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S e - @ aBsTRacT |
o .r.Modal Analys1s”rs becomlng an 1ntegra1 part in the .‘;'hh
»3‘:~ de51gn phase and trouble shoot1ng aspects of n01se and |
'j??-vlbratlon related problems. Low cost dzgltal hardware and
2 1ncrea51ngly eff1c1ent software have fac111tated the .
— 'u..w1despread use of thzs technlque.' o ‘,:.1 .
ihg study 1s made 1nto the 1mplementatlon of the 1mpulse
loadlng method for the purpose of determlnlng the -modal
parameters of a structure u51ng transfer functlon analy51s.J
| From thls studyﬂ a practlcal mod;l analy51s approach is .
outllned that 1s d 51@ned to be used wzthout the aid of o
spec1allzed modal anafy51s unlts. Detalls ;f this procedure'
1ncIude' aspects of data aquisltlon w1ndow1ng 1n the t1me
; and frequency domalns, curve f1tt1ng and the use “of curve
Cre fit values ‘to estimate the modal parameters in- questlon.
| Tests were performed on a contlnuous free free beam to
verify the technlque by compar1ng the results with: those'
. -pred1cted from theory ‘The technlque was then applled to. a'
practlcal englneer1ng problem- dynamxc analysis of an a1r

compressor and 1ts 1nert1al base.-
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1.1 F.E.M. andTModal‘Testing. - . B _ N
' Exact, closed form solut1ons descrlblng the dynam1c

o

- ‘behavior of a body ex;st for but a few s1mp1e homogeneous

**'conf1guratlonsa For- more complex structureS, it is necessary

to use alternate methods to determxne thelr v1bratlonal

characterlstlcs. Commonly employed procedures are f1n1te '
:element analy51s and modal testlng methods., : v .f

‘In f1n1te element analysls, the structuéells dlvxded -
'?;1nto a f1n1te number of dlscrete.elements. The eQUatlons of
motloh of the 1nd1v1dual,&®ements along with the

constraining boundary cond1tions, together descrfibe the - |
overall motion of the-body Once this mathematic' model has
"~beén'formed,,1t can be used very effectlvely to study both
the statlc and dynam1c behav1or of. the body due togaIy
: number of d1fferent loadlng condltlons. The effects of
;changes in design and materlal selectlon can at once be-
determ1ned whereas actual prototype testing would be a much
slower and more expen51ve route to choose. .

De51gn1ng using the f1n1te element method does have
‘ 1ts problems however. They 1nclude, ‘the” large computer
pr ograms and memory Space required to model the structure
4adequate1y and the often large dlscrepenc1es between ot
predlcted and actual test results. Dlrect dynamlc testlng,

‘ then as necessary to determlne the val1d1ty of any computer

<modelllng that is carrled out.
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Dynamic or modal testzng is normally of one of two .
types- normal mode or transfer functlon methods. In ndrmal
,mode test1ng, resonant modes are exc1ted one at a t1me .
(u51ng shaker tables) and the natural frequenc1es, damplng
: and mode shapes‘can be determ1ned This process however, is
dlfflcult to use when two adjacent modes are close together
because of the problem of exc1t1ng only one mode at a time,
;espec1ally if the damplng is apprec1able. Another- problem
with thls method is its 11m1ted versatlllty Field testlng
is very 1mpract1cal because of the large amount»of-equlpment
to set up, and the analy51siof large structures 1s llmlted
by the 51ze and number of shaker tables avallable.

The transfer functlon method 1s ‘superior. to the normal
~ mode method, in that’ all of the domlnant modes can be
'.measured 51multaneously As well a large varlety of single
unit exciting methods can be employed to force the structure
wh;ch helps keep equipment and time requ;rements to a
minimum. By using the Fourier transform to.determine the

transfer functlon between varlous po1nts on the test ‘
| structure, and curve f1tt1ng these experlmental transfer‘\

functions to a standard form, 1t is p0551b1e to qu1ckly_

determine the vibrational‘properties-of the structure.

1.2 Practicalmuodai AnalySis
Transfer functlon test 51gnals are usually dlgltlzed
rlght on locatxon u51ng dual channel FFT: analyzers. For the

pugbose of this study, howéver, itdwas deemedimore useful to
. - E . . . ";"
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record raw ‘fielg, data on a- portable multlchannel FM‘tape'.
recorder. The main reason for ch0051ng thls route was that.
-many appllcatlons of the type of analysis requ1re the taking
ﬁof data in d1rty or hazardous env1ronments (e.q. chemlcal
‘reflnerles) - In this way, test data could be qulckly stored
"hon tape and later played back for analy51s. A second ‘and

\

| perhaps as’ 1mportant a reason as the flrst is that it
tay .

all ws flexlblllty in the processing of the 51gnals. Tests

can

e. done on various frequency ranges, all\u51ng portions
of the same test data. Unless special provisions are made,
(i.e. using hlgh sampllng rates and large sampllng times)
purely digital test systems requ1re add1tlonal tests if
vdlfferent frequency ranges are to be used. Another
flex1b111ty that this arrangment lends 1tself to is the’ fact
that a multichanhel FFT unit is not requ1red to process the -
information. Instead the analog ‘data may be filtered and
dlgltlzed wlth conventional equlpment

Privately developed or commercially available software
can then be employed to reduce the data to yield the desired
modal parameters. Thls approach allows a company or
consuleang firm to be*able to do complete modal analy51s
w1th equipment (FM recorder, filtens, digitizers and
computlng fac111ty) that is usually already available. The
complete modal analy51s units on the other hand tie up a
"lot of capltal in a system that 1n many cases has limited

Ky

flex1b111ty and a short half-life before becoming obselete.
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1.3 Research Outlxne
The intent of this'study was to investigate the
‘flexiblility of implementing a practical approach to modal

analysis. Thls was to’ 1nclude both the wr:tlng of the data

(
!

‘ -acqu151tlon and modal analy51s software as well as a

descrlptlon of what type of equ1pment 1s required to
successfully carry out this procedure.

.Chapter two of this report contains the formulation of
.transfer functions in the Laplace domain _from the equatlons
- of motion for a structure. It also shows how results

obtalned from a Four1er transform of a time record relate to

the Laplace doma1n representatlon of the body ThlS chapter

concludes with a dlscuss1on on the llmltatlons and
_assumptions of the dlscrete Fourier transform. S _
.- Chapter three deals w1th aspects of curve f1tt1ng the
'bexper1mental data to the analytlcal representatlon of the:
transfer funct1ons that were developed in the prev1ous
chapter. It shows how an approx1mate.11near method can be
used to generate good initial estimates for the modal
parameters in question and how'a simultaneous), multi-degree
~of freedom curve fit can be used to accurately complete the
process. ThiS'is followed by a modal vector identification‘
scheme that can deal with e1ther normal or complex mode
,shapes.
The\following section, Chapter four, laddresses some of

the practical con51deratlons that one must be concerned w1th

when us1ng transfer functlon analysis. The first deals with

P
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the types of exc1tat10n procedures commonly used and why

'trans1ent test1ng was chosen in thls study This.is followed

by a dlscusggan into the kind of equlpment that is requlred

to f1rst ofgalﬁ record the field data, and later play back

MY

the signals to be dlgltlzed and analyzed The f1nal part of

this chapter laeks 1nto the coherence function and its use

N \

in determining some propert1es about the quallty of the

generated 51gnals. E

Chapter five dxscusses the set-up and results of two

' experlmental tests. The flrst test was done on a free- free

\z
beam to allow easy cdﬂg&rlson between theoretlcally

predlcted and experlmentally derlved results. The second set
of tests were done on an a1r compressof base as an example
s

of a practical eng1neer1ng appllcatlon of the procedure.

The final chapter llstsﬁﬁhe conclu51ons to the study

‘and points out p0551ble areas of\future research that stem

from this pro;ect.. : \5§

N\



2 THEORETICAL CONSIDERATIONS |
To understand the transfer functlon method of testlng, this
chapter beglns with the development of the transfer
'funct1ons from the equatlons of motlon. It is then shown hOw
,ncerta1n propertles of the set of transfer functlons for the
~§tructure, allow greatly s1mp11f1ed testlng technlques when

,employlng thls method-

2.1 Transfer Functions in the Laplace Domaln
) Cons1der a. continuous- structure whose dynamlc behav1orl
1s to be determlned It will be modelled by a series of
dlscrete masses 1nterconnected w1th linear sprlngs and -
v1scous dampers. The motion of th1s configuratlon may ‘then
be descrlbed by a set of second order ‘linear dlfferentlal
equatlons w1th constant coeff1c;ents. In the_tlme domain,

these equations would have the form:

ES -

D)) + [CHE®)) + [KIIx(0)]) = 206))  (2.1)
where: {f(t)}'—'applied forcing vector (nk1)_ »
| {x(t)} -5resulting displacement vector (nx1)

flrst and second derlvatzves of

{x(t)} & {¥(t)}
. . {x(t)} with respect to tlme (nx1)

[M],[C] & [K] mass, damping and stiffness

matrlces (nxn)

Although it is not necessary to do so,_we will only

con51der the casé where [M] [c] and- [K] are symmetrlc



-

' matrices with real valued elements/(see Potter, [13] ).
Taklng the Laplace transform of equatlon (2 1) and
considering the case where the 1n1t1al veloc1t1es and

v dlsplacements are zero at t=0, 1t will follow that:
[M]{x(s)}s2 +[C]{x(s)}s +[K]{x(s)} = {f(s)}
. Def1n1ng the system matr1x as,
[B(s)] = [M]s? + [Cls + [K]
equation (2.2)_canvbe simplified to: .

[B(s)I{x(s)} = {£(s)]}

m\

(2.2)

Y (2.3)

’

(2.4) -

The transfer matrix of the system, [H(s)], is defined as:

[H(s)] = [B(s)]+"

C6nsidering equation.(2;3)aand_notlng that,

~ |  [H(s)] = adi[B(s)]
D\ ‘ : det'[B(§)]

(2.55‘7

it is apparent that each element of [H(s)] is a rat1ona1

functlon of the Laplace variable, 's',. Therefore each term

in the transfer matrix can be expéessed in partial fract1on

ﬂorm. The zeroes of the det[B(s)] (the poles of the transfer

matrix) always occur in complex conjugate pa1rs except when

the system is cr1t1cally damped or over- damped (poles w

~ be real valged in these situations).

