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Abstract 

The recent torsional oscillator results of Kim and Chan seem to suggest a super-

solid phase transition in solid 4He, at 200 mK, confined in Vycor. We have used a 

capacitive technique to directly monitor density changes for 4He confined in Vycor 

at low temperature and have used a piezoelectrically driven diaphragm to study the 

pressure-induced flow of solid 4He into the Vycor pores. Our measurements showed 

no indication of a mass redistribution in the Vycor that could mimic supersolid de­

coupling and put an upper limit of about 3 nm/s on any pressure-induced supersolid 

flow in the pores of Vycor. 

Torsional oscillator results later revealed that the effect also exists in the bulk 

solid, at 200 mK. We have (again) used a piezoelectrically driven diaphragm to study 

the flow of bulk solid 4He through an array of capillaries. Our measurements showed 

no indication of low temperature flow, placing stringent restrictions on supersolid 

flow in response to a pressure difference. Any supersolid fraction present in the 4He 

moves at a velocity less than 1.2 x 10~12 m/s, a value which is at least seven orders 

of magnitude smaller than the critical velocities inferred from the torsional oscillator 

measurements. 

Contemporary experiments and theory now indicate that extended defects are 

somehow involved in the torsional oscillator results. Such defects should also affect 

the solids mechanical behaviour. Lastly, we report on a measurement of the shear 

modulus of solid 4He at low frequencies and strains. We observe large increases 

below 200 mK, with the same dependence on measurement amplitude, 3He impu­

rity concentration and annealing as the decoupling seen in the torsional oscillator 

experiments. This unusual elastic behaviour is explained in terms of a dislocation 

network that is pinned by 3He at the lowest temperatures but becomes mobile above 

about 100 mK. The frequency changes in the torsional oscillator experiments appear 

to be related to the motion of these dislocations, perhaps by disrupting a possible 

supersolid state. 
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Chapter 1 

Introduction 

For almost a century, physicists have wrestled with the baffling character of helium. 

Every other element embraces the solid phase at ambient pressure and the zero of 

temperature with the exception of helium. Below 2.17 K, 4He undergoes the weirdest 

and most wonderful of transitions: it becomes a superfluid and flows with perfect 

ease. This occurs for quantum mechanical reasons as its atoms, especially compared 

to those of other elements, behave less like particles and more like quantum waves. 

At sufficiently low temperatures, many collapse into a single quantum wave in a 

process known as Bose-Einstein condensation; in this condition, the atoms don't 

simply perform as a whole, they become whole. 

Since the late 1960s, theorists have speculated that something similar might 

happen in solid 4He, made by pressurizing the low temperature liquid to twenty-

five times atmospheric pressure. It was anticipated that such a transition would 

effectively cause the solid to possess superfluid-like properties; for that reason, the 

state was dubbed as 'supersolid'. Perhaps vacancies within the crystal could Bose-

Einstein condense to form a free-flowing fluid of their own, which would mimic the 

flow of atoms through the liquid, or maybe even some of the atoms themselves 

undergo Bose-Einstein condensation. The counter-intuitive notion of supersolidity 

was breath-taking and mind-blowing. Unfortunately, no one had ever seen any hint 

of a flowing solid. Until recently, that is. 

In 2004, results were published in support of a supersolid phase in 4He. The 

concept of supersolidity was poised to become an empirical reality. Somehow, 4He 

was proving to be more peculiar than we already knew it to be. The experiment 

which caused the stir was one in which solid 4He was witnessed not to rotate as 

a solid body should (an effect observed and understood in the superfluid state). 
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Great science has since ensued, as the observation has been independently confirmed 

and other signatures of the remarkable behaviour have been sought. After all, 

extraordinary claims require extraordinary evidence. 

The dilemma facing helium physicists today is multifaceted and far from cut-

and-dry. While it could be argued that the key query is the nature of the supersolid 

mechanism, many physicists continue to reserve judgment about the supersolid in­

terpretation until more evidence comes in. This dissertation should assist both 

camps, as the fundamental aim of this thesis is to provide a few more pieces of 

objective evidence to the puzzle. 

Direction was provided through recognition of the limitations of and gaps in 

previous research, as well as the unresolved conflicts in the field that still require 

investigation. A torsional oscillator was the probe from which the supersolid inter­

pretation sprang, based on inferential changes in density below 200 mK of the solid 
4He within; however, torsional oscillators are probes of both a sample's inertial and 

elastic properties. The ambition of our work was to rule out inertial-mimics and to 

directly probe the elastic properties of solid 4He alone. 

Thusly motivated, our experiments were intended to test the robustness of the 

supersolid claim and to provide scrutiny to some of the more obvious alternate ex­

planations. With these aims, polycrystalline samples of 4He were grown and studied. 

First, solidification under confinement was examined over a range of pressures as 

density changes associated with freezing and subsequent cooling in nanometer-sized 

pores was investigated between 30 mK and melting temperatures. Second, pressure-

induced flow of solid 4He was studied, both for 4He confined to nanometer-sized 

pores and in bulk, and again at temperatures between 30 mK and melting. Finally, 

an investigation of the elastic properties was performed, as a direct measure of the 

shear modulus of bulk solid 4He was made, as a function of temperature and fre­

quency. The effects of 3He isotopic impurity concentration, as well as measurement 

amplitude and thermodynamic history were also studied. 

This dissertation is organized as follows. Chapter 2 presents background material 

covering a brief history of helium physics and an introduction to superfluidity and 

supersolidity (the motivating force behind this thesis). Chapter 3 is a description 

of the experimental techniques common to all experiments presented. Chapters 4, 

5, 6, and 7 report and discuss our experimental results on solid 4He. The essential 

results are summarized in Chapter 8. 
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Chapter 2 

Background 

Helium is an exceptional thing; this chapter is written to provide support for that 

claim and context for the research upon which this thesis is developed. We begin 

with a very brief history of helium physics. A whirligig tour through superfluidity is 

then provided, serving as a warm-up to the concepts and terminology encountered 

in the subsequent sections on quantum solids and supersolidity. The work presented 

here is discussed largely in chronological order, and touches on both theoretical 

and experimental studies. A comprehensive discussion is beyond the scope of this 

thesis, and the reviews by Meisel [1] and Prokof'ev [2] are brought to the attention 

of the interested reader. After having established the state of the field, the chapter 

concludes by introducing the questions broached by this thesis. 

2.1 A brief history of hel ium 

Helium was first created roughly 13.7 billion years ago, in the moments following 

the Big Bang. About 13.7 billion years later, in 1868 during a solar eclipse in India, 

French astronomer Pierre Jules Cesar Janssen took careful examination of the solar 

chromospheric spectrum and, among many other bright lines, helium (from the 

Greek word "Helios", for Sun) was discovered. Over a quarter century elapsed before 

helium was found on Earth, in a sample of uranium ore by Sir William Ramsey, in 

1895. 

The story begins in earnest in the Netherlands. With the establishment of a 

cryogenic laboratory at the University of Leiden in the mid 1900s, Heike Kamer-

lingh Onnes was preparing to verify the van der Waals law of corresponding states 

over a large range of temperatures. His efforts to reach extremely low temperatures 

culminated in the liquefaction of 4He in 1908. Using the Joule-Thomson effect, 
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Kamerlingh Onnes lowered the temperature of the 4He down to 0.9 K, the coldest 

temperature ever achieved on earth at the time. It was on account of these low 

temperature studies that he was awarded the Nobel Prize in 1913 [3]. Kamerlingh 

Onnes pursued an extremely diverse program of investigations, including: thermody­

namics; radioactivity; observations on optical, magnetic and electrical phenomena, 

such as the study of fluorescence and phosphorescence; the magnetic rotation of the 

polarization plane; absorption spectra of crystals in a magnetic field; the Hall ef­

fect; dielectric constants; and especially the resistance of metals. In 1911, following 

the observation of persistent electrical currents, Kamerlingh Onnes uncovered the 

superconducting nature of pure metals such as mercury, tin and lead at very low 

temperatures. Essentially all of his work gradually gained importance and interna­

tional fame; pertinent to this thesis, it was breaking the 1 K barrier that allowed 

for the birth of helium physics. 

Three decades passed before the superfluid properties of 4He were concomitantly 

discovered in 1938 by John Allen and Don Misener [4], publishing experimental 

evidence that the hydrodynamics of liquid helium were not classical below 2.2 K, 

and by Pyotr Kapitza [5] (in the same issue of Nature) observing frictionless flow and 

through introduction of the term "superfluid" to qualify this anomalous behaviour. 

The 30 year gap between the liquefaction of 4He and the discovery of superfluidity 

was likely due in combination to the great interest generated by superconductivity 

and the relatively small number of researchers actually working on low temperature 

studies at the time. Kapitza was awarded the Nobel Prize in Physics in 1978 for his 

low temperature research [3], shared with Penzias and Wilson (who won for their 

discovery of the cosmic microwave background radiation). Although they made 

essentially the same discovery as Kapitza, Allen and Misener did not receive a Nobel 

Prize: Kapitza is generally the one credited with the discovery of superfluidity. 

As the empirical evidence supporting a superfluid state began to grow, theoret­

ical work began in an effort to (best) explain and understand this new and highly 

unusual state of matter. Later in 1938, Fritz London [6] worked out the theory 

of an ideal Bose-Einstein gas, explaining the phenomenon of superfluidity in terms 

of Bose-Einstein condensation (BEC). (Almost 70 years later, the connection be­

tween superfluidity and BEC is still a matter of debate and study.) Laszlo Tisza [7] 

carried the argument further by suggesting a phenomenological representation of 

superfluidity, the "two-fluid model" for liquid 4He. This particular suggestion was 
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also made independently and worked out in considerable detail by Lev Landau [8] 

three years later, in 1941. Landau was awarded the 1962 Nobel Prize for Physics for 

his pioneering theories for condensed matter, especially liquid helium [3]. Without 

a doubt, 4He was weird and worth studying. 

Countless experiments on 4He followed over the next half century. Studies on 

the liquid state consistently provided results which astounded researchers with their 

counterintuitive character. Beyond its zero-viscosity state, other notable features 

include: persistent mass currents; superfluid film flow and self-emptying beakers; 

high thermal conductivity (tending to infinity for small heat currents); thermo-

mechanical effects; second-, third- and fourth-sound; quantized vortices; and irrota-

tional flow. 

Compared to its liquid counterpart, solid 4He seemed to be a relatively normal 

substance, although it had been shown to possess some unique characteristics and 

interesting features. For example, it is the only element which requires substantial 

pressures to solidify, even at absolute zero. Additionally, solid 4He has a large molar 

volume and is accompanied by an exceptionally high compressibility. It wasn't 

until 2004 that Eun-Seong Kim and Moses Chan of Pennsylvania State University 

observed phenomena [9, 10] in solid 4He that got scientists wondering if helium 

physics was on the verge of capturing yet another Nobel Prize. 

2.2 Superfluidity in liquid 4 He 

Before diving deep into the subject of superfluidity in solids, it is helpful to first 

wade through some of the basics of superfluidity in liquids (a somewhat less coun­

terintuitive phenomenon). This section does just that, identifying the necessary 

concepts and terminology, and providing a roller-coaster introduction to superflu­

idity in liquid 4He; those seeking for depth with breadth are directed to standard 

reference books [11, 12, 13]. 

Immediately below its boiling point, 4He behaves as an ordinary liquid with 

a small viscosity. However, at 2.17 K it undergoes an unusual transition. This 

transition is signalled by a specific heat anomaly, whose characteristic shape has 

led to the name "A-point" being given to the temperature (T^) at which it occurs. 

Observation of the liquid through this transition reveals a remarkable alteration in 

its appearance. Above Tx, vapour bubbles form within the liquid in the customary 

way and the whole liquid is violently agitated (simple boiling at reduced pressures). 
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Once the transition point is reached, however, the liquid becomes absolutely still 

and no more bubbles are formed. We infer that T\ marks the transition between 

two different forms of liquid, as shown in Figure 2.1, conventionally referred to as 

He I (the normal fluid) above T^ and He II (the superfluid) below it. He I behaves 

in the normal fashion of a low-viscosity low-density liquid, but the properties of 

He II are strikingly different. The quantum nature of He II is unarguably bizarre 

and many of the phenomena it displays are aptly described as "super". 

Temperature T [K] 

Figure 2.1: Phase diagram of 4He [11]. 

One of its most unusual properties is revealed when its viscosity is measured. 

Experiments to determine the viscosity of He II can be divided into two classes: 

those designed to measure viscous resistance to flow, and those which detect the 

viscous drag on a body moving through the liquid. 

Results typical of the former method come from flow viscometry experiments 

which measure the flow velocity of He II through narrow channels of varying widths 

(a flow viscometer). In experiments of this sort, the flow rate is found to be almost 

independent of the pressure along the channel [14]. In fact, the flow is found to be 
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very much larger than that expected from measurements above TV And not only is 

it not proportional to applied pressure, but the flow becomes large at the smallest 

applied pressure difference and then saturates, staying effectively constant when 

further pressure is applied. Of course, the flow is clearly limited by other effects, 

which we will discuss shortly. Clearly, though, this suggests that the viscosity of 

He II is virtually zero. This zero-viscosity conclusion is supported by persistent 

current measurements [15]. In these, a liquid 4He-filled torus-shaped vessel was set 

into rotation; when the vessel was brought to rest, the He II continued to flow, 

showing no reduction in angular velocity over a twelve-hour period, and indicating 

that He II can flow without dissipation. 

Results typical of the latter method involve rotation viscometers. In these, a solid 

cylinder is made to rotate while submerged in a bath He II, the torque applied to the 

cylinder providing a measure of the viscosity of the fluid in which it is submerged. 

Experiments of this sort demonstrate the existence of a viscous drag [16]. Somehow, 

strangely, He II is capable of being both viscous and non-viscous at the same time. 

This apparent contradiction is the essence of the two-fluid model [7], in terms of 

which many of the properties of He II can be explained. According to this model, 

He II behaves as if it were a mixture of two liquids: one, the normal fluid, possessing 

an ordinary viscosity (r]n ̂  0); the other, the superfluid, being capable of frictionless 

flow past obstacles and through narrow channels (r)a = 0). Each have their own 

effective density, such that the total density of the fluid is constant (p = pn + ps), 

and the normal fraction is the fluid component which carries entropy (S„ ^ 0 and 

Ss = 0). He II is also capable of two different motions at the same instant. Each have 

their own distinct local velocity, so that the total current density is given by the sum 

of the products of the density and velocity of each fraction (j = p nv n + /?svs). (This 

approach, in which the two fluids are treated independently, is most useful when the 

velocities are small. At higher velocities, the superfluid flow becomes dissipative, the 

normal fluid exhibits turbulence, and there is the possibility of interaction between 

the two. When these factors are allowed for, the two-fluid equations become rather 

complicated. But, for small velocities, these hold.) To avoid any misunderstanding, 

however, it must be clearly stated that the two fluids cannot be physically separated; 

it is not permissible even to regard some of the atoms as belonging to the normal 

fluid and the remainder to the superfluid. 4He atoms are bosons, and therefore are 

all identical. 

7 



In the light of the two-fluid model, the seemingly discrepant results from the 

viscosity measurements described above make sense. In any mixture of two fluids, 

the viscosity as measured by the flow viscometer must be dominated by the smaller 

of the two viscosities, since the "thinner" fluid can find its way through the narrow 

tube much more readily than the "thicker" one. On the other hand, the viscosity 

as measured by the rotation viscometer will be dominated by the larger of the two 

viscosities, since the large drag force exerted by the "thicker" fluid will prevail over 

the smaller force of the "thinner" one. 

