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ABSTRACT

A considerable improvement in processing relational database querics h~s been
shown to be* possible using data-driven processing strategies. Morcover, the icw .
implementation trials of data-flow database machines exhibit potential solutic.is to

some of the problems of conventional control-flow database machines.

. The intention in this thesis is to follow the data-driven approach in a fashion th:
“avoids the shortcomings of the two extrcmes: pure control-flow and pure data-flow. A
special purpose multi-proccvssor system, the 'mixed-flow’ databasc machine, that lies in
between strict control-flow and strict data-flow systems is described. It utilizes a
resource pool of specialized functional processors and buffers to embody query trees

ireci.y ne Magdware structures (processor networks), and to execute those queries

under a 'mixed-flow’ query processing strategy using pinelining and parallel processing.

The 'mixed-flow’ query processing strategy introduces the notion of regulzfting
data-flow query processing through planning the ficw in advance and adaptively re-
allocating resources in the processor network at discrete time-slices. A transformation
to a maximum-flow/minimum-cut problem zllows planning input flows to diﬂ’erc,nt
processors in the network and realizes the optimal degree of network pipelining (i.e.
optimal given the estimated selectivity factors of the processors). Furthermore,\the

adaptive re-allocation of resources provides for secure future network operation {close

to the optimal planned flow) in addition to resolving existing network bottlenecks.

The 'mixed-flow’ strategy is experimentally compared with the pure 'data-flow’

strategy and is shown to improve performance with percentages around %625 under

normal and heavy loads.
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CHAPTER 1

X INTRODUCTION

v ' ' )

As the growth and cbmplcx.it,y of technology increases, so does the amount .of

information processing -needed to keep it functioning smoothly. Technology will

continue to grow rapidly in the forseeable future, and “information processing
'capabilit,ies must keep up with this technological demand. In an effort to enhance
information processing" capabilities,‘dedi.cat,ed database management systems on
conventional general phu"‘rpose computers are being used more and more both to process
and store information. During recent years, however, there has been an increase of

doubt about the capabilities of theseé conventional architectures for efficiently

supporting database management tasks.

As a result of the‘inability of conventional hardware to provide physical data
stfucturesl that match .]ogical ones, vgreat»»eﬁorts have been made in database
management software support. Hovv‘e\"er, the added weight of this software ténds to
degrade performance, reliability, etc. [Hsi79F In ordgﬂ; to alle;;ate this situation and
close the "sémax‘itié gap” between the logical view of the da‘ta and the architect.ure,

speciél hardware devigcs ,knownuas database machines, have bceh suggested [CHI74]
[DeW78] [Ball79) [SN07§)] [GoD80] [LHT82).

Sivnce this suggestion, the Wo;-k on dat,a_base méxchines to support mo/derfx data.
man\ag?ment | systems has concentrated mostly on the development of new
afchitécdures. Currently, one can name about two dozen such architectures vthat have

been proposed (see for example [HaD81] [BoD80] [Hsi83] for surveys). Early database

.machines, such as the XDMS [CHI74], involved a general-purpose back-end database

»

’ | v



I INTRODUCTION 2

. ! .
computer which used a convcntional‘computcr architecture and required a

conventional DBMS. The eventual goal in developing the XDMS back-end comput;:r
[CHI74] was to off-load databas’c’/m\:inagcmcnt duties from | the host computer.
However, the opportunities for pcrforman\bc_e improvement were very limited for several
rea;sons. The Xi)MS was designed for t,b-e Network model; accordingly, applic;).tion
programs were written in a higl;-level p';ocedural language. Thus the communication
.ovcrhca(] bctw.c'cn the host and the XDMS offsct any advantggcs. Another, and more
important, limitathion of such syst,ems,/vﬁ;as that the ba(_:k-endr.computcr would be a

conventional Von-Neumann machine/which meant that the same shortage of hardware

to support database managyant tasks still existed.
' Ve

Initiplly, special ,pﬁrpose architgectures employed logic-per-track devices and
logic-per-cylinder devices aimed at ass‘ociatively processing the database where it ‘is»
stored. However, thcs.e associative disks were only effective for simple database
operation§ (e.g, select);\th"cy-wclre able to execute these operations in few revolutions of
a disk. Since compound operations (e.g, doin) required a large number of disk
revolutions, these associatiyc’/disks caused heavy overhead. Consequently, efforts were
switched to improving \i‘-he performance of executing 'E.ompound operations.
Multiprocessor architectures vv:»\'?t\lllligh-speed memoties which are indépendenb of disks

have been proposed. That has really\_mlproved compound operations performance, but

processing data in memories which are:‘independcnt of disks means staging a large

- .

. 4 . . . .
amount of unneeded data from disks to those memories just to start processing. This,

again, tends to degrade the performance of 'select’ type operations.
. . ///\\
By 1980, following the period §f architécture 'expansion’, came a period of
'consolidation’, which involved the analysis %vailable architectures. The evaluation

work carried out by [KIK82] [HaD81] [HaD81] and [ShZ84] reveals a lot of cumbersome

architectures (to be discussed in chapter 2); moreover, it asserts the general fact that
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no one type of current database machine is best for executing all types of queries.

Based upon these results two different avenues of rescarch are currently being
explored. | ’

The first research avenue was initiated by Goodman [GoD80] in designing the
HYPERTREE machine. In this machine, examination of existing database machines
led to their classification according to the strategy used to interconnect their various
components. The result was two- classes: machines -that used a simple one-to-one
interconnection between proccssofs and memories/ such as RAP [SNO79], and

- g . 4
machines that used a complex many-to-many strategy, such as DIRECT [BoD81]. As
noted, each type of machine executed some operations efficiently. It was thus
coqcludcd that a database “machine should possess both kinds of communication
capabilities. In HYPERTREE, processors are organized as a binary tree, but with each

node connected in some regular manner to one of its siblings. :af processors are

interconnected using the perfect shuffle structure and are connected to disks. The leaf

processors are responsible for the execution of the simple 'Select’ operations. Thus,

they act as data filters to the higher level processors which are responsible for

executing the compound operations.

The methodology used in designing HYPERTREE is just an 'add-on’ to present
architectures or a combination of partially successful designs. These kinds of design

philosoy.nies not only increase the complexity of current architectures, but also lead to
‘ . . .-ype / .
questionable reliability.

¢

Following the same rescarch avenue, Stonebraker [Sto79] presented several

’

arguments for rejecting other database machine approaches. By contrast, his MUFFIN

approach treats a database machine as a special case of distributed databases, and

thus reduces the database machine issue to a previously unsolved proBlem. Similar

reduction was carried out in [BeY80] in the design of DIALOG.

o+
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Conscquont'ly the failure to reach such a 'best' database machine left the case for
database machines unproven. Unresolved problems have motivated the belief that Lhc
‘atioase machine has becoinc an ‘id”ca whose time has passed [BoD83]. Morcover, some
rescarchers now believe Lha{;th?:(iatabasc machine notion was not a g(:od 1dea to start
with. Date [Dat83], for example, has completely denied that current machines can pay
off for gencral database applications, and has suggested t.hey be moved to serve in

other limited arcas for which their capabilities are better suited, such as a level in

storage hierarchy or catalog and index support. -

Limiting the usefulness of curre . database machines to only a narrow sphere of
applications was also spggest,cd by King [Kin80] who indirectly criticized the idea of
database machines when he asserted that the results obtained with system R
demonstrated very clearly that éxotic hardware ( associa‘tiv.e memory, etc.) is not

required in order to achieve good performance in a relational system.

In contrast to previous opinions, in 1982, a research project known as the fifth-
generation computer systems project was started in Japan to further the research and
development of the next geqerat,ion ;)f computers [TrL84] [FeM83]. As suggested by
this project, a new gencration of comput.er;; should evolve from the current research
and development of knowledge-base management systems. The key to the

implementation of a knowledge-base machine is the underlying database machine.

Consequently, a parallel relational database machine architecture is an
ap;;ropriate starting point for a knowledge-base machine. Two new types of computing
devices are now beiﬁg developed in Japan:tt'he knowledge-base machine and the
problem-solving ;'Ind inference engine. It w.as also reported [TrL84] that

supercomputers (specially data-flow computers) are considered to be the major focus of

the research on these devices.
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Only in recent work [LHT82] [BoD80], as more problems have arisen from the
development of lari;cr and larger complex architectures, has it been suggested that
database machine development is an architectural science in which precise steps or
methodologies may be followed to ensure that proper development occurs. It is very
' likely that these steps will be apparent as'a global view of the database requirements is

identified.

-

The second research avenue started from this insight and i’t has established the
fact that the same effort is required for tr‘ansactions design as for database design
[Rol&2]. It also points to integration of the dynamic aspects (i.e, the transaction
actions or; the database, which are conventionally known as operations and cvents)

with data structuring to give a global view of database requirements.

More precisely, it was stated by [BCAS3] iu. both operations and events

modeling are useful for:

[1] Indicating ~dependencies between tramsactions.i.e. sequences; parallelisms and
mutual exclusions. ‘

[2] Defining conceptual schema evaluation rules and describing dynamic integrity
constraints.

[3] Providing incremental specifications of data which are needed by each operation.

[1] Providing formal specifications of the interaction with the database for the design
of application programs. '

With that close look at database dynamics, from such a general perspective, it
becomes possible to specify the architectural requirements that are needed for
efliciently serving database management tasks. This will facilitate the job of finding

the architectural model most closely suited to database dynamics.

The Active Graph database Amachine [LHT82] is considered to be one pioneering
effort in using the pre-vious design methodology. It is one of the few désigns that is
based on a ;]CW data-flow database modcl./Ath;mgh the design is not feasible using
today’s technology, it is obvious that precise steps haye been followed during the

design process. Here is a brief look at the design.

\
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¢

The new dat,ab:\sc. model is a typical int‘crpr(’*t,ation of a Petri-net model [LeHR2]
[02W82], in which cach node is viewed as an active entity (data entity constituting the
database), with which one processing element is theoretically associated. It is capable
of receiving values, arriving asynchronously in the form of tokens, along an); of its
arcs. Arcs arc the representatives of relations interconnecting active nodes. All

requests in the proposed model are based on finding paths between member nodes.

These requests are injected into the net in the form of restriction tokens (special data

A

clements); which propagate through the net. Nodes satisfying the request are then

selected by another type of token called search tokens. Lubmir suggested an interface
language and showed how queries could be translated into appropriate sets of

restriction tokens. A highly. distributed architecture consisting of large independent

processing and memory elements was introduced, using VLSI technology to implement
th model. -\

The main point taken from the Active Graph design is that a data-flow database
model concept has never before been tried in database processing. In fact, the whole
issue of determining what is to be executed in a typical data flow architecture is rather

unclear at present [GPK82], and this detracts from the precision of any careful

discussion of difficulties in implementation.

This thesis shows that a mixed-flow architecture that lies in between control-flow
(on which most database machines had relied) and data-flow architectures would be
able to overcome most of the criticisms Garjski faced by data-flow machines [GPK82].

Our purpose in undertaking this task is threefold.

G

First, it is felt that the second research avenue, design methodology, supports
. - N, o) . .
our view of future database machine design. But, it is not possible to satisfy the

functional requircments of compound database queries in a pure data-floy architecture

environment. The difficulties in operating on large data structure: ‘ata-flow
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environment are reported in [GPK82].

Secondly, it is possible to follow the data-flow approach intelligently, i.e, direct
the data driven nature of the data-flow architecture to the benefit of database
management tasks. The objective here is to be sure that things are done in a fashion
that avoids the shortcomings of the two extremes: pure control-flow and pure data-
flow. The idea of regulating the execution flow is based on the observation that in

pure data-flow database machines, queues of partially completed computations are
P BN

<1 v

relied upon to keep the machines busy. There are at least two reasons to "'bclicv'e that
this would not lead to minimum execution time (particularly in multi-query
environments): (1)The need for immediately executing an iustruction whose result is
critical for the execution of other instructions will always exist. The selection of this
instruction among many qthcr ready instruct,ions to be executed is probabilistic, since
non-deterministic selection schemes are always employed in current data-flow
machines; and (2) 'I"hc unregulated order of inst,ruét;ion execution will create queues of
partially completed computations which absorb some 6f the parallelism in the queries.
We are not aware of any existing dapa—ﬂoxw‘ database machine that pays attention to

any of these shortcomings.

Thirdly, the design proccsé should start with a study of a computation model for
all the high-level operations to be executed by the machine. The results of such a
study could then be used to specify the types of services (low-level primitives) required

from the hardware. Finally, an architecture which implements these low-level

operations should be designed using off-the-shelf technology [BoD81].

This thesis will concern itself with the design of such a mixed-flow architecture.
Specifically, a computation model is presented as a modified petri net where each
system activity is a sub-net called a query net. Then an implementation for that

model based on the principles of data-flow systems is given. The major objective of the
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’

implementation is to utilize resource pools of specialized function processors and
buffers in order to increase performance, reliability and availability of the architecture.
Performance is thén enbanced by attacking our mixed-flow architecture from the point
of view of st:udying algorithms and subsystems for achieving 'the guiding of flow’ to
the benefit of database management. These algorithms are implemented as
mechanisms in specific parts of the design. They act as the intclligcx;t heart of the

machine.

Finally, it is important to point out that the design is intended primarily for
demonstrating the feasibility of using the 'mixed-flow’ architecture concept in the

database machine area.

Chapter 2 is « review of thc.rescarch efforts in developing new database machine
architectures. Four generic 70's gencration architectures that are currently available
and in use are surveyed. Then for the 80's generation archit_ec.iurcs., four proposals are
reviewed with the emphasis on the architecture type and the design methodology. This
1s followed by investigating the 'consolidation’ period which involved performance
evaluations of existing designs. Finally, suggested solutions to enhance performance

are presented.

.

Chapter 3 presents an overview of the proposed architecture. This is meant to be
an informal description which will provide a basis for understanding the following
chapters. This chapter includes the rationale for choosing the 'Computation Space neét’
as a modeling methodology to formalize represcntation of both static (data) and the
dynamic (operations and events‘:) database requirements. Thcp the architectural

requirements are deduced from the data-driven nature of the model and the rationale

for choosing a 'mixed-flow’ architecture for the proposed machine is explained.

A Mixed-Flow query processing strategy is proposed in Chapter 4 to be used in

the proposed architecture. The strategy makes use of two new algorithms for work+®
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load assignment and resource allocation. Chapter 5 describes the proposed

architecture. All the distinctive features in the design are explained in separate

subsections. N
v .
Chapter 6 discusses future research and presents a final conclusion of the work
.

presented in this thesis.



CHAPTER 2

A SURVEY OF DATABASE MACHINES

% < | ‘

2.1. Introduction

In this chapter some past and present trends in database machine development
are looked at. Section 2,2 gives a historical perspective on database machine research.
Section 2.3 presents four generic 70's architectures, and Section 2.4 examines son}e\of
the 80's generation architectures that are currently available. Section 2.5 looks at the
evaluation work done on these archit(:cturcs, and finally, Section 2.6 examines some of

the proposed solutions to enhance performance of current database machines.

2.2. Database machines research

As ﬁalrcady mentioned in Chapter 1, the eﬁ'ort:; in designing database machines
were initiated partly inAresponse to the needs expressed by the users, and partly due to
the availabifity of cheap _har,dware. Although the main objective is to close the
’sem&ntic gap’ between the logical view of the data and the architecture, it is not clear
whether one wants to eliminate entirely the use of any software support (e.g, indices)
in a database machine {[BoD81}. DBC is an example of a database machine that uses
indexing to reduce the data space to be searched for each query. (This will be

explained in scction 2.3.4).

‘Furthermore, the majority of the machines have concentrated on the relational
database model, in which query languages are typically monprocedural, and thus
amecnable to execution by a number of processors. It is not clear whether parallelism

can be used in a similar way to enhance the performance of other older data models.
o

For example, the Network model was designed to optimize the execution of database

10
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query programs by r(‘qﬁiring the programmer to inco‘rporatc access path information
into his program. In such programs, access to the database is performed a record at a
time using physical links between the stored ;'ccords, (i.e, inherently sequential order)
(Bali79).

Few database ‘machine rescarch efforts are cxamining the use of new memory
technologies for 'intelligent’ storagé of the database (sce for example [ChF8&0] and
[CLWRO0]); however, none of these efforts have yet culminated in the design of a
complete database machine. Most of the research is geared towards the design of chips

using VLSI dechnology.

A review of the research cﬂ'orts in developing complete database archite‘ct,urn'cs
reveals th;t axclcar line coﬁld be drawn between the 70's géneration database machines
and the 80's generation machines. The 70's generation 'expansion’ ' period is
characterized by its vague architectural concepts which made the machines behave as
'moving targets' when evaluated [HaD8l].vSomc of tbhc 80’s machines are just an 'add-
- on’ to 70's architectures or a combination of partially successful designs; others are
based on very deterministic data models and could easily be related to certain

architecture types.

This chapter classifies the 70's generation 'machines into Lhrecvcategories:
associative disks (RAP [SNO79] and CASSM [SI\}YQ] are examples), 'off-the-disk’
parallel machines (DIRECT [DBF80] is an example), and hybrid architectures (DBC
[HBB78] is an example).

For 80's machines three classes are reviewed: custom-designed processors (the
IDM [Bri] machine), filtering level processors (the SPIRIT-1II [Afi81] and CALDAM
[Sad81] machines) and "distributed databases analogy” processors (the DIALOG

[BeY80] machine).

7
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2.3. 70’s generation database machines

Four generic architectures from the 70’s generation, which are often cited and
rm;cal the variety of approaches during this p.criod, are chosen. In the following
classification a brief description of each architecture is included. Table 2-1 ‘presents a
comparison of the architectures by cxamining the following attrilbutcs: machine type,
place, of impler{lcntat,ion (on or off the disks), the data model(s) supported and machine

primitive capabilitics. The table also points out the weaknesses and strengths of each

approach.

2.3.1. RAP

The feature that is common to RAP [SNO79] [0SS77]and CASSM is that a query
is executed on the disk, usually with the assistance of a sing!e controlling processor.
For this reason, such database machines are termed asso'ciative disks. The performancc
of RAP was compared with that of the conventional DBMS [SNO79]. It was show'n

athat f01; operations that can be processed in linear time on the conventional DBMS
(sclect type), RAP greatly outperforms the conventional system. However, for
operations that require non-linear time on the conventional DBMS, RAP performs only.
marginally better. As mentioned in Chaptcr 1, a number of ’Oﬁ-the-disk’ parallel
processing database machines have becn offered as alternatives to associative disks as a
result of this performance review. In RAP, tuples of relations are st.01;ed bitwise along
tracks. They are augmented with a fixed number of mark bits used to identify .resuli
tuples of one opcrati‘on that are the input to a subsequent oﬁeration. Joins are
processed as a series of selection subqueries on the larger relation, using the valﬁes of

the joining attribute in the smaller relation as the selection criterion.

A virtual-memory RAP machine was described as RAP.2 [SNO79]. In this
organization,the database resides on a number of conventional mass storage devices.

The RAP.2 syst.erﬁ consists of a number of cells, each with a pair of tracks. The
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controller assumes the additional responsibilities of lozﬁjng the tracks with data to be
]

examined. Each processor can examine only one track at a time. However, while one

track is being examined, the second can be loaded under the supervision of the

- controller. Advantages and disadvantages of RAP will be discussed in Section 2.5; also,

in Table 2-1, it is compared with other 70’s machines.

2.3.2. CASSM

CASSM [SN79] was designed to support all the threé major database models; it
used fixed head disks with complex logic in each head. As in RAP, a tuple (or record)
is augmented with a fixed number of mark bits; that serve the same purpose. Strings
are stored only once and pointers to them are used. These pointers are also used for
the implementation of databases in other data models (other than rélational). A single.
controller is responsible for distributing instructions to other brocessors, and coliating
and processing intcrmediate results. For example, all prpcéssors can perform
arithmetic functions locally. The results from each processor are sent to the controller
for a collation of the intermediate results._ As will be shown in Section 5.5, connecting

the processors via a single bus to the controller is one of CASSM’s problems.

Joins in CASSM are performed using a hashing scheme. A hash function is
applied to the joining attribute of the smaller relatioﬁ. Then the result is used as an
index to a bit array in an aux-iliary memory. Associated with the set bit are the
attribute values that hashed to that index. Following this, the hash function is applied
to the joining attribut,(; of the tuples in the second relation. The result is then checked
against the bit array, and if that bit is set, t'hevn a match occurs and the attribute, in
the secc‘md relation, is marked for output and the corresponding bit in a neiv array is
_ marked, and the jo{ning value saved. I;1 the next step, the hasﬁ function, this time, is

applied to the first relation, checking the bit position indexed by the hash value in the -

new array. If the bit was set the values are compared. A .match causes the attribute, in
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the first relation, to be marked for output. In the final step, the marked attributes are ‘
collected by the controller which forms the result relation by matel‘_i_zilizing the join.
{

As it will be ~hown in Section 2.5, this auxiliary memory hashing technique is

another one of CASSM’s drawbacks.

2.3.3. DIRECT | .

Dewitt [BoD80] felt that RP:P (the ﬁ]gst advanced and ‘\‘best known database
machine during mid 70's) suffered from a number of major sborpéoming;s. One 6f these
was its performance in the execution of comblex operatioﬁs such as joih (sce Section
2.5). Another was the single instruction multiple data stream nature of its 6peration (a
single instruction from a single program is executed at a time);i.e, it does not support a

multi-query environment.