___________________ _ .
'Numbers in square brackets refpr to references

A}

111

.Q\v



N

Assumlng the poles are of un1t mult1p11c1ty, [H(s)] may
be wr1t§2n as, . " a -

S

fH(s)] = [A,] + [A,*] + ;'1 + [Aﬁjv+ [A,*]

“P1 sTpi* S=Pn - S-p,*

or more simply as,

1

-~
n . | o -
[H(s)] = (AT + [Aa,*] : , (2.6)
Clmny o
where: [a,] - complex reszdue matr1x, (nxn)
p, - kth pole of the system \
n -

total number of modes

"*' - denotes complex conjugate

2.2 Residue Matrix Prbperties o
‘ _ To determ1ne some useful propertles of the res1due

4
matr1x [Ak], equat1on (2.6) is pre-multlglled by thé system

matrlx [B(s)] and the scaler (s- pg)

Vel

(s-pg)[B(é)J[H(S)]‘= (s=pe)[B(s)]|... + JA ] + [a *] N
‘ o 0 : = P« S=pu*
| . f ]
: From equatlon (2. 5) ve see that [B(s)][H(s)] = [I] (the y
| 1dent1tY«matr1x) therefore the left hand side of the above
equation reduces to (s- p.)[I]. If we let $=pu, the left hand

T
: s1de will be 1dent1ca11y zero and the right hand 51de~w111_

be reduced to [B(pk)][Ak] therefore:



\\‘- o .fB(pu)][Ag] =0 . o (2.7) -
In a similﬁr manner post-mult1p1y1ng equatlon (2 6) by

[B(s)](s-p.) and allowing s=p,, it ‘will be seen that

o rAkJ[B<pk>1 -0 " (2.8)

‘Now con51der equatlon (2 4) with the forc1ng functlon,

{f(s)} set equal to zero. ' ' “'f; T
[B(s)J{x(S)} =0

These homogeneous equatlons correspond to the free, damped
'v1brét10n of the system Non- tr1v1al solut1ons will only

exlst if the det[B(s)] = 0. For a value of 's' that

satlsfles det[B(s)]”= 0, say ;=pk, there w1ll also exlst a
" unlque solutlon vector, {uv} such that: |

Bt%pr>1{ul} =0 (2.

ey

{uk} is known as the modal vector ot mode shape for the pole
spk, . : o S ' ; on
v
If we now consider equatlons (2.7) & (2.8) in the l1ght
of equation (2.9), ‘it can be seen that both the‘columns and
- the rows of the res1due matrix [Ak], myst be 11near

comblnatlons of the modal vector {ucl. [A ] can then be

* replaced by,

(Ac] = aufuillubausn )y = e fud e (2.10)




10
--wherel'cg; rs a complex constant ‘In general the elements of
the modal vector {u,} are’ complex. If however, the system is
proportlonally damped’, the modal vectors w1ll be purely

imaginary. Substltutlng equatlon (2 10) into equation (2.6)

YIEldS, .
[H(s)] = = [akfuk}{uk}s + ,a.,*{uk*}{uk*}'] (2.11)
S 5:.k=1 S—Px . . S=py ¥ T

Y

Due to the propertles of the re51due matrlx (equatlon
(2 10)) 1t is only necessary to make measurements that WIll

: g
cgmplete one row or column of the matr1x to completely

,,f deflne the System. Thls ‘can be accompllshed by exc1t1ng the

'structure at one poxnt and recordlng the response at all
other po1nts of 1nterest (51mu1taneously or one: at a tlme)
Alternatlvely the response can be measured at one flxed

p01nt and then allow the forc1ng stlmulus to be p051tloned

-at var1ous p01nts on ‘the: structure

2.3 Frequency Response Function v

Between any two points on the test structure the

‘transfer function can be found by formlng the follow1ng

-~

operatlon

H(s),; = X(s)i“ o ~
L ‘ F(S)y

where X(s), iS'the‘Laplace transform of the'response at a
point 'i' due to theffopcing.function and its corresponding

*For a more general‘discussion, seeACaughey [5].

0
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_Laplace transform}-F(s),, at point"j'. ' N
For the purpose of thls study, ‘the complex varlable

'

s', can:be written as, -

s = v-t Jw
where 'o' is the damp&ng coefficient-and 'éf’is the damped
angular frequency. A complex pole of a system_is_written,as

o= +07 S
Px " \qu.

The damp1ng coeff1c1ent of a pole Ov, is negative'for a
stable system and the natural frequency, wk, is actually
the damped natural frequency for the partlcular mode. The

undamped natural frequency (resonant frequency) is found

~

from
- Gun = (0 + 0,700
and the ‘damping ratio is determined. from

{ = —0,
Wy g
B

Both the real and 1maglnary components of the transfer
functlon H(s) .map out contlnuous surfaces over the Laplace
plane (except at pole locations). To be able to fully
~descrxbe the surfaces and represent them in the form of
equation- (2.11) it is not necessary to make measurements
over the e“t?re s-plane, becausetthe surface is‘described by

- an analytic function, -
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- In practlce, the transfer funct1ons are measured along
thewlmaglnary axls. What is 1n fact done 1s to e:aluate a
"Fourler transform rather than a complete Laplace .
'transformatlon. This is equ1valent ta lettlng s= jw (1.e.;
0=0) and computlng the transfer functxon along this llne.
This representat1on of the trd%sfer function is known'a§ the

'frequency response functlon From these measured values,

rdbthe ‘entire s-plane representat1on may be formed -if de51red

v‘2;4 Discrete Fourier Transform

«The Fourier transform is defined as:
G(f) = I g(t)exp(~j2rftiat,

Practical 11m1tat10ns neceSs1tate that the signal record be

1

~ of f1n1te duratlon say from t=0 to t=T, such that;
N ' I~ ] : . "

-

: . G(F) = g(t)exp(-jzwftldt.
- -0 o

.fhe analog signals, that are to be analyzed are normally
-;dlgltlzed to allow eff1c1ent handllng and proce531ng of the.
data. This dlscretlzatlon coupled with the tlme llmlted

‘sample record, reduces the integral transform to a dzscrete

Fourler transform of the form; .

N1 ."‘ ' - R

G(f,) = 1/N T g(t )exp(-_]21rf‘., ) ' (2.12)
: ‘m.O ) :



\

" 11m1t1ng ;he maxlmum obtalnable frequency resolutlon (Af =-_,f

>

‘there 'N' is the number.bf“samples,of the time domain

sighal. P B
The w1ndow1ng in the tlme domain has the efﬁect“of

s

-

1/T) Any 1ncrease in frequency resolut1on for a- g:ven test

‘must be accompanﬁed with 1onger sampllng tzmes. The f1n1te

number of time sample points recorded (typlcally N= 1024)

i 11m1ts the maxlmum obta1nable frequency,rfm, that may be

>

S

' Q

determlned The sampllng perlod At, is glven by

e . . Ato= I
: N

and f, is found from

.. To obtain'information in higher frequency ranges, -
shorter sampl1ng ‘pPeriods must be employed If N is to stay -
flxed however this dlctates lower (and often unacceptable)

frequency resolutlons..To allev1ate thls problem 'zoom'

’transformat1ons are used. which allow the operator to choose

the upper and lower frequenc1es over whlch the Fourler
transformat1on is to be performed Thls then allows the‘
avallable number of spectral llnes to be used in. a specxfzc
bandwldth of interest rathsr than from DC to some _maximum _7-

frequency (see [12]) ’ | , . o 5;%
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2.5:Windowihg R

The dlgltlz1ng of the t1me doma1n 51gnals are subject.

' to Shannon s sanipling theorem which states that 1n order to
'~'av01d alxaszng or 'foldzng back' 1n the frequency domaln,
‘the sampllng rate must be greater ‘than twlce the hlghest
.frequency content of the aneform to be analyzed By passing
.‘the s1gnals through low pass fxlters however, does not |
awensure that the frequency content above some desrgnated
frequency has been attenuated to zero. It would be necessary
. to sample at an 1nf1n1te rate to avoid any a11a51ng forwa
i general waveform Sampllng at-.a finite rate ther; will ** +

1nvolve fold1ng back to some degree (except for a band

. _llmlted functlon) Its effect however, can be safely 1gnored‘_

if the frequency content. of the 51gnal that is folded back
is small compared to that™in the frequency range of
1nterest : |

In typ1cal waveform ana1y51s, the aqalog 51gnals are
flgst of all passed through sharp roll- off low pass fllters
(the cut of £ is set at the hlghest frequency of 1nterest |
fm). These waveforms are then d191t1zed at a rate of £,
.where #%>2fm. Any frequency content of the‘signal'greater

. than f, “Fm wall be- folded back to the frequency range in-

questlon. However if f =2, 56f and the low pass fllter has a

roll -off rate of 96dB/octave, then the 51gnal folded back

onto,the frequency fm, would be attenuated by 62dB Th;s-‘\___"”

degree of suppress%pn is normally more than adequate to take

care of any potentlal a11a51ng problems.{;;:*

- - . D A

e AT s e T L




Once - the 51gnals have been properly flltered and
fdlg1§1zed pa d1screte Fourler transform 1s performed on
" them, Examlnlng equatlon (2. 12) Nt is seen that the
“F"frequency domain, in addition to the tlme domaln 51gnal 1s
con51dered in a dlscrete rather than in a- contlnuous sensew,éé
vThls is necessary because for d191ta1 computatlon only |
. discrete- values of ‘the frequency response funct1on can be
,formed It is 'shown in [3] that thls' unlform sampllng in
.the frequency domaln 1mp11es that the t1me domain szgnal be'
‘ per10d1c. This means that any trme domaln 51gnal that is tofl
f'be analyzed ust be representatlve of one perlod (or an
A1nteger multlple of it). If this is not true, 51gn1f1cantJ
distortion of the frequency spectrum‘may result. To reduce
this effect, time domain windows are used, which force the
s1gnal to be perlodlc within the sample time. This 1s done
by 51mply multlplylng the measured digitized 51gnal by a
- function. that tapers ‘off to zero at e1ther end of the
w1ndow A commonly used wlndow in . ‘the Study of contlnuous

s1gnals is the Hannlng w1ndow wh;ch has the functlonal form
wit) = 0.5[1 -~ cos(2rt/T)] osesr.

e b Although this, or any other applled w1ndow does not totally
ellmlnate the d1stort10n (the w1ndow1ng process 1tself adds

some predlctable amount of dlstortlon to the 51gnal) caused |

by a flnqte tumersample, thewwbndowang reduces th

dlstort1on to a level from whlch mean1ngful results can be e

B e TS B R S - . ;L..‘ '-". L ‘..,__‘,-_‘_
derlved - . 0T ‘7"“' "

..~»..Am.



T the tlme block  This can be expteSsed as,ﬁ
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Dur1ng the course of thlS study, impulse testing was
employed as an exc1t1ng force in the determlnatlon of the
transfer functions for a structure. ‘This type of exc1tatlon
_ resulted in tran51ent waveforms for both the forc1ng and
response s1gnals. Typlcal experlmental s1gnals, that havel
been low pass filtered, are shown in flgures 2.1 %nd 2.?.
When computlng the Fourler‘spectrum, these tran51ent
vwaveforms requ1re different w1ndow1ng functlons than those
used w1th contlnuous 51gnals. In fact, the 1nput force
51gnal does not even requ1re a window because 1t is
self zﬁ:dowlng (that is, it occurs completely within the
.allotted time block) The response signal on‘?he other hand
which is cbmposed of decay1ng s1nu501ds, may not have died
out completely in the time record and must therefore be
windowed.'It is apparentlthat.applying a Hanning window to
this type of signal would not be appropr1ate, because in’the
| process of forc1ng the 51gnal to zero at both ends of the
vrecord‘ 1t has' "lost' the majorlty of its: 1nformat10n that
was situated at the. beg1nn1ng of .- the time record. For this
type of signal, aniexponentlal window 'is used. A commonly
uséd form of thls window weights the data by a factor of one

at’ the start of the w1ndow to ‘a factor of O 05 at the end of

- »’)-—’

- . e . —~ oL - a. . oy

‘ -w(t%:n exp(mﬂ%)u R I ‘.fi'p

Iy - Lo e e LI B - . » R

. where 8 = log(0. 05)/T. It should be noted. that unllke the

Hannlng wlndow, the exponent1al wlndow does not force the-

s Sl
g w0 "bgn‘t; ) e e
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signal to be zero at both ends of the- tlme record The

left- hand edge of the response signal is already zero due to
the fact that the structure has not yet_been excited, and. so
there is wo needvfor weightinc at this point. As the-
response 51gnal continues in tlme, ‘it decays exponentlally
-and the effect of the wlndow is to 1ncrease the apparent
damping in the system, by brxnglng the rlght hand- edge of
the signal as close to zero as de51red When the modal
parameters are determlned from the exponent;ally windowed
'response'functions, the mefsured damping values (0) will be
the sum of the actual damp1l preesent . in a particular mode
and the amount of damping present in the Qindow itself (B)
To obtain the true damping for a mode then, it is only
necessary to subtract the damping induced by the window from
the total measured damping”value. It should be noted that
the apparent 1ncrease in damping induced by the exponentlal
w1ndow, can cause tightly spaced, heav11y damped ‘modes to
become very difficult to analyze and therefore may require
"addltlonal tests with increased frequency resolutlon.

