
 

 

 

 

 

 

An Intelligent Fault Diagnosis Approach for Power Transformers Based on 

Support Vector Machines 

 

by 

 

Hao Xu 

  

  

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

 

 

Department of Mechanical Engineering 

 

 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Hao Xu, 2017 



ii 

 

Abstract 

 

Power transformers are essential for the operations of industrial systems such as 

metal production plants, and for the transmission and distribution of electricity to 

end users. Power transformer failures can cause huge loss of production, expensive 

downtime, significant costs for repair or replacement, and disruptions to city and 

community operations. Transformers are desired to operate at a high-reliability 

level, and they should be maintained carefully through effective condition 

monitoring and fault diagnosis, for evaluating transformer health conditions based 

on condition monitoring data and performing suitable maintenance actions.  

 

Dissolved gas analysis (DGA) is a primary way of monitoring the health conditions 

of transformers by analyzing the insulation oil via periodic sampling. Different 

gases can be decomposed from the insulation material and the liquid oil under 

certain thermal, electrical, or mechanical stresses, and these gases will dissolve into 

the transformer oil. Existing transformer fault diagnosis methods mainly include 

rule-based methods documented in IEEE Standards, which are based on analyzing 

key gases, gas concentration ratios, or certain gas proportions. In addition, artificial 

intelligence (AI)-based methods were proposed, based on artificial neural network, 

fuzzy logic or support vector machine (SVM) tools. However, the existing rule-

based and AI-based methods suffer from limited and imbalanced datasets and the 
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capability to deal with low concentration DGA data, and the fault diagnosis 

accuracy needs to be further improved.  

 

In this thesis, a new intelligent approach based on SVM is proposed for condition 

monitoring and fault diagnosis of power transformers based on DGA data. The 

proposed method integrates a gas concentration filter and a plurality-voting SVM 

model. Low concentration data are typical for new transformers, but existing ratio-

based methods are generally not effective in utilizing such data. A gas 

concentration filter is proposed to process low gas concentrations data, and it is 

combined with the SVM model to generate fault diagnosis results. The plurality-

voting SVM model is designed with a new plurality-voting structure and integrates 

the synthetic minority over-sampling technique (SMOTE) to overcome the problem 

of imbalanced data, where the dataset sizes are significantly different for different 

health conditions. A parameter optimization approach based on genetic algorithm is 

employed. The proposed SVM-based approach is compared with existing DGA-

based power transformer diagnosis methods, including rule-based methods and 

various AI methods. The comparative study results demonstrate the effectiveness 

of the proposed SVM-based power transformer fault diagnosis approach.  
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Chapter 1: Introduction 

 

1.1 Background 

 

It is hard for modern people to live without electricity. To use electricity, power 

transformers are essential to convert the voltage of electricity to satisfy the demand of 

users. Power transformer can increase voltage to reduce the energy loss in electricity 

delivery process, and decrease voltage to meet the demand of daily use of electricity. 

Therefore, we can find power transformers near power plants as well as the places where 

people live.  

 

 

Figure 1.1 An illustration of a general power transformer (ENGie, 2016) 
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A general power transformer is shown in Figure 1.1 (ENGie, 2016), and it usually 

consists of iron cores, windings, cooling systems, insulation components, and bushings. 

The iron cores and windings are the key components to convert voltage. The cooling 

systems and insulation components are vital to guarantee basic operation environment. 

Brushings are used to connect input and output wires.  

 

Operating a power transformer usually requires less care than most other power and 

mechanical equipment. However, since it links power plants to customers and the 

delivery system, transformer failures can cause huge losses in production, and repair or 

replacement can also lead to significant costs. Transformers accidents are not rare. 

According to FM Global, a commercial property insurance company, transformer failures 

cost its clients (energy-related companies) a combined US$339 million in lost revenue 

within a five-year period (2008–2013), which ranked third among the top five types of 

losses (Gulla, 2014). Most recently, the Brazi power plant in Southern Romania, operated 

by OMV Petrom, southeastern Europe’s largest integrated oil and gas group, suffered a 

power outage because of a power transformer failure on April 28, 2017 (Wallingford, 

2017). Although the failure is currently under investigation, OMV Petrom estimated that 

the plant would more likely be out of operation for the next three months, which would 

adversely affect the local industry and people’s daily lives. 

 

Such accidents happen frequently and lead to huge consequence because the origin of a 

failure is hard to detect and the development of an accident is so fast that local fire 

services cannot easily stop the immediate damage. The problem always begins with an 
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internal short circuit and an electric arc inside insulation components or windings of 

transformers, which can lead to the increase of the temperature inside transformers. 

Besides, the failure in cooling systems or jam of the insulation oil can heat the 

temperature up as well. The high heating temperature can vaporize and decompose the 

insulating liquid and greatly increase the internal pressure, which results in a huge 

explosion of the transformer’s outer shell. During the explosion, the insulating liquid oil 

can be ejected and form fireballs that burn down other combustibles. The liquid oil 

leaking from the transformer’s rupture point can lead to a blazing fire that may spread to 

adjacent equipment. Figure 1.2 (Henderson, 2016) illustrates this terrible process. 

Although initially smoke can be seen, a muffled explosion can be heard, and local fire 

services can be requested immediately, it is hard to prevent substantial damage. 

 

 

Figure 1.2 Explosion of a power transformer (Henderson, 2016) 
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The enormous potential damage and severe consequences of major transformer faults 

require actions to prevent them from occurring. Measures to do so include monitoring 

transformers, detecting faults, and scheduling preventive and predictive maintenance 

activities (Li et al., 2013; Muthanna et al., 2006). 

 

Methods for monitoring transformers have drawn much research attention (Dong et al., 

2008), especially methods based on dissolved gas analysis (DGA), which have gained 

worldwide acceptance in recent decades (Duraisamy et al., 2007a). DGA methods detect 

faults in the transformer by monitoring the insulation oil, which includes liquid 

transformer oil and solid impregnated cellulose. Such faults are typically derived from 

deteriorated insulation and aging (Sun et al., 2012). Different gases, such as hydrogen 

(H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon 

monoxide (CO), and carbon dioxide (CO2), will decompose from the insulation material 

and liquid oil under certain thermal, electrical, or mechanical stresses in the transformer 

and will then dissolve into the transformer oil. When a transformer is undergoing an 

abnormal situation, more gases will be released than the case under normal conditions, 

and their concentrations in the transformer oil will increase. Thus, in other words, DGA 

is used to analyze the degree of the decomposition process by detecting the gas 

concentrations in the transformer oil. 

 

Many methods based on DGA data have been developed by experts to detect transformer 

faults, which have become the dominant methods in electric industries worldwide. These 

methods use different measures and principles, such as gas concentrations, key gases, 
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key gas ratios, and graphical representations (Sun et al., 2012). Gas concentrations 

involve directly use data obtained from DGA. Key gases are analyzed to find the 

dominant gas. Key gas ratios are used to find the relationships between certain gases. 

And graphical representations are used to plot data into a defined graph under specific 

rules. The traditional rule-based methods are listed as follows: 

• Key gas method, 

• Doernenburg ratio method, 

• Rogers ratio method, 

• IEC ratio method, and 

• Duval triangle method. 

 

Apart from these empirical methods, many new approaches and techniques have been 

proposed in recent decades. They are commonly developed with the support of artificial 

intelligence (AI). The most commonly used AI methods for fault diagnosis of power 

transformers include the expert system approach (Styvaktakis et al., 2002; Saha and 

Purkait, 2004a; Németh et al., 2010), fuzzy logic method (Muhamad et al., 2007; Saha 

and Purkait, 2004b; Su et al., 2000b), artificial neural networks (ANN) approach (Sarma 

and Kalyani, 2004a; Seifeddine et al., 2012; Wang et al., 2000a; Zakaria et al., 2012), 

and support vector machine (SVM) method (Bacha et al., 2012a; Fei and Zhang, 2009a). 
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1.2 Research Motivation 

 

The conventional methods can be performed easily without computers. However, a key 

disadvantage is that the accuracy of the diagnosis results from these approaches is quite 

low and cannot satisfy reliability and safety requirements. Intelligent AI-based methods 

have shown their effectiveness for fault diagnosis of power transformers. However, many 

disadvantages still exist. For example, large amounts of data should be known in advance 

when developing such methods, yet real data are usually limited and the amount of data 

for each fault type is extremely imbalanced, which can adversely affect the performance 

of AI-based methods. Besides, existing AI-based methods that directly use ratios as input 

features ignore to consider low-concentration data so that these methods are hard to give 

correct diagnosis results for this kind of data. Therefore, the traditional methods and AI-

based methods deserve extensive study and further exploration to find the best measure 

for fault diagnosis of power transformers. 

 

1.3 Objective and Research Contributions 

 

This thesis focus on condition monitoring and fault diagnosis methods of power 

transformers to support predictive maintenance actions. The existing traditional rule-

based methods and selected AI methods are reviewed and discussed. They suffer from 

limited and imbalanced datasets and the capability to deal with low concentration DGA 
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data, and the fault diagnosis accuracy needs to be further improved. To overcome these 

problems, a new method should be proposed.  

 

In this thesis, a new intelligent approach that integrates a gas concentration filter and a 

plurality-voting SVM model is proposed for condition monitoring and fault diagnosis of 

power transformers based on DGA data, and then this method is compared with existing 

methods to validate its effectiveness. The main contributions of this thesis are 

summarized as follows: 

 

• This thesis contains a review of many research works related to fault-diagnosis 

techniques and methods for power transformers. The strengths and weaknesses of 

these methods are summarized and commented upon, which can provide 

meaningful information for further research. Some common problems and 

challenges in the power transformer industry are also summarized in this thesis.  

 

• The SVM model in the proposed method is designed with a new plurality-voting 

structure rather than the existing multi-layer structure. The newly designed model 

does not highly rely on any single binary sub-SVM, and every sub-SVM is 

equally important.  

 

• The synthetic minority over-sampling technique (SMOTE) is first used to 

generate DGA data and balance training datasets for SVM modeling since it can 

overcome the problem of imbalanced data, where the dataset sizes are 
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significantly different for different health conditions. The fault diagnosis 

performance is improved by using this technique according to the results in this 

thesis. 

 

• A gas concentration filter is proposed to process low-concentrations data, and it is 

combined with plurality-voting SVM model to generate fault diagnosis results. 

This is the first time that an AI-based method is combined with a gas-

concentration judgment procedure.  

 

• Comparisons among the results from different methods are presented to show the 

advantages of the proposed method over the traditional rule-based methods, ANN 

method, and usual SVM approach. The comparison involves not only the overall 

diagnosis accuracies from these methods but also the potential costs of 

misdiagnosis, which is also an important factor that should be considered to 

validate the effectiveness of different methods. 

 

1.4 Thesis Organization 

 

• Chapter 1 – Introduction  

This chapter introduces the background, research motivation, objective and the 

contributions of the thesis. The thesis organization is structured in this chapter 

here.  
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• Chapter 2 – Literature review  

This chapter consists of the literature review on the existing methods for fault 

diagnosis of power transformers. The traditional methods and intelligent methods 

are described and discussed, and the observations from the literature are 

concluded. 

 

• Chapter 3 – Fundamental knowledge  

In this chapter, the fundamental knowledge of SVM, imbalanced dataset problem, 

and existing fault diagnosis methods for power transformers are introduced. SVM 

and SMOTE algorithm are the key components in the proposed method. 

 

• Chapter 4 – The Proposed SVM-based Approach for Fault Diagnosis of Power 

Transformers 

In this chapter, the proposed method for the fault diagnosis of power transformers 

is presented. The details of the proposed approach are discussed too in this 

chapter. 

 

• Chapter 5 – Method validation and comparison 

In this chapter, existing methods and the proposed method are compared using the 

data from the literature. This study gives comparisons of the overall accuracies, 

specific results, and potential costs of misdiagnosis. 
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• Chapter 6 – Conclusion and future work 

Based on the comparison results from Chapter 5, conclusions and suggested 

future work are presented. 
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Chapter 2: Literature Review 

 

In this chapter, literature related to condition-monitoring and fault-diagnosis methods for 

power transformers is presented and discussed. DGA, one of the basic sources of 

diagnostic methods for power transformers, is reviewed in Section 2.1. The traditional 

methods that include the key gas, Doernenburg ratio, Rogers ratio, IEC ratio, and Duval 

triangle method are discussed in Section 2.2. In Section 2.3, the non-traditional 

methods—in other words, the AI methods—are discussed. Finally, the literature review 

is summarized in Section 2.4. 