N

DIRECT was designed to employ general purpose micro-processors that will

operate in an multiple instruction.multiple data stream mode.
: I

In its original design, it was intended to serve as a back-end database machine to
INGRES. The INGRES:. parser converts all queries into tree. format. Leaf nodes in the
tree represent operations that are executed on permanent relations in the database.
Non-]e'af nodes operate on témporary relations produced by their child nodes. Since all
operations requj/re, at most, tv?o input relations, and always proq/uce a single output

-
relation, the query tree is binary.

| g .
DIRECT consists of a number of processors (called query processors) whose

function is to execute operations such as selection, join, etc. The processors are
controlled by a controller which distributes instructions and oversees data transfers to
!
‘ . - i3 .
the processors. A number of CCD memories serve as distributed caches to the moving -

head disks. Query processors and CCDs are connected by a cross-point switch that has

two important capabilities: any number of processors can read the same CCD device
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A
sxglult,ancously, and any two processors can read from any two CCD devices

concurrently.

Unlike associative disks, where the processors are physically bound to specific
data, the DIRECT controller initiates Jostructions as soon as resources become

available (i.e, allocates the processors to instructions and CCDs to data).

, L

It is iﬁ]pON:}hL to note here that the idea of ~alloca£ing resources (membry and
processor) to an operation only when the operation is about to be executed, is similar
to the resource aliogat,ion strategy used in data-flow architectures. In allocaating
processors ~-to operations, data-flow :}rchbitectures delay th.e allocation .until the
operation vhas.'itrs input operands available and is z;bout to be executed. In éon;rbl;ﬂow\

architectures, the processor allocation is made well before the operation is to be

vexe_cutcd (This will be elaborated on in Chapter 3).

The cache memory in DIRECT also serves as a temporary storage device for
result pages of one operation that are to be used in a subsequent operation. This -

feature obviates the need for the mark bits used in associative disk machines:

.
2.3.4. DBC

One of the first desigﬁs that inco‘rpo.ra'ted both on-the-dislk and off-the-disk
processing capabilities was DBC [[IBB78]. DBC has two memories: the Mass 'memory
and the Structure memory. The Mass memoryrus'és several moving head disks, wiih
.parallel readdﬁt capabilities, to store the ‘database. The heads of thé disks are
connected to a numbex; of processoré which berforn; search»operations.\'l‘.he Struct‘{ur‘e’
memory is to be constructed out of ohe of the new technologies (CCD, MBM, etc.)’ahd
is used t6 hold an index. In order to facilif,at,e the use of indices, fréquently accessed

data is clustered in as few cylinders as possible. The Structure memory is thus used to

reduce the data space to be searched by the mass memory.
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A controller receives queries and passes them through a number of stages in order
to 're-organize’ them in a form executable by the structure processor. The structure
processor issues search queries to be executed by the mass memory (on-the-disk). The
output from the mass memory passes through a security filter and from there to a
post-processing unit for perform‘ing the complex operatiqns (oﬂ-thc-disk). The post-
processing unit consists of a number of processors interconnected by a uni-direttional
ring with a s;ingle\,cont,rolling processoerrhat has a communication line to each
processor. In executing a complex operation, each processor reccives a block of data
and communicates some information. about the data to the controller. The cohtrollcr
collates the information from all processors, decides on which communication patterns

¢
almong the processors are necessary to qxecﬁte the operation, and notifies the
processors. Data exchange between processors is through the rizg. As will Eé;,;;hown in

Section 2.5, it is assumed that the data to be operated on will fit in the memories of all

the processors.(There are no paging nor swapping concepts).-

2.4. 80’s generation database machines

For the 80's generation period, four different proposals are reviewed with the

emphasis on the architecture type and the design methodology.

2.4.1. IDM

One of the very few commegcially available 80's generation database machines is
the IDM(Intelligent Database Machine) [Bri]. It is considered as a type of specialized
éfunction afchitccturé_ similar to CDC6600. It was created with a focus towards the
mid-scale databases, and is, therefore, diﬂérent from the other very largé database
supporters such as DBC and DIRECT. The level of service that IbM provides is that of
basic relational database management operations. Hogt commugication time and

B

software support are minimized at that level. To build IDM with good
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'
cost/performance over a wide range of storage requirements, moving head disks and

access method scarch techniques were used. Having used that slow data retrieval
device, the need for powerful processing clements was essential. Special purpose
hardware (the database Accele’rator) was used. It is a custom-designed pipeline
processor that operates at 10‘ MIPS. The accelerator was dcsigﬁed to execute specific
data management subroutines. The major reason for dgsigning this specialized piece
of hardware was the observation that most of the execution time of a relational DBMS
is typically spent in a very small portion of its code [EpH80]. The IDM also uses
information about the behaviour of previously executed queries to cache freqﬁcntly
accessed data. This Database Accelerator board is approximately twice the cost of a
microprocessor board but shows a 30 times increase in performance. At present, the

IDM system products are designed for IBM PC, DEC VAX users running VMS or

UNIX and PDP-11 running UNIX.

2.4.2., SPIRIT-III

SPIRIT-III [Afi81] is a Japanese proposed relational database machine. It
combines features of data-staging architectures (such as RAP) with relational algebra
execution architecture (such as DIRECT) by attaching refined preprocessing
mechanisms of relational algebra operations to data transfer lines connected between
hicrarchic‘al levels of memory. In addition to this filtering function, it-also.incorporates
a grouping filter into each stage of the memory hierarchy, which partitions relations
into subrelations. This grouping operation is implemented using hashing functions to
facilitate vhcavy relational operations. Thus, without the overhead of interprocesso;
communications, each processor can execute relational algebra operaticns in parallel
on the few subrelations assigned to it. SPIRIT-III performs the join and projection

oi)crations in an execution titne of O(n/L) (where L is the number of groups). The

design is aimed at improving the level of service for both input/output and processing
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bounded problems. It was claimed, by the designers, that SPIRIT-111 represents the
third generation relational database machines, enhancing the capabilities of both

~ relational algebra execution and data staging under an integrated concept[Afi81].

)

2.4.3. CADAM

CADAM (Content Addressable Database Access Machine) [Sali€1] is another
Japanese database machine under development. Its concern is the efficiency of data

transfer between the main memory and the secondary memory. The designers reported

a file access mechanism which is adjustable according to database applications -

" (whether the query requires a large number of records, the percentage of the queries

having clustering attributes, etc.). Therefore, the physical data access.unit (called -

PAU) was optimized by taking these characteristics into cbnsidcration; this led to
variable PAU sizes. Like IDM -[Bri], an application dependent adjustable cache
memory size was introduced in CADAM. The architecture could be considered a
refinement of the 70's generation CAFS machine, which serves at the same filtering
level for the transferred data between the main memory and the secondary meﬁor)’.
CADAM supports a multi-query environment; moreover, it uses the ’Shortest first’
technique for job scheduling. For example, when a number of qucries" are processed in
.CADAM, some may re:quire only mappivng operations( restriction, projection), but
others may require join or set operations, which take much more processing time. In
this case, queries requiring only mapping operations of a single relation do not have to

wait until a query requiring additional join or set operations is completed.

2.4.4. DIALOG

[BeY80] reported on DIALOG(DIstributed Associative LOGic), a database
machine which facilitates both associative and distributed processing. As distributed

- processing was used in the acsign, many useful techniques in distributed databases

[
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were applied to enhance its performance. A network was proposed which provided a
uniform (but costly crossbar switch) medium to connect data modules. Each DIALOG
data module consists of a storage device and an associative processor. The data
modules are groupod. into clusters and these clusters are connected dircctly‘with a
wckenc controlivr. The major functions of that controller include pre-processing and

'g the queries, looking up the system directory, establishing links between

ta modu.cx, ini* ‘ng and scheduling operations within each data module, receiving
and . Tering ~utput from data modules, and managing the sharing of resources. All
the a.-.ve func :ns are implemented in software. The module itself consists of four

submodulcx: the physical storage device which contains the database, the selection
processing module which processes projection and selection operations, the associative
vprocessing module. which compares the outpué froﬁl selection processing with the
stored secarch keys(using the Ramamoorthyi associative memory), and lastly, the
communication processing module which manages the buffer pool and communicates
with other data modules in the network. In general the design seems to be promising
since most of the results of the older distributed database field could b_g;, applied to

DIALOG.

2.5. .The consolidation period

It is only after a number of designs, that researchers can begin to evaluate their
work. An underlying theory, that explains various phenomena, can then emerge. This
section investigates some of the recén-t performance evaluation studies, and presents
the following: results of a performahce assessment 1n which six database machine
designs were examined.by. Dewitt and Hawthorn [HaD81] [HaD81], a technological and
engineering view of some designs by [Gel80], and finally, an analytical performance

“model for parallel processing schemes by [KIK82].
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[HaD81] showed the difficulties of evaluating the 70's architectures. He asserted-
that none of the designers had paid the least attention to measuring the performance
of his proposed design against other database machines that happened to e‘xist prior to
the time of his design proposal. As stated by Dewitt "..any attempt to compare these

designs will often lead to comparing "apples and oranges’™ [HaD81].

As a result of his performance analysis of existing database machines
[HaD81], showed that no one type of database machine was bcst: for exclcuting all
types of queries; moreover, for several classes of queries, certain database machine
designs are actually slower than a database management system on a conventional
processor. The same fact was reported by [KIK82], as a result of his analytical
performance model for studying the performanfc of parallel processing database

machines.

Another serious deficiency which characterizes a certain class of database
machines involves the 'Incomplete hardware dcsigns’. Such hardware design attempts
(e.g. CAFS and STARAN) have led to machines that cannot perform all the primitive
functions of database management systems. In part,iéular, some of them can support
Just one of the database managen: nt functions in ha;"dware, such as directory
processing or data retrieval; others {such as CAFS) cannot adequately support such

critical func@iéf)s as the update functions [HBB78|.

Another group of database machine designers proposed machines that are not
feasible using today’s technology ,and may never become cost effective. [HaD81]

expresses his opinion of these designs:

"These machines can be spotted by claims of join times which are linear (or even
less than linear) in the size of the source relations. While we are not saying that
research on exotic machines is of no interest, we feel that any machine whose
operation requires either as many (or more ) processors as tuples in the smaller of
the two relations being processed or an associative memory large enough to hold
one of the relations, is a machine that will most likely never be feasible.”
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Other architects have relied on unrealistic assumpt}.ons to enhance the
performance of their machines. As an example, although DBC uses special hardware
to maintain indices to enhance access to the stored data, it is certainly unrealistic to
maintain a secondary index for cach attribute .of each relation. Morcover relying on
indices or any data structure to improve the performance of ﬂhe primitive database
operations should be avoided for two reasons: the overhead of maintaining these data
structures can be nontrivial in a database machine environment, and ,'occasionally a
user will perform an operation for which none of the available indices is useful. To
avoid that , the designers had to relay on the unrealistic assumption of maintaining a

secondary index for each attribute of each relation.

On the other hand, the designers of RAP started with the recognition of the
drawbacks of relying on data structure, so they used associative search capability
which climinates the need for access paths. But,ur]fortuhatrly, they defined RAP
relations,and although it has a flat tabular structure, it is not quite- relational as
defined by, Codd. For example, dupl.icate records are pherrnittcd and their existence is
not automatically dotectcdt Consequently, introducing this new data model increases
the problems involved in the conversion of an existing database management system to
a database machine system. Furthermore the use of marking techniques to selecr the
qualifying tuples prevents the possibilities of a multi-query environment in RAP. By
using RAP’s 'staging’ approach, certain relational operations such as natural join, as
well as a sr‘qucncc of opo'rations_s referring to a large number of relations, would rcquire
frequent staging of data. Fina]ly, RAP as a logic-per-track device (associative disk) is
a ’'select-directed’ type of architecture. Given this building block, other relational

database operations have been implemented with varying degrees of success.

Two other serious problems with the processor-per-track architectures were

reported by [FrB79]. The first one involves the processing on-the-fly concept which
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limits the am(;unt of proccssipg that can be performed during a single revolution. In
addition, some timing problems might arise if multiple records in a hierarchy or
network must be examined to determine if a record in the structure is needed. The
second problem concerns the backup and recovery. Constantly rewriting the database

will increase the number of errors that can occur.

[HaD81] considered the conventional uniprocessor computers (SISD architectures)
——which run a tuned operating system to satisfy the needs of DBMS, as a class of the
. available database machines. He shovfcd that these ’machines’ are 'software-directed’
toward the optimality of all the database management functions. As this class of
machines still relies on the capabilities of conventional database management systems,

1t suffers from the conventional prpblcms of database system software. Datacomputer
[Afi81] is an example of this conventional uniprocessor. It provides facilities for data
sharing of a centralized database among dissimilar front-end con;puters in a network
environment. Conseqilcntly, its performance remains low because of its software-laden

nature.

Although the desngners of MIMD (Multiple Instructions Multlple Data stream)
arc\ntecture database machines (such as DIRECT) have their architecture directed
towards greater functionality in the processing elements, instead of the 'selection-
directed” avenue of the logic-per-track class, they have a poor capability to perform
the selection operation as noted in [KIK82]. Besides, the back-end controller might be

a bottleneck under certain conditions.

Another point noted by [HaD81] is the level of service that a’ database machine
should support. The main objective is to reduce the number of interactions between
the host computer and the database machine for ‘enhancing the performance. The

experience gained from XDMS [CHI74] in which a data request is given to the database

machine in a procedural language form, proved to be an obstacle in enhancing the
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performance.

[KIIK82] presented an analytical performance model for parallel processing
schemes of relatio-nal database operations. He showed that for all existing parallel
processing schemes cmployed by current. daiabase machines, there is.no parallel
processing scheme which is best for executing all types of queries. Furthermore, the
efficiency of a parallel processing scheme varies with the characteristics of the .given
query and the contents of the relations to be processed. On the basis of the analytical
results of comparing and evaluating three relational database machines parallel
processing schemes , Kiyok suggested a new relational d;xtabase architecture. The
architectu‘rc‘ is simply a mechanism for seleéting an optimal parallel processing scheme

through the use of pre-evaluation analytical formulas.

[Gel80] examined the "logic-per-track” class from a technologigal z;.nd engineering
point of view, and reported that the viable technology for th\is‘ clg;s suffers some
shortcomings. For example, CCDs require so.me power-fail stratcgy,B‘ubBles had to be
ruled out because some simple arithmetic illuminates a bandwidth problem‘, égd '
althqugh magnetic disks are a viable technology, volatility considerations indicate that'\
care should be taken in using a shift register inside the cell as a part of the data loop.
The point here is that we should not rely heavily on technological innévations because

of their high rate of change.

In conclusion, it seems that the type of queries places quite specific requirements
on database machines. For example, transactions on statistical datall“)ases require the
database machine to spend more time pérforming overhead functions Auch as directory.
look-up. For databases of that type, a conventional uni-processor. DBMS is probably
the most cost effective [HaD81]. This may suggest that a database machine like IDM is
the best choice in .this case, or even, that a DBMS, running on a conventional

processor, can search an index or use a hashing function to find the data as quickly, or
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more qﬁitkly, than any existing database machine [BoD81].

On the other hand, for queries that require the DBMS to scan large amounts of
data and therefore spend little of its time performing overhéad functions, the response

time in database machines is significantly better.

Other significant evidence, gained from these evaluationg, is the indication that
even within cach database machiné, the total amount of work and the expect‘evd
response time varies between the blest case and worst case. The definition of best case
(and worst case) is different for each machine [BoD81]. For example, for INGRES, best
case means that the relation is hashed or indexed and the tuples to be retrieved are on

as few pages as possible, thus minimizing the amount of input-output to be performed.

For DIRECT and RAP machines,'best ca‘se requires that the data to be sc'an’ned reside .

in the caches at the time the query was initiated. This could happen either because the
data was used in a previous query (or a concurrent query for DIRECT); or because a
smart prefetching algorithm brought it in from the mass storage devices in

anticipation of its use.

!

. . . {
It does in fact scem that the case for database machines remains unproven Sincey

|

these research results are not sufficient to.serve as an empirical base for a théory.

2.8. Suggested solutions for performance enhancement

* [HaD&81] suggested various avenues for future research. One is the investigation of
) .

a machine which combines the abilit.iés of the"sel.ect-d‘irected’ architectures with tbhose
of the ’more-functional-directed’ architectures. The notion of merging different
partially successful architectures has been tried in two different i)roposals. [FrB79], in
his ext‘ended DBC design, has merged the DBC original désign with the.parallel-read

out from disk. To some extent, this combines the ability of the ’select-directed’

architecture to process selection queries "on-the-fly” with the ability of the multiple
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processing design to process complex queries. The same notion of combining designs
was done by [KIK82]. It is our belief,as mentioned before, that this kind of design
philosophy will not only increase the complexity of the architectures, but will also lead

to questionable reliability.

In [BeY80], distributed processing was used in the désigﬁ'of DIALOG and many

useful techniques for distributed databases were applied to enhance performance.

These techniques iﬁclude ‘query processing, file placement migration rollback and
recovery, etc.. Asa mattler' of fact, »mlany of the results of the older ﬁeld of distributed
databases could be us 1 to optimize the processing of qﬁeries in DIALOG. The
pr'ocessing of queries using this l;ind of distributed database analysis is new in thé 'field
of database machines. };reviously, the inten’nediate. results of Qubqueries had to be
stored in temporary files before they could be rre-u.sed'(as it is the case in DIRECT). By

allowing intermediate results to be piped to their destinations, higher throughput -

could be achieved. The only problem with DIALOG is its join algorithm; it was’

“incorrectly assumed that the internal buffers of a data module are big enough to hold

both source relatlons Moreover, it is expected that the performance of the DIALOG
join operatlon will be lower than that of a‘?y multiple processor archltecpure dat abase
machine such as DIRECT, since it was not possible, using current DIALOG

. . /
architecture, to utilize multiple processors.in performing the join operation.

[HaD81] suggested that instead of/gui]ding ’some-operation-directed’ architecture
for efficiently executing one or two database primitive operations, and developing,
afterwards, algorithms to support all the ‘other ' database operations using those

basic primitives, that a careful examination and analysis of algorithms for all primitive

LIS

s

‘operations be done first.

Dewitt asserts: "Only after these primitives are known and understood, should -

one attempt to design a machine”. -



CHAPTER 3

Overview of the methodology used in designing

the proposed architecture

3.1. Introduction

In this chapte‘r, an overview of the proposed design methodology is given. It is
intended as'a short, informal descriptipn which wilvl provide a good perspective on the
dctaiIS\ of the following chapters. Section 3.2 looks at some Justifications for the
methodology used in the dcsign. ‘Section 3.3 first investigates the efforts to find

PR
complete descriptive models for database dynamic;, and then gives a description for a
basic data-flow ﬁuery processing strategy, deduced from datab;se dynamics models
aﬁd used in the desigi. Then, Section 3.4 e);amines two sets of architectural
requirements for efficiently serving both database dynamics and tasks and also, -the
design considerations imposed‘ by those requirements. In Section 3.5, distinct
specialized functional >partsb (processors) for performing database primitives are
presented. The decisions for designing these processors are algorithm-dependent. The
'mixed-flow’ architecture model is characterized in Section 3.6, and it is argued that its
characteristics both match the desired architecture requirements and provide greater’

flexibility in incorporating both the distinct specialized functional processors and <he

basic query processing strategy in the body of a database machine.

¢

I

3.2. Justification

Computer architecture design is a complex and expensive process. In many cases,

there is a wide range of types of programs that will run on the machine. Most of the

time the typé§ of abstract data structures and the data usage are so enormous as to
L. :

1 e

W
e

30
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cause the machine design to be gencral-purpose. This, however, is not the case for
database machines. Both the data structures and the types of operations are well-
defined. Morcover, the number of different operations that the machine should support
is quite small (all relational algebra operations, for example [DBFRO]). If only omne
primitive relational operation was the objective of a database machine, time would be
better -spéxlt, developing that. As mentioned in Chapter 2, there have been several
attempts to build such 'some-operation-directed’ database machines, for example,
RAP (Selection-directed); DIRECT (Mére-functional-directcd), and CADAM, CAFS
(ﬁlt,cx;-direct,cd). Unfortunately, there are reasons to believe that this methodology

would not lead to alfl types of queries being answered cfficiently:

[2] The nced for primitive operations, for specific queries, not covered by the

database machine will always ‘exist. These primitives perform very poorly when

LY

~one t es to implement them using the machine-supported operation (e.g,

implcu:cnting the join as a sequence “of selections in RAP) and may become
bottlenecks in the machine. - \

~[b] Even the architectures which combine partially. successful designs (such as

Hypertree and DBC) are very large and complex.

- %

These may also be the reasons behind the difficulty one faces when examining
current literature that describes the architectures of the machines in those projects
that are still in progress (Hypertree, DBC and ‘RAP). The new descriptions are
sig‘rliﬁcantl)"diﬁercnt from the original design specifications [BoD80].‘Thisiis due, in
part, to analyses of these machines that revealed the possibilities of impr.ov‘ements by
'adding-on’ “to the original designs '(e".g, iﬁcc}iporation of buﬁers in the cells qf DBC
[BaH79}). Howﬂc?er, it is also due to the realization, by the desiguers, that in order to
effictently support some primitive of)erations, the architecture had to be modified (e.g,

RAP.1, RAP.2 and RAP.3).
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The fact that there is no one type of d.tabase machine best for executing all
types of queries seems to us a very predictable consequence of the inappropriate
‘operation-directed’ design philosophy and also of the inadequate primitive relational
operation aléorithms. Architecturally speaking, we have to rely on specific machine
capability as a basic building block to build our primitive relational operations.
Machine capability can be sorting, broadcasting,etc. Once a specific capability is
chosen, a machine that provides this capability efficiently can be built. Theoretically
speaking, the chosen capability is not guaranteed to provide optimal algorijthms for all

primitive operations. Consequently, most of the new designs have relied on the

methodology of combining capabilities. N

Worse than this, the theory is not definite about the superiority, in the domain of
a specific primitive operation, of a specific algorithm over others [VaG84] for the whole
range of applications. Conscquently, the <class of machines which . tailor

microprogrammed algorithms through dynamic programming, automdtic programming

or evaluation criteria bas been established [SNd?Q] [VaGpu].