The validity of the two-fluid model is most strikingly demonstrated in the exper­

iment devised by Andronikashvili [17], in which a pile of closely- and equally-spaced 

thin metal discs were suspended by a torsion fibre and made to perform oscillations 

in liquid helium. The period of the oscillations in such a torsional pendulum is given 

by P — 2TT(1/K)1'2, where I is the moment of inertia of the system and K is the tor­

sion constant of the fibre. The moment of inertia has a component that comes from 

the pendulum itself, Iosc, and a component that comes from whatever helium mass 

is being dragged with it, I# e (i.e., I = Iosc + Ijye)- The two-fluid model predicts 

that only the normal fluid fraction can contribute to the moment of inertia of the 

pendulum (I#e oc pn — pue - Ps)- As the low temperature density of liquid helium 

is essentially constant, any observed change in the period of oscillations is equal to a 

change in the density of the normal fluid component, and therefore to the negative 

change in the density of the superfluid component (AP oc -A / J S ) . The disc spacing 

was sufficiently small to ensure that above T\ all the fluid between the discs was 

dragged with them. However, below T\ the period of oscillation decreased sharply, 

indicating that not all the fluid in the spaces was being entrained by the discs. This 

result confirmed the prediction that the superfluid fraction would have no effect 

on the torsion pendulum. The experiment gives a direct method of measuring the 

variation of pn with temperature and, by inference, ps, as shown in Figure 2.2. Note 

that He II is almost entirely superfluid below I K . 

Early experiments designed to measure the thermal conductivity of He II showed 

that it is very high, tending to infinity for small heat currents. In fact, it is not 

possible to establish a temperature gradient in bulk superfluid helium (a result 

which explains the sudden cessation of boiling as the liquid is cooled through T^). 

In an ordinary liquid (like the normal fluid phase of helium), a bubble forms when 

the local temperature is sufficiently greater than that at the free surface. In He II, 
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Figure 2.2: Normal and superfluid density of He II according to the two-fluid 
model, as inferred from period changes in a torsional oscillator experiment. Modified 
from [11] 

supposing that a large enough temperature fluctuation were to occur, it would decay 

so quickly that a bubble would not appear. Therefore, evaporation of He II takes 

place only at the free surface. 

A temperature gradient can be set up between two volumes of bulk He II provided 

that they are connected only by a superleak (i.e., a channel through which only the 

superfluid component can flow). A common form of superleak is a tube packed 

tightly with fine powder: the spaces between the particles form winding channels 

of varying width (typically about 100 nm) which allow the superfluid to pass but 

clamp the normal fluid in place. If heat is supplied to one side of the superleak, a 

pressure head is set up as well as a temperature difference. This happens because 

the superfluid fraction flows from the low temperature side to the high temperature 

side of the superleak. Since ps/p increases with decreasing temperature, we infer 

that the superfluid moves to the region of higher temperature in order to reduce the 

temperature gradient. ' 

Such manifestation of the thermo-meehanical effect shows clearly that heat trans­

fer and mass transfer in He II are inseparable. The steady supply of heat to the bulk 

liquid, achieved, for example, by passing a direct current through a resistor, and its 
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removal elsewhere into a constant-temperature reservoir cause internal convection. 

Normal fluid flows from the source to the sink of heat, whilst superfluid flows in 

the opposite direction, under the constraint that the total density remains constant 

everywhere (i.e., counterflow of ps and pn). Thus heat is not transferred in He II by 

the ordinary process of conduction and simple convection of the whole fluid. Only 

the normal fluid fraction carries heat; superfluid flow by itself cannot transport heat. 

When the heat supply is made to vary periodically, by passing alternating cur­

rent through the resistor, the two fluids can be made to oscillate in anti-phase with 

one another. Once more, this has no effect on the total density p which remains 

constant throughout. The result is that the local value of ps/p (and, consequently, 

the local temperature) undergoes oscillations. In this way, He II is able to prop­

agate temperature waves, called second-sound (distinguished from first-sound, the 

ordinary longitudinal pressure waves involving fluctuations in the total density at 

constant temperature). 

In addition to first- and second-sound in He II, two other unattenuated modes 

of wave propagation in this liquid are possible. Both are characterized by the fact 

that the normal component of the fluid is locked in place and only the superfluid 

component oscillates in the wave propagation. Third-sound occurs in the film ad­

sorbed on a surface and is an oscillation of the thickness of the film (in which the 

temperature and pressure variations are small). Fourth-sound is a bulk effect and 

is a compressional wave of only the superfluid component in a superleak material. 

More fundamental than the absence of dissipation, however, is the behavior 

of a superfluid under rotation. If we consider a rotating vessel, the normal fluid 

behaves in the expected way, undergoing solid-body rotation. The superfluid, on 

the other hand, experiences vortex motion: a series of vortex lines threads the fluid 

in the rotating vessel. Superfluid rotates around each vortex line and the angular 

momentum associated with each vortex is quantized. 

Another rotation-related phenomena, and most apposite to this thesis, is non-

classical rotational inertia (NCRI). NCRI is (essentially) the failure of a superfluid 

to rotate with its container. However, there is more to it than simply that. The 

phenomenon of NCRI is, by definition, characteristic of the equilibrium state of the 

system, and is quantum-mechanical in origin; it should be carefully distinguished 

from the apparently similar phenomenon of persistent currents, which is a metastable 

effect [18]. To help understand some of the subtleties involved, we consider some of 
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the rotational properties of a superfluid. We will begin by performing some thought 

experiments with a narrow annular channel; if the annulus is filled with 4He, then 

we can observe two conceptually distinct (though related) phenomena. 

The first is true NCRI (i.e., the Hess-Fairbank effect [19]) and occurs when the 

system appears to come out of equilibrium with its container. To better illuminate 

this definition, imagine taking an annulus filled with water and setting it on an 

old-fashioned turntable, which is then set into rotation. After some relatively short 

period of time, the water will come into rotation with the annulus and will thereafter 

rotate with it, as long as the turntable continues to rotate. When the rotation is 

halted, the water will also then gradually come to rest. 

Imagine now that we do the same experiment with liquid 4He, starting above 

T\ and rotating very slowly. The 4He behaves in exactly the same way as the 

water, gradually coming into rotation with its container. Now suppose that, while 

still rotating with this very low angular velocity, we cool the system through T^. 

At first, the liquid 4He appears to come out of equilibrium with the container as 

we cross the lambda line (i.e., to cease to rotate even though the container is still 

rotating). In fact, as we reduce the temperature of our system to zero, the liquid 
4He appears to come completely to rest in the frame of reference of the laboratory. 

It is clear that this behaviour cannot simply reflect very long relaxation iimes, since 

it is the liquid which has come out of equilibrium from the container: the "non-

rotating" state must be the true thermodynamic state. This is the exact analogue 

of the Meissner-Ochsenfeld effect in a superconductor [20], in which magnetic field 

lines are excluded from the superconductor when it is cooled to below its critical 

temperature. It becomes convenient to define the superfluid fraction fs of liquid 
4He in terms of the experimentally observed value of the temperature dependent 

moment of inertia, relative to its classical value, I(T) = lciassicai[l -•f«(T)]. 

The second phenomenon is the following. Again, imagine an annulus filled with 

liquid 4He and at a temperature above T>,. The system is once more set into rotation, 

but this time at a significantly greater, angular velocity. As we cool through T^, we 

now see very little change: for all intents and purposes, the liquid continues to rotate 

with its container. The difference arises when we then stop rotating our container: 

the liquid He within continues to rotate, apparently indefinitely. It can be shown 

that for the container stationary the rotating state cannot be the thermodynamic 

equilibrium one, so what we are seeing here is an example of an extremely long-lived 
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metastable state, sometimes referred to as met&stability of superflow. 

A phenomenological understanding of both the Hess-Fairbank effect and the 

metastability of superflow may be obtained if two separate assumption are made. 

First, that the atoms in a condensate can have only integral values £h of their 

angular momentum, corresponding in the annular geometry to an angular velocity 

of rotation ffi/mR2 = £OJC. Second, that the passage of an atom from one value of I 

to another is impeded by a high free-energy barrier. Then it is intuitively plausible 

that on cooling through T\ with w <?C wc the condensate will prefer to come to 

rest. On the other hand, if the angular velocity of the container is 3> wc, say nwc, 

where n is not necessarily an integer, then on cooling through T\ the condensate will 

simply "choose" the value of I that most closely matches its angular velocity to the 

container; in particular, if the latter is ^> wc/2, the condensate will simply choose the 

integer £ closest to n, and the difference between t and n will be barely observable, 

so that the liquid appears to continue to rotate with the container. However, when 

the rotation stops the free-energy barrier prevents relaxation back down to I = 0. 

Superfluidity is a quantum mechanical effect and it is clear that the pure super-

fluid constitutes the ground state of He II. The 4He atom has a resultant spin of zero, 

and is therefore a boson; an assembly of 4He atoms is governed by Bose-Einstein 

statistics. As is well-known, an ideal boson gas of particles with non-zero rest mass 

exhibits the phenomena of BEC. At low temperatures, the particles crowd into the 

same quantum state, corresponding to the lowest single-particle energy level of the 

system, forming a condensate. The crucial distinguishing feature of a Bose-Einstein 

condensate is that the many parts that make up an ordered system not only behave 

as a whole, they become whole; their identities merge or overlap in such a way that 

they lose their individuality entirely. The condensation begins at the critical tem­

perature and is complete at absolute zero. Liquid 4He behaves in the same way, in 

that T\ is the temperature which marks the onset of condensation and the conden­

sate is associated with the superfluid fraction of He II. The existence of a condensate 

and its correlation with the occurrence of superfluidity is something to be kept in 

mind. It is also worth noting that many of the effects described above are also seen 

in BEC of gases. 

So far, however, we have really just considered the particles in the ground state 

of a superfluid system (i.e., the condensate) and it seems plausible that a superfluid 

current is to be equated with motion of the condensate. While the existence of a 
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condensate is a necessary condition for superfluidity to occur, it is not a sufficient 

condition. Whether or not superflow can happen depends additionally on the nature 

of the thermally excited states. The excitation spectrum of He II, commonly referred 

to as the Landau curve, is shown in Figure 2.3 (as obtained from neutron-scattering 

experiments [21], and as suggested by Landau [8]). 

The excitation spectrum is sharply denned, indicating that the excitations are 

long-lived (however, as the temperature is increased above 1.2 K, the spectrum 

develops a width and becomes progressively less well-defined, a consequence of the 

rapid growth of the number of excitations and the frequency of collisions between 

them). The existence of the finite energy gap for these excitations at ~ 2 A""1, called 

rotons, is crucial for the occurrence of superfluidity. At temperatures well below T,\, 

this excitation spectrum is sufficient to account for the thermal properties of He II. 

In particular, it implies that there are no other excitations in He II with a spectrum 

lying below the Landau curve; this specifically excludes free-particle motion. With 

that, it is possible to derive what is known as the Landau criterion for superfluidity 

and apply it the excitation spectrum of He II. 

Imagine a body of large mass M moving at velocity Vj through a volume of 

He II, at a low enough temperature so that it is effectively pure superfiuid. So long 

as V; is low enough, the body will experience no drag from the superfiuid. This 

will change only when Vi reaches a critical value viana-au at which it is possible 

for an excitation to be created out of the superfiuid. This will cause a loss in the 

kinetic energy of the body, which is dissipated in the form of thermal excitation 

energy, that is as heat. Thus, as soon as it reaches ^Landau-, the body begins to 

suffer drag. In order to determine ~Vhand.au, we need to find the minimum value of 

V, at which an excitation can appear. Suppose that the creation of one excitation 

with energy e(p) and momentum p causes the body's velocity to decrease from Vi 

to Vf. Conservation of energy and of momentum imply 

: i M V i 2 = i M V f
2 + £ (P ) (2.1) 

and 

MVi = M V f + p . (2.2) 
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Figure 2.3: Dispersion curve for liquid 4He at 1.12 K, under it normal vapour 
pressure [21]. The parabolic curve rising from the origin represents the theoretically 
calculated dispersion curve for free helium atoms at absolute zero. The open circles 
correspond to the energy and momentum of the measured excitations. A smooth 
curve has been drawn through the points as a guide to the eye. The broken curve 
rising linearly from the origin is the theoretical phonon branch calculated from a 
velocity of sound of 237 m/s. The dotted curve drawn through the point 2.27 A - 1 

has been drawn with a slope equal to the velocity of sound. 
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Together, Equations 2.1 and 2.2 give 

e(p) - p - V4 + p 2 /2M = 0. (2.3) 

If we then assume that M is large enough that the last term in Equation 2.3 can be 

neglected, and with 9 as the angle between p and Vi, we then have 

p V{ cos 9 = e(p) (2.4) 

and since cos 6 < 1, the condition 

V>>^ (2.5) 

must be satisfied in order for an excitation to be created. Thus, the critical velocity, 

vc = vLandau, is given by 

VLandau 
£(P) (2.6) 

Superfluidity can therefore occur if 

VLandau > 0, (2.7) 

a condition which is known as the Landau criterion for superfluidity [8]. Minimum 

values of £(p)/p are found when 

de(p) = £(P) ( 2 8 ) 

dp p 

There are two solutions for Equation 2.8 on the He II excitation curve. One occurs 

at the origin (and at all points of the linear part of the spectrum). In this region 

vLandau = = 239 m/s (phonons), (2.9) 
P 

which indicates that the critical velocity for the creation of phonons is the velocity 

of first sound. The second solution occurs when the straight line passing from the 
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origin to the curve near the roton minimum touches the excitation spectrum. From 

this we obtain 

vLandau - — = 58 m/s (rotons). (2.10) 

If we apply this treatment to the excitation spectrum of the free particle (a parabola), 

the condition of Equation 2.8 is satisfied only at the origin, giving 

vumdau = 0 m/s (free particles). (2.11) 

A Landau velocity of zero means that superfluidity is impossible in any system where 

free particle motion can take place. Thus it is the energy gap A, together with the 

lack of any other thermal excitations below the Landau curve, which ensures a finite 

value of ^Landau in He II. 

2.3 Solid helium - some basics 

With the necessary concepts and terminology for superfluids now in place, we will 

shift our focus to the solid phase. 

Solid helium is also a rather unusual thing. It behaves quite differently from the 

heavier inert gas solids (Ne, Ar, Kr, Xe) and solid helium is a uniquely 'quantum' 

(as opposed to 'classical') solid. Its inimitable nature can be recognized without 

looking beyond the phase diagram, as presented back in Figure 2.1. 

