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- o Absttact

¢

In this the51s quantum field theory is firstly

presentnd with careful attention paid to its axioms, thelr
t - .

’inamely Thermo Field Dynam1cs.e A second general1zat1on\}s ;

amada.wjth the 1ntroduct1on of supervectors and superoperators
allowing Thermo Fleld Dynam1cs to be further developed to

‘.handle non—equ1d1br1um situations. cOmparlsons ‘between '

Thermo field Dynamics and® other thermal theories is also

presented.

‘5,;
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Preface - : :

Thie thesis "An Introduotion to Thermq Field. Dynamics
- Equilibrium sod Non- Equilibrium, (Includinq Comparisons
ZW1th Other Thermal The’;ieSJ" is intended to be self
contained. The first part""0uantum Field Theory Without

Thermal Degrees»of'Freedom" presents to’the reader the moet

o -

basic espeote of Quantum Field Theory. Starting with the

definition of,“end need‘for a Hilbert.space in fuyptum

Mechanlcs, many partlcle states are introducedy The first’ﬁg}
y

real difference between Quantum Mechq\ics and Quantur Field

. Theory is pointed out, namely that due to the fact that we
ve' 1nfln1te degrees of freedom the set/{ln)} does not form
a countable ba51s and the proper choice from the many

oy

po 51b1e ‘countable subsets of {|n}> must be made utilizing a
'_self_con51stent con51derat1on. -Once _the Fock space is.

1 arrived at which has a countable ba51s set, the Fourier
representatlon for this phy51;el(representation is
v1ntroduced. The ordinary perturbative_ galcu}ation procedure
'is briefly dlscussed forwcompleteness and this prepares the
way for a dlscu551on of the dynam1ca1 map and 1ts 1mp1icatlon
that the full Bamlltonianpis weakly equal to the_free \

Hamiltonian. With these realizations we again return to the

subject ofjgree fields'inﬂorder to develop the relations (sum

¢
.

rplesileto;) needed to present the last three'sections of "
this part. The L.S.Z. formulatlon is mentioned as ‘we

introduece the 'in' and 'out' fields in section 9, Section 10

vi ' oo
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»\contains a derivation of the. reductdion formulas and the
L\S z.Atormula.' Part I'ends with'a discussion of the
two-point Green's fUnctions of quantum field tﬁgory without

o xal'theemal fréedom,'and closing remarks. i

. part II of this work entitled "Finite Temperature

Ouantum Field Theory" starts off with the motivatina ‘

realization that a thermal. vacuum can beeﬁefined which yields

L2

A\t » . i

the ysual statistical mechanical“expectation values. The
N LY s’
ﬁﬁ \‘thermal vacuum is defined and normalized in the next two

\ \ )
/ -sections. The thermal state condition, which is eow known{ to

be one of the most ba51c entities of thermo field dynamics

(TFD) is derived Eor equilibrium.situ!tions. The tremendous g

- 4

physical significance of the. thermal state condition is '

. touched upon but is discussed more fully and demonstrated in
part III. Following this the- thermal vacuum as a pure
quantum state is discussed,and it is shown posgible.to
include all ohase information within this thermal ground
state. At this point part I's material can be generalized to
accommodate thermal deqrees of fteedom using the now well
defined quantum field theory at finite temperatjre; TFD.
These genetalizations include; the dynamical map, Heisenberg
fields, Kubo—Schwingef—Martin relation and the L.S5.2.

" formula. n

The oriqinal title ot this tﬁésfs did not contain~the

,\\; " word "Non-Equilibrium” because at the time of its conceptlon

.

f\\ the ability of TFD to. describe non—equilibrium situations was
} E | . .

vii



not understood. Sincemthen TFD for non-oquilibrium

situations has been well dovaloped and it {s very -xciting to -

’

{nclude an 1ntroduction ‘to it in this thesis. This

'introduction makes up part III., Part III statts with a

. discussion.of. the thermal Liouville space and the super- !

- operators and supervectors which define it. 'The different,

reﬁresenthtionaxof this space are developed, namely the

~ interaction and Heisenberg representation. The thermal state

4

condition is derived in its more genequ (non- equilibrium)
form and it is shown how this condition defines our ' \\
quasi-particle'opefators. The sectibn containing the seven

axioms of TFD follors next, These axioms allow the entire

ideveaopment of a Eormalism which describes non-equilibrium

L -
systemg: There is no mention of a reservoir in these axioms.

The formalism thus far developed is then applied to a
phase-invariant bilinear model which makes the proper use of
the axioms very clear. This part ends with the expression

and dlscu551on of the generatlnq funct1onal for TFD in

non—equllibrlum 51tuatlons, which is the author's oriqlnal
/

_contribution. Throughout this final section comparisons are

made to the generating functional formalism of Schwit?er.
‘,/
The mater1a1 in the thesis thus far accomplishes a

'description of nature that has been sought after for many

years. In the final part of this work appear four short

comparisons between TFD and the older fhermal theories, which

PS

R \

¥ ’ .
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aaﬁinot tield thoorian and hence can not make use of tﬁegvast
dhlculational mcthoda of quantum field theory. " The chermal
1

c. e
theories: dlncussod include the path’ ordeﬁing mebhod, ,

8chw1nqor ] path ordoring method, sub- dynamics and

c -alqebra.

-

«
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§0. Introduction

Although for some readers this sectio (or parts

i
o
[N

e thereof) may be skipped, the purpose in its agkearance is two
fold: Firstly, 1t will make clear in an operatiOnal way the

notation to be used throughout this work and se%ondly, it }s .

[N

designed to present andad1scuss f1e1d theory w1thout therma1,°

degrees of freedom by 1tself so that later we may concentrate

') -

specifically on how thermal effects 1nf1uence these

con51derations. This sectlon should then be read w1th the

understanding that all of 1ts contents wiil, in later

sections, be generalized in order to- accommodate thermal

'

degrees of freedom,

*
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§1. One Particle Statés

.

g Quantum mechanics is built within the abstract notion
of a linear vector space, A linear vector space is a set of
elements, calleq“vecfors, which have defined over them two

operations; addition and scalar multiplication. Thege

'opegsylons are such that” for=arbitrary vectors ¢, ¢, x and

c—numbers a anb b we have
w+¢.=,¢+w E

v o+ (e+x) = (Y+9) + X ' -
There exists a vector 0 such that ¢ + 0 = ¢

r
)

5(W+v) ‘a¢‘+ ae

~(a+b)¥y

Ay + by
(ab)y = a(by)
c 1y =Y

oy =0 . \ o ' S (1.1)

Ve ma(:ii;ine an inner product such that’
,, (Voo+x) = (b,9) + (b,x) |

‘(WIa¢) = a(w ¢)

o

(W:Q).= (er)
(Y, ¢) > 0 with equality’ only for y=0- f { (1.2)

[

I1f we have an infinite dlmen51onal 11near vector space with

aner product we say that it 1s ‘complete' if for a

-

[]
spannzhg set of orthonormal vectors {¢. (x)}, vector P (x

given by



AN
b(x) = I ae.(x) o ' (1.3)
i=1 e
where -
. ‘ n ) m X
1y (x) = b (x)1 =1 I aje,(x) - 1 aje,(x)1+0 BSEEY
. k=1 k=1 .
/ » . as n,m*“ &

is also an element of "the space. Equation (1l.4) is the
condition defining a‘Cagchy sequence. ¢ may be called a
liﬁit‘yectof. Without proof wejystate that an orthonormal set

&)

with an inner product is called a Hilberfvspaée. A separable

4 B .
Hilbert space is one which has. a countable or equivalently an

of vectors is countable . A compiete linear vector space

b

prthonoimal basis., 'In quahtﬁm ngéhaniéé weltake our_physicai
'ohe ?Afticié states to be rapre;ented‘by vector elements of?é'
Sebarable;Hilbert spagé becauge each of the above méntioned
conditions on the elemenés of a Hilbebﬁ space (¥) are.
Beceésary.and‘sufficient for a. suiccessful abstraction of a‘ ;.
physical particle's state into a méthematicai formalism.

| Thé addition operation is anvabsiracﬂion of the
.'physical‘reality that particies obey thé superposition
iprinciple. The cgmpiexvscaLar mUltjplication opératibh is an
abstraction of th;.physical feality that one pagticle statés-
carry different phéses aﬁd amplitudés and the inner product
is an abstfactiqn of the physical reality that the

observation of a certain sthte has a probability proportional

to the degree of similérity between the actual and ‘observed



state. This correspondenée batwéen vectoyg ¥(x) and a

.probabijlity demands that thé‘innqp producy be normalizable
L " L A ' ! .‘!\ A

- —

fd x(w(x)‘,¢(x) ) =vlﬂ for all ¢(x'ﬁj‘»
Reallze that equation (l 5) preclud@s piane,j- %L

sible basis for, our separable H1lb},

condition that our Hilbert space be sepabable éfgphence have

V »
a countable basis is a requlrement refleQceing the physical

reallty that any phys1ca11y reallzable skate can he expressed

in terms of & suitable chosen observable set. As w111 be

discussed, the suitability of a physical pdsis is a very

fundamental question. . A o T ‘

A

Hence, if we would like to adopt some abstract
. formalism as the language with which we may speaklabout
. ' . .
- physical particles which Jdbey the lawg of guantum physics’ we
v N ‘

must make sure that the above requirements are met by that
. € \ | ] |
formalism. - The reason then for a separable Hilbert space is

’

clear. . ) ' -



§2, Many Particle States | \

Instead of using the basis set (e, (x)} of eqimlf;
(1.3) and thus having to stipulate the set {ai} fo% every
‘particle state, we now introduee the occupation number

representation. Let us consider a many particle stane: It
\

ﬁCan be completely desdribed by stat1ng the number of

particles found in each of the basis states, ’i.e., the number

L\

of particles found to have a wavefunction equal to each’
: > _ ’ A

element of {bi(x)i. Such strings of numbeérs are called

elements of the second-quantized representation:

1’()() = Ionlpnz,.-.> . » ' ' ‘ (2.1) '

. o

Equation (1.1) are’easily understood for such state vectors
and introducing a conjugate vector \'

f (2.2)

<n1,n2,...l = |ni,n2,...>
and the annihilation‘and creation operatore c0ming.up in
seceion §3 we can understand equations'(l.zi.
,
We do however have a problem, in that the baéis set
{Inl,pz,...>} is not counteple and hence upon this basis we
cannot -build a separable Hilbert space: This non-

countability of the set {fnl,n reee>} which will be denoted E

2
by {|n>} from now on, can be seen when one realizes that
there is a one to one correSpondence between the numbers
which cover the ' 1nterva1 (0 1) and the set {|n>} for fermions

-~ and for bosons if one writes thely occupatlon numper with

binomial numbers. Since the formfr-is non-countable we have

+
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that latter is also non-countable. In order to continue then
in the preparation of an ap%tract structure capable of giving
a faithful expression of reality we need only to select out

of the set {|n>) a subset which is both countable and

complete enough to .be alsle to express,any‘pﬁysically S
N Co ‘

realizable‘state. Each separable Hilbert space built upon
each of the x such countable subsets will be disjoint or

unltarlly inequivalent and thus unitary transformations from

one such separable Hilbert space to,another are not i

.
A . T

possible. -
~

i



'33. A Suitable Subset of {[n>)

We choose the subset '[0]' from {ln>} which is to be
the basis of our separable Hilbert space, it is given by
(0) & {In,,n,,e0.>; I n, = €inite} , °  (3.1)
172 { i

(2{, it also contains the convehient

this basis is countable
cyclic vector |0>-|0,p,...? upon which the rest of the space

may be constructed. To this end we introduceiOperators ay

and u{ which for bosons are defined by |

v

- 1/2,
ai'nip-oonioo-> E ni/ InIIOc-ni‘looO> 0302)‘
t - i/2v- : ) .
Gilnl,,..ni.-v..> - (ni+l) 'ﬂl,...ni+lf..>v. (3.3)

r G -
{ N
Observe Fhat, with’[a,b]t = ab tlba, we have

1 -
: a1 = tat oaT =
[ai’u:)]— [air.cj]_ 0o . | (3.5)
For fermions we define ay ahd u; as
. -

! n, - _ .
a.|n;,.e.n > 2 (-1)j<~i Jln n,- ;> (3.6)

i 1'.0. i‘...‘ - \ l'cn. i’l\... .

|
for'ni=1, otherwise ze:o

i

! n.

L ‘
("1)J<1 lnlpaooni','l.o.) (3?;7‘) '

m

t .
G. n e & 0 _...>\
1I 1700y

for n,=0, otherwise zero.

i

~ o . | 1
:

[
/
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' Observe that

N ' ‘ , .
[Givﬂ ]+ = cij N ‘(3.8,

*

j]+ = (0 , (3.9)

-

1.
[ui,aj]+ = !ai,o
Now any vector Inl,nz,...> ma9 be written

» : - n s ¢ ' * .\

Jayetigeee> = 0 (o, Y2 Hos . (g0,
Ny eMprs A i

. . : . o~

where for fermions 'n,' takes on only the values 1 and 0 and -

the order of the developed product is preserved. Cle;rly |0>
is a cyclic vector. Using equations'(3.2) through (3.9) we

have

y
"

<nivn5f-ouln11n2'o-o> = q 6n,n. ) - (3:11)
i iti
. / - »
and hence our set [0] is an ertfionormal set. Consider now
< : ‘ ‘

the set of vectors N '[a]" defined by

a1 = (=] a;In>,

, .
i ¢ Dlagl® = finites In>; ¢ (10D},

i i . (3’k§)
suchl a Hilbert space is called a Fock space. Equation (3:12)

r\
is a Cauchy sequence and hegnhce the limit vector ¢y can be
approximated to any degree of. accuracy by

N - T ‘
¥ o= Y a.In>., ; N = finite. (3.13)-
SR R . .
~, / '

s .
The set formed by all linear combinations of the vectors

appézring,in Equation (3.13) is the set of all vectors formed



. L
*

ff«by cycllc actton of Gf On 10>, i.e., equatlon (3.10). This

"c,set is sald to be dense in 7/[u] L3

’
’

' . o . . .
we have hoped for 'We'have a set Z/[a], our Fock space,

wh1ch by arguments glven in sect1on §2, is'a Hilbert. Space.-

{i‘From equatlon (3 11) we see’ 1t 1s a separable Hllbert space

l-eand we have ? way to: bu11d to any degree of accunacy any

element of it by cycllc actlon of “1

kg R

thls mathemat1ca1 space then that we will cohtlnue our

T‘on [0>. ‘It i's within .

fdlscuss1on of many body phy51cs."
One notlces a strange thlng, namely that implicit  to

[£8

"~ _our def1n1t1on of the Fock space 7{[a] ‘is the‘neéd for a

’ t

spec1ﬁlcatlon of‘{a.} ” Each dlfferent representatlon of aI
_y1e1ds a dlfferent unltarlly 1nequ1va1ent Fock . space. ‘We
'w111 dlscuss thls thoroughly in section 5 and we w1ll see
[ that ‘the spec1f1c ch01ce of Fock space comes from a- | ‘v\
: ) a Mé

self-cons;stent conslderatlon.~ﬂ_

a

10

- We are~now.at~the‘pointb
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4 V*m | ! ‘. o |
§4. Fourler Representa&ion o ' ‘ e =
Thus far the spac1al dlstrlbutlon of the wave
-functlons w (x) has only been sigd%to be normag1zab1e, and
hence a wave packet. A 51ngle partlcle state w1th an’
'arbitrary spac1a1 dlstrlbutlgh different from that of any
element of the basis set (o} may be written ) o a
f(x) =Ecw (x) ‘ o (4.1) 7
i , B » <
g(x) =7 de.(x) . T (4.2)
. 1 1 : w
) . % "1 ' ' \ ) »
Wekdefine"
Y Ve 1' 1_ RS ;, . ' .
g T z %y (o o R SR
Qith‘Hermitian conjugate T o
L I x . ’ . : . '
- ' : v : :
G = E Byl . U C Y
Observe, that s
* ty - : ' 5
. [af?ag]+ Z Ci[ai'aj]tdj R |
13 s
T o
2 o(f,9) o ’ ©(4.5)
B .‘ ,t‘ 1’ ] . . » ’ -'
[a/flug‘]t:‘[af’ag]t = 0 . ) ) ’(4'6)

We now choose’ to define our annihilation and creation-
.bperators (in.momentum space) as

¢

_[q(vk),a‘(l)f]i = 6(k-2) | e

fatk)a(a)], - <[a(_k<\**,au)*1,= o 4.8
.‘.“‘ ‘ ’ \) o ,
where the §-function 1mp11es that these equatlons are to be

1
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.understood in the-sense of distribution theory. 1In other
words with stﬁtable test function, which f(k) and g(2) of

veqpation‘(4.6) are. We have for equationb(4.7)’

,/\f S

3. Y3 T ~
47k - d e * t —
/ / £(k )g(t)la(k),a(s) ], :=
(2m)3/2 " (2m)3/2 AL
Tk &\? N ‘ o
g 5 £ (KIRK) = (£,9) . : : (4.9)
Cf2w) T ,
It makes sense then to identify . . DR ;
. d3}< Lot - "
e, = f(kR)a (k) .. (4.10)
o £ (24!)3/2 : ' : W ‘
whldh is con51stent w1th equatlons (4/5)'and (4.6). 1If we

7

" consider a 51ngle particle element of the ba51s set [O], we

have from‘equatlon (4.,10) ’ﬂ
C‘i(x) f W‘P (k)a\ (k) o : (4.11)
where y (k) is the Fourler transform of ?; (x) Equation

L

. (4.11) agrees with our previous understandlng that a: is'the- ~ﬁ
creatlon operator for‘a particle with spacial dlstrlbution |
,wi(x)l.‘Itbisvimportant to realize that vectors formed'by‘

cyclic action of a(k) andAa(k)thon |0> are not elemente of .

v

our;Fock,space for they have infinite norm,

<0|a(k)a(k) [0> = 6 (0) . , | (4 12)
The1r\ut111ty is great however and from the correspondence
glven.;n eguation (4.1l) they play a_cr1t1ca1 role in the \\
Fourier'repreSEntation of)a}) ) LT o {}'

-
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'SS..*The Fock'spacé'of Physical “Particles

As mentloned earller each representatlon of a, leads

- e 4

te dlfferent (un1tar11y 1nequ1va1ent) Fock space. We"

e ‘1on our Hilbert space as conta1n1ng all observable

R

states and hence we require that our H11bert space. be the

9

13

Fock space in wh1ch phy51ca1 part1c1es appear in observat1on.-

3]

‘ In other words we ‘choose f/[u] as our épace where ai is the
creatlon operator for phy51ca11y observed quanta or

partlcle. |0> is then our physical vacuuq. - We call .this
. , oY ‘ . o
'reBresentation,of.the Fock space the physical partlcle

o
\

r

representation.
’ : - . I UL Y “ . o
One. usually ‘observes an individual excitation which

can be described as a free particle. ‘Therefore, all obseryed

partlcles are contalned 1d‘the phy51ca1 Fock space whlch

contalns all state .vectors for free partlcle states even’ 1f

¥ Iy

there .are 1nteractlons present.

If a single phy51ca1 partlcle has momentum ° k .and

-

energy &(k) then the total energy of an 1nteract1ng or

nonlnteractlng closed many body system must be just the sum

o W,

of each free partlcle s ené%@b. Our free Ham11ton1an_then
gives
| t toe ilos 4 t, R
° uA(kl)..;a (k )]0> = (i£1 w(ky)) a(ky)eeia (k )][0>

N SO (5.1)

with h = 1, or



R SN to St T
[“b'“T‘kl’]-é_(kz’ﬂj'° (k 110> = wika (kNeeia'(k )]0>.

¢

- (5.2)
This means - B ‘ ’
| e (k1= wkat) (5.1
and ' | _
[H:,a(k)) = —w(k)a(k). o (5.4)
o T ‘ _— ik
H, then has the simple form
| o= [ & wiraaks "~ (5.5)

For'wéve‘packet.stateg with spéciai distribution f(x), we

have’ in momentum space,

.

t _a® ny e
(B sagl = f =373 w(k)E(k)a (k). (5.6)
' Hence i . ‘ ' . . )/ // .
' ‘ B 3 < . .

ot ak ot e

Ha, |0 = [ ———= w(k¥f{kla (kY|O>. 15.7)
AR

Since observable states must be wave packet statés we see-

that observable states are not pure eigenstates of the free

Hamiltonian. Of course '‘careful preparation of our wave

‘function can yield one arbitrarily close to a plane wave.

14

. The afguments of this section thus far can also be carried }f}

‘out for momentum‘operatbr'P °;' 

f d3k'E a*(k)a(k)' \ o | (5.8)

i

The *free Hamiltonian can not describe an interchange

of energy characteristic of interaction among particles,

. a [ ‘ ) . .
- although it describé the system's total energy. We introduce '

-
b

 dynamics'into oyr system thpough'dynamical canonical'

o
T
A
A
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Heisenberg field operators 'w(x)‘ The;spacial and temporal
behavior of the Heisenberg fields is governed by the S
Helsenberg equatlon-~i~£ (v, H] where H is the 'full

Ham1lton1an and hence is the operator whlch generates time

1

- translation 1n.thedpresence of 1nteraction. We wlT}\show in

section 7 that =~ : | g

calH|b> = <a|H_|b> + c<alb>, o (5.9)

where <al|,<b|. are elements of physical Fock space 'c' is a»

c-number.