However, most of the promising database machine proposals and prototype
implementations have involved some sort of intelligence in the relative abilities of the

processors to act upon processing requirements prior to producing results in order to

'com'pdnsate for this theoretical defect. For example, intelligenc‘e is exhibited by:

[a] Collecting a batch of user requests and optimizing the search strategy when an

immediate response is not required. (as it is the case in CADAM [Bab79]).

[b] Determining required data in advancé for prestaging (as the intelligent page
managément subsystem in DIRECT [DeW78] and IDM [Bri]) and mirnimizing the

amount of page swapping [MKY81].

[c] Organizing query and data more intelligé\ntly by applying correctness-preserving

i
transformations [Bab79].
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-

[d] Using automatic programming techniques so as to minimize query response time
and space. That is, moving to and fro between tasks, evaluating the overall effect
of refincment decisions utilizing a variety of r lational operation algorithms

Incorporating microprogramming techniques) [SNOT7¢ aG&4].
} ing mi g ing hniques) [SNOT9] [VaG84

[e] Having feedback loops from later execution phases to earlier phases. This allows
transformation steps to be reconsidered during construction when more
information details are known, and allows construction steps to be dynamically

modified during execution [RaL77].

This supports the belief that the reason that there is no 'best’ database machine
design is the same reason that a number of database machines require repeated
redesigns, or performe some functions poorly: lack of proper design methodology

[BoD&1].

“

In this chapter, the method used to design our proposed database machine is
described.

It is believed that backing up from the design of any particular database machine
and taking a close look at database dynamics will-provide us with the architecture
requirements necessary for efficiently serving database management. Besides, as the

“

number of primitive operations that the machine must support is.quite small (about
ten), ng_t,oﬁl/y should one consider designing off-the-shelf functional processors for each

operation, but should also study the structure-of queries to see how the design can be

further tailored to.mect the user needs.

~

This thesis presents a.‘ Dew query processing strategy suiitable for a multi-processor
database machine environment. The strategy exhibits two new algorithms, one for
work-load assignment and one for résource re-allbcation. To see why we have chosen to
deal with these two areas and where these algorithms fit within the ow;erall query

procéssing framework, Figure 3.0 breaks relational query implementation in a

-
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multiprocessor environment into three phases: transformation, construction, and
cxccution. Many significant optimization techniques for the first phase could be
deduced from the previously rﬁcnt,ioncd works. The proposed query processing
strategy concerns itself with the optiimization of the last two phases by presenting the

following new features:

&
[a] It allows net construction to be dynamically modified during execution.
[b] It performs global optimization to system's response time.

[c] It provides a controlled amount of buffer space to exchange data between

pipelined operations instead of the storage of large temporary relations.

[d] It provides the base for an optimized architecture through mapping of query
structures onto a hardware structure, thus avoiding wasted 'fragments’ of

resources which are likely to occur in large mainframe architectures.

*x

[e] It allows the opportunity for a self-adjusting architecture, which may provide

more consistent response time in a dynamically changing environment.

[f] It establishs the concept of incorporating transaction interrelations into the
hardware construction so as to decrease the number of times we have to bring

concurrency control mechanisms into play.

The mixed-flow query processing strategy has been taken as a base for designing

the underlying mixed-flow database machine.

One of the reasons behind choosing mixed-flow architectures as an architecture
type for our database machine is its great capability to serve database dynamics. As
mentioned in Chapter 1, the concebt of integrating the database.dynamic aspects
(operations and events) in data structuring is considered to be essential to have a
global view of database requirements. Previous database machines did not incorporate

the database dynamics in their architectures.
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3.3. Database dynamics and data-flow query processing strategy

The efforts to find complete descriptive models for dqa‘tabas‘e dynamics can be put
into two classes. The first class concerns the specification of transactions through
studying semantic relations among data (see for example [BCA83] and [RLR79]). The
second class proposes a general description of information systems by taking into

consideration the aspects of parallelism and synchronization of transactions [LeH&2].

In ‘order to appreciate the notion of database dynamics, here is a close look at an

example from cach class.

As an example of the first class, the DATAID project [BCAR83], presented a new
database modeling methodology to formalize representation of both the static (data)
and the dynamic (operations and events) database requircments. Three schematva.were
introduced for data, operations and events. An event schema was defined as a
collection of as many cvent graphs as there are functions (activities)in each
environment. An event graph was defined as a description of a specific function
(activity) of the environment (e.g, ticket refunds in an airline reservation system). For
the representation of event graphs, Petri nets were used, and a complete axiomatic
formalism for data-driven representation of transactions was given. Furthermore
[AnD83] reported that this formalism must be nﬁapped to a conceptual schema
definition language in order to' provide data items and structures apt to represent

information objects.

In the other class of database dynamics descriptive efforts, [Ro>182] presented_a
general view of a transaction system (a system to describe transactions) in which he
tried to integrate the parameters related to the future use of the transaction system
and the technical environment in which the system would operate. He presented two
levels of transaction modeling. The first level was a conceptual level that allowed an

abstract representation of the semantics of the transaction system, both a data schema
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and a behavioural schema. .

3
The behavioural schema was defined as an atri-ajternate graph of some three

conceptual aspects :C-objects, C-operations and' C-events. The graph highlights the
behaviour structure through the int,errclati'ons between these concepts. C-objects were
the first conceptual aspect,representing a time-consistent aspect of a rcal-yvorld object
class. C-operations were the second aspect, representing a f‘eal-world operations class.

Finally C-events, the third aspect, represents a real-world events class.

The second level of transaction modeling presented by [Rol82] was a logical level -
which aimed to take into account the use of both the data system and the transaction
system to meet, as well as possi'ble, the user’'s requirements. This level takes into

account the technical constraints of operating.

Following the same ideas, a connection between the modeling of transactions and
their processing strategies could be made. Transaction processing deals with the
sequencing of transactions, taking into account the aspects of synchronization,

A

“parallelism and choice. ¥

thapter 4 will present rationale for introducing a query model called a 'Query
net' which is introduced mainly to facilitate embodying system’s queries 'directly as’
hardw are structures and executing them under a 'mixed-flow’ processmg strategy usmg
plpehnlng and parallel processing. The model itself is not new; it is a Petri net form of

the old dependency graph, which is being used to study query processing strategies. It

offers ,however,a number of facilities which serve our purpose.
,

Following [L.eH82] free-choice Petri nets (see the definitions below) are being used

to-describe the asynchronous partitioning of queries.

A Query net is defined as an 8-tuple (R,P,A,B,C,g,h.,i) where:
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R is afree-choice Petri net R(Pr,T,x,y) (see below).

P designates a nonempty set of initial places, P = Pr (Database relations
initially reside on these places).

A dosignatcs a nonempdy set of elementary transactions of system query.

B designates a set of database integrity constraint prcdica{cs.

C designates a set of buffering memories.
. o
g is a function which maps transitions in T' = T into the set of query’s

elementary transactions A. Tokens of type data-flow througvh transitions in T".
b is a function which maps transitions in T-T' into the set B. Tokens of type

control-flow through these transitions.

i is a function which maps every place of Pr onto a buffering memory from C.
A Petri net R is defined as a 4-tuple (Pr,T,x,y) where:
Pr is-a nonempty set of places.
T is a nonempty set of transitions. ‘
8
x 1s a forward incidence function Pr X T,":'-o D , where D is the set of natural

integers. This function represents the number of tokens that flow from place Pr, € Pr
to transition ¢, € T (consumed~by ¢)

y s a*backward incidepce function T X Pr = D. D in the set of natural integers
and the function represents the number of tokens that flow from ¢, to place Pr;
(producéd by ¢,).

A free-choice Petri net is defined as a Petri net R with the following constraint:

For all t,€T and all

Pie Out(t)) = card(In(P;)) = 1
Where:
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Out(t;) is the set of all places P; € P that have an input arc from ¢,.

In(P,} is the set of all transitions ¢; € T, that have an output arc to P,.

Limiting our attention to only free-choice Petri nets comes naturally with the
criterion that any one place has to collect only one type of relatidnal tuples (which

censtitute an intermediate temporary relation).

Two types of tokens are defined as (1) Data tokens are the entities of the
datab:;se (either relations, Pages or tuples) (2) Control tokens are Boolcén-va_lued
tokens used to direct the flow of the data tokens (by closing and opening the integrity
constraint predicate gates).

.

According to the model, in order to build a 'Query net’, first the elementary
transactions (subqueries) of the query should be identified. An elemen.t-ary transaction
is avtransaction which has the following characteristics: (1)It keeps all the integrity
constraints of the database valid after its execution; (2)It wor!(s independently of any
other transaction in the query; (3) Finally, igs different 'pieces’ are executed
sequentially. . ‘

The next step is to impose integrity rules (which represent the query semantics)

on these elementary transactions to identify the following:

[2] the transactions which mutually exclude each other;

[b] the critical paths among transactions;

[c] the transactions that are parallel (i.e, can be fired ,i.e executed concurrently),
and, |

[d] the transactions that are compatible (i.e will never cause any deadlock 'when :
exec.uted concurre‘ntly).

These relationships define a sort of dependency among the elementary

transactions, which enables us to draw a basic query net for the query. This query net

[y
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explores the maximum parallelism that can be gained in executing the query.
As an example, Figure 3.1, shows the query net,for the following quegy:
Ve

"What are the names of the 308 items which have quality A’ and are supplied to

suppliers who purchased at least one item?".

The elementary transactions for t,hié'duery are:
(1] tl1: Select I:price=30$ to get 11 and 12.
[2] 't2: Select Sl:quality="A"to get SI1.
{3] "t3: Join SI1 & 12 (SI1.1 no = 12.1 no) to get SI2.
[1] td: Join SS & SI2(SS.S no = SI2.S no) to get SS1.
[5] t5:Join 11 & SS1 (I11.1 no = SS1.1 no) to get I3.
[6] t6: Project I3(Iname) to get I4.

The Query net in figure 3.1 assumes that relation S cpntains 500 pages, relation
Sl contains 1000 pages, relation SS contains 800 pages and relation | contains 2000‘,
pages. |

A number of extensions to the basic Query net will be propésed in C.hapt,er 4 so as
to allow us to define what is called a "Computation space net”, which describes all the
functions (activities) of a multi-query database environment as a net of places and
transitions. The "Computation space net” is a collection of as many query nets as there
are functions (activities) in the environment. Mainly, it will serve as an intermediate
language to describe explicitly the maximum parallel-ism that exists in the target
environment. ,

As the Query net mode!l maps each transition to either an elementary transaction
or an integrity constraint predicate and each initial place to a buflering memor); that
holds a database relation (a; in figure 3.1), it is reasonable to éonsider a page of a
relation as the basic unit to be uséd for scheduling decisions [BoD80]. This means that

an elementary transaction can be initiated as soon as at least one page of each

participating relation is available.
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t1 ‘ t5 t6
O—o O>———O6——0

2000

Selec

Select

S:Supplier(S.no,Sname,Saddress)
. SI:Sup-Item(S.no,I.no,quality)

I:Item(I.no,I.name,Price) |

SS:Supplied(S.no,I.no,quantity)

Figure 3.1: Stream~Oriented Query net

e

. Thus, the m;)del suggest§ the idea of assigning processors to 'ex-ecute an
elementary transaction based on the availa;ility of pages rather than relaﬁio;]s on its
input arcs. This offers the possibility‘of a very flexible processor allocation strategy
which has a high utilization factor. Furthermore, it becomes possible to distribute
broccssors across all transitions of the net and to-pipeline pages of intermediate

relations between .t'hem. These intermediate relation Pages are stored consequently at

- different places (buflering memories) of the. net.
At this point, every pz;rt of the Query npet is active; this strategy in processing
queries is called processing in 'a data-low manner (BoD81). Several benefits can be

gained from this strategy; for example, it will reduce page traffic between the buffering
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memories (net places) and the mass storage deviceé, because after a page of ‘an
intermediate relation is produccq,/By an elementary transaction's processor(s), it will
be read By a processor executing the subsequent elementary transition. .Another
benefit is that it will improve the mean vresponsc time in s"multi-qucry envifonmcnt,

since the results of the queries are pushed as much as possible to get early answers.

In fa_ct, t:here are ofher ad;'antages, bujt also disadvantages for this data-ﬂow'w
strategy in processing queries. Discussing them will be postponded till a formal
. description of the Computation space net model and its exfénsion is given in Chapter
4. For now, here is a distussion of a number of points concerning the implementation

of the strategy.

<o

It is clearly understood that there are number of costs associated with the
exccuﬁon of queries in the previous data-flow manner. One of them is the time it takes
to perform elementary transactions. Another is the number of proccsso;s required at
each transit‘ior.x, and the size of buffering at different net places. And, particularly in
data-flow compu;tation, it’s clear that the communications overhead will substantially

aflect the cost of executing a query net.

These factors could be alleviated a bit by answering the question of how to assign
elementary transactions in a query net to processing units in the ‘machine in a manner
which allows‘ three things to occur. First, if at all possible, no concurrency should be
lost. Secondly, the solution should use a minimum numb‘er of processors. Thirdly, the

communication overhead should be reduced as much as possible.

For consistency, there are number of other points that should be investigated first

before the previous optimization aspects. For example:

[1] What type of processing units are to be used in executing the elementary
transactions? ' :

[2] How the mapping of a query structure onto a hardware structure could be
implemented?
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(3]

What sort of interconnection and scheduling capabilities should the archltecture
posses to |mplcment that mapping?

To answer these questions and several others, one should establish the

architectural requirements which are necessary for efficiently éerving the data-flow

execution of queries.

3.4 Architecture requirements

’
1

i )
This Section will investigate two sets of architecture requirements. The first set

represents the requirements necessary for efficiently serving the data-flow execution of

queries, which include:

1]

(3]

4] .

13

.

A self-adjusting architecture, which can provide more consistent response time in

a dynamically changing environment.

. . ; :

An optimized ‘architecture; through mappmg of the current demand on the:
system onto hardware structures and thus avoids wasted "fragments" of resources

which are likely to occur in large mainframe architectures.

An architecture that provides a global view of multi-query environments, where
resources are partitioned to form substructures and added/deleted within the

inventory of computing power, in response to environment demand.

An architecture able to impose concurrency control mechanisms; since knowing

the transactions’ interrelations from the Computation space net can deérease the
number of times concurrency control mechanisms have to be broixght into play.
These mechanisms are incorporated into the enviroﬁment Computation space net
(this will be explained in chapter 4). A

An architecture able to incorporate dynamic épncurrency; sinée using the
pipelining nature of the Computation space ﬁet would gllow for a new dimension

of parallelism in the following sense. In existing distributed systems , there is <
' iy

-
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some parallelism among transactions being executed at different places because of

‘the distribution of the data. This is called 'Static concurrency’; it refers to the

A
concurrency made possible by data independence. This concurrency is evident at

compile time. The new dimension of concurrency that would be available by using

r

our Computation space, met is 'Dynamic concurrency’ which refers to the
concurrent exccution of different loop iterations or functional invocations because

of the data driven behaviour of the model. Dynamic concurrency is determined at

14

~.

execution time.

So far this section has concentrated on deducing the architéctural requirements

-y .

which are necessary for efficiently serving the data-flow execution of queries.

- Additional requircments that aflect the ultimate design include:

(1]
[a)

[b]

(2]

Implementation considerations:

The architecture is requvired to implement the primitive operations (e.g, Join and

Select) and facilitate higher level query optimization.

-

The architecture should depend on existing technologics in the ‘design. Besides,

the design should be able to evolve new technole “»s that would be available in

L3

the near future. ST

Expansibility issues:

© '

The architecture should be able to support \{ery large databases and should be

_easily expandable according to the changing user needs.

Performance:

The architecture must have high performance and the cost should be low by -

replicating a few simple components,

The architecture should have no particular component likely to become a
t

bottleneck under either normal or abnormal operating conditions.

h

S
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In trying to satisfly the previous sets of architecture requirements on the bases of
the data-flow? béhaviour of the query processing model, the following design

considerations have been imposed on candidate architecture models: ¢

(1] The fact that ".different primitives algorithms nced different architecture
requirements for an cfficient execution”™ reported in [DeW78], suggests distinct

specialized functional parts for the performance of specific primitive tasks;

[2] the independent concurrent nature of transactions in the Computation space net

suggests a multiple processor environment;

‘ o
[3] the asynchronous aspect (the production/ consumption nature) of the execution

of transactions suggests data-driven behaviour in which the specialized functional
processors operate concurrently and communicate with each other

asynchronously;
-

[4] since” the intermediate results are local and memory nced not be shared,

distributed control and memory are possible;

[ 4
[5] to maintain performance objectives in a variable-load multi-query environment,

resource allocation strategies are suggested.

Before proceeding any further with forming the shape of the proposed
architecture, this section has to -answer first, the question presented in the previous
section, . which 'deals with the type of processing units to be used in executing

elémentary transactions.

The organization of the remainder of this chapter reflects the design methodology
" described in Section 3.2. A description of the specialized functional processors to be

used as off-thesshelf components to execute elémentary transactions is given first. Next
Section _ 3.6 characterizes ’'mixed-flow’ architectures and shows that their

Gl

characteristies match the desired architecture requirecments, and that they can utilize

l\ ) \

\
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the specialized functional processors in an integrated manner.

3.5. specialized functional processors

The specialized functional processors described in this section are for the
relational algebra operations. The opcratio~ns covered are: select, join, project, delete
and modify. It is important to note that once agreed that every one of these operations
needs different architecture requirements to be efficiently executed (as mentioned in
the design considerations), then decisions to build specialized processors to handle
those operations are totally independent from architecture decisions for the overall
dz;tabasc m’achine. That means decisions for efficiently building these primitive
processors :hould be based on performance tra(le-offs amofig different algorithms to do

the job.

The alternative algorithms for each operator are compared in [BoD80]. The
results of this comparison are inconclusive in the.sense that no type of algorithm
proved to be better under all conditions [VaG&4]. Therefore, it is reasonable to choose
one class of algorithm (to cst‘vablish an architecture capability) and proceed from that
point. In this thesis the "broadcasting to associative memories” architectureﬁ capability
has bcoh used. Our primary reason for't,his choice is simplicity of the control function.
Furthermore, for select-type operations, it is clear how the use of associative memories
is superior to any other selection algorithm since it can perform a page selection in a
constant time. However, this may con_t.radict'[HaDSI] result which asserts that there
is no better performance for select-type operations than processing them on-the-disk.
Our point here is that starting to search for the bey}st on-the-disk type of processing is a
different line of research. Even if t.cre is a need for such on-the-disk strategy, nothing

would be affected in our 'of-the-disc’ database machine, other than eliminating the

b

selection operation.
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For compound operators (such as join) the best known algorithm is the semi-join

algorithm [BoD&O).

It is difficult to incorporate any of the semi-join algorithms in the proposed
architecture for the following reasons: Whether the machiﬁe uses a bii-array or an
associative memory to assure the matching of tuples, the next step would be to
materialize the join (i.e, concatenate matched tuples from the source relation with the
underlying tuple from the target relation). For this step there are currently two
available solutions; unfortunately, both rely on hashing techniques to speed up the
concatenation. The main shortcoming of using the hashing technique is, since the
machine has no way to know the range of the join attribute v .lues, either it has to use
more than one hashing function or to have a ]avrge enough hashing table to lower the
possibilities of collisions. Each of the two solutions requires a large memory, and that
requircment contradicts one of the architectural consi‘derations mentioned in Section
3.4, that of having a distributed memory. Morecover, all known Semi-join algorithms
claimed possible extensions of their strategies to perform inequality joins and m-way
joins[BaH79]. However, it is not clear with a reli on hashing techniques how to
perform incquality joins, or even a join having more than one predicate condition

without having a very complex and time consuming algorithm [VaG84].

Two other reasons justify our employing of associative memories in the

specialized functional processors:

[1] Many previous datab:.;sc machines have rclied on it, such as DBC, STARAN and
RELACS [O1B79]. Morcover, STARAN may be considered as a general-purpose
associative bit-serial processor, since it uses a 256-bit by 256-word associative
memory modules. RELACS, also, is organize'd as a nﬁmber of two-dimensional

modules whose total storage capacity equals that of a disk track.
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[2] The use of associative memories is not extensive in our proposal, since all needed

is one page-size associative memory per specialized functional processor.

For all of the above reasons, associative memories have been employed in our

specialized functional processors, even though they are normally cost-inefficient.

The specialized processors presented below share a number of general points.
First, an associative memory called ALAP, introduced in [FiL.77], is being used with
every processor. Secondly, relations are organized as a collection of fixed-size pages.
. . S . . . .

The page size should be large enough so that it constitutes an cfficient unit of transfer
among machine components, but at the same time it should be small enough so that a
large number of processors, cach examining a few pages, can participate in the

executton of the operation.

3.5.1. The ALAP associative memory <=

The ALAP associative memory is classified as a bit-serial associative memory (the
same as the one used in STARAN). Among its 29 arithmetic and logical functions, .
which can be carried out entirely within the ALAP array, our interest is in its typical
associative memory 6perations: exact match,.greater—than-or-cqual match and less-
than match. Figure 3.2 shows its feature of outputting all matching words one after

the other.

3.5.2. Processing stations

For cach of the following functional processors we describe the fuuctional block

v

diagram and theory of operation.

N

3.5.2.1. Join processing station

Given two relations, R and T, the 'smaller’ relation is chosen as the inner

relation, and the larger (say R) becomes the outer relation. The join processing station

.
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Figure 3.2 : ALAP associative memory
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consists of a 'Ring’ of Join processors (as shown in figure 3.3). (The structure of the ,
Join processor will be described sc;on). The first step in processing the .join is for the
Join processors to each read a different page of the outer relation. Next, all pages of
the inner relation,T, are sequentially broadcast to the processors in the 'Ring’.(That is
why the method is called broadcasting to associative memories). As each page of T is
received by a processor, it joins the page with its page from R. Joining two pages
means: ﬁrst the join is performed by concatenation, then the result page is written out.
The reasons behind using this O(pXm) join algorithm are explained in the next ction

(n,m arc the sizesof R and T respectively).
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[a] Functional block diagram:

Figure 3.4 shows a functional block diagram of a join processor. It consists of two

input buffers to hold a page from each of the outer and inner relations. Buffer A is an

-

ALAP mcﬁ:ory and holds the outer relation page; buffer B is a RAM memory and holds
the inner relation page. It also has a concatchatiqn algorithm to materialize the join
(i.c, to concatenate the matched tuples (produced by buffer A) from the outer relation
page wit.h"t:'h'c underlying tuple of the inncr relation page).

