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Abstract 

 
The Steam Alternating Solvent (SAS) process is a relatively new auspicious alternative 

recovery process to produce heavy oil and bitumen resources. This process consists of injecting 

steam and solvent (i.e. propane) alternatively using the same well configuration as the widely 

adopted Steam-Assisted Gravity Drainage (SAGD) process. The SAS and other solvent-based 

processes have gained popularity as they aim to reduce the environmental footprint by reducing 

water usage and Greenhouse Gas (GHG) emissions. However, to successfully apply these 

processes in the field, vast knowledge and a proper design of all controllable parameters that 

intervene in each process and their operational ranges that might conflict with multiple objectives 

(especially in reservoirs with heterogeneities such as shale barriers) are needed. This study 

proposes a robust Multi-Objective Optimization (MOO) workflow based on Pareto optimality to 

determine the optimal operational ranges to implement the SAS process in homogenous and 

various heterogeneous reservoirs.   

The MOO is carried out by constructing different simulation models under the following 

steps. First, a 2-D homogeneous reservoir model is built based on the Fort McMurray formation 

in the Athabasca region in Alberta, Canada. Then, for the heterogeneous case, multiple model sets 

superimposing shale barriers at different locations and geometries (shale proportions and lengths) 

are constructed and subjected to simulation to assess the impacts of heterogeneities according to 

those characteristics. After, a detailed sensitivity analysis is performed on the most impactful 

models 1) to determine the controllable operational parameter (decision variables) that impact the 

most in each model and 2) to select the targets (objective functions) to be optimized. Subsequently, 

three different Multi-Objective Evolutionary Algorithms (MOEAs) such as Multi-Objective 

Particle Swarm Optimization (MOPSO), Pareto Envelope-Based Selection Algorithm (PESA-II) 
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and Strength Pareto Evolutionary Algorithm II (SPEA-II) are applied. This is to 1) obtain the 

Pareto optimal set of decision variables and 2) identify the most suitable algorithm for each 

problem. Finally, Response Surface Methodology (RSM) to build proxy models is incorporated to 

estimate each objective function from the chosen decision variables to reduce the computational 

effort.   

For the homogenous case, the results indicate that high propane concentration injected over 

short cycles, coupled with more extended steam injection, is more optimal for the first period. The 

bottom-hole pressure in the injector and producer should be kept low to reduce the steam and 

solvent injection and to allow the fluids to be produced, respectively. In contrast, lower solvent 

concentration and longer cycles are preferred for the second period, and higher steam injection is 

more optimal to achieve a higher reservoir temperature.  

In heterogeneous reservoirs was observed that the steam-solvent chamber growth and 

production profiles are highly impacted by the location and geometry of these heterogeneities. This 

impact, especially in the area near the wells, is more representative. Conversely, in areas away 

from the wells pair, just longer and thicker shale barriers are relevant; this conclusion is consistent 

with other processes studies such as SA-SAGD (Al-Gosayir et al., 2012). The controllable 

parameters in heterogeneous reservoirs such as solvent composition (i.e. 

%𝑃𝑟𝑜𝑝𝑎𝑛𝑒, %𝑀𝑒𝑡ℎ𝑎𝑛𝑒), cycle duration (when either steam or solvent are injected), bottom-hole 

pressure (𝐵𝐻𝑃) and some production constraints such as steam trap and Bottom-Hole Gas (𝐵𝐻𝐺) 

have a significant impact on the SAS performance. Since this is a MOO, some trade-offs and 

relationships among the controllable variables in the process are observed.   

The robust and detailed optimization workflow presented in this study accounts for 

multiple targets (objective functions) involving many controllable operational parameters 
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(decision variables). Also, by using different MOEAs to optimize the process, the results might be 

more accurate and reliable. Thus, this study intends to give a more profound analysis of the SAS 

process to facilitate field-scale decisions, minimizing the risk that this new technology might have.   
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Chapter 1: Introduction 

This chapter presents the background of the Steam Alternating Solvent (SAS) process and its 

implementation, the problem statement, the research objectives, and the thesis outline.  

1.1. Background  

The total Canadian proven oil reserves are estimated at 171 billion barrels, of which 166.3 

billion barrels are found in Alberta's unconventional oil sands (Government of Canada, 2020). 

Considering the global energy consumption is still increasing, heavy oil resources have drawn 

much attention, offering the potential to satisfy current and future oil demand (Speight, 2009). The 

main challenge with this type of oil is its high viscosity. Currently, two widely commercial 

recovery techniques have been used for extracting bitumen from this type of reservoir. 1) Surface 

mining for shallow deposits with depths ≤ 75 m and 2) In-situ (thermal) recovery methods for 

deeper deposits with depths > 75 m; 80% of the resources must be extracted via in-situ (Souraki 

et al. 2013). These thermal recovery methods entail transferring heat to the fluid by either injecting 

hot fluids (e.g., hot water, steam, or solvent) or by electric heating (Farouq et al., 2018). As a result, 

since the oil viscosity is very sensitive to temperature variation, it is reduced, improving oil 

mobility. 

Nowadays, many field-tested thermal processes, such as Steam flooding, Cyclic Steam 

Stimulation (CSS) (Ali and Blunschi, 1983), and Steam-Assisted Gravity Drainage (SAGD) 

(Butler et al., 1981), exist. For these processes, the thermal energy added dilutes the oil and allows 

it to flow into the producer. For example, the CSS method consists of three phases. First, steam is 

injected at high pressure and high temperature into a horizontal well. Then, the well is shut-in at 

the surface during the soak phase, and finally, the well is re-opened to produce the bitumen and 

condensed steam or water; this process is repeated cyclically. Steam-Assisted Gravity Drainage 
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(SAGD) process, which was pioneered and developed by Butler et al., 1981, is the most widely 

used Enhance Oil Recovery (EOR) technology for commercial production in Alberta (Ipek et al., 

2018). This process involves injecting steam into the reservoir using a horizontal injector well at 

the top to develop a high-temperature chamber to heat the oil until its viscosity is reduced 

considerably so it can flow by gravity to the horizontal producer well located 5 m below the 

injector. In this process, the void space after the oil is drained is occupied by the steam creating a 

bigger chamber reaching more of the reservoir. Even though SAGD is a very effective recovery 

method, the trade-off, similar to the CSS process, comes in terms of its high-water consumption 

and high Greenhouse Gas (GHG) emissions (e.g., burning of natural gas to produce steam). 

Additionally, this method is less effective in heterogeneous reservoirs where thief zones or shale 

barriers are found (Souraki et al., 2013).  

Therefore, alternative solvent-based recovery techniques have been proposed in the past 

several years and have gained popularity. Some pilot tests examples of this technic are the 

"Solvent+" project developed by Suncor Energy Inc. (2020), where a light hydrocarbon solvent 

(e.g., propane or butane) is injected to mobilize the bitumen. Another pilot project is the Solvent-

Aided Process (SAP) by Cenovus (2020), where a mixture of propane and steam is injected using 

the same SAGD well configuration; an operational demonstration is being prepared for their Foster 

Creek project. Nevertheless, previous studies have proved that injecting solvent without heat (e.g., 

Vapor Extraction or VAPEX) is typically inefficient since diffusion or dispersion is much slower 

than heat transfer (Leung, 2014). Thus, these steam-solvent techniques appear to be most 

promising that might significantly reduce GHG emissions, so the footprint at the surface will be 

smaller than the traditional methods. Also, these projects pretend to be more profitable since the 

solvent is recovered and could be reused (Emission Reduction Alberta, 2020). Some examples of 
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these recovery oil methodologies are the Expanding Solvent Steam-Assisted Gravity Drainage 

(ES-SAGD) process developed by Nasr et al. (2001) and the Steam and Gas Push (SAGP) 

proposed by Jiang et al. (1998). The advantage of these processes is the considerable 

environmental footprint reduction, but the disadvantage is that the oil production rates are 

generally lower, and solvent recycling is challenging. 

Another variant of these steam-solvent processes is the relatively new Steam Alternating 

Solvent (SAS) process proposed by Zhao et al. (2005). The SAS process used the same well-

configuration as the SAGD process where steam and solvent are injected alternatively instead of 

injecting pure steam or a mixture of solvent and steam, similar to Suncor and Nsolv projects, the 

solvent can be recycled. This process pretends to be more energy-efficient and environmentally 

friendly, reducing water usage, and as a consequence, Greenhouse Gas emissions are minimized. 

The main challenge of this technique is that many controllable operational parameters that conflict 

with multiple objectives need to have a proper design to maximize the success of the process; thus, 

because of that characteristic, it can be treated as a Multi-Objective Optimization Problem 

(MOOP).  

1.2. Problem Statement  

The SAS process was proposed as an alternative that combines the SAGD and VAPEX process 

advantages: minimize the energy input in heavy oil and bitumen recovery processes. Lab results 

presented in Zhao et al. (2005) revealed that the SAS process energy reduction could be in ranges 

of 47% lower than the SAGD process recovering the same oil proportion.  However, to reach this 

objective, some challenges arise.  

According to Zhao (2005), the first challenge is to find a proper design of the controllable 

operational parameters to reach the desired profiles. A systematic sensitivity analysis 
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encompassing a wide range of operational parameters is needed, but such an analysis is not 

available in the existing literature.   

Another challenge is the complexity of the physical processes to be simulated (i.e., coupling 

heat, mass transfer and multiphase fluid flow equations). In addition, the computational cost 

associated with repeating multiple optimization scenarios is high. Therefore, alternative proxy 

modelling techniques such as Response Surface Methodology (RSM) need to be applied to 

estimate faster and accurately the objective functions.  

Moreover, the presence of heterogeneities such as shale barriers renders the multi-objective 

optimization problem more complex. It should be noted that different heterogeneity scenarios 

would have significant impacts on the production behaviour, and the optimal operating strategies 

should be adjusted accordingly.  

1.3. Research Objectives 

The main objective of this research is to present a Multi-Objective Optimization workflow able 

to reproduce reliable sets of solutions based on Pareto optimality and at the same time reduce the 

computational effort that it might take to optimize this process. This entails:  

a) Perform an in-depth sensitivity analysis to assess the relations and interactions among 

different operating parameters for the SAS process in homogeneous and heterogeneous 

reservoirs.  

b) Implement the Response Surface Methodology (RSM) to create non-linear multivariate 

regression models (proxy models) that estimate the objective functions from the 

decision variables chosen in the sensitivity analysis to minimize the computational time 

to optimize the SAS process.  
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c)  Compare the results using three different MOEAs to determine whether one or more of 

these methods would be more suited for this specific process.  

d) Identify and analyze key and feasible insights about the proposed optimal operational 

sets obtained from the Pareto front solution.   

e) Define the optimum operational ranges for each selected decision variable and 

formulate an optimal operating strategy for each particular scenario. 

1.4. Thesis Outline 

This thesis consists of 6 chapters. The outline of these chapters is provided as follows:  

Chapter 1 presents the background of the SAS process, the problem statement, and the 

research objectives. 

Chapter 2 presents the literature review, including some steam and solvent-bases-assisted 

thermal processes for heavy oil and the existing studies about the SAS process. Also, the Multi-

Objective Optimization and the Response Surface theory are included in this section.  

Chapter 3 present the research methodology that includes the base case process modelling 

and preliminary results. Also, the sensitivity studies implementation and the targets (objective 

functions) formulation are presented. Moreover, a brief description of all three MOEAs (i.e., 

MOPSO, SPEA-II and PESA-II), the proxy models construction process and the entire 

proposed Multi-Objective workflow are shown.  

Chapter 4 presents the application of the proposed Multi-Objective workflow in a 

homogenous reservoir that includes results of the sensitivity and proxy analysis and Pareto 

front solution sets.  

Chapter 5 presents the superimposed methodology used to build different heterogeneous 

realizations and how the proposed Multi-Objective workflow was applied for each scenario. 
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Moreover, results of the sensitivity and proxy analysis and Pareto front solution sets accounting 

for two and three objective functions are presented.  

Chapter 6 presented the conclusions, contributions, recommendations and future work. 
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Chapter 2: Literature Review 

 
This chapter reviews the literature regarding steam and solvent-based Enhanced Oil 

Recovery (EOR) methods, the fundamentals, and the existing studies on the SAS process. 

Additionally, the general Multi-Objective Optimization and proxy modelling theory is presented. 

2.1. Enhance Oil Recovery (EOR) Methods. 

Enhance Oil Recovery methods are widely accepted oil extraction techniques in which a 

considerable amount of crude in the reservoir can be recovered. These techniques involve changing 

the reservoir make-up. In essence, properties like density and viscosity of the oil change, making 

oil displacement easier in the reservoir. EOR methods can be classified as thermal and non-thermal 

methods (Sarapardeh et al., 2013); this study will be focused on thermal methods. A thermal 

method uses thermal energy to raise the reservoir temperature, and as a result, oil viscosity is 

decreased (Naqvi, 2012). These sorts of techniques are considered one of the most advanced EOR 

processes, and they currently provide a significant amount of oil all around the world. Many 

different thermal EOR methods include hot fluid injection, such as hot water flooding, steam or 

solvent injection, and In-situ combustion (ISC), also called fire flooding (Mokheimer et al., 2019).  

2.1.1. Steam-based EOR methods. 

Different methods that imply water injection and its derivatives have been widely used over the 

last few decades. Some of the most prominent techniques are the Cyclic Steam Stimulation (CSS), 

where steam is injected into a production well for several weeks. Then a soaking period is given 

to the steam to diffuse through the reservoir, and finally, the oil is produced. Other methods in this 

category are the In-situ Combustion (ISC) process, where gas (i.e. air) is injected into the reservoir, 

and the Steam-Assisted Gravity Drainage (SAGD) process, where steam is injected in a horizontal 
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pair well, and the oil is produced by gravity. In Canada, the SAGD process is the most widely 

EOR used method. However, these methods' main technical challenges are the high cost of heat to 

produce the steam, water usage, and the environmental footprint generated by the Greenhouse Gas 

(GHG) emissions. 

2.1.2. Solvent-based EOR methods. 

Solvent-based methods have been studied for many years in the development of heavy oil or 

bitumen resources extraction. Compared with the conventional thermal-based methods mentioned 

in section 2.1.1, solvent injection is more energy-saving, eco-friendly and particularly useful in the 

majority of the reservoirs. These methodologies take advantage of both the thermal and solvent 

mechanisms, showing a considerable increase in the oil recovery factor. Some examples of these 

processes are the Vapor Extraction (VAPEX) technique proposed by Butler and Mokrys (1991), 

where a vaporized solvent is injected into the reservoir to form a solvent vapour chamber due to 

the high pressure and oil is produced by gravity. Another method is the Thermal Solvent Reflux 

(TSR) developed by Frauenfeld et al. (2009). This methodology is a modification of the VAPEX 

process that includes steam injection and an electrical heater. Basically, the electrical heater is set 

inside the well to heat the reservoir fluids near the wellbore; steam could be injected to improve 

the recovery factor. N-Solv® patented by Nenniger and Nenniger (2005), and Warm-VAPEX, 

developed by James (2009), are similar processes. The main difference between these two methods 

is that  N-Solv® injects the solvent into the reservoir at the dew point, while in Warm-VAPEX, it 

is superheated before the injection. However, the disadvantage is the poor condensation 

phenomenon that reduces solvent dissolution with the oil. Another wildly studied method 

mentioned previously is the Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) 

process. This process is quite similar to the VAPEX process, but the difference is that the solvent 
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is co-injected with steam and uses the same configuration as the typical SAGD process. The 

advantages of this methodology are that Steam-Oil Ratio (𝑆𝑂𝑅) is much lower than the original 

SAGD, and the production rate is high compared with other solvent-based methods (i.e. VAPEX). 

Another SAGD process modification similar to the ES-SAGD process is the Steam and Vapour 

Extraction (SAVEX) process (Gutek et al., 2003). The main difference between ES-SAGD and 

SAVEX is that SAVEX starts with a SAGD period, and then just solvent is injected. The Solvent 

Aided Process (SAP), proposed by Gupta (2005), uses light hydrocarbons as a solvent where 

solvent injection timing is the key factor in this method's success. Some other examples are Cyclic 

Solvent Process (CSI) and Enhance Cyclic Solvent Process (ECSP) that are very similar to CSS. 

These processes inject cold solvents such as hydrocarbons and carbon dioxide. The main 

difference between them is that in ECSP, different solvents are injected in a particular sequence, 

while in CSP, the solvents are injected at once (Yadali and Ben, 2013). Another CSS modification 

is the Liquid Addition to Steam for Enhancing Recovery (LASER) process (Leaute and Carey, 

2007), where liquid hydrocarbons (i.e. C5+) are injected into the reservoir that leads to a 𝑆𝑂𝑅 

reduction in comparison with the CSS process. For fractured reservoirs, Steam Over Solvent 

injection in Fractured Reservoirs (SOS-FR) was first proposed by Babadagli and Al-Bahlani. 

(2008). In this process, the main objective is to create thermal and chemical turbulence by injecting 

steam, solvent, steam cycles to make the reservoir readjust, and the oil will be pushed out from the 

matrix to the fractures (Al-Bahlani and Babadagli, 2011). Another variant is the Steam Alternating 

Solvent (SAS) Process.  

2.1.2.1. Steam Alternating Solvent (SAS) Process. 

As mentioned in section 1.1, the SAS process was proposed by Zhao (2005) and uses the same 

typical SAGD configuration, and instead of injecting steam alone, steam is alternated with solvent 
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injection. The core concept of alternate steam/solvent injection is that the solvent might prevent 

the steam from going into the formation too fast. Also, the steam could re-heat the solvent and 

heavy oil to reduce further the viscosity, which might help speed up the solvent diffusion and 

dispersion.  

This process can be divided into three main phases:  

1. Pre-heating phase: in this phase, pure steam is injected through the wells to establish vertical 

communication between them.  

2. SAGD phase: this is a short phase where pure steam is injected to establish a steam chamber 

into the reservoir. The SAGD phase may finish when the pay zone is reached and/or the heat 

lost to overburden becomes significant.  

3. Cycling phase: this phase starts with solvent alone injection, and it stops when the steam-

solvent chamber temperature is reduced significantly. At that point, steam begins to be injected 

to increase the chamber temperature; the steam cycles are shorter than the solvent cycles to 

keep this process eco-friendly. This phase is repeated until it is no longer economically 

profitable. The production is continuous in the entire SAS operation, and soaking or shut-in 

periods are not needed.  

