future responses. Suppose that a user recairexguest at reputation
r and vieww, with the action policyr, the lifetime utility is defined in (4.14). If the
user takes actiom , rather thar, , defined inm only for response of this request,
but still follows 7 in future responses, we have the lifetime utility,

’ ’ M ’ ’

e = Undt gt 3 T, ) (= P Wi+ PESWEL | @)
Comparing (4.14) and (D.1), one-shot deviatioru}q gives a different expected
short-term utilityUf,/Z;” and a different reputation transition probabiliﬁ‘fi”l. We
then use one-shot deviation principle to prove this praposi

Assume thatr is a policy including action, +1 < a,, < Rforr > ¢, — 1 and
anyv € V. We then exam whether it can resist the one-shot deviatiaf te- ¢,
ora,, = R+ 1. Following the discussion of Chapter 4.2, for a user at view
with reputationr > ¢, — 1, by taking actions,.,,, he/she has expected immediate

costCo» = ¢

ri=ary

x(r;), while following (4.6), the reputation transits to 1
with probability P = Za'””_lx(r]—). Thus, the expected short-term payoff is

rj =t,

a ary—1 ary—1
Ur,;}v - _ngzam X(Tj) + (1 - Erj:tr X(Tj))Gmin{r+1,R},v + ZTj:tr X(TJ)GLU-
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Substitutel/;"r and P’ into (4.14), we can get the lifetime utility

R ar,u_l aru_l
W;jv =—C Z X(Tj) + (]- - Z X(Tj)) Gmm{r+1 R} + Z ’l"] le

Tj=0arv rj=tr rj=tr

ary—1
+77L (1_ Z ) ZTL 'U U mln{r-i—lR}v

T’j:tr v'=1

ar,u_l M
+nk ( Z x(m)) Z TL(U,U')Wfo,.
rj=tr v'=1

However, by the one-shot deviation &), = t,, the expected immediate cost is
Ol = cZR__t x(r;) and his/her reputation falls to 1 with probabilif§f~., = 0.
Thus, the expected short-term payoff becoiigs= —c ZT . X(r;)+Ginfr+1,R}0-
Thus, following (D.1), we have

al, ,=tr,m -

r,v’ = —C Z T] + Gmln{r+1 R} + n Z TL U v )Wmin{T-i-LR}wl'

ri=tr v'=1

Similarly, by the one-shot deviation tg, = R + 1, he/she will help upload with
probability0, which gives zero cost, and his/her reputation falls to hywibbability
P = 2, x(r;). Thus, the expected short-term payofftigi! = (1 —

r—1

SF i, X(1) Gingri1,my.0 + X =, X(1;)G(1, 0). Thus, following (D.1), we have

R
afrv:R-i-lJr
f - (1 - X(T‘j)> Gmin{r+1,8)0 Z X(15) G

rj =i, T3 =tr

R
+77L (1 - Z ) Z T 'U U m1n{r+1R}U’

rj=tr V=1

rj =t, v'=1

R M
+n" (Z X(?“j)) > T, )WY,

=R+1,7

ru_t’f' ™

We then compar&/”, with 1W;.; andWm , and observe that

ary—1

W;:—v - m} - Z { - Gmin{r+1,R},U + Gl,v

ri=tr



M
S T ) W — Wi } (D.2)
=1

R
- al ,=R,m
WT,U — Wiy == Z X(Tj){c - Gmin{r—i—l,R},v + Gl,v

ri=ary

M
o 77L Z TL(U7,U,) [Wrgin{r—i-l,R},v’ - Wﬂv’} } (D3)

=1

Thus, we have
& ™ a"lr v_t’f“v “ o a;yU:R-‘rl,ﬂ'
Z X(rj) Wr,v - == Z — Wrw . (D4)
rj=arv rj=tr

Given thatZr._a x(r;) > 0 and Z,‘f’_”tl x(r;) > 0, we either haveV, —
=T <0, or havelVT, — (o =FHLT ). Thereforesr cannot resist the one-
shot deviation to either, , = ¢, ora; , = R+ 1, and thus cannot be an equilibrium

policy. &



Appendix E

Proof of Proposition 4.2

Proof: This proof takes two steps. We first prove the part on statesitian proba-
bilities, and then we prové}, = Uy .