The exponent1a1 window has an additional feature which
makes it even more useful as a Qindowing~function of the
response signals. This is'due to the fact, that as the
response signal becomes‘smaller at the end of the time
record, the signal to noise ratio is significantly reduced
(especially in heavily damped systems). This would tend to
add unwant®d noise into the signal. However, when the‘

exponential window isvapplied, it most heavily weights the
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51gnal at the beglnnlng of the time block where the 51gna1
to noise ratio is highest, whlle the potentladly noisy
'port1on of ithe signal is largely suppressed.

As stateﬁ earller, no w1ndow1ng is necessary for the
1.1mpul§e forc1ng funct1on to meet the perlodlc t1me domain'
cr1ter1a of the discrete Fourler transform Wlndowlng is
used on this type of 51gna1 howeVer, to reduce the 1nherent ‘
n01se in the signal that s due to 'the. short duratlon of the‘;;;
impulse compared to the total sample length. A s1mp1e type ‘
vof window that can be used is a rectangular function. With-
this w1ndow,vthe actua} impulse portion Qf the signal, is |
given a weighting of unity and the data beyond that point is
set to zero so that any stray noise in- that sectlon of the

51gnal is removed.



‘3: IDENTIFICATION OF MODAL PARAMETERS

5”W0nce'one row or column of the transfer function matrix

- PP - - o .« . .

has been measured Sit is: then necessary to determlne the

modal parameters (natural frequency,.damplng coeff1c1ent and

-.mode shape) for each mode in the frequency range of

-1nterest Assumlng a linear model is val1d for the test

‘Avstructure (as in equatlon (2. 1)) the correspondlng transfer

:functlons may. be represented by a 51mple sum of- the respons
’-;curves for each of the natural frequenc1es of the system.

Flgure 3 1 shows an example of a transfer functlon

(SOlld line) and 1ts contrlbutlng single. degree of fréedom

components. Notice that the net transfer funct1on 11es below

N - N )
L. O - e e R @ A w9

~

G;Asome of 1ts contrlbutlng components; At flrst thls would'h-
‘.;appear to be ‘an’ 1naccurate summatlon. It must e remembered
however that the transfer functlon is complex valued and .

that the overall transfer function. ‘ig the ‘'sum of the real

.and 1mag1nary parts of the single’ degree of freedom systems

(only the magnltude is shown in figure 3.1).
* The density of the modes will dictate what type of
analysis is necessary for extraction of these parameters.

When the natural frequenc1es of the system are well spread

apart and the damp1ng is llght single mode methods are used

. which make use of the data 1n the 1mmed1ate area of the'

resonance peak On the other hand, a multlple mode technique-

is requ1red to separate and identify a system ith'tightly~

Spaced peaks and large damping factors. Here it is necessary

that all of the modal parameters be 1dent1f1ed

B et TN . " . . am _,..;.-Mm.m\»m.m.,,mw.,&‘...,.. e e e e

A J

o

o«
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. L. Pigre 3.1 . MDOF Transter Fundiien ‘o

in the computatlons are typlcally obtained from single mode
'approx1matlons.
In modal‘analysis, the process of-identification of a
‘v System'is’of£en'£ermed curve ﬁ1tt1ng Thls is because
' exper1mental data is frequently\flt (in a least- -sguares
sense) to an analytlcal-transfer’function. A common function

used to fit the data is showh below.

(3.1)
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ThlS equatlon is dbtained by substltutlng s—Jw 1nto equatlon
(2.6) (as the transformed experlméntal data 1s in the
"frequency domaln) and by cons1der1ng one element in the

- re51due matrlx [A, ] (and the correspondlng element in

.

[Ak*]) The non- llnear nature of this functlon often makes
1t dlfflcult to successfully carry out the 1dent1f1cat10n

N . o o
schemes. ' : o S : :

“3.1 Levy Curve Fit | |

: Generally, single mode -methods are the s;mplest to
plmplement due, tokapproxamat{ons that can be made 1n‘~ o
'estlmatlng the parameters of equatlon (3. ). These |
'technlques however are slow and often do not make use of all
'Wof the avallable data around the mode of 1nterest to obtain
‘a best p0551ble estlmate of the parameters. In addition to.
this, it was de51red to employ a. method that would work H
" eqQually well in 51tuat10ns that would warrant either a
51ngle_or multiple mode»analy515» <

" To satlsfy the above criteria, a complex curve f1tt1ng
scheme. dev1sed by E. C -Lew; was. chosen to: be dged (A short
;'515CUSSIOn outlznlng the major steps 1n the development of
thzs technlque will be presented however an 1ntetested d
reader is encouraged to consult the orlglnal paper. outllnlng‘
the method [10].) ) |

Levy's method rewrites the transfer function of

equation (3.1) as a ratio of two frequency dependent complex

polynomials. This takes the form,

-
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L G(je) = Ag v A Gw) + AiGje)® ... s A (Ge)"s  (3.2)
S T+ .By(Jw) + Ba(jw)? + ... + Bp(jw)™

> .~ - -

or .more: simply as,

e el Gl = Rlw). - (3.3
A o e o Dfw) Lo e T T c
Let the actual exper1menta1 data at frequency ' ”beiQi&enli,.

as H(ka). The error at th1s p01nt is deflned as

-

(@) = Hjo,) - 6Jwy) = Hjwy) - N(uhz S (3.0

D{(wy ) ‘ 3

- Al e . - N

L'Utlllzxng convent;onal least squares analys1s “on’ th!'error,

3

'e(mk) this would yleld a system of 51multaneous nonlinear

‘equatlons to., be solved.wlteratlve technlques are generally

involved which require good startlng values and some. degree

of oberétor~ekpefience To avoid this problem, the error is
mult1p11ed through by the denomlnator of the analytlcal
function. This results in:

e'(wx) = ¢{wy)D(w,) = H(jwf)wak) - N(wk)r: - - {3.8)

Y

", which. rs ﬂow a welghted error. functlon. When the method of

:least Squares is: applzed to the modulus squaned of th1s
'functlon, 1t results in a set of lxnear algebraic equatlons
that can- heeeaslly solved for the coefficients Ao ... A,, B,
...‘Bh (of equation (3. 2)) Whlle this type. of approach at
f1rst glance looks very promlslng, it produces
.unsatlsfactory answers when large frequency ranges are

encountered or when tbe denomxnator ‘term, -D(w), ofwthe'

> -

ko
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analytlcal funct1on has a w1de range of values (lee that-

whlch occurs near a polef ThlS 1s-due to the welghtlng of

the error functlon by the denomlnator term._It has been

"

] f ‘Shown by Sanathanan and Koerner[ZO] that these effects can-

be* v1rtually e11m1nated by a simple’ 1terat10n to. ellmzﬂate '}f“;
‘the we1ght1ng The error functéon of~equatlon (3 5) 1s |
« ¢ . .

_modlfled to the followlng form:

e' " (w) = "(wy) = e(w.)D(uk), ' (3.6‘)
D(ﬁ)k)l-i D(Uk)i_"‘ S _h_.“::__’_,‘\"\-"“" W

..o

R

where the subScrlpt "i;_corresponds to the 1terat10n number.
,Because D(w,) is not‘1n1t1ally known, 1t is set equal to one
. for the first 1terat10n (i.e, the.flrst 1teration is -
1dent1cally the weighted least -sguares mlnlmlzatlon)
Ensulng 1terat10ns converge very rapidly. Five to ten .
1terat1ons are normallyLrequ1red to have the:parameters
agree1ng to within 0. 1% from one iteration~to:the.neitzflﬁ R
o Thls techn1que proved to be very successfuf‘duevtO»gts
speed ease of appllcatlon and agreement with the

‘”experlmental data that 1t was meant to flt - The extractlon

[

.of modal parameters w1th tlghtly spaced, ad]acent modes wvere

also correctly identified using this 51multaneous curve f1t. w2

g

However, 1€‘strayed from the true parameter values when 1t

was appl;ed to fit two or more peaks simultaneously that

were separated by a large number of data p01gts. This -was

not found to be a problem because when the peaks were w1dely
separated, they could be. safely treated as single degree of
freedon'systems w1th-11tt1e 1nteraptiop fromsether'modes}gh ;»‘

L.
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simultaneous fit was thereforefnct necéSsary;
When applying Levy's method, it must be decided how
.imany terms of the numerator and dezcmlnator will be used ‘in
any partlcular chve flt (see equation (3 2)) At f1rst one;t
might select a large number of 'A' ande' B' coeff1c1ents and
let the ensulng calculatlons determlne how many of the terms

'were necessary (i.e. the terms that were not used in the fit

would equal zero (or nearly so)) Thls "bling’ appreach can

PO e

“ilead to’ problems, because .when many excess1ve terms are
used, ill- condltloned numerical problems are frequently
encountered ThlS problem need not occur however, because it
lls very stralght forward to Calculate the exact number of
terms that should. be used in the fit. For a single degree of

freedom the transfer functlon takes the form:

EN L - -~
- Ce W
R R

e e B e e T T
S T , |

where: a‘'= a, + ja,

sewe D - C “ . . o

p = ‘Uo +. on ”""_‘_":‘ .A el :,,z,e"

Substltutlng the expre551ons for 'a'and p and puttlng
“everythrng over a common denomlnator equatlon (3 7) can be
written as: ' '

H(jo) = =2(a,05 + a,wo) + (2a.) juw (3.8)
0o + wo? - (20,)jw - w?

D1v1d1ng both numerator and denomlnator by "002% + wo?"

’

equatlon (3.8) could be written in the form

a
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H(jw) = Ao *+ B, (jw) .. |
~ 1+ By(jw) + By(Jjw)?

o

where Aéng,, B, and B, are real constants that would be
determined from the Levy curve fit. For each addltional mode -
that is to be fit, it can be shown that it is necessary to
add two additional terms to both the numerator and
denominator. So that for two simultaneous modes fot
example, it is necessary to determ1ne the constants Ao to A,
'and—B, to B..

Once the Le&f’coefficients have been determined,'}t is
necessary tO'find»the poles of the system (i.e. to convert
from the form of eguation (3 2) back to that of eguation
(3.1) "This 1s done by calculatlng tﬁe complex zeroes of the
_analytxcal denomlnator functlon (e g. the‘zeroes of "1 4
Bi(Jw) + B, (ju)? + B, (Jw)’+ B (Jw)‘l' for the two degreé of
) freedom_éﬁ%e). These Zeroes typlcally occur in complex |
vconjugate pairs, but they can be purely 1mag1nary ;f the-
damplng is zero. It is then a 51mple matter of performlng a
partlag fractlon expan51on (u51i§F£;99bomputed poles) to
bf1n1sh the transformation, (Appé€ndix a lists a Fortran ‘,
pProgram that computes a Levy curve fit and then converts the .

der:%ed parameters to the partlal fraction form )

3.2 A True MDOF Curve Fit

4

If the curve, f1tt1ng ‘process has not 1nc1uded all of

-

the modes of the s%ructure (always the case for a continupus

N
system) the curve fit will be inaccurate to some degree.