As will be shown, the structures of all compound primitive's processors are
identical, so only two types of functional processors, one with double buﬂ'eri.ng and

another with single buffering are needed. As any double buffering processor is able to
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perform ‘any of the compound operations (e.g, Join, Project, etc.), so the decoder (in
the figure) is used to identify the target operation. In the case of Join. it also has to
find the relative positions of the 8 operands (R®, T) in which 6 is any of the
operations (= <> > < >= <=). The Timiilg-Chain circgit is the controller of the
processor, it is synchronized with the timing of the ALAP and used to send 5he
appropriate timing control sequence according to the Petri-net sequencing diagram in
ﬁgurc 3.5.
[b] Operation description:

In the Petri net of Figure 3.5, every transition is associated with a control

command from the Timing Chain circuit and each numbered place represents a certain

condition to be valid in the processor. The net should be interpreted as follows:
Command :DECODE
Precondition:1,2,3
postcondition:4,5,6
This means conditions 1, 2 'and<3 should be satisfied in order for the command

DECODE to be issued by the 'Timing Chain’ circuit. And once it is issued , some

actions should be done by the processor to establish the post conditions 4, 5 and 6.

A signal 'operation packet arrival’ to the underlying processor enables its 'Timing
Chain’ circuit to' start issuing its commands accordirg to the Petri net in Figure 3.5.
|

The following is a description of the commands and conditions in the figure:

[I] DECODE :Identifies the operatnon that needs to be executed by this processor
by checking the operation code in the operation packet. In the case of -Join, it also
has to find the relative positions of 8 operands (T ®, R).

[2] READ  :A control signal issued when both input pages are ready to be read by
: the processor into its buffers A, B.

[3] READ-NEXT:A control signal issued when the current page in buffer B has been
processed and the next page of the broadcasted relation (inner relation) is ready
for processing (or ready to be read into buffer B).

[4) END-REQUEST:A message from the underlying processor asking if the results
tuples, from the current processed pages, can be routed to its destination(s). This
message has to be issued before the completion of the operatlon so that there will
be no delay in routing the result.
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[5] OUTPUT  :A control signal to be issued by the 'Timing Chain’ circuit if it has
reccived a conformation to the 'END-REQUEST' message. This signal will allow
the transfer of the result.

[6] EXEC :A control signal to both buffers A and B to start performing the actual
algorithm (to be explained under theory of operation Section).

The following are the condition places in Figure 3.5:
[1] A new operation packet has arrived at the processor and is ready to be decoded. -
[2] The processor is free to accept executing an operation packet.
[3] The output destination bus(es) has (have) enough room in its (their) queues.
[4] The next operation packét could be accepted by this processor.
(5] All operands (pages) are ready to be read into buffers A and B.
[6] The decoding operation has been finished. )
[7] Pages are coming from outside the processing station.

[8] Buffer B operand (page) is broadcast from another’processor in the organization
(other processor in the station). ' /

[9] A page is ready to be read into buffer B.

[10] A page is ready to be read into buffer A.

(11] Buffer B is ready to read a new page.

[12] Buffer A is ready to rcad a new page.

[13] The hardware algorithm is ready to be activated.

[14] The result is ready to be output to its destination(s).

- [15] A response to the 'END_REQUEST' message has arrived.
[16] The result has been output to its destination bus(es).

The petri net in Figure 3.5 should be interpreted as follows: Assume the arrival of
é.n operation packc‘t'to perform a_Join between two pages of relations T and R. The
oper‘at‘ion Qac:ket is first decoded by the decoder to find the relative positions of the 8
operands (T @4 R) in which 8 may be any of the operations (= <> > < >= <=)
. It is important to note that more than one predicate at the same time can be handled
using the ALAP. Then a 'READ’ command from the 'Timing Chain’ is issued after
first c}necking the availability of both operand pages. After the loading of both pages
at buffer A and B, the execution cycle is to be started. Each tuple from buffer B is
moved to the mask register of buffer A (the ALAP) where the 6 conditions are tested.
The matched tuples are output one after the other to the concatenz;_gg:jon glgorithm,

which will perform the actual join.



Petri net sequencing diagram
for Join processor

FPigure 3.5
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During the processing of the tuples of buffer B, an 'END_REQUEST’ message will
be sent before the actual ending'oT/;roccssing in order to allow time to receive a replay
if the output bus is free. Once the underlying processor has joined the assignec.
operation packet, the next command it is going to execute is '/READ-NEXT" instead of
'READ’. This can be seen from Figure 3.5 in which all the inner pages should be

broadcast through the whole 'Ring’ in order for the Join to be completed. .

If the number of pages in the outer relation is -greater than the number of
available join processors in the processing station, then the whole process should be
repeated for the rest of the outer relation pages. ':I‘he number of processors assigned to
.the underlying opcrati.on depends-on factors such as the size of source relatiﬁons, the
query priorit),' and the system load.

There are s-cveral reasons behind using this nested-loop algorithm to perform
Joins in the proposed machine. Although, it is well-known fact that the merge-sort
algorithm is more efficient for the case of very large databases, it is not suitable for
data-driven environments for the following reasons:

[1] The merge-sort join operation is an off-line operation; it requires the collection of
all source relations for sorting before it produces any output. This é.bsorp_tion to

the flow directly contradicts the concept of data-flow query processing strategy.

[2] Although the absorption of source relations would improve the Join productivity
rate,afterwards, this mdy create a buﬂ'ex;ing bottleneck at the joins' output
place(s).

[3] The requircment of the relations total availability at input ports follows the

> concepts of the 'packet level' query processing strategy. This requirement imposes
<\ sort. of sequential ordering on net operations which restricts the degree of
: LS v

allowed parallelism in. d_at_a-driveﬁ environments and directly affects the

*

pe?rf‘g)rmance of the strategy compared with un-restricted data-driven strategies.

"



3.5.2.1 Join processing station ‘ 56

In [BoD81] the pure data-flow query processing strategy was shown to supcribr

over the packet level query processing strategy.

[4] Tn [ChS75] and [Yao79], the importunity of finding algorithms for relational
database operations that support pii)elining excludes the merge-sort techniques. [t
was shown that by using algorithms that support pipelining, one can utilize
pipelining within primitive operétions as well as for consecutive operations in the
query net. If the processors executing primitive operations were fast enough, one
thus can process the data st;eams coming in from .disk without slowing them

down.

[5] In [Gli83] the merge-sort algorithm was used in a pipelining environment with n
merge processors and buffer memories for 2**n tuples. This had a linear time
exccution, consequently it was claimed that, by using this previous type of sort,

the sort-merge join is suited for pipelined data-flow execution environments.

That may suggest for very large databases a sort of preprocessing to be done by
the host processor in order to prepare chunks of appropriate sizes for the proposed

machine,

’.‘Yet another .possible solution for handling very large databases could be an
extevnsion of th,é arc-hitccture; as W‘il‘l be described in Chapter 6, which provides a
se;parate ring of processiﬁg units to handle Join éperations. In this Lcype of 'Join ring’
the availability of a large number of processors would allow the nested-loop join
algori%hm to‘ perform much better thaﬁ the sort-merge algorithm becausg ol; its h.igher'
sensitivity to‘the number of participat‘ing processors [V.aG84].

\
£

3.5.2.2. Project processor station

Given a relation R as a source relation, a processor reduces it to a 'vertical’

subrelation by discarding all domains other than the required domains. Since
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discarding may introduce duplicate tuples, the duplicates must be removed in order to

produce a proper relation. The processors in the projection organization (station) are

.interconnected by a two-way uni-directional bus as shown in Figure 3.6. The removal

of duplicates is done as follows:

1]
[2]

3]

Each processor initially deletes its "intera-page” duplicates by copying the
contents of its buffer A (the ALAP) into its buffer B, then matchs a tuple at a
time from B with the page in A and deletes duplicates. s

Each processor, in turn, broadcasts its page through the upper uni-directional bus
(see figure 3.8) and then exits (i.e, outputs its contents through the lower uni-
directional bus). .

If processor P, receives page i, then j>i. P; compares the two pages and
eliminates any duplicates found from its page. Note that P; will never see page i
if 1>} (because of the uni-directional bus). Consequently it is guaranteed that
only one copy of each tuple will remain in the relation (the copy will reside in the
lowest numbered page of all the pages that had a copy of it).

Functional block diagram

The functional block diagram is identical to the one in Figure 3.4, since it is a _

double-buffer processor. In our case the concatenation algorithm need not to be

executed as long as the decoder detects a Projection not a Join operation. The

functions of the Decomposer and Composer ,in ﬁguré 3.4, will be described in Chapter

5.

b,

‘Operation description

The Petri net in Figure 3.6 shows the cpminand sequence to handle duplicate

A

elimination within each processor. The following is a description of the commands and

conditions in the net that have not been described in the Join net:

(1]

(2]

(1]

SET : The 'Timing Chain’ would issue this command in case buffer A (the ALAP)
is empty after or during executing the sequence of eliminations (i.e, the whole
tuples in buffer A page were duplicates). In this case nothmg is to be output, so
the SET command is used to indicate that the processor is free 'u be assigned a’
new operational packet.

EXEC : This command executes steps [1] and [2] of the duplicate ellmmatlon
procedure,. ,
The following are the condition places found in Figure 3.8

A new operation packet has arrived to the underlymg processor and is ready to be
decoded.
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[2] The processor is free to accept executing an operational packet.
[3] The output destination bus(es) has (have) enough room in its (their) queues.
[4] The next operation packet could be accepted by this pr- -ssor. .
[5] Al operands (pages) are ready to be read into buffers A and B.
" [8] The decoding operation has been finished.
[7] A page is ready to be read into buffer A.
[8] DBuffer A is ready to read a new page.
[9) The hardware algorithm is ready to be executed.
[10] Execution of the current page has been finished.
‘[11] Buffer A (the ALAP) is empty (no tuples to be output).
[12] The processor has broadcast its page and is ready to output its result.
[13] A respond to the 'END-REQUEST’ message has arrived at this processor.
[14] - The result has been output to its destination- bu%ﬂ)
[17) The output destination bus(es) is (are) full.- ’
For deleting duplicates, relation pages should be delivered to the duplicate

elimination st:ﬁion according to the boolean matrix given in Figure 3.7. In the figure,
the column label pages ry, ro, ry ... o 'rei).rcs'ent pages to be broadcast from ‘buffer B
of the :processor participating in the proceﬂssing station. ,The row label pages (in the
ﬁguré) are to he stored in buffer A and to be modified by the tuples inbyffer B. The
figure sho'ws a schedule for a page-swapping strategy that achieves a minimux;x number
of s\wapping counts [MKY81]. In the figure, assuming relation R has n pages, then the

number of all pairs to be looked at is t=(n**2-n)/2
' o

ghccording to [MKY81] there is ‘an optimal page swapping count of t-1 page

swapfﬁ‘ngs for scheduling the processing of t pairs of pz;.ge;‘s7 The strategy presented in-

- Figure 3.7 has the optimal number of page swapping counts. For the join operatxon

-

our inner- outer broadcasting tcchmq\xe has mmlmum number of page swapping counts -

Db
i

Sinec, the Boolean matrix of figure 3.8 shows that the schedule produces an OptlmalML

» s
number of t-1 pages (t here is equal to (nm -1)). Y g#‘

~ LS
N

f\’J
T

A
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3.5.2.3. Update processors (Delete anci - dif);)

An important pro'p'.crty that mixst be pfeserved when performing upd‘.ate
operations is that no duplicates are to be introduced as a r\e)sult of the update. One
can, then, distinguish between two types of update quahﬁcatlon clauses: 'simple’ and

- 'complex’. A 'simple’ quahﬁcatlon is one that may be applied in a smgle scan to the
relation, A complcx' qualification is one which requirj‘es performing some inter-relation
L ; A

operations (like join) in order to dc_crmine the tuples to be updated.

i~ - 3.6.2.3.1. Delete pP¥dcessor station

L R »
v l For the ’simple’-'"qualiﬁcation delete operations, the d'elcte processor extracts the
dcletlon crltcrlon and Ioads it mto the ALAP. Tuples satisfying the delctlon criterion

are removed from the page in the ALAP, and Lbc rest of tuples are ouLput
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B\
[a]

Functional block diagram

Figure 3.9 shows the single buffer processor for handling simple delete operations.
. )

It consists of the same functional components as the double buffer processor except it

BRI
3

has only one buffer which is the ALAP. » ) T .
[b] Operation dcscri‘ption

The petri net in Figure 3.6 can be used to describe the operation of the simple
deletion processor, with one simple difference whicﬁ concerns the intrerpretahtion of the
EXEC command:

EXEC : Extract the delction criterion from the deletion éperation and load it

into the ALAP Then tuples qatxqf)mg the deletion criterion are disabled from being
output by the ALAP, and the rest of’ theituples are output.

The condition places have the same meanings as described in Figure 3.8. -
. . ' ©
For complex predicate delete operations, a modified Join processing station-could

be used which loads the tuples from the relation to be manipulated in buffer B and the

other relation’s pages in buffer A. In this modified Join version the EXEC command
will delete the qualified tuples instead of materializing their join with the other

relation matched tup]cs.

3.5.2.3.2. Modify proceséing station

One has to distinguish between two cases: v‘i"l'i'é'i;ﬁ/er the modified attribute does or
do - 2ot contain the relation key or part 0!; Jf i@’ﬁe sure that the modify operation

. . ’.ﬁ“h < Y . .
.. Dever result in any dupllcates. If the m?ﬁ._ﬁed attribute does not contain the

relation key or part of it, then the modification will never result in any duplicates. In )

PN

R
t,hls case,.one can process the Modlfy using the Slmple delete. processor La match the

quahﬁed records but instead of deletmg them the approprlate aﬂtrm%;s\%e madified.

Ed
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On the other hand, .n the second case ,where the modified attributc(é) may
contain the relation. key »r 1o o of it, one must check for duplications. The
modification operation, in this case, works in three phases: (1) The first phase produces
another copy of the relation ,call it (old), to be used in the case of backtracking if it
dviscovcrs the existence of duplicates. (2) The second phase works on the relati‘on by
p\crforming the 'Simple’ modify approach described previously. (3) The third phase

checks for duplicates using the same duplicaté_elimination approach, but in duplicate
- " ’

checking mod.o (instead of duplicate elimination mode). If there are any duplicates, it
should delete the produced rélation (new) and restore the (old) relation then report an
€rror message.

[a] Functional block diagram:

The functional block diagram of the 'simple’ modify is similar to the single buffer
processor in Figure 3.9.

The petri net in }.?ig’ure 3.6 could also be used to describe the simple Modification
operation, with one simple difference, which concerns the interpretatién of EXEC
command:

EXEC : Extract the modification predicate from the modification operation and -

load its search criteria into the ALAP. Then tuples satisfying the search criteria are
modified according to the modification predicate(s).

The condition places have the same meanings as described in Figure3.6.

3.5.2.4. Select processor

Selection is doxe using a single buffer processor, in which the relation pages are
loaded into the ALAP, and the searching criteria is loaded into the mask register of
the associative memory. Then each processor of those participating in the Selection

-’

station enables only those pages that qualify from the search predicate(s).



3.6.2.4 Select processor 63

[a] Functional block dia.gram:
The functional block diagram is the same as the one in figure 3.9
The petri net in Figure 3.10 (the same as simple deletion) could be used for
sclection operations, with only one difference concerning the interpretation of EXEC
command.

EXEC : Extract the search predicates from the operation packet and load them
into the ALAP’s mask register. Then only qualified tuples are output.

3.8. Data-flow /Mixed-flow architectures

l.i the previous sections a number of specialized functional processors for all

_relational datz?base operations have been proposed to be incorporated by the

Set fﬁ]}*

Exec Co&a\]

@

N\, output

. Cond.

.10 Petri net sequencing diagram for Select

Fiéure 3
Ty
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architecture. A data-flow query processing strategy which provides any number of
those processors to execute each transition in the query nct. has been studied.
Furthermore, it has been shown that it is required to dynamically adjust which
processors are exccuting which transitions in the query met, in order to distribute

processors across all transitions and maximize performance.

g

In this section, our major objective is to describe an architecture which
implements the previous scheme of ‘ut.ilizing resource pools of the specialized
functional processors and buffers to physically map query structures onto the hardware
structure, taking into ‘consideration the architecture requircments mentioned in
section 3.4. That architecture should also be able to provide a 'reasonable’ solution to
the question of how the elementary transactions in a query net couid be assigned to
functional processors in the machine in a manner which allows the three things

mentioned in Section 3.3 to occur:

[1] No concurrency should be lost, if at all possible.

'[2) The solution should use a minimum number of processors.

[3] The communication overhead should be reduced as much as possible.

Chapter 4 will apply algorithms to direct the data-driven nature of the pure

data-flow query processing strategy to satisfy the latter three goals, (as .much as

)

possible) but tFé\srTwill. be used.in later stages of the design. Our intention now is to

describe an architecture for the first set of requiremehts.

The organization of the remainder of this Chapter is as follows: Section 3.6.1 first
- characterizes an architecture type called data-flow architecture, tilen, shqws that its
charactcristics match, to some extent, our set of requirements. Then due to some
shortcomings in the nature of data-flow it deviates to a 'mixed-flow’ architecture type.
Then Section 3.6.2 shows that some ’mixed-vﬂow’ model can totally match our set of
requirements. In addition it allows a greater chance for the second set of optimization

requirements to be achieved.
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3.6.1. Data-flow architectures

" Data-flow computer architectures are a newer class of architectures [TBH82]
which utilize multiprocessors and are based on a data-driven computation model called
a data-flow computation model. The data-flow computing model [Haz82] [TBH82) is

~derived from program representation, not from the computer architecture as it is the
casc in the Von Neumann model. In the data-flow model there is no control flow;
instead, the flow of data guides the ;:omputation. Thus, cach operation in the
comp.utatvion is executed when and only when its input operands are available. A
‘data-ﬂow program can be mapped to a dirccted computation graph, where nodes
repfesent operations to be performed and arcs‘represent' data paths between

" operations.

A node (operation) acts (fires) only when its input tokens (operands or data) are
ava}ilable. When an operation is fired, all tokens are moved from its input arcs to its

output places’through its outgoing arcs (data paths). A node may have any number of

14

input and output arcs (input parameters and copies of output values). Arcs in the
graph operate as queues, delivering one token (data ‘value) at a time to the node

(operation). Data (tokens) flow forward in the computation graph and each node fires

vy

<\
[T
3

when its operands are available. o o
" The goals of data-flow architect’yres as seen by researchliers of the field are:

(1] Increasing computer performance through concurrency.

[2] Direct support of functional programming languages resulting in increasing
reliability due to easier verification of functional programs. ‘

3] Exploit VLSI designs, through a computer organization consisting of identical
complex functional units connected together in-a regular structure with little off-
chip communications.

b4

Basically, data-flow systems differ from control-flow (Von Neumann systems)

‘systems in a number of characteristics [Haz82]:

- [1] The built-in synchronization of process exccution in the data-flow system is
automatically enforced by the dependency of operation executions on avaHability
of input oprrands. In the control-low model synchronization among concurrent
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processes must be explicitly provided using semaphores or similar mechanisms.

(2] The most visible difference between the two models is the execution ordering. In .

the control-flow there is a very deterministic total ordering at compile time, and
execution at run-time merely follows this ordering. In the data-flow model, there
is an implicit partial ordeting on the basis of data dependencies before run-time.
At run-time, this partial ordering, together with other constraints such as
resource availability determines the total ordering of execution.

[3] Another visible difference is the time of resource allocation for operations. In the
data-flow model, the allocation is delayed until the operation has its input
operands available and is about to execute and then the resources are no longer
needed once the value of the result of the operation is available to other
operations. In contrast, in control-flow systems, resources may be allocated for an
operation long before.it is executed and some resources may remain allocated for
the entire duration of program execution.

It isv argued that the previous characteristics match our set of architecture
requirements. The first requirement of the possible mapping of current demand to ‘the
-system onto a hardware structure is possible, since in datajﬁow architectures, resource
allocation processes are delayed 1;nti| the operation has :fi’_ts.l-~it;1put operands available
and is about to execute. That means, only the -needed resources are allocated only
w.hen they are demanded, so the system could be considered self-adjusting, in the sense
that only a number of processors exa;ctly equal to {{he current demand without any
wasted 'fragments’ are utilized. That also provides the ﬂexibilitfy of dynamically

adjusting which processors are executing which transitions in the Query net.

Furthermore the requirement of easily imposing concurrency control mechanisms
on the architecture is well matched by the data-flgw architecture property of

determining total execution ordering using data dependencies besides external factors.

Concurrent control mechanisms could be among those external factors, that means

-

they could participate in determining the total order of execution.

In the data-flow model; if one of two concurrent recurrences takes longer to
compute than the other, computation of the latter one need not be slowed down, since
each newly created instance of a result can be individualized by attaching to it an

activity number. In essence, th‘@ﬁ”s- the queues on the arcs (data paths) in the

Gk
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computation graph. This look-ahead property increases parallelism in a manner

similar to the 'Dynamic concurrency’ concept which is required by the data-flow query
L ‘
p\occssing strategy.