e For any actiona and two statesgr,v) and (v',v) € Sz, (r # r'), we have
P(a7'7v)—>(7‘”,’l)’) == P(a7"7v)—>(7‘”,vl) for T” < tT_l, andzsesﬁm/ P((;:’U)_’s = Zsesﬁw, P(a;‘/,’l))—hs'

We first prover[ . » .,y = Fi . y for r" < ¢, — 1. Following the

—(r'"w

discussion in Chapter 4.2, the reputation and view tramsirobabilities are in-

dependent, i.e.P§ v,y = PL,.,T"(v,0v'). Thus, we only need to prove
e . = P4, forr” < t. — 1. Since the reputation > t, — 1 can only be
updated to eithet or min{r + 1, R} € R, thus, we haveP®  , = P%_ , = 0 for

2 < r” <'t,. — 2. Furthermore, from (4.6), for a user with reputation no lisss

t, — 1, the probability that his/her reputation is lowered to 1elegs on the action

a only. Thus, we also have® , = P¢_,. Based on the above analysis, we have
a _ a 1
P(T,v)—>(7””,v’) = P(T’,v)—»(r”,v’) forr < tT —1.
We then provey.cs. , P s = Xsesy , Fiorn—s- Similarly, we also only

need to prove_,.cz P*.,,.» = > ner PY

! sl s

Since a reputation > ¢, — 1 can

only be updated to eithdror min{r + 1, R} € R, thus, we have_, .5 P*

! =

PY in{r+1.R)- Therefore, we only need to Prove’  iiimy = B mingr1.R)-

s

Since we have’’; = Fj_;, and we also havé? . . . =1—F’, and

=1-PFj_,, thus,we have’’ . . i g = P55 Based

a
r’—min{r’'+1,R}

on the above analysis, we haye, RIS = Dsesp ., L6

(rwv)—s (r'v)—s*
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o U, =Us .

Following (4.13),U¢, = —c S, x(r) + (1 = P2 )) Gusingrs1m).0 + Py G,
First, the probability of helping to upload;”  x(r), depends on only. Thus, the
same action taken &t, v) and(r’, v) introduces the same cost. Second, we observe
that Gring41,7)0 = Gmingr+1,R),0- ThiS IS because users select action only from
{t,, R+ 1}. Since we have, < min(r + 1, R) < Randt, < min(r' + 1, R) <
R, the helpers’ action (eithef. or R + 1) does not differentiate the reputation
min(r + 1, R) frommin(r' + 1, R). Thus,Grin(r+1,8),0 = Gmin(r+1,r),0- SiNCE we

also haveP* , = P4

r—1 r’—1

itis easy to show;!, = Uy, ,. B



Appendix F

Proof of (4.22)

R M
Gy, = ( Z_lx(rk)) (Z_:IV(W)][@% gﬂ]) Go-

Proof: From the discussion in Chapter 4.2, if the helpé&as reputation, < ¢,.—1,
he/she takes actioR + 1 and does not cooperate. When he/she has reputation

rr > t,. — 1, his/her action depends on his/her view only. Thus, we cahriwrite
(4.11) as

v'=1 re=tr—1

Gro= ;nl Z {( Z X(Tk)> ( (Z)_ po (vr(t + 1)1 [avk(m) < r’])
X P[Hy(v")] Ploi(t +1) =0, v;(t +1—1) & V|vs(t) = 0] },
(F.1)

wherew;(t) andvy(t) are user and the helpek’s view at timet, respectively. We

then focus on the terr@Z%(tH)zl po (v (t + 1)1 [avk(m) < T’D, and prove that
the summation is the same for differaritin the case with a single anchor view.
Following (4.10), we first have

M

> pulvr(t + D) [ay, e < 7]
Vk (t—‘rl):l
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= Y > TE, ut+ l))LqUI [avk(Hl) < T'}

vp(t+D)=1v"€V, Zaev,u, v(0)

Z L% ( i/[: T, vp(t + 1)1 [avk(t_’_l) < 7’/]) (F.2)
v"eV, Zf’evv/ V(,U) v (t+1)=1

