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ABSTRACT

Buried pipelines for transportations of oil and gas function in complex
environments, such as Arctic and sub-Arctic regions. In addition to the normal operational
loading conditions, for example, the internal pressure, buried pipelines are subject to
various types of imposed deformations. The objectives of this work are to develop a
predictive approach for the behavior of pipelines under imposed deformations and to
establish associated criteria for design, maintenance and assessment of pipelines. The
standard procedure for analysis of buried pipelines at the present time, which has been
developed by industry, is based on an elastic-plastic beam model for the pipeline, combined
with elastic-plastic soil springs for the surrounding soil. A design criterion commonly used
is the buckling strain criterion. This criterion has been demonstrated to be overly
conservative, in general, by both experimental and analytical studies.

The predictive approach developed in this study is based on the fact that local
buckling of pipe walls interacts with overall response of the line of pipe. A two-step
predictive approach has been developed. These are denoted as segment analysis and line
analysis. The segment analysis is based on a three-dimensional shell model simulating a
pipe segment. The line analysis models the pipeline by using a pipeline-beam element,
developed in this study, acting interactively with the soil. To integrate the local behavior
into the overall behavior, representative cross-sectional stiffness is abstracted from the
segment analysis and is then fed into the line analysis.

For the segment analysis, a solution technique based on an improved arc-length
controlled equilibrium iterative method is developed. A solution procedure based on a direct
search technique is explored as an alternative. The results of segment analyses
demonstrated the softening behavior in postbuckling regions. Two basic buckling modes,
referred to as diamond and bulging modes, and significant cross-sectional distortions have
been predicted.

A program ABP has been developed for the line analysis. It is based on the ISPDR
and RMDI techniques, defined herein, which include and exclude the effects of local
buckling, respectively. Responses of lines of pipe, characterized by localization of
deformation, have been predicted and analyzed. Results demonstrate great influence for
effects of local buckling and the strengths of bearing and uplifting springs.



Based on the predicted behavior, criteria for design and assessment of pipelines are
proposed on a more rational basis. The procedures for establishment and application of
these criteria have been illustrated.
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CHAPTER 1 INTRODUCTION

Buried pipelines as a means of transportation of oil and gas have become more and
more important to the oil and gas industries in the last few decades. As the resource
exploration moves to remote frontiers such as the Arctic and sub-Arctic, pipelines have
been extended into new and more challenging environments. Consequently, there is a great
need to have better understanding of pipeline behavior and a refined design procedure to
meet the requirements imposed by the new working conditions. This project was proposed
based principally on this fact. The thesis as a whole will present the research work carried
out by the author between 1989 and 1992, and summarize the findings and suggestions
achieved. The first chapter presents the objectives of the project in Sect. 1.1 followed by a
brief literature review on relevant subjects in Sect. 1.2. A general discussion on conceptual
approach to the analysis of pipelines subjected to imposed deformation is presented in Sect.
1.3. The chapter ends with a brief description of the content of subsequent chapters.

Pipelines subjected to imposed deformation are often forced to deform into the
elastic-plastic region of the pipe steel. Due to the self-limiting nature of the deformation
imposed loads, the load carrying capacity is not the major concern. Fundamentally, failure
of pipelines should be defined in terms of two conditions, namely, leaking and excessive
deformation. Leaking of the pipe wall starts from fracture initiation and propagates into
through-thickness cracks which leads to loss of containment integrity. Predictions of
fracture initiation and propagation requires a fracture mechanics approach and is not the
primary objective of this project. Excessive deformation may be associated with local
buckling which can be produced by various types of imposed deformation. Predictions of
pipeline behavior under imposed deformation and the study of limit states associated with
excessive deformations are the objective of this project, as is detailed in the following
section.

1.1 OBJECTIVES

The general objective of this project is to analyze deformational behavior of
pipelines and to contribute to the rationalization of the design criteria based on limit states
design principles. To elaborate this general objective, the specific objectives are :

(1) to develop a robust solution technique which is able to trace various types of
equilibrium paths for shell structures.

(2) to carry out nonlinear large deformation analysis and analyze the postbuckling



behavior of cylindrical shell segments, and determine the effects of loading conditions and
geometric parameters, such as, diameter and wall thickness on the postbuckling behavior.

(3) to develop a procedure of buckling analysis, especially for cylindrical shells
subjected to combined loads, and carry out buckling analyses to identify the onset of
buckling. This onset is the phenomenon on which the current design criteria used in the
pipeline industry, for imposed deformation loading conditions on pipelines, are based.

(4) to examine the effects of loading conditions and geometric parameters on the
onset of buckling.

(5) to develop an analytical model for buried pipelines which can account for both
the characteristics of a pipeline as a shell structure and as a long line structure.

(6) to determine the interaction between the pipeline and surrounding soil.

(7) Based on the behavioral understanding obtained from analysis of buckling and
postbuckling of pipe segments and the integrated pipeline, propose a procedure on which
more rational limit states design for imposed deformation can be established.

1.2 LITERATURE REVIEW

Pipelines are a type of structure which must function in complex environments. The
behavior of pipelines is complicated by such factors as local shell buckling, soil-structure
interaction, and combinations of externally applied loads and imposed deformations.

Despite the complex behavior and conditions imposed on pipelines, the design
procedure specified by the current Canadian design code (CAN/CSA-Z183,1989),
hereinafter referred to as 'the code', is based on linear elastic stress analysis and working
stress design principles which can't be considered as a completely rational approach for
pipeline design problems. This is particularly true for the conditions of imposed
deformation where significant local yielding, local buckling, and large deformation may
occur. A rational nonlinear deformation analysis should be employed to analyze this highly
nonlinear response and to design pipelines safely and economically. Recognizing the
inadequacy of the design procedure in the code and the need for more rational design
criteria, a substantial effort has been made herein to improve the knowledge and
understanding of pipeline behavior. In the remainder of Sect. 1.2, a review of the subjects
related to the behavior and design of buried pipelines subjected to imposed deformations is



presented. This focuses on the design procedure in the code, on complementary design
criteria and procedures used in the oil and gas industries, and on the critical buckling strain
of pipes subjected to combined axial load, bending load and internal pressure.

1.2.1 Design Procedure in the Code

The code for oil pipeline systems in Canada, CAN/CSA-Z183 (Canadian Standard
Association, 1989), is based on linear elastic stress analysis and accumulated experience
with the design loads of pressure, temperature differential, and sustained forces. The
design specifications, as stated in Clause 5.6.1.1 of the code, are the following
requirements : (a) design wall thickness, (b) maximum allowable temperature differential in
restrained sections, (c) maximum allowable freely supported spans for axially restrained
sections, (d) minimum required flexibility in partially or fully unrestrained sections, (€)
maximum allowable support spacings for stress design of unrestrained sections, and, (f)
maximum allowable cold-sprung reactions on equipment attached to flexible piping.

The code recognizes design conditions other than the basic conditions of pressure,
temperature and sustained forces, such as slope movements, fault movements, seismic
related earth movements, thaw settlements and frost heave. These are imposed
deformations with regard to pipelines and would normally result in a locally nonlinear
response which is not covered by the design procedure in the code. The code does not
provide design requirements for conditions arising from imposed deformations. As stated
in Clause 5.1.4 the designer is required to determine what supplemental design criteria are
necessary for these effects. Clause 5.2.1.3 states that the designer is responsible for
determining supplemental local design criteria for structural limits for denting, wrinkling,
secondary tensile loading and structural stability.

1.2.2 Design Criteria Currently Used in Industry

As stated in the previous section, the current design code does not provide any
guidance on design criteria for conditions of imposed deformations. Consequently,
designers of pipelines must develop their own supplemental design criteria. Longitudinal
strain has been chosen as a quantity upon which to establish the governing criteria for loads
imposed by deformations for the following reasons.

First, the loads arising from imposed deformations are self-limiting in nature,
because they are developed by the constraints of adjacent materials or by self-constraint of
the structure itself. That is, stresses arise to satisfy strain-displacement compatibility within



the structure or between the structure and its supporting medium. The magnitudes of these
loads depend on the imposed deformation, and more importantly, on the stiffness of the
structure. Deformations or strains, rather than the loads, are the dominant quantities which
control the response of the structure under these conditions.

Second, the amount of displacement involved in slope movements, fault
movements, thaw settlements and frost heave, are usually large enough to force pipelines to
deform into the elastic-plastic range of the material. Because the typical stress-strain curve
for pipeline metal is very flat in the elastic-plastic range, strain is a far more sensitive
quantity than stress with regard to the equilibrium state of pipeline.

Third, the longitudinal strain is used because local buckling of the pipe wall
depends mainly on its (compressive) magnitude. In addition, in the case of tensile
longitudinal strain, the total inelastic behavior is bounded by limiting the longitudinal strain
provided that the circumferential stress due to internal pressure is limited to a value below
yield strength of the material.

The strain criteria are intended to prevent the failure of pipelines. Pipelines may fail
because of leaking, which is the result of crack initiation and propagation, or because of
excessive deformation associated with local buckling. A criterion in terms of the maximum
tensile strain in the longitudinal direction is used to prevent crack initiation and propagation.
This has been commonly set at 0.5 percent (CANUCK Engineering Ltd., 1983). Studies
(Price, 1990) show that this is, in general, a conservative criterion. Although much work is
currently under way to develop rational criteria for the conditions of crack initiation and
propagation, this aspect is not the principal interest of this project.

The maximum acceptable value of compressive longitudinal strain is normally set at
the onset of local buckling in the pipe wall. The rationale for this is based on the fact that
thin cylindrical shells have unstable postbuckling behavior. Load carrying capability of
such a shell usually drops dramatically upon the initiation of local buckling and deformation
of the postbuckling pattern, either axisymmetric or non-axisymmetric, grows rapidly after
buckling occurs. To preserve load carrying capability and prevent excessive deformation
and cross-sectional distortion, it appears to be natural to avoid local buckling completely.
However, for a buried pipeline subjected to imposed deformation, the load carrying
capability of the pipeline is not not significance and large additional deformation can be
accommodated by the pipeline without affecting its capacity to carry the intemnal pressure.
This behavior will be further developed in subsequent sections since it is one of the major



concerns of this research,

Because local buckling of shells is such a complicated phenomenon, as will be
discussed in detail in Chapter 2, great efforts have been made to evaluate the strain at the
onset of buckling both experimentally and analytically. This will be elaborated on in the
next section. A typical value for maximum compressive strain in the current design
procedures is 0.5 percent. A derivation of this value for a pipeline with outer-diameter of
12.75 inches and wall thickness of 0.25 inches was given by Workman (1981).

The common design procedure for pipelines appears to be to design the preliminary
wall thickness for internal pressure according to stress criteria and then check for given
imposed deformations. If the maximum permissible strain is exceeded, the wall thickness is
adjusted or other measures, such as soft padding beneath the pipeline, are introduced to
improve the geotechnical performance, so that the strain criteria are satisfied.

1.2.3 Experimental Studies of Buckling Strain

Many testing programs have been carried out in the past to study the buckling
behavior of cylinders under various load combinations. However, most of them focused on
buckling strength instead of buckling strain because buckling strength has much more
engineering significance if the principal function of the cylinder is to carry loads.
Consequently, only a handful of testing programs on buckling strain were conducted and
reported (Bouwkamp and Stephen, 1973, 1974, 1975; Korol, 1979; Reddy, 1979; Jirsa et
al, 1972; and Sherman, 1976). Some of these tests were carried out deep into the
postbuckling ranges, but little measurement on postbuckling behavior has been reported up
to present time. The testing programs and their results are briefly reviewed in the following
subsections.

1.2.3.1 Tests of Bouwkamp and Stephen

Bouwkamp and Stephen carried out a series of tests at the University of California-
Berkeley, in 1973, for pipes to be used on the Trans-Alaska pipeline. Eight tests on seven
specimens were conducted. The specimens were fabricated from nominal 48 inch (1219
mm) diameter longitudinally seam-welded pipe. The test sections, except for one specimen,
were fabricated from X60 pipe with a nominal wall thickness 0.462 inches (11.7 mm) and
an yield strength of 60 ksi (413.7 MPa). The loading conditions were increasing bending
moment combined with constant internal pressure and constant axial load. The internal
pressure was set at two levels, high pressure at about 950 and 150 psi (6.55 and 1.03



MPa) and low pressure at 25 psi (0.17 MPa). The axial load was also set at two levels
which correspond to temperature differentials of 135° and 90° F (57.2° and 32.2° C). The
measured thickness and loading conditions are listed in Table 1.1.

The primary objective of the test series was to investigate the strain at the onset of
buckling under various load combinations and loading sequences. After the results from the
first test showed that the operational integrity of the line would not be impaired by
development of buckling , the subsequent tests were continued into their postbuckling
region to assess the postbuckling strength and deformation capability. Unfortunately, only
minimum measurements were taken. However, the postbuckling deformation patterns from
these tests are probably the best available information up to the present time. The buckling
strains and radii of buckling curvatures are listed in Table 1.1.

The primary conclusions from this test series are summarized in the following.
Failure, which occurred only at the end of the postbuckling phase, resulted from excessive
local deformations except for one case of tearing of the pipe wall. When the pipes buckled
at relatively low curvature values, the cross-sectional distortions were small enough not to
affect the flow-through capacity of the pipeline. Following buckling the pipe is capable of
undergoing further deformations which are twenty to thirty times those observed at
buckling. The buckling mode has two basic forms : (1) For the pipes with middle to high
pressure (150-950 psi) initial buckling develops as an outward buckling of the pipe wall
over a substantial portion (up to 75%) of the pipe circumference; and, (2) For pipes with
low pressure (25 psi), the buckled wall takes on a diamond like in-and-outward type of
deformation pattern. On the sections other than the buckled sections, the distributions of
longitudinal strain are basically linear up to a load level close to the buckling load, and only
departs slightly from linearity afterward.

1.2.3.2 Tests of Reddy

Reddy (1979) performed a series of tests on stainless steel and aluminium alloy to
investigate the plastic buckling behavior of pipes which had D/t from 35 to 80. It was
realized that curvature is a much more satisfactory measure of buckling processes than
bending moment, or equivalently, that extreme fiber compressive strain is a better measure
than the corresponding stress. This is so because the shape of a typical moment-curvature
response is very flat in the plastic range. Consequently, the strains at the onset of buckling
were taken as the major measurements. Ten steel specimens and nine aluminium alloy
specimens were tested. The specimens had a nominal diameter of 25 mm and were tested



under pure bending loading conditions. The thickness and buckling strains are listed in
Table 1.2.

An important observation from Reddy’s tests is the presence of wave-like ripples
on the compression sides of the specimens before collapse took place. These ripples were
found to remain after unloading at the end of test. They were non-uniformly distributed
along the extreme compression side and had a principal ripple which was significant larger
than the others in some cases. The average wavelengths of the ripples are smaller than the
one of the plastic axisymmetric buckling of axially compressed cylinders. It was concluded
that the ripples, rather than the small amount of ovalization, were the primary cause of
collapses. This implied that the tubes behaved as imperfect cylinders, the imperfections of
which gave rise to a steady growth of these ripple which eventually led to collapse.

The strain data in Table 1.2 was not directly available in the paper given by Reddy
(1979). They have been retrieved from the plots in the published paper. Consequently,
some errors may be expected. The reported buckling strains were defined at the limit points
where collapses occurred.

1.2.3.3 Tests of Korol and Jirsa

Korol (1979) carried out a series of 11 tests on single and double span circular
hollow tubular beams to compare with inelastic bending and axial compression theories of
buckling. The main purpose of this series of tests was to investigate the D/t limit for tubular
sections which can be used in plastic design. The test sections were loaded in uniform
moments. The geometric properties of specimens, buckling strains at the onset of
bifurcation which are observed visually, and strains at limit points are listed in Table 1.3.

Jirsa et. al (1972) conducted tests on six pipes to study the influence of ovaling on
the flexural behavior of pipelines stressed beyond the elastic limit. The diameters of pipes
range from 10.75 to 20 inches (273 and 508 mm) and D/t ratio from 30 to 80. Four of the
pipes tested were uncoated and two were coated with concrete. The test sections were
loaded in uniform moments. Geometric properties of specimens and buckling curvatures
are listed in Table 1.4. The stress-strain curve was reported for each of the specimens. The
buckling curvatures were recorded at the limit points. The values of buckling curvature are
retrieved from plots in the published paper. One conclusion about the effects of ovaling
from this test series is that the influence of ovaling on the moment capacity is relatively
small in general, and local buckling occurred before large reductions in moment capacity



were observed. Therefore, local buckling, rather than ovaling is the principal cause of pipe
failure.

1.2.3.4 Tests of Sherman

Sherman (1976) carried out a series of tests to determine the moment redistribution
capabilities of round tubes and to determine if the plastic design principle could be applied
to tubes subjected to flexure. Eighteen specimens were tested with nominal diameter of
10.75 inches and diameter-to thickness ratio ranging from 18 to 102. Three arrangements
of support conditions were included in testing. They were simple supports at both ends,
fixed supports at both ends and a cantilever. The fixed ends were welded to heavy end
plates which allowed no distortion of the cross-section. The properties of the specimens are
listed in Table 1.5 where simple, fixed, and cantilever are designated for boundary
conditions mentioned above, respectively. The test results for those which failed by
buckling are also listed in Table 1.5, where the buckling curvature was defined as that at
which a diameter change of 0.05 inches occurred or was visually evident.

The following are some conclusions and observations obtained from this series of
tests. Members with D/t of 35 or less could develop a plastic moment and sustain sufficient
rotation to fully redistribute the moments. Ovalization at the hinge was slight and buckling
did not occur. The section with D/t of 102 buckled in the elastic-plastic range. A deep
buckle with single wave formed suddenly and the moment could not be maintained. The
presence of a moment gradient and a stiffened end caused the initial buckle to occur at
higher strains than when there was a constant moment region. For the heavier sections, the
buckle formed slowly. The same or an increased load was sustained after the initiation of
buckling, and the load started to drop at larger curvatures.

1.2.3.5 Tests in Progress

Two independent test programs in progress at the present time are being carried out
at the University of Alberta (U of A) and at the Center for Frontier Engineering Research
(C-FER). The objectives of these two test programs are to determine the strain at the onset
of buckling and study the postbuckling behavior of pipe segments subjected to combined
axial load, internal pressure and bending moment. The test program at U of A includes 7
specimens where 4 of them have a diameter of 20 inches (508 mm) and the other three have
a diameter of 12.75 inches (324 mm). These tests have been completed at this moment.
However, the data reduction is yet to be carried out. The test program at C-FER may



include 6 to 10 specimens which have a diameter of 24 inches (610 mm). The tests have yet
to be completed. It is believed that the results from these test programs will be an important
contribution to the knowledge of buckling and postbuckling behavior of pipe segments.

1.2.4 Analytical Studies of Buckling Strain

Predicting the buckling strain by an analytical approach or by numerical analysis is
a research subject which has attracted the attention of many researchers. Similar to the
experimental studies carried out in the past, most analytical studies were directed at the
buckling loads instead of the buckling strains. Therefore, only relatively few studies are
closely related to the current subject. These will be reviewed in the following subsections.
They are grouped into closed-form solutions based on differential equations and numerical
solutions based on finite element procedures.

1.2.4.1 Solutions Based on Differential Equations

Solutions based on differential equations are largely for axially compressed
cylinders because the uniform membrane stress state existing in the prebuckling cylinder is
easier to treat theoretically. The classical elastic buckling strain of an axially compressed
cylinder has been studied by many researchers and reported in many references. These are
summarized in the book by Brush and Almroth (1975). For cylinders of intermediate
length, the elastic buckling strain can be expressed as

= L
€er 1.21D (1.1)

1.2.4.1.1 Analysis of Batterman

Batterman (1965) used a procedure similar to that for elastic buckling for plastic
buckling. Starting with an incremental differential equation of equilibrium, Batterman
employed an elastic-plastic stress-strain relation to evaluate stress increments according to
either the incremental theory or the deformation theory of plasticity. Great efforts were
made to examine the differences in solutions because of the controversy that existed, which
is, that incremental theory is essential for a proper description of irreversible plastic
behavior. Nevertheless, the experimentally obtained loads are in good agreement with
predictions of deformation theory. In analogy with the tangent modulus theory for columns
it was assumed that the entire thickness of the shell wall is loading at buckling. The elastic-
plastic buckling strains were expressed as
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for the incremental theory of plasticity and
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for the deformation theory. In Egs. (1.3) and (1.4), v is Poisson ratio, and W: and Vs are
the ratios of the elastic modulus to tangent modulus and elastic modulus to secant modulus,
respectively. If unloading was allowed, as in the reduced modulus theory for columns,
solutions were obtained with much more complex forms which are not presented here. It
should be pointed out that the coefficient A in Eq. (1.2) which is defined by Egs. (1.3) and
(1.4) is dependent on the strain states because the tangent modulus and secant modulus
have to be properly evaluated at the current strain state. Consequently, an iterative
procedure is needed to determine the value of the buckling strain. This is usually a
numerical procedure.

1.2.4.1.2 Analysis of Workman

Workman (1981) did an analysis for the Norman Wells pipeline. Despite the fact
that the pipeline goes through the sub-arctic environment and might be subject to a complex
combination of internal pressure, axial loads and bending moment, Workman idealized the
problem of determining the buckling strain of such a pipeline to the relatively simple
problem of finding the buckling strain of an axially compressed cylinder with internal
pressure. The assumption employed was that the buckling strain of the pipe subjected to
internal pressure and axial load is equal to or less than the buckling strain of the same pipe
subjected to internal pressure, axial and bending loads. By employing deformation theory
of plasticity and a Ramberg-Osgood curvilinear material representation, and assuming sine
waves in both the longitudinal and hoop directions, a characteristic equation was obtained
for a given material description and pipe size. This equation is

¢(0x, G5, m,n) =0 (1.5)

where Ox and Os are stresses, while m and n are wave numbers, in the longitudinal and



hoop directions, respectively. The lowest possible longitudinal stress state was identified as
the buckling stress. This was determined by a numerical procedure in which the hoop
stress was assumed to be constant and the buckling stress was obtained by search through
the various wave numbers. Since the deformation theory of plasticity was employed, the
buckling strain was determined from the buckling stress.

1.2.4.1.3 Analysis of Popov

The theoretical study by Popov (1973, 1974) proposed a methodology for
determining the buckling strain of pipelines when subjected to the combined loading of
pressure, axial and bending loads. His procedure had two steps.

The pipe was first subjected to internal pressure and axial load. It was modelled as
an inelastic axisymmetric shell by finite element. An isotropic strain hardening material
model with a curvilinear stress-strain relationship was used. From the axisymmetric model,
an average stress-strain relationship representing the axisymmetric buckling characteristics
was obtained by an incremental solution approach, which then served as a material
constitutive law to be used in the bending problem.

In the second step, bending was introduced and the cross section was assumed to
remain circular throughout the deformation history. A theory which formulates the behavior
of a membrane tube under internal pressure, axial and bending loads was developed. The
bulging effects were introduced by using the stress-strain relation derived from the
axisymmetric model instead of the actual material properties on the compressive face of the
pipe. Failure of the pipe due to wrinkling was then defined as the point at which the strain
in the compression side reached the average axial strain at bulging in the axisymmetric
problem. The proposed methodology was supported by good agreement between the
predicted curvatures at which the wrinkle formed and the test results of Bouwkamp (1973).

1.2.4.2 Solutions Based on Finite Element Procedure

Finite element procedures have been used extensively to determine the buckling
strain of cylinders. In general, three types of finite element model can be employed for
buckling of a cylinder. The first is a model based on general shell elements which are
available in many general-purpose programs on the market today. This model is the most
general and capable in the sense that it can model any geometry of the shell and any type of
deformation pattern. The second is based on the so-called ‘elbow element’, such as the one
in ABAQUS (Hibbit, 1984). Elbow elements have polynomial interpolation between the
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nodes in the longitudinal direction and Fourier interpolation around the circumference. Due
to the nature of the interpolation, elbow elements have relatively limited capability of
modelling deformation. The third is the axisymmetric model based on axisymmetric
elements. This model has great advantages of efficiency, but can only model axisymmetric
geometry and deformation.

1.2.4.2.1 Solutions of Row

Row er al (1983a) did a numerical study, in which he employed a similar
methodology to Popov (1973, 1974). For the pipe subjected to internal pressure and axial
load, the pipe wall was modeled using a 8-node axisymmetric solid finite element. A
general multilinear stress-strain relationship with a kinematic hardening model was
adopted, and an axisymmetric imperfection was introduced to represent thickness variation
and/or offset at circumferential welds. With the axisymmetric model, the average stress-
strain curve and the critical strain at which wrinkling or buckling occurs were obtained. The
bending problem was modelled using an inelastic large deformation three dimensional shell
element. Both the actual stress-strain curve and the average stress-strain curve were used in
bending analysis. The results of the analyses indicated that, if the critical extreme fiber
strains were defined at limit point in both bending and axisymmetric analyses, the critical
extreme fiber strains in a bending analysis were substantially larger than those in an
axisymmetric analysis because of the strain gradient in the bending case. A similar
conclusion for curvatures corresponding to the extreme fiber strains was also valid. The
use of the average stress-strain curve resulted in some difference in the moment-curvature
response from the solution using actual material properties. This difference is significantly
increased in the post-buckling softening range.

1.2.4.2.2 Solutions of Lara

P.F. Lara (1987) is probably the first one who studied the post-buckling behavior of
pipe and tried to validate the strain criteria which are commonly used at the present time,
The pipe was modeled by elbow elements, available, for example, in ABAQUS
(Hibbit,1984). The cross sectional deformation is incorporated by Fourier interpolation.
The wrinkle formation and wrinkle growth in pipes under combined loading were studied.

The results indicated that, for the low pressure cases which had the ‘diamond
shaped’ wrinkle, a rapid wrinkle growth followed wrinkle formation. However, for high
pressure cases, rapid wrinkle growth happened much later than when the wrinkle first



formed. It was concluded that the strain criterion based on wrinkle onset is adequate for
low pressure cases, and too conservative for high pressure cases.

The strain at which rapid wrinkle growth begins was proposed as a more rational
failure criterion. Sensitivity analysis of wrinkle growth was carried out to understand how
the failure criteria would vary qualitatively when the design parameters, such as pressure,
operating temperature, material properties, and wall thickness, were changed. Outward
wrinkle formation was determined to be mildly sensitive to pressure effects, while inward
wrinkle formation was a strong function of pressure. The pressure had a favorable effect in
delaying wrinkle growth, and its influence was very significant for inward wrinkle growth.
The operating temperature, or the compressive load had secondary effect on wrinkle
growth. Increase in wall thickness could slightly delay the wrinkle growth. But thicker wall
tended to revert the buckling mode from the outward bulging mode to the inward diamond
mode, and consequently reduced the critical failure strain significantly. With regard to the
material properties, wrinkle growth was found to be mainly dependent on the plastic

properties.
1.2.4.2.3 Solutions of Bushnell

Bushnell published a series of papers (Bushnell, 1974,1976, 1981 and 1984) and a
comprehensive book (Bushnell, 1985) on numerical buckling analysis of shells with a
good portion of them devoted to cylindrical shells. In his works, an axisymmetric model
for buckling analysis of shells of revolution was established and a program for this
purpose, BOSORS, was developed. With this tool, buckling behavior of various types of
shells of revolution were analyzed for various loading and boundary conditions. The
bifurcation analysis was based on eigen-value analysis, and an incremental solution
approach was employed for nonlinear path analysis. The focus has been on determining the
bifurcation load or limit load rather than the post-buckling behavior, although initial post-
buckling behavior was one of the topics in his works. The prebuckling behavior is found to
have a significant influence on imperfection sensitive shell buckling.

1.2.4.3 Comment on Previous Analytical Studies

A few comments will be made with regard to previous studies reviewed in this

section.

First, there does not appear to be a firm basis for the assumption that the critical
longitudinal buckling strain from axisymmetric conditions is applicable to general
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conditions. This assumption is based upon the observation that the elastic buckling stress
of a cylindrical shell subjected to axial load is about equal to or less than that of a cylindrical
shell subjected to bending moment (Seide, 1961). Even though the elastic buckling stresses
are close for the two load cases, there is no indication that the elastic-plastic buckling loads
will be close, and even less support for elastic-plastic buckling strains to be close. It is well
known that the buckling of the pipe with particular geometries of interest in buried oil
pipeline design occurs after the initiation of elastic-plastic behavior, and therefore the
strains could be much different while the stresses are reasonably close. Therefore, this
fundamental assumption, which has been used directly by Workman (1981), and indirectly
by Popov (1973) and Row (1983a), does not appear to have a sound theoretical basis.
Furthermore, the axisymmetric model is not sufficient because it can only predict
axisymmetric buckling modes, while tests (Bouwkamp, 1973) indicated that the buckling
mode at low internal pressure was of the inward diamond shape which was obviously non-
axisymmetric.

Second, the assumption that the cross-section remains circular does not appear to be
satisfactory for predicting behavior in the post-buckling range. For shell type local
buckling, cross sectional distortion, which results from both ovalization and local buckling,
has a significant effect on post-buckling structural behavior, and should be included. The
circular assumption was used by Popov (1973).

Third, only limited test results for pipes, in terms of buckling strain and buckling
curvature are available. The test results from Berkeley are probably the best available.
However, because the objective of these tests was to establish design criteria based on the
onset of local buckling, there is no data with regard to post-buckling, even though the tests
were carried on into the final collapse stage. For the range of practically used geometry and
material properties, the post-buckling behavior is virtually unknown and more study is
necessary.

Finally, the rationality of the practice of defining the pipe failure condition at the point
of wrinkle onset is in question. As observed in Bouwkamp’s tests (1973), the cross-
sectional changes were small after the initiation of buckling occurred and the pipe appeared
to remain in a condition which would permit it to be fully operational. Row (1987)
indicated that wrinkle initiation is one of the damage conditions but not a failure condition,
and a certain amount of wrinkling could be allowed. Lara (1987) showed that the criteria
based on the initial buckling strains are very conservative for pipe with high internal
pressure.



In view of the research work related to the buckling strain limits, design criteria
currently employed are, in general, very conservative and the basis for them is neither
rational nor complete. In the present study, by predicting the behavior of pipe, particularly
the post-buckling behavior, through a rational and general numerical analysis, an attempt is
being made to establish a firmer basis for more rational and complete design criteria for
deformation imposed loads.

1.2.5 Analysis of Pipeline Subjected to Settlement

Within the past decade, analysis of soil support and stress distribution in buried
pipelines has evolved from simple approximations using closed form solutions (Yen ez al,
1981) to the use of sophisticated analytical methods which incorporate plastic analysis of
steel and nonlinear soil behavior (Row et al, 1983b). One of the reasons for this
development is the need for pipelines in adverse environments, such as buried pipelines in
the arctic and pipelines under deep water. Buried arctic pipelines have to be designed for
adequate restraint against thermal loading as well as to maintain integrity against thaw
settlement and frost heave. Analysis of pipelines when subject to differential thaw
settlement has two fundamental roles which are : (a) determining the acceptable design of a
pipeline for a given differential settlement; and, (b) determining the allowable differential
settlement for a given pipeline.

The model for analysis of pipelines subjected to differential settlement should cover
several important issues. Soil settiement induces deformation of the pipeline which disturbs
the distribution of strains and stresses existing in the line prior to the settlement. The
magnitude and pattern of this disturbance depends on the structural response of the pipeline
to the imposed deformation from soil setdement. Pipeline-soil interaction is an important
feature. Because of the interaction, both the pipeline as a structure and the soil as a
supporting medium have to be properly modelled. This usually leads to a complicated
analytical model.

Depending on the major interest of the investigator, one could have a combination
of a relatively simple model for soil and a relatively elegant model for pipeline or vice
versa. In settlement analysis, more interest may be directed at the redistribution of the
strains and stresses over the length than at the local cross-sectional deformation.
Consequently, the analytical model has to cover sufficient length of the pipeline in order to
properly evaluate this overall response. This usually results in a large scale model
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depending on the particular discretization technique employed. Because of the large scale
involved, full scale experimental studies of pipelines subjected to differential settlement are
rare, and those that exist are questionable. Therefore, most studies reported on this subject
were based on numerical and theoretical models.

1.2.5.1 Interaction Model

There are, in general, two types of analytical models for two different purposes.
One is the pipe-soil interaction model which includes a segment of pipe and surrounding
soil. The purpose of this model is to analyze the interaction between the pipe and the soil
with the focus on the resistance provided by the soil. Consequently, a simple model for the
pipe and relatively accurate model for the soil are usually employed. Examples of this type
of analysis are studies carried out by Selvadurai (1983), Selig (1988), and Wagner (1989)
where the proper soil parameters used for design of buried pipelines are the main concern.
Because the scale of the model to determine the soil parameters is relatively small,
experimental studies (Sultanov, 1986 and Wagner, 1989) were carried out to support and
establish the analytical model. Detailed discussion is beyond the scope of this project.
However, some discussion on the model, and results obtained, will be presented in Ch. 6.

The second type of analytical model is the pipeline-soil interaction model which
includes a sufficient long pipeline and supporting soil. The purpose of this model is to
analyze the response of the pipeline when it is subjected to imposed deformation that is
applied through the interaction between the pipeline and soil. As the main interest is on the
behavior of the pipeline, it is natural to have a relatively complicated model for pipeline that
may include both geometric and material nonlinearities and a reasonable model for soil such
as elastic-plastic soil springs. Because of the long length of pipeline that has to be covered
in this type of study and the surrounding soil which is difficult to model, experimental
study is difficult to carry out with a few exceptions. Two of them that can be mentioned
here are tests on the effects of thermal loading (limura and Nishio, 1986) where only axial
deformation needs to be considered; and tests on effects of frost heave (Williams, 1992).
For the same reason, pipelines would normally be discretized by beam-type elements in
numerical models, although other options, such as elbow elements and shell elements are
possible.

Because of the great number of degrees of freedom introduced by discrete models
of pipelines based on elbow elements and shell elements, the analysis becomes very
expensive in terms of computer resources and, therefore, unrealistic for practical



application of pipeline design. Several models proposed for settlement analysis are

reviewed in the following.
1.2.5.2 Model of Nyman

Nyman (1983) carried out a study on thaw settlement analysis for buried pipelines.
After discussing the classification of thaw settlement configurations and mechanisms, a
beam-on-elastic foundation model was proposed. In his model, the pipeline was modelled
by an elastic beam element which is governed by maximum allowable stress. The soil
loading and support conditions were represented as soil springs attached to the pipeline.

Each soil spring had a load-displacement relationship which is, typically, in the
form of an elastic-perfectly plastic curve represented by the ultimate value of soil restraint
and the corresponding yielding displacement. There are three aspects of soil effects needed
to be modelled by soil springs. These are, soil overburden loading above the pipeline,
bearing support below the pipeline and the longitudinal friction along the pipeline. Three
types of soil springs were designated for these soil effects. These are, uplift springs,
bearing springs and longitudinal springs, respectively. Equations to determine the ultimate
soil resistance and yield displacement for each type of soil spring were proposed for both
the settlement zone and the transition zone. The computations were carried out by using a
public domain program which can model the pipeline as a beam-on-elastic foundation and
predict settlement subject to a governing criterion of maximum allowable stress.

1.2.5.3 Model in Program PIPLIN.III

A more elegant model was proposed by Row et al (1983b) who was associated
with the development of the specialized computer program for stress and deformation
analysis of pipelines, PIPLIN-IIT (Structural Software Development, Inc., 1989). The
model presented in his paper summarized the theoretical basis for the program PIPLIN-OI.
Since this program has been on the market for more than a decade and is extensively used
by the pipeline industry, this particular model reflects the state-of-art in the field of pipeline
analysis. The pipeline was modelled as a series of inelastic beam-type finite elementsina

plane.

The pipeline material was represented by a material model proposed by Mroz
(1967) which could consider yield under biaxial stress (hoop and longitudinal), nonlinear
strain hardening and arbitrary cycling loading. The pipe cross-section was assumed to
remain circular which means the cross-sectional ovaling is neglected. The local buckling of
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the pipe wall was not directly modelled; instead, the strain at the onset of buckling was
used to be the governing failure criterion. The buckling strain was required to be
determined by separate theoretical and experimental studies.

The soil was modelled as a nonlinear Winkler foundation, i.e. a series of uncoupled
nonlinear springs. The transverse soil spring consisted of four components. These were :
the inelastic spring which models the basic nonlinear behavior; and, a spring and two
dashpots which are used to model the creep effects. The inelastic spring component was
assigned properties which accounted for nonlinear behavior, including : initial loading;
inelastic unloading; development of gaps between the soil and pipeline under reversed
loading; and, seasonal variation of uplift resistance. The longitudinal spring was a
nonlinear spring similar to the transverse spring except that it was not dependent on the
direction of the axial movement of the pipeline.

1.2.5.4 Model of Selvadurai

A interesting model was proposed by Selvadurai (1985) where elastic beam
elements were used to model the pipeline and boundary elements were used to model the
surrounding soil. The advantage of this model was that the soil was modelled as a three-
dimensional continuous elastic medium rather than a series of uncoupled soil springs.
Consequently, the effects of surrounding soil were more accurately simulated. The price
paid for this is that the soil had to be two-dimensionally discretized on the exterior surface
and the interface between the pipeline and elastic medium, which resulted in larger scale
system. Therefore, its application in practical problems was limited. It is interesting to
notice, however, that the three-dimensional medium can be modelled by a two-dimensional
mesh through the use of the boundary element technique.

1.3 CONCEPTUAL APPROACH TO DEFORMATION ANALYSIS

The analysis of a pipeline subjected to imposed deformations is a complex problem
due to the effects of material non-linearity, geometrical non-linearity, local buckling, and
soil-structural interaction. A pipeline is a type of shell structure, and a three-dimensional
shell model is necessary to properly examine its buckling and post-b uckling behavior and
to evaluate the nonlinear effects, both material and geometric. Considering the size of the
problem, in terms of the length of pipeline which has to be covered in order to properly
model the interactive soil-structural response when subjected to differential soil settlement,
a three-dimensional shell model, which is theoretically possible, is intractable. Therefore, a



beam-type of line element has been employed. The settlement analysis of the pipeline is,
then, divided into two phases, which are discussed in the following.

In the first phase, a three-dimensional shell model is used to represent a short
segment of pipeline, which is free from soil support, in order to study buckling and
postbuckling behavior. This includes the effects of material nonlinearity, geometrical
nonlinearity, and geometric parameters, such as, diameter and wall thickness, and load
combinations of axial load, internal pressure and bending moment. In this phase, the
initiation of local buckling can be identified, and postbuckling response can be examined.
The characteristics of the response include moment capacity vs. average strain history,
where this latter term includes average curvature and average axial strain, cross-sectional
deformation and distortion, and the development of wrinkling. With this model, parametric
studies relative to the onset of local buckling and post-buckling behavior can be carried out.
In addition, a variety of incremental stiffness properties can be determined and more
rational criteria for serviceability deformation limit states can be established, based on the
post-buckling prediction of the cross-sectional distortion. This type of analysis will be
called a segment analysis and is the basis for boxes with A to F linkages in the flow chart
of Fig. 1.1.

In the second phase, beam-type elements are used to model a pipeline of sufficient
length for the settlement analysis. The effects of soil-structural interaction, differential
temperature, lateral load and supports are included in this phase. Stiffness properties
determined from the first phase are available to simulate the response of beam elements.
Several aspects of the response of the pipeline can be examined from such an analysis. The
results include the distribution of the curvature, axial strain, moment, and axial force along
the pipeline length for any given settlement. For a given design and failure criteria, the
allowable settlement can be determined. The sensitivity of the pipeline response to the
various soil parameters can be studied. Rational criteria for deformation limit states in terms
of critical curvature or compressive strain can be related to the settlement. This type of
analysis will be called a line analysis and is the basis for the boxes with G to N linkages in
the flow chart of Fig. 1.1.

All approaches to solutions will be discussed conceptually in the following sub-
sections and are summarized in the flow chart shown in Fig. 1.1.
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1.3.1 Shell Model Analysis of Segments

In the shell model analysis of pipeline segments, i.e. the segment analysis, the local
buckling behavior and postbuckling behavior are of main interest. In order to numerically
simulate these aspects of behavior, a robust solution technique which is able to account for
the effects of nonlinear material properties and large displacements, and to trace various
types of equilibrium paths which may include snap-back and snap-through types of
behavior, is essential. In addition to robust solution techniques, a finite element model must
be developed which can properly model the loading and boundary conditions, and
deformation patterns anticipated. With such a finite element model and solution technique,
the incremental nonlinear analysis of pipeline segments can be carried out to trace the
equilibrium path up to any required degree.

The objective of buckling analysis is to identify the onset of buckling. Because the
strain at the onset of buckling is currently used for many applications as the governing
design criteria for excessive deformation when pipelines are subject to deformation
imposed load, buckling analysis becomes an important part of the analysis, in spite of the
fact that design criteria based on buckling strain cannot be totally rationalized. Detailed
discussion on the rationality will be presented in Ch. 8. Depending on the definition and
understanding of the buckling phenomenon, different approaches can be employed to
determine the onset of buckling. For a pipeline segment subjected to a combined loading
condition, a procedure based on incremental nonlinear analysis is developed and employed.
With buckling strains predicted from this procedure, comparison with experimental data
can be made which would be able to verify this procedure. Parametric study on the
sensitivity of the buckling strain with respect to geometric, loading and material parameters
can be carried out to expand the data base of buckling strains and the understanding of
buckling behavior. Buckling analysis is confined to the path joining boxes with linkages B
and C in Fig. 1.1.

The objective of postbuckling analysis is to study the structural response after
buckling occurs. Since it is probable that pipelines can operate normally in the postbuckling
range as implied by Bouwkamp and Stephen (1973), Row et al (1987) and Lara (1987), it
is natural and reasonable to extend the acceptable design conditions into the postbuckling
range. Consequently, understanding of postbuckling behavior is necessary. Postbuckling
analysis of pipeline segments, which can be considered as imperfect shell structures
because of imperfections from various sources, is essentially incremental nonlinear analysis



which covers the entire equilibrium path. With such postbuckling analyses, deformation
history in terms of strains, cross-sectional deformation, and development of wrinkling and
buckling patterns can be established. This solution path is represented by the shortest path
with links from A to E in Fig. 1.1. Here, the effects of geometric, loading and material
parameters can be studied. In addition, postbuckling analysis can also generate the
Stiffness-Property-Deformation relationships used in beam models as generalized stress-
strain relationships that define the incremental force-strain relations on the cross-section of
the beam. This is a way to summarize and synthesize local buckling dominated behavior
obtained from shell model analysis in such a way that it is suitable for input into the beam
model, where it is impossible to directly simulate the local effects. This function is
illustrated by linkage F in the flow chart of fig. 1.1.

For this work, segment analysis is carried out using a modified version of the
NISA program developed by Stegmuller and Ramm (1984).

1.3.2 Beam Model Analysis of Pipelines

In the phase of beam model analysis of pipelines, i.e. the line analysis, the major
concems are the pipeline-soil interaction and the resulting distribution of forces and strains
along the pipeline, when it is subject to imposed deformation. The pipeline is modelled by
using inelastic pipeline elements. This is discussed further in the following, for cases with
and without local buckling, respectively.

The soil is modelled as an inelastic Winkler foundation, which is a series of
uncoupled soil springs. Uplift, bearing and longitudinal soil springs are used to simulate
the soil resistance to uplift, soil support and longitudinal friction. The soil springs can
model inelastic behavior and develop gaps between the pipeline and soil. Since the beam
model line analysis is used for settlement analysis which involves long segments of
pipelines and surrounding soil, it is economically prohibitive to use more elegant models
for the pipeline and soil. It is believed that the current line model can capture all the
essential features of behavior for the anticipated problem.

1.3.2.1 Response of the Pipeline without Buckling

Considering a pipeline with elastic-plastic strain-hardening material, the response
of the pipeline, in general, can be characterized by a hardening moment-curvature
relationship, providing that local buckling does not occur. The elastic-plastic prediction of
the response, that is appropriate to be applied in this case, is discussed in the following.
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For any specified path of loading in deformation space (ie.-$-& space), and any
elastic-plastic material stress strain curve, the values of P and M for the pipe can be
determined to within any prescribed tolerance (providing, again, that local buckling does
not occur), by integrating along the deformation path. In general, the stress resultants can
be determined from the integration of the final stresses over the cross-section which
remains circular. The stresses may be evaluated by using incremental hardening elastic-
plastic stress-strain relations with proper loading and unloading control associated with the
loading function at each integration point on the cross-section. The resulting technique can
properly follow strain reversals as they occur across any part of the cross-section. For
reliable results stresses should be determined using a subincrement technique. In the
absence of local buckling, this direct integration technique gives the correct solution. It will
be referred to subsequently as the reduced modulus direct integration (RMDI) technique
and is contained in Fig. 1.1 as the path along links from G to M.

When applied to a line of pipe the RMDI technique suffers from the deficiency that
it is extremely demanding on storage, because strain-history information must be retained at
each integration point of each cross-section which is associated with the longitudinal
integration of the pipeline solution. It is also numerically intensive since, in addition to the
incremental evaluation of the stresses, the equilibrium equations must be iterated to achieve
an equilibrium position. This latter characteristic is, however, common to all techniques for
solving nonlinear beam or pipeline problems.

1.3.2.2 Response of the Pipeline Including Local Buckling

At least two motivations exist to induce the analyst to discard the RMDI technique.
First, if the objective is to investigate pipeline behavior including the effects of local
buckling, it is not possible to handle this effect by direct integration techniques. This is
because stress is no longer related to apparent compressive strain through a material law.
Second, because of the amount of numerical computation involved, the direct integration
techniques may be inefficient even for simple loading paths. Consequently, one looks for
alternative methods.

The first consideration in the paragraph above is, of course, the predominant
consideration for this study. Popov (1973, 1974) developed a methodology to analyze pipe
segments subjected to combined load. This has been reviewed in Sect. 1.2.4.1. Following
the same principal idea, the methods developed for the study of the pipe problem have been



based on the generation and application of generalized stress-generalized strain
relationships. For a pipeline these relationships are the moment-curvature relationship, the
axial stiffness-curvature relationship and some other relevant relationships giving strain
dependent cross-sectional properties. We can refer to these relationships as cross sectional
stiffness-property-deformation relationships (SPD relationships), and will refer to the
solution methods employing them as integration of stiffness-property-deformation
relationship (ISPDR) methods. The ISPDR technique is illustrated by the path along the
links from G to K in Fig. 1.1, and the SPD relationships are required through the link F.

An ISPDR method has two separate steps. The first step is to construct the SPD
relationships utilizing a three-dimensional shell model of a pipeline segment under selected
loading and support conditions. The second step is to apply the SPD relationships as
generalized-stress generalized-strain relationships to the soil-structure interactive beam
model and analyze the response and behavior of the pipeline subjected to imposed
deformation. The verification procedure to establish the applicability of this approach to
settlement analysis, is discussed in following section.

The response of the pipeline with local buckling can be characterized by a post-
buckling softening moment-curvature relationship. The hardening and softening moment-
curvature relationships lead to very different response of the pipeline when it is subject to
imposed deformation. When subject to actions beyond the yield point, the pipeline with a
hardening moment-curvature relationship forms plastic hinges and may be expected to
redistribute internal forces because of the resulting variations of stiffness along the length
of the pipeline. If the moment-curvature relationship softens, the moment at the point of
maximum curvature begins to decrease with increasing rotation. As a result of this,
moments in segments adjacent to the developing 'hinge' also decrease and these segments
unload elastically. The effect of the unloading in adjacent segments is to concentrate the
curvature into the softening segment rather than to distribute it along the length of the beam.
This effect leads to curvatures which are much greater locally than would be expected from
settlements of a pipe with hardening in its moment-curvature curve.

Because local buckling results in softening of the moment-curvature curve, which
leads to curvature concentration within a particular pipe segment, its effect is that all aspects
of local buckling deformations are accentuated in this critical segment. Consequently, any
limit state criterion based on local buckling is directly influenced by the concentration. This
implies that analyses which do not include softening produce results that are non-
conservative with respect to limit state deformation criteria for post-buckling regions.
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1.3.2.3 Verification of ISPDR Technique

The ISPDR technique to analyze a line of pipe is a technique based on the
construction and application of SPD relationships. Comparing the RMDI technique of Sect.
1.3.2.1 with the ISPDR technique of Sect. 1.3.2.2, the fundamental difference can be
found in the integration process. In the RMDI technique, the integration over the volume of
the pipeline material is carried out in a continuous operation by first integrating over the
cross-section and then over the length. In the ISPDR technique, however, the volume
integration over the pipeline material is broken into two separate processes carried out at
different times, namely, the generation procedure for properties, and, the solution
procedure for the pipeline.

The generated SPD relationships are used to define cross-sectional stiffness
properties on which the incremental-stress incremental-generalized-strain relationship is
based. The generation procedure can be considered as equivalent to the integration over the
cross-section in the RMDI technique. At some later time, during the solution procedure
using the SPD relationships, the element stiffness matrix is evaluated by integrating the
cross-sectional stiffness over the element length. The question about the validity of ISPDR
technique arises from the fact that the deformation paths in the generation and in the
solution procedures may be different. These deformation paths will be referred to in
subsequent discussion as the generating deformation path and actual deformation path,
respectively.

A verification procedure is proposed here to establish the validity of ISPDR
technique or to determine the boundary of its applicability. In the absence of local buckling
the applicability of ISPDR technique can be verified by comparing the behavior it predicts
with that obtained from the RMDI technique of Sect. 1.3.2.1, which gives the ‘correct’
answer under stated conditions. The comparisons between the ISPDR technique and RMDI
technique can be made for various material models. In particular, they can be made for an
elastic-plastic hardening (EPH) material and for an elastic-plastic softening (EPS) material.
If a (fictitious) EPS material stress-strain relation can be evaluated, which simulates the
softening moment-curvature curve produced by the effect of local buckling, the validity of
the ISPDR technique for this type of characteristic behavior can also be inferred. This
verification procedure is indicated by links L and O to the common box in Fig. 1.1.

Additional verification can be extended to comparisons with results obtained by



program PIPLIN (Structural Software Development, Inc., 1989). However, these analyses
will not include the effects of local buckling because, to the writers' knowledge, PIPLIN
does not have a rational solution procedure to evaluate these effects, although it permits the
input of properties for a user supplied “wrinkling element”. Nevertheless, the comparisons
will establish the reliability of the programs developed in association with this project to
produce the correct results associated with standard pipeline behavioral characteristics.