A key feature of the phase diagram is that liquid 4He does not freeze when 

cooled under its vapour pressure (the helium isotopes are unique in this regard). In 

fact, solid 4He is only stable under a pressure of at least 25 bar. This reluctance 

to solidify results from a combination of two factors: weak binding forces between 

helium atoms and significant non-thermal energy of helium atoms. 
4He atoms possess filled, spherically-symmetric electronic shells and, as a result, 

the van der Waals attraction between atoms is weak. Moreover, 4He atoms are 

subject to two distinct forces in the limiting cases of large and short distance, as are 

all neutral atoms. At long range there exists an attractive force (the van der Waals 

attraction), and at short range there exists a repulsive force (the result of overlapping 

electron orbitals, referred to as Pauli repulsion). The Lennard-Jones potential is a 
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simple mathematical model that represents this behavior and effectively captures 

the essential features of the 4He atom interaction: 

V(r) = 4e 
v 12 / \ 6i 

(2.12) 

where r is the interatomic separation. For accurate calculations, more realistic 

potentials are required. All the same, the Lennard-Jones parameters provide an 

easy way to characterize the strength, e, and range, a, of the interaction. Table 2.1 

compares these parameters of the inert gas solids. As can readily be seen, 4He 

occupies the shallowest of potential wells by a considerable measure. 

gas 
Xe 
Kr 
Ar 
Ne 

4He 
3He 

e(K) 
230.4 
164.0 
119.8 
36.7 
10.2 
10.2 „ 

a (nm) 
0.392 
0.362 
0.340 
0.279 
0.262 
0.262 

m (amu) 
131.30 
83.80 
39.944 
20.183 
4.004 
3.017 

A 
0.064 
0.103 
0.186 
0.577 
2.61 
3.01 

Table 2.1: Basic quantum parameters for the inert gas solids [22]. 

4He atoms also are light and the effect of low atomic mass is to ensure a high 

value of zero-point energy. A 4He atom occupies a certain volume, bounded by 

the atoms immediately surrounding it, and on average is contained within a sphere 

of volume equal to the atomic volume VQ (and that sphere has radius R ~ Va ). 

By the Heisenberg Uncertainty Principle, a particle confined to such a cavity has 

an uncertainty in its momentum, Ap ~ fi/R. Consequently, it must possess some 

kinetic energy of localization (i.e., zero-point energy) E0 ~ (Ap2)/2ni4 ~ 7i2/2m4R2, 

where m4 is the mass of a 4He atom. In terms of the atomic Volume, the zero-point 

energy may be written as Eo ~ h2/2m4~Va' . When this effect is coupled to weak 

interatomic attractive forces, it becomes clear why 4He refuses to solidify without 

the help of significant external pressures. Even once frozen, this zero-point energy 

leads to a greatly increased molar volume, and to unusually large displacements of 

the atoms in their oscillations about their equilibrium positions. In addition, the 

large molar volume is accompanied by an exceptionally high compressibility, so it is 
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possible to study the properties of a simple lattice over a great range of densities. 

Correspondingly, solid 4He also possesses a weak shear modulus (i.e., small elastic 

constants) and relatively low sound speeds. 

The basic character of solid 4He may be revealed in the phonon (p) specific heat 

Gy (that which arises from the vibration of the atoms about their lattice points). 

At low temperature, the heat capacity is well-described by the Debye model 

<*-1Jr™{k)'- ' (2-I3) 

where N^ is Avagadro's number, k is Boltzmann's constant, and 9jr> is the Debye 

temperature. 6D is obtained by fitting to the observed C^ and is roughly the tem­

perature of a crystal's highest normal mode of vibration (the characteristic energy 

of the phonons). 

As shown in Table 2.2, $£> is significantly larger than the melting temperatures 

of 4He (i.e., the zero-point energy is much greater than the thermal energy). For 

example, at absolute zero, solid 4He with a molar volume of 20 cm3 has about 225 J 

of zero-point energy, but the addition of less than 1 J of thermal energy is enough to 

cause melting. Table 2.2 also shows the ratio r/Ro, of the mean square amplitude of 

vibration of the atoms to the distance between nearest neighbours, again determined 

via the Debye model. According to the Lindemann criterion of melting, a solid melts 

once r/Ro ~ 0:15: a clear indication that solid 4He is not inherently stable. 

Molar 
volume 
(em3) 
20.0 
18.0 
16.0 
14.0 

Melting 
temp. T M 

(K) 
2.12 
3.40 
5.35 
8.65 

Debye 
temp. 8D 

(K) 
24.0 
31.5 
42.5 
57.0 

TM/&D 

0.088 
0.108 
0.126 
0.152 

Zero-point 
energy 

(J mol"1) 
224.4 
294.8 
397.7 
531.7 

Thermal 
energy 

(J m o r 1 ) 
0.71 
2.05 
4.98 
13.31 

r/Ro 

0.303 
0.277 
0.251 
0.228 

Table 2.2: Estimates of the thermodynamic functions of solid 4He along the melting 
curve [23]. 

A classical treatment is clearly inadequate for helium, as quantum effects are 

simply too significant. The degree of 'quantumness' of a solid can be characterized 
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by the de Boer [24] parameter, which is essentially the ratio of zero-point energy to 

potential energy 

A = — £ = , (2-14) 
a J vat 

where h is Planck's constant and m is the mass of the atom in atomic mass units. 

A sizeable A, shown in Table 2.1, means that the large wave functions (WFs) of 

neighboring atoms in the lattice will overlap, leading to direct nuclear exchange 

integrals and tunnelling between sites. (In solid 3He, which has a nuclear spin of ^, 

this exchange can be observed through nuclear magnetic resonance experiments and 

in thermodynamic properties.) This can manifest itself in the non-thermal motion 

of defects through the crystal, such as vacancies, impurities, and even dislocations. 

Due to the periodic potential presented by the lattice (the Peierls potential), this 

tunnelling may become coherent under certain conditions and allow defects to prop­

agate through the crystal. 

Quantum effects play an important role in the fluid phase, as superfluidity ex­

emplifies, and are likewise significant in the solid phase; consequently, it is both 

important and interesting to study the fundamental properties of quantum solid 
4He. 

2.4 (Super)solid 4He 

Theorists have long speculated that something similar to the superfluidity that oc­

curs in the liquid phase might also happen in the solid phase. This section reviews 

the theoretical and experimental work that has addressed the question of the pos­

sibility of a superfluid phase in solid 4He, although a comprehensive discussion is 

beyond the scope of this thesis. The excellent reviews by Meisel [1] and Prokof'ev [2] 

are again recommended to the interested reader. 

2.4.1 The early years 

The first fundamental work was carried out by Penrose and Onsager [25], who 

generalized the mathematical description of BEC, making it applicable to a system 

of interacting particles. A first-principles argument was presented, indicating that 

superfluid 4He in equilibrium shows BEC. (Conversely, they also showed why one 

would not expect BEC to occur in a solid.) Landau and Lifshitz [26] extended on this 
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effort and with a generalized mathematical description of BEC in place, theorists 

were free to consider the possibility of observing BEC in a solid. 

As an interesting aside that receives scant attention, a second 'type' of superso-

lidity has been identified [27]. Using a modified procedure to derive hydrodynamics, 

it has been argued that a certain class of crystal will be able to sustain a persis­

tent entropy flux rather than a persistent mass current and has a propagating mode 

connected to temperature fluctuations. 

2.4.1.1 Theory 

Some of the earliest work came from Andreev and Lifshitz [28], whose theoretical 

efforts led them to the conclusion that, at sufficiently low temperatures, localized 

defects or impurities within a crystal will transform into excitations that move freely 

through the lattice. Instead of the ordinary diffusion of defects, there arises a fluid 

flow consisting of these excitations ("defectons" and "impuritons"). At absolute 

zero, and in crystals with large zero-point energy (such as solid 4He), zero-point 

defects may exist and the number of sites in an ideal crystal lattice may not coincide 

with the number of atoms. This is not surprising since for finite values of A an atom 

is not localized at a definite site, and therefore the requirement that the number of 

sites be equal to the number of atoms is not compulsory. Such a crystal would be 

neither a solid nor a liquid and within it two kinds of motion would be possible; 

one with the properties of motion in an elastic solid, the second with the properties 

of motion in a liquid. Most important, under certain conditions the liquid type of 

crystal motion would possess the property of superfluidity. In other words, they 

conclude that the supersolid state exists. 

Chester [29] would also speculate on the topic, concluding that BEC can occur 

in a state which exhibits crystalline ordering, in contrast to the claims of Penrose 

and Onsager [25]. It is added that a quantum crystal can only have a Bose-Einstein 

condensate if it has a finite fraction of vacancies. However, it is stated with certainty 

that crystalline ordering would prevent the appearance of anything like normal su-

perfluid properties, in contrast to the claims of Andreev and Lifshitz [28], although 

the point is conceded that the physical implications of the argument put fourth rely 

on how accurately the states used actually represent real physical systems. 

Following this proposal, Leggett [30] suggested (and Saslow later concurred [31]) 

that NCR! very probably occurs if the solid is Bose-Einstein condensed (although 
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the associated superfluid fraction is shown to be very small, probably < 10 - 4 ) . 

Anomalous macroscopic effects are then predicted and direct tests are proposed. 

The first test advocated is to rotate the solid in the form of an annulus below its 

transition temperature; then the apparent moment of inertia should be slightly less 

than the classical value (and, more relevantly, temperature dependent). A second 

test would be to rotate the solid above its presumed critical angular velocity and 

then bring the container to rest; if it is assumed that the NCRJ is associated with 

the metastability of flow states as in other superfluid systems, a persistent residual 

angular momentum should be expected. 

Shortly thereafter, Guyer [32] describes the essential physical content of the 

.previous three works and scrutinizes them in light of the large body of data on 

quantum crystals. Two possible mechanisms by which particles in solid 4He can 

acquire the mobility necessary to permit the kinds of motions that would lead to 

BEC and superfluid phenomena are distinguished. These mechanisms are a motion 

of the single-particle density due to the presence of ground-state vacancies, and 

motion of the single-particle density due to the cooperative tunnelling of pairs of 

particles. Contemporary nuclear magnetic resonance data on solid 3He [33] and 3He-
4He [34] mixtures is then provided as strong evidence for there being no ground-state 

vacancies in solid 4He. Thus, BEC due to the presence of ground-state vacancies is 

ruled out. If BEC due to cooperative tunnelling occurs, the density of the superfluid 

component is estimated to be on the order of 10~6 of the bulk density, and close to 

the edge of observational range. 

(Modern x-ray diffraction measurements [35] of thermal vacancies place an upper 

limit of xvac ~ 0.1% for single crystals of hep 4He (grown at constant pressure) 

and even more recent experiments [36] still do not give evidence for vacancies at 

low temperature (but new measurements seem needed to put a stringent bound on 

groundstate vacancies). Presumably, xvac would increase in disordered 4He solids 

(grown at constant volume or quench-cooled), unfortunately no such information 

exists for samples of this sort.) 

2.4.1.2 Exper iment 

While the theoretical works are free to speculate on what exactly is going inside 

of quantum solid 4He, it will be experiment that ultimately gives us the definitive 

answer. With that, considerable effort has been undertaken by the experimental 
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community to solve the mystery of solid 4He. This is no easy task, however, as 

the number of variables to control for are many, and the specific effects for which 

physicists are looking are largely unknown. 

This section describes some of the major experimental searches for the supersolid 

phase of the 20th century. 

Of course, there are several systems which potentially might possess a supersolid 

state under the proper conditions (e.g., BEC of vacancies in a pure He' crystal; 

BEC of interstitial or substitutional 4He impurities in a 3He crystal; a Cooper-

paired superfluid state of 3He impurities in solid 4He; or even a transition arising 

from tunnelling and particle exchange in a pure 4He crystal). For reasons hinted 

at above, however, there are a variety of reasons why nominally pure 4He seems to 

be the system of choice (i.e., non-helium quantum crystals have smaller zero-point 

oscillations and are therefore less likely candidates for observing a supersolid state). 

Some of the initial attempts to observe a supersolid 4He phase involved the study 

of plastic flow in crystals through which physical objects were moved. Examples of 

these objects include: a magnetized sphere [37], a steel ball on a wire [38], a solid 

plate [39], and a porous membrane [40]. Techniques more reminiscent of super-

fluid helium studies were also employed. In one, it was attempted to detect mass 

flow through a weak link which was subjected to a chemical potential difference 

(AP ~ 1 bar) between two mass reservoirs [41]. In another, a sensitive torsional 

oscillator searched for a change of the moment of inertia of the system [42]. Yet 

another searched for mass flow in a cylindric "U"-tube experiment [43]. None of 

these investigations resulted in a positive identification of the supersolid state. 

Thermodynamic measurements possess a strong historical success rate for the 

discovery of new phases at low temperature, notably the discovery of superfluid 
4He [44], superfluid 3He [45], and nuclear magnetic ordering in solid 3He [46]. Tak­

ing a hint from the historical record, the principal idea of the thermodynamic mea­

surements is to measure, for example, the entropy or pressure of the system as a 

function of temperature. Experiments of this sort [47, 48] also did not result in a 

positive identification of the supersolid state. 

Finally, ultrasonic studies have been performed in solid 4He at higher purity, low 

density, and low acoustic power [49]. Their results are rather complicated, but the 

authors argue that their data is consistent with the presence of a zero-point vacancy 

induced supersolid state. They also concede that their possible identification of the 
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supersolid requires additional work to solidify the validity of their arguments and 

interpretations. 

With roughly a dozen experimental null results in the history books and theo­

retical uncertainty in the existence of the supersolid state, dedicated experimental 

searches quickly became significantly fewer and further between. Things picked up, 

though, in 2004. 

2.4.2 The Kim and Chan renaissance 

In 2004, Kim and Chan reported on a torsional oscillator technique to study solid 
4He confined in the pores of Vycor glass as a function of temperature [10]. As 

described above, a torsional oscillator is a mechanical resonator which is used as a 

very sensitive micro-balance. As they say at Cornell, "if you've got it, oscillate it". 

With their high quality factors (Q is 27r times the ratio of the total energy stored 

divided by the energy lost in a single cycle) at low temperatures (Q ~ 106), torsional 

oscillators have a low noise bandwidth and, consequently, a very high period and 

amplitude stability (SP/P ~ 1 0 - 9 and 59/0 ~ 1 0 - 4 , respectively). 

The basic experimental configuration, shown in Figure 2.4, is a torsion rod with 

some sample cell attached to one end of it. Torsional oscillators typically differ from 

one another primarily in the design of the sample cell, but the one used by Kim and 

Chan to study solid helium in Vycor was cylindrical in shape (with the Vycor sample 

sitting snugly within), shown in Figure 2.5. The oscillator was driven by a capacitive 

transducer and its response was detected by another capacitive transducer. 

Ideally (and to re-iterate some of what was covered earlier), torsional oscilla­

tors are modelled as simple harmonic oscillators, with a resonant period given by 

P = 27T(I /K) 1 ' 2 . Here, I is the moment of inertia and K is the torsional spring con­

stant of the torsional oscillator, with its amplitude given by 6 — QT/K, where r is 

the amplitude of the sinusoidal drive torque. 

The central result of the Kim and Chan experiment is a drop in the period (AP) 

of their torsional oscillator that begins at 175 mK, shown in Figures 2.6 and 2.7. 

Their system fails to undergo rotation as classically predicted; specifically, they 

observe NCRJ. Kim and Chan state that the most likely interpretation of the inertia 

drop is an entry of solid 4He into a supersolid phase; namely, that there exists a 

superfluid-like phase in the solid state. (Leggett's proposal [30] to probe for NCR! 

is very similar to the experiments performed by Kim and Chan, but with one clear 
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Figure 2.4: Schematic of a torsional oscillator. The cartoon on the left shows a 
cylindrical cavity, on the right an annular cavity. Other internal geometries may be 
used, giving each torsional oscillator its own unique moment of inertia I. 

distinction: Kim and Chan oscillated, rather than rotated, the solid sample.) 

Later that same year, Kim and Chan reported on the observation of NCRI in bulk 

solid 4He confined to an annular channel in a sample cell under torsional motion [9]. 