One should not be surprised at thris relation;

vKuatibn (5.9) is, not a statement that H - H = H; , is zero

int
but a statement that “the reactlon does not consume energy.

All the energy must be vested in the phy51ca1 partlcles. In

-

other words the total energy of a system. is 'the. sum of the

free_partlcles' energies.

i Here then is the so aptly named “dual Eénguage of

quantum field. theory"( Y and the heart of the problem in = .

quantum f1e1d theory. Given a Hamiltonian H, a.function of

Helsenberg flelds (the first language) we seek to realize
’

_these fields in our phy51ca1 Fock space (the second

language), for thls reallzatlon reflects the dlscu531on of

the prev1ous paragraph Thls‘"dynamlcal translat1on from

4
Helsenberg to physxcal flelds can only be determined in, a
self -consistent calculation., For knowledge of such a mapplng
Y F

requlres knowledge of the physical Fock space which in turn‘

s

15
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requires knowledge of all observable states, and these are

‘ entirely sensitive to the dynamics of the system as,described

by the full Hamiitonian which, to start w1th, is a function.
of Heisenberg fields and not ph¥sica1 fields. Here by

physical Tields we mean an operator which is a linear

”ﬁ superposition of the physical annhiliation and creation'

By

S

operators-and with a free field equatlon describe the

’“ﬁynamics of the free physical particles; these fields will be

¢

denoted by v(x) as opposed to. the Heisenberg fields denoted

by W(}). The Heisenberg ‘fields 'w(x)' may be expggésed in

terms of Helsenberg operators a(x) and a(x)~ (analogous.to - 4/"
p(x) = b(a(x)a(x)f)). The operators a(x) anhd a(x)' obey the‘

same commutation relations as a(x) and :Zx(x')'r but .they do not

'create or annihilate the physicai particles and hence a(x)

~does not annihilate the 'vacuum. To mage clear the jus€

described;seIf=consistent nature'of oUr'prohlem~imadine we '
have a Hamiltonian which contains two Heisenberg fields. “We
could,gUess that we need,two.physical part}cle fields which
have statistics corresponding to the.Heisenberg canonical
relations which must also be‘given; We write out the
'dynamical'map‘ uhich describesfthe many phxsical situatiohs

(collisions) which give rise to the existence of the

t

Heisenberg field at a certain- time and space. We now check
the canonical relations and equation (5.9) working in the«‘
Fock space defined by the two assumed phy51ca1 particles. If

these relations are found to be satisfied we must have the



correct physical fields. ‘If they‘SW@%pot satisfied it tells
us that the'dynemics in the‘full quiltonian will yield T
ﬁphysicelly observed states thch are not vectors in the Fock
’space we'tried, ie. our Fock spacel/ is not the physical 'Fock
. space, it is not complete enough to describe reality. An-
example of this would be if the Ham11tonian we are using had

‘an 1nteract10n Jterm capable of producing a composite

. particle, hence our guess of two phys1ca11y opgervable ‘

particles was 'in error for there are actually.three.(S)
The timerdependence of physical particle opfratore

&(k) and a*(K)Wiemgeoera;ed,by,the free Hamiltonian ho as

- ‘ iH t  -iH_t o |
(k,t) =e ° ‘alk)e = a(k)exp(-iw(k)t) (5.10)

and its. hermltlan conjugate, which follows from eqUélion
, (5 1), The ‘time dependence of Heisenberg operators a(k) and '’

a (k) is generated by the full Hamiltonian H, through the

equatlon

. d I ' | ,.

i 3¢ alk,t) = [a(k,t),H]‘ | . (5.1;)

or equivalently
a(k,t) = eHta(k)e ™Mt

(5.12)
The dynaﬁical‘map then, takes a'general form .
a(k,t) 2 Fla(k,t)] | ~ ‘ (. 1y,

B .o

for a one Heisenberg, one physical field situation. .1

symbol £ means it is a weak relation\or an equality - ¢ “pure.s
elements with respect to the- phy51ca1 Fock space and -0t 20
' equallty of the operators alone. Aga1n the best. one cai i

e

pEE ST . -
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1

is guess the elements a(k) and formulate a dynamical map as

in éqﬁétion (5;13), then one checks to see if.all of the
canonical relationS‘and‘equation.(5.9) which the left hand
side of equation (5.i3) satisfies, are indeed satisfied by
the right'hand side. Clearly equations (5.10) and (5.12) énd
hence'(5.13) hold for functions of a(k,t) and a}k,t) ie.

\' " +
p(x,t) and ¢9(x,t) because of equation {5.9) . '

i



§6. Perturbative Calculation

.19

t

It is very useful Eo'separate‘thé time evolutioﬁ of
the states and the time eyolution of operators such Ehat they
arg generatéd by Ho and H - Ho fespectively. Such.a
representation is called the finteraction representation.(6)

1

vaen\a Heisenberg operator ¢(x) the reader will be familiar

with the expréssion

~

+

b = TN e )y (0UCE ) (6.1)
where ' |
Ult,e ) =+1 + (=i)fF de.H,  (t) + ()25 de.H, (£ x
o | to 17int " "1 t, lint 1
ftldt. He  (to) + C (6.2)
tO, 2 int 2 e ’ *

The Dyson cHronological operator 'P', which orders operators
in order of increasing time erm~righ£ to legk,_can be

tailored so that it accounts for fermion exchanges and is
’

denoted by 'T’'. Bquatioﬁ (6{5) then becomes

o R n .
‘ (-i) t t oL, t
ult,t ) =) A—=— [ - dt, [ . dt, [  dt_.
) o n= 1 to 2 to n

0. nt to
TH, (eeE e )  (6.3)
. ”=.exp(-iftoaintgtl)dt1) o | X (6.4
Hence o | |
v(x) = exp(i fto Hint(tl)dtl)wint(x) ekpk—i ]to H;:t(tl)gtl).
| | | o (e.s)

Such an equation is suspect as it stands, for does the
: : !
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infinite ‘series U(;.to) converge? The smallness of terms is
ﬁeaningless‘ih an operator seguence and hence one examines
convergence with respect to matrix elements. Intuitively
<a|U(t,to)|b> seems to‘converge because the.ihcreasing
interactién complexity of each sucessive term supéorts the
vi;w that they a}e less likely: Ye»shéll éay“no more|abdut
the convergence .of U(t'éo)' except ;hat there is no evidence
which suggests'tha% u(t,t ) COnverges‘hniformly. In the
limits, t + -=» and t » += one should be aware that
‘6onv$;gence of eacﬁ‘iii% 1integral) is guaranteed by the fact

i

that we are taking matrix élements with respect to

normalizable and hence wéQe;packet states, The adiabatic
trick(e) which artifically induces convergehce shoulg be
‘" viewed as takingd;he weak relation
. ‘A)’ ) R
. "1 ‘ -
y(x) = U (t'to)wint(X)U(prto) : (6.6)

into the strong relation
f

i) = 0T he ) vy / (6.7)

(x)U(t.to)e ”
where the subscrip; e implies Hint(t) + Hint(t)exp(—ejtl) for

‘small €.

A



'r_} Dynamical ,Map and H -',no

/£
A8 stated ‘earlier the Heisenberg fields w(x). which

carry the dynamics of a system, must be expressible in terms
bﬁqof’physical‘fields because observation yields only physical

particles. Let us assume that vo(x) is the free thsical

field associated with Heisenberg field ¥(x). We write

.(following closely the disgussibn in referehce (2)) equation

(5.13)' in a more general formr
vix) = y(x,9%) (7.1)
which in turn may be written- as

P(x) = a + 2 172 o(x) + [ d y / d z. F(x y.x z)N(v (y)v (z))

+ eeo (7.2)

~where N is the normal ordering opérator\ﬁSQd so that no

contractions appegr on our dynamical map.

z1/2

is - a renormalization factor, and 'a' is a

c-number ' (equal to zero for fefmion fields) and the_

time integration covers the full range of dynamics

(‘—w;m) .

Now regarding ¢ (x) and w(x) as being real we have

= [ 4 3% wik)a (K)a(k) T (5.5)
and \

[Ho/vo(x)]_ = ~i i 9°(x). (7.3)

21



Equation (7.2) ylelds o | ,

'1<a|(uo,w<x)1 Ib> = 22 3 cal¢®ix) |b>
+

+ [a'y a%z POy x-2) (5 + 330 <alNe°(y)e%(2)) 1

, Y z
+ L ] " ‘. (7&.4)
which upon partial ihtegraxion, which is welf defirfed due to

the guaranteed convergence in time due to la> being a wave

+

packet, yields

. B v a . , '»
<a| (Hy,w(x)]_|b> = -1 3 <alv(x)|b>. . S (7.5)

The Heisenberg equation for y(x) yields

<al [H,9(x)]_|b> = = = <aly(x)|b> O (7.6)

3t
and hence from equations (7.4) and (7.5) we arriQe at.
<a|[Hb¢(x)]_|b> = <al|(H,¥(x)]|b>. (7.7),
Hence for all vectors <a| thchlare'elementé of our physical
Fock space in which ¢°(x)'is realizéd we have equality |

_ : 'd
between matrix elements of H and H .

22
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§8. More on Free Fields \ |
If A(3) of our free fieldlequation |
A(3)9° (x t) = 0. ’ ‘ . Yo (8.1)
is at maximum a second degree polynomial in then we may

write’

/\

3_ 2
3
= A(ik)eik x' etc, We

vy =20 v M edn -
ikex

(R.2)
where A(V) is such that A(V)e

wiil, in this paper, understand A (3) to be~hermitian, (if 1t
(8) “

is not one can edsily apply a hermitization- matrix and
make ‘it so). Ve naw deﬁ1ne‘7¥
€ * b T : C »>
_ L, (D (2) gy (3_ _ 8 v o (1,0 o2y, 87
I =2 (V)-;x (y)(at aat) A (.v,».’, Sia (V) 3¢ -
(8.3)

observe ' !

I d X f(x.t) r g(x t) = f d x f(x,,t) ( 1)qs(V)g(x t)
1 1

) 5.2 (2)
-1iJ a3x f(x,t)‘((——) - 39 N (g)g(x,c) (8.4)

v ‘ "
= -1 [k ex,0)T(a 2y - m-F)lglx, ) (3.?;/’"
=0 - o e
. wh-- / ,

when f(x,t) and g(x,t) are solutions to equation (8.1).
(F(x,t),g(x,t0)) = [ &% Ex, ) Fgix,6) © (8.6)
then, is the ihner product we introduced in section 1, apart
from_theifi&t that it is not positive definite (see equation
1.2). This problem w111 be addressed shortly. » o

The time deve}opment of the physical annihilation and

cfeation operators was given as

s
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X

a(k,t) = a(k)exp(eia(k)t)ﬂ . . . ¥ (5.10)

w o ,n = a0 Tepliooe) -0 )

The spac1a1 development is generated by @/h as

a(k,xyt) = exp(—lwg x)a(k t)exp(1 2 x) -f( (8;8)
= a(k)exp(l(kx - elk)e)) o (8.9)
al(k,x,t) = a (k)exp(rl(kx - w(k)t)) © (8.10)

'The f1e1d equgtlon (% l)ols sald to be “type-one" if there

exists a dlfferentlal operatdr 'd(a)' called a . . ¥”$ 
;“lelsor"( )whlch satlsfles C o o | PR
;3 S R | ' Viyh.
o d(a)l(a) —!1 T .Q(V) Co o (8.1;{

.and "type-twoﬂ,’if'. : "

D 2 _

d(a)x(a) = -(——3 + w (V))

- : 3t A

Clearly 1f A (x;t) is the Green s functlon of equatlo

u*r equatlon (8. 12) then d(a)A (x,t) is the Green's functlon'

i of the fleld equatlon (8. 1).‘

Solutlons of th! free fleld equatlon (aSSumlng for

now that it is of type two) ére of the form

Tk, t) = uB (k) exp (i (ke - m(k)t)) | (8.13)

s vr(ﬁax,t) =,vt(k)exp(—;(kx - m(k)t)) ' :‘, (8.14)

S R s ; : ey
where .r carries othef degress' of freedom, such as spin. From

*.

‘equatic .4) we have o
{ax ur*<k,x't)F*vs(z}x,t) =0 “w < (8.15)
. "~ . / g R
- j d x v° (k X, t)r ur L ,x,t) = 0 (8.16)

ana we_choose u (k;x,t) and\vb(k,x,t) such that oo



‘ B

iy 5 . M} ‘ ' . : . .
i J a3 uF (k x, ) FuS(2 %, t) = § . Sk-2) (8.17)
f.d‘x vF (k,x t)f ve (£,%x,t) ﬁ‘p GrS(k-l).» ‘(8.18)

' Eqaation (8.17) can be made positive because A(3) is defined
' o . ' ' s
only up to a sign, but oncd it is set equation' (8.14) may be

negative . p = *1 is used in equation (8.18) to make it

o N

posit{v‘e. This “{s‘ how we vsolve the bef‘ore mentioned p:.zlemv
of the non p051t1ve def1n1te inner product.

We ane now in a p051tlon to spec1fy the free phy51ca1‘
f1eld 9% (x, t) as, e . -
o e%,t) = 1 [ adkuT (k)T (K)exp(ilkex - w(k)t))
e . T o ‘
LS ‘ r, %, rt ' . + ' :
: + v (k)8 (k)exp(—1(k-x - w(-k)t) ‘ (8.19)

o

- for type two’ flelds, and

(x,t) =] j a: k(e<e(k))u (k)a (k) + 6(-e(k))v (=k)
L.

(- k))exp(l(k'x - e(k)t)) . (8.20)
for type one flelds.,' . ‘
051ng equatloﬁs (8. 15) through (8. 18) we can prOJect

out the,ann;hllat;on.or creatlon operators Erom 9 (x,t) as-

etk = [k TR O S (B e
8E(k) = -p | d‘x'vrf(x,i,t)F’¢°(§,ta o (8.22)
for equation (8.15) and similarily for equation (8.16). It

now. behoVes us to 1ntroduce the solution to the homogeneous

-

Kleln Gordon equatlon, known ‘as’ the Schw1nge§A -functlon.

¢ . I .
’ : .
-

Y4
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Yy

‘At(x,t) - zigzn)'315%;§E§ exp(£i(k-¥ - w(t))). (8.23)
ObSerQe ‘ L g | t o
2% (=x) ;.-A‘(x), | T . - (8.24)

8 (x-) + 87 (x- yi d;, at | =vt L (8.25)

’3‘%

At(x-y)‘-‘AT(x-y) = —i(2n) exp(ik (x-y) at t. =t
m(k) | X . Yy
. § ' ‘ ‘ - (8.2\/)
o) 1, e o
. St =5t - 5 §(x)8(t) | . (8.27)
—_— 2 S - , o ' ,
(1—5 +0?)a¥(x) = 0. _ . " (8.28)
o ot ' o ' o
' Hencg
A (3)d(2)8%(x) = 0 . S (8.29)

for type-two @quatigns. We may write 9°(x) of eQUationl
(8.19) as - v “ S
\ o, * * ' -
o (x=x') = d(3)s (x=x")w, =~ - - (8. 30)
~'where w is a constant vector Qf compatxble dlmen51ons.' Oup
W
orthonormallzed set of solutlons u—(k X) and v (k x) of

«equatlons_(8.9) and-(8.10) form a basis and allow theu
-expansions _ ' , Lo

o " .

a(a)aT(x=x")w = §’ j d g cHik,x uF(k,x) (8.31).

d(a)A (x-x')wgs’Z f a3

co(k,x")v (k,x). - (8.32),
These equatlons may be 1nverted using the orthognnallty

g
condition, as .

I

c (k,x')& [ a 3% otk x)r Ta(aya”t (x=x')w  (8.33)

4

@



[

crlk,x") = =P | a3 vET k) FTa(a)a T (x=x V)W, (8.34)

| Writing out A+(x-x') explicitly we have , ' .o
: + ' - i 1 ' rt ' ‘
c (kyx?') L Swir) (u™ (k,x )P(k,ko)d(k)y)ko=m(k), (?.35)
‘ ~ ' ' L ’
where  T(k,k_ ) = Vo < 2k B, (8.36) .
_But equation (8.25 and equation (8.36)'give'that
s 4 '
vy
O. i o \
which leads to '
. . ) s
- SR
Feeoo Jlkk )A(k) + A(K) g3 dk) = 2k, (8.36b)
| S o T o
where A(k)d(k) = kg.‘ mz(k)'was used.. N
Hence we have : e W |
(k) Trek,k a1, = 20(k)u" M (Kk,x '), (8.37)
! "o’ R ko=m(k) ’ et

‘which yields

+ ‘ oy . o ' SR
cplk,x') = ~i urT(kﬁg')w ' (8.38a)
, ’?_?” \. ) ) 2] i : | ‘ '. v i

and similarily €or 4 ; 'Lﬁyi o . ‘ o
) : - ’ By . : \

ke : ~(8.38b)

]

' c;(k,x')' ioe
With equation (8,31) we arrive at the "sum rules" -

§f adk uFik,utT(k,xt) = 1 a(matix—x")  (8.39)

r ' B ‘ h” * .

o

Y/ a3k vr(k,i)urf(k,x‘).= =i p d(3)A (x-x'). (8.40)
r = : : i - ) ‘
For type-one equations these sum-rules are valid provided we
- make the corrbspondencé , .
e(k) = w(k) ,'b . . B (B;il)

N
A



-

LM (o
.where p' ={+1

4

8% (x) = —i(2m) 72 [ a3 exp(itkx - w(k)t))

which gives

&

§(t)a

[—

*(x) = -i 8§(x)8(¢t)

(4 §€ - wmatx) =0

P(k k

We replace equation (8. 36b)vgith

)d(k) + A(K) =— d(k) =1

' W1th equatlons (8 15)~and (8.16) we have.

v

[vk(x),vz ()], = 1.4, @) (8T (x=y) + 0o B (x-y)),

_1.

type—one with e(k)>0 .
type—-two, boson’ '
type-two, fermion

» . . '
We now introduce .the "condition of causallty“ as the

[

and hence we must have

- Then equation

(8.42a)

(8442b)

(8.42c)

'(8.42d)

(8.43)

(8.44)

guaranteed commutatlon at equal times of locally distinct

obaervables (A

"implies,

pp' =

'[Aigx't

(x)), and we see the observatlonrof Pauli ‘that

Y

),Aj(yzt)]; =0 for ali X=Y,

[v?(X.t),vi*(y,t)]t‘= 0 for all x=y,

1.

Let us introduce i\

A (x~y)

1% (x)
[0 (x)

=.A+(x—y)A+vA-(x—y)
(8.31)’reads'(at'quélltimes)

0T (x)1, = 1 d(3)a(x-y)...type-tuwo.
%7 (911, = i 4(3)18¥ (x-y). .. type-one.

Equations (8.44) and (8.47) lead to

(8.?5)
(8.46)
(8.4;)
£§.§8j

(8.49)
(8.50)

28
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. .. {(#Y...boson I
p = Yoo R ' ] ' (8051) ‘1
‘ .‘-10 o fermion : ’

Hehcq4the causality condition determines the statistics, of

particles obeying a type-two equation, . Equations (8,49), °
. !} o

(8.27) and (8.48) give

ot .
t)]

o ) . ST
20°T(x) _ sot, .y L |
and hence we have —$3E~£— = ¢ (Xx) as the ‘canonical conjugate



§9. The In and Out Fields .. e
‘A'The'asymptOticlliﬁit of a Heisenberg field'is free.
We undefst%nd his with two realizations; initially prepared

states (t + -®) can be chosen to be eigenstates of the free
o ‘

Hamiltonian (and hence are at least instanteously free);
final statgs (t + +») although they may geathought to be
iSpaqial;y sepafated are still'interacting for their wave
\paéket; have SpréadAto a very’lafge extent. However the
density of the'wavéxégckets is eQer decféasing as the
expansion goes on Snd the net overlap beﬁwéén'theée final
‘states, as time goes to infinity, is zero. &hey are theh
asympﬁotic;ily free. This 1sathe observatlon of R. HaagA We
now wish to, introduce such 1n1t1a1 states (1n-states) and
final states (out—states). ,

We“have from equation (8.21)

a(k) = [ d % u(k) exp( ~ikex + 1w(k)t)r 2O (x) (9 1)

L —

).

7/;1‘& equatlon (7.2) we introduce

a(k,p) = [ d x u(k) exp(-1k-x +bim(k)t)f*z-}/2tw(x).— x]1,
| (9.2)
and construct (analogous to equation (4.10))
. 3 : '
: d’k . .
t) = [ —SE k, L .
bty = f 372 9tRal t)‘ L 2 D0

where g(k) is a square—integrable function. Since wave

packet stafes have well definéd_limits we can define aln(k)
and a°Y% (k) through |

lim <alv (£)b> = <al | a3k g(k)e® (k) |b> | (9.4) .
t++e '

'



kY

lim <a|¢ (t)|b>

£+

[ a% gtkra™)|b>.  (9.5)
1/2

The operator A (¢(x) X) appearing in eguation (9;2)wis

‘called the 1nterpolat1ng field for at (k) and o O t(k), all of

its oscillating components die away except the one in phase

-

with the free asymptotic particley

We have, up to this point, ipt;oduced operators“

a(k),a (k). a(k),
t ' out’ + ,
e (k),a o (K),a (k). C(9.6)

We now make a correspondence between the in—fi%lds and the

phy51ca1 flelds,

(k) = a(k)

‘ B e |
Ty = et 9.