/, B
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.ThlS is because the 'talls of the modes outside the .
frequency range of 1nterest wlll have been measured durlng
.the data acqu151tlon process, (there is no way tg f11ter
them out) but no. terms were included in the curve f1t : .
procedure to account for them. To choose what type of ; g
functlon would best suit the tails of the modesﬂoutside'the’

de51red range, 1t is necessary to examine the transfer

5 , . .
function for one mode. Rewriting equation (3.9) again:

R

. H{jo) = __ Aq + A, (jo)
. 1 + By (Jw) + Bz(jw)z_

it is seen for small values off'w', that the transfer.
function may be represented by a real constant (in thls case
"Ac"). For large 'o valnes_on the other hand, the transfer
function is proportional'toft/ (agaln real vaiued note
that the constant A1 '1s zero when proportlonal damplng is
present or nearly zero when light, non-propértional damping
iexlsts) Ny | | |
- If it is oesired'for example to fit the modes in a
_certain freqoency ‘range (w, to w, ) of a transfer functlon_
and there exists other modes outside this range, the
following ana]ytlcal funct1on would best represent_whatbis
- occurring inside the range of'interest7
Hjw) = c -+ Zj [ ay + ay ¥ ] + D g t3{10)
©T  k=k, |Jo-Pr  Jo-pi¥ T .

»
where 'w' is restricted to w,Swiw, and the modes from 'k

to 'k;' are also located in this range. The term 'C/w?!
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would ta*e care of the effects of the talis of~aa¥ modes

below m.,, and the constant term, 'p! 'would s1mIIar1y;“ :
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. Wlth thls analytlcal model to work w1th R method must ORI

a B ¥

be devxsed to correctly 1dent1fy the constants 1n the .

o A

- express1on Ideally all of the parameters of equat1on (3 10)

should be 1dent1f1ed 51multaneously and preferably u51ng a

«:.least sguares techn1que to smooth out the effects of any

$A

L'*random error. Because of the nonlinear nature of thls L
problem good startlng values (1n1t1al guesses) are ™ &
i r*( '.
necessary to 1ncrease the llkellhood of convergence in the W

1terat1on scheme. As previously noted Levy's method gave a

_:good approxlmatlon to the modes wlthln the range wzthout

71nclud1ng the effects of the modes out51de the range (i.e.

‘;:the term 'C/w? +.D'),’ and therefore would give good startzng

hfvalues for the termsl'ak' and pk (rememberlng that the

‘subscrxpt k' 1nd1cates the kth mode in the range of

"1nterest) To 1n1t1allze 'C' and D' the dlfference 1s now

. formed between the exper1mental data and the Levy curve f1t

model The real part of thlS complex dlffetence is’ curve f1t
to the functloﬁ "C/w? '+ D', Although this f1t may not give
accurate estimates of e and D' 1t at least glves
reasonable start1ng values to the two parameters. .

All of the parameters of equation (3. 10) have now heen

a551gned start1ng values for use in the sxmultaneous curve

fit, The error functlon, €, that is to be_mlnlmlzed using

the least-squares technique, is'normally defined in the
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following way : ' -
PR - - o . t | B T T
. .. e= L IIH(me) j Hexp(me)llz e itte e e
* m=s _ . A :
. ‘?v P o e T':: . . vd P . ’ . ' B - B . n . . . . S . e - B -
where: H( jom) - analytical transfer function

LT (e.q. equation (3.10))

Hexp(jwm) - experimental transfer function

I I indicates modulus

The;minimization can now take one of several routes; it

¢ canqprosaed Aﬂ a purely. 1terative fashion vlthﬁall of. theﬂ

. ‘parameters optimized this way or, the minimization can go

3

| b;ék‘and rorth betgeen solving for the parameters 'a,', 'C'
and 'D' in ailinear fasﬁion and for "the patameters 'p,' with
an iterative approach. If some values of the parameters are
known ‘to pe'accurately determined;’these can be held fixed

‘while minimizing with respect to the other‘variables.

In. thlS study, the first of these three methods was

'chosen due to the ease in programm1ng, that is, performing
the minimization of all of the parameters with an‘Jterative
approach. This method .of computation was - fairly costly in

" terms of comﬂﬁter time and it is suggested that the second

' and third methods could be employed to speed up the process.

The followxng three figures show the typical progress

of a curve fit using the above outllned procedure. Figure

3.2 shows the results of the initial Levy approximation (the

solid line indicates the experimental data). The transfer

function curves are only shown in the frequency range cf the

>
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curve fit because it is only in this range'that the curve
fit is valid.. Figure 3.3 is the same as figure 3.2 except

that it now 1ncludes the prel1m1nary estlmates of _the

X coeff1c1ente 1n.the term 'C/w2 . D" Notrce;the apparent""

'vast 1mprovement' in the flt just due to the addition of

this term. At this point, the fit is not expected to Bé
perfect, even though all of the terms of the analytlcal

functien (equatlon (3 10) ) have been a551gned values. Thls

@ v - ®om . h S e v A o s ome a e .- e
- wog & .

IS "because: these- coef¥1czents are” est1mates sniy; and were“'"”"‘

not calculated 51multaneously .

The final stage of the curve f1tt1ng procedure is the

‘simultaneous least squares m1n1mlzatxon of the error

funct;on,_equation_(3.11), with respect to the parameters

@k ', 'Pe', 'C' and 'D'. As can be seen in figure 3.4, the
analytical curve fit falls very closely beside its

experlmental counterpart

'The largest dlfferences between. the two occur where the

B

curves reach their minimum values. At these locatlons; the
magnitude, of the-error is small (though it appears large
with the log scaling) -and therefore has little effect on the.
simultaneous curve fit. If an improved fit is desired,
weightiog would be'necessary to emphasize the errors in
these regions of the graph.
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3. 3 Mode Shape Determznat1on hf: B E n~fh_“iif-9f~f;-ii.;
~ The f1nal curve f1t parameters of equatlon 32 10) '
‘i‘descrlbe an experlmental transfer funct1on The values .‘ﬂ"i“
‘obtalned however offer l1ttle 1n51ght 1nto the problem.at
hand unless they are compared to,. and used w1th other‘
transfer functions obtained from different testlng p01nts.
- The relationship between the transfer functlon parameters

will become clearer 1& the followlng discussion.’

LN
o - -~

waAs nobed in the prevuous chapten - the. propertles if them
re51due matrix [A, ] made it necessary to only determlne one
row or column of the transfer matrix [H(s)] Rewriting

'equat1on (2.4 as: ?'-“w:

“(x(s)} = [B(s)]“{f(s)}

e L,
. >

~and substituténgmequationr(2~5),7re§ults,in .

¥

(x(s)} = [H(s)1{A(s))

;fo determ1ne one ‘row of the transfer matr1x it"would be
necessary to measure the response at one point on the
“;structure, due.‘to forcing functlons be1ng applled one at a
time, to all of the ‘other poxnts of 1nterest onnthe

structure, i.e,

Hyy from response at point 1 due to force at point 1

H,, from response at point 1 due to force at point 2

R

etc,

In a similar manner, one column of the transfer matrix would

-
@ .
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be deﬁermrned by forcxng'the stxucture at one p01nt and

o measuring the'restnse“at :all-other desxred p01nts on’ the“”*fv

“ e e P, .- s oa - o
EREPN

C_ structure.(51qu1taneously or. one at a t1me) |

In deternlnlng one row of the transfer matrix, fo or
example, one row of each of the re51due magpices'have'
'necessar1ly been determined. Con51der a two degree of

- freedom system‘;

N R NSRS T S YY) () 2y €2 %) |
. C8pg ¥ayy  *ay g cta, . . -8z *ay3 - Ha,g Hags |-
H(s) = I's=p, s=p,* s-p; s-p;* 's- P1 S7P1* $-p; S-p;*
© ~ hd e e - > -~ o S e s e - ° - > e . - - R e
> 5 - . PR L T S 4o @ ’

HZI . sz.'

where the 'a' and 'p' values are complex constants

determlned from the- curveflt ThlS ‘can be wrltten as

' (1) 1| . (y*) (1%
o SR AR aiz | CER 212
H(s) = L 2 ? + L 2 ? +
- $-pi STp1¥*
- . (2) (2) (2 *) (2 %)
- CRR a2 a1, a2
' ? ,_? + 2 2
S~P2 S=Pa¥

(3.13)

[

where the symBél o represents those values that were not
determlned from test1ng U51ng equatlon (2 10), the first.
residue matrlx can be represented by |

~— [A‘] = a;usu, \a,\U"Uz (3.12)
d1UzU1 axiUzUy

\

Matching. common terms from equations (3.11) and (3. 12), it

is seen that

QA -
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The components of the modal vector u,, ‘u; "are relative
h_ quantatles and may be’ calculated any number of .ways (a,"s»a;

complex constant and u,, Uu; are the complex mode shape

(1)
vectors) D1v1d1ng a,; by itself, ylelds @ real number of

. , 1y (1) ’ o
unity value. D1v1d1ng a,z by a,, , produces a complex

‘number that is a ratio of uz/u}. The form of thlS ratio

‘ "J
spec1f1es the nature of relationship between u; and wu,. If
- the ratio is real valued -a normal mode is present’, %he 'sign -

of thls real number p051t1ve or negatlve indicates whether

U; is in phase or out of phase with u,, respectlvely If the

R ratio is zero,.lt 1nd1cates that the test point is a nodal

p01nt for the mode 1n guestion., If forming this ratio
results in a complex number, it indicates that a complex
mode is present A complex mode indicates that when the
structure is v1brat1ng in that mode, that all points on the
structure wlll not reach the1r minimum or maximum values
51multaneously. It also indicates that nodal p01nts on the
structure will not be stationary. They will have to be
thought of as instantaneous nodal p01nts. The complicatlon
of the complex modes can usually be ignored when studylng
lightly damped structures as modal vectors wlll only stray
~slightly (a 5 or 10 degree phase shift) from being totally

real valued.
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If thms normal1zatlon process 1s done 1nd1v1dually for.'f

na:m -
-

every mode, the relatlve amplltudes of the. modesﬁw1ll not
"have .been taken 1nto account Compared towrhe lowest -
freguency modes,.hlgher-order-modes typ1cally have much '
smaller dynamlc deflectlons, due to larger 1nternal .damping

of the more complicated mode shape. Calculating the relative

deflections of the modes .in a structure can be done by

comparing the modal parameters between modes on a point by

point basis. If the 'inertance‘form'(acceleration/force)'of

the transfer function was used in the'modal parameter e

;extractﬁon, it. must be remembered to d1v1de the re51due

-values by a factor of '(wa)z' to convert these numbers to

their eqguivalent 'dynamic compliance) representation, from

which the- amplitudes can be derived.