For this work, line analyses are carried out using the program Analysis of Buried
Pipelines (ABP) developed by the writer.

1.4 SCOPE OF FOLLOWING CHAPTERS

The remainder of this work develops in detail the method of deformation analysis
which has been described conceptually in Sect. 1.3. The major subjects and content
presented in each of the following chapters may be summarized as follows.

Chapter 2 reviews the formulations for analysis of shell structures in the form of
continuum mechanics equations and finite element equations. This provides the theoretical
background for the numerical analyses carried out in this work. A relatively detailed
discussion on behavioral characteristics of the shell structures is also presented with the
focus on buckling and postbuckling behavior of cylindrical shells. This serves as a general
guideline for buckling and postbuckling analyses of pipeline segments that are discussed in
Chs. 4 and 5.

Chapter 3 presents the solution technique developed in this work for incremental
nonlinear analysis of three-dimensional shell structures, which is shown in the box below
link A of Fig. 1.1. The solution technique includes two independent procedures which can
be employed either independently or in combination. One is the equilibrium iteration
procedure with modified arc-length control, loading and convergence criteria. The other is a
subspace searching technique which is particularly efficient for postbuckling analysis of
certain shell structures. This procedure is developed based on the algorithms commonly
used for optimization problems and the fact that there are only a few displacement modes
dominating the deformation. Maximum efficiency can be achieved by using a proper
combination of these two procedures.

Chapter 4 focus on postbuckling analysis and behavior of pipeline segments. A
shell model is established with proper discretization, loading and boundary conditions. A
discussion on buckling modes, deformation history, and effects of loading is presented.
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The characteristics of the postbuckling behavior are summarized. It describes the
developments required in the box at the end of link D in Fig. 1.1.

Chapter 5 is about buckling analysis and behavior of pipeline segments. It starts
with a review of approaches for buckling analysis. Based on the understanding of the
problem of pipeline segments subjected to combined loading conditions, a procedure for
buckling analysis based on incremental nonlinear analysis is proposed. Comparisons
between predicted buckling strains and corresponding test data are carried out to verify this
procedure. Significant factors relative to buckling strain, and their influences, are also
discussed. Chapter 5 contains the development for the boxes at the ends of links B and C
of Fig. 1.1.

Chapter 6 presents the formulation of the pipeline beam element developed in this
project for settiement analysis of pipelines. The formulation includes the following aspects :

(a) strain-displacement relationships that account for large displacements;

(b) stress-strain relationships for the RMDI technique which consider yielding

under biaxial stress (hoop and longitudinal) and mixed hardening rules;

(c) stiffness-property-deformation relationships for the ISPDR technique, and their

generation procedure, which can account for the effects of local buckling and cross-

sectional distortion; and,

(d) pipeline-soil interaction modelling where the soil is modelled as a series of

uncoupled inelastic springs.
Finite element discretization and interpolation schemes are then applied to this formulation.
Development and verification of the program Analysis of Buried Pipelines (ABP) which
implements this formulation and provides a solution tool for settlement analysis of pipelines
are also discussed. Chapter 6, therefore, covers details of the subjects contained in the
boxes at the ends of links G, H, L, M and O of Fig. 1.1.

Chapter 7 focuses on the analysis and behavior of pipelines subjected to imposed
deformation. First a model for analysis is established which includes finite element
discretization, stress-strain relationship, generated stiffness-property-deformation
relationships and proper soil parameters. With the solution based on this model, behavior
of such a pipeline is summarized. Parametric studies are carried out to examine the
sensitivity of the pipeline behavior to soil parameters. The contents of boxes at the ends of
links J and N of Fig. 1.1 are, therefore, contained in Ch. 7.

Chapter 8 discusses the design criteria for imposed deformations. It is believed that



the criterion based on buckling strain is not a rational one. The rational design criteria that
are proposed are based either on the service limit states, characterized by cross-sectional
distortion, or on the pipeline behavior represented by the rapid growth of the curvature or
strain. Although the criteria are not able to be completely established due to the limited data
base available at present time, the procedure proposed here appears to be more rational than
present practices.

Chapter 9 draws the conclusions from previous chapters.
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CHAPTER 2 SHELL STRUCTURE FORMULATIONS AND BEHAVIOR :
A REVIEW

Shell structures have been used extensively in various engineering fields because of
their superior load carrying capacity and adaptive geometry. Pipelines represent one type of
shell structure that has become a very important means to transport oil, gas, water and other
types of fluid. Before pipeline behavior and its prediction are discussed, the formulations
and behavior of general shell structures are described systematically in this chapter. The
formulations for analysis of shell structures are reviewed in Sect. 2.1 and this serves as a
framework for analytical procedures which are referenced in later chapters. The behavior
discussed in Sect. 2.2 will serve as a general guideline for the discussion of pipeline

behavior.
2.1 FORMULATION

Shell structure analysis can be formulated in linear and nonlinear form dependent on
whether or not the nonlinear effects of geometry and materials are included. The linear
formulation involves only linear relationships for equilibrium, displacement and strain, and
the stress-strain material relationship. These restrictions make the linear formulation
relatively simple but, at the same time, limit its application to analyses with small
displacements and linear elastic materials. Nonlinear formulations may include both large
displacements and nonlinear material behavior. Therefore, it is applicable to general
analysis of shell structures. The complexity of the geometrical relationships is one of the
characteristics of shell structures, and has to be simplified by assumptions introduced by
analyst according to his purpose and understanding. Different assumptions will eventually
result in formulations which are different from each other in detail (Bathe, 1982; Ramm and
Matzenmiller, 1986; Basar and Kratzig, 1990; and, Onate ez al, 1990). In this section,
representative linear and nonlinear formulations will be reviewed. Finite element
discretization, in which the definitions of various stiffness matrices and load vectors will be
discussed afterward.

2.1.1 Linear Formulation

In linear formulations of shell structures, differences are few because of the
simplicity in the strain-displacement and stress-strain relations. However, description of the
geometry of a shell can be different from one formulation to another by utilizing some
special features of shell structures such as shells of revolution and shallow shells. The



formulation presented in the following is for general shell structures and based upon
Bathe’s work (1982).

2.1.1.1 Geometrical Relations

An element of a shell structure is shown in Fig. 2.1 where three coordinate systems
are defined. They are the global Cartesian coordinate system x;, X2, and x3, the Cartesian
shell-aligned coordinate system T, %, and t, and the curvilinear natural coordinate system r,
s, and t. The global Cartesian coordinate system is a reference system in which equilibrium
equations are assembled. The natural coordinate system is defined by the element such that
each of r, s, t vary from -1 to +1 within the element. The natural coordinate system is, in
general, not an orthogonal system. The Cartesian shell-aligned coordinate system is an
orthogonal system with unit vectors defined in terms of unit vectors of natural coordinate

system as
e = €s X €
T~ jesx el (2.1a)
es = e X €f (2.1b)

where €;, €5, €; and €;, €5, €; are the unit vectors for the natural coordinate system and the
Cartesian shell-aligned coordinate system, respectively.

A direction normal to the mid-surface of the shell element in the undeformed
configuration is introduced where its unit vector is denoted as 0V3in Fig. 2.1. The
Cartesian coordinates of any point in the shell can be expressed in terms of the Cartesian
coordinates of a corresponding point on the mid-surface and a unit vector in the normal

direction as
Pxi(r,s,t) = "xi(r,s) + %t V3 i=1,23 (2.2)
where oy (r,S,t) = Cartesian coordinates of any point in the element,
mx;(r,8) = Cartesian coordinates of any point on the mid-surface,
a = Thickness of shell in t direction at point r,s,

™V = Cartesian components of normal unit vector "V3.
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The left superscript m denotes the configuration of the shell element; i.e. m = 0 and 1
denote the original and final configuration of the shell element.

2.1.1.2 Deformation Relations

In order to introduce two-dimensional displacement variables, the following
assumptions are made, i.e. the straight line in the normal direction remains straight and
normal during deformation and no change of the length occurs in normal direction. Based
on these assumptions, the displacements can be expressed in terms of the displacements on
the mid-surface of shell element and the incremental vector of the unit normal vector as

following,
ui @S =uns) + 2eVy =123 (2.3)
where u; (r,s,t) = displacement components at any point in the shell element,
u;(r,s) = displacement components at any point on the mid-surface,
V3; = components of incremental vector of unit normal vector.

The incremental vector of the unit normal vector can be written as
Vi = 1V; - 0V, (2.4)

The components of V; should be expressed in terms of rotations at the point on the mid-
surface, so that all the displacement variables can be located on the mid-surface of the shell
element. One way of doing this is to introduce two unit vectors 0V, and 0V, which are
orthogonal to 0V3 as well as to each other as shown in Fig. 2.1. The first unit vector is
defined as

ovl = ez XOV3 (2.5)
|ez X °V3|

where e; is a unit vector in the direction of x,-axis. For the special case where V5
parallels to e2 and Eq. (2.5) fails to define a non-zero vector, 0V can be set to equal to e3
as an alternative. The other unit vector can be defined as

oV, = V3x oV, (2.6)



Let o and f be the rotations of the normal vector 9V3 about the vectors 0V, and
0V,. Considering the fact that o and B are small angles, the increment vector of the normal
unit vector can be expressed as follows and demonstrated in Fig. 2.2.

V3 = -0V20. +0V1 B (27)

Substituting Eq. (2.7) into Eq. (2.3), it becomes

y; (r,s,t) = vy (r,s) + -;—t (- °V2i o+ °V1i B ) 2.3)

With the assumption of small displacement, the strain-displacement relations can be

defined as

du;

.= 198, oY
& Z(an

ou; . .
+r) 1,j=1,2,3 (2.9)

Xi

Since the displacements and global Cartesian coordinates are defined in terms of natural
coordinates as shown in Egs. (2.8) and (2.2), the differential operators with respect to
Cartesian coordinates in Eq. (2.9) have to be expressed in terms of differential operators
with respect to natural coordinates. By the chain rule, following relation can be obtained

a‘ [0x, Oxq 9dx3 | | 0

or or or or ox1
d ox; O0x; OJx3 d
ds ‘ os Js O0s 0xs J (2.10)

a_ axl ax2 aX3 d
ot | ot ot ot | | Jx3

or, in matrix notation

el (2.11)

where r and x are position vectors in the natural and global Cartesian coordinate system,
respectively, and J is the Jacobian operator relating derivatives with respect to the natural
coordinate to those with respect to the Cartesian coordinates. The entries of J can be easily
evaluated from Eq. (2.2). The differential operator with respect to Cartesian coordinates
can be expressed from Eq. (2.11) as

37



38

or (2.12)

which requires that the inverse of J exists. This inverse exists provided that there is a one-
to-one correspondence between the natural and the Cartesian coordinates of the shell
element. The general explicit expression for the inverse of J is difficult to obtain, therefore
it is usually evaluated at each integration point by numerical procedures.

With the differential operator and displacement defined in Eqgs. (2.12) and (2.8), the
derivative in Eq. (2.9) can be obtained and consequently the strain-displacement relation is
established.

2.1.1.3 Constitutive Relation

For the linear formulation, the material behavior is assumed to be linear elastic. In
the Cartesian shell-aligned coordinate system, the general Hook's law has the following
form after introducing the shell assumption that the stress normal to the mid-surface of the
shell element is zero.

Te = Cege 2.13)
where ‘t;r = (17 = Tu s T5¢ 15)
e = [ex & & 26w 265 26d)
~ .
1 v 0 0
0
0 0
c. - _E ] (2.14)
Y lil 0 0
symmetrical lil 0
lv
L 2

To transform the constitutive relation defined in Eq. (2.13) from the shell-aligned
coordinate system T, 5, t into global Cartesian coordinate system x;, X2 and x3, a



transformation matrix Qsp, is introduced. The entries of the matrix Qg are obtained from
the direction cosines of the T, §, t coordinate axes measured in the x;, x2 and x3, coordinate
directions. The matrix Qsp, can be expressed as (Bathe, 1982)

2 2 2
11 my n llml mpm nlll
13 m3 n3 lom; mzn; nzlp
2 2 2 l3m; ‘m3n3 n3l;
Qs = I3 mj3 nj3
21112 2mmj 2n1n2 11m2+12m1 minp+mong n112+n211
21213 2m,m3j 2njn3 12m3+13m2 mon3+Mming n3lz+nsl,
21311 2msm, 2n3m 13m1+11m3 msnj+ming n311+n113
where
I, = ere;; m; = ee;; n; = e3e;
I = ere5; m; = €2€5; N2 = €3e;
I3 = e1e; m3 = €;€;; N3 = e3¢
The constitutive relation in the global Cartesian coordinate system
becomes
T = Cshe
where
= [t T22 T33 T12 T23 T3]

el

[e11 €22 €33 2812 2823 2813]

Cah = Q4 CeQu

2.1.1.4 Virtual Work Equations

2.15)

(2.16)

(2.17)

The virtual work principle can be stated as following : for any kinematically
compatible deformation field (8u, &¢), the external virtual work, with consistent body

forces and surface tractions, must equal to the internal virtual work. Expressing the virtual
work principle in the form of an equation, the virtual work equation is

I':T&:dv = fFTaudv + jTTsu ds
v v S

(2.18)
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This virtual work equation is valid for any constitutive relation provided that the virtual
deformation field is small.

Substituting Eq. (2.16) into Eq. (2.18), a form of virtual work equation which is
the basis of a linear formulation of the finite element method for shell structures is obtained
as

jeTCshSEdV = IFTSudV + ITT&: ds (2.19)

2.1.2 Nonlinear Formulation
2.1.2.1 Introduction

Linear formulations are based on the assumptions of small displacements, linear
elastic constitutive relationships, and unchanging nature of the boundary conditions, as
discussed in Sect. 2.1.1. If any of these assumptions is not satisfied, nonlinear effects will
be introduced and a nonlinear formulation should be used for analysis. Depending on the
sources from which the nonlinear effects are introduced, nonlinear analysis can be
categorized into following four types.

(1) Material-nonlinear-only. In this type of nonlinear analysis, displacements and strains
are assumed to be small, and only the stress-strain relation is nonlinear.

(2) Large displacement, large rotations, but small strains. In this type of nonlinear analysis,
displacements and rotations of fibers may be large, but fiber extension and angle changes
between fibers are small. The stress-strain relation may be linear or nonlinear.

(3) Large displacements, large rotations and large strains. In this type of nonlinear analysis,
displacements and rotations of fibers may be large. Fiber extension and angle changes
between fibers may also be large. The stress-strain relation may be linear or nonlinear.

(4) Contact Problems. In this type of nonlinear analysis, the boundary conditions change
during the motion of the body under consideration. The displacements and rotations may be
small or large, and the stress-strain relation may be linear and nonlinear.

For the purpose of analyzing a structure made from common structural materials,
such as steel and concrete, the second type of nonlinear analysis is considered to be the



most appropriate formulation. In this section, a nonlinear formulation based on the
assumptions of large displacements, large rotations, small strains and a nonlinear elastic-
plastic stress-strain relationship is presented.

There are two fundamental approaches to describe the motion of material in a
nonlinear analysis, i.e. Lagrangian (or material) formulation and Eulerian formulation. In a
Lagrangian formulation, all particles of the body are followed in their motion, from the
original to the final configuration of the body (Fung, 1965). In an Eulerian formulation,
attention is focused on the motion of the material through a stationary control volume.
Considering the analysis of solids and structures, a Lagrangian formulation usually
represents a more natural and effective analytical approach than an Eulerian formulation.

In general, it is necessary to employ an incremental formulation for nonlinear
analysis, because the equilibrium of the body under consideration must be established in
the current configuration based on the fact that the strains and stress-strain relation are
dependent on the current configuration. The motion of a general body in a stationary
Cartesian coordinate system is shown in Fig. 2.3, and large displacements and rotations
and nonlinear stress-strain relation are assumed to occur. The aim of incremental solution
procedures is to evaluate the equilibrium configurations at the discrete time points 0, At,
2At, 3At, -+, to cover entire equilibrium path, where At is an increment in time.

For an effective use and understanding of notation, a convention is employed as
follows (Bathe, 1982). In the stationary Cartesian coordinate system in Fig. 2.3, the
coordinates of a generic point P in the body are (%i, %2, %3), (X1, ‘X2, x3) and
(*&x 1, ¥4 5, *4'x3) at times O, t and t + At, respectively, where the left superscripts
indicate the configurations of the body and the subscripts refer to the coordinate axes. For
quantities such as strain and stress, a left subscript will be used to indicate the configuration
with respect to which the quantities are measured.

2.1.2.2 Geometrical Relations and Displacements

The geometrical relations and displacement expressions are essentially the same as
those in the linear formulation discussed in Sect. 2.1.1.1 and 2.1.1.2. In tensor notation,
the coordinates and displacements at time t can be expressed as

tx;(r,s,t) = tx;(r.s) + %t‘Vsi i=1,2,3 (2.20)
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tui(r,s,t) = tuy(r,s) + %‘t('v3i‘ov3i) i=1,2,3 (2.21)

The incremental displacements are defined as

ui(r,s,t) = WA(r,s,t) - tuy(rs,t) = ui(rs) + %tvsi i=1,2,3 (2.22a)

or in terms of incremental rotations about two vectors which are orthogonal to 'V3 as

ui(r,s,t) = u(r,s) + %t(-'Vzia#VuB) i=1,2,3 (2.22b)

where the vectors are defined in a similar manner to the linear formulation

v, = £2XV3 (2.232)
les x 'V
Wy = V3x'V, (2.23b)

and o and B are measured with respect to configuration T,

The assumption activated in Sect. 2.1.1.2, which is that the straight line in the
normal direction remains straight and normal and no change of length occurs, is also valid
in the nonlinear formulation of shell structures. Therefore, thickness "a" in Egs. (2.21) to
(2.22) is considered as constant.

2.1.2.3 Stress and Strain Tensors

In nonlinear analysis including large displacements and rotations, special attention
must be given to the fact that the configuration of the shell is changing continuously. This
change in configuration can be dealt with in an elegant and effective manner by defining
auxiliary stress and strain measures. In this section, stresses and strains are defined which
are deemed to be most effective in an incremental formulation by the virtual work principle.
They can be found in the book by Bathe (1982).

The Cauchy stress and its increment, denoted by ‘t,, (or {t,,,) and 15, (Or Tmg)
respectively, are the current stress and stress increment referred to the current
configuration. From the Cauchy stress, a stress measure which is used most extensively,
the 2nd Piola-Kirchhoff stress tensor, can be defined. At time t the 2nd Piola-Kirchhoff
stress referred to the configuration at time 0 is defined as
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8Sij = ~— Xim ‘Tmn Kjin (2.24)

™im = 9% (2.25)

Alternatively, the following relation is equally valid

~

len = _P_ éxm.i ;Sij éxn,j (2.26)

P

where &Xm,i is now a entry of the deformation gradient tensor ;X, which can be defined as
following

a‘xl atxl a‘xl
%, 9%z 9%;

dx, txy Ax,
9%, 9%, 9%; 2.27)

otx3 o'x3 d'x3
%y 9%z d%3

In the incremental form, the Egs. (2.24) and (2.26) become

0

oSjj = T')—?Xi,anm Xi.n (2.28)

ol

Tmn = —p—cf\Xm,ioSij Xn,j (2.29)

P

The mass density ratio in Egs. (2.24) and (2.26) can be evaluated by applying the
mass conservation law to the material under consideration which is

tn 4t t ty, = 04 40 0 0
p dix; d'x; d'x3 = p d%%x, d9x; d%3



Considering the definition of the deformation gradient tensor in Eq. (2.27), the following
equation can be obtained

dtx; d'x; dx3 = (det sX) d%x; dOx; dOx, 2.31)

Substituting Eq.(2.31) into Eq. (2.30), and since the relation in Eq. (2.30) must hold for
any arbitrary volume, the relation of mass densities is obtained as

Op = (detX)tp (2.32)

The 2nd Piola-Kirchhoff stress tensor is symmetrical, and most importantly, its
components are invariant under a rigid body rotation of the material. It should be also
recognized that the 2nd Piola-Kirchhoff stresses have little physical meaning, and they do
not represent the stress physically existing in the body. In practice, Cauchy stresses must
be calculated in order to properly interpret the physical state in the material under
consideration.

Having stress tensors defined, two strain tensors, the small strain and the Green-
Lagrange Strain tensors, will be defined in the following. The small strain tensor is the
same as the strain defined in Eq. (2.9) in the linear formulation except that it is defined with
respect to 'T, which can be expressed in tensor notation as
L o'uj + o'nj
2 ox; J%j

tei (2.33)

In the nonlinear formulation, the small strain tensor is normally used in the incremental
form or variational form such as

p=l (o, o
t€ij = ) atxj + atxi) (2.34)

The Green-Lagrange strain tensor and its increment with respect to O are defined

oty; . d'u; . otug dtux

%% %  3%; 3% (2.35a)

deyj = % (



aOXj aoxi aoxi aOXj aoxi aOXj aoxi aOXj

0&ij = %(

These become the following if 'T"is taken as reference configuration

. _ 1 0y d'j | duy o 2.36a
& =3 (a‘xj * d'x; * 9'x; 9'%; ( ‘
o _ 1 (0w 94 _ dugoduy (2.36b
€j =3 (a‘xj * o'x; * a'x; 0'%; ) )

The Green-Lagrange strain tensor is symmetrical and its components are invariant
under a rigid body rotation of the material. In addition, the incremental small strain tensor
in Eq. (2.34), and the incremental Green-Lagrange strain tensors in Egs. (2.35b) and
(2.36b) are energetically conjugate to the Cauchy stress and 2nd Piola-Kirchhoff stress
increment tensors, respectively. In other words, Tij 0i€;j represents incremental virtual
work at time t per unit current volume, and 0Sij 8o€;; represents incremental virtual work at
time t per unit original volume. Hence, the total incremental internal virtual work can be
calculated using either the Cauchy stress or 2nd Piola-Kirchhoff stress tensors as stress
measures provided that the energetically conjugate strain tensors are employed and the
integrations are performed over the current and original volume, respectively.

2.1.2.4 Nonlinear Constitutive Relation

As discussed in Sect. 2.1.2.1, the constitutive relation for nonlinear analysis may
be linear or nonlinear. Since the linear-elastic constitutive relation has been defined in Eq.
(2.13), only the nonlinear elastic-plastic constitutive relation in incremental form is
discussed in this section.

The general incremental form of stress-strain relationship in terms of incremental
Cauchy stresses and incremental small strains can be expressed as

T = Ciju (e - €h) (2.37)

and also in terms of incremental 2nd Piola-Kirchhoff stresses and incremental Green-
Lagrange strains as

0Sij = oCijki (og - o0€Ry) (2.382a)
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Sij = Cijr1 (€x - leil) (2.38b)

with °T" and T as reference configurations. oCijx1 and (Cijx1 are the elasticity tensors
referred to °T" and T, respectively, and, €}, o€f, and (e,r;l are the plastic components of the
incremental strains. With the small strain assumption, the elasticity tensor can be
considered to be independent of the configuration and both of them can be expressed as

Cijkl =2G 811: 8j1 + AE 8ij 8k1 (239)
where
=_—E 2.4
G 2(1+v) (2.40)

= VE 4
Ae (1+v)(1-2Vv) (2.41)

with E and v as the elastic modulus and Poisson ratio of the material. In the following
derivation, the 2nd Piola-Kirchhoff stress and Green-Lagrange strain with respect to the
original configuration are used. Similar equations can be obtained with the Cauchy stress
and small strain.

The classical von-Mises yield function is employed here (Chen and Han, 1988)
which is

F(:Sipoy) =S -0y =0 (2.42)

where oy is the yield stress and S is effective stress defined as

S = 'v g—és.-,- 38ij (2.43)

with Sij as the deviator tensor of the 2nd Piola-Kirchhoff stress tensor, which is defined by
following equation

sy = I8y - Ske gy 2.44)

The associated flow rule is used which assumes plastic strain increments to be
normal to the yield surface (Chen and Han, 1988). Thus,



P g OECSi0Y) (2.45)
J a:,si,-

where dA is the plastic strain parameter which is a scalar proportionality factor. From the
definition of the yield function in Eq. (2.42) and carrying out the partial differentiation, Eq.
(2.45) becomes

1a..
= a3 (2.46)

Prager's consistency condition, to insure that the stress point in stress space stays
on the yield surface, is obtained by differentiation of Eq. (2.42) to yield

gF = O 5. 4 9E doy & g =0 2.47)

= oSij
disi; E Y

where oSij is the incremental deviator stress tensor and deP is the incremental effective
plastic strain which is defined as

de? = '3-085'; £F (2.48)

Substituting Eq. (2.46) into Eq. (2.48), yields

de? 12»_1/ 53 Sijls; = dA (2.49)

Substituting Eqs. (2.38a) and (2.45) into Eq. (2.47) and grouping the terms
according to the plastic strain parameter dA, yields

oF = Cijia o€ij - ( oF Cij oF , doy de’ Ydh = 0 (2.50)
disij Asyy o def d\
Solving Eq. (2.50), dA can be obtained as
aa Cijx1 €x1
dA = SSij —
oF oF _ doy 4P (2.51)

ijk1

+
disij disij  def dA

Substituting Eq. (2.51) into Eq. (2.45), the incremental plastic strains are obtained as
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£hn = Pmnn it (2.52)
where
OF OJF .
p - OSmn 0iS;; ik

Cij +
dsij | Oes  dg® dA

Substituting Eq. (2.52) into Eq. (2.38a), the incremental elastic-plastic relationship is
obtained as

oSrs = CF En (2.54)

where Crsil is the elastic-plastic tensor of the material at the current configuration, and is
defined as

CE = Crsmn (8 81 - Pannta) (2.55)

Eq. (2.54) defines the general form of the incremental elastic-plastic stress-strain
relationship.

The expression of the elastic-plastic tensor CE;I can be further detailed and
simplified with following derivation. Substituting Eq. (2.39) and the derivative of the yield
function with respect to stress components into the numerator of Eq. (2.51), Eq. (2.51)
becomes

a? Cija £l = 1 ’ (2 Gy 8y + Mg §ij O ) £ = 3——8511 £k (2.56)
i

Similarly, the first term of the denominator of Eq. (2.51) becomes

oF oF _3G,
Cj =
aésij i aos., S

N lw

% =3G @.57)

oSkl
Eq. (2.49) results in the following equation

def _ (2.58)
A



and the second term in the denominator of Eq. (2.51) can be derived, with reference to a
uniaxial stress-strain test as shown in Fig. 2.4, as

d_c_’l -_EEr _yg
d€ E - E’]‘ (259)

Substituting Egs. (2.56) to (2.58) into Eq. (2.51), it becomes

&s..
A= —L——— & (2.60)
(1+H/(3G))S
and Eq. (2.53) becomes
te.. lo..
Ponit 3 &5ij i 2.61)

=2(1+H'/(3G))§2

Finally, substituting Egs. (2.39) and (2.61) into Eq. (2.55), yields

'Cfisi = (2G3x 8y + Ag 8 O1) - 3G = 3Sk1 &8k1 (2.62)
(1 +H/(3G))S

It should be pointed out that H' defined in Eq. (2.59) is infinitely large for an elastic
stress state. Therefore, the elastic-plastic tensor of the material in Eq. (2.62) reverts back to
the elasticity tensor. Hence, Eq. (2.62) defines a material tensor covering both elastic and
elastic-plastic stress states.

From the general elastic-plastic constitutive relation defined in Egs. (2.54) and
(2.62), a specialized constitutive relation for shell structure can be established by
introducing the assumption that the normal stress component in the thickness direction is
zero. In the Cartesian shell-aligned coordinate system, let the subscripts 1, 2, and 3
correspond to T, §, and t direction, respectively. The constraint condition of zero stress in
the t direction can be expressed in following equation

oS3 = 'CES el = 0 (2.63)

Solving Eq. (2.63) for the strain component in the t direction, the following equation is

obtained
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tCEPS
€33 = - l——%sfl-oﬁkl (1 - 83631) (2.64)
3333

Substituting Eq. (2.64) into Eq. (2.54), the elastic-plastic constitutive relation for the shell
structure can be worked out as

Sij = Chg okl (2.65)
where 'CEPS ijia 18 the elastic-plastic tensor for shell structures and is defined as

'c¥
ChR = (1- 8383 (CRa- ——";ﬁ,,—”i‘) (2.66)
3333

To obtain the elastic-plastic tensor in the global Cartesian coordinate system, the
transformation defined in Eq. (2.17) for the linear formulation is also valid for the
nonlinear formulation discussed in this section.

2.1.2.5 Equation of Virtual Work

Having defined the stress and strain tensors in Sect. 2.1.2.3 and constitutive
relations in Sect. 2.1.2.4, equation of virtual work of the body can be developed. Two
formulations, the total and updated Lagrangian formulations, are commonly adopted for
nonlinear analysis of structures with the difference being the choice of the reference
configuration. The total Lagrangian formulation has °L" as the reference configuration, and
therefore, all the quantities such as strains, stresses and constitutive relation are evaluated in
I In the updated Lagrangian formulation, T is taken as reference configuration for the
solution at time t+At. Both formulations can include all kinematic nonlinear effects and
material nonlinear effects. In this section, virtual equations for both formulations will be
presented.

The virtual equation of displacements for the total Lagrangian formulation is

I HALS;; 8t Ale; AV = I F; 8ty d°V + I Ti8*aw; dS  (2.67)
oV v ’s

where



HALS = ISy + oSij (2.68)

Whley = &y + o (2.69)

Decomposing the strain increment into linear and nonlinear components, Eq. (2.36)
becomes

€ij = oLij + olljj (2.70)
where . 1 ou dy; +atuk duy . duy dtuy @2.71)
2 aox,- aoxi aoxi aOXJ aoxi aOXj

o 10w
oMij = 2 30,

a\]k
oux 2.72)
aOXj

Substituting Eqgs. (2.65) into (2.68) and the result into Eq. (2.67), and noting that
St’mosij = SoEij and §*&y; = Su;, Eq. (2.67) becomes

f 'Cﬁl:ss ofrs SoEij d°V + ]
oy oy

+I T; 8u; d°S -I 8S;j 8y d°V
’s v

f,Sij So‘l']ij dOV = f Fi 8\]j v
oy
2.73)

By introducing approximation that £;s = £y and 3c€rs = Oeers into the first term of Eq.
(2.73), the linearized virtual work equation for the total Lagrangian formulation is obtained
as

f tcﬁl:ss ors Oeeij d°V + LLSU danij d’v = j F; 8u; d°V
v ov

+I T; Su; dS -I 1Sij &gy v 2.749)
og oy

This equation is the basic equation for further finite element discretization which will be
discussed in Sect. 2.1.3.
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Similar equations can be developed for the updated Lagrangian formulation. The
equations are presented in the following without derivation. The stresses and strains are

decomposed as

t+A%Sij = t‘tij + tSij (275)

ot 2.76)

ij = &

where the strain increment can be decomposed into linear and nonlinear components as

€ = €jj + Mjj @7

The linear components of the strain increment are defined in Eq. (2.34) and the nonlinear
component in following equation

. _ 1 Oug dug 2.7
Mij = 5 x; a‘Xj (2.78)

The linearized equation of virtual displacements for the updated Lagrangian

formulation is

f‘Cﬁ‘r’f €rs de;j d'V + j 1;; 3 d'V = f F; 8u; d°V
v v oy

+ f Ti &.li dDS - f t‘tij &eij d'v
°s v

The integrations of the body forces and surface tractions on the right side of Eq. (2.79) are
performed over °I" because the body forces and surface tractions are assumed to be
conservative, and these integrations are usually carried out only once at the beginning of the
solution procedure. However, if the load such as pressure is treated as displacement
dependent load, the integration of the load terms should be carried out over T and updated
properly as the solution proceeds.

(2.79)

2.1.3 Finite Element Discretization

In the previous sections, the continuum mechanics equations for linear and
nonlinear analysis, which form the basis of general and displacement-based finite element
analysis, are presented. Following the procedure of finite element discretization, the



govemning finite element equations can be developed. In this section, only the discretization
of the nonlinear equations is discussed. As linear analysis is a special case of nonlinear
analysis, the governing finite element equations for this case can be established by a similar
procedure.

The basic steps in the derivation of the governing finite equations are : (1) the
selection of the interpolation functions; (2) the interpolation of the element coordinates and
the displacements with the appropriate interpolation functions in the governing continuum
mechanics equations; and, (3) by invoking the principle of virtual displacements for each
of the nodal displacements in turn, the goveming finite element equations are obtained.
Since the governing equilibrium equations of an assemblage of elements can be constructed
by the direct stiffness procedure from the contribution of each element, only a typical single
element needs to be considered in the derivation.

Considering the element coordinate and displacement interpolations, it should be
recognized that it is important to employ the isoparametric or the subparametric finite
element approximations, which is to employ the same or lower order interpolation for the
coordinates than for the displacements at any and all times during the motion of the
element. Since the new element coordinates are obtained by adding the element
displacements to the original coordinates, isoparametric finite element approximation
assures that an assemblage of elements which are displacement-compatible across element
boundaries in the original configuration will preserve this compatibility in all subsequent
configurations.

In this section, matrix and vector notation will be used extensively. The
correspondences between the tensor notations in previous sections and the matrix notations
will be defined when they first occur, except for very obvious correspondences. As a
convention, the matrices and vectors are denoted by bold characters, and their components
by plain characters with right subscripts. The supscripts and left subscripts used in tensor
notation are usually preserved in matrix notation.

2.1.3.1 Interpolation of Coordinates and Displacements

In this section, the interpolation of the coordinates and displacements for the
"variable number of node" isoparametric shell element is discussed. A typical eight-node
element in its original position and its configuration at time t is shown in Fig. 2.5. The
coordinates of a generic point in the shell element which undergoes very large
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displacements and rotations can be expressed in terms of the interpolation of nodal
coordinates and normal direction as (Bathe, 1982)

N N
i = ), he'xE + %Z ag hy 'V3; (2.80)
k=1 k=1

A close resemblance between Eq. (2.80) and Eq. (2.20) is recognized by realizing that the
summations in the first and second terms in Eq. (2.80) are the interpolations of coordinates
on mid-surface of the element and the normal direction, respectively. N stands for the
number of nodes in the element which can be varied with typical values of 4, 8, and 16 for
linear, quadratic and cubic interpolation. The hy are the interpolation functions which are
defined in Figs. 2.6 and 2.7 corresponding to 8 and 16-node elements, respectively.

The summation in Eq. (2.80) is carried over all the nodes within the element. The
subscript or supscript k is not a index in tensor notation, instead it is simply a indication of
association with node k. This can be translated into a rule applying to equations in Sect.
2.1.3 that the summation indicated by the summation symbol does not follow the
summation convention in tensor notation.

Applying the same interpolation for coordinates in Eq. (2.80) to displacements and
its increment defined in Egs. (2.21) and (2.22), they becomes

N N
= 2 heuf + £ 3 ah (V- VE) @81
k=1 k=1
N N
u = Y, heuf + -ZLZ ag hy (V% o + 'VE; By ) (2.82)
k=1 k=1

The finite element solution will yield the variables nodal point k, such as u¥, q and
Bx, which can then be employed to evaluate accurately ‘*“‘V% by the following integration

waryk = vk 4 I ( -"VE doy(t) + VX dBy(v) ) (2.83)
At

wayX are needed to define the configuration and total displacement at time t+At in Eqgs.
(2.80) and (2.81). Carrying out the integration in only one interval of integration
corresponds to the assumption which is demonstrated in Fig. 2.2 and used in Egs. (2.7)
and (2.82).



In matrix form, Eq. (2.82) becomes

u= Hﬁ (2.84)
where ul = [u; up us3 ] (2.85)
87 = [ul u} u} o By --- u) Y uf on Bn] (2.86)

hy 0 0 thegh, the'gh

H=|- 0 n 0 thewgfy th'gh - (2.87)
0 0 hy thy 'g'{3 thy '353
for nodal point k

with 'gkli and 'ggi defined as

gk; = -%ak v (2.8832)

'gh = 3 a'Vy; (2.88b)

2.1.3.2 Strain-Displacement Matrices

Having the incremental displacement discretized in Eqs. (2.82) and (2.87), the
strain-displacement matrices of the shell element can be worked out by evaluating the
derivatives with which the strain-displacement relations are defined. As discussed in Sect.
2.1.2, the Green-Lagrange strains employed by the total and updated Lagrangian
formulations have different expressions which will result in different expressions for
strain-displacement matrices. To keep the volume of the thesis in reasonable size, only the
updated Lagrangian formulation is discretized and the detailed equations and definitions of
matrices are then presented.

Considering the incremental displacement s in Eq. (2.82), the derivatives with
respect to the natural coordinates 1, s, and t are obtained as

hg e vgfiher  t'ghi by uk
1

Ui r N
{ui.s} = 2 hgs tgihes t'ghihgs | (o (2.89)
uj. k=1

t 0 'g¥; hy 'gh; hye B
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To evaluate the derivatives with respect to the global Cartesian coordinates at time t, 'x;, the
Jacobian transformation is defined in the following as it is in Eq. (2.12) for linear analysis.
That is

— =1 _a_.
ox or (2.90)

where the Jacobian matrix, ‘¥, contains the derivatives of the current coordinates x;
expressed by Eq. (2.80) with respect to the natural coordinates r, s, and t, as required by

Eq. (2.10).

Substituting Eq. (2.89) into Eq. (2.90), the derivatives of incremental
displacements with respect to the global Cartesian coordinates are obtained as

alli
%‘Xl N hi,1 ‘g% G¥ 'gh; GY ’ulic
a'_:l; = Y| heo 'G5 gk G lak (2.91)
k=1
oy hys gk Gh 'gh; G Bx
dJ'x3
where hii = Tl her + Tl by (2.92a)
Gf = t(Tilhee + Uidhes) + Tidhye (2.92b)

and 'Jijl is the element (i,j) of the matrix ‘1! in Eq. (2.90).

With the displacement derivative defined in Eq. (2.91), the strain-displacement
matrices can be directly assembled. As in Eq. (2.70), the strain increment is decomposed
into linear components and nonlinear components which are as following in matrix notation

€ =€ + M (2.93)
where t8T = [:811 €22 €33 2€12 2€23 2:813] (2.948.)
eT = [ie11 €22 €33 2€12 2€23 2:€13] (2.94b)

MY = [M11 M22 M33 2N12 2M23 2M13) (2.94¢)



Substituting the displacement derivatives in Eq. (2.91) into Eq. (2.34), the linear

strain components are obtained as

€ = :BLﬁ
where
[ b1 OO gk, G
0 g, O gk, G5
‘B 0 0 g3 tgks !G]‘:E
Dy, =
thg2 gy 0
0 thg,3 g2
B hgs 0 g

k

tg%, G}
kK (k
'g32 G,

k
tgks G

(g, GX + gk, G¥) ('gh; G + g%, G
(tgk, G + tg¥; GY) (g5, G5 + 1255 G5)

(g%, G5 + g GY) ('gh G +'g55 GD
for nodal point k

(2.95)

(2.96)

The nonlinear strain-displacement matrix will be written in a form integrated
together with the stresses for the calculation of virtual work as in Eq. (2.79). The integrand
of the second term on the left hand side of Eq. (2.79) can be expressed as

"tij &nij = SGT EB,?;L k4 :BNLﬁ

where
he; O 0 tg‘fl !Gll‘
k
0 hy; O 'gf, G
0 0 iy tgs tGl{
thg 2 0 0 tgll‘l tGg
Ba=| - 0 hea O ighGh
0 0 thk,z tg¥3 tG%
h

t ;’3 0 g g%, G}
s gk, G

0 0 h
L T3 gk G

for nodal point k

and

K
g5, G
kK K
tg32 Gy

X
tgks G

K
tg¥, G3
Kk Kk
tg32G3

K
tg¥s G3

K
g%, G35

K
gk, G3

k Rk
'g33 G3

2.97)

(2.98)
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nls symm.
T= | vl 'l (2.99)

T3l 123z ‘13315

with
1 0 0
L= 0 1 0 (2.100)
0 0 1

While the stress matrix is defined in Eq. (2.99), the stress vector is defined as

T t t t t
T = [t ‘122 133 ‘T2 23 ‘gl (2.101)
2.1.3.3 Finite Element Equation and Stiffness Matrices

With the interpolation functions and strain-displacement matrices defined in Sects.
2.1.3.1 and 2.1.3.2, the virtual work equation can be discretized. For the similar reason in
previous section, only equations for updated Lagrangian formulation are presented.

Substituting Egs. (2.84), (2.95) and (2.97) into the virtual work equation of Eq.
(2.79), it becomes

Y SﬁT]:

BY'C= B d'Vi + Y, 5T f BEL B dVE =
Ve

V.
e (2.102)
> SﬁTf HTFdV + Zsan HTTdS - Y saTI Bf Td'V
%Se Ve

To simplify above equation, following definition of stiffness matrices and load vectors are
introduced. The element elastic-plastic stiffness matrix and the geometric stiffness matrix
are defined as

Kep = f B[ 'C™ By d'V (2.103)
'Ve

Kg = I BRL ‘TN d'V (2.104)
tv,



The applied load vector and internal load vector are defined as

P = I HTF dV + I HTTd°S (2.105)
Ve 05,

Q= I Bl TdV (2.106)
Ve

With matrices and vectors defined above, Eq. (2.102) becomes

Y 86T ((Kep+Ko)a-P+Q)=0 (2.107)

where the summation is over all elements in the analysis model. By the direct stiffness
procedure, the equilibrium equation is obtained as

(Kep+ Kg)u = P-Q (2.108)

where Kgp, K¢, P and Q are global stiffness matrices and load vectors assembled from the
corresponding element stiffness matrices and load vectors.

For total Lagrangian formulation, similar equations can be obtained. The main
differences are that the original configuration is the reference configuration to which all the
measurements should refer, and an extra term in strain expression has to be dealt with.

2.2 BEHAVIORAL CHARACTERISTICS

Shell structures have complex behavior which includes the effects of material
yielding, loading conditions, large displacements, local and overall buckling and post-peak
softening. Considering the special case of buried pipelines, the behavior is further
complicated by the interaction between the pipeline and surrounding soil. It is believed to
be beneficial to first have a overview on general shell behavior before fully exploring the
behavior of buried pipelines as will be done in subsequent chapters. A general discussion
on shell behavior also helps to define the required numerical solution techniques for shell
analysis. Therefore, the following aspects of the general shell behavior are discussed in this
section : elastic and inelastic response; buckling behavior; the effects of prebuckling
deformation and large displacements; and, postbuckling and softening behavior. To limit
the scope of the discussion, the emphasis is on unstiffened cylindrical shells subjected to
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load combinations of axial force, bending moment and internal pressure, because these
particular conditions are most representative for a pipeline. The general concepts of
buckling will be presented followed by more specific discussion on the behavior of
cylindrical shells under axial load and bending moment.

2.2.1 Concepts of Shell Buckling

The response of a shell structure depends on the material properties, geometric
configuration, loading and boundary conditions. A shell structure fails when the maximum
loading capacity as a beam or column is reached or when shell buckling occurs. Only
relatively thick shells can behave as beams or columns whose failure is governed by the
maximum loading capacity with undeformed cross-section. Then it can be treated as a
normal beam or column. The behavior of shell structures is, however, dominated by shell
buckling because of the thinness of shell wall. Shell buckling is a very complex
phenomenon, and no effort is made to cover all aspects of buckling. In the following some
physical explanations and definitions will be introduced to establish the basic concepts of
shell buckling.

2.2.1.1 Nonlinear Collapse and Bifurcation Buckling

Shell buckling is the direct consequence of the thinness of the shell wall, as has
been pointed out, for example, by Bushnell (1984). The membrane stiffness is in general
several orders of magnitude greater than the bending stiffness. A thin shell can absorb a
great deal of membrane strain energy without much deformation. It must deform much
more in order to absorb an equivalent amount of bending strain energy. If the shell is
loaded in such a way that most of its strain energy is in the form of membrane
compression, and if there is a way that this stored membrane energy can be converted into
bending energy, the shell may fail rather dramatically in a process called buckling as it
exchanges its membrane energy for bending energy. Very large deflections are generally
required to convert a given amount of membrane energy into bending energy.

The way in which buckling occurs depends on how the shell is loaded and on its
geometric and material properties. The prebuckling deformation and stress may also affect
the buckling process if significant non-uniformity and nonlinearity are introduced by the
prebuckling process. There are two types of buckling, namely, nonlinear collapse and
bifurcation buckling. If the stiffness of the structure, or the slope of the load-deflection
curve has zero or negative slope and if the load is maintained as the structure deforms, such



as gravity loading, failure of the structure is usually dramatic and almost instantaneous.
This type of instability failure is often called snap-through, because the structure will
deform in a dynamic manner to an equilibrium configuration in the postbuckling regime for
which the deformation may be very large. Nonlinear collapse, or snap-through buckling,
can be predicted by means of nonlinear incremental analysis which follows the deformation
history of the structure to locate the limit point.

Nonlinear collapse is a phenomenon that depends on both the loading system and
the structure. A structure may initiate snap-through at different configurations for an active
loading system and a reactive loading system. An active loading system applies specified
loads directly on the structure and keeps them constant, such as gravity load. A reactive
loading system applies loads by imposing deformations. As a result, the magnitudes of the
loads depend on the stiffness of loading system. For an active loading system, snap-
through initiates at the limit point on the load-deflection curve, where the energy delivered
by the constant external load is larger than that the structure can absorb. This is shown in
Fig. 2.12. For a reactive loading system, snap-through may initiate at a configuration in the
post-peak region, where the loading system is softer than the structure. As a result, the
reduction in load-carrying capacity of the structure is larger than the reduction in the
external load, and the load system delivers more energy than that the structure can absorb.
This is shown in Fig. 2.12. In practical application, however, the stiffness of the loading
system is difficult to determine. The limit point can be conservatively taken as an
approximation of the initiation of snap-through for reactive loading system. Consequently,
in the rest of this work the snap-through is, in general, considered to be initiated at the limit
point.

Bifurcation buckling refers to another type of instability. At the buckling load, or
the bifurcation point, two or more possible equilibrium paths cross each other, and the
deformation begins to grow into a new pattern which is quite different from the prebuckling
pattern. Whether the structure will fail immediately after bifurcation buckling depends on
the postbuckling behavior of the structure. The onset of bifurcation buckling can be
predicted by means of an eigenvalue analysis.

In the static analysis of perfect structures, both types of buckling are possible to
occur as illustrated in Fig. 2.8. Taking the axially loaded cylindrical shell as an example,
two situations may occurs as shown in Fig. 2.8(a) and 2.8(b). In the first situation, the
cylinder deforms axisymmetrically along the equilibrium path OA until a maximum or limit
load is reached at point A. The perfect shell will fail if the load is maintained, following
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either the path ABC along which it continues to deform axisymmetrically, or the other path
ABD along which it first deforms axisymmetrically from A to B and then non-
symmetrically from B to D. Snap-through occurs at point A and bifurcation buckling at
point B. The equilibrium path OABC, corresponding to the axisymmetric mode of
deformation, is called the primary path. The path BD, corresponding to non-symmetrical
mode of deformation, is called the secondary path. Since bifurcation buckling occurs after
the snap-through, bifurcation buckling is less significant in this particular case with regard
to the load carrying capacity of the structure.

A common situation is shown in Fig. 2.8(b). The bifurcation point B occurs before
the limit load is reached. The primary path OAC and postbuckling path BD correspond to
the axisymmetric and non-symmetrical deformation, respectively. The failure of the
structure would generally be characterized by rapidly growing non-symmetrical
deformations. In other words, deformation would generally follow the path OBD. In this
case the limit load of the perfect structure is of less engineering significance than the
bifurcation point.

2.2.1.2 Various Types of Bifurcation Buckling

For a perfect shell, various types of bifurcation buckling are shown in Fig. 2.9. A
linearized model of elastic stability, that is a classical eigenvalue formulation of the buckling
problem, would result in the response of neutral postbuckling shown in Fig. 2.9(a), where
the amplitude of the bifurcation buckling mode is undetermined. In other words, the load P
remains constant with increasing buckling mode displacement. Restricted to perfect
alignment and the linear formulation, this type of response can, in general, only represent
the initial postbuckling response immediately after the bifurcation point.

If nonlinear postbuckling effects are accounted for, equilibrium paths for most
structures have the forms shown in Fig. 2.9(b,c,d). The asymmetric nature of the curves in
Fig. 2.9(b) indicates that the structure continues to carry loads above the bifurcation load if
it is forced to buckle one way. However, it collapses if it is allowed to buckle in the other
way. An example of this type of behavior is for a structure with parts that come in contact
and support each other for positive deflections but move away from each other, forming
gaps, for similar negative deflections. The symmetric stable postbuckling behavior shown
in Fig. 2.9(c) is typical of axially compressed isotropic flat plates and stiffened cylindrical
shells. The symmetrical unstable postbuckling behavior shown in Fig. 2.9(d) is typical of



the early post-bifurcation regimes of axially compressed thin cylindrical shells and
externally pressurized thin spherical shells.

The response of a shell structure is complicated by the fact that both snap-through
and bifurcation buckling may occur. The possible equilibrium paths are summarized in Fig.
2.10 (Bushnell, 1985) based on the discussion in Sect. 2.2.1.1 and above paragraphs. The
response predicted depends on the analytical approach applied to the prediction. Bifurcation
buckling predicted by the classical eigenvalue formulation, in which all prebuckling
deformations are neglected, is illustrated by point No. 1 in Fig. 2.10. The points
corresponding to the extended eigenvalue formulation, which includes the effect of
prebuckling, are Nos. 2 and 3 in Fig. 2.10. This illustrate the effects of prebuckling
deformations with linear and nonlinear paths, respectively. The postbuckling behavior may
follow path No. 3a in Fig. 2.10 with stable postbuckling behavior or No. 3b with unstable
postbuckling behavior. In both cases, the postbuckling behavior can be symmetric or non-
symmetric. In the course of the postbuckling path, secondary bifurcation points may occur
as indicated by point No. 4 in Fig. 2.10. The structure may exhibit limit point buckling
behavior as shown by point No. 5 in Fig. 2.10 with the possibility of bifurcation points
occuring before or after the limit point.