Thls implies the expan51on coeff1c1ents of the dynamical map,

equatlon (7.2), are retarded functlons, ie.

We then have _ . ' ‘/
Oug(k) = ulh(k) + higher order products of.aln(k)‘J

out

and a®“S(k). I (9.9)

,,,k‘

31
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§10. The Reduction and L.S.Z. Formqlas,

All of the discussion contained in this paper thus
far is completely in the spirit of the postulative

formulation of field theory (without thermal freedom) of
Lehmann, Symanzik and .Zimmerman (L.S.2Z. formuYation).(g) With

six basic postulates(;O) the L.S.Z. formulation'develobs'

a full quantum field theory. The heart  of ali six postulates

A

is contained in the above ‘with the exception of some
~intricate mathematical considerations. We now will discuss

the.s—matrik and then the two relations which make the L.S.Z.

\
formulation very useful in pract1ca1 calculatlons, namely the

feductlon formula and the L.S.Z. formula.

Recall that at equal times, with equation (9.6), we

have

™ xrt) 0™y, 001 = 0 5 PNk, e), 0 My, E)] = -i6 (xmy)

\E , - Y (10.1)

[o sout/

[0°9E (x,t) ,9° (y,t>1‘= 0 ;

T(x, t),¢ iy, )1 = —is(x-y).
(10.2)

Ny . : : - o

The physical'Fock space is complete to the extent that it

a?

includes all observable,states and hence it includes all
n(x,t) and v (x,y), we hence are justified (see refereénce
10, for a more rxgorous Justlflcatlon/paged on the fact that

the 'in'-and. 'out' operators form an irreducible operator

ring) in éssuming'a unitary operator 'S‘' in the Hilbert space
such that +

Bixot) = sl Mk, t)s. B (10.3)

~
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'Equivalent1y with the normalized wave packet expansion given

by equation (8.18)

s (k) = slaif (ks . (10.4)
. (k) = sl 0s, | ooy g
Using equation (10.4) B
0= sTh M os 05, ] ‘ (10.6)
this implies o | -
«iMk)slo> = o. . " (10.6b)
Hoﬁpver, since we know ain(k)|0> = 0 we have that o
B s|0> = |.0> . (10.6c)

if we assume the vacuum is unique. Here we have set the
phase of S such that the phase of the vacuum on each side of
equation (10.6c) is the same. We then have

in out,

lo>. = |o0> = |o>

. ‘
We then may write

_ ' int int.
|a>,in = alk,)", cevalk ) [0>
3 1. t - : )
= s a°”t(k1)*s ls...a(kn)OUt s o>~
s . v T
‘ =5 ™kt a0
hy n .
| ‘ = SLaI?Out' ‘ ) . (10.7)
which leads to |
. out<a|b>in - out<§‘3|b>out" S (10.8) .
similiarly . N L3 ‘ .
out<aa|b>in = in<a|s|b>in. . (10.9)

Equations (10.8) a@d.£19.9)<say that matrix elements of the

L3

)

S-matrix are computed as the overlap between the in-states
!‘ k4 N , . .



and out-states, If there are no bound states our in and put
states are..complete and

S = z |a>in out<a‘

Towards the derivation of the reduction'formulaé(l}),

we
continue to work for simplicity with one, Hermitian, scalar

field. Consider an in-out matrix element of a time ordered

)

4
product of interpolating Heisenberg field operators

e

Jab = oue@ITOOx ) euavix N[b>, . (10.11)
If we take
N 3 2 =£ in t '
D> = lesatk)>; ) = amk) le>, 0 (10.12)
we have
. out(aIT(.W(Xl)-.."P(x.n-)a. (k)in|c>in‘ ('10.13)

o

Using the asymptotic limit defined in equdtion (9.5), we

have

t

(]
"

. , t :
ut<a|T(w(xl)'°fW(xn))°.(k) fe>.

a,b o in

lim <a|T(¥(x
taow OUL

(10.14)

N
Plece X N¥ (e o>,

d3k 3

= lim - ut<;[T(¢(xl)...wg§n)) / 3n1 372 dx g(k}

t+== o

€10.10)

34

-1/2 o t «+ . _
z VT (x) x) T u(k,x,t)IC>in - (10.15)g

where we used ﬁhe‘conjugate of equation (9.2)

We can write
3

: : a’k .3
J = lim f —2 4°x .
ab e ;(2,)3/2 .ogt

gali(y(xl)...v(i&gw'(x)F’g(k)u(k,i,t}]c>in (10.16)
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where Y 'Ax) = Z-l/z(W(x) - X)e S, (10,17)
With the time limit we may certainly take the interpolating
 £161d\w'(x) uhdér the T-producE' Suppressing’the mgmentum
integration (undérstanding though.that we are using wave

packets) we w;ite'équation (10.16) with a time integration

3 ) + . e
Jap = = | d%x at 3E‘ogt§a|T(¢(x1)..w¢(xn)waf ik, X, t)) o>,

+ lim | d3x

. ' +» >
Lin, outga|r(w(xl)...w(xn)wg(w))f u(k,x{b)lc}in.‘

e . - (10.18)
The time limit of the second term of equation (10,18) means .
that‘thevinterpof;ting field Wé(x)f may be brought through

the T-prbduct and -hence describes a one particle'uncOnnécted

interactioid hence we write,

(Ja,b)connected .=, -1 I d3k e . /\k""/'mﬂ/v
out @IT (x ) Cx 8 0T oo A =Brutk, X, ©) o0y
/ (10.19)
Where we havé used thé fact that ‘l |
o akx e Frgo = s f ek e @) - a-Enam;
| | 110.20)

Elimination of a quahta from the bra or a hole from thé bra
or ket leads to the following additional reduction formulas,

<@|T(V(x oo ¥(x ))]alk),c>

P

connected . .
. 3 . R SN
= -ip [ d7x dt v(k,x,t) A(3)

(10.21)

&aIT(w(Xl)-i-¢(xh)¢'(*))|c>connected



<a.sik)[r(w(xl)...w<xn))|b>
= -le f a3 at J
a|T(v' (x) v(xl)...w(x ) |b>A (- 3)v<k Xot)

connected

connect:ed(10 22)

<a(k) alT(¢(x )..-W(X )| connected

= -1 [ a3 at u(k,X,e)ta0)
i
<a|T(¥(x)eetix Ix'(x))]|b>

connected !10’23X

where all bra vectors are out-states and all kets are

———

in-states.

36

'Repedted dse of/equations (10.20) through (10%23) in order to

exhaust the .out-bra and in-ket vectors, leaving only a vacuum

expectation value, leads to the L.S.Z._fOrmula'
T(¢(xl)...¢(xn)) ngo mzo iTE:ETT | 4 xl...d X d Yl"‘d Yo

o T el )1 e (6™

connected

<0|T(e(x, o eolx DV b (x e (yl)...¢ typ) )10

| [r(- 0%y By ] (10.24)
where ':' means normal proéuct. Equation (10.24) may.ge
writen as (with F(x) = Wlx)eeabix )

F(x) = <0|TCF(x)zexp(-i [ a%e{s%T(ero(e) + o (£)3%(8)}1) 0>

) / (10.25)
. where the normal proddct ;s with respect to the ‘free physical
fields vo and ’of and |
3% = T x)n () | | | (10.26)
IAx) = a=H1e%x). B ~(10.27)

)
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. = /
e

With matrix elements taken between ph&sical particle states

and not out, (bréi and in, (kgﬁ) stateg\respeCEivoly: we hawve

° < .
‘s = :<olr(exp(-1 | a%{3%M(eroce) + oT(0)I%OV )Y (02, o

(10.28) -

with F(x) = 1




. .
oA v

- 8ll. TWoepoinf Green's Functions = B S "
. . .

] E

h Follow1ng reference (2) closely, wh1ch contarns im/
~ . | .

prec1se dxscu531on of two—p01nt functlons, let us 1dent1fy

3
g
- the causal, gg;;nced and retarded ;wo—p01nt ‘Green' 'S functlons

- . ' . e ) . '
S

as | o ; ‘ ’ ' : > 5
0 GPBrxey) = cofT(ax) By oS (11.1)
o '\- .(tx-gy)‘<Q|A(x)B(¥)|0>-
i+ Q(ty-tx)<0|8(y)A(g)|O> - (11.2)
: GAB'(x-y") = e(t'—.ty><o|[2x'<x‘),i3'(y)1 los (1183)
(x-y) = -e(ty—tx)<0|[A(x) /B, 1, 10> (11.45

We deflne *the fourler transform of G (k) as, with k=(k,»(k))

AB(x-y) %?"
- (21!)
The sum rules 1n equatlons (1;8,399 and (I.8.40) give, for

f a4 k exp(lk(x—y)G Bk ) - (11.5)

e

‘ ot

type—t%p flelds

Copew o T

R .0t i .r. ;'"4‘ o S ' “_ -
<0|¢9(x)9°*(y)l0> =i d(3)a (x>yV) o (11.6)
B 1' ) < : e N . : _‘ i ' . )
<019 (y)9%(x) 0> = ~i o d(3)8” (x=y) & BEENTE § 0 B T
" Using (I.8. 24) we, have ‘”.‘.*"- v o J-.rf'if

- N ’ B
qc(¥.—y-) = 1(8(t “ty )d(a)A (x4 °y) Q(t -ty )d(a)A (x—y) i
(s /8)

= 1d(a)A (x-y) + 1[e<t t ) d(a)mx y)

‘Y
where we used equatlon (I 8. 48) and ’

b (x=y) = 0(£18%(x) - (-t} T (L
With equatlons (I 8. 27), (I 8.28) and (I @&25) we have :
2 ‘ “.A .-’— o ‘ N
(- e - (V))A axio=stonT (11 10)

A e SR | B T

oot
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- and hence }E for type b&o field ¢ (x) such that

f‘ CA(2)9%(x) =

and d(d) has time defivatives’only up ‘to first order?'

equation (11;%) gives |

Glx-y) = i a)a x-y) (11.12)

' o
For type one fields satlsfylng equatxon (ll 11) ‘
Golx-y) =i et -t AT (x-y) - (11.13)

- and w;th Pquatlons (8.42 b) and (8.42,c) we haveat‘

T (1 55 - e(Ma ) =800, e L. (1aa

YWhen :_ : . | '
I o(t)atix)

;‘eqhation'(ll‘fS) yields' ‘ ‘

| (x—y) = i'd(é)A (x=y) + i[e(t ;t ) d(3Y1A+{x-y) (11.16)

hj,whlch glves, where d(a) has no time derlvatlves

?,;y'; .”' Gg (x y) = i d(d)e (x—y) Lo ff.." | (11,17

ThlS then ends our dlscu551on of quantum f1e1d

theory w1thout thermal degtees of freedom- 1t is by no means
complete, but for eur purpose it 1s.comp1ete enough ‘ Ouantum
o fleld h%eory ulthout thermal degrees of freedom has been
1ncred1bly successful at descrlblng h+gh energy partlcle

phy51csveven though the reality it descrlbesvls always at a

finite temperature., . : <

@
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'§1, Thermo Field Dynamics -

Thermo Field Dynam{cscx'2'3)v(TFD)_is‘a

generaliZation of field theory withbyﬁ&fherﬁal freedom (Part
I) such that the stallstlcal mechanlcal ensemble average is
replaced by a thermal vacuum expectat10n~value and hence
becomes a real time average, “allowing all f1e1d theoretic
vdevioes and calculation m thods. TFD.1ntroduces another‘
“Hilbert space} say tilde space '~ ‘which is identical but

LAY
v

g -commut ing (operators A,B are said to o-commute if <

{

[A B] .# AB - cBA, where o & t1) with the orlglnal non-tilde-

43

Hllbert space of Segtion I, ' '. The direct product‘of these,

o

" two spaces forms the}complete spacevof TFD and a
representatlon of thls space '‘can be shown to form a.

*
¢ -algebra (part IV section 1II). The douhllng of the

number of oegrees of freedom, via the tilde field, »

. I

. facilitates the above mentioned thermal vacuum expectation.

The tildevogeration is completely defined by the first three

of six axioms of rep¢ 2, ‘They are as follows:.

Define two sets of opergors.a = {Aland a = {A}.

i .

Then
I. "' [A(t)LE(t)]0_= 0 for all’'A € a and B ¢ a.
| B (1.1)

IT1. The one-to-one and onto mapping; eay tilde

~

conJugatlon, éeyween a and a obeys for A,B e a and A,B € a

and clic2 € c-number

a) (aB] =& Co1.2)
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\ b) [clA + czB] = cIA + czB N (1.,3)
c) (A) =\ﬂA ) , (1.4)
III. Fof A e a; |

, ‘"= € A where € is. a sign ﬁgctdr (1.5)

A
\ to be discussed.

A

. ) o * .
This last axiom does not support a c¢ <algebra but as

will be discussed in part IV there exist an "adjusted tilde

»(4) Ghich makes e = 1 for all A e a.: r‘

o

<

operation



§2. The Thermal vacuum - v T s

The need for the doubling of the degrees of freedom ‘

R -

will become,cleap as we derive the form of -the temperature-
dependentﬂvécuum |0(B)>, which is}defihed by:
—BHp)

where z;}(s)‘is such that <1> = 1. )

> = 2 l8)1rle <0(B) [A]0(8)>, (2.1)

Following cloéely H., Umezawa's original'line of enquity(s)

we write /from above: . ‘ ‘ x
‘ -

i : ) ~Buw
<o(8)|alo(s)>k=2z7(8) [ <n|alme " (2.2)
. n ‘
expanding |0(B8)> in terms of |n> as _
l0(8)> =1 In>a_(8) = | C(2.3)7
. n Co . )
we find
* . -1 —Bwh S ’ ' ‘ -
an(B) am(B) =2, (B)e 8§ me . (2.4)

Sense can only be‘mihe bf this if a_(8) is interpreted as a
* a'M ' ’ ’

vector and not a c-number.  Equation (2.4) then gives the
orthogonallty condition for elements of the vector space
{a(B)}. Due to equation (2.3) this new space ta (8)} 13

orthogonal to the space {|n>} and together these two spaces

‘'span the space_f[O(é)>}; S \
Define; L ) .
' -Bw /2 o .
a (8) = |n> e ;1/2<s) (2.5)
- where |n> is a vector in the tilde Hilbert space“which'can,be
characterized by: ‘ | 4@" | N
H|n> = w_|n> | S (2.6)



<n|m> = §nm - o (2.7)

AN0ak) P> = (k) B> . (2‘3)

'Note by deflnltion the eigen- energy appearlng in equatlon
(2 6) is the same as equatlon 5 1 of Parb I. Substituting

equation 2.5 into equation 2.3 we get; "

-Bw_ /2
|0(8)> = .2 J/Z(B)Z In,n>e " (2.9)
.. ) n ! v . ) |
Wherq we have denoted the space |n> x |[m> = |n,m>. "
For boson like operator A:
<m,n|A|n‘,m > = <n|A|n'>6mm,' : - (2.10)
a,n|Aln",m'> = <m|A|m'>s n;= | Bo (2.11)

ie. A and A only act on- vectors of their respectlve

Hllbert spaces.
wé make the definition - - o
alein> = @IFR | | (2.12)
with,equation (2.9) we hay write the thermal vaeuum

~ expectation of an non—tﬁlde operator as;
-Bw /2 .

<O(B)|A]0(B)> = ?;1(3 ) 3T e ™ <hnlalm,ms (2.13)°
: nm

) " -Bw_/2 -Bu_/2 Lo
)Yl Jle ™ e ™ <njajme<n|m> §2.14)
nm -

using equation (2.7) we have
’ -Buw

<08y [alo(e)> = 2788y T e nlaln>  (2.15)
. ) g n- )

which is equation (2.1).
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In thersimplest sense we have introduced a tilde

" space so that only the d1agona1 elements of A are picked up
in <A>. More fundamentally, as will be shown, the, physical
mapplng between a tilde and non-tilde operator (the thermal
state condition) demands a new parameter enter the téeory,
thlseparameter is tem;Lrature. The 1n1t1a1 conditxon for

th1s mapplng allows one to 1nc1ude the initial thermalr

cond1t10n in the formalism. This initial’ cond1t10n can be

statlc or dynamic deveLoplng into ‘an equillbrlum or
noﬁ-equ;llbrlum formalism respectively. This‘w111 be made
mqre clear in Part FII. The uniqueness and strength af

TFD as a finite temperature quantum field theory is that it

is based upon thermal states built upon the thermal vacuum,

These excited states form a linear vector space and are
responsible for the fdct that TFD accommodates a tWermal

Wick's formula and a Feynman—type diagram method.
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§$3., Normalization of the Thermal vacuum

Let us cons1der a system with Hamilton1an H(a{k) (k))
where . | ' ‘ . _

fatk),at (k)1 = S(k-k") o (3.1)

(a(k),a(k)], = iaf(k),a‘*(k')l0 = 0 | (ifi)
with vacuum state | 0> ébéh that ‘

H(a( )fa(k)f|0> = O‘E- : | (3.3)
Any excited eigen state of thl? system can be expressed as a
vector in the Fock space generated by the cyclic action oi&
operators a_(k) on the vacuum |0>. Hence the Fock space is
spépned by the vectors af(k)n|0>.

HaT(x)™10> ="n w(k) (aTek))™o>.
. 3

‘We now introduce the tilde system‘s algebra in a
.simiiar way. The tilde system has a Hamiltonian ﬁ(gt(k)g(k))
where ’ | |

(3k),a(k) T, = 8(k-k") 3.0

(Gek,akn], = GToo,3T k01, = o (3.5)
with vacuum Statev|5> such that

BET 0k =0 - | (3.6)
‘Eﬁcited tﬁlde states formlvectors in the tilde Fock space.
These vectors'are genesated By cyclic action of QT(k) on the

vacuum |5>. Hence the‘tiide Fock space is spanned by

(al(x))"|0> and



3
.

T 00T e n o (30 B, ‘ (3.7)
We may then write: . .
lo(8)> = 2;1/2(8) P2 exp(] at (1)@ (kD) 1085. (3.8)- d
, k R .
1

Iy *

The normalization«z;

the number density 'n(k)' is such.thét: ‘ o ﬁﬁy
1.

——Tbi
esu + 0

<o(8)atkMa(k)|o(s)>

2(B) can be obtained by:recalling that

n(k) =

= 22 (8)<0Bexp(] 3(kratk)re V2 at(k)a(k)e PN/
. k » . 0 . B
te 1 e
exp(] a (k) a(k) |00>
K . .
. -_ - ' .
= 2t I (3.10)
~where w' ='nw(k;B). Then wevhavef dropping”ﬁhe prime;.
2ty = —L . (3.11)
, 1 + ge
If we denote . k : - “
u(B). = (1 + o0 e_Bm)_l/z | )
v(B) = e 89/2(1 + o o7B9y"1/2 (3.13)
we see that , / ; )
u(s)? + v(B)Z‘# 1 for ¢ = 1, fermion  (3.14)
u()? - v(g)? =1 for ¢ = -1, boson (3.15)w

Because of equations (3.14) and (3.15) we will denote

g(a)fermion = cos 6(8)
Q(B)boson = césh 8(8) - _ ' ‘
V) fermion T sin 6(8) ; ; B



v(B)boson = ginh 9(?),

We consider bose oscillators first of ‘all (¢ = -1), we may

Qrite | 1 ) e
" 10(8)> = (1 - Sn%)exple” Bu/2, 3ty 105, & (3.16)
= exp(0(8)(ala’ - o'aa))|0d> : (3.17)
~ oz exp(ai€p3)|06> . : (3.18)

where 8(8) is such that:

e—Bm 1/2 —Bm‘/2(1 _e—Bm)—l/Z«

cosh 8(8) = (1 - )~1/%, sinh 6(8) = e

. . , »
, | R S (309

‘

and ¢' may be chosen as + or - unity. Equation (3.17)’shows

exp(41GB)‘is unitary and hence suggests a Bogoliubov

[
transformation

a(B)‘E exp(rlGB)a exp(1GB)_; ' |
= a cosh Q(é) - ¢'asinh 8(8) ’ T (3.20)
at8) = exp(—}GB)a exp(lsa)ﬂ” | 'K':*f e . ‘

; cbsh 0(5) - aJaT

which invert to ‘give | _
a
a

.éy ;irtue

annihilation operators 1nto thermal

same commuta&1on relations as did ouﬁ

(a(8),a’(8)1_ = [a(Q\:a <s)1¥ %v%-*;r;';~% '7«3L24>“7? o
S AT
\9554 (RN S T B

I



N - i ) R N e S ,“w

all others are zero. ‘
We see from equation (.18) and\(3.26)'that ‘ ,
a(8)|0(8)> = B(8)|0(8)> = 0 o | (3.45)
We now ?ee |0(B)>'s vacuum nature. Using equgtion 3.20 and
- 3.21 we have- '
al0(8)> = o tanh 8(8)a'|0(8)>
= are™/23" 0(8)> | ©(3.26)

Bw/2

allog)> = o'e 310(8)>. ! * (3.27)

Now for fermi oscillators (0 = +1) we have

Cjoesy> = (1 s e7B) T2 4 o TBE /BT 1o ,
= ewp(8(8)(b'B' - o'Bb))|0B> (3.28)°
v = expl-iGy) |08y ‘ ' (3.29)

where 8(8) is such that:

cos 8(8) = (1 + e )72, gin 0(8) = e7BU/2(1 4+ o7B9)1/2

and as with the boson case we define

E\ N ,?\ '; . .
b(8) = exp(-iG_)B exp(iG,) . v
= b cos 8(B) - o'D' sin 8(8) (3.31)
¢ ' ’ ' :
b(8) = exp(-iG )b exp(iGy) .
~ ! : .
. = B.cos 8(8) + o'b' 'sin 8(8). (3.32)

Which invert to give

5 g

bk) = b(k,8)cos 8(B) + o'B(k,8) sin 6(8)  (3.33)

Bk) = B(k,8)cos 8(8) - o'b(k,8) 'sin 0(B).  (3.34)
It follows that | ¢ ’

b(8) b’ (8)1, - BB, =1 (3.35)



\v/” ‘ A . ‘ B . .
. ) . o o -‘ ‘sA : . ‘ ' .
e with a1 otherxs zero and_tha; . 4 o
o C L I ,
b(8)|008)> = b(B)|0(B)> = 0. , .« (3.36)

\" We have,‘u51ng 3. 31 and 3 32 that:

> ;‘ , bJO(B)> = +0' tan e(B)b'|0(6)> AR & P X B I
‘}FE'. L -‘ = +0' e Bm/2 quf)> . (3.38)
o -~ b"ocs)> = ~o e‘?“’/z Blosrs .. ()

- . . B N . y. - c» '
,Relations (3§26),>(3.?7),‘(3.37L,and-(3?38)°show that .the
vquanta elhmxnated by a non-tildefannihilation operatdr actingf

ion the thermal vaguum is equ1va1ent to- ﬁhe quanta Gteated by

\.

a tilde creation ogerator; We can therefore ‘consider the
,"/ .'( ’ )

DAE(k) quqnt&m,to be a'hole of tHe a(k) qué%!Ejv-

)
4



- §4. The Thermal State Cond1tfg f

-~

'whlch may be wr1tten' . .

oo TR sy

4 ‘- < . .
Using, equations (3.2648 ¥.27), (3.35) and (3,36) we

see that for arbltrary phy51cal f1e1ds'¢ cons1st1ng of |

» R BN
.
a’

a(k), a (k), a(k), a (k)

e|0(B)> = ¢ exp(B/Z(H - H))v |0(s)> : C (4. 10

F

where €p is a 51gn function depending on the . nature of ¢ (1e.