Previous SAS studies by Coimbra et al. (2019) propose an optimization strategy considering 

three operational parameters: solvent composition and solvent duration cycles (early- and late-

times). They recommend that when injecting a mixture of methane and propane, propane 

concentration should be maximized. Also, the duration for solvent injection within each cycle, 

particularly in the early cycles, should be prolonged. However, the major limitation of their work 

is that only a few conflicting targets (i.e. 𝑐𝑆𝑂𝑅 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛) and few operational 

parameters that involve the SAS process were considered. Another study by Lima et al. (2016) 
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incorporates heptane (𝐶7𝐻16) as a solvent, and they proposed to inject this solvent in periods of 8 

years to increase the 𝑅𝐹. The drawbacks of this study are 1) 𝐶7𝐻16 is an expensive solvent; hence, 

the economics of the project could considerably be affected negatively. 2) Just one objective 

function (i.e. 𝑅𝐹) and two decision variables (i.e. % solvent and solvent injection duration) were 

considered. 3) Any MOO technique was incorporated in the study. 

Many conflicting targets (objective functions) such as maximizing oil production, reducing 

solvent consumption, and minimizing steam injection should be considered to optimize the SAS 

process. To improve these targets, several controllable operational parameters (decision variables) 

can be adjusted. For example, according to Zhao et al. (2005), solvent retention is strongly affected 

by the solvent and temperature distribution within the chamber. This phenomenon could be 

considered a function of operating parameters such as bottom-hole pressures of the injector and 

producer (𝐵𝐻𝑃), steam trap and bottom-hole gas rate (𝐵𝐻𝐺) in the producer, cycle duration, or 

injected solvent compositions. Therefore, since multiple conflicting objectives or criteria should 

be considered, this can be formulated as a Multi-Objective Optimization Problem (MOOP) (Deb, 

2014). 

2.2. Optimization techniques theory. 

Optimization techniques are considered as robust and helpful tools that efficiently compare 

and manage various potential solutions till an optimum or a satisfactory solution is found of a well-

defined problem. Furthermore, these techniques aim to maximize or minimize some objectives 

(Alonso et al., 2020). There are two widely primary categories to optimize engineering problems: 

1) Gradient-based and 2) Non-gradient-based (stochastic) methods. Gradient-based methods have 

been developed since the 1950s to solve nonlinear optimization problems. These techniques focus 

only on local information (solutions at a certain point) in the optimum solution search process; 
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thus, they converge only in a local minimum threshold for the objective function (Arora, 2012); 

the adjoint method (Zandvliet et al., 2008) is an example of these techniques. 

On the other hand, Non-gradient-based, also known as stochastic methods, involve searching 

solutions in the entire domain via various stochastic approaches and are, in principle, more suitable 

for seeking the optimal global solutions (Adams et al., 2015). Nonetheless, the primary drawback 

of these methods is the slow rate of convergence. An example of this technique are the many 

existing genetic algorithms (GA).  

Additionally, a variation of these two categories is some hybrid stochastic gradient-based 

methods, such as Ensemble-based Optimizer (EnOpt), that aim to integrate some gradient 

calculations in the stochastic framework. However, depending on the techniques, computational 

costs can remain high. Thus, non-gradient multi-objective methods are used in this study to ensure 

the global minimal are identified.   

2.2.1. Multi-Objective Optimization (MOO) Theory. 

In the Multi-objective optimization framework (also known as multi-objective programming, 

vector optimization, multicriteria optimization or multi-attribute optimization) exist two important 

concepts of optimality, 1) Pareto: this analysis framework considers the trade-offs between two or 

more conflicting objectives giving equal weights (importance) to all the targets (Pareto, 1896) and 

implements multiple-criteria decision-making (Deb, 2014). Conversely, in 2) Lexicographic 

optimality: the objective functions are ordered according to their importance. So, the problem is 

solved hierarchically and treated as a series of single-objective problems (Arora, 2012). In this 

study, the Pareto approach is selected. 

In a non-trivial Multi-Objective Optimization Problem (MOOP) using the Pareto MOO 

framework, multiple, often conflicting, objective functions are optimized simultaneously. Thus, 
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there is no single solution that simultaneously optimizes each objective. Instead, there are several 

Pareto optimal solutions (Miettinen, 1999), meaning none of the objectives can be improved 

without affecting others. Therefore, a MOO model solution could be expressed as a Pareto optimal 

set, also known as a non-dominated solution set (Mirjalili and Lewis, 2015). 

2.2.1.1. Multi-Objective Optimization techniques. 

Multi-Objective Optimization techniques have been widely applied in designing and 

optimizing various EOR processes (Gunantara, 2018). There are four common MOO approaches 

1) Vector Evaluated Genetic Algorithm (VEGA): this technique splits the population into sub-

populations and each sub-population towards a different part of the vector (or another vector). In 

this approach, the fitness function returns a vector, and additional comparisons are produced to get 

the best result (Schaffer, 1985). 2) Niched Pareto Genetic Algorithm (NPGA): this approach 

includes a tournament selection scheme based on Pareto dominance principles where only two 

individuals are randomly selected for the tournament, and to find the winner solution, a comparison 

set is randomly selected that contains some other individuals in the population. Then, the 

dominance of both candidates is tested concerning the comparison set. If one candidate only 

dominates the comparison set, it is selected as the winner. Otherwise, a sharing procedure is 

implemented to specify the winner (Horn et al., 1994). 3) Multi-Objective Genetic Algorithm 

(MOGA): this technique was introduced by Fonseca and Fleming, 1993 and uses the non-

dominated classification of the Genetic Algorithms (GA) population. MOGA explicitly 

emphasizes non-dominated solutions and simultaneously maintains diversity in them; this 

approach differs from a standard tripartite GA in how fitness is assigned to each solution in the 

population (Fonseca and Fleming, 2011). 4) Multi-Objective Evolutionary Algorithms (MOEAs): 

these sorts of algorithms have attracted a lot of research effort during the last 20 years since these 

https://www.sciencedirect.com/topics/computer-science/pareto-optimum
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algorithms can approximate the Pareto optimal set in a single run. All the developed algorithms 

belonged to this category are based on conventional aggregation approaches in which a MOOP is 

decomposed into a number of Scalar objective Optimization Problems (SOPs), and the objective 

of each SOP (subproblem) is a linearly or non-linearly weighted aggregation of the individual 

objective; neighbourhood relations among these SOPs are defined based on the distance between 

their aggregation weight vector (Zhou et al., 2011). Some examples of the uses of this MOEA are 

Huanyinbo et al. (2020). They employed the Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) developed by Deb et al. (2002) to optimize the Warm Vaporized Solvent Injection 

(WSI) process having two objective functions, Solvent Retained-Oil Ratio (𝑆𝑜𝑙𝑂𝑅) and Recovery 

Factor (𝑅𝐹). Similarly, Ma and Leung (2019) used the same algorithm to optimize the same 

process in a heterogeneous reservoir targeting cumulative Steam-Oil Ratio (𝑐𝑆𝑂𝑅) and Recovery 

Factor.  Coimbra et al. (2019) also used NSGA-II to optimize the SAS process having as targets 

two objective functions (i.e., oil recovery and solvent usage).  

2.2.1.2. Multi-Objective Evolutionary Algorithms (MOEAs) 

An MOEA is one of many engineering optimization techniques to solve MOOP and is 

considered a guided random search method capable of exploring the diverse regions of the 

solutions space to search a diverse set of solutions (Zolpakar et al., 2019). These techniques lie in 

the natural selection mechanisms simulation to find the non-dominates solutions of the problem, 

also known as the Pareto optimal set. (Coello, 2018).  In a MOOP solved by an MOEA, two kinds 

of solutions exist: dominated and non-dominated solutions. A solution is called a dominated 

solution if it satisfies the conditions in statements (1) and (2): 

I. The solution in vector 𝑥1 is no worse than vector 𝑥2 in all objective functions. 

∀𝑖  ∈ {𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑜(�⃗�)} ∶  𝑓i(x1) ≤, 𝑓𝑖(x2) (1) 
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II. The solution in vector 𝑥1 is strictly better than 𝑥2 at least in one of the objective functions. 

∃𝑗  ∈ {𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑜(�⃗�)} ∶  𝑓j(x1) ≤, 𝑓j(x2) (2) 

hence 𝑥1 dominates 𝑥2 if both conditions are true. If either of these conditions is breached 𝑥1 does 

not dominate 𝑥2; thus 𝑥1 is non-dominated by 𝑥2. 

The basic steps for an Evolutionary Algorithm (EA) can be described as follows: 1) A set of 

possible potential solutions (population) is randomly generated; each solution or individual of the 

population consists of the decision variables. 2) The fitness (objective function) of each individual 

is calculated. 3) A selection mechanism is applied to pick a set of parents from which new 

offspring, called children, are generated. 4)  Finally, a mutation probability is incorporated to 

maintain diversity among the population. This process is repeated until a particular stop condition 

(usually the maximum number of generations defined by the user) is reached (Eiben and Smith, 

2003). 

There are many MOEAs proposed, such as Pareto Archived Evolutionary Strategy (PAES) 

(Knowles and Corne, 1999), Multi-Objective Differential Evolution Algorithm (MODEA) (Ali et 

al., 2012), etc. However, for this study, three widely used algorithms were chosen: 1) Multi-

Objective Particle Swarm Optimization (MOPSO) (Coello and Lechuga, 2002), 2) Pareto 

Envelope-Based Selection Algorithm (PESA-II) (Corne et al., 2001) and 3) Strength Pareto 

Evolutionary Algorithm II (SPEA-II) (Zitzler et al., 2001). A brief description of each scheme is 

presented in Chapter 3. 

2.3. Response Surface Methodology (RSM) – Proxy Modelling.  

RSM was introduced by Box and Wilson (1951) and is a useful mathematical and statistical 

tool for the approximation and optimization of stochastic models that include high-degree 

polynomial equations that give more flexibility to fit a curve along highly complex responses. In 
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this study, this methodology is used to create non-linear multivariate regression models (Proxy 

models) relating the targets (objective functions) with the decision variables (controllable 

operational parameters). It should be noted that many other techniques, such as Polynomic, 

Kriging, Splines, and Neural Networks Models, can be used for proxy modelling.  

Historically, proxy models have been uni-variate or multi-variate quadratic polynomials that 

fit discrete input and resulting output parameters predictions (Nnamdi, 2020), providing benefits 

in terms of simplicity and reductions in computational effort. For example, regarding the SAS 

process, Coimbra et al. (2019) applied RSM using 144 experiments to train the proxy model to 

calculate 𝑐𝑆𝑂𝑅 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 reducing the expensive computational effort from 97 days 

to 1 minute on average.  

CMOST, an optimization tool of the Computing Modelling Group (CMG, 2019), is 

incorporated in this study to build the proxy models. This software program uses a full quadratic 

polynomial model (Zubarev, 2009; CMOST, 2019), as is shown in equation (3): 

𝐹(�⃗�) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + 𝜀

𝑙

𝑖=1

𝑙

𝑗=2

𝑙

𝑖>𝑗

𝑙

𝑖=1

 

(3) 

where 𝑥𝑖 and 𝑥𝑗 are independent input factors (decision variables), 𝑙 is the length of the decision 

variable vector, 𝐹(�⃗�) is the response (objective function), 𝛽0, 𝛽𝑖, 𝛽𝑖𝑗 and 𝛽𝑗 represents the unknown 

regression coefficients and the error term 𝜺 is adjusted during the calibration process; the 𝛽𝑠
′
 terms 

are estimated by the least-square method.  
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Chapter 3: Research Methodology Implementation 

 
This chapter presents the base-case modelling process, the preliminary simulation results, 

a description of the Multi-Objective Evolutionary Algorithms methods, and the detailed sensitivity 

analysis using Response Surface Methodology. Additionally, the entire proposed optimization 

workflow for the SAS process is shown.  

3.1. Base Case Process Modelling. 

A base 2-D homogeneous SAS reservoir model is constructed based on reservoir properties 

extracted from the Fort McMurray formation in the Athabasca region in Alberta, Canada. In 

particular, the data is extracted from Suncor's Firebag project (Zheng et al., 2017) and the Surmont 

project (Li, 2006).  The base model is 50 m deep along the I-axis with a pay zone of 25 m in 

thickness (z-axis). The wells are located parallel to the J-axis and are separated 5 m apart from 

each other near the bottom of the pay zone. Regarding the grid size, ∆𝑥 = ∆𝑧 = 0.5 𝑚 and ∆𝑦 =

1 𝑚. The set-up of the domain is illustrated in Figure 1. The initial input condition, grid, rock and 

fluid properties are listed in Table 1. These parameters were taken from SAGD field studies done 

by Ma et al. (2015) and are consistent with the work reported by Coimbra et al. (2019). The results 

were compared with the simulated SAS studies done by Coimbra et al. (2019).  

Table 1. SAS process Model properties for the base-homogenous reservoir. 

Description Parameters  Values 

Grid Properties Number of grid blocks in X-direction 100 

  Number of grid blocks in Y-direction 1 

  Number of grid blocks in Z-direction 50 

  Size of grid block (∆𝑥)(m) 0.5 

  Size of grid block (∆𝑦)(m) 1 

  Size of grid block (∆𝑧)(m) 0.5 

  Permeability in I-direction (mD) 2,500 

  Permeability in J-direction (mD) 2,500 

  Permeability in K-direction (mD) 1,500 
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  Porosity (fraction) 0.33 

  Injector depth (m)  20 

  Producer depth (m)  25 

Initial Conditions  Reference depth (m)  25 

  Reservoir Pressure (kPa) 3,100 

  Initial oil Saturation  0.85 

  Reservoir temperature (°C) 12 

Rock/Fluid properties Bitumen viscosity at 12°C (cP) 47,956 

  Bitumen viscosity at 220°C (cP) 4.6 

  Initial Gas Oil Ratio (GOR) 3.4 

  
Relative permeability endpoints 

    

 

 

Figure 1. 3-D view of SAS simulation model. 

STARS (CMG, 2019), a compositional thermal simulation, is used in this study to carry out 

the simulation. The simulation is run for seven years (2,555 days) and consists of the three SAS 

phases described in section 2.1.2.1. First, the pre-heating phase is imposed for the first 60 days. 

Then, the second phase contemplates 18 months of SAGD operation, where 95% quality steam is 

injected into the formation at a constant pressure of 3,400 kPa at 237°C until, as mentioned in 

chapter 2, the steam chamber is fully developed and reaches the top of the pay zone. Finally, the 

third phase is an alternate injection process between steam and solvent over multiple cycles; this 

phase is repeated until it is no longer economically profitable. A steam trap of 2°C below the steam 

𝐾𝑟𝑤 = 0.79,  𝐾𝑟𝑜𝑤 = 0.948 

𝐾𝑟𝑔 = 0.2,  𝐾𝑟𝑜𝑔 = 0.948 

1m 
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saturation temperature is imposed as a production control during the steam injection to prevent 

live steam production.  

The solvent composition was chosen according to Yadali and Ben (2013), which recommend 

the injection of propane and methane as a solvent mixture. Additionally, according to Zhao et al. 

(2005), propane is the primary component responsible for reducing the liquid viscosity during 

depressurization; meanwhile, methane serves as a carrier gas that helps the solvent remain in the 

vapour phase at lower temperatures. Thereby, a mixture of 20 mol% methane and 80 mol% 

propane is selected for the base case. This mixture is heated to a temperature of 237°C and injected 

at a pressure of 3,400 𝑘𝑃𝑎. A fixed bottom-hole gas (𝐵𝐻𝐺) constraint is imposed during the 

solvent injection. A timeline for the SAS base process simulation is shown in Figure 2. The x-axis 

represents the simulated time span, the diamonds represent the exact moment each event starts, 

and the y-axis refers to well locations (5 m apart from each other). 

 
Figure 2. Timeline of the SAS process for the base case. 

 

3.2. Base Case Simulation Results. 

The results are analyzed with the oil saturation (𝑆𝑜), temperature (𝑇), and the global methane and 

propane mole fraction profiles plotted in Figure 3 at different SAS elapsed times.  

Similar to the numerical simulation results presented in Zhao (2007) and Coimbra et al. (2019), 

it can be seen that at the end of phase 2 (end of SAGD phase), the steam chamber grows upward 

while steam is injected because the density of steam is lower than that of oil. However, in phase 
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3, when solvent starts to be injected, the vapour chamber is shifted downward since the solvent 

mixture's molecular weight (and density) is higher than that of steam, resulting in a noticeable 

change in the chamber shape in this phase. As a result, the chamber continues to expand 

horizontally than simply rising upward (when only steam is injected). The most significant 

chamber growth occurs at the end of phase 2, where only steam is injected since steam is more 

effective for mobilizing the oil than solvent.  

 
Figure 3. Oil saturation (𝑺𝒐), temperature (𝑻), and solvent global mole fraction distribution at different SAS 

times. 

Interestingly, high propane concentrations tend to accumulate in the frontage of the chamber, 

allowing a better dilution with the oil; thus, the viscosity is reduced while methane is accumulated 
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at the top of the reservoir. It is also evident that the highest temperatures zones correspond to areas 

where steam tends to accumulate.  

3.3. Sensitivity Analysis. 

Sensitivity analysis (SA) is a tool used in a wide range of fields (including the oil and gas industry) 

to analyze how different values of a set of independent variables (decision variables) affect a 

specific dependent variable (objective function) under certain conditions. The robustness of these 

studies is evaluated according to the number of included parameters (Pichery, 2014).  

In this study, a detailed SA is performed to examine the effects of various operational 

parameters on the SAS process performance and the objective functions. Also, a mesh sensitivity 

analysis is performed.  

 Two different SA methodologies are applied. 1) One Parameter At A Time (OPAAT): this 

method adopts a local approach where each parameter is varied independently while the others 

remain fixed. 2) Response Surface Methodology (RSM): uses a global approach to capture the 

correlation among numerous variables; overall, multiple parameters are adjusted together, and the 

results are fitted based on a response surface model (Polynomial equation or Neural Network). 

Figures 4 and 5 show an example of how oil fraction and the temperature profiles behave, 

respectively, on the base model using OPAAT methodology, changing the solvent composition. 

As can be seen, the more considerable chamber growth occurs when 80% propane and 20% 

methane are injected; this due to higher propane concentration in the solvent mixture leads to a 

better solvent dissolution with the oil, thus, higher viscosity reductions. Although even this 

methodology is widely used, adjusting more parameters simultaneously (i.e. RSM) allows having 

a better and deeper understanding of the interaction that the variables might have.  
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Figure 4. Oil fraction distribution at different SAS times using OPAAT. 