Based on the discussion of the response of shell structures summarized in Fig.
2.10, it is recognized that any analytical approach for the complete treatment of the
nonlinear and instability response of shell structures should at least contain the following
two components : (1) a nonlinear incremental solution technique which can follow the
entire equilibrium path; and, (2) a general bifurcation point detection-algorithm with the
possibility of evaluation of the eigenvector to be used as a starting vector for the secondary
equilibrium path.

2.2.1.3 Imperfection Sensitivity

In the case of real structures, unavoidable imperfections always exist. These
imperfections may arise from many different sources, such as, the manufacture process,
handling and transportation, material non-uniformity, imperfect alignment and geometric
shape, etc. Because the imperfections usually contain, or result in, components of both
prebuckling and postbuckling deformation patterns, bifurcation buckling cannot occur in a
imperfect structure. As an example, the response of a linear elastic imperfect thin cylinder
subjected to axial compression will follow a primary path OEF shown by the dashed line in
Fig. 2.8(b), with the failure corresponding to the snap-through limit point E at the collapse
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load. The relationship between the response of the perfect and imperfect cylinder can be
established by the following observations. The failure of the perfect cylinder is
characterized by bifurcation buckling into a non-symmetric deformation pattern, while the
failure of the imperfect cylinder beyond the limit point E involves rapid development of the
non-symmetric postbuckling deformation pattern. The postbuckling deformation pattern
and equilibrium paths of the perfect and imperfect cylinder in the deep postbuckling regime
are very close.

For the various types of postbuckling behavior shown by the solid lines in Fig. 2.9
for perfect shells, response of linearly elastic imperfect shells are illustrated by the dashed
lines in the corresponding figures. The correlation between the response of perfect and
imperfect shells is demonstrated by the fact that the path of the perfect shell serves as an
asymptotic path for the imperfect shell with the major difference around the bifurcation
point. For shell structures with unstable postbuckling behavior, there is a difference
between the bifurcation load of the perfect structure, P,, and the limit load of the imperfect
structure, P;. The magnitude of the difference depends on the amplitude of the initial
imperfection and the shape of the postbuckling path. The structure is called imperfection
sensitive if its maximum load carrying capability is significantly reduced by imperfections.

Since imperfections may be responsible for significant reduction in load carrying
capability of imperfection sensitive structures, great effort has been made to analyze and
predict the magnitudes of reductions associated with imperfection sensitivity. There are
mainly two types of approaches for imperfection sensitivity analysis. One is the nonlinear
incremental analysis approach to trace the equilibrium path and the limit load of a structure
with assumed initial imperfections, which may include prebuckling and postbuckling
deformation patterns or only one of these components (Donnell and Wan, 1950;
Hutchinson, 1965; Arbocz and Babcock, 1969; and, Pickney et al, 1983). The other is the
application of Koiter’s theory (Koiter, 1945, 1963a) to the initial postbuckling range
(Koiter, 1963b; Tennyson and Muggeridge, 1969; Hutchinson and Amazigo, 1967; and,
Amazigo and Budiansky, 1972).

The presence of imperfections converts the behavior of a perfect structure, which is
usually dominated by bifurcation buckling, into that of an imperfect structure characterized
by limit point collapse or snap-through. As a result, the analytical approach for an imperfect
structure needs to have only the ability to trace the entire equilibrium path using a nonlinear
incremental solution technique. .



2.2.1.4 Effects of Prebuckling Deformation and Yielding

Significant influence on bifurcation behavior can arise from the effects of nontrivial
prebuckling deformation and material yielding. There are two principal kinds of influence
that the prebuckling state has on the bifurcation load and mode (Bushnell, 1985). First, the
loaded shell has a different prebuckling shape from the unloaded shell, and for a given
prebuckling membrane stress distribution this new shape may have different effects on the
stability of the structure than for the original undeformed shape. Second, the prebuckling
membrane stress distribution is an important factor to the stability. Given a prebuckling
shape of the shell, different prebuckling membrane stress distributions may have drastic
effects on the bifurcation load and mode shape.

Material yielding increases the non-uniformity and nonlinearity of the prebuckling
response. Because yielding usually occurs in a localized area in a shell structure which
introduces a relatively weakened area with regard to stiffness, the bifurcation behavior can
be significantly altered. Elastic buckling is usually more sensitive to imperfections. Elastic-
plastic buckling is more sensitive to prebuckling deformations, particularly to the non-
uniform structural stiffness and stress distributions.

Boundary conditions also have important effects on the bifurcation load and the
mode shape. The influences of boundary conditions on the stability are present through
their influences on the prebuckling membrane stress distributions and deformations, and
the structural stiffness at the boundary. As much as 20% difference in bifurca ion load can
be introduced by different boundary conditions (Hutchinson, 1965).

2.2.2 Cylindrical Shell under Axial Load

The axially compressed cylindrical shell has been a classical shell buckling problem
for a long time and still attracts much attention at present. Numerous papers have been
published to investigate the buckling behavior of compressed cylindrical shells, both
analytically and experimentally. Instead of doing a comprehensive review on this subject,
only some aspects of the buckling behavior will be discussed in this section. These include:
the linear elastic buckling theory; buckling modes; nonlinear collapse; imperfection
sensitivity; and, the influence of inelastic prebuckling deformations and boundary
conditions.
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2.2.2.1 Linear Elastic Buckling Theory

Within the framework of elastic small-displacement theory, the behavior of axially
compressed cylindrical shells is governed by the following equation if the prebuckling
deformation can be determined with sufficient accuracy by the linear membrane equations
(Brush and Almroth, 1975).

2
DVw + otv“(%%n %%‘% =0 (2.109a)
X

in which V2 is the biharmonic operator

vio 92, @ (2.109b)

ox2 9gy?
andD = —59—2 is the bending stiffness, E and v are Young’s modulus and Poisson's
12 (1-v9)

ratio, R and t are the shell radius and thickness, ¢ is the axial stress, x is the coordinate in
the axial direction, and w is displacement in the radial direction.

A critical equation can be derived from Eq. (2.109a) which is (Brush and Almroth,
1975)

=2 2 —_—
=T E2 . m g (2.1102)
m2 12 (1-v¥) R? (m2+n2)?
where m=mnrR (2.110b)

L

and m, n are the number of buckling waves in the longitudinal and circumferential
directions, respectively. L in Eq. (2.110b) is the length of the cylinder. The buckling stress
is the minimum solution of Eq. (2.110a) and it is determined for the cylinders of
intermediate length and short length as in the following. Cylinders are classified into short
and intermediate length according to the Batdorf parameter Z which is defined as (Brush
and Almroth, 1975)

Z = (%)Z(Bt-).,/(l_\p) (2.111)



Short cylinders are defined by Z < 2.85, and long cylinders are defined as those that buckle
like Euler columns with undeformed cross section. The cylinders of intermediate length are
cylinders with Z > 2.85 that have shell buckling characteristics.

For cylinders of intermediate length, the buckling stress determined for simply
supported boundary conditions is obtained as

G = —E— (L) (2.112a)
J31v?3) R

If v is 0.3, Eq. (2.112a) becomes

o = 0.605 E(i) (2.112b)

For short cylinders, the buckling stress is obtained as

= _kr?E (Ly2 (2.113)
12(1-v¥) L
- 141272
where k = - for simply supported edges (2.114)
- 4+3272
and k = i for fully clamped edges (2.115)

2.2.2.2 Buckling Modes

Buckling modes of an axially compressed cylindrical shells depend on the type of
buckling, the material and geometric properties. The elastic bifurcation buckling for perfect
cylinders has two common modes (Chajes, 1985), namely, axisymmetric and non-
axisymmetric buckling modes, as shown in Fig. 2.11. In general, cylinders with high
diameter to thickness ratio, D/t, tend to buckle in the non-axisymmetric mode shown in
Fig. 2.11(b), which is often called the "diamond mode". Cylinders with relative low D/t
ratio tend to buckle in the axisymmetric mode shown in Fig. 2.11(a) which is also called
the "bulging mode".

A cylinder buckled in the elastic-plastic range would usually have the axisymmetric
mode. Instead of having bulges developed uniformly over the length, the deformation
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would concentrate more in outward bulges near the ends where the buckling usually starts
due to the radial restraint provided by the end conditions.

The mode shape for nonlinear collapse, or snap-through buckling, in the deep
postbuckling range is a series of fully developed folds that contact each other to cover the
entire length of the cylinder (Bushnell, 1985).

2.2.2.3 Imperfection Sensitivity

The problem of buckling of axially compressed cylindrical shells has received far
more attention than most problems in structural mechanics because of the extraordinary
discrepancy between the test and theory which remained unexplained for so many years. A
summary and illustrations of this discrepancy can be found in many references such as the
book by Brush and Almroth (1975). It has been found and confirmed by many researchers
that this discrepancy arises from the extreme sensitivity of the buckling load to initial
imperfections.

The axially compressed cylinder is very sensitive to small initial imperfections
because the buckling load corresponds to a mode for which the axial and circumferential
wavelengths are quite small compared to the radius, and the buckling is insensitive to
wavelength. Thus, a great variety of small initial imperfections occuring anywhere on the
entire shell surface would contain significant components of critical or almost critical
bifurcation buckling mode shapes, which grow as the load increases, and eventually cause
snap-through at a load far below that predicted for bifurcation buckling of the perfect shell.

The axially compressed cylinder buckling in the plastic range is not as sensitive to
initial imperfection as is the elastic cylinder (Gellin, 1979, and Hutchinson, 1972).
Bushnell (1985) concluded that the following facts have contributed to reduce the
imperfection sensitivity of plastic buckling. First, the tangent modulus of most metals
decreases by more than an order of magnitude within a stress range of 20% of the yield
stress after the material yields. Second, high quality cylinders with the relatively low D/t
required for plastic buckling are easier to fabricate than those with high D/t, and therefore
the imperfections are relatively small. Third, predictable axisymmetric bulges due to radial
end restraints grow as the load increases and are much more significant than any unknown
imperfections due to fabrication and handling. The combination of these facts dramatically
reduce the effect of random unknown imperfections and make reliable prediction of
buckling load possible.



The nature of the imperfection sensitivity of axially compressed cylinders is
determined by their postbuckling behavior. Both elastic and plastic buckling have unstable
postbuckling behavior in the initial postbuckling range where a significant drop of load
carrying capability occurs. The drop for elastic buckling is much more significant than that
for plastic buckling which makes elastic buckling more sensitive to initial imperfections
than plastic buckling.

2.2.2.4 Effects of Internal Pressure

The behavior of cylindrical shells under axial compression and internal pressure
were studied by several researchers (Harris et al, 1957, 1961; and, Almroth, 1966). The
internal pressure has been found to influence two principal aspects, the buckling mode and
the buckling load.

For a cylinder which buckles elastically in a non-axisymmetric buckling mode, the
buckles become smaller and more elongated in the circumferential direction as the internal
pressure increases. Very high pressure can change the buckling of the cylinder from elastic
buckling to elastic-plastic buckling and from the non-axisymmetric buckling mode to the
axisymmetric mode. For a cylinder originally buckled in the axisymmetric mode, internal
pressure reduces the dimension of the buckles in the longitudinal direction.

The elastic buckling load is relatively insensitive to the internal pressure. The plastic
buckling load is usually reduced by internal pressure because of earlier yielding in the
material. The cylinders with higher internal pressure are also found to be somewhat less
sensitive to initial imperfections than those with lower internal pressure, because the
prebuckling deformations introduced by internal pressure remove part of the initial
imperfections, particularly the non-axisymmetric components.

2.2.3 Cylindrical Shell under Bending

Many aspects of the behavior of cylindrical shells under bending are similar to those
of axially compressed cylinders, Nevertheless, cylinders under bending have some
different behavioral characteristics because of the strain gradient over the cross-section and
the ovalization introduced by bending deformation. In the following discussion, more
attention is given to these differences than to the similarities. Nonlinear collapse and
bifurcation buckling are covered in Sect. 2.2.3.1, and the effects of prebuckling and
internal pressure in Sect. 2.2.3.2.
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2.2.3.1 Nonlinear Collapse and Bifurcation Buckling

As for axially loaded cylinders, the failure of cylinders under bending has two
forms. One is nonlinear collapse because the cross-section of the cylinder flattens as
bending moment increases. As a consequence, its bending stiffness deteriorates, and the
primary path in terms of moment-curvature curve exhibits a maximum. When this
maximum moment is reached, the cylinders fails in a snap-through manner. The other is
bifurcation buckling that is initiated and concentrated on the compressive side of the
cylinder. Some available elastic solutions are reviewed in the following.

For an infinitely long cylinder, the nonlinear collapse moment was found by Brazier
(1926) as

M = 29Z ExR ¢ (2.116)
9 1-V2

If the maximum stress caused by this moment is computed with the use of the undistorted
cross-section properties, it is found (with v =0.3) to be

O = 0.33E(Rt-) (2.117)

The bifurcation buckling problem was solved by Seide and Weingarten (1961).
Assuming that the prebuckling behavior can be defined with sufficient accuracy by a linear
membrane solution, the critical buckling stress is found to be only 1.5 percent higher than
the critical uniform compression stress for a shell with D/t = 200. For thinner shells the
difference is even smaller. Thus for a practical purposes, the critical buckling stress for a
uniformly compressed cylinder can be taken as the critical buckling stress for a cylinder
under bending which is

Co = 0.6051-:(RL) (2.118)

This value for bifurcation buckling is well above the critical stress for collapse in Eq.
(2.117).

For a cylinder of finite length, boundary condition usually restrict deformations so
that the cross-section remains circular. This restrains the cross-sectional flattening over the
entire length. Finite length cylinders therefore collapse at load levels that are higher than the



one predicted by Brazier’s equation in Eq. (2.117). For sufficiently short cylinders, the
prebuckling behavior is approximated well by the linear membrane solution, and the
collapse stress is close to the classical critical stress in Eq. (2.118) without considering
initial imperfections.

For a cylinder of finite length, the displacement pattern associated with the
secondary path is not orthogonal to the prebuckling displacement because of the effects of
boundary conditions. Therefore, bifurcation buckling in its exact sense does not exist.
However, the displacement pattern associated with the secondary path, as a component of
the prebuckling displacement, is extremely small until a load level is reached at which it
begins to grow rapidly. The structural behavior is therefore approximately the same as if a
bifurcation point does exist.

2.2.3.2 Effects of Prebuckling Deformation and Internal Pressure

Prebuckling deformation has more significant influence on buckling behavior for a
cylinder under bending than for an axially compressed cylinder, because of the interaction
between the prebuckling deformation and the buckling load and mode. The flattening of the
cross-section decreases the local radius of the cross-section and therefore increases the
actual bending stress. Consequently, it reduces the load level at which the wrinkling pattern
appears. Local yielding of material from prebuckling deformation reduces the structural
stiffness and introduces non-uniformity and nonlinearity which also reduces the buckling
load.

The strain gradient on the cross-section helps to restrain the buckling mode to a
narrow strip on the compressive side, and makes the drop of the load carrying capability in
the initial postbuckling range less significant. Therefore, the cylinder under bending is less
sensitive to initial imperfections than the axially compressed cylinder.

If a cylinder with initial imperfections buckles in the plastic range, there is usually a
principal buckle which is larger in terms of wavelength and amplitude than the others. The
postbuckling deformation tends to concentrate in the principal buckle. The principal buckle
for a cylinder without internal pressure is more likely to be an inward buckle, but the one
for a cylinder with high internal pressure is an outward bulge type of buckle (Bouwkamp
and Stephen, 1973). For a plastically buckled cylinder, internal pressure would in general
increase the critical buckling strain but reduce the critical buckling moment.
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2.2.4 Comments

In shell buckling problem, most of the attention has been given to the prediction of
the critical buckling load either analytically or experimentally, because shell structures are
implicitly assumed to be load carrying structures. But there are some shell structures, such
as buried pipelines, for which the principal loads are deformation imposed loads rather than
the externally applied loads. In these cases, the load carrying capability is less significant
because the externally applied loads alone cannot fail the structure and deformation imposed
loads are self-limiting in nature. The failures of this type of structure are more likely to be
controlled by deformation, and therefore the prediction of postbuckling deformation
including the deformation pattern and its amplitude is more important than the prediction of
critical buckling load. Since postbuckling deformation, in general, is not sensitive to initial
imperfections, as shown in Fig. 2.9, the analysis with respect to imperfections can be
deemphasized for these structures.
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CHAPTER 3 NUMERICAL SOLUTION TECHNIQUES

In this chapter, the solution technique for the set of nonlinear algebraic equations
that arises after discretization of a nonlinear continuum is treated in some detail. The chapter
starts with an overview of existing procedures that can be used to obtain a properly
converged solution. The arc-length control technique is considered to be one of the most
elegant procedures for nonlinear structural analysis at the present time. However,
deficiencies are found when it is applied to three-dimensional shell analysis with softening
characteristic. An improved iterative arc-length control is then proposed. Finally, a solution
procedure designed for postbuckling analysis is developed based on a direct search
technique which has been commonly used in optimization. As a basic tool for subsequent
analysis, such a robust and efficient solution procedure is a very important component of
this project.

3.1 OVERVIEW OF SOLUTION PROCEDURES

A difficulty in nonlinear analysis is the dependency of the stiffness and internal
forces on the displacements, which has to be accounted for by the solution procedure.
Various procedures have been developed with different ways to deal with this dependency.
The most desirable features of solution procedures are stability and efficiency, but it is
often difficult to accomplish both of them simultaneously, especially for problems with
severe nonlinearity and local conditions of loading and unloading. If the fundamental
phenomena required by the analysis can be captured by the solution procedure,
approximation and simplification can be introduced to improve its efficiency, which is often
sacrificed to insure stability. Consequently many alteratives have been explored and it is
not the intention herein to review all solution procedures developed in the past. In this
section, the incremental-iterative procedure for static analysis of nonlinear structures is first
reviewed. This defines a basic formulation for solution procedures. The Newton-Raphson
procedure, which is the classical procedure, is then discussed. Control techniques such as
load, displacement, arc-length and indirect control are then presented. Finally, the reduction
method and multi-dimensional search techniques are introduced. This serves as background
for the solution procedure developed herein based on a search technique, as discussed in
Sect. 3.3.

3.1.1 Incremental-Iterative Solution Procedure

Nonlinear finite element analysis will, in general, end up with the following set of



equations
Ku=P-Q (3.1)

where K is the stiffness matrix, u is the incremental nodal displacement vector, and P and
Q are the external and the equilibrating force vectors respectively as shown in Fig. 3.1. For
nonlinear analysis, K and Q depend on the displacements and stresses in the structure
which is a direct consequence of the nonlinear structural behavior. When a structure is in
equilibrium, the difference between the equilibrating forces and the external loads vanish.

In principle it would be possible to impose the entire external load in a single step,
but this is not very sensible in practical applications because iterative procedures usually
have a hard time to converge towards a proper solution for large load steps, and the path-
dependent material behavior requires relatively small strain increments to insure the
accuracy of the prediction. Consequently, it is recommended to apply the total external load
in a number of small loading steps (or increments). Such a procedure is usually called an
incremental procedure and is illustrated in Fig. 3.2. Starting from a known displacement
vector u,, an incremental displacement may be calculated according to

KAu = AP+P,-Q (3.2)

where the total external load is decomposed to a contribution P, that is already present at the
beginning of the load step and a load increment AP.

In the solution by incremental noniterative procedures, a significant drifting of the
predicted path from the true equilibrium path may occur as shown in Fig. 3.2. There are
two principal reasons for the drifting. One is the unbalanced loads at the end of each
loading step because perfect convergence is seldom accomplished. These unbalanced loads
will be carried along in all subsequent loading steps, which implies that the errors will be
accumulated and cause a significant drift. The other is the fact that the tangential stiffness
matrix may be derived through linearization of the nonlinear equations at the beginning of
the loading step which is only valid, strictly speaking, at the beginning of the loading step.
The tangent stiffness matrix is only an approximation for the loading step, and an error is
therefore introduced and accumulated. This gradual departure of the numerical solution
from the true solution can be prevented or at least substantially reduced, by adding
equilibrium iterations within each loading step which defines an incremental-iterative

procedure.
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In an incremental-iterative solution procedure, a first estimate for the displacement
increment is made through

Au; = K-I(AP'Q'Pn-Qo) 3.3)

where the subscript 1 for Au signifies the estimate in the first iteration for the incremental
displacement vector. Likewise, the subscript O of the internal force vector Q relates to the
fact that the vector is calculated using the stresses at the beginning of the loading step or the
end of the previous loading step. From the incremental displacement vector Au,, a first
estimate of the Ag, strain increment can be calculated, and then the stress increment A, can

be evaluated through the tangential stress-strain law. In a finite element formulation the
equilibrating forces after the first iteration are given by (see Eq. (2.106))

Q; = IBT(GO+A61)dV (3.4)

where B is the strain-displacement operator, and o, is stress at the previous converged
configuration. In general, equilibrating forces Q, are not in balance with the external load
AP+P,. For this reason a correction to the displacement increment is necessary which is

du; = K1 (AP +P,-Q)) (3.5)

The accumulated displacement increment becomes (see Fig. 3.3)

Auy = Au; +duy (3.6)

Repetition of this process can be formulated mathematically as

duj,; = K1 (AP +P,- Q) (3.7)
Auj,y = Auj+duj, (3.8)
Agj.1 = B Aujy (3.9)
AcCj.1 = f(Agj+1) (3.10)
Cj+1 = Og+ AGj41 3.1

This iterative process ultimately results in stresses that are in equilibrium with each other



and with the applied external load to within some user-prescribed convergence tolerance.
3.1.2 Newton-Raphson Iterative Procedures

Newton-Raphson (N-R) iteration is one of the classical iterative procedures. In the
full Newton-Raphson iteration, the tangent stiffness matrix is updated and factorized in
every iteration as shown in Fig. 3.4. The advantage of this scheme is quadratic
convergence which becomes the characteristic of N-R iteration. The disadvantage is the
high cost to evaluate and factorize the stiffness matrix in every iteration, which may not be
necessary.

It is recognized that updating the stiffness matrix in every iteration, as in the full N-
R iteration, is by no means necessary since it is quite irrelevant which stiffness matrix is
being used to iterate towards equilibrium as long as the stresses are determined in a proper
manner and the resulting equilibrating force vector is computed on the basis of these
stresses. This has motivated several researchers to seek for methods which obviate the need
to construct and decompose a tangent stiffness matrix in every iteration. There are, in
general, two classes of such methods. In the first class, the stiffness is obtained by setting
up a new tangent stiffness, either every few iterations or only once within a loading step.
Basically, it is assumed that the stiffness matrix varies so slowly that the stiffness matrix
set up in a particular iteration serves as a sufficiently accurate approximation of the tangent
stiffness matrix for several subsequent iterations. The second class of methods consists of
the so called Quasi-Newton or Secant-Newton methods. These methods apply updates on
existing tangential matrices such that the stiffness in the subsequent iterations is computed
using a multi-dimensional secant approximation.

One example of the alternatives on the full N-R scheme, that exists within the first
class defined above, is modified N-R iteration as shown in Fig. 3.5. Here the stiffness
matrix is set up and decomposed only at the beginning of every loading step. The modified
N-R iteration loses the quadratic convergence characteristic of the full N-R iteration, but
often the slowing down of the convergence rate is off-set by the gain in computer time
within each iteration.

3.1.3 Load and Displacement Control

There are two methods to control the application of the load and the process of
achieving convergence within each loading step. First, the external load can be directly
applied in a number of steps and kept constant for that step. This is usually called load

85



86

control because a specific load level is specified for each of loading step. Second, the
increments of one or more displacements can be prescribed which causes development of
stress increments within the specimen and then results in incremental reactive nodal forces
at the nodes where the displacement increments are prescribed. Summation of these
generated incremental nodal forces gives the total reactive forces, which equal the external
loads, for the prescribed displacements. This process is often called displacement control.

Often the physics of the problems dictates which type of application is the most
obvious choice. However when there is no preference for either load or displacement
control from a physical point of view, the latter method is nearly always to be preferred.
One reason for this is that the tangent stiffness matrix is better conditioned for displacement
control than for load control, and consequently faster convergence of the iterative procedure
can be expected. Another reason is that under load control, the tangent stiffness matrix
becomes singular at a limit point in the load-deflection diagram. The tangent stiffness
matrix of the displacement controlled problem on the other hand does not become singular.

Decomposing the incremental displacement vector du into a vector that contains
only degrees of freedom that are free, du,, and displacement increments that have
prescribed nonzero values, du,, it can be written for the first and subsequent increments,
respectively, as

du! = (9% (3.122)
du}
j
dui = {d(;'f j=23,-- (3.12b)
In a similar way the tangent stiffness matrix can be partitioned as follows
K ={ Kr Kfp] (3.13)
pt Kpp

With Eqgs. (3.12) and (3.13), Eq. (3.2) becomes

[Kff Kfp] dug"! _ _1Q’f‘
Kpr Kpp dll-'i;'l ‘0 1 (3.14)

where Q’f are the equilibrating forces corresponding to the free degrees of freedom,



respectively, at the end of the iteration j in the loading step n. It has been assumed in Eq.
(3.14) that no other forces act on the structure apart from the prescribed displacements. The
free displacement increment can be determined by solving the first equation in Eq. (3.14).
For the first iteration it becomes

du} = - Kif (Kgpdul, + Q) (3.15)

and for subsequent iterations, it becomes

dujt"l = - KE} QL j = 1121 EREND i | (3.16)

Comparison of Egs. (3.2) and (3.15) shows that for the first iteration the external load,
AP+P, , must be replaced by the ‘equivalent force vector’, K¢, dup, when switching from
load to displacement control. In the subsequent iterations, this contribution vanishes for

displacement control.

The most important mathematical difference between load control and displacement
control lies in the fact that load control requires the inversion (or in practice the LDU-
decomposion) of the stiffness matrix K while in the latter method only the reduced stiffness
matrix K, needs to be inverted. Graphically, the solution for the load controlled process
may be represented by the intersection between the horizontal line on the load-displacement
diagram, which characterizes the load level imposed on the structure, and the load-
displacement path as shown in Fig. 3.6. In a displacement controlled process an
intersection between the vertical line, which characterizes the magnitude of the
displacement, and the load-displacement path as shown in Fig. 3.7 represents the solution.
As shown in Fig. 3.6 the load controlled iterative process diverges when the horizontal line
does not intersect the load-displacement path. This condition manifests itself in an
unbounded growth of unbalanced load. Consequently, load control is not applicable to
problems which exhibit limit point and, thereafter, snap-through behavior.

Displacement control does not share this disadvantage, since the intersection
between a vertical line and load-displacement path can always be found for this type of
behavior. Nevertheless, some types of structural behavior are still not traceable with a
displacement controlled procedure. An example is shown in Fig. 3.7 where snap-back
behavior, which is often encountered in thin shells and cracking of concrete, is illustrated.
A restriction on displacement control is that displacement control, in general, can be applied
to only one degree of freedom. It can be applied to more degrees of freedom if the relative
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ratios between these degrees of freedom are specified.
3.1.4 Arc-Length Control and Indirect Displacement Control

Due to the limitations of load and displacement controls, alternative are sought. One
of the most elegant procedures that can be used to analyze nonlinear structural response is
known as arc-length control (Wempner, 1971, Riks, 1972, 1979, and Ramm, 1980). This
method can be explained starting from Eq. (3.7) as follows. Expressing the load increment

AP by AM, +1§' with A as a scalar load factor and P as a reference load vector, gives
dujy; = K1 (AN P +P,-Q)) (3.17)

for the correction to the displacement increment, where

A)"j«kl = AA.J + dkj,,,l (3.18)

The essence of the arc-length control is now that the correction to the displacement
increment in iteration j+1, duj.1, is conceived to be the sum of two separate contributions.
The first part is purely due to the external load components that are being incremented
within this load step and represented by the reference load P

dul,, = K'1P (3.19)

The second part is the response to the unbalanced forces, namely the difference between the
sum of all external loads and the equilibrating forces after iteration j,

dull, = K1 (AAP +Py- Q) (3.20)

Comparison of Egs. (3.19) and (3.20) with Eq. (3.17) shows that

duj,; = dAj. dul,; + dull, (3.21)
j j

The crucial difference from load control is that the increment of scalar load factor is
no longer fixed and is considered as an additional variable, which is determined by an
additional equation that is usually called the constraint equation. This constraint equation is
established based on a constraint condition on the step size, such as, that the Euclidean
norm of the accumulated incremental displacement vector,Au;,, and the accumulated
increment of load factor, AAj+1, in a load step remains constant during the loading step,



i.e.
2
Au};l Auj+1 + Alj*.l = Alz (3.22)
where Al is a prescribed reference length. By substituting Egs. (3.8) and (3.21) into Eq.

(3.22), an algebraic equation is obtained which can be used to determine dAj+1. A
simplification can be introduced by linearization of Eq. (3.22).

Expansion of Eq. (3.22) is

(Auf Auj+ AA] - AP) + 2 (Auf duj,q + AXj dAjer)

(3.23
+(dull; dujy +dA,) = 0 )

Since Eq. (3.22) is valid at iteration j, the first bracket in the above equation vanishes.
Ignoring the second order terms in the third bracket, Eq. (3.23) becomes

Au}' de+1 + Alj d}-jﬂ =0 (3.243)

This equation requires that the increment in iteration j+1 in the load-displacement space,
(duj1, dAj41), is perpendicular to the accumulated increment up to iteration j, (Au;, AA;).

Substituting Eq. (3.21) into Eq. (3.23), dAj.1 can be solved as

Auf dull
dhjey = - (3.24b)
AUj duj+1 + Alj
To further simplify the constraint equation, Eq. (3.24a) may be replaced by
Auf duj; + AAj dAju =0 (3.25a)

where the accumulated increments are replaced by the increments of the displacement and
load factor in the first iteration (or predictor step). As a result, Eq. (3.24b) becomes
Auf du}{l

AuTdul,, + AL, (3.25b)

dlj*-l = -

The form of equation defined in Eq. (3.25a) with its solution in Eq. (3.25b) is usually
called the linear constraint equation because of the linear relation between the incremental
load factor and the displacement increments due to the unbalanced forces. The iterative
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process is graphically shown in Fig. 3.8 where the modified N-R iteration procedure is
assumed. The iteration is along a line perpendicular to the first increment defined by Au,
and A\, and approaches the intersection of this line and the equilibrium path which
defines the converged solution.

The constraint equation defined in Eq. (3.22) which results in a quadratic algebraic
equation for the incremental load factor is usually called the spherical constraint equation
because it defines the iteration on a sphere in the load-displacement space and converges to
the intersection of the sphere and the equilibrium path. The iterative process based on the
spherical constraint equation is, as shown in Fig. 3.10, along a circular curve. An
intersection of this curve and the equilibrium path is ensured.

The spherical constraint equation can be generalized into a general quadratic

equation as

2
Alljl;l Al.lj...l + CAlj...l = Alz (3.26)

where { is a constant which permits different weights to be assigned to the relative
significance of the increments of displacement and load factor. When { equals to one, Eq.
(3.26) defines the spherical constraint equation. When { equals to zero, the equation is
often referred to as the cylindrical constraint equation. For other values the equation
becomes, the so called, ellipsoidal constraint equation. A large value of the constant {
essentially converts the arc-length control in Eq. (3.26) into a load control.

Bellini (1987) reviewed and compared these three forms of quadratic constraint
control equations, namely, the spherical, cylindrical and ellipsoidal constraint equations.
Based on numerical studies of six cases including several benchmark problems, the
cylindrical constraint equation was recommended for snap-through behavior. For snap-
back behavior and paths with very stiff loading and unloading where the load increments
are obviously more important, an ellipsoidal constraint equation should be used. In this

case, a proper way to determine the value of constant £ should be used.

Arc-length methods may fail in cases which involve highly localized failure or
bifurcation modes (de Borst, 1987), because the norm of the global displacement increment
on which the arc-length method is based may not be sensitive enough to control highly
localized displacement increments. As an alternative, the indirect displacement control
technique was developed (de Borst, 1987,1988; and, Rots, 1988). To distinguish between



the methods, the method of displacement control applied on one or more degrees of
freedom in Sect. 3.1.3 is called direct displacement control.

The basic idea of indirect displacement control is that the norm of the displacement
increment in the arc-length control equation is replaced by the norm of a weighted
displacement increment as

2
A“_’il;l WAuj+l -+ cAlj'O-l = Alz (3.27)

where W is a weighting matrix. The weights applied to the components of the displacement
increment can be chosen in such a way that the norm of the weighted displacement
increment will be sensitive to selected localized failure or bifurcation modes. Since the
failure or bifurcation modes are problem dependent, selection of the weight matrix W
depends on the individual problem and the experience of analyst. Therefore, the application
of indirect displacement control is limited.

3.1.5 Reduction Methods

Researchers have been attempting to develop analytical models and robust solution
techniques which can capture the essence of overall structural behavior in an efficient and
cost-effective manner. Detailed solutions are not always necessary as long as the analysis
can provide the designer with sufficient information. Among various alternatives to
iteration on the full system obtained from discretization of the structure, reduction methods
(Noor, 1980, 1981a, and 1981b) are one approach which shows some promise. Ideas
similar to the reduction methods have been extensively used in dynamic analysis. In
dynamic analysis of large structures, the response is described in terms of the superposition
of a small number of displacement patterns associated with the natural modes of vibration
of lowest frequencies. It is generally accepted that this technique is capable of capturing the
essence of the structural response to global actions. It is believed that a similar technique
can also be used to capture the essence of the nonlinear static response of many common
types of structures in sufficient detail to provide the designer with the information which he
requires to make judgements on the performance of structures.

The principal idea of reduction methods for nonlinear analysis is to limit the
displacement increments of the discretized structure to some known displacement modes
which form the reduced basis, and leads to a system with a considerably smaller number of
degrees of freedom than the system on the natural basis defined directly by the
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discretization. Selection of these displacement modes, or base vectors, is the most
important step in reduction methods and determines the capability of the base vectors to
model the incremental displacements on the natural basis and, consequently, the accuracy
of the solution.

There are four general criteria for selection of base vectors, summarized (Noor,
1981b) in the following. First, the vectors must be linearly independent and span a solution
space in the neighborhood of the solution point on the equilibrium path under current
consideration. Second, the generation of these vectors should be both simple and
computationally inexpensive and the number of vectors that can be generated should be
variable. The vectors should be a subset of a complete basis in which the displacement
increment can be fully represented. Third, the vectors should have good approximation
properties in the sense that they provide satisfactory solution on a large interval of the
equilibrium path. Finally, the application of reduction methods based on the selected
vectors should simplify the tracing of post-buckling behavior.

Several options for base vectors have been proposed in the past. Nonlinear
incremental displacements and their various orders of path derivatives were used (Noor,
1980; and, Noor and Peters, 1981a). Global shape functions derived according to a set of
rules were selected by Almroth et al (1978). Wilson ez al (1982) developed a procedure to
obtain a set of Ritz vectors which were used in dynamic analysis and can potentially be
used as base vectors in static analysis. Eigenmodes have been used as base vectors by
Nagy and Konig (1979) and Napoleao et al (1990, 1991a, and 1991b). These are some of
the best explored options at present time. In the following, discussion will focus on the
reduction methods based on eigenmodes.

The incremental displacements for materially nonlinear structures, such as concrete
beams, were found to be accurately approximated by a linear combination of a few
eigenmodes corresponding to the lowest eigenvalues (Napoleao et al, 1991a).
Mathematically the approximation can be expressed as

Au = da (3.28)

where @ is a matrix composed of base vectors and a is the reduced displacement increment
vector which is composed of a magnitude (ie. generalized coordinate) for each
corresponding base vector. All the base vectors must be kinematically admissible, i.e. they
should satisfy the prescribed displacement boundary conditions and strain compatibility,



and are assumed to be normalized. The number of base vectors, or the number of reduced
degrees of freedom, is much smaller than the number of degrees of freedom on the natural
basis, and a typical number of 3 has been used (Napoleao et al, 1991b) for concrete beam
structures.

A general solution strategy based on eigenvectors for materially nonlinear structures
has been developed (Napoleao et al, 1991b). With the approximation defined in Eq. (3.28),
the system equations on the natural basis in Eq. (3.2) can be converted into the system of
equations on the reduced basis as

Ao =7 (3.29)

where A is the reduced stiffness and y are the reduced generalized unbalanced forces. These

quantities are defined as
A=DdK® (3.30)
y= ® (AP+P,-Q) (3.31)

Based on the reduced system in Eq. (3.29) and together with solution procedures and
control technique discussed in Sect. 3.1.1 to 3.1.4, a solution approach can be formulated.
The details can be found in Napoleao et al (1991b).

In this reduction method the iteration is carried out on the reduced basis and the
base vectors change throughout the history of the structural response. But the
displacements are accumulated in the natural basis and consequently will have acceptable
accuracy if the displacements within each of the load steps are adequately represented. The
detail of local behavior is retained because the evaluation of strains, stresses and
unbalanced forces is always carried out at the local level on the natural basis. However, the
influence of the loading at the local level is filtered through the eigenvectors and only
affects the behavior of the overall structures insofar as it affects the lower energy
eigenmodes.

This reduction technique does not have a cost advantage on the basis of iteration by
iteration, because the tangent stiffness matrix on the natural basis still must be assembled
and factorized, and additional cost is required for eigen-analysis. However, this technique
appears to be very robust and the penalty for carrying out eigen-analysis appears to be
overcome by the more rapid convergence characteristics. In the example of a deep concrete
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beam, the overall efficiency was improved by a factor of 2. Therefore, this approach
appears to be competitive with some of the more standard solution procedures.

3.1.6 Direct Search Techniques

Search techniques in static analysis of nonlinear structures are often associated with
line searches. These are used as techniques in combination with an iterative procedure, to
improve the convergence characteristics of the iterative procedure. The direct search
technique discussed here is, however, much more sophisticated and serves as an
independent solution procedure rather than a part of an equilibrium iteration procedure.

Many engineering problem, such as optimum design of structures and structural
analysis, can be formulated mathematically in the following form

Find solution x* such that f(x*) = minimum f(x) (3.32)

where x is the state variable vector, that defines the state of the system under consideration,
and f(x) is the objective function which defines the preference for the selection of the
solution. For example, in the classical problem of optimum structural design, namely,
minimum weight design problem, f(x) is the weight of the concemed structure and x is a
set of possible selections of the dimensions of structure components. The solution is
searched in the feasible solution domain.

A nonlinear structural analysis problem can also be formulated in the form of a
minimization problem, where the objective function f(x) can be selected in a number of
ways. It may be taken as the norm of unbalanced forces, or the magnitude of maximum
components of unbalanced forces, or the energy corresponding to unbalanced forces. The
state variables can be displacements, or some generalized displacements based on selected
displacement modes, and the load factor representing the applied load. This can be
mathematically expressed, for example, as

Find solution Au” such that ” U(un+Au*)” = minimum ” U(un+Au)” (3.33)
where Au is the displacement increment on the natural basis and ” U(uy+Au) ” is the norm

of the unbalanced forces which is related to displacements through stresses and strains. The
possible minimum of the objective function in this case is zero.

If a solution Au” that results in a minimum value of zero for the norm of the
unbalanced forces is found, and correct strain-displacement relations and stress-strain



relations are used, it can be concluded that a new equilibrium configuration is then
established. Comparing with the equilibrium formulation commonly used in finite element
structural analysis, differences are found within each of the solution steps. In the
equilibrium formulation, the new equilibrium configuration is established by an iterative
procedure on equilibrium equations, while in the minimization formulation, it is achieved
by a direct search among possible displacement increments.

The solution in the minimization formulation does not have to satisfy a set of
equations such as the equilibrium equations in an equilibrium formulation. Consequently,
solution procedures based on equilibrium iteration are obviously not appropriate. Direct
search methods as one of the effective solution procedures for minimization formulations
are well developed (Fox, 1971, Aoki, 1971, Dixon, 1972 and Wolfe, 1978). There are
many techniques that can be employed to solve the problem defined in Eq. (3.33). These
can be grouped into two categories. The first category consists of gradient based methods
which require the calculation of the first order derivatives to determine the best direction for
search. The second category consists of direct search techniques in which finite differences
are used to replace the derivatives. This type of technique is particularly suitable to the
problem where the derivatives of the objective function with respect to the state variables
are difficult to obtain. Nonlinear structural analysis is an example of this kind where the
derivatives of the norm of the unbalanced forces with respect to displacement increments
are next to impossible to obtain. Therefore, direct search techniques will be employed,
herein, for nonlinear structural analysis. There are many methods in the category of direct
search technique, among which the method proposed by Powell (1964, 1966) is one of the
most efficient methods. The details of the method will be discussed in Sect. 3.3, where a
solution procedure for nonlinear structural analysis is developed.

3.2 EQUILIBRIUM ITERATION WITH AN IMPROVED METHOD OF
ARC-LENGTH CONTROL

Shell model analysis is carried out in this study using a general purpose program
developed at the University of Stuttgart, Germany (Stegmuller, 1984), known as Nonlinear
Inelastic Structural Analysis (NISA), which contains a carefully developed shell element
and a solution technique with arc-length controlled equilibrium iteration. Unfortunately,
difficulties and inefficiencies arise for postbuckling analysis of thin shell structures from
the existing solution technique in NISA. Consequently, a more robust and efficient solution
technique has been developed that is based on an improved arc-length control, combined
with full and modified N-R iterative procedures, proper loading and convergence criteria.
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This section begins with a brief description of the existing solution technique in NISA,
followed by discussion of its deficiencies and details of the proposed improved technique.

3.2.1 Existing Solution Technique in Program NISA

The equilibrium iteration procedure is either full or modified N-R iteration
combined with the linear constraint equation of the arc-length control technique. This is
considered to be one of the procedures representing the state-of- art for nonlinear structural
analysis. Newton-Raphson iteration and arc-length control have been discussed in Sects.
3.1.2 and 3.1.4, respectively. The convergence of the iteration is measured by the ratio
between the norm of the displacement increment at iteration j and the norm of the
accumulated displacement increment up to iteration j, i.e.

[| du|

<& (3.34)
]

where £q is a specified tolerance for the displacement increment. A typical value of £q can
be one percent in the elastic ascending region, but is relaxed somewhat in the region with
significant nonlinearity and in the post-peak region.

The loading criterion refers to the way to impose applied loads on the structure. In
the existing solution technique, loads are applied incrementally, and whether the structure is
in the state of loading or unloading is determined by whether one or more negative pivots
are found in the process of factorization of the global stiffness matrix. The loading criterion
states that the structure is in a state of loading if the current stiffness matrix is found to be
positive definite. Otherwise an unloading state is assumed. The stiffness matrix can be
shown to be positive definite if no negative pivot is found. This is because the number of
negative eigenvalues of a matrix is equal to the number of negative pivots of the matrix
(Strang, 1988), and if all the eigenvalues are positive, the matrix must be positive definite.

3.2.2 Discussion of the Existing Solution Techniques of NISA

Based on numerical examples and experience with program NISA, several
problems that result from deficiencies of the solution technique were found and are
summarized below. Five aspects will be examined in the following. They are : iterative
procedure; the arc-length constraint equation; the convergence criteria; the loading criterion;
and, the reference arc-length.



Newton-Raphson iteration is the standard iterative procedure for nonlinear
structural analysis. As discussed in Sect. 3.1.2, full N-R iteration is more stable and is
preferable in solution steps involving highly local and nonlinear behavior. On the other
hand, modified N-R iteration is more cost-effective and should be used as long as
convergence can be achieved. A difficult decision faced by the analyst is to determine a
proper iterative scheme for the coming load step. This is sometimes very difficuit,
especially in the postbuckling region where deformation is localized, and the nonlinear
effects due to plastification of material and large displacements are significant. Since the
analyst cannot afford to use full N-R iteration all the way if he wants to carry the analysis
into the deep postbuckling region, a combination of full and modified N-R iteration is
usually required, where modified N-R iteration is the default but full N-R iteration is
activated automatically whenever it is necessary. This combination is deemed to achieve the
best efficiency and stability of the solution procedure.

The linear constraint equation for arc-length control is defined in Eq. (3.25). The
process of iteration with linear constraint equation is to find iteratively the intersection of a
“plane” normal to the first increment in the load-displacement space and the equilibrium
path, as shown in Fig. 3.8. If this intersection does not exist, as for the responses shown
in Fig. 3.9, which are often encountered for thin shell structures with relatively high
diameter-to-thickness ratios, the linearized arc-length control leads to divergence. At other
times, the size of the load steps has to be kept extremely small in order to achieve
convergence. Obviously a better arc-length equation is needed to prevent failures of the
solution process associated with the linear constraint equation. The fundamental problem is
that the constraint only restricts the direction of subsequent displacement increments and
places no limit on the magnitude of the accumulated displacement increment in the load
step. This problem can be prevented by a quadratic arc-length equation.

The convergence criterion defined in Eq. (3.34) is generally accepted for analysis of
common structures. This is based on the fact that oniy if the unbalanced forces become
very small does the displacement increment at iteration j, duj, becomes very small.
Consequently, Eq. (3.34) can be satisfied. However, in order to insure the unbalanced
forces are small enough, the tolerance in Eq. (3.34), &4, is normally required to be very
small. For example tolerance 10 is often required but sometimes difficult to achieve,
especially in the postbuckling region. As a result, convergence may be misjudged and a
significant amount of time may be wasted to satisfy the extremely small tolerance. The
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problem here is that the displacement convergence criterion in Eq. (3.34) is not a direct
measurement of the accuracy of the equilibrium configuration. A convergence criterion
based on the magnitude of unbalanced forces should be used together with displacement
criterion to insure that both displacement and unbalanced forces converge to a reasonable

accuracy.

The loading criterion used in NISA is based on the positive definiteness of the
tangent stiffness matrix. If one or more negative pivot elements of the factorized tangent
stiffness matrix is detected, a negative load increment is assumed for the predictor step of
the iteration. This criterion works well on the ascending branch of the equilibrium path
where the structure is generally in the loading state. Here loading and unloading correspond
to a load increase and decrease, respectively. However, difficulty arises for the descending
branch which is typical for postbuckling behavior of thin shell structures. On the
descending branch, both loading and unloading states correspond to load decreases, with
the difference in the nature of the displacement increment. In general, loading is
accompanied by an increase in magnitude of the displacement and amplification of the
displacement pattern. Unloading is associated with a decrease in the magnitude of the
principal displacement pattern. Loading and unloading cannot be identified conclusively by
the positive definiteness of the stiffness matrix either, because a stiffness matrix that is not
positive definite can be associated with either loading or unloading. Consequently, a
loading criterion based on an increment of applied load cannot effectively develop the
solution into the deep postbuckling region. A loading criterion based on incremental
imposed deformation can prevent confusion between the loading and unloading.

The reference arc-length, Al, in the arc-length equation is found to have significant
influence on the overall efficiency and stability of the solution process. A large reference
arc-length will likely lead to difficulty on convergence because the convergence
characteristics of the iteration procedure are only valid locally. On the other hand, a small
one increases the number of the load steps and reduces the efficiency. In the existing
solution technique in NISA, however, no effort is made to adjust the reference arc-length to
achieve maximum efficiency. Consideration should be given to this aspect, especially for
users with little experience with the solution technique and the type of problem to be
analyzed.

In attempting to meet the requirements arising from the deficiencies of the existing
solution technique as discussed above, a more robust and efficient technique has been
developed. This is detailed in the following sections.



3.2.3 Modified Arc-Length Constraint Equation

As discussed in Sect. 3.2.2, a quadratic arc-length equation may be employed to
prevent the deficiencies arising from the linear constraint equation. The general form of
quadratic arc-length equation is defined in Eq. (3.26) with the displacement increment
being expressed by Eq. (3.21). Substituting Eq. (3.21) into Eq. (3.26), it becomes a

quadr tic equation in terms of the load factor increment, di;, ie.

Ad\, +Bdrh, +C =0 (3.35)
where A=dd, " dl, +¢ (3.36a)
B = 2(dul,," dull, + Auf dul,, + {AN) (3.36b)

C = du}&lT du}lﬂ + 2A|1;-r du}{l + Au;-rAuj + CAXJ? - A12 (3.36¢)

To have at least one real root from Eq. (3.35), which is necessary for the existence of a
physically meaningful load factor increment, the following condition has to be satisfied,

ie.

B2-4AC20 (3.37)

This is not always true. Numerical examples indicate that the condition in Eq. (3.37) cannot
be satisfied when the contribution of the displacement increment from unbalanced forces,

dull,, is significant compared to the contribution from reference load, duj, -

Consequently, the solution process based on the arc-length Eq. (3.35) fails.

To prevent failures in the solution process, a relaxation factor f is introduced into

Eq. (3.21) as
dujyy = dAjyp dul,; + Bdul}, 0<p<1 (3.38)

where B is referred to as the relaxation factor. When B is set to be one, Eq. (3.38) reverts
to Eq. (3.21). Mathematically, the relaxation factor f is introduced to satisfy the condition
in Eq. (3.37). As will be shown later, Eq. (3.37) can always be satisfied as long as a
proper value of factor B is used. A physical interpretation of the relaxation factor f is that
only a fraction of the unbalanced forces are taken into account in some of the iterations
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rather than the full amount of unbalanced force in every iteration, as is common in iterative
procedures. Equivalently, the iterative procedure based on Eq. (3.38) can be viewed as one
where the unbalanced forces are applied partly. Consequently the number of iterations may
be increased, but the stability of iterative process can be improved and failure of the
solution can be prevented. Substituting Eq. (3.38) into Eq. (3.26), Eq. (3.26) becomes the
quadratic equation, Eq. (3.35), with B and C defined as

B = 2(Bdul, du}i,l + Au, ul,, + {AN) (3.39b)
= R qlI.T T 2 2
C =B duf}," dull, + ZBAuj dull, + Auj Au; + AN} - Al (3.39)

For a proper value of P, the real roots of Eq. (3.35) can be solved as

o -B + VB2-4AC
L2 =

' 2ZA

(3.40)

Normally two real roots exist but only one value can be chosen to be the load factor
increment. The following criterion is used for this selection (Bellini and Chulya, 1987).

dAj. = o if Au; (0t dul,;+Bdull)) < Au; (o, d ul, +Bdull) (3.4la)

2 if Auj(ay duI+l+B du +l) < Auj (o2 d“;-ﬂ-l'*'B du +l) (3.41b)

dxj-ﬂ-l

This criterion is based on experience and intuition to keep the direction of displacement
increment as close as possible to that of accumulated displacement increment.