'it depends on ¢’ of the constltuents of 9 and .on the 51gn of

~ .

equation 1. S) In part IV-we will see this Eactor can_be
ellmlnated by use of an "adJusted" tilde operﬁtlon.

In order to see how e# is determlned let us con51der

P ='aT(k ),.,aw(kn)a(ql)..,a(gm) where a(k) is a fermxon

B . v/ . ~T N . X L C,
operator. We wish to express ¢ as ¢ so we first reverse
b i K ' o
the order of the creation: and ann1h11atxon operators. This
/ s

1mp11es.nF°exchanges‘where fF is given by ;
. - . ;_l ‘_\_ ' ' ’ . )' N
N np =3 (n + m)(n +7n-r‘l).‘f, o (4.2)

- . . C
Amidst our creation operators let us sav/ that there
k . L 3 . -

are:v with g!' = —i and'(n/—;v)'With g' =1, and'amidstpthe'*

annlhllatlon operators let us say there are u w1th o' = -1
!

" and (m - u) with o' = 1.f From equatlons (3 35) and (3.36) we

’. . .
see that creatlon operators w1th o' = 1 and annihilation

operators with o =,-1.adq an extra minus sign, hencef
n, - n.-n ; o ’
e = (-1 DT R LTS S RIS DL S PP )

L ) 3

e = (- 1)1/2((n V)-(m— )+(m—y))((n-v)-(m-u)+(u v)+1) (4 "

N4
F : IR ) ' TS ’
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.o , L - : S - gis4‘
o B o c;i“ ' f . . LN

or by equation:4,2 S : ‘
| ¢F1=<< 11/2 FF+D) . sy
where the fermion numbeﬁ operatov»F is given hy .
F=/d 3% or(a’ (kdatk) 5 3t (k)a(k)] o (4.6)

‘The Herm1t1an conjugate of equatlon (4. 1) yleldS»'
<0(a)|¢ = <0(B)I¢ exp(— (H - H)eg (4.7)
ThisEElatlonﬁjan be further generalized‘for Heisenberg ’

operators congAsting of ¢. These- relatlons (4 1) and (4. Z)

are known as. the ‘equilibrium thérmal state cond1t10n. Recall

¢

our preu;;u;‘dlscu551on about such a:condltlon,.here in TFD

we have an equlllbrlum formallsm and- we see. that the thermal

)

state condition is a stationary one. It is this'correlation P
. ‘ ,
between tllde and 'non- t11de flelds which is characterlstlc of

an equlllbrlum 51tuat10n at temperature B. » To. change the

\

form of - the thermal state condltlonfigﬂto change the

correlatroﬁe and nature of éﬁg system uﬁder study.  We will %
_ ~

returnwto this point in part III.‘v,y% - =

-

-.b-‘,‘ -

A :
G . ”
. NN
\ .
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§5. Conclusions and the Thermal Vacuum as a Pure‘guantum

7

s

-

Mode . _ ) ‘ . ) ' ;

“

We have thus far - in. this part of. this paper presented

L4
the form of |0(B)>, the thermal vacuum, determined its

«U
normal1z\tion and have shown that thermal vacuum expectation
values do indeed equal statistical mechan1cal ensemble J
averages. We have found the Bogoliubov transformation.whiCh .

gives. 'us the thermal amnihilation and creation operators

which act on the thermal vacuum in terms of tilde and

non-tilde annihilation‘and creation operators. ﬁastly we

A operators which is’ the thermal state condition.

e ] . .,
have derived the relation between tilde and non—tﬁlde

[

"We will now show |O(B)> to: be a pure quantum state, a

¥

vremarkable facﬁ; We will then_have,the basis for a complete

field theoretic formalism for equilibrium finite temperature
systems, ‘ _ _
. t o T N Ay { ) ] . . f

A dlscu551on about the concept of ! tate" in =

[ -

. statistical mechanics, although it may seem, lengthy, w1ll

this dlscussion to

shed light on the very different c0ncept of the thermal state
in TFD.'/Let us con51der an isolated system 1n.which'we

con51der only those of 1ts situations" (1t 1is too, early inf

v ooap

éﬁi word state) which have a definite

:energv value e. sd@h a sxtuatlon can be defined by a 3

normalized eigen- -function jw of the system' s Hamiltonian

7~

(H wif= © ¥;). The set o@f%ﬁl such (4, for all ¢ value's-

oo
L



‘}ebfesents/e basis of a complex Hilbert spaee.“Elements of
thisfspacefspecify the situation of the system with max imum
'completeness.(HenCe'tﬁe index i); qusider thepsub—setlef
the Hllbert space whose elements have a common . eigen energy
- €, {wg;msay j.= l...8}¢ Any situation of the system with

‘

energy € can be represented by

) . L/

€ ‘ 'i= l j we , . . . ” ) ( 5 og. ’)"/.‘_.{:,

! . . ' s '2 ' -
e . "™here y. € C and ] |y.|° =1
oo s RPLPRAE LI

a0 ' : ) - _ .
Lé%/{wz}'is isomorphic to the complex sphere. If only'the
o .

value of energy 'e' of a system is known then the phase of

the function 'we' describing this situation of.state is
‘ TN . ‘
undetermined, as is any phase @unctibn.(f(w )) which is the

elgen functlon of an observable of the system in energy state

e} We must be content to draw information from thewreal

;‘l

ﬁsphege which is derived by assumlng that the phas€§e(m) are m‘
5 RN \ . AN
uniformly distributed in {0, 21), independent of their |

moduli;, We cq}l this information the expectationﬁbf our

phase function £(¥_), ‘ e ‘
<E(p > = {wf} E(y )dw | o L d5.2)
' - € ’
. s ) : o
. = [ fCT v ¥ )doe, - ~(5.3)
{v.} k=1 ~ . e

~ If F is the operator whose-eigenfunctions are obserVables'

€', We then have . .- S { -



. / N )
. ¥ e vode =L T ade ) (s
€ jy o e’ e'9® s . a'F Ve U
e {"e‘} . j=1 . ‘, ‘
-For a system with a boltzmann distribution we then have
, _ s, _
e <Elvg, )2
K P> = ] —_— - (5.5)
i i e i '
i

where the expansion coefficients éf(we\)> are real numbers.
In statistical mechanics the "state of a system" is just this

functional over all observables of the system. ‘Clearly it is

a mixed state. When we speak of an experimentally~prepared'
_state in statistical mechanics we are speaking of the:

preparation of a systém so as to return a-given set of °

]

.

expectation values.
RN In TFD we could except a similar aefiﬁiti5nlf9f.a
'staﬁé,Vthaf be}hg thevfuﬁctional
<P = <08)|FlOcB)> | (5.6)
over all observables F. This would be a ﬁixed state and

allow no field theoretical consideration, but if we write

CKF> = <0(B8)|F|0(B)> o . .
= Z;l(B)<00|exp(Z g(k')a(k'))e-BH/zp e‘BH/Z.
L |
O . - 4 '.~1’ ’ ~ o o
~ . exp(l a (k)& (k))[00> N (5.0)
i k ] I N ' -

Be . a < “$§§

‘ ='z;1(s{z e . LeB1(3 aknratk' N IF(] atk)Tack) 0B
i K - ko




{ ' gl \,./ \\ . 58

/

e -ge, . | ;‘”fﬁ « .
(8 J e <o)(atk)) rr(a(k )y t|o>. . (5.8)
1 i ’ '

M&ﬁ;ie that the expeétation of F is taken between 'pure

.quantum states a(k) 0>, Ahy‘phases'chrried by the thermal

*

vacuum have no effect on any observable quantity, as can be
seen”by equation {5.7). . The phase of each Inini> element in

" the thermal vacuum is amalgamated with' the creation operator

which creates such a state from |00>, 'All of our previous
defihitions of annihilation and creationloperarors take the
bphase of each term in the expansion-of |0 (8)> tq he the same
aﬁd~equa1 to”zero. In the already mentloned ad} $ ed
annih11at10n and creatlon operators the phase 1su\aken to be
-n/2 for all fermlonlc exc1tat10ns and zero for all bosonlc
excigat;ons, In other words 51g;e the thermal vacuum is. a
Jinear combigationvof orthonormal basetvectors\it'ls unlque,
once the.ph;ses are chosen. ‘The expansion glveq in equatloh v
'(2 9) glves the desxred expectatlon value of statlstlcal o
mehanics._ Once the phy31ca1 ahnlhllatlon and crébtlon ;r'/
operators are given avrepresentatlon»thls vacuum state,is
completeﬁy defrned, and hence considered.h pure quantum
staﬁe.‘ Technlcally any unUsualvphaee distributiop of the
cgmponents of - |0(B)> can be handled by an. equlvalently
Veunusﬂal defln1t1oq of the annlhilatlon and ereatxon

operators. C} ly from its” form |0(B)> is proper

“fsymmetrized but has no correlat1ons.‘ The_correlf
v o .«A & ‘ L - i P . " S e .

FH N e Ty -
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into the theory through the thermal state condition which
P ‘ .

relates the tilde and non-tilde fields. It is worthwhile to
note that%hny type of\ ecorrelation can be brought in throdgh

' the‘thermal state con 'tion althoﬁgh they"all go under the
neadlng "thermal". It follows that any COmpletely defined
exc1tatlon of th; thermal vacuum }sialso a pure quantum state
and hence we are Justlfxed in bu11d1ng a f1e19.theomy upon

these thermal states. ﬁ

This Qay of inking about the state of a thermal .
system and’ uge of a J-rsommuntant f1e1d to accompllsh a
definition forusuch a state, lles at*the heart oE the

‘tremendous contribution to quantum field theory' which is-

thermo-field,dynamics. . -,
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- 56,,NGenera11zation of the Momentum Representation.ehd'

‘Two Point Green's Function @o Finite Tempqrature
‘ /

Using the .axioms 1ntroduced in the first two sections

of this part we can generallze the momentum representatlon

" and two poins Green's functions. Consider for example a

free, type-one field, wo(x) -t

‘ M)k = (A —w(Me%x) = 0. (6.1)
We then have i ' : . '

- [ a% %ot & - w1100, (6.2)
Now applylng our t11de conJugation rules we have, w{th h

/

w (VQ = w(-9),

lw

= [ a% s T(- - A(-7))3°. (6.3)

(%]

y t
The Hamiltonian

= [ 6% %) Tu()9%x) O (6.4) /)

R I
/ :
.

o
'has t11de conjugate

o=@ P le-ini®x T (6.5).-
The free field operator ”
%) = (2m) =3/2p g3y a(k)expik: - iet) (6.6)
has tilde conjugate “ : @%“ 3
°(x) = (21) =3/2; 43y F(k)exp(-ik+X + iw(K)t). (6.7)
.Puttlng equatlons (6.6) and (6.7) into equatlens (6.4) end

(6.5), we obtain ;%‘,

= { % w(k)a(k) Ta(k) ) (6.8
= [ d°k-w(k)a(k) a(k) ﬁ@ , (6.9)

H \ ?

. . e



*

In the above; é(k);and a(k) are rdlated to a(k,B) ‘and a(ks8),

through sguéxions (3.22) and (3.23) for bosons and equations

(3. §3) and (3.34) for fermions. For example for a fermionic

)

 f1eld, assoc1at1ng the pos1tive frequency part of equation -

(6. 6) w1th an annih1lat10n operator a(k) and the negative

}

frequency part of e%uatlon (6.6) with a creation operator

_b(k) , we have

-

%= (2072 a3k (a(k)e((k)) + b (K) 8(-0(k)))
.¢ ii ‘ “ l . ) S l
i exp(-iw(k)z+ ikex) (6.19)

Now with equatlon (3 33) and (3. 34) ‘we have (letting o' =" +1)

al(k) = cos S(B)a(k B) + sin O(B)a (k, B) (6.11)

bT(k) ='cos 8(B)B(K,8) - sin 8(B)b (k,8)  (6.12)

Hence we write. : . .

+

a(k)8(w(k)) +.b (k)8 (-w(k)]

cos 8(8)(a(k,8)8(u(k)) - Bk, 818 (-u(k))

+

sin 0(8)(a ‘(k,B)8(w(k)) + b’ (k 8)6(—w(k))) (6.13}

A

cos 8(B)alk,B) + sin 9(8)6 (k B) ‘ (6.14)

61

The 1ast Ld?ntlflcatlon of a(k B) .and u (k,B) makes equat1ons

(6. 10) and (6.6) equivalent and a(k B) (u (k B8)) is our
quasi-particle annihilation (crgatxon) operator.
"We now introduce for simplicity the. thermal doublet

notation , ‘
Fz Pl(F)

-
~e
=3
[}
-
N
~
I
9
A

~t
Pz‘F.’

(6.15)



[

When F = aAB,..C, (where-a is a c-humbér and AB...C are

operators) we have

= ap (A%8%,..c") . (6.15b)
Where. G
«._a a AlBI...Cl' for a = 1 — B
C...B°A for a = 2 .,

Note that for a time ordered product F = T(AB...C) that

P‘(A'B'..}C') réturns the time ordered product of hhe”first

. elements of the thermal doublet but PZ(AZBZ...C ) QEturns the
‘gnti-time ordered product of the second elements,of the
thermal doublet. | g ‘

The Green's functions consiéerétion of part I, section 11 can

62

be easilybgeneralized for finite temperature situations. Let’

us take for exampie_a free boson,field wo(x) of type one.
L]
The causal Green's functlon is glven by eguation (I.11.2)

e

w1th its t1lde conJugate as
(x—y) = <0(e)|r(¢ (x),v (y) )|0(§)>_ © (6.16)
= ot -t )<0(8) |9 (x)v By Toce)>
+ 0(t -t 0<0(B)lv (y) ] (x)|0(3)> (6.17)
: Notebthat these are (2 x 2) matrlx equatlons. We can write-,
.the fourler form as |

B (k)

(x:y) = I " exp((lk-x y) - i ko(txetyx)G

(2n)?
(6.18)

| "
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Now' with Bugoliubov transformations (3: 22) and (3 33) we have

‘for equations (6 6) and y& 7

O(x) = (2m) =3/2 | 43k a(k,B)cosh 8(B) +'a (k,B)sinh 6(8)

(6.19)
2200 = (210732 4% T(k,B)cosh 0(8) + a¥(k,8)sinh 6(8)
| (6.20)"
' ‘ y y,
Using : . o
i ' o
o(t ‘ty) = éiTo > { '6 exo(-lw(tx-ty)), (6.21)

we have with equatioﬁ% (6;12) and (6.20) substituted into -

equation (6.17) the identification) by equation (6.18), that
ab _ - k : . B
Gc (k) = : | . : %

' |

tosh20(8) _ sinh28(8) cosh®(8)sinh8(B) _ cosh8(B)sinh8(B)
ko-w+i8 ko—w is ! ko-m+16 ko-w-is

cosh8(B)sinh8(B) _ cosh8(B)sinh8(B) . sinh®e(8) ;‘coshzb(s)
ko—w+13" ko-w;iG ’ ko-w+16 ko-w416

~ . — K

(6.22)

which can be written

cosh 8(8), sinh 8(8)\ /k -w + i8)71 o

c®® (k) = [ °
c sinh 0(8), cosh 0(8) 0, (kg - w is)~1)
cosh 8(B), sinh 6(8) ‘ ’
(6.23)

sinh 0(8), cosh @(8)
) N

. . ..'.1")“
(9(8)r(ko -0 + i8t) iy

Boson(e(s)) (6.24)

UBoson
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‘ 0 -1 ) - N R
and - . I .o N o AN
. ' RN ST ¥ L
cosh 8(8), sinh 0 (g) e u;é@?.
' u (8(8)) = | e N (6.2
s Boson sinh 8(B), cosh 8(8) " oy

This is a most incredible result; for with equations
(I.11.15) and (1.11.,17) with (I.8.42) we see that this

thermal causal Green's function is just the zero temperature

*

one sandwiched between a "thermal distributioanatrix“ with

the dadi;ion of the t matrix to account for anti-time g *

N t

ordering. We have for the advanced and retarded gyg,pdiht_'

functions of equations (I.11.3)‘and (1.11.4) '-_ .
' aB' rab i | ” ‘
G, (k) = =% T 13 .(6.27)
_ o}
oé - ruB ' -
Gy (k) = koA; ey SCEE | o (6.28)

A similar result follows for fermionic type-one fields with

, cos 0(8) - sin 8(B8)
s U . (8(B)) =~ : 5 (6.29)
Fermion - . " \-sin 8(B) .cos 6(B)
aB . .- S SIS B .
GC (k) é PF(G(B))(ko - o + 161)> ug (9(§)). (6.30)

and for type-two fields. ‘. oo B



§$7. Heisenbgﬁgf?#elds and_the Dynamical Map
: )
In par%,l, section‘% we introduced Heisenberg ftelds
f ’ rd 4
fW(x)' which are dyﬁgmical and discqssed tha dynam;cal map. o

'We nowdgenerafize thest to finite temperature situations,

‘Gi%en the Heiéenberg equation

MBIV (x) = Flo(x)], : g (7.1)
" where - ‘ . A | ? . R
V) = )] , . L (7.2)
we can obtain ' | |
. ! . * S ”‘T . S
A Fx) = Flo(x)] = F (3 (x)]. | (7:3)
“ qung thermal doublet notation
‘Ta Ll nenwteo = e, SURCRIE | (7.4)
Lettlnﬂ P (x) stand for a free phy31ca1 field we have .
y"< “ e N R !
\ o A(3)9(x) = 0 R (7 5)
»tk a’hd '
LA e L wa o . .
A Y¢ 3] ¢°(x)%>= 0% . (7.6)

;’- In pq;q I we d1scussed the dynam1cal map of ¥(x), we can

Y

~~"l 2
¢ wﬁ1te it in, 1ts fourier transformed form as

e

Y . v* "‘
o . ¢(&){ 3] dk . ..dk dql...dq F(xikpoook iqe0.qp)
R Ly nm
otk .a ik, SLICIIPRLIT IR (7,7)
o and u31ng our tilde ax ioms i
‘ ] E*. !\.‘. Q(X) 2 I dh -o.dk dq1°"dqm F (x kl“'.kn;,ql"'.qm) ‘
‘O . -a ) nm ~ (1 : . .
o a (kl)...c (kn)a(ql)..,a(qm). . (7.8) 4'
. A E B B / . ‘ ‘ . . .



b,

’kUsihg eguatiohé_(3.33L;and‘f3.34) for-besone and'equatioue

)

. - 4. -

dependent dynam1ca1 map. The-existeﬁce-of such a mapping
N ae . \‘J . ‘ " )‘
suggests that even at f1n1te temperature H = Hg and H. = H, -

(3. 22) and (3. 24) for.fermionsqwe'aj;jve at our temperature;’

1
v

Hol , _(7..9)

H
where[ ‘A A -

+

. Lo T tﬂ'(7110)‘

B However, the f ct that the t1lde—part1c1es have neggplve

L - o

energles opens mahy decay channels, maklng many partlcles
.‘ N ~ f
unstable. ThlS makes us doubtﬁul about use. of asymptotlc“

fields as phy51cal flelds. What is the complete s¥¥_of
i @ ) LT J

phy51cal part1c1es at f1n1te temperaturexls a very good o

_ uest1on.., S e - R v

_J N, . N N T K . ¢
: N - A L . IR
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.[sé‘ The nﬁﬁb~ﬂaftin Schwi_gg; Relation_u' : o H
N C;;51der two oparators A(t) and B(t) as be1ng

products of - Helsenberg flelds at common time !t'. *
'ASSQC1at1ng fermlen.humhers_nA.and nB to A(t) and B(t)
'respectitely yields thehfollewjdb ‘ D i

<0(B)lA(t)B(t ylog)ys O "T ? f,;

oo | (nA-l)n v ‘“‘g' *~tfﬁ s

R =) A/2<0(B)|A (t 4 Wz)B(t')'f (83>, (8‘1’)' M

,where we used the thermal state condition and the fact that

the ferm;pn number of A»(t) is —nA. E change Sﬁ

0

,“A (t + 4 B/)) and B(t l ihdgéés>a'Sig factor of ( l) "alm and’
*‘XT”hence we have o ; ' r R ' |
] S (n -l)n ~npn '
<0(B)|A(t)B(t )|0(e)>_ < =n A A/ (-1 AR
&‘1 B , K «"‘)-}’v - '” - ’
Lo iedn) [BOEN R(t +1 8/2) QEBY>. T g A8.2),
'vAppllcatlon of the thermal state cond1t1on 1eads to ,
R ‘ ' (n “1)n, (n +1)n |
-<0(B)JB(t)A(t Jlots)> = (=1b A/ZLH LT B2
e <0(B)|B(t')A( §)+1B)|0(8)> L e (8;3)‘7,
. H : 1
ERE R - S § ) . ' ‘
jis iy A %, B‘<0(B IB(t')A(t + 1B)|0(B)> _
= <0(8)|B(t )A(t . 1B)|0(6)>, R (8.4)
v SR

whereii% ujfd the fact that equatlon (8 1) vanishes unless SR

AR N - , L
n-A -‘—nB. Equatlon (8 4) is the- Kubo%Martuxgkmwifaer, SRV T
N \‘ o - e PR

reaatlon, we see it follows stralghtforwargiy frc /"th

124

;fthermal state cond1t1on. . ‘,,_ *3';« , ,';,”f““w

¥ .
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’ Wlth equathns (3 20) and (3 21) we have

W

s | PR S .68
.. : . ) L

F ‘ ot
L .