 

2.1 Dissolved Gas Analysis (DGA)  

 

Transformer equipment is so expensive that it should be monitored carefully during their 

operation. The cost of a 765 KV transformer failure is over $2 million, and this price is 

only for the equipment itself, without the calculated loss of production (Duval, 1989).  

 

DGA was introduced to monitor the conditions of a specific transformer and gradually 

gained acceptance among professional experts. Like doctors checking a human body with 

a stethoscope, DGA can be used to determine the most possible situation inside 

transformers, give early warnings and diagnoses, and increase the opportunity to act 

correctly.  
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It is not difficult to understand why DGA provides useful information for condition 

monitoring. Under normal circumstances, the insulation oil and cellulose molecules 

constituting the dielectric insulation do not decompose at a rapid rate. However, if high 

thermal and/or electrical stresses exist in the transformer, these conditions will increase 

the chemical breakdown of the insulation oil and solid insulation. These breakdowns 

generate gases that partially or entirely dissolved in the oil. The dissolved gases can be 

simply detected at the ppm unit level and can be divided into combustible and 

noncombustible gases, as listed in Table 2.1. 

Table 2.1 Dissolved gases in the insulation oil 

Combustible Noncombustible 

Carbon monoxide (CO) Oxygen (𝑂2) 

Hydrogen (𝐻2) Nitrogen (𝑁2) 

Methane (𝐶𝐻4) Carbon dioxide (𝐶𝑂2) 

Ethane (𝐶2𝐻6) Vapor (𝐻2𝑂) 

Ethylene (𝐶2𝐻4) 
 

Acetylene  (𝐶2𝐻2)   

 

Therefore, transformers should regularly be monitored by periodically sampling the oil in 

the transformers to collect the gas concentrations as DGA data. With the development of 

sensors, the gases dissolved in transformer oil can be continuously monitored using a gas 

chromatography system (De Faria et al., 2015). After collecting the DGA data, the faults 

can then be diagnosed. These faults roughly include thermal decomposition 

(overheating), corona (partial discharge), and electric arcing. 
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2.2 Traditional Methods for Fault Diagnosis of Power 

Transformers 

 

2.2.1 Key Gas Method 

 

An appearance of a fault can increase the temperature inside the transformer and result in 

decomposition of the insulation oil. The key gas method (IEEE, 1992) is used to directly 

measure the concentrations of the gases that are decomposed and dissolved in the 

insulation oil.  

 

This method identifies faults according to the presence and percentage of gases (Sun et 

al., 2012). After calculating the percentage of each gas, the most dominant ones can be 

defined as the “key gases.” Based on industry experience, the key gases are used to 

interpret the DGA data according to a simple set of facts. For example, under low-

intensity partial discharge or corona fault, insulation oil mainly produces more H2, so the 

key gas for low-intensity partial discharge or corona cases is H2. In other words, if an oil 

sample contains a high percentage of H2, using the key gas method, one can conclude 

that the potential fault is a low-intensity partial discharge or corona. With this method, 

only one or two key gases can finish the diagnosis work to determine the final condition 

results, which is unreliable. 
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2.2.2 Dornenburg Ratio Method 

 

Unlike the key gas method, with which direct gas concentrations are used, the 

Doernenburg ratio method (IEEE, 1992) uses ratios. Three types of gas ratios, CH4/H2, 

C2H2/C2H4, C2H2/CH4 and C2H6/C2H2, can be used to diagnose thermal faults, corona 

discharge, and arc. It should be noted that one can not classify the thermal fault into 

different levels when using this method, but Roger ratio method and IEC ratio method 

can divide the thermal fault into low-temperature thermal fault and high-temperature 

thermal fault.  

 

When using the Doernenburg ratio method, one first checks the concentration of each 

gas. The gas concentrations must exceed the pre-made limits, and then the ratio method 

can be performed by following some specific rules. To finally get the diagnosis result, 

each ratio should fall into predetermined ratio ranges to satisfy the requirements for each 

fault type. However, the Doernenburg ratio method cannot diagnose some conditions, 

and we will get a result of “fault not identifiable: resample.” Therefore, the Doernenburg 

ratio method is not applicable for all conditions. 

 

2.2.3 Rogers Ratio Method 

 

The Roger ratio method (IEEE, 1992) is widely used because it can classify more types 

of thermal faults than the Doernenburg ratio method. This method uses three ratios: 
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CH4/H2, C2H2/C2H4, and C2H4/C2H6. The first two ratios are the same as the first two 

ratios used in the Doernenburg ratio method. However, the Roger ratio method diagnoses 

the faults using direct ratios without checking the gas concentrations, which is a 

necessary step in the Doernenburg ratio method. In the Roger ratio method, transformer 

conditions are classified as normal, low-temperature thermal fault (below 300 °C), 

medium temperature thermal fault (300 °C to 700°C), high-temperature thermal fault 

(over 700°C), partial discharges, and high energy arcing. The classes are more detailed 

and precise than the Doernenburg ratio method. 

 

It should be noted that the Roger ratio method, which only uses ratios, may highly 

misdiagnose the condition when gas concentrations are low. That is, this method may not 

perform well on new transformers, which often have low gas concentrations in their 

insulation oil. 

 

2.2.4 IEC Ratio Method 

 

The IEC method uses the same three gas concentration ratios as the Rogers ratio method. 

The first version of the IEC ratio method was published in 1978 using a simple coding 

scheme. The corresponding code for each ratio range can be found in the IEC document. 

The diagnosis result is determined by a coding scheme. However, the 1999 version of the 

IEC ratio method uses the ratio ranges directly (IEC, 1999). The next version of the 

document of IEC added a 3D graphical representation of the ratio ranges. Data can be 

plotted on a graph if the faults cannot be diagnosed by the ranges alone. The final 
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determination of the fault type is to find which region of fault in the graph is closest to 

the original ratio’s data point. Similar to other methods, faults are typically classified as 

partial discharges, low or high energy discharges, and thermal faults, whose severity 

depends on the fault temperature. 

 

2.2.5 Duval Triangle Method 

 

The Duval triangle method (Duval, 2002; Duval and Dukarm, 2005) only uses the 

percentage values of three gases—CH4, C2H4, and C2H2—and their plotted locations on a 

triangular map (see Figure 2.1) can help to determine the fault type.  

 

 

Figure 2.1 The map of the Duval triangle method (Duval, 2002) 
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In this method, the faults are classified as partial discharges, high and low energy arcing, 

and thermal faults in three different temperature ranges. Although this approach is easy 

to perform, this approach can also misjudge the condition in new transformers with low 

amounts of gases dissolved in the insulation oil. 

 

2.2.6 Summary of Traditional Methods 

 

The conventional methods are easy to implement when following the corresponding rules 

of each method. Even without using a computer, one of the most important tools in the 

current century, a person can perfectly finish a diagnosis using DGA data. These 

methods are rule-based and do not require historical data, which is advantageous. These 

methods were based significantly on the wealth of experience from monitoring 

transformers in the industry and have been widely recognized.  

 

The primary goal of a transformer-diagnosis method is to obtain accurate diagnosis 

results and detect all of the conditions in the transformers. Thus, many problems exist in 

these methods: 

• Except for the Doernenburg ratio method, the other four methods are not strongly 

applicable to new transformers, which do not have large amounts of gases 

dissolved in the insulation oil. Ratios obtained from low-concentration data span 

a wide range, and using ratios alone may not explain the conditions well.  
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• For the ratio methods and Duval triangle method, if a ratio is just equal to a 

range’s boundary, the diagnosis becomes difficult to decide. If the ratios are close 

to the boundaries, a small difference in the data can lead to an entirely different 

result, which is not true in reality. 

• The Doernenburg ratio method cannot detect some conditions, and the only 

solution in this case is to resample the oil (IEEE, 2008). Thus, blind spots exist in 

the Doernenburg ratio method and can cause more money and time for 

resampling procedures. 

• For one set of data, these five methods can provide different diagnosis result 

(Mehta et al., 2013), and the accuracy of these five methods is not high (Sarma 

and Kalyani, 2004b; Su et al., 2000b). Therefore, it is desired to introduce a more 

reliable method with high fault diagnosis accuracy. 

 

2.3 Non-traditional Methods for Fault Diagnosis of Power 

Transformers 

 

With the development of AI techniques, researchers have established new approaches for 

fault diagnosis. These methods rely on the use of computers and are more or less based 

the experience with the traditional methods. 
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2.3.1 Fuzzy Logic Method 

 

Fuzzy logic is a way of mapping input to the target output using linguistic rules formed 

from human understanding, rather than from stringent mathematical calculations. The 

fuzzy logic method includes three steps: fuzzification, fuzzy inference, and 

defuzzification (Singh and Joshi, 2015). The first step is to transform the input data into 

membership grades for linguistic terms of fuzzy sets, during which the membership 

function is used to associate a grade with each linguistic term. The second step is to find 

the output results from the knowledge-based rules in the form of the linguistic 

interpretation. De-fuzzification involves reconverting the fuzzy output back into an 

output that humans can understand.  

 

A transformer fault diagnosis system was developed that employed a fuzzy logic 

approach and showed better performance than the traditional ratio methods (Huang et al., 

1997). The defined inputs in their study were the three ratios in the IEC method, and the 

accuracy of the fault diagnosis was between 70% to 80% based on over 700 datasets 

from Taiwan Power Company. Instead of the trapezoid membership function used by 

Huang et al. (1997), Su et al. (2000a) employed a demi-Cauchy distribution function to 

improve the diagnosis performance. Su (2016), using the same membership function as 

Su et al. (2000a), extended the IEC’s three input ratios into four ratios (Su, 2016). Dhote 

and Helonde (2014) defined a new fuzzy inference system using a combination of three 

membership functions for their new fuzzy logic model and obtained higher accuracy than 

five other methods mentioned in their work. 



20 

 

 

Although the fuzzy logic method shows advantages over the traditional methods, it still 

has some drawbacks. Only a fixed mathematical membership function can be used in the 

modeling when developing a fuzzy logic method, but the function must be dynamic and 

changeable because it is hard to describe all cases using a single membership function. 

 

2.3.2 Expert System Method 

 

The expert system, emulating the decision-making ability of a human expert, is another 

branch of AI that has been widely used in many industrial and commercial applications. 

It can act as an expert and use specific knowledge to deal with real-world problems. Lin 

et al. made an expert system with rule-based knowledge representation that used a 

knowledge engineering system integrating the Roger ratio and Doernenburg ratio 

methods (Lin et al., 1993). The designed expert system has been tested using records 

from Taiwan Power Company to show its effectiveness in diagnosing transformer faults. 

Beyond the fuzzy logic method, Wang et al. (2000b) also developed an expert system 

consisting of an ANN-based normal/abnormal classifier, a knowledge-based 

normal/abnormal classifier, an ANN-based individual fault detector, and a knowledge-

based individual fault detector to recommend maintenance actions (Wang et al., 2000b). 

The diagnosis accuracy of this expert system is higher than that of the Rogers ratio 

method. Liao et al. (2001) introduced an expert system comprising many modularization 

components, including the ANN approach, the fuzzy logic method, the IEC standards, 
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and some expert experiences (Liao et al., 2001), and two case studies showed the 

effectiveness of their work. 

 

Recently, the number of published studies on the expert system method for diagnosing 

faults in power transformers has not been growing rapidly, compared with the number of 

studies on the fuzzy logic, ANN, and SVM methods. The reason is that expert systems 

depend heavily on known knowledge, which is sometimes complicated and incorrect. 

Poor knowledge can lead to a bad expert system. In addition, expert systems can neither 

gain knowledge through self-learning processes with new data nor fit its diagnostic 

regulations automatically. 

 

2.3.3 Artificial Neural Network (ANN) method 

 

ANNs are powerful tools that can process nonlinear data and has been employed for 

equipment fault diagnosis and prediction issues (Tian and Zuo, 2010). Many methods 

based on ANN and DGA were developed to identify transformer faults. To build a good 

ANN model, researchers should first determine what kind of neural networks to use and 

then select the proper input features, define the number of layers, and use suitable 

parameters to develop the model.  