The possible range of factor B is determined in the following. The factor P is
supposed to vary between zero to one, including one, and has to satisfy condition in Eq.
(3.37). Substituting A, B and C defined in Egs. (3.36a), (3.39b) and (3.39c¢) into Eq.
(3.37), and setting it equal to zero, Eq. (3.37) becomes a quadratic equation in terms of the
relaxation factor B, i.e.

DB +EB +F=0 (3.42)
where

= (du},," dul,))? - (duf,," dul, ) (dull, " dull ) - Cdull,Tdull, (3.432)



E =2 (AujT dul,,) (du}HT dull) + 20 AN (dll}.nT dulyp) (3.43b)
-2 (d“}HT d“}ﬂ) (A“jT dujy,y) - 2 C A“jT du.in*'l '
F = (Aw dul, + L A%)? - @u 7 dulyy +0) (AujAuj+ § AX] - AP) (3.430)

Real roots for equation (3.42) are guaranteed because the condition E2 - 4DF 2 0 can
always be satisfied. This can be proved by the following facts. By using Eq. (3.26) for
iteration j, the second term in Eq. (3.43c) vanishes and F 2 0 is valid under all conditions.
Noting that the first term in Eq. (3.43a) can be expressed as

( d“}uT duli; )? = ( dll}uT dul,; ) ( d“}il’r dull,) cos?8 (3.44)

in which @ is the angle between vectors du}+l and du}{l, and { is positive number, D is

obviously a non-positive number. As a result, the condition E2 - 4DF 2 0 js satisfied
under all conditions. The roots are

-E+YVE2-4DF

- Biz = 2E (3.45)

where B1 <0 and B2 > 0. Eq. (3.37) is satisfied when the value of P is between these two
roots. The acceptable range for factor B can be determined as

0 <P < Bmax (3.46)

where Bmax = min (1, B2) (3.47)

Obviously, the magnitude of Bmax has an influence on the efficiency of the solution
process, and smaller values are likely to reduce the efficiency. To prevent extreme
conditions with nearly zero values of Bmax, the default modified N-R iteration is replaced
by full N-R iteration when Bmay is less then 0.01. This combination can, in general, insure

the stability of the solution procedure and achieve the best efficiency possible.

The reference arc-length should be adjusted as iteration proceeds to achieve
maximum efficiency. Since the optimum value largely depends on the structural behavior
and the current state of the structure, it is very difficult to develop a universal method to
choose a generally applicable value. Therefore, an automatic adjustment was implemented
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in NISA (Stegmuller, 1984) as

_ . [Nopt
Alpew = N Al (3.48)

where N, is the prescribed optimal number of iterations, and N4 is the number of
iterations for the previous load step. By Eq. (3.48) the reference arc-length is decreased
when the convergence becomes slow, and increased when convergence becomes rapid.
Based on experience accumulated in this project, Eq. (3.48) is too sensitive for cylindrical
shell analysis. A revision is used as

Alpew = YRS Al (3.49)
Now :

Egs. (3.48) and (3.49) are based on the assumption that the current load step has
similar convergence characteristics to the previous one, which is sometimes not true. In
addition, a good initial estimation of reference arc-length is difficult to obtain for a new
problem to be analyzed. Consequently, the reference arc-length may be excessive even with
the adjustment defined in Eq. (3.49). Then the iterative procedure either converges very
slowly, or does not converge within the specified maximum number of iterations. For these
cases, the reference arc-length is reduced by a factor of 0.3 to 0.5, and the iterative
procedure is restarted from the previous equilibrium configuration.

3.2.4 Loading and Convergence Criteria

As discussed in Sect. 3.2.2, a loading criterion based on incrementally imposed
deformation can effectively follow the solution deep into the postbuckling region. For a
structural system, there is always a principal loading system and a corresponding principal
deformation pattern. Examples are an axial load and axial shortening for an axially
compressed cylinder, and, end moment and end rotations for a bent cylinder. The principal
deformation pattern monotonically increases in all regions for structures without snap-back
behavior.

The loading criterion can be established based on the fact that the principal loading
system, which is represented by the reference loads, always does positive work on the
increments of the principal deformation pattern under a state of loading except for snap-
back behavior. Snap-back can be distinguished from elastic unloading by checking the
positive definiteness of the tangent stiffness matrix. The tangent stiffness matrix is, in



general, positive definite for elastic unloading, and is not positive definite for snap-back.
The loading criterion is established in such a way that the structure is kept in a state of
loading along the entire load-deformation curve.

For the predictive step (j =0) in the loading step, du}ll, Au; and AA;j are zero and
Eq. (3.40) gives

a2 =% Al

+ (3.50
VdulTdul + ¢ )

To determine which root should be used, the criterion in Eq. (3.41) is not applicable
because the accumulated displacement increment in this load step is zero before the first
iteration. The displacement increment for predictive step can be expressed as

Au; = AL du} (3.51)

where the direction of the displacement increment is determined by following loading

criterion
A = 0y if PTdul>0 and NPE=0 (3.522)
A\ = oy if P dul>0 and NPE>0 (3.52b)
A\ = oz if PTdul<0 (3.52¢)

where P is the reference load and NPE is the number of negative pivot elements in the
diagonalized tangent stiffness matrix. The number of negative pivot elements is equal to the
number of negative eigenvalues of the tangent stiffness matrix (Strang, 1988). Therefore,
the tangent stiffness matrix is positive definite if NPE is zero, and is not if NPE is larger
than zero.

This loading criterion can be explained in the following. Load-deformation curves,
in general, can be divided into an ascending branch and a descending branch. On the
ascending branch, the tangent stiffness matrix is positive definite and consequently NPE is
zero. The tangent stiffness matrix is, however, no longer positive definite in the descending
branch and NPE is larger than zero. As a result, the condition of NPE in Egs. (3.52a) and
(3.52b) can, in general, distinguish the ascending and descending branches of the load-
deformation curve. On the descending branch for thin shell structures, snap-through and
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snap-back behavior are expected which are characterized by the increases and decreases in
the magnitude of the principal displacement pattern. These two behaviors can be
distinguished by the slope of the load-deformation curve. The slope is negative for snap-
through behavior and positive for snap-back behavior. This can be, in turn, represented by
the sign of the work done by the reference load on the displacement increment
corresponding to the reference load, P’ du}. Consequently, checking on the sign of the
work, PT dul , would indicate the direction of the first displacement increment in the load
step. In summary, the conditions stated in Eq. (3.52a) define the loading state. The
conditions in Eq. (3.52b) define the loading state with snap-back behavior, and that in Eq.
(3.52c) defines the loading state with snap-through behavior on the descending branch.
For the subsequent iterations, the state of loading can be, in general, insured by the
selection criterion in Eq. (3.41).

The convergence criteria needs to be modified to include unbalanced forces, as
discussed in Sect. 3.2.2. In addition to the displacement convergence criterion defined in
Eq. (3.34), a force convergence criterion added is

lav] (3.53)
Hi

where &¢ is a small positive number used as specified tolerance for unbalanced force. The
recommended value for &¢ is one percent. This can be relaxed in regions of difficult in
convergence. With the force convergence criterion, the tolerance for displacement
convergence criterion & can be relaxed to 10 percent or even larger in the postbuckling
region without great loss in accuracy due to the accumulated error, because the size of load
step is generally small. The fundamental principle for choosing numbers for tolerances is to
insure that the unbalanced forces are bounded and that the solution can be continued with
acceptable accuracy in the next load step.

3.2.5 Flow Chart

The flow chart of the solution procedure based on equilibrium iteration with the
modified arc-length method is shown in Fig. 3.11. Emphasis in the flow chart is on the
new features discussed in Sects. 3.2.3 and 3.2.4.



3.3 SOLUTION PROCEDURE BASED ON DIRECT SEARCH
TECHNIQUE

In this section, discussion about a direct search solution procedure, which is a
completely different approach from the one described in Sect. 3.2, will be presented. As
demonstrated in Sect. 3.1.6, a problem of nonlinear structural analysis can be formulated
as a minimization problem, for which a direct search technique may be employed to obtain
the solution. This solution procedure is intended to be an alternative to the arc-length
technique for use in the postbuckling region where it is expected to be more stable and
efficient than solution procedures based on equilibrium iterations. The formulation is first
presented, and the selected direct search technique is then described. Finally, the solution
procedure, and its characteristics and application, are discussed.

3.3.1 Formulation

The concept for the minimization formulation of nonlinear structural analysis on the
natural basis has been expressed in Eq. (3.33). If the number of degrees of freedom is
NDOF, the number of search directions which have to be searched to get the solution is
NDOF+1, which are each of the degrees of freedom and the load factor. A search direction
is a direction in a multi-dimensional space along which a one-dimensional search is carried
out. Noting that the time required to get a solution depends on the number of search
directions, this formulation is obviously not appropriate for large structural systems. One
of the alternatives is to formulate the problem based on a reduced basis as discussed in
Sect. 3.1.5 for reduction methods. The displacement increment in the load step, defined in

Eq. (3.28), is

Au = ¢a (3.28)

where & is a matrix composed of base vectors which do not change during the load step,
and o is the reduced set of generalized displacement coordinate increments for the
displacement increment which is referred to as the generalized displacement increment. The
number of degrees of freedom of the generalized displacement increment is significantly
smaller than that for the displacement increment on the natural basis. The rational for Eq.
(3.28) is explained (Napoleao ez al, 1991a, 1991b) for materially nonlinear problems where
the base vectors are taken to be eigenvectors of the current tangent stiffness matrix. It is
assumed that the same arguments can be extended to shell analysis with both geometrical
and material nonlinearities.
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The solution to be solved is now for the generalized displacement increments, o.
Consequently the formulation of minimization problem becomes

Find the solution " such that || Uupre+® o*)|| = minimum || Uupret®@ )] (3.54)

where Upre is the total displacement at previously converged configuration. Each of the base
vectors defines a search direction in this formulation. Assuming the number of base vectors
is NBV, Eq. (3.28) converts a problem with NDOF+1 search directions into one with
NBV+1 search directions. Eigenvectors are used as base vectors, as in the reduction
method (Napoleao et al, 1991b). The accuracy and efficiency depend on the direct search
method employed and the representativeness of the sub-space spanned by the base vectors.
These are discussed in following sections.

3.3.2 Powell’s Search Method

Powell’s direct search method is considered to be one of the most efficient methods
and it is intended for multi-dimensional search problems. Before discussing its details, a
one-dimensional search technique, or line search technique, which is fundamental to all
direct search methods, is introduced.

3.3.2.1 A One-Dimensional Search Technique

One-dimensional search means searching along one direction which degenerates
any multi-variable function into a single-variable function, or, geometrically, from a multi-
dimensional surface to a one-dimensional curve. Similarly, some of the techniques utilize
the function values and derivatives, while others use the function values only. To be
consistent with direct search techniques, only those that do not use derivatives can be
employed. The parabolic interpolation method is the most efficient one of its kind for
relatively smooth curves and consequently was chosen to be employed in this project.

The objective function is denoted as f(x) with xo as the initial point. A one-
dimensional search is carried out to find the minimum of the objective function in the
neighborhood of xo. This process includes following steps.

Step 1 : Find a region [X1, X2] which includes the initial point x¢ and the solution
x”. This is true if f(xo) < f(x;) and f(xg) < f(x32) for x; < xg < X2.

Step 2 : Interpolate parabolically through points x;, x¢ and x5 to approximate the



objective function, as

_ (x-x1) (x-Xx2) (x-xp) (x-X2) (x-xg) (X-X1)
o= (x0-x1) (x0-X2) fxo) + (x1-X0) (x1-X2) foxa) + (x2-x0) (x2-X1) flxa) (3.35)

Step 3 : Obtain the minimum point of the parabolic curve X as an estimation of the

solution x*, where

_ (3 fxo) + 6G-xP) fxy) + (Fx]) £(x)
2 ((x1-x2) f(xo) + (x2-Xo) f(x1) + (Xo-x1) f(x2) )

(3.56)

Step 4 : Check the accuracy of the estimation. Since both the solution x* and its
estimation X are in the region [X1, X2], the error between x* and X is certainly less
than the difference between x; and x,. Therefore, the accuracy can be insured if

Ixz-x1] < § (3.57)

where & is a small positive number used as a prescribed tolerance. If condition
(3.57) is satisfied, the solution is obtained as

x* =

(x) +x2) (3.58)

N =

with acceptable accuracy. If not, one of the boundary point is set to X to get the new
reduced region and step 2 to 4 are repeated until the solution is obtained. This
process is shown in the flow chart in Fig. 3.12.

3.3.2.2 A Multi-Dimensional Search Technique

With the one-dimensional search technique described in previous section, a multi-
dimensional search technique developed by Powell (1964, 1966) can be presented. In the
multi-dimensional search problem, the efficiency is largely dependent on the selection of
the search direction provided that the same one-dimensional search technique is used. The
search process begins from an initial point and searches along one given search direction to
find the local minimum point on the line by the one-dimensional search technique. Next,
the line search is followed from the previous local minimum point along the next search
direction. This process is repeated until a solution is obtained. The natural choice for search
directions are the directions defined by the reduced basis vectors. But this may not be the
most efficient choice. Powell’s method generates a set of search directions in the search
process, with little extra work, which significantly improves the efficiency of the search
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process.

The procedure is outlined in flow chart in Fig. 3.13. In the flow chart, ¢; represents
a base vector, P; represents a search direction, and o, is the estimated solution point after
search along the i*® direction in the k'8 search cycle. A search cycle includes line searches
along all search directions that are linearly independent. The process is terminated by two
criteria. The first is a converged solution. This is defined by the difference between the
solution estimates at the beginning and end of a search cycle, i.e.

||aNBV+1_ao||

NBV+1 ||

< & (3.59)
”ak

where NBYV is the number of base vectors. The second criterion is based on the magnitude
of the unbalanced forces and the difference between them for the solution estimates at the
beginning and end of a search cycle, i.e.

NBV+L
”U((ﬁkﬁll Ml g, (3.60)
NBV+ 0
o | lucad ”‘%IIH-HU(ak)||| <t (3.61)

In Eqgs. (3.60) and (3.61) || ?” is the norm of reference load.

If Egs. (3.59) and (3.61) are satisfied, a converged solution, which is acceptable in
terms of the accuracy of the equilibrium state, has been obtained as

o = opBV! (3.62)

If Eq. (3.59) is satisfied and Eq. (3.60) is not, the solution is converged but is not accurate
enough. If Eq. (3.61) is satisfied, the search process is converging very slowly. The above
two conditions mean that the base vectors are no longer able to represent the displacement
increment with sufficient accuracy. Updating or increasing the number of base vectors is
necessary. More detail about this is contained in the next section where the solution
technique based on the direct search method is presented.

3.3.3 Solution Procedure

A solution technique based on the direct search method requires several other



components in addition to the search method described previously. They are : the
generation and updating of base vectors; the starting point for the search process; and, the
convergence criteria.

Since no special effort is made to develop a procedure for efficient generation of
high quality base vectors, eigenvectors are used as base vectors following the work done
by Napoleao er al (1991a, 1991b, 1990). To get the eigenvectors corresponding to the
lowest eigenvalues, a shift technique in eigen-analysis is often required because the lowest
eigenvalues become negative in the postbuckling region. The number of base vectors can
be managed by specifying three parameters based primarily on experience. These are the
reference number, the incremental number, and the maximum number of base vectors,
denoted as NBVR, NBVI and NBVM, respectively. The reference number is the number
that would normally be used. When more base vectors are needed to improve the
representation, an additional NBVI base vectors are added as long as the total number of
base vectors do not exceed the maximum number NBVM. The maximum number is
imposed to prevent excessive computation. Typical numbers are, for example, 3 for NBVR
and NBVI, and 9 for NBVM. These have been used in the analysis of an axially
compressed cylinder to be discussed later in this section.

To determine the starting point, a predictor step is required to get the initial
displacement increment 9. The magnitude of initial displacement increment is restricted by
the step size Al which is similar to the reference arc-length used in the solution procedure

with equilibrium iterations. The direction of a is determined by the ratio between its

components. The following equations are proposed for ag

a) = Ale (3.63)
T
where o, = % Alpre (3.64)
[|Aupeell

with Augyre as the accumulated displacement increment in the previously converged load
step. Noting that base vectors ¢; are unit vectors, it is obvious that 0 is also a unit vector
and the norm of o is equal to Al. Eq. (3.63) is based on the assumption that the
displacement increment in the current load step is similar to that in previous load step. This

assumption is more satisfactory in the postbuckling region where the solution procedure is
intended to apply, because the buckling mode is well developed and deformation is mainly
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in the form of amplification of the principal deformation pattern. Consequently, it is
reasonable to expect displacement increments similar to each other. On the other hand, the
quality of the starting point is more likely to increase the number of search cycles and less
important to the stability of the search process.

The convergence criteria have been discussed in Sect. 3.3.2.2 and are used as the
terminating condition of the search process.

The solution technique is outlined in the flow chart in Fig. 3.13 where it has been
combined with the flow chart for Powell’s multi-dimensional search method.

3.3.4 Application and Comments

The solution procedure described in Sect. 3.3.3 can be applied independently in any
region of solution path with little modification. However, best efficiency can be achieved
from the combination of solution procedures based on equilibrium iteration and the direct
search procedure. The equilibrium iterative procedure is used in the prebuckling and initial
postbuckling regions, while the direct search procedure is used for the deep postbuckling
region. The convergence characteristics of the equilibrium iteration are more sensitive to the
state of the structure and the condition of its stiffness matrix than those of the direct search
procedure. In the prebuckling region, a well conditioned stiffness matrix requires relatively
few iterations and few updates of the stiffness matrix. Consequently, the equilibrium
iterative procedure is expected to be more efficient than the direct search procedure, for
which two search cycles are usually the minimum requirement. In the initial postbuckling
region, the dominant buckling modes are not well developed, and frequent updates of base
vectors and more base vectors are probably needed to represent the displacement increment
accurately if the direct search procedure is applied in this region. This is highly demanding
and reduces the efficiency. However, in the deep postbuckling region, the deteriorated
stiffness matrix results in significantly more iterations and updates of the stiffness matrix.
The stability of the iterative procedure may even be lost. On the other hand, for the search
method detrimental effects of the stiffness matrix depend only on the quality of base
vectors. These may not be very sensitive, because dominant buckling modes are well
developed. Consequently, the direct search procedure is expected to be more robust and
efficient in this region.

The stability of the direct search procedure is almost guaranteed by the fact that the
search process proceeds by comparing the norms of unbalanced forces and therefore a



better estimation of solution is obtained after search along each of search directions in every
search cycle. The efficiency, or in other words, how fast the search process converges and
how accurate the converged solution is, is mainly dependent on the representativeness and
the number of base vectors. The penalty to carry out eigen-analysis when it is needed is
expected to be compensated for by savings in the following three aspects. The first is the
fact that assembling and factorization of the stiffness matrix is no longer needed. The
second is the expected higher convergence rate, if a search cycle is counted as being
equivalent to an iteration. Finally, convergence can be achieved in significantly larger step
sizes compared to the equilibrium iterative procedure. As a result, a very significant saving
in computational effort can be achieved.

3.4 NUMERICAL EXAMPLE

To illustrate the performance of the solution procedures, for both the equilibrium
iterative procedure and the direct search procedure, a numerical example is presented in this
section.

An axially compressed cylinder is analyzed as an axisymmetric model. The cylinder
is 12.75 inches (324 mm) in diameter, 0.25 inches (6.35 mm) in wall thickness and 48
inches (1219 mm) in length. The axisymmetric model consists of twelve 5-node
axisymmetric elements and 49 nodes as described in Fig. 3.14. The rotations at both ends
are restricted, but the radial displacements are free at both ends. The axial displacement is
fixed at one end and the compressive force is applied at the other end. A bilinear stress-
strain curve is used as the material property representation, with an elastic modulus of
29600 ksi (204092 MPa), yield strength of 52 ksi (358.5 MPa) and strain hardening
modulus of 94.44 ksi (651.2 MPa).

The analysis is carried out by the equilibrium iterative procedure from the beginning
to end, as shown in Fig. 3.15, in terms of the dimensionless average stress-strain curve.
The solution in the deep postbuckling region is repeated by the direct search procedure also
shown in Fig. 3.15. The difference between the solutions from the two solution procedures
is negligible and very good agreement has been achieved. This conclusion can be further
demonstrated by the good agreement between the deformed configurations of the cylinder
in the final solution steps from both solution procedures, as shown in Fig. 3.16. It can be
seen that two buckles along the longitudinal direction are well developed and the deformed
configurations obtained from the two solution procedures agree with each other in terms of
the location of the buckles, and both the magnitudes and wavelengths of the buckles.
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Some comparisons on performance of solution procedures are summarized in the
following. The equilibrium iterative procedure used 87 solution steps and 2541 seconds to
cover the region, while the direct search procedure used 7 solution steps and 883 seconds
to cover the same region. The typical number of iterations for the equilibrium iterative
procedure is 4 with a range from 2 to 8. For all 7 solution steps in the direct search
procedure, only 2 search cycles are needed. The time needed for one search cycle is
certainly much more than that for one equilibrium iteration. However the rapid convergence
characteristics and the stability for solution steps of much larger size make the total time
needed for the direct search procedure be about one third of that for the equilibrium iterative
procedure. The technique employed for eigen-analysis is the sub-space iteration technique
(Bathe, 1982) which is contained in the program NISA.

It is not the intention to conclude that the direct search procedure is more stable and
efficient than the equilibrium procedure by this one example. However, this example
shows sufficient potential of the direct search procedure in order for it to be employed as an
alternative to the equilibrium iterative procedure for postbuckling analysis. It is possible to
achieve comparable accuracy of the solutions with much less computer time consumed.

Despite the promise of the direct search procedure shown by this example, the
postbuckling analyses to be discussed in Ch. 4 are carried out by the equilibrium iterative
procedure. This is because the time available has not permitted the direct search procedure
to be tested on three-dimensional shell analysis.
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CHAPTER 4 POSTBUCKLING ANALYSIS OF PIPE SEGMENTS

Overall, a pipeline behaves as a beam structure. However, a segment of pipeline
can be sensitive to the local deformation due to the instability of the pipe wall when it is
subjected to applied loads and imposed deformations. The local and the overall behaviors
interact with each other and the result of the interaction determines the response of the
pipeline. The conceptual approach to the analysis of pipeline response has been discussed
in Sect. 1.3. In general, there are two steps : in the first, a three-dimensional shell model is
used to analyze the local behavior. In the second step, the effects of the local behavior are
integrated into the overall behavior by using a beam model based on the pipeline-beam
element developed herein. The development of the pipeline-beam element, and the analysis
of the overall behavior of pipeline, will be discussed in Chapters 6 and 7. The current
chapter and Ch. § are devoted to the analysis of local shell buckling behavior of pipe

segments.

The formulation for, and general discussion of, shell buckling have been presented
in Chapter 2 which is the theoretical foundation of shell buckling and postbuckling
analysis. A robust solution technique has been developed in Chapter 3 which is the basic
numerical tool to carry out the shell analysis. The local behavior of pipelines with large D/t
is dominated by local shell buckling. Two important aspects are the onset of buckling and
the postbuckling response. Postbuckling analysis is the topic of the current chapter and the
identification of the onset of buckling will be discussed in next chapter. The discussions
about postbuckling analysis include its significance and scope, the finite element model
used, and the summary of the characteristics of postbuckling behavior.

4.1 SIGNIFICANCE AND SCOPE OF POSTBUCKLING ANALYSIS

Postbuckling analysis is advantageous for pipeline analysis and design because a
better understanding of postbuckling behavior will lead to more economic and safe design
and operation of pipelines. There is a real potential to allow the local deformation of
pipelines to extend into the postbuckling region in order to optimize pipeline operation,
because the initiation of buckling alone should not impair the normal operation of the line.
The postbuckling analysis will be carried out on a pipe segment by using a three-
dimensional shell model. Because the shell model analysis has a large number of degrees of
freedom, elastic-plastic material behavior and large displacements, this is a very demanding
task. Due to limited computer and human resources, the scope of postbuckling analysis has
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had to be limited to a reasonable number of cases. In this section, the significance of
postbuckling analysis is discussed to rationalize the great efforts that have been made in
carrying out the postbuckling analyses, and the scope of these analyses is defined.

4.1.1 Significance of Postbuckling Analysis

Postbuckling analysis is a means to explore postbuckling behavior, and therefore
the significance of the postbuckling analysis is determined by the significance of the
postbuckling behavior. At present the significance of the postbuckling behavior of load
carrying structures is better understood than that of structures subjected to imposed
deformations. For load carrying structures, it is important to know whether the
postbuckling behavior is hardening or softening because in the former case buckling only
means a change in the load carrying mechanism, while in the later case it predicts
catastrophic failure. For structures subjected to imposed deformation, the load carrying
capacity does not cause failure because the structure is not required to carry significant
loads. However, the hardening and softening characteristics of the postbuckling load-
carrying capacity lead to very different characteristics of the localization of the deformation
and strain, and this, in turn, determines the limit states for this type of structure.

A buried pipeline in an Arctic or sub-Arctic region is typical of structures subject to
imposed deformation in addition to applied loads. The applied loads are the internal
pressure, which is constant during operation, and the overburden loads due to the soil
cover above the pipelines. These applied loads alone are sustainable by the pipeline well
into the deep postbuckling region. In addition to these applied loads, pipelines are subject
to deformation imposed loads such as axial load due to temperature differential and lateral
loads due to differential settlements, frost heave and fault movements. The reactions of
pipelines to these deformation imposed loads largely depends on the stiffness of the
pipeline and the restraint of the soil on the line. When the stiffness of a pipeline
deteriorates, the reactions are eventually reduced to a negligible level. Consequently, the
load-carrying capacity of pipelines, with respect to these deformation imposed loads, is not
a major concern.

The limit states of the pipeline may be considered to be leaking and excessive
deformation of cross-section. Leaking is obviously an ultimate limit state which is due to
the initiation and propagation of cracks under applied loads and deformation. Prediction of
a leakage limit state requires the utilization of fracture mechanics and is beyond the scope of
this study. Excessive deformation of the cross-section is considered to be a service limit



state. The industry has not yet defined limits on deformations of the cross-section in a
rational way. For the purpose of this study the limit may be defined as a state where the
passage of on-line inspection equipment, so called pigging devices, is blocked. Prediction
of such deformation states is one of the objectives of this study.

For structures such as buried pipelines, postbuckling behavior has special
importance, because the service limit state of pipelines is determined by the postbuckling
deformation. The prebuckling deformation is in general very small and can certainly be
tolerated. Knowing only the hardening or softening characteristics of the postbuckling
behavior is no longer sufficient, as it is for the load carrying structures, because it is the
development of deformation in the postbuckling region which is important. As a result, the
postbuckling analysis has to be carried out into the deep postbuckling region. This is very
different from the postbuckling analysis in the initial postbuckling region because it places
heavy demands on the required solution technique and computer resources.

In summary, postbuckling behavior is the basis on which to develop rational limit
states design criteria for pipelines subjected to imposed deformation.

4.1.2 Scope of the Postbuckling Analysis

The postbuckling behavior of pipelines is affected by many factors such as the pipe
geometry, the pipe material properties and load conditions. The pipe geometry is
characterized by the diameter D, the wall thickness t, and the D/t ratio. In the modern
pipeline industry, typical pipelines can be as small as 12.75 inches (324 mm) in diameter
with D/t ratio of 52 (Workman, 1981), and as large as 48 inches (1219 mm) in diameter
with D/t ratio of 104 (Bouwkamp and Stephen, 1973). The postbuckling behavior of these
pipelines is expected to differ significantly. The pipe material properties are also expected to
influence postbuckling behavior because of the differences in yield strength, the shape of
the stress-strain curve, and the tangential modulus.

The loading condition is obviously an important factor because the deformation
response for a given pipeline is largely determined by the load conditions and loading
history. The operating load condition of pipelines varies from one pipeline to another and
from one location to another. Typical loads for a buried pipeline segment are internal
pressure, axial load due to temperature differential, and imposed curvature due to
differential settlements. The transverse load due to soil cover above the pipeline is usually
small and can be neglected for simplification. The internal pressure and axial load can be
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assumed constant although they have different values at different locations. The bending
moment arising from the imposed deformation is assumed to be uniform over the length of
the pipe segment and changing in its magnitude to simulate the increasing differential
settlements.

The analyses were carried out by program NISA (Stegmuller, 1984) on a SUN
SPARK 1+ station and later on a SUN ELC station. As the postbuckling analysis is
required to be continued deep into the postbuckling region, a successful analysis of a
specimen includes hundreds of load steps and takes a few weeks of elapsed time.
Consequently, the number of specimens which can be analyzed in a limited period is highly
restricted. Based on this fact, it was decided that the postbuckling analysis would be
confined to one particular pipe geometry with one particular material property. This would
be sufficient to investigate the physical phenomena and techniques of analysis.

The effects of the operating load conditions are systematically investigated. Three
levels of internal pressure have been chosen to cover the possible range. The pressures
produce hoop stresses of 0, 35, and 72 percent of the yield strength. The latter percentage
was the highest ratio allowed in the previous design code for oil pipelines (Canadian
Standard Association, 1990). Four levels of axial load have been chosen for the low and
middle levels of internal pressure. They are 0, 10, 20 and 40 percent of the axial yield load
in compression. Five levels of axial load at the high level of internal pressure are chosen.
They are at the ratios of 0, 20, and 40 percent for both compression and tension. The
highest ratio of the axial yield load is considered to be the maximum level produced by
temperature differential in the Norman Wells pipeline, and was recommended by
Interprovincial Pipe Line Company Ltd. The combination of the above different levels of
pressure and axial load gives thirteen specimen loading conditions which are listed in Table
4.1. In addition to constant pressure and axial load, bending moment is applied for all the
specimens as the active load.

A name is assigned to each of the simulated specimens. It is composed of three
letters followed by a two-digit number. The first letter is P which identifies this series of
analysis as a postbuckling analysis series. The second letter is one of L, M and H which
represent low, middle and high levels of internal pressure, respectively. The third letter is
either C or T which represents compressive or tensile axial load. The two-digit number is
the percentage of axial load with respect to the axial yield load.



4.2 FINITE ELEMENT MODEL

The finite element model for postbuckling analysis of a pipe segment is discussed in
this section. This includes the finite element mesh, boundary and loading conditions, and
material properties. The finite element model is for simulation of the behavior of a typical
pipe segment under operating conditions. Consequently, the model is required to have the
capability to capture the characteristic behavior of the pipe segment. This requires that the
mesh is of a proper size to model the deformation. This deformation is often localized at
one or two locations. The boundary conditions are properly defined to simulate a pipe
segment as a part of a pipeline. In addition, the material properties should be representative
since different material characteristics would certainly result in different postbuckling
behavior.

4.2.1 Finite Element Mesh

Consistent with the defined scope in Sect. 4.1.2, only one particular geometry is
used for postbuckling analysis. The pipe is 48 inches (1219 mm) in outside diameter and
0.462 inches (11.7 mm) in wall- thickness. This particular size is that used for the Trans-
Alaska Pipeline (Bouwkamp and Stephen, 1974) which is probably the largest size used
for a major oil pipeline. The diameter-thickness ratio (D/t) is about 104 which also
represents an up-bound for ol pipelines. Since pipes with high D/t ratio are expected to be
more sensitive to effects of buckling, this particular geometry is chosen to highlight the
postbuckling behavior. In addition, the test series carried out at Berkeley (Bouwkamp and
Stephen, 1974) is considered to contain the best experimental results available for a full-
sized pipe. Consequently, some comparisons between the test results and this analysis are
possible. The length of pipe segment is selected as 276 inches (7010 mm) which is about
five and a half times the diameter. This length is considered to be moderate and allows the
pipe segment to have shell buckling characteristics. The buckle localizes at a small portion
of this length. This is, the response observed in pipelines under test and therefore is the
behavior to be simulated.

Two symmetry conditions are utilized to reduce the size of the model. These are the
symmetry conditions in the bending plane and on the mid-span cross-section, which are in
the x-z plane and y-z plane, respectively, of Fig. 4.1. The bending plane is defined by the
global coordinate system x, z and the symmetry condition on the bending plane is
supported, in general, by the observations from tests (Bouwkamp and Stephen, 1974; Jirsa
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et al, 1972; Reddy, 1979; and, Sherman, 1976). A test program currently in progress at the
University of Alberta also confirms this symmetry condition. The symmetry condition
about the mid-span cross-section is more of an assumption than a fact. Elastic stability
theory predicts that buckling waves in an axially compressed cylinder repeat themselves
over the length. The symmetry condition about the mid-span cross-section is valid as long
as the mid-span section occurs at the peak or bottom of a buckling wave. However, pipe
segments usually buckle in the elastic-plastic range and the buckles are often localized at
unpredictable locations due to the plasticity and initial imperfections. Consequently, the
symmetry condition is only valid at the middle of the buckle. The mid-span cross-section is
not the symmetry plane unless the buckle locates at the middle of pipe segment which is not
always true. Nevertheless, because the main objective of postbuckling analysis is to
investigate the behavior of a typical buckle, instead of the pipe segment as a whole, it is
satisfactory to employ the symmetry condition about the mid-span cross-section provided
that the complete buckle can be simulated. With the dominant buckle completely simulated
somewhere in half of the pipe segment, the loading and deformation characteristics of the
buckle can be studied.

With the symmetry conditions about the bending plane and the mid-span cross-
section, only a quarter of the pipe segment needs to be discretized. The quarter pipe
segment is divided into the main segment and boundary ring as shown in Fig. 4.2, with
132 inches (3353 mm) and 6 inches (152.4 mm) of length, respectively. The boundary ring
is introduced for simulation of boundary and loading conditions which will be discussed in
detail in the next section. The main segment is discretized by fourty-eight 16-node shell
elements (Stegmuller, 1984), and the boundary ring by eighteen 4-node shell elements
(Stegmuller, 1984). There are a total of 494 nodes and the mesh is uniform in both the
main segment and the boundary ring. A side view and a three-dimensional view of the
mesh are shown in Fig. 4.3. The mesh is uniform in longitudinal direction because the
dominant buckle can be anywhere along the longitudinal direction. Although buckling
usually initiates on the compressive side of the pipe segment, under combination of internal
pressure, axial load and bending moment, it will develop and expand in the circumferential
direction and sometimes covers the entire circumference. Consequently, the uniform mesh
is used in circumferential direction.

The 16-node and 4-node shell elements shown in Fig. 4.4 have cubic and linear
interpolations, in both the r and s directions, respectively. The elements can model large
displacements and elastic-plastic response. The cubic interpolation gives the 16-node



element strong capability to model deformation with relatively lower nodal density and
better convergence characteristics. The 4-node element is simple and appropriate to be used
in the boundary ring where the major concern is to distribute applied load and fulfill the end
boundary conditions (see Sect. 4.2.2).

4.2.2 Boundary and Loading Conditions

Boundary conditions are needed at the mid-span cross-section, end cross-section,
and the top and bottom edges as shown in Fig. 4.2. The boundary conditions on the mid-
span cross-section, and the top and bottom edges are obviously the symmetry conditions.
On the top and bottom edges, the symmetry conditions are that the displacements in global
y-direction, and the rotation about the global x and z axes are restricted. The symmetry
conditions on the mid-span cross-section are more complicated. The local shell coordinate
system is first defined in Fig. 4.4 asr, s and t where t is the normal direction of the shell, r
is the perpendicular to t-direction in the t-x plane and s is the one in t-y plane. The
symmetry conditions are that the displacements in global x-direction, and rotations about
the t and s axes are zero. As shown in Fig. 4.1 the pipe segment is allowed to shorten or
extend as it deforms, and the end cross-section has to be allowed to move if the mid-span
cross-section is fixed in the X-direction. As an alternative, the mid-span cross-section can
be allowed to move in order to fix the end cross-section and the rigid body displacements
superimposed here will not affect the strain and stress states. Therefore the boundary
condition of displacement on the mid-span cross-section can be modified to that where all
the nodes on the mid-span cross-section have the same displacement in the x-direction. The
boundary conditions of rotation remain the same and can be enforced by directly
specifying the boundary codes because the rotational degrees of freedom are defined in the
local shell coordinate system. The boundary condition on the top and bottom edges can be
enforced in a similar way.

On the end cross-section, the boundary conditions are that the y-direction
displacement at the geometric center of the cross-section is restricted to simulate the simple
support at the end section, and the plane of end section remains plane to simulate the
restraint provided by the rest of the pipeline connected to the pipe segment. Rotation of the
end section about the geometric centroid and deformation of the section in the plane are
permitted. Because of the decision to allow the mid-span cross-section to move, the x-
direction displacement at the centroid of the end cross-section is restricted to zero. The
plane end section condition is mainly due to the fact that the pipe segment is a part taken
from the adjacent pipeline which does not buckle. This adjacent pipeline has strong axial
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stiffness and provides restraint to prevent the out-of-plane deformation.

A boundary ring is used to enforce these boundary conditions as shown in Fig.
4.2. The boundary ring is assumed to be elastic and has the same wall thickness as the
main segment. The support at the centroid is modelled as support on the horizontal diameter
as shown in Fig. 4.1(b), and this approximation is acceptable as long as the deformation of
the end cross-section is symmetric about its horizontal diameter. The plane end section
condition is enforced by coupling the magnitude of the x-direction displacements of the
corresponding nodal points on the compression and tension sides as shown in Fig. 4.5.
There are 19 nodes on the end section which are uniformly distributed on the half
circumference and symmetric about nodal point 485. Coupling the magnitude of the x-
direction displacements of the corresponding nodal points combines the stiffness from
compression and tension sides and has been proven to be able to prevent the out-of-plane
deformation at the end section. However, this coupling can only be applied if symmetry
about the horizontal diameter can be maintained on the deformed end cross-section. The
elastic boundary ring helps to maintain this symmetry.

Internal pressure is applied on the element as an element load which is transformed
into nodal load to satisfy equilibrium by the program NISA (Stegmuller, 1984). The
external axial loads are applied at the end cross-section and the mid-span cross-section with
equal magnitudes and opposite directions. The axial load on the end section is uniformly
distributed. The forces on the mid-span cross-section can be distributed in any manner
because the axial displacements are coupled. The bending moment is applied as a set of
nodal forces on the end section which are converted from linearly distributed load as shown
in Fig. 4.5. The elastic boundary ring helps to distribute the nodal loads and reduces the
stress concentration which might cause initiation of premature buckling.

4.2.3 Material Property Representation

Pipe steel may exhibit different type stress-strain curves depending on the grade and
composition. However, in this study it is limited to one particular stress-strain curve. A
bilinear material model based on Grade XL 65 steel is used for simplicity. This model has
elastic modulus of 29800 ksi (205500 MPa), Poisson ratio of 0.3, yield strength of 63.5
ksi (438 MPa) and strain hardening modulus of 124 ksi (855 MPa). The yield plateau is not
modelled because the plateau is eliminated in the manufactory process. The strain softening
portion is not included because the real strain in the pipe segment, in general, is not large
enough to reach it.



4.3 CHARACTERISTICS OF POSTBUCKLING BEHAVIOR

Based on the solutions of the 13 specimens listed in Tab.4.1, the postbuckling
behavior of pipe segments with respect to loading condition can be summarized in terms of
the softening characteristics of the moment-curvature relations, the localization of
deformation, the buckling modes, and the cross-sectional distortion. Postbuckling analysis
produces an enormous volume of data which must be reduced to a proper form to
characterize the postbuckling behavior. Some representative quantities must be defined to
represent the solution and to present various aspects of the postbuckling behavior. These
can be divided into two groups. One is based on longitudinal deformation and the other-on
cross-sectional deformation. In the following sub-sections, the representative quantities
will be first defined, and the postbuckling behavior is then discussed.

4.3.1 Description of Deformation

The deformation is described in terms of the longitudinal deformation and cross-
sectional deformation. To describe the longitudinal deformation, two cross-sections have to
be first identified that define the buckling segment as shown in Fig. 4.6 (a). The buckling
segment is a small segment which contains only the most significant buckle. The sections
defining the buckling segment are assumed to be plane sections which is a valid assumption
for most specimens because of the unloading state in the adjacent regions without buckling.
Out-of-plane deformation may extend to adjacent regions which do not buckle and
consequently the above assumption is not valid in all specimens. In these cases, a best fit
plane should be used to replace the original cross-sectional plane and state variables on this
best fit plane should be found by interpolation.

Having the buckling segment defined, and the half pipe segment defined by the
mid-span and end cross-sections, which are plane sections due to the imposed boundary
conditions, two sets of quantities can be defined. One is defined as the average curvature
and strains on the buckling segment which is referred to as local, and the other is the
average curvature and strains on the half pipe segment which is referred to as overall. The
average curvatures are the relative rotations of the buckling segment and pipe segment
divided by the corresponding lengths.

Three types of average strain are defined. These are the compressive strain of the
extreme fiber on the compressive side, the tensile strain of the extreme fiber on the tension
side and the axial strain at the centroidal axis of the cross-section. The local and overall
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compressive and axial strains are defined as the relative shortening of the buckling segment
and the pipe segments, respectively, at their specified positions divided by the
corresponding original lengths. The local and overall tensile strains are defined as the
relative extension of the buckling segment and the pipe segment, respectively, at the
extreme fiber on tension side divided by the corresponding lengths. By these definitions,
the compressive and axial strains are positive in compression, and tensile strain is positive
in tension.

The cross-sectional deformation is defined on a cross-section to measure the most
significant deformation, which is usually in the middle of the buckling segment. Two
typical deformed cross-sections are shown in Fig. 4.6. The in-plane and out-of-plane
diameters, D;, and D,,,, define the representative dimensions of the cross-section in the
global z and y directions, respectively. The in-plane and out-of-plane diameters, in general,
represent the maximum and minimum diameters, Dp,, and D,,;,, with the correspondence
shown in Fig. 4.6. The top and bottom radii are defined as the distances from the centroid
of the cross-section to the top and bottom fibers. With these dimensions of the cross-
section defined, the following four quantities can be defined to represent the cross-sectional
deformation.

First, the out-of-roundness is defined as (Price and Anderson, 1991)

DL%_Dﬂx 100% (4.1)

out-of-roundness =
where D is the nominal diameter. Out-of-roundness is always a positive number which
indicates the difference of the in-plane and out-of-plane dimensions of the cross-section.
However, it does not distinguish between the deformation patterns shown in Fig. 4.6 (b)
and (c).

This work proposes three other quantities to describe the cross-sectional distortion
of pipes. The first two measures are

diameric differential = Dout=Din x 1005 4.2)
diametric expansion = (htgﬁ - 1) x 100% (4.3)

Diametric differential is intended for the deformation pattern in Fig. 4.6 (b). A positive
diametric differential indicates the decrease in in-plane diameter and increase in out-of-plane
diameter. When the deformation of this pattern reaches a limiting value, the passage of



inspection devices may be blocked. It should be noted that the out-of-roundness is the
absolute value of the diametric differential. While the former is commonly used in oil and
gas industry, the latter is the more informative because it differentiates between the two
basic buckling modes. Diametric expansion is intended for the deformation pattern shown
in Fig. 4.6 (c) where a positive number indicates an average increase in the dimension of
the cross-section. When the deformation of this pattern reaches a limiting value, material
failure may occur locally at the crease of the wrinkle. This is because large strain is
introduced locally at the crease of the wrinkle.

The last quantity proposed as measure is the radius differential defined as

radius differential = gl’%ﬂx 100% (4.4)

where R is the nominal radius. Radius differential represents the cross-sectional distortion
due to reasons other than ovalization. Qvalization is the main component of cross-sectional
distortion in the prebuckling state and is symmetric about y-axis. Therefore, there is no
radius differential corresponding to ovalization.

4.3.2 Softening of Moment-Curvature Relations

The moment-local curvature curves are shown in Figs. 4.7 to 4.9 for specimens
with low, middle and high levels of pressure, respectively. These figures indicate the
sensitivity of the flexural behavior to axial loads. The local curvatures, instead of overall
curvatures, are used because they are more representative of the buckling segment. In these
figures, the moments and curvatures are nondimensionalized by the yield moment and yield
curvature. The yield moment is the moment which, by itself, produces initial yielding in the
extreme fibers on both the compression and tension sides of the pipe for a bilinear elastic-
plastic model. This is calculated to be 52000 kip-in (5900 KN-m). The yield curvature is
the curvature corresponding to initial yield in the extreme fibers, which is the curvature
corresponding to the yield moment. It is calculated as 0.8965x10 (1/in). The yield strain
used to nondimensionalize the strains is 0.002131 (in/in). In these figures and subsequent
figures, moment, curvature, compressive strain at the extreme fiber, and axial strain at the
centroid of the cross-section are denoted by M, ¢, € and €°, respectively. For the curvature
and strains, the average measurements over the buckling segment and the pipe segment are
indicated by one of the subscripts L and o, for local and overall, respectively.

The load carrying characteristics can be equally well represented by moment-local
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compressive strain curves which are grouped in a similar way to the moment-curvature
curves in Figs. 4.10 to 4.12. The local compressive strain includes both the average
flexural deformation and the average axial deformation and probably is a better
characterization of deformation at the extreme fiber than the local curvature. The moment-
local curvature curves, of Figs. 4.7 to 4.9, are grouped according to the compressive axial
load at levels of 0, 20 and 40 percent and are shown in Figs. 4.13 to 4.15. These figures
indicate the sensitivity of the flexural behavior to internal pressure.

Softening is observed in moment-curvature curves of all 13 specimens. Softening
in moment-curvature curves refers to behavior exhibiting decreasing moment carrying
capacity with respect to increasing curvature. In general, the pipe segment experiences a
linear elastic region up to the initiation of yielding, a gradual yielding region, and then a
softening region. The elastic region exists in every specimen except Specimen PHC40 (see
Figs. 4.9, 4.12 and 4.15) where the constant internal pressure and axial load initiate the
yielding before any moment is applied. The gradual yielding region produces a yield
plateau which usually contains the limit point with the maximum moment as for Specimens
PLC00, PLC10, PHT20 and PHT40. The length of this yield plateau decreases as the
levels of pressure and compressive axial load increase and virtually disappears for many
specimens. The softening region exists in every moment-curvature curve. These usually
contain a strong softening portion with a steep drop in moment carrying capacity followed
by a softening portion where the moment carrying capacity drops relatively gradually with
respect to the increase of curvature. The combination of strong and gradual softening
portions repeats in the softening region for some specimens such as PHT20 and PHCO00
(see Fig. 4.9), PMC20 (Fig. 4.8) and PLC20 (Fig. 4.10).

The maximum moments carried by specimens are greatly affected by the pressure
and axial load. It varies from a maximum of 1.23 times the yield moment for Specimen
PLCOQO, where no pressure and axial load are applied, to 0.11 time the yield moment for
Specimen PHC40, where the maximum pressure and compressive axial load are applied.
The capacity in the postbuckling region is affected by pressure and axial load in a similar
way as for the maximum capacity. The effects of pressure on the moment carrying capacity
are illustrated in Figs. 4.13 to 4.15. For the group with no axial load, the moment-
curvature curves have the similar average slope in the postbuckling region and the internal
pressure contributes mainly to the reductions in moment carrying capacity. For the group
with 20 percent compressive axial load, the similar characteristics apply only to the
specimens with low and middle levels of pressure. The specimen with the high level of



pressure has significantly reduced slope in the postbuckling region. For the group with 40
percent compressive axial load, the specimens with the middle and high levels of pressure
have the significantly reduced slope in the postbuckling region.

The fundamental reason to have different slopes in the postbuckling region is the
difference in the buckling modes. These may be dominated either by flexural deformation
or axial deformation. For the flexural deformation dominated buckling mode, the buckle
concentrates on the compressive side of the pipe segment. Examples are the buckling
modes for Specimens PLC0O0 and PHCOQ shown in Figs. 4.29 and 4.33. The axial
deformation dominated buckling mode has the bulging developed over all or most of the
circumference of the pipe segment, as shown in Fig. 4.32 for Specimen PMC40. The
buckled section of the axial deformation dominated buckling mode, when it is fully
developed, can only take a very small amount of moment. Consequently, the moment-
curvature curves are flat with a small moment carrying capacity in the postbuckling region
(see, for example, PHC40 on Fig. 4.15). On the other hand, the buckled configuration of
the flexural deformation dominated buckling mode changes from a relatively strong
moment configuration to weak as the buckling initiates and develops on the compressive
side. As a result, the moment carried by the buckling section reduces continuously.
Because the buckling is confined to the compressive side while the tensile side of the pipe
segment remains strong, a significant negative moment may be developed which is required
to stabilize the pipe segment under imposed curvature. This maintains the equilibrium state.
A good illustration of this is the case of Specimen PL.C40 as seen in Fig. 4.15.

4.3.3 Localization of Deformation

In the postbuckling region, the deformation localizes in the buckling segment for all
the specimens. However, the degree of localization depends on the loading conditions. The
localization of deformation is illustrated in this section by comparing the deformation of the
buckling segment with that of the pipe segment. Since the boundary cross-sections of the
buckling segment and the pipe segment are considered to be plane sections, the deformation
can be described by local curvature and local axial strain for the buckling segment, and by
overall curvature and overall axial strain for the pipe segment. These measures of
deformation have been defined in Sect. 4.3.1. For these comparisons, the axial strain is
defined as positive in compressive.

The comparison is first carried out for deformation paths of the buckling segment
and pipe segment. The deformation path is the axial strain-curvature curve which indicates
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the relative contributions of the axial and flexural components to the total deformation.
Figs. 4.16 to 4.20 show the comparisons of deformation paths for Specimens PLCO00,
PLC40, PHC00, PHC40 and PHT40 as the typical examples. In each of these figures, the
local and overall axial strain-curvature curves represents the deformation paths for buckling
and pipe segments, respectively. The localization of deformation is clearly demonstrated in
all these figures where the local curvature and axial strain are significantly larger than the
overall curvature and axial strain. Different behaviors are also represented in these figures.
These curves, both the local and overall paths, are approximately piecewise linear which
means that the axial strains and curvatures are proportional to each other with different
ratios for each of the sub-divisions. For specimens such as PLC00, PHC00 and PHT40
with flexural deformation dominated buckling modes, the localization is contributed more
by flexural deformation which is indicated by the relative small slope of their deformation
paths. For specimens such as PLC40 and PHC40 with axial deformation dominated
buckling mode, the contribution of axial deformation is equally important as that of flexural
deformation.