In addition to the previous characteristics which meet our set of requirements, the
interconnection methodology used by data-flow architlccturcs which establishes logical\
interconnections among processors and between processors and the intermediate
buffers, instead of physical ones (like the crossbar switch used in. DIRECT), is of great
importance in our '£napping of query structures onto the hardware structure. This
interconnection methodology (not.explained here, but described in more details in

Chapter §) is able to support MIMD environments without being a bottleneck in the

.(\

design.

3.6.2. Mixed-Flow architectures

The results of the design considerat.iqqs presented in Section 3.4 showed that our
architecture is likely to be a multiprocessor systcm with asynchronous communication
and distributed controi. The previously described ér.chitccture meets thésé
considerations except the last one (distrjbuted control), since data-flow architectures .

don’t have any control. Beside.that, there are number of problems in using pure data-

""A -
flow architectures in processing queries: '
(1] It is not possible to satisfy the functional requirements of- sh#xplex database
queries in a pure data-flow architecture. The difficulties in apPrating upon the
large data structures handled by such queries, are reported in [Gajskig2].

[2] [Gajskig2] pointed out that there is a conflict in using broadcasting on the one
hand (which introduces artificial synchronization into the execution of queries but
reduces the amount of input/output), and data-flow (which ideally should be
entirely asynchronous) on the other hand. For example, the broadcasting of
pages to processors of a Join processing station needs a way to control the arrival
of pages from previous operations. This to allow the broadcasting to be done in a
well-defined pipeline fashion (as in the matrices of figures 3.7 & 3.8) instead of in
a purely data-flow fashion. .

[3] According to the diverse performance capabilities of the specialized components,

one should expect to have intermediate qurues of pages created from these

‘performance divergences. A pure data-flow architecture does not provide these

kinds of intermediate bufferings.

o
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[1] Processing queries in a pure data-flow architecture has a very low capability in
performing decision-based operations, in this sense; at times decisions need to be
made based on insufficient information due to the pipelining nature of the
strategy. For example, when a Join is initiated there is no way of knowing the
sizes of intermediate relations so as to decide which relation should be the outer

relation.

Because of the nature of the previous shortcomings, a 'mixed-flow’ architecture
that lies in between data-flow and control-flow architectures could be useful in

overcoming most of these shortcomings.

In‘ fact, the possibilities between strict control , on the one hand and strict. data-
flow on the other hand, were investigated in [Haz&2]. Based on the three basic
differences, mentioned in” Section 3.6.1, between cohtrol-ﬁow and ‘data-ﬂow
architectures, Hazara assumed that there are only two possible values (yes/no) f;or

cach of the above, so one could have six possible distinct computation models
. "

representing 'mixed-flow’ ‘architectures. This division allows us to have ,for example,

O

- an architecture of 'mixed-flow’, which has the‘blﬁlt-in\“Asylidhrohizat,jon of data-flow,
but has its operations ordered for execution before run time , as in the pure‘control--
flow machines. This means one could build a 'mixed-flow' machine which is exactly

-

tailored to the architecture requirements sought.



CHAPTER 4

f

Mixed-flow query processing st=r‘egy

4.1. Introduction ' : J

This chapter looks at the computation space model, a model used to depict a
m.ixevd{?ﬂ?w query processing strategy serving in the proposed design. The undeflying
Bc‘l’ijg ‘beﬁipd introducing this new query processing strategy is that it will alleviate the
shortcomings of the extreme data-flow query p.rocessing strategy mentioned in Chapter

3; besides, it is obligatory that a Computation model for a mixed-flow machine itself

should be carried out in a mixed-flow fashion.

In Section 4.2 of this chapter, the basic query net, mentioned in Chapter 3, is

-

to dependency graphs as a tool for query representation. Then
a ! o . » c .

ts a number of extensions to the basic query net. These extensions
will serve in defining the general query met (or called computation space net), and
facilitate the representation of multi-query environments. Section 4.4 first defines our
mixed-flow query processing strategy; then uses both the basic query net and the

.. | . . i~
gencral query net for examining the two query processing strategies: pure data-flow -

-and mixed-flow. Then a simulation that has been used to evaluate them is described in -

Section 4.4.2.

-
4.2. Basic query net |

Sectiokn 3.3 presehted a formal descript‘ion of the basic query net, and claimed its
superiority over, the older, dependency graphs as a tool for query representation. This
section justifies our claim, and shows how the model offers a number of facilities which

serve our purpose.

)
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The petri net model was adapted to model database transacﬁons, instead of
dependency graphs, in the framework of information systems design (see for exé_mple
[Rol@2] and [LeH82}). It was shown that besides its capabilities to describe the
dynamics of transactions, it is also convenient for the analysis of database properties
such as critical sections and deadlocks. For example, (1) A petri net is live if there
always exist a firing scquence to fire each transition in the net. By proving the liveness
prop'crty (;f the net, the system is guaranteed to be deadlock free, and {2) A petri net is

A , N
bougtdﬂed if, for each ﬁlace in the net, there exists an upper bouv‘nd t& the number of
v,tok"e;ns that can be there simultaneousl&. By proving the boundedness prope.rty of'the:
n;t, the number of buffers required between as“ynchronous processes can be determined
and, therefore, information losses due to buffer overflow can be avoided. Moreo;ver,
(3)a peﬁ';i n.et, is properly terminating if it always terminates in;a well defined manner
{no tokens are left in thg net). By verifying the proper termination property, the

system is guaranteed to function in a well-behaved manner without any side eﬁ'gg‘ts on
et

the next iteration. N

Despite these advantages, therg are two main problems ;vith u‘sing petri nets in
transaction rcpresentat'ions [0z2W82]." The first one is the lack of time concept which
results in instantaneoqs iransaction firing. This restriction could be addressed by using
'Timed Petri Nets’ [EGDS?]. The second dcﬁcien;:y is the abs'en,cg.of a mechanism

whereby tokens which represent jobs in the system can collect data.

These'.deﬁciencies, and, in addition, the inability to specify an upper bound on -
the number of tokens at each place, have led to the development of the query net
model mentioned in Chapter 3. In addition to the capability of the query net model to
ovércome the previous problems, it also offers a number of facilit..iesﬁ which serve our

0

purpose:
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[1] It allows page reentrants through the net, by associating an iteration number

with every new invocation to the net. This facility allows us to model the

'dynamic concurrency' concept mentioned in Section 3.6.1.

[2] The model is so close to the proposed architecture that the mapping of its
elementary transactions into machine instructions is a straightforward process (as

will'be shown in the next Chapter).

[3] The model facilitates the study of some machine pcrformanfe measures: finding

the optimal buffering distribution on a specific query net, and finding the optimal

.proccss execution scheduling..
o
4.3. General query net (Cdmputatioﬁ space net)
Section 3.3 gave an example of a basic query net and showed the steps for
deducing it. In fact the query net in Figure 3.1 is called a 'Stream-oriented’ query net,
because it has no conditions (choices), no selectivity at any place, and no iterations.

4
This section will define what is to be called a 'ge%g&lﬁqucry net’ (or Computation
. T '
space net) ,by introducing some extensions to the basic query net, for two main
: A . ¢

reasons: first, to facilitate the representation of multi-query environments, and second,

to use it in describing our mixed-flow query processing strategy.

[Def.4.1] | ' .
Plac’es.‘repres'ent intermediate buffers in which éueﬁes of pages are ‘stored for
t..ran;qact,ions. Each place. ;, .s defined as a tuple fM(P,), T(P;)] ,where M(P;)
represents the place buffering capacity,i.e,vthe maximum number of pages'that'
co&ld be stored by the \buﬂ'ering facility at the placé P;. T(P;) is the place type.
.Plac‘es couldiqu)e classified as Fork, Join, or Unity places_‘. P; is a 'Fork place’ if the

. set g n{{P,}rX A} (see Scction 3.3 for variable definitions) has' more ghan.one

e]emeiﬁ; it is called a 'Join pléce’ if the set h ) { B'X {P,}} has more than one

£

A

VAN

J
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A 4 :
criterion which estabhshes for each in- dlrected page(‘g,; 5ub§éts of the out- dlrccted

buffers on these paths. By hav;ng the notlons ostork and Join: and selectlvlty in*the ..

i througb the net (query executlon) a transmon t, may be ln one of followmg.

i

4.3 Cencral query net (Computation space net) o ' - 12

clement, Fimally, it is called a Unlty place’ if none of the sets g r] {{P} X A}
i

and h ﬂ { B X {P B have more than one element _ o — : ST

, to P;, an out-directed page 9; appears on each of the out- dlrected arcs from P,. A

)

_»,, v ';"1

‘v:

; :
: Lot : o

‘arcs on which g, will appear. Fmally, Fixed and Funcmonal sclectlon are deﬁged :For

P} L
= .. .

e\(ample a selective Fork place, P, , is sald to be leed selectlve if (he routlng cnteno.n S

,J . T ,-. . ,L_‘r»:.-"'

is fixed, whereas 1t 1s said to be Functlonal selectlve, if the routlng <;r1terlon,cxmt.slml> o :

Y ,;n, .‘t- . e
. SRR o -
the form of a f}unctlonal relation. R Rt E ‘,»@ S

Cemien

The reason for establishing these classnﬁcatlons is to have a means by whlch gne é,ﬁ; d
& , il '
can represent the updates to the: Computatlon net. Updates mean 1mprovmg the
. [ { - A

processmg power at certain transitions’in the bet or Jncreasmg the buﬂ'erlng facﬂny at

certain places. For example, t,o lmprove the respcnse txme of a certam query, one can

.,

improve the processing power at some of the elementary transntlons on thls nets

critical path(s). Doing this; one may have to increase 'the'siies of the intermediate .

g

i

-'general query net, updates can be ea.:s)ly rhpresented (an example can be found in,

B

Sectioh 5.2.1). . e .

[Def.4.2] T . ‘ y

R

S A .»:. v ,«)

Transmons repre?:zn{: subquernes Ei‘sch transxuon t,,is deﬁned " a 4- tuple [S(t

(t ) Y , F(t;)] where S(t) is the transactlon state Durlnu cage propagatlon
(\
’ : W

: L,
- - . ‘ o= C T

[
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‘possible states:

[1] Waiting : a transition ,¢;,is waiting for its predecessors to be fired (more

o
precisely, for its operaﬁds?"_{‘o be availﬁblc). Initially, all transitions are in the
waiting state except,those at the entrances of the net. ‘

[2] “Current :a tvr:},n,é’ltion't‘-' is in the current state when all of its input requiréments

o
H

. are sat,isﬁ‘cd (a\ all'sble in the: buﬂ'ers) that s, all its preceding transitions have

alrv;:xdy: 'prod uced results.

[3] Flrmg : a transition is fired for executiom:. ‘ o W T
. - . . “ . .

[1] Comp’leted: execution of the transition ‘is completed ‘and the results either are

. P g

"'moved to the output buffers for another transition or produced as final net

ouLpuL. ' e : "
. - : s S

T(¢,) is the dulty assngned to thls transaction’ (Lhe work load lt, b@s to ﬁnlsh) ‘The
: a .
- .
use of that field mll be’ apparent when the mlxed flow.query processmg strategy will be - %
. o -* . o vj»,‘;.v . . ot \'-j?‘}.'
‘descrlbed. L L o : e ’ %"w Lo i}
E R i 1}1 oo
Y(¢, ) is -the transmon ‘time;i.e, it is the tlme requxred b} the transmon to mov

.tokens from the selected lnput places to the selected output places g s
L @ . . : L 4
F(¢,) is the transition funetlon. Each tran-sntlon is assocnated ‘with a transaction.

,4

[N

' Transmon l'unctlons could be any of the relational oatabase prlmmve operatlons e
[Del' 9. 3] S R 4‘3* . . e
) - TR e . . o
A token is a page with n tuples deﬁned as. K{.lg;n] and the |th tuple referred toas o+,
EEIEE . 4
}\[ ] A Loken can be in one of three states whxle it is propagatmg through the net: : JE

.;.--'
\?

[1] Reserved durlng the ﬁrmg stateuof a transmon ti, thls token was resndmg at a

i

' place P,- € In(¢;).

4 [21 Travc mg durmg the ﬁrmg state of the emltter transmon ,t (a transntlon that

""‘l' emltted that token), tlll ‘the arrlval of that token to-its destlnatlon place that:

3

A
o
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token is said to be in trwelmg state.

LN
'<.

. [3] Available : otherwise.
Also associated with each token three ficlds:

[a] Destm.ztlon places a%dresses of destination places Lhat the token is-supposed to

” M )
wnt

be dclncred Lo .

[b] Iteration number: an incremental integer used to distinguish different net

invocations. N
. ' R by . . ~ .,‘ o
[c] - Source name - : the name of source transition from which this token is emjtted’

i
8 [
e i

_ These definitions facilitated the manipulation of pages through the net, especially
in our simulation programs, where one has to distinguish between the times of pages -

being available and being ready for liring.

_'chf.4_ﬂ,.. .
an |

An inhibitory arc is represented by a dotted arc, and goes l'rom place to transmon

in Lhe net. It effects th&ransmon ﬁrlng in Lhe fd‘llowmg manner "A transmon L,

is cnabled if and.only if each entry place P connected to 4 by an ordmary arc

o s'«‘

contains a token (a page), and each entry place connected to t by an mhlbltory

. " J‘ {
arc 1s empty. .

- i

»

The lnhlbltory are was lntroduced in the model to facilitate the representatlon of

'.:

prlormes whlch aid in solvmg problems of mutual exclus:on and deadlocks RN

| . E - } - ) . : . . . -
[Def.4.5] L

¥
T

3 A

A transition whlch selectlvely directs the tol\ens accordlng to some selectlon'

crlterlon 13 represegtedlby a posmve "+’ s:gn and is called a choxce transmon .

The general query net provxdes us with two main facnlltles over the basic query

x\- : X ql,.,

net:<{1) The %orporatlon of chmces and condmons allows -us to represent a IR

computauon net- ofya.m
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3

-~

(2) The incorporation of inhibitory arcs gives us the tools to impose concurrency

control mechanisms on the query nets. .

Figure 4.1 shows an example for a computatlon space et of a multi-query
envnronment of an Airline reservation system Thls example is limited to oniy four
activities in t,he.environment: Ticket reservation, Ticket refunds, Ticket purcnasing
and Ticket Okay. System relations and elementary transactjons explana;'ion are shOWn
in Appendix A,

The Computation space net, shown in the figure, is a collection of query n.ts for
different environment functions (activitics). The net was drawn by first dzducing a

>

query net for each activity ;ndrvndually Then 3ccord1ng to 1/0 dependencxes
i"w,n".
integrity constraints, and concurrcncy control rules extra inhibitory arcs and locks are

imposed on different parts of the Computation space net. Figure 4.2 shows how

~concurrency control mechanisms are. imposed on the Computation sp& net. In this

figure, two critical sections are taken care of by inhibitory arcs. .

(1] A critical section between the Ticket Okay actlvlty and Tlcket purchasnng

b~

~activity in sections R71, R21 is being controlled by a prxorn) arc mtroduced “Lod_.,

[o4

-y
"

enforce consnstency Moreover, a lock is lntroduced around crnmcal secuon 1 to ¥

N oA

" enforce.an lptegrlty constralnt, it is not allowed to lssue more.xthan oneXTicket
& ) e B . 5!
' Ol\ay wnthout checklng the plane capacxty A .

Y2 Another prlorlty arc has been lnserted between the two actlvmes of Tlcket

‘reserwatlon and refunds as - sho%(n in Ejgure 4.2. The semantlcs of this -

co}'responds to the fact dhat it might be the case that there i3 Do more space on a

i ﬁiéht;number A, while there is a request for a reservation.on it; at the same time,

‘( \J"f’ N
. another passenger is refundlng a Ticket for that ﬂlght Similar to (l) ,another
X —'ﬂﬁ& . _l T - M
F (
- log as,becm\e;\‘abhshed around reservatlon actnvnty to enforce the lntegnty ‘

S ’*x . e,

™ ) AY ?
‘- . . NONE . -}

.

K
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checking the plane capacity.
T G

This section was neant to demonstrate that the Computatlon space net (such as
Lhc onc in Figure 4.2) can pronde a complete description of thc@terréiations among
the major system activities. It could be VIewed as an mtcrmedlate language to dcscnbe
explicitly the Jmaxnmgxm parallelism that exists in the target system. This wo'uld allow
us to examine different firing sequences (process scheduling strategies) to handle the

opérations in the multi-query environment without running into concurrency

problems. The seletted firing sequence is then to be translated into an executable

“concurrent/pipelined scheme on a target sys m. As will be shown.in the next chapter,

, the mapping of the executable scheme ontv the target 'sy"sﬁem is to be done by the

B - . .- :
special case) and its results.

'Resource Allocation Unit’, and manag&f by the¢"Process Scheduling Unit'.

|
4.4, Selectnon of processing strategy ' :
, u:?‘ ,
In Chapter 3, Lhe basic queryznet model was used to describe the data-flow query

processmg strategy, and & numbcr of adv antage.s and dlsadvantages of this strategy
.

were present¢d. This section will use the general query net. to descnbe a mixed-flow

query processing strategy Then it m?f deecnbe a simulation that has been used to

evaluate different possible mixed-flow strategies (including Lhe pure' data-flow as a
- o ‘ . ) i

‘h

How query processlm)g str.ategy

7

env 1roment» One’ possxble scheduhug to serve t}us type of envtronment is the ’Tlme

sharing’ process schedulmg In this strategy, according to the query pnonty, size of
\—

source relations used and system load, certam slices of time are assigned’ to sets of

activities. Since each activity is ;simplyuvrepresentcd By a query net, this ends up with a

‘ query net and a specific amount of time assigned to it~ Our main concern in the

- ~ E * S W
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4.4.1 Mixed-flow query processing strategy 78

82
-mixed-flow strategy is to schedule processing within every activity's query net, so that
an improvement to the mean response time over all activities can be realized. This

point can be revised a bit by first answering the question Wf>what is the best progress

that can be achieved in a set of active queries within the time slice assigned to it,

Our way of attacking Lhis‘problem is to transform the problem of finding the
optimal processing strategy for the query net iu”z{speciﬁc time slice , into a problem of
maximum flow/minimum cut. The reduction is reasonable since both problems are of
the optimi'zat,ion type and the tra‘nsformation is mainly from a time frame into a
capacity frame (as will be shown). So the optimal schedule produced will assign to
every transition in the query net a specific amount.of work to do (this must be within
its capability). Processing of that distribu{ed‘ work load is done inn a ‘data-driven
manner (normally as in(the pure data-flow query processing strategy). So the suggested
strategy has a global control (assi.gning theowork load for a time slice) and a data-flow

nature within the time-slice.

The underl)mg rationale behind this stratcgy ﬁ-_usu:’my in a’-lmulti-query
~

environment there 1s a huve demand and few resources to cope with it,.and proceeding
in a purely data driven manner in such environments can cause very poor sys.tem:i'
performance. Flgure 4.3 shows a simple example of a case wbere there is-a select
elementary transactlon followed by a Join elementary trausactmn {S::uppose that-‘
wnthm a time shce of T secs, the Jom processmg stafion 1sg%ble to produce only 10 -
'uo\“‘ "'v' ‘;f‘ ‘

pages (assuming some se]ectxvnty fact,or and q)me number of processors partlclpatmg

in this Join sta!.lon) whereas the select can produce a 1000 pages in the same time.

&

Furthermore assuming that the Jom bas utilized only 100 pages of those produced by
.

the select to do |Ls task then 900 pages produced by the selectlon dld not contribute

< [T
~ to the progress (the 10 pages p;oduced by’ the Jom) On‘ﬁﬁxe other hand in Figure

’. 0

\»

(b) & épphcaﬂon of the maxlmum ﬂow/ m:mmum cut tran) ‘ormation determined
H‘ «,4 } - ~ . ) ,.r 5\3 .

N ~ .-
e o P o
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U NN

| Select . ) -Join o o
O~ { . -
(a)
geﬁect 100 Join )
C} I 100 I
' (b) '

Figure 4.3:Controlled .

forced the selcctlon ‘to produce only 100- pages. This has saved all the sel ction

I

3

-

- point in tlme. -
' o time. .

LR

processors and buﬂ'ers partmpatmg in this select processing statxon a port,ron of

sg:ca; Tbeéé savod, resources can be utilized in any other query in the environment -

¥l

JJ ) ‘\/J'»

wbxch is being executed- ‘at. the same time. Furthermore this may result in starung an

ldle query, wblch was 0ut51de Lhe enwronment due to lack of resources at a certain
OO .

# - . o
L - S

o

s . Y ki .. . 2
R e o -
: . >0 e e .
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Besides improving the mean response time, global control is also beneficial in
preventing the occurrence of enormous queues in front of any compound processing
station which is next to a fast one-(as in the case in Figure 4.3). Another benefit is

that the application of the maximum flow also has an important' consequence in

leaving .the net properly terminating in a well-defined manner (no tokens are left in the

”

'net after the timc ﬂlicc) It thus assures t,hat the proccss is guaranteed to function in a

well-behaved manner without any side cﬁccts on the next invocation (next time slice).

In addition to the above advantages, the shortcomings mé‘ntioned in Scction

1

3.6.2, which hampered the pure data-flow -query processing st!&ﬂegy, could easily be

rccuﬁed using this mixed-flow query processmg strategy as follows

[1] The conflict, mentioned in Section 3.8.2, between broadcasting on the one.hand
(which introduces artificial syncl.lron_izat.i‘o'n into the execution of transactions but
rcduces the amount of 1/0), and ,th.e pure data-flow (which ideally :;hould be
entirely asynchronous) on the other hand, cop]d be resolved by using tﬁe mixed-

o ’ T i
HOWa.strat,eg'y. Global work load asqigninem could assign the required Work loads
Fact 2 o
) acc@rdmg to Lhe well- deﬁned matrices defined by the broadcastmg techniques
‘rﬁxﬂv
that were proposed by Merrq&t (see the’ work of [MKY81]). Thls would provide us

A é

with a local data-driven pipeline that follows the broadcasting requirements.