 

Sun et al. (2007) introduced a back-propagation neural network model, in which each 

weight of neural has an independent learning rate and a momentum coefficient that is 

adapted through iterations. This approach significantly accelerated learning performance 
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and performed better than the conventional back-propagation algorithm, both with a 

constant momentum and without momentum, in fault diagnosis for power transformers. 

Cao et al. (2006) made a probabilistic neural network (PNN) model, in which the 

parameters of the PNN are determined by genetic algorithms to increase the diagnostic 

accuracy.  

 

To find the most proper parameters, Illias et al. (2015) combined the ANN and various 

particle swarm optimization (PSO) techniques to predict transformer faults, which has 

very reliable diagnosis accuracy. To further evolve their model, they developed a 

modified model named the particle swarm optimization-time varying acceleration 

coefficient-artificial neural network (MEPSO-TVAC-ANN) model (Illias et al., 2016). 

Beykverdi et al. (2016) simulated a transformer fault diagnostic model based on a hybrid 

approach using the ANN and the neural-imperialistic competitive algorithm (Nero-ICA). 

Its simulation results validated the Nero-ICA model as being more accurate and efficient 

than the simple structured ANN model when the number of training datasets becomes 

larger. Souahlia et al. (2012) developed a multilayer perceptron neural network model 

that uses a combination of the ratios in the Rogers and Doernenburg ratio methods as 

inputs. The classification accuracy of the classifier is the highest, compared to the fuzzy 

logic, radial basis function, K-nearest neighbor, and probabilistic neural network 

approaches.  

 

It seems that optimized ANN methods can successfully achieve proper diagnosis 

accuracy, yet difficulty exists in determining the network’s structure and the number of 
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nodes in its layers. Also, it is very time-consuming to train the ANN models, compared 

to the time used to develop other types of models. 

 

2.3.4 Support Vector Machine (SVM) Method 

 

SVM, developed by Vapnik in 1995, is a computational learning method based on 

statistical learning theory (Vapnik, 2013a), which can develop effective models for 

classification and reduce the over-fitting problems that occur in ANN methods (Heisele 

et al., 2003). Based on the procedure of preparing an SVM model, four factors can affect 

an SVM model’s performance, which are the overall SVM model structure, proper 

parameters, suitable kernel functions, and selection of proper inputs. 

 

The first SVM-based method for fault diagnosis of power transformers was developed 

through a multilayer approach (Ganyun et al., 2005). A three-layer SVM classifier 

developed is shown in Figure 2.2 (Ganyun et al., 2005), and the advantages of their 

three-layer SVM classifier over the back-propagation ANN method were summarized, 

such as the low requirements of training data and less training time to develop their SVM 

model. However, Ganyun et al. did not conduct optimization of parameters. 

 

Bacha et al., (2012b) also investigated a multilayer SVM classifier with six layers that 

elaborates an input vector established by the combination of ratios, and they showed that 

an SVM with the Gaussian function performed better than an SVM with other kernel 

functions on diagnostic accuracy. A different multilayer SVM model was established in 
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which the genetic algorithm (GA) was applied to optimize the SVM parameters to 

prevent over-fitting or under-fitting of the SVM model (Fei and Zhang, 2009b), and this 

method was proved to perform better than the IEC ratio method, back-propagation ANN, 

and normal SVM method without using genetic algorithm.  

 

Figure 2.2 The structure of Ganyun’s three-layer SVM classifier 

 

In the multilayer SVM fault diagnosis tool proposed by Li et al. (2016), grid search, GA, 

and PSO were used to find the best parameters and a comparison among these three 

parameter optimization methods were conducted and they conclude GA could help find 

the best parameters and can achieve the highest accuracy in fault diagnosis. Liao et al. 

(2013) developed a one-against-one multiclass SVM classifier based on PSO with time-

varying acceleration coefficients for transformer fault diagnosis. Using PSO, the 

classifier with optimized parameters can achieve the best classification accuracy and 

generalization performance among other methods. Zheng et al. (2011) presented a 

multiclass least square support vector machine (LS-SVM)-based classifier for 

transformer fault diagnosis, and the algorithm of PSO was implemented to select the 

optimal input features. Yin et al. (2011) developed a multi-kernel support vector 

classifier that can learn from training samples using the kernel function obtained from a 
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linear combination of several basic kernels. A comparison showed that as the search 

space of the optimal kernel broadens, the robustness of the classifier is enhanced and its 

accuracy improves. 

 

The review above can be summarized as follows: 

• The multilayer SVM model has been popular among researchers (Bacha et al., 

2012b; Fei and Zhang, 2009b; Ganyun et al., 2005). However, if the previous 

SVM layer classifies a set of data incorrectly, the final result will be wrong.  

• In the procedure for optimizing the model, PSO, GA, and other algorithms are 

widely utilized to find the best parameters for fault diagnosis models (Fei and 

Zhang, 2009b; Liao et al., 2013; Yin et al., 2011; Zheng et al., 2011), which can 

significantly improve the performance of the models. 

• The choice of kernel functions also plays an important role in perfecting the 

model. Popular kernel functions, such as the RBF, linear, and Gaussian kernel 

functions, can be used either independently or jointly (Yin et al., 2011). 

• Regarding the procedure of choosing the features as inputs of a model, using 

different ratios of gas concentrations as the input is the most common procedure. 

It is feasible to use the GA to find the most related ratios that can be employed as 

the input (Li et al., 2016).  
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2.4 Discussion and Summary 

 

In the 1980s and 1990s, the traditional methods for fault diagnosis of transformers, based 

on historical data and industry experience, prevailed because of their convenience and 

effectiveness. However, because many accidents still happened after these methods were 

used for condition monitoring, the requirement of highly reliable diagnosis was adopted. 

Traditional methods provide more information for the development of AI methods. Most 

AI methods use ratios derived from traditional ratio methods as input for their models. 

That is, the traditional approaches have concluded the relevant input features for AI-

based methods to determine transformer faults.  

 

Although conventional methods cannot give highly accurate fault diagnosis, some parts 

of the individual methods are reliable and efficient. For example, the first step of the 

Doernenburg ratio method, the concentration judgment, matters to deal with the low 

concentration data in new transformers. Ratios make up almost all the possible inputs in 

AI methods, but they are not credible in the case of new transformers. If we only use the 

ratios for a set of low-concentration data from a new transformer, named data A, and 

another set of data that is precisely ten or more folds of the values in data A, the 

diagnosis results will be the same. In other words, these two cases are identical for the 

methods that only use ratios as input without paying attention to the gas concentrations. 

However, data A may not cause a fault to occur, but another set of data is more likely to 

give rise to a failure. A new transformer without much gas released and dissolved in the 
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insulation oil should have a normal status, which is true based on real practical cases. 

This is also true using the Dornenburg ratio method because its first step is to judge the 

concentration of each gas. If no gas concentrations are over the limit values, the 

transformer does not have a fault. Thus, the procedure of the concentration judgment in 

the Doernenburg ratio method is useful and should be saved in developing other new 

approaches.  

 

As to the AI methods, they are not perfect either. Indeed, they can successfully avoid the 

boundary problem that a small difference in the data can lead to an entirely different 

result when the ratios are closer to the condition boundaries set by each traditional 

method. However, AI methods have shortcomings as well. Developing AI models 

requires plenty of historical data, but the traditional methods do not. There are few 

databases available for researchers to use. In the daily transformer management in a 

company, the frequency of data sampling is from every two to six months, depending on 

the age of the transformer. This frequency is not high, and the company may not get 

much data, even over the course of several years.  

 

Meanwhile, since there are many types of faults in the transformers, it is hard to get 

many data for each of the faults. There are many records for the normal condition 

because most conditions are normal because of the normal operation of the transformer. 

Much data also exist on high-energy-discharge faults, because this severe fault occurs at 

the end under the undetected unhealthy conditions inside the transformers. However, for 

less serious faults, such as partial discharge, the records are rare and insufficient. 
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Therefore, usually we can only get an imbalanced dataset with a very significant 

difference among the total numbers of each type of fault. However, feeding the 

imbalanced datasets to the SVM model will lead to an imbalanced model with 

significantly decreased performance (Wu and Chang, 2003). Classifiers, including 

SVMs, cannot be very effective when based on an imbalanced database. This is because 

they are designed to generalize from sample data and output the simplest hypothesis that 

best fits the data based on the principle of Occam’s razor, which is embedded in the 

inductive bias of many machine learning methods (Akbani et al., 2004). In other words, 

when there is a data imbalance, the classification result is often biased to the majority 

class. Therefore, to balance the datasets, proper data sampling should be conducted.  

 

From a review of nontraditional methods, we can conclude that AI methods are popular 

among researchers. The expert system and fuzzy logic models can take DGA standards 

and other human expertise to form a decision-making system, which can also utilize the 

influence of objective factors, such as transformer size, manufacturer, volume of oil, and 

history of diagnosis results. However, both methods require an extensive knowledge base 

that must be manually constructed. Therefore, they cannot adjust their diagnostic rules 

automatically and gain knowledge from new data samples through a self-learning 

process. ANN methods can directly acquire experience from training data, which 

overcomes the shortcomings of the expert system. However, it still has certain 

disadvantages in applications, such as local optimization, over-fitting, and difficulties in 

convergence. Besides, training an ANN model takes longer than making an SVM model 

(Ganyun et al., 2005). SVM is powerful in tackling the over-fitting problem. It is 
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effective for dealing with small sampling, nonlinear data, and high dimensional input 

problems. These problems only exist in the problem of transformer fault diagnosis. 

 

Therefore, it is important to propose a new fault diagnosis approach for transformers, 

which could be integrated with concentration judgment procedures, proper data sampling 

strategies, and an optimized SVM approach. 
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Chapter 3: Fundamental Knowledge 

 

This chapter presents the basic knowledge of the mathematical modeling of support 

vector machines, the imbalanced dataset issue, and some existing fault diagnosis methods 

mentioned in Chapter 2 and used for comparison purposes in Chapter 5. 

 

3.1 The Basics of Support Vector Machines (SVM)  

 

 

Figure 3.1 Illustration of a binary classification by SVM 

 

An SVM approach tries to find an optimal hyperplane to separate different types of data 

by obtaining the maximum margin between this hyperplane and the data (Vapnik, 

2013b). To make the SVM theorem visually easy to understand, Figure 3.1 shows an 
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illustration of a simple binary classification problem, where the red-filled shapes 

represent the support vectors and the unfilled and filled shapes represent the training 

data. The hyperplane can be drawn after obtaining the support vectors. 

 

The mathematical story behind Figure 3.1 can be interpreted as follows. Given a set of 

data T = {𝑥𝑘, 𝑦𝑘}𝑘
𝑚, where 𝑥𝑘 denotes the input vector, 𝑦𝑘 ∈ {−1,1} denotes the output, 

and 𝑚 denotes the total sample number, and then ∃f(𝑥) = 0 divides the given data when 

the two classes are linearly separable.  

 f(𝑥) = 𝑤 ∙ 𝑘 + 𝑏 = ∑ 𝑤𝑘 ∙ 𝑥𝑘 + 𝑏 = 0
𝑚

𝑘=1
 （3.1） 

where 𝑤  denotes the weight vector and b denotes the bias term.  𝑤  and 𝑏  are used to 

define the position of the hyperplane, which should satisfy the constraints: 

 

 𝑦𝑘𝑓(𝑥𝑘) = 𝑦𝑘(𝑤 ∙ 𝑥𝑘 + 𝑏) ≥ 1, 𝑘 = 1, 2, … , 𝑚 （3.2） 

 

The positive slack variable 𝜁𝑖 is the distance between the margin and the vectors 𝑥𝑘 that 

lie on the wrong side of the margin. Therefore, the optimization problem becomes: 

 Minimize      
1

2
‖𝑤‖2 + 𝑐 ∑ 𝜁𝑖  

𝑚

𝑘=1

, 𝑘 = 1, 2, … , 𝑚 （3.3） 

 

 Subject to                    {
𝑦𝑘(𝑤 ∙ 𝑥𝑘 + 𝑏) ≥ 1 − 𝜁𝑖  

𝜁𝑖  ≥ 0
 （3.4） 

 

where c is the penalty factor.  
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According to the Lagrangian principle, the problem transfers to: 

 Maximize    L(𝛼) = ∑ 𝛼𝑘 −
1

2
∑ 𝛼𝑘𝛼𝑖𝑦𝑘

𝑚

𝑘,𝑖=1

𝑦𝑖(𝑥𝑘 ∙ 𝑥𝑖)

𝑚

𝑘=1

 （3.5） 

 Subject to  ∑ 𝛼𝑘𝑦𝑘 = 0,

𝑚

𝑘=1

𝛼𝑘 ≥ 0, k = 1, 2, … , m  （3.6） 

Then, the problem changes to solve the dual optimization problem for linear 

classification: 

 f(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑘𝑦𝑘(𝑥𝑘 , 𝑥𝑖) + 𝑏

𝑚

𝑘,𝑖=1

) （3.7） 

An SVM can solve the nonlinear problem as well, using kernel functions to map the 

original data into a high-dimensional space where the linear separation becomes possible. 

