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Abstract 
An automatic brain tumor segmentation method is presented in this paper. This method has 3 
stages. In the first stage, a so-called Normalized Gaussian Mixture Model (NGMM) is proposed 
and used to model the brain tissues. In the second stage, a Gaussian Bayesian Classifier based on 
the NGMM and the prior probabilities of different brain tissues is exploited to acquire a so-called 
Gaussian Bayesian Brain Map (GBBM) from the test 3D brain MR images. GBBM is further 
processed to highlight the brain tumor and initialize a so-called Fluid Vector Flow (FVF) 
algorithm. In the last stage, FVF is used to segment the brain tumor. The major contribution of 
this paper is two-fold. First, we present a NGMM to represent healthy brains. This model can be 
easily modified for modeling other tasks in various application domains. Second, we extend our 
2D FVF algorithm to 3D space and use it for automatic brain tumor segmentation. This method 
has been validated on a publicly available dataset containing 10 T1 Magnetic Resonance (MR) 
images of 3 types of brain tumor. The results demonstrate that this technique can automatically 
generate 3D segmentation images of multiple types of brain tumor solely from T1 MRIs.  

I. Introduction 
Brain tumor segmentation from Magnetic Resonance Imaging (MRI) is an important task for 
neurosurgeons, oncologists and radiologists to measure the tumor responses to treatment [1]. It 
can indicate drug efficacy in clinical trials of new drugs, and also be used for planning of 
radiation therapy. Manual segmentation is time-consuming and frustrating. Therefore, automatic 
brain tumor segmentation methods have been highly desirable in recent decades [2]. However, 
automatic brain tumor segmentation is a very challenging job due to many factors [2]. First, 
different types of brain tumor have high diversity in sizes, shapes, locations and intensities. 
Second, similarities between brain tumors and normal tissues are often observed. Last but not the 
least, most brain tumor databases are not publicly available due to political and privacy reasons. 
It is very difficult to compare and improve brain tumor segmentation techniques based on a same 
benchmark. 
 
Many brain tumor segmentation methods have been proposed since the last decade. They can be 
classified into 2 major categories: training based methods and non-training based methods. Note 
that the distinction between training based and non-training based methods are sometimes blurry. 
In the literature, those methods can also be classified with other criteria, such as region-based or 
voxel-based, etc. See Appendix for a comparison of the related methods. 
 