The importance of the axial deformation increases as the pressure anci compressive
axial load increase. This trend is illustrated by Fig. 4.21 and 4.22 where the deformation
paths of the buckling segment are shown for Specimens PLC00 and PHCO0O0, and,
Specimens PHT40, PHC00 and PHCA40, respectively. Figure 4.21 shows the effects of the
pressure, while Fig. 4.22 shows the effects of the axial load. When the axial deformation
increases its significance with respect to the flexural deformation, the buckling mode
changes from flexural deformation dominated to axial deformation dominated.

The developments of deformation localization are shown in Figs. 4.23 t0 4.28 in
terms of the ratios of local and overall curvatures and the ratios of local and overall axial
strains. These ratios are plotted with respect to overall curvature which represents the total
relative rotation of the pipe segment. While unit ratio indicates the uniform deformation,
deformation localization is observed in all the specimens. Higher pressure produces more
significant localization which is demonstrated in Figs. 4.23 to 4.25 for specimens with the
same axial loads. The localization is also initiated at smaller overall curvature for specimens
with higher pressure. The effects of axial load are shown in Figs. 4.26 to 4.28 in terms of
the localization of axial strains. The localization initiates at smaller overall curvature and
develops faster for larger compressive axial load. These observations are consistent with
the general conclusion that the internal pressure and compressive axial load increase the
localization of deformation.



4.3.4 Buckling Modes

There are in general two types of buckling modes, the diamond mode and bulging
mode. The inward-and-outward diamond buckling mode is shown in Figs. 4.29 and 4.30
where a side view, a three-dimensional view, and a rendered view of the deformed
configurations for Specimens PLCO0 and PLC40 are shown. Specimen PLCOQO is
subjected only to bending moment which produces the buckle in the mid-span of the pipe
segment. Specimen PLC40 is subjected to the maximum compressive axial load applied in
this series in addition to the bending moment, and the buckle formed in the region about a
quarter span from the end. The bulging buckling mode is shown in Figs. 4.31 to 4.35 for
the deformed configurations of Specimens PMC10, PMC40, PHCO00, PHC40 and PHT40.
The buckles may locate at the mid-span, as for Specimen PMC10, or off the mid-span, as
for the other specimens shown in these figures.

It is clear that the buckling mode is primarily dependent on the internal pressure.
Specimens without pressure will buckle in the diamond mode no matter what axial load is
applied. However, for specimens with middle and high levels of pressure, the bulging
mode is the buckling mode for all of them. Consequently, for geometry and material
properties specified in this series, internal pressure at a relatively low level, certainly not
higher than 35 percent, can prevent the pipe segment from buckling in the diamond
buckling mode and force it to buckle in the bulging buckling mode. This conclusion may
not be directly extendable to pipe segments with different geometry. However, according to
the general shell behavior discussed in Sect. 2.2.2, shells with higher D/t ratios tend to
buckle in diamond mode. Consequently, the conclusion obtained here is likely to be
verified for pipe segments with D/t ratios lower than 104. Considering the fact that the
pipes currently used in the oil and gas industry normally have smaller diameters and lower
D/t ratios, it appears to be acceptable to generalize the conclusion about buckling modes,
i.e. the pipe segment will buckle in the bulging buckling mode if there is internal pressure
at a level which need not be higher than 35%.

In addition to the differences between the diamond and bulging buckling modes,
differences are obvious between the buckling modes of Specimens PLC00 and PLC40 for
the diamond buckling mode, and between those of Specimens PMC10 and PMC40 for the
bulging buckling mode. The principal difference is in the dimensions of the buckles in the
circumferential direction. The buckles of Specimens PLC00 and PMC10 are confined to the
compressive side of the pipe segment. The buckles of Specimens PLC40 and PMC40,
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however, cover most of, or the entire, circumference. The reason for the difference is the
different combinations of the axial deformation and flexural deformation. When the flexural
deformation dominates, the compressive region on the cross-section is confined to the
compressive side, and so is the buckle. When significant compressive axial load is applied,
as for Specimens PLC40, PMC40 and PHC40, the compressive region extends over most
of the cross-section and buckles develop gradually to cover most of the circumference.
Tensile axial load helps to confine the buckle to the compressive side of the cross-section.
To distinguish between these two different characteristics, the names of flexural
deformation dominated and axial deformation dominated buckling modes are used to refer
to buckling modes confined to the compressive side and extended over most of
circumference, respectively. Both diamond and bulging buckling modes can be dominated
by flexural or axial deformation where examples are Specimens PLC00 and PLC40 in
Figs. 4.29 and 4.30 for the diamond buckling mode and Specimens PHT40 and PMC40 in
Figs. 4.35 and 4.31 for the bulging buckling mode. The axial load and internal pressure are
both important factors to decide whether the axial deformation or the flexural deformation
dominates the buckling mode. Increase in internal pressure and axial load would emphasize
the importance of the axial deformation and lead to axial deformation dominated buckling
modes,

The length that a buckle covers in the longitudinal direction can be called its
wavelength. The wavelength of the most significant buckle is called the principal
wavelength. The principal wavelength is actually the length of the buckling segment on
which the local curvature and local strains are defined, and is used to show the dimension
of buckles in the longitudinal direction and the effects of loading conditions. The principal
wavelengths for all 13 specimens in this postbuckling analysis series are listed in Tab. 4.2.
Two trends, in general can be observed. First the principal wavelengths of the specimens
with diamond buckling mode tend to be larger than those with bulging buckling mode. This
is seen in Table 4.2 by the fact that the principal wavelengths of specimens without
pressure are in general larger than those with pressure. Secondly, the principal wavelengths
of the specimens with flexural deformation dominated buckling mode are in general larger
than those with axial deformation dominated buckling mode. The evidence can also be
found in Tab. 4.2 where the specimens with higher level of pressure or axial load normally
have relatively smaller principal wavelength.

4.3.5 Cross-Sectional Distortion

The cross-sectional distortion becomes important because limit states of excessive



deformation can be defined from the pattern and magnitude of the cross-sectional
distortion. Depending on the buckling mode, different patterns of cross-sectional distortion
are observed. Typical examples are shown by the solid lines in Figs. 4.36 to 4.39, for
Specimens PLC00, PMC40 and PHC00. Deformed cross-sections are shown at four
different stages of deformation for each of the selected specimens which are identified by
the values of local curvatures. In general, the first one, (a), is corresponding to the state
representing the buckling onset. The second stage, (b), is the point on the moment-
curvature curve where the first significant softening starts. The limit point where the
maximum moment is achieved may be close to the first stage if the limit point is reached
right after the initiation of buckling, or to the second stage if the softening follows the limit
point immediately. If the softening closely follows the initiation of buckling, only one
deformed cross-section is shown. The fourth stage, (d), is the last point on the moment-
curvature curve. For each of the deformed cross-sections, there is a reference section
shown by dashed line which has the geometric center at the same location as the deformed
section and is undeformed.

Specimen PLCOO is a typical example of a flexural deformation dominated diamond
buckling mode and the development of cross-sectional distortion is shown in Fig. 4.36.
For this type of buckling mode, the diameter in the bending plane, called the in-plane
diameter, is significantly reduced while the diameter perpendicular to the bending plane,
called the out-of-plane diameter, is increased. An appropriate measurement of the
magnitude of cross-sectional distortion for this type of buckling mode is the diametric
differential defined in Sect. 4.3.1 which is the normalized differential between the out-of-
plane and in-plane diameters. The cross-sectional distortion develops from a minimum at
the onset of buckling to very significant distortion in the deep postbuckling region. The
scale of deformation is one to one for all the deformed cross-sections and the figures show
the real proportions of the deformation.

Examples for the bulging buckling mode are shown in Figs. 4.37 and 4.38, for
Specimens PMC40 and PHCO0, where the former is an axial deformation dominated
bulging buckling mode and the later is a flexural deformation dominated mode. For this
type of bulging buckling mode, both in-plane and out-of-plane diameters increase as the
curvature increases. When the buckling is dominated by axial deformation, the diameter
increase is more uniform along the circumference, as in Fig. 4.37 (c) and (d) which is
typical of axially symmetric buckling modes. When the flexural deformation dominates the
buckling mode, the increase of in-plane diameter is larger than that of the out-of-plane
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diameter as shown in Fig. 4.39. One of the best measurement for the magnitude of cross-
sectional distortion for the bulging buckling mode is the diametric expansion defined in
Sect. 4.3.1 which is the normalized average increase of in-plane and out-of-plane

diameters.

The diametric differential is plotted with respect to the local curvature of the
buckling segment in Figs. 4.39 to 4.41 for specimens with low, middle and high levels of
pressure, respectively. It is positive for specimens with diamond buckling mode as shown
in Fig. 4.39 and negative for specimens with bulging buckling mode dominated by flexural
deformation such as Specimens PMC00, PMC10, PMC20, and PHCO00. It becomes
negligible for specimens with bulging buckling mode dominated by axial deformation such
as Specimens PMC40, PHC20 and PHC40. Since the diametric differential is a
measurement intended for diamond buckling mode, it is significant only if it is a large
positive number. Consequently, it becomes less significant as the compressive axial load
and internal pressure increase.

The diametric expansion is shown in Figs. 4.42 to 4.44 in a similar way as for
diametric differential. It is less significant for specimens with diamond buckling modes
where it is usually negative or very small. The diametric expansion becomes positive for all
pressurized specimens. For the group of specimens with the middle level of pressure, the
diametric expansions are very close for different levels of axial load until the buckles are
developed on the entire circumference and the cross-sectional distortion starts to increase
very rapidly with respect to the curvature. The group of specimens with the high level
pressure shows more effects from axial load. In general, large compressive axial load
increases the diametric expansion and large tensile axial load decreases it.



Specimen Constant Axial Load Internal Pressure

Identification (kip) (ksi)

PLC40 -40% F,

PLC20 -20% F

PLC10 -10% F, 0

PLC00 0

PMC40 -40% F,

PMC20 -20% F,

PMC10 -10% F, PEE

PMCO0 0

PHC40 -40% F,

PHC20 -20% F,

PHC00 0 72% P,

PHT20 20% F,

PHT40 40% F,

NOTES: 48"x0.462" DSAW X65 pipe
(1219mmx11.7mm)

Fy = Aoy = 4423.92 (kip)
2t0.

-2ty i
Py = (pgyy = 12464 (k)

Specimen Idenuﬁcauon PXYnn
: P = Postbuckling analysis
X :  L=Low internal pressurewith p/p, of 0%
M= Medium internal pressure with p/p of 35%
H = High internal pressure with p/p,, of 72%
Ynn: Cnn=Compression with F/F of nn%

Tnn = Tension with F/F of nn%

Table 4.1 Specimens and Loading Conditions for Postbuckling Analysis
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Specimen Principal Wavelenth Buckling
Identification (in) (mm) Mode
PLC40 2x38.5 2x978 diamond
PLC20 2x33 2x838 diamond
PLC10 55 1397 diamond
PLC00 55 1397 diamond
PMC40 44 1118 bulging
PMC20 2x22 2x559 bulging
PMCI10 44 1118 bulging
PMCO00 27.5 699 bulging
PHC40 44 1118 bulging
PHC20 2x22 2x559 bulging
PHCO00 275 699 bulging
PHT20 39 991 bulging
PHT40 4 1118 bulging

NOTES : The specimens with the principal wavelengths shown in
the form of 2x(a number) are those with buckles in the mid-span of
the pipe segment, and the principal wavelengths are doubled
because of the symmetry conditions at the mid-span cross-section.

Table 4.2 The Principal Wavelengths of Specimens for Postbuckling Analysis
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(a) mid-span cross-section (b) bending plane

Fig. 4.1 Symmetric Planes of Pipe Segments
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Fig. 4.2 Global Coordinate System and Dimension of the Quarter Pipe Segment
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(a) Side View

(b) Three Dimensional View

Fig. 4.3 Finite Element Mesh for Three Dimensional Shell Model of Pipe Segment
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(a) 16-node element
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(b) 4-node element

Fig. 4.4 Nodal Layout of Shell Elements
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(a) applied bending moment

Fig. 4.5 Plane Section Condition and Applied Moment on the End Cross-Section
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(b) coupled displacements for the

plane section condition
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(a) representative quantities of postbuckling behavior in longitudinal direction

geometric center of geometric center of
the cross-section the cross-section

Rep W\ ¥ y = §
=S <)
\ Ryot /
Dout Dout
Dpax D min
(b) dimensions of cross-section (c) dimensions of cross-section
for diamond buckling mode for bulging buckling mode

Fig. 4.6 Nllustration of Representative Quantities for Postbuckling Behavior
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Fig. 4.7 Moment-Local Curvature Curves for Specimens with Low Level Pressure

1.5
M/My j —8&— specimen PMCO00
1 —&— specimen PMC10
. —0— specimen PMC20
1.0 o —#&— specimen PMC40

o, /0
. ¢ "I
0 10 20 30

Fig. 4.8 Moment-Local Curvature Curves for Specimens with Middle Level Pressure




148

specimen PHC00
=——0— specimen PHC20
=——— specimen PHC40
—&— specimen PHT20
=0— specimen PHT40

L 2

‘0-5 4 Y v - T
0 10 20

Fig. 4.9 Moment-Local Curvature Curves for Specimens with High Level Pressure

1.5
M/My 1 ——  specimen PLC00
] , ——0— specimen PLC10

specimen PLC20
specimen PLC40

0.0

0.5 +———r——r—e———————————ry Y

0 20 40 60
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Fig. 4.26 Comparison of Axial Strain Localization for Specimens PLC00 and PLC40
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(a) Side View

(b) Three Dimensional View

Fig. 4.29 Deformed Configuration of Specimen PLC00
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(b) Three Dimensional View

Fig. 4.30 Deformed Configuration of Specimen PLC40
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(3) Side View
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(a) Side View

(b) Three Dimensional View

Fig. 4.32 Deformed Configuration of Specimen PMC40
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(a) Side View

(b) Three Dimensional View

Fig. 4.33 Deformed Configuration of Specimen PHC00
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(a) Side View

(b) Three Dimensional View

Fig. 4.34 Deformed Configuration of Specimen PHC40
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(a) Side View

(b) Three Dimensional View

Fig. 4.35 Deformed Configuration of Specimen PHT40
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(a) at dimensionless local (b) at dimensionless local
curvature of 1.1123 curvature of 4.2292

(c) at dimensionless local (d) at dimensionless local
curvature of 5.8391 curvature of 25.7041

Fig. 4.36 Development of Cross-Sectional Distortion for Specimen PLC00
(Displacement Scale Equals to One)
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(a) at dimensionless local (b) at dimensionless local
curvature of 0.5670 curvature of 1.6242

(c) at dimensionless local (d) at dimensionless local
curvature of 13.4843 curvature of 18.4573

Fig. 4.37 Development of Cross-Sectional Distortion for Specimen PMC40
(Displacement Scale Equals to One)
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(a) at dimensionless local (b) at dimensionless local
curvature of 1.4394 curvature of 7.0350

(c) at dimensionless local (d) at dimensionless local
curvature of 12.0618 curvature of 19.9735

Fig. 4.38 Development of Cross-Sectional Distortion for Specimen PHC00
(Displacement Scale Equals to One)
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Fig. 4.42 Diametric Expansion for Specimens with Low Level Pressure
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CHAPTER 5 IDENTIFICATION OF WRINKLING INITIATION FOR PIPE
SEGMENTS '

The onset of buckling of pipelines has special significance because it is often used
by the pipeline industry as the ‘failure’ condition. The result is that significant efforts have
been made to predict the onset of buckling and determine a representative measurement of
this state, such as, the maximum compressive strain at which buckling is incipient. This is
usually referred to as the buckling strain. While the design condition based on the buckling
strain can't be fully rationalized, its relationship to current practice makes the buckling
strain an important aspect to be investigated. In this Chapter, the buckling strain will be
defined and the predictive approaches will be reviewed. Following a discussion about the
deficiency of using buckling strain as a design condition, concepts of initiation of wrinkling
and wrinkling strain are introduced as alternatives. A procedure to identify the onset of
wrinkling is then developed which includes some examples of verification. This procedure
is applied to the specimens in the series of postbuckling analyses, which has been
discussed in Ch. 4, and the wrinkling strains are determined. These illustrate the wrinkling
behavior of pipe segments.

5.1 BUCKLING AND WRINKLING STRAINS

Buckling strain is the maximum compressive strain existing at the onset of buckling
and may be used as the critical strain for pipelines subjected to deformation imposed loads.
According to the shell buckling behavior discussed in Sect. 2.2.1.1, there are two types of
buckling, namely, bifurcation buckling and snap-through. Initiation of buckling is
calculated at either the bifurcation point or the initiation of snap-through, whichever occurs
first. Buckling strain is then defined as the maximum compressive strain at the initiation of
buckling. As discussed in Sect. 2.2.1.1, the initiation of snap-through depends on the
loading system in addition to the behavior of structure. However, for present purposes it
can be located at the limit point of the load-deflection curve. The limit point is the point
where the maximum load carrying capacity is achieved. Some predictive approaches to the
onset of buckling are briefly reviewed in the following. The deficiencies of these
approaches for pipe segment are discussed. This leads to a new concept of wrinkling
initiation.

5.1.1 Predictive Approaches for Buckling Strain

The two types of buckling phenomena require two different types of predictive



approach. In general, snap-through buckling needs a nonlinear incremental solution
approach to predict the limit point. Physically, the limit point is the state where the
maximum load carrying capacity is achieved and unloading is incipient. In order to clearly
define the limit point on load-deflection curves, the solution technique should have the
capability to carry the solution into the postbuckling region. Because the postbuckling
behavior of pipe segments is characterized by softening (or unloading) in moment-
curvature curves, as demonstrated in Sect.4.3.2, the solution technique should be able to
handle sensitive unstable equilibrium paths. For pipe geometries commonly used in today's
pipeline industry, it is essential that the effects of elastic-plastic behavior and large
displacements are included in the solution. This is because, for these types of pipe
segments, buckling usually initiates in the elastic-plastic region of material behavior and the
pipe generally experiences large displacements prior to unloading. A suitable solution
technique, that was developed for this project, has been described in Chapter 3.

Bifurcation buckling is normally predicted by eigen-analysis. Physically bifurcation
buckling initiates at a bifurcation point which is the intersection of two or more possible
equilibrium paths (Croll and Walker, 1972). For pipe segments, at least one of the
equilibrium paths is unstable. Depending on the degree of complexity adopted, several
alternate formulations of eigen-analysis can be used for prediction of bifurcation points.
The simplest of these is linear-elastic eigen-analysis, which can be symbolically expressed
as

([Kg] - A [Kg]) {Au) = {0) (5.1)

where [Kg] and [Kg] are the linear-elastic stiffness matrix and the geometric stiffness
matrix, respectively. The quantities A and (Au) are the eigen-value and eigen-vector,
respectively. This formulation is based on assumed linear-elastic behavior. A refined
formulation is elastic-plastic eigen-analysis which can be established by including the
elastic-plastic behavior and prebuckling deformation. It can be expressed as

([Kep] - M[Kq)) {Au) = (0) (5.2)

where [Kgp] and [Kg] are the elastic-plastic stiffness matrix and the geometric stiffness
matrix which are evaluated at an equilibrium configuration prior to, but close to, the
bifurcation point. A nonlinear incremental solution procedure is needed to establish this
equilibrium configuration. The effects of elastic-plastic behavior are reflected in [KEgp), the
effects of the distribution of internal forces are represented by [Kg], and the effects of

179



180

prebuckling deformation are included in both [Kep] and [Kg]. The accuracy of the
prediction based on the elastic-plastic eigen-analysis is largely dependent on the distance
between the equilibrium configuration on which the equation of elastic-plastic eigen-
analysis is established and the equilibrium configuration where the buckling is predicted to
be initiated.

The most complicated and reliable procedure at present is the so called
‘accompanying buckling analysis’ (Rammerstorfer, 1989). Accompanying buckling
analysis is the combination of nonlinear incremental solution and elastic-plastic eigen-
analysis and is used to predict the onset of bifurcation buckling of nonlinear structural
systems (de Borst, 1988; Brendel and Ramm, 1979 and Rammerstorfer, 1982, 1989). This
procedure includes generation of two curves. First, a load-deflection curve is obtained by
carrying out the nonlinear incremental solution. Second, carrying out the elastic-plastic
eigen-analysis, defined in Eq. (5.2), along the nonlinear equilibrium path at proper
intervals, an eigenvalue-deflection curve is determined. These two curves are shown in
Fig. 5.1. The intersection of these two curves is identified as the bifurcation point. The
accompanying buckling analysis includes the effects of elastic-plastic behavior, prebuckling
deformation and the distribution of internal forces in a similar manner to the elastic-plastic
eigen-analysis. In addition, the accuracy of the prediction does not depend on where the
elastic-plastic eigen-analyses are carried out as long as the intervals used are appropriate.
Considering the fact that significant yielding may take place prior to initiation of buckling,
linear-elastic eigen-analysis can't be used, and the elastic-plastic eigen-analysis may not be
accurate because it is difficult to determine where the eigen-analysis should be carried out.
Only the accompanying buckling analysis is a reliable approach to predict the bifurcation
point for pipe segments.

5.1.2 Deficiencies of the Buckling Strain as a Failure Indicator

Deficiency of the buckling strain arises from the fact that the onset of buckling is
difficult to identify and it is not a representative quantity characterizing the deformation of
pipe segments, especially the local deformation. Discussions in the following are with
respect to the buckling strain defined by bifurcation buckling and snap-through buckling.

Bifurcation buckling is a phenomenon associated with perfect structures. Perfect
structures are characterized by perfect geometry and perfect loading and boundary
conditions which result in uniform stress states and deformation which does not contain
any component associated with the postbuckling equilibrium path.



If a structure is not perfect, bifurcation buckling is not possible. This is because
components of nonuniform stress states and deformation associated with postbuckling
paths exist from the very beginning of the loading history. The € components increase as
load increases and become more and more significant with respect to load carrying capacity
and the characteristics of deformation. Eventually, the maximum load is achieved and
unloading begins. Consequently, imperfections convert bifurcation buckling into snap-
through buckling.

The real pipeline is always imperfect because of the unavoidable imperfections in
material properties and geometry. In addition, the loading and boundary conditions also
introduce imperfections. Therefore bifurcation buckling is not possible in real pipelines.
The finite element model for pipe segments established in Sect. 4.2 is also not perfect
because of the loading and boundary conditions. The axial load produces eccentricity which
is larger in the middle of the pipe segment and increases as the flexural deformation
increases. The use of the elastic ring at the ends of pipe segments introduces nonuniformity
in ovalization along the length of pipe segments. Consequently, buckling strain based on
bifurcation buckling is not reliable for pipe segments.

The predictive approaches based on snap-through buckling are applicable in
principle because for pipe segments there is always a limit point and the initiation of snap-
through can be approximately located at the limit point (see Sect. 2.2.1.1). The deficiency
arises from the behavior of pipe segments. Typical moment-curvature curves are
conceptually shown in Fig. 5.2 for pipe segments with high and low D/t ratios. Typically,
these pipe segments are subject to combined constant axial load, constant internal pressure
and monotonically increasing curvature. The pipe segments with a high D/t ratio tend to
have significant unloading following the limit point. By contrast, those with a low D/t ratio
tend to have a long yielding plateau before significant unloading begins. While the limit
point can be, in general, identified, the difference in the moment-carrying capacity as yield
deformation proceeds along the plateau is small and negligible. While the buckling moment
is well defined for both types of behavior, the buckling strain may not be. For pipe
segments with a long yield plateau, the strain can be amplified by a factor of 2 or 3 in the
yield plateau while the difference in moment is minimal. Under these circumstances, the
limit point where the maximum load is achieved losses its special significance with respect
to the determination of the buckling strain. The buckling strain defined at the limit point
becomes deficient.
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In addition, buckling strain defined at the limit point does not have any special
significance as a measurement for characterizing the behavior of pipe segments. Since
deformation state of a buried pipeline is more important than its load-carrying capacity
relative to the imposed deformation, associating the critical strain with the maximum load-
carrying capacity is neither necessary nor rational. At most, buckling implies that the
deformation will localize and load carrying capacity will drop afterward. However, how the
deformation will localize depends on the geometry, material properties, loading and
boundary conditions. Consequently, the buckling strain defined at the limit point is not a
representation of the deformation behavior of pipe segments characterized by localization.
Instead, it is associated with maximum load-carrying capacity.

5.1.3 Imitiation of Wrinkling

Since buckling strain cannot effectively represent the critical state of pipe segments
subjected to imposed deformation, an alternative is needed. The concepts of initiation of
wrinkling and wrinkling strain are introduced based on the fact that the critical state of such
pipe segments can be characterized by the initiation of localization of deformation. Initiation
of wrinkling and wrinkling strain are defined based on the growth of the nonuniform
deformation component. Initiation of wrinkling is the point where nonuniform deformation
begins to localize, and wrinkling strain is the maximum compressive strain at this initiation
of wrinkling.

The initiation of wrinkling emphasizes the importance of the deformation and
localized distortion. The moment-carrying capacity of pipe segments is largely considered
as irrelevant. The concept of the initiation of wrinkling can accommodate the fact that the
nonuniform deformation component exists at the very beginning of the loading history
because of the imperfections in load and boundary conditions. It is more representative of
the critical state of pipe segments because it is directly associated with the localization of
deformation. Therefore it is expected to be a better alternative than initiation of buckling for
use in pipeline design. However, similar to initiation of buckling, initiation of wrinkling is
not a ‘“failure’ condition and therefore can't be used as a limit states design condition.

Depending on the behavior of pipe segments, initiation of wrinkling may or may
not be close to the limit point. Deformation localization is, in general, associated with
significant unloading. Two typical behaviors shown in Fig. 5.2, for pipe segments with
high D/t ratios the initiation of wrinkling is expected to be close to the limit point and



significant softening follows the limit point immediately. It may be different for pipe
segments with low D/t ratios because of the long yield plateau. The wrinkling strain is , in
general, expected to be close to or larger than the buckling strain because localization of
deformation is the result of local buckling. Therefore, it begins only after local buckling is
initiated, provided that the effects of imperfections are limited.

5.2 WRINKLING ANALYSIS

Buckling analysis usually refers to the procedure to identify the initiation of
buckling. By analogy, wrinkling analysis refers to the procedure to identify the initiation of
wrinkling. To identify the initiation of wrinkling, the localization of deformation has to be
first numerically described. The beginning of localization of deformation can then be
determined. A procedure for that is discussed in following sub-sections. This proposed
procedure is verified by comparing the predictions from this procedure with available test
results.

5.2.1 Procedure of Wrinkling Analysis

The localization of deformation may be described in terms of localization of strain,
curvature, and cross-sectional distortion, as defined in Sect. 4.3.1. Before the initiation of
wrinkling, the strain and curvature distribute uniformly except for the secondary effects of
the axial load, and the cross-sectional deformation is mainly in the form of ovalization.
Recognizing the fact that non-uniform distribution of strain and curvature exist from the
beginning because of initial imperfections, the onset for the first rapid increase of the
nonuniform component, or the attainment of a limit tolerance on its magnitude, can be used
as indication of initiation of wrinkling. The postbuckling behavior of pipe segments
discussed in Sect. 4.3 shows the deformation is mainly localized in the vicinity of one
location, the extent of which is called the buckling segment. The magnitude of the
nonuniformity in strain and curvature can be represented by differences between the local
strain and curvature defined on the buckling segment and the overall strain and curvature
defined on the entire pipe segment. Typical examples are shown in Figs. 5.4 and 5.5. The
local and overall strains refer particularly to the average compressive strain at the extreme
fiber. Consequently, comparing local strain and curvature with overall strain and curvature
is one way to identify the onset of wrinkling.

The cross-sectional deformation is associated with the localization of deformation,
in one way or another depending on factors such as geometry of the pipe segment, material
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properties, and loading and boundary conditions. In spite of the differences, the cross-
sectional deformation can be divided into two components. One is ovalization which is
introduced by flexural deformation. The other can be called the wrinkling component
because it is mainly introduced by deformation associated with local wrinkling.

Ovalization depends mainly on the curvature and stiffness distribution on the cross-
section, and is essentially symmetric about the horizontal diameter. However, an
asymmetric component of ovalization may be introduced by an asymmetric distribution of
stiffness due to the applied axial load and internal pressure. The axial load combined with
bending moment produces an asymmetric stress distribution over the cross-section, and the
internal pressure makes the material yield at different longitudinal stresses in tension and
compression.

The wrinkling component of the cross-sectional distortion is asymmetric in nature
about the horizontal diameter, because the wrinkling is always initiated from the
compression side of the pipe segment which is subject to the load combination such as axial
load, pressure and imposed curvature. Although it is possible that the wrinkling component
becomes approximately symmetric in the deep postbuckling region when the wrinkle is
fully developed on the entire circumference, as shown in Figs. 4.32 and 4.37 for specimen
PMCA40, the asymmetric nature of the wrinkling component is still very evident in the initial
postbuckling region. Consequently, the point of origin of the wrinkling component can be
used as an additional indication for initiation of wrinkling.

The four measures defined in Sect. 4.3.1 to describe the cross-sectional
deformation are : out-of-roundness; diametric differential, Dys; diametric expansion, Dexp:
and, radius differential, Ryier. Except for the last one, all of them describe the total cross-
sectional deformation. The radius differential is a measurement of the asymmetric
component of the cross-sectional deformation in terms of the difference between the radius
on the compression side and the one on the tension side in the bending plane. The
expression of Rqi¢r has been given in Eq. (4.4). Rais is negligibly small before the onset of
wrinkling, and starts to grow at this onset, as shown in Fig. 5.3. Considering the fact that
Ruifr is not exactly zero, the initiation of wrinkling can be set at the point where the first
rapid increase of Ras is incipient or a value equal to a limiting tolerance of it is reached.

In summary, the initiation of wrinkling can be identified by examining the growth
and magnitude of Ry;sr, and comparisons of the local strain and curvature with overall strain
and curvature. Procedures to identify initiation of wrinkling can be established based on



these criteria. There are three major steps. The first step is to carry out the nonlinear
incremental solution for the given pipe segment. This solution is similar to the one for
postbuckling analysis except the solution does not need to be carried into the deep
postbuckling region. The second step is reducing the data from the solution obtained. The
radius differential is defined based on the cross-sectional deformation and the strain and
curvature are defined based on the buckling segment and the pipe segment. These
measurements are then presented in the form of a radius differential-local curvature curve,
an overall curvature-local curvature curve and an overall strain-local strain curve. The last
step is to determine the initiation of wrinkling from these curves according to the criteria
discussed previously in this section. Generally, all three of these techniques are used in
conjunction in order to evaluate the initiation of wrinkling.

5.2.2 Illustrations

The procedure for wrinkling analysis is demonstrated in the following by numerical
examples. The geometry and material properties are taken from Specimens 20a, 16a and
10a reported by Jirsa et. al. (1972). The specimens are designated herein as DTR20,
DTR16 and DTR10, respectively, where DTR represents the series of wrinkling analyses
illustrating the effects of the D/t ratio on wrinkling strain. The two digit-number following
represents the diameter of the specimens. The specimens have diameters of 20, 16 and
10.75 inches (508, 406.4 and 273 mm), and D/t ratios of 78.4, 61.5 and 46.1,
respectively. The stress-strain curves in piecewise linear form are retrieved from the curves
reported (Jirsa, 1972) and are listed in Table 5.1. All three specimens are only subject to
bending moment.

In the figures shown in this chapter, radius differential is denoted by Rgig.
Curvature and strain are denoted by ¢ and € with subscripts L, o, and y which indicate
local, overall and yield, respectively. Wrinkling strain is denoted by &y. Internal pressure
and its yield value are denoted by p and py. Axial load, which is positive in tension, and its
yield value, are denoted by F and F,.

The results for the nonlinear solution for Specimen DTR20 are shown in Figs. 5.3
to 5.5. Figure 5.3 shows the radius differential-local curvature curve. Comparisons of
overall with respect to local curvatures and strains are shown in Figs. 5.4 and 5.5,
respectively. Similar to the presentation of the the results of postbuckling analysis, the
curvatures and strains in these figures are normalized by the yield curvature and the yield
strain. The onset of wrinkling can be clearly identified from these figures using the criteria
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advanced in Sect. 5.2.1. It is indicated by a small arrow in each of the figures. The
indication from the radius differential is the most obvious. The differences between the
overall and local curvatures as well as between the overall and local strains start to grow at
the onset of wrinkling identified from the growth of the radius differential. All plots
indicate the initiation of wrinkling in a consistent manner. Therefore the onset of wrinkling
is confirmed at a normalized curvature of 1.923 and a normalized strain at 1.950. The
associated curvature and compressive strain are calculated as 3.58x10 in*! (1.409x10-5
mm-!) and 0.363%.

The nonlinear solutions for Specimens DTR16 and DTR 10 are shown in Figs. 5.6
to 5.8 and in Figs. 5.9 to 5.11, respectively. As for Specimen DTR20, the onsets of
wrinkling are clearly identified for both of these specimens. The indications from the radius
differential, curvatures and strains are consistent with each other and a unique point has
been identified as the onset of wrinkling for each of the specimens. The onset for Specimen
DTRI16 is identified at a curvature of 9.41x10-4 in'! (3.705x10-* mm) and a strain of
0.804%. The one for Specimen DTRIO0 is identified at a curvature of 23.39x10+ in-!
(9.209x105 mm-!) and a strain of 1.300% .

Comparison between computed wrinkling strains of Specimens DTR20, DTR16
and DTR10 and the measured buckling strains are shown in Fig. 5.12. Good agreement is
achieved. This is because the moment-curvature curves, as reported by Jirsa et. al. (1972),
have significant unloading following the limit point at which the buckling strains are
defined. Associated with the unloading, deformation localizes and local wrinkling grows.
As a result, the onsets of wrinkling are identified to be very close to the limit points.

5.3 EFFECTS OF PIPE GEOMETRY ON WRINKLING STRAIN

The pipe geometry varies extensively dependent on the function of the pipeline, the
cost effectiveness of the design and the technology available. The diameter of pipelines
used in past decades for major pipelines in the oil industry ranges from as small as 12.75
inches (324 mm) to as large as 48 inches (1219 mm), and the D/t ratio ranges from 50 to
100. Some older pipelines have even smaller D/t ratios, such as 30. Due to the wide range
of pipe geometry used in the pipeline industry, it is important to understand the effects of
the pipe geometry on the wrinkling strain.

The geometry of a perfect pipe segment can be represented by the diameter and D/t
ratio. Consequently, the effects of pipe geometry can be examined by studying the



dependence of wrinkling strain on these two geometric characteristics. This is done in the
following sub-sections.

5.3.1 Effects of D/t Ratio

The D/t ratio of pipe segments has been proven to be one of the most important
factors affecting wrinkling strains by both experimental and analytical studies. Examples
are test programs (Bouwkamp and Stephen, 1974; and, Jirsa et. al., 1972), and the
formula for classical elastic buckling strain (Eq. (1.1)) and for elastic-plastic buckling strain
(Eq. (1.2)). The wrinkling strain is found to decrease as the D/t ratio increases. The
buckling process shifts from buckling in elastic-plastic range at low D/t ratios to buckling
elastically at high D/t ratios. Pipe segments are a type of cylindrical shell for which the
common range of D/t ratios is from 30 to 100 and they usually buckle in the elastic-plastical
range. The difference is, however, that pipe segments with low D/t ratios tend to have
extensive plastic deformation before the initiation of wrinkling while those with high D/t
ratio may have a relatively small component of plastic deformation.

The effects of D/t ratio are illustrated by the results of the DTR series of wrinkling
analyses which have been presented in Sect. 5.2.2. The predictions of initiation of
wrinkling are supported by test results as shown in Fig. 5.12. Figure 5.13 shows the
computed wrinkling strains with respect to the D/t ratios for Specimens DTR20, DTR16
and DTR10. Although some differences in material properties exist as shown in Table 5.1
and the diameters are different, the effect of D/t ratio is dominant. The curve in Fig. 5.13
illustrates the effect of D/t ratio and confirms the conclusion that increasing D/t ratio
corresponds to decreasing wrinkling strain. As the D/t ratio changes from 78 for Specimen
DTR20 to 46 for Specimen DTR10, the wrinkling strain increases from 0.363 percent to
1.3 percent, which gives a factor of 3.6. This shows the great difference in wrinkling strain
that may be associated with different geometries commonly used in the pipeline industry.

5.3.2 Effects of Diameter

Pipe diameter is believed to have insignificant effects on wrinkling strain. This
conclusion is supported by the elastic buckling theory where the buckling strain is predicted
in Eq. (1.1) to be independent of diameter. However, documented study of this in terms of
both experiment and analysis appears to be inadequate. To illustrate the effects of diameter,
a series of wrinkling analysis is carried out herein. The three specimens in this series are
designated as DIA48, DIA24 and DIA12, respectively. The letters DIA indicate that the
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series is devoted to the effects of the pipe diameter. The two-digit number represents the
outer diameter of the pipes in inches. The specimens have diameters of 48, 24 and 12.75
inches (1219, 610 and 324 mm), respectively, and the D/t ratio is 103.9 for all three of
them. The geometry and material property of these specimens are listed in Table 5.3. It
should be pointed out that the Specimen DIA4S is exactly the same as the Specimen PLC00
in the series of postbuckling analysis.

The initiation of wrinkling is identified by the method described in Sect. 5.2 at
0.256%, 0.298% and 0.351% for Specimens DIA48, DIA24 and DIA12, respectively. The
wrinkling strains are plotted with respect to the diameters in Fig. 5.14. The wrinkling strain
is found to decrease as the diameter increases. With diameter changes from 12.75 inches to
48 inches, a reduction of 27% in wrinkling strain is introduced. Comparing this with the
difference introduced by the D/t ratio, wrinkling strain is less sensitive to diameter.

5.4 EFFECTS OF LOADING CONDITION ON WRINKLING STRAINS

Pipelines in operation may experience various types of loading conditions
depending on the operational and environmental conditions. In Arctic regions, a pipeline
may be subject to the following typical loading conditions and their combinations :

(a) internal pressure due to oil transmitted in the pipeline

(b) axial compression due to temperature differential

(c) bending moment due to imposed deformation, and

(d) axial tension introduced by the catenary effect associated with the flexural
deformation, where the longitudinal movement of the pipeline is restricted by
surrounding soil.

The internal pressure may vary from zero to the value of the permissible hoop stress
of 80 percent of SMYS. This value is 72 percent for pipelines built several years ago. The
axial compression may vary from zero to a level at which an axial compressive force of 40
percent of the axial yield force is produced. This level represents a differential temperature
of about 65 °C between the tie-in temperature and the operational temperature. The imposed
deformation caused by soil settlements may be large enough to cause the moment to vary
from zero to its yield moment and then push the pipe into the softening region after
buckling is initiated. The tensile axial force may vary from zero to about 40 percent of the
axial yield force under a differential settlement of 40 inches.

The combined loading condition is expected to have significant influence on the



wrinkling strain. The internal pressure has been proven to do so by both experimental and
analytical studies (Bouwkamp and Stephen, 1974; and, Lara, 1987). The effects of axial
load, however, have not been adequately studied. This is specially true for tensile axial
force. In the following subsections, the effects of the loading condition are illustrated
through numerical analyses of selected load combinations.

To demonstrate the effects of loading condition, thirteen specimens are selected for
wrinkling analysis. The analyses are carried out as discussed in Sect. 5.2. The names and
loading conditions for these specimens are listed in Table 5.2. These specimens are the
same as those for postbuckling analysis in Ch. 4 with additional Specimens PLT40 and
PMT40 which are added to illustrate the effect of pressure combined with tensile axial
force. The strains and curvatures at the onset of wrinkling are listed in Table 5.2.

5.4.1 Effects of Internal Pressure

The wrinkling strains for the specimens in the series of postbuckling analysis are
listed in Table 5.2 along with the loading conditions. If these specimens are divided into
groups according to the applied axial load, the dependence of wrinkling strain on the
internal pressure at different levels of axial load can be examined. Figure 5.15 shows the
wrinkling strain-pressure curves without an axial load and with axial loads of 0.4Fy both in
compression and tension, where Fy is the axial yield load. Each of these curves has three
data points that correspond to the levels of internal pressure at 0, 35 percent and 72 percent.
The Specimens PLC00, PMC00 and PHC00; PLC40, PMC40 and PHC40; and, PLT40,
PMT40 and PHT40 are associated with the wrinkling strain-pressure curves without an
axial load, and with compressive and tensile axial loads of 0.4Fy, respectively.

Two opposite trends can be observed for the dependency of wrinkling strain on the
internal pressure from Fig. 5.15. The wrinkling strain is found to increase as the internal
pressure increases when the pipe segment is subject to no axial load and tensile axial load
of 0.4Fy. It is found to decrease as the internal pressure increases when compressive axial
load of 0.4Fy is applied. The first trend agrees with the conclusion from test programs
carried out by Bouwkamp and Stephen (1974) and the one at University of Alberta
(Mohareb et. al., 1992). However, a comparable set of test results for the second trend has
not been found.

It should be pointed out that all solutions for specimens in the series of
postbuckling analysis are based on a simplified bilinear stress-strain curve, as defined in
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Sect. 4.2.3. The stress-strain curve may have important influence on the wrinkling strain
because the initiation of wrinkling is expected to be affected by the stiffness of pipe wall,
which is determined by the tangent stiffness for elastic-plastic buckling. However, a
systematic study of the effects of stress-strain curves has not been included in this work
because of the variety of stress-strain curves and the difficulty to systematically describe
them.

5.4.2 Effects of Axial Load

The effects of axial load can be examined in a similar manner as for internal
pressure, if the specimens in the series of postbuckling analysis are grouped according to
the levels of applied internal pressure. The wrinkling strains are plotted against the level of
applied axial load for each of the groups, and the curves are shown in Fig. 5.16. The axial
load is positive in tension. The specimens associated with the low level of pressure are
PLC40, PLC20, PLC00 and PLT40. The specimens associated with the middle level of
pressure are PMC40, PMC20, PMCO00 and PMT40; and those with the high level of
pressure are PHC40, PHC20, PHC00 and PHTA40.

Figure 5.16 shows that the dependency of wrinkling strain on the axial load is
affected by the level of applied internal pressure. For empty pipe segments, which
correspond to the low level of pressure, the wrinkling strain decreases monotonically as the
axial load changes from compression to tension. For pressurized pipe segments, which
correspond to the middle and high levels of pressure, the wrinkling strain increases as the
compressive axial load decreases and it decreases as the tensile axial load increases. In
other words, both compressive and tensile axial loads reduce the wrinkling strain and the
maximum wrinkling strain occurs for specimens without axial load for pressurized pipe

segments.

Some supporting evidences for the findings here can be obtained from test results.
In the test series carried out by Bouwkamp and Stephen (1974), Specimens No. 1 and No.
4 were subject to internal pressure of 942 psi (6.5 MPa) and 950 psi (6.6 MPa); and net
axial load of 940 kips (4181 KN) and 266 kips (1183 KN) in compression, respectively.
Converting the pressure and axial load into nondimensional pressure and axial load, they
are 75.6 and 76.2 percent of yield pressure; and 21.3 and and 6 percent of axial yield load,
respectively. While the levels of internal pressure were almost the same, the difference in
the levels of axial load from 6 to 21.3 percent is obvious and is the major difference
between these two specimens. The buckling strains were reported as 0.5735 percent and



0.8196 percent for the Specimen No. 1 and No. 4, respectively. This represented a 30
percent reduction in buckling strain as the compressive axial load increased from 6 percent
to 21.3 percent. As a result, the trend observed in Fig. 5.16 with respect to the pressurized
pipe segments is confirmed when they are subject to compressive axial load.
Unfortunately, the trends associated with the empty pipe as well as pressurized pipe
subjected to tensile axial load can’t be confirmed because comparable test results are not
available.

5.4.3 Rationale for Effects of Loading Condition

The dependency of wrinkling strain on internal pressure, axial load and their
combination has been discussed in the previous sub-sections. It is more complicated than
anticipated. The relations between wrinkling strain and pressure have different
characteristics at different levels of axial load, and similarly for the relations between
wrinkling strain and axial load with respect to different levels of internal pressure. These
behaviors can be better understood by considering how loading conditions affect the
wrinkling strain. The loading condition influences the wrinkling strain by its effects on the
following four factors.

The first factor is the buckling mode. As discussed in Sect. 4.3.4, there are two
basic types of buckling mode. One is a diamond buckling mode, which exhibits inward and
outward displacements, and the other is an outward bulging buckling mode. The buckling
mode that a particular specimen develops appears to be determined primarily by the
presence or absence of pressure. Empty pipes, in general, buckle in the diamond buckling
mode; pressurized pipes, however, buckle in the bulging mode.

The second factor is the longitudinal strain at which the initial yielding of the
extreme compressive fiber occurs. The biaxial stress condition in the pipe wall results in an
initial yield strain that is dependent on the applied internal pressure. It may be. evaluated as
-Ey, -0.885¢, and -0.636g, for the low, middle and high levels of pressure, respectively,
where &, is the yield strain of the material. For the pipe segments discussed in this section,

the numerical values are -0.2131%, -0.1886% and -0.1355%, respectively.

Figure 5.17 shows a side view of a pipe segment where the pipe segment is divided
into two strips based on the fact that the buckling initiates on the compressive side. The
strip where buckling occurs is called the buckling strip, and the other, the supporting strip.
The stiffness of the latter is relatively large. The buckling strip is subject to a force intensity
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in the longitudinal direction of Ny, where Ny, represents the average magnitude per unit arc-
length. The third and fourth factors influencing the wrinkling strain are the magnitude of
the force intensity N}, and the restraint provided by the supporting strip. The magnitude of
the force intensity Ny, depends only on the internal pressure which controls the position of
the stress point on the yield surface. The restraint provided by the supporting strip depends
on the stiffness distribution around the cross-section, which is effected by both pressure
and axial load.

Wrinkling strain can benefit from increasing pressure because the pressure changes
the buckling mode from the diamond buckling mode to the bulging mode and the
magnitude of the force intensity Ny, is smaller for higher pressure. The detrimental effect of
increasing pressure is that the pipe material in compression yields at a smaller longitudinal
strain. Earlier yielding in general leads to earlier initiation of wrinkling, provided other
conditions remain unchanged. The wrinkling strain is found to increase as pressure
increases when the pipe segments are subject to no axial load, or tensile axial load of 0.4F,,
as shown by lines C0O and T40 in Fig. 5.15. This is mainly due to the benefits obtained
from increasing pressure.

Axial loads both in compression and tension have a detrimental effect on the
wrinkling strain of a pressurized pipe segment (see lines M and H in Fig. 5.16). The
reason for this is demonstrated by the stress distributions over the cross-section in Fig.
5.18, where the conditions for initial yielding of the extreme compressive fiber are shown
for pipe segments with high pressure levels. The division between the buckling strip and
the supporting strip depends on the stiffness distribution which is, in turn determined by
the stress distribution. Since wrinkling initiates after initial yielding of the extreme
compressive fiber, the yielding zone must penetrate toward the tension side of the pipe
segment. The penetration of the yielding zone is limited for the Specimens PHCO00 and
PHT40 while it may be much more significant for Specimen PHC40 because of its almost
uniform distribution of stress. As a result, the restraint provided by the supporting strip
with regard to Specimen PHCA40 is greatly reduced, which explains the trend observed in
Fig. 5.16 that wrinkling strain for pressurized pipe segments decreases as the compressive
axial load increases. When tensile axial load is applied, the supporting strip is weakened by
the fact that substantial material on the tension side may be yielding as shown for Specimen
PHT40 in Fig. 5.18. Effects on wrinkling strain similar to those for compressive axial load
are, therefore, introduced by tensile axial load.

The wrinkling strain of empty pipe segments, however, is found to increase as the



compressive axial load increases (see line L in Fig. 5.16). As shown in Fig. 5.19, the
supporting strip is not affected appreciably by the applied compressive axial load.
Consequently, the detrimental effect of compressive axial load is minimized for empty pipe
segments. On the other hand, the moment required to produce the initial yielding is
significantly reduced by the applied axial load. As a result, the ovalization and the force to
cause it are reduced, which is believed to be the factor responsible for the gain in wrinkling

strain.

As discussed here, internal pressure, axial load and bending moment interact and
their integrated effects determine initiation of wrinkling. Since the discussion and
conclusions are based on solutions for pipe segments with a particular geometry and
material property, direct extension to other pipe segments has not been attempted.
However, the approach to evaluate wrinkling strain, and some typical characteristics have
been demonstrated by studies in this section, and a mechanism providing a heuristic
explanation for the behavioral trends due to the variation in loading conditions has been

explored and discussed.

5.5 WRINKLING STRAIN FOR AXISYMMETRICALLY BUCKLED
SPECIMENS

Pipe segments subjected to axially symmetric loads buckle in an axisymmetric
buckling mode for the geometries commonly used in the pipeline industry. While the fact
that pipelines experience combined loading conditions in the field is recognized, the
buckling strain for specimens buckled in axisymmetric mode has played an important role
for the designers and operators of pipelines. This is because the axisymmetric buckling
strain of a pipe segment has been used as an approximation for the buckling strain of the
same pipe segment subjected to combined loading. The assumption for this is that the
axisymmetric buckling strain is not larger than the buckling strain under combined loading
condition. This assumption has been used by Workman (1981), Popov (1973) and Row et.
al. (1983a).

In the following, wrinkling analyses are carried out for several specimens subjected
to axisymmetric load. The wrinkling strains obtained from these analyses are then
compared with those of similar specimens subjected to bending moment.

§.5.1 Wrinkling Strains under Axisymmetrically Loading

For the purpose of comparison with specimens subjected to bending moment, a
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series of axisymmetric specimens are selected. There are six specimens in this series and
their designations consist of two characters and followed by a three-digit number as shown
in Table 5.3. The first character is A which represents the series for axisymmetrically
loaded pipe segments. The second character is one of L, M and H to indicate the levels of
applied pressure. The three-digit number represents the D/t ratio of pipe segment. The
geometry, material property and loading conditions are given in Table 5.3. Specimens
ALOQ78, ALO61 and AL046 are intended to compare directly with Specimens DTR20,
DTR16 and DTR10, respectively, and have precisely the same physical attributes. The
group covers a range of D/t ratios from 46 to 78. Specimens AL104, AM104 and AH104
compare directly with Specimens PLC00, PMC00 and PHCOO, respectively. This group
covers the three levels of applied internal pressure. Similar to the first series, everything
except the loading conditions are the same for each pairs of specimens.