 
Figure 5. Temperature (T) distribution at different SAS times using OPAAT. 

Using RSM, the total number of operational parameters could be quite high. Hence, to 

formulate a more manageable subset of parameters, the cyclic injection portion (i.e., phase 3) is 

divided into two periods, where the operational parameters remain constant for a particular period; 
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there are multiple cycles within each period. Different solvent compositions (i.e., propane mole 

fraction) and steam and solvent cycles durations in each period are varied. The rationale for 

dividing phase 3 into two periods is that from the SA results, it was observed that early on in the 

cycling phase, the steam-solvent chamber is developing, and the injected fluids do not travel far 

from the wells. In contrast, as more cycles are completed, the injected fluids would have to travel 

much larger distances to reach the chamber edge. Therefore, different trends regarding optimal 

operating parameters are observed. Figure 6 shows a timeline of the proposed SAS model for this 

study, including the pre-heating phase (1), SAGD phase (2), and two periods, part of the cycling 

phase (3). 

 
Figure 6. Timeline of the proposed SAS process. 

A total of twelve potential decision variables are examined in the sensitivity analysis, such as 

solvent composition (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2), bottom-hole pressure in the injector when steam 

(𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚1 and 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚2) and solvent (𝐵𝐻𝑃𝑠𝑜𝑙𝑣1 and 𝐵𝐻𝑃𝑠𝑜𝑙𝑣2) are injected, steam 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2) and solvent (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2) cycle duration time for 

each period within the cycling phase and steam quality. Also, the minimum operational bottom-

hole pressure in the producer (𝐵𝐻𝑃𝑝𝑟𝑜𝑑), steam trap, and bottom-hole gas (𝐵𝐻𝐺) production 
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constraints are incorporated; this is shown in Figure 7a. The subscript 1 and 2 refers to the first 

and second period of the cycling phase, respectively. The parameters without any subscripts are 

constant for the entire simulation.  

 
Figure 7. Initial and final decision variables for the optimization process. 

Results of the sensitivity analysis (Figure 7b) are used to identify the eight most impactful 

decision variables, and their respective chosen ranges are presented in Table 2:  

− Solvent composition – concentration of propane in the solvent mixture for each period 

(𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2).  

− Cycle duration – the duration of the steam and solvent injection for the first and second 

periods (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2)  

− Maximum injector bottom-hole pressure when steam is injected – it must be greater 

than the initial reservoir pressure, and it is kept constant through both periods (i.e., the 

entire cycling phase). 
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− Maximum bottom-hole pressure of solvent injector – the difference in operating 

pressures during steam and solvent injection is less than 200 kPa, and it is also kept 

constant at 96% of 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 during the simulation.  

− Minimum bottom-hole pressure in the producer (𝐵𝐻𝑃𝑝𝑟𝑜𝑑) – the ranges are based on 

Ma and Leung (2019).  

Table 2. Ranges of the decision variables in the SAS process. 

Decision Variable Min Max 

𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 (%) 50 70 

𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 (%) 50 90 

𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚1 (days) 45 60 

𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣1 (days) 60 120 

𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚2 (days)  50 70 

𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣2 (days) 70 160 

𝐵𝐻𝑃𝑆𝑡𝑒𝑎𝑚 (kPa) 3,300 4,000 

𝐵𝐻𝑃𝑃𝑟𝑜𝑑 (kPa) 2,500 2,900 

 

A mesh SA is performed varying the size of each grid block. Table 3 shows the cumulative Oil 

Production (𝑐𝑂𝑃) for the SAS process using different grid block sizes; 0.5 m in the x and z-axis 

by 1 m in the y-axis is chosen since the 𝑐𝑂𝑃 is the lowest (more realistic).  

Table 3. Grid block size vs Cumulative Oil Production. 

 

3.4. Objective functions. 

In this study, to account for the trade-off between oil production, steam injection and solvent 

usage, three objective functions are chosen: 1) Recovery Factor (𝑅𝐹), 2) cumulative Steam-Oil 

x-axis y-axis z-axis

0.5 1 0.5 4,350

0.6 1 0.6 4,856

0.7 1 0.7 5,010

0.8 1 0.8 5,490

0.9 1 0.9 5,553

1 1 1 5,653

Grid block size (m)
cOP (m

3
) 
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Ratio (𝑐𝑆𝑂𝑅), and 3) cumulative Solvent consumption (𝑐𝑆𝑜𝑙𝑣) and can be formulated as follows 

in equation (4):   

𝐹(�⃗�) = {𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑖(�⃗�)} = {
1

𝑅𝐹
, 𝑐𝑆𝑂𝑅, 𝑐𝑆𝑜𝑙𝑣} 

 

(4) 

where 𝐹 is the objective function and �⃗� denotes the decision variable vector. The 𝑅𝐹 is calculated 

according to equation (5): 

𝑅𝐹 =
𝑉𝑜𝑙𝑜𝑖𝑙

𝑂𝑂𝐼𝑃
 

   (5) 

where 𝑉𝑜𝑙𝑜𝑖𝑙 is the produced oil at surface conditions, and 𝑂𝑂𝐼𝑃 is the Original Oil In Place. Since 

the problem is framed as a minimization optimization, the Recovery Factor could be expressed as 

1/𝑅𝐹. Cumulative Steam-Oil-Ratio (𝑐𝑆𝑂𝑅) is calculated, according to Butler (1987), which is the 

volume of condensed steam (water) required to produce one barrel of oil. 

 It is important to mention that an alternative for assessing multiple objectives (i.e. 

𝑅𝐹, 𝑐𝑆𝑂𝑅 and 𝑐𝑆𝑜𝑙𝑣) is by combing them into one single target; for example, the net present value 

(NPV) can be used as an economic measure integrating all costs and price. However, the purpose 

of this research study is to gain additional insights into the interactions or trade-offs between these 

different key process measures. Furthermore, understanding these behaviours is needed to identify 

the optimal operating scenarios under different constraints. Thus, optimizing the SAS process 

using a single NPV objective function would not reveal such details. Hence, the MOO framework 

is adopted in this study.  

3.5. Multi-Objective Optimization (MOO). 

As explained in chapter 2, the purpose of MOO is to minimize or maximize a certain number of 

objective functions in terms of the decision variables ensuring that the optimal solution set satisfies 
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different constraints. Therefore, a general Multi-Objective Optimization Problem (MOOP) can be 

formulated as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(�⃗�) = (𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑖(�⃗�))   𝑖 = 1,2, … , 𝑐 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑔𝑖(�⃗�) ≥ 0,   𝑖 = 1,2, … , 𝑚  
 

ℎ𝑖(�⃗�) = 0    𝑖 = 1,2, … , 𝑛  
 

𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖   𝑖 = 1,2, … , 𝑙 
 

 

 

 

 

(6) 

where 𝑓𝑖 represent one of the objective functions, 𝑐 is the total number of objectives,  �⃗� =

[𝑥1, 𝑥2, … , 𝑥𝑙]𝑇 is the vector of decision variables, 𝑙 is the number of decision variables, 𝑚 is the 

number of inequality constraints g(�⃗�), 𝑛 is the number of equality constraints h(�⃗�), and 𝐿𝑖 and 𝑈𝑖 

are the lower and upper bounds for each decision variable, respectively. 

There are many different ways to formulate a MOO, and many commonly adopted methods 

are based on evolutionary optimization algorithms (Coello, 2018). Thus, three different MOEA 

are incorporated and are described in the following sections.  

3.5.1. Strength Pareto Evolutionary Algorithm 2 (SPEA-II) 

This algorithm is an enhancement of the Strength Pareto Evolutionary Algorithm (SPEA) and 

was developed by Zitzler et al. (2001). This approach incorporates a count and rank-based fine-

grained fitness assignment strategy that includes density information to drive solutions toward the 

Pareto optimal front. Also, it has fast converging speed, good strength and orderly distributed 

solutions sets. The steps of SPEA-II are outlined below, and a flowchart is shown in Figure 8. 

1. Population size (N), repository archive size (�̅�) and the maximum number of generations 

(T) are specified.  

2. The initial population 𝑃𝑜 is generated randomly; an empty archive 𝑃𝑜
′ is set, with t = 0.   
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3. The fitness or 𝐺(�⃗�) for each individual �⃗� in both Po and Po' are calculated as the sum of the 

raw fitness 𝑅(�⃗�) and the density 𝐷(�⃗�):  

𝐺(�⃗�) = 𝑅(�⃗�) + 𝐷(�⃗�) (7) 

The strength value of an individual, 𝑆(�⃗�), represents the number of solutions that a 

particular �⃗� dominates and is calculated as follows: 

𝑆(�⃗�) = |{�⃗�′ | �⃗�′ ∈ 𝑃𝑜 + 𝑃𝑜
′  ∧  �⃗� ≻ �⃗�′}| (8) 

where | · | represents the cardinality of a set; �⃗�′|�⃗�′ ∈ 𝑃𝑜 + 𝑃𝑜
′ denotes a set of individuals 

�⃗�′
 that satisfice (𝑃𝑜 + 𝑃𝑜

′), where + stands for multi-set union, and �⃗� ≻ �⃗�′ denotes that �⃗� 

dominates �⃗�′. 𝑅(�⃗�) is calculated by summing the strengths of all its dominators in (𝑃𝑜 +

𝑃𝑜
′). For example, if an individual �⃗�0 is dominated by individuals �⃗�1, �⃗�2 and �⃗�3, the raw 

fitness 𝑅(�⃗�0) is the sum of the strength values of �⃗�1, �⃗�2 and �⃗�3.  If 𝑅(�⃗�) = 0, �⃗� is a non-

dominated individual. 

𝑅(�⃗�) = ∑ 𝑆(�⃗�′)

�⃗�′ 𝜖 𝑃𝑜+𝑃𝑜 
′ ,   �⃗�′≻�⃗�

,  

(9) 

Although the raw fitness assignment provides a sort of niching mechanism based on the 

Pareto dominance concept, it may fail when the majority of individuals do not dominate 

each other. Therefore, the density information 𝐷(�⃗�) is used to discriminate between 

individuals with the same 𝑅(�⃗�) values based on the K-nearest neighbour method:  

𝐷(�⃗�) =
1

𝜎�⃗�
𝑘 + 2

 
(10) 

𝑘 = √𝑁 + �̅� (11) 

where 𝜎�⃗�
𝑘 is the Euclidean distance between the individual �⃗� and its 𝑘th-nearest neighbour. 

In the denominator, a constant of 2 is added to ensure that its value is always greater than 
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zero and 𝐷(�⃗�) < 1. The solutions with a large 𝑘th-nearest neighbour would have a small 

density score.  

The non-dominated individuals in both Po and Po' with a fitness value below a certain 

threshold (𝑦) are copied into the archive of the next generation (𝑃𝑜+1
′ ) according to 

equation (12): 

𝑃𝑜+1
′ = {�⃗� | �⃗� ∈ 𝑃𝑜 + 𝑃𝑜

′  ∧  𝐺(�⃗�) < 𝑦} (12) 

If the non-dominated solution front fits exactly into the new archive:  𝑃𝑜+1
′ = �̅�, this step 

is completed. If 𝑃𝑜+1
′ < �̅�, the best �̅� − 𝑃𝑜+1

′  dominated individuals in 𝑃𝑜 + 𝑃𝑜
′ are copied 

to 𝑃𝑜+1
′ ; this can be implemented by sorting the multi-set (𝑃𝑜 + 𝑃𝑜

′) according to their G 

values and copy first �̅� − 𝑃𝑜+1
′  individuals with 𝐺(�⃗�) ≥ 𝑦 from the resulting ordered list 

to 𝑃𝑜+1
′ . If 𝑃𝑜+1

′ > 𝑁,̅̅̅ some individuals in 𝑃𝑜+1
′  are removed through an archive truncation 

procedure shown in equation (12). This procedure eliminates individuals iteratively from 

𝑃𝑜+1
′  until 𝑃𝑜+1

′ = �̅�. At each iteration, two individuals (e.g., �⃗�𝑎 and �⃗�𝑏) are randomly 

chosen from 𝑃𝑜+1
′  , and �⃗�𝑎 is removed for which �⃗�𝑎 ≤ �⃗�𝑏 if the minimum distance between 

�⃗�𝑎 and another individual is less than the minimum distance between �⃗�𝑏 and another 

individual; if there are too many individuals satisfying that condition, then a tie-breaker is 

employed by considering the next closest neighbour, 𝑝, and so on: 

�⃗�𝑎 ≤ �⃗�𝑏 ∶⇔ ∀0 < 𝑘 < |𝑃𝑜+1
′ |:  

[(∀0 < 𝑝 < 𝑘: 𝜎�⃗�𝑎

𝑝
= 𝜎�⃗�𝑏

𝑝
) ∧ 𝜎�⃗�𝑎

𝑘 < 𝜎�⃗�𝑏

𝑘 ] 

 

 

(13) 

where 𝜎�⃗�
𝑘 denotes the distance of �⃗� to its kth-nearest neighbour in 𝑃𝑜+1

′ .  

4. If the loop number 𝑡 ≥ 𝑇, 𝑃𝑜+1
′  is the Pareto-optimal set; otherwise, proceeds to step 5.  

5.  𝑃𝑜+1
′  is subjected to the crossover and mutation operations to create a new population. The 

new population would replace the individuals in 𝑃𝑜. 𝑡 is increased by one. 
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6. Repeat steps 3-5. 

More details about the fitness calculation and the external maintenance of this process can be 

found in Zitzler et al. (2001).  

 
Figure 8. Flowcharts of SPEA-II algorithm. 

3.5.2. Multi-Objective Particle Swarm Optimization (MOPSO). 

This algorithm is an extended Particle Swarm Optimization (PSO) to MOOPs. This MOEA 

incorporates elitism and involves two closely related processes. 1) The archiving of good solutions 

and 2) How the best global for each individual is selected. According to Coello and Lechuga 

(2002), each individual's behaviour is affected by either the best local individuals within a specific 

neighbourhood or the best global individuals (the entire swarm population). MOPSO allows 

individuals to benefit from their experience and uses neighbourhood structures to regulate the 

algorithm's behaviour. The steps of MOPSO are outlined below, and a flowchart is shown in Figure 

9: 
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1. Population size (N), repository archive size (�̅�) and the maximum number of generations 

(T) are specified.  

2. The initial population 𝑃𝑜 is generated randomly; an empty archive 𝑃𝑜
′ is set, with t = 0.  The 

speed of each individual �⃗� is initialized as 𝑉(�⃗�) = 0.  

3. The fitness value 𝐹(�⃗�) for each individual �⃗� in 𝑃𝑜 is calculated according to equation (6), 

and the non-dominated solutions are stored in the archive 𝑃𝑜
′. All individuals in 𝑃𝑜 are 

distributed spatially in the search space following the hypercube method: First, the entire 

multi-dimensional search space, where each axis corresponds to one of the objective 

functions, is sub-divided into many smaller regions. Second, each individual �⃗� is assigned 

to one of the regions according to its objective function values. Finally, for each individual, 

�⃗�𝑏𝑒𝑠𝑡 is initialized according to equation (14); it represents an individual that has the lowest 

objective functions and is stored in 𝑃𝑜.  

�⃗�𝑏𝑒𝑠𝑡  = �⃗�, 𝐹(�⃗�)  (14) 

The speed is the rate of change of each individual �⃗� in 𝑃𝑜 in each dimension (Saka et al., 

2013), and is computed using equation (15). For the first iteration (𝑡 = 1), 𝑉(�⃗�) is set equal 

to 0 and for the subsequent iterations (𝑡 = 𝑡 + 1), the velocity is updated with 𝑉(�⃗�)𝑡 = 

𝑉(�⃗⃗⃗�)
𝑡−1

: 

𝑉(�⃗�) = 𝑊 × 𝑉(�⃗�) + 𝑅1 × (�⃗�𝑏𝑒𝑠𝑡 − �⃗�) + 𝑅2 × (�⃗�′ − �⃗�) (15) 

where 𝑊 is the inertia weight used to control the velocity of the individuals; typically, it is 

in the range of 0.4 − 0.5. 𝑅1 and 𝑅2 are random numbers between 0 to 1. �⃗�′ is an individual 

taken from the repository archive according to the following criteria: those hypercubes 

containing more than one individual are assigned a fitness value equal to a random number 

𝑅 > 1 divided by the number of individuals in that hypercube, as a form of fitness sharing. 
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Then, the roulette-wheel selection method is applied using the fitness values of all 

individuals in 𝑃𝑜
′ to select the hypercube from which �⃗�′ is selected. This step incorporates 

the concepts of leader and deletion: the leader refers to the probability of a non-dominated 

solution to be chosen to guide the search; the individuals with a more significant crowding 

distance would have a higher probability of being selected to maintain spread along the 

Pareto front; deletion refers to the probability of an individual being deleted when the 

archive is oversized. To calculate these probabilities (Prob), equation (16) is used. These 

leader and deletion parameters are generally assigned a value of 2 (Motameni, 2016). 

𝑃𝑟𝑜𝑏 = 𝑒−𝑙𝑒𝑎𝑑𝑒𝑟 𝑜𝑟 𝑑𝑒𝑙𝑎𝑡𝑖𝑜𝑛∗𝑁 (16) 

After the fitness sharing and leader/deletion steps are implemented, a hypercube is selected, 

and a random individual �⃗�′ is sampled from 𝑃𝑜
′. The individuals in 𝑃𝑜 are updated according 

to equation (17), adding the speed computed in equation (15): 

�⃗� = �⃗� + 𝑉(�⃗�) (17) 

Next, the repository archive 𝑃𝑜
′ is updated by copying the current non-dominated solutions 

stored in 𝑃𝑜; any dominated solutions in the repository archive are eliminated in the process. 

If 𝑃𝑜
′ = �̅�, this step is completed. If 𝑃𝑜

′ < �̅�, the best �̅� − 𝑃𝑜
′ dominated individuals in 𝑃𝑜 

are copied to 𝑃𝑜
′by sorting all these individuals in 𝑃𝑜 according to their objective function 

calculations. If 𝑃𝑜
′ > �̅�,   individuals in less populated areas of the objective space are given 

priority over those in populated regions. �⃗�𝑏𝑒𝑠𝑡 is updated with �⃗� if �⃗� ≻ �⃗�𝑏𝑒𝑠𝑡. The non-

dominated solutions in Po' are copied into an archive of the next generation 𝑃𝑜+1
′ . 