)



4. PRACTICAL CONSIDERATIONS -
Implementatlon of the transfer functlon method of teetlng,
:1nvo1ves the 51multaneous recorﬂlng and analy21ng of the
forc1ng and response 519nals between de51gnated pairs of
points. on the structure This chapter deals with -the three
'aspects of testlng that were con51dered before and durlng
‘‘the actual test measurements. The first sectlon deals with
the select1onﬁof the type of load1ng that. was used to force
the. structures. This is then followed by a discussion: of how
field data was récorded employing commonly available v
‘sczentlflc equ1pment~ The. final sectlon deals with-coherence -~
and its role in ver1fy1ng the test measurements
) r
4.1 Choice of Loading - . _ | -
There are many types of loadlng that may be applied
when maklng transfer function measurements. These methods
fall into three major categories. ’
1) Sine wave excitation
2) Random loading
3) Tran51ent testing
" The use. of 51ne wave testlng has been used successfully
for over 30 years. Among its early uses were appllcatlons in
the aerospace industry for determlnlng modal parameters of
aircraft wings. Sinusoidal testing is typically applied in

one of two methods. In the flrst one frequency is excited
P

at g time and the response is measured once steady-state

37



shift The alternat1ve method 1s a swept Sine. approach
where the structure is forced through a certain frequency
-range and the response to thlS input is’ 51multaneously
‘recorded. Slnu501dal testing offers the advantages of only
requ1r1ng analog equ1pment and the ablllty of taking
accurate measurements because the exc1tatlon energy can be
conflned to as small a frequency band as desired. Its
disadvantages include; long testing times, problems with low
frequency excitatfon and the need to set- up, allgn and use
$shaker tables (costly and cumbersome) .
| Random loading is capable of broad frequency range
excitation ‘'using random 51gn§ls to drlve shaker tables it
. desired, this random 51gnal may be band pass flltered to -
Hallow controlled exc1tatlon as was the case with swept 51ne
'loadxng Although random testing similarly suffers from the
need to use ‘shaker tables and the fact that windowing must
be used because it is not periodic 1n the time record’, it
does offer the advantage that averaging can be usedlto.
reduce non-linear effects in the structure and noise in the
51gnal
Transient testing, and in partlcular impact ldading,
offer a simple method to determine the response of a
-structure. Loading is gommonly accomplished with an
instrumented hammer (a hammer having a load cell mounted
inside the head) which makes it very portable and easy to
employ for field appl1catlons. The impulsive nature of the

T T e . e —————

‘some signal generators produce 'periodic~random’ signals
that alleviate this problem -
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forc1ng functlon produces a broadband excitation 31gnel and -
is to ‘some extent controllable by changlng the -
cheracterlstlcs of the hammer head. Problems w1th this type
of loading include: low energy densltles in the ‘upper |

frequency ranges, problems with non‘jlnear response of the

structure and noisy, measurements du€ to the low signal to

‘noise ratlo as the signal dies out. Despite these drawbacks,

the impulse testlng method was chosen because of its

simplification of the testing process, both in the amount of

it
equipment required and amount of time needed.to set up and
use it, o | o

4, 2 Select1on of fransducers and Calibration-

| Before any fleld tests were done, it was necessary to
consider several factors. The size and sen51t1v1ty of the
hammer and response accelerometer were chosen in light of
the nature of the problem to be stud1ed For example, a
light hammer (200 gm.) and a medium sen51tIV1ty (10 mv/g)
Pick-up was chosen for the beam test, while a massive hammer
(5.5 kg.) and a sen51t1ve accelerometer (80 mvV/g) was
requ1red for the compressor base test (low frequency)

In the tests that were conducted it was only desired
to determine the natural frequenc1es modal damping ratios
and relative mode shapes of the Structure in question. It.
was therefore not necessary to calibrate the hammer and
accelerometer, Generally however this callbratlon would be

done before tests were carried out to allow one the option
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vof performlng a detailed quantitative study of the tgﬁt
resélts 1f de51red (e. g. actual dynamic deflections or

determining the mass, damping and stiffness matrices from

s
«

‘the derived modal parameters) .

4.3 Test Point Determination

The complexity and size of .the Strdcthre dictates the
numbet'of‘pcints on the structure to be tested. For the
free—free beam, thirteen test. p01nts were chosen on one- half
of the beam to get a good deflnltlon of the mode shapes.
' Here, use .was made of the symmetrlc nature of the problem to
reduce the number of test locations requ1red For the
compressor base test, again only a mlnlmum number of test
points were necessary because of the rlgld body nature of
the v1brat1onr Extra test points were 1ncluded to test the .
validity of the mode shape assumptions. These measurement
'p01nts were chosen so as not to include any suspected nodal
points of the modes in the frequency range of interest. In
this way, the derived transfer functions all contalned the
same number of modes and better global-averages of the
damping and natural frequency could be made. The test points
were well marked to facilitate a consistent impact locatlon

and their position on the structure was. recorded.

\
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4.4 Equipment and Testing

Figure 4t~ shows a schematlc dlagram of the set-up for
recordlnc test data on tape.

The outputé of the instrumented hammerAand response
accelerometer were tirst fed'into their own signal
conditioners and then into an’amplifier set to boost the
signals to fill up as much of the ‘usable voltage range of
the tape recorder as p0551ble (1 volt RMS). To further

increase the s1gnal to n01se ratio the 51gnals could be:

”passed through low- pass filters (not shown) ‘In this way,x

only 51gnaLs in the frequency range of interest would be

recorded. Thls would increase the signal to noise ratlo in a

’glven frequency range, however it would not allow further

5

analy51s at a hlgher frequency range w:thout taklng more”
Measurements. Most FM tape recorders have a sngnal to noise
ratio of about 40 4B whlch limits the dynamlc range of the
measurements. As well, very high taping speeds must be used
with these recorders if it is desired to capture high
frequency signals (in the recorder'used a tape speed of 60
in/eec vas necessary for a flat frequency response to 20,000

A -

f .

Hﬂk. If low frequency information is not of 1nterest (i.e.
¢

E P o
',‘~ ¥

%W%t below 20 or 30 Hz) direct recording can_ be used It
i%rs the advantages of higher signal to noise ratios and

excellent frequency response at low tape speeds (50 ‘to

19,000 Hz 6 3 3/4 in/sec).

To ensure that only good signals were recorded, a two

channel storage oscilloscope was used to monitor the tests.
' L

-
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This is partlcularly 1mportant when tape recordlng 1mpulse .
,.51gnals. When using a hand- held hammer to exc1te a
structure, it is d1ff1cult to malntaln a constant force from
one run to the next; therefore some strikes will be too weak
and have a poor 51gnal to n01se ratlo, while others could be -
too large and saturate the tape. Another problem often \
encouniered, was'that of multiple impacts between the hammer
and theyﬁeSt structure. This occurred when a mode with a
h large amplitude- was exc1ted .and the structure rebounded
-agalnst the impactor before 1t could be removed This type
of load1ng (quasawperlodlc) often causes zeroes ‘in the force;
spectrum (i.e. Tow. signal to noise ratlos at those
locatlons) and therefore the runs were rejected

In actuyal test1ng a m1n1mum “of averaglng (4 averages- A
per p01nt) was done on each\501nt to take further advantage
of the tige saving that is inherent with thls impulse
loading m;thod Durlng both the free-free beam and
compressor base tests, it was found to be 1mportant to allow
some txme between each 1mpact to ensure that the structure
had cbmpletely stopped v1brat1ng from the prev1ous
Hexc1tatlon. If this was not done, the coherence between the'
runs would have been affected as the response measured from

the en§u1ng_1mpact:would not have been‘solely due to that

impact (see discussion on coherence later in this chapter).

r
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4.5 Digitizatiop of Signals

Once field measurements were'complete, the recorded
signals vere digitized for: proce551ng Figure 4 2 shows the*
.arrangement of the equ1pment used 1n d1gltlz1ng the data for
this study The -output of the tape recorder was first
ampllfled to’ flll the largest amount of the full scale range
of the. analog to dlgltal(A/D) converter as possible (the
d1gltlzer used had only one voltage range- 5 volts
maximum). The 51gnals were then passed through anti-aliasing
_'fllters (sharp roll- off low pass fllters @ 96 dB/octave)
and then into A/D converters. Thls data was labelled and put
on floppy disks for further proce551ng (curve f1tt1ng,
etc.). Wlth the particular dlgltlzer used the dlgltlzatlon
was not’ truely 51mu1taneous between channels._Th1s type of
situation could have distorted the original relatlonshlp
between the signals, however owing to the sampllng rates ,
that‘were used, thlS problem was safely ignored (see »

Appendix"ﬁ).

4.6 Coherence‘

- The development of the transfer function relatlons in
Chapter 2 assumed that the measured appl1ed forces to the
structure were 1ts only .inputs and that the response was due
solely to thlS 1nput. In practical testing however, the
_recordlng 1nstruments have the1r 11m1tat10ns ‘and test
objects can not be totally isolated from external 1nfluences

so ‘that this condltlon is not completely met. Typlcal causes
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for thls 1nclude, eiectrlcal n01s% llmlted dynamic ‘range of

‘the recordlng 1ns§ruments, non- llnearltles 1njthe

'transducers andithe structure as well as v1brat10n induced

from the surroundlngs (e g. rotatlng machinery, busy roads),
In order to measure the effects of these external

1nfluences, the coherence functaon v*, was used. This

function can be calculated from thevfollowing>expression.

s

YIF) = Guy (F) Guy*(f)
G () Gy (A

where G;,(f)¢ G;y(f) and.G,;(f) are the“averaéed input and
| output power spectrums and cross spectrums respectlvely (the
star denotes complex conjugate) The coherence functlon
which can only‘take on values between '0Q' and ','can be
thought of as a measure of the pover in the response 51gnal

b

caused by the power in the recorded 1nput If the coherencev
equals one at some frequency, it implies that the output
pdwer at that frequency was entlrely due to the measured
forcing signal. When the coherence functlon takes on a value
other than one, it shOWS that the system response at these
frequencies was not,totally due to the 1nput

| ‘ldeally then, . the . coherence functlon should equal one
over the entire frequency range of 1nterest. By graphlcally
dlsplaylng this funct1on along w1th the determined transfer
function, serves as a valuable a1d in determlning certain
properties about the recorded signals..ln the tests that

were done during thls study, drops in coherence could

1nvar1ably be attrlbuted to the small dynamic range of the
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FM tape recorder; Figure 4.3 shows a typical transrer

function‘obtained from compressor.base tests. In thlS
diagram, it is seen that wherever the frequency content

| falls approximately 35dB below the peaks in the spectrum

that both the transfer and the coherence function are

Iaffected. In these regions the transfer function is no

longer a smooth curve and i%/\imost random in nature. This

XL

is due to ‘the fact that an FM tape recording system has a
dynamlc range of about 35 to 40dB. When %ggnals are recorded

with a larger tdynamic range than this, the smaller amplitude

s1gnals will not be recorded. This also causes the coherence.

to become very jagged, H@cause in these frequency ranges the
true signals were not recorded and what remains is a noise
floor from the tape. )

In the tests conducted it was not necessarf to have a

large dynamlc range so that the recording means was

e

satisfactory. If a larger dynamlc range. is required several

options can be considered. “First, the tape recording aspect
of the field data can. be totally eliminated by directly
digitizing the signals 02 location. Employing a twelve-bit
A/D converter, a 72dB dynamic range.can be realized. |
Secondly, if the flexibility of tape recordlng is desired
and low frequency signals are not expected in the results,
dlrect recording can be used. ‘Typical direct (AC) recordlng
'systems have dynamlc ranges in excess of 70dB and have large

frequency bandwidths. When low frequency tape recording is

necessary, a third alternative:is_the use of an FM tape

fl
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‘recordlng system that employs a swltchlng unit teo record one
k51gnal on two channels of the tape. One channel records that o
portion of the signal that lies in the zeyo to -35dB range
while the secord channel records anything below the -35dB

level.