Training based methods often use some brain tumor images to train a segmentation model and 
use some other images to test the model. Zhu et al [3] formulated the brain tumor segmentation 
as an optimization process that seeks the boundary points to minimize an energy functional based 
on snakes model. A modified Hopfield Neural Network (HNN) was constructed and trained to 
solve this optimization problem. The neural network can ensure convergence of the energy 
minimization by strictly reducing the energy in each iteration. A Knowledge Based (KB) 
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clustering method [4] with multi-spectral analysis (T1, T2, and PD) was proposed and trained to 
segment Glioblastoma Multiforme (GBM) [5], an almost non-treatable brain tumor with nearly 
zero five-year recurrence-free survival rate [6]. The KB system took advantage of its coarse-to-
fine operation to apply incremental refinement with easily identifiable brain tissues that had 
already been located and labelled. Vinitski et al [7] proposed a brain tumor segmentation 
algorithm based on a 4D (T1, T1c, T2, and PD) feature map. The k-nearest neighbour (KNN) 
algorithm was then modified by discarding a few image points according to some heuristic rules 
to speed up segmentation. It also demonstrated that utilizing multiple MRI protocols often 
provide better segmentation. Warfield et al. [8] presented an adaptive, template moderated 
(ATM), spatially varying statistical classification (SVC) method brain tumor segmentation. Kaus 
et al. [9] extended this idea and proposed a classification algorithm to segment brain MRIs into 
five different tissue classes (background, skin, brain, ventricles, and tumor). The algorithm had 
been validated in a dataset of 20 patients with low-grade gliomas and meningiomas. Prastawa et 
al [10, 11] proposed a brain tumor segmentation framework based on Expectation Maximization 
(EM) algorithm and outlier detection. EM algorithm was used to estimate a mixture Gaussian 
model for the global intensity distribution, while tumors were considered as outliers of the 
Gaussian model. Zhang et al [12] proposed a brain tumor segmentation method based on 
unsupervised one-class support vector machine (SVM) algorithm, which had the ability of 
learning the nonlinear brain tumor distribution without any prior knowledge. Morphological 
filters such as dilation and erosion operations were applied as the post-processing technique to 
merge tumor regions and remove isolated and small non-tumor parts. Liu et al [13] collected and 
learned information about different aspects of the tumor and its neighbourhood areas from 
multiple MRI protocols (FLAIR, T1, and T1 with contrast enhancement). A fuzzy logic 
framework was then used for tumor segmentation. Cobzas et al [2] proposed a variational brain 
tumor segmentation algorithm using a high dimensional feature set trained from MRI data and 
registered atlases. The paper focused on how to use a conditional model to discriminate between 
normal tissues and brain tumors. Wang et al [14] transformed the 3D brain tumor MRIs into 2D 
with a “spiral scanning” technique. Dynamic programming was used to delineate an optimal 
outline of the brain tumor in the transformed 2D image. The optimal outline was transformed 
back into 3D space to determine the volume of the tumor. Dube et al [15] integrated contextual 
filter responses into the multilevel segmentation by weighted aggregation (SWA) algorithm to 
segment GBM. The SWA algorithm used voxel intensities in a neighbourhood to compute an 
affinity between the respective voxels. The affinity is recursively calculated for every voxel pair 
in the brain MRIs to generate a series of “cuts” (segments) containing voxels with similar 
intensities. A contextual filter response that computed by texture filter responses based on the 
gray level co-occurrence matrix (GLCM) method was then integrated to label the cuts as tumor 
or non-tumor. Corso et al [16] extended [15] and integrated a Bayesian formulation into the 
SWA algorithm to segment GBM. Lee et al presented conditional random fields (CRF) [17] and 
extended to pseudo-conditional random fields (PCRF) [18] for brain tumor segmentation in 2D. 
CRF and PCRF incorporated the support vector machine method into discriminative random 
fields, a discriminative alternative to the traditional Markov random fields model to achieve 
more tractable computation with less restrictive assumptions. Wels et al [19] presented a top-
down segmentation algorithm was proposed based on a Markov random field (MRF) and graph 
cuts (GC). The probabilistic boosting trees (PBT) were used for supervised learning of the model. 
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Non-training based methods, on the other hand, do not have training or learning process. One of 
the first non-training based methods of 3D brain tumor segmentation was presented by Phillips et 
al [20] in 1995. Fuzzy C-means (FCM) clustering algorithm was used to segment brain tumor 
from normal brain tissues. FCM is similar to the k-means algorithm for unsupervised clustering 
but allows labels to be “fuzzy", which means a pixel can be partly in one class and partly in 
others. Clustering is based on the concept of separated distributions. Karayiannis et al [21] 
proposed a fuzzy algorithm for learning vector quantization (FALVQ) to segment the 
meningioma of an individual. Feature vectors were formed by the values of different relaxation 
parameters. Brain tumor segmentation was formulated as an unsupervised vector quantization 
process, which does not rely on a priori information. Ho et al [22] incorporated region 
competition into level-set algorithm for brain tumor segmentation. The algorithm started with an 
intensity based fuzzy logic classification of voxels into tumor and background to create a tumor 
probability map. This map was then used to initialize the level-set snake. The snake model was 
driven by the image forces balanced with global and local constraints to segment a brain tumor 
until convergence is achieved. Ray et al [23] observed that normal brain structures are symmetric, 
which is often disturbed by brain tumors. This property was utilized to design a so-called brain 
tumor locator score (BTLS) for tumor segmentation.  
 
In this paper, an automatic and operator-independent brain tumor segmentation method is 
presented and validated on a publicly available brain tumor segmentation repository; the Surgical 
Planning Laboratory (SPL) Brain Tumors Image Database [8, 9, 24].This database contains T1 
MR images of 10 patients. 3D segmentation ground-truth is also available. This database was 
released in December 2007 and makes possible to compare and improve brain tumor 
segmentation techniques on the same benchmark. 
 
In our method, brain MR images are pre-processed with software MIPAV [25, 26]. After this 
pre-processing procedure, there are 3 stages. In the 1st stage, a so-called Normalized Gaussian 
Mixture Model (NGMM) is proposed and estimated by Expectation-Maximization (EM) based 
on the ICBM452 brain atlas [27]. NGMM is then used to model the healthy or normal brain 
tissues. In the 2nd stage, the ICBM Tissue Probabilistic Atlases [28] are utilized to obtain the 
prior probabilities of different brain tissues. After that, a Gaussian Bayesian Classifier based on 
the NGMM and the prior probabilities of different brain tissues is exploited to acquire a so-called 
Gaussian Bayesian Brain Map (GBBM) from the test 3D brain MR images. GBBM is further 
processed to highlight the brain tumor and initialize a so-called Fluid Vector Flow (FVF) 
algorithm. In the last stage, FVF is used to segment the brain tumor. 
 
There are 2 major contributions in this paper. First, we present a NGMM to represent healthy or 
normal brain. This model can be easily modified for modeling other tasks in various application 
domains. Second, we extend our 2D FVF algorithm [29] to 3D space and use it for automatic 
brain tumor segmentation. One drawback of our previous 2D FVF algorithm was that an initial 
contour must be given to start the vector flow evolution. In this paper, we take advantage of the 
GBBM to provide an initial position of a brain tumor to the 3D FVF algorithm to make this 
process fully automatic.  
 
The rest of this paper is organized as follows. In Section II, the materials including the test 
dataset and brain atlases are briefly described. Section III introduces the proposed brain tumor 
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segmentation method. Experimental results are reported in Section IV, before the work is 
concluded in Section V. 