4. If the loop number 𝑡 ≥ 𝑇 , 𝑃𝑜+1
′  is the Pareto-optimal set; otherwise, proceeds to step 5.  

5. 𝑃𝑜+1
′  is subjected to the crossover and mutation operations to create a new population. The 

new population would replace the individuals in 𝑃𝑜. 𝑡 is increased by one. 
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6. Repeat from step 3.  

More details can be found in Coello and Lechuga (2002).  

 

Figure 9. Flowcharts of MOPSO algorithm. 

 

3.5.3. Pareto Envelope-Based Selection Algorithm (PESA-II).  

PESA-II developed by Corne et al. (2001) enhances the multi-objective Pareto Envelope-

Based Selection Algorithm (PESA, Corne et al., 2000). In this algorithm, the unit of selection is a 

region-based selection (hypercube method, Goldberg and Keb, 1991) in the objective space. 

Basically, instead of assessing a selective fitness to each individual, the selective fitness is assigned 

to the hypercubes in the objective area, which at least one individual occupies in the current 

approximation to the Pareto front. This selection method is shown to be more sensitive to ensuring 

a better spread of development along the Pareto front than individual-based selection (such as in 



34 

 

PESA) and aims to reduce the computational cost associated with traditional MOEAs (Coello, 

2018). The steps of PESA-II are outlined below, and a flowchart is shown in Figure 10: 

1. Population size (𝑁), repository archive size (�̅�) and the maximum number of generations 

(𝑇) are set.  

2. The initial population 𝑃𝑜 is generated randomly; an empty archive 𝑃𝑜
′
 is set, with t = 0.  

3. The fitness value 𝐹(�⃗�) for each individual �⃗⃗⃗� in 𝑃𝑜 is calculated according to equation (6), 

and the non-dominated solutions are stored in the archive 𝑃𝑜
′
. All individuals in 𝑃𝑜 are 

distributed spatially in the search space following the hypercube method (same as 

MOPSO).  

Next, the repository archive 𝑃𝑜
′
 is updated by copying the current non-dominated solutions 

stored in 𝑃𝑜; any dominated solutions in the repository archive are eliminated in the 

process. The rest is the same as in MOPSO, except that if 𝑃𝑜
′ > �̅�, some individuals in 𝑃𝑜

′
 

are removed through a maximum squeeze factor procedure (Schoenauer et al., 2000). The 

squeeze factor reflects how many other individuals in the archive are inhabiting the same 

hypercube; it is a selective fitness scheme that aims to select individuals from less-

populated hypercubes. The non-dominated solutions in Po' are copied into an archive of the 

next generation 𝑃𝑜+1
′

. 

4. If the loop number 𝑡 ≥ 𝑇 , 𝑃𝑜+1
′

 is the Pareto-optimal set; otherwise, proceeds to step 5.  

5. 𝑃𝑜+1
′

 is subjected to the crossover and mutation operations to create a new population. The 

new population would replace the individuals in 𝑃𝑜. 𝑡 is increased by one. 

6. Repeat from step 3.  

More details can be found in Corne et al. (2001) and Kaven et al. (2019).  
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Figure 10. Flowcharts of PESA-II algorithm. 

3.5.4. Multi-Objective Evolutionary Algorithm settings. 

The specific setting and key futures implemented for the three algorithms are shown in Table 

4. It should be noted that MOPSO and PESA-II incorporate a more robust solution model that 

might lead to improved computational efficiency and accuracy (Alvarez-Benitez et al., 2005; 

Rakhshani, 2020).   

               Table 4. configuration settings of the three MOEAs. 

Parameters  
Algorithm  

SPEA-II MOPSO PESA-II 

Number of generations (𝑇) 150 150 150 

Population size (𝑁) 50 50 50 

Repository size (�̅�) 100 100 100 

Number of grids per dimension  N/A 5 5 

Inertia weight (𝑅1) N/A 0.5 N/A 
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Inertia weight damping rate (𝑅2) N/A 0.99 N/A 

Personal learning coefficient (𝐶1) N/A 1 N/A 

Global learning coefficient (𝐶2) N/A 2 N/A 

Inflation rate  N/A 0.1 0.1 

Leader selection pressure  N/A 2 2 

Deletion selection pressure  N/A 2 1 

Mutation probability  0.3 0.3 0.3 

Crossover probability 0.7 N/A 0.7 

Crossover gamma  0.15 N/A 0.15 

 

3.6. Proxy Model construction. 

As detailed in section 2.3, CMOST (CMG, 2019) is used for proxy modelling. Some 

experimental design is needed to build these proxy models. CMOST, considering the number of 

decision variables, determines how many experiments need to be created to obtain a representative 

sample data set that reproduces the objective function behaviour. A proxy model with a standard 

deviation lower than 0.6 or with a coefficient of determination (𝑅2) higher than 0.80, is typically 

considered to be acceptable (Bevillon and Mohagerani, 2015). 

The input variables to construct these proxies are previously listed in Table 2. The training 

dataset is built by randomly choosing different sets of input variables according to the ranges listed 

in Table 2 for each decision variable. Then, numerical simulations are performed for each set of 

inputs to obtain the true output. After, the RSM is applied to build a proxy model for each output 

variable (objective function). The mismatch between the prediction and target value is minimized 

using the least-squares method 

In this study, two proxy model sets are trained using a different number of training 

experiments: 50 vs. 90 to compare their accuracy when calculating the objective function and the 

training time needed to build each one.  
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3.7. Proposed Multi-Objective Optimization Workflow. 

The entire proposed workflow to optimize the SAS process is shown in Figure 11 and consists 

of four main steps:  

1. A base simulation model is built using Builder, a CMG (2019) tool.  

2. As detailed in section 3.3, a sensitivity analysis is performed to identify the most 

impactful decision variables; the simulation results performed in STARS (CMG, 2019) 

of this sensitivity analysis are also included in the training data for constructing the 

proxy model (section 3.6).   

3. A total of 50 cases for the proxy model are generated (50 training + 7 testing) using 

RSM. 

4. The proxy model is then integrated into each of the three chosen MOEA methods 

(section 3.5) to search for a set of Pareto-Optimal solutions. The MOEAs 

implementation is adapted from various MATLAB open code sources developed by 

Mostapha (2015).  

 
Figure 11. Proposed workflow of the Steam Alternating Solvent (SAS) optimization process. 
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Chapter 4: Homogeneous case – Result and discussion 

This chapter presents the results from the sensitivity and proxy analysis of the homogenous 

case. Moreover, the solutions Pareto front and the optimal operational parameters for the same 

base model are shown.  

4.1. Sensitivity Analysis - OPAAT methodology  

The OPAAT approach, as mentioned in section 3.3, is used to assess the impact of individual 

parameters in each SAS period. For the first cycling period, here are some important observations: 

• Propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1) in the solvent composition strongly influences the 

ultimate oil recovery: a reduction in 𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 leads to a reduction in 𝑅𝐹 and 𝑐𝑆𝑜𝑙𝑣; less 

propane also implies that 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 must be extended thus, 𝑐𝑆𝑂𝑅 increases; this can be 

seen in Figure 12a. 

• 𝑅𝐹 and 𝑐𝑆𝑂𝑅 are not impacted by 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1, while  𝑐𝑆𝑜𝑙𝑣 seems to be exhibit a slightly 

inverse relationship with 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 (Figure 12b) 

• Figure 12c shows that 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 does not impact 𝑅𝐹 and 𝑐𝑆𝑂𝑅, while 𝑐𝑆𝑜𝑙𝑣 is inversely 

related to 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1. 

For the second cycling period, 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 does not significantly impact the objective functions 

(Figure 13a), while 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2 (Figure 13b) and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 (Figure 13c) would affect the 

objective functions in similar ways to 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 (Figure 12b) and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 (Figure 12c), 

respectively. Also, the objective functions are not overly sensitive to the ranges of 𝐵𝐻𝑃𝑝𝑟𝑜𝑑 

(Figure 13d) examined here. 
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Figure 12. Results of the OPAAT analysis for the first period. 

 

Figure 13. Results of the OPAAT analysis for the second period. 

4.2. Response Surface Methodology - Proxy model analysis 

Two proxy model sets are trained using 50 and 90 different training experiments. The 

corresponding training results (prediction accuracy or 𝑅2) and the training time for the 𝑅𝐹 are 
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presented in Table 5; similar levels of prediction accuracy and training time are observed for the 

other decision variables (𝑐𝑆𝑂𝑅, 𝑐𝑆𝑜𝑙𝑣).  

Table 5. Accuracy and training time comparison for RF proxy. 

Training Data 

(experiments) 
𝑅2 Training time (min) 

50 0.95 1,680.56 

90 0.965 3,025.00 

 

Considering that the 𝑅2 value for the proxy trained with 50 experiments is sufficiently high, 

and the corresponding training time is low, results for this set of proxy models (trained with 50 

experiments) are used subsequently for all MOEA calculations. Table 6 compares the raw and 

adjusted 𝑅2 for each objective function. The RSM coefficients necessary for the mathematical 

equation to calculate the 𝑅𝐹, 𝑐𝑆𝑂𝑅, and 𝑐𝑆𝑜𝑙𝑣, respectively is shown in Table 7.   

Table 6. Coefficient of determination (𝑹𝟐 ) and (𝑹𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅
𝟐  ) of the RSM proxy model. 

Objective 

Function  
𝑹𝟐 𝑹𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝟐  

𝑅𝐹 0.95 0.949 

𝑐𝑆𝑂𝑅 0.95 0.947 

𝑐𝑆𝑜𝑙𝑣 0.943 0.938 

 

Table 7. RSM coefficients. 

Term  

RSM 

Coefficient   Term  

RSM 

Coefficient   Term  

RSM 

Coefficient 

𝑹𝑭   𝒄𝑺𝑶𝑹   𝒄𝑺𝒐𝒍𝒗 

Interception 

(β0) 44.26   

Interception 

(β0) 3.4759   Interception (β0) 1,512,900 

Propane1 (β1) -92.43   Propane1 (β1) 0.1629   Propane1 (β1) -2,375,300 

Propane2 (β2) 11.23   Propane2 (β2) 0   Propane2 (β2) 238,867 

Cyclesolv1 (β3) -0.0804   Cyclesolv1 (β3) 0.0010   Cyclesolv1 (β3) -1,706.02 

Cyclesteam1 (β4) 0   Cyclesteam1 (β4) 0.0021   Cyclesteam1 (β4) -19,461.80 

Cyclesteam2 (β5) 0.3669   Cyclesteam2 (β5) 0.0012   Cyclesteam2 (β5) 5,724.81 

Cyclesolv2 (β6) 0.0208   Cyclesolv2 (β6) -0.0012   Cyclesolv2 (β6) 1,168.80 

BHPsteam1 (β7) 0.0013   BHPsteam1 (β7) -0.0008   BHPsteam1 (β7) 2.44 

BHPprod (β8) -0.0043   BHPprod (β8) -0.0007   BHPprod (β8) -400.49 

(β1)
2 55.9839   (β1)*(β3) -0.0037   (β1)

2 1,242,600.00 
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(β1)*(β3) 0.10   (β7)
2 1.0741E-07   (β1)*(β3) 2,873.72 

(β1)*(β7) 0.0039   (β8)
2 1.3875E-07   (β1)*(β7) 228.91 

(β1)*(β8) 0.0058         (β2)*(β3) -1,830.97 

(β2)*(β3) -0.0485         (β3)*(β5) 31.02 

(β2)*(β5) -0.0871         (β4)*(β8) 6.79 

(β3)*(β5) 0.0006         (β5)
2 -68.11 

(β5)
2 -0.0026         (β5)*(β6) -8.26 

(β5)*(β6) -0.0004   
  

        

              

The proxy model predictions vs the actual simulation results comparison for the 50 training 

cases is shown in Figure 14. As can be observed, the proxy model predictions are in good 

agreement with the simulated ones since 𝑅2 for each objective function is close to 1 and the Mean 

Square Error (MSE) is close to zero.   

 

Figure 14. Comparison between the simulated (target) values versus the RSM proxy model predictions for the 

50 training cases. 

4.3. MOO Analysis – Pareto Front Solutions  

The initial population and the 3-D Pareto fronts obtained using the three MOEA algorithms 

are shown in Figure 15. As can be seen, the shapes of the Pareto fronts are similar, but interestingly, 

more even and smooth solutions distributions are obtained using the SPEA-II method.  

To better visualize the trade-off between the different objective functions, the 3-D Pareto front 

is divided into three quadrants: blue, green, and magenta sections, and it could be visualized in a 

series of 2-D plots as shown in Figure 16.   
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Figure 15. Pareto-front for different MOEAs. 

 
Figure 16. 2-D Pareto-front for different MOEAs. 

Table 8 summarizes the computational assessment requirements to perform the SAS 

optimization with and without using proxy models. One hundred fifty iterations are performed for 

each optimization, with 50 individuals in each iteration. It is important to mention that after 50 

generations on average, the Pareto front is fully developed in all MOEAs. A typical flow 

simulation run (computation of three objective functions) takes approximately 33.61 minutes. 

Therefore, significant savings in computational costs can be realized when the proxy models are 

used for evaluating the objective functions (an average run time for computing all three objectives 

using the proxy models is approximately 0.0000594 minutes).   
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Table 8. Comparison of the total computing time with and without proxy models. 

Steps No proxy 
Proxy 

50 experiments  90 experiments 

Building time (min) N/A 1,680.56 3,025 

Objective Function 

Calculation (min) 

(33.61 min) × (50 

individuals) × (150 

iterations) = 252,075  

(0.0000594 min) × (50 

individuals) × (150 

iterations) = 0.4455  

(0.0000594 min) × 

(50 individuals) × 

(150 iterations) = 

0.4455  
Rest of MOEA (min) 1.65 1.65 1.65 

Total Time (min) 252,076.65 1,682.65 3,027.09 

 

4.4. Optimal Operational Parameters Ranges Analysis  

Each Pareto front quadrant represents a distinct optimal operating scenario. In this section, the 

individual characteristics of each quadrant using SPEA-II are discussed first. Then, general 

conclusions and insights will be highlighted at the end. The results of the optimal operational 

ranges using MOPSO and PESA-II are shown in Appendix B. 

4.4.1. Low 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Blue) 

Figure 15 illustrates the general characteristic when less steam and solvent are injected. To 

achieve this, during the first-period short solvent and steam injection durations 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1) at low steam injection pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚1) is recommended, as can 

be seen in Figure 17. Since the optimum operational strategy aims to reduce solvent and steam 

injection (two of the objective functions), for the second period (i.e., later stages), slightly lower 

portions of propane (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2) are more optimal; however, longer injection durations 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2) are recommended to maintain reservoir temperature (Figure 18).  
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Figure 17. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

first period vs. the objective functions in the blue section. 

  
Figure 18. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

second period vs. the objective functions in the blue section. 

The average 𝑅𝐹 for this group is lower than most other sections (e.g., 𝑅𝐹 is in the range of 

45-65%, while the green and magenta groups have 𝑅𝐹 > 65%). 𝑅𝐹, within this group, increases 

by injecting more solvent and steam, as well as drawing down more aggressively (i.e., increasing 



45 

 

𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 and 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚1, as well as reducing 𝐵𝐻𝑃𝑝𝑟𝑜𝑑). The drawback, as expected, such 

strategies would lead to an increase in 𝑐𝑆𝑂𝑅 and 𝑐𝑆𝑜𝑙𝑣.  

The differences between the optimum operational strategy in the first and second periods are 

related to the distance each fluid needs to travel into the reservoir. For example, during the second 

period, since the chamber has advanced much further away from the wells pair and the front is 

more diffused, injecting solvent with high propane content may not be as impactful as increasing 

the duration of solvent injection. 

4.4.2. High 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Magenta) 

The solutions in this quadrant represent conditions where most steam and solvent are injected, 

as illustrated in Figure 15. The ranges of the optimal values for all objective functions are high: 

𝑅𝐹: 60 to 70%, 𝑐𝑆𝑜𝑙𝑣 3 to 4.5 × 105 𝑚3 and 𝑐𝑆𝑂𝑅: 1.7 𝑚3/𝑚3. As can be seen in Figure 19, for 

the first period, it seems more optimal to have short solvent cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1) combine with high 

propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 ≅ 70%; long steam cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1) and high steam 

injection pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) are needed.   

For the second period (Figure 20), the optimal operational strategy, similar to the blue section, 

might be injection solvent during long cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2); however, more flexibility in 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 

is observed. 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2, and 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 appear to be correlated: higher propane 

concentrations should be accompanied by higher 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 and reservoir temperature, while 

𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2 should be reduced accordingly to avoid a dramatic increase in 𝑐𝑆𝑂𝑅. This flexibility 

in adjusting the propane concentration might probably be due to the conditions at which the 

variables were adjusted in the first period and how much of the reservoir has already been reached 

by the steam-solvent chamber. So, for the second period, it may be more beneficial to inject solvent 

in fewer quantities (low 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2) for more time (long 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2) since the solvent need to 
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travel a longer distance to reach the edge of the chamber. Additionally, it is observed that if less 

steam is injected, higher propane concentrations might be needed to maintain a balance among the 

objectives.  

 
Figure 19. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

first period vs. the objective functions in the magenta section. 

 
Figure 20. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

second period vs. the objective function in the magenta section. 
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4.4.3. Low 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Green) 

The solutions in this section represent conditions where less steam and more solvent are 

injected into the reservoir.  The ranges of 𝑅𝐹 (60 to 70%) and 𝑐𝑆𝑜𝑙𝑣 (3 to 4 × 105 𝑚3) are the 

highest, while 𝑐𝑆𝑂𝑅 is the lowest (1.2 to 1.5 𝑚3/𝑚3), among all the other sections (Figure 15). 

For the first period (Figure 21), similar to the magenta section, it is more optimal to inject propane 

at a very high concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 ≅ 70%) with short solvent cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1). However, 

opposite to the magenta (section 4.4.2) and similar to the blue (section 4.4.1 section) group, 

𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 is generally quite low; although there is potential to inject more steam by increasing 

𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 to keep the temperature high and enabling more solvent to be injected), drawing down 

more aggressively (reducing 𝐵𝐻𝑃𝑝𝑟𝑜𝑑), would increase 𝑅𝐹 at the expense of increasing 𝑐𝑆𝑂𝑅. 