180. ‘ I 1 - =
I [ 2 iyt v/
-180.0 ‘

0.0 FREQ 10.0
TP e 2.0

Figure 4.3  Coherence of Tape Recorded Signal
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5. TEST RESULTS

In the two previous Chapters; the procedure for
determining’ the modal parameters as well as an outllne for
collectlng exper1menta1 field data was presented. In this.
chapter the details of tests conducted on a free-free beam
to verify the aeveloped prqssdure are‘giyen. As well, '
results of an applitation of thfs technigue to the dyn;ulc
analysis of an air compressor and its inertia éase ave
included. /
51 Free-Free Beam

A free-free beam was chosen for test1ng because of the
potentlal ease of 51mulat1ng the boundary conditions. a
‘cant1lever beam was considered,. but in prellmlnary test1ng
(('was found that the measured response and correspondlng
frequency spectrum contained extraneous signals that could
be attributed to the 'bupl® in' support. This would not have
caused any problems 1n the analysis of the derived transfer
functlons,.but it was desired to do the first modal test on
a stgucture that‘gave'the cleanest signal possible, ]

A hot-rolled steel bar of dimensions 9.46 mm. x 37.4
mm.’ ks 539.3 mm. was used as the test beam. Calculatlons
showed that three natural frequenc1es for thls bar
(excludlng rigid body modes) exlsted below 1000 Hz. Three
widely spaced natural frequenc1es wlth low damplng, was

¥

deemed a good start1ng test for- the analysis system.: -The

free end conditions for the bar were simulated in'early

L
4 a
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tests by placing the bar on a foam support. Two'major
problems were encountered using this technique. The first
problem was that it was very difficult to impact the beam
and pull the hammer away before the beam would bounce back &
;and again make contact with,the hammer. The discussion in |

- e K
: 3
{\:\' .

" “the previous chapter pointed out why this type of signal was

a problem The second problem: encountered u51ng the foam

“@lthb ah5¥751s this- effect showed

5tgel Structure. To

2

paramé%ers Whl%ﬁ were notveXpected 15

overcome both of these problems, . tHe ﬁﬂl-was suspended by
elastic bands at both-ends. These low frequency‘supports
induced rigid body»modié that had naturél~ffeduancies’in the‘
order of 2 to 3 Hz; well below the frequency range of
" interest. " | |
Because the study was to be restricted to those modes,

A\ ]

- below 1000 Hz, it was.not ‘desirable to put any energy into .
the higher frequency ranges that ‘were not.to be analyzed
since thlS would lower the 51gnal to noise ratlo in the
testing range. To meet this requirement, a hard rubber
impact tip was used with the hammer. The result1ng 1nput
51gnals had a spectrum that was flat (+3dB) to approxlmately
1300 Hz and decayed gradually beyond this range.

From Chapter !&o, it was seen that it is necessary.to
deflne one row or column of the transfer matrix to be able

to completely describe the dynamic behavior of a structure.

This is equivalent to taking measurements w1Jh a fixed
./



51

response pick-up and moving the force input to the desired °
locations on the structure (row‘determinatibn)’or fixing the
forcing location and changing the position of.the output
transducer (column determination). In this tést,.it was
chosen to rigidly ﬁount the accelerometer at'oné end of the
,beam and impact othe structure in different locations along
its length because of the ease in mov1ng the hammer from
position to p051t10n Only one half of the bedm was tested

! 2o
due to the symmetry of the bar and its support conditions. %%
- By mountlng the accelerometer at the end of the beam, it was
" assured that the response of thg beam would contain
components pf the lowest three modes in question, as all
three have large modal deflections 'in this region. If the o
accelerometer had been pl;ced.at a node of one of the modes
that . it was desired to analyze, the response of that mode
would not have been picked up, irrespective of where the
beam was exc1te’k'.‘ - o \ o

To choose the forcing locations along the beam, a’

A7

1

single channel FFT analyzef was used to monitor the response
lto different %ﬁpact locations. At locations where all three
modes were present, a ,Piece of tape was used to mark the
location. If a nodal p01nt for ome of the modes was locateé
positions were tried on either side of the original spot ~
until a suitable area was found. In the end, _a total of
thirteen 1mpact locations were lécated on the one half of
the beam at approxlmately 20 mllllmeter intervals. (It is

important to note here that,. this trial and error “type of
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approach for finding suitable test locations is somewhat
Slow and.cumbersome and resulted from the lack of foresight
in the otriginal program development that analyzed.gp%& K
experlmentally determined transfer functions, Generally
however testlng points could be chosen-arbitrarily and the
_'analy51s programs employed would account for the fact that a
‘partlcular mode of vibration might have a nodal p01nt at the
location in question.)

“As was mentloned in the previous chapter, an FM tape
recorder was used to record the imput and response €ignals.
In these partlcular tests however, a direct recording unit
'would have been sufficient as thepe was no low frequency
information (below 20 Hz)»tnat was of interest.

Table 5.1 lists the averaged damping ratios and
resonant frequencles determined from the tests and compares
these resonant frequencies to those predicted theoret1cally
ffor a frg; free beam. The low damp1ng ratios correspond with
‘those typically observed in steel structures. For all three
modes the predicted frequencies are larger than the
-experimentally determined numbers,:Comparfng the ratios of
‘fn/f, however, very good agreement is seen. This indicates
that the‘two‘cases dlffer-by a scale factor. This scale
_factor may simply be due to the difference in the material

constants (Young's modulus and mass density) and geometry of

the bar compared with those assumed in the theoretical

calculations.
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MODE 1 MODE 2 MODE 3.
EXPERIMENTAL
- Damping Ratio (%) 0.144 0.100 0.094
* Resonant Frequency (Hz) 167.29 462.22 905.61
L Fo/F 1.000 , 2.763 5.413
THEORETI CAL
Resonant Frequency (Hz) 170.52 470.09 921.58
Fo/F 1.000 2.757 5.404
Table 5.1 Experimental vs. Theoretical Resonant

TEST
POINT

WOJAUNEWHN —

10

MAGN.

.000
.835
.619
417
.218 .
.074
113
.238
.348
.429
. 487
.546
.566

CO00O0O0O00OOOO -

Table 5.2 Normalized Modal Vectors
‘ for the Free-Free Beam

Frequgncies for the Free~Free Beam

‘MAGN .~

OO0 OCOOoOODODOOOO

1
0

.000
<690
.344
.054
. 252
.413
.564
.633
.681
.577
. 443
.292
.081

178.
178.
179.
-179.
-179.
-178.
-172.
-174.

ONPBOITO I YO -

MODE 3 °

1

MAGN.  PHASE
1.000- 0.0
T 0.511 -4.8
0.074; -25.6
0.291 ° 170.5
0.612 178.5
0.775 -176.2
0.743  -175.6
°0.557 -174.4
0.292 " ~375.8
0.093 = =2.4
0.456 3.7
0.760 9.2
0.832 4.6

A
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' The experlmentally derlved normallzed mode shapes are
glven in table 5.2. Examlnlng the phase angles of the modes,
it is seen that parameters very nearly descrlbe normal
modes; that is, the modal vectors are either in phase with
each other (phase angle near zero), or directly oo;'of phase
with one another (absolute value of the phase angle close to
180°). Figure 5.2, compares the experlmentally determlned
mode shape (dlsregardlng the 1maglnary component of the
_hormallzed modal vectors) to that given from the solutlonmof
the analytical equation. It is seen that the -experimentally
determfned mode shapes.agree ,very closely with their
predicted behavior. (It should be noted tﬂat all three mode‘
shapes have been nqormalized relative to the correspondlng
modal parameters of the first point on the beam. IQ d01ngj-7

so, the relative amplltudes of the modes have not been

considered).

Ry ) .
3 -

?xg,Compressor and Base . ¢
The second set of tests were performed on an "Atlas.
Copco a1r compressor and inertia base system that was
'%%de51gned to.run.at 720 rpm(12 Hz) The air oompressorewas
% $Hr1ven by an electric motor with a pullef drive. The

3

# motor-pulley system and air coméressor were mounted on a
© 3
steel base filled with iron shot.. The total mass of this

systemfwas;approximatglwaJOO kg. with 580 kg. due to the
compressoéfalone. The conflguratzon was 1solated from the

floor by 4 steel spr1ngs, each wlth a stlffness of
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" apprOX1mately 670 kN/m,\_V.

’

The 51mplest model oﬁ thls setup’ would be that of a

frlgld body, free to move in all d1rect1ons. Thls modeJ would

._1mply that 51x rlgld body modes should be present in the o

\ structure. If the mass and stlffnesses were symmetnzc 1n all

rthree planes, these modes would be uncoupled as shown in

flgure 5 4

"". .

Any non symmetr1es 1n the structure would tend to

“couple the modes .in such a way that a- mode would no longer

dbe purely translatlonal or rotatlonal but rather some

comblnatlon of the three translatlonal and three rotat1onal

mot1ons. Because of the potent1al coupllng, 1t is p0551ble

"that all six modes could have been exc1ted from one loadlng

'dlrectlon. However small amplltudes result1ng from any

weakly coupled modes could have made the 1dent1f1cat1on of

.rellable modal parameters d1ff1cult to obtaln. It is also

\J

_ qu1te possible~€hat some modes WOuld not have been exc1ted

"at all in the part1cular dlrectlon of loadlng cons1dered and

therefore not detected in the results. Wlth thzs in m1nd it

*'was chosen to exc1te the body from three dlfferent test.
- locat1ons, one in each of the three pr1nc1pal planes._InJ

'th1s way the chances were good/that all of. the modes would\

,be exczted from at least one of the forc1ng locatlons

) Kunless the. three loadxng p01nts happened to l1e on a node

~of one the modes 1n questlon)

The teStzng p01nts om the compressor system are shown'

j in f1gure 5% 5 The tthk arrows (labelled 'A" ‘B’ and’ C-)"

T

yo.
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_1nd1cate the 1mpact locatlons wh1le the other arrows show
the po1nts'where the response was measured The test
locat1ons vere chosemas far apart as p0551b1e to give a
better deflnltlonvof the mode shapes and yet 1n_a symmetric
manner to simplify the analysis.

. In the study of the free-free beam, the accelerometer
"had been held. fixed and tHe hammer moved from point to
p01nt Due to the layout of the compressor base system
however, 1t was chosen to have a. f1xed forc1ng point 1n each
testlng plaoe. Th1s was done because the large hammer used,
.made it d1ff1cult to ensure good - clean impacts unless the
.'locatlon was ea51ly accessible and had a flat 5011d surface
(i.e. it was de51red to hit the surface squarely and not
damage any of the structure in the testlng) !

Pre11m1nary tests on the structure determ1ned that all’
of the modes of interest were below 10 Hz. The hammer that
!:was to be used however had a much broader exc1tatlon range'
vthe softest head avallable for the hammer exc1ted a flat '
frequency response to about 100 Hz. When this signal was -
.recorded on’ tape and later low ‘pass flltered below 10 Hz for
d1g1t1:1ng, very little of the signal was left to work with,

To avo;d,the,low signal to noise ratio assoc1ated with thlS,

it was declded"first to further amplify the impulse 51gnal

LY

then low-pass fllter 1t before recordlng to maintain as high

a sxgnal to n01se ratlo as poss1ble. In 1mplement1ng this

procedure, s me of the 1nherent advantage; and flex1b1l1ty
- 0c . \

of this typelof recordlng system were lost, (i.e. it would

58 -

4 .

A 4



¢ ~ 59

- .

. : ' : oo L , ¥
be necessary'to~do further testing if higher freguency .

_analysis ranges were de51red) but it was felt that this
trade-off was necessary.

‘The follow1ng three flgures show examples of transfer
functlons obta1ned from testing 1n ‘each of the three planes.
Four d15t1nct modes are present in Figure 5. 6 which were |
obtained by loading the base at point 'A' (in figure 5,5)
and recording'the response.right beside it (point #1). The
rounded broad nature of - the peaks would 1nd1cate that heavy
damp1ng was present in the system. )

The transfer functlon formed from forcing: the base at

.ugoint "B’ and picking up the response at p01nt #5 is shown
in frgure 5.7. In this dlagram f1ve major peaks are seen
between the frequency range of 3 ‘Hz and 6.5 Hz. (It was 1n_
this rangé€ that all 513 rigid body modes were found.) It
should be noted that,three peaks located atk3 Hz, 4.7 Hz and
5.4 Hz are common’between this figure™and figure 5.6.