For the term( f)v,f(m):l T (v, v(t+1))1 [avk(m) < T’D in (F.2), following the

discussion in Chapter 4.3, if’ is the anchor view, we hav& (v”, v, (t + 1)) =

v(ug(t + 1)), wherev is the steady state view distribution. Thus,

( > T vt + 1)1 {avk(Hl) < 7’/])

(t4+1)=1

M
= > vt + D) aye <. (F.3)

’l)k(t—i-l):l

If v" is a normal view, for example, a normal view at the left sidhe, helpk will
only transit to the anchor view with probability, and to each normal view at the

left side normal view set with probabilit%‘]bj%?). Thus, we have

( Z T (", vp(t + 1)1 [avk(t+l) < T’})

vk (t+1)=1
=l 2(1-P,
= Z %][avk(tﬂ-l) S T,] + Pal[aa S Tg]’ (F4)
v (t+)=1 B

whereo is the anchor view index. Note that the views are symmetrib vaspect
to the anchor view, and a user at views with symmetric locatishould take the
same action, i.eq; = ays, as = apy_1,...,09-1 = ayy1. 1hUs, (F.4) can be written

as

( > T vt + 1)1 [avk(tﬂ) < 4)

Uk(t—i-l):l
= (1-P M 1-P,
= Z %I[avk(b’_l) S 7“/] + Z %][&vk(t_k[) S 7“/] -+ Pa][a,o— S T,]
v (t+1)=1 vk (t+1)=0+1
M
= > v(u(t+ D) ay e <77, (F.5)

Vk (t—‘rl):l



which is the same as (F.3). The analysis is the samé i a normal view in the

right side normal view set. Based on the above analysis, we ha

M M
> pu(vk(t+)I [avk(tH) < r'} = > v(u(t+)I [avk(tH) < r’} , (F.6)
’l)k(t-i-l):l Uk(t-i-l):l

which is not related te’. Thus, (F.1) can be rewritten as

Gr’,v = ( Z X(Tk)> (Z V(Uk)l[avk < Tl])

X Z:nl Z_: P[Hy ()] Ploi(t +1) =0, 0;(t +1—1) & Vi (t) = ]
R M
_ ( > x(rk>) (Z_ v(@)! [ay, < r’]) . (F.7)

whereg, is defined in (4.12)R



Appendix G

Proof of Proposition 4.3

Proof: In this proof, following (4.12), we first let

z(v,1) = Z P[Hy (V)] Pos(t+1) =0, v;(t +1—1) & Vylvi(t) = v] (G.1)
v'=1

and g, can be rewritten ag, = >}, z(v, 1), wherez(v, () is the expected gain
received at théth segment after the view switching from viewif helpers always
help. Since the views are symmetric with respect to the angbw, switching from
views with symmetric positions, users should receive tineesgain, i.e.z(v, [) and
g, are both symmetric with respect to the anchor view (e.d.,!) = z(M,[) and
g1 = gu)- In this proof, we first show that for all > 2, z(v,1) is the same for
allv € V. Therefore, fory, of different vieww, the difference is caused byv, 1)
(i.e.,l = 1). In the second step, we then show that views in the same tsul{se
V), the corresponding(v, 1)’s are approximately the same.
e Forl > 2, z(v,l) is the same for alb € V.

Substitute (4.8) in Chapter 4.2 into (G.1), we first rewrite, ) (I > 2) as

z(v,l) 2 o Z P [H, (v)] ( Z Tl_l(v,v”)T(v”,v/)>
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= n%T(v,@){n(l_l)i (Z T'2(0,v")T(v", v))}

"GV,

Therefore, ifv is the anchor view, we havB(v, v) = v(v) and thus,

M
O NGRS (G.3)

If v is a normal view, e.g., a normal view in the left side normalwset, after one

segment, a user will only transit to the anchor view with @daibty P, and to each

normal view in the left side normal view set with probabiliy- P“ . Thus, we have
_ 21— P,)
Z — 2(0,0 — 1) + P,z(0,1 — 1). (G.4)

As discussed earliet(0, [—1) is symmetric with respect to the anchor view. There-

fore, (G.4) can be rewritten as,

z(v,1) ::2: %\/[__Pa)z(f},l - 1) —hél(}w__]g;)z(ﬁ, [—1)+ P,z(0,1 — 1).(G.5)

which is the same as (G.3) wherns the anchor view. The analysis is the same if
v is a normal view in the right side normal view set. Thus,for 2, z(v,[) is the
same for alb € V.
e For views inV, the corresponding(v, 1)’s are approximately the same.