 
Figure 21. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

first period vs. the objective functions in the green section. 
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For the second period (Figure 22), it is possible to implement longer solvent cycles 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 ≅ 160 𝑑𝑎𝑦𝑠) with more variability in the propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2). This 

trend is similar to what is observed for the magenta (section 4.4.2) 

 

Figure 22. Final optimal ranges of the controllable operational parameters obtained using SPEA-II for the 

second period vs. the objective functions in the green section. 

4.5. General Remarks  

Among the results, some interesting findings were observed:  

• Overall, if more steam is to be injected (i.e. magenta section) is preferred longer steam 

injection cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1¸𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2) instead of increase the 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 drastically. 

• Moreover, if more solvent needs to be injected, such as in the magenta and green sections, 

it seems to be more effective to add, in the first period, high propane concentrations over 

short cycles. Then, for the second period, switch to low propane concentrations over long 

cycles because the solvent has to travel further to the chamber edge during the later 

production stage. This assumption is in accordance with lab observations reported by Zhao 

et al. (2005); they found that when a considerable amount of propane is injected into the 
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reservoir, the temperature in areas away from the wells drops below the dew point of the 

solvent mixture, making the favourable condition to create a liquid-liquid phase due to 

propane condensation. Thus, the mass transfer of propane into the oil phase is enhanced, 

and consequently, the oil recovery would increase.      

• Results revealed that when propane concentration is increased, higher 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 is usually 

accompanied; this to achieve a higher temperature in the reservoir to remain the solvent in 

the vapour phase. 

• Somehow 𝐵𝐻𝑃𝑝𝑟𝑜𝑑 appears to be related to 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚. From the results graphs can be seen 

that if  𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 increases, 𝐵𝐻𝑃𝑝𝑟𝑜𝑑 generally decreases; this might be to allow more 

liquid (either oil or solvent) to be produced.  

• The objective of dividing the cycling phase into two periods, first (early) and second (late), 

is based on the sensitivity analysis results. As is well-known from field-scale applications, 

as the chamber advances away from the wells pair after a while, more time is required for 

the injected fluids to reach the chamber edge. Although results showed it is more optimal 

to implement short cycles initially, at some point, this strategy may not be efficient 

anymore. The oil rate might start to drop more rapidly, and this may be an indicator to 

switch to the longer cycles, which are generally recommended for the second period. 

• All three used MOEAs showed that some trade-offs need to be considered between the 

targets (objective functions) when optimizing the SAS process. One example is Figure 20; 

if a higher 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 is needed for more propane to be injected, this strategy might be 

compensated by reducing the steam cycle duration to maintain a balance between the 

objectives. Moreover, this would help keep, for instance, 𝑐𝑆𝑂𝑅 at reasonable levels while 

𝑅𝐹 and 𝑐𝑆𝑜𝑙𝑣 somehow increase. 
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• Regarding the concordance among the results between the used MOEAs, small differences 

compared with SPEA-II results were identified. For example, 1) MOPSO, in the magenta 

section, gives slightly wider 𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 (Figure 47) and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 (Figure 48) optimal 

ranges  and in the blue section also on 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 (Figure 45). Besides, in the green section, 

the solutions distribution is different [𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 (Figure 49) and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 

(Figure 50)]. 2) Using PESA-II, narrow optimal ranges in terms of 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 in the 

magenta (Figure 53) and green (Figure 55) sections are observed.  
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Chapter 5: Heterogeneous case – Modelling, results and discussions 

 
This chapter presents the modelling methodology, how the heterogeneities (i.e. shale 

barriers) are parameterized, the experimental design construction process (super-imposed 

methodology), and the proposed modified optimization workflow for heterogeneous reservoirs. 

Additionally, the sensitivity and proxy analysis, the solution Pareto fronts, and the optimal 

operational parameters of the four most impactful heterogeneous models accounting for two and 

three objective functions are detailed.  

5.1. Modelling Methodology  

The 2-D numerical model described in section 3.1 was used as a base model to build the 

heterogeneous reservoir models. The reservoir, input conditions, grid, rock and fluid properties 

used are listed in Table 1. Similar to the homogeneous case (section 3.1), the data was collected 

from the Suncor's Firebag project (Zheng et al., 2017) and the Surmont project (Li, 2006) located 

in the Fort McMurray formation in the Athabasca region in Alberta, Canada and from SAGD 

studies done by Ma et al. (2015).  

A total simulation duration of 5,475 days (15 years) is considered in the study, and the entire 

simulation period is divided into three phases as in section 3.1.  

5.2. Parameterization and super-imposed methodology 

In this study, heterogeneities such as shale barriers are incorporated since these types of 

formations are commonly found in heavy oil reservoirs. Shale barriers have particular 

characteristics, such as low porosity, permeability and thermal conductivity (Huang et al., 2015, 

Luo et al., 2015, Middleton et al., 2017). The shale permeability was found to be excessively 

smaller than the oil sands permeability, typically reported in the range of 10−6 to 10−3 𝑚𝐷 

(Magara, 1968; Borst, 1983). Due to these factors, oil production is negatively affected due to the 
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slow steam/solvent chamber evolution, and the migration fluid behaviour might change (Zhang et 

al., 2021). The shale properties used in this study are listed in Table 9 and were taken from data 

reported by Zheng et al. (2017). 

Table 9. Shale properties 

Description Parameters  Values 

Shale Properties  

Shale porosity (fraction) 0.25 

Shale Permeability in I and J direction (mD) 

 

Shale Permeability in K-direction (mD) 
 

Oil Saturation in Shale (So) 0 

Water Saturation in Shale (Sw) 1 

Relative permeability end points (Shale) 

 

  
 

 

To assess the impacts of the shale barriers according to their location, size, and proportion 

on the SAS process, a similar modelling strategy as in Zheng et al. (2016, 2017, and 2021) is 

adopted. This strategy, basically super-impose, on the numerical homogeneous base-model 

(section 3.1), shale barriers different in size, proportion and location; this might be facilitated by 

dividing the simulation domain into three zones, as illustrated in Figure 23. Zone 1 (red area) is 

where the wells are located and is extended 14 m on the I-axis and 9 m on the 𝐾-axis and is 

considered a critical zone. Next to this area, zone 2 is found. This zone corresponds to the yellow 

area a bit away from the wells pair, where the effects of any shale barriers are less critical. The rest 

of the reservoir, zone 3, is considered a non-critical zone where the impacts of most shale barriers 

are generally not significant and encompass the green area. The categorization of each zone lies 

under the theory that as the shale barrier (with a particular size) distance from the wells pair 

increases, the impact in the production performance diminishes; thus, in zone 2 and 3, just larger 
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and thicker shale barriers will impact the performance. The shale barrier unit represents the 

minimum geometry a shale can have to be considered as a barrier. The experiments showed that a 

shale barrier with a thickness below 20 cm would not impede steam-solvent chamber advancement 

and dramatically affect production performance; hence, they are not considered barriers; this fact 

is in concordance with the results presented by Zheng et al., 2016.  

 
Figure 23. Reservoir zone distributions and basic shale unit representation. 

5.2.1. Experimental design 

A total of 250 experimental models are constructed, varying the geometry and location of the 

shale barriers. Four different sets of models are generated where the shale barrier length ranges are 

between 5 m to 13 m, while its thickness varies from 0.5 m to 2 m. The first set corresponds to 

models with up to ten shale barriers in zone 1. In the second set, just shale barriers in zone 2 were 

superimposed. And finally, the third set contains models with shale barriers in zone 3 only. These 

sets tend to show a sort of transition from a reservoir where no shale barriers exist to a more 

complex and realistic heterogeneous reservoir. Among all three groups, four representative models 

are selected and described next, as they capture the ranges of response observed in those 250 

models.  

• Model (a) is the base-homogeneous model.  
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• Model (b) corresponds to a simple heterogeneous model where just one shale barrier 

of 5 m in length is imposed in zone 1 right above the injector.  

• Model (c) is a semi-complex heterogeneous model constructed super-imposing four 

shale barriers at different locations and geometries within zone 1.  

• Model (d) refers to a complex heterogeneous model where many shale barriers are 

spread from bottom to top onto the entire reservoir (zone 1, 2 and 3), and their 

geometries are varied. All the graphic models are presented in Figure 24.    

 
Figure 24. Experimental design models. 

5.3. Simulation results 

The temperature (𝑇) profiles for the experimental design models described in section 5.2.1 are 

plotted at different SAS elapsed times and are presented in Figures 25. Regarding the homogenous 

case (a) can be seen that the steam-solvent chamber growth is uniformly from the injector to the 

top of the reservoir. Once the chamber reaches the top, it continues going forward to the right-

bottom of the reservoir; the oil swept is smooth and uniform. Inversely, in the presence of shale 

barriers, especially near the wells, the steam-solvent chamber growth and its shape change 

drastically depending on the heterogeneity's geometry and location. The migration behaviour 
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might also be affected (Zhang et al., 2021). Respecting models b and c, as can be noticed, the 

chamber growth is impeded by the shale barrier located right above the injector. This barrier is 

causing a considerable pressure increase; thus, steam and solvent injection need to be reduced and 

sometimes need to be stopped; this is until the pressure is relieved, and it is optimal to continue 

with the injection. This phenomenon happens especially when the steam or solvent has contact 

with the barrier for the first time; after a while, the pressure does not increase exponentially. Once 

the chamber in scenario (b) has advanced beyond the shale barrier, its growth follows the exact 

behaviour of scenario (a) ought to no more shale barriers are found in the rest of the reservoir. For 

case (c), since more than one shale barrier is located in the critical area, it takes more time for the 

chamber to surpass these heterogeneities so that its growth is slower, compared with case (b), and 

less of the reservoir is reached. Case (d) showed a slightly different behaviour of (b) and (c). It 

was expected that since many shale barriers with different geometries and locations were 

superimposed, the chamber would not grow easily, but it grew. This significant growth at the end 

of the SAGD operation phase is because the shale barrier above the injector was located not at 0.5 

m like the others but 1 m away from it. So, although there were more heterogeneities in that area, 

it is evident that barriers that impact the most are those located at a short distance from the injector. 

Then, similarly to all cases, the chamber flows to the top of the reservoir and then to the right-

bottom. As can be seen, since the shale barriers in the pathway to the top of the reservoir are 

relatively small in thickness and length, the chamber has no flowing problems. However, when 

the chamber contacts larger and thicker barriers, its speed flow is reduced, and its growth is 

somehow braked (i.e. end of cycling phase). This observation confirms the previous statement that 

says that only larger shale barriers located away from the wells would impact the production 

performance. Seemingly, due to the presence of heterogeneities, the chamber temperature 
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distribution is not uniform, which may be due to the amount of steam and solvent injected and the 

time it takes for these fluids to travel into the reservoir. As a result of these facts, the oil viscosity 

reduction is less; thus, less oil can be recovered. 

 
Figure 25. Temperature distribution profile of four different scenarios at different SAS elapsed times. 

Figure 26 shows the cumulative Oil Production (𝑐𝑢𝑚𝑂𝑃) profiles for each of the models 

described previously (section 5.2.1). Concerning how the steam-solvent chamber propagates into 

the reservoir, as expected, the homogenous case (a) is where more oil can be recovered. In this 

scenario, a considerable amount of oil is produced during the first two years (2011-2013) because 
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just pure steam is injected (pre-heating and SAGD phase), and the oil viscosity is reduced 

substantially. After that, the production seems to be constant until 2021. Then, since most of the 

reservoir has been swept, the oil production starts to decrease. The heterogeneous cases, (b) and 

(c), have very similar behaviour. For these particular cases, the shale barrier imposed right above 

the injector does not allow the steam and solvent to be injected so that the oil production in the 

first year is almost null. Once that shale barrier is surpassed, steam and solvent might be injected 

with certain restrictions, but according to the graph, it seems that the steam and solvent injections 

are constant until the end of the simulation. Evidently, in the presence of shale barriers, oil 

production is reduced. Case (d), differently, produces less oil than the homogenous cases but pretty 

much the same as cases (b) and (c); this is due to the previous explanation of the shale location 

above the injector. After three years, the chamber starts to flow in the green zone, where larger 

and thicker shale barriers are super-imposed, and that is why, after 2014, the oil production begins 

to decline and end up recovering almost the same amount of oil than scenario (b) and (c). 

 

Figure 26. The cumulative Oil Production profile of four different scenarios. 
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5.4. Sensitivity Analysis 

Differently than section 3.3, for the heterogeneous cases, just a global sensitivity analysis (SA) 

applying RSM was performed. The study was carried out using a built-in optimization tool, 

CMOST, within CMG (2019) package.  

Similarly to section 3.3, the cycling injection phase (from day 601 to 5,475) was divided into 

two equal periods. In these periods, the operational parameters remained constant; there are 

multiple cycles within each period. Also, the solvent composition (i.e. %𝑚𝑜𝑙 𝑝𝑟𝑜𝑝𝑎𝑛𝑒) and 

duration of steam and solvent cycles in each period are varied.  

The sensitivity analysis contemplates 14 potential decision variables such as solvent 

composition (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2), bottom-hole pressure in the injector when either steam 

(𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚1 and 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚2) or solvent (𝐵𝐻𝑃𝑠𝑜𝑙𝑣1 and 𝐵𝐻𝑃𝑠𝑜𝑙𝑣2) are injected, cycle steam 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2) and solvent (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2) duration time for each 

period within the cycling phase, the minimum operational bottom-hole pressure in the producer 

(𝐵𝐻𝑃𝑝𝑟𝑜𝑑) and steam quality. Also, two operational constraints are incorporated, such as steam 

trap and bottom-hole gas (𝐵𝐻𝐺); this is illustrated on the left graph in figure 27. The subscript 1 

and 2 refer to either the first or second period of the cycling phase, respectively. The parameters 

without subscript are kept constant for the entire simulation.  

The SA results identified the nine most impactful decision variables in the SAS heterogeneous 

process and are shown on the right side of Figure 27: 

• Solvent composition: propane fraction in the solvent mixture for each period (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 

and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2). 

• Cycle duration: duration of steam and solvent injection within each period 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2)  
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• Maximum injector bottom-hole pressure when steam is being injected (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚): this 

pressure should always be greater than the initial reservoir pressure and is kept constant 

throughout the entire simulation. 

• Maximum injector bottom-hole pressure when the solvent is being injected: the difference 

in operating pressures is less than 200 kPa than 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 and it is also kept constant at 

96% of 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 during the simulation.  

• Producer constraints: steam trap and 𝐵𝐻𝐺 play a key role in the optimization. 

• The values for 𝐵𝐻𝑃𝑝𝑟𝑜𝑑 and steam quality are 2,900 𝑘𝑃𝑎 and 95%, respectively, and are 

consistent with another study of warm solvent injection by Ma and Leung (2019).  

 

 
Figure 27. Initial and final chosen decision variables for the heterogeneous optimization SAS process. 

The SA has been repeated for the homogeneous (base) model as well, and the considered 

ranges for all the decision variables for both the homogeneous and heterogeneous models are listed 

in Table 10.  
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Table 10. Decision variables and their ranges of the SAS process in a homogenous (a) and heterogeneous (b) 

reservoir. 

a) Homogeneous Reservoir  
  

b) Heterogeneous Reservoir  
  

Decision Variable Min Max   Decision Variable Min Max 

𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 (%) 50 70   𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 (%) 10 90 

𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣1 (𝑑𝑎𝑦𝑠) 60 120   𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣1 (𝑑𝑎𝑦𝑠) 60 90 

𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚1 (𝑑𝑎𝑦𝑠) 45 60   𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚1 (𝑑𝑎𝑦𝑠) 45 60 

𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 (%) 50 90   𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 (%) 10 90 

𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣2 (𝑑𝑎𝑦𝑠) 70 160   𝐶𝑦𝑐𝑙𝑒𝑆𝑜𝑙𝑣2 (𝑑𝑎𝑦𝑠) 70 120 

𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚2 (𝑑𝑎𝑦𝑠) 50 70   𝐶𝑦𝑐𝑙𝑒𝑆𝑡𝑒𝑎𝑚2 (𝑑𝑎𝑦𝑠) 55 70 

𝐵𝐻𝑃𝑆𝑡𝑒𝑎𝑚 (𝑘𝑃𝑎) 3,300 4,000   𝐵𝐻𝑃𝑆𝑡𝑒𝑎𝑚 (𝑘𝑃𝑎) 2,700 3,500  

        𝑆𝑡𝑒𝑎𝑚 𝑇𝑟𝑎𝑝 (°𝐶) 2 10 

     𝐵𝐻𝐺 (𝑚3/𝑚3) 3 10 

 

5.5. Objective functions 

Two sets of objective functions were formulated in this study. The first set contemplated two 

objective functions: Recovery Factor (𝑅𝐹) and cumulative Steam-Oil Ratio (𝑐𝑆𝑂𝑅) and can be 

formulated as shown in equation (18). Similarly, to equation (4), for the second set, cumulative 

Solvent consumption (𝑐𝑆𝑜𝑙𝑣) was added. 

𝐹(�⃗�) = {𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑖(�⃗�)} = {
1

𝑅𝐹
, 𝑐𝑆𝑂𝑅} 

 

(18) 

where �⃗� is the decision variable vector, and F denotes the objective function. The 𝑅𝐹 and 𝑐𝑆𝑂𝑅 

are estimated according to section 3.4. 

5.6. Multi-Objective Evolutionary Algorithms (MOEAs) and Proxy models 

Identically to section 3.5, MOEAs are used to optimize each of the selected heterogeneous models 

described previously in section 5.2.1. The same widely used algorithms were applied: SPEA-II, 

MOPSO and PESA-II. A brief description of each scheme can be found in sections 3.5.1, 3.5.2 

and 3.5.3, respectively. The settings configuration used for the three algorithms is shown in Table 

4, section 3.5.4.  
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Regarding the proxy models, similar to section 3.6, CMOST, an optimization tool of the 

Computing Modelling Group (CMG, 2019), is incorporated to formulate the equation to 

approximate the objective functions of the chosen heterogeneous realizations. To train the proxies 

in this study, 90 SAS experimental designs on average are usually required, of which 90% of those 

were training and 10% verification files.  The training data set is constructed by first assigning 

random values to the decision variables listed and according to the ranges of table 2. Then, a 

numerical simulation is performed to record the output of each individual; same as for the base-

case model (section 3.6), the least-square method is applied to generate the proxy model.  