Eq. 3.7 changes to Eq. 3.8. 

 f(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑘𝑦𝑘𝜓(𝑥𝑘, 𝑥𝑖) + 𝑏

𝑚

𝑘,𝑖=1

) （3.8） 

 

where 𝜓(𝑥𝑘, 𝑥𝑖) is called the kernel function, 𝜓(𝑥𝑘, 𝑥𝑖) = 𝜙(𝑥𝑘)𝜙(𝑥𝑖). Figure 3.2 shows 

an example of mapping two-dimensional data into a three-dimensional space, where the 

data can be separate linearly. The commonly used kernel functions are shown as follows 

(Scholkopf and Smola, 2001): 

• linear kernel function: 𝜓(𝑥𝑘, 𝑥𝑖) = 𝑥𝑘 ∙ 𝑥𝑖 

• polynomial kernel function: 𝜓(𝑥𝑘, 𝑥𝑖) =  (𝑥𝑘 ∙ 𝑥𝑖 + 1)𝑑 

• Gaussian radial basis kernel function: 𝜓(𝑥𝑘, 𝑥𝑖) = 𝑒𝑥𝑝(− ‖𝑥𝑘 −  𝑥𝑖‖ 2𝜎2⁄ ) 

• sigmoid kernel function: 𝜓(𝑥𝑘, 𝑥𝑖) = tanh (𝛼(𝑥𝑘, 𝑥𝑖) + 𝛽) 
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Figure 3.2  An illustration of mapping two-dimensional data into a three-dimensional 

space 

 

3.2 Imbalanced Dataset Problem and Its General Solution   

 

The problem of the imbalanced dataset in machine learning is a situation where the total 

size of a class of data (positive) is far larger than the total number of another class of data 

(negative). This case is ubiquitous in the real world, including in cases of medical 

diagnosis, optical character recognition, fraud detection, etc. For example, if we 

randomly collected body temperature data from all the children in a primary school, most 

of the data would be under 37 °C because most of the children would not be suffering a 

fever, and a dataset containing fewer feverish children and more healthy children would 

be considered an imbalanced database. That is, the case is considered an imbalanced 

dataset when the ratio between a class and another class is much higher than one.  
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Most machine learning algorithms and approaches can work well when the number of 

instances of each class is roughly equal. However, if the number of cases of one class far 

exceeds the number in the other, it can give rise to incorrect classification problems. This 

issue is interpreted in Figure 3.3. In Figure 3.3 (a), we have a hyperplane that separates 

the two classes of training data (filled in black) with the class labels of A and B. 

However, here there can be a situation in which a set of testing data (filled in red in 

Figure 3.3 (b)) labeled in class B is misclassified as class A by the hyperplane. If we 

have more data (filled in green and black) to balance the data set, the hyperplane can be 

more exact and make the classification more reliable, as shown in Figure 3.3 (c). 

 

Figure 3.3 An illustration of the imbalanced dataset problem solved by oversampling 

 

It should be noticed that the problem can also be solved if we remove some of the data 

from class A, shown in figure 3.4. However, this approach will eliminate much real 

information, so it works well only when we have enough data in the minority class. 

Otherwise, the removal of information could give rise to a worse classification result. 
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Figure 3.4 An illustration of the imbalanced dataset problem solved by under-sampling 

 

3.3 Existing Fault Diagnosis Methods Based on DGA 

 

This section describes the commonly used DGA approaches for fault diagnosis of power 

transformers. The key gas method, shown in Section 3.3.1, is related the feature 

extraction part of the methods proposed in Chapter 4. The Roger ratio method, 

Doernenburg ratio method, and IEC ratio method are used in the result comparison part 

in Chapter 5, are presented in Section 3.3.2. 

 

3.3.1 Key Gas Method 

 

The key gas method directly measures the DGA data after evidence of a fault. When the 

percentage of each gas is calculated, the most dominant gas can be defined as the “key 

gas.” When the key gases can be determined, the corresponding fault type is determined 
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from experience as shown in Table 3.1. This approach is easy to conduct without many 

calculations, so it was applied the most frequently in industries several decades ago. 

Table 3.1 The interpretation of the key gas method 

Key gases Suggested fault types 

𝑂2 and 𝑁2 Non-fault condition 

𝐶2𝐻6 and  𝐶2𝐻4 Low temperature overheating  

𝐶2𝐻4 High temperature overheating 

CO and 𝐶𝑂2 Overheating of cellulose insulation 

𝐻2 Corona 

𝐶2𝐻2 Arcing  

 

 

3.3.2 Ratio Methods 

 

Unlike the key gas method using the percentage of gas concentration, the ratio method is 

employed using the ratio values between certain gas concentrations. The commonly used 

ratio methods are the Doernenburg (Doernenburg and Strittmatter, 1974), Roger (Rogers, 

1978), and IEC 60599 ratio methods (IEC, 1999). Ratio methods are also easy to 

implement by finding the corresponding ratio ranges. The ratios used in these methods 

are listed below: 

• R1: CH4/H2 

• R2: C2H2/C2H4 

• R3: C2H2/CH4 

• R4: C2H6/C2H2 

• R5: C2H4/C2H6 
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3.3.2.1 The Doernenburg ratio method 

 

 

Figure 3.5 Flowchart of the Doernenburg ratio method (IEEE, 1992) 

 

The Doernenburg ratio method uses four ratios, R1 to R4, to make a fault diagnosis for 

power transformers, and the detailed procedure is as follows (IEEE, 1992): 

• Step 1. Use a chromatograph to extract the gases and separate them, and then 

collect the DGA data. 

• Step 2. If at least one of the gas concentrations for H2, CH4, C2H2, and C2H4 

exceeds twice the value of limit L1 and one of the other two gases exceeds the 

value of limit L1, this case is considered faulty and then proceed to next step. 

Otherwise, return a non-fault diagnosis result. L1 values are shown in Table 3.2. 
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• Step 3. Calculate the ratios and find the suggested diagnosis result based on 

Figure 3.5. 

Table 3.2 Limit concentrations of dissolved gas 

Gas L1 value (ppm)  

H2 100 

CH4 120 

CO 350 

C2H2 1 

C2H4 50 

C2H6 65 

 

 

Figure 3.6 Flowchart of the Roger ratio method (IEEE, 1992) 
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3.3.2.2 Roger ratio method  

 

The Roger ratio method only uses three ratios, R1, R2, and R5 (IEEE, 1992), and it 

follows a similar procedure as the Doernenburg ratio method. However, this method does 

not require checking the gas concentrations, and one can calculate the ratios directly. In 

addition, this method can identify more classes of fault conditions than the Doernenburg 

ratio method. The flowchart is shown in Figure 3.6. 

 

3.3.2.3 IEC ratio method 

 

The IEC ratio method uses the same three ratios as the Roger ratio method. The latest 

version uses the graphic rules as shown in Figure 3.7 to classify the specific fault 

conditions. For each DGA data, the ratios, R1, R2, and R5 should be calculated first, and 

then map this set of data in Figure 3.7. If the data fall into any of the cuboids labeled with 

fault names, the diagnosis result can be obtained. This figure can be translated in Table 

3.3 so that the procedure for using this method becomes similar with other two ratio 

methods. 
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Figure 3.7 The graphic representation of the IEC method (IEC, 1999) 

Table 3.3 Diagnosis principle of the ratio method 

Fault type R1 R2 R5 

Partial discharge <0.1 not significant <0.2 

Low energy discharge 0.1-0.5 >1.0 >1.0 

High energy discharge 0.1-1.0 0.6-2.5 >2.0 

Thermal <300°C not significant not significant <1.0 

Thermal 300-700°C >1.0 <0.1 1.0-4.0 

Thermal >700°C >1.0 <0.2 >4.0 
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Chapter 4: The Proposed SVM-based Approach for 

Fault Diagnosis of Power Transformers 

 

In this chapter, the proposed SVM-based approach for fault diagnosis of power 

transformers is introduced. Section 4.1 describes the challenges that current methods 

present. To solve these problems, the proposed method is presented in Section 4.2. This 

method integrates a gas concentration filter and a plurality-voting SVM model developed 

by using a plurality-voting structure, optimized parameters and balanced datasets from 

the synthetic minority over-sampling technique (SMOTE). Section 4.3 gives a summary 

of this chapter. 

 

4.1 Existing Methods and Challenges 

 

The conventional fault diagnosis method cannot show high diagnosis accuracies, and it is 

a trend to further develop new methods integrated with AI approaches (Bacha et al., 

2012b; Ganyun et al., 2005; Illias et al., 2015; Liao et al., 2013; Sarma and Kalyani, 

2004a; Zheng et al., 2011). As seen from the literature review, the intelligent methods, 

like fuzzy logic, the expert system, and ANN, suffer various disadvantages, and a method 

based on SVM may help to assist fault diagnosis for power transformers. 
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Table 4.1 Statistic gas concentrations and the time of operation information for healthy 

transformers 

Gas Under four years Under ten years Over ten years 

CH4 70 150 300 

C2H4 150 200 400 

C2H6 50 150 1000 

C2H2 30 50 150 

H2 150 300 300 

CO 300 500 700 

CO2 3500 5000 12000 

 

With the increasing investment in electric facilities, many new transformers are being 

employed. New transformers that have never had a fault occur before do not have many 

gases generated or dissolved in their insulation oil. As a matter of fact, this condition 

does not indicate a fault in a new transformer. When SVM methods are used, we do not 

directly use the gas concentration data as the input for the SVM model because the 

difference among the concentration values is very large. For example, it is possible for 

the concentration of H2 in the insulation oil to be less than 100 ppm in one case, but in 

another instance, its value could be more than 30,000 ppm. Therefore, instead of directly 

using concentrations, ratios between gases are commonly used in SVM models, and the 

ratios are derived mostly from the experience of the conventional ratio methods. 

However, for most of the data collected in new transformers, the ratios can vary from 

large to small because the gas concentrations in the new healthy transformers, as shown 

in Table 4.1, are low (Singh and Bandyopadhyay, 2010). An example is shown in Table 

4.2, in which a slight change in the concentration of C2H2 can make the C2H6/C2H2 ratio 

vary from ∞ to 6, and if this ratio is an attribute of a classifier, the classification results 
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should be questionable. Thus, this situation can make it difficult for classifiers to achieve 

an accurate diagnosis result. 

Table 4.2 An assumption of gas concentrations and ratios 

No. 
C2H6 

(ppm) 

C2H2 

(ppm) 
Ratio 

1 60 0 ∞ 

2 60 0.01 6000 

3 60 0.1 600 

4 60 1 60 

5 60 5 12 

 

Several different types of faults can occur in transformers, and we need to be able to 

diagnose the specific condition inside the transformer. However, the single SVM 

classifier is only a binary classifier that can only classify different data into two distinct 

and opposite conditions. This classifier is applicable for problems like classifying a 

nonzero real number as negative or positive. To classify the faults in detail, almost all of 

the SVM-based methods currently used in this field are multilayer SVMs (shown in 

Figure 2.2), where the SVM in each layer is a binary classifier (Bacha et al., 2012b; Fei 

and Zhang, 2009b). These models consist of several “one-against-rest” SVM layers. The 

problem is that if the binary SVM in the previous layer classifies the condition 

incorrectly, no matter how other SVMs classify, the final classification result will be 

wrong. Therefore, the model relies much on the SVMs in the previous layer, which gives 

rise to the potential for incorrect classifications.  

 

The third challenge is that typically only limited data with known conditions are 

available. The truth is that it is hard to detect non-severe conditions inside the 
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transformer, and inspectors always deeply inspect and check conditions inside 

transformers when their conditions have already become alarming or led to failures. 