II. Materials 

II.1. Test Dataset 
SPL Brain Tumors Image Dataset [8, 9, 24] is a freely available brain tumor segmentation 
repository. It contains brain MR images (SPGR T1 POST GAD) of 10 patients (3 meningiomas, 
3 low grade gliomas and 4 astrocytomas). Segmentation ground-truth, which was defined as the 
area of those brain tumor voxels in which at least three of four expert raters agreed regarding 
their identification [9], is also available. The image format is no-header, unsigned short 16-bit 
(byte order: MSB LSB). The resolution is 256x256x124, with pixel size of 0.9375 x 0.9375 mm, 
slice thickness of 1.5 mm, slice gap of 0.0 mm, and the acquisition order of LR. 

II.2. Brain atlases 
Two groups of brain atlases, the Talairach–Tournoux (TT) brain atlas [30, 31] and the ICBM 
atlases [27, 28] are often used to collect healthy or normal brain information. 
 
The print TT atlas was constructed from a single brain specimen sectioned and photographed 
sagittally. Coronal and axial sections were subsequently interpolated manually. The Cerefy 
database [32] contains an extended and enhanced electronic version of the TT brain atlas. It can 
read/write DICOM 3 format. It is free Java software including the atlas. However, the atlas itself 
is not freely accessible.  

In this paper, we use two ICBM atlases, the ICBM452 atlas [27] and the ICBM Tissue 
Probabilistic Atlases [28], which are freely accessible in the public domain. 

The ICBM452 atlas [27] is a freely available brain atlas. It is an average of intensities and spatial 
positioning of T1-weighted MR images of normal adult brains. This atlas is not based on any 
single subject but is constructed from the average position, orientation and scale from a number 
of individual brains. The ICBM452 atlas is used to estimate a Normalized Gaussian Mixture 
Model (NGMM) by the Expectation-Maximization (EM) algorithm in this paper. 

The ICBM Tissue Probabilistic Atlases [28] classified the ICBM452 atlas into gray matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF). The GM, WM, and CSF maps were separated 
into their separate components.  Each component was then averaged in atlas space across the 
subjects to create the probability fields for each tissue type. These fields represent the likelihood 
of finding GM, WM, or CSF at a specified position for a subject that has been registered to the 
atlas space. The ICBM Tissue Probabilistic Atlases are used to obtain the prior probabilities of 
GM, WM, and CSF in this paper. 
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III. Proposed Method 

III.1. Pre-processing 
MR images must be pre-processed for further processing and analysis. The Neuroimaging 
Informatics Tools and Resources Clearinghouse (NITRC) [33] provides the links to a variety of 
brain MR image processing software. We choose to use MIPAV [25, 26] after carefully 
investigation and comparison. MIPAV (Medical Image Processing, Analysis, and Visualization) 
is a Java application mainly for processing and analysis of brain MR images.  It can run on Java-
enabled systems such as Windows, UNIX, or Macintosh OS X. We also notice some other 
powerful tools such as 3D Slicer [34], FSL [35], STAPLE [36], BioImage Suite [37], ITK-SNAP 
[38], and software suites provided by Asclepios [39] at INRIA, LONI [40], etc. They focus on 
different aspects of 3D neuro-imaging and demonstrate excellence in different applications. We 
choose MIPAV because it suits our application, the dataset, and computational resources.  
 
The pre-processing stage has two major steps: skull stripping and registration. Other pre-
processing steps, such as noise reduction and inter-scan intensity standardization are described in 
details in [2] and [19]. 
 
SPL Brain Tumors Image Dataset [8, 9] contains the MR scans of patients’ heads and structures 
nearby. To get the Volume Of Interest (VOI), i.e., the brain, we must strip the skull and other 
non-brain structures and tissues. We use MIPAV to extract brain from MR images. Being given 
the input MR images, MIPAV can automatically extract brains without user intervention. Fig 1 
shows the original MR image, the extracted brain, and the 3D view of the extracted brain of 
patient #1 in the dataset. 
 

   
Fig 1. (Left) Original image (Middle) extracted brain (Right) 3D view of the extracted brain 
 
The extracted brain is then registered [41] to the ICBM atlas space with MIPAV. The basic idea 
of registration is to find a matrix T that transform the extracted brain image to the atlas so that 
the cost function, which represents the quality of alignment between two images, is minimized. 
Fig 2 shows the ICBM452 atlas, the registered brain and the 3D view of the registered brain of 
patient #1. 
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Fig 2. (Left) ICBM452 atlas (Middle) registered brain (Right) 3D view of the registered brain 

III.2. Normalized Gaussian Mixture Model and Gaussian Bayesian Brain Map 
In this section, a so-called Normalized Gaussian Mixture Model (NGMM) is proposed. Gaussian 
Mixture Model (GMM) had been utilized to represent the distribution of brain tissues in the 
literature [10, 11], and Expectation Maximization (EM) [42, 43, 44] algorithm was often used to 
learn the mixture model from a brain atlas or template. The basic idea of GMM is to use multiple 
Gaussian distributions to represent multiple brain tissues such as gray matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF). To utilize GMM, the Gaussian distributions of the brain 
atlas and the brain tumor dataset must be aligned correspondingly. This means the Gaussian 
distribution of the GM in the brain atlas must be in the similar range of the Gaussian distribution 
of the GM in the brain tumor dataset, and the distributions of WM and CSF must match their 
peers too. Unfortunately, this is not true in our dataset. 
 