5.7. Modified Multi-Objective Optimization work-flow 

A minor modification of the proposed multi-objective workflow presented in section 3.7 to 

optimize the Steam Alternating Solvent (SAS) process in the presence of shale barriers with 

different geometries and locations is carried out. The steps are listed below and are shown in Figure 

28: 

1. A base case (homogeneous) simulation model is built using Builder, CMG, 2019 tool 

and a few representative heterogeneity realizations are constructed. 

2. As described in section 5.4, a sensitivity analysis is performed to identify the key 

decision variables considering both the homogeneous and heterogeneous models. Also, 

the experimental design to build the proxy model is generated. 

3.  Results from the simulation run in the SA are used to compute the objective function 

values (section 5.5). 

4. The results from the previous step, together with some additional runs, are used to train 

a set of proxy models; for each heterogeneity scenario, three proxies for each objectives 

function are constructed.  
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5. The proxy models are incorporated into each of the three chosen MOEA methods 

described in sections 3.5.1, 3.5.2 and 3.5.3 to seek the optimal Pareto solution set. The 

MOEAs used in this study were adapted from various MATLAB open code sources 

developed by Mostapha, 2015.  

 

Figure 28. Proposed workflow scheme for the Steam Alternating Solvent Optimization Process in 

heterogeneous reservoirs. 

5.8. Result and discussion  

For this section, the results are divided into two parts. First, the analysis of models (b) and (d) 

accounting for two objective functions (𝑅𝐹 and 𝑐𝑆𝑂𝑅) is presented (section 5.8.2). Then the 

results accounting for three objective functions (𝑅𝐹, 𝑐𝑆𝑂𝑅 and 𝑐𝑆𝑜𝑙𝑣) of the four models and their 

respective optimization results are shown (section 5.8.3); the chosen realizations are explained in 

section 5.2. 

5.8.1. Proxy model analysis - Response Surface Methodology  

Similar to section 4.2, the accuracy of the proxy model is assessed by comparing the simulated 

versus the estimated results from the mathematical equation obtained using RSM for each 

objective. Figure 29 shows this comparison of all four models (a, b, c and d). The slight variation 

in the results might be due to the increment in the heterogeneities in the reservoir; the more the 
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barriers, the more complex the non-linear relationship between the objective functions and the 

decision variables becomes. To get a more accurate proxy model, more experiments may be 

needed, but the computational time will increase.  

 

Figure 29. Comparison between the simulated and RSM results for cases b and d accounting two objectives. 

The agreement of the predicted values with the true simulated results using the proxy model 

equations is acceptable since the coefficient (𝑅2) and the adjusted coefficient (𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 ) of 

determination for each objective function is close to one, and the mean square (MSE) for all cases 

is close to zero. The 𝑅2 and 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  accounting two and three objectives are quite similar. So 

that, just the results considering three objectives are presented in table 11. The RSM coefficients 

needed to calculate the objective functions can be found in Appendix A.  

Table 11. R2 and R2
adjusted of the RSM proxy models. 

Model 
Objective 

Function  
𝑹𝟐 𝑹𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅

𝟐  

a) 
𝑅𝐹 0.9500 0.9490 

𝑐𝑆𝑂𝑅 0.9500 0.9470 

𝑐𝑆𝑜𝑙𝑣 0.9430 0.9380 

b) 𝑅𝐹 0.9895 0.9863 
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𝑐𝑆𝑂𝑅 0.9859 0.9824 

𝑐𝑆𝑜𝑙𝑣 0.9812 0.9775 

c) 

𝑅𝐹 0.9724 0.9641 

𝑐𝑆𝑂𝑅 0.9522 0.9456 

𝑐𝑆𝑜𝑙𝑣 0.9774 0.9706 

d) 

𝑅𝐹 0.9872 0.9807 

𝑐𝑆𝑂𝑅 0.9650 0.9545 

𝑐𝑆𝑜𝑙𝑣 0.9801 0.9694 

 

5.8.2. Two objective functions (𝑹𝑭 and 𝒄𝑺𝑶𝑹) analysis.  

For each algorithm used to optimize the SAS process accounting 𝑅𝐹 and 𝑐𝑆𝑂𝑅 as objective 

functions, the initial population and the Pareto fronts are presented for model (b) in Figure 30 and 

model (d) in Figure 31. As is noted, in both models, the PESA-II and SPEA-II solution-front show 

wider optimal solutions that extend along the x and y-axis; the front of MOPSO lacks solutions in 

the y-axis for model b and in the x-axis for model d. Also, comparing the Pareto front of models 

(b) and (d), a considerable change in shape is observed due to the complicated non-linear 

relationship between the objectives and the decision variables; the more complex the problem is, 

the smoother the front is.   

 
Figure 30. Simple heterogeneous model initial population and Optimal Pareto-front for each MOEAs 

accounting for two objective functions. 
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Regarding the computational time, the MOPSO algorithm runs in less than a minute while 

the others vary up to 2 minutes. Furthermore, when MOPSO is performed, the Pareto front is fully 

developed after 13 generations and using PESA-II and SPEA-II after 60 and 80 generations, 

respectively.  

 

Figure 31. Complex heterogeneous model initial population and Optimal Pareto-front for each MOEAs 

accounting two objective functions. 

5.8.2.1. Pareto front analysis – Optimal operational results 

For this specific study, the results obtained from PESA-II are used since it is a more robust 

algorithm, and its results are in good concordance with those in SPEA-II. The optimal operational 

ranges for models (b) and (d) are shown in Figure 32; the x-axis refers to the ranges listed in Table 

10, and the y-axis corresponds to the frequency. It is vital to point out that when many barriers 

exist in the reservoir, the production performance's major impact occurs when these barriers are 

located near the wells (zone 1) and at the near edges of zone 2. 

For the simple heterogeneous model (b) in the first period is observed that: 

1) When a shale barrier is located near the injector and steam is injected, the surrounding 

area's pressure increases rapidly. Thus, the operational strategy might include short steam 
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cycles (45-50 days) combined with a high bottom-hole pressure in the injector to allow a 

considerable amount of steam to be injected, accounting for the shale's fracture pressure. 

The increment in pressure is relieved with high propane concentrations (70% - 90%); a 

higher propane concentration leads to higher pressure and temperature reductions since 

the 𝐵𝐻𝑃 is reduced when the solvent is injected.  

2) The solvent injection is more optimal to last less than 70 days since the reservoir still has 

a suitable temperature after the SAGD operation time and also to avoid a high-temperature 

reduction.  

3) At the end of the first period (1,522 days), the steam/solvent chamber has a sort of path, so 

the fluids injected into the reservoir (in the second period) will travel faster to the edge of 

the chamber where the reservoir temperature decreases and this may lead to a better SAs 

performance.   

For the same model in the second period: 

4) Since the fluids need to travel long distances to reach the edge of the steam-solvent 

chamber, the steam injection is recommended to be longer (66-70 days) to also re-heat the 

reservoir. Interestingly, after this heterogeneity is exposed for a while to the steam and 

solvent, the shale's pressure does not increase exponentially; this might be due to some 

fluids penetrating this formation.  

5) The solvent concentration is preferable to be kept at high propane concentrations,  similar 

to the first period. The solvent duration cycles, since more steam is pouring into the 

reservoir, might last less (70-80 days) to keep the 𝑐𝑆𝑂𝑅 balance. As mentioned before, the 

injector's bottom-hole pressure needs to stay constant at a higher value to allow, when 

possible, the maximum fluid to be injected.  
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6) The minimum bottom-hole in the producer must keep it low (2,600 kPa) to allow fluid 

production. 

7) Concerning the steam trap production constraint, it needs to be set at its maximum value to 

maximize the production and to prevent the production of live steam; thus 𝑐𝑆𝑂𝑅 is 

maintained low. This optimum operational strategy is in accordance with the study done 

by Edmunds (1998), where if the steam trap is set below a higher steam saturation 

temperature, more oil is produced. However, the penalization is a more pressure drawdown.  

8) The bottom-hole gas (𝐵𝐻𝐺) constraint, the same as the steam trap, needs to be set at its 

maximumly allowable limit to avoid gas concentration in the area near the wells and early 

solvent production.  

For the complex heterogeneous model (d) in the first period: 

• Solvent composition and its duration follow the same trend described above for model (b); 

high propane concentration over a short solvent injection period.  

• Conversely, it is more likely to keep the steam bottom-hole pressure in the injector low to 

avoid high pressures in the wells surrounding area. Thus, longer steam injection cycles are 

more optimal .  

For the same model in the second period: 

• The optimization results indicate that high propane concentrations are needed, and the 

duration of solvent cycles should be between 70 to 80 days, the same as the model (b). 

• The steam injection was expected to behave similarly to model (b); however, after 

performing the run simulation of model d, the results threw the opposite. Therefore, the 

duration of steam injection should last less than 60 days.  
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• It was observed that the bottom-hole pressure in the injector must be increased somehow 

to maintain a balance between the conflicting objectives. 

• Similar to the previous adjustment, to prevent gas production, 𝐵𝐻𝐺 needs to be reduced to 

a value between 5 and 8. This happens because more barriers are found in the reservoir and 

pressure increases considerably. As a result, the injected fluid (either steam or solvent) 

cannot spread easily in the reservoir, causing both gas and liquid to accumulate in the area 

near the wells.  

• The steam trap needs to be used with relatively small values to produce the fluid. This 

would avoid steam accumulating in the area near the wells and prevent its production 

without having fulfilled the objective of transferring the heat to the reservoir. 

 
Figure 32. Optimal ranges for models b and d for all controllable parameters in the SAS process 

accounting two objective functions. 

5.8.2.2. General remarks 

• It is noticeable from Figure 25 that shale barriers notably impact production performance and 

water usage. For example, oil production in model (b) is high, and the 𝑐𝑆𝑂𝑅 might be reduced 

significantly. In contrast, as shale barriers number increase into the reservoir, the production 

tends to be low, and the water usage (steam) increases, thus 𝑐𝑆𝑂𝑅 is high. 
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• The steam injection duration in the second period for model (b) seems to have more 

controllable flexibility. In model (d), conversely, this flexibility is related to the bottom-hole 

pressure and steam trap when steam is injected. 

• The lack of optimal solutions using MOPSO and the slight variation among the results might 

be due to the reproduction operators that each algorithm implies (i.e., mutation) to maintain 

the diversity or due to how each individual's fitness is calculated.  

5.8.3. Three objective functions (𝑹𝑭, 𝒄𝑺𝑶𝑹 and 𝒄𝑺𝒐𝒍𝒗) analysis  

The SAS models described in section 5.2.1 accounting for three objective functions (𝑅𝐹, 𝑐𝑆𝑂𝑅 

and 𝑐𝑆𝑜𝑙𝑣) are optimized. The workflow presented in section 5.7 is used for this analysis. Figure 

33 illustrates the Pareto front obtained using MOPSO, SPEA-II, and PESA-II algorithms. The 

Pareto front is divided into four (blue, red, green and magenta) quadrants. Some minor differences 

are observed:    

• The number of solutions in each quadrant and its distribution varied among the three 

algorithms.  

• Different from the two objective Pareto front analysis (section 5.8.2), more even 

and less scattered solutions are observed when SPEA-II is used compared with the 

solutions obtained using the other algorithms. Therefore, only the results from 

SPEA-II  are presented in the following sections. 

Overall, significant variability in all four models is viewed. For example, as the number of 

shale barriers increases into the reservoir, as expected, solutions cluster in zones where less oil 

is produced and more steam and solvent are needed.  
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Figure 33. Pareto-front for all four models using different MOEAs. 

The 3-D Pareto front, to better visualize the trade-off between the objective functions, could 

be projected onto a series of 2-D Pareto front. Figure 34 illustrates the initial population and the 

final Pareto front in 3-D and 2-D using the SPEA-II algorithm for each model. 

The computational requirements to perform the optimization of each model are assessed. A 

summary of the computational time to complete the SAS optimization with or without using a 

proxy model is presented in Table 12. Each of the MOEAs uses 80 iterations that include in each 

one a population of 50 individuals. A single flow simulation and to compute the objective functions 

if the proxy modelling is not employed on average takes approximately 140 minutes. As can be 

seen, a significant saving in computational time is achieved using proxy models, despite the 

frontloading costs of calibrating the proxy models.  

 

a) Homogenous model b) Simple heterogenous model c) Semi-complex heterogeneous model d) Complex heterogeneous model 
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Figure 34. Initial population and the final Pareto-front (2-D and 3-D) for all four models using SPEA-II. 

Table 12. Comparison of the total computing time with and without using proxy models. 

 
Steps No proxy Proxy  

a
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eo
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m
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el
 Building time 

(min) 
N/A 3,361.12 

Objective Function 

Calculation (min) 

64 min × 50 individuals × 

80 iterations = 256,000 

0.0001053 min × 50 

individuals × 80 iterations = 

0.4212 

Rest of MOEA 

(min) 
0.86 0.86 

Total Time (min) 256,000.86 3,362.40 

b
) 

S
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m
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el

 

Building time 

(min) 
N/A 4,500 
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Objective Function 

Calculation (min) 

90.2 min × 50 individuals × 

80 iterations = 360,800 

0.0001098 min × 50 

individuals × 80 iterations = 

0.4392 

Rest of MOEA 

(min) 
0.86 0.86 

Total Time (min) 360,800.86 3,362.42 

c)
 S

em
i-

co
m

p
le

x
 

h
et

er
o

g
en

eo
u

s 
m

o
d

el
 Building time 

(min) 
N/A 5,900 

Objective Function 

Calculation (min) 

118 min × 50 individuals × 

80 iterations = 472,000 

0.0001124 min × 50 

individuals × 80 iterations = 

0.4496 

Rest of MOEA 

(min) 
0.86 0.86 

Total Time (min) 472,000.86 3,362.43 

d
) 

C
o

m
p

le
x

 

h
et

er
o

g
en

eo
u

s 
m

o
d

el
 Building time 

(min) 
N/A 10,450 

Objective Function 

Calculation (min) 

209 min × 50 individuals × 

80 iterations = 836,000 

0.0001188 min × 50 

individuals × 80 iterations = 

0.4752 

Rest of MOEA 

(min) 
0.86 0.86 

Total Time (min) 836,000.86 3,362.45 

 

In the following sections, the optimum operational strategy for each model and each zone (i.e. 

blue, red, green and magenta) is described first. Then, general remarks and observations among all 

four models are listed.  The results of the optimal operational ranges using MOPSO and PESA-II 

are shown in Appendix C. 

5.8.3.1. Homogeneous Model 

a) Low 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Blue quadrant): The average 𝑅𝐹 is the lowest among all the 

quadrants between  45% to 65%, as can be seen in Figure 34. Results revealed, as is shown 

in Figure 35 that it is more optimal to inject lower propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 <

60%) over short cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 70 days) during the first period (early stages of the 

cycling phase), while in the second period (later stages of the cycling phase), also injecting 

low propane concentration (i.e. 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 < 60%) but in longer cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 > 140 
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days) is recommended. The bottom-hole pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) is generally set at lower 

values to minimize steam and solvent injection (characteristic of this quadrant). 

 
Figure 35. Optimal operational ranges of the decision variables for the homogeneous model using the SPEA-

II. 

b) High 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Magenta quadrant): in this quadrant the highest objectives 

values are achieved (𝑅𝐹: 60 − 70%, 𝑐𝑆𝑂𝑅: 1.2 − 1.7 
𝑚3

𝑚3 , 𝑐𝑆𝑜𝑙𝑣 0.1 to 0.5 × 105 𝑚3). As 

shown in Figure 36, different from the Blue quadrant (Figure 11), it is more optimal to 

inject higher propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 ≅ 70%) in shorter cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 <

70 days) during the first period. However, for the second period, higher propane 

concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2) and very long cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2) are implemented to increase 

solvent injection. The steam injection duration (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚) and 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 are adjusted 

to inject more steam. 

c) High 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Red quadrant) – Interestingly, no optimal solutions were 

found for this model in this section.   
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Figure 36. Optimal operational ranges of the decision variables for the homogeneous model using the SPEA-

II. 

d) Low 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Green quadrant) –  The solvent injection strategy (Figure 37) 

is similar to the Magenta quadrant (Figure 36): inject higher propane concentration 

(𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 ≅ 70%) in shorter cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 70 days) during the first period and 

higher propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 > 80%) with longer solvent cycles 

(𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 > 150 days) in the second period.  Since 𝑐𝑆𝑂𝑅 is to be minimized in this 

section, steam should be injected in short cycles. Also, low 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 are implemented.  

Results from all four quadrants would suggest that injecting high propane concentration over 

short solvent cycles during the first period is better. Lower propane concentrations and longer 

solvent cycles should be used in the second period if more solvent is to be injected. It is observed 

that it is more optimal to maintain 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 at a minimum, if less steam is to be used. Steam trap 

(5 °𝐶) and 𝐵𝐻𝐺 (5 𝑚3/𝑚3) values for this homogeneous model are kept constant because, 

according to the performed SA, these parameters do not significantly impact the results. 
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Figure 37. Optimal operational ranges of the decision variables for the homogeneous model using the SPEA-

II. 

5.8.3.2. Simple Heterogeneous Model 

a) Low 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Blue quadrant): The results are shown in Figure 38. The 

average 𝑅𝐹 has a wide range between 33 to 80%. Some interesting comparisons with the 

homogeneous model can be made: 1) For the first period, it is more optimal to inject also 

low propane concentrations (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 < 40%) and shorter cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 70 

days), while in the second period, injecting higher (instead of lower) propane concentration 

(i.e. 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 > 70%) in shorter (instead of longer) cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 < 80 days) seems 

to be optimal. To minimize steam and solvent injection, bottom-hole pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) 

is generally set at lower values. 2) It is vital to control the steam trap due to the presence 

of the shale barrier: for example, the shorter the cycles, the higher the steam trap (>  8°𝐶) 

is required for preventing early live steam production. 3) 𝐵𝐻𝐺 is more optimal to be kept 

relatively low, considering that 𝑐𝑆𝑂𝑅, 𝑐𝑆𝑜𝑙𝑣, and 𝑅𝐹 in this quadrant is characterized to 

be at low values.  
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Figure 38. Optimal operational ranges of the decision variables for the simple heterogeneous model using the 

SPEA- II. 