Therefore, we can normally collect very few data for non-severe fault types, such as 

partial discharge. However, when developing classifiers, a limited amount of data or 

imbalanced dataset can make the diagnosis accuracy worse. 

 

4.2 Modeling of the Proposed SVM-based Approach for Fault 

Diagnosis of Power Transformers 

 

Based on the challenges described above, a new fault diagnosis method for a power 

transformer is presented in Figure 4.1. First, an unknown DGA data should be examined 

by a gas concentration filter to pick out the low concentration case, i.e. NF (no fault) case. 

This step is to check whether the set of data satisfies the requirement of low-

concentration data that are normally collected from new transformers. If the data belong 

to an NF case, the gas concentration filter will directly give the final diagnosis result as 

the NF condition. Otherwise, this information should be diagnosed through a plurality-

voting SVM model, which uses a new structure to integrate fifteen binary SVMs. Each 

binary SVM model is trained by using balanced training datasets from the data 

oversampling approach, named SMOTE. 

 

To clearly develop the proposed method, Section 4.2.1 shows how to set up the plurality-

voting SVM model to avoid the drawbacks of multi-layer SVM models, Section 4.2.2 
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improved the model developed in Section 4.2.1 by using SMOTE to balance the training 

data, and Section 4.2.3 introduced the gas concentration filter to deal with the problem of 

the concentration of data being low.  

 

Figure 4.1 Overview of the proposed method 

 

4.2.1 Development of the Plurality-voting SVM Model Using 

Imbalanced Dataset 

 

In this thesis, we propose to identify total six conditions by using SVM methods, which 

is according to the IEEE and IEC standard (IEC, 1999; IEEE, 1992). These six cases 

include five types of fault conditions and the healthy (no fault) condition, as shown in 

Figure 4.2.  
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Figure 4.2 Classified fault types by the plurality-voting SVM model 

 

Figure 4.3 Steps for developing the plurality-voting SVM model  
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The structure of the proposed SVM model is different with multilayer SVM models (see 

Figure 2.2) and only one layer with fifteen binary SVM models is designed. Thus, this 

new SVM model does not highly rely on any single binary sub-SVM, and every sub-

SVM is equally important.  

 

There are three steps to develop the plurality-voting SVM model, as shown in Figure 4.3. 

1. Data collection: gathering enough qualified data with inspected operation 

conditions of transformers 

2. Feature extraction and data processing: preparing data for training and testing 

SVMs 

3. Modeling of the plurality-voting SVM approach: randomly separate the dataset 

into training data and testing data, develop total fifteen binary SVM submodels 

for any two types of training data and organize them as the final plurality-voting 

SVM model 

 

The modeling procedure is described in detail as follows. 

 

4.2.1.1 Data collection 

 

Collecting enough historical DGA data from the power transformer is not easy. DGA 

data are normally collected from a transformer every two to six months, depending on 

the age of the transformer. That is to say, through several years of the operation of a 

transformer, we may only accumulate less than twenty sets of data, and it is very likely 
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that all the data will represent only normal conditions. Thus, successfully collecting all 

types of data from only one transformer or only one company, including all kinds of fault 

types and normal data, is tough. Besides, though many companies have their own 

databases, they do not know what the real conditions inside the transformers for these 

data are because no obvious faults have been detected due to the lack of deep inspections. 

Therefore, the raw data available for public research are very limited. 

 

Thankfully, IEC TC 10 database includes many sets of DGA data, which gathered from 

global corporations such as LCIE, Asinel, Hydro Quebec, and Enel (Duval and dePabla 

2001). The classification of faults in this database includes T1, T2, PD, D1 and D2, 

which can be reliably identified by visual inspection of the equipment after the fault has 

occurred in service. The information in each set of data contains the values of dissolved 

gas concentrations, identified fault type, and places where the fault occurred. It also 

contains 50 sets of normal-condition data. Most of the data employed in this paper are 

from this database, and a small portion of the data are collected from credited literature 

(Duraisamy et al., 2007b; Yadaiah and Ravi, 2011). The detailed data information is 

shown in Table 4.3. 

Table 4.3 The overview of the data employed in this study 

Data Sources 
Data type 

T1 T2 PD D1 D2 NF Total 

Duval and dePabla, 2001 16 18 9 26 48 50 167 

Duraisamy et al., 2007b 
    

2 2 4 

Yadaiah and Ravi, 2011 3 2 
   

4 9 

Total 19 20 9 26 50 56 180 
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4.2.1.2 Feature extraction and data processing 

 

Feature selection from the raw data is an important procedure for computational 

classifiers. Any good classifier relies much on the selected features or attributes derived 

from the raw data (Chandrashekar and Sahin, 2014; Liang et al., 2014; Zhang et al., 

2014). The method of extracting features provides a way of maximizing the pattern 

recognition performance, and good features help the computational classifiers understand 

more useful knowledge from the data in machine learning applications (Chandrashekar 

and Sahin, 2014). 

 

The proposed method based on an SVM approach definitely needs good features as well. 

Therefore, features from data should be selected to use in the SVM modeling procedure.  

As we mentioned in Chapter 2, almost all the AI-based computational methods use ratios 

from the conventional methods as the input in their models instead of directly using the 

gas concentrations. In this study, we use five ratios, R1 to R5, as shown in Section 3.3.2, 

as the selected features of the modeling. We take the logarithmic transform for the ratios 

to decrease the great difference among the ratio values, as shown in Eq. 4.1. Using this 

equation, the raw data collected in step 1 are interpreted from Figure 4.4 to Figure 4.9. 

 𝐿𝑅𝑖 = log (𝑅𝑖) (4.1) 

Where LR is the value of the logarithmic transform of the gas concentration ratios.  

 

Figure 4.4 shows the LR values of the T1 data. As we can see, LR4 is the maximum 

value among these five LR values, which means the R4 (C2H6/C2H2) value is very large, 
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and C2H2 is not significant compared with the C2H6 values in the low-temperature 

thermal fault cases. Also, the C2H6-related values, LR5 values, are close to zero, which 

means that the differences between C2H4 and C2H6 values are small. Therefore, we can 

conclude that C2H4 and C2H6 are the dominant gases for the T1 cases, which also 

confirms the conclusion from the key gas method, as shown in Table 3.1. Apart from the 

analysis of the dominant gases, if we only consider the values of the LRs, we can see that 

the LR2 and LR4 are all negative and almost all LR4 values rank at the top, which is the 

key feature of T1 cases.  

 

 

Figure 4.4 LR values of the 19 T1 data 
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Figure 4.5 LR values of the 20 T2 data 

 

Figure 4.6 LR values of the 9 PD data 
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Figure 4.7 LR values of the 26 D1 data 

 

Figure 4.8 LR values of the 50 D2 data 
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Figure 4.9 LR values of the 56 NF data 

 

Figure 4.10 LR value ranges for each fault type 
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Similarly, we can find regularities for some other cases. As we can see in Figure 4.5, 

LR2 and LR3 are always negative in the case of T2 fault and almost equal to each other. 

Most of the LR5 values are positive and within the range of [0, 1]. In Figure 4.6, there is 

a general rule that the order of the LR values, from maximum to minimum, is LR4 > 

LR2 > LR1 > LR5 > LR3 in each set of data. We can also find that only the LR4 values 

are positive and the LR1, LR3, and LR5 values are all negative. However, in the case of 

D1 and D2 fault types, LR4 values are negative and almost the smallest values, as shown 

in Figure 4.7 and Figure 4.8. LR5 values are the biggest in all D2 cases as shown in 

Figure 4.8. By contrast, for T1 and PD cases, LR4 values are almost the biggest values 

among all the other LR values, but the difference between these two cases can be 

recognized by the values of LR2. For D1 and D2 cases, LR4 has the lowest values, but it 

is different in thermal fault cases. 

 

Figure 4.10 shows the LR value ranges, which can help compare the differences between 

the data for different fault types. We can see that if the LR1 value is positive, the fault 

type is most likely a thermal fault, T1 or T2. Positive LR2s always match a D1 or D2 

discharge fault. LR1 and LR2 are both low in thermal fault cases. LR3 is the smallest 

value in the DP fault. LR4 is low compared to other LR values in discharge fault cases. 

In D2 situations, the largest LR value is more likely to be LR5. All the LR values seem in 

a similar range from around -4 to 4 in the NF cases. As for the NF case, there is not a 

general rule that we can summarize, but it is always the case in the ratio method that if 

we cannot identify whether a case is in a fault condition, it is an NF case. 
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Therefore, some rules from different ranges of LR values in each case are somehow 

obvious. These LR values can contribute as input features to help classify the various 

situations. 

 

4.2.1.3  Modeling of the plurality-voting SVM approach 

 

For building SVM classifiers, known data should be split into training sets and testing 

sets. The training data are used to develop the SVM model, and the testing data test the 

performance of the model. In the 180 total sets of data, there are only nine records of PD 

faults and fewer T1 and T2 fault records. To guarantee enough data for testing, one-third 

of the data was used to test the model. If only a small portion of the data were used to 

train the model, the model would be inadequate for classifying other data accurately. 

However, if a large portion of the data were used to train the model, the remaining data 

could not be used to assess the quality of the model. The information for the training and 

testing samples is shown in Table 4.4, including 37 training samples for the NF case, 

over six times the amount of PD fault datasets. This difference exists because 

transformers operate normally most of the time and because non-serious PD cases are 

difficult to detect. Thus, companies do not have much data on PD cases compared to NF 

cases.  

 

Once the datasets are ready, it is time to model SVMs. As discussed in Section 4.1, an 

issue with the multi-layer SVM model is that when the binary SVM in the previous layer 

classifies the condition incorrectly, the final classification result will also be incorrect. To 
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overcome this problem in the multi-layer SVM model, a plurality-voting SVM structure 

for using the binary SVM classifiers is proposed in Figure 4.11. 

Table 4.4 Overview of the training and testing samples 

 

 

 

 

 

 

 

Figure 4.11 A voting system by binary SVMs 

Data 

type 

Total 

samples 

Training 

samples 

Testing 

samples 

T1 19 13 6 

T2 20 13 7 

PD 9 6 3 

D1 26 17 9 

D2 50 33 17 

NF 56 37 19 

Total 180 119 61 
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The first step is to use any two types of processed feature inputs to train the sub-SVM 

models. Because there are total six types of data, the models should have total 𝐶6
2 =

6×(6 − 1) 2⁄ = 15 binary SVMs. For example, we use T1 and T2 training samples to 

develop SVM1 so that total 26 sets of data are trained. Similarly, we use T1 and PD 

training samples (19 in total) to develop SVM2. Using SVM1, we can only get the 

classification result of T1or T2, and, likewise, we can only get the classification result of 

T1or T2 from SVM2. Unlike the multilayer models, in this model, every one of the 

fifteen SVMs plays the same role and the diagnosis result does not rely much on any of 

the SVMs. This approach is similar to many real-world election activities. For example, 

every citizen should have the same right to select a president, and it may cause problems 

if citizens select the president based much on the recommendation from only one citizen.  

 

The kernel function should then be determined to use in the SVM modeling. Linear, 

polynomial, Gaussian radial basis, and sigmoid kernel functions are commonly used in 

the machine-learning field, and in this study, the sigmoid function served as the kernel 

function. Aside from the selection of kernel functions, the free parameters that should be 

defined by users are the penalty factor c and the γ (a parameter in the kernel function). 

Genetic algorithms (GA) are widely employed to choose machine inputs and parameters 

(Chen et al., 2014; Fei and Zhang, 2009a; Tewari et al., 2012). GA was used to determine 

the c and the γ. The flowchart of the GA is shown in Figure 4.12. 
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Below is the step-by-step explanation of the GA: 

1. Randomly generate a chromosome population in which each chromosome is 

composed of binary numbers, as shown in Figure 4.13. The binary numbers can 

be decoded into decimal numbers. 

2. Obtain the candidate parameters of c and γ by decoding the chromosome. 

3. Use the parameters obtained above and some of the data to train the SVM model 

and test the performance of the model, which is determined by a fitness function. 

4. Calculate the fitness function, which is the classification accuracy of training 

samples in this study. 

 

 

Figure 4.12 Flowchart for the genetic algorithm 
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5. If performance satisfies a designed stopping criterion (the classification accuracy 

is 100% for this study), parameters are obtained; otherwise, use selection, 

crossover, and mutation operators to generate the offspring of the existing 

population and test a new chromosome against the stopping criterion. 