Fig 3 shows the histogram of the ICBM452 atlas and the histogram of the MRIs of patient #1. 
The intensity regions of CSF, GM, and WM are marked. The intensity range of the atlas is [0, 
712] while the intensity range of the MRIs of patient #1 is [0, 567]. Note the Gaussian 
distribution of the GM in the brain atlas does not match the Gaussian distribution of the GM in 
the brain tumor dataset, and the distributions of WM and CSF do not match their peers. 
 
Contrast stretching technique is usually used to in this situation. If the lower and the upper 
intensity limits are a and b, the lowest and highest intensity values present in the current image 
are c and d respectively, the intensity value of current voxel is Pin, the stretched intensity value 

is defined as outP

a
cd
abcPP inout +

−
−

−= ))((          (1) 

 
However, this approach does not work in our test dataset because of the “long tail” problem that 
exists in all patients’ data. A “long tail” in histogram of the MR images of patient #1 can be 
clearly observed in Fig 3 (right). The “long tail” region contains a small number of voxels with 
high intensity values. These voxels could represent image noise and/or brain abnormalities. 
Noise filters can reduce the noise at the risk of eliminating potential brain abnormalities with 
high abnormalities, and cannot remove the “long tail” entirely. Contrast stretching cannot align 
the Gaussian distributions with the existence of the “long tail”.  
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Fig 3. (left) histogram of ICBM452 brain atlas. (right) histogram of the MR images of patient #1.  
 
To align the Gaussian distributions without eliminating potential brain abnormalities, we define 
the normalized intensity value  as: outP

m
P

P in
out =            (2) 

where m is the mean of image intensities. 
 
With this definition, the mean value of image intensity is normalized to 1 and the majority of 
image intensity is stretched to certain range around the mean value. In our experiment, 100% of 
voxels in the ICBM452 brain atlas and more than 99.9% of voxels in the test dataset are 
normalized into the range of [0, 1.40]. The Gaussian distributions are also aligned so that GMM 
can be utilized. 
 
We present a Normalized Gaussian Mixture Model (NGMM) to represent the healthy or normal 
brain in the ICBM452 atlas. The basic idea of the NGMM is to estimate a Gaussian Mixture 
Model based on the normalized image intensities. The NGMM is defined as: 

∑
=

=
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where  is a voxel in the image,  is the prior probability, and  is the conditional 
probability density, which is define as: 
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where iμ  is the mean and iσ is the standard deviation of the Gaussian ),;( iiixN σμ . 
 
Expectation Maximization 

The Expectation Maximization (EM) algorithm [42, 43, 44] is often used to estimate the 
parameters of a Gaussian Mixture Model distribution. Quasi-Newton Method [45] had been 
proposed to accelerate the EM algorithm. The EM algorithm has two stages: expectation and 
maximization.  

Expectation 
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With an initial guess for the parameters of the GMM, partial membership of each image voxel in 
each distribution is estimated by computing expectation values for the membership variables of 
each data voxel. For each data voxel xj and distribution Yi, the membership value yi,j is: 

)(
)(

,
jX

jYi
ji xf

xfa
y =           (5) 

 
Maximization 

Once the expectation values are computed for group membership, estimates are re-calculated for 
the distribution parameters. The blending coefficients ai are the means of the membership values 
over the N data voxels. 

∑
=
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jii y
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The mean values iθ  are also computed by expectation maximization using image voxels xj that 
have been weighted using the membership values. 

∑
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With new estimates for the blending coefficients ai and mean values iθ , the process will be 
repeated again until the parameters of GMM converge. 

K-means 

The initial guess for the parameters of the GMM is often given by K-means algorithm [46, 47, 
48]. Given a set of N data points , the K-means algorithm divides the N 
observations into K sets (K < N)  to minimize the within-set sum of squares. 
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where iθ  is the mean value of set Si. 

In this paper, K=3 because we aim to represent 3 types of brain tissues, i.e., CSF, GM, and WM. 

Prior probabilities 

The ICBM Tissue Probabilistic Atlases are utilized to obtain the prior probabilities of different 
brain tissues. At a given voxel , the prior probability  is defined as: ix ),( ixkp
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where ),( ixkξ  is image intensity of different brain tissues in of the three ICBM Probabilistic 
Atlases (CSF, GM, or WM). 