As in their previous experiment, the effect shows up as a drop in the resonant 

oscillation period as the sample cell is cooled, this time to below 230 mK. Clearly, 

the effect is not connected to restricted geometries. They performed measurements 

on 17 solid samples, allowing them to map out the boundary of this superfluid-like 

solid or supersolid phase from the melting line up to 66 bar, as in Figure 2.8. With 

that, they conclude that superfluid behavior is found in all three phases of matter. 

And what a conclusion that is! 

While they have since studied literally hundreds of samples, the principle results 

from Kim and Chan may be summarized by a few general statements: 

• The inferred fractional supersolid density is ps/p ~ 0.01. 

• The transition temperature is T c ~ 200 mK, with a gradual onset. 

• The inferred critical velocity is vc ~ 10 /im/s. 

• The effect is non-existent in the bcc phase of 3He, and is suppressed (in magni­

tude and to higher temperature) with increasing 3He impurity concentrations. 

. • The effect is non-existent in a blocked annulus, strongly suggesting that the 

effect is not local. 
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Figure 2.5: Torsional oscillator used with Vycor disk used by Kim and Chan [10]. 
The Vycor glass disk has a diameter of 15 mm and a thickness of 4 mm. The cylin­
drical drive and detection electrodes are aligned off-centre from, and are capacitively 
coupled to, the central electrode attached to the torsion bob. The signal from the 
detection electrode (proportional to the amplitude) is sent to the lock-in amplifier 
through a current preamplifier. The lock-in provides a driving voltage, which con­
trols the amplitude of oscillation, to complete the phase-locked loop and keep the 
oscillator in resonance. 
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Figure 2.6: Torsional oscillator resonant period as a function of temperature of solid 
4He in Vycor glass [10]. The resonant period for different oscillation amplitudes 
(and hence different velocities of the rim of the Vycor disk, v rim) is shown. A drop 
in the period (AP), signifying the transition into the supersolid phase, is seen below 
175 mK. Although the magnitude of AP depends strongly on the rim velocity, 
no such dependence of the period is seen above the transition temperature. For 
comparison, the empty (without helium) cell period, and the period of an atomically 
thin liquid film adsorbed on the walls of the internal pore space of Vycor, are also 
shown. The film measurement, showing a superfluid transition at 250 mK, is carried 
out with the same torsion cell. Data has been shifted for clarity. 
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Figure 2.7: Torsional oscillator resonant periods as a function of temperature for a 
variety of solid helium samples [10]. The period scale shown corresponds to that 
for solid hep 4He and the period data for other samples are shifted for clarity and 
easy comparisons. All measurements were made with the rim velocity of the Vycor 
disk near 30 n/s. The plots show that the period drop effect is not related to the 
stiffening of bulk solid helium in the torsion rod. The effect is not seen in pure 
bec 3He, and is not seen in solid mixtures with 3He concentration exceeding 0.1%, 
nor is it seen in empty or dummy cells. A period drop is found for mixtures with 
10, 30 and 100 ppm of 3He. As in pure hep 4He, the size of the drop in these 
samples with low 3He concentrations is also rim-velocity dependent. The dotted 
lines extrapolated smoothly from high temperature are the expected background 
period in the absence of period drops. The vertical arrows mark the transition 
temperatures of these samples. 
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Figure 2.8: Newly proposed phase diagram of liquid and solid 4He [9]. A supersolid 
phase is added, based on observations of NCR! in torsional oscillator experiments. 
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2.4.3 The later yea r s 

With the observation of NCRI in solid 4He by Kim and Chan in 2004, the pace of 

theory and experiment quickened. Experiments were devised and executed at an 

accelerated pace, and theory papers were published at a near furious rate. 

2.4.3.1 Other torsional oscillator measurements ( 

One of the most important types of experiment remained the torsional oscillator, 

largely because a torsional experiment two decades earlier had yielded a null re­

sult [42]. It was important to first duplicate the Kim and Chan results. 

Kim and Chan performed the original torsional oscillator experiments which 

motivates the work presented in this thesis. As a summary, NCRI was observed 

in solid 4He in their torsional oscillator experiment. The phenomenon was first re­

ported for Solid 4He embedded in a porous matrix [10], and was extended to the 

system embedded in a matrix of porous gold [50] (with a characteristic pore size 

two orders of magnitude greater than in Vycor), and also in the bulk crystal [9]. 

The bulk experiments were extended to high pressures [51] and to low 3He impurity 

concentrations [52]. In all cases, the observed NCRI at low temperature was identi­

fied as the onset of supersolidity in 4He. Upon discovering that the NCRI was not 

a confinement effect, all subsequent torsional oscillator studies were performed on 

bulk crystals. 

The torsional oscillator findings by Kim and Chan are noteworthy not simply 

because of their supersolid interpretation, but also because an essentially identical 

experiment was performed 23 years earlier and obtained a null result [42]. Because 

of this discrepancy, it was quickly agreed upon by the low temperature community 

that the experiment needed to be triplicated. NCRI has since been observed in 

commercially pure (0.3 ppm 3He) solid He by four other groups [53, 54, 55, 56]. 

Qualitatively, all five groups observe reproducible phenomena; specifically, NCRI 

with a temperature dependence characterized by saturation in the low temperature 

limit and a gradual decay to zero at higher temperature. Quantitatively, however, 

these experiments do not quite agree on the onset temperature of NCRI (which 

varies between ~ 200 mK and ~ 400 mK), nor do they agree on the magnitude of 

the NCRI (which varies between ~ 0.1% and ~ 1.5%). It should be noted that these 

variations exist not only between groups, but also from sample to sample within 

the same cell. Of all groups that have studied NCRI in solid 4He with torsional 
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oscillators, the group led by Moses Chan has studied hundreds more than anyone 

else (quite literally). 

While there are many details within the torsional oscillator results that could be 

discussed, only those most pertinent to this thesis will be touched upon: 

• The normalized NCRI fraction is unity when the speed of the torsional oscil­

lator annulus is < 10 /xm/s, and decreases monotonically to zero as the speed 

of the torsional oscillator annulus approaches ~ 500 /xm/s [51]. 

• The NCRI fraction at low and high temperature of the identical cylindrical 

solid 4He was studied at 496 and 1173 Hz by a double resonance torsional oscil­

lator and was found to be frequency independent [56]. However, the crossover 

(transition) is frequency dependent; this is the most direct evidence in torsional 

oscillator experiments that the transition shifts/sharpens at low frequency. 

• The effect is limited by a critical velocity vc (rather than a critical stress ac) 

in the torsional oscillator probes [56]. 

• The magnitude of the NCRI displays relative insensitivity to pressure [51]. 

• There exists "zero-field cooled" versus "field cooled" hysteresis. If the sample 

is cooled while under high amplitude drive, then the observed NCRI will be 

relatively small. If the sample is cooled while under low amplitude drive, then 

the observed NCRI will be relatively large; however, subsequently increasing 

the amplitude of the drive will not decrease the magnitude of the NCRI. 

• The magnitude of the NCRI fraction and the onset temperature are highly 

sensitive to the 3He isotopic impurity concentration (at the ppb level) in the 

solid 4He sample [10, 52]. Specifically, the onset of NCRI is broadened and 

shifts monotonically to higher temperature with increasing 3He concentration. 

• There exists a dissipation peak in the torsional oscillators in the vicinity of 

where the NCRI fraction is changing most rapidly [9, 51, 54, 57]. 

• Annealing and disorder in the solid sample also appear to play a significant 

role in the NCRI fraction. In one study, annealing was found to essentially 

eliminate the NCRI signal [54], reducing it from ~ 0.5% to <0.05%. In another 

study, annealing was found to increase the NCRI signal [55] by ~ 10%. It has 
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also been reported that quench cooling the solid sample, as opposed to slow 

freezing, and which results in a highly disordered solid sample, gives a greatly 

increased NCRI fraction [57], upwards of 20%. 

• The effect persists even in single crystals grown at constant pressure [58]. 

• A wide range of NCRI (from order 0.1% to order 10% (and almost order 

100%) has been observed in different cells (e.g., cylinders versus annuli, of 

various surface area to volume ratios, in narrow gaps, and even within the 

same cell!) 

2.4.3.2 Supersolid/solid 4 He theory 

This unexpected experimental result quickly caught the attention of theorists: solid 
4He was, once again, worth devoting some effort to. The overview presented here is 

far from comprehensive. 

A natural starting point for theoretical endeavours would be to determine the 

groundstate of solid 4He, to see if it explicitly displays superfluidity. 

2.4.3.2.1 Questions on the groundstate In the earliest of theoretical treat­

ments, the variational method (an analytical approach) seemed to be the only tech­

nique capable of providing, from first principles, information on the groundstate 

properties of liquid 4He. Understanding that the physical origin of the superfluid 

properties of bulk 4He lay in the phenomena of Bose-Einstein conednsation (BEC), 

it was soon after confirmed [59] that the trial pair-product wave functions (WFs) 

used in these variational calculations for 4He - the Jastrow wave function (JWF) -

also possessed BEC (i.e., possessed off-diagonal long-range order (ODLRO) [60] -

ODLRO tells us whether atoms at one end of the solid are in phase with atoms at 

the other end of the solid, and would supply a mechanism for NCRI). 

On the heels of this theorem, it was conjectured [29] that, for a wide class of 

potentials, the JWF will exhibit crystalline ordering at sufficiently high densities 

(and fluid ordering at low densities). The combination of the above theorem with 

this conjecture is that BEC can occur in a state which exhibits crystalline ordering 

(i.e., that both diagonal and off-diagonal long-range order are possible in a single 

system). It is also found, however, that a crystal will have BEC only if there exists 

groundstate vacancies - an argument which has since been elaborated upon [61]. 
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It has recently been shown, however, that no JWF can describe solid 4He near 

melting, nor can it describe a quantum crystal without an intrinsic population of 

point defects [62]. A much better description of solid 4He is obtained by multiplying 

the JWF by a localization term, centered around the lattice sites and summed 

over a permutation of atoms to lattice sites. This new WF, the Jastrow-Nosanow 

form [63], is very good description of the ground states, however the solid order 

is put in by hand, rather than appearing spontaneously. This variational WF has 

been considered in solid He calculations, and it has been shown that there is no 

off-diagonal long-range order in these trial WFs, for both an infinite sample and 

that confined in a cylindrical annul us [62]. 

An alternate trial WF may be obtained by multiplying by a localization func­

tion which is independent of the lattice site, but still having lattice symmetry [64]. 

With this function, vacancies will be locally attracted to interstitials but they are 

not bound as pairs; as a result the WF has both BEC and NCRI. (However, cal­

culations [65] and experiments [35] on solid 4He suggest that there are no unbound 

vacancies or interstitials at low temperatures.) 

The dilemma, then, is that a number of satisfactory trial functions exists, all of 

them capable of good descriptions of solid 4He, but some give BEC and some do not. 

A more direct, reliable method than such straight-forward analytical approaches is 

required to determine whether the ground state of solid 4He will possess BEC. 

Numerical methods might be the cure for what ails us. 

Galli et al. [66] remind us that the variational theory is very useful to describe 

strongly interacting systems, such as liquid 4He, but that it is always open to de­

bate how much the results depend on the ansatz on the WF, especially for quantities 

other than the energy. They use an advanced variational theory (shadow wave func­

tion variational technique), the accuracy of which has been tested with a projector 

method on the exact groundstate. This projector method is an exact computation 

based on the projection algorithm SPIGS (shadow path integrated ground state), a 

path integrated ground state method which uses a SWF as the starting point. They 

show that solid 4He at T = 0 K has BEC at melting density and above, at least 

up to 54 bar. The condensate fraction is quite small (5 x 10~6 at the melting den­

sity). The key process giving rise to off-diagonal long-range order is the formation 

of vacancy-interstitial pairs. Such defects have a finite probability to be present in 

the ground state of the system; they are not permanent excitation but simply rare 
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fluctuations of the perfect crystal induced by the large zero-point motion. In other 

words, the number of atoms is equal to the number of lattice sites (i.e., the crystal 

is commensurate) and, at the same time, atoms are delocalized. 

The nature of the ground state, whether commensurate or incommensurate, is 

a very important point, and a phenomenological theory [67] has shown that the 

low temperature properties of crystalline 4He would be strongly modified should 

the ground state be incommensurate. There is no fundamental reason why crys­

tals should necessarily be commensurate (i.e., that the number of atoms equals the 

number of lattice sites). With such a high degree of derealization in its atoms, it 

is possible that the groundstate of solid 4He be incommensurate. This issue is not 

completely resolved, and is central to some theoretical efforts exploring the possi­

bility of a superfluid state within the solid phase (although, there now exists strong 

theoretical [2] and experimental [1] evidence that 4He is indeed a commensurate 

crystal). 

Novel PIMC simulations have also been performed by Boninsegni and collab­

orators, in which a new worm algorithm [68] is employed, enabling the accurate 

computation of thermodynamic properties of quantum many-body systems in con­

tinuous space, at finite temperature. The computational scheme allows for efficient 

calculations of the superfluid fraction and off-diagonal correlations in space-time, for 

System sizes which are orders of magnitude larger than those accessible to conven­

tional PIMC. Their consistent observation is of a commensurate hep crystal, found 

to be insulating [69]. 

In the language of path integrals, the question of whether supersolidity is possible 

in a commensurate solid was addressed, as well as what the necessary conditions 

are for this to happen [61]. It is proven that the necessary condition for a solid to 

be also a superfluid is to have zero-point vacancies, or interstitial atoms, or both, 

as an integral part of the groundstate. However, they also find that the supersolid 

groundstate in commensurate solids have a zero probability to be found in nature, 

because of the asymmetry that exists between the activation energies of vacancies 

(1.5 K at the melting curve [65] and 30 K at 50 bars [70]) and interstitials (48 K [71]). 

(Recall that for a solid to be commensurate, the number of vacancies must equal the 

number of interstitials.) There is an overwhelming bulk of experimental work which 

indicates that vacancies and interstitials are activated. They also conclude that 

such crystals made of a single species of particles obeying Bose statistics (e.g., 4He 
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atoms) are always insulating (more precisely, the commensurate supersolid phase 

has zero probability of being observed). 

Simulation computations of energy cannot (to date) be used to decide if the 

groundstate of solid 4He has the number of lattice sites equal to the number of atoms 

(commensurate state) or if it is different (incommensurate state). The best varia­

tional WF, a shadow wave function (SWF), gives an incommensurate state, but the 

equilibrium concentration of vacancies remains to be determined. By means of an 

exact groundstate projector method [72], researchers have computed the one-body 

density matrix in solid 4He for the incommensurate state in which incommensura­

bility occurs spontaneously. 