(2] 'According to.the mixed-flow query processing strategy, a controlled number of

intérmcdi_qt;gs‘:buﬂ'crs are provided; this intermediate buffering is required because
= oo . ‘
" of the diversity in performance capabilities among the specialized relational

database processors (described in Chapter 3) but was not supported by the pure

‘dart_’a-ﬂow query processing strétegy (which supports} o intermediate buﬂ'ering in

its ideal case).
[3]' Finally, the capability of performing decisioq-bhéed operations ié._expectéd to be

imp'r.pve,_d by using the mixed-flow strategy since more infdi‘mation_;(due to the
E : ~ T -1-/' & N RN :

5 - ‘ "“’3
T R s g

T VY

3%
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o

wg -
global work load assignment) will be available at the times these decisions need to

be made.

The following sections show first how to apply the maximum-ﬂow/minimum-cut
theorem to our optimization problem. Then they present a simulation done to compare

the performance of the mixed-flow and the data-flow query processing strategies.
4.4.1.1. Reduction to maximum-flow/minimum-cut problem

In order to apply the makimum‘ﬁow/minig;.um-cut theorem to our query net , the

' 3
following sets up some definitions.

[Def.4.6.] ‘
The capacity of a place ,P;, denoted by C(P,), is defined as the ma*imum number
of pages that could be available at that place at any time within the ngen time
sllce T secs. This value could be calculated knowmg the execution tlmes of all
net Lransltlons',haﬁng in-directed arcs into that place (There is only one, since
Query nets are defined to be Free-Choice Petri nets),. using the following
equations: f«"-v

For entry places:

C(P;) = Size of the sourcc relation at the entry place.

For places other than entry places:

(executed) out of that place

. [Def.4.7] -

Als'o_t’is defined.as an imaginary transition attached at the end of the active

v
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query nets to represent the destination (sink).

[Def.4.8]
A legal flow, f,. thréugh the query net Q, associates \%ith each place P,eP ,an
)’lnteger f(P ), satisfying these condmons
[1] o0 < f(P ) = C(P,) for each place P,eP
[2]" All C(k) are equal for keOut(t,)
[3] © For singlé input transitions t; (Single buffer proces_sofs)

e

R ‘.
RN )

sel‘ectiv'it.y factor of
for all Pieln(t;) & PjeOut(t;)” )
[4] For double input transitions ¢; (double buffer processors)-

. 1 .
selectivity factor of ¢; * Pdge size * f(P;) * f(P )< f(Py) -

for all P;, P,-eln(!,-)& PeOut(t,)

.

Not‘e that Selectivity factors are statistical figures associated with every

transmon in the net to represent, the processmg capabllmes (productlon and

1#‘1
consumption) at' hése transmons

: Informa”f’{g;ﬁhis to say that f is a legal flow through the Computatibn net in, 3=
certain t-imefslicg, T secs, if ip satisfies the four previous conditions. Conditii’on (1) t;jls
us that the number of pages that are allowed to be fired (for execution) must be n.o‘x;- -
negative and not exceed the capagi_téy ;n'that place (i.e, the maximum number of pages
9 ' : :

that could exist at that placé during the time slice.).' Condition (2) states that the

output pages from a transition should appear at-all output places of 1t,(thls is from the

“nature of the net) Condition (3) states that any flow! tg%e destmatlon must haVe the

=3
property that that flow is conserved accordmg to cquatlon (3) at e\e!rj sxnglc mput,

transition in the net. Equation (3) states that at most a fractlon equal to the

L
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>

selectiyity factor of all incoming pages 's'hc.>uldv.appear in the outgoing places of ti.
Condition (4) states the conservation law in cases of double input transibiona;i.e, t,hat,‘
no more than the selectivity factor of the eventual maxinlum number ‘of pages
produced out of the double input operation should appear in the outgoing places
[Def49]

A transition, ¢, incident upon P; and P; in Q, is said to be useful from place P;’

to place P.j with respect to a legal flow function f, if
) < C(P)

and P;) < C(P;)

[Déf410]

" The value of any legal flow f is defined to be

V(f) Sum f(Pi)

=
K

for all .P,~ € In(t) where t is the sink.

-

[Def411] L?“
A path L frop place P; to P;'in a net Q, is defined as a sequence of distinct
places and transntlons L=P; t; oo «.P; such tﬁat, Pke L. (for each k—l, ,j) and
is ;ieﬁned to beilacy;elljcl. | |

[Der412] L | o
. .

: 'A A flow- augmentmg path, with respect to a legal ﬂow function f on a net Q is

~ defined as a path L thh the property t at each transition t,eL is useful . rom

v

'place P;eL to place P4 € L A flow augmentlng path from a source to the snék 1s
called an s- t ﬂow augmentmg path It will be“shown in the proposed procedqt/g for

ﬁndmg the maximum ﬂow that, an s-t ﬂow augmentlng path is & paﬂﬁ.long

v . v.
L

which f can be augmenbed (l e, the value of f can be 1ncreased)
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The study of the maximum, network flow problem has been based on a

fundamental theorem, first proven by Ford and Fulkerson in the mid 1950’s. A variant

of the theorem is applicable to our version of net maximum flov tment of the
theorem and its proof are given in Appendix B.

Table 1 shows the figures used in the transformation frow ..e domain to a
capacity domain using a time slice of 24 msec. and page size of 10 tuples.

The firansformation from time domain into.capacity domain is s/hozn/by/&he
example in"Figure 4.4. Figure 4.5 shows the legal flow that is assigned by the pure

data-flow query processing strategy. It is clear that the maximum processing power at

each transition in the net is bemg utlllzed On the oLher hand Flgure 4.8 shows a -

" legal flow, fo, deﬁned ond net The first number represents the capacxt,y of the place,

o

maximum- over the set of,vahiea of all legal
function is said to have the maximum amount of, progress that could be. reached in the

. net within the glven tlme sllce Notice that the xistence of a maximum ﬂow function

on a pet 1is no'g open t»o‘que_stzon, since the net is composed of only ﬁnite capacity

places (because of the finite time slice and the finite net transition execution times).

The problem of finding the maximum flow through the net is a variation of the

known maximum flow/minimum cut problem with a different set of, constraint
. . - . [ N . 'l

“equations. ‘In the following a simple maximum flow procedsgh
) ' . . | . ", 3_.”!)

. . [ i
query net maximum flow p.roblem is described. The ;S‘rocedut’ 1 based on successively

i

augment,mg an emstmg legal flow functlon in each time slice period: assngned to the

N -] 3 s ar
net. The procedmre begms by determmlng the amoéunt of ﬂow that i is requlred to be

.popped'from dlﬁerent net places in order to achleve a progress of one page at the sink.

<
;Thls amount is. called the poppmg I'actor, PF and is ca]culated by the backward
‘ wi.f o o LR v :

L.

nctlons deﬁned on Q’ Such a flow"

: ) 7
i be used o solve our -
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labelling equations mentioned in the Appendix B proof. Then a ﬂow‘pote‘ntival value is

calculated for each place in the net by the equation:

(c(P)-F(P)

mp,= Iﬂt(

I'F(P;)

).

Notice: the notations used here are defined in Appendix B. .

T.hen‘ eac%‘ﬂow augmentati
(1] First a-place, Pr, with‘ .m'in-im»u
.se‘lectcd(‘las the bottvlenec'k of the
[2] mp, units of flow are bopmd to the

reachable from Pr. The

7

N

g ©

v

mentioned in Definition 4.8.

net.

on is performed in three steps:

~
-3

\

m non-zero flow potential over all net places is

sink t fﬁrough the net from every entr: .:ce

U

[3]  Tinally the procedure updates the ﬁd%v', potential of eac

l

j

[

"’"} . I'V- - ' 3 - ) . .
-popping is done following the conservation equations

.
L)

h transition' in the net

through which the flow has been pushed, closing the tr?nsitions which b;éqme _

either saturated (unuseful), or unreachable from entry places or t. This prepares

res

i —

e

for the next flow augmentation to be assigned to the net.

/

v

:Ta.ble'#i transformation table

Figures for the transformation..

Transition '| Exec. time |.- C | Selectivity
o lu Jmsees. 1240 | . .01 d .
o e .1m secs. | 240 01 1
I ‘ C1t3 .8m secs. 30 .001 .01
2 t4 Bmsecs. | 30| . .001- T .01 | ’
. ""0 N K T ~.8m secs. | “30 001 7 |01 |-
e ; t6 - - .6m secs..- | ‘40 4 1 s
: . $ .
Fq’) ' AN : P .:: B - ) % 4 :fi
& - T |
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Figure 4.7 shows, by an oxamplc, how to apply the procedure to a Query net. But
notice, in_the case of ..« operations, the option of forcing one critical path to
appear; this helps in ;roviding the chance for the transitions on the non-critical paths
to have a very low load. So their processors can participate fgr a very small portion of
T sees ( the time slice). Moreover, the procedure can alternate in choosing the critical
paths from one time slice to the next timc‘ slice. This provides the opportunity f(')r
keeping the least number of processors busy in executing the query, and the non-
saturated processors dnly participate at the beginning to finish their load portion; they

then quit.

The figures in Figure 4.7 show the flexibility provided by this strategy in

alternating critical paths.

It important to mention that the result of applying this strategy agrees with the

recommended streaming which was suggested by Boral and Dewitt [BoD81].
\
4.4.2. Simulation results ‘
o
In [BoD8I1] a comparison between four multiprocessor query processing strategies
(SIMD, Packet-level, Instruction-level and data-flow) was carried out. Tile results.
showed that the data-flow strategy always performed significantly better than any of

the other three strategies. Furthermore, when the performance was measured under

heavy loads, the data-flow strategy demonstrated greater performance improvement.

Presented here is an evaluation of the proposed mixed-flow query processing
strategy. Specifically, two experiments were performed. First experiment was to
compare cthc performance of the mixed-flow query processing strategy and the data-
flow query processing stratve“gy. Second expérimcnt was to test both processing power
and buffering requirements of different mixed-flow streaming strategies in order to

select the one that is the best compromise between its processing and buffering
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requirements.

For the first cxlperimcnt, a computer simulation program that simulates the two-
“query processing strategies was written. This program siminlat‘es the execution of both
single and multi-query environments. It is monitored to produce statistics thichl
summarize the behaviour of the two processing strategies. For the purpose of the
simulation, it is ass/u‘mod that two types of transitions are available: heavy producers
(which have thte characteristic that productions > «consumptions) such as Joins, and
light producers (which h:;}'c the characteristic that productiohs < consumptions) such
as ’-Se_loct,s. These characteristics are represented by what is called "Selectivity
factors™. Selectivity factors are statistical figures associated with e.very transition in
the net to rcprc"sent the processing capabilities at these transitions. The single query
simulation p(ogrnmucﬁforccs two main constraints fo allow precise operation. First it
associates with each place a capacity (C). Each time a page enters any place in the
net, it checks the value of the ﬂo?v (f) at that place. If this value violates any of the net
conservation rules (recall definition 4.8), then this page is delayed to the earliest non-
violaf,ing time. Secondly, there is an implicit synchronization at ﬁet binary transitions;
for‘ example each join processing .station waits on the availability of its two iﬁpui
source pages before they are hashed as a packet to a specific processor in the Join
organization. Beside this implicit synchronization, there is an explicit restriction on
processing overlapping (i.e, allowing more than one page to'be processed by the same
brocessor at the same time). The multi-query environment is represented by a demand
table (which represents several user requests) and a global resource pool. The demand
table is traced by a global controllef, which serves queries for execution afcording.to
first fit strategy (i.e, fitting the amou..t of available resources). If the amount of
current available resources is not enough to initiate a new query, then the global

controller either distributes the available pool of resources among running queries (if it
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is simulating a Mixed-flow strategy) or keeps accumulating them to start a nev .
The Global Controller serves users' querics by a Round-robin Dynamic Resource R
allocation service. It runs several copies of the single query simulation model (cact
running a different query) and prowvides a communication medium for resource
exchange through pipes and shared files. In its realization of resource rc-allocat,ign
among queries , the simulation uses heaps to rank net _bottlériccks (either buffering or
processing). Time slices are handled by running: several singl'e queries under a
controlled environment tn which it is poss\ible to interrupt Tthem and change some of
“the model internal parameters before their execution is resumed. At the beginning of
cach time slice of each query existing bottlenecks, from the tops of the heaps, are
resolved tili the ~vLynstion of the resources at hand. The Global controller continues

its Round-robin service by incorporating new queries from the demand table when

possible and continnally ubdat,ing the Global Resource pool.

Although the used simulation strategy servadyour purpose, a-discussion of its
capabilities as compared to the capabilities of other strategies will be presented at the
end of this section. Thcﬂatabasc‘- used to examine the two query processing strategies
;onsists of five relations. The sizes of these relations were chosen to cover the spectrum
of practical relation sizes. Sizes were selected as 800, 500, 400, 250 and 200 pages. For
each relational eperation the selectivity factor ( the fravction of tuples which satisfy the

selection condition) was chosen as in Table 4.1.

Two experiments were performed to compare the‘two query brocessing strategies. -
The first experiment served two purposes. The first purpose was to test the effect of
buffering assignment to different net places on the total execution: time of cach query.
Whereas testing the two strateg{es in multi-query environments was the second
purpose. Figures 4.9 , 4.10, 4.11 provide indications about the efficiency with which

each strategy uses the assigned buffers in order to resolve its bottlenecks (buffer
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bottlenecks) and improve to*al execution.time.

This experimert was run by fixing the ' number of assigned processors for each

. »
query in Figure 4.8 and by testing the two query processing strategies for diﬂ'l*rgnt
Iassignc‘d buffering sizes. Figures 4.9, 4.10, +.11 show th'at ‘he performance of the
mixed-flow query processthg strategy C(tetinues to imprbvc as the number of buffers
increases long after the data-ficw . vy proce  ag strategy improvcmont‘h-aé been
.saturutod. If the number =\f‘h\'ai’hb|c });lffPrg “s increased beyond a certain amount (

the smount at which there are an buffcring bottlenecks with the existing processing

power capabilitics) the mixed-flow improvement also starts to saturate.

This result seems to indicate that the nﬁxod»ﬂqw query processing strategy indeced

. - ' A
succeeded in more efficiently utilizing the re-allocati~>n of available buffers to resolve
its buffering bottlenecks. The reason that the dat;x-ﬂow imp >vement saturated too
early is its inadequate global view for the query buffering requirements at different net

places.

Furthermore, these results are even more apparent in Figure 4.12, which shows
the comparison in a -multi-qucry environment. The figure shows that even for a very
large amount of available buffers ( about 700 in the ﬁggrc) tic mixed-flow
improvement has not yet saturated, while the data-flow strategy has been saturatcdﬂ

for a long time (near 250 in the figure).

The reason behind the apparent superiority of mixed-flow strategy over Data-flow

in multi-query environments more than in single query environment is its flexibility in

inter-quéry buffering movements, in which unnceded buffers (those that do not
contribute to the progress in a specific query) can be moved to another query to

achieve a degree of improvement there. Using this technique, an overall average

A

response time improvement is achieved.
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No. of entry places=1
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No. of entry places=3
No. of Selects=2
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Multi-query
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Figure 4.8
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In the second experiment, the three underlying queries were executed using each
strategy for a rﬁ.ngc of variable provided processors. The results of’lt,hese execuﬁons are
prcscnt(:dv in figures 4.13 ,4.14 4.15. For the purpose of the simulation, the x-axis of
the figures represents the total net delays (adding more processing power lowers the
dclays at net transitions). It is clearly shown that, with a specific number of processors

o . : »
added (in ord({r to lower the total delays), both mixed-flow and data-ﬂowl‘ strategies
show identical j“rcspon'seu times. At this specific amount, there are no processor
bot:'t,lo[’x‘ccks in the net, which means that the response time is the same whether or not

processors are re-allocated among net transitions. Re-allocation of processors is for

resolving processor bottlenecks.

Note that what a processor bottleneck means is the delay that propagates to the

net output due to some processing station that could not cope with the work load at
its entry place(s). Similarly, buffer bottleneck means the delay that propagates to the
net output due to some buffering place that was fully saturated and refused to

accommodate a page at a specific instant of the time slice. : ¢

Obviously, buffer and processor bottlenecks were expected during the actual

operation of the system, since the actual flow (that is based on actual selectivity
factors) differs from the planned fldw ( that is calculated by using %he estimated
selectivity factors for net transitions) which is assigned by the the proposed procedure.

The simulation selects actual and estimated selectivity values and resolves 'old’

bottlenecks at the beginning of each time slice.

In fact, the resource re-allocation strategy of identifying net bottlenecks at the

beginning of each time slice and resolving them on the tops of the heaps (urgent first

¢

strategy is implemented in the simulation), is not an optimal strategy. It always
resolves "old" bottlenecks which had occurred in the previous time slices. Any optimal
strategy should achieve in addition to the previous goal, a secure future operation

~
2 k.)
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!

(uptc; a specific amount of ltime ahead). This means it has to predict future
bottlenecks by adaptively studying buffering and processing requirements. To

understand the meaning of the "adaptive™ study of requirements, consider a single

input transition f,, which has an input place P; and output place P, . Allocating some °

processing power at transition ¢; will increase its consumption ability from P; and will
also increase its production ability to P,,,. As a result, the old buffering requirements

of P, and P;,, are not accurate any more.

-
-

This indicates that it is impossiblg tfo/isokktf buffer allocat,iqn from processor
allocation, since both operations affect e;xch/other dirét\tly. Any inconsequential change
in one could jeopardize the requirements of the other. \MDSL\of the previous resource
allocation strategies tackle buffer- and processor-allocation independently [Vic81]
" [Cop77]. Therefore, it is important to develop a global alg‘ovrit,hm' that studies

adaptively these requirements. One such strategy could be:
[1] At the beginning of each time slice, heaps of current bottlenecks( buffers and
processing) are built,

. : . N .—“ \ . .

[2] According to the available global resources,a unit<of resource resolution~is
. ¢ :
e -

~_
established (e.g, one buffer and one processor).

[3] Alternatively one processor bottleneck is resolved followed by one buffer
bottleneck using the defined unit of resolution.

[4] Adjust the heaps by studying the new net requirements.

[5] Repeat steps.(3) and (4) until either there are no more net bottlenecks or no more
resources to be re-allocated.
Note that siﬁce the query nets are acycl‘.‘ic (by x_mture), the previous strategy

cannot have any recursive or cyclic effect.
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Based on the Computation net transition characteristics and input relations

information, net processor bottlenecks could be detected at different locations:

[a] In the case of linear pipelines, it is clear that the first processor bottleneck in a
lincar pipeline path ¢, ...... t; 1s at some ¢, in which ]l such that the exccution time

of ¢; is equal to the minimum processor execution time in the pipe t; and 1>k.

[b) In the case of Forks, the previous identification method needs no change, since

the net can be redrawn at the Fork position as a multiple ;géar‘-_‘gipeline.

[c] Finally in the case of Join, the longest paths from the Computation Space Sink to
cach Join position could be identified. The bottleneck identification method need

only be applied to those longest paths.

The previous experiments inciicate the superiority of the mixed-flow query
processing strategy in >ut,ilizing both processor and buffer r'c-allocation 50 as to improve
response times. In all the tests (single query and mulf,i-qucry). the‘mixcd-ﬂbw always
pcrformacd significantly better than the data-flow strategy. More specifically, when one
examines the performance of cach strat.eg;' in a multi-query envirénment, the‘ mixed-
flow demonstrates margin:ﬂly better performance than the data-ﬂowi; this is due to the

flexibility of inter-query resource exchange.

As mentioned in the introduction of this section, another experiment was done to
test diflerent Mixed-flow streaming patterns. In this simulation,‘mdre than having a
global control flow and a local data-flow, different types of local data-driven strategies
arc examined within thé time slice itself. The query net in Figure 4.17 shows the
'Forward label streaming’ and the 'Backward label streaming’ strategies for token
number one, starting from the moment it entered the net till i_t finishes its processing.
As shown, the numbers in the places represent the clock times at which those tokens
were available at different nei places. Obviously, different processing powers and

buﬁ'eriﬁg requirements will be needed at different net transitions and places for
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different types of streaming. Some of these patterns are examined in the simulation, to
find the best local streaming pattern. Best means the one that reaches an optimum
compromise between its quuirements from both processing powers and buffers. The
tables shown in appcndix B, gfvc figures for the processing powers, and buffering

wrequirements for different streaming sequences at different net transitions and places.

Finally, it is important to mention that the second experiment was also meant to
provide a 'Snapshot’ information about the details of different mixed-flow patterns.

That was meant to be used in a 'graphical’ demonstration of these patterns.
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CHAPTER 5

MACHINE ARCHITECTURE

5.1. Introduction

Cha;)t,or 3 showed how Mixed-Flow architectures can satisfy completely the
architecture requirements that serve both the database dynamics and tasks. A number
of specialized functional processors to optimally executedatabase primitive operations
and to be used as off-the-shelf components in’the ta'rget:'ar,cbitecture wé é:also
" proposed. ’I:hcn Chéptcr 4 introduced the Mixed-Flow quéry processing strategy.’ This
strategy utilizes specialized functional processors and overcomes all the problems of
the pure Data-Flow query processing strategy. In addition, the Mixed-Flow strategy
has the capability to serve in multi-query environments. The computation space model
has also been used to investigate several firing (streaming) sequences for the local

processing of the Mixed-Flow query processing strategy.

This Chapter will describe the target Mixed-Flow arc1hi.tecture which consolidates
all the previous results in a neat and simple design. The design has a unique feature
which avoids those problems of processor switching and memory/processor
interconnection that usually limit the degree of realizable concurrent processing. The

design offers a simple s@l} ion to the mapping of queries onto hardware structures.