The wrinkling strains for these six specimens are listed in Table 5.3. Comparison
of wrinkling strain is shown in Figs. 5.20 and 5.21. The wrinkling strains for the pipe
segments subjected to axisymmetric load, and for those subjected to pure bending moment,
are plotted against the D/t ratio of pipe segments in Fig. 5.20 and against the levels of
applied pressure in Fig. 5.21.

5.5.2 Comparisons

Two conclusions can be obtained from the comparisons in Figs. 5.20 and 5.21.
For unpressurized pipe segments, the wrinkling strain for axisymmetric buckling is larger
than wrinkling strain of the same pipe segment buckled under flexural deformation. This
statement appears valid for the full range of D/t ratio (from 45 to 104) shown in Fig. 5.20.
For pressurized pipe segments, the conclusion is opposite, i.e. the wrinkling strain of
axisymmetric buckling is smaller than that of the same pipe segment buckled under pure
flexural deformation (Fig. 5.21) except for low pressures. This statement appears valid for
pressures that force the pipe segment to buckle in the bulging buckling mode. The
wrinkling strain under bending moment can be 2 to 3 times as large as the one under
axisymmetric load.

Two different reasons are believed to be responsible for the opposite conclusions
obtained. For the empty pipe segments, the reason is the difference in buckling mode. Pipe
segments loaded axisymmetrically buckle in the axisymmetric mode and this is true for all
D/t ratios in the concerned range. However, the same pipe segments buckle in the diamond
mode if they are subject to bending moment. The buckling in the diamond buckling mode



initiates earlier because of the ovalization and its driving force introduced by flexural
deformation. The pressurized pipe segments buckle in a bulging buckling mode which will
not be unfavorably affected by the ovalization. The restraint provided by the supporting
strip helps to delay the initiation of wrinkling. As a result, wrinkling strain under flexural
deformation is larger than the one in axisymmetric deformation.

The results of this study indicate that the design assumption, namely, that the
buckling strain for general loading may be approximated by that for axisymmetric loading,
discussed in the beginning of Sect. 5.5, is inaccurate. The assumption is not conservative
for empty pipe segments, and can be overly conservative for pressurized pipe segments.
Consequently, analyses based on this assumption may be misleading.
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Fig. 5.18 Stress Distributions at the Initial Yielding for Pressurized Pipe Segments

207



208

Buckling Buckling
i Strip -G Strip -G
<—J : -4-J .
! T
Supqurung Supporting
twp Sptrip
Y X Z\
oy 020,
Specimen PLC00 Specimen PLC40
F=0 F=-40%F,
p=0 p=0
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CHAPTER 6 FORMULATION OF PIPELINE-BEAM ELEMENT

Deformation analysis of pipelines subjected to imposed deformation is based on
two types of model, the shell model and the beam model, as discussed in Sect. 1.3. The
shell model and relevant solution techniques have been presented in Chapters 2 and 3. The
results of analysis based on the shell model with respect to buckling and postbuckling
behavior are summarized in Chapters 4 and 5, where the shell model analysis is essentially
completed. Having done that, beam model analysis, which is another important aspect of
the approach for deformation analysis, becomes the topic in the current and subsequent
chapters. The beam model is designed to predict the overall behavior of pipelines subjected
to imposed deformation. The important factors to be considered are pipeline-soil
interaction, and the distribution and redistribution of deformation and internal forces. The
beam model is established based on the pipeline-beam element developed in this chapter,
which is intended to account for the deformation and loading characteristics of pipelines.
The formulation of the pipeline-beam element is presented. This includes : the fundamental
assumptions; the strain-displacement relations; the constitutive relations for both RMDI and
ISPDR techniques (refer to Sect. 1.3.2); pipeline-soil interaction; the virtual work equation
and its discretization; and, discussion on the generation procedure for determining SPD
relations and their size dependency. The development of the program Analysis of Buried
Pipelines (ABP) and the verification of the ISPDR technique are also described.

6.1 FUNDAMENTAL ASSUMPTIONS

In order to analyze pipeline response with or without the effect of local shell
buckling, two solution techniques have been employed with the pipeline-beam element.
These are the Reduced Modulus Direct Integration (RMDI) and Integration of Stiffness-
Property-Deformation Relations (ISPDR) techniques as discussed in Sect. 1.3.2. Each of
these solution techniques is based on its own assumptions which are summarized in the
following.

For the RMDI technique, the following assumptions are made to develop the
mathematical model. (1) Plane sections of the pipe remain plane and the pipe cross sections
remain perfectly circular. (2) Shear stresses and radial stress are insignificant, and therefore
can be ignored. Longitudinal and hoop stresses are accounted for. (3) The pipe yields
according to the von Mises criterion. Following yield, plastic flow takes place according to
the normality rule in plasticity theory. (4) Strain hardening is represented by a mixed strain



hardening rule with an appropriate choice of ratio between isotropic hardening and
kinematic hardening. (5) Soil support can be modelled by discrete inelastic soil springs. (6)
All the active deformations and stress distributions are symmetric about the vertical plane.
These assumptions are based on the following interpretation of pipeline behavior.

The RMDI technique is intended for analysis excluding the effects of local
buckling, and therefore, the first assumption is, at least, approximately justified, because
the cross sectional distortion and warping result mainly from local buckling. A pipeline is a
flexible line structure where axial and flexural deformations are dominant. Consequently,
shear stresses have only minor influence on pipeline response. Since the pipe wall
thickness is significantly smaller than pipe diameter and length, the radial stress is
negligible compared to the longitudinal and hoop stresses. The second assumption is based
on these facts. The third and fourth assumptions define the plasticity theory employed for
analysis. Although many other theories are available, this theory is the one most commonly
used for metal materials such as pipe steel. The soil support assumption basically assumes
the ground can be divided into slices and the reaction of each slice of soil can be
represented by soil springs such that interaction between slices can be ignored.This is the
classical Winkler foundation type of assumption. It is not accurate in the sense that the
interactions between slices of soil may sometimes be important. Nevertheless, considering
the low accuracy of the available soil properties and the fact that the pipeline behavior is the
focus of this project, this assumption should be acceptable.

For the ISPDR technique, stiffness properties of the cross-sections are defined by
direct input of Stiffness-Property-Deformation (SPD) relations which are established from
the shell model analysis of pipeline segments. The internal forces are directly related to the
axial strains and curvatures by stiffness coefficients of the cross-sections which are
determined by the stiffness properties. Consequently, the stress and strain distributions
over the cross-section are no longer needed and neither are the assumptions (1) to (4) of the
RMDI technique. However, some assumptions with respect to the generation and
application of SPD relations are necessary to establish the constitutive relation for ISPDR
technique. These assumptions will be discussed in the appropriate sections after the SPD
relations are described. The definition of stiffness properties and stiffness coefficients are
presented in Sect. 6.4.

6.2 STRAIN-DISPLACEMENT RELATIONS

The global and local coordinate systems for the pipe model are defined in Fig. 6.1,
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where the x-axis of the local coordinate system passes through the centroidal axis of the
cross-section, and the x-y plane defines the plane of bending deformation. The
displacements u and v are in the directions of the x-axis and y-axis in the local coordinate
system, respectively. The global coordinate system is denoted by X and ¥, and all quantities
defined in the global coordinate system are denoted similarly, with a tilde overscript.

Let (uw and (vo be the displacement increments at the centroidal axis of the cross-
section relative to the reference configuration T (see Fig.2.3), the displacement
components of any point on the cross-section can be expressed as in the following equation
by using the first assumption in Sect. 6.1

d( Vo

dtx

tV = Vo (6.1b)

U to - y (6.1a)

The total displacements accumulated in the global coordinate system are then

A = W 4 & (6.2a)

t+Aly = 4 & (6.2b)

and on the centroidal axis, particularly, they become

A = W o+ (6.3a)
AT = %o + W (6.3b)

where the quantities with left superscript are the total values at the time indicated by the
superscript, and the quantities without super-script are the increments. This notation,
defined by Bathe (1982), will be generally applied in the following sections unless stated
otherwise. The increments (i and (Vo are available from the solution of equilibrium
equations, and the increments in the local coordinate system (uo and vo are obtained by

W = cos ‘o + sin ‘o Vo (6.4a)
tVo = -sin'o o + cos'a Vo (6.4b)

where



t~
‘o = arctan (22 (6.5)
d'%

is the angle between the global X-axis and local x-axis.

The only independent non-zero component of the strain is axial strain in the x-
direction. The incremental form of the expression for this strain component can be derived
from the general expression for three-dimensional strain tensor (Bathe, 1982) as

“YEx = Ex + iEx (6.6)
94w 1y, dvy
en= S0 4 Lol diy 6.7)

where the left subscripts indicate that the configuration T is taken as the reference
configuration. Substituting Egs. (6.1) and (6.2) into Eq. (6.7), the strain component can be
expressed in term of displacement components of the centroidal axis as

-dtUO_ dthO 1 dtuO_ dth02 d (Voy2
“=ax Vae T2 Ve e (6.8)

Let us define the incremental linear axial strain at the centroidal axis and the incremental

linear curvature as
_ dae
&k = ﬁ (6.9)
,¢L = d_zt_".‘.’. (6.10)
dx2

and the incremental rotation of the cross-section as

d v
o = d:xo 6.11)

Substituting the definitions (6.9), (6.10) and (6.11) into Eq. (6.8) and ignoring the second
order term of incremental linear curvature, the strain component becomes

€x = € + (6.12)

where
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el = e -y (6.13)

e = 2 ((eh? - 2y ek + 8%) (6.14)

which can also be written as

;eﬁ“- = &t - y;¢NL (6.15)

by using the definitions

e = %((&)2 + 8% (6.16)
o = &bt (6.17)

Substituting Egs. (6.13) and (6.15) into Eq. (6.12), yields

€ = 1& - yub (6.18)
where & = & + &L 6.19)
=0+ (6.20)

are the total increments of axial strain and curvature.
6.3 CONSTITUTIVE RELATIONS FOR RMDI TECHNIQUE

The fundamental difference between the RMDI technique and the ISPDR technique
in the beam model analysis of pipelines is the constitutive relation. In the RMDI technique,
it is essentially correct to assume plane sections remain plane and circular because the
effects of local buckling are not accounted for. Consequently, the internal forces of the
pipeline-beam element are only dependent on the distribution of the longitudinal stresses.
The internal forces can be defined as

'F = I'Sx dA 6.21)

™ = - f 'Sy y dA (6.22)



where 'F and 'M are axial force and bending moment, respectively, and y is the coordinate
in the bending plane. The constitutive relation can be specified on the stress-strain level
where the stresses can be precisely evaluated incrementally from the strain increment.

In the ISPDR technique, the effects of local buckling are one of the major concerns
to be considered. Because of the cross-sectional distortion introduced by local buckling, the
internal forces depend on the current configuration of the deformed cross-section of the
pipe in addition to the stress distribution over the cross-section. Since the beam-type model
is not able to model cross-sectional distortion, the constitutive relation on the stress-strain
level is not sufficient to define increments of internal forces. As an alternative, a direct
relation between internal forces and deformations is employed. That is, because the
distribution of stress and strain over the cross-section can no longer be evaluated from the
beam model, the deformation of the cross-section can be represented by the axial strain
increment at the centroidal axis, «€g, and the curvature increment, ©. The constitutive
relation for the internal force-reference axis deformation can be expressed in differential

form as
oF = OF giey + O g (6.23)
d'gg 30
oM = Mg, + My (6.24)
d'Eo 26

'F JF & oM
whe ! —at—, - -atM and —— are the cross-sectional stiffness coefficients.
deo 3¢ de0 I

In the remainder of Sect. 6.3, discussions are focused on the constitutive relation
for the RMDI technique, which is the stress-strain relation. The derivation of a specialized
stress-strain relation for pipe, which has special stress and strain states, is first presented.
The procedure for the evaluation of stress increments is then outlined. The generalized

stress-generalized strain constitutive relation for the ISPDR technique is discussed in detail
in Sect. 6.4.

6.3.1 Stress-Strain Relation

The stress-strain relationship for a pipeline-beam element is a uniaxial stress-strain
relationship in the local coordinate system. Because the internal pressure, which is usually
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constant, is an essential loading condition of pipeline, the constant circumferential stress
introduced by the internal pressure must be fully accounted for in the stress-strain
relationship. The use of plasticity theory based on von Mises yield criteria and the
normality rule implies that the incremental plastic strain components should exist in three
directions, while the incremental stress is in the x-direction only. Among the incremental
plastic strain components, the component in the x-direction is independent and the other
two can be related to it by the constraint conditions that the incremental stresses in these
directions are zero. Therefore, the relationship between the independent stress increment
and the independent strain increment can still be considered as a special type of uniaxial
stress-strain relationship.

The general elastic-plastic stress-strain relation has been defined in Egs. (2.59) and
(2.62). If shear stresses and corresponding shear strains are neglected from these equations
as assumed in Sect. 6.1 and the incremental stress-strain relation is expressed in matrix
form, it becomes

Se AR el ‘Pgo 'Po; 'Pgx o
{ tSr }_ AAA {ter} - tpre tP“- tPrx \(8,- (625)

X AAA & Pro 'Pxr 'Pxx (t-:x
where b= (ITEv;'l(-l‘i;zv) (6.26a)
A= (Tﬁf'zT) (6.26b)
tp_ = 3G 'Smm San Withm,n=8,r, x (6.26¢)

mn —
(I+4H/(3 G) ) 'S?
no summation for repeated indices

and the subscripts 6 and r represent the hoop and radial directions. The deviator stress
tensor is defined as

ts; = 'Sy - %‘tskk 3y (6.27)
By the assumption of zero radial stress, the normal components of deviator siress tensor
becomes

tsg = %(2'39-'8, ) (6.28a)



217

tsr =

('Sg+'Sx) (6.28b)

ts, = =(2'Sx-'Sy) (6.28¢)
where single subscript is used because only normal components are considered. The hoop
stress 'Sg can be calculated as
tSg = 22_21 P (6.29)
t

with D and t as the outside diameter and wall thickness of the pipeline, and p as the internal
pressure.

The stress increments in the radial and hoop directions are zero because the radial
stress is assumed to be zero at all times and the hoop stress is constant due to the constant
internal operating pressure of the pipeline. Applying these conditions to the first two
equations in Eg. (6.25), they become

RN Bl o R g R B T

Solving Eq. (30), gives

{‘8"} [Cox | tex 6.31
\tCar | ©30

where

'Coy A -'Pgg  A-'P|" [A-'Pey
°}=-[ 68 9'}{ "} (6.32)

‘Crx A-Py A-Po] \A-'Py

The third equation of Eq. (6.25) gives the stress-strain relation between the independent
stress and strain increments which can be expressed as

Sy = 'CFP g, (6.33)

where 'CEP is the elastic-plastic modulus defined as

tCEP = 'Cq. (A-'Pyg) + 'Crx (A-'Pxy) + A'- Py (6.34)

It can be shown that Eq. (6.33) specializes to the elastic stress-strain relation for elastic
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behavior as

th = Etex (6.35)

It should be pointed out that all the stress and strain components and stress-strain relations
are defined in the local coordinate system.

The effective stress and incremental effective plastic strain can be expressed by the
following, which can be derived from the general expressions in Egs. (2.43) and (2.48).

'S = A/2 ('S5 + ST+ (153155)?) (6.36)

& = 4/2((Eh2+ @D+ (€D?) ©6.37)

where the incremental plastic strain components are

I:SS 1 v Pee Por 'Pox ’ ‘Cox
lel]’) = é['\’ 1 -V} tP;-e Py '"Prx l ‘Crx 1'3" (6.38)
]tel; vy 1 thO tPXl’ tPXX 1

The accumulated effective plastic strain is used to evaluate the current yield stress and
tangent modulus from the effective stress-effective strain curve.

6.3.2 Solution Procedure to Evaluate the Stress Increment

In this section the solution procedure to evaluate the incremental stress for a given
incremental strain is discussed. Assuming the solution at time t is known, i.e. the stresses
'Sy, strains ‘g, teP and displacements tu, v are known. The increments of displacements,
and consequently the increments of strains are also known. The increments in stress and
effective plastic strain are to be determined.

It should be pointed out that the incremental strain should always be evaluated with
respect to the last equilibrium configuration in order to exclude the effects of false path
which might be introduced by the equilibrium iteration process.

The solution procedure is based on a sub-increment technique (Chen and Han,
1988) which divides the strain increment into NSUB sub-increments. The number NSUB
should be large enough to obtain the required precision. If the acceptable size for sub-
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increments of strain is set to be 10 microstrain, the number NSUB can be estimated as

= & 6.39
NSUB = 500001 6.39)

For each sub-increment of strain d,el, the following steps are carried out to evaluate the
incremental stress.

(1) Predict the sub-increment of stress based on elastic behavior in Eq. (6.35) and the total
stress as

tST = tsi-l + Edek
where the superscript T indicates a trial value.
(2) Evaluate the effective stress ‘ST by Eq. (6.36).
(3) Check the yield condition against the current yield strength, ‘Sy.

@) If £('ST, 'Sy) < 0, then update the stress !Si = tSTand go to
step (1) for next sub-increment of strain.

(i) I £(ST, 'Sy) > 0, then go to step (4)

(4) Determine the value of Q which defines the elastic fraction of this sub-increment of
strain as (1-Q) 9€x and elastic-plastic fraction as Q dex. the factor Q is equal to 1 for
complete elastic-plastic sub-increment and 0 for complete elastic sub-increment of strain.
Update the stress for elastic fraction according to Eq. (6.35) and go to next step for elastic-
plastic fraction.

(5) Calculate the stress increment by Eq. (6.33) based on the current tangent modulus and
stress state, and update the total stress to obtain 'S as

t§i = 1Skl 4 (1-Q) E deek + Q'CEP diel (6.40)

Go to next step.

(6) Calculate the effective plastic strain increment by Eq. (6.37) and update the total
effective plastic strain to obtain 'e". The calculation for the i* sub-increment of strain is
finished here. Go to step (1) for the next sub-increment of strain.
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The internal forces, 'F and 'M, on the cross-section are integrated from the stress
state which is evaluated by the above procedure. The number of the integration points for
the integration process over the cross-section can be specified by the user of the program
ABP. A number of 20 for a half of the cross-section is recommended. The element vector
of internal force is integrated along the length of the element, and it is further assembled
into the global equilibrating force vector. From the load vector and the equilibrating force
vector, the unbalanced force vector can be determined and used to evaluate the next
increment of the displacements and strains.

6.4 CONSTITUTIVE RELATION FOR ISPDR TECHNIQUE

The basis for the generalized constitutive relations for the ISPDR technique has
been defined in terms of the relation between internal forces and strains in Egs. (6.23) and
(6.24). These are rewritten here as

d'F = 'K, d'eo + ‘K3 d'¢ (6.41a)
dM = 'K; d'eg + 'K, d'¢ (6.41b)
where K, = OF (6.42)
d's
oM
'K; = T (6.43)
¢
JdF oM
K3 = R . te 'K (6.44)
d¢ d'eo

In Eq. (6.44), ‘e is the distance from the elastic stiffness centroid to the tangential stiffness
centroid of the cross-section of the current configuration. 'K;, 'K and 'K 3 are the stiffness
coefficients of the cross-section. The relations defined in Eq. (6.44) will be proved in Sect.
6.4.5 under the condition of plane cross-sections remaining plane.

To fully define the generalized constitutive relation represented by Eq. (6.41), the
evaluation of cross-sectional stiffness coefficients 'K, 'K, and ‘K3 needs to be detailed.
The procedure for this evaluation has two major steps. One is to develop a generation
procedure for stiffness-property-deformation (SPD) relations from the shell analysis



because the shell model analysis can’t directly provide the above cross-sectional stiffness
coefficients. The second step is to input SPD relations into the beam model and determine
the cross-sectional stiffness coefficients of Egs (6.41).

This section includes discussions on definition, application and generation of SPD
relations in Sects. 6.4.1, 6.4.2, and 6.4.3, respectively. It also deals with relevant
problems, such as, size dependence of SPD relations Sect. 6.4.4. As a supplement, the
derivation of Eq. (6.44) is also demonstrated in Sect. 6.4.5.

6.4.1 Definition of SPD Relations

The SPD relations are a set of relations established from shell model analysis which
can be used to define the cross-sectional stiffness coefficients 'K;, 'Kz and ‘K3 in Egs.
(6.42) to (6.44). One of the requirements on SPD relations, of course, is that cross-
sectional stiffness coefficients can be expressed in terms of the quantities defined as SPD
relations. However, a more important feature is that they must be able to be conveniently
derivable from a simple shell model analysis because a very significant portion of the
computational effort will be consumed by the generation of SPD relations. Considering the
nature of the approximations associated with this solution procedure, it is acceptable to
evaluate 'K, 'K; and 'K3 approximately. On the other hand, it is almost impossible to
evaluate them precisely.

In order to limit each of the SPD relations to a simple one dimensional form, one
primary independent variable must be selected. The state of the pipeline in terms of its
internal forces and strains depends on its geometric properties, such as diameter and
thickness, and its material properties. In addition, it also depends on the loading
conditions, where a typical load combination is bending moment, axial force and internal
pressure, and on loading history. Since geometric and material properties are specified for a
given design of pipeline, the loading condition and history are the variables. Among the
loads, internal pressure is usually kept constant during operation. Axial load and
corresponding axial strain mainly come from temperature effects and vary in a relatively
narrow range. Only bending moment and its corresponding curvature vary extensively,
depending on the externally applied loads and imposed deformations. Consequently,
considering their relative importance, moment and curvature are taken as the primary
variables while axial force and axial strain may be considered as secondary variables.

In the pair of primary variables, and in the pair of secondary variables, only one
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variable is independent and the other is dependent because of the constitutive relations
defined in Eq. (6.41). For each pair, either of them can be taken as the independent
variable, and the state of the pipeline in terms of the internal forces and strains is completely
defined if independent variable associated with each pair is defined. Considering the nature
of deformation analysis and the fact that flexural deformation is the principal deformation
pattern, curvature is taken as the primary independent variable. The SPD relations are then
defined in the form of relations between each of required quantities and the curvature. In
order to span the two-dimensional domain in terms of primary and secondary independent
variables, several sets of one-dimensional relations need to be developed with different
constant values of the secondary independent variable. The axial force is taken as the
secondary independent variable because it is easier to keep constant than the axial strain in
the simple shell analysis.

The stiffness properties required to define cross-sectional stiffness coefficients are
the following five, which are defined in this way because they are derivable from the shell
model analyses of a shell segment subjected to constant internal pressure and axial , and to
variable moment. These analyses have been presented in Ch. 4.

(1) Property 1 - Flexural stiffness, 'K}, : The flexural stiffness is defined as

t
Ky = IM with 'F = constant (6.45)

3'e
(2) Property 2 - Axial stiffness, 'K, : The axial stiffness is defined as

t
Ky = SE  yith d'M ='C ¥, d'F (6.46)
3'80
(3) Property 3 - Location of the elastic stiffness centroid of the cross-section, W, : The
location of the elastic stiffness centroid for a deformable cross-section at any cross-section

along the pipe, relative to its initial position, may be defined as

(6.47)

(4) Property 4 - Location of the tangent stiffness centroid of the cross-section, 'Vs : The
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tangent stiffness centroid of the cross-section is defined as the centroid of the transformed
area (Beer and Johnston, 1985) of the cross-section. The transformed area consist of the
geometric area for which the wall thickness is adjusted in proportion to the incremental
tangent modulus in the wall. This quantity is defined for the deformed cross-section as

ty'EdA

t= A

Ys = Y/
j E dA (6.48)

with ‘E as the current tangent modulus.

(5) Property 5 - Amplification factor, 'C : This factor relates the relative magnitude of the
increment in secondary moment introduced by incremental deflection d'V, to that arising
from the incremental axial force d'F. The secondary moment, which has two components,

can be expressed as
(d*Msecondary ='F d'Ve + V. d'F = 'C W, d'F (6.492)
where the amplification factor, ‘C, is defined as

'F d'v,
V. d'F

'C = (6.49b)

It should be noted that this factor is associated with the definition of property 2.

(6) Definition : The SPD relations consist of relations between the five stiffness properties
identified above and the curvature. These properties are evaluated for each value of a set of
constant axial forces which covers the possible range of the axial force for the problem

under consideration.
6.4.2 Application of SPD Relations

The SPD relations defined in the previous section are specially designed to be used
as constitutive relations for the ISPDR technique where the effects of local buckling can be
approximately accounted for in the beam model of pipelines. In this section, the
expressions for the cross-sectional stiffness coefficients defined in Egs. (6.42) to (6.44), in
terms of the cross-sectional stiffness properties defined in Egs. (6.45) to (6.49), are
presented.
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From the definitions, the distance between elastic and tangent stiffness centroids,
'e, can be expressed as

e = 1, - ', (6.50)

Applying the constraint of constant axial force in Eq. (6.45), to Eq. (6.41a), and
considering Eq.(6.44), Eq. (6.41a) becomes

0 = 'K, d'eo + 'K, d'd (6.51a)

From Eq. (6.51a), the increment of axial strain can be expressed as

deg = - ted'd (6.51b)

Substituting Eq. (6.51b) into Eq. (6.41b), this latter equation becomes
d'M = (-te? 'K, +'K3) d'¢ (6.52)
Comparing Eq. (6.52) with the definition in Eq. (6.45), the following relation is obtained
'Ky = -te2'K; +'K; (6.53)

Applying the constraint in Eq. (6.46), to Eq. (6.41b), and considering Eq. (6.44),
Eq. (6.41b) becomes

'C WV, d'F = e 'K; d'gp + 'K, d'o (6.54a)

Solving Eq. (6.54a) for d'¢ results in

do = €% dF - e K d'e
th

(6.54b)

Substituting Eq. (6.54b) into Eq. (6.41a) and making some algebraic rearrangements, Eq.
(6.41a) may be written as
dF _ 'Ki'K; - te?2'K?
dsy 'K; - e'CW. 'K,

(6.55)

Comparing Eq. (6.55) with the definition in Eq. (6.46), yields



K, K, - te2 tK2
Ky = —L—2——1L (6.56)
K, - tetC v, 'K,

Solving Egs. (6.53) and (6.56) for *K; and 'K results in

'K, 'K
K, = a b
tKp - te2 'K, + te 'C W, 'K, (6.57a)
tK2 +te tC 7. 'K, 1K
e = (= et (6.57b)

*Kp - te2 'K, + te 'C W 'Ka

By Eqgs. (6.57) and (6.44), the cross-sectional stiffness coefficients are fully
defined in terms of the cross-sectional stiffness properties. Using the incremental notation
of Sect. 6.2 for displacement increments, Eq. (6.41) can now be written as

F = Ki €0 + Kz (6.58a)
M = Kz €0 + 'Kz ¢ (6.58b)

which is the incremental constitutive relation for the ISPDR technique.
6.4.3 Generation of SPD Relations

The generation of SPD relations is carried out by a procedure of running the shell
model analysis and abstracting the information necessary to construct SPD relations. For
each value of constant axial force, there are five relations that need to be constructed, and
the values of the constant axial force should be selected to be able to cover the range of
axial force which may possibly occur in the operating line. The following discussions will
describe the generation procedure for a set of SPD relations corresponding to a given value
of constant axial force.

A three-dimensional shell model of a pipeline segment is used in the analysis, as
discussed in Sect. 4.2 and defined in Figs. 4.1 and 4.6. The model is used to simulate a
pipeline segment simply supported at both ends and subjected to constant axial load,
constant internal pressure, and incremental moment, as shown in Fig. 6.2. A particular
segment which contains the most severe local buckling is chosen and the average response
of this segment is used to construct the SPD relations. In principle this selected segment
could be located anywhere on the pipeline segment, as indicated in Fig. 4.6a, although it is
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more likely to be located in the central part than at the ends. The geometric and material
properties for the shell model are the same as those of the pipeline to be analyzed in the
beam model.

Two types of run of the shell model analysis, which can be called the primary run
and the secondary run, respectively, are necessary to define the five SPD relations. The
primary run starts from the initial state, and proceeds with an incremental solution at proper
step-sizes subjected to constant axial load, constant internal pressure and incremental
bending moment. The primary run is stopped when the deformation of the pipeline
becomes large enough so that the pipeline is obviously no longer operational. The
secondary runs start from any equilibrium state on the path of the primary run, and proceed
with one step incremental solutions of relatively small step-size consistent with constant
applied moment, constant internal pressure and incremental axial load. The secondary runs
are stopped after one step.

The primary run provides the information to construct three SPD relations at the
specified axial force. These are: the moment-curvature relation which defines the flexural
stiffness, *Kj of Eq. (6.45); the 'V -curvature relation defining the location of the elastic
stiffness centroid by Eq. (6.47); and the ‘¥s-curvature relation defining the location of the
tangent stiffness centroid, as given by Eq. (6.48). A series of secondary runs along the
path of the primary run at proper intervals provides the information to construct two SPD
relations at the specified axial force. These are the axial stiffness ‘K,-curvature relation
defining the axial stiffness of Eq. (6.46), and the 'C-curvature relation defining the
amplification factor of Eq. (6.49). Plots of these relationships will be given subsequently,
but typical of these plots are the moment-curvature curves in Figs. 4.7 to 4.9.
Nevertheless, the reader may wish to refer at this time to the sets of properties in Figs. 6.22
to 6.26, which illustrate all five of the properties.

The moment-curvature relation comes naturally out of the primary run except that
moment and curvature are defined as the average moment and average curvature on the
buckling segment. The flexural stiffness, 'Ky is the slope of moment-curvature curve
according to definition in Eq. (6.45), since the axial force is constant. The location of the
elastic stiffness centroid, 'V, and the location of the tangent stiffness centroid, 'Vs, are
obtained by integration over the cross-section according to the definition in Eqgs. (6.47) and
(6.48). The integration should be carried out over several cross-sections and their average
is used to define SPD relations for the buckling segment.



The secondary runs start at a given curvature and axial load, with an axial load
increment. This increment is, in general, tensile due to the fact that the axial force in the
pipeline increases as the imposed differential settlement increases. The axial stiffness K,
can be obtained according to the definition in Eq. (6.46) assuming that the condition in Eq.
(6.46) is satisfied which is verified in the following.

In the shell model of the pipeline shown in Fig. 6.2, the differential moment at any
section has three components, and may be expressed as

d'M = (d'M), + 'F d'v; + 'V d'F (6.59)

where (d*M); is increment of the applied moment, 'F and d'F are the compressive axial load
and its increment respectively. In the secondary run, applied moment is kept constant, so
Eq. (6.59) becomes

d'M = 'C W d'F (6.60)

where 'C is defined in Eq. (6.49). Eq. (6.60) is obviously consistent with the condition in
Eq. (6.46). The amplification factor 'C can be obtained from the secondary run, because
the increments of 'V and 'F are available from this secondary run.

6.4.4 Size Dependence of SPD Relations

From the generation procedure of SPD relations, it is obvious that SPD relations are
dependent on the length of the buckling segment which contains the principal buckle. In
the following this will be referred as the principal wavelength. The size dependence is
implicit in the use of average curvature, average moment, average axial stiffness and
average locations of the elastic and tangent stiffness centroids. More significant localization
is expected if a smaller principal wavelength is used. On the other hand, the effects of local
buckling are not properly represented by SPD relations if a larger principal wavelength is
used.

To properly account for size dependence, the SPD relations must be applied
properly. The main idea is to apply SPD relations in a manner similar to that in which they
are generated. First of all, there are two regions in the SPD relations to be identified. These
are the prebuckling region and the postbuckling region. In the prebuckling region, the
effects of local buckling are not present and therefore the curvature and moment are
uniform except for the secondary effects from axial load eccentricity which is not
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significant. Consequently, the effect of size dependence is negligible.

In the postbuckling region, significant non-uniformity is introduced by local
buckling, and strong size dependence is therefore expected. The size dependence of the
curvature is illustrated by Figs. 4.23 to 4.25. To account for the size effect of SPD
relations in their application procedure, the size of the pipeline-beam elements is set to equal
the principal wavelength in the regions where buckling is expected to occur. The average
deformation quantities defined over the buckling segment are identified as local quantities.
Larger sized elements may be used in the region where buckling is not expected to occur.
This reduces the number of elements without impairment of accuracy because the size
effects are negligible in these regions. In addition, the average curvature of the pipeline-
beam element is used to evaluate the flexural and axial stiffness, locations of elastic and
tangent stiffness centroids, and amplification factor through SPD relations.

The average curvature in an element can be defined by integration along the length

j 'q; dtx
' = JL (6.61)

¢ =F—0
dtx
‘L

As a result, the SPD relations to be used as constitutive relations relate average increments
of internal forces and strains over the length of an element where length is chosen as the
principle wavelength.

6.4.5 Derivation of Equation (6.44)

Equation (6.44), which expresses coupling between stiffness coefficients in terms
of the axial stiffness coefficient 'K, and the distance between the elastic and tangent
stiffness centroid, ‘e, was introduced without derivation . The derivation for this equation
is presented in this section.

Two systems of deformation coordinate and their corresponding forces are shown
in Fig. 6.3. System I has the elastic stiffness centroidal axis as the reference axis. System
II has the instantaneous tangent stiffness centroidal axis as the reference axis. The
incremental axial strains are measured, and the incremental axial forces and moments are
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assumed to act, at the reference axes. In System II, the instantaneous tangent stiffness
centroidal axis becomes the uncoupled reference axis provided that the distribution of
current modulus over the cross section is unchanged when d¢ =0, de, # 0, and d¢ # O,
de, = 0. Assuming this condition is valid, Eqg. (6.44) can be proved as following.

First of all, it should be realized that the axial stiffness in System I and System II
are equal to each other, i.e.

'F 'F
2— = 2—— = 'Ky (6.62)

o'y  Od'

because both of them are the axial stiffness under the same incremental strain condition
which is a uniform axial strain increment over entire cross-section.

If the curvature increment is assumed to be zero, by Bernouli's assumption there is
a uniform axial strain increment over entire cross section. Therefore

d'es = d' (6.63)

d'F = K, d% (6.64)
In the uncoupled system, incremental forces can be expressed as

d'F = 'K, d'%; (6.65)

dM; = 0 (6.66)

Replacing the incremental axial force in Eq. (6.65) by a statically equivalent system with
the force moved to ¢ from axis s and using Eq. (6.63), the incremental moment in System I
can be expressed as

d'M = d'M; - (-d'F)te = te'Ki d's (6.67)

From Eq. (6.67) and the condition of zero incremental curvature, the following equation
can be obtained directly

M _ ek, (6.68)
o'

which is one of the equations in Eq. (6.44).
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If the incremental strain at the elastic stiffness centroid is assumed to be zero and
curvature increment is nonzero, the incremental axial strain and force in System II can be

expressed as

de = te dt¢ (6.69)
d'F = K, d'e, = te'K; d'o (6.70)

From Eq. (6.70) and the condition of d'& = 0, following equation can be directly obtained

o'F
— ="'e'K, 6.71)
d¢

which is the other one of the equations in Eq. (6.44).
6.5 PIPELINE-SOIL INTERACTION

Pipeline-soil interaction is expected to play an important role in the response of
buried pipelines, especially for pipelines in arctic environments where many external loads
are imposed through pipeline-soil interaction. The fundamental assumption for pipeline-soil
interaction models is that the effects of soil on the pipeline can be modelled by a series of
soil springs as assumed in Sect. 6.1. To establish the interaction model, the ground profile
must be described at all stages of deformation. The deformations of the soil springs can
then be determined according to the relative positions of the pipeline and the ground profile.
By using the constitutive relations of the soil springs, which describe the relation between
the spring forces and spring deformations, the reactive forces of the soil springs can be
defined. The three basic aspects of this process are discussed in following subsections.

6.5.1 Ground Profile

Ground profile here refers to the configuration of supporting soil beneath the
pipeline. This configuration depends on many factors such as differential thaw settlement,
frost heave and fault movement. In this project, focus will be concentrated on the effects of
differential thaw settlement, although the approach employed here can be extended to other
applications. Before defining the ground profile, the differential thaw settlement
configurations are examined in the following,

Two possible differential thaw settlement configuration are shown in Figs. 6.4 and



6.5 (Nyman, 1983). These represent two different mechanisms. The first is caused by a
non-uniform thaw front which may be introduced by non-uniform heat transfer. The
second is due to non-uniform thaw settlement soil properties because the presence of thaw
stable permafrost or rock. In spite of different mechanisms, the resulting ground profiles
and their effects on pipeline response are similar, and consequently, they can be treated in
the same way in analysis. The configuration of the ground profile can be divided into the
settlement zone, transition zone and stable zone along the pipeline. For long settlement
zones, the maximum pipe stresses and strains are located in the vicinity of the transition
zone. As the length of settlement zone decreases, the pipe stiffness plays a more active role
in transmitting overburden load to the transition zone, and relocates maximum pipe stresses
and strains toward the center of the settlement zone.

With respect to the ground profile, the following assumptions are introduced. The
length of settlement zone is assumed to be large enough so that the maximum stresses and
strains are located in the vicinity of the transition zone and each of the transition zones can
be analyzed independently. As a result, the analytical model includes only a transition zone
and parts of the settlement and stable zones. Soil is assumed to settle uniformly in the
settlement zone and not to settle at all in the stable zone. The length of the transition may be
relatively short. As a result, the pipeline may separate from the supporting soil in the
transition zone, and adjacent parts of the settlement and stable zones, because of the
stiffness of the pipeline. Based on these assumptions the ground profile can be described,
in principle, by straight horizontal lines in the stable and settlement zones and a curve in the
transition zone which connects the two straight lines. Three representations to define the
ground profile are introduced in the following.

The first representation is a simplification of the real ground profile and consists of
three straight lines as shown in Fig. 6.6. It can be called a stepwise ground profile and
arises naturally if the length of the transition zone of ground profile is reduced to zero. It
appears to be unrealistic. However, considering that the pipeline separates from supporting
soil in the transition zone and a part of the adjacent settlement zone, the simplification is
acceptable. The benefit of a stepwise ground profile is that only one parameter, the
differential settlement ‘3, is needed to fully describe it.

The second representation is called the smooth ground profile where the ground
transition zone is filled by a smooth curve as shown in Fig. 6.7. The shape of this curve

assumed here consists of two parts which are symmetric about a center origin, located at

the middle of the transition zone and at half the differential settlement. It is constructed for
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the conditions that the ground profile is continuous up to the second order derivative at both
ends and at the center of the transition zone. It is described, in terms of the coordinate
system of Fig. 6.6, by the following expressions

Ys=0 X<-Lm (6.72a)
t 4
Yo = 2—%; (2(Lm+so3-%) -Lg SX¥<0 (6.72b)
4
Yo = - '8 + 2—‘53; (2 (Lm-‘i()-"-%) 0<X<Lpy (6.72¢)
Yo = - '8 %> L (6.72d)

where ‘8 and L1r are the differential settlement and the half length of the transition zone.
This smooth ground profile allows the effect of the shape of the transition zone to be
considered in an approximate but simple way. It can be used to study the effect of the
length of transition zone in a systematic manner because the length of transition zone is the
only parameter apart from the differential settlement.

The last representation is a piecewise linear ground profile, where the transition is
composed of piecewise straight lines connecting the positions of points at certain locations.
When the differential settlement is increased, settlements at those points are proportionally
increased. This scheme allows any configuration to be defined and the real ground profile
to be represented as closely as possible.

6.5.2 Deformation of Soil Springs

There are three types of reaction from soil surrounding the pipeline considered by
the model. These are : support from the soil beneath the pipeline; reaction from the soil
above the pipeline; and, friction along the pipeline. They are modelled by bearing springs,
uplifting springs and longitudinal springs, respectively. The deformations of these springs
are determined according to the relative position of the pipeline and the soil. The
constitutive relations for these springs will be discussed in next section.

Both the bearing and uplifting springs are bearing type springs which can take only
compressive force. Consequently, for a pair of bearing and uplifting springs acting on the
same cross-section of a pipeline, only one of them is active at anytime. To identify the



active and inactive springs, the concept of gap width is introduced and denoted as 'd, as
shown in Fig. 6.7. The gap width for a cross-section is defined as the separation distance
between the pipeline and ground profile in the direction normal to the current pipeline
configuration at the cross-section. It can be evaluated for each type of ground profile as in

the following.

For the stepwise ground profile of Fig. 6.6, and any given cross-section on the
pipeline (‘Xo, 'Jo), the corresponding point on the ground profile with the same X-coordinate

is (%, -tﬁ) in the settlement zone or (X, 0) in the stable zone. The vertical distance is then

y =50+ 8 if %>0

tdy = o if %<0

With the help of Fig. 6.6, the gap width can be expressed as

ldy

cos P

4 = if dy >0, and, 'dytan f<'% or ‘% <0

td = R if td, >0, and, 0<'%< 'dy tan P

sin B

'd=0 if 'dy<0
where B is the angle between the normal direction of pipeline and y-axis.

For the smooth ground profile of Fig. 6.7, Eq. (6.73) becomes

tdy =% - Vo

(6.73a)

(6.73b)

(6.74a)

(6.74b)

(6.74¢)

(6.75)

where 'V is the undeformed ground configuration evaluated through Eq. (6.72) by

substituting '%,. The gap width can be expressed as

g = dy sin 'y if 'dy >0

sin P cosy + siny cos

'd =0 if 'dy <0

where angles B and Y are defined in Fig. 6.7.

(6.76a)

(6.76b)
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The angle B can be easily evaluated as long as the current position of the pipeline is
given. In order to evaluate angle Y, the intersection of the normal line of the pipeline at the
given cross-section and ground profile, point S in Fig. 6.7, has to be determined. This can
be solved numerically when the normal direction of pipeline and ground profile curve in
Eq. (6.72) are available. Eq. (6.76) is also applicable to piecewise ground profile as long
as the angles are properly evaluated.

With the gap width defined and evaluated, the active spring can be easily identified
between bearing spring and uplift spring. The bearing spring is active when gap width is
equal to zero and the uplift spring is active when gap width is greater than zero.

The incremental deformation of the springs are evaluated in the local coordinate

system as
ABs = -Vo if d=0 (6.77a)
Aps = 0 if d>0 (6.77b)
Ays = 0 if d=0 (6.78a)
Ays = -1vo if 'dd>0 (6.78b)
ALs = - o (6.79)

where Aps, :Ays and Aps are deformation increments for bearing, uplifting and
longitudinal springs, respectively, and 'd is defined in Eqs. (6.74) or (6.76) where it is
applicable.

6.5.3 Constitutive Relations for Soil Springs

The constitutive relations for soil springs are defined in terms of relations between
the force and deformation of the springs, which are assumed to be elastic-plastic. The
relations for bearing and uplifting springs are one-sided functions with nonzero stiffness on
the compressive deformation side only due to the fact that the tensile strength of soil is
negligible. The relation for longitudinal spring is a symmetric function with respect to
compressive and tensile deformation. Typical relations are shown in Fig. 6.8.

The incremental spring forces, which are defined in the local coordinate system on



the current deformed configuration and denoted by Fgs, Fus and Fs, are

Fps = ‘Kps ABs (6.80a)
Fus = ‘KusAus (6.80b)
Fis = Kis s (6.80c)

where ‘Kps, ‘Kys and 'Ky s are the current tangential stiffness of bearing, uplifting and
longitudinal springs. The sign of spring forces is usually defined as positive for tensile
deformation and negative for compressive deformation. However, the sign convention
used here is based on the reactive forces exerted by the springs on pipeline. The spring
forces are positive if their reaction on the pipeline is positive in the local coordinate system.

6.6 INCREMENTAL VIRTUAL WORK EQUATION

The virtual work equation has been discussed in Sect. 2.12.5 where a general
equation is given for total Lagrangian formulation in Eq. (2.67) and equations of shell
structure are given for both total and updated Lagrangian formulations in Egs. (2.74) and
(2.79), respectively. For the pipeline-beam element, the special stress-strain states and
pipeline-soil interaction results a special form of virtual work equation. Since different
constitutive relations are used for RMDI and ISPDR techniques as discussed in Sects. 6.3
and 6.4, the incremental virtual work equation will be established separately for these two
techniques. Nevertheless, the equations obtained are the same except for some details as
demonstrated in following sub-sections.

6.6.1 Incremental Virtual Work Equation for RMDI Technique

For the RMDI technique, the virtual work equation can be derived from the general
virtual work equation, in Eq. (2.67), based on stress and strain components of the pipeline-
beam element. It can be expressed as

f t+A{Sx 8!+A}€x d'V + f ”AfSQ 8t+AE€9 d'Vv + f (“AfFBS +t+Aﬂ:BS) 8:+Atv° dtx
v v 'L (6.81)

+ f “A{FLS St+Aty, dix = SHHAW 4,
1
L

where the first two terms are virtual work of stress of pipeline and the second two terms
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come from soil springs. The right-hand side of the equation is the external virtual work due
to applied load. Considering following relationships

tHAlg = 1S+ .S, (6.82)
t+alSy = 'Sg = constant (6.83)
StHale. = S, = Sek + Selll (6.84)

St+aley = 8igy = 'Coy Siex (6.85)

where Egs. (6.31), (6.12) and (6.32) are used to obtain Eqs. (6.83), (6.84) and (6.85),
respectively, the first two terms in Eq. (6.81) becomes

I+00 = f Sy Sekd'V + f 1Sy el + 'Cy, 'Sp SelL) d'V
v tv

+ ] (*Sx &e'5+ 'Cgy 'Sp eh) d'V + ] Sy &l dtv
v v

where the roman number I and II represent the first two terms. Substituting Eqgs. (6.17),
(6.18) and (6.33) into above equation and carrying out the integration over the cross-
section, it becomes

I+0 = f (K gk + K3 @) ek + (Ks eh + 'Kz 41 80D dix
'L

(6.86)
+ f (‘Foq &L + Mg 50 dix + f (Feq gk + 'Meq 81 dix
lL lL
where the higher order terms are ignored, and

'K; = f ICEP dtA (6.87a)

‘A
K, = f tCEP y2 dtA (6.87b)

‘A
K3 = - f ICEP y gtA (6.87¢)

‘A
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are the cross-sectional stiffness coefficients, which are the same as those defined in Egs.
(6.42) to (6.44) under the assumption of plane section remaining plane, and the current
tangent modulus 'CEP is defined in Eq. (6.34). The total equivalent internal forces at time t
in the above equation are defined as

Feq = f (Sx +'Cgy 'Sp) d'A (6.88a)
A

My = - f (*Sx +'Cq, 'Sg) y d*A (6.88b)
A

The equivalent total internal forces consists of the contribution of the axial stress and the
hoop stress and are defined based on equivalent virtual work.

Considering Eq. (6.80), the second two terms in Eq. (6.81) becomes

M+IV = f (*Kgs 1Aps + Kys Ays) divo d'x. + f *Kis Ars o d'x
5 L (6.89)

+ I (tFBs + tl'—‘Us) &Vo dx + f tI"Ls &Uo dtx
'L L

where IIT and IV represent the third and fourth terms in Eq. (6.81).

Substituting Egs. (6.86) and (6.89) into (6.81), it becomes
j (CK; ek + K3 @) 8ek + (K3 b + Ko @) 891 d'x +
'L

f (tFeq SN+ Meg 59" ) dix+ I ((*Kps 1ABs+Kus 1Aus) divo+'Kis ALs Siwo) dix
‘L ‘L (6.90)

= St-c-mwext - f cFeq 8;83‘ + tMeq 5‘¢L) dtx -f ((tFBS + tFus) Ovo + tF]_,s 5:110) dtx

L L

This is the incremental virtual work equation for the pipeline-beam element based on the
RMDI technique.
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6.6.2 Incremental Virtual Work Equation for ISPDR Technique

The virtual work equation for the pipeline-beam element based on the ISPDR
technique is established in a similar procedure to that in the previous section. However, it is
based on internal forces and strain components because the constitutive relations employed
in the ISPDR technique are defined based on these quantities. With the internal forces and
the generalized strains Eq. (2.79) becomes

f (HHATF §t+Alg, 4+ t+AYM 8t+At¢) dtx + f (*8Fgs + "AfFys) &vo dtx
'L L 6.91)

+f (*AFLs Suo dix = §*A Wy
t
L

Considering Eqgs. (6.18) to (6.24) and (6.41) and ignoring the higher order terms,
the first term in Eq. (6.91) becomes

I= J (K, & + K3 1¢L) Sk + (K3 &k + 'K, 1¢L) &¢L) dtx
'L (6.92)

+ f (‘F 3L + M &¢NL) dtx +f ('F 8k + ™M &¢") dtx
L

L

where 'F and 'M are defined in Egs. (6.22) and (6.23). Substituting Egs. (6.92) and (6.89)
into Eq. (6.91), it becomes identical with Eq. (6.90) except that the cross-sectional
stiffness coefficients and total internal forces are defined in Eqgs. (6.42) to (6.44), (6.22)
and (6.23) for the ISPDR technique, while they are defined in Eq. (6.87) and (6.88) for the
RMDI technique.

6.7 FINITE ELEMENT DISCRETIZATION

Having the incremental virtual work equation established in Eq. (6.90), which is
applicable to both the RMDI and ISPDR techniques with properly defined cross-sectional
stiffness coefficients and internal forces, the finite element discretization can be carried out.
The discretization procedure includes : interpolation of the displacements; matrix
expressions of strain-displacement and constitutive relations; matrix expressions of spring
deformation-displacement and spring force-deformation relations; and, finally, the finite
element equilibrium equations with the stiffness matrices and load vectors properly defined.



Each of these aspects will be discussed in the following sub-sections.
6.7.1 Interpolation of Displacements

A pipeline-beam element is shown in Fig. 6.9 where three nodes are used and three
degrees of freedom *u, ‘v and ' are assigned to each node. The dimensionless local
coordinate 'r is introduced for convenience which is defined as

tr = 27111 (6.93)

where 'L is the current length of the element. The displacement increments in local
coordinate system can be expressed as

{'“° = [H]{ue) (6.942)

tVo

where

', 0 o0 ‘He o0 o0 'H» 0 0
(] = [ (6.94b)

0 'H, H, 0 Hs 'Hs 0 'Hs 'H
Cue> =< i B o vz B2 o vs B3 > (6.95)

In matrix expressions, bold characters represent matrices and vectors, and plain characters
represent their components. In addition, { } represents a column vector, < > represent 2
row vector, and [ ] is used for matrices.