Shown in flgure 5.8 is. the transfer function derived
from- forcing the structure at point 'C' and recordlng the:
response at point #10. Two modes.are located near ‘3. { Hz (as
was: the case in Figure 5.7) as well as two other modes
-around 6.2 Hz. The presence of two dlStlnCt hlgher frequency
modes is not obvzous in the magnltude plot of the transfer
function; the phase angle of the function must be studied to
see that indeed two separate modes exist in this reglom.

"The modal parameters where then,obtalned for the six

modes by curve fitting the measured transfer functions. The
/
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tlghtly spaced modes near 3 Hz and also those around €.2 Hz
caused 1ncon51stenc1es when curve fitting because of the
éoor resolution and high overlap of the two modes in either
reglon. This was‘further hampered by the exponential window
(whlch increases the apparent damping) that was used‘on~the.
response data to help reduce the noise in the results. (It
should be noted that the damping in the system was very
heavy; the response signal detayed completel;hin about
one-quarter of the‘time window, leaVing the majority of the
signal with a high noise content.)

- Table 5.3 lists the averaged resonant frequencies .and
damping ratios that were obtained from the curve fit of the
rigid body modes. ‘The large damplng ratios obtained, 1
illust:ate the heavy damping that was present in the SYStem.

Syownfin figure 5.9 1s the mode shape that occurred at
a resonant frequency of 6. 51 Hz (only the base of the system
ﬁg}shown to 51mp11fy the representatlon of the mode). This
mode shape displayed an almost purely rotational mode about
the x-axis. The mode shape that was associated with the 6.30
Hz mode is shown in fagure 5. 10 This was maiﬁlj‘a
rotational mode about the zZ-axis wlth some llght coupllng
from other modes (especially the rotatlonal mode about the

-

y-axis),
- The mode shape assoc1ated w1th the 5.44 Hz resonance

~was unrellable because of problems assoc1ated w1th curve

fitting. What was clear from the results however, was that

its major component was‘that due to rotational motion about
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MOD"E ~ DAMPING RATIO RESONAN”' FREQUENCY -

(%) A . (Hz)
i . .
; 1 1.53 i 3.06
2 0.80 3.22
3 0.25 . 4.72
4 1.30 5.44
5 1.50 5.30
6 0.55 _ ' 6.57

[}

Table 5.3 Resonant. Frequenc1es and Damp;ng
. Ratios of the Compressor System

L

‘a line parallel to the y-axis. This behavior is illustrated
in Fiqure 5.11, Morercoupling from ofher modes wes pProbably
present than what is deplcted in this diagram because this
rotational motion was also seen in the 6.30 Hz, 4.72 Hz and
3.06 Hz modes. The reasoning behlnd this 1s‘that coupling
.with the other modes would have been necessary jif the effect
ofhehls partlcular motion was viewed in other modes as well
{i.e. if two modes are coupled, the effect is seen in both
resulting mode Shapes) . | }'
| The mode shape of the 4.72 Hz peak is shown in figure
5.12. Thlsyggdefcon513ts maznly of a vertlcaletranslat1on
with some-coupilﬁg from the 5.44 Hz mode to produce the
small rotetion about the y-axis.

Thus far, the modes the have been éefined‘have ingluded
three mode ehapes_that were primarily ro;jjignal in nature

as well as a fourth mode that had fy vertical

!

translation motion. Of'the'sixvexpecte rigid body modes
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thie-leaves only the two horizontal translation medes to be
‘identified. The mode shapes determined forbthe resonant
frequencies of 3;06 Hz and 3.22 Hz arefshown if figures 5.13
and 5.14 respectively’(note —.thevclose proximity and heavy
damping of the two modes produced inconsistent modal
parameters, so that the mode shapes_shown are estimates
only)g Both mode shapes primarily\displayed a translational
motion wlth the 3 06 Hz mode translating mainly in the A
dlrectlon whlle the 3 22 Hz mode had the lagfest component

of its displacement in the 'x' direction. If%he mass

dlsttlbutlon and lateral spring stlffneSS‘of‘the structure
had been perfectly symmetrlc it could beushown that.two
purely translatlonal modes with identical natural
frequencies would exist. These‘modes would exhibit
physically perﬁendicular mode’ehapes with’no preferred
orientation of movement. When either the sprlng stiffnesses
or the center of mass locatlon is non- symmetrlc however, the
two frequencies become d1st1ngu1shable from one another the
modes have a f1xed orlentatlon and the mode shapes no longer
exhibit perpendicular motion. Therefere in examining the
results for the‘two transiational modes, it is not
surpr1sing to f1nd that the1r resonant frequenc1es are so

close together or that thelr ‘mode shapes show some motion in

'boﬁy the ' x" ‘and’ y dlrectlons. - : -



Figure 5.9 Mode Shape of the 6.51 Hz Mode
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Figure'5.10 Mode Shépe of the 6.30 Hz Mode
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Figure 5.12 Mode Shape of the 4.72 Hz Mode
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Figdre 5.14  Mode Shape of the 3.06 Hz Mode
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.6. CONCLUSIONS ~ |

The testing and analysis regime tnet has been presented
in this study has focused onh the practical implementation of
the modal analysis technique. Developed during the course of
this studf was an economical date acquisition'SYStemggnd'
analysis eoftware that could be readily adapted by smaller
engineering:firns that could not justify the expense of a
sporadicaily used all-in-one instrumentation system, .

From the work done 1n the study, two’ thlngs are clear-'

the f1rst is that good reliable transfer functlon data can
N

_be recorded using commonly ‘available in trumentatlon. (In

‘fatt "the use of a portable tape re

er may be deemed
essential in testing locatlons where on 51te digitization of
the s1gnals is 1mpract1cal) The second thlng to be noted 15
that modal analysis is not a 'bling' technlque that may be
effectively applied with little prior knowledge about the
method. Famlllarlty with this type of testing. is essential
in taklng .good fleld measurements and later properly
interpreting the derived modal parameters.

‘.

The modal parameters identified from the transfer
functlons of the free-free beam were cons1stent ~and
rellable. However in dealing with the compressor system, ]
many problems associated with parameter 1dent1f1catlon were
encountered For the most part;” the dlfflcultles could be

attrlbuted to the close spac1ng of some of the modes and the

heavy damping.in the system. Despite this, it was.stilr

_possible to Separate and identify the modes in ‘question.

———r————— L T PR Y
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However if greater accuracy and more consistent results were
desired, it would be necessary to first of all excite the
structure in such a way that more energy was being

+ ! 3

concentrated in the lower frequency range and also to-employ.

1

"zoom' Fourler transform ‘techniques to allow greater

o

frequency resolutlon in the range of 1nterest ’

In the coutse of the study, the area that required the -
most research time was that 1nvolved in curve f1tt1ng The
1terat1ve Levy approach that was used in the 1n1t1a1
analyszs of the transfer functlons proved to be very
reliable 1#90bta1n1ng prel1m1nary paramete; estlmates. When
further curve f1tt1ng was necessary-to reduce the errors
between the experlmental and analytical functions, a good
quick method was not found. Further study in th1§ area would
‘be necessary to research and develap software approprlate
for smaller comput;ng facilities.

The next logical stage of development of this modal -
analy51s testlng system would be to make use of the modal
parameters,der1ved from curve fitting to define a lumped
parameter model for the structure. being studied (by
calculatlng the mass, damplng and stlffness ‘matrices of the
system). This would then enable the possibility of u51ng
structural modlflcatlon technaques to quickly determine the
effects of any proposed change$ to the structure. This type .

of analy51s would be useful 1n the retro fitting’ of exlstlng

/
structures. _ : L ’ /



‘REFERENCES

1. Allemang, R. J., "Invee;1gation of Some Multiple .
o Input/Output Frequency Response Function. = =
'Experimental Modal Analysis Technlques » Ph.D.
Dlssertatlon, Unzvers1ty of C1nc1nnat1, Mechan1cal
Eng1neer1ng Department, 1980 L : :

'2,“Bendat J.S. and P1ersol ‘AL.G., Engineerln :Applicatfons 7
' . of Correlation and Spectna} Analys s, .John Wlley
and Sons‘ 1980 , : ,

3. Br1gham, E.O., The Fast Fourfer TﬁanstPm, Prent1ce-Hall '
'Inc., Englewood C11f£s, New Jersey, 1974 o .

‘ 4;.Brown, D. L.,~Allemang, R.J., - zlmmerman,lng and Mergeay,
_ " M., "Parameter Estlmatlon Techn1ques for Modal
Analys1s",:SAE~paper #790221 19 pp.; 1979

5. Caughey, T.K.,. C1a551cal NormaL Modes in’ a Damped L1near"
_ Dynamic System", Journal of Applied. Mechanzcs' :
Jhne 1960 S _J‘ e S .

6. Doebelln, E.O.," ‘System Mbdéling and. Response, John'ﬁiley o
] and Sons, 1980 - AR S

»7; Halvorsen -G., and Brown, D. L.,, Impulse Technlque forj
. S Stiuctural Frequency Response Testlng 2 SoPnd and .
_ V1bratlon, pp..8 21; November 1977 - '

- 8. Irwln, J.D. and Graf R., IndUstPial Nblse and co
o oo Vibratlon Cbntrol Prentice-Hall, Inc.,- Englewood’,

- Cl1ffs,‘New Jersey, pPpP. 335 351- 1979 e

'9 Kennedy, c.C., and Pancer, €.D.p. -“Use of Vectors in
‘ Vibration Measurement and. Analyszs S Aerospace”
Sczence, Vol. 14 ‘No. 11, PP, 603 625;. 1947»'

10 Levy, E.C. Complex Curve: Fxttlng « IRE Transact1ons on
i Automatlc Control Vol AC-4, pp. 37 44 May -1959
11, MacDuff J.N. and Currer1,/J R., Vlbﬁatlon Contﬁol -
. » McGraw H111 Book Company Inc.,.1958

12, McK1nnery, w. H.,*“Band Selectable Four:er Analys1s”
‘ : Héwlett Packagd Journal - pp. 20 =24; Aprll 1975

134 Potter, R., "A Genera ,Theory—of Modal Analys1s for

- Linear Systems", Shock and V1brat1on D1gest,
' November 1975 : .

EERN
»



14.

©15,.

16.

17,

- 18.

- 19,

20,

21.

.22,

71

I

Potter, R;fand'ﬁiChacdson, N., ﬁMass; Stiffnéss and -

'~ Damping Matrices from Measured Modal Parameters",
- 1.5.A. Conference and Exhibit, New York City;
October. 1974 o '

Raméey,\K;A., "Effective’MeéSurements;fOr Strugtu;ai;, .
- Dnamics Testing-Part ", Sound and Vibration, Vol.
0, No. 4; 1976 . - : : o

Raméey;'g;A,;,"Efféctivé<MeaSutements”for Structural
Dynamics Testing-Part %", Sound and Vibration,
vol, 9, No. 11; 1975 v : T

Richardson, M., "Modal Analysis Usipg Digital Test
Systems"”, Seminar on Understanding Digital Control
and Analysis in Vibration Test Systems, Shock and
Vibratisn Information Center Publication, pp.