Gaussian Bayesian Brain Map 

At a given 3D location (u, v, w) the post probability )|( ξkp  can be calculated by Bayes' 
Theorem: 

∑
=

⋅

⋅
= K

k
kpkp

kpkpkp

1
)|()(

)|()()|(
ξ

ξξ          (10) 

 
The correlation coefficient  at this voxel is then calculated: ]1,1[−∈CC

),(),(
),(

ββαα
βα

CovCov
CovCC

⋅
=  

where ))|(),|(),|(( ξξξα WMpGMpCSFp= , ))(),(),(( WMpGMpCSFp=β , and Cov is 
covariance. 
 
The correlation coefficient CC can reveal the likelihood of finding a candidate tumor voxel at a 
given 3D location. When CC is close to -1, it means the intensity of this voxel disagrees with the 
NGMM and this voxel is probably abnormal or likely to be a tumor voxel. When CC is close to 1, 
it means the intensity of this voxel agrees with the NGMM and this voxel is likely to be normal. 
The correlation coefficient is then used to define the Gaussian Bayesian Brain Map (GBBM): 

⎩
⎨
⎧

−
>−

=
elsewiseCC

CCwhenCC
CM

uvw

uvwuvw
uvw    0.0

0.0    0.1
        (11) 

uvwuvwonmuvw CMaaGBBM ⋅Ω== ××   e      wher][        (12) 
 
CC is first mapped to CM in the region of [0, 1]. Then GBMM is calculated based on CM and Ω . 

 is a scaling parameter that represents the intensity range of GBMM. Ω 0.127=Ω  in this paper. 
The resulting GBMM a 3D matrix or image with dimension of Noandnmonm ∈××   ,  , . It can 
reveal the likelihood of finding candidate tumor in the entire image domain. 

III.3. Post-processing 
GBMM is further processed to highlight candidate tumor region. This region will be used to 
automatically initialize the 3D Fluid Vector Flow algorithm, which will finally segment the brain 
tumor. The post-processing stage has 5 steps: removing boundary voxels, thresholding, 
morphological erosion, locating the largest 3D region, morphological dilation, and reverse 
transformation. 
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Brain tumor MR images are registered to brain atlas in the pre-processing stage. However, the 
registered image and the atlas are still different at a few voxels on the brain boundary. Therefore, 
the boundary voxels often have high intensity values. However, the boundary voxels are not in 
the region of any brain tumor in our dataset. Therefore, boundary voxels must be removed from 
GBMM. A boundary voxel is defined as a voxel that has at least one neighbor with intensity 0 in 

 neighborhood. 333 ××
 
A threshold  is then applied to GBMM to create a Binary Gaussian Bayesian Brain Map 
(BGBBM): 

Ψ

⎩
⎨
⎧ Ψ>

=
elsewise

awhen
b uvw

uvw    0
    1

         (13) 

onmuvwbBGBBM ××= ][           (14) 
In this paper,  0.642/)1( =+Ω=Ψ
 
Morphological filters (dilation, erosion, etc) are often used as the post-processing techniques [12]. 
Erosion is applied to merge separated relatively big regions. Then, the largest 3D region is 
automatically located. This region represents the candidate tumor region. After that, dilation is 
used to restore it to approximately its original size and shape before the erosion. Fig 4 shows the 
registered brain image, the GBMM, and the candidate tumor region after the dilation step. 
 

   
Fig 4. (Left) Registered brain image (Right) Gaussian Bayesian Brain Map of the brain (right) 
The candidate tumor region after dialation. 
 
At last, we apply 1−T  to the dilated image to transform it back to the original image space. T is 
the registration matrix calculated in the pre-processing stage. Fig 5 shows the original image, the 
segmentation ground-truth, and the candidate tumor region after the reverse transformation. The 
segmentation ground-truth was defined as the area of those brain tumor voxels in which at least 
three of four expert raters agreed regarding their identification [9]. Although the difference is 
still noticeable, the candidate tumor region is similar to the segmentation ground-truth. This 
candidate tumor region will be used to initialize the 3D Fluid Vector Flow algorithm, which will 
finally segment the brain tumor. 
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Fig 5. (left) Original image (middle) ground-truth (right) candidate tumor region after the reverse 
transformation 
 

III.4. 3D Fluid Vector Flow 
Fluid Vector Flow (FVF) [29] is an active contour model that addresses other active contour 
models’ problems such as insufficient capture range and poor convergence for concavities. It had 
been applied to semi-automatic brain tumor segmentation in 2D space. One drawback of the 
previous 2D FVF algorithm was that an initial contour must be given to start the vector flow 
evolution. In this paper, FVF algorithm is extended to 3D space and the candidate tumor region 
is used to initialize the 3D FVF algorithm to make this process fully automatic.  
 
In this paper, segmentation is formulized as the process of finding the surface which can 
delineate the region of brain tumor given the candidate tumor region in the 3D space of the MRIs. 
This is a nonlinear optimization problem, which is often addressed by using a variational 
approach [2]. The basic idea is to give an initial candidate tumor model and deform this model to 
better delineate the brain tumor until convergence is achieved. This deformable model is usually 
called active contour model or snakes [29, 49, 50]. Active contour models or snakes have been 
adopted as effective tools for segmentation [22, 29] in the literature. 
 