6. Repeat this algorithm until the satisfied fitness accuracy is obtained. If the 

population is generated over 200 times without finding a satisfactory 

chromosome, stop using the algorithm and select the chromosome with the best 

fitness accuracy. 

 

 

Figure 4.13 An example of chromosome population 

 

Once the parameters are obtained, the binary SVMs can be modeled. To use the model, 

we can feed the processed under-testing data into the fifteen SVMs and find the 

corresponding results. For example, if the binary SVM1 (T1&T2 classifier) classifies it 

as T1 case, it means the SVM votes for T1 as the winner, and the values of the variable 

CT1 will increase by 1. Moreover, then, if SVM2 (T1& PD classifier) also gives the 

result as T1case, T1 will get another vote and CT1 will equal with 2; otherwise, CT1 and 
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CTD both equal with 1. After finding all the results from the fifteen SVMs, the values of 

CT1, CT2, CPD, CD1, CD2, and CNF will be obtained. The final diagnosis result is 

determined by finding which case has the most votes, meaning that the maximum value 

of CT1, CT2, CPD, CD1, CD2, and CNF indicates the diagnosis result from the 

plurality-SVM model. Here is an example to illustrate how the result is determined. If the 

output from these 15 SVMs is [T1, T1, T1, D2, T1, T2, T2, T2, NF, PD, PD, NF, D1, D1, 

D2], T1 gets the maximum votes (4 votes) and T1 is the final diagnosis result by the 

plurality-voting SVM model. 

 

4.2.2 Development of the Plurality-voting SVM Model Using Balanced 

Dataset 

 

As we can see, in Table 4.4, we only have a minimum of 6 records of PD cases, but a 

maximum of 37 records of NF cases. The ratio between the sizes of these two datasets is 

roughly 1:6, which is highly imbalanced. If these data are used for training, problems 

caused by imbalanced datasets cannot be avoided. As discussed in Section 3.2.1, the 

over-sampling and under-sampling approaches both work for imbalanced dataset 

problems, but over-sampling approach is the only effective approach in situations in 

which limited data exist for the minority class.  
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The SMOTE algorithm (Chawla et al., 2002) is an over-sampling method which over-

samples minority classes by forming synthetic data samples instead of simply duplicating 

samples. The method for creating synthetic data is described below: 

1. Find a sample,  �̃� , in the minority class and then calculate the distance, ‖𝑟‖ , 

between itself and other samples in the same class. 

2. From the distance results, find the nearest, k, neighbors to �̃�, and randomly select 

one, 𝐴𝑖. 

3. Calculate the difference between �̃�  and 𝐴𝑖  and multiply the difference by a 

random number from [0,1]. 

4. Add the result from the previous step to �̃� to obtain a synthetic sample. 

 

Figure 4.14 The illustration of the SMOTE algorithm 

 

Figure 4.14 visualizes the steps above. Red stars represent the real minority class, and the 

green stars represent sets of the newly created synthetic data. The mathematical 

expression is the equation (4.2). 

  𝐴𝑛𝑒𝑤 = �̃� + 𝑟𝑎𝑛𝑑(0, 1)×(𝐴𝐼 − �̃�) (4.2) 
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The SMOTE was used to balance the data. That is, before modeling the sub-SVM 

models, this data oversampling approach is added. To obtain a reasonable result, none of 

the testing data should be used for training. In other words, the model should not be 

allowed access to knowledge related to the testing sets. Only the training sets can be used 

when generating data through the SMOTE approach. After this approach, the data 

information can be summarized in Table 4.5.  

 

Figure 4.15 Steps for developing the plurality-voting SVM model using balanced dataset 
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To make it clear, this improved procedure is shown in step 3 of Figure 4.15, and 

balanced datasets are used in step 4. Other steps are same as presented in Section 4.2.2. 

 

 

Table 4.5 Overview of the balanced training dataset  

 

 

 

 

 

 

 

4.2.3 The Gas Concentration Filter  

 

The developed plurality-voting SVM model is good for core fault diagnosis function for 

power transformers. However, special cases in which gas concentrations are low are 

more likely to occur in new transformers. We used the processed ratio-related input to 

develop the above SVM model, and the diagnostic accuracy was not good when applying 

the method to low-concentration data. 

 

To solve this problem, we compared the data with the data from the literature and found 

that gas concentrations for new and healthy transformers are very low. For example, the 

Data 

type 

Total 

samples 

Training 

samples 

Testing 

samples 

Training 

samples from 

SMOTE 

Total 

training 

samples 

T1 19 13 6 24 37 

T2 20 13 7 24 37 

PD 9 6 3 31 37 

D1 26 17 9 20 37 

D2 50 33 17 4 37 

NF 56 37 19 0 37 

Total 180 119 61 103 222 



64 

 

concentration of CH4 in a thermal fault can be over 104 ppm, but the CH4 data from the 

low-concentration data were all under 102 ppm. We used the Doernenburg ratio method 

due to the consideration of gas concentrations. The Doernenburg ratio method used Table 

3.2 to check every gas concentration first, and if the concentrations were under the limits, 

instead of using ratios to make further diagnosis, the diagnosis results were determined as 

NF. 

 

To validate this gas concentration approach, we found that it is effective for the data 

summarized in Table 4.6. Although this approach is not applicable for all NF cases, it is 

necessary to use it in qualified low concentration cases. It is necessary to add this rule 

before using the SVM model to make diagnosis results precise, especially for data 

collected from newly employed transformers. The gas concentration limits in the 

proposed gas concentration filters are shown in Table 4.7.  

Table 4.6 Low gas concentration cases 

H2 CO CH4 C2H4 C2H6 C2H2 NF cases? Source 

31 260 6 3 8 1 Yes Duval and dePabla, 2001 

22 180 7 5 4 0.05 Yes Duval and dePabla, 2001 

80 0.05 18 0.05 20 1 Yes Duval and dePabla, 2001 

170 0.05 16 0.05 8 1 Yes Duval and dePabla, 2001 

36.1 85.4 15.5 16.1 2.8 0 Yes Hong et al., 2015 

5 0.05 21 63 19 0.05 Yes Duraisamy et al., 2007 

 

 

The combination of the proposed SVM model and the gas concentration filter can also 

save the time of taking unnecessary maintenance actions, as normal ratio-related SVM 
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models are not very accurate for low concentration data, and the costs for cases of 

unhealthy conditions are higher than those for cases of low-temperature thermal faults 

being diagnosed as high-temperature thermal faults. 

 

Table 4.7 Gas concentration limits in the gas concentration filter 

Gas Concentration limit (ppm) 

H2 200 

CH4 240 

CO 350 

C2H2 2 

C2H4 100 

C2H6 65 

 

Therefore, when making the fault diagnosis for a new set of data, it is first necessary to 

compare the gas concentrations to the limits. If the gas concentrations are under the 

respective limits shown in Table 4.7, results can be directly diagnosed as NF. Otherwise, 

the proposed SVM model can be used to identify what is going on in power transformers. 

 

4.3 Summary  

 

In this chapter, we first analyzed the current problems and challenges existing in 

industrial applications and academic research. These challenges include: 

• the limited DGA data with actual and recorded inspected conditions  

• the imbalanced DGA data 

• the inaccurate diagnosis for low-concentration data through the SVM approach  
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To solve these problems, we proposed an improved model based on the SVM method 

(see Figure 4.16). As we highlighted in Figure 4.16, this method combined a gas 

concentration filter and an improved plurality-voting SVM model. The gas concentration 

filter solved problems raised by low concentration data. The plurality-voting SVM model 

was developed using a new model structure and it integrated the SMOTE approach to 

dealt with imbalanced dataset and limited data problem. The restructured SVM model 

avoided dependence on any single binary SVM model. 

 

 

Figure 4.16 Flowchart of the diagnosis procedure of the proposed method 
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Chapter 5: Method Validation and Comparison 

 

The goal of this chapter is to validate the proposed method through comparisons with 

existing methods. Section 5.1 shows all the methods used in this chapter. Section 5.2 lists 

the results from these selected methods and compares diagnosis accuracy. Section 5.3 

presents some specific cases with the corresponding diagnosis results. Section 5.4 

presents a new way to compare different methods, which compares the cost by 

misdiagnosis when we consider the loss by maintenance activities. 

 

5.1 Methods Used in the Comparison  

 

The results from the AI-based methods and the traditional ratio-based methods are used 

to make good comparisons. The ratio-based methods include the Doernenburg ratio 

method, Roger ratio method, and IEC ratio method. The AI-based methods include the 

proposed method, existing SVM method, and ANN method.  

 

5.1.1 Explanations of the Results from Ratio Methods 

 

In this subsection, we use the Doernenburg ratio method, the Roger ratio method, and the 

IEC ratio method for the purpose of comparison. The Doernenburg ratio method can only 

roughly diagnose faults. For example, with this method, one can only get a label of 

thermal fault, rather than the thermal fault with a level of temperature. The method was 
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treated as accurate if it roughly correctly diagnosed the data, as shown in Table 5.1. 

Similarly, the Roger ratio method can only diagnose a total of five conditions. Table 5.2 

shows how we treat the conditions in the Roger ratio method. However, we directly use 

the results from IEC ratio method to compare with the proposed method, as they used the 

same diagnosis labels. 

Table 5.1 Condition labels for the Doernenburg ratio method 

The conditions in the Doernenburg The conditions we used in this study 

No fault NF 

Partial discharges PD 

Thermal fault T1&T2 

Discharge arcing D1&D2 

 

Table 5.2 Condition labels for the Roger ratio method 

The conditions in the Roger The conditions we used in this study 

No fault NF 

Partial discharges PD 

Thermal fault < 700 °C T1 

Thermal fault > 700 °C T2 

High-energy arcing D1&D2 

 

Because ratio methods are all rules-based and do not need training data, we tested these 

methods by using all the known 180 datasets. 

 

5.1.2 Explanations of the Results from AI-based Methods 

 

To make full use of the data, we introduced a ten-fold cross-validation procedure. We 

randomly separated the 180 samples into training samples and testing samples for ten 
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times. With this process, we can guarantee use of two-thirds of the data from the real, 

original 180 samples and then use SMOTE to balance the training dataset so that each 

fault type has 37 datasets in total. The total number of training samples is 37×6 = 222, 

as shown in Table 4.5. The remaining one-third of real data constitute the testing data. In 

each round of the ten-fold cross-validation process, there are different training and 

testing samples that are independent from each other. This cross-validation process has a 

lower variance than the one-time data sampling procedure, which is meaningful in the 

case that the amount of data available is limited. Although it is possible for randomly 

selected data to make a good model, other times they cannot form reliable models. The 

reason is that data play a key role in classifiers. For example, classifiers can perform well 

if we only use them to classify children and aged people based on the data of their ages, 

because the data are easy to be classified and classifiers are reliable based on desired 

data. Therefore, ten-fold cross-validation can decrease the possibility of performance 

variance caused by the variance of selected data. 

 

For the purpose of comparison, an ANN model was implemented for transformer fault 

diagnosis as well. It is a probabilistic neural network (see Figure 5.1) with four layers, an 

input layer, pattern layer, summation layer, and output layer. In the input layer, there are 

five neurons since we have five LR values as input features for classifiers defined in this 

thesis. The pattern layer, including the same number of neurons with the number of 

training data, calculates the distances between input vectors and row weight vectors, and 

the distances are measured by radial basis function nonlinearly. The summation layer is 

to find the summation results from the previous layer for each type of data, and the type 
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of the highest results will be determined as the final output in the output layer. The 

Matlab neural network toolbox is used to obtain the diagnosis results for this ANN 

model.  

 

Figure 5.1 The probabilistic neural network structure 

 

In addition, a four-layer SVM model is presented based on Bacha et al.'s model (2012a) 

and its structure is shown in Figure 5.2. Similar with Bacha’s model, SVM1 is used to 

separate data into NF cases and thermal/discharge fault cases. SVM2 is employed to 

divided data into discharge fault and thermal fault. To further classify the discharge fault, 

SVM3 and SVM5 are used to classify DGA data into PD, D1, and D2 cases. The T1 and 

T2 thermal fault is classified by SVM4. In Bacha’s model, T1 cases were further 

classified. However, in this thesis, we do not consider to classify this thermal case in 

detail due to the availability of known data. Therefore, ignoring this detailed 
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classification procedure, the model in Figure 5.1 should have a better diagnosis accuracy 

performance than Bacha’s original model. GA is also used to find proper parameters for 

the parameters c and γ in each binary SVM.  