With Y = {0 — 1,0,0 + 1}, we first prove that(o,1) =~ z(c — 1,1). When
I =1, wefirsthave: (v, 1) = n Y ,gy, P [Hi(v')] T(v,v"). Therefore, we have

=Z(1-P - P, ,
SRS C L) p )] + "U,_Zm L. (Ge)
Similarly, we also have
o—3
o1 =0 Ty 201 P) PH, (). G.7)



Here, P [H; (v")] is the probability of finding a helper to help the view switogito
view v’, which is also symmetric with respect to the anchor view. s[H{G.7) can

be rewritten as

do-1) =S S P @)+ ¥ S pme). ©8)

Therefore, we have

(1_Pa>

2(0,1) — z(c — 1,1) =n 1

{P[Hy(c —2)]+ P[Hy(c +2)]}. (G.9)

Since in this work we consider a high dimension multivieweodsystem, e.g.,
M > 30, 1/(M — 1) approximates to zero, and thugg, 1) — z(c — 1,1) = 0,
and therefore, we havg — g, =~ 0. Sinceg,_1; = g,+1, thus, for views in/, the
corresponding,’s are approximately the same.

e g,’s are approximately the same for viewslih This proof can be done in the

same way as the proof fat, which is omitted &



Appendix H

Proof of Proposition 4.4

Proof: This proof takes two steps to show that the two conditionsisifrblarity
defined in Definition 4.1 are satisfied.

e The first condition of Definition 4.1 is satisfied, i.e., foryafr,v) and (r,v’)
from S,y (or S, p) with v # o', we have)” . Sy P yyss = se Sy P s and
Yses, y Pl s = Lses,, y Py Wherer, 7' € {1,2, ... t, — 2, R}.

From Chapter 4.2, the reputation and view transition proibi@s are indepen-
dently. Thus, we havg . Sy Plwyms = Dl Zrey T (v,0") = P, (P, +
2(1-P, 2(1—P,

(=P (P, + 2022y There-
fore, we have_ . S P((i,v)—»s =2 ses,, y P&U,)_,s. We can prove_, . S5 P((i,v)—»s =

Yses, y, Pr)—s in the same way.

(r")—

). Similarly, we also havé", . Sy Pirry—s = B

r—r/

e The second condition of Definition 4.1 is satisfied, i.e.,day (r, v) and(r, v’)
from S,y (or S, ) with v # o', we havel!, = U, for anya € A.

From the discussion in Chapter 4.2.2.2, when a user hasateput < ¢, — 1,
he/she does not help anyone and also no one helps him/hes, Wathave?,, =
Uty = 0. Whenr > t. — 1, the short-term utility can be written d$? =
—c Zfi:a x(rj) + (1 = P& ) Gmingr+1,8)0 + P&, G1,. First, the probability of
helping to upload depends eronly. Thus, the same action taker{atv) and(r, v")
introduces the same cost. Second, we observedhat,+1,r),, = Gmin(r+1,r)'-
This is because based on (4.22), the only difference betwggn,+1,r),, and

Gmin(r+1,r), IS the term ofg, andg,,. However, sincey, = g,» for v andv’ from
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the same view séf (or V). Thus, we have&: nin(r+1,7),0 = Gmin(r+1,r),v/- We also

haveG,, = Gy = 0. Based on the above analysis, we héyje = U¢,,. B



Appendix |

Proof of Proposition 4.5

Proof: In this proof, we will exam each given policy one by one. Fattepolicy

m, we first assume that all users use this policy and study thresgmonding station-
ary reputation distributios. Then, following the one-shot deviation principle, we
exam whether a user has incentive to unilaterally deviaé@yoone-shot deviation.
Note that in the 2-level reputation system, we hgve- 2 (i.e., all users have rep-
utation belonging t&R = {1,2}), andy = n**~YF = 5l Substitute them into
(4.23), we have the lifetime utility of policy for v € {V, V},

W =Ug + [n (1= Py ) + 0P| [VOOWE + v(0) W]
= U 40" [vOOWg + vV (1.1)

Similarly, with the one-shot deviation tg, the lifetime utility becomes,
W™ = Ut + 0" [V W +v(V)WE] . (1.2)

Therefore W™ — W™ = % — U%, and we only need to compare the expected
short-term payoffs when exam each policy using the one-gnaation principle.
e {ay,ap} = {2,2}: By solving (4.20), we havg = x(2) = 1 andx(1) = 0.
At view v € {V,V}, with action2, a user will help upload with probability.