The traditional active contour model proposed by Kass et al [49] is a 2D parametric active 

contour: 

]1,0[ )),(),(()( ∈= ssysxsc       (15) 

Given an initial contour, it evolves within an image  to minimize the energy function: ),( yxI

∫ +=
1

0

))](())(([ dsscEscEE eisnake       (16) 

where  is the internal (spline) energy and  is the external energy. iE eE

The internal energy is given by: 
2

|)(''|)(|)('|)( 22 scsscsEi
βα +

=                                       (17) 

where α and β are first-order and second-order blending parameters. 
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Many snakes in the literature share the same internal energy and differ mostly in the external 
energy. A snake should evolve to minimize the energy functional . This problem can be 
formulated with the Euler-Lagrange equation. 

snakeE

0)('''')('' =∇+− eEscsc βα       (18) 
To find a numeric solution of (16), the snake is treated as a function of time t as well as s: 

0),(''''),('' =∇+− eEtsctsc βα       (19) 
A solution is obtained when the contour stabilizes and the time term vanishes [49]. There are two 

problems with the traditional active contour model. The first problem is its limited capture range, 

i.e., it is not able to deform far from its initial contour. The second problem is its poor 

convergence for concavities. These two problems were addressed in our previous work [29]. 

 
While parametric active contour models mainly focus on the 2D domain, level set snakes had 
been used for 3D segmentation and reconstruction [50]. A level set [51, 52, 53] snake is an 
implicit model, which is not explicitly expressed as a parametric model but is implicitly specified 
as a level set of a scalar function φ . A 3D surface may be written as: 

)),(),,(),,((),,( 212121 sszssyssxzyxf =        (20) 
F = F(K) is the speed function of the surface evolution 

1)( 2222 =++ zyx fffF          (21) 
where K is the mean curvature: 
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The motion of that surface is formulated as a Partial Differential Equation (PDE): 

0||)( =∇−
∂
∂ φφ KF

t
          (23) 

where ),,,( tzyxφ  is a scalar function such that at time t the zero level set of φ  is the surface. 
 
Level set snakes have a few drawbacks. The 1st drawback is that it requires a lot of computations 
to solve these equations over the entire domain. Adalstein and Sethian [52] proposed a fast level 
set method for propagating interfaces based on a narrow-band method, which used a finite band 
of 6–12 grid voxels on either side of the level set to reduce the computations. Whitaker [50] 
presented a sparse-field method, which took the narrow-band method to its extreme by 
calculating updates on a band of grid voxels that is only one voxel wide. The 2nd drawback is that 
level set snakes may segment wrong objects when there are multiple similar objects near the 
expected object. The 3rd drawback of level set method is the absence of explicit and direct 
representation of the surface during its evolution. 
 
3D Fluid Vector Flow (FVF) is used to segment the brain tumor in this paper. It is an extension 
of our 2D FVF algorithm [29], which had been applied to semi-automatic brain tumor 
segmentation in 2D space. 3D FVF takes the candidate tumor region obtained in the previous 
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section and fully automatically segment the brain tumor. It uses a parametric representation of 
the initial surface and also takes advantage of the level set method.  
 
We first address the 2nd drawback of level set snakes: they may segment wrong objects when 
there are multiple similar objects near the expected object. Fig 6 demonstrates this problem. 
There are 4 objects in the left figure. The upper left one is the expected object and the rectangle 
is the initial contour given by user. Level set snakes segment all the 4 objects, which is not the 
desired result because real intension of the user is to segment the upper left object only. 
 

  
Fig. 6. (Left) initial rectangle contour and 4 objects (Right) 4 objects are segmented by level set 
snakes. 
 
To address this problem, we need to determine the spatial relationship between the initial contour 
and the object. Note that we explain this concept in 2D only for the purpose of illustration. The 
algorithm is implemented in 3D. Once we have obtained the candidate tumor region, we can 
calculate its “center”.  
 
The mostly often used definition of center is arithmetic mean. For a given region R with n object 
voxels {P1, P2, …, Pn}, the arithmetic mean is defined as: 

nP
n

i
i /

1
∑
=

      (24) 

However, the center defined by arithmetic mean may be outside a given region. Figure 7 (Left) 
shows the center is out of the given region. In this figure, white points are object points and black 
points form background. The red points are the centers in different definitions. In [54], some 
other frequently used definitions of center, such as Tukey median, Liu median, Oja median, 
depth-based trimmed mean, coordinate median, and spatial median, are discussed and compared. 
According to [54], spatial median stands as the best overall. The spatial median is defined as: 

)/||(minarg
1

nPp
n

i
i

p ∑
=

−        (25) 

where | · | is the Euclidean distance. Spatial median works very well for convex regions. 
However, in the context of this paper, the brain tumor may not be convex therefore spatial 
median may fail. Figure 7 (Middle) demonstrates that the center defined by spatial median is on 
the boundary of the region. 
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We proposed a Valence Driven Spatial Median (VDSM) algorithm in [55] to compute the center 
of a region. The center is given by: ),,( 000 zyxA =

)/||
)(

1(minarg
1

nPp
pV

n

i
i

p ∑
=

−        (26) 

where V(p) is the valence of the point p. The valence  of an object point p is defined as the 

number of object points in p’s 

)( pV

333 ××  neighborhood, excluding p itself. 
)(

1
pV

 assigns penalties 

to boundary points which have smaller valences than inside points. As a result, the derived center 
is attracted towards the middle of the region.  
 