 

 

Figure 5.2 The structure of a four-layer SVM model (Bacha et al. 2012a) 

 

Besides, we tested the testing data using an SVM model which is a plurality-voting SVM 

model and does not include the gas filter or the SMOTE approach (named SVM in Table 

5.3) and an SVM* model that included the SMOTE approach but not the gas 

concentration filter. This information is shown in Table 5.3.  
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To clarify, we used the same real training data to train the ANN and SVM models and all 

these models were validated with the same testing data in each round. 

Table 5.3 Models used in the comparison 

Model name 
Structure of 

SVMs 
SMOTE Gas concentration filter 

Multi-layer SVM Figure 5.1 ✘ ✘ 

SVM Figure 4.3 ✘ ✘ 

SVM* Figure 4.15 ✔ ✘ 

Proposed method Figure 4.15 ✔ ✔ 

 

5.2 Comparison of Diagnosis Results and Accuracies 

 

The results from ratio methods are shown in Table 5.4. The results show that the IEC 

ratio method provides the most accurate diagnoses, as it correctly finds NF cases. 

However, it cannot recognize T1 cases, while the Doernenburg ratio method and the 

Roger ratio method can. The Roger ratio method is better for identifying discharge faults 

than the other two ratio methods. However, the Doernenburg ratio method performs the 

best among these three methods to detect the thermal faults. The results from the ten 

rounds of modeling for the AI-based methods, based on 61 total sets of testing data, are 

shown in Appendix and the results are summarized in Table 5.5.  
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Table 5.4 Statistical diagnosis results of the ratio methods 

Type Samples 
# of correct diagnosis 

Doernenburg Roger IEC 

T1 19 8 8 0 

T2 20 13 12 12 

PD 9 1 4 1 

D1 26 11 15 16 

D2 50 27 42 42 

NF 56 36 35 53 

Total 180 96 116 124 

 

Based on the results in Table 5.4 and 5.5, the diagnosis accuracies of these methods are 

compared in Figure 5.3. The accuracies from the traditional ratio methods are based on 

all 180 datasets, whereas the accuracies from the AI-based methods are only based on 61 

testing datasets. Using the results above, the performance comparisons of the key 

components integrated in the proposed method are shown in Section 5.2.1 to 5.2.3. 

Table 5.5 Diagnosis results from SVM and the proposed method 

Round # ANN 
Multi-layer 

SVM 
SVM SVM* 

Proposed 

method 

1 45 46 44 49 50 

2 40 46 49 49 50 

3 43 50 46 47 48 

4 39 45 42 48 49 

5 41 48 46 49 49 

6 47 49 50 51 51 

7 40 44 46 48 49 

8 43 45 46 48 48 

9 40 44 49 49 49 

10 46 45 50 48 48 

Average 42.4 46.2 46.8 48.6 49.1 
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Figure 5.3 Comparison of overall diagnosis accuracy 

 

5.2.1 Comparison Between Multi-layer SVM Model and the Proposed 

One-layer SVM Model 

 

Table 5.5 shows that the multi-layer SVM model can only correctly diagnose an average 

of 46.2 out of 61 cases, but the proposed one-layer plurality-voting SVM models can 

correctly identify an average of 46.8 cases. The multi-layer SVM model can perform 

better than the ratio methods. The proposed one-layer SVM model can achieve a 

diagnosis accuracy of 76.72%, which is higher than all the traditional methods, ANN 

method, and the multi-layer SVM method. This comparison confirms the advantage of 

the one-layer plurality-voting SVM models over the multi-layer SVM models. 
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5.2.2 Comparison Between the Methods with/without the SMOTE 

 

As we can see in Figure 5.2, the SVM and SVM* are both better than the traditional ratio 

methods, ANN method and multi-layer SVM method. By adding the SMOTE approach, 

the number of correct diagnoses increases from an average of 46.8 to an average of 48.6, 

and the fault diagnosis accuracy improved to 79.67% from 76.72% of the method 

without the SMOTE. This result confirms that the SMOTE approach is effective for 

helping SVM models deal with imbalanced datasets.  

 

5.2.3 Comparison Between the Methods with/without the Gas 

Concentration Filter  

 

With the gas concentration filter, the proposed method beats the SVM* method by an 

average of 0.5 correct diagnoses, and diagnosis accuracy improved from 79.67% to 

80.49%. This improvement seems not high, which is because there are not many low-

concentration data in the known dataset.  

 

To further validate the improvement by the gas concentration filter, 50 sets of data were 

generated. These data are randomly generated, in which each gas follows a continuous 

uniform distribution on the interval [0, L], in which L is the gas concentration limit in the 

proposed gas concentration filter as shown in Table 4.7. Therefore, the six gas 

concentrations in a set of generated data are subjected to the distributions as follows: 
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• H2~U[0, 200] 

• CH4~U[0, 240] 

• CO~U[0, 350] 

• C2H2~U[0, 2] 

• C2H4~U[0, 100] 

• C2H6~U[0, 65] 

 

In this way, all the 50 sets of data are guaranteed as the low-concentration data. These 

data satisfy the requirement of being the low-concentration data collected in transformers 

under four-year employment (Singh and Bandyopadhyay, 2010). After getting these data, 

we will test them using the SVM* model and the proposed model. As the proposed 

method owns the gas concentration filter, it can successfully screen out all the low-

concentration data and identify these data as NF cases. To compare with the method 

without a gas concentration filter, the data should be processed through the same 

procedures in Step 2 of Figure 4.3, and then test them using the SVM* model as defined 

in Table 5.3 to obtain the predicted diagnosis results.  

 

Figure 5.3 shows the predicted results of using the generated low-concentration data 

from the SVM* model that is trained using the balanced datasets from SMOTE approach 

as shown in Table 4.5. In Figure 5.3, labels from 1 to 6 represent the T1, T2, PD, D1, D2, 

and NF, respectively. As we can see, most of the data were diagnosed as thermal or PD 

cases and only 3 out of 50 samples were correctly identified as Label 6.  In contrast, with 

the concentration filter, the proposed method can perfectly deal with these data with a 
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diagnosis accuracy of 100%. This comparison points out a great difference between the 

methods with/without the gas concentration filter when we only consider the low-

concentration data. This kind of data are not more in practice, but the gas concentration 

filter can perfectly find out this kind of NF cases. Thus, it is effective to improve the 

diagnosis performance for the proposed plurality-voting SVM model. 

 

Figure 5.4 Predicted results from the SVM* model 

 

5.2.4 Brief Summary of the Comparison of Diagnosis Accuracies 

 

The results show that the AI-based methods are more reliable than the traditional ratio 

methods for fault diagnosis of power transformers. The proposed SVM-based approach, 
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which integrates the gas concentration filter and SMOTE approach, increases the 

diagnosis accuracy to 80.49%. This explains the high effectiveness of the proposed 

SVM-based intelligent method for the fault diagnosis of power transformers. 

 

5.3 Comparison of Diagnosis Results for Some Specific Cases 

 

This subsection gives some specific cases to further explain the results in details. All the 

ratio methods and AI-based methods as explained in Section 5.1 are compared by 

detailed diagnosis results based on selected data.  

Table 5.6 Selected gas concentration data (unit: ppm)  

No. Source H2 CO CH4 C2H4 C2H6 C2H2 

1 Duval 0.05 3900 18900 540 410 330 

2 Duval 960 15800 4000 1560 1290 6 

3 Yadaiah 24.28 10000 74.59 2.67 74 0.23 

4 Duval 1100 0.05 1600 2010 221 26 

5 Duval 3910 1800 4290 6040 626 1230 

6 Duval 92600 6400 10200 0.05 0.05 0.05 

7 Duval 26788 704 18342 27 2111 0.05 

8 Duval 60 780 10 4 4 4 

9 Duval 6870 29 1028 900 79 5500 

10 Duval 5100 117 1430 1140 0.05 1010 

11 Duval 310 150 230 610 54 760 

12 Duval 150 0.05 0.05 220 0.05 150 

13 Duval 150 1000 0.05 200 200 150 

14 Duval 80 0.05 18 0.05 20 1 

15 Duraisamy 5 0.05 21 63 19 0.05 

 

The procedure for this comparison went as follows: 
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1. Randomly selected the required number of datasets from the 180 samples to 

develop models for the ANN method, the normal SVM method, and the proposed 

method. The remaining samples were the testing sets. 

2. Randomly selected 15 datasets from the testing sets to use in this case study. 

3. Obtained the diagnosis results from the models developed in the first step. 

4. Fed the 15 datasets into the ratio method to get diagnosis results. 

5. Summarized and compared the results. 

Table 5.7 Diagnosis results from the different methods for the selected data 

No. 
Actual 
fault 

Doernenburg Rogers IEC ANN 
Multi-layer 

SVM 
SVM SVM* 

Proposed 
method 

1 T1 T1&T2 ND ND NF T2 D2 T1 T1 

2 T1 T1&T2 T1 T1 T1 T1 T1 T1 T1 

3 T1 T1&T2 T1 ND T1 NF NF T1 T1 

4 T2 T1&T2 T2 T2 T2 T2 T2 T2 T2 

5 T2 T1&T2 ND ND D2 T2 T2 T2 T2 

6 PD ND ND ND PD PD PD PD PD 

7 PD ND NF ND NF T1 T1 T1 T1 

8 D1 ND ND ND D1 D1 NF D1 D1 

9 D1 D1&D2 D1 D1 D2 D1 D1 D1 D1 

10 D2 D1&D2 D2 D2 T2 D2 D2 D2 D2 

11 D2 D1&D2 D2 D2 D2 NF D2 D2 D2 

12 NF ND ND ND NF NF NF T2 T2 

13 NF ND ND ND NF NF NF NF NF 

14 NF ND ND ND NF NF NF NF NF 

15 NF NF T2 T1 T1 T2 T2 T2 NF 

 

The selected datasets are shown in Table 5.6, and the corresponding results for each 

method are listed in Table 5.7. As shown, conventional ratio methods are not always 

active and able to provide results, meaning that faults were not detected (ND). Because 

faults are not diagnosed in these cases, we treat these cases as NF cases. Even with this 
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assumption, the ratios methods are still not as good as the proposed method. It should be 

noted that Case #15 is an example that shows the importance of the NF case filter that we 

integrated into the proposed method. Without the gas concentration filter, the case is 

diagnosed incorrectly as a thermal fault. Although the Doernenburg ratio method 

includes the filter, it cannot always detect PD and D1 cases. The proposed method 

identified Cases #1, #3, #8, and #15 accurately, while the normal SVM model fails to do 

so, which shows the effectiveness of the proposed method.  

 

5.4 Comparison of the Cost by Misdiagnosis 

 

Generally speaking, if we can find the reason why the SVM misdiagnose a case, we can 

get a way to correct it so that the diagnosis accuracy can be improved. However, it is not 

the truth. Original data (low-dimensional data) normally cannot be linearly separated so 

that we will use a kernel function to remap the data into a high dimensional space. In the 

high dimensional space, most of the data can be linearly separated by a hyperplane, but 

some of the data still cannot be linearly separated. Because of this, we set a free factor 

(also called penalty factor) c to adjust the hyperplane and make the hyperplane bias to 

these data, and we can get the best diagnosis accuracy.  However, if we adjust the c too 

much to make the misdiagnosed cases being diagnosed correctly, many of the correctly 

diagnosed cases will be misdiagnosed, which can make the diagnosis accuracy worse. 

Therefore, the diagnosis result we achieved is the best result, and if we adjust it for the 
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misdiagnosed cases, the performance will be worse. The misdiagnosed results can lead to 

different consequences, which is worth to be studied.  

 

Power transformers are desired to last longer since it is costly to purchase a new 

transformer after permanent failures caused by faults. To extend their lives, maintenance 

activities should be arranged. For mechanical or electrical equipment and systems, 

common forms of maintenance strategies can be summarized as follows (Garg and 

Deshmukh, 2006): 

• Corrective maintenance, 

• Preventative maintenance, and 

• Predictive maintenance. 