The interpolation functions in Eq. (6.94b) are defined as

tH, = -%'r( 1-t) (6.96a)
H = 242 (1-4)2 ('r+3) (6.96b)
'H, = ESLzrz( 1-t)2(1+%) (6.96¢)
tHy, = (1-%2) (6.96d)

tHy = (1-42)? . (6.96¢)
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He = Lor(1-u2y (6.96£)
‘H, = %tr( 1+tr) (6.96g)
H, = _%tr2(1+tr)2(tr-%) (6.96h)
tH9=_%.,z(1+.r)z(l_.,) (6.96i)

Since there are six displacement components associated with transverse displacement and
three associated with longitudinal displacement, the interpolations are quadratic for
longitudinal displacement and fifth order for transverse displacement. This is done for two
reasons. One is that linearly varied axial strain is necessary to model the axial force
distribution within the element. The other is that the minimum length of the element is
limited by the principal wavelength because of the size dependence of SPD relations as
discussed in Sect. 4.4.4. Consequently, relatively higher order interpolation is beneficial to
the convergence and accuracy of the element.

The nodal displacement increments in the local coordinate system can be obtained
by the following transformation

'r] 0o o
{we)=| o [t] o [({d) (6.97)
0 o0 [1

where {li) is the nodal displacement increment vector in the global coordinate system, and

cos'a sin'a 0

[tT] =|-sinta cos'o 0 (6.98a)
0 0 1
with
t -t
to, = arcsin (y—’tLl) (6.98b)

This is the incremental form of the element orientation. The differential form is defined in

Eq. (6.5).
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6.7.2 Strain-Displacement Matrices

The strains have been defined in Sect. 6.2 with linear components being defined in
Eqgs. (6.9) and (6.10) and nonlinear components in Egs. (6.15) and (6.16). Substituting
the discretized displacement increment in Eq. (6.94) into Egs. (6.9) and (6.10), the linear
strain components becomes

| < } = [B] o) (6.99)
| @
where
ty ty tLy.
[‘BL]=[Hl 0 o H o o H o0 0 (6.100)
oW 0 E W 0 HCH

The single prime ' and double prime " in Eq. (6.100) represent the first and second order
derivatives with respect to the local element coordinate x. Similarly, the nonlinear axial
strain component can be expressed as

et = 1 <we>[BIT[BN] () (6.101)

where
'H, 0 o0 'H« 0 o0 ‘H» 0 o0

[B] = g o ,
0 tHz tH3 0 tHs tHs 0 le tH'9

(6.102)

Applying variation on Eq. (6.101), the variation of nonlinear strain increments becomes
Sedl = <dw.>[BN]T[BN] () (6.103)
The variation of the nonlinear curvature increment can be expressed as
80 = <Sue>[BL[BN] (.} (6.104)

where

tH" tH" tH" try” tey lH"
['BN‘] _| o 3 3 0 s 'Hs o ‘Hs 9

w@ 0 0 @ 0 0 q o o] ©®%
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The deformation of soil springs are defined in Egs. (6.77) to (6.79) which can be
expressed in terms of nodal displacement increments as

ALs
Aps | = [B{w.) (6.106a)
WAus
where
-tH, 0 0 -tH, 0 0
[BS] =| 0 -H,1-E) -tHi(1-E) ++e-e- 0 -'Hy(1-€) -'Hs(1-E) | (6.106b)
0 -HE  CHiE 0 -H  -Hot

The parameter & in above equation is defined as

E=0 iftd(r) = 0 (6.107a)
£ =1 iftd(r) > 0 (6.107b)

6.7.3 Finite Element Equilibrium Equations

Having displacements, pipe strains and spring deformations discretized in the
previous two sections, the incremental virtual work equation established in Sect. 6.6 can be
discretized to obtain the finite element equilibrium equations. Substituting Eqs. (6.94),
(6.99), (6.103), (6.104) and (6.106) into Eq. (6.90), yields

z[ <Buae> [BUF[DPI[BL] {ane) dx + z[ <S> (BT [E][BN]
Le Ye

+[BL] [tM][sBI]) {e) dtx + z f <S> [H]T[tDS][tBS] {e} dtx =
Le (6.108)

T (<t (P2, - f <atue>[tBL]T{ ' }d <8tu,>[tH]T{ Fus }dtx)
1. t

M 'Fps+'F
L Bst+Tus

In this equation, the cross-sectional stiffness matrix for pipe and soil springs are defined as
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[pF] = | K Ko ] (6.109)
L tKS th
-

ps]=| = 0 O (6.110)
| 0 Kps Kis

where 'K, 'K: and 'Ks are defined by integrations in Eq. (6.87) for RMDI technique and
by Eqs. (6.57) and (6.44) for ISPDR technique. The internal force matrices are defined as

tF 0

['F] = [0 tp] (6.111a)
™M 0

['M] = [ . tm] (6.111b)

where 'F and 'M are the equivalent total internal forces defined in Eq. (6.88) for the RMDI
technique, and are the total internal forces defined in Eqgs. (6.21) and (6.22) for the ISPDR
technique.

The elastic-plastic stiffness matrix, geometric stiffness matrix, and soil spring
stiffness matrix at the element level are defined, respectively, as

Iey] = L[tst]f[tnv] 8] dx 61129

[ice] = der[w} '] [ TIMIB) & 61120

ke = L (DS [B9] ax 6.112)

The element vectors of internal load for pipe and soil springs are defined as

toe) = L tF}
(o) - [ (3T {®) o e
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t
{rQg) = [‘H]T{ Fis } dix (6.113b)
r 'Fas+'Fus

Substituting Eqgs. (6.112) and (6.113) into Eq. (6.108), yields

2 <Sue> ( [‘KEP] + [tK&] + [tK§] ) (e} =

114
2 <due> ( {'P:n} i {‘Q%} {'Q§}) (6.114)

The transformations for element stiffness matrices and load vectors from the local
element coordinate system to the global coordinate system are carried out, for example, as

'] o o 'T] o o
[Reel =| o [1] o [[K&)| o [1] o (6.1152)
o o [T 0 o []
and
(1] 0o o
(@l =] o [1] o |{of) (6.115b)
0 o [1]

where ['T] is defined in Eq. (6.98).

By the direct stiffness assembly procedure in the global coordinate system and
applying variational principle, the incremental finite element equilibrium equations are
obtained as

(['Kep] + ['Ka] +[Ks]) (@) = (Bond) - (1) - ('Ds) (6.116)

6.8 DEVELOPMENT OF PROGRAM ABP AND VERIFICATION OF
ISPDR TECHNIQUE

The finite element formulation of the pipeline-beam element has been presented in
Sect. 6.7. Based on this formulation, a program for Analysis of Buried Pipelines (ABP)
has been developed which can be used for settlement analysis in addition to analysis for
normal operating load conditions. In this section, two problems will be addressed. One is



discussions on some aspects of the formulation which have not been covered in the
previous sections, including the treatment of internal pressure and the solution technique.
The other is the verification of the ISPDR technique. As has been proposed in Sect.
1.3.2.3, the verification can be carried out in two steps. The first step is to establish
confidence in the RMDI technique implemented in program ABP by comparing the results
of typical examples from the RMDI technique to those obtained from the program PIPLIN
(Structural Software Development, Inc., 1989). Secondly, the ISPDR technique can be
verified by comparing the results from the ISPDR technique with those from the RMDI
technique. Direct comparison between the ISPDR technique and program PIPLIN cannot
be obtained because program PIPLIN cannot provide sufficient information to construct
SPD relations. Detailed discussions of these topics are presented in following sub-sections.

6.8.1 Internal Pressure

Internal pressure obviously causes hoop stress. This has been dealt with in the
stress-strain relation for the pipeline-beam element in Sect. 6.3. If the pipeline is restrained
the internal pressure also produces axial tensile force because of the Poisson’s ratio effect.
In addition, internal pressure would introduce transverse forces if the pipeline is not
perfectly straight. For a perfectly straight pipeline, the axial forces due to internal pressure
are absorbed in the region near the ends by the longitudinal restraint. However, if the
pipeline is curved, transverse forces are introduced because of the direction change of the
axial forces due to the internal pressure, and the magnitude of these transverse forces
depends on the curvature. Because the axial forces due to internal pressure are always in
the direction of the centroidal axis of pipeline, the effects of axial forces due to internal
pressure are deformation dependent and should be treated as follower-type of loads.

In program ABP, the axial forces due to internal pressure are calculated based on
the current deformed configuration. This means that updates are necessary in every solution
step and every iteration for pressure induced axial forces. For a curved pipeline the
associated transverse loads are evaluated and updated in this process.

6.8.2 Solution Technique

A special solution technique is employed for settlement analysis of buried pipelines
because the deformation in the pipeline is activated by imposed differential settlement
through the pipeline-soil interaction mechanisms. Arc-length control techniques, discussed
in Sect. 3.2, cannot be directly and conveniently applied because there is no well defined
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reference load in the settiement analysis. In settlement analysis, external loads are applied in
the form of incremental differential settlement, i.e. the base of transverse soil springs,
including bearing and uplifting springs, moves in the settlement zone from a equilibrium
configuration. As a result, unbalanced forces are introduced which deform the pipeline to a
new equilibrium configuration. Unfortunately, these unbalanced forces depend on the
current states of the pipeline and soil springs and on the incremental settlement.
Consequently, they can not be used as the reference load.

Newton-Raphson (N-R) iteration (see Sect. 3.1.2) cannot be directly applied either,
because when the base of the transverse springs move, the pipeline in the settlement zone
loses transverse support if the increment of differential settlement is larger than the
accumulated deformation in the bearing springs. The deformations of bearing springs in
most of the settlement zone are very small because they are introduced by overburden loads
above the pipeline, and the efficiency would be unacceptably low if the increment of
differential settlement is limited to be smaller than the deformation in the bearing springs.
The displacement increment of an iteration can be very large if the pipeline loses transverse
support in the settlement zone. This would certainly lead the iterative procedure to diverge.
Therefore, N-R iterations, both full and modified N-R iteration, are not directly applicable
to settlement analysis.

The solution technique used in program ABP is a full N-R iterative technique
combined with an upper limit on the displacement increment acceptable for each iteration.
This upper limit is introduced to prevent very large displacement increments due to loss of
support in the settlement zone and to insure the convergence of the iterative procedure. The
full N-R iterative technique is necessary because the stiffness of the pipeline-soil spring
system varies all the time. When an increment of differential settlement is imposed, the
pipeline is separated from bearing springs in the settlement zone which becomes inactive
and unbalanced forces are introduced. The unbalanced forces deform the pipeline gradually
and the pipeline starts to contact the bearing springs from the far end toward the transition
zone as the deformation increases. In this process, the bearing springs gradually change
from inactive to active and so does their stiffness. The modified N-R iterative technique is
not able to take this change into account.

A proper value of the upper limit on the displacement increment for each iteration
can be found by numerical experimentations. As an alternative, a rule based on experience
is summarized here. For a given increment of differential settlement, find a solution step
with any value of an upper limit as long as it converges. Then calculate the norm of the total



displacement increment for this solution step. One-third to half of this norm is usually a
good value for the upper limit on incremental displacement for each iteration.

6.8.3 Comparison between Program ABP and PIPLIN

This section presents comparisons between the RMDI technique (See Sects.
1.3.2.1 and 6.3) in program ABP and program PIPLIN. This is the first step for the
verification of the ISPDR technique (see Sects. 1.3.2.2, 1.3.2.3 and 6.4). PIPLIN is a
program which has been commonly used in the pipeline industry for many years and is said
to be the best commercial program available for pipeline analysis and design. Good
agreement between the solutions from the RMDI technique in program ABP and from
program PIPLIN would verify that program ABP, independently developed in this project,
is reliable. The RMDI technique is similar to the solution technique in program PIPLIN
because both of them have stress-strain constitutive relations, and plasticity theory based on
the von Mises yield condition and the normality flow rule.

Two examples are used for comparison between programs ABP and PIPLIN. In
the first example, a pipeline of 650 feet (198 m) in length subjected to differential settlement
is analyzed. In the second example, a similar pipeline is analyzed when subjected to
incremental temperature and internal pressure in addition to differential settlement. The
pipeline has a diameter of 12.75 inches (324 mm) and wall thickness of 0.247 inches (6.27
mm). A stepwise transition zone is assumed in both examples with 275 feet (84 m) in the
stable zone and 375 feet (114 m) in the settlement zone. The material properties of the
pipeline and the soil properties are the same as those for some sections of the pipeline from
Norman Wells to Zama (Canuck Engineering Ltd., 1983). The material property of the
pipeline is nonlinear with elastic-plastic hardening. The finite element model is shown in
Fig. 6.10 for both examples. Supplemental information needed for the second example is
the increment of temperature 65 °F (36.1 °C), the expansion coefficient of 6.5 x 10-5FF
(11.7 x 10-6/°C) and the internal pressure of 1.44 ksi (9.93 MPa).

The examples in this section are grouped together with the examples in the
following Sect. 6.8.4 as a series for verification, designated as the V-series. Therefore, the
examples in this section are denoted as V1 and V2 for convenience, in which V2 includes
the temperature and pressure effects and V1 does not.

The results of the RMDI technique in Program ABP are compared with those of
program PIPLIN in terms of the deformed configurations, distributions of moment and
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curvature and the development of critical moment and curvature with the increasing
differential settlement. The critical moment and curvature is the moment and curvature at the
corss-section with the maximum curvature along the pipeline which is located at about 30
inches (762 mm) from the step discontinuity, in the stable zone, for both examples.
Comparisons are shown in Figs. 6.11 to 6.15 for example V1 and in Figs. 6.16 to 6.20 for
example V2. The deformed configurations and distributions of moment and curvature are
taken at a differential settlement of 40 inches (1016 mm) which is the representative upper-
bound on differential settlement. Excellent agreement has been found between the two sets
of solution for both examples. This establishes the creditability of, and confidence in, the
RMDI technique implemented in program ABP.

6.8.4 Comparison between ISPDR and RMDI Techniques

Comparison between the ISPDR technique (see Sects. 1.3.2.1 and 6.3) and the
RMDI technique (see Sects. 1.3.2.2 and 6.4) is the second step to verify the ISPDR
technique to be applicable to settlement analysis of pipelines. The question about the
applicability of the ISPDR technique arises from the fact that the stiffness of the pipe is
calculated from two separate integration processes in the ISPDR technique. These are : the
integration over the cross-section in the generation procedure of the SPD relations; and, the
integration over the length in the solution procedure. Different deformation paths in the
generation procedure, from those in the solution procedure, lead to the concerns on the
applicability of the ISPDR technique. Good comparison would demonstrate that the effects
of the differences in deformation paths are small and verify the applicability of the ISPDR
technique in settlement analysis of pipelines.

Comparison is carried out between the results of RMDI and ISPDR techniques for
two typical examples. The examples are for a pipeline subjected to differential settlement
with two different sets of material properties. The first example has the normal pipe
material properties specified as an elastic-plastic hardening (EPH) stress-strain relationship,
and the second one has a set of assumed material properties with an elastic-plastic softening
(EPS) stress-strain relationship. This latter example is used to simulate softening similar to
postbuckling behavior of thin shells. These two examples are denoted as V3 and V4,
respectively. Neither of these examples includes temperature or pressure effects. The
difference between them is confined to the type of material properties.

The solutions of the RMDI technique are straightforward to obtain, while those of
the ISPDR technique involve the separation of the two procedures, namely, the generation



procedure and the solution procedure. In normal application of the ISPDR technique, a
three-dimensional shell model has to be used to generate the SPD relations. However, for
validation purposes, the RMDI technique of the beam model can be used with a softening
material. This eliminates all the differences between the solution from the ISPDR technique
and that from the RMDI technique except the difference of deformation paths between the
generation and solution procedures.

The beam model for generation of SPD relations is shown in Fig. 6.21 where a
pipe segment of 60 inches (1524 mm) is loaded as a simply supported beam. The pipe has
a diameter of 12.75 inches (324 mm) and wall thickness of 0.247 inches (6.27 mm). A 20
inch (508 mm) segment in the center has been used to construct the SPD relations where a
length of 20 inches (508 mm) is picked as the principal wavelength. The principal
wavelength is less significant in this particular case because no local buckling will be
present in the beam model. The loading condition is bending moment combined with
constant axial force at four and five different levels, for examples V3 and V4, respectively.
Ateach of these levels, there are five SPD relations to be constructed as discussed in Sect.
6.4.3. This produces twenty and twenty five SPD relations for the EPH and EPS materials,
respectively. The generated SPD relations are shown in Figs. 6.22 to 6.26 for the EPH
material and in Figs. 6.27 to 6.31 for the EPS material. These figures are graphical
representations of properties 1 to 5 defined in Egs. (6.45) to (6.49) in Sect. 6.4.1. They
are in piecewise linear form and are appropriate idealizations created to be used as input for
the solution procedure of the ISPDR technique.

The finite element model for the settlement analysis in examples V3 and V4 is the
same as the model used for examples V1 and V2 (Fig. 6.10) except that the properties of
the uplift springs are changed to be the same as those of the bearing springs. The length of
elements in the regions adjacent to the transition zone is 20 inches (508 mm) which
corresponds to the principal wavelength used to construct the SPD relations. Comparisons
of the results from the RMDI and ISPDR techniques are presented in terms of the deformed
configurations, distributions of moment and curvature, and the development of critical
moment and curvature with the increasing differential settlement. Figs. 6.32 to 6.36 show
the comparisons for example V3 and Figs. 6.37 to 6.41 for example V4. The deformed
configuration and distributions of moment and curvature are taken at differential settlements
of 34 inches (864 mm) and 44 inches (1118 mm) for examples V3 and V4, respectively.
Excellent agreement, in general, has been found between these two sets of solution.

Based on the two-step verification in the previous and current sections, it can be
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concluded that the ISPDR technique in program ABP is applicable to settlement analysis of
buried pipelines and the accuracy is good enough for engineering prediction of the behavior
of pipelines even though some approximations are adopted. In addition, the program ABP
developed in this project has been shown to provide correct results..
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Fig. 6.1 Coordinate Systems and Displacements

The segment includs the principal buckle and on its
average response the SPD relations are constructed

note: Lpyw is the principal wavelength
F is the constant axial force
M is the increasing moment
The pipe segment is discretized by shell elements

Fig. 6.2 Loading and Boundary Conditions of the Shell Model for Generation of SPD
Relations
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Fig. 6.7 The Smooth Ground Profile and Definition of the Gap Width
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20" segment to construct SPD relations
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(b) Stress-strain relations for EPH and EPS materials
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Fig. 6.21 Beam Model for Generation of SPD Relations
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CHAPTER 7 ANALYSIS OF PIPELINES SUBJECTED TO
DIFFERENTIAL SETTLEMENT

Differential settlement is one of the critical loading conditions imposed on buried
pipelines. As a result, response prediction of pipelines under imposed differential
settlement becomes an essential part for both design of new pipelines and evaluation of
existing pipelines. A pipeline subjected to differential settlement behaves, overall, as a
beam supported by soil. The response depends on the stiffness of the pipeline, the loads,
and the support, as well as the restraint provided by the surrounding soil. The models
developed for settlement analysis (Nyman, 1983 and Row et al, 1983b) are basically
confined to behavior in which beam-type behavior is simulated. However, local buckling
of the pipe wall changes the stiffness properties of the pipeline and introduces localization
of deformation which interacts with the overall behavior. Then the integration of the overall
and local behaviors determines the response of pipelines. Simulation of the local behavior
of pipelines is not included in Nyman's model (1983) and is inadequate in Row's model
(1983b). This implies that these models are not applicable to the analysis of pipelines for
which deformation beyond the initiation of local buckling occurs.

The approach for settlement analysis of pipelines developed in this project was
conceptually outlined in Sect. 1.3. It consists of two phases. In the first phase, the local
behavior of the pipeline is analyzed by utilizing a three-dimensional shell model of a
pipeline segment. This model includes the effects of large displacements and nonlinear
material response. The local behavior obtained from this type of analysis is then
represented by the stiffness property-deformation (SPD) relations which are extracted from
the analysis. In the second phase, pipelines are modelled by pipeline-beam el ments and the
SPD relations generated from the first phase are used to define the stiffness properties of
the pipeline-beam elements. This is an effort to reflect the interaction between overall and
local behavior. The pipeline-beam element is fully described in Ch. 6 which includes
definitions of the SPD relations and the rationale for them. The solution technique used to
carry out the analysis which simulates the interaction between the overall and local behavior
is the integration of stiffness property-deformation relations (ISPDR). It has been
discussed in detail in Ch. 6.

In this chapter, behavior of pipelines subjected to differential settlement is
predicted. The chapter starts in Sect. 7.1 with the description of the mode] based on the
pipeline-beam element. This includes discretization of the pipeline, properties of soil
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springs and generated SPD relations. Analysis is carried out for a number of specimens,
where the specimens are specified in such a way that the influences of each of (a) soil
springs, (b) local buckling and (c) the temperature differential, can be investigated. The
solutions including the effects of local buckling are carried out by the ISPDR technique and
those excluding the effects of local buckling are carried out by the RMDI technique. More
information on both ISPDR and RMDI techniques is available in Sect. 1.3.2 and Ch. 6.
Based on the solutions obtained, a sensitivity study investigating the behavior in general,
and effects of local buckling and temperature differential, are summarized in Sect. 7.2; and,
the influences of geotechnical parameters on the behavior are discussed in Sect. 7.3.

7.1 ANALYTICAL MODEL BASED ON THE PIPELINE-BEAM ELEMENT

The model for analysis of pipelines subjected to differential settlement consists of a
series of pipeline-beam elements and soil springs along the pipeline. The discretization is
discussed in Sect. 7.1.1. It is followed by a description of the properties of the soil springs
in Sect. 7.1.2. The stiffness properties of the pipeline are defined by SPD relations
generated from shell analysis of a segment of the same pipeline. This is presented in Sect.
7.1.3. The last sub-section, Sect. 7.1.4, provides the detailed definition of specimens that
are analyzed in this chapter for the sensitivity study.

7.1.1 Discretization

The pipeline considered here is of 48 inch (1219 mm) diameter and 0.462 inch
(11.7 mm) wall thickness. Analysis in this chapter is confined to pipelines of this particular
size because SPD relations are available only for this size. Generation of full sets of SPD
relations is very time-consuming since it is based on many runs of nonlinear analysis of a
large shell structure. However, the approach used for the analysis is applicable to all pipe
sizes. The length of the pipeline is not important to the response of the pipeline provided
that it is long enough to allow surrounding soil to completely damp out the longitudinal
movement at both ends of the pipeline. The length of the pipeline is chosen as 12000 inches
(305 m) with 4000 inches (102 m) in the stable zone and 8000 inches (203 m) in the

settiement zone.

The size of the pipeline-beam element in the active areas is determined by the
principal wavelength of the specimens whose responses have been used to define the SPD
relations. This is because the SPD relations are size dependent as discussed in Sect. 6.4.4.
The principal wavelength has been defined in Sect. 4.3.4 and Table 4.2 lists the principal



wavelengths for all the specimens in the series of postbuckling analyses. The average of
principal wavelengths for last five specimens in Table 4.2, which have the high level of
internal pressure, is about 40 inches (1016 mm). Consequently, the element size in the
regions where local buckling is expecied is set to 40 inches (1016 mm). In the other
regions, the size of element can be gradually increased to reduce the scale of the model. The
schematic discretization of the pipeline is shown in Fig. 7.1. There are total 131 nodes and
65 elements.

For the same reason as that which limits the analysis in this chapter to a specific size
of pipeline, the analysis is also limited to a specific level of internal pressure. This is 72
percent of the yield pressure. This is necessary because analysis at each different level of
pressure would require a completely different set of SPD relations and it is not possible to
obtain such sets in the limited period of time available.

The soil surrounding the pipeline is modelled by bearing, uplift and longitudinal
soil springs. Each element has nine springs of each type uniformly distributed over the
length of element. The properties of these springs are defined in the next sub-section.

The overburden load is specified as a uniformly distributed load of 0.25 kip/in
(43.8 KN/m). It is used to simulate the self weight of the soil above the pipeline and the
pipeline itself. Because the influence of the overburden load is believed to be small and the
magnitude of overburden load varies in a relatively narrow range, the overburden load is
not taken as a parameter to be studied in this chapter.

7.1.2 Properties of Soil Springs

Several models to determine the properties of soil springs have been proposed
(Nyman, 1983; Selig, 1988; and, Wagner ez al, 1989) where the properties of soil springs
in terms of stiffness and strength are related to parameters such as : coefficient of earth
pressure, effective angle of internal friction, the state of soil (frozen or unfrozen), pipe
diameter, and cover depth. If a particular pipeline is to be analyzed, it is necessary to
evaluate the properties of soil springs from a particular set of soil parameters in a relatively
rational way, such as, from the models mentioned above. However, the objective of the
analysis in this chapter is to explore the general behavior of pipelines when they are subject
to differential settlement and to investigate the sensitivity of the behavior of pipelines to
variations in the properties of soil springs. Therefore, a single set of soil spring properties
can be used as long as it is representative.
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Typical soil conditions in northern Alberta have been measured (Canuck
Engineering Ltd., 1983) for the construction of the pipeline from Norman Wells to Zama.
A set of properties of soil springs was extracted from the measurements of these soil
conditions. Taking advantage of these available data, the representative properties of soil
springs can be obtained by converting the existing data for the pipeline with diameter of
12.75 inches (324 mm) into data for a pipeline with diameter of 48 inches (1219 mm). The
conversion is carried out under the assumption that the stiffness and strength of the soil
springs are proportional to the diameter of the pipeline. This implies that the yield
displacement is independent of the diameter. This assumption may not be accurate in the
sense that the relationship between stiffness and strength of the soil springs and the
diameter of the pipeline may not be exactly linear. But the linear portion is certainly the
principal portion and the assumption is supported by Nyman's model (1983). The
properties of soil springs for both pipelines are listed in Table 7.1.

The longitudinal springs are given two sets of properties. One is stronger than the
other. The relatively weak springs are applied in a region 1000 inches (25.4 m) long. This
region starts from the transition, at x-coordinate of zero, and extends into the settlement
zone. The stronger springs are applied over the rest of the pipeline.

7.1.3 Generated SPD Relations

A set of SPD relations has been generated by the shell model analyses in Ch. 4 for a
pipeline with diameter of 48 inches (1219 mm) and thickness of 0.462 inches (11.7 mm)
and subject to internal pressure of 72 percent of the yield pressure. The analyses required
are those of Specimens PHC40, PHC20, PHCO00, PHT20 and PHT40, which are part of
the series of postbuckling analysis discussed in Ch. 4. The procedure to generate SPD
relations has been discussed in detail in Sect. 6.4.3.

The SPD relations are defined at five levels of constant axial load, i.e. 40 percent,
20 percent and zero in both compression and tension. At each level of constant axial load,
five quantities are defined in terms of their relations with respect to the curvature, ¢. They
are moment, M; axial stiffness, Kj; distance between the centroids of elastic and tangent
stiffness of the cross-section, e; deflection of the centroid of elastic stiffness, vc; and, the
amplification factor, C, to represent the secondary effect of axial load. As a result, the set
of SPD relations includes 25 relationships and are shown in Figs. 7.2 to 7.6. All the
quantities are based on the average response of the buckling segment which is about 40



inches (1016 mm) long and contains the principal buckle. The SPD relations have been
idealized into a set of peicewise linear curves to facilitate their description.

For the analyses which exclude the effects of local buckling, the material
relationship is directly defined by the stress-strain relation. The stress-strain relation used
for the line of pipe analysis in this chapter is the same as the one used for shell analysis in
Ch. 4 which is specified in Sect. 4.2.3.

7.1.4 Specification of Specimens

The analyses carried out in this chapter are for the purpose of studying the behavior
of buried pipelines subjected to differential settlement and its sensitivity to the influences of
various geotechnical parameters. This is reflected in the selection of specimens. Before the
specification of specimens is discussed, the factors and parameters which are expected to
have significant effects on the response of pipelines are outlined in the following.

The first factor is local buckling. As discussed in the beginning of this chapter,
local buckling is one of the factors which have not been dealt with adequately in established
models. The behavior characterized by local buckling is expected to interact with overall
behavior and, therefore, to influence the response of pipelines. This influence is
characterized by the fact that the postbuckling response of pipeline segments is unstable.
The local buckling effect can be investigated by comparing solutions including and
excluding local buckling effects while other conditions remain identical to each other, i.e.
by comparing solutions obtained by the ISPDR and RMDI techniques, respectively.

The geotechnical input includes stiffness and strength of soil springs of each type.
The effect of each geotechnical parameter can be studied by comparing the solutions for
different values of the parameters being investigated while the other conditions remain the
same. Each of the springs has three parameter. They are stiffness, strength and yield
displacement. Two of them are independent because of the material model assumed for soil
springs in Sect. 6.5.3. To further reduce the independent parameters, it is assumed that the
yield displacement is constant while the stiffness and strength vary, because the yield
displacement is believed to be less influential on the response of pipelines. As a result, the
strength of springs is proportional to the stiffness of springs, and only one of them is
independent.

For bearing and uplift soil springs, the influences can be studied by varying the
stiffness and strength of the springs over entire length of the pipeline. The type of variation
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can occur in different locations along the route of the pipeline. For the longitudinal soil
springs, two aspects should be looked at. One is the stiffness and strength of longitudinal
springs in all zones. The other is the length of the region where relatively weak springs are
applied. As discussed in Sect. 7.1.2, two different sets of properties of longitudinal
springs are applied to different regions of the pipeline. Relatively weak springs are applied
in the region which starts from the transition and extends to the settlement zone. The length
of this region was believed to be influential on the response of the pipeline because it
affects the way that tensile axial force is built up and distributed. Consequently, this length
was taken as a parameter to be investigated.

Apart from the stiffness and strength of the soil springs, the ground profile in the
transition zone was also expected to have significant influence on the response of pipelines.
By assuming that the ground profile is the smooth ground profile defined in Sect. 6.5.1,
the effect of the ground profile can be studied by varying the length of the transition zone.

Temperature differential introduces initial axial force into pipelines and therefore
changes their response. Significant effect can be expected from temperature differential
since the difference between the moment-curvature curves with different levels of axial load
is obvious in Figs. 4.7 to 4.9, and in Fig. 7.2. Figure 7.2 is an approximation of Fig. 4.9
with each curve simplified into a smaller number of piecewise linear segments. The effects
of temperature differential can be studied by comparing solutions with different magnitudes
of temperature differential.

Specimens selected to study all of the above parameters are listed in Table 7.2.
They are divided into groups according their role. Explanations about the name of each
series and that of each specimen are shown in Table 7.3. First is the reference Specimen
NOM whose condition is taken as the reference for other specimens. The properties of soil
springs for Specimen NOM are those defined in Table 7.1. The length of transition zone is
zero which implies the ground profile in the transition zone is a step-wise ground profile as
defined in Sect. 6.5.1. The length of the region where relatively weak longitudinal springs
are applied is 1000 inches (25.4 m). The temperature differential for Specimen NOM is
zero. The next specimen is TENOM where the only difference from the Specimen NOM is
a 75 °F (41.7 °C) temperature differential. This temperature differential would produce an
axial compressive force of 22 percent of the axial yield force. All other specimens belong to
one of following groups. They are referred to as the USA, BSA, LSS, LSL, TPL and BE
groups. The USA group is used to study the effects of strength variation of uplift springs
in all zones. The BSA group is intended for the effects of strength variation of bearing



springs in all zones. The LSS and LSL groups are for longitudinal soil springs. The first
looks at the effects of strength variation of longitudinal springs in all zones, and the second
examines the effects of length variation of the region with weak longitudinal springs. The
TPL group is designated for the effects of ground profile in the transition zone which is
represented by the length of transition zone. Finally, the BE group excludes local buckling
in order to isolate its effects. Every group has two specimens. Except for the BE and TPL
groups, one of the specimens has a smaller value of the parameter under consideration than
Specimen NOM, and the other has a larger value of the parameter under consideration than
Specimen NOM. In general, the smaller value is set at one-fifth of the reference value and
the larger value at five times the reference value. The numbers listed in Table 7.2 define the
condition for each specimen and represent the ratios between the values of the parameter for
the specified specimen and the reference specimen. The column for length of transition
zone is an exception where the numbers indicate the real length of the transition zone in
feet.

7.2 BEHAVIOR OF PIPELINES SUBJECTED TO DIFFERENTIAL
SETTLEMENT

Behavior of pipelines subjected to differential settlement is discussed in this section.
The discussion is focused on the development of curvature and moment as the settlement
increases and their distributions at a given settlement. The effects of local buckling on the
behavior is investigated for different soil conditions. The importance of the interaction of
the local buckling with the overall behavior of the pipeline is demonstrated by exhibiting the
significant influences of local buckling. Finally, the effects of temperature differential are
discussed.

7.2.1 Behavior

The solution of Specimen NOM is shown in Figs. 7.7 to 7.13 as a representative
example. For these figures and subsequent figures in this chapter, moment, curvature, axial
force and differential settlement are denoted by M, ¢, F and 8, respectively. The solution of
Specimen BENOM is also shown in these figures for comparison and will be discussed in
the next sub-section. After a differential settlement of 31 inches (787 mm) is imposed on
the pipeline, the deformed configuration is shown in Fig. 7.7. The dashed line in the same
figure represents the final ground profile, with differential settlement of 31 inches (787
mm), where the changes in the ground profile introduced by interaction between the
pipeline and surrounding soil is not included. It can be seen that flexural deformations are
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localized in two critical segments. One is in the stable zone (negative x-coordinates) and the
other is in the settlement zone (with positive x-coordinates). The localization of flexural
deformation is more clearly demonstrated by the distribution of curvature shown in Fig.
7.8. The curvature is highly localized in critical segments, both in the stable and settlement
zones. While the curvature is negligible in most regions, the curvature in the critical
segments is as high as 0.0018/in (7.087x10-5/mm) which is about 20 times the yield
curvature under pure bending condition. The critical curvature in the stable zone and in the
settlement zone closely resemble each other for this particular specimen, but this is not
always true. Depending on the properties of the soil springs, one of these can be
significantly larger than the other. Under such circumstances, more deformation will
localize in one of the critical segments. Corresponding to the distribution of curvature, the
distribution of moment is shown in Fig. 7.9. The maximum moments occur in the critical
segments as expected, and the moment tapers off more gradually in comparison to the
curvature. This is because of the characteristics of the moment-curvature relationship where
a nearly flat plateau is introduced by yielding of pipe material. It is also due to the fact that
softening of the pipeline in the critical segments, which is associated with postbuckling
behavior, results in elastic unloading in the pipeline everywhere except in the critical
segments.

The developments of curvature and moment are shown in Figs. 7.10 to 7.13 for the
critical segments in the stable zone and the settlement zone, respectively. The critical
curvature and moment are negative in the stable zone and positive in the settlement zone in
the coordinate system defined in the formulation in Ch. 6. The curvature increases
monotonically as the settlement increases as shown in Figs. 7.10 and 7.12. In general,
there are three stages in the development of curvature. In the first stage, the curvature-
settlement relation is essentially linear. This corresponds to settlement from O to 8 inches (0
to 203 mm) for Specimen NOM. In the second stage, yielding of the pipeline initiates in the
critical segments and the curvature grows at higher rate with respect to differential
settlement. The curvature-settlement relation is nonlinear. This corresponds to settlement
from 8 to 16 inches (203 to 406 mm). In the third stage, the moment-curvature relation of
the pipeline starts to soften and deformation localizes in the critical segments. This results
in rapid growth of curvature with respect to differential settlement. This latter stage is from
settlements of 16 inches (406 mm) and up for Specimen NOM. For the critical curvature in
the settlement zone, the average slopes in each of three stages are calculated as 0.1114x10™
/in, 0.3083x10"*/in and 0.9431x10™/in per inch of differential settlement, respectively. The
differences among these slopes are obvious and significant.



The moment-settlement curves shown in Figs. 7.11 and 7.13 indicate the same
division into three stages. Each of them has its characteristic. The curves are essentially
linear in the first stage and nonlinear and monotonically increasing in the second stage.
These indicate elastic behavior and elastic-plastic behavior, respectively. The third stage is,
in general, associated with softening behavior which is characteristic of postbuckling
behavior. As indicated by the average slopes calculated above, both plastification of pipe
material and postbuckling softening contribute to the localization of deformation. The
influence of postbuckling softening may be as large as three times of that of plastification.

It should be pointed out as a convention that the curvatures and moments presented
in the solutions with the effects of local buckling are the average curvatures and moments in
the elements. This is because in these solutions, which are solved by the ISPDR technique,
the average curvature and moment are the representative measurements due to the
application of the SPD relations. SPD relations are defined based on the average response
of a pipeline segment of length equal to the principal wavelength from three-dimensional
shell analysis (Table 4.2). They are applied to elements in the line of pipe analysis as a base
on which the average property of the elements is determined. The solutions without the
effects of local buckling, which are solved by the RMDI technique and will be discussed in
the Sect. 7.2.2, are represented by curvature and moments at each integration point. Each
of the critical segments for solutions with local buckling effects consists of only one
element. This is because of the softening behavior of pipeline segments and the convention
to use average curvature and moment to represent the solutions. However, the critical
segments for solutions without local buckling effects may consist of several integration
points due to the hardening elastic-plastic behavior.

7.2.2 Effects of Local Buckling
7.2.2.1 Comparisons of the Solutions for NOM and BENOM

The effects of local buckling are first demonstrated by the comparisons of the
solutions for Specimens NOM and BENOM which are shown in Fig. 7.7 to 7.13.
Specimen BENOM has the identical conditions on soil springs with Specimen NOM; and,
the only difference is in the stiffness properties of the pipeline. The effects of local buckling
are included for Specimen NOM in the SPD relations and the ISPDR solution technique.
The effects of local buckling, however, are not included for Specimen BENOM which was
determined from direct input of stress-strain relations and the RMDI solution technique.
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Consequently, the differences between the solutions may be considered to be the effects of
local buckling under the given soil conditions and temperature differential.

Figure 7.8 shows that the differences between the deformations are significant in
the two critical segments and insignificant over the rest of the pipeline. The differences that
can be observed from these figures are the length of the critical segments in which the
deformation is localized, and the magnitude of the maximum curvatures. The solution with
buckling effects has a relatively shorter length of critical segment and a significantly larger
maximum curvature. This indicates that more deformation is localized in shorter segments
due to the effects of local buckling. The solution with buckling has smaller moment, as
shown in Fig. 7.9. This is due to the softening behavior in the postbuckling region.

The development of the critical curvatures and moments with respect to the
differential settlement are shown in Figs. 7.10 to 7.13. There are three stages on the
curvature-settlement curves and moment-settlement curves for Specimen NOM. Each stage
has different characteristic. The curves for Specimen BENOM, however, only have first
two stages, i.e. the stage with linear response and the one with elastic-plastic response.
Since pipeline segments do not soften if the effects of local buckling are not included, the
third stage with softening response cannot be seen in the solution of Specimen BENOM.
The curves in Figs. 7.10 and 7.13 show that the differences between the solutions are
negligible in the first stage and small in the second stage. The differences increases rapidly
in the third stage which occurs for settlement greater than 16 inches. This is because, in the
third stage, softening introduces significant localization of deformation into the critical
segments, and elastic unloading in the rest of the pipeline. For non-softening the other
solution continues with the hardening response and the entire pipeline continues to be
loaded, either elastically or elastic-plastically.

7.2.2.2 Comparisons of the Solutions for TENOM and BETMP

To show the effects of local buckling under temperature differential, solutions for
Specimens TENOM and BETMP are presented. The solution of Specimen TENOM
includes buckling effects and that for Specimen BETMP does not. As shown in Table 7.2,
the only difference between Specimen TENOM and NOM is that Specimen TENOM has
temperature differential of 75 °F (41.7 °C) which results in a small initial axial force in
compression. Both solutions are shown in Figs. 7.14 to 7.17. The effects of local buckling
shown by this pair of solutions are obviously greater than those for solutions of Specimens
NOM and BENOM. This is because of the interaction between the effects of local buckling



and temperature differential. This interaction can be explained through the change of the
axial force in the pipeline. The axial force in pipelines increases as the imposed differential
settlement increases because the slope length of the pipe is greater than the horizontal
length. The effects of temperature differential is to change the initial axial force. A pipeline
would have about 22 percent of the axial yield force in tension if the pipeline is subject to
no temperature differential and is pressurized to produce hoop stress up to 72 percent of the
yield strength. On the other hand, the same pipeline would have negligible initial axial force
if it is subject to a temperature differential of 75 °F (41.7 °C) in addition to the pressure.

Different characteristics can be observed from the moment-curvature curves with no
axial force and 20 percent of the axial yield force in tension as shown in Fig. 7.2. The
moment-curvature curve without axial force has virtually no plastic plateau and negligible
postbuckling strength. The other, however, has a visible plastic plateau and considerable
remaining strength in the postbuckling region. With these differences in mind, local
buckling behavior is expected to have a more significant influence on localization of
deformation when there is a positive temperature differential.

7.2.2.3 Comparisons of the Solution for BSA02 and BEB02

The next pair of solutions is for Specimens BSA02 and BEBO2. Similarly the
solution of Specimen BSAQ2 includes local buckling effects and the other does not.
Comparing to Specimen NOM, the only difference for these two specimens is the stiffness
and strength of the bearing springs which have been reduced to one-fifth of the reference
values in all zones. The solutions are shown in Figs. 7.18 to 7.21. The distributions of
curvatures and moments at settiement of 31 inches are shown in Figs. 7.18 and 7.19 where
the effects of local buckling are almost invisible. The effects of local buckling are more
influential when the settlement is further increased as demonstrated by the critical curvature-
settlement curves and critical moment-settlement curves in Figs. 7.20 and 7.21. In overall,
the effects of local buckling under the condition of soft bearing spring are apparently less
significant that those under the normal condition. This indicates the interaction between the
local buckling effects and soil condition.

In summary, the effects of local buckling on the response of pipelines, particularly
the localization of deformation, are significant. They start to grow rapidly and become
obvious when the critical segments starts to soften. The effects of local buckling depend on
the temperature differential (see Sect. 7.2.2.2) and soil conditions imposed on the pipeline
(see Sect. 7.2.2.3). Strong interaction between local buckling effects and temperature
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differential and soil conditions have been demonstrated in this Sect. 7.2.2.
7.2.3 Effects of Temperature Differential

Temperature differential is expected to have an important influence on the response
of pipelines subjected to differential settlement. The influence can be demonstrated by
comparison between solutions for Specimens NOM and TENOM. The solutions for both
specimens have been discussed with respect to the effects of local buckling in Sects.
7.2.2.1 and 7.2.2.2. Both solutions for Specimens NOM and TENOM include effects of
local buckling and are solved by ISPDR technique. A temperature differential of 75 °F
(41.7 °C) is the only difference in the condition of Specimens NOM and TENOM. The
comparison of these solutions is shown in Figs. 7.22 to 7.26.

Because of the temperature differential, Specimen TENOM has more deformation
localization than Specimen NOM. This is more obvious at the critical segment in the stable
zone as shown in Figs. 7.22 and 7.23. The location of this critical segment is one element
closer to the transition of the ground profile than the one for Specimen NOM. The moments
are smaller for Specimen TENOM in both critical segments at the settlement of 22 inches
which is clearly shown in Fig. 7.24. The development of the critical curvature and moment
with respect to differential settlement are shown in Figs. 7.25 and 7.26. The critical
curvature of Specimen TENOM starts to increase rapidly at smaller settlement than for
Specimen NOM. From Fig. 7.25, this starting point can be identified at settlement of about
8 inches (203 mm) for Specimen TENOM and 16 inches (406 mm) for Specimen NOM.
This is the principal reason for the fact that deformation localization at the critical segment is
apparently more significant for Specimen TENOM. The critical curvatures for both
specimen grow at more or less the same rate with respect to the settlement once they start to
grow rapidly. The moment-settlement curves in Fig. 7.26 show similar characteristics.
Both of them have a linear elastic region, a nonlinear elastic-plastic region and a softening
region. In the softening region, both of them have a significant drop in moment capacity
followed by a relatively stabilized response. The differences are, however, obvious in two
aspects. First, the maximum moment capacity of Specimen TENOM is lower and is
reached earlier. Second, the drop of moment capacity is larger for Specimen TENOM and
consequently the remaining capacity is significantly lower.

The differences discussed above are a direct consequence of the imposed
temperature differential. As discussed in Sect. 7.2.2.2, the temperature differential of 75 °F
changes the initial axial force in the pipeline from about 22 percent of the axial yield force in



tension to a negligible level. As a result, the response of the critical segments have different
characteristics which are represented by moment-curvature curves without axial force and
with 20 percent of the axial yield force in Fig. 7.2. The moment-curvature curves without
axial force, which is more representative of Specimen TENOM, has lower maximum
moment capacity and starts to soften at smaller curvature. These characteristics are
responsible for the differences in the solutions for Specimens TENOM and NOM and have
been reflected in the solutions as discussed along with the comparison of the solutions.

7.3 EFFECTS OF GEOTECHNICAL PARAMETERS

Geotechnical parameters considered here include the stiffness and strength of
bearing, uplift and longitudinal soil springs and the length of transition zone of the ground
profile. The effects of each of these parameters will be investigated in one of the following
sub-sections. To study one parameter, two specimens are analyzed to compare with the
reference Specimen NOM. One specimen has the value of the parameter under
consideration at one-fifth of the reference value and the other at five times the reference
value. These values serve as estimates of the lower and upper bounds of the parameter. The
effects of each parameter can be demonstrated by comparison of the solutions for these
three specimens.

7.3.1 Effects of the Bearing Soil Springs

The specimens used to study the effects of bearing springs are BSAQ2 and BSAS0.
The parameter under consideration is either the strength or the stiffness of bearing springs,
because only one of them is independent (see Sect. 7.1.4). Specimens BSAQ02 and BSAS0
have the smaller and larger stiffness and strength of bearing springs, respectively, than for
Specimen NOM. The solutions are shown in Figs. 7.27 to 7.30 along with the solution of
Specimen NOM. The deformed configurations in Fig. 7.27 show the great influence of the
stiffness and strength of the bearing springs. From the deformed configurations, the critical
segments in both the stable zone and settlement zone can be identified. They can be verified
by the curvature distributions.

As a general rule, the critical segment in the settlement zone is located at the element
just before the pipeline starts to be supported by bearing springs. The pipeline between the
transition and the critical segment in the settlement zone lifts off the ground and
consequently is not supported by the bearing springs. The critical segment in the stable
zone is located at the element just before the start of the region of yielding in the bearing
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springs. The bearing springs between the critical segment and the transition have yielded
and reached their full strength. Due to the the perfectly plastic behavior assumed for soil
springs, bearing springs in this region do not provide any resistance to additional
displacements. For specimens discussed here, the critical segments are indicated in Fig.
7.27. The interesting fact is that the critical segments in the stable zone are located far apart
while those in the settlement zone are located very close to each other.

To rationally explain this fact, more details need to be examined. The pipeline is
subject to overburden load, which is constant over the length of the pipeline, and the
transverse forces generated by uplift and bearing springs. Only one of the uplift and
bearing springs is active at any location for any configuration as defined and discussed in
Sect. 6.5.3. A conceptual free body diagram of the pipeline at the transition is shown in
Fig. 7.49 where the axial forces are neglected to simplify the diagram. As shown in Fig.
4.49, the uplift springs are only active in the region between the transition and the critical
location in the settlement zone where the pipeline lifts off the ground. The bearing springs
yield in the region between the transition and the critical location in the stable zone. Because
of the slope of the pipeline around the transition zone and the significant axial load in
tension, the bearing springs in the stable zone tend to pick up most of the load generated by
the uplift springs. From Fig. 7.49, it is clear that the distance between the transition and the
critical location in the settlement zone depends primarily on the magnitude of the load
generated by the uplift springs and the capacity of the pipeline to resist the transverse load;
and, the distance between the transition and the critical location in the stable zone depends
primarily on the load to be supported by the bearing springs and the strength of the bearing
springs.

With respect to Specimens BSA02, BSA50 and NOM, the solutions in Fig. 7.27
show that the critical locations in the settlement zone are close to each other. As a result,
about the same amount of load is generated by the uplift springs because the strengths of
the uplift springs are the same for all three specimens and the lengths of the region which
lifts off are approximately equal. However, the strengths of bearing springs are much
different for these three specimens. Consequently, the length of the region with yielded
bearing springs is largest for Specimen BSAO2 and smallest for Specimen BSAS0. The
localization of deformation is shown in the distributions of curvature in Fig. 7.28. At a
settlement of 31 inches (0.79 m), localization of deformation at the critical segments is
significant for Specimen BSA50 and NOM. The critical curvature of Specimen BSAS50 is
obviously larger than that of Specimen NOM. The localization of deformation for Specimen



BSAO02 can barely be seen in the settlement zone and has yet to be developed up to
settlement of 31 inches (0.79 m) in the stable zone.

The differences with respect to the localization of deformation are also shown in the
critical curvature-settlement curves in Fig. 7.29 and critical moment-settlement curves in
Fig. 7.30. The curves for Specimen BSAQ2 remain essentially in the region of linear
response up to settlement of 32 inches (0.81 m) and starts to yield afterward. On the other
hand, the curves for Specimen BSAS50 have linear response only up to a settlement of 4
inches (0.1 m) and softening response from 8 inches (0.2 m) and beyond. Comparing
these latter values with 8 and 16 inches (0.2 and 0.4 m) for Specimen NOM, Specimen
BSASO yields and softens at significantly smaller settlement. This is because of the higher
strength and stiffness of the bearing springs which make the moment in the critical
segments increase more rapidly.

In summary, the effects of the stiffness and strength of bearing springs has great
influence on the response of the pipeline, particularly on the localization of deformation in
the critical segments. As a result, the settlement corresponding to a given curvature may
vary from just a few inches to 40 inches as the strength and stiffness of the bearing springs
change from the lower bound to upper bound. The principal reason is that bearing springs
of low strengths yield over longer lengths in the stable zone. This allows the deformation to
occur on a longer segment of the pipeline and in a more gradual manner.

7.3.2 Effects of the Uplift Soil Springs

The effects of uplift soil springs can be stdied by examining the solutions of
Specimens USAOQ2, USA50 and NOM. These specimens are identical except for the
stiffness and strength of the uplift springs. The stiffness of the soil springs is assumed to
be proportional to their strength, and therefore, only one of them is independent. The
strength of the uplift springs is one-fifth of the reference value for Specimen USA02 and
five times for Specimen USAS0. The reference value of the strength of uplift springs is the
one applied to Specimen NOM. The solutions for this group of specimens are shown in
Figs. 7.31 to Fig.7.34.