Returning to attempts to provide an unbiased answer (e.g., one that does not 

rely on a starting WF), Clark and Ceperley [62] use path integral Monte Carlo 

(PIMC) simulations, a numerical method that calculates integrals over the many 

body density matrix. It is ideally suited for this calculation since it can be done 

at finite temperature (under conditions where an experimental signature of NCRI 

has been observed), and is, in principle, exact, and has been validated on many 

properties of liquid and solid 4He [73]. Most importantly, it is independent of a 

trial WF bias or any assumption of lattice. Only the He-He interaction enters: 

a semi-empirical form [74] is known to be accurate; in any case, results suggest 

that supersolid behaviour is a robust phenomena insensitive to fine details of the 

interaction. One drawback of the PIMC technique is that finite size effects are 

common since it is difficult to simulate large systems (eg., greater than several 

hundred atoms). The results of these PIMC calculations are that off-diagonal long-

range order (equivalent to BEC) does not exist in a defect-free hep 4He crystal at 

the melting density. Recall that PIMC does not make a variational ansatz, and 

has the sole assumption that the results at low temperature smoothly approach the 

ground state values. They only performed PIMC calculations at the melting density 

but do not expect different behavior at higher density, since difficulty of exchange 

grows rapidly with density. Furthermore, they conclude that the solid 4He WF has 

correlations which suppress both vacancies and BEC. This result, together with the 

finding of zero superfluid density in a perfect 4He crystal (the superfluid fraction ps 

at T = 0.2 K is zero [71] and there is no off-diagonal long range order (off-diagonal 

long-range order) at T = 0.2 and 0.5 K [75, 62]), suggests that the mechanism for 

the observations of Kim and Chan involves more than equilibrium properties of a 
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commensurate He crystal. 

2.4.3.2.2 Possible supersolid mechanisms Some effort has gone into explor­

ing possible supersolid mechanisms involving lattice vacancies. Simulation compu­

tation, for example, can investigate whether there is a BEC induced by vacancies. 

Based on variational Monte Carlo methods with SWFs [76], it was found that a 

finite concentration of vacancies does induce BEC of the atoms in solid 4He at a 

density close to the absolute zero melting where vacancies are delocalized. How­

ever, no BEC was present in the perfect crystal and in the defected solid at higher 

densities. 

Also within the framework of variational theory [72], vacancy induced BEC 

has been confirmed, with a predicted onset temperature of Tc = 200 mK for 

x«ae = 0.23%. However, this does not explain the large range of NCRI fractions 

associated with this single T c . Moreover, Xyac = 0.23% is beyond empirically im­

posed bounds. 

Using quantum Monte Carlo methods [69], the subject of vacancy-induced su-

perflow has also been investigated. Results from this numerical technique show that 

vacancies are unstable in a 4He crystal. Simulations were performed at 200 mK 

with 800 and 2016 atoms in the crystal under different pressures up to 65 bar, with 

vacancies created by explicitly removing a number of atoms. Various initial con­

figurations with randomly located, remote, and clustered vacancy positions were 

considered, with vacancy concentrations ranging from 0.5% up to 6%. Specifically, 

it was found that the vacancies form clusters and the system phase separates into 

a vacancy-rich phase and a perfect, insulating crystal. (The annealing results of 

Rittner and Reppy [54] are in good agreement with the conclusion that the ground-

state of solid 4He is a commensurate crystal.) Other recent efforts [77] on the 

vacancy-vacancy interaction in solid hep 4He, due to the mutual strain field of the 

two vacancies, also conclude that the interaction between them is attractive (within 

the basal plane). This provides strong evidence that a 4He crystal does not conform 

to any standard supersolid scenario. 

With theoretical arguments in place against the existence of commensurate su-

persolids [61] and the experimental fact of commensurability of the equilibrium solid 
4He at T = 0 supported by extensive experimental work over the past several decades 

(for review, see, e.g., [1]), as well as by the most recent experimental [78, 79] and 
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numeric studies [71], consensus is emerging that the earlier microscopic depictions of 

supersolidity involving vacancies are not practical to explain the increasing bulk of 

experimental data; the commensurability of solid 4He seems to rule out NCRI based 

on BEC of vacancies [28, 29]. It becomes reasonable, then, to consider whether the 

NCR! might be due to quantum behaviour of some higher-dimensional defect. 

The worm algorithm PIMC method has been used to study interfaces in quantum 

solids and, less generally, grain boundaries in solids 4He. In the former, and on the 

basis of the most simple model of quantum crystals - the checkerboard lattice solid 

- it is shown [80] that the superfluidity of interfaces between solid domains can 

exist over a wide range of parameters. In the latter, it is shown [81] that grain 

boundaries in 4He crystals are generically superfluid at low temperature, with a 

transition temperature of the order of about 0.5 K at the melting pressure. (Non-

superfluid grain boundaries are also found but only for special orientations of the 

grains.) Furthermore, proximity to the melting curve is not a necessary condition for 

superfluid grain boundaries, a grain boundary in direct contact with the superfluid 

liquid at the melting curve is mechanically stable, and the observation of grain 

boundary superfluidity [82] is not just a crack filled with superfluid. 

While it is noted that the onset temperatures do not agree, it is even harder 

to reconcile the amount of grain boundary surface area required to account for 

a 1% NCRI effect with the experimentally quantified value. If superfluid grain 

boundaries are the answer, then the average crystallite sizes in solid 4He are 2-3 

orders of magnitude smaller in their characteristic dimension than experimentalists 

would say. Grain boundaries aren't the answer. 

Again with the worm algorithm PIMC method, the cores of screw dislocations 

have been studied [83], finding that the screw dislocation along the hexagonal axis 

of an hep 4He crystal features a superfluid (at T —> 0) core. 

The worm algorithm PIMC method has also been used to observe a metastable 

disordered supersolid (a superglass phase of 4He) [75]. Specifically, the term glass is 

taken to mean a spatially disordered (metastable) phase, indistinguishable from a 

solid (by which is meant a state with broken translational symmetry, immediately 

implying shear rigidity) on short enough time scales. The term superglass is the 

term used for such a phase that also displays superfluidity. It is discovered that the 

low temperature properties of the system crucially depend on the initial states. For 

example, an ideal hep crystal is a clear-cut insulator, while the disordered system 
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freezes into a superglass (a metastable amorphous solid featuring off-diagonal long-

range order and superfluidity). 

In any case, all of the above proposals suggest that the solid samples grown in 

the laboratory contain these sorts of disordered regions (something experimentalists 

already know). The existence of NCRI then depends on whether or not the defect-

rich, superfluid portions of the solid percolate throughout the sample. 

2.4.3.2.3 Non-supersolid mechanisms An alternate explanation is that of 

slippage of the solid [84], due to grain boundary pre-melting between the solid and 

the dense adsorbed layers at the container wall (as opposed to between ordinary grain 

boundaries). A range of film thickness is calculated, and a viscosity is determined 

that accounts for the missing rotational inertia. However, mechanical effects are 

neglected when the equation for the total excess interfacial free energy of the solid-

solid interface is written; as a result, their treatment relates to grain boundary pre-

melting along the melting curve, whereas the phenomena of NCRI happens deep 

within the solid phase. 

A dislocation-induced glass has also been proposed on more than one occasion. 

Using a quantum lattice gas model to describe essential aspects of the motion of 4He 

atoms and of 3He impurities in solid 4He, one of which suggests that 3He impurities 

bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic 

quantum disordered crystal into a metastable supersolid [85]. It is suggested that 

defects and interstitials are produced during the solid 4He nucleation process where 

the role of 3He impurities (in addition to the cooling rate) is known to be important 

even at very small concentrations. It is also proposed that such defects can form a 

glass phase during the 4He solid growth by rapid cooling. 

Motivated by a recent entropy analysis of solid 4He [86], the possible role of a 

dislocation-induced glass was again considered [87]. It was proposed that a glassy 

state develops at low temperatures and is caused by a distribution of tunnelling sys­

tems in the crystal, produced by small scale dislocation loops. It was then argued 

that the reported mass decoupling is consistent with an increase in the oscillator fre­

quency, as expected for a glasslike transition. This concept was subsequently more 

fully developed [88], noting that the decrease in the rotation period is also consistent 

with a solidification of a small liquid-like component into a low-temperature glass. 

Such a solidification may occur by a low-temperature quench of topological defects 
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(e.g., grain boundaries or dislocations), as explained above. The low-temperature 

glass can account for not only a monotonic decrease in the rotation period as the 

temperature is lowered but also explains the peak in the dissipation occurring near 

the transition point. Unlike the non-classical rotational inertia scenario, which de­

pends on the supersolid fraction, the dependence of the rotational period on external 

parameters, e.g., the oscillator velocity, provides an alternate interpretation of the 

oscillator experiments. 

Another recent model for the NCRI is one pertaining to dislocation vibra­

tions [89]. It is argued that a novel vibrational mode of edge dislocation in hep 
4He, excited by the shear stress in the torsional oscillator, can be the origin of the 

NCRI; namely, that they can cause period shift and dissipation of torsional oscilla­

tion. Dislocation theory predicts that the dynamics of the dislocations in bec crystals 

differs from that of the dislocations in hep crystals (the only structure probed by 

torsional oscillators so far). Ultrasonic experiments on hep 4He indicate that basal 

dislocations are mobile so that they can cause sound attenuation and large velocity 

change, whereas similar experiments on bec 3He indicate that dislocations are not 

mobile at low stress amplitude. In this respect, the absence of NCRI in 3He crys­

tals [10] may not be a result of the difference of quantum statistics between the two 

isotopes. The author of Reference [89] rightly states that the decisive experiment 

would be a torsional oscillator measurement on hep 3He. 

2.4.3.2.4 Others Several semi-phenomenological attempts have also been put 

forward. These begin with the assumption that the supersolid phase exists, around 

which a theory is then constructed. The microscopic origin of the supersolid state 

seems to be almost anyone's guess. 

In one theory [90], rotons condense, expand, and fuse into an ordered hexagonal 

lattice of vortex and anti-vortex filaments, described by a single macroscopic WF 

and presented as a supersolid. In another [91], it is suggested that the atomistic 

explanation involves a coherent translation of delocalized point defects which carry 

the "missing" angular momentum in the torsional oscillator experiments. In yet 

another [92], Leggett's idea [30] of "phase flow" is strongly supported. In another, 

zero-point vacancies condense and lead to the formation of a supersolid s tate [93]. 

This theory predicts that x-ray scattering intensity from the supersolid ought to 

have an additional modulation over that of the normal solid, and that the modula-
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tion amplitude is proportional to the NCRI in the torsional oscillator experiments. 

In others still [94, 95], no discussion of the microscopic origin of the supersolid be­

haviour is given, as the result is model-independent or robust and insensitive to 

the details of a microscopic model for the supersolidity. In another [96], thermally 

excited, fluctuating, quantized vortex tangles are the mechanism. 

The microscopic mechanism will really truly only be confirmed through experi­

ment. 

2.4.3.3 Other experiments 

There is a need for other types of experiments to confirm (or not) the supersolid 

interpretation of the torsional oscillator period shifts. 

2.4.3.3.1 Thermodynamic measurements Initial measurements of the spe­

cific heat of solid 4He were performed [86] down to 80 mK, with no sharp feature 

at the onset temperature of the NCRI observable to within 1%. These samples 

were grown with the blocked capillary technique, were not annealed, and contained 

0.3 ppm, 30 ppm, and 760 ppm 3He. A re-analysis [87] of this very same data, how­

ever, does indicate a departure from the conventional T3 specific heat behaviour 

expected at low temperatures, and that the measured entropy excess is several or­

ders of magnitude smaller than the entropy expected from the BEC or A transition of 

a 1% superfluid fraction. This re-analysis also claims that the absence of the entropy 

released at the claimed supersolid transition is puzzling, and that it is consistent 

with their picture of a dislocation induced glassy state in 4He crystals. 

These measurements were then followed by an extremely careful heat capacity 

study [97] on solid 4He samples containing 1 ppb, 0.3 ppm, and 10 ppm 3He. These 

samples were also grown by the blocked capillary technique but were treated with 

substantial annealing. A broad peak in the specific heat was observed, centered near 

75 mK. The authors understand this peak to be the thermodynamic signature of 

the supersolid phase. 

The pressure of the solid phase and of solid-liquid mixtures has also been re­

examined recently. High-precision pressure measurements in hep solid 4He con­

taining 0.3 ppm of 3He, grown by the blocked-capillary technique, have been made 

in temperatures range from 50 to 500 mK [98]. The temperature dependence of 

pressure indicates that aside from the usual T 4 phonon contribution, there is an 
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additional contribution T2 which becomes dominant below 300 mK, and where an 

abnormal behavior attributed to supersolidity has been observed. The authors take 

the data to suggest the appearance of a glassy phase (that might be responsible for 

the anomalous behaviors observed previously) which can be eliminated by substan­

tial annealing. Although, the wider temperature range and greater accuracy of the 

Lin [97] measurements (who used an un-doped Si cell for its small heat capacity and 

high thermal conductivity at low temperature) seems to rule out the existence of 

such a phase. 

Others have measured the melting curve of 4He (< 0.1 ppm 3He) in the temper­

ature range from 10 to 400 mK with the accuracy of about 0.5 /^bar [99]. Crystals 

of different quality (annealed and un-annealed) showed the expected T4 dependence 

(due to phonons) in the range from 80 to 400 mK without any sign of the supersolid 

transition. Below 80 mK, they observed a small deviation from T4 dependence, but 

this was later found [100] to be an anomaly in the elastic modulus of Be-Cu, from 

which their pressure gauge was made. Thus, the melting pressure of 4He follows 

the T4 law in the whole temperature range from 10 mK to 400 mK without any 

attribute of a supersolid transition. 

2.4.3.3.2 Neu t ron sca t te r ing Neutron scattering measurements of the atomic 

momentum distribution n(k) have been performed on solid 4He at temperatures 

between 80 and 500 mK [101], the aim being to determine whether there is BEC 

below the critical temperature, T c = 200 mK, where a superfiuid density has been 

observed. Assuming BEC appears as a macroscopic occupation of the k = 0 state 

below Tc, they find that there is a condensate fraction of no = (-0.10 ± 1.20)% at 

T = 80 mK, and n0 = (0.08 ± 0.78)% at T = 120 mK, consistent with zero. The 

shape of n(k) also does not change on crossing T c within measurement precision. 

The single atom kinetic energy of solid hep 4He has also been measured by 

neutron scattering [102], but no change was observed from 0.4 K down to 70 mK 

(within statistical error of ~2%). Furthermore, values of the single atom kinetic 

energy were unaffected between single crystal and polycrystalline samples, and by 

the addition of 3He impurities (from 0.3 ppm to 10 ppm). Additionally, the lattice 

constant was also found to be independent of tempera ture t o within 0.05%. These 

results suggest that if the supersolid transition in 4He exists, it has a different 

microscopic origin to the superfiuid transition in the liquid. 
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Other recent neutron diffraction experiments [103] have looked for traces of a 

supersolid transition via the Debye-Waller factor. The principal result here is that 

the mean-square atomic displacement in hep solid 4He does not change between 

1 K to 140 mK. Specifically, there is no indication that the supersolid transition, 

if it exists, affects the crystalline lattice or zero-point fluctuations. Depending on 

the model used to describe supersolidity, this quantity is liable to change in the 

supersolid state. 

2.4.3.3.3 First-sound It is expected that ultrasound should be sensitive to 

mass decoupling caused by superfluid-like behaviour, and if a superfluid component 

exists, the sound velocity of a porous material filled with solid 4He could increase. 

Such ultrasonic measurements have been made for a porous Vycor glass filled with 

solid 4He [104], in which they have adopted a continuous wave resonance technique 

that realizes an oscillating velocity of less than 1 x 10~7 m/s (since the reported 

critical velocity from torsional oscillator measurements is very low). The resolution 

of their sound velocity is 10~5 for small oscillating velocities and is enough to detect 

the expected mass decoupling, although no signature of supersolid was observed. 

An investigation of the response of solid 4He to low-frequency, low-level me­

chanical excitation [105] has revealed several anomalous low frequency, non-linear 

resonances with highly sample-dependent onset temperatures (all below ~ 0.8 K). 