In our implementation, we modify Equation (26) to Equation (27) to eliminate the computational 
cost in performing the square root and division operations.  

∑
=

−
n

i
i

p
Pp

pV
1

2 )||
)(

1(minarg      (27) 

Since n is a constant, removing n does not affect the value for which the expression attains its 
minimum. Fig. 7 (Right) shows the center obtained by using VDSM. 
 

   
 

Fig. 7. The red (gray in B&W) point denotes the “center” of a region (white). From left to right, 
the locations of center defined by arithmetic mean, spatial median and VDSM are shown 
respectively. 

 
Now we have the candidate tumor region and its center, no matter the region is convex or 
concave. The initial active surface S is then defined as  

22
0

2
0

2
0 )()()( rzzyyxx =−+−+−        (28) 

where  is the center of the candidate tumor region and radius r is a constant. To make 
sure that the sphere is inside the candidate tumor region, we require r to be smaller than the 
radius of the maximum inscribed sphere of the candidate tumor region at point . Then, 
equation (23) becomes: 
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Chan and Vese [56] pointed out the evolution of level set should not always reply on gradient 
(2D) or surface normal (3D). The basic idea of FVF is to add a directional component to the 
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external force and keep the normal component. At a given point ),,( 111 zyxB = on the level set 
surface, there are two straight line  and : 1L 2L
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1L  is the normal of the surface at point  and  is the straight line determined by 

vector   that starting from center 

),,( 111 zyx 2L
→

AB ),,( 000 zyxA =  and pointing to ),,( 111 zyxB = . See Fig 8. 
 
Then, we extend the external energy function in [29] to 3D 

),,(),,( zzyyxxe fffzyxE δγδγδγχ +++=        (32) 
where χ  is a normalization operator, 1±=δ  (controls the inward or outward direction, when the 
surface is “outside” or “inside” the candidate tumor region), and γ  is the angle between  and 

, and 
1L

2L γ  is determined by: 
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2
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Fig. 8. The red surface is the level set surface, the blue plane is the tangent plane to that surface, 
the blue arrow is the surface normal, the black dot is the center of the candidate tumor region, 

and the green arrow represents the directional component of the external energy. 
 
The external energy  has two components: a normal component and a directional 
component. The normal force is computed in a manner similar to the traditional snake [49] and 
GVF snake [57]. The characteristic of FVF lies in the computation of the directional force. When 
the active surface is within the candidate tumor region, the directional force can push the surface 
towards the boundary of tumor. When the surface is close to the boundary of tumor, the normal 
force fits the surface to the tumor. 

),,( zyxEe
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IV. Experimental Results 
We test the proposed method with the SPL Brain Tumors Image Dataset [8, 9, 24]. The 
Tanimoto Metric [58] is used for quantitative analysis. Tanimoto Metric is defined as: 

 10 , ≤≤
∪
∩

= TM
RR
RR

TM
GX

GX , where  is the region enclosed by the surface generated by the 

proposed method,  is the region of the ground-truth segmentation provided in the SPL Brain 
Tumors Image Dataset, and 

XR

GR
⋅  is set cardinality (number of elements).  would indicate 

two completely distinct segmentation; while 
0=TM

1=TM  would indicate completely identical 
segmentation. Table I shows the test results.  
 

Table I: Tanimoto metric of the proposed method 
Case Tumor type GBMM time FVF time Total time Tanimoto score 
1 meningioma  361 sec 51 sec 412 sec 0.88 
2 meningioma  372 sec 51 sec 423 sec 0.83 
3 meningioma  375 sec 52 sec 427 sec 0.57 
4 low grade glioma  374 sec 50 sec 424 sec 0.66 
5 astrocytoma  375 sec 51 sec 426 sec 0.22 
6 low grade glioma  389 sec 52 sec 441 sec 0.53 
7 astrocytoma  388 sec 51 sec 439 sec 0.67 
8 astrocytoma  384 sec 53 sec 437 sec 0.57 
9 astrocytoma  361 sec 56 sec 417 sec 0.30 
10 low grade glioma  397 sec 52 sec 449 sec 0.70 

 
The proposed method was tested on a Pentium 4 (3GHz CPU, 2GB RAM) desktop computer 
with Windows XP (Version 2002, SP3) operating system. The resolution is 256x256x124 for 
each test case. The proposed method is implemented in MATLAB 7.5 (R2007b) and not 
optimized for speed.  
 