"i‘”f

§9. The L.S.Z. Formula at Fiite Temperaturey

L

Let us now generalize thqu.S.Z.bformula,‘equationi

(1.10.24), té the case of finite'temperatﬁre. Consider a.

;FQI boson fleld w(x) ;ith o ' B

;A‘v (x) = ?2":3/2 f § k[u(k,x)a(k) + u (k,x)a (k)] (9,1%3‘

where . ' | o~ S . - j o
“u(k;x)bf‘hik);xélikx e (x)e) IR 9.2)

{
f

‘.a(k,s)' I d k‘u(k x)F {coshe(B a)¢ (x)‘—'o 51nh6(818)w (x)} :
Q ‘ _ .,

(9 3)'

s e PR o |
a(k,B) = =f &% ulk,x)F {coshe(8,3)5° (x) la 51nh6(8 a)s (x)J

where sihh'9(8,8)‘and-cosh,6(8,3) érg>defined by equation .,
(3. 19) with | | |

» o -Bw(k)/20 T

kX < sinh 8(8,k) = == (9.5)

?th o, e < R TIP3
; : - /

‘»‘.Equatlons (9.3). and. (9 4) §how that we have 1nterpolat1ng

| fields o N | o
\_SQN ".'-w<;<;é’) s ¢ "v'sib ev(é.?a){;ux‘) —_— T
- é? L . O‘isinh.g}e,éifﬁ(x)'-‘x} L © o {9.6) %%;4(
r ﬁ§£°%'§?é(Kﬁéy é“did?gt(K;B)"an? e ; . ,‘-ﬁfg _ -('i o
S ${x,8) = cosh e<a,a‘>{.$<;<>'-< x} L .
| | ' ., ='g'sinh 6(8 3){¢(x) -:X}v L ”T't(9-7)1.
for aln(k 8) and OUt(k '8). Here;( & | | | -_.' o
o x = <o(B)|v]oes)> = o8y |¥lols)>. D 1_;;‘39"Tgfs \‘



wlth (3. 15) we note that ,
f @’ {w (x,s)F vix,8) - % °(x, B)f w(x,e)}
=/ d x{v'(x).;f (bx) -0 - Pt Goo - ob

TR
where A - ' -

#°(x,8) = cosh 8(8,2)9°(x) - o'sinh 8(8,0)3°(x) (9.10)

®(x, 8) = cosh 8(8,;2)5%(x) - o*Sihh(b(e 9%y, (9.11), * -
are the phy51ca1 f1e1ds correspondlng to w(x,B) ‘and w(x B),

respectively. Wlth equatlon (9 9) we may ﬁpllow the same .

-4

(13

"Sh(x) =

4rT [$(x)exp(—1] atu g (E)v(i) +if q (s)a (E)¢(§\)] £

‘ (9.13)
with _ ‘ :
- 'J°(5) = 4% (2), - R , ,f"(9 14)
" Ty =My, . o, (9.,18)
;)  ¢<£) =2 1/2[w(a) Sxle (9’15)
$8) = 2 Y2y - . ‘cf (9.16)

/' oo .
where y(x) cdhld be a product of Helsenberg operat¢rs or - {h

A
taken as un1ty for an_ expan510n of the S-matrxx. When w(x);

/.
| - - |
- is codplex (fermlon @r bqson) we obtaln < \\‘““* *
e ,f,  s v(x> = <z T[w(x)exp< -1 I a” e(J (e)vgi& + 9 ({)J (5))
+i[d z(J Pereie) + ] (E)J (5))] | (9,17}

o

and its tllde conJugate, thh o l _54*
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T %k - (xma)/\ O eas
3%(x) = A(- §¢ (xz/ S SERTRTII
o 3°T(x) = Yixoa e, Y "_ (9.20)
3°%(x) -ﬁ',}*'(—5)$°(*x>', A S (9.21)
p(x) = 271/2[¢(x) - xl, : @ - j(9.2F)
o i) = 7Y - . o 3 (9.23)
wg‘:s'ée t‘ﬁ‘at our dynap‘\ioal- rr'.@equatiOn (9.317);'now epreé?es
;@T%Y°in;terms bf\voix) 3nd ;oéﬁ); Using éhé thermgl.skaﬁe
| conﬁltlon ‘one cansmake it depend on ¢ °(x) only. - ‘n
. "‘“ "‘ Héﬁé ye énd our d1scu551on of equ111bai?m TRD Much

_ »
v 1n31ght ‘was g&i%e ‘about it when TFD was genevalf&ed to ©

-

’accommodate,pon equllibrxum ‘?tuat ons. ‘This w111 be seen.ihiv

part I1I. Thls dlscu531dﬂ of TFD i's gfo means complete, Lk
- o . e -
,symmetry breaklng and’ the renorm 1 zatlon group have beenm ﬁﬂﬂ

formulated at f1n1te temperaturey and betcer understood, -

’usxng TFD.
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(jS;o;' Intreduction o VA‘ S

) Let us understand the statp of non~équil1bridm many
¥ / 4 “ia.;

'bod phenomena before the advent’S%uTFD,“ With eve
: Y

macroscopic dynamlcal varlable of some sub~system, which is
coupled to a resa§v01¢ wezaSSOCLatexan operator avejrage

e <a(t)> which is defined as : e //4 &

o S I

Tr(W(t, )a(t)] : | |
TETW( R IR o ()

—

R

<a’:(t"')">'

M

o

Densxty matrlx/ Green s functlon and, quantum noise operator

G £ s

Tk
i

> P

theques represent~the thrge dlffereht g@prdaonps to mne o 5

calculat1on of*such operator moments and correlatxdﬂ S

/) .

‘functlons, e, <a4t > and <a (t')a(t)>. Givenva‘ﬁﬁme
°

i%jt Hamiltonian we have i

T = i, a(t)] , S (0,2)

whefe H ='H5+Hr+ﬂsr‘1s the total Hamlltonlan. . The

. Hamiltonian for the subsystem which is to some'éxtent . \?’
character’beduby the‘dynaiic§l variable 5a(t)> is 'H.'. The
© oy . . . . "-. . v : oS
Hamiltonian of the reservoir:is 'Ht" .The subsysteﬁ—o
réSgrvoi; interaction Hamiltonian is !Héi'yv Ehuation/ka.zL
can be. solved formally.as - °~ e S
. Calt) F (et dale dult,ely - (0.3)
P . . o] o) (o] N @ o~ - . v
> t,u(t t = exp(=iH(t=t_)). ' ) o0 (0.4)
Y _'u(t to) = 1. " L Ly T
‘,When‘equationv(0{3) is substituted %nto eggationhfﬂ.l)’we o\
+  have ,/ I



74

. % ,
t,. e ‘
: W . .
calt)> = Tr [u ft'to)a(to)“‘ft'to) (t,)] (0.6)
' Tr[W(to)] \ :
o t
_ Trla(t Ju(t,t IW(t Ju (t,t )] (-0 7) o
. Te(Wit )1 ' ?
Trla(t IW(t)] : . : .
. 4 z e - . (0 8)
i s Te(W(t )] - h
. 1o’ .
@& Whére'we have defined ™ . »
= N.“.." ,"' ' R . ' . . -
Vo R(E) = ule,e DW(E D (e, 0 (049)
N 3. hence W(t;.”) p'atisfies the Liouville equation
o R e LT . ‘ Sy c
) LY :’“‘%3 AR - —iln . X ' ‘ ‘ 5
W} 3T Wit) =-=i[H,W(t)]_ | .(0.}Q)m hﬂ
Mhthis point comes the parting of the ways, between “the three '
;,é‘%nmentiongd the‘ore(f.ical approaches. Density matrix R A
PSR T o ’ ! . . . . ',‘.
oot h"éo‘f'y tackles, in some way, equation '(0.10). With a o F’
g - B . ) ‘
) sdlution‘for 'W(t)' one obtains average values of a'n%' A /\‘\ o
." pperator or correlation via equation (0.8). The Green's  \_
",' (4" !.y’ ,. 4. , , , N R . . -
nid fynction approach emphaslizes 'u(t,to‘)-' via equation (0.6)
".i’:j '*M: ‘?ﬁ(")‘).‘ '‘can, be.made a functional of Some external time
. B PO . o T ‘
- i4arying forces which are coupled to the appropriate sub- y
. Y T - N " do - - 3 . . ' . i
| sygtem’s tperator. Then by varylng these fictitioys exterhal
" “fordes ";one'f{c‘hds, the subsystems response is obtainable,
., . Lastly .quantum n'o@e 6per_ator theory deals 'wi‘thc the B
"\sub’sybstem—reserv'oi‘r inter-actior{ .on an operator 'lényel.v h
Equation (0.2) .is cast into a quantum noise operator ‘equation .
. of motion and solved in szne_ way . T - et
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As succgssful'as these three theories have been‘they
can, not accommodate the vast‘yealth of theoretical
calculation methods which quantum field theory has to offer

fox the’simple reason that they do not define a systemfs

:‘T . ' "

» ’ . ) " .

state. Once one has a consistent and well defined concept of

--a state one can define exc1tat10ns of which are reallzable
¢

1
modes of a. system and all moments and correlatlons are

4 ‘'

aﬁpllji}e. In part II we saw how |0(8)> and excxtations ‘of

it were Just such a state for equilibrium 51tuations. We now

(1)

1ntroduce TFD - for non—equ111br1um situations , which is

based upon a 51m11ar but more general concept of the thermalg
° .

- ' . R N " o
sra te 4 “ ¥y el
. : ‘ ‘ : % L
- R x, :

1



'; As it was necessat’ to make the abstraction of a
Pﬂxgical particle state ‘to a vector in a separable Hilbert
‘VSpace we now find it necessary to make a further abstraction. \;
The”densﬂty matrix 'W(t)' of a system contains a complete

description of:tﬁ%t system at time 't'. The equation'of

[}

. motion for 'W(t)' is the Liouville equa;ion ‘ ‘.

- «

i 5-t-‘wu:) = '[H, w(t)] L , | (1.1)

It@is t ur advantage to seek a'*Schrodlnger type" equation

. of motign for W(t) and this is accomplished with the use of
superoperators and supervectors. With this realization we

can develop a .quantum field theory around these supervector

 states, We now introduce this el of abstraction.
. - LR - 1 ..
The thermil Liouvil%?#space. B T - Lo
PR o ‘ : ¢ \’



K3

' 1 . P ’
” B - 4

After giv1ng ihe general p#operties of the LJ‘

space and 1ntroducihg superoperators, we build a linedt

#vector space which will be called the thermal—Liouvilleam

Space.'. : . | ‘ - ““5;;%3‘

‘ (2,3)

The Liouville space | can be spanted by a compléte

ortLonormal basis

lmn>s = ||m><n|>>, v : Co(1.2) .
<<mn| = |nm>>T = <<(|m><n|)f| = << |n><m} |, (1{3)
~“which satisfies o :
<mnfm'n'>> = § & (1.4)
mm' . nn ‘
E [mn>><<mn| = l N . - (1.5) (o=
mn o ' L
where {|n> = |n ¢q§,.w.>} is a'complete'orthonormal basis ofj\ #
the Fock space oﬁ'Part 11, whlch is’ generated by cyclxc . &ﬁ
.r -
operatlon of the creatlon operators a; on the vacuum |0>. K
i 1- h . N ‘\ . ““
Let A con51sp of’ ai and ajr def{pe ' - L
- x> =} Lmn>><;n|A|n>,, | (1.6) " ,
mn ' ‘ I

- <<a| =] <n|a|msfmn|. - . @ - (17

T mn - S : )

We then have o . R '
<<mn|A>> = <m|A{n>, R o (1.8) "(fé
<<A|mn>> =" <n|Alm>. o (Taey o,

R L , . v : ‘
|A>> and <<A| then belong tO‘th Liouville'sﬁ%ce. ‘“They are =
s : » : KR . - A ' L.
related to each other through | © ;.0 . I 0T
v -~ b . Y . ‘ - 1""‘ & 44 ,  o e - "'\
' o : P L e iy P o




r 0~ .

_<<A| = IAt>>7. . o, S

‘ We have also

<KA|B>> = § <n|AB|n> = Tr AB, - &
. n ¢

|1>> = Z |nn>>,

. n e

¢ <<1| = §i<<nnl.
o )

3

(1.135

L . The operators which induce linear transg§£m§g19¢§
' among these vectors (elements of the Liouville space) are

called superoperators. ‘?s>)

»

k.4 superoperators a; and ;i by - L tf
EEE Y . - \ ' )
‘_‘f |mn>> = Iai~m><h|>>, o (1.14)
. |mn>> = au+1|1mlkn|ér3>, . ' (1.15)
» . " 1 . ~

L
R <7'». e

fsupefoperators and ordinary Operators.4 No confudqzh*should
\
result, for a superOperator acts on supervectors Ix>> ah

’éﬁ!lnary opetator acts on vectars Jx>. Examldnng the matrlx

- b ot - : S ‘
element of a  we find .
. a~ . . Q*
<<mfn'1a1|nm>> = <<mn|a Im nt>
- u '+1

*

<<mn||m >§p'la >> '

.

Ll

) Follbwing Schmutz, reference 5, let'us-definé the set.

cwith u Z-(m.*ni),'whéredwe have used the same noﬁjﬁibn fbrf”

’—

o -
. = o’ ' 1<m|m > <n’ ra ln)
e o %} v 1<m'|m><n|a |n'> '1
fts v LI i' ':"~, S K . :
T T éz f's o“<<m*n“Hm><n1a .,>‘>.,:' AT (14360
PO R R ' Lo
BT N w R ° N e . . ' ’



3 . ),' S
L A L
where y = ] 'i ~§n') and hence we frnd
S "{ v A \ o
C ailmn>> =g ||m>!ﬂi 1>> - S a7y
sfmilarly ' : \ ST
+ - '
" ilmn>>== lai|m><n|>>7y (1. 18)

The four superoperators (qi,aT,ai,ai) form a basica

set of superOperators and hence any superoperator is a linear

sum of products of them. ' ) ’ o
From equations (1. 14), (1. 15),*(1 17) and (1. 18)

foliow‘the co 'utatlon relatlonS»among the superoperators,'

. ~ "~f - , L 5 o
= [ai'ai]o {ijﬁ,all othgrs‘gerof (1.193
We also obtain : . )
. i : L '
“aIailmn>> = milmn>>,' o ;:,<. (1.20)
~t e~ NI ’ ) 7 - ' ; ‘
. aiai|wn>>:-»ni|mn>>, . ] ({.21)

and. - : ' . ’ : " \ , ‘. . ‘,,

a; j00>> = a, |00>> = 0, o v{,zz)
1 ‘ - 1 IS 3 . . .

which is ca%;ed the shpervacuum;(Q) A f‘//’ e

From (1.13), we have )

o> = ] lnn)) = exp(] a{Z} 100>>, o Al.24)

A
N

Pt
n

n. . I

- n4 . ) . 1 " ) ' : S : ‘.,l‘ I
<1] = ] <¢nnf = <<00|exp¥) aja). ;//”‘xl.zs) ;

19

-

"thie 5 ' Tt " : . . 4 / : -
A\ ) ||o>£§]§>, ' §

P
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It follows from equations (1.24) and .(1.25). that
.’ai|1>> = 3;11>>,‘ '1.26)
allb> =aa s, = T e
S Y o )
According equation (1.3) we have . : . .
. ‘<<Mn|aI = <<1n>(m1a11,‘ P (1.58)‘
) .;2<mn|31'= <<ai[n><m1|ov+1,- | ) T (1.29)
P ~ <<anlay = «m<mlaf, . (1.30)
<<mnja; = <<aztn><m||o",‘ ! (1.31) ¢
and ‘ ” | “ - . "’ | ) / ' S . .
‘,‘ < \ T N ] ~ : . h . -
Looosalafscald, o a2
<<la: = <<1|ate,  * - ' S (1.33)
i “i _ , s
From‘equagiéns (1.6)2\K1.14)~énd (1.15) ip follows -that when )
A and B,consiSt on1y§éf"é‘and a?fv
i J : . \:' "
4 Al1>> = |a>>; '
: “Ba|1>> = B|A>>°=‘|BA>>, R | o (13345

\fang.frbﬂ/;éuations (1.17), (1.28) and\(l,ZQW'WQ have |
’ <a|a = ¢al, o, a (1.35)

Lo (1.36)

, <<1|AB = <<A|B = <<AB
These relations satisfy the self-qusistencyfcongitionf/ .

<AIBIC> = <<A[BCY = o<cAB[C>>. T (1.37)

© ‘Then we also héve, using’(l.ll)'. )
‘A o ;<<i|A>> 2 KAl = <§I|A|1>>’= }rA.. (I?Eé);
| ;; ’ ‘we'hbw,set‘ﬁp'tke’rule,for thé til'e'cdnjugatibn,;'We
fi:ét hfﬁg'thatu(l;ISJ gives \ . ?E? ‘ ;

~
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IR r Y Olme>s
- C ai\:loa a ...a m o \ ' ‘ "‘/¢‘ N | .
=- o||m><nl[c (a LY )(a ...a )] >, ‘,V S (1.39)

+
where c 1s a coTplex c- number and o is the produot of o” %/)

whlch was - g1ven in (1. 15) ThlS rela}lon 1nd1éates that we
\ ' -
are deallgg w1th the -same tllde conJugablon as was: 1ntroduc H'

-in' part II, namely,

. an)” = EE, .\\*\i\*ﬁ ’ Lo (1.40) .
o , ~ *. e - R . : .
(c,A ¥ c B) = c—AV+‘c Y (1.41) ‘

"1 2 . /
‘ ‘ 1 .
For an arbltrary operator A cons1st1ng df a and a we have
, ; , ‘

Almn>> = q||m><n|4‘1\\ >>. : (1.42)
- When A has .tie form c(aT ..uaT')(a «.va, ) with a
T : ‘ ) 1, T k1 . kn < :

- ] , , L

c-number c, (1.27) leads to,.as dieéugsed in part II sectienm
. 4; o ‘ ' /‘. 7 . '_\.
COA|L>> = *“””A*[lw R S L)
F(F- 1)/2 ‘

Af|1>>l= A|1>>, IR 1 (1.Jaa) . 7

‘ whete F 3 m-n; 'Here it  was con51dered that the'tdtél number

fof permutatxons needed in rever51ng the order of ‘the operator;

elements in Ais (m+n)(m+n,l)/2 which is equal to [F(F+1)/2 +

'm *-an even number], and that ghch a? in A contrlbutes to the .