His/her reputation will be lowered to 1 with probabilifyz , = 0, and he/she is
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a beneficial user with probability. Since other users all have reputation no less
thant, — 1 = 1, and use the policy2, 2}, he/she can receive others’ help whenever
he/she needs in the nektsegment, andr, , = g,. Thus, the expected immediate
payoffisU»=? = —c + g,.

As discussed in Chapter 4.2, actign= 2 dominates action, we only need to
exam the one-shot deviation o+ 1 = 3. By taking action3, he/she will help to
upload with probability 0, and his/her reputation falls twith probability P} | =
1. Thus, he/she cannot receive others’ help, and the expeuteeédiate gain O.
Therefore, the expected short-term payoff by taking aciion 1 is U%=3 = 0.

Comparel/%=2 andU%=3, and we havé/*=2 — U%=3 = g, — ¢. Given that
gy > gy, if we havegy > ¢, thenU®=2 — U%=3 > 0 for all v € {V, V}, and thus,
{ay,ap} = {2,2} is an equilibrium policy.

o {ay,ap} = {3 2}: Similar to the above analysis, by solving (4.20), we have

y = x(2) = tray andx(1) = 7. We then first exam the one-shot deviation

principle at viewV. By taking actioru,, = 3, he/she will help upload with probabil-

ity 0. His/her reputation falls to 1 with probabilit; , = and he/she is a

1+v (
beneficial user with probabllltyﬂ Since other users all have reputation no less
thant, — 1 = 1 and they only cooperate & with probabilityv()), thus, his/her

expected short-term gain ﬁ&(}g = 11(3{)) (V)gy. Then, his/her expected

short-term payoff iyﬁfg = 13:8{)) v(V)gy.

Since actiont, = 2 dominates actiori, we only need to study the one-shot
deviation toa), = 2. By taking actionay, = 2, he/she will help upload with prob-
ability 1++(_V) His/her reputation will be lowered to 1 with probabiliz , = 0,
and he/she is a beneficial user with probability 1. Thus,Heeysll receive the ex-
pected short-term gain,v(V), and his/her expected immediate payoijllle:2 =

T T gv(V). CompareUif3 andUsz, and we have

0 = ) - (S )

= 7(0 — gzv()_/)) (|3)



Thus, to resist one-shot deviationigtwe should havéc — gyv(V)) > 0.
We then exam the one-shot deviation principle at viéwFollowing a similar
procedure for the analysis at vigwy we can derivéjg“’ZQ andU§9:3, and compare

them as

ap=2 a%-):3 - 1 ) o
Upv— = Uy = W(gVV(V) c). (1.4)

Thus, to resist one-shot deviatiomatwe should havég,v(V) — ¢) > 0. Thus,

based on the above analysis, only whgv(V) > ¢ > gyv(V), we have both

ay = al, =2 P al = . i
Uy 5 _ Uy > 0andUg - UyY ’ >0, and{ay, ay} = {3,2} is an equilib-
rium policy.

e {ay,ap} = {3,3}: Inthis casey = x(2) = 0.5 andx(1) = 0.5. Since no user
cooperates, no user can gain from others’ help@ng = G, , = 0, while taking

actiont, = 2 and cooperating with beneficial users only introduces a dostto

helping upload with probability.5. Thus, using actiolR + 1 = 3 and playing
non-cooperatively is a dominant strategy. Therefdrg,, ap} = {3, 3} is always

an equilibrium policy.

e {ay.ap} = {2,3}: This action policy is symmetric withay, a;;} = {3, 2} that

we discussed earlier. Thus, the cost range{far, ay} = {2,3} being an equi-
librium policy can be symmetrically written agv (V) > ¢ > gpv(V). However,

sincegy > gy, this range is empty, and thu$gy, ap} = {2,3} cannot be an

equilibrium policy.