In Table I, the GBMM time represents the CPU time of calculating the Gaussian Bayesian Brain 
Map (GBBM), the FVF time reveals the CPU time of executing the proposed 3D Fluid Vector 
Flow (FVF) algorithm to segment brain tumor. The total time is the sum of GBMM time and the 
FVF time, which shows the entire time consumption of proposed method. The pre-processing 
stage requires about 9 minutes. The post-processing stage requires about 5 minutes. So the total 
overhead time is about 14 minutes for each test case. Note that the Normalized Gaussian Mixture 
Model (NGMM) was trained off-line. The training time was about 25 minutes. Once the training 
was finished, the result had been used repeatedly in each test case. 

V. Conclusions and discussions 
A brain tumor segmentation method is presented and validated in this paper. The method is able 
to segment brain tumors fully automatically by taking advantages of the proposed Normalized 
Gaussian Mixture Model (NGMM) and 3D Fluid Vector Flow (FVF) algorithm. This technique 
can be utilized to generate brain tumor segmentation images that display clinically important 
neuroanatomic and neuropathologic information.  
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Utilizing multiple MRI protocols often provide easier segmentation [7]. Other factors that can 
simply segmentation include using 2D images, semi automatic implementation, and testing fewer 
types of tumor. Our technique implements fully automatic 3D segmentation of 3 types of brain 
tumor in T1 MRIs. It over-performs the other discussed methods by segmenting most types of 
brain tumor with least MRI protocol. The accuracy (0.22-0.88) of our method matches a recent 
work by Corso et al [16], where the accuracy was in the range of 0.27-0.88 for segmentation of 
only one type of tumor glioblastoma multiforme (GBM).  
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Appendix 
Table A. Comparison of brain tumor segmentation methods. NA means not available or not 
applicable. The 1st column shows the method names: Hopfield Neural Network (HNN), 
Knowledge Based (KB), Support Vector Machine (SVM), Fuzzy connectness (FC), Variational 
Method (VM), Spiral Scanning (SS), Segmentation by Weighted Aggregation (SWA), 
Conditional Random Fields (CRF), Fuzzy C-means Segmentation (FCM), Fuzzy Algorithms for 
Learning Vector Quantization (FALVQ), K Nearest Neighbour (KNN), Level Set (LS), 
Expectation Maximization (EM), Symmetry Based (SB), and Graph Cuts (GC). The 2nd column 
lists the two categories (CA) of the methods: training based (TB) or non-training based (NB). 
The 3rd column reveals the availability of the database (DB): private (PR) or public (PU). The 4th 
column indicates automatic (AU) status of the method: fully (F) automatic or semi (S) automatic. 
The 5th column displays the dimensionality (DI) of the method: 2D or 3D. The 6th column 
demonstrates the modality of the MRI: T1 weighted (T1), T2 weighted (T2), T1 with contrast 
enhancement (T1c), or Proton Density weighted (PD). The 7th column shows the tumor types: 
glioblastoma multiforme (GBM), astrocytoma (AA), low grade glioma (GA), meningioma (MA). 
The 8th column shows the number of training cases (TR #). The 9th column compares the number 
of test cases (TE #). The 10th column displays the executing time. Note that the methods were 
implemented with various programming languages on a variety of platforms. The executing 
times may not be compared directly. The 11th column lists the accuracy. Note that some papers 
used Jaccard coefficient while other papers used Tanimoto metric or other metrics. The 
accuracies may not be compared directly. 
 
Method CA DB AU DI Modality Tumor TR 

# 
TE 
# 

Time Accuracy

HNN[3] TB PR F 2D NA NA NA 2 NA NA 
KB[4] TB PR F 3D T1,T2,PD GBM 3 7 NA .70 
KNN[7] TB PR NA 2D T1,T1c,T2,PD GA 1 9 1-2m NA 
ATM[8,9] TB PR F 3D NA MA,GA NA 20 10m .99 
EM[10,11] TB PR F 3D T1,T1c,T2 GBM,MA 1 5 1h4m .49-.94 
SVM[12] TB PR NA 2D NA NA NA 11 6.85s .86-.94 
FC[13] TB PR S 3D T1,T1c,FLAIR GBM NA 10 16m .99 
VM[2] TB PR F 3D T1,T2 AA,GBM 8 1 NA NA 
SS [14] TB PR F 2D T1 NA NA 16 21s .66-.99 
SWA[15,16] TB PR F 3D T1,T1c,T2,FLAIR GBM 10 10 7m .27-.88 
CRF[17,18] TB PR F 2D T1,T2,T1c AA,GBM 11 11 38s .41-.90 
GC[19] TB PR F 3D T1,T1c,T2 AA NA 6 5m .78±.17 
FCM[20] NB PR S 3D T1,T2 GBM 0 1 NA NA 
FALVQ[21] NB PR NA 2D T1,T2 MA 0 1 NA NA 
LS[22] NB PR F 3D T1,T1c GBM 0 3 NA .85-.93 
SB[23] NB PR F 2D T1,T1c,T2,FLAIR NA 0 14 NA .40-.71 
Proposed TB PU F 3D T1 MA,GA,AA 1 10  .22-.88 
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