Additionally, these features are absent in 3He. However, based on conversations 

with the authors, it is uncertain whether these measurements are actually in the 

solid phase or at coexistence. 

2.4.3.3.4 Second-sound (heat pulse propagation) Heat pulse propagation 

has also been studied in solid 4He between 40 and 500 mK [106]. According to 

theoretical studies [27, 107, 28] of the hydrodynamics of a supersolid state, a fourth 

sound-like mode emerges and the velocities of elastic propagating modes becomes 

modified in the supersolid state. Crossover behaviour from second sound in normal 

solid above 500 mK to ballistic propagation below 200 mK is observed. Detailed 

study is made to search for possible modification of this propagation behaviour by 

the appearance of supersolidity. It is found that the ballistic phonon propagation 

velocity remains constant, within 0.3%, below 100 mK. The temporal evolution 

of the detected pulse shape also does not reveal an anomaly below 200 mK. As 
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possible reasons for a null result, the authors suggest that their bolometer might 

have insufficient sensitivity, that the critical velocity is exceeded during heat pulse 

drive, or that heat pulses simply do not couple well to fourth sound. 

2.4.3.3.5 Flow In one experiment, a superflow of mass was observed through 

a solid 4He sample at solid-liquid coexistence [82]. This superfluid flow was along 

grain boundaries between solid faces, however, and not through the lattice of the 

crystal. Of the thirteen samples studies, three showed this behaviour; two of these 

samples were at 50 mK, but the third was at 1.13 K, suggesting that the phenomena 

is likely not connected to NCRI in the solid. 

2.4.3.3.6 Persistent currents Measuring persistent currents in a solid He 

sample is the smoking-gun experiment. It is also, very likely, the most difficult 

to perform. As of the writing of this thesis, two such experiments are under de­

velopment, but no results have yet been published [108, 109]. A measurement of 

persistent currents in a solid 4He sample would undoubtedly end the supersolid 

debate. 

2.5 Current state of the field 

Although much work has already been done in an attempt to unravel the mystery 

associated with the torsional oscillator measurements, the puzzle is far from com­

plete. And, so, this is where we come in. In order to get to the bottom of things, 

there are fundamental questions that still need to be asked. Those addressed in this 

thesis may be divided into three categories. 

First, there are questions relating to the solid 4He confined in Vycor. Could the 

torsional oscillator NCRI be due to incomplete freezing or a mass re-arrangement 

within the system (both of which could mimic superfluid-like behaviour)? Does 

the solid 4He in Vycor flow when a pressure difference is applied (as it would with 

confined superfluid 4He)? 

Second, there are questions relating to bulk solid 4He. Does bulk solid 4He flow 

when a pressure difference is applied (similarly, as it would with bulk superfluid 
4He)? We concede that this question has been asked before, but felt that it was 

imperative to answer it with a higher degree of sensitivity than previous measure­

ments (as in Reference [41]) and off of liquid-solid coexistence (as in Reference [43]). 

42 



Furthermore, we were interested in probing the effects of extremely small pressure 

gradients, in both the ac and dc sense. 

Third, there are questions about what the elastic properties of solid 4He are doing 

at low temperature. Any mechanical measurement, such as in a torsional oscillator 

or an acoustic probe, involves mass/density/inertia effects and/or the elastic moduli. 

Is the frequency change in torsional oscillator entirely due to ps/p, as assumed? Does 

ps decouple from the lattice (i.e., from p) in acoustic/2nd/4*'1 sound? There is great 

need to directly measure , for example, the shear modulus of solid 4He in the same 

temperature range, amplitude range, frequency range, 3He impurity concentration 

range, etc., of the torsional oscillator experiments. 
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Chapter 3 

Experimental Methods 

This chapter contains the relevant information on all of the equipment and proce­

dures used that are common to the set of experiments described in the following 

chapters of this thesis. 

3.1 Gas handling system 

To admit clean gas to the experimental cells in a controlled manner and to the 

desired pressure, a gas handling system was constructed (Figure 3.1). Its features 

are described below. 

Incoming gas from the cylinder to the cell may be run through a standard LN2 

cold trap (27.1 cm3) filled with a molecular sieve (Union Carbide; Type 13X). The 

molecular sieve is a synthetic, crystalline, activated alumino-silicate having a pre­

cisely controlled pore size of about 10 A) and is used to remove condensable gases 

before they reach the coldest parts of the fridge, blocking fill lines and wreaking 

general havoc. 

The gas handling system is also equipped with a room temperature pressure 

gauge (Setra Model 205-2, 0-5000 psig). For pressures less than about 7 bar (e.g., 

measurements on liquid helium at saturated vapour pressure), gas may be admit­

ted to the cell in a controlled manner via a flow controller (MKS Instruments; 

PR 4000), at rates as low as 0.2 seem. This flow controller is on temporary loan 

from Dr. Mark Freeman, as the one we initially planned on using (Sierra Instruments, 

Inc.; Model 810C Mass-Trak Mass Flow Controller) gave us some unexpected prob­

lems. The model 810C is made with nylon components and is a few hundred dollars 

less expensive than its 810S stainless steel counterpart. What you gain in monetary 

savings, you apparently sacrifice in the outgassing from the nylon components of 

44 



whatever chemicals were used by the manufacturer to clean the controller before 

shipping. 

Adjustable safety relief valves (R3A Relief Valves; Swagelok) were also installed 

to protect the important parts of the system. The system also includes a 66.9 cm3 

ballast volume, machined to accommodate pressures up to 200 bar. 

3.2 Dilution refrigeration 

Cooling power was provided to the cell by way of dilution refrigeration. The concept 

of the dilution refrigerator is about 55 years old, and a detailed explanation of its 

operation and physical basis may be found elsewhere (e.g., [11]). Here, I will simply 

introduce the subject of dilution refrigeration, on account of its importance in all 

aspects of this work. 

Cooling from room temperature down to 4.2 K is easily achieved by keeping the 

cryostat immersed in a bath of liquid helium, surrounded by an outer bath of liquid 

nitrogen. Further cooling to about 1 K is achieved by pumping on a container (the 

"1 K pot") of liquid helium. As the helium refrigerant evaporates, it absorbs energy 

from its surroundings, cooling the cryostat. Pumping on the 1 K pot removes the 

gaseous helium, thereby allowing the liquid-gas phase transition to continue. 

Cooling far below 1 K is not possible using conventional refrigeration techniques; 

however, through dilution refrigeration one can cool as low as 2 mK in continuous 

operation. 

The underlying principle behind dilution refrigeration is that at sufficiently low 

temperatures (about 0.8 K), a mixture of 3He and 4He will spontaneously phase 

separate, as shown in Figure 3.2. The lighter, 3He-rich fraction (actually, pure 3He 

at absolute zero) floats on top of the heavier, 4He-rich fraction (typically containing 

roughly 94 % 4He and 6 % 3He). 

All helium atoms are attracted to one another by van der Waals forces; how­

ever, as a 3He atom is much lighter than its He counterpart, it has a much more 

rumbustious zero point motion. As a result, 3He atoms keep further apart from 

each other than 4He atoms do; in fact, the molar volume of liquid 3He is about 

26% greater than that of liquid 4He. As the atoms in the 4He-rich fraction can 

pack together more closely, the forces between the atoms are greater. Accordingly, 

all helium atoms prefer to be surrounded by 4He atoms. Conveniently, this means 

that the heavier fraction will attract 3He atoms. These two fractions are generally 
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Figure 3.1: Schematic diagram of the gas handling system used in all experiments. 
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Figure 3.2: The phase diagram for a mixture of 3He-4He as a function of tempera­
ture [11]. 

referred to by their relative proportions of 3He atoms; specifically, the lighter, pure 
3He fraction is known as the concentrated phase, while the heavier, 4He-rich mixture 

is known as the dilute phase. 

Now, if a 3He atom can be persuaded to move from a relatively weakly bound 

state in the concentrated phase (surrounded only by other 3He atoms) across the 

phase boundary to a more strongly bound state in the dilute phase (with few other 
3He atoms), then it must absorb heat from its surroundings in the process (explicitly, 

absorption of the latent heat of mixing). It is this very transport of 3He atoms 

across the concentrated-dilute phase boundary that cools the dilution refrigerator 

and provides accessibility to the millikelvin temperature range. This cooling process 

dilutes the 4He-rich fraction, which is how the term dilution refrigeration gets its 

name. 

In order to take advantage of the latent heat of mixing of the two helium isotopes 

and achieve these low temperatures for extended periods of time, it is necessary to 
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continuously remove 3He atoms from dilute phase. Figure 3.3 demonstrates this 

concept by showing the main components of a working dilution refrigerator and a 

flow diagram for its liquids. 
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SUII heat 
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Figure 3.3: Schematic of a 3He-4He dilution refrigerator, with its main components 
and a flow diagram for its liquids [11]. 

The 3He begins its tour at the exit of a room temperature pump by moving into 

the refrigerator and through its first stage of pre-cooling, a bath of liquid 4He at 

4.2 K. From there, the 3He is condensed as it moves through a second liquid 4He 

bath, kept at about 1 K by evaporation of 4He (labelled "From 1.5 K condenser" in 

Figure 3.3. Appropriate flow impedances are put in place here to establish sufficient 

pressure for the incoming 3He to actually condense (and to prevent re-evaporation 
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further down the line) at these temperatures. The now liquid 3He will flow through 

heat exchangers (one of which is in thermal contact with the still, described below, 

at 0.7 K) and into the upper, concentrated phase in the mixing chamber. Recall 

from Figure 3.2 that the fluid is in a two-phase region at these temperatures. A 

wider tube leaves the lower, dilute phase of the mixing chamber and passes through 

the heat exchangers to pre-cool the incoming 3He. It flows into the dilute liquid 

phase in the still, where the liquid 3He concentration is typically less than 1%, 

while the vapour above this dilute liquid phase has a 3He concentration of about 

90%. This is due to the high vapour pressure of 3He (as compared to 4He) at these 

temperatures (as shown in Figure 3.4). The 3He concentration gradient between 

the mixing chamber and the still results in an osmotic pressure that drives the fluid 

along the line. 

Figure 3.4: The vapour pressures of 3He and 4He as a function of temperature [11]. 

By pumping on the still and re-supplying this vapour to the condensation line 

continuously with 3He, we achieve a closed circuit! 3He is forced down the conden-
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sation line, then, again, after liquefaction and pre-cooling, it enters the concentrated 

phase in the mixing chamber. Here it will cross the phase boundary (because we 

are preferentially removing 3He atoms at the phase liquid-vapour phase boundary in 

the still), giving rise to cooling (the latent heat of mixing). It will eventually leave 

the mixing chamber and be driven up to the still via osmotic pressures, where it will 

be forced to evaporate. As mentioned before, the circulation of 3He is maintained 

by a pumping system at room temperature. 

3.3 Pressure measurements 

In the study of solid (or liquid) helium, a knowledge of the pressure on the sample is 

often desirable. Using the known relationship between the molar volume or density 

and pressure, a measurement of pressure provides a rather convenient means for 

determining the density of a sample. Furthermore, the pressure can provide key 

fundamental information. Its usefulness in studying first-order transitions, such as 

the melting curve or crystallographic phase transitions, is obvious. As the parti­

tion function Z contains all the thermodynamic information, and recalling that the 

pressure is related to Z by 

P = kT(dlnZ/dV)T, (3.1) 

a study of the pressure versus temperature of a system at constant volume can 

provide an abundance of knowledge. 

When studying liquids, the pressure of the system can be measured readily by 

some room temperature gauge in the external sample line. This is not possible in 

solids, however, as the solid plug in the sample line fill results in a pressure inhomo-

geneity between the sample cell at low temperature and the rest of the experimental 

system. In this case (and for constant volume measurements in the liquid) the 

pressure must be measured in situ. To this end, the Straty-Adams [110] capacitive 

pressure gauge was developed. The gauges are highly sensitive, extremely stable, 

have essentially no hysteresis, and are affected very little by changes in temperature 

below 4.2 K. Additionally, they have been operated at temperatures as low as about 

10 mK, producing negligible heating at these low temperatures. 

All of our in situ pressure measurements were made using homemade Straty-

Adams gauges. 
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The body of the Straty-Adams gauge is constructed out of beryllium cooper 

(BeCu) and consists of a thin diaphragm (usually between 0.2 - 0.4 mm thick, 

depending on the pressures at which the gauge will be used) machined inside of 

an otherwise hollow cylinder (typically 9.5 mm o.d. and ~1 cm long), as shown 

in Figure 3.5. The body of the gauge is soft-soldered into a seated hole in the cell 

wall. The active part of the strain gauge faces the inside of the sample chamber, 

whose pressure is to be determined; on the other side of the diaphragm, there is a 

small post onto which a brass capacitor plate is fixed with epoxy. All epoxy used 

was BIPAX Tra-Bond BA-2151 [111], which has proven to provide reliable contact, 

even upon repeated thermal cycling between room and low temperatures. A second 

capacitor plate, fixed to a brass lid with epoxy, sits above the first, forming a parallel 

plate capacitor. As the pressure in the sample chamber is increased, the diaphragm 

of the Straty-Adams gauge is forced upwards, decreasing the separation between 

the capacitor plates and thereby changing their capacitance. Each capacitor plate 

includes, of course, a wire which runs from the inside of the gauge to the outside, 

so that we can measure the capacitance of the plates. Capacitances were measured 

using an automatic bridge operating at 1 kHz (Andeen-Hagerling 2550 A). The 

leads from the gauge to the bridge are coaxial Cables. The plate separation is set by 

pressurizing the cell to the absolute maximum working pressure of the cell (typically 

about 100 bar) and then fixing the lid (with the affixed top capacitor plate) to the 

outer circumference of the Straty-Adams gauge body with epoxy (in this scenario, 

the plates are in contact and the capacitor is shorted). Once the epoxy has cured, the 

pressure in the cell is reduced leaving a plate separation on the order of 0.01 mm. A 

simple capacitance versus pressure calibration at 4.2 K against a room temperature 

pressure gauge (e.g., we use a Mensor Model 4040 pressure gauge, for the 0-70 bar 

range) is then all that remains to be done before we can use the gauge at low 

temperatures. 

Pressures may be reported with one of any of an overabundance of possible 

units. At some point in their studies, a student of low temperature physics typi­

cally encounters the Pascal, the bar, the torr, the atmosphere, the p.s.i. (absolute, 

differential, and gauge), the mmHg, and the kg/cm2. In this thesis, I will keep the 

pressures I report in units of bars (which is the SI Pascal [N/m2] reduced by a factor 

of 105) - the most sensible unit, in my opinion. 
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Figure 3.5: Schematic of our homemade Straty-Adams pressure gauges. 

3.4 Temperature measurements 

Thermodynamically speaking, temperature is the quantity in two systems which 

takes the same value in both systems when they are brought into thermal contact 

and allowed to come to thermal equilibrium. The temperature of a system is related 

to the average energy of microscopic motions in the system. This energy occurs 

as, for example, the translational motion of a particle or as internal energy of a 

particle, such as a molecular vibration or the excitation of an electron energy level. 

The process of cooling, generally speaking, involves removing energy from a system. 