“‘ \

phase factor on . the rlght hand 51de “of equatlon (1 43) by an
/¢ .

amount g, accord1ng td/equatlon (l 27) In a 51m11ar manner,

.equatnons (1. 32) and/ (1 33). lead to :
F(F”Wz . . L (1.45)

’7 cc1|at =<<1IAo |
R \ «1|a =,/<f<1_|A a’F‘F‘.“/*". L (1.46).

Vo S -



Now (1.34) dives L \\*::; f' S

|BA>> = BA|>> = Als> g
o alFy +1)/2+F o . .
s | aFB~ TIB?>' o (Lam
. FpFp -‘ - .y - | o~
where ¢ 'is created by the commutation among ‘B-and A

Here F is related to B in the same way as F

to A, ‘Thus F
B . o : S - A

A

and FB are the fermidn numbers of‘A Shd B;‘respectiﬁely. ﬁThe
| reiations|(lﬁ43) throegh-}1;47{ hold.ttue eveh ifah is‘the“ |
‘linear‘suﬁ of the ptbddcts-of the ébovéﬁﬁorﬁ with eommon_m—n <
‘and when B.has ghe same structure, because, then’FA and éb ; :

: o
< . ‘ . o-e
can: be a551gned to A and,ﬁ, respectively. When .B has an

.‘anerse, (1 47) g1ves o L . f ‘ B \\,
| | (Fy +1)/2+F F | L
~ BAB~ |B>>'= o A«/ . BBy T|B>>. ' (1. 48)

\_.

.This is the most genekal/form of the thermal state condltlon.
, /

% ‘ ! . l ’
We will discuss this sh rtly.

[N

Flnally, we note that by comparing the tilde
conjugate of thd both sides of (1.43)" [or (1.45) w1th (1.44)) -

-~ (1.46) gives S - ,“f B S Lo
. ' A = .UAAl o o b_ , - (1.49) .
where o, is “the fermion number of A, i.e., o,%= o . A -~
similar- afgument holds for A con51st1ng of a and ar. Note

(6,(7)

)that we can modlfy the phase factor in the definition’"

' of the’ superoperators in (1,i4}ajn such a manner that A = A, 7

\..” o . \' ﬁ'.q
S - \ c
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However,‘in this paper we use (l 14) which leadi\;; (1 49)..';.

This is vqu.similar to the arguments of part v

\
non-super operators. . . : -

1

As particular cases for (1.49), we have ‘ f‘ ;'v C

~ i ~ + - l 1-’ . . ' o LT . ]
/ ai e‘oai,.ai = oai.’ | S - \(l,SO) -
With this understanding bf supervectors and . ] '

superoperators we- now 1ntroduce the linear vector ‘space in
. A

which TFD for non,equ1libr1um 31tuations 1s based, called the

thermal ~ L10uv1lle space.' We assume that each thermal state\

is Q:ﬁ;esented by a vector 1n.the,L10uvillefspace. In
» . o ) .

equil 'rium-TFD we took as our vacuum the grcund-stAte of a

system and.developed an annihilation (creation) operator
~A

.which annihilated (exc1ted) this vacuuml'|0(8)>' In TFD .

for non—equilibrium 51tuations we do a 51m11ar thlng' . the.
den51ty operator which describes a system W(t) is “made" a

x

supervector and called the thermal vacuum hgt—vector.'
: e
W(t)|1>> = |W(t)>> = thermal—vacuum ket-vector. . (1.51)

We understand that in equation (l Sl) the 'W(t)"appearing on

the left hand 51de is a supereperator wh11e ﬁhe.'lu(t)>>'

-

appearing on uhe right handgﬁ

1,‘

operator 'W(t)'«contained wath1n thls ket supervectg; is then

an ord1nary Operator realized in our phy51ca1 Fock space'

3

obtained 1n a self con51stent way as a subset of a separable

_Hilbert space. Clearly’ for equgy;brium 51tuat10nG; i.e.

W= e—sa,'equatiOn (1.81) agrees with our .definition of

§

1 -~

'1s a‘ supervector. The / v'

e



T . _ . . . | o
g;' '|0(8)>' found in pprt 1I.. The superoperétors a ano al act
w1th1n the ket as annihilation operators (as shown on .
‘equations (1\»}4 and (1. 29)) but/ they do not annihilate the
thermal-vacuum ket-vector, ,ﬂe then have the task, as.we diJﬁ

in- egullibrium TFD, of f1nding the quasi-par%icle .
l ’ . .
’superoperat?rs whlch‘annlﬁélate the thermal vacuum. We will

do this’ shortly. Let us finish thls section by showing that

.. 7

the goal of wr1t1ng equation (1.1) as a Schrodxnger type

'equatlon can now be reallzed Let us multiply equation (1.1)

by T}Kii : | B -

i Wee) [1>> = (Wl i_j>s> . (1.52)

o>
ct,

]o}

ig= [W(E)>> = B W(E)[1>> - W(t)H|1>> (1553)
'Uéing équatlon'(1.47) and the fact that our Hamiltoﬁian is

bosonic we have

/1

i %E'[W(t)>>/— H W t)l1>> - H W(t)Ll)) o (1.54)
i %E W(E)>> = 0 - B |W(e)>> N o (1.85)
1 JW(e)>> = Hiw(t)>>, e N\ (1.56)

It
where we have retalped tﬁe‘same definition forgr"f-for

| SN

superoperators as we had earller for ordlnary operators.
_'Equat1on (1. 56) i the Schrodlnger form of the Liouville

vequatlon of motion for 'W(t)'. We see;that the time

evg}utlon of the thermalryacUum is generated by the’

| -Superoperator H,vthe'fu117superiﬂaéjltonian.* SR
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- 82, Heisanberg‘and Ig;eragxion Representatigns -

-

Th@ true adwantibq.of getting equati?n (1.56) is that
- Yea

we can do that whiph is done in ordinary quantum field

"

theory, namely .develop other representatlons by shifting he
.time evolution from'-the state to the operators either

completely (Hp1senberg Qicture) or partially (Interaction

o

plotured® o oo
Solv1ng equatxéF’(T 56) formally we obtain

' |w (t)>> = S(t s) H(s)>>’~ | - . (2.1i"

Wh?rg : fAf Ly L : ol |

st = expl-ifit]. [ T (2.2

~ LIRS I

-
v

Noté-thét we did ot-require;shat'ﬂ be Hermitian, Thus S is
: A - . ,
-not necessarlly unltary. o ’ ;

The "thermal Everage is glven bx <<1|A|W(t)>> when

[wit)>> is no:mallzed~accord1ng to ' L ‘ " .
<llWee)>y =1, ' . (2.3)
‘ ' ‘ S ¢ ‘ oo :
then . ' o
’ \ - N ‘ .
<<1|A1W(t >¥=.4<1]A W(t)|1>»; ) <n|A W(t)ln) S (2.4)
n
e = <A>'of statistical- mechanics, (2.5).
N

In order that alllthe’axloms of this more general TFD may be

~ vprgsented all‘at'once we take <$1|H = 0, and will continue.
Discussion abou&(ﬁh1s willl be éontaiheq_ig'section 4. We

'then ‘have : o /A\\ T

lr 4

IS <<1|A|W(t)>> = <<1| (2.63



l . ) . . ’ [ (. ; _b
Alt) = S s (c ko)A S(E-t). o T N3

A

'The superoperator A(t) will be called the Heisenberg

A

representation of the superOperator A. _ .

'

** The state |W(t )>> is cailed the thezmal vacuum

-

o

ket-vector in the(7e1senberg representation. This state is
i

“determined byfthe‘

" As particular cases of'(2.7), we have

' ey L oael p / |
| ate) = sTHeta SCe-e), S 2.
a™ (e = s7He-e a’ s(e-t ); o (200
o ‘ T .
~ —‘A—l _ a; 'A. _ A ’ . L ,
() = 8Tt )3 s(e-ty), " . (2411)
aTe) = s7he-e 33" ste-e 3. L (2a2

< (ie., by the experlmentai*setup of xhe system®at the initial

‘

T

t1me t ).‘

The Heisenberg equation .of motion for the
superoperators is
A ACt) = iTfH, A(t)]. | (2.8)
t X _ ~

It should be noted(that ak (t) and a (t) are not Herm1t1an

-

~

conJugetlon to a(t) and a(t), respectlvely,.when S is’ not

unltary, although they satlsfy the ;canop1cal" relations:

(a. (t‘),a (t)]d= (a. (t),a (t)] = 6550 (2.13)

nitial condltlon for the system at t'é'to

86
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& = N o
The basic bra-vectors are

created' by cyclic sactions

of annihilet&on operators on the

4

“which is <<1].

IH’order for qauations (2

from equations (2 9) or (2. 10) re

tilde conJugat1on rule, we f1pd a

)

" for H; that is,«g‘should satlsﬁy

~ ~

. When an operator A sat;sfles [ia)"

Tildian. Thus H should always be

necessarily have to be Hermitian.
{

’
VA

thérmal vacuum bra-veétor

-

11) or (2 12) to follow

spettxvely, through th;

very*fundamentalmvff

the condtt1on [1H]

A~

= A is said to be
% .

.iA,

i
Tildian,

Thus the Tildian property

-

e i
of H is more fundamental than the Hermltlan property.

Thus <<1| and
vacuum states (1n the Hegsenberg

" and ket vectors, respectlvely.

v

Iw(t )>> are considered to be thérmal

87

though it does not

representatlon) for the bra-"

»

N

; The 1nteract10n representatlon comes about, ag in

part I, by shlftlng only the t1me
system,to the operators ie,
K1|AW(t)>>

A

2 <<1|500t-t0)sO (t-tb)A

-

]

where

So(t) = exp(-i hot)

=0<<1|Ai(t-t6)|w(t-to)>>1

evolutlon of the free
F

A -‘ A_l A ’
Solt-t )s (t-to)Jy£;)>>
(2.14)

(2.15)

(2.16)



w

And ‘hence . | ‘ | ’

W=t )>> = axp(i H_(t-t_ M IWE) > ‘ (2.17)

exp(lH (t-t ))exp( iH(t t ))IW(t )>>

T. exp( i [“ 3 1( -t, )ni . S Hlt-t ae )IW(t > (2. 18)
O

The state IWLt)>> is calied ‘the thermal vacuum ket-vector in

//

the 1nteract10n representation. , ) ~\\_,m/ 7

v

It is worthwhile tgﬁnpte here that there is g‘space

similar to the thermal-LiOu;ille space, which will be celled
the mirror spacd of the;tﬁetmsl-Liouvil}e spece, the bra and
ket state vecto of which are constructed on the mirror
thermal vacuum st tes <<W(t )| and |1>>, respectlvely. In
the mirror space, we can define the Heisenberg representatlon
of the mirror superoperator which is nothing but the mirror
: ope:etor intreduced in ref, 8. To date no symmetric
formalism e#ists for ﬁon-equilibriumuTFD; further

investigation of the mirror Liouville space may ‘however 'yield
. ) . i' . L} v
just such a formalism,



' . S |

R | \

M o
\\ 13

$3. - The Thermal State Condition and Quasi Particle

Ogotators
‘Recalling eQUauion (1.48), we let B = Wit ) and

A= ak(to), and hence We\have . c _ )
o WA (t )W e )IW(t )>> = ak(t ) Wit )>>, (3 1)
where the subscript 'k’ describes the wave number. ‘If we

have an equilibrium system( l, equation (3.1) leads to
exp(-‘-BH)ak exp(BH)|w>$\= 3:|w>>,' S (3.2)

.

Equation (3.2) in turn leads to . . e
| Bhk ot ml Lo )
. e ak|w>>= ak|w>> : , o(3.3)
or {
* -
ak|w>> = e -Beg T|w>>, . (3.4)

which is just the equilibrium thermal state conditiqn

previouély derived If we are con51der1ng a non-equilibrium

system the den51ty matrix can not be a statlonary one and

\
|

,hence we expect a more general form\for our,thermal state .

-~

_ condition, ie.
aklw>> = £, Z;|w>> + (higher order Pon-lineer terms in
af,gf,a,aT)|W>> ! B (3.5)
We treat the nbb—linear terms in equation (3.5) as‘

- perturbatlons and take as our unperturbed non-equilibrium

"fthermal state condition

ak|w$§ = fkak|w>>.- , , ’(3.6{

i

89
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"As,in usual field theory we now treat any 1nter§bt{yq torm ‘

S
.contained in the Hamiltonian as a parturbative eftect and 4
to zeroth order approximation we have . ”
’ l .
: A-l ) .

ak(t) = Sb (t to)ak So(t-to) , (3.7)

~tt, . hel ~t % -

a, (t) = S° (t-to)ak so(t-to). : (3.8)

A ~

Since H_ contained in Sgl(t) is of a bilinear form, the
thermal state condi4lon at. t4mé t in the unperturbed. .

Heisenberg representation or zeroth order interaction
" perturbation should be linear in ak(/?-and a (t) as it was at
't-to', aqéxut-u'. Hence we write using equqtions.(3.6),

(3.7) and‘i3.a),

StEo _

ak(t)IW(to)>> = fk(t—to)ak (t)Lw(to)>> | (3.9)

and * . R
' ~ ) tt _

ak(t)IW(to)>> =0 fk,(t-to)ak (t)|W(to)>>. (3.10)

Considering equations (1.32) and (1,33) we have
" <<i|a:(t) = <21|§k(é) ﬁ\ | ‘ (3.11)
<<1]ak(t).= <<1|Z;(t)o.' . (3.12)

These four equations (3.9), (3.10), (3.11)7anl (3.12)
;onstitute.collectively the‘unpetturbed thermal state
'coédition. | ’
t,ﬁe define the annihilation_and creation .
quaSi-pérficle superoperators by f

viv) = 2% tace) - ee-e )30, (313



P - 22 (t-e (a0 - arey, (3.14)

.respectively because, then, due to our thermal state

¥

éonditiop

Y(E) [W(e )>> = o, <<1|79<p) = 0. L. (3.15)

The tilde conjugation ot‘(3.15Y/Ieads to

?(t)lwcto)>> =0, <<1|yg(t) = 0, ( (3.16)

" The normalization factor 23/ 2(t) is determined by the

canonical commutation relation ‘ \

* ?

~ ~2 \
(y(t),y (£)], = [v(t),y ()], =1,

(3.17)

while the other commutation relations vanish. The result is

Z(t) = 1 + ng(t), | ’ (3.18)
where . —

. N

no(t) = fq(t)/[l-fo(t)], ' ‘ (3.19)
' with~
n (t) = on(t), (3.20)
g ' Y

.fo(t) = of(t). ’ ‘(3.21)

——

Using the relations (3.13), (3.14), (3.15) and (3.16), we

obtain
, )

n(e-t ) = <<lla’fe)aceriwee )5, L (3.22)

-

The above argument shows one of the most significant

roles played by the thermal state conditio?; the latter

condition specifies the thermal vacuum and creation and..

"annihilation superoperators for the quasi-particles. Note

..
3§
vy
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that equatton (3.22) béaluated,at t-to andt-b;givoi‘ud f(to)
and f(=) via eqnftfon (3.19). ‘ T N L

Note that althonghfwe have ysed the same notations
a(t), ~ﬁ(t) and IW(t-)>> both for the Heisenberg and'the
ﬂinteraction representation. we expect that one _can '
dxstinguish between them by the context. This point about
our notation is not to be cojaidered a problem which need be
corrected -, it is more oorrectly evidence of an important

'aSpect of TFD. We have two thedretical spbcifications for a

. system, the Hamiltonlan and the thermal state condition, each

1

can accommodate perturbatlon thebry. Whenever we have an i;

operator in TFD, say.;;bt)' it oontains-two different
possible approximations.  The approximation in correlati®ns
given: by the level of perturbation used in the thermal state .
condition and operator,'A(t): contains an approximation in

its time development given by the level of perturbation used
to'determiné its time evolution generator. At present we are
working with a zeroth order perturbation of the thermal state *
condition,‘but thus Eor we nave not chosen to what

- kperturbation order we will take tné time evolution‘operatJr

- )
S(t)..

k\\\; We now define the thermal-Liouville space in which
\ ' , ,
TFD for non-equilibrium situations is constructed. The
‘ ) . -
thermal-Liouville space is nothing but the linear vector

; Space spannod’by the set of bra and ket vectors which are

¢
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ii generated, respectlvely, by cycllc operatlons of the

. ann1hrlat10n superoperators Y(t) and Y(t).on the thermal
* . - J‘ ’ ! Q
vacuum <<1|,aand'of the creation spperoperators Y-(t) andf

7Q(t)lon the thermal vacuum lw(t )>>. )-

=

Agaln let us state that both the %1atlon of‘?i from\

Ll : /

Y the unperturbed HamiltOnian H and the'deviation/of'thet
. - |
'thermal state condltlon Ergm its unperturbed 1ineatr form
7{1 e}, equatlons (3.11) and (3. 12)] are con51dered as

'perturbatlve effects.“ By adopting - the usual deflnltlon of
. L]
(',the normal product for the quasi- partlcle superoperators

&

. [1.e., when a productfhas a form in whlchrall the creat;on

superoperators (Y9 ‘and éj} stand to’ the left of the
A o
'annihllatlon superoperators (Y and Y), 1t is called a nor%

product], we obta1n a. W1ck type formula for non‘équ111br1um '

v

Tﬁ Thxs w;ck type formula should lead us - to~g$ynman type
dlagrams for multi- tlme Green s funiglons in the 1nteractlon

2
representatlon.. ‘We then obtaln a Peynman type d4agram method

s

: for perturbatlve calculatxons for non equ1llbr1um TFD when -V

‘yperturbatlve lnteractlon is". 1ntroduced in.H. @alculdtions
) A - _

exempllfylng thls ﬁ\eld theoretlcal strength of 41

S non- equ111br1um TFD are now in PfQﬂIeSS.Y»We can: lso .

ey ; ¢

formulate the generatlng functlonal method in non-deguilibrium

TFD, thxs w1ll be,shown 'in section 6, % o - ,\\\,

-



. . . ¢ ! ' ‘
! K - e
/\ | . ¢ . H

o

Note that the perturbat10na1 calculat1on leads: us to ‘

an - expre551on of the He1senberg superoperators in terms of

+ product of quas1-part1cle superoperators. This is an

~ 1 . ‘J ) : e Vo

extension of the concept of the dynamical map in the usual -

'quéntum'fieldﬁthedry_to TFD, for non-equilibrium situations.

. : . v ‘-~ )
. Historically H was constructed‘by the edimination of

(1)

the'reservoir‘degrees of freedom. The system s effectlve

Hamlltonlan was obtalned by tak1ng the reserv01r s vacuum
ekpectatlon of the c0mplete Ham11ton1an, 1eav1ng the free
systems Hamlltonlan with 'a shift in the free energy and a

;o

d1$Slpat1ve term comgng from the system reservo1r

interaction. |

According to refs. 10 and'11,"the'entropy/for.the _'

' nonequilibrium state in the'thermalfLiouville space is given

by. _
©os(t)= - Sanaleale), o asy /.
. . o B o ' . />
with o o e : /
. ' . + o . N : ‘ . . /
QL) = <<1|w W wee»> . - %/

R (t)|W(t)>>. . N (3.19)

"The t1me derivatives of Q(t) are giVen by

-

-<<wf(t)|[(iH) + 1H]|w(t)>>, (3.20)

4

dtﬂ(t)’

2
‘dtg(t)t

<<W (t)l[(xHT +. 1H] |w(t)>)

e’ (t)'[lH (1H) ]|w<r)>> : (3. 21)

L]

The sign of d Q(t) should be determlned by the boundary



,7

condition of the system (i.e., if tﬁe'system is open or

L0

~ closed etc.). Note that if H is Hermitdian Q(t) remains
constant in time. . )
S Lo »

kfﬁl
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SI."The Axioms for the Generaliéetioh'of T.F.D. to
("12)

NOnQEquilibrium Sitggtions

5

With this-formalism established, we can'reformulate
everythlng 1n terms of usual fleld theory language. Leav1ng
behlnd the derlvatxons for all the precedlng formulas, we ¢an

replace this formallsm w1th a small number of axioms,

~ ' 13

|
expressed in terms of operators’, not*Superoperators, and
‘ vectors, not supervectors, and contain it in a thermal space)

“not’ the thermal L10uv111e space. With these axipms onerfindsl
N : '
no ment1on of ‘an reserv01r (remarkable) This is very

' ,appevallng; —'.cause the "need" for a reservoir by all other .
thermal theories does not seem to be supported by nature.

- It is now approprlate to l;st the seven ax1oms,

regarding operators and vectors which whem,included with the
original three axioms of TFD (part II) and.the axioms of

Lo ' . [3 . ¥ . . A ] . . )'/_\ -
quantum field theory (part .I), yield a complete quantum j}%ld -
theory for situations which include non-equilibrium

situationg. _ P ,
’ . . | . .

Al. . The equation of motion for the thermal vacuum
', ket-vector in the Schrodinger representation |[W(t)>> is given
by ' o

.