 

b) High 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Magenta quadrant): In this quadrant, the highest objective 

values are achieved (𝑅𝐹: 60 − 80%, 𝑐𝑆𝑂𝑅: 1.8 − 2.3 
𝑚3

𝑚3 , 𝑎𝑛𝑑 𝑐𝑆𝑜𝑙𝑣 2 to 3.5 × 105 𝑚3) 

among the other solutions. Similar to the homogeneous model, results revealed, as shown 

in Figure 39, that it is more optimal during the first period to inject high propane 

concentration over short cycles; however, for the second period, low propane concentration 

and long solvent cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 > 100 𝑑𝑎𝑦𝑠) are optimal. To inject and allow more 

steam and solvent into the reservoir, the steam injection duration (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚) and 

𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 are adjusted at higher values. 

c) High 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Red quadrant): The average recovery for this quadrant is the 

lowest with 𝑅𝐹: 35 − 50%. 𝑐𝑆𝑂𝑅 is between 1.8 − 2.2 
𝑚3

𝑚3 , and 𝑐𝑆𝑜𝑙𝑣 0.1 – 2 × 105 𝑚3. 

As shown in Figure 39, it seems more beneficial to inject high propane concentration 

(𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 > 60%) and short solvent cycle (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 65 days) in the first period. For 
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the second period, high propane concentrations (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 > 70%) and shorter solvent 

cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 < 80 days) are also beneficial. The steam injection strategy is also 

similar to the Blue quadrant (Figure 38). Interestingly, this section has the least number of 

solutions. 

 

 

Figure 39.Optimal operational ranges of the decision variables for the simple heterogeneous model using 

the SPEA- II. 
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d) Low 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Green quadrant):. The ranges of the objective function in this 

quadrant are: 𝑅𝐹 in average is 65 − 80%, 𝑐𝑆𝑂𝑅 between 1−1.7 
𝑚3

𝑚3
 , and 𝑐𝑆𝑜𝑙𝑣 2 to 

3.5× 105 𝑚3. The solvent injection strategy and recovery are similar to the Magenta 

quadrant (Figure 39). The differences, as can be observed in Figure 40, are:  1) The 

𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 should be shorter (instead of longer). 2) The steam injection pressure and steam 

trap should be increased between 3,200 to 3,400 kPa and between 6 to 8 °𝐶, respectively, 

to reduce 𝑐𝑆𝑂𝑅 and accomplish the characteristic of this quadrant. 

 
Figure 40. Optimal operational ranges of the decision variables for the simple heterogeneous model using the 

SPEA- II. 

 

Overall, results from all four quadrants would suggest (similar to the homogeneous case) that 

instead of switching to lower propane concentrations and longer solvent cycles during the second 

period, it is more optimal to inject high propane concentration over short solvent cycles during 

both the first and second periods.    
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5.8.3.3. Semi-Complex Heterogeneous Model 

a) Low 𝐜𝐒𝐎𝐑 – Low 𝐜𝐒𝐨𝐥𝐯 (Blue quadrant): Because of the characteristic of this group,  

the average 𝑅𝐹 is the lowest (45 – 80%), while 𝑐𝑆𝑂𝑅 ranges between 1−1.8 
𝑚3

𝑚3  and 

𝑐𝑆𝑜𝑙𝑣 =  0.2 – 2.5× 105 𝑚3, as expected. The results are illustrated in Figure 41. The 

optimal strategy for the first period is different from that for the homogeneous model. It is 

observed that it is more optimal to inject higher propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 >

 70%) over shorter cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 65 days); this is because there is no long shale 

barrier above the injector, as in the simple heterogeneous case. The optimal strategy for the 

second period is similar to all the simple heterogeneous cases detailed in the previous 

section: 1) It is better to inject higher propane concentration (i.e. 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 > 70%) in 

shorter cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 < 75 days). 2) The shale barriers located farther away from the 

wells pair have similar impacts than the simple heterogeneous cases. To minimize steam 

injection, bottom-hole pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) is generally set at lower values. 𝐵𝐻𝐺 is quite 

low to stick to the characteristic of this quadrant.  

b) High 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Magenta quadrant): The average objective function values 

are 1) 𝑅𝐹 = 61−85%, 2) 𝑐𝑆𝑂𝑅 = 1.8−2.4 
𝑚3

𝑚3
 , and 3) 𝑐𝑆𝑜𝑙𝑣 =  2.5 – 4.5× 105 𝑚3. As 

can be seen in Figure 41, similar to the homogeneous and simple heterogeneous model 

results, it is more optimal to inject high propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒1,2 >  80%) over 

short solvent cycles (60 < 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1,2 < 75 days) for both periods. 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 is set at 

higher values (i.e. 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 > 3,100 𝑘𝑃𝑎) with lower steam trap levels to prevent 

accumulation that might impact the pressure of the reservoir.   
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Figure 41. Optimal operational ranges of the decision variables for the semi-complex heterogeneous model 

using the SPEA-II. 

c) High 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Red quadrant): The objective function values are 𝑅𝐹 = 50 −

87%, 𝑐𝑆𝑂𝑅 = 1.8−2.3 
𝑚3

𝑚3 , and 𝑐𝑆𝑜𝑙𝑣 =  0.2 – 2.5× 105 𝑚3. The results shown in Figure 

42 revealed that the optimum operational strategy for both periods is similar to that for the 

simple heterogeneous case. The only difference is that longer (rather than shorter) steam 

injection (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1) cycles are more optimal. 
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d) Low 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Green quadrant): The objective function values in this 

quadrant are: 𝑅𝐹 = 75−85%, 𝑐𝑆𝑂𝑅 = 1.2−1.7 
𝑚3

𝑚3
 , and 𝑐𝑆𝑜𝑙𝑣 =  2.5 – 4.5× 105 𝑚3. The 

optimal operating strategy for this quadrant (Figure 42) is similar to that of the Magenta 

quadrant (Figure 41); the difference is that larger steam traps are more optimal. 

 

 

Figure 42. Optimal operational ranges of the decision variables for the semi-complex heterogeneous model 

using the SPEA-II. 
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Results from all four quadrants would suggest that the optimal operating strategy is very 

similar to the simple heterogeneous case; during both the first and second periods, it is better to 

inject high propane concentration over short solvent cycles.  

5.8.3.4. Complex Heterogeneous Model 

a) Low 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Blue quadrant): The average objective functions are 𝑅𝐹 = 

35−65%, 𝑐𝑆𝑂𝑅 = 1.25 – 1.7 
𝑚3

𝑚3 , and 𝑐𝑆𝑜𝑙𝑣 =  1.8 – 2.5× 105 𝑚3. The optimal scheme 

results are shown in Figure 43.  Similar to the simple heterogeneous case, for the first 

period is recommended to inject low propane concentrations (i.e. 𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 < 40%) over 

short solvent cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 < 65 days). Flexibility in the adjustment of steam 

injection duration has been used. Similar to the homogeneous case, for the second period, 

lower propane concentration (𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 < 50%) and longer solvent cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2) 

are needed since the edge of the chamber is far away from the wells pair. Also, due to the 

large number of shale barriers located throughout the entire domain, longer steam cycles 

(i.e. 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2 ~ 68 days) are more optimal. The bottom-hole pressure (𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) is 

generally set at lower values to minimize steam injection. 𝐵𝐻𝐺 is relatively low, 

considering the characteristic of this quadrant.  

b) High 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Magenta quadrant): The average objective functions are 𝑅𝐹 

= 65−85%, 𝑐𝑆𝑂𝑅 = 1.6 – 2.5 
𝑚3

𝑚3 , and 𝑐𝑆𝑜𝑙𝑣 = 2.5 − 4.3 × 105 𝑚3. The optimal 

operating strategy (Figure 43) is similar to all the other heterogeneous cases:  injecting high 

propane concentration over short cycles during both periods. More steam is injected (i.e., 

higher values of 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1,2 and  𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) due to the characteristics of this quadrant. 
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Figure 43. Optimal operational ranges of the decision variables for the complex heterogeneous model using 

the SPEA-II. 

c) High 𝒄𝑺𝑶𝑹 – Low 𝒄𝑺𝒐𝒍𝒗 (Red quadrant): The average objective functions are 𝑅𝐹 =

35 − 55%, 𝑐𝑆𝑂𝑅 = 1.7 − 2 
𝑚3

𝑚3
 , and 𝑐𝑆𝑜𝑙𝑣 =  1.9 to 2.5 × 105 𝑚3. The operating 

strategy is presented in Figure 44 and is similar to the blue quadrant (Figure 43), where 

both cases represent low 𝑐𝑆𝑜𝑙𝑣. The main difference is that more steam is needed here, 

which is achieved by adjusting the steam trap at lower levels. 
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d) Low 𝒄𝑺𝑶𝑹 – High 𝒄𝑺𝒐𝒍𝒗 (Green quadrant): The average objective functions are 𝑅𝐹 = 

60 − 85%, 𝑐𝑆𝑂𝑅 = 1 − 1.5 
𝑚3

𝑚3 , and 𝑐𝑆𝑜𝑙𝑣 =  2.5 − 4 × 105 𝑚3. Similar to other 

heterogeneity scenarios, this quadrant (Figure 44) is similar to the magenta quadrant 

(Figure 43). The main difference is that less steam is injected (characteristic of this 

quadrant); hence, higher steam trap levels are used.   

 
Figure 44. Optimal operational ranges of the decision variables for the complex heterogeneous model using 

the SPEA-II. 
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Results from all four quadrants would suggest that the optimal operating strategy is to inject 

high propane concentration over short solvent cycles if more solvent is used. Conversely, propane 

concentration should be reduced if 𝑐𝑆𝑜𝑙𝑣 must be kept low. Steam usage can be adjusted primarily 

through steam trap levels and steam cycle durations.  

5.8.3.5. General Remarks  

• The recommended optimum strategy on average for most scenarios consists of injecting high 

propane concentrations over short cycles.  If 𝑐𝑆𝑜𝑙𝑣 is to be minimized, the propane 

concentration can be reduced. It seems that the solvent injection time might be extended to 

help to maintain a balance between the objectives. 

• It is observed that 𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚 should be reduced if heterogeneities are found in the near-well 

area to avoid over-pressurization and fluid accumulation in that zone.  

• In the presence of many shale barriers, extending the steam injection periods during the later 

stages (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚2) helps to enhance the steam-solvent chamber growth. This is unnecessary 

if the shale barriers are mostly discontinuous and not overly extensive laterally. 

• The Steam trap constraint imposed in the SAS process in heterogeneous reservoirs is important 

to be adjusted and seems to have a close relationship with the steam injection duration. The 

shorter the cycles (𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1,2), the larger the steam trap is required for preventing the 

production of live steam. Similar strategies can also be used to reduce 𝑐𝑆𝑂𝑅 (i.e. 𝐵𝐻𝐺).  

• It is observed that the solvent in the SAS process is preferable to be kept into the reservoir as 

long as possible; thus, 𝐵𝐻𝐺 is recommended to be kept low for all heterogeneity scenarios to 

prevent early solvent production. 
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• An increase in solvent usage would lead to better steam-solvent chamber development and oil 

production in the presence of shale barriers into the reservoir. This is evidenced by more 

optimal solutions located in the high 𝑐𝑆𝑜𝑙𝑣 zones (i.e. green and magenta quadrants), as is 

illustrated in Figure 34.  

• Similar to section 4.5, the split between the first (early) and second (late) periods in the cycling 

phase should also be optimized. Overall short cycles are feasible initially, but at some point, 

the oil rate would start to drop rapidly, which could indicate that longer cycles should be 

commenced.  

• Minor differences in the results among the three MOEAs are noted. 
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CHAPTER 6: CONCLUDING REMARKS 

This section presents a summary and the conclusion of the SAS process research project. 

Moreover, the contributions and recommendations for future work are listed.  

6.1. Summary and Conclusions 

This research project explores, analyzes, and develops a practical workflow to optimize the Steam 

Alternating Solvent (SAS) process. The work is conducted 1) to identify the relevant parameters 

that intervene when this process is applied to homogeneous and various heterogeneous reservoirs 

and 2) to propose their optimal operational ranges depending on the characterization of the 

reservoir. The data used in this project is compiled from public domain data of Suncor's Firebag 

and Surmont projects.  

One homogeneous base model and different heterogeneous realization in 2-D are constructed. 

The heterogeneous dataset is built by superimposing idealized shale barriers onto the 

homogeneous model, whose properties are in accordance with previous SAS studies done by 

Coimbra et al. (2019) and Coimbra (2020). The four more representative and impactful models are 

selected to be analyzed.  

A detailed and robust sensitivity analysis is performed to determine relevant operational 

parameters (decision variables) that intervene in the SAS process for each constructed and selected 

model. Two widely used methodologies are incorporated, OPAAT and RSM. Additionally, a set 

of three different objective functions is formulated for this study. For the homogenous case, two 

different analyses are performed. The first one accounts for two objective functions and the second 

one for three objective functions. Also, to select the proper grid size for the simulations, a mesh 

sensitivity analysis is performed.  
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A different set of proxy models are constructed to reduce the computational effort and time. 

These models predict the values of the objective functions by approximating the non-linear 

relationship between the targets and the selected decision variables adopting the Response Surface 

Methodology. Also, the optimization of the different model datasets is performed by adopting the 

Pareto optimality theory. Three widely used different Multi-Objective Evolutionary Algorithms 

(MOEAs) are used: SPEA-II, MOPSO, and PESA-II.  

A Multi-Objective workflow to optimize the SAS process depending on the reservoir 

characterization is proposed and consists of six main steps: 1) A simulation homogeneous base 

model is constructed. 2) If heterogeneities (i.e. shale barriers) exist, these particular formations are 

added to the reservoir using the superimposing methodology. 3) A detailed sensitivity analysis is 

performed. 4) The simulation is run, and based on the results, three objective functions are 

formulated. 5) Results from step four, together with additional runs, are used to train a set of proxy 

models for each reservoir model. 6) The proxy models are incorporated into any of the three 

MOEAs to perform the optimization and analyze the results.  

The results for the homogenous case revealed that it is more optimal to start (first period) with 

high propane concentrations in the solvent over short solvent cycles and then switch, in the second 

period, to low propane concentrations in long cycles. Also, if more steam is to be injected, it is 

recommended to do so over long cycles instead of increase dramatically the bottom-hole 

(𝐵𝐻𝑃𝑠𝑡𝑒𝑎𝑚) injection pressure. Moreover, if more solvent is to be injected, more steam would be 

needed to compensate and increase the steam-solvent chamber temperature. Production constraints 

such as steam trap and bottom-hole gas do not impact the SAS performance under this reservoir 

characterization.  
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For the heterogeneous cases, several conclusions are observed: 

1) The production performance of the SAS process is highly affected depending on the 

shale barrier’s location and geometry.  

2) Shale barriers at any location and with any length into the reservoir with thickness less 

than 0.5 m barely affect the production performance and may not be considered 

barriers.  

3) The shale barriers location and geometry rule the steam-solvent chamber shape and 

growth. 

4) Heterogeneities allocated in zone 1 (near the wells pair) have a more critical impact 

on the SAS process than those located far away (i.e. edges of zone 2 and 3). Also, the 

shale barriers situated in zone 1 might highly determine the optimization strategy to 

follow.   

5) Special attention is needed in zone 1 in terms of pressure to avoid fractures in the shale 

formations. The pressure increase near the wells might be caused by fluid 

accumulation, high bottom-hole injection pressure, and an incompatible production 

well constraint (i.e. steam trap and 𝐵𝐻𝐺) setting.  

6) The SAS performance in the presence of heterogeneities would be enhanced by, 

similar to the homogenous case, injecting high propane concentrations in the solvent 

mixture over short cycles and also followed by short steam cycles during the first 

period. Also, depending on the heterogeneities location (mainly those found near the 

wells), switching to lower propane concentrations over long cycles and longer steam 

(instead of short) cycles is more optimalfor the second period. This is since the fluids 

need to travel long distances to the developed steam-solvent chamber.  
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7) Conversely to the homogeneous case, special attention to the production constraints is 

needed. For example, to better 𝑐𝑆𝑂𝑅 results, the steam trap needs to be adjusted 

depending on the length of the steam cycles. 𝐵𝐻𝐺, when the solvent is injected is 

recommended to keep it low at all times to maintain as long as possible the solvent in 

the reservoir and to avoid early solvent production.  

8) It is crucial to determine the targets to be incorporated in the SAS optimization study. 

It was observed that when performing the optimization accounting for two objective 

functions (𝑖. 𝑒 𝑅𝐹 𝑎𝑛𝑑 𝑐𝑆𝑂𝑅), some critical insights and trade-offs were missed 

compared to when three objectives were incorporated in the optimization. Even though 

the complexity of the problem and the result analysis increase, having a more in-depth 

study and a better understanding of the relationship between the objectives and the 

controllable operational parameters (decision variables) would positively highly 

impact the SAS performance and the economics of the project.   

Regarding the MOEAs used in this study, the performance among all three algorithms is 

compared. The result trends for each model and each selected decision variable are similar and in 

good agreement. Some minor differences are observed. Overall, MOPSO compared with SPEA-II 

results gives a slightly wider 𝑃𝑟𝑜𝑝𝑎𝑛𝑒1 and 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣2 optimal ranges in the low 𝑐𝑆𝑂𝑅 – low 

𝑐𝑆𝑂𝑙𝑣 zone. Contrarily, narrow 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 optimal ranges in the same zone. Interestingly, 

𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1, 𝐶𝑦𝑐𝑙𝑒𝑠𝑡𝑒𝑎𝑚1 and 𝑃𝑟𝑜𝑝𝑎𝑛𝑒2 solution trends, in the Low 𝑐𝑆𝑂𝑅 – High 𝑐𝑆𝑜𝑙𝑣 zone, are 

distributed differently. When using PESA-II, just narrow optimal ranges of 𝐶𝑦𝑐𝑙𝑒𝑠𝑜𝑙𝑣1 in the High 

𝑐𝑆𝑂𝑅 – High 𝑐𝑆𝑜𝑙𝑣 and 𝑐𝑆𝑂𝑅 – High 𝑐𝑆𝑜𝑙𝑣 zones are observed. SPEA-II computational time is 

the lowest in most of the scenarios used and shows a more even and smooth distribution of the 

solutions.  
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The SAS process is a promising environmental-friendly alternative to many widely used 

traditional steam-based methods, such as the SAGD process and its many proposed modifications. 

Also, it has the potential to reduce water usage and GHG emissions. However, the SAS 

implementation might be more complex since more operational parameters must be considered.  