When there is no more energy available to be removed, the system is said to be at 

absolute zero: the point on the thermodynamic (absolute) temperature scale where 

all kinetic motion in the particles comprising matter ceases and they are at complete 

rest in the classical (i.e., non-quantum mechanical) sense. Emphasis must be put 

on the word classical. By definition, absolute zero is a temperature of precisely 0 K 

(-273.15 °C or -459.67 °F). 

3.4.1 Thermometry 

At the most basic level, a thermometer is a device with a measurable output that 

changes with temperature in a reproducible manner. If an equation of state can 

be written for a thermometer without introducing any unknown, temperature-

dependent quantities, then such a thermometer is called a primary thermometer. 

These include gas thermometers, acoustic thermometers, noise thermometers, and 

total radiation thermometers, to name but a few. A secondary thermometer is one 

whose output must be calibrated against defined fixed temperature points. 
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Primary thermometers are typically impractical (usually because of their size, 

speed, and/or expense), and so secondary thermometers are used for most applica­

tions. The standard practice is to use secondary thermometers that have first been 

calibrated to an internationally recognized temperature scale based on primary ther­

mometers and fixed points. The most recent efforts in defining a temperature scale 

have resulted in the International Temperature Scale of 1990 (ITS-90) [112], whose 

lower limit is 0.65 K, and the Provisional Low Temperature Scale of 2000 (PLTS-

2000) [113], which extends all the way down to 0.9 mK. 

Even if a thermometer is properly calibrated, problems can arise for any number 

of reasons; for example, if the thermometer is not in sufficient thermal contact with 

the object whose temperature is to be measured, if the currents used to excite it 

cause self-heating (which is exceedingly an easy thing to do at the lowest tempera­

tures, where even a few picowatts can cause a temperature error), or if its internal 

thermal response time is inconveniently long. It is essential to choose appropriate 

thermometers for the planned measurements, to mount and use them properly, and 

to view the temperature they report with a hint of skepticism. Whenever possible, 

more than one thermometer should be used so that you may check for consistency. 

3.4.1.1 Germanium thermometers 

Germanium resistance thermometers are the most convenient choice for measuring 

temperatures above 100 mK. They are sensitive, they respond rapidly, their calibra­

tions are very stable, and they work directly with our digital temperature controllers 

(Conductus LTC-21 and NeoceraLTC-21). Temperature dependent semiconductor 

resistance is exceptionally sensitive to doping during the manufacturing process, and 

so germanium resistance thermometers are secondary thermometers which must al­

ways be individually calibrated. Sensor resistance varies from several ohms at its 

upper useful temperature to several tens of kilo-ohms at its lower temperature. 

Device sensitivity increases rapidly with decreasing temperature, meaning that a 

high degree of resolution is achieved at lower temperatures: these resistors are very 

useful for sub-millikelvin control at 4.2 K and below. The germanium resistance 

thermometers sensors have excellent stability, ± 0.5 mK reproducibility at 4.2 K, 

and 200 ms thermal response t ime at 4.2 K. 

Germanium resistance thermometers are measured in a standard 4-terminal re­

sistance assembly, as the leads include part of the germanium chip itself and so 
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have resistance and temperature dependence comparable to that of the actual ther­

mometer. Our germanium resistance thermometers are purchased commercially, 

hermetically sealed into little copper cans with a small dose of 4He gas for thermal 

contact (or 3He for the lowest temperature gauges). We customarily insert the sen­

sor into a cylindrical copper mounting block, with the chip's electrical leads wrapped 

around the circumference (which serve as the thermometer's main thermal contact 

below a few hundred millikelvin), as shown in Figure 3.6. 

Figure 3.6: One of our germanium resistance thermometers, mounted into a cylin­
drical copper mounting block, next to a dime for scale. 

In general, resistance thermometers are quite susceptible to self-heating and 

electrical noise pick-up at temperatures below 1 K. At the lowest temperatures, the 

sensor excitation is reduced to keep ohmic heating of the thermometer below about 

10 fW. If we consider, for example, a 25 kfi sensor (a typical resistance at 50 mK), 

the excitation voltage should be kept below about 15 fiV or the excitation current 

kept below about 0.6 nA. Our temperature control bridges can operateat fW levels, 

but electrical noise pickup (i.e., Joule heating, mostly radio frequency) often results 

in substantially larger thermometer readings. To reduce this noise, we install an L-C 

radio frequency filter box between the feedthrough at the top of our cryostat and the 

cable to the temperature control bridge. Even with these precautions, germanium 

resistance thermometers on their own should only really be trusted down to about 

100 mK. 
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3.4.1.2 3 He melting curve thermometers 

Possessing a pressure-temperature relation with high sensitivity down to millikelvin 

temperatures, the 3He melting curve (Figure 3.7) provides an excellent low temper­

ature standard. Gauges can easily be constructed which very accurately measure 

the melting pressure of 3He (as discussed in section 3.3), meaning that for accurate 

temperature measurements much below 100 mK, the 3He melting curve thermome­

ter [114] is the way to go. It is the basis of the current PLTS-2000 [113] below 

700 mK, has high sensitivity, operates down to 1 mK, and doesn't suffer from self-

heating. The thermal response time can also be relatively short (although ours is 

rather longer, at 10's of minutes below 50 mK). 

10"" NT3 10"2 10"1 1 10 

Temperature T (K] 

Figure 3.7: 3He pressure-temperature phase diagram [11]. 

It has the significant advantage of having several fixed points incorporated into 

the scale: the temperature at the minimum of the melting pressure (Tmi-n); the su-

perfluid transition (T/i); the A-B transition (T^g); and, the solid ordering transition 

(Tso)- The fixed points are given in Table 3.1. Of course, only Tmi„ is accessible 

with our dilution refrigerator. 

The polynomial which describes the 3He melting curve is given by 
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Pressure (bar) T2ooo (mK) 

*-min 

TA 

T A B 

Tso 

29.3113 315.24 
34.3407 2.444 
34.3609 1.896 
34.3934 0.902 

1 points of the 3He melting curve, used 

Coefficient PLTS-2000 
a-3 
a-2 
a_! 
ao 
ai 
&2 
»3 
a.4 
a5 

a6 
a7 

a8 

a9 

-1.3855442 x lO"1'2 

4.5557026 x 10~9 

-6.4430869 x 10"6 

3.4467434 
-4.4176438 
1.5417437 x l O 1 

-3.5789853 x 101 

7.1499125 x 101 

-1.0414379 x 102 

1.0518538 x 102 

-6.9443767 x 101 

2.6833087 x 101 

-4.5875709 x 10° 

Table 3.2: The fixed points of the 3He melting curve, used for the PLTS-2000. 

+9 

P = J2 a«Tn (3.2) 
ra=—3 

where P is in MPa and T is in Kelvin. The coefficients, a,,, are given in Table 3.2. 

To obtain temperature in terms of the measured pressure requires inversion of the 

Equation 3.2. The simplest method, and the one we used, is to generate tables of 

T(P) and use a standard fitting package (Microsoft Excel will suffice) to fit short 

lengths of the curve. 

With our digital capacitance bridge (Andeen-Hagerling 2550 A, operating at 

1 kHz), using a 3He melting curve thermometer is quite convenient; although, the 

thermometer must be calibrated against a room temperature pressure standard (we 

used a room temperature Mensor Model 4040 pressure gauge, 0-100 bars) at the 

beginning of each run (and it likely requires re-calibration if warmed above 700 mK). 

For optimal operation, the 3He melting curve thermometer (like all thermometers) 

must be well thermally anchored to the system of interest. 

The initial pressure versus capacitance calibration can be conveniently done at 
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around 1 K, before starting circulation in the dilution refrigerator. The gauge is first 

filled to about 35 bar; starting circulation in the refrigerator causes the capillary 

to block at about 0.75 K, with a suitable 3He density in the gauge (i.e., so that 

it contains a solid/liquid mixture at all lower temperatures). During cooling, the 

capacitance at the 3He melting curve minimum (315.24 mK) needs to be measured, 

since the pressure calibration must be corrected for the hydrostatic head in the fill 

capillary. With the pressure versus capacitance calibration available, the measured 

capacitances can be converted into pressures and subsequently into temperatures 

using the PLTS-2000 temperature scale. 

Figure 3.8: Our (broken) 3He melting curve thermometer, next to a dime for scale. 

3.4.1.3 60Co nuclear orientation thermometers 

This technique relies on the magnetic ordering of nuclear spins and the general 

theory of nuclear orientation has been formulated by several authors (see, for ex­

ample, [115]). The principle is that when a radioactive nucleus decays by emitting 

a 7 quantum (more specifically, 0~ decay feeds a short-lived excited state, which 

then decays by emission of 7-rays) there is a certain anisotropic angular emission 

probability depending on the initial nuclear spin direction and characteristic of the 

decay (i.e., the emission is less probable along the axis of the spin). A collection 

of nuclei also shows anisotropic properties in the intensity of radiation, provided 
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that the nuclear spins are oriented (polarized or aligned). Assuming that a mag­

netic field is somehow applied (discussed below), the anisotropy of this radiation 

is temperature dependent and the absolute temperature is thus a function of the 

measured intensity. Specifically, the emission rate is lower in the directions parallel 

and antiparallel to the field than in other directions. By warming up the spin sys­

tem, the overall emission becomes isotropic as the nuclear alignment/magnetization 

is destroyed. Comparing the emission rate along the axis at low temperatures with 

that at high temperatures (really, anything much over 50 mK) allows the low tem­

perature to be readily deduced. By taking this ratio many experimental factors 

cancel and the result can be related directly to the temperature of the nuclei, thus 

forming a primary thermometer. 

The advantage of using 7 emitters is that detection can be from outside the 

cryostat with no wiring necessary inside the cryostat. In a typical setup (such as 

ours) the radioactive nuclei are 60Co atoms, which have a half-life of 5.26 years. 

These are arranged to be in a single crystal of ordinary ferromagnetic 59Co, so that 

the macroscopic orientation axis does not have to be provided by an externally 

applied field. Our sample is in the shape of a needle (parallel to the crystallographic 

c-axis) so that domains are aligned in opposition. This provides a well-defined 

orientation axis, but no net external field. The strength of this field defines the 

temperature range within which the nuclei polarize, being roughly between 100 mK 

and 1 mK. 

The 60Co nuclear orientation thermometer provides a very reliable way to make 

sure that other thermometers are reading correctly, since there is virtually noth­

ing that can go wrong with it. It is a primary thermometer, requires no electrical 

or capillary connections, is immune to electrical noise, has negligible self-heating 

at dilution refrigeration temperatures, and has maximum sensitivity at the fridge's 

base temperature. Also, the high-energy 7 rays are very penetrating, so no spe­

cial windows are needed in the cryostat. On the downside, it requires the use of 

a (relatively) large scintillator and associated counting electronics, is insensitive to 

temperatures above about 50 mK, and requires long count times for accurate tem­

perature measurements. 

Typical count rates are less than 100 7/second, so about 100 seconds are re­

quired to get a 1% accuracy, which still corresponds to a fairly large temperature 

uncertainty. We usually count for 1000 seconds at the most interesting spots in our 
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experiments. 

As a millikelvin thermometer, it requires a clean, flat mounting surface and 

substantial clamping forces. Count rates must be measured along the cobalt crystal's 

c-axis. Our cobalt crystal is soft-soldered onto a copper wedge for easy mounting. 

The direction of the cobalt needle is recorded (height and position) so that the 

scintillator may be properly positioned once the dewar is raised. Given its simplicity 

and compactness, it is a thermometer worth mounting whenever you might even 

possibly consider cooling down to 50 mK. 

Figure 3.9: Our 60Co nuclear orientation, next to a dime for scale. 

3.5 Computer control 

Data transcription was all but fully automated for the experiments. Various Lab-

VIEW programs were either cannibalized from previous students and re-organized 

into the desired format or plainly written from scratch. Lab VIEW software was 

also employed to communicate with the temperature bridge (for temperature con­

trol) and with the capacitance bridge (for example, to set the excitation voltage). 

Lastly, a Lab VIEW program was occasionally used simply to display real-time data 

in chart format (which offers significant advantages over watching LED numbers 

change when trying to determine when a signal has stabilized). 
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Chapter 4 

Dielectric Measurements of 
Helium Freezing in Vycor 

The observation of NCRI in solid 4He confined in porous Vycor was the first of the 

NCRI papers published by Kim and Chan. The supersolid interpretation of these 

results is quite extraordinary. Extraordinary claims require extraordinary evidence, 

which is what Kim and Chan continue to work on; equally important, though, is that 

the ordinary explanations be eliminated from the pool of possible solutions to the 

problem if the extraordinary claim is to gain acceptance in the scientific community. 

It is important to recall from Chapter 3 that a torsional oscillator measures the 

moment of inertia of an added sample (and not simply the mass!). For example, 

migration of solid 4He out of the porous glass would change the moment of inertia 

of a torsional oscillator cell and mimic superfluid decoupling. This turned out to be 

the case with molecular hydrogen [116]. 

A torsional oscillator technique was used to measure the H2 mass inside of porous 

Vycor glass as a function of temperature and initial H2 filling. At a certain tempera­

ture T c , the resonant frequency of the torsional oscillator began to increase sharply: 

there seemed to be less H2 contributing to the moment of inertia of the torsional 

oscillator at T < T c than was originally condensed into the Vycor, as shown in 

Figure 4.1. In other words, below T c some of the H2 seemed to no longer be par­

ticipating in the oscillations. Could it be that the hydrogen had undergone a phase 

transition, becoming supersolid and thus unwilling to rotate with its container? In 

short: no. The same group independently determined with a capacitor filled with 

Vycor that H2 molecules once adsorbed in Vycor leave it when the temperature is 

decreased. Their capacitance measurements indicate that at T < T c H2 starts to 

leave the Vycor (apparently there is a de-wetting transition here that results in an 
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expulsion of mass from the Vycor sample), in good agreement with their torsional 

oscillator experiment. 
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Figure 4.1: Frequency difference Af(T) (equal to the resonant frequency of the 
empty oscillator minus the mass loaded frequency) in cooling (o) and warming (•) 
for n = 1.1 mmole H2. The inset shows the data near T c = 12.2 K. No hysteresis 
can be seen [116]. 

Structural transitions have also been seen in a number .of adsorbates in Vycor. 

For example, a de-layering was observed in an argon layer near the pore surface [117] 

and crystallographic phase transitions exist for oxygen and argon at low tempera­

tures [118, 119]. Also, solid argon and krypton have been seen [120] to migrate 

out of the pores well below their freezing temperatures. The well of alternative 

explanations is deep. 

When 4He is confined in the pores of Vycor, a number of measurements [121, 

122, 123] have shown that the freezing curve is shifted upward by about 15 bar and 

to the left by about 0.6 K, as is shown in Figure 4.2. 

Adams et al. [121, 122] have performed a series of experiments on the freezing of 
4 He in Vycor and have inferred a density change substantially smaller t han in bulk. 

It is not expected that the first monolayer or two of adsorbed atoms would experience 

an increase in density when freezing occurs in the pores (which is not unreasonable, 
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Figure 4.2: The pressure-temperature phase diagram of 4He confined in 60-A Vycor 
glass [122] and of bulk 4He. Points shown are: (+) A transition; (o) onset of freezing; 
(•) completion of freezing; (A) completion of melting. 

since the van der Waals force on the 4He near the surface will produce a liquid with 

a density that is likely already near that of the solid). They assume that no change 

in density occurs in a 6-A-thick layer immediately next to the pores wall (i.e., does 

not participate in freezing), resulting in a remaining effective volume of the pore 

equal to roughly half that of the empty pore (i.e., only half of the pore volume is 

involved in freezing). This reasoning is consistent with their observations of the 

change in molar volume on freezing in the pores of Vycor, as shown in Figure 4.3. 