Appendix J

Proof of Proposition 4.6

Proof: In Chapter 4.3.1.5, we focus on the proof of (a. In this pread,prove all
these four statements in this proposition. Thus, similah&proof for Proposition
4.5, we first give the general analysis, and then exam eaatypoie by one using
one-shot deviation principle.

(4.23) first gives the lifetime utility with aggregated viewSimilarly, the life-

time utility of a one-shot deviation t@, atv € {V, V} can be written as
W™ = Uy + [n"(1 = Pg) + 9P | [V wg + vooyws| . (3.2)
To compard¥™ with its one-shot deviatioil/* ", we have

Wy — Wiem =Ug — U + [V W + v(V)IWg|

{[n (1= Py ) +vPp (1 = Py ) + Py }0.2)

Note that (J.2) has the recursive teiif andiV] at the right side, which we should

solve first. Note that (4.23) can be viewed as a linear sysieohye can solvél’y;
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ande from it as

e V) [(A=PEY nnP? U -
. 1_((1_137%%1)77 VPR‘il) V)- (
) v

L U (0-PRY PR

((1 P2 n P YUY
P =P Jvw)
((1 P_ )n—yPﬁ:l)U‘-)‘_j_

(0P P O (0P P o)

(3.3)

We then substitute (J.3) into (J.2) and finish the compargdii™ andiVe". The
above analysis explain the general approach how we exampsdicly with one-
shot deviation principle. We then exam each policy one by ddete that since
actiont, and R + 1 dominate all other actions, we only need to study the oné-sho
deviation tot, or R + 1.

e {ay,ap} = {t.,t.}: By solving (4.20), we first havg = 1 andx(r) = 0 for

1 <r <t,— 1. Therefore, for a user with reputation no less thar 1 and at
view v € {V, V}, by taking actiort,, he/she will help to upload with probability
1, his/her reputation will be lowered to 1 with probabili§; | = 0, and he/she

is a beneficial user with probability 1. Since others are afidicial users and use
policy {t,,t,.}, he/she will always receive others’ help in the néxtegment and
have the expected short-term gain Therefore, his/her expected short-term payoff
by taking actiort, is U*='" = —¢ + g,.

We only need to exam the one-shot deviation/fe= R + 1. Witha! = R+ 1,
he/she will help to upload with probability, and his/her reputation falls to 1 with
probabilitijgj}1 = 1. Thus, he/she cannot receive others’ help, and the expected
short-term gain i§. Therefore, the expected short-term utilityig- ="+ = 0. We
then substitutd/o»=", P4, US»=R*+1 and P! into (3.3) and compar®/, ()

R—1" ~v

andW e for both) andV. We then have

L
- as=R+1,m n" =) (gp — gy)v —(c—gy)(1l—7
W W v _ ( )( Vv _)1£77)L ( Z)( ) + (gf/ gv>
ay=R+1x (" =) (gy = g)v(V) = (c —gv)(1 =)
W — Wk _ A | (0.4)
It is easy to observe thatz — Wov="""" > Wy — Wy "7 Thus, as long



ay=r+1x _ (N" =) gy — g)v(V) — (¢ — gv)(1 =)

asWy — W, = 1 - > 0, in other
a B -1
L _ o ]—} B
words, ¢; = ( 7)(19\) g2)v(V) + gy > ¢, we havelWg — Wr=HhT
ay=R+1,7 v

Wy —W. > 0, and{ay, ay} = {t,,t,} is an equilibrium policy.

VIO —2)vD) - (14+v (V)
202V

x(r) = tl;_yl for1 < r < t. — 1. Therefore, for a user with reputation no less

o {ay,ap} = {R + 1,t,}: We first havey = , and

thant, — 1 and at viewV, by taking actiorzy, = R + 1, he/she will help upload
with probability 0, and his/her reputation falls to 1 withopability P5*) = v,
and he is a beneficial user with probability— ). Thus, he/she receives expected
short-term gain(l — y)Guin41,r),v- TO deriveGoy11,r),y, Since other users

only cooperate when they have reputation no less than1 and are at view/,

we haveGyiner11,p)y = [y + x(t, — 1)]v(V)gy. Thus, his/her expected short-

term payoff isU{;Z:RJrl = (1 —y)gyly + x(t, — 1)]v(V). When he/she is at view

V, by taking actionay;, = ¢, defined in the policy, he/she will help upload with
probabilityy and his/her reputation falls to 1 with probabilitt%fg_}1 = 0. He/she is
a beneficial user with probability 1. Thus, he/she receixpgeted short-term gain
Gumintr+1,R)y = gply + x(t, — 1)]v(V), and his/her expected short-term payoff is
U™ = —ye + gply + x(t, — D)v(V).