 

Corrective maintenance can be roughly divided into two categories, unplanned 

maintenance and planned maintenance. The unplanned maintenance is to correct the 

failed components/parts directly after their failures; the planned maintenance is to correct 

the failed components/parts periodically. This kind of maintenance is conducted based on 

the firm belief that the costs sustained for downtime and repair in case of a fault are 

lower than the investment required for a maintenance program. Therefore, corrective 

maintenance is not suitable for the expensive transformers. Preventative maintenance is a 

strategy to seek to increase the equipment’s reliability and availability by reducing the 

probability of failures and avoiding the need for unplanned corrective maintenance 

(Narayan, 2004.). This approach is performed at specific time intervals, during which 
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transformer failures can occur, so this approach is not a perfect choice for maintaining 

transformers. 

 

Predictive maintenance is focusing on predicting potential failures and taking actions 

before failure occurs. In the maintaining of power transformers, this maintenance 

approach is conducted by operating staff (Sharma, 1986). Fault diagnosis approach is to 

assist arranging the predictive maintenance of transformers. Diagnosis results are the 

guidance for further transformer inspection activities. The inspection activities need to 

schedule the downtime of devices and require additional labor cost. In Section 5.2, the 

diagnosis accuracies were compared to treat every case evenly. However, diagnosis 

accuracy should not be the only consideration, as, in reality, wrong diagnosis results can 

cause different consequences (Krawczyk et al., 2014; Longadge and Dongre, 2013). 

Considering the costs of maintenance procedures, a good model should try to decrease 

downtime caused by inspection activities as much as possible. When a fault is detected, 

maintenance staff will schedule an inspection. An entirely wrong diagnosis result can 

waste more time than a different but similar diagnosis decision. For example, a case in 

which a thermal fault is diagnosed as a discharge fault would cost more than a case in 

which a low-temperature thermal fault is diagnosed as a high-temperature thermal fault, 

as a maintenance technician would waste more time checking non-fault-related 

components in the transformer.  

 

Therefore, it is meaningful to propose another model of performance criteria rather than 

only considering the overall accuracy to judge the quality of a model or method. 
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Considering the downtime and the severity of each fault, we modeled the following cost 

penalty factors to evaluate each diagnosis method. The bigger the factors were, the worse 

the models performed. Faults can be roughly classified into thermal faults and discharge 

faults, and high-temperature thermal faults and the high-energy discharges are the most 

severe faults of each type. 

Table 5.8 The cost penalty factors used in the comparison 

  
True result 

  
T1 T2 PD D1 D2 NF 

Diagnosis 
result 

T1 0 0.2 0.4 0.5 0.6 0.2 

T2 0.1 0 0.5 0.5 0.6 0.3 

PD 0.2 0.3 0 0.2 0.2 0.2 

D1 0.3 0.4 0.2 0 0.3 0.2 

D2 0.4 0.5 0.3 0.2 0 0.3 

 NF 0.4 0.6 0.4 0.5 0.6 0 
 

The following are some explanations of Table 5.8: 

• Smaller factors represent lower costs by the diagnosed results. 

• Correct diagnosis results do not increase costs, meaning they have no cost 

penalties. 

• T2 and D2 are the most severe faults, and misdiagnosed cases have higher cost 

penalties, as the misdiagnosis of these conditions can lead to bad consequences. 

• A fault misdiagnosed as another in the same main fault type can lead to lower 

cost penalties. However, a thermal fault being diagnosed as a discharge fault (or 

vice versa) will lead to higher cost penalties 
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• These numbers do not represent actual costs, and they may be adjusted slightly 

according to different companies’ standards But they can reflect the level of 

losses and evaluate existing methods. 

 

Based on the cost penalty factors above, we used Eq. (5.1) to calculate the total cost 

penalty factors. The number of 61 in the Eq. (5.1) represents the total number of testing 

data. We model these methods by randomly selected training data from the 180 total sets 

of data. The calculated results are shown in Table 5.9. 

 

F = ∑ 𝑓𝑖

61

𝑖=1

 (5.1) 

where F is the total cost penalty factors and 𝑓𝑖 is the cost penalty factor for each case. 

Table 5.9 Comparison of the total cost penalty factor 

Label of methods  ANN 
Multi-layer 

SVM 
SVM SVM* Proposed method 

# of incorrect diagnosis 22 18 19 13 12 

Total cost penalty 6.6 6.1 6.9 3.9 3.6 

 

As seen in the table, the ANN model made 22 incorrect diagnosis, which is the highest 

value among these methods. However, its cost penalty factor of 6.6 is lower than that of 

the normal SVM model’s 6.9, even though the SVM model made fewer incorrect 

diagnosis results. It shows that the ANN method is better for dealing with rough 

classifications. The cost penalty factors from the ANN, multi-layer SVM, and one-layer 

SVM method are all over 6.0, which shows the results from these methods give much 

bad potential to the waste of inspection time for power transformers. By adding the 
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SMOTE approach, the penalty factor decreases significantly to 3.9, which can show the 

advantage over other methods.  

 

In this section, the costs by misdiagnosis of AI-based methods are compared. The 

proposed SVM-based method can achieve the best result when calculating the cost 

penalty by misdiagnosis.  Its cost penalty almost reduced by half compared with the 

ANN method, multi-layer SVM method, and normal plurality-voting SVM method.  

 

5.5 Summary 

 

This chapter compares the proposed methods with other selected methods, including the 

ratio methods, ANN method, multi-layer SVM method, and the proposed method 

without the SMOTE approach. In the comparison of the diagnosis accuracy, the proposed 

method can achieve the best diagnosis accuracy among all the methods. In the 

comparison of the cost by misdiagnosis, the proposed method can receive the lowest cost 

penalty factor, compared with other methods. This chapter validates the effectiveness of 

the proposed method.   
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions  

 

Monitoring health conditions for transformers is critical for preventing failures. A 

reliable method for diagnosing health conditions and monitoring transformers can 

significantly help decrease the probability of transformer failure.   

 

DGA is effective for continuously evaluating transformers’ conditions and identifying 

faults inside transformers without physically opening the devices. It is used to analyze 

the degree of the decomposition process by detecting the gas concentrations in the 

transformer oil. Using the DGA approach, existing transformer fault diagnosis methods 

mainly include rule-based methods that are based on analyzing key gases, gas 

concentration ratios, or certain gas proportions. In addition, AI-based methods were 

proposed using DGA data, based on artificial neural network, fuzzy logic, SVM tools, 

etc. 

 

This thesis summarize existing methods and challenges based on detailed literature 

review. In AI-based methods, SVM is a functional machine-learning approach for 

classification and regression problems. It can solve small sampling, nonlinear, and high-

dimension practical problems better than the ANN method, which always suffers the 

over-fitting problem. In the development of the SVM models, gas concentration ratios 
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are always selected as an input feature to achieve good performance. However, there are 

specific cases in which not much gas is generated and dissolved in new transformers’ 

insulation oil, which can make the gas ratio unsuitable for extraction as an input feature. 

Gas filters should screen these specific low-concentration cases out and directly draw the 

final diagnosis results to NF conditions. The inspection frequency of transformers is not 

high, so power companies and researchers do not normally have much historical data for 

modeling. In addition, the numbers for data related to severe conditions are significantly 

higher than those of warning-level conditions, and imbalanced datasets badly influence 

the performance of SVM methods. 

 

To overcome such challenges existed in the existing method, an improved SVM 

technique was developed for fault diagnosis of power transformers using DGA data. The 

proposed method integrates a gas concentration filter and a plurality-voting SVM model. 

The gas concentration filter can successfully process data on low gas concentrations 

especially collected from new transformers. The plurality-voting SVM model is designed 

with a plurality-voting structure and integrates the SMOTE approach and a parameter 

optimization approach by GA. The new structure reorganizes all binary SVM submodels 

and is used to avoid the problem that diagnosis results rely much on the performance of 

one submodel in multi-layer SVM models. SMOTE approach is employed to over 

sampling known data to balance training datasets, which can overcome the imbalanced 

datasets problem and help to achieve reliable diagnosis accuracy. 
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In this thesis, we compare the proposed method with other commonly used methods 

using the data from literature. Based on the known DGA data, the proposed approach can 

achieve a diagnosis accuracy of 80.49%, which is higher than that of the existing SVM, 

ANN, and ratio methods. To show the diagnosis result clearly, some specific cases are 

compared to show the effectiveness of the proposed method. In this study, we creatively 

consider to compare the cost-sensitivity by misdiagnosis, and the proposed method can 

highly reduce the costs of misdiagnosis.  

 

In conclusion, compared with the existing method, the proposed method can not only 

achieve the best diagnosis accuracy, but also decrease the potential cost by misdiagnosis. 

Therefore, it can be used to guide the predictive maintenance activities. It is beneficial 

for modern cities with many electric utilities served and for industries to decrease the 

potential of equipment breaking off by electric failure.  

 

6.2 Future Work 

 

Based on the discoveries in this thesis, further studies can be conducted in the future. 

• A unique kernel function that can determine the hyperplane of SVM modeling 

can be developed to replace common kernel functions.  

• Researchers may improve the data-sampling procedures in the method modeling 

to get more reasonable “fake” data. 
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• This SVM model consists of 15 sub-models, which will require more training 

time than the multilayer SVM models. Therefore, the overall SVM structure 

could also be optimized to use fewer sub-models and less training time. 

• Deep learning, currently a hot topic in the field of AI, may also be applied to the 

diagnosis of power transformers. 

• The research direction can be extended with proper regression methods to predict 

future gas concentrations so that we can use the proposed model to predict and 

monitor future conditions in transformers. 

• The problem of imbalanced datasets is not unique to transformers. For example, 

in the medical field, there might be less data from patients with a specific disease 

than for data for healthy people. The proposed method’s solution for this problem 

may also be applied in other fields. 
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Appendices 

 

Appendix A   The diagnosis results by ANN method and multi-layer SVM method 

 

This section gives the original results obtained from MATLAB code of the ANN method 

and multi-layer SVM method. Each figure compares the results from these two methods 

and the real conditions. 

 

 

Figure Appendix.1 Comparison of the results from ANN and multi-layer SVM using 

round #1 data 
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Figure Appendix.2 Comparison of the results from ANN and multi-layer SVM using 

round #2 data 

 

Figure Appendix.3 Comparison of the results from ANN and multi-layer SVM using 

round #3 data 
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Figure Appendix.4 Comparison of the results from ANN and multi-layer SVM using 

round #4 data 

 

Figure Appendix.5 Comparison of the results from ANN and multi-layer SVM using 

round #5 data 
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Figure Appendix.6 Comparison of the results from ANN and multi-layer SVM using 

round #6 data 

 

Figure Appendix.7 Comparison of the results from ANN and multi-layer SVM using 

round #7 data 
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Figure Appendix.8 Comparison of the results from ANN and multi-layer SVM using 

round #8 data 

 

Figure Appendix.9 Comparison of the results from ANN and multi-layer SVM using 

round #9 data 
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Figure Appendix.10 Comparison of the results from ANN and multi-layer SVM using 

round #10 data 

 

 

Appendix B  The diagnosis results by the SVM, SVM* and proposed method  

 

This section gives the original results obtained from the MATLAB code of the SVM, 

SVM* and the proposed method. Each figure compares the results from these three 

methods and the real conditions. 
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Figure Appendix.11 Comparison of the results from the SVM, SVM* and proposed 

method using round #1 data 

 

Figure Appendix.12 Comparison of the results from the SVM, SVM* and proposed 

method using round #2 data 
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Figure Appendix.13 Comparison of the results from the SVM, SVM* and proposed 

method using round #3 data 

 

Figure Appendix.14 Comparison of the results from the SVM, SVM* and proposed 

method using round #4 data 
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Figure Appendix.15 Comparison of the results from the SVM, SVM* and proposed 

method using round #5 data 

 

Figure Appendix.16 Comparison of the results from the SVM, SVM* and proposed 

method using round #6 data 



108 

 

 

Figure Appendix.17 Comparison of the results from the SVM, SVM* and proposed 

method using round #7 data 

 

Figure Appendix.18 Comparison of the results from the SVM, SVM* and proposed 

method using round #8 data 
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Figure Appendix.19 Comparison of the results from the SVM, SVM* and proposed 

method using round #9 data 

 

Figure Appendix.20 Comparison of the results from the SVM, SVM* and proposed 

method using round #10 data 