Section 5.2 looks at the endo-architecture description level of the architecture,

giving a description of each component’s capabilities in the architecture. Following

‘—

this a complete execution cycle of the machine is described. Section 5.3 gives a
des-criptrion for program organization; which includes description of machine
. . -~y -

instructions and data types. Then Section 5.4 presents an example of exec uting a query

108



5.1 Introduction 109

on the machine.

5.2. Endo-Architecture Description

It is known that computer architectures can be examined on many levels, from
the detailed circuit level to the processor-memory-switch level, developed By Bell and
Newell [BeN71]. The most appropriate description level dufing initial design processes
is the endo-architecture level; which is defined by Dasgupta [Das81] as typically

including:

..the functional capabilities of a2 machines’ physical components, their intercon-
nertmns the nature of the information flow between components and the means
whereby this ﬂow is controlled”.

The following subsections consider the architecture at its endo-architecture
descriptive level. The architecture organization is described first, followed by a

’

description of a complete machine execution cycle.

..

It is a well known fact that in order to obtain high speed from any parallel
computer system, it is necessary to exploit parallelism in processing, storage and
information transfer. The critical "bottleneck” found in most MIMD mz;chin;f%s usually

< .
appears in the form of crossbar switches (e.g, DIRECT), common highways, or the
common stores through which all processors in the system may wish to communicate.
The reason for this can be.traced to the need for a processor to rapidly acquire data
from any other part of the system. In addition, there is the necessity of controlling
access to data which has yet to be formed; this can also iﬁtroduce significant

.
communication overheads.

«

The scheme used by data-driven architectures to alleviate the previous troubles is
to not require the processor to perform a section of a computation until all the data
are presented to it as an executable packet. Rapid data access to other parts of the

system and access control are then unnecessary.
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e Unit to ]
o . Execute I
I Instructions . “1
[unit to Dest. \ Resource Unit to
Network Allocation Fetch Ready
Transmit .
‘IInstructions
Rﬁfgits | Instruction
Memory
L., | [Unit to T J
Fimd" Ready
Instructions
Figure 5.1
Data~Flow Architecture

Scheme

Basically any data-driven arghitec’ture consists of the four primary components
found in Figure 5.1 [Bae80]. A data-flow scheme to be executed is stored in the
memory of the machix\le (the instruction memory) in a form of instructions. Each
instruction corresponds to an operator of the data-driven program. Each instruction
contains fields to specify the operation to be performed and the address(es) of the
instruction(s) to which the resuit of the Aoperation is to be directed. Other fields hold
the operands for use in execution of the instruction. When an instruction contains all
the necessary operands, it signals the 'Resource Allo;ation' Unit (see Figure 5.1) that
it is ready to be transmitted, as an operation packet to a processing station which can
perform the desired function. The Resource Allocation Unit is responsible for

directing operation packets to appropriate processing stations. The results of a

processing station leaves it as one or more data packets. Data Packets are composed
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both of fields to hold the results, and of other fields for the address(es) of the

instructions in the Instructio. Memory, to which these results are to,b: delivered. The
Distribution Unit receives data packets from processing stations and decodes the

address(es) of each to direct the result items to the correct instruction(s) in the

Instruction Memory. The instruction(s) receiving those values may then be enabled if

“

all operands are present‘in them and the cycle is repeated again.

The previous scheme is basically the execution cyclelof any data-driven machine.

Different data-driven machines may vary in how they implement this strategy. For

7

instance, many instructions may be en.“abled (signaled for execution) simultaneously, at
a time where there are few processi/ng stations to cope with that demand, in such
cases, diiferent schcdﬁling strategies are employed by diﬂ'erent. data-driven machines to
defipe fair 'fctching’ polices among instructions. Other strategies are algo implemented

o~

in the Distribution Network to match result propagation demand.

The proposed da“tabas;e. machine, shown inb Figure 5.2, follows the same lines of

,
-dat.a-driven architectures: it has an Instruction Memory, a Resqurce Allocation Unit, a
Processing Stations Unit and a Distribution Network. These Units are performing the
same fu1'1~ct,ions, as described in the general data-driven architectures, with the

)

following differences: /

[1] Instead of storing operand values in ﬁelds within the ihstructions, it is decided to
utilize singl{e agd double queues, for single and doub!e instructions respectively to
store operand addrésses. Thg reason for this particular change is that most
existing data-driven machines were developed mainly for numeric applications in
which operands are usually scaler values or at mosL‘,‘ vectors, so fixed length fields
in the instructions are éapable of storing these oi)érands. On the other hand, in

Qﬁcase of relational databases these operands are going to be pages of variable

length tuples, and it is inefficient to storerelational pages within the instructions
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(2]

[3]

[

themselves. Furthermore, using the idea of the address queues will allow us to
process many invocations ahead, and to store the address of each result in its

order in the queue (implementing dynamic concurrency), whereas storing the

operands in the instructions, means modifying the program code, thus preventing

* the support for program code re-entrance, and restricting each instruction to
.0 . 5

store no more thap the current operand [DLMT?]. The sizes of these queues could

be precisely calculated knowing the 'streaming’ type used in processing the q?lery

.and the global work load assigned to the query instructions (look at the ‘
- : " . o

x

simulation results). It is apparent.that there is an analogy between” the

propagation of pages through the query net elementary transactions in the

mixed-flow query processing strategy (described in vCha'ptér 4), and the

propagation of addresses through the instructions in the machine.

Conseduently, the execution cycle had to be changed by storing relat_ion pages in
a separate cache memory, called the 'B‘u.ﬂ'ering subsets’ .Unit, and by providing
parallel storing and retrieving capabilities using a distributed int;elligent ’l?:;ge
Management Unit’. As will :be shown this 'P‘age"Management Unit’ has the
responsibility of delivering relation pages to processing stationsuaccording to the
well-defined matr;ice:% mentioned in Chépter 3 (§ee figure 3.7) when executing the

broadcasting Join or Project operations. This shows that the unit is performing

page swapping in an intelligent lhanner [MKY81]. _ A -

The “distribution Network .is' not receivimg result pages from the processing

- stations. These result pages are first stored in appropriate buffers, and their

locations, instead of theingsgiginal values, are returned back with destinatg¢d
instruction address(es} to the Distribution Network. The Distribution Network
routes these 'modified’ data packets from the Buffering Unit to the instructions

-

specified by the destination addresses: This is done by decoding the_ packets

| ¥4
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according to their destination address field(s). (The structure of these data

»

packets will be described in the next section.).

[1] The instructions cannot signal the Resource Allocation Unit that théy are ready
to be transmitted as operation packets to processing stations singe they have only
of)crand addresses (not the real values). Therefore,. another modification to the
execution cycle is to forward instructions to the Page Management Unit t‘o fetch
their operands before requesting execution from the Resource Allocation Unit.
This action completes the extension of the execution cycle such that any 1/0 to
and from the Instr‘uct,io.n Memory should pass ‘through the Buffering Unit to
exchange pages with address, an.(‘i vice versa. Once the ins’:uction fetches its

" operands from the buffers, it constitutes what is called an 'Op=ration Packet'. An
, Opcxﬂ‘ation Packet consists of the instruction with its real operards. A more
' det.ai]ed description of the Operation Packets and other machines’ Packets will be

1

provided in the next section.

In addition to the previous modification to the data-flow main execu:ion cycle, it

is found necessary to establish other units for different purposes:

(1] The Process Scheduling Unit:

"This unit was introduced to regulate the data-driven nature of the machine. It
has the main rule of the global work load assignment, mentioned in the mixed-flow
query processing strategy in Chapter 4. It distributes time slices among current
Computv:i(t,-ion net active queries and assigns global‘:vork loads to their elementary
transactions. The algorithm of maximum net flow is implemented here as a mechanism
with which the Process Scheduling Unit can calculate the amount of sufficient work.
loads and a'ss_ign them to tr;snsactions. As will be shown in the next chap‘t'e.r, the
Process Scheduling Unit can also be used to manage the swappiﬁg of instrl;ctions to

and from the Instruction Memory in case of having a hierarchical memory for storing

.
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instructions.  Such memory hicrarchy will be suggested as one of the possible

extenstons to the proposed architecture in Chapter 6.

The Process Scheduling Unit has another important function, which is to update
the current ()o;nputation Space Net. Updating the Comput.tion Spar- Net means
moving processing power from place to another, in order to ~tart cvccuting a new
query, or to further push more pages towards active querics sink point (resolving
bottlenecks).” The net updates, described in Chapter 4, form the tools by which the
Process Scheduling Unit moves processors and/or buffers from a specific query net
(because they have alrcad)" finished their share in processing the underlying query) to
participate in a progress undertaking at another part of the current Computation

Space net. This service is really needed as the mixed flow query processing strategy is

putting such a scheme into eflect. The idea is very simple: suppose two queries, A and

Y

| \ .

, 2z s .-
- F

; Path L

Query 'EB'

Query 'B'

Figure 5.3: Net updating

~

o
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B, were running concurrently with specific time slices assigned to each. According to
the mixed-flow query processing strategy, assume a select processor station, X, has
finished its share in exo(;uting query A. Now it can be utilized to contribute to any
prégress undertaking in the current Computation Net. This progress may be in query
A itself or in another query such as B. The critical paths along any of t,hfe queries are
simply identified by the Process Scheduling Unit (according to actual flow and net
bottlenccks). Suppose query B has path L ,shown in Figure 5.2, as a critical path (a
path that has one or more buffer or processor bottléneck) with a processor bottleneck
at processing station y. Now, since the execution is carrying on that path the Process
Sch(‘dulingbUnit updates it as in Figure 53(b) It converts the place P; into a Fork
place and adds the X processing station, a;ci co‘nverts'the ot.hcr place ;PJ-, into a Join
place. By doing this, the long waiting line of pages at P, can be executed by both the
old working station and the added one, probably resulting in improved response time.
The ‘Pr‘ocess Scheduling Unit keeps up-to-date information about the ‘active
Computation net behaviour. E:}g\h Instruction ccll‘in the current active Computation
% ,
net reports the actual flow statu:‘x" to the Process Scheduling Unit. For example, the
finishing of the select processing station X to its share in executing query A would have
been reported by the Instruction cell that contains this select instruction. These net
behaviour informations are used to adjust the active Computationr Space net
bottleneck heaps such that the Process Scheduling Unit woulci kﬁow where to forward
X. Resource re-allocation, then,takes place in two 'situations:.(}) Each time the
Process Scheduling Unit receives a 'finishing share’ report from some instruction cell in
the current active Computation Space net; and (2) The action of initiating a new query
net after receiving a 'finishing sha;e’ report establishes the situation of having several
overlapped time slices in the system. This suggests performing a round of resource re-
allocation before starting any néw time slice. The benefit here is that existing

a

bottlenecks are resolved before initiating any new time slice.
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=

The Simulation of Chapter 4 implements only the second type of resource re-

allocation.
[2] The Control Network:

This network was introduced to' facilitate imposing concurrency control
mechanisms on the current Computation Space net(i.c, the instructions which are
stored in the Instruction Memory). The Control Network receives boolean data ’tokenﬁ
(called control tokens), and activates/deactivates different parts of the Computation
Space Net, according to the concurrency control instructions delivered to the unit
through the Decision L;nit. This will be apparent when describing the special' gate
fields in the machine primitive istructions which are associated with instruction
operands, and are used to permit or pr;cvent the instructions to be delivered to the
Resource Allocation Unit as ready _packct;s for execution.

[3] The Decision Unit:

This unit”provides a straightforward solution for the incorporation of decision
capabiliiies into the machine'(to serve the generalized query net model as well as the
basic query. net). The unit has the responsibi'!it,y to intcrpret instructions that
represent decisions in the £omputation Space net and yield control packets (aﬁalogous
to data packets). These control packets have a boolean field to hold the result of a
choice, and other fields to specify the destination primitive instruction addres;s(es) that
they are going to affect. The control pé.ckets are forward to the Control Network to

allow for gating and non-gating of machine primitive instruction operands.

[4] The Query Translator:

This unit has the respohsibility of driving query nets from queries by applying the

algorithm given in Chapter 3. Several users can interact with the machine through this -
4

unit, which compiles user's queries and integrates them into current environment

Computation Net. In fact, this unit has the same function as the INGRES parser,

U
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which has been used in DIRECT [DBF80] to transform users’ queries into binary trees.

e

i

The Garbage Collector:

This unit has the responsibility of tracing the instruction memory and swapping

out all the instructions that have finished their share of workload. The unit is similar

to the Garbage Collector used in CASSM, which runs all the time to delete the flagged

(fagged for deletion) tuples. The unit is to be utilized in the extended machine which

will have another back memory for storing machine Instructions.

(6]

The Prchssing Stations Unit:

The specialized functional processors proposed in Chapter 3 are incorporated in

this unit with two facilities to allow for processors grouping:

[a]

[b]

Since in some primitive operations (such as join and project) it is needed to.group
some processors to form a station (organization of; processors), there should be
seme sort of interconnection among each primitive processor type. This is
nec‘essary in order to create a means to build a Join Processing Station (a ri‘ng
interconnection type) or a Project Prolcessing Station ( a two way unidirectiongl
connection). In this machine, each primitive processor type is connected using a

crossbar switch. This allows any pattern of data exchange among processors of

the same type with almost no communication overhead.

A "Decomposer” and a "Composer” ubits are introduced to precedé and follow
each group of organized processors. These units have the following functions: the
Decomposer is used to manage the organization; in addition , it has its local
memory (which may be in one of the buffer subsets) to accumulate the incom’ng
pages, in case there is a ﬁeed for mulitiple phase operations (this will be appafent
-inv the c-'xample of Section 5.4). Furthermore, ihe Decomposer, with the help of the
Page Management Unit, keeps.a table for each processor, and delivers pages to it

according to the well-defined matrices described in Chapter 3. The function of the
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Composer is to conform with next processing station for the correct delivery of its
station output. It also has other functions, such as page compression after delecte
or duplicate elimination operations, which are likely to create page

'fragmentations’ as noted by DeWitt [BoD81].

As the Processing Stations cannot perform arithmetic. operations such as sum,

average, etc., additional arithmetic processors are available as another processing type

in the processing unit.

[7] The Switch

The Distribution Network directs the results to the host or the users through this .

\

unit.

The Resourcr Allocation Unit is a switching network which reccives exccuiable
operation packets from the Instruct.ion Mcxﬁory and send:s them to the appropriate
processing station in the Processor Stations Unit. The Distribution Network is another
switching network which receives data packets and sends them to the Instruction
Memory. The Instruction Memory receives data and control tokens and stores the

appropriate information into instruction cells. All communications among these units

y

are asynchronous.

This structure introduces parallelism by allowing each cell in the Instruction
Memory concurrent access to the Processing Stations Unit through the Resource
Allocation Unit. Parallelism is also introduced by the specialized processing stations in

the Processing Stations Unit which allow concurrent exccution of different primitive

operations. ' .

5.3. Machine Instructions and Data Types

The machine is designed to utilize the generalized query net model as its base

3

language. An environment (multi-users’ jobs) in the current Computation Space net

o
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ists of two types of instructions: instructions that éorrespond to primitive

wse operations, and instructions that correspond to conditions and chojces.

ently, two types of tokens are available in the machine: data tokens, which

relatio pages taat flow through database primitive instructions, and control .

Toke, o nresent the results of logical decision instructions. Control tokens
direc: "5 fiow of . dat:  kens by means of gates which exist as ficlds within the
pritnitive inst. .~tions. These control tokens are the outpui of the condition and choice
instructions w. . 'h are j scessed by’ the Decision Unit. Data tokens are produced by

the Processing Station Unit which deals with the first type of instructions. Two

formats for primitive operation instructions are shown in Figure 5.4, one for unary

primitive operations (those to be executed on single buffer processors), and the other

for binary primitive operations (those to be executed on double buffer processors). The

first field within any token or packet in the machine is used to identify its type. The

following codes are used:

2]

(3]

I - Instruction

OP - Operation Packet
CP - Control Packet .
D - Data token

C - Control token

The rcmaining'ﬁelds in the primitive opcrativon instructions are:

Operation Code: This speciﬁés t.he primitive operation executed by this
instruction.

Destination Address: This field identifies the target instructions for the p.acket(s)
gencrated by the instruction execution. |

Operand queues: Fo;' each operand there is an operand aueue, (g,), which is a
fixed size qﬁcue used to store the operand address(es) of the i,nstrﬁction. The sizes

of these queues indicate the maximum amount of subsequent work ahead that can

be done. Each operand qucue is controlled by a gating field ,(g;), which shows the
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Op.Code|Dest.addresses |g1 Q1 g2] 92| Iter.| Source |Duties

Op.Code|Dest.addresses |{g1|{q1[ Iter. Source|Duties

Figure 5.4: Machine primitive instructions

permission type that is associated with the top operand of that queue. The
permissions are assigned by the Control Network, as mentioned earlier. The types

of permission are: (a) the associated top operand is nonconditional,and (b] the

~ associated top operand is not allowc? to be used at the moment by the

(6]

instruction.

Iteration Number: This field represents the index of the operand being processed
by the instruction (there may be two indices in case of binary instructions). These

indices are reset at the beginning of each time slice.

Source Name: This contains the address of one or more source instructions that

precede thisinstruction in the net.

Duties to be Executed: This field is filled by the Process Scheduling Unit,
according to the net maximum flow calculations. A comparison between the value

of the Iteration Number Field and the Duties to be Executed Field is done by

both the Pfocéss Scheduling Uhit and the Garbage Collector Unit. The latér, as
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already explained in the previous section, looks for instructions that have already

finished their share of work load in order to swap them out.

The two data token types, which are handled by the machine primitive
instructions, are shown in Figure 5.5. The data tokens produced by primitive stations

have four ficlds:
(1] Identifier: 'D’ indicates that the token is a data token.
[2] Output Page: This field contains a relation page.

[3] Destination Address: This field specifies the target instructions for receiving this

data token as an operand.
[41] Source Name: This specifics the source instruction that generated this token.

The other data token type in Figure 5.5 has three fields, the‘ﬁrst and third fields

are the same as in the previous data token type. The second field is the Page Address

N

D | Output ?age]Dest. Addres. | Source Name]

D | Fage Addres.] Lest. addres.

-Data token types
Figure 5.%
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in the Buffer: this field contains the address of the result page. It is filled by the Page
Mav - ment Unit, as described in the previous section. This data token type is formed

B

out of the first data token type by the Page Management Unit and is directed to the

\

Distribution Network Unit.

The other type of instructions is the Choice instructions type, which has the
;
following fields:

1] Identification: This ficld is used to identify the type.
[2] Predicate: This contains the predicate on which the choice is based.

[3] Destination Address: This field specifies the target instructions to be controlled

by the packet(s) generated from this instruction execution.

[1] For each operand, there is.a value field (v;) associated with another gate
controlling field (g;). The function of the gate field is the same as degcribed
before. N ]\ ' )

There is only one token type produced by the previous choice instructions: a
control token. Figure 5.6 shows the structure of a control token. The leftmdst. field 1s
used ,as usual, to identify the token type; the next field is used ‘to storé the Boolean
results (true/false), and the right-most field is used to specify the target instructions

which are going to receive this data token as a controller over its operand gates.

Finallyz Figure 5.6 shows the two types of Packets the machine has: Operation
Packets and Control Packets. Operation Packets are sent to the Processing Stations
Unit , while the Control Packets are sent to the Decision Unit. Both Packets are sent
through the Resource Allocation, Unit. The Operation Packet consists of Lhé
instruction to be executed -associated with its real operands; it has one extra field used

<

as token identification.
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i

\’»I .
op| I D D
Cpi I _ ' ;

¢ {Boolean value| Dest.Addres.

Oper .tion and Cc:.t:rol Packets
Figure 5.6

S~
S .
The Comtrol Packet simply contains a choice instruction (since it has its operands

~

within the instruction).

5.4. Query Execution Example

[}

Figure 5.7 shows how to translate a query net into executable machine N

instructions to be loaded int6 the machine’s Instruction Memory. Also, three different
<

data tokens are shown ready to flow through the net. Figure 5.8 shows a logical picture
of th‘e‘intcrconnections within the Procegsor Stations Ulnit; it shows the rings of Join
Processing Stations and » the two-way ubidirectional | bus of a Project Stati‘c;n.
Processors are assigned to every station by the Reso\lrée Allocation Unit, which

determinés the number of processors in each station.

The places in that figure represent buffering subsets. This example, for the sake of

. simplicity, does not show any choice or condition tranmsitions. The figure is largely

LT

self-explanatory; some points are presented below for clarification: L
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[1] For a Select instruction: One select processor or more 13 assigned to this
4

instruction; this is decided by the Resource All cation Unit. ~

[2] For a Join instruction: The parallel nested Iodp Join procedure, described in

Chapter 3, rélies heavily on the broadcasting facility; it works as follows:

.v’)

“(a] The Resource Allocation Unit determines the optimal number of 'Join processors
to participate in the execution.

[b] The Decomposer hashes each received oper:;tion packet, according to the'addrcss
of the inner relation page, to a certain processor within the organization. Tﬁlen

"the concerned Join processor issues a READ command to enter both operands in

BB B

Decompoae;}
‘P4, F5 |

Figure 5.9: Project processing example
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)

its internal buffers. At this time, every other station's Join processor broadcast

its outer relation page to other stations’ processors following the well-defined

matrix of the Join. (Notice that the Join is completed when all pages of the outer

[y

.

relation are seen by every page of the inner relation).

[c] The output tuples from any stations’ -processor are moved directly to the
Composer, which collects them and produces result. data tokens for the

~_ Distribution Network. (Note the output pages are delivered, as soon as they are

ready, out of the station).