Then, for the one-shot deviation at vigdy he/she can only deviate t§, = t,.
By taking actiort,., he/she will help to upload with probabiligyand the probability

that his/her reputation falls to 1187 | = 0. Thus, he/she is a beneficial user with

a’ =ty

probability 1, and receives expected short-term paygy = —yc+ gvly +
x(t, — 1)]v(V). SubstituteUiZ:tT, Py ., UEZZRH and PS*! into (3.3) and (J.2),

7,70

al,=t
and we compar®/ andW,,* as

al,=ty,m [y + X(tr — 1)]V(V)Dv}
Wa — Wy, =y {c — =0
v L=n*+nty —yy

(3.5)

where Dy = {v(V)(n* = 7)gy + [1 =7 — (n* = 7)v(V)]gy}. Thus, to resist the

b+ x(t, — 1)]V(V)DZ} -_

L L —nt +nlb—by
For the one-shot deviation at vieW, he/she can only deviate tg, = R + 1.

one-shot deviation at view, we need{c — [



a=R+1

We can compar&/; andWV;,” " following the same procedure, and have

=R+1,7 [y + X(tr — 1)]V()})DV }
W5 — W v = —Cy, J.6
y{ L—nt+nly —yy 0o

whereDy, = {[L -7 — (n* = 7)v(V)(1 — y)lgv + (" = 7)V(L)(1 — y)gu}. There-
[y + x(t = DIv(V)Dy } -
L=nt+nty —yy B

fore, to resist the one-shot deviation at vigywe need{

0. We then compar®y, and Dy, and have

Dy—Dy = {(1=7) =" =1 -y)+yvW)]} gy — 9v)
> (" =)y —yvV)l(gy — gv) > 0. 2.7)

Thus, if we have the costin the range

ly + x(t, = 1)]v(V) Dy > ly + x(t, — 1)]v(V) Dy
L—nlt+nty—yy ~ L—nl+nty—yy

3.8)
we have bothiVy] — WZZZW > 0 andWj — W p=ieL > 0, and therefore,
{ay,ay} = {R+ 1,t,} is an equilibrium policy.

e {ay,ap} = {R+ 1,R + 1}: In this case, ift, = 2, we havey = 0.5 and
x(1) = 0.5. If t, > 3, we havey = Y=~ andx(r) = =% for 1 <r < t, — 1.
Similar to the proof of Proposition 4.5c, since no user coas, No user can gain
from others’ help and~,, = 0 for all » andv. However, playing cooperatively
with actiont, only introduces a cost due to helping upload with probabilitThus,
using actionk-+1 and playing non-cooperatively is a dominant strategy, fwdmch

no one will deviate.
e {ay,ap} = {t,, R + 1}: This policy is symmetric with the policyay, ay} =
{R+1,1,} thatwe discussed earlier. Thus, the costrangédpray} = {t,, R+1}

being an equilibrium policy can be symmetrically written as

ly +x(t, = Div(¥) By
L=n*+nty —yy

ly +x(t — DIvV) Ey
L=n*+nty —yy

> >

: (J.9)



where we haveéy, = {[1 — v — (n* = )v(V)(1 = y)lgy + (0" — V)v(V)(1 = y)gv
and By = {v(V)(n" = 7)gy + [1 =7 — (0" = 7)v(V)]gp }. Compareky, and Ey,

and we have

Ey—Ey = {(1=)—0" =1 -y +yvW)]} (95 — 9v)
> (" =)y —yvW)](gy — gv) > 0. (J.10)

Thus, the cost range in (J.9) is empty, dug, ay;} = {R+ 1,¢,} is not an equilib-

rium policy.