- 43-64; May 1975 ' : ‘ - -

Richardson, M., and Kniskern, J., "ldentifying Modes of

Large Structures from Multiple Input and Response

Measurements", SAE paper #760875 12 pp; 1976
Richardéon,‘M.;aﬁdipotter,'R;;"Identification of the
Modal Properties. of an Elastic Structure from
Measu:ed'TranSEer‘Eunétioanata"g’Twentieth
-Internatignal‘InstrumentatiOn.SympOSium,
Albaquergue, New Mexico; May 21-23, 1974

Sanathanan, C€.K. and Keorner, J., "Transfer Function

. Synthesis as a Ratio 6f Two Complex Polynomials™,
. IEEE' Transactions on Automatic Control, pp. 56-58; .
January 1963 - S T CL T

Walgrave,vswc. and Ehlbeékj,J.M;, fﬁnd§fs£anding'MOdal

: Analysis", SAEvpaper #780595;;11 pp.; 1978 .=

"The'Fundéméntals_dfsSigﬁal/AﬁélySié",'Hewlett-Packard-
.Application Note[No,‘243 : ’ o : .

»"



A

o000 na o

L3

‘anonaa

- C
-
e

~
N
p ' B
( . ) (¥
. . .

APPENDIX-A-- LEVY PROGRAM

o SUBROUTINE LEVY(HEXP FREQ, NLOW, NHIGH, K VALUE) |
.. COMPUTES 2 LERST SQUARES FIT FOR A TRANSFER FUNCTION E

L e

OF Op TO FIVE MODES USING LEVY s METHOD

HEXP FREQ - EXPERIMENTAL COMPLEX TRANSFER FUNCTION
AND CORRESPONDING FREQUENCY LOCATION -

. NLOW,NHIGH - LOWER AND UPPER ‘LIMIT OF CURVE FIT RANGE

K - NUMBER OF POINTS TO BE FIT IN THE 'RANGE
VALUE - OUTPUT MODAL PARAMETER VECTOR

..”NOTE : CALCULATIONS WERE DONE IN' DOUBLE PRECISION

BECAUSE 'C' MATRIX WAS FREQUENTLY
POORLY CONDITIONED .

"REAL*8 C(20,20)/400%0. oDo/, n(zo)/20*o ODO/ WKAREA(500)
*REAL*8 RE(401),IM(401), ,SUM(401),VALUE(20) , TWOPI , FF |

" REAL#*8 ABSDEN(401)/401*1 0DO/, TEST B1,B2, F(21 401) ,
" 'REAL*8 L(10)/10%0.0D0/, T(10)/10*0 090/ 3(10)/10*0 0DO0/

REAL*8 U(10)/10%0,0D0/,A(11) FREQ*4(401) ,
COMPLEX#16 2(-10),DEN, ALPHA(10) AA BB HEXP*8(401) -
COMPLEX*16 ZOLD(10)/10*(0 000, ( ODO)/ ,

‘TWOPI=2.0D0x%3. 141592653589793

K2=K#*2
K4=K#4 s L | LT
K4P1=K4+1 . . " e

. PUT. powans OF. FREQUENCY INTO MATRIX' F(I J)
DO 100 J=NLOW, NHIGH

F(2, J)=FREQ(J)
- RE(J) REAL(HEXP(J))

IM(J)sAIMAG(HExP(J))
IF(DABS(F(2,J3)).LT.0. 0000001) F(2 J) o 0000001

F(2,J3)=F(2, J)*TWOPI

IF(K GE.3) F(2,3)=F(2, J)/1000 ODO
SUM(J)= RE(J)*RE(J)+1M(J)*IM(J) :

".DO 100 I=1,K4P1

F(1,3)=F(2. J)**(Iv1)

100-CONTINUE

IC=0 _
- GO’ TO 104

CQRRECTING FACTORS FOR REDUCING WEIGHTING EFFECTS ,“

101 DO 1103 J=NLOW, NHIGH.

AA=DCMPLX( 0. ona F(2, J)) “1;»‘.; R
 DEN=DCMPLX{ 1 ono o ODO) L - I L
DO 102 I=1,K . : '
DEN:DEN+D(K2+I*2 1)*AA**(I*2 1)+D(K2+I*2)*AA**(I*2)

"Tﬂoz courxnug e Chiy

‘73?72.[,;.



103
104

108

73,

ABSDEN (J) =DEN*DCONJG ( DEN )

CONTINUE o |
COMPUTE CONSTANTS THAT GO\;NTO_‘C'.ANDA'D' (Cx=D)

DO 105 J=1,K2 e,
L(J)=0.0D0 o
T(J)=0. ODO

S§(J)=0.0D0

U(J)=0.0D0

‘CONTINUE - =~
- DO 106 1=1,K2"

- DO 106 J=NLOW,NHIGH

106

107

ann
Ve

- .C(121,321)=L(1J

L(I)=L(I)+F(2%I-1,J)/ABSDEN(J)
T(I)FT(I)+F(2*ILJ)*IM(J)/ABSDEN(J)
S(I)-S(I)+F(2*1-1;J)*RE(J)/ABSDEN(J) :
U(I)=U(I)+F(2y1+1;J)*SUM(J)/ABSDEN(J)[
CONTINUE - - . . - S

.++ ELEMENTS IN THE VECTOR 'D'’

DO 107 I=1,K
D(2#I-1)=§(1) .
D(2+I)=T(1) o
D(2*(K+1)-1)=0.0D0 . R
D(2%(K+1))=U(1 R
CONTINUE : Sy T

ELEMENTS IN THE MATRIZ 'C

Do 108 g=1,k R
NEG=(=1)s#(J+1) . o

I o o R :
2 v - . . ' ”

J29a32-1 -  €

I1J=1+J .
IJ1=IJ-1 SrA
1) *NEG
C(K2+121,J21)=T(Iai):NEG'

C(R2+12,J21)2$(1J)*NEG. .

€(12,02)=L(1o)eNEG .. B

CKR2+121,32)=5¢13) # (-NEG) -

C(K2+12,32)=T(1J)#NEG.

- €(I121,K2+321)=T(1J1)*NEG.

- C(12,R2+321)=S(1J)*(-NEG)

- C(R2+121,K2+321)=U(131)#NBG = R 1(;"'

. 108

C(121,KR2+J2)=S(1JV*NEG . -
C(12,K2+J2)=T(1J)*NEG .
C(Kfoz;K;faz)su(LJ)tNEGg,,_  1

CALCULATE 'X', THE SOLUTION VECTOR -

P TN
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f
. C _ : ~
J1=1 .
Jz20=20 s
J0=0 S L ,
C . . '—" ‘ [}
C ... THE 'IMSL' SUBROUTINE 'LEQJZF' SOLVES ‘A SYSTEM OF
C ... SIMULTANEOUS EQUATIONS o
C _ !
‘JCALL'GﬁQTZE C Ji1i, K4 J20,D, JO WKAREA IER) g
C 5
C ... DETERMINE THE ZEROES OF THE DENOMINATOR
C

DO 109 I=1 KZ ' ‘ ~ : L Co
_ 'A(1)=D(R4P1-1) . : | -
109. CONTINUE - - _ T ' ‘
" - A(K2+1)=1.0D0 -

... THE "IMSL' SUBROUTINE ' ZRPOLY' COMPUTES,THE ZEROES
"v.. OF A POLYNOMI AL : : S

_ CALL ZRPOLY(A,K2,Z,1EH)

N0 anna”

.. . 'CHECK RELATIVE ‘ERROR OF DAMPING AND NATURAL FREQUENCY
. . I
~ TEST=0. ono .
DO 110 I=2,K2,2
BB=2(1)-ZOLD(1) L
. B1=DREAL(Z(1)) T "
"B2=DIMAG(2Z(1)) .. e
TEST-TEST+DABS(DREAL(BB)/B1)+DABS(DIMAG(BB)/BZ)‘
- . ZOLD(I)=2(1) o SR
110 CONTINUE ' o SRR
CIC=IC+1 .. SRR : _
IF(IC.EQ. 20) GO TO 111
IF(TEST/DFLOAT(KZ) GT. 0 00100) Go TO 101 '
GO TO 113 o o L 2 .
WRITE( 10, 112) . '
1FORMAT(1X LEVY DIDN"T CONVERGE IN 20 ITERATIONS )

- —

A
©AN) —-

C
C ... COMPUTE COMPLEX RESIDUES ~
C
113 DO 115 I1=1,K2 .
' ALPHA(I)=0 0DO :
' DO 114 J=1,K - I _ -
J2=J%2
ALPHA(I)=ALPHA(I)+D(J2 1)*2(1)**(J2 2)+
< #D(I2)*2(1)%x(J2- 1) , S '
¥ 114 CONTINUE ‘.'}»‘; B S e
_ ALPHA(I)=ALPHA(I)/D(K4) ' " 'ts*‘.
DO 115 J=1,K2. ' S
IF(J.NE,. T) ALPHA(I)-ALPHA(I)/(Z(I) z(J))' B
115 CONTINUE . .

.C ' '
-‘pf... CONVERT MODAL PARAMETERS

P .



DO 116 I=1,K
II=2#I-1 -

. VALUE(4%I-3)= DIMAG(Z(II))/TWOPI

"VALUE(4#I-2) =DREAL(2Z(II1)).
uVALUE(4*I-1)=DREAL(ALPHA(II))

VALUE(4*I)=DIMAG(ALPHA(II))
CONTINUE .
IF(K.LT.3) GO TO 118

DO 117 I=1,KR4

VALUE(I)-VALUE(I):1000 0D0

17 CONTINUE
8 RETURN

END - .
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APPENDIX B - NON-SIMULTANEOUS SAMPLING

When using dual or multichannel digitizers, it is often

. assumed that all of the channels: are be1ng dlgltlzed ‘

51multaneously This is .usually not the case however. Most

| A/D converters have some f1n1te time lag between'the-.

sampllng of one channel to the sampllng of the second and
ensu1ng channels If th1s time lag, to, is very small

compared to the sampllng period, At (r}x to/At » 0) the

data collected w1ll be valig@. As the dlgltlzlng“speed is ..

1ncreased (to is f1xed) the relatlonshlp between the
srgnals on two- separate channels will become notlcably
dlfferent from two wh1ch are s1multaneously sampled .Th
t1me sh1ft1ng property.of the’ Four1er transform pa1r can be
-used to examine this effect. '

Consider'a Slgnal h(t) and its.éourier tramsform H(f)..
If h(t) is shlfted along the 't~oaxxs by an amount to, it.
can be shown that the Four1er transform of thlS functlon
h(t -t,) is H(f)exp(-jbt ). To get the des1red frequency
spectrum H(f), that would have occurred had the sampllng'
been truly 51multaneous (to=0), it rshnecessary to 51mply
d1v1de the calculated Fourier transform by the\factor
exp( Jwto) If the product wto (which is proportlonal to
"to/At) is small then thls factor approaches the value of
one (real valued only) Thus small sampl1ng delays cause. h

\

l1ttle d1stortlon to the spectrum of 1nterest Howevér,’lf

~—rp

the term wto, ‘has some apprec1able value,’ then the’ fadtor ‘.fl -

exp(-Juto) wlll be. complex valued and wlll affect the phase



.‘angle of the spectrum (the magnltude stays the same) .

In practlcal test1ng then, 1t is necessary to determ1ne.
what 'time delay (if - any) is present between the channels of
tthe d191t1zer. If the ratio to/At is small, it may be chosen
to neglect the correctlon term (typlcally 1f to is less than
1% of At, the correctlon 1s 1gnored) Generall however, the
addition of the correctlon factor can be 51mply 1mplemented
into the ana1y51s procedure, so_that any time delays can be

)

corrected