[3] For Project Processing Station: The Decomposer reduces the source relation to a

Y

"vertical” subrelation by-discarding all domains that are pot needed. Since

discarding attributes .may introduce duplicate tuples, the duplicates must be
removed in order to produce a pAroper relation. Each - P; initially deletes the
inter-page duplic;tes by copying the contents of its' ALAP into its input buffer,

~

-

turn: broadgasts its page through the upper (l‘mi-directional bus and exits (to
output it,so contents to the Cpmposer thro?gh the other 19wer uni-di;-ectioua] bus).
Hf processor ‘P!‘ receives pagee i, thég > B com.pares the two pages and
eliminates any duplicates foﬁn'd from li{,s paée(j). Note that P; will not see page i
if 1>] (becaus’e of the undirectional Bus). Consequently it is gu:frantegd that only
one copy of each.tuple will rem_z:in in the relation (t'h‘e copy will reside in the
lowest numbered page of all the bages that had a copy of it). To see more closely
how the projec‘t.ion processihg_station wdrk; in ltfhe context of a céuiplete query
ﬁct, assume pilat five pages p;oducézd by the selec.t,ion“ S1 (in Figure 5.9), and only
three projection processors :;re constituting the project processing station Prl.
Therefore, two phases will be required to execute the project at this elementary

transaction. The sequence of actions is as follows:

. 4 . ‘ .
-then matches a tuple at a time and deletes duplicates. Then each processor, in

Fd
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Query net of processing Stations

FPigure 5.8
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]

(b)

(d]

The Resource Allocation Unit assigns the three projccpion processors for the
Project inst,ruc;‘ion,r and the Decomposer assigns ideniification numbers to those
processors for the duration of the instruction execution (to be used in the
hashing). B

A message exchange for distr.ibu.tin'g the outer relation pages is done by the
Decomposer which receives those pages and hashes each page to a.spcciﬁc
processor in the station. Every page i is read by the Decomposer ,and a processor
P,~.'.Sincc, in this example, the number of pages is greater than the number of
participating processors by 2, only the Decomposer will receive the additional
pages aﬁd will store them in its temporary storage. \"I\‘hese pages will be
distributed among processors in subsequent phases of the execution of this project
operation.

Following this, the broadcasting step starts, with the Decomposer broadcasting

- ‘
pages 4 and 3. Each P; will read the pages,-.one at a time, and search for

duplicates on its own page and eliminate them. Following the projection
algorithm, P, broadcasts its page followed by °; and P,. Now P2's page is purged
of any duplica{ves and can be used in the subsequent operation (the oﬁtput to the
user in our example). P, executes the same procedure after eliminating duplicates
between its page and page 2. F'inally, Py is the last processor in the group to
broadcast its page. P, then produces its page as output,‘ after eliminating
duplicates between it and page 1. Both P, and P, will stay in the organiz'ation for

the execution of the second phase of the projection. The steps in this phase are

the same as in the previous phase_and hence need no explanation.

The Composer stores alf’ the output pages produced by -any P; in the station."

After finishing all processing; it checks with the next processing station as to

whether it has received the correct number of pages, and makes back up copies of

“!
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the missing pages if necessary.

It should be noted that the execution of this processing station is proceeding

independently and concurrently with that of other net processing stations.



CHAPTER 6

Conclusion

£ .
6.1. Contribution and Consequences of the Research

e,

The work reported in this thesis contributes both to the understanding of query
processing strategies .in rﬁulti-proccssing environments and to the development of
database machines. The dcsién of the proposed architecture six'owed that some form of
dat,a-fiow scheduling can indeed iﬁprove performance. However, the pure data-flow
scheduling in a pure data-flow architecture proved to be inapplicable to database

TN
environments.

One of the prime objeetives of this research was to design an architecture that
supports equally efficient ‘execution of all types of database queries. The development
of the architecture in the thesis was carried out in a stgpwise, systematic fashion to
demonstrate that the majority of the architectural features were introduced with the
objective of providing such equally efficient execution support. It should be obvious
. from the thesis that no unnecessarily complex mechanisms were introduced Just for the

sake of innovation.

The underlying rationale behind introducing the mixed-flow notion is that it is
observed that in the pure data-flow query processing strategy, queues of partially
completed computations are relied upon to keep the machine busy (such as the
uncontributing 900 pages .in the example of section 4.4.1).

If dhl)' keeping machine execution units busy duriné query execution will keep its
execution time at the minimum, time would be Better spent realizing this op-tion.

Unfortunately, there are reasons to believe that this would not lead to minimum

131
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execution time (especially in multi-query cn\"ironments): (1)The need for immediately
executing an instrucﬁon whose result is critical for the execution of other instructions
will always exist. The selection of this instruction among other ready instructions is
prc;babilistic, since non-deterministic selection schemes are always employed. (2) The

unregulated order of instruction execution will create queues of partially completed

computations which absorb some of the resources required for parallelism. , \\/

Regulating the flow beneficially to overcome the previous problems can be
achicved by introducing mechanisms in the. pure data-flow query processing strategy.
aPlanning the processing flow in advance and adaptively re-allocating resources around

the processor network are two mechanisms introduced in this thesis.

The transformation to a maximum-flow/minimum cut allofved us to 'plan

. contributing flows at different net processors and realize the optimal degrec of network
pipelining. The adaptive re-allocation of resources provided a secure future net
operation (as close as possible to the planned ﬂow)‘ in addition to resolving 'old’

network bottlenecks. (Several other regulations to the flow can be found in a previous

work [BoD&3].)

As well as .preserving parallelism, these regulators are all feasible from the
architecture point of view. For example, according to the classiﬁcatvion of mixed-Flow "
architectures [Haz82], it is possible to categorize tﬂhe proposed architecture ass
[a] Semi-aut,omaticallyASynchronize.d:

Within its local processing it performs in ‘a fully automatic synchronized manner,”
but there are instants in whic.h operands are available within instructions but are not
allowed to fire. This may happe‘n due to one of two situations: cither the assigned
amount of work load has been exhausted by this instruction ,or a gate of some operand

is imposing its concurrency control (permission) on that instruction.
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(b]

Run-time ordering for execution:

The total execution order is determined by the "Resource Allocation Unit”". Other

external factors such as the concurrency control mechanisms are imposed by the

control Network to define a secure total ordering.

[c]

Allocation of Resources:
Both buffer and processor allocation are being changed during run time.

The proposed architecture exhibits several desirable features. The following

summarizes which of the desired features (those presented in Chapter 3) have been

achieved in the new architecture.

[a)

[b]

[d]

Clearly, the machine has employed the primitive processing stations proposed in

Chapter 3.

-The broadcasting capabilities of the crossbar switch in DIRECT are still retained

although a different local and more easily expansible, implementation for the
interconnection device has been realized.

The machine, with its logical instruction/processor and page/buffer. mappings,

provides a great support for MIMD activity environments, without making any

- payt likely to become a bottleneck.

The mixed-flow query processing strategy described in Chapter 4, is being
employed by the machine, and hence an exact mapping of the environment’s
current demand onto the hardware structure of the machine has been reali;ed. :
This avoids the wasted "fragments” of resources which are likely to be unused in

such multi-query environments.

The act of updating the computation space net, by moving processing power
between different net parts, clearly satisfies the self-adjusting requirement sought

from the design. This achieves the goal of improving the average response time in
. .



6.1 Contribution and> Consequences of the Research ) 134

[f]

[e]

(]

)

[k]

a dynamically changing environment.

The back-end controller of any MIMD ‘machine such as DIRECT is its only
controlling processor; thus when a number of queries are active, the controller is a
bottleneck [BoD81]. In the proposed architecture this cannot happen because the

control of each instruction is overseen by a different processing station. Also the

. control within compound processing stations (such as Join and Project) is

overseen by different-Decomposers and Composers.

The Computation Space net model has been implemented ‘as Instructions in ;\the
instruction memory and parts of it are swapped in and out; this swapping z_alléws
resources (processors and memories) to be partitioned to form substructures
which are added and Ide’lctcd within the inventory of machine power, in response
to environment demand.

The functions of both ‘Lhe Decision Unit and the Control Uﬁit in imposing
concurrency contlrol' mechan;{sms (which exist already in the Coxﬁput@tion Space
net) have eliminated the need for any special concurrency control mechanism on

the data.

The incorporation of queues within the body of the instructions: allows forzthe
rez;lization of the "Dynamic Concurrency” concept that was claimed as one of the
mixed-flow query processing advantages.'

The architecture depends only on existing technology in its design, and shows a
great simplicity by its replicaﬁon of a few simple components.

The (;rChitvecture can be extended in many different ways to incorporate -a

hierarchy of memories and form multi-ring structures, as will be shown in the

next section.
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) Finally; the data-driven nature ;)f the machine allows the machine units to
communicate (asynchtonously) by transmitting fixed size information packets.
The machine is organized such that these units can tolerate delays in packet
transmission without compromising cffective utilization of the hardware (ﬁotice

.that DIRECT cannot). This means all units of ‘the machine can work
simultancously: the Page Management Unit pre-delivers the most active data
pages into the caches while sgveral operation ‘processing stations are working on
their dueucs. Mecanwhile, the Process Scheduling Unit calculates the optimal
strategy for managing the current Computation net and at the same time, the

query translator splits queries into their elementary transactions and builds their

query nets.

6.2. Future work

Future work is this area is likely to focus on two main extensions to the proposed

design, namely, a multi-ring arcl;itecture extension and a multi-memory expert
database .machine extension. A
o .

The major improvement sought fri)m the multi-ring extension is to improve the
performance of the machine in handling very large data files. In this extension several
copies of the basic design, each a'dedicat‘ed ring for performing a specific type of
relational database primitive, are intersected in both the Query transiator and the
switch (see .ﬁgur‘e 5.2). The machine's basic execution cycle can be adapted using
‘instructions’ iteration number, operation code, and_ query identifier to distribute both
instructions and tokens (data and control) from different ;;arts of thé computation
across Lbhese parallel rings. The Page ﬁlanagement unit with its buﬁ;éring subsets is

likely to be a common component in order to allow different ready instructions from

different machine rings to access their operands.
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Beyond the homogenity of traffic within each ring and the feasibility of exploring
a VLSI design through a machine organization that consists of identical complex .
functional units connected together in a regular structure with little off-chip

communications, the proposed extension is an excellent sojution for improving the

performance of very large databases on the proposed machine ( see Section 3.5.2.1).

The extcnsilon of having a multi-level in;truction memory such that the current
instruction memory acts as a cache for a larger back)—end memory, might provide a
chance for having an expert database machine. In essence, the back-end memory ac.ts
as a sort of a knowledge base memory, in which the machine stores query nets of
diﬂ'orc‘nt systems’ activities (storing the compiled queries) and calls them when needed.

This saves the time taken in trans,ation and optimization of query nets.
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Database Schcma:;‘! .
Passenger(P-number, n‘ame, address, Phone)
Booked-on(Site cpde, flight-no, ok-status, P-number)
Flight(flight-no, flight-capacity, no of available places)
Status-Res(Serial no of Reservation, ok-status)
Res-flight(Serial no of Reservation, flight-no)
Reservation(Serial no of RcserVaLion, P-number)
Departv.ure(dat.e, flight-no, Desot) |
We assume that those relations are decomposed as:
R11(P-number, name, address, phone)
e RQI(Sitc-code,‘ﬂightv-no, P-number)
| R31(Site-code, flight-no, ok-status)
R4l(ﬁight-no,'ﬂight-capacity) |
R»!Q(.ﬂight-no, no of available placés)
R51(Serial no of Reserv, ok-statuﬁ)
R61(Serial no of Reserv, flight-no)
K R;TI(Seriavl no of Reservation, P-number) .
R81(d‘atc, flight-no, Dest)
The following ia an example of the Tickcﬁ\Okay activity's elementary transac-
tions:
t, Find the pcrgéﬁ;s\nqme who had reserved this Ticket (R71,R11).
tQHHe is the one at the wicket.

N .
. . 1

\n
\
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He is not the one at the wicket.

-~

3

Find the Ok-status of this reservation (R51).

-~
-

t; ‘This date in nul.’

‘ts This date is not equal to nul.

t; Find a site-code on that flight-no for th; passenger (R61, R31) ; Increase the
current capacity (R61,R41). tg Assign this site-no to the passenger (R?l,RQ“l); Ch;lnge
the ok- status (R51, R31); Destroy entities concerning this reservation (R51, R61,

R71).
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A Proof For Net Maximum-flow Theorem
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[Th.1]

If there exists an s-t flow augmenting path L, with respect to a legal flow function
f on a net Q, then there exists allegal flow function.,g, on Q such that V(g) >
V(). |
Definition of variables
Ps Page size.
St, (;r St(t;) Selectivity factor of transition ¢;
~
T Set of net transitions.
P Set of net places.
V. Amount of aug:icntation to current flow at.place P;
s,t Query net source and sink transition(s).

mp,  Flow potential value at place P,

n  Path length
|
PF(P;) Popping factor at place P; o . \

i

Let L=Pt, Pot, ........ ta-1Pnt, (n 2 2) be an s-t flow augmenting path \\tvith

\

’

respect to a legal flow function f on a net Q. It flows from the definitions that P, =\s\,
. N

t, =

t and ¢, is useful from P; to P,, |, for each i=1,2,.....n-1. More explicitly: \ .

f(p;)<C(P)=C(P,)- f(P;)>0 (mn
for each P;eL h

We further assume that

\
N

Ps*St;s1 for all teT : . (2)

Now construct the function g as follows:

" Define for each P, € L a non-zero integer called a popping factor (PF) which

represents the number of pages that are,required to contribute in achieving a



(2]

[3]

[4]

(5]

(6]
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progress of one page (a progress is defined to be the number of pages at In(t)).

These popping factors could be calculated by the equations:
PF(In(t))=1

Where t is the net sink transition

PF(Pi+1)
Fs*St(In(Fi+1))) )

PF(P;)= Int(

Now define for each P, € L, a flow potential value, mp,, given by the equation:

mp,= lnt(—(’%}ﬁ.fi)ﬂl) ' (4)

!

Identify a place P, € L with minimum non-zero flow potential over path L places

to be the bottleneck of that path.
mp, *fi!‘f;g( mp,) (5)

For all places P; ha.\"ingj > r define

. g(Pr+|')=f(Pr+i)+vr+i . i=1,2,....,n-r '
Where
Vi Int(V, 4, *St,yioy *Pa) | “e(8)
V.-C(P)=f(P,) (D
and
Va-mp, - (8)

For all places P; having j < r define

o 9o(P,_ )2 f(P._ )+ V,_, i=1,2,.....r-1
Where ' -
vr—i+1
vr—i"ln'( Jtr_i‘PJ ) (9)

For place P,
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9(P)=1(P,)+V, . (10)

[7] For other places P; € L
o(P)=1(P) | O ay

It must now be shown that g is a legal flow function on Q and that V(g) > V(f).

[Notice that g is defined on all places of Q).

To show that g is a legal flow function on Q, we must simply prove that g satisfies

the four conditions of definition 4.8. Since f is a legal flow on Q, 1t follows that «

0= f(P,)s C(P,) forall PieP (12)

Notice from (2) & (3) that

PF(P))=PF(P,)=>........ =PF(In(t))=1 .- (13)

Also from (1),(4) and (13)
mp; >0 for all PelL (14)
from (2),(3),(6),(7),(9) and (13)
V,2V,2....2V_ >0 o (15)
Combining (6),(9) and (15), we have
g(P)>f(P)) "~ for all PP (16)
Combining (11),(12) and (16), we have
0=g(P;) for all P,eP (17)
‘Now to prove that g(P;) <= C(P,) for all P,e P, we havé’ to look at three cases:

(a) For the bottleneck P, (b) For places P; having j>r (¢) For places P; having j<r

(a) For the bottleneck

2

Since f is a legal flow then f(P,) < C(P,), hence all what we have to prove is that.

V.= C(P)-(P,)

-



(b)

i.e;

(c)

From (7), we have V., = C(P,) - F(P,) i.c, V, = c(P,) - f(‘P,)

For j>i'
We need to prove that

vr-!-l'S C(Pr+i)_/(Pr+i) i=1,2, -----

From (4)

- C(Pr+i}—f(Pr+1)
M= I e hr )

-

Combining (13) and (18) we get

PF(Pr‘O-i)*mpr-#is C(Pr.-ﬁi)_f(Pr-O-i)

From (5) ’
. mprsmpr-f-i
mpr+i2vn
From (2) and (6)
vr+isvrv /

From (3) and (13),we have

V,,_,-=V,,*PF(P,_,') &' vr+i=vn*PF(Pr+i)

(22)

Combining (20) and (22) ,we have
Vosismp [ *PF(P,,;)
Combining (19) and (23), we have
Vrh‘sq Pr+.‘)"f(Pr+.')
For j<r

We need to prove

148

(18)

(20)

(21)

(23)
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V,_i=Clp - )= (P, -)) i=1,2,.....0r-1
- {rom (4), we have
) d
- C(Pr—1)—f(Pr—3) .
| = I - ) (21)
- From (1), (5), we get | 'l{
PF(P,._))*V < mp,_*PF(p,_;) : (25)
From (22) and (25), we have
V..jsmp,_;*PF(P._;) - - (26)

Now to get non-recursive equation for V,_. | consider the following approxima-

tion

vr—i=1nt( R E : : )
(Str—a*Str—4+ 1%, *str—1*(Ps)")

(27)

Similarly, a non-recursive equation for PF(P,_-,-.) could be written as

PF(P, )= Int(————1 -)
- Str=g*Str—i+ 1% *1¥(Ps)t

From (24) and (28), we get

L mp, = Int(C(P,_)= f(P,_)) *(5t, _,

Using (3) and (29), we get

mp, - *PF(P,_)=Int((C(P,_ )~ J(P,_}))
HSt ittt

1 ‘
Str—=4§*Str—i+1*...*1*(Ps)*:

mp,- *PF(P,_ )= Int(C(P,- )= /(P,_)) (30)

t(Pa)r-O-i))*
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From (26) and (30), we get

Int(C(Pr—i)—f(Pr—i))Zv

r—=i

then

C(Pr—i)—f(P ')Zvr—i

The three previous cases complete the proof that
g(P;)s C(P;) forall PeL ' (31)

Combining (15),(16) and (31), we get 4
0sg(P,)=(C(P)) for all P,
‘

This completes the first condition of Definition 4.8. Obviously Condition (2) is

still valid, since the new flow. g has no effect on the capacities.

We must now prove that g satisfies condition (3) and (4) of definition 4.8. This is
accomplished by considering any transition ¢; € T-{t} , since f is a legal flow function

" on Q,i‘t follows that equation (3) & (4) are valid:

St;*Ps*{(P,)- [(P;)s0 o (39)
for Peln(t;)
& PjeOut(t)

now if ¢; € L, then no augmentation occurs to any of the input-output places.

Combining (11),(32), we get

St; *Ps*g(P))= g(P;)=0
for P,eln(t;)
& PieOut(t))
, If however, ¢; € L, then since L is acyclic and ¢; = t, there must be cxact!yiitwo

distinct places incident upon ¢; which are contained in L, namely P;_, and P; . All

other places incident upon t; are therefore € L.
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Now we have to consider two cases (A) t; precedes P, (the bottlencck). (B) ¢,

comes after P,
(a) Case (A)
Combining (68), (32) | /
St "Patg(Pryy)= g(Pryo)=

Sfrﬂ e S(I(Pr+l)+v(r+l)—

f(Py+2)+vr+1 ‘Str-i-l *P*’)

Q
‘ =Sl,+1'PJ’I(P,.H)—/'(P,+2) (33)
Combining (32), (33), we get
Stesy *Ps*g(P, 4 )= g(P,42)S0
In general
St;*Ps*g(P;)- g(P;)S0  for i>r - (34)
(b) Case (B)
Combining (9), (32) we get
Slr—-l *P"*g(Pr—l)_g(Pr)=
St,_ *Ps*(f(P )+—-—L—-—)-I(P )=V )
r—1 r—1 Str—l"Pa r r
=St,_,*Ps*f(P,_,)~ f(P,) (35)
Combining (32), (35)
Str—l *P" ‘g(Pr—l)—g('Pr)SO
§t;*Ps*g(P)=g(P;))SO  fori<r | (36)

Combining (34), (36) shows that the function g satisfies condition [3] and [4].

" This completes the proof that the function g is a legal flow function.

Now to show that V(g) > V(f), we first notice that there is exactlyvon_e place

incident upon t ( the sink) which is)contained in the path L, namely P,



Vif)I= X )f(P.')

Pan(t

Combining V(f) with (8),(9),-we obtain

Vig)= X o(P;
P eln(t)

= X f(P)+V
P.ein(t)

V(g)=V(f)+V
Since V > 0 then'V(g) > V(f) proved.

We now show apother proof for parts (b),(c) i.n page .
(1) Part(c)

‘Fori<r

Toprove that

V.= C(P )= (P, i=1,2,.....,r-1
From (3), (13), we get

vr—l':vu*PF(Pr—i)

from (4»)
e,
- PFE(P,_;)*mp,_;s C(Pr—."j"f(Pr—.‘)
From (5)

- mpr—iz mp, & mpr—izvn

PF(P,_;)*mp,_ 2V, _,

et

Q9 'C(Pr—i)_f(Pr—ijzvr—i Proved
\q . .
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Fori>r
From (3) and (13), we have
V.=V *PF(P,)

’ vr+invn‘PF(Pr'+i)
Where V= mp_and PF(P,)= 1

From (4)

C(Pr+l')_f(Pr+i))
PF(Pr+s)

mp, 4 ;= Iﬂl(

Accordmg to the definition of Int function, we have
"

PF(Pr+|') ‘mpr-f‘is C(PrW)_I(Pr-f-i)
From (5)

mpr+i2mpr & mpr-fizvn

From (44) and (42), we have

PF(P_r-f'i)‘mpr-l'inr«fl
From (45),(43), we have

( r+|) f( r+1) r'l.-i ‘iproved‘
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(42)

(43)

(44)

Note In case of equzmon (32) we have incorporated ‘the factor Ps (Page size) to

combine both equations (3) & (4) in ane proof. It is obviously that the proof (without

Ps) is still valid for each case individually.