First, the deformed configurations of the pipeline at a settlement of 24 inches (0.61
m), as shown in Fig. 7.31, are examined. A clear observation is that the critical segments
in the stable zone are located close to each other and those in the settlement zone are located
further apart. This behavior is opposite to the behavior observed in the solutions of
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Specimens BSA02, BSAS0 and NOM, which were discussed in Sect. 7.3.1. The behavior
can also be explained conceptually based on the free body diagram of the pipeline in the
transition region which, as in the previous sub-section, is shown in Fig. 7.49.

For this group of specimens, the properties of bearing springs are identical.
However, the strength of uplift springs is different for each of the specimens. The length of
the lifted segment of the pipeline, or the distance between the transition and the critical
location in the settlement zone, is determined primarily by the transverse load generated by
the uplift springs and the moment capacity of the pipeline to resist transverse loads. The
moment capacity of the pipeline is approximately the same for Specimens USA02, USA50
and NOM, with a limited difference introduced by axial force which varies within a narrow
range for this group of specimens. This can be verified by the moment-settlement curves in
Fig. 7.34 where the moment capacities for all three specimens are clearly defined. As a
result, the load generated by the uplift springs becomes the primary factor to determine the
length of the lifted segment. As shown in Fig. 7.49, the intensity of the transverse load
generated by the uplift spring is limited by the strength of uplift springs. Consequently, a
lower strength of the uplift springs results in a longer lifted segment. This is clearly
demonstrated by Fig. 7.31.

The effects of the strength of the uplift springs on localization of deformation is
great and is shown by the distribution of curvatures in Fig. 7.32. The localization of
deformation is most significant for Specimen USAS50 with the upper bound strength of the
uplift springs and least significant for Specimen USAQ2 with lower bound strength. At a
settlement of 24 inches (0.61 m), the critical curvature of Specimen USAS0 is about §
times that of the critical curvature of Specimen USAOQ2 in the stable zone, and is about 14
times that in the settlement zone. These number show that the effects of the uplift springs
can change the response of pipelines from virtually no localization of deformation to very
significant localization.

The curvature-settlement curves in Fig. 7.33 and the moment-settlement curves in
Fig. 7.34 further illustrate the influence of the uplift springs. As discussed in Sect. 7.2.1,
the history of critical curvature and moment with respect to the settlement can be divided
into three stages of different characteristics which are linear, nonlinear and softening
response. For Specimen NOM, the linear response ends at a settlement of 8 inches (0.2 m)
and the softening response starts at a settlement of 16 inches (0.41 m). These numbers
become 6 inches (0.15 m) and 12 inches (0.30 m) for Specimen USAS0; and, 14 inches
(0.36 m) and 24 inches (0.61 m) for Specimen USAQ2, respectively. These numbers



indicate a trend that the differential settlements covered by both the linear and nonlinear
response stages increase as the strength of the uplift springs decrease. As a result of this
trend, a much larger differential settlement can be tolerated by the pipeline if the strength of
the uplift springs is reduced.

7.3.3 Effects of the Longitudinal Soil Springs

The effects of the longitudinal springs may be studied by examining two group of
solutions. The first group consists of Specimens LSS02, LSS50 and NOM which focuses
on the effects of the strength and stiffness of the longitudinal springs. The second group
consists of Specimens LSL02, LSL50 and NOM which demonstrates the effects of the
length of the region where relatively weak longitudinal springs are applied.

Specimens LSS02 and LSS50 are the same as Specimen NOM except for the
properties of the longitudinal springs. The strength and stiffness of the longitudinal springs
are one-fifth of the reference value of Specimen NOM for Specimen LSS02 and five times
for Specimen LSS50. The length of the region with relatively weak longitudinal springs is
1000 inches (25.4 m) and is the same for all three specimens in this group. The solutions
are shown in Figs. 7.35 to 7.40. The deformed configurations at a settlement of 28 inches
(0.71 m) in Fig. 7.35 essentially overlap each other with some differences at the critical
segment in the settlement zone. The distribution of curvature in Fig. 7.36 show that the
critical segments of all three specimens lie at exactly the same locations both in the stable
and settlement zones. The differences in the critical curvatures in both stable and settlement
zones are not nearly as great as those due to the effects of the bearing or uplift springs
discussed in Sects. 7.3.1 and 7.3.2. The critical curvature-settlement curves in the
settlement zone in Fig. 7.37 indicate the critical curvature for Specimen LSS02 with the
lower bound strength of longitudinal springs is larger than those for other two specimens.
This is mainly because the region of softening response starts earlier for Specimen LSS02
as shown in Fig. 7.38.

To explain the mechanism of how the longitudinal springs influence the response,
the distributions of axial force at a settlement of 28 inches (0.71 m), and the critical axial
force-settlement curves, are shown in Figs. 7.39 and 7.40, respectively. Due to different
strengths of the longitudinal springs two types of distribution of axial force are produced in
the pipeline, which are represented by the curves for Specimens LSS02 and LSS50 in Fig.
7.39, respectively. The distribution of axial force for Specimen LSS02 is nearly uniform
because of the low strength of longitudinal springs. The distribution for Specimen LSS50
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is, however, non-uniform with the maximum axial force close to the transition. The axial
force decreases rapidly away from the transition in the stable zone because of the high
strength of the longitudinal springs. In the settlement zone, the axial force decreases slowly
in the first 1000 inches (25.4 m), where the relatively weak longitudinal springs are applied
and decreases rapidly afterward. This indicates that the axial deformation is restricted to a
shorter length close to the transition by stronger longitudinal springs, and a larger axial
force is built up. Figure 7.40 illustrates more clearly that the critical axial force increases as
the strength of longitudinal springs increases. As a result, the localization of deformation is
less significant for Specimen LSS50, and is more significant for Specimen LSSO02 than for
Specimen NOM. This is because larger tensile axial force corresponds to relatively longer
plastic plateau and relatively less unstable postbuckling behavior as shown clearly in Fig.
7.2.

The second group of specimens is designated to the effects of the length of the
region where relatively weak longitudinal springs are applied. This length is 200 inches (5
m), 1000 inches (25.4 m) and 5000 inches (127 m) for Specimens LSL02, NOM and
LSL50, respectively. Since the strength of the relatively weak longitudinal springs is only
about one-fifth of the normal value for longitudinal springs in stable zone and remote
settlement zone, application of these relatively weak springs over different length results in
significant difference in the axial restriction provided by longitudinal springs. In addition,
the region with the relatively weak longitudinal springs, which extends from the transition
into settlement zone, is the most important region for the building up of axial force in
tension at the critical segments. By the same mechanism discussed previously in this
subsection, substantial differences in the response of pipelines are introduced. They are
illustrated by solutions in Figs. 7.41 to 7.44. The deformed configurations at a settlement
of 29 inches (0.74 m), as shown in Fig. 7.41, show noticeable differences at the critical
segments both in the stable and the settlement zones. These differences are reflected in Fig.
7.42 where the curvature distributions are displayed. The critical curvature for Specimen
LSLO2, where the length is shorter and axial restriction is stronger, is significantly less
than the critical curvatures of the other two. The critical segments lie at the same locations
both in the stable and settlement zones. Fig. 7.43 shows that the critical curvatures agrees
well with each other up to 16 inches (0.41 m) and difference develops rapidly afterward
because the axial force built up by strong axial restraint stabilizes the softening response in
the case of Specimen LSL02.



7.3.4 Effects of Ground Profile in Transition Zone

In all the solutions discussed in the previous sub-sections, the ground profile in the
transition zone is assumed to be a step-wise ground profile as defined in Sect. 6.5.1 and
shown in Fig. 6.6. This implies that the settlement occurs over a negligible length. In
reality, however, settlements may occur over wide ranges of length. To study the effects of
the ground profile in the transition zone, two specimens, TPLOS and TPL20, are analyzed.
The lengths of transition zone are 5 and 20 feet for Specimens TPLOS and TPL20,
respectively. The smooth ground profile defined in Eq. (6.72), and shown in Fig. 6.7, is
assumed. This ground profile may not be that which occurs in the field but it simplifies the
description of ground profile to one parameter which is the length of the transition zone.
This length is believed to be the most important parameter representing the ground profile.

The solutions for Specimens TPLOS, TPL20 and NOM are shown in Figs. 7.45 to
7.48. Some differences in deformed configurations can be observed in Fig. 7.45,
particularly at the critical segments. The curvature distributions at a settlement of 31 inches
(0.79 m) in Fig. 7.46 illustrate that the localization of de ‘ormation is reduced as the length
of transition zone increases. This is more apparent at the critical location in the settlement
zone. The critical curvature reduced by 37 percent as the length of transition zone increases
from zero to 20 feet. This reduction is large enough to make the ground profile one of the
factors to be studied. The critical curvature-settlement curves are shown in Fig. 7.47. The
slope of the curve for Specimen TPL20 in the softening region is obviously smaller than
those of other two curves, and this is a result of less localization of deformation occuring in
Specimen TPL20.
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a) Acronym Abbreviations

NOM = NOMinal specimen with 6g=0.72 6y and parameters in Table 7.1

BE = NOM with Buckling Excluded

BSA = NOM with variation in Bearing Springs in All zones

USA = NOM with variation in Uplift Springs in All zones

LSS = NOM with variation in Longitudinal Spring Strength in all zones

LSL = NOM with variation in Length of region of weak Longitudinal Springs
TPL = NOM with variation in Transition Profile Length

BENOM=NOM with Buckling Excluded
TENOM=NOM with TEmperature differential
BETMP =NOM with Buckling Excluded and TeMPerature differential

b)Numerical Values of Parameters
Behind an acronym, 02 = parameter reduced to 20% of value for NOM, and
.50 = parameter increased to 500% of value for NOM
Except for acronym TPL where 05 = a transition zone of 5 feet (1525 mm)
and 20 = a transition zone of 20 feet (6100 mm)

Table 7.3 Definition of Series and Specimens for Settlement Analysis



295

overburden load 0.25 kip/in

I T T T O O I

(a) Overburden loads
21 T

y
1 }1 51 81 101 131

-333.3 -133.3*  -50' 0 50 216.7 666.7'

| ]

(b) Nodal numbering and coordinates

5@40 5@16.7 15@3.3' 15@3.3' 10@16.7' 15@30'
(c) Elements

stable zone settlement zone -
[

transition
(d) Zone division
relatively weak
longitudinal springs
standard longitudinal springs | | standard longitudinal springs
lm"

(e) Distribution of longitudinal springs

Fig. 7.1 Discretization of Pipelines
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CHAPTER 8 DEFORMATION DESIGN CRITERIA

The behavior of pipelines, in terms of both the local buckling behavior and the
overall performance when they are subject to imposed deformation, has been discussed in
the previous chapters. Based on these discussions, design criteria for deformation limit
states can be proposed which are believed to have a more rational base than for those used
for current practice. In this chapter, discussion is focused on the design and assessment
criteria for the deformation limits. The chapter begins with a brief introduction on limit
states and the philosophy of limit states design. The details of the proposed design criteria
are discussed in the second section. In the third section, the method of applying the
proposed design criteria are demonstrated through applications to some of the specimens
for settlement analysis in Ch. 7.

8.1 INTRODUCTION

The two principal design philosophies are working stress design and limit states
design. In structural engineering, working stress design principles were almost universally
used until about two decades ago when limit states design principles were proposed and
adopted in fields such as steel structures for buildings. However, design standards in other
fields are still based on working stress design. An example is the Canadian code for oil and
gas pipeline systems (Canadian Standards Association, 1986, 1990).

Working stress design appears to be relatively simple in application because it
requires only linear elastic analysis to predict the response of structures under specified
load conditions. However, it does not directly deal with the failure conditions of structures
and it attempts to control undesirable effects indirectly by specifying that under normal
operating condition the structure has a factor of safety against yielding of the material. As a
result, the design obtained has variable levels of safety for different failure conditions. On
the other hand, limit states design is based on a direct evaluation of each of the limit states:
and therefore, a more uniform level of safety can be achieved. A safe and economic design
can be obtained with greater clarity and rationality with respect to each of the limit states if
each unsatisfactory condition be identified as such a state. However, the analytical
approach consistent with limit states design should then be able to predict the response of
the structure up to all of its limit states. As a result, a rational approach for deformation
limit states must be based upon nonlinear analysis including both large displacements and
nonlinear material relationships.



In this section, deformation limit states for pipelines are first discussed. This is
followed by a brief review of existing design criteria for deformation limit states. The
discussions in this, and the following sections, are part of the effort to develop a limit states
approach for pipeline design.

8.1.1 Deformation Limit States for Pipelines

Limit states design was introduced into the mainstream of Canadian design practice
in 1974 through the 'code’ known as Canadian Standards Association Standard S16.1-
1974-'Steel Structures for Buildings-Limit States Design'. Since that time it has had a
major effect on clarifying and rationalizing the design process for all structural steel
buildings and bridges in Canada, and the application of this philosophy has been extended
from these types of structures to those constructed of all materials. The limit state
philosophy of the Canadian design codes has also had a major impact on the structure of
building codes in many other countries around the world.

CSA Standard CAN3-S16.1-M78 (1978) contains the following definition.

" Limit States means those conditions of a structure in which the structure ceases to
fulfill the function for which it was designed. Those states concerning safety are called
the ultimate limit states and include exceeding of load-carrying capacity, overturning,
sliding, fracture and fatigue. Those states which restrict the intended use and occupancy
of the structure are called serviceability limit states and include deflection, vibration and
permanent deformation.”

Because it requires that the designer focus on the specific ways in which structures may fail
to perform their function, the limit states philosophy has led to considerable rationalization
of the design processes.

It must be recognized that a primary concern of the pipeline industry is to maintain
p peline installations in safe operating conditions over a very extended period of time.
Therefore, design-oriented codes which do not explicitly recognize deterioration of the
structure, the assessment of safety conditions during the life of the structure, and the effect
of organized remedial maintenance on the performance of the structure, are not providing
the industry with adequate guidance to address structural performance in the manner which
is required. After all, the safety of a structure which is twenty years old is just as important
as one which is currently under construction. This implies that for proper guidance of the
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industry it would be necessary to extend the limit states philosophy, and recommendations,
to deal explicitly with the specification of limit state conditions throughout the life of the
structure.

It is the opinion of the author that a proper limit states code for the design of
pipelines will require radical surgery on the existing codes, and that there is an urgent need
of the industry to recast the present codes into such forms before any major improvements
can be made in pipeline engineering design. It has been a fundamental assumption of this
work that the industry will be capable of reassessing the performance requirements of their
lines in such a way that they can define the conditions under which "the structure ceases to
fulfill the function for which it was designed" (CAN3-S16.1-M78). Unfortunately, there
does not seem to be much effort to address such issues at this time.

The term ‘deformation limit state’ is used to distinguish limit states associated with
large plastic strains or geometric distortions from those failure states associated with
‘brittle’ material behavior. Controls for the latter type of failure states have traditionally
been based on stress concepts and have tended to dominate the design philosophy relative
to pipeline design for most of the last century. However, with the emergence of very high
toughness materials, and modern welding technology, it is perhaps time to question this
domination. Indeed, the industry appears to be working slowly towards replacing the stress
methods for fracture with limiting deformation states.

This study has proceeded on the basis that rational definitions of 'deformation limit
states’ can be made. In the lack of any industry guidance to the contrary, the assumption is
that a deformation limit state exits when either: (a) the cross-sectional dformation of the
pipe becomes sufficiently large to interfere with the passage of a pigging device through the
pipe; or, (b) the wrinkle becomes sufficiently large that material failure at the crease is
imminent. It is not suggested at this time, however, that these states can replace the fracture
limits. They should be viewed as complementary to these limits.

Cross-sectional distortion can occur from ovalization or from wrinkling and local
buckling. These, in turn, will influence curvature. Consequently, the main thrust of the
analyses which have been developed, has been to analyze for the initiation and
amplification of local buckling under realistic field conditions. In addition to developing
three-dimensional finite element analyses for the analysis of local buckling, this has
required the development of methods to predict the concentration of curvatures in regions
of softening associated with the local buckling phenomenon.



The first deformation limit state identified above (LLS1) is dictated by the passage of
pigging devices. A pigging device is a type of on-line inspection device for pipelines. It
performs various functions, from removal of obstructions to monitoring the geometry and
corrosion conditions. In the modem pipeline industry, on-line inspection is believed to be
essential for extended life and is as important as the initial design (Price and Anderson,
1991). Consequently, the pigging operation is one of the basic operations to be carried out
in pipelines. Typical pigging devices are shown in Figs. 8.1 and 8.2 for small size and
large size of pipelines, respectively.

The operational conditions for pigging devices depend upon the purpose of the
pigging operation. As discussed by Tiratsoo (1987), the four purposes for pigging
operations are : (i) interface separation of fluids; (ii) removal of obstructions; (iii) pipeline
maintenance; and (iv) pipeline monitoring. These different purposes lead to different types
of pig devices and different requirements on the operational conditions. The basic
requirement for all types of pig devices is the passage of the devices, because the pig has to
be able to go through the pipeline in order to perform any kind of operation. In addition, a
stuck pig can cause a major disruption to the operation of the line. Consequently, any
deformation which significantly affects the passage of the pigging operation is a
deformation limit state for which rational design, maintenance or repair criteria should be
established.

The second deformation limit state identified above (LLS2) is associated with the
amplitude of the wrinkle. As the wrinkling initiates and develops, the pipe wall starts to
fold and large bending deformation is introduced into the pipe wall locally at the wrinkle
(see Figs. 4.29(c) to 4.35(c)). The bending deformation at the crease of the wrinkle is
particularly large and material failure may be expected when the amplitude of the wrinkle is
sufficiently large. Material failure of the pipe wall leads to leakage and rupture. As a result,
an ultimate limit state can be established based on the amplitude of the wrinkle.
Unfortunately, there is no data available with respect to the amplitude of wrinkle associated
with the material failure in the crease of the wrinkle. The determination of this limiting
amplitude would require a rational procedure based on the principles of fracture mechanics
and this is beyond the scope of this project. However, the reason to consider this as a limit
state of deformation is that the material failure condition is the consequence of wrinkling
and wrinkling is a deformation dominated phenomenon. It is assumed that the material
failure associated with wrinkling can be prevented by limiting the amplitude of wrinkling.
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8.1.2 Existing Design Criteria for Deformation

Generally, design criteria for deformations do not exist in the design codes for
pipelines, such as the Canadian codes (Canadian Standards Association, 1986, 1990). The
existing deformation criteria were developed by the pipeline industry and are summarized
well by Price et al. (1978, 1987, 1990 and 1991).

Three measures of deformation have been established. The first is the longitudinal
compressive strain limit at the onset of local buckling. This is the criterion to prevent the
initiation and development of local buckling or wrinkling. The second deformation criterion
is the ovality of the cross-section. This is designated to prevent excessive denting, or
flattening that may be introduced by large reactive forces. The third criterion is the out-of-
roundness. This is intended, in part, to prevent snap-through collapse. The limiting
longitudinal compressive strain has been set from 0.3 percent to 0.8 percent (Price and
Barnette, 1987) for pipelines with diameter of 48 inches (1219 mm) to 12 inches (305
mm). This is determined, in general, by experimental measurements and analytical
predictions of the strain at the onset of local buckling.

The ovality is defined as
ovality = %m'_ x 100% (8.1)

where D and Dy, are the nominal outside diameter and the minimum diametrical
measurement, respectively. The ovality has been limited to between 5 to 8 percent in the
past (Price, 1990). Out-of-roundness has been defined in Eq. (4.1) as

out-of-roundness = 2max=Dain x 1005 8.2)

where Dmax is the maximum diametrical measurement. The out-of-roundness has been
limited to about 15 percent and 6 percent for pipelines operated at zero and full pressure,
respectively (Price and Anderson, 1991). The limit values used for ovality and out-of-
roundness have taken the requirement of the passage of pig devices into account. This
implies that the experience of the industry is that the passage of pig devices can be
guaranteed if the out-of-roundness is less than about 15 percent.

The above three criteria are not based rationally on the deformation limit states of
pipelines. The buckling strain limit by itself does not specify a deformation limit state. It is



only if one interprets this limit as an estimate of the conditions under which other
distortions become unacceptable that it becomes consistent with limit states philosophy.
However, both experimental studies (Bouwkamp and Stephen, 1973) and the analytical
studies in this work indicate that at the onset of local buckling the cross-sectional
deformation is small and the pipeline can remain fully operational. Hence, the buckling
strain criterion can, at most, be considered to be a conservative alternative to a limit states
criterion. Because the real behavior of pipelines at deformation limit states is difficult to
predict, the buckling strain alternative appears to have been accepted by the pipeline
industry even though it may be a poor estimate of true behavior.

The out-of-roundness criterion of Eq. (8.2) is a measure of the cross-sectional
distortion. However, it is intended to prevent snap-through collapse which is a load
controlled phenomenon. Snap-through collapse is only possible when the load carrying
capacity of the pipeline is reached and the rate of reduction of external loads is less than that
of the load carrying capacity. For buried pipelines, the major loads are imposed
deformations. The basic characteristic of this type of load is that it depends on the stiffness
of the pipeline and is applied through the soil-pipeline interaction. As a result, the loads
introduced by imposed deformations decrease as the pipeline softens. In addition, as the
deformation increases, more support and less load are imposed on the pipeline.
Consequently, snap-through collapse is not likely to occur. Furthermore, snap-through
collapse is not a failure condition for buried pipelines because the load carrying capacity is
not the major concern. Localization of deformation and cross-sectional distortion are
associated with the softening behavior of pipeline segments and the failure condition should
be determined to rationally establish the deformation limit states.

The ovality criterion of Eq. (8.1) is intended to control dent types of cross-sectional
distortion. As far as the deformation for this particular type of the cross-sectional distortion
is concerned, this criterion can be replaced by more general deformation criteria based on
cross-sectional distortion.

In an effort to review the buckling strain criterion, Lara (1987) studied wrinkle
growth after local buckling was initiated. It was concluded that the buckling strain criterion
is adequate for pipe segments with low pressure and very conservative for pipe segments
with high pressure. Further deformation can be tolerated without risking operational
integrity. It was suggested that the compressive strain, at which rapid wrinkle growth
begins to occurs is more closely related to the failure condition of pipelines; and therefore,
can be used as the deformation limit criterion for design. However, no details were given
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with respect to how to determine this critical compressive strain and how to apply it.
8.2 PROPOSED DEFORMATION CRITERIA

To establish rational deformation criteria based on limit states principles is the
objective. However, clear guidance from the pipeline industry with respect to the definition
of failure in terms of deformation is not available at the present time. Therefore,
deformation criteria are established based on the deformation limit states proposed in Sect.
8.L.1. These are associated with the passage of pigging devices and material failure at the
crease of the wrinkle. These criteria will be referred as cross-sectional deformation limit
states criteria and will be discussed in Sect. 8.2.1. Because deformation limit states are not
well defined, the applicability of the cross-sectional deformation limit states criteria is
restricted and an alternative to them is proposed. It is referred to as the initiation of
softening criterion which appears to give a good estimation of the deformation limit states.
This initiation of softening criterion is discussed in Sect. 8.2.2. For comparison, the
buckling strain criterion, used currently in the pipeline industry, is also included in Sect.
8.2.3. It is suggested that the buckling strain criterion be replaced by the initiation of
wrinkling criterion that will be established based on the condition at the initiation of the
wrinkling as defined in Ch. 5.

8.2.1 Cross-sectional Deformation Limit States Criteria

The basic assumption for design criteria discussed in this sub-section is that the
deformation limit states can be best represented by the deformations which interfere with
the passage of pigging devices or cause material failure at the crease of a wrinkle.
Experimental studies (Bouwkamp and Stephen, 1973, 1974) and the analytical studies in
this project have confirmed that there are essentially two types of buckling modes. They are
an inward diamond buckling mode, which occurs at low internal pressure; and, an outward
bulging buckling mode which occurs at medium and high internal pressures. The inward
buckling mode is likely to affect the passage of the pigging operation because the
development of wrinkles in this mode would significantly reduce the diametrical dimension
in at ]east one direction. To the author’s knowledge, the outward buckling mode would not
interfere with the pigging operation in any significant way. However, it is more likely to
cause material failure at the crease. This is because the outward wrinkle tends to have a
relatively smaller wavelength than the inward wrinkle, as was discussed in Sect. 4.3.4, and
consequently, more bending deformation concentrates on the crease of the wrinkle.



To quantify the deformation with respect to these two deformation limit states and
two buckling modes, the diametric differential and diametric expansion, which were
defined in Egs. (4.2) and (4.3), are used to describe the cross-sectional distortion and the
amplitude of the wrinkle. Considering the fact that the maximum and minimum diametric
dimensions are either the in-plane diameter or the out-of-plane diameter, out-of-roundness
is actually the absolute value of the diametric differential. Diametric differential is more
informative by differentiating between the two basic buckling models. In general, it is
positive and increasing for the inward buckling mode and negative, or close to zero, for the
outward buckling mode. When diametric differential is positive, it defines quantitatively the
decrease of the in-plane diameter and increase of the out-of-plane diameter. If the
deformation of this pattern grows to a certain magnitude, the passage of pigging devices is
affected. Consequently, as one of the possible measures, the deformation limit state
associated with the passage of pigging devices can be quantitatively defined to be when the
diametric differential reaches a limiting value.

At the present time, however, this limiting value of the diametric differential is not
available from the pipeline industry. A data base collected from pigging designers and
operators is needed to rationally evaluate the limiting value for diametric differential. To
illustrate the procedure to establish and apply the limit states criteria for this type of
deformation, the limiting value for diametric differential is assumed to be 15 percent. This
is based on the fact that out-of-roundness at 15 percent is safe for passage of pigging
devices as implied by the criterion presently used in the industry. The deformation criterion
can be expressed in equation form as

predicted maximum Dgg < 15% (8.3)

where Dygjs is the diametric differential. Since this deformation limit state is considered to
be a service limit state, there is no load factor or resistance factor to be applied in the above
equation.

The amplitude of the wrinkle for an outward bulging mode is represented by the
diametric expansion, which is the average of the maximum and minimum amplitude.
Diametric expansion is intended to describe the deformation in the outward buckling mode
and the deformation limit state associated with the material failure at the crease of the
wrinkle. The amplitude of the inward buckling mode is not properly represented by
diametric expansion. However, this pattern of deformation is more likely controlied by the

327



328

criterion in Eq. (8.3). As one of the possible measures, the deformation limit state with
respect to material failure at the crease of the wrinkle can be quantitatively represented by a
limiting value on diametric expansion. Since this limiting value is not available and there is
no guidance on what is should be, it is assumed to be 10 percent. The number of 10
percent is believed to be reasonable and conservative. In the test series recently completed
in University of Alberta, and the test series currently in progress in the Center for Frontier
Engineering Research (C-FER), some specimens have developed wrinkles with an
amplitude larger than 10 percent of the pipe diameter. However, no material failure has
been observed. The deformation criterion associated with the material failure at the crease
of wrinkle is then taken to be

predicted maximum Deyp < 10 % (8.4)

where Dexp is the diametric expansion. The deformation limit state associated with material
failure is considered as an ultimate limit state. Consequently, load factor and resistance
factor should be applied to Eq. (8.4) according to the principles of limit states design.
Nevertheless, in the demonstration of of application of this criterion to be undertaken in
Sect. 8.3, they are neglected for the reasons of simplicity and because no data base is
available.

The cross-sectional deformation criteria in Eqgs. (8.3) and (8.4) are based on the
principles of limit states design, even though the limiting values cannot be firmly
established at this time due to lack of the data base to define the limiting conditions. This
work focuses on the conceptual approach to be used in the application of such criteria. As
more data become available, the limiting values can be revised.

8.2.2 Initiation of Softening Criterion

Because the cross-sectional deformation limit states of pipelines are not well
defined, the numerical values for the deformation criteria established in Sect. 8.2.1 have
not been validated for the design of pipelines. As a result, an alternative is needed that is
more closely related to, and that would improve, the existing criteria. The proposed
criterion is based on a lower bound estimation of the cross-sectional deformation limit
states and is referred to as the initiation of softening criterion.

The behavior of pipelines subjected to differential settlement has been discussed in
Sect. 7.2.1. The development of deformation in terms of curvature at the critical segments



has three stages with respect to imposed differential settlement as shown in Figs. 7.10 and
7.12. The third stage is one in which the softening characteristic is implied by the response,
and this introduces a much higher growth rate of curvature with respect to settlement. A
fundamental assumption adopted here is that any deformation limit state is associated with a
curvature that is larger than the curvature at the initiation of the third stage on the critical
curvature-settlement curve. This assumption implies that no deformation limit state will be
reached until the pipe segment starts to soften. The assumption is conceptually justified by
the fact that cross-sectional distortion is mainly introduced by local buckling which is
associated with softening behavior of the pipe segment as discussed in Sect. 4.3.5. Based
on this assumption, the deformation state at the initiation of the third stage can be taken as a
good lower bound estimate for the deformation limit states associated with a larger
curvature. This is illustrated in the following by a numerical example.

The critical curvature-settlement curve in the settlement zone for Specimen NOM,
which was analyzed in Ch.7, is shown in Fig. 8.3. This curve is identical to that in Fig.
7.12. At the initiation of the third stage, the curvature is 3.3573 x 10/in (1.3218x10°
S/mm) and the settlement is 16 inches (406 mm). The curvature increases from
3.3573 x 10%in (1.3218x10"*/mm) to 11.277 x 10%/in (4.4398x10*/mm) while the
settlement increases from 16 inches (406 mm) to 22.3 inches (566 mm), i.e. a 236 percent
increase in curvature corresponds to a 39 percent increase in settlement. These numbers
show that the curvature at a deformation limit state may be significantly larger than the one
at the initiation of the third stage. Additional settlement tolerable to the pipeline is, however,
not nearly as large as the difference in curvature.

Consequently, the initiation of the third stage on the critical curvature-settlement
curve is a reasonable, albeit conservative, estimate to the deformation limit states for the
purpose of deformation analysis and design. As discussed in Sect. 7.2.1, the third stage is
associated with the softening behavior of pipe segments in the postbuckling region. The
initiation of the third stage on the critical curvature-settlement curve corresponds to the
“initiation of significant softening” on the moment-curvature curve (compare Fig. 7.10 with
7.11; Fig. 7.12 with Fig. 7.13; Fig. 7.16 with 7.17; Fig. 7.20 with 7.21, etc.). Therefore,
if the point of initiation of significant softening is defined as the initial point of the first
significant softening on the moment-curvature curve, its occurence can be determined
directly from the moment-curvature curve by identifying the first segment of softening, or
indirectly from the critical curvature-settlement curve by identifying the initial point of the
third stage.
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Based on the understanding of the behavior of pipelines subjected to differential
settlement, the initiation of significant softening on the moment-curvature curve can be
established as an alternative to the cross-sectional deformation limit states criteria defined in
Eqgs. (8.3) and (8.4). Design rules for this point can be translated into the corresponding
curvatures or compressive strain at the extreme fiber. As shown in Figs. 4.7 to 4.9,
moment-curvature is affected significantly by the internal pressure and the axial load. As a
result, the limiting curvature or compressive strain established at the initiation of significant
softening are dependent on the axial force and internal pressure. This criterion may be
symbolically expressed as

predicted maximum compressive strain < limiting compressive strain (8.5)

where the limiting compressive strain could be determined, for example, from the softening
points of the curves in Fig. 4.12. Equation (8.5) can be equivalently expressed in terms of

curvature.

The initiation of significant softening criterion is not a limit states criterion.
However, it appears to be a good alternative until rational deformation limit states can be
established, because it is based on the behavior of pipelines subjected to differential
settlement and it takes different characteristics of moment-curvature relations into account.
Consequently, it is more rational than a criterion based on buckling strain.

8.2.3 Initiation of Wrinkling Criterion

The buckling strain criterion is defined at the onset of local buckling and has been
used in industry as the deformation criterion. The criticism of this criterion is the fact that
the initiation of local buckling is not significant enough to define the deformation limit
states. It appears that, quite generally, more deformation can be tolerated without affecting
the integrity and operational condition of pipelines.

Discussions in Sect. 5.1 concluded that wrinkling strain is a better representation
than buckling strain for the initiation of local deformation patterns. Based on a similar
principle to the buckling strain criterion, which is to prevent any localization of deformation
associated with growth of wrinkling, the buckling strain criterion can be replaced by the

criterion

predicted maximum compressive strain < wrinkling strain (8.6)



where the wrinkling strain is used to replace the buckling strain. This criterion is referred in
the following as initiation of wrinkling criterion.

8.3 APPLICATIONS OF DEFORMATION DESIGN CRITERIA

The procedures to apply the deformation criteria established in the previous section
are illustrated in this section. The examples used for this purpose are associated with
pipelines with a diameter of 48 inches (1219 mm) and thickness of 0.462 inches (11.7 mm)
that are subject to internal pressure at a level of 72 percent of the yield pressure. A
requirement to apply these criteria is that the predictive approach should be consistent with
the deformation criteria to be applied. This means that the predictive approach must have
the capability to properly model the softening response of the pipe segments and their
interaction with the overall response of the pipeline. This is particularly true for the cross-
sectional deformation limit state criteria in Eqs. (8.3) and (8.4) and for the initiation of
softening criterion in Eq. (8.5), because the limiting values associated with these criteria
will not be reached before the pipe begins to soften.

The following applications of the deformation criteria include generation of design
curves and determination of permissible differential settlements. These are discussed in the

following sub-sections.
8.3.1 Design Curves

The limiting curvature and compressive strain associated with each of the
deformation criteria are dependent on the axial force and internal pressure. For pipelines
operating at a specified constant pressure level, they depend only on the axial force. Curves
can be plotted in terms of the limit for the compressive strain or the limit for the curvature
with respect to axial force. These are referred to as design curves. A specific design curve
can be generated from each of the three deformation criteria for a given pipeline at a
specified pressure level.

Generation of design curves requires shell model analysis of the pipeline segment,
as presented in Ch. 4, in order to determine the curvature at which the limit conditions of
the design criteria are reached. Each of the design criteria corresponds to its own limit
condition. Cross-sectional deformation criteria correspond to the limit condition for which
the passage of pigging devices is interfered with, or when material failure in the crease of a
wrinkle is inminent. The limit conditions for the initiation of significant softening criterion
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and the initiation of wrinkling criterion are established from the shell segment analysis at
the points of initiation of significant softening and of the initiation of wrinkling,

respectively.

The discussion in this section is confined to a pressure level of 72 percent of the
yield pressure. Consequently, the solutions to establish the design curves are those of
Specimens PHC40, PHC20, PHC00, PHT20 and PHT40. These solution have been
presented and discussed in Ch. 4.

The procedure to determine the limiting curvatures and compressive strains from the
cross-sectional deformation limit states criteria in Egs. (8.3) and (8.4) is relatively straight
forward. First the diametric differential and diametric expansion are plotted with respect to
the curvature and strain based on the solutions from the shell model analysis. For this
group of specimens, examples are shown in Figs. 4.41 and 4.44. If a horizontal line is
drawn at 15 percent in Fig. 4.41 and 10 percent in Fig. 4.44, the intersection with each of
the curves defines the limiting curvature for the various levels of axial force specified for
the corresponding specimens. In general, two values may be obtained from these two
figures for a given specimen, the smaller one is used. In fact there are no intersections of
the limit condition with the curves in Fig. 4.41 which indicates that the condition of Eq.
(8.3) is not of concern for the design of this pipe. The limiting curvatures from Fig. 4.44
are listed in Table 8.2 and plotted with respect to the levels of axial force shown in Fig.
8.5. If diametric differential and diametric expansion are plotted with respect to
compressive strain and the similar procedure is applied to these curves, limiting
compressive strains can be determined which are listed in Table 8.1 and shown in Fig. 8.4.

For the initiation of softening criterion, the key is to identify the initiation of the first
significant softening. From the shell model analysis, the moment-curvature curves and
moment-compressive strain curves can be plotted and have been shown in Figs. 4.9 and
4.12. The points of initiation of significant softening are, in general, well defined on these
curves and can be identified by observation. Specimen PHC40 is a exception. Because of
the high values of pressure and compressive axial load, the moment-carrying capacity is
very small. As a result, hardening and softening are not as obvious as for the solutions for
other specimens. Under this circumstance, a conservative estimate of the initiation of
significant softening can be assumed to be the onset of wrinkling identified as described in
Ch. 5. The limiting compressive strains and curvatures for this group of specimens are
listed in Tables 8.1 and 8.2 and plotted with respect to the levels of axial load in Figs. 8.4
and 8.5, respectively.



The limiting compressive strains and curvatures for the initiation of wrinkling
criterion are defined at the initiation of wrinkling by the procedure of wrinkling analysis
discussed in Ch. 5. In the same way as for the other two criteria, determination of limiting
strains and curvatures are based on the solutions of shell model analysis. For this group of
specimens, the wrinkling strains and curvatures have been listed in Table 5.2. They are
repeated in Tables 8.1 and 8.2 and are plotted against the magnitudes of axial force in Figs
8.4 and 8.5, respectively, for comparison with the other two design curves.

Two sets of design curves have been generated in Figs. 8.4 and 8.5. One is in
terms of limiting compressive strain and the other is in terms of limiting curvature. It
should be pointed out that the design limits for deformation can be equally represented by
either limiting compressive strain or limiting curvature provided that the effects of axial
force are properly considered. Consequently, only one set of design curves is needed.

The design curves shown in Figs. 8.4 and 8.5 are only applicable to the pressure
level of 72 percent. If design curves at a different pressure levels are needed, another set of
shell model analyses must be carried out. The generation procedure discussed in this
section is then applied to the solutions to obtain the design curves for the specified pressure
level.

The design curves in Figs. 8.4 and 8.5 show great differences in the acceptable
limits for compressive strain and curvature. The curves derived from the cross-sectional
deformation limit states criteria have much greater values in the entire range of axial force
considered here. This is to be expected because of the nature of these limit states.
However, the magnitude of the difference is directly affected by the arbitrarily assumed
limiting values for diametric differential and diametric expansion. The difference between
the design curves derived from the initiation of significant softening criterion and initiation
of wrinkling criterion is relatively small when the axial force is in compression. This is a
reflection of the fact that the significant softening immediately follows the initiation of
wrinkling when the axial force is compressive. However, the difference increases rapidly
when the axial force becomes tensile. This is due to the influence of tensile axial force on
the postbuckling behavior of pipe segments. These observations are based on the design
curves in Figs. 8.4 and 8.5 and may not necessarily be valid under other conditions.

8.3.2 Determination of Permissible Settlement

With the design curves established in Sect. 8.3.1, the permissible differential
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settlement can be determined by comparing the predicted response of pipelines subjected to
differential settlement with the limiting compressive strain or limiting curvature. The
analytical approach used to predict pipeline response should be consistent with the way the
design curves were established. The approach developed in this project, which is discussed
in detail in Ch. 6 and demonstrated in Ch. 7, is consistent for all three design criteria
contained in Figs. 8.4 and 8.5 because the local buckling effects are properly included in
the line analysis of the pipeline. On the other hand, the conventional elastic-plastic beam
analysis is consistent only with the initiation of wrinkling criterion because the effect of
local buckling is not included. Considering the fact that the effect of local buckling in the
region between the onset of wrinkling and the initiation of the first significant softening is
relatively small, the conventional elastic-plastic beam analysis may be used in association
with the initiation of significant softening criterion. In the following, two examples are
shown to demonstrate the procedure for the determination of permissible differential
settlement. All the solutions are obtained by the ISPDR technique developed in this study.

Example 1

The first example is Specimen NOM of Ch. 7. The soil conditions and properties of
the pipeline have been defined and the solution has been obtained in Ch. 7 as shown in
Figs. 7.7 to 7.13. From the solution, two curves may be plotted. The first is the critical
curvature-axial force curve which can be superimposed on the design curves as shown in
Fig. 8.6. The intersection with each of the design curves defines a deformation state in
terms of curvature where the respective design limit is reached.

The second curve that may be plotted is the critical curvature-settlement curve as
shown in Fig. 8.7. Using the limiting values of curvature corresponding to respective
deformation criterion which have been obtained in Fig. 8.6, the permissible differential
settlement corresponding to each of the deformation criterion can be determined from Fig.
8.7. For Specimen NOM, the value of limiting curvatures are 0.80x10™/in (3.1496x10°
/mm), 4.48 x 10*/in (1.7638 x 10° /mm) and 21.08 x 10-/in (8.2992 x 10° /mm) for the
initiation of wrinkling criterion, the initiation of significant softening criterion and the
cross-sectional deformation limit states criteria, respectively. Corresponding to these
limiting curvatures, the permissible settlements are 7.3 inches (185 mm), 16.24 inches
(412 mm) and 34.56 inches (878 mm), respectively. Notice the very large spread of
permissible settlements depending on the criterion employed.



Example 2

Applying the same procedure to Specimen TENOM, as shown in Figs. 8.8 and
8.9, the permissible settlements are determined as 7.52 inches (191 mm), 8.26 inches (210
mm) and 22.12 inches (562 mm) corresponding to the initiation of wrinkling criterion, the
initiation of significant softening criterion and the cross-sectional deformation limit states
criteria, respectively. Specimen TENOM is subject to temperature differential in addition to
differential settlement. This reduces the initial tensile axial force of Specimen NOM to a
small compressive force. As a result, the limiting curvatures and permissible settlements
associated with the initiation of wrinkling and initiation of significant softening criteria are
very close. However, they are significantly smaller than those associated with the cross-
sectional deformation limit states criteria, as expected. The differences between the limiting
curvatures and permissible settlements shown in Figs. 8.7 and 8.9 may not represent the
realistic differences because the cross-sectional deformation limit states, on which the limit
states criteria herein are based, are not firmly established.

8.4 RECOMMENDATIONS OF PROPOSED DEFORMATION CRITERIA

The initiation of wrinkling criterion is recommended to replace the buckling strain
criterion because the initiation of wrinkling is a better initial indication of the localization of
deformation which may lead to failure of pipelines to perform their intended functions due
to excessive deformation. In addition, the predictive approach for initiation of wrinkling is
more consistent and is capable of identifying the onset of wrinkling within acceptable
accuracy. Nevertheless, both the buckling strain criterion and the initiation of wrinkling
criterion are, in general, overly conservative because the criteria try to exclude the
localization of deformation and distortion associated with local buckling and wrinkling.

A better alternative to the buckling strain criterion is the initiation of significant
softening criterion. It allows the characteristics of the initial postbuckling response to be
considered and utilized. The conventional elastic-plastic beam analysis of pipelines can be
approximately used in association with the initiation of significant softening criterion, even
though it is conceptually inconsistent with this criterion. In the immediate future, efforts
should be made to further rationalize and verify the initiation of significant softening
criterion. It has a more rational base and does not rely on a data base to be collected by the
industry. Therefore, the initiation of significant softening criterion is recommended for
design and assessment of pipelines.
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The cross-sectional deformation limit states criteria cannot be applied until the
deformation limit states are properly defined. However, there is a real need for these
rational criteria to be established if limit states are to be applied effectively to pipeline
design. It is recommended that industry begin now to assemble data for the establishment
of the rational limit states of deformation.



Limiting Compressive Strains
states criteria criterion criterion
PHC40 -40 4.52 0.2055 0.2055
PHC20 -20 4.14 0.3616 0.3032
PHCO0 0 4.67 0.4579 0.3686
PHT20 20 4.56 0.9538 0.2138
PHT40 40 71.34 4.56 0.1552

Note : the unit for limiting compressive strain is %in/in

Table 8.1 Limiting Compressive Strains for 48" Pipe at High Level of Intemal Pressure

Limiting Curvatures
Specimens Axial Load cross-sectional initiation of | initiation of
F/Fy (%) deformation limit softening wrinkling
states criteria criterion criterion
PHC40 -40 7.52 0.16 0.16
PHC20 -20 10.52 0.78 0.66
PHCO00 0 10.26 1.29 1.05
PHT20 20 11.19 3.30 0.80
PHT40 40 30.84 18.16 0.85

Note : the unit for limiting curvature is 10 -4in
Table 8.2 Limiting Curvatures for 48" Pipe at High Level of Internal Pressure
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Fig. 8.1 Geometry Pig Train for Small Diameter (12-16 inches) Pipelines

Fig. 8.2 Geometry Pig Train for Large Diameter Pipelines
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CHAPTER 9 SUMMARY AND RECOMMENDATIONS
9.1 SUMMARY OF INVESTIGATION

The objective of this work was to study the behavior of buried pipelines and how
they respond to large deformations imposed by geotechnical movements. The study has
dealt with a number of topics ranging from the prediction of inelastic postbuckling behavior
of shells to the application of deformation limit states to pipeline design. In particular, the
following have been dealt with.

1. An approach for response prediction of buried pipelines subjected to imposed
deformations has been developed. It includes a three-dimensional shell analysis of pipeline
segments and a line analysis of the pipeline based on a pipeline-beam element. Pipelines
exhibit local buckling behavior. This local behavior and its interaction with the overall
performance of the pipeline, as well as the soil-pipeline interaction, are properly integrated
into the approach developed herein.

2. A numerical solution technique for nonlinear analysis of unstable postbuckling response
of cylindrical shells has been developed. It is based on an improved arc-length control
technique. To improve the efficiency of this solution technique, a solution procedure based
on the direct search method has been explored and proposed. An example has been
included which shows great potential to improve the efficiency over that of the arc-length
control technique. Best efficiency is expected to be obtained from the combination of these
two solution techniques.

3. Postbuckling analyses have been carried out for a given pipe segment subjected to
different loading conditions. Two basic buckling modes, the inward diamond mode and the
outward bulging mode, have been predicted. The mode which occurs depends primarily
upon the magnitude of the internal pressure. The major effect of the axial load is that it
influences the relative significance of the axial deformation component with respect to the
flexural deformation component. Deformations have been observed to localize in the
buckling segment. The localization of deformation and cross-sectional distortion have been
found to be accentuated by the softening behavior of pipeline segments. The postbuckling
behavior becomes less unstable with a higher internal pressure and a larger axial load in

tension.
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4. The concept of initiation of wrinkling has been introduced and an approach to identify
the initiation of wrinkling has been developed. The wrinkling analysis has been applied to
the given pipeline segment under different loading condition. The results have
demonstrated the dependence of the wrinkling strain on both the internal pressure and axial
load.The wrinkling strain, in general, decreases as the magnitude of axial load increases,
except for the case of compressive axial load combined with zero internal pressure. The
internal pressure, in general, increases the wrinkling strain except for cases of internal
pressure combined with large compressive axial load. The wrinkling analysis has been
applied to pipeline segments with different geometries. The wrinkling strain is found to
decrease significantly as the D/t ratio increases but to be insensitive to the diameter of the

pipe.

5. A pipeline-beam element has been formulated. The formulation includes large
displacements and nonlinear material properties. The soil-pipeline interaction has been
modelled by a series of soil springs. The separation of soil from the pipeline is simulated
by detaching the soil springs. Stiffness-property-deformation (SPD) relations, that are
derivable from postbuckling analyses of cylindrical shells, have been defined and their
relationships to cross-sectional stiffness coefficients have been derived. Local buckling
behavior is integrated into the line analysis by SPD relations. A program (ABP) has been
developed based on the RMDI and ISPDR solution techniques. The effectiveness of this
program to predict the response of buried pipelines has been demonstrated.

6. The behavior of buried pipelines subjected to differential settlement has been analyzed.
The effects of factors, such as local buckling, temperature differential, and strength and
stiffness of the uplift and bearing springs, have been found to significantly influence the
response of pipelines. The strength of longitudinal springs and the length of the transition
zone are relatively less influential. The rapid growth of localization of deformation has been
found to be associated primarily with the softening behavior of the pipeline segment.

7. The author proposes that cross-sectional deformation be the basis for limit states
associated with the passage of pigging devices and that material failure at the crease of
wrinkles be the basis for an ultimate limit state associated with large deformations. Based
on assumed limiting values on the quantitative description of the deformation, as measured
by the diametric differential and diametric expansion, cross-sectional deformation limit
states criteria have been proposed. Because the limiting values of these limit states criteria
cannot be firmly established due to lack of the data base, an alternative criterion, the



initiation of significant softening criterion, has been recommended. It is recommended for
use in design and assessment of pipelines in the immediate future until adequate
specification of the deformation limit states can be established. It is suggested that the
buckling strain criterion, which is currently used in the pipeline industry, be replaced by
the initiation of wrinkling criterion.

9.2 RECOMMENDATIONS FOR ADDITIONAL WORK

As with most research projects, although significant progress has been made,
important questions remain to be answered and a great deal of development work remains
to be done. Some specific recommendations follow.

First, the construction of SPD relations is a major undertaking for a given pipe size
and pressure. It is unlikely that design offices will adopt the rational analytical techniques
which have been developed herein until it becomes less arduous to construct such curves.
Before this can happen it requires still further development in the efficiency of postbuckling
shell analysis. It is reccommended that the direct search technique of Chapter 3 be further
developed as a promising approach to improve the efficiency of the process. Another factor
that could greatly reduce the effort required would be for the industry to properly define the
limit states. Then much work of determining solutions in the deep postbuckling regions
could be curtailed because solutions beyond the limit states are not useful for design or
assessment purposes.

Second, this work has concentrated on limit states established with buckling and
distortion of the cross-section but has not concerned itself with fracture limit states which
have traditionally dominated the thinking associated with pipeline safety. Leaving aside the
subject of what constitutes a rational limiting tensile strain which would produce an
unacceptable probability of failure, the conditions under which currently acceptable
limitations are reached, when rational structural analysis for the behavior of the line is
undertaken, could be determined from the same type of analyses as undertaken in this
work. It is recommended that this be done.

Third, a generalization of the types of imposed geotechnical movements could be
undertaken. For instance, the behavior of the pipe when it is passing through an unstable
slope could be assessed. This would give a greater variety of loading conditions and create
conditions under which the pipe would be functioning under greater tensile stresses than
arise from pure settlements.
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Finally, the effects of circumferential welds on the initiation of wrinkles, the
localization of deformations, and the initiation of cracks should be investigated.

In addition, it is recommended that the pipeline industry begins now the data
collection to qualitatively and quantitatively establish the limits for deformation limit states.
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