3 IW(E)>> = —iH[W(E)>>, (4.1) .,
: ~ . g . t ~ ~1 |
where H 1s an operator consisting of a, a , a and ‘a .
The equation (2.1) will be called the,Schrodinger
. )

equation or the master'equation.' (/
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2

fnner-product between the thermal vacuum bra-vector

'The thermal state condltlon f\r the stationary

The,supero%gratdr H should satisfy the relaé&on
~ ' ] ) lji

(iH) ~ = iH, ie. H is Tildian. S (4.02)

'The requ1r2ment of the conservatloi of. the

¥

' <<1| and the thermal vacuum ket-vector ]W(t)>> reads

/.
<<ll|H = 0. R - (4 3)

3

The thermal state cond1t1on for the thermal vacuum

bra-vector 1s_glven~by . SO B

<<1~|-afr = <<1|'5 ,' S ~ . - (4.4)
. . \\ . : N K .
‘ . ~t C BN ‘ R
<l]a =/<~<1|a:o.. : ~ (4.5) N
. . g S P2
The requirement of the exlstence of . the statlonary ff i
o \ . . . v

thermai vacuum ket - vector in the Schrodl

representatlon reads

(4. 6)

le(~)>> = o. i
t

thermal vacuum ket—vector‘IW(w)>>. The unperturbed

Y



O

: _aIW(tb)>>

part of the thermal state condition is given in the

form
alw(=)>> = fa'|wie)>>, L (4.7
atw(=)>> =‘ofé*IW(w)>>, , ) . (4.8)

where f is some c—number\func;ion. From equation

(3, lf) we see f =f (°).

The thermal state condltlon for the thermal vacuum

-
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ket -vector 1n the. HeLsenberg representation jwit )>>.‘:

The - unperturbed part of the thermal state condition

e ..

is given in the: form

£a' (e )5, | —_— (4.9)

d|W$t0)>>

ofaT|W(té)>>} - (4.10)

where f is some c-number EUnction. From equation

property of-a system, we can write down the generalu

R ~

form of H in terms of the superoperators a, a', a

3

(3.11) we see £ = £(0). By 1nspect1ng the symmetric

and ET;. Then'the_most basi¢ structure of the Tildian

~

‘ Hami;tohianiﬂ, which includes the,dissipation effect

_ section7§5.‘

’

of the‘syStem, is determined by the bhasic
requirements A2~A6. This'willAbe-illustratéd in

1

'Ih the basic requirement A6, we can put in

" information about the symmetry of the stationary

thermal vacuum ket-vector in the Schrodinger
o . .

o : : ™~



.
. - : ' -
%) o

+

répresentation |W(=)>>, which reveals itkelf in the

stn{éture‘éf thg'real part of iH. Inﬁoth\r'words,
._VJ . i . )

the symmetry breaking effec% can ‘be éut inﬂo the

structure of the real part of the iH throu$h A6.

J
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§5. A Phase-Invariant Bllinear Model "

LY

We now give an exampléﬂgf how axioms oné,through

- seven of section 4, are used in a calculation.ﬁ-Since'the

5

‘'unperturbed thermal*statevcondition'equations (4.7) and :

(4.8) in A6 and equations (4.7) and (4.10) in A7 are _ i*l
e ‘ o

invariant under (the pqase t;ansformation a*a exp(i®), .H

_ should assume this phase invariance. Thus, the general ‘form

A \,' ) . . ‘ . o
of H is writen in the form -
! —-
. _

NP
H hla

a + h ¥ 5*'T

a8+ haa+haa +n. 0 (s
where h=h+ﬁih" with h' and h" real. The’basic requirement A2

makes H Tildian. Then (5.1) reduces to

B = hla'a-a’a) + inratand’a)
o~ Lt ' . :

3 L1 3 n S 3 " .
+'1h3aa + 1h4a a_ * ihg. _ (5.2) »

The basic requiremenqﬁiei and A4 gives us relations between

the h" terms as ‘ : -

h" + oh" = 0, A , . " ‘ " (5.3a)
o 4 .

2h® + h" + h" = 0. " (5.3b)
I‘;.\3 .4 . ,

The basic requirementsrég and A6 gives us.gpothér relation

between the h" terms as

k!

h" + oh®f_ = 0, (5.4a)

o . 3¢ }
. - -1 . . .
”n " - t
where ' ) : , . *
fq-=qu, - . o - (5.5)
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Inkderiving‘15.4); we used"the_unpérturbed thermal state
 condition (4.6) in A6 as it may be consistent with the
bhase-iﬁvariant bilinear model. From (§;4a), we see that f
is a‘real quantity. Note thét (5.3) ;qg (5.4) are not

independent, \?hey reduce to

{

h? = -oh", | ' - - (3.6a)

W o -]; " . . T N
hy = - 5 (h t’hi?' | . (5.6b)
hz = hgfo' k { o : . “(5.6¢)

If we introduce real quantities e, xlaand <, by the

definitions
e =ht, . L . (5.7a)
2¢. = ht, Y (5.70)
_ 1 3o | , .
. . g'(-zf; : z' ' . ' (5.7¢)

we finally obtain the general form of the Tildian Hamiltonian

~

‘H-for the phase- invariant bilinear model, which satisfies

the basic requirement A2 ~ A6, as

N
H = ela'a-a'a) - i(¢ +x,)(ata+d"3)
. ~ . ~t t . ) : 0
+ 12 aa + 12K2a a - i2o0¢,, - (5.8) ~
with the relation
: . ,
| Ky = xlfa. | | . (5.9)
- Using the Heiéenberg equations of motion: N
3.alr) = i[H,a(t)] R

= -ile=iley#xy)lalt) + 20693  '(8),  (5.10a)
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v.a ey = itma ey - S
= ile-i(x 4002’ () - 20 &(E),  (5.100) Y
and the basic requirements A4, we obtaih ‘ ' - ﬁ'.q‘g.
at<<l|a*1(t)a(t) = —2(x1r<2)<<1|a**(t)a(t) + 20x ., (5,;1)'§?}

By applying the thermal vacuum ket—vectofvlw(to)>> to (5.11);En§ 

[V
~

we have.

\A e - \\ . }
3. nle=t ) = 72(K1~K2)n(§:to) + 2052,
where we defined n(L-to) by [c.fj\(3.24)]

P T \\ t4 ) jl : . ¥
n%tfto) = \i}la (t)a(t»}ging>>. (5.13)
In the limit t*=, we obtain from (5.12) | Bl
S o, oK , .
n(=f =/<<1latalw(=)>> = —= . (5.14)
: . [ 9 1 - 2 . ‘ * .

Inspecting (5.11) and (5.14), we know that it will be

conveni@nt to introduce positive quangities k and n by -~ ¢
K ='v<l - Kyr (5.1%a) |
oK , : ‘
< n = 2 . (g, | (5.15b) ,
“17%2 ‘ -

where we used (5.9) in the second equality of (5.15b). The
\. -—
reason, that we can determine that x and n should be

positive is the stability of the system.

Then the Hamiltonian (S5, 8) répuces to -
. i ' ' s

H=H + il o - (5.16a)
. o .

H, = c(a'a - 3'a) - | (5.16b)

-
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o= -x((1+27 )(a'a + 3T3) - 2(1+n )aa
’ - ~t t - , :
- 2n°a al} - 2anno, , (5.16¢c)
where
n, =on. ™ -  (5.17)
It should be noted that the Tildian Hamiltonian (5.16) has
exactly the same form as the unberturbed p;rt of the Tildian
. : by -

(1)

Hamiltonian which was obtained by eliminating the

reservoir variables. Note, however, that the entire

consideration in this paper does not need any«reférenge to
the reservoir. o h }

‘The two-point Gréen's function

Gca(t,s) = -i<<1|T[a°(t)56(s)]IW(FO)>>; (5.18)
is’easily evaluated by rewriting it in terms of thé
quasi-particle superéperator defined by equation (3.15) and

its tilde copjugate, and by using a Wick-type formula. The

result has the same form as that giveh in ref. 1 for the

semi-free field, and therefore, has the damping factor in

time. When we introduce an interaction, we make uSe of H in
. Y ,

this section as the unperturbed Tildian Hamiltonian. Im this
[y \, 4

case. the two-pointhGreen's function in (5.18) becomes the
%ntergal lfnes in the Feynman diagrams. Note that in the
exﬁression of (5.18) we introduced the thermal dduble;

notation defined by ‘ ¢
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a(t) ‘
a*(t) = [y ), 2% = @™o Een, (sa9y
a (t) ‘

1, o\, B | L
I, = . ‘ 15.20)
0"'0 ' ' . '

The time .derivative of a(t) for the'phase-invariant

where

bilinear model is given by

>

A

‘ dgﬂ(t) = <<1|(M + HT)|W(p)>>, ~45.21)

with (S5.16c). By'aéing the thermal state condition properly

(see Appendix A for details), we obtain

1
1+2n(t-t _)
. o]

4k [n(t-to)-al,\for boson

detnf(t) = 1-2n(t-t ) R . .
3 4« —— 5 [n(t-t )-n], for fermion.
> [l-n(t—to)] +n(t—to)

| , L1 d5.22)
where n(t-t ) is defined by (5.13) the explicit form of which
- 3
is given by
n(t) = n + [nlo)-nle 2%, (5.23)

If f and f are equal to exp(-ﬁoe) and exp(-ee))
respectiveiy, with To=1/80.and T=i/8 (5551) being the iﬁ}tial
and -final temperatures of the system, reSpectively,vwe .

~yobtain . N

’vﬁ = (e -0) °, ‘ , ' (5.24;)
~a) 7L, »  (5.24b)
énd | ’

0« n(t—to) < » , ‘for boson, ' (S.ZSaf
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0« h(t-to)'< % , for ﬁe:mioﬁ, (5.25b) .

as caﬁ be seen from (5.23) and (5.24); Then‘(5{22) tells us
that |

d,8(e) > 0, forT>T, - . . (5.26a)

d,s(t) <0, for T T, B o (5.26b)
From (5.23) and (5.26), wéqcén see thét the phasgLinvarianth
bilinear model with this particular choice for £ and f
describes an open system coupling to the particle reservoir
with temperature T if the chemical potegtiél of the reservoir-

5 7 L
remains constant.
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‘ : : : (12)
§6. Generating Functional of Non-equilibrium TFD

Up to this poin; we have, in part IIl, introduced

superoperators and supervectors.: We have developed the
'

different representations for the equatibn of motion for our:
thermal state vectors and have shown what the form of the

thermal state condition is and how it is weed to produce the

‘ .
quasi-particle operators. With quasi-farticle operators, \
!

most all of the many quantum field theoretical technigques qrh\\

-

~

at our disposal. We then listed the seven axi?@s whiqp made -
this whole development possible and showed how they wérged
with the example of a bilinear model. We now finish this
part with the presentation of the gegeratingvfunctional for
non—eéuilip;ium TFD, and concludigb comments.

To obtain a generating functional, we‘dp;roduce/
‘external fields K*(Q),fK(t), E:(t) and K(t) which are
conjugate to the supéroperatqgé a, af, a and 3?, | : -~
respectively. . Note that we are going to consider independent

variations of four external fields. Then the "master

equation” of the system under the influence of the external

fields becomes ' -
. A Ve '
mtIW(t)>> =‘—iB£IW(t)>>, ' (6.1)
with |
- ' . . .
He ,H *Hp b (6.2) 2

where



‘.

CH'= H .o+ il a (6:3)
(o] ; 0 » ’ ‘ S
(KD (tray + Akelon. S (644)

s

where H, and ! were obtained for a bilihear:model in‘seépioh

5, and can similarly be\obtaihedffof”ény other model. -We

have introduced the thermal-doubletnnotation

. L Kk(;) % —a [" * Nt o f
Kty = o ], K(t) = (k ()& ()1, (6.5)
-k ey k>0 TR S SR | :
. K e/ | i - f.
whose elements satisfy‘the dbubgﬁ-tildé conjugation rule
- ‘-’;ﬂ‘ o oxk - * _ ,  e
:,Kk(t),- ch(t), Kk(;) —‘?Kk(t), _ | | (6i6)
and the b-commutativity ° A ;
. _;,f,\h'txg(t),iftt)-]a =0 ‘-[K;'(t),sfmloe 0, etc.. (6.7)
and where LR
1 .0 B . SR .
_ Io = - . . , . (6.78)

In the interaction representation with the

interaction "Hamiltoniah" Ho t,"the "master equation” (6.1)
AR Ha ni I, . : .
becomes

| 3t_i"|,W(t)>">‘I = CiH WS, soe e 16.8)
‘where | s

) s Afl’ _'> "n. . o T.‘ | : )

‘lW(t)>>I» J$o (t-t0){W(t)>>, o - .(6,9)

~ ‘,'851 . f . A‘ ’
Hy(t) = 8 (t—to)HI'tso(t—to)
. . N

ot . -
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nd,

»quantum flel% theory

_ -a, . a Loa oA , | '
. E [kac)ak(t)<+‘ak(t)Kk(t{éf - (ea10)
~ . '.A‘ {,\ . : l “l |
S (t) = expl[-iBH _t]. \X; T (6 11)
. o - O . ‘7,,'_:‘ Ft{;}
We have introduced the thermal doublet 2 .
a, (t) | . ' ; ‘
(é‘ ‘ ‘ ,_Ei(t) = (a (t) a (tLQI ¢ (6.12)

whose elemeﬁtﬁ\are defined by equations (3.9) and (3.10).

051ng the t1me evolutlon operator of the thermal“

vacuum ket-vector state |W(t)>>I:
‘x ~ __ , o . - t ’ ~ T | . ‘,7‘.
U(t,t_) = T'expl[-i jt ds Hi(s)), (6.13)
B . ) i o) ‘ . / L
‘which satisfies‘the equation of motion o

which together with (3.8) leads to

IW(t)>> -f U(t t ){W(t )>> —-U(t t )|W(té)>>.. (6.15)

I

Follow1ng the theory of generatlng functlonal in-.the ordinary

(13)

functional:

2 (K,K] = <<1|U(E,t.)|w (t > . ' (6'16)

-The generatlng functxodal (6 16) can be. written- in

- terms of. the qua51 partlcle operafor.“In the,followxng, we

I

q

use the notation’ZY[KY,R{] for_(6f16) in which H_(t) in_..

108

, we introduce the,thermel generating-

»



U(E,to)riS~Written in terms of'thevquesi—particle
. V) ‘ ‘
operator as

AR
~ —G ‘
(e = £ Ky, L(EITReE) + Yk(t)K (t)], (6.17)
A 2

where we have,lntroduced the thermal doublet - .
‘Yk(t)

- =a _; ? ~ ) .
¥ Yk(t) —,(Yk(t),Yk(t))Io, (6.18)
3Pk o
ALY

whose elements are defined'by“equations (6.15) and (6.16).

Theéy are written in the thermal doublet notation as

B Ba (6.19)

Yty = B (e-e )%l (6), TRy = BEcoim et )®

. where o ‘ , 3
. , 1 -f (e | |
‘ B, ()% = 21/2(t) | I (6.20) -

. -a. 1 L
We Have .
Moy =B o, (s
where
f ’. . 0 . ) , ’ . . ,‘ | )

T o -1 ‘ (6.21a).
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The ‘external fields which are conjugate to the qua51 partlcle

, operators are ngen by
af B

: = _ —a =B -1, Ba' . -
Y,k(t) = Bk(t t ) K, (t), Kij(t)(— Kk(t)Bk (t_to) (6.22)

' and they are cecommutable.

A yariation of the exfernal fields induces a change

“in HI’ ‘Derioting this change by 6H, we obtain



110
A _ o E .A - A‘ ' A . .
su(t,t ) = -i ftbdt p(t,to)GH(t)U(t,to)
- _i(t v N o Lo ‘&, -a o o
, 1ftod; E U(t,t)[SKY’E(g)kag) + yk(t)axY,k(t)]U(t,to)..
This leads to

8anz_ (K ,X. ] = 62 1K ,K (K ,K

’ *‘;. t E =a a .y -a, a , :

; = 1Itodt E [GKy,k(t)‘Yk(F’>,+ <Tk(t)>5KY’k(t)), (6.23)

where | ‘

§2nz_ (K, ,K ] \ )
rplt)> = i —L T X
8K () | <
“ E » ’ , . ' . ‘; (‘:\! B

_ = Y = ‘
—.ftodt <<1lu(t,t)vk(t)U(t,to)st(to)>>/zY[KY,KYl,, (6.24a) N

§¢n2_ [K ,K
nz, [k K 1
7 Qa .
6 N
Ky,k(tx

- <?§xt>> = i

_ ot BT T | ' o
= ftodt <<1|U<t,t)yk(t)U(t;§Q)]ws(50)3>/zY[KY,KY|N (6.24b)

By the thermal state condition, equationé (3.17) and_(3.18),
.<Y;(t)> and,<7z(t)§ satisfy the boundary @onitions -
L, o0 _on 2= ‘
_{Yk(to)> = 0, <Yk(t)> =0, . . : }6.?5a)
o=l = - =2 _ ‘ ' ¢
The'quantity <Y§(t)> satisfies the equation of motion
l+nck aB

o . o A B L4 L
a,<y“(t)> = [-ie, 6%« — 10 ]<yD (B)> - ik (t),
A K" T T o 3Tk Yok

" (6.26)

which is obtained from (6.24) together with\(6.14), (6,14),
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(6‘19)»and‘the'HeiSenberg equation of motion‘for aF(t); With
the boundary condlt1on (6. 25a), the equatlon of motion (6.26)

‘is solved as ‘ ‘ ‘,

) <Y£(t)> = JY as g2 (x, s)K TP | (6.27)
€08 9 “ |

where gk (t s) is the two- point Green S functlon of . the
' W
qua31-part1c1e operator deflned by '

(t s)' 1<<1|T[Yk(t)yaﬂs)]lw (t )>> l
1/2 -1/2 , s
(§ )2, (e to)Gk(t'), S0
| | 1/2 2, .
0 | k/ (t-t_rz (s-t,)G} (t=s)
' (6.28)
with
Gy () ='-ie(t)exg[—i{ekeixk)tl, o (6.29a)
Gedt) ='i6(-t)exp[-i(ek+ixk)t]. (6. 29b)

i

The tllde conJugate of the elements (6.27) g1ves us”the
- resilt ‘ ‘ ‘ ‘ - .
., =Q _ t -8 ' Ba, | | ’
<Y ()> = ftods_Kk(s)gk‘(s,t?. (6.30)
To obtain (6.36), we used the relations
~ro oA, . - =~a AT » . h
By thstituting (6.27) and (6.30) into (6.23), we
finally obtain the expreSsion ' '
-2 (K. ,K.] = exp[ -i ft dt !t ds Z K (t)g“B(t s)K (s)]
Y Yy o O K 'K

T
!



a

| férmalismtand the thermal state condition in TFD.

C h | 12
S o - !

(6.32)

which can be written in terms of the original external fprces"

L}

as
2(K,K)] = exp[-i [ gt [ as § ®R®()6®P(t,sikB(s)]y (6.33)
t t oL Tk k k
’ : o . o 'k o :
where A n ’
af : -1 o - A af '
G, (t,s) = [B, (b=t )gy (t,s)8, ) (s=t,)] o
= . - -1, . aB
_.[Iawk‘t £,)9, (i)W, (s tO)Ia] , (6734)
. wi%h o ' oo v."  : {
- ’ : . ( 'A - » ' . »
W.(t) = I B (t)I_. - (6.35)

L]

‘Recall that in the special case where the initial \\\\
state is of‘thefgrand canonical distribution with temperatur

_oamle Lo . o
To = Bo we had equatlons (5.24a).§nd (5.24b)7 For thbg

choice of the ipitial state, the generating functional

(6.33)with o=1 (ie., fbr boson) reduces to that derived by

Schwinbei(l4) (see also ref. 15). Notev'that, in thils case,

H

the conditions in (6.25), which followed from the thermal
state condition and which played an essential role in
derivation of (6,33),‘afe equivalent to Schwinger's condition

at both edges of the closed path., This clarifies the

3

relation between the boundary éohditionslin Schwinger's .

Finally we introduce an interaction, His

o,

in the
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i N a

syétem} which induces the dyhamiéal cofrélaﬁions.\\~hgn,‘the 

'generating functional becomes

J
. Al - ~ . . .
~ 2[K,K] = CLIU'(E, ) WGt 3>, (6.36)
with v - & , L |
. . o . o
P . S S '
< U (t(ﬁB) = T exp[-i It ds Hi(s)lr o (6.37)
/s o
where '
~ . A 1 ) ~ ) .
. _ .
| HI(t) = S1 (t,to)HI(t)sl(t,to). (6.38) .
Here S.(t,t ) is defined by
1 o~ #
‘ 3,8, (t,ty) f,—iHIKt)Sl(t,to), S(toety) = 1, (6.39)
with |
A ’ ) A A/l‘_l ,‘ !
Ho(t) = so(;—to)ﬂlso (t-t )
= HI[ak(t),ak(t)].,, | _ (6.40) .

A ?

Since HI(t) in (6.38) never acts as an external'vertex, we

-

4q .
‘éian,write-

2 (K,R) = expl-iff at (3 S 1 2 )ype,Ry.
‘ : o) ka(t) GKk(t)

| L (6.41)
Since the fields-a:(t) and Ei(t)‘éatisfy the canonical

commutators, Hi in (6.41)ccahAbe replaced by the

_corresponding interaction Lagrangian Li.