6.2. Contributions  

The main contributions of this study are listed as follows:  

1) The extensive sensitivity analysis results identified the most impactful variables that 

should be considered for proper and better optimization of the SAS process 

incorporating two widely used methodologies. Also, Response Surface Methodology 

(RSM) was successfully implemented as an alternative 1) to reduce the high 

computational effort and time that a typical simulation process implies and 2) to 

facilitate a SAS targets forecast. The results obtained with the proxy models are reliable 

and efficient in capturing the complex non-linear relationship between the targets and 

the operational parameters.  

2) The parameterization and superimposed scheme used in this study allowed a more in-

depth understanding of the impact of shale barriers in different zones instead of having 

them in a smooth and following a Gaussian distribution such as the work done by 

Coimbra (2020). 

3) The study provides the optimum operational ranges of the selected controllable 

parameters of the SAS process that could be used in reservoirs located in the Fort 

McMurray formation in the Athabasca region in Alberta, Canada. Additionally, an 

optimum operational strategy, depending on the targets (i.e. either steam or solvent 

needs to be minimized, maximized or both), is provided for particulars scenarios. Also, 
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this study is the first that utilizes a Multi-Objective Optimization approach for 

systematically determining an optimal SAS operational strategy accounting for two and 

three objective functions. Moreover, to determine whether one or more MOEAs would 

be suitable for particular heterogeneous scenarios, this study is the first that 

incorporates and compare different MOEAs for optimizing a wide range of operational 

parameters of the SAS process. 

4) This study illustrates how a MOO workflow that incorporates MOEAs can be utilized 

to design optimally and accurately any hybrid, solvent-thermal operations under 

different constraints. Moreover, this research work explicitly shows how to 

parameterize solvent-based processes for homogeneous and complex heterogeneous 

reservoirs. Additionally, it illustrates how a complex engineer problem could be 

implemented by accounting for many decision variables and many objective functions 

instead of integrating them into a simple NPV objective function.   

5) Even the Steam Alternative Solvent (SAS) process currently is not a commercial 

method, this study incorporates many elements that are used in many other commercial 

hybrid solvent-based methods. Thus, this research work might be used as a guide to 

optimizing those parameters (i.e. cycle duration, bottom-hole pressure) in other 

processes depending on the reservoir characterization.  

6.3. Recommendations 

Future studies should focus on: 

1) Considering to incorporate other proxy modelling methodologies such as Polynomic, 

Kriging, Splines, and Neural Networks Models to compare their performance.  
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2) Extending the workflow to 3D reservoirs. However, numerical simulation involving 

complex heterogeneities in 3D would be extremely computationally intensive. Thus, 

the use of proxy models would be essential.  

3) Incorporating 1) an economic analysis to assess the profitability of the application of 

the SAS process in the field scale and 2) an Environmental, Social and Governance 

(ESG) analysis to ensure the positive impact of the implementation of the SAS process.  
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Appendix A 

In this section, the RSM coefficients needed to calculate the objective function of section 5.8.1 are 

presented. Coefficients in tables 13, 14, 15 and 16 refer to models a, b, c and d, respectively.  

Table 13. RSM coefficients to calculate the objective functions of the homogeneous model. 

Term  

RSM 

Coefficient   Term  

RSM 

Coefficient   Term  

RSM 

Coefficient 

𝑅𝐹   𝑐𝑆𝑂𝑅   𝑐𝑆𝑜𝑙𝑣 

Interception 

(β0) 44.26   

Interception 

(β0) 3.4759   

Interception 

(β0) 1,512,900 

Propane1 (β1) -92.43   Propane1 (β1) 0.1629   Propane1 (β1) -2,375,300 

Propane2 (β2) 11.23   Propane2 (β2) 0   Propane2 (β2) 238,867 

Cyclesolv1 (β3) -0.0804   Cyclesolv1 (β3) 0.0010   Cyclesolv1 (β3) -1,706.02 

Cyclesteam1 (β4) 0   Cyclesteam1 (β4) 0.0021   Cyclesteam1 (β4) -19,461.80 

Cyclesteam2 (β5) 0.3669   Cyclesteam2 (β5) 0.0012   Cyclesteam2 (β5) 5,724.81 

Cyclesolv2 (β6) 0.0208   Cyclesolv2 (β6) -0.0012   Cyclesolv2 (β6) 1,168.80 

BHPsteam1 (β7) 0.0013   BHPsteam1 (β7) -0.0008   BHPsteam1 (β7) 2.44 

BHPprod (β8) -0.0043   BHPprod (β8) -0.0007   BHPprod (β8) -400.49 

(β1)2 55.9839   (β1)*(β3) -0.0037   (β1)2 1,242,600.00 

(β1)*(β3) 0.10   (β7)2 1.0741E-07   (β1)*(β3) 2,873.72 

(β1)*(β7) 0.0039   (β8)2 1.3875E-07   (β1)*(β7) 228.91 

(β1)*(β8) 0.0058         (β2)*(β3) -1,830.97 

(β2)*(β3) -0.0485         (β3)*(β5) 31.02 

(β2)*(β5) -0.0871         (β4)*(β8) 6.79 

(β3)*(β5) 0.0006         (β5)2 -68.11 

(β5)2 -0.0026         (β5)*(β6) -8.26 

(β5)*(β6) -0.0004   
  

        

              

 

Table 14. RSM coefficients to calculate the objective functions of the simple heterogeneous model 

Term  

RSM 

Coefficient   Term  

RSM 

Coefficient   Term  

RSM 

Coefficient 

RF   cSOR   cSolv 

Interception 

(β0) -2.04   
Interception 

(β0) 1.0722   
Interception 

(β0) 129,270 

Propane1 (β1) -25.23   Propane1 (β1) 0.4384   Propane1 (β1) -810,102 

Cyclesolv1 (β2) 0.07   Cyclesolv1 (β2) -0.0020   Cyclesolv1 (β2) 440 

Cyclesteam1 (β3) -0.02   Cyclesteam1 (β3) -0.0217   Cyclesteam1 (β3) -1,863 

Propane2 (β4) 13.0886   Propane2 (β4) -0.2152   Propane2 (β4) 293,584 

Cyclesolv2 (β5) 0.0469   Cyclesolv2 (β5) -0.0018   Cyclesolv2 (β5) -406.30 
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Cyclesteam2 (β6) 0.0673   Cyclesteam2 (β6) 0.0134   Cyclesteam2 (β6) 0 

BHPsteam1 (β7) 0.0135   BHPsteam1 (β7) 0.00016   BHPsteam1 (β7) 68.51 

Steam trap (β8) -0.0905   Steam trap (β8) -0.0219   Steam trap (β8) 0 

BHG (β9) -0.2990   BHG (β9) -0.0015   BHG (β9) -8,790.04 

(β9)*(β1) -0.0446   (β4)*(β9) 0.00048   (β7)*(β9) 6.87 

(β5)*(β9) 0.0034   (β8)*(β9) -8.54E-06   (β1)*(β9) -2,880.66 

(β7)*(β7) -1.56E-06   (β1)*(β1) -0.3833   (β1)*(β7) 134.43 

(β1)*(β7) 0.0032   (β1)*(β8) -0.01944   (β1)*(β1) 304,130 

(β7)*(β8) 0.0002   (β1)*(β3) -0.004536   (β1)*(β4) 152,886 

(β1)*(β1) 15.6566   (β4)*(β4) -0.1612   (β1)*(β3) 4,664.02 

(β1)*(β4) 5.1848   (β4)*(β5) 0.001761   (β4)*(β4) 290,464 

(β1)*(β8) 0.2257   (β8)*(β8) 0.0028761   (β2)*(β4) -3,167.78 

(β1)*(β3) 0.1221   (β3)*(β5) 7.44E-05   (β4)*(β5) -2245.4600 

(β4)*(β4) 9.2940   (β3)*(β3) 0.000313       

(β2)*(β4) -0.0817   (β3)*(β6) -0.000215       

(β4)*(β5) -0.0355             

(β4)*(β6) -0.1325             

(β3)*(β5) -0.0006             

 

Table 15. RSM coefficients to calculate the objective functions of the semi-complex heterogeneous model 

Term 

RSM 

Coefficient   Term  

RSM 

Coefficient   Term  

RSM 

Coefficient 

RF   cSOR   cSolv 

Interception (β0) 4.56   Interception (β0) 6.2087   Interception (β0) 4.29E+06 

Propane1 (β1) -30.56   Propane1 (β1) 0.7870   Propane1 (β1) -5.70E+06 

Cyclesolv1 (β2) 1.42   Cyclesolv1 (β2) 0   Cyclesolv1 (β2) 71785.50 

Cyclesteam1 (β3) -0.3934   Cyclesteam1 (β3) 0   Cyclesteam1 (β3) -111437 

Propane2 (β4) -30.8062   Propane2 (β4) -0.9396   Propane2 (β4) -2.57E+06 

Cyclesolv2 (β5) -0.2610   Cyclesolv2 (β5) 0.0031   Cyclesolv2 (β5) 3581.44 

Cyclesteam2 (β6) 0.3803   Cyclesteam2 (β6) 0.0032   Cyclesteam2 (β6) 71989.80 

BHPsteam1 (β7) -0.0105   BHPsteam1 (β7) -0.0031   BHPsteam1 (β7) -3717.23 

Steam trap (β8) -1.2760   Steam trap (β8) -0.2937   Steam trap (β8) -27780.30 

BHG (β9) 0.8771   BHG (β9) 0   BHG (β9) 91133.70 

(β9)*(β9) -0.06   (β7)*(β7) 5.64E-07   (β5)*(β9) -485.10 

(β4)*(β7) 0.0.3351   (β4)*(β7) 0.0004   (β7)*(β7) 0.068 

(β2)*(β7) -0.0003   (β1)*(β8) -0.0788   (β1)*(β7) 1379.45 

(β3)*(β7) 0.0005   (β4)*(β4) -0.3423   (β4)*(β7) 1378.32 

(β1)*(β1) 49.1765   (β8)*(β8) 0.01807   (β2)*(β7) -9.1544 

(β1)*(β4) 6.6975         (β1)*(β1) 2.69E+06 

(β4)*(β4) 58.4522         (β4)*(β4) 1.36E+06 
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(β2)*(β4) -0.2660   
  

    (β2)*(β4) -4688.14 

(β3)*(β4) -0.7026       (β3)*(β4) -32221.30 

(β4)*(β6) -0.57651         (β2)*(β2) -262.02 

(β2)*(β3) -0.01055         (β3)*(β3) 1173.12 

(β5)*(β5) 0.00124         (β6)*(β6) -618.75 

 

Table 16. RSM coefficients to calculate the objective functions of the complex heterogeneous model.  

Term  

RSM 

Coefficient   Term  

RSM 

Coefficient   Term  

RSM 

Coefficient 

RF   cSOR   cSolv 

Interception (β0) -238.21   Interception (β0) 0.4281   Interception (β0) -9.24E+06 

Propane1 (β1) -107.41   Propane1 (β1) -1.1698   Propane1 (β1) -1.80E+06 

Cyclesolv1 (β2) -0.84   Cyclesolv1 (β2) 0   Cyclesolv1 (β2) -32,837.8 

Cyclesteam1 (β3) -0.5828   Cyclesteam1 (β3) -0.0110   Cyclesteam1 (β3) 20,058.30 

Propane2 (β4) -29.2263   Propane2 (β4) -2.7905   Propane2 (β4) 1.03E+06 

Cyclesolv2 (β5) 0.6998   Cyclesolv2 (β5) 0.0232   Cyclesolv2 (β5) 19,091.70 

Cyclesteam2 (β6) 8.0751   Cyclesteam2 (β6) -0.00049   Cyclesteam2 (β6) 234,858 

BHPsteam1 (β7) 0.0299   BHPsteam1 (β7) 0.00066   BHPsteam1 (β7) 9.55.487 

Steam trap (β8) -0.7990   Steam trap (β8) 0.03986   Steam trap (β8) 46,561 

BHG (β9) 5.2277   BHG (β9) 0.0703   BHG (β9) 245,038 

(β7)*(β9) -0.0020   (β7)*(β9) -2.48E-05   (β7)*(β9) -48.40 

(β1)*(β9) 0.9778   (β8)*(β9) -4.14E-05   (β1)*(β9) 31,465.10 

(β4)*(β7) 0.0110   (β1)*(β8) -0.0655   (β3)*(β9) -1,778.41 

(β7)*(β8) -0.0016   (β1)*(β6) 0.0232   (β4)*(β7) 398.96 

(β1)*(β1) 46.8455   (β3)*(β4) 0.02504   (β7)*(β8) -49.64 

(β1)*(β8) 0.7365   (β4)*(β6) 0.01996   (β1)*(β1) 848,250 

(β1)*(β6) 1.4870   (β8)*(β8) 0.01415   (β1)*(β3) -17,598.40 

(β4)*(β4) 24.9726   (β6)*(β8) -0.0002046   (β1)*(β6) 40840.1 

(β2)*(β4) -0.140332   (β5)*(β5) -0.0001205   (β4)*(β4) 542100 

(β8)*(β8) 0.144108         (β2)*(β4) -4705.39 

(β6)*(β8) 0.04151         (β4)*(β6) 1268.84 

(β2)*(β3) 0.02933         (β8)*(β8) 2152.1 

(β2)*(β6) -0.0099         (β6)*(β8) 835.23 

(β5)*(β5) -0.00401         (β2)*(β3) 717.177 

(β3)*(β6) -0.0222         (β5)*(β5) -106.757 

(β6)*(β6) -0.05754         (β3)*(β6) -833.406 

            (β6)*(β6) -1781.47 
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Appendix B 

This section presents the optimization ranges for the homogeneous model for each of the 

selected decision variables using MOPSO and PESA-II.  

 
Figure 45. Optimal ranges obtained using MOPSO for the first period vs. the objective functions in the blue 

section. 

 

 
Figure 46. Optimal ranges obtained using MOPSO for the second period vs. the objective functions in the 

blue section. 
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Figure 47. Optimal ranges obtained using MOPSO for the first period vs. the objective functions in the 

magenta section. 

 
Figure 48. Optimal ranges obtained using MOPSO for the second period vs the objective functions in the 

magenta section. 
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Figure 49. Optimal ranges obtained using MOPSO for the first period vs. the objective functions in the green 

section. 

 
Figure 50. Optimal ranges obtained using MOPSO for the second period vs. the objective functions in the 

green section. 
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Figure 51. Optimal ranges obtained using PESA-II for the first period vs. the objective functions in the blue 

section. 

 
Figure 52. Optimal ranges obtained using PESA-II for the second period vs. the objective functions in the 

blue section. 
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Figure 53. Optimal ranges obtained using PESA-II for the first period vs. the objective functions in the 

magenta section. 

 
Figure 54. Optimal ranges obtained using PESA-II for the second period vs the objective functions in the 

magenta section. 



113 

 

 
Figure 55. Optimal ranges obtained using PESA-II for the first period vs. the objective functions in the green 

section. 

 
Figure 56. Optimal ranges obtained using PESA-II for the second period vs. the objective functions in the 

green section. 
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Appendix C 

This section presents the optimization ranges for the homogeneous, simple heterogeneous, 

semi-complex heterogeneous and complex heterogeneous for each of the selected decision 

variables using MOPSO and PESA-II.  

 
Figure 57. Optimal ranges using PESA-II for the homogeneous model in the blue quadrant. 

 

 

Figure 58. Optimal ranges using PESA-II for the homogeneous model in the magenta quadrant. 
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Figure 59. Optimal ranges using PESA-II for the homogeneous model in the red quadrant. 

 

 
Figure 60. Optimal ranges using PESA-II for the homogeneous model in the green quadrant. 
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Figure 61. Optimal ranges using PESA-II for the simple heterogeneous model in the blue quadrant. 

 

Figure 62. Optimal ranges using PESA-II for the simple heterogeneous model in the magenta quadrant. 
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Figure 63. Optimal ranges using PESA-II for the simple heterogeneous model in the red quadrant. 

 
Figure 64. Optimal ranges using PESA-II for the simple heterogeneous model in the green quadrant. 
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Figure 65. Optimal ranges using PESA-II for the semi-complex heterogeneous model in the blue quadrant. 

 
Figure 66. Optimal ranges using PESA-II for the semi-complex heterogeneous model in the magenta 

quadrant. 
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Figure 67. Optimal ranges using PESA-II for the semi-com plex heterogeneous model in the red quadrant. 

 
Figure 68. Optimal ranges using PESA-II for the semi-complex heterogeneous model in the green quadrant. 
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Figure 69. Optimal ranges using PESA-II for the complex heterogeneous model in the blue quadrant. 

 
Figure 70. Optimal ranges using PESA-II for the complex heterogeneous model in the magenta quadrant. 
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Figure 71. Optimal ranges using PESA-II for the complex heterogeneous model in the red quadrant. 

 
Figure 72. Optimal ranges using PESA-II for the complex heterogeneous model in the green quadrant. 
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Figure 73. Optimal ranges using MOPSO for the homogeneous model in the blue quadrant. 

 

 

Figure 74. Optimal ranges using MOPSO for the homogeneous model in the magenta quadrant. 
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Figure 75. Optimal ranges using MOPSO for the homogeneous model in the green quadrant. 

 

Figure 76. Optimal ranges using MOPSO for the simple heterogeneous model in the blue quadrant. 
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Figure 77. Optimal ranges using MOPSO for the simple heterogeneous model in the magenta quadrant. 

 
Figure 78. Optimal ranges using MOPSO for the simple heterogeneous model in the red quadrant. 
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Figure 79. Optimal ranges using MOPSO for the simple heterogeneous model in the green quadrant. 

 

 

Figure 80. Optimal ranges using MOPSO for the semi-complex heterogeneous model in the blue quadrant. 
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Figure 81. Optimal ranges using MOPSO for the semi-complex heterogeneous model in the magenta 

quadrant. 

 
Figure 82. Optimal ranges using MOPSO for the semi-complex heterogeneous model in the red quadrant. 
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Figure 83. Optimal ranges using MOPSO for the semi-complex heterogeneous model in the green quadrant. 

 

 
Figure 84. Optimal ranges using MOPSO for the complex heterogeneous model in the blue quadrant. 
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Figure 85. Optimal ranges using MOPSO for the complex heterogeneous model in the magenta quadrant. 

 
Figure 86. Optimal ranges using MOPSO for the complex heterogeneous model in the red quadrant. 
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Figure 87. Optimal ranges using MOPSO for the complex heterogeneous model in the green quadrant. 

 

 

 