——
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M‘h C

The eﬁpression of the generating functional for the
"~ . _ e b

<

| time—ordered many-point Gpeen‘s functions of
f‘TFD provide us with the Feynman-like diagr
nonequilibrium TFD;whicn are just those expecteds; in the
canonical approach to nonequ111br1um %FD.(I'IG)
Note that the direction, fro“ which: the functional
derivatives: operate on Z[k,K] in (6.41), should be prope:ly ot

taken because of (6.7).

)
i .

This then ends our discussion of TFD for
non- eqn111br1um 51tuat10ns:rlIte development has been
carrying on at a tremendous pace. The generaiized'form'of'
the type one. and type-two field equatlons, and the free .
fields: wh1ch*sat1sfy them have naow been formulated and hence
 1t seems we have a,well defined Q1se1pat1ve 1ntern31 line for:
Feynman diagrams. . With this reelization, work has begun in

the description.of a laser system using TFD.

~
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§l. TFD and Path Orderiggfnethod

Matsuugpk'slcreen's‘function method(l) is commohly
used for finite temperature calculations, especially when
only static quantitles are heing considered, Since
Matsubara's method can acco;modete only one dynamical
paraﬁeter, namely imaginary time or temperaiure, calculation
of dynamical quantities often requires a process of-
analytical continuation,(2s3) Real~-time ex;enz)ons of fhe

. ~
perturbat}pnal rules in Matsubara's method go

~

nder the name
of the complex time "path ordering method(4'5'6) It is the
purpose of this section to show that TFD and the path
order1ng method yield the same perturbation expansion for two
p01nt Green's functlons. Our comparison can not be carrxed_

*

out at a deeper leyelebecaUSe the path ordering method is not *?
a quantum field theoretic formalism hut\only a method or “ |
establ1sh1ng Green's funct1ons. Th1s sjésivn will deal with
equillbrlum sltuatlons as all of the above referenced thermal
theories are suited only to handle such cases, N

Consider a complex scalar field W(;,z), where i is the

'complex time variable, the dynamlcs of ¥ along a tr Jectory

on the z plane are determined by the Hamilt n H. ' Hence we
write _ ' (///9846\\ L

I

& v(z) = exp(izH)y(o)exp(-izH) (1.1)
We take our trajectory as path 'C'; starting at point 't' and
ending at point t - iB,-in the z-plane.- The path 'C' is so

chosen to pass through points, Z1125+.+2 SO that we may’
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define a statjstical average as

-8H
trie” "T (¥(z)...¥(z )
-591 % e

'Tc' is the path ordering operator which is equal to the time

W(z)).o¥(z)> = (1.2)

tr{e

ordering operator 'T' when Re|z| is iqfreasing and is equal

to the anti-time ordering operator 'T' when Rel|z| is

decreasing, as we proceed from T to Tt - i8. In the

interaction representation with

' izH Co=i ‘
bolz) = e “b(ole lzﬁ° a (1.3)
and . |
u(r - i, 1) = exp(-i I:—inz Hi(z)) ‘ (1.4),
along c¢ ‘
‘we can express equat;bn (1.2) 5(4'5'6) 4

<TC U(T‘iB,T)"’o(Zl)...wo(zn)>
- <T, u(T-lB,f)?o. P

Wlz))eo Wiz )> = (1.5)

P

The symbol <A>_ is the same as that of <A> defined in |

?

equation (1.2) except H is replaced by Ho. In equéiion (1.4)
we used o . -
| o iHz ~iH 2 /
Hi(z) = e Hp e . 4 (1.6)

We now consider the case ‘where.zl...zn all lie on the real
vtlme axis (ie, (zl...zn) + (tl...tn))('ang we take T + == |
~.with path 'C' covering the whole real time axis 7; + =) and
returning to '-=' with a constant imaginary value of -ioc., 1In

this limit the effect of the interaction Hamiltonian on the

/" two portions) (+=, += - ig) and (-= - ig, -= -iB) may be .
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nsi isconne i ‘ o
¢o dered disconnected from the fields wo(tl)..,wo(tn) aoa

hence ye bbtain

-

<TC u ‘bo(tl)ccuwo(tn)>

Wolt)edeb (b )> = TS . (1.7)
. c ‘o
where
‘u = exp(~i f:.dt(HI(t) - HI(t - i9))), (1;8)
The free Hamiltonian has the form '
cHES I -
Ay = [ AT e oGy (0. , (1.9)

EXPandjng ¢o(x)was'in equation (1;8.19) we hade .
' -3/2 4 > » :

v (x) = (27) 2 d3k‘u(§)eXP(1k-X - dw(k)t)  (1.10)

and the fodf two-point fundttions which are nqw releovant (ie.

propagation from the t + ¢', ¢ » t' - ig, t - ig + t', and

t - io » ¢' - i0) can be calculated and the resu1t5(6) may be
wrilten in a two dimensional matrix equat fon as -
. ‘ 40
bo(x,E) - o '
r, O TRy et Ermia))> =
g - o
Y(x,t-i0) PO
i 4 ~ik(x=-x"')(. 1 1 " : ’
e ] % e AN W S .
(2")4 / \ ko-“’(k)tw efim(k)_1
eBu(k) o(B/2+7)w (k) . B
' : T k,me (K18 TRe (K.
e(B/z_y)w(k)\ 1 Q- e -}
) . *e(5/2+y)m(k)
| < (1.11)
6(8/2-7)”(k) eBw(k) , .
v :

7~



4

o

whsri;v = o - 8/2 (y €[ 8/2 8/2]) ‘If we choose \ 0 we

find" hat. eduatlon (1. 11) 1s precisely the perturbatlve

R

"eXpanSIOn for a'complex scg%ar f1e1d derived in sectlon 6 of

;p "&

'part II, namely equatiOn (6.24). It can be shown that this

-
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Ko

correspondence between the path orderlng method and TFD holdsh

(7).

generally for other moments and flelds.

h\\\\ The patQLorderlng method seems to' be expressinékthe
N :

need for the dou 11ng of the degrees of freedom, in that it
= iy i

separates the f1e1ds on the forward and reverse paths w1th an

Imagmnary time fla. of course w (t) and w (t - 10) do not

-

“commute and hence no<such'doub11ng‘of the degrees‘of.freedom

A

PN

K - . . : v 5o ) : . .
is ntained in the path ordering-method An 1mportant point
-is that there is no SYStematlc way of stlpulatlng how - the
f1e1ds on the’ two paths are correlated, eg.'we can not put 1n

a model s 1rrever51b1e nature. Hence there 1s no way to‘
deyelop a nonqequxllbrlum theory around the path orderlng

N . -
method except the more general Schwlnger formallsm.

(8)

Schw1nger developed a non—equ111br1um path

orderlng method under three assumptlons. Fxrst, the

tempergture of the relevant system is changed throUgh its

/
coupllng to a reserv01r.‘ Secondly, the reserv01r 1s at

/\_\“
"equilibriug, with itself at all tlmes, aud’lastly that ‘the

"'full density matrix is. i »‘j sephrabie
(p(toy pLE) x pl ) ). By 1ntroduc1np evolutionary

. . : ) -4
full system reservoir SRR : T
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& ) ¢ 5
f;,&én., el } ot
WY . .
[ . o ’

difection"éensitive external driving forces, . QChwinger cast

B N

"his path orderlng metﬁod into a fuhctlonal generating form.

-_‘)L
Varlatlons of these forces will generate the moments, as was
'done in part III.: The first objective of Schw1nger,s was: to
e11m1nate‘(project out) the reservoirs degrees of freedom,

' This was done by taking the partial trace average over just

tnen'eservpirs degrees @? freedom. This was easily done

'.using‘the path-orderingimetnod described abovéfbecaUse.the
rese:voir is at equjilibrium. In'order‘to‘accomplish the

integration along path 'C' ‘one needs boundary conditions.,
¢ T . : ’ . v
- : . 4
Denoting ?y'p+fto't1) (U-*toftl

on the realftime pathr i¥fcreasing [deereasing] part of path

'C' we have that tne.eipectationtoﬁ reservoir variable‘a(to)“

¢
: I3
is given by -

C at .the initial point of path C,\and

<a(to—%e)? = Tr(a(t -A;e)U_(to,tJ)p(to)). (1.13)
at the final point of the return part of path C.
Where we‘have patn ordered the operators and henEe‘the path
ordering operator ‘ch'does not appearf e te the cyelic;‘t

\ _ , . g
invariance’ of the trace and the separability of p(to)ﬁ‘we

i

"habe ‘ _
<a(to.enie)> = Tr(U:}to,tl)U+(§b}tl)D(to)a(t-* 1e))._(1.14)

. t‘. | T ;-Bmafa R )
= Tr{U_(t _,t U (t ,t.) ————0 '(t ) alt - ie) (1.15)
07717+ 70" 1 + e B sygtem R ' :

ER
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)] the timexevolutiontoperatorf
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. K ' + p'(t)

- . Bwa a - 3 \ ' b
= Tr(U_(to,tl)U+(to,tl)e alt - ie) T ) (1.16Y
. s e
-Buw t ' Buw f ‘
= Tr(u_(t ,t))U, (e, e 0e7 % Fa(e - fe)et? ap(t )) (1.17)
= <a(t ef®s, (1)

'Hence Schw1nger used equatlon (1 18) as: the boundary
»

s

. condition. 'The effect1ve Hamlltonlan then contains

information about the final (reservoir) temperature of the “/
system. Due'to the factvthat'while using functional methods
one works—in an 1nteract10n plcture with respect to the
external forces, this f1na1—temperature dependence of the
Hamiltonian manifests itself in the (thermal)'time dependent
J:annihiiation and creation operators. When we calculate ther

'Green s functions along the path 'C', which.depiCts the

..a,
»

»complete &volutlon of the system, we use the same boundary

condltlons as we did for the reservo1rfaverage, but with
B = Bo’ which is the initial temperature of the relevant

system. One notlces that the temperature and tlme averaglng

are treated as very separate matters in’ Schwlnger s formallsm

and that an exp11c1t form for the coupllng between reserv01r

and system must be assumed. ‘_ : . ‘
1

Equation (1.18) is thelthermaléftate.congition for?the
k] . o & N ! ’

initial equilﬁbrium'situation. We showe eipli@itly in part

III how one describes an equ111br1um system evolv1ng into

another equ111br1um s1tuat1on at a d1fferent temperature. To
€

ot T L 5 o - -8B w(k)
.zeroth order we have shown (part III) that replacing e ©

L)

IRy R B
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in equatlon (1, 18) with a more general ‘c-number function f
Jleads to an unperturbed non~equ111br1um formalism tor which
Schwlnger 'S formallsm would be able to generate Green' s
functlons. Of course no higher levéls of;"thermal
perturbation"‘can be developed iﬁ Schwinger'é formalism, nor
is Schw1nger s formallsm able to. use any of the calculational
technlques of quantum f1e1d theory because it is not a

quantum field theory, for it can not speelfy the quasi-

particle operators. : , ‘ s

3
\
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§2. TFD and‘ﬁub-Dynamicg
A way of possibly inffoducing irreversibility,

(9,10,11)

was intrdduced by Prigogine it is the so called

‘sub-dynamics. - An argument given in sub-dynamics .can be

¥

: o
summarize@yﬁs‘follows.(l?)
’/// Tﬁé,density operator satisfies the Liouville equation

and hence can be written using superoperator 'L defined by -

. Lx'§»1HyXJ_ o 4‘ . | : '(Ql;é)“
Tty ot | | R
C, L'X = [H ,X]_ = LX ‘ . (2.1b)
A . | u
-as : ¢
Lot =mito(e), - 22

‘'which is reversible.

We move into the ‘so célled'causal "representation" through

erator A(L) as

5

the a¢tion of superop
. ) - . ~ # B -1 ‘ o, 3
= p(t) = A “(L)p(t). - (2.3)

~p(t)causa1
where """ is not the tilde operation of TFD. . Hence. we have

Sho =it awie) L (2.4
R Q(LV)’.;(“t). S | (2.5)
We definthhe expectatioﬁ"Value’of observ;blé A aé‘ C Y
<A> = tr(A*p(t))<5 tr(A?S(t))' ‘ | ‘ ’
(A,p(t)) R L - (2;6)

Bt

Since equation (2.2) can be formally-soived as

e Mt (o) o . ' (2.7a)

p(t)

up(thelo) . (2.7p)
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we have ‘ .
I St A R YEA YA TS - (2.8)
| | P 5. - o (2.9)
Using the re1a£ion(9)
| (A,08) = ("aB), | C (2.10)
we may wrlte eqﬁatlon (2.6) as ' L
A> = (A(0),e (o)) o 2.
= (e+iLft’§(9),p(o))1 | (2.12)
= (e a(0),0(0)) | (203
= (A(t),p(0)). SR O (2.14)

"

EquatTSn (2.11) glves the Schrodlnger plcture expectatxon

/yaiue of A -ahd yields '

<B> = (A,A(L) U (AN (L)p(0)) | . (2.15)

Vs atwa, u (t)p (o)) L (2.16)

= awtwaseen. | | 12.17)
. 1 ’ Q : ~ -

Wwith equation (2.6) we define A such that
(Ao (t) = (A,p(t)) ~ S (2.18)
and hence . |
N ~ ‘ ‘ - ,
AT(La = a. : v(2.19)

So equation‘(2.18) hay be written

> = (T(0as. | o (2.20)

)

Slmllarly, equation (2.13) gives the Heisenberg picture's

expectation value of A and can be written

<> = (T_ (0)a,5). o (2.21)
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-

ﬁsince the two pictures should give the same expectation

value, we have that
~ 1'(\ . ~_ l | \ . ' :

uL(t) 7‘UL (t), ‘ ' (2.22)

EL(t) ié‘said to be staf-Harmitian. In»otﬁe: words B(L)jis

star-Hermitian if o

-1
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e ; .
B =T =8y, (2.23)

)

Equation (2.22) implies that

* t -1 | o -
A(L) = A'§-L) = ATT(L) _ S (2.24)

or A(L) is;also‘étar-Hermitian. With e&qation (2.24) it can
4 . : ) ) . .

be shown that ° , E . R

’ * ) , . >
(ie(L)) -= io(L), S . (2.25)

~and since ¢(L) is the time translation generator in.the

(4

causal picture we see a great deal of similarity between

equatién‘kﬁ.ZS) and the Tildian property of H. Defining
a(t) = er(3 ()5 (e)) - © o (2.26)

_ és in equation (3.19) of part III, we fihd“that' L

- ace)y = —er Gl et < inicen, (2.27)

at ~ )
which can be shown to be greater or equal to zero; for a

closed syStem and hence with equation (3.18) of part III we

have :that , ‘ B . o

ds . - ' : o :

This is.an'elegant'formalism and it all hinges on the causal

transformation A(L), which is determined through vériogs'very

(9)

tedious means

be determined exactly. Aiproblem exists in sub-dynamics
. . :

and for the case of the Freidrichs.model can



128
. |
however, since A(L) depends only on L it must commute with' [

and’hencewequatipns (2.4) and (2.5) g}ve that

0

®(L) = L. (2,29

Hence no transformation has really been accomplished to date
L : ’ <) ¢

in the'literatuke. Equations (2.26), (2.27) and (2.28) all

reduce to zero. The: similarities between equation (3.20) of -

part III

d.8(t) = —¢aw(6) ] 14 BT - (ivH) ] [W(E)>> (I11.3.20)
and equation (2.27) ,above aré“striking and hence sub-dynamics
does'have something very importaﬁt to offer. To make tﬁé'
éausal'transfprmqtion meahingfullwe must introduqs,.by hand,
some external force which does not commutelwiéh L and hence
willymake what3folldhs.froﬁ equétion-(2.4) meaningfdl. This

s

sounds much like what Schwinger did but sub-dynamics will
. Py o _" i - , '\‘_/4—-"

' work wigh this putvih—by-hand irréversibiiity in'f much
differéhf way. The task of de&e}bbihg afmeaningful A(L) is
'similar'to sétting the thermal state condition so as to
reflgct £he correlatidnsiéf the system pnder study.“ However
theilatﬁer is easily done in a very systematic way and 15

part of a whole quantum field theory. Our compafison between
sub¥dyhamics énd TFD then rests on the”similariiy between the
forms of the various equation'which‘make up sub~dynamics apd‘;

TFD. Work towards a meaningful and model sensitive A(L)

would be interesting;
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. , . * ‘
§3. TFD and c ;algebra

. ) . 1 ) '

Much work has been done 3 towards obtaining a general
characterlzatlon of thermodynamical equ111br1um states
without reference to a partlcular state or representatlon of

a system. We now know that such a characterization can be
undergto?d,as the so called c*-élgebfa of.observébies gf the
,infinite (in the thermodynamical limit)'system. C*;algebra
is an . abstract1on of the structure of bounded opefétors

acting on a Hllbert space. We must of course relax this

’boundedness condition for our operator space. Some pferésg
towards a‘formal relaxationgéf this condition cén bé found in'
réference 14.w

C*-algébra ) is a normed vector épace with

addition, multiplication and *—conJugatlon operatlons deflned

over it. Hence for A, B eal, and A a c*number, we have

/ -

A, A+B, AB, AA e ot : - (3.1)
* - x * ' ' ” .
(A+B) ="A + B o (3.2) A
- * LI .
(AB) = B A . , | (3.3)
* * * ' ' . -
(AA) = A A | = (3.4)
x % Q i , , . .
(A) =a2a | | (3.5)
2 * " " |
[TATI® = {|a al]. 4 el (3.6)

A Gibbs state is given by the expectation functional w(A) of

operator set {Al}e o,

- tr(exp(- BH)A) _ : -
m(A) = triexp(<6H)) - <A> , : ‘ (3.7)
‘a
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(14)

As an axiom, one'finds that for'any‘two operators A(t)
and B(t) nx'av the KMS condition (section 8, part I1)*must
be satisfied, ie. , c o
FAé(t) =,w(A(t)B(t')) + FAB(t + i) = w(B(t')A(t)). (3.8)
When a representation R(O1) is generated on the cyclic veqtorA
a, :

w(A) = (8, R(A)R) (3.9)

B, = ROIE, | | (3.100°

(]f4) ‘that fhe ’commutant R(6t) of Rley) must

it can beishown

~ ~

exist. By commutant we mean for R(A) e R(0t) and R(B) e R(O0)

we have that

~

[R(A),R(B)]_ = 0. . ‘ (3.11)

Also the modular operator A and modular conjugation operatof

¥
v

- J nepessarily'exist4sﬁch that o . .
<Ho |Jy> % <v|§>* ' , o y ‘ (3.12)
=1 by I (3.13)
I R(A)T = R(A). . . o (3.14)
J’i! Q _ . B (3.15)
st =2 . o T (3.16)
R Cas e
Cgag = a7l i f , (3.17)
38 2r(mra + r(a)Ta; , (3.18)
2125 gara = ey te. (3.19)
0jima (1981)15) showed that by introducing the

Klein-operator 8; such that 6A8 = gA and 62 = 1 and by,
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accomplishing én adjusted tilde operation (by inqludlng a

-n/2 phase factor with all fermion annlhllatlon and creation

operhtors, 8o that

~
~

A = A, ’ (3.20)

no matter if A is fermionic .or bosonic), one can 1dent1fy
o~ (i J R(A)IS = ~i S(A), fermion
R(A) = (3.21)
J R(A)J = S(A), boson -

and the modular operator 4 can be identified as

A = exp(BH). | ) - (3.22)
Hence with equations (3.20), (3.21) and (3,22) we have that
equations (3.12) through (3.19) are equ1va1ent to the axioms -
of equ111br1um TFD presented in part 1T,

In closing this thesis let us note that it has been a
long sﬁanding problem to obt%in a‘quantum field theoretic
formalish which can firstly accommodate therﬁal degrees of
freedom and secondly exh1b1t 1rrever51b111ty on a macroscoplc
level. The discussion in th1s part has shown that there are
-methods which put in the temberature parameter by
manipulating or forsaking the time parameter and put in
irreversibility by hand. TFD approaches these problems by.
aqcommodating temperature through the'intfoduction of the
tilde field and éllowsvfor irreversibility by not requiring a
Hermitian Hamiltonian. Since these géneralizations éan be
realized within‘a quantum field theorétic frameworg we havé a

most powerful tool for describing nature.
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Appendix A. Relations Between Thermal Averages
L] ' .

'+ -, The thermal average <<l|aa|W(t)>> for the semi-free
Eield gives us a relation between <<I|aTaIW(t)>> and -
<<1|Wit)>> as

‘1<<1|w(t)>>, (A1)

<cllatalw(t)ss = [ffl(t-to)-c]
where we used (2.1), (2.11), .(2.13) and thermal state

condition (3.9). -the relation (3.19)

'obtained from (A.l)j

i

with (2.3).
. The thermal average <<1|WT(t ) -

<KW Yt)laa|W(t)>> for the semi-free fl‘ gives us a
relatlon between <<ewt (t)la alWw(t)>> and <<wW' (t)|W(t)>> as

W' (t)la alW(t)>> = (£~ (t’to"°1 -1

<’ (t) |w(t)>>, (A 2),
where we used 42.1),’(2.11), (2.,13) and the thermal state
condition (3.9) and its Hermite conjugate. To obtain (5,22),
Qé used (A.2). , -
S}milarly,ﬂwe can abtain relations-betwegn obseﬁvable'

thermal averages.