The average latent heat of freezing in the pores was also determined by using 

the time interval required for freezing to take place and the measured heat current 

from the cell. The latent heat of freezing of the 4He confined in the Vycor is shown 

in Figure 4.4, where that of bulk is included for comparison. The latent heat of the 

pore 4He is greater than for bulk (and has a weaker temperature dependence). This 

is not unreasonable, as most of the entropy in the bulk liquid has been removed by 

the A-transition at 1.8 K, while the superfluid transition'in the freezing Vycor liquid 

does not occur until the reduced temperature of 1.4 K. 

If Figures 4.3 and 4.4 are a reflection of incomplete freezing in the pores, then the 

decoupling seen in the torsional oscillator experiments could be occurring in a liquid 
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Figure 4.3: Molar volume change on freezing in the pores of Vycor versus pressure. 
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Figure 4.4: Latent heat of freezing in the pores of Vycor versus temperature. Bulk 
values are shown for comparison [122]. 
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layer up against the pore wall, rather than in the solid 4He. It is also important to 

rule out explanations based on a redistribution of mass. 

4.1 Experimental design 

The motivation behind the experiment described below is that alternative expla­

nations to the NCR! observations exist and must be investigated. We have used a 

capacitive technique to study the density changes associated with freezing of 4He in 

Vycor and at lower temperatures where Kim and Chan observed NCRI. 

4.1.1 Cell construction 

The density, pressure, and temperature measurements were performed simultane­

ously in one cell. A schematic and true picture of the cell are shown in Figures 4.5 

and 4.6, respectively. The sample was sealed into an oxygen-free high conductivity 

copper pressure cell with a volume of 1.2 cm3, much larger than the 0.018 cm3 vol­

ume in the Vycor pores. The bulk 4He, therefore, acted as a reservoir which kept the 

pressure essentially constant when 4He in the pores froze. Crystals were grown us­

ing the blocked capillary technique. The cell incorporated an in situ Straty-Adams 

pressure gauge, soft-soldered into the side of the cell, and was mounted onto the 

bottom of the mixing chamber of our dilution refrigerator. A 0.004" i.d. capillary, 

thermally anchored at several points on the fridge, was used to introduce 4He to the 

cell. Temperatures were measured with a calibrated germanium thermometer above 

about 50 mK, with a 60Co nuclear orientation and/or 3He melting curve thermome­

ter for lower temperatures. A spring loaded clamp arrangement held the thin Vycor 

parallel plate capacitor inside the cell. 

4.1.2 Vycor sample 

Vycor, a Corning product, is a porous glass that is mechanically hard and strong, 

non-dusting, non-flaking, and chemically inert, distributed by BES Optics [124]. 

Vycor is 96% silica, but unlike pure fused silica it can be readily manufactured in a 

variety of shapes. 

Vycor products are made by a multi-step process. First, a relatively soft alkali-

borosilicate glass (75% SiC>2, 20% B2O3, and 5% Na20) is melted and formed by 

typical glass-working techniques into the desired shape. Second, the glass is heat 

treated, which causes a slow liquids-liquid diffusion to occur, resulting in separation 
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Vycor capacitor 
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Figure 4.5: Schematic of the freezing cell. 

Figure 4.6: Image of the freezing cell, next to a Canadian quarter for scale. 
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into a SiC>2-rich phase and a E^Os-alkali-oxide-rich phase. Third, after the glass 

has been heat treated and annealed, it is then soaked in a hot acid solution, which 

leaches away the soluble boron-rich phase, leaving an almost pure silica skeleton. 

The resulting Vycor glass (code 7930) is an opalescent, open-cell, porous glass 

which exhibits excellent absorbing properties. Due to its porosity, this material has 

an internal surface area of approximately 200 m2/g. Even a small bead of "thirsty" 

glass presents a very large adsorbing surface. 

Figure 4.7 shows a TEM image of Vycor. In general, such images of Vycor 

show a material with a homogeneous distribution of mass and a disordered network 

of randomly and multiply interconnected cylindrical pores 3.5 nm in radius and 

roughly 30 nm in length [125]. The pore interface roughness has an upper cutoff of 

less than 2 nm. Our Vycor sample was a thin disc with a diameter of 12.7 mm and 

a thickness of 0.52 mm. The porosity of the Vycor sample is <f> = 0.28, denned as 

the ratio of open spaces (pores) to the volume of solid matter. 

Figure 4.7: TEM image of porous Vycor glass [126]. Pores are shown in black, glass 
in shown in white. 

4.2 Measurements in Vycor 

The capacitor plates were copper thin films deposited directly onto the Vycor disc by 

thermal evaporation, as shown in Figure 4.8 (deposited at ~ 3-4 A/sec to a thickness 

of ~ 100 nm) and a circular area of 0.71 cm2. Before depositing the electrodes, we 
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dusted the Vycor with a 40 [xm cobalt powder (held in place by a magnet placed 

behind the sample). 

magnet 

Vycor 

4 4 \ 
"• sprinkling 
of Co powder 

Cu source 

Figure 4.8: Schematic of electrode deposition onto Vycor. 

After deposition the powder was removed, leaving an electrically continuous 

electrode with perforations (about 10 % of the area) to allow the 4He easy access 

to the pores, as shown in Figure 4.9 and, schematically, in Figure 4.10. At 4.4 K 

the empty sample had a capacitance Cvycor = 3.7257 pF, roughly what would be 

expected from the manufacturer's quoted dielectric constant for Vycor (evycor — 3.1 

at 25 fiC and 100 Hz). 

(For the sake of future students, it is well worth noting that the room temper­

ature capacitance of a Vycor-filled parallel-plate capacitor can change by as much 

as a factor of two(!) due to the dielectric contribution of adsorbed water. Recall 

that Vycor has hundreds of square meters of surface area per gram of mass. To be 

confident with your capacitance measurement, the Vycor should first be baked and 

under vacuum to minimize its moisture content.) 

4.2.1 Capacitance as a measure of density 

When 4He is admitted to the pores of Vycor, the capacitance increases due to 

the change in dielectric constant (e#e - 1) within the pore volume. Note that the 

dielectric constant of liquid 4He is quite small, £(r=o) = 1-0572 [127]. The Clausius-

Mosotti equation relates the dielectric constant e to the mass density p, the molar 

mass M, and the molar polafizability a of a non-polar medium. The equation takes 

Al sample holder — 
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Figure 4.9: Image of t he Vycor capacitor. 

Copper electrodes 

Vycor 

Figure 4.10: Schematic image of the Vycor capacitor. 

the form 

(e - l ) / (e + 2) = (47r/3M)pa. (4.1) 

If the 4He acted as a uniform dielectric, we would expect the capacitance change 

in our setup, AC, to simply be proportional to the porosity of the Vycor capacitor, 

</>, as 

A C = 4>{eHe - 1)C0, (4.2) 

where 

C0 = £ 0 | (4.3) 

is the geometric capacitance of our Vycor capacitor. Given our sample thickness 

(d ss 0.52 mm) and effective electrode area (A « 0.78 cm2, which includes an addi­

tional 10 % effect from fringe fields), C0 « 1.33 pF. There will be a contribution to 

the Capacitance increase from compression (and density increase) of the solid 4He 

surrounding the capacitor, but our Vycor sample extends well beyond the edge of 

the capacitor electrodes and so this contribution is assumed to be zero. The inter-

* 
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ested reader is directed to the thesis of Herman [128], who took a closer look at the 

effect of fringe fields for a similar aerogel capacitor. 

Using the dielectric constant of bulk liquid 4He at 4.4 K (e//e = 1-048, obtained 

by extrapolating the data in [129] from 4.21 K out to 4.4 K) and the porosity of 

Vycor (<f> = 0.28), Equation 4.2 predicts AC = 0.018 pF. However, tightly bound 

layers on the Vycor pore walls increase the average 4He density by about 25 % [130] 

and so we expect a proportional increase in AC, to 0.022 pF. Also, the contribution 

of a pore fluid to the dielectric constant depends on pore geometry through depo­

larization effects [131] and atoms on the surface of the glass likely have a different 

polarizability. Measurements with Ar and CO in Vycor have shown [132] that this 

can be accounted for by including a geometric parameter so that capacitance change 

is still proportional to the change in adsorbate density, giving 

AC ~ n 1^ \ ^£*e - l)C° » ! - 2 1 ( f e - l)C0, (4.4) 
(1 - <p) + (pep 

where ep •= 1.32 for spherical pores or a mixture of perpendicular cylindrical pores. 

The Ar and CO measurements also showed that, except for the first monolayer, the 

changes in the Vycor's capacitance are directly proportional to the total density of 

the adsorbate. 

We have confirmed this linear dependence for liquid 4He via a 1.8 K adsorption 

isotherm, shown in Figure 4.11: for fillings greater than the first monolayer, the Vy­

cor capacitance increased linearly with the amount of 4He adsorbed. The isotherm 

measurements were made in the same cell shown in Figures. 4.5 and 4.6, attached 

to the 1 K pot of a simple 4He cryostat. Temperatures were measured with a cal­

ibrated germanium thermometer and capacitances was measured using GR1615A 

bridge operating at 1 kHz. Small amounts of gas (less than 50 mbar) were let into 

the cell from a 66.9 cm3 ballast volume and allowed to equilibrate for tens of minutes 

before a capacitance measurement was made and the process repeated. 

The first six data points in grey in Figure 4.11 shows that the dielectric behavior 

of the first monolayer is different from the rest of the pore filling. The dielectric 

response attributed to the monolayer likely includes both the direct contribution of 

the monolayer molecules as well as the changes of the response of the terminating 

polar groups of the silica matrix brought forth by adsorption. The final three data 

points in black in Figure 4.11 deviate from the linear trend at a filling fraction of 1.0, 
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Figure 4.11: The 1.8 K 4He adsorption isotherm in Vycor, confirming that capaci­
tance change varies linearly with adsorbate density. 

as expected. This is the point at which the pores of the Vycor are completely full 

and any 4He further admitted to the cell will settle in the "dead volume" (outside of 

the Vycor) and therefore not contribute to the capacitance across the Vycor sample. 

Finally, the data wavers from perfect linearity in the [0.1 - 0.5] filling fraction regime 

because of insufficient equilibration time between measurements. 

Using Equation 4.4, and accounting for the tightly bound layers on the Vycor 

pore walls which increase the average He density by about 25 %, we now expect a 

capacitance increase AC = 0.027 pF. The capacitance of our-evacuated Vycor was 

3.7257 pF, which increased by 0.029 pF when it was filled at 4.4 K. This is in very 

good agreement with the change calculated from Equation 4.4, confirming that our 

capacitance measurements directly probe the 4He density in the pores. 

(In the interest of being completely transparent, it should be noted that Equa­

tion 4.4 predicts a capacitance change AC = 0.032 pF for the 1.8 K isotherm, 

whereas the observed change is actually 0.052 pF. This discrepancy cannot be ex­

plained.) 
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4.2.2 Freezing and melting under confinement 

It is well-known that 4He [133] in confined geometries remains liquid at temperatures 

considerably below bulk freezing and at pressures considerably above bulk freezing 

(for a very nice review on confinement effects on freezing and melting, see[134]). 

It has also been well-established that freezing occurs at a lower temperature than 

melting (i.e., there is a hysteresis) and that both freezing and melting are spread 

over a range of temperatures. 

When confined in pores, liquid 4He may be considered to form two components. 

The first is a dense solid-like layer of a few atomic thickness that contacts the pore 

wall. Strong van der Waals attraction with the amorphous glass make this film very 

tightly bound and highly disordered. The second is what remains in the pore and it 

acts nearly like a bulk fluid, not significantly influenced by the glass and with nearly 

bulk density. 

The usual interpretation of the depressed freezing temperature is based on the 

homogeneous nucleation theory of droplet formation (i.e., the spontaneous solid 

formation as a result of density fluctuations, without benefit of nucleation at contact 

surfaces or impurities). It has been shown that the liquid phase preferentially wets 

the surface of glass [135]; namely, that the solid-glass interfacial energy, asg, is 

greater than the liquid-glass interfacial energy, aig. The mismatch between the 

interatomic spacing of 4He adsorbed on the walls and that of the solid within the 

pore is commonly invoked to explain non-wetting of the walls by the solid and the 

subsequent lack of inhomogeneous nucleation. 

Upon nucleation of a droplet of radius r, the change in the Gibbs free energy is 

given by 

ATTT 
AG = 47rr2<x/s - —— (gi-gs), (4.5) 

ovs 

where the first term is the free energy of the surface of the droplet and the second 

term is the change in free energy of the volume of the solid droplet. Here gi and 

gs are the molar free energies of the liquid and the solid, respectively, and vs is the 

solid molar volume. The general form of Equation (4.5) is shown in Figure 4.12. 

The expression has a maximum at 
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i* = r ^ , (4.6) 
(m - 9s) 

where droplets of r < n, are unstable and decrease in size, while droplets of r > n, 

grow. 

If the freezing is assumed to take place at constant pressure, there is a depression 

of the freezing temperature, AT, from the bulk freezing temperature, Tg, given by 

(91 ~ 9s) = ( H ) / T = -(*« " s * ) A r = ^ A T ' (4-7) 

where si and ss are the molar entropies of the liquid and solid, respectively, and If 

is the molar latent heat of freezing. 

Substituting for (gi - gs) in Equation (4.6) allows us to write 

AT = ^ # , (4.8) 

rip 

which further allows us to write Equation (4.5) as 

A ^ . i 4T!T3 lFAT , 4 „ S 

AG = 47rr 2 oh- " . . (4.9) 

Now consider that inside the pores of Vycor, 4He nuclei of various radii are 

continually forming via local density fluctuations in the liquid. In a bulk system, 

nuclei with r> ri overcome the energy barrier and continue growing in size until the 

entire sample is frozen. Under confinement, however, nuclei may form but obviously 

cannot grow any larger than the confining pore. For a given undercooling, a pore-

sized droplet may overcome the energy barrier yet still be left with positive free 

energy due to growth restriction imposed by the pore walls. Fluctuations similar to 

those which initiated freezing will eventually drive the droplet back into the liquid 

state. A critical radius, rc, for freezing in pores is defined as one with zero change 

in Gibbs free energy, 

Stable solidification then occurs when the critical radius is equal to (or less than) 
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the pore size, rp. So, a freezing point depression may be predicted if a pore size is 

given by 

A T = 3 O ^ B ( 4 n ) 

rplF 

With 4He, it becomes equally useful to express solidification in pores in terms of 

elevated pressures at constant temperature (rather than depressed temperatures at 

constant pressures), as there exist a range of pressures in which the bulk 4He of a 

system freezes while the confined 4He remains liquid down to 0 K. This is done by 

writing 

(9i-9s)=(^j dP=(vl-vs)AP. (4.12) 

Substituting for {g'i - gs) in Equation (4.6) this time allows us to write 

AP=?™ (-?>-). (4.13) 
r \vi-VsJ 

And by using the same line of reasoning above, we can say that solidification 

in pores (which, in Vycor, are connected and not independent) requires a pressure 

increase given by 

Ap=__psVs_ ( 4 1 4 ) 
rp{vi - vs) 

For the reasons discussed above, the melting curve is shifted from bulk values as 

shown in Figure 4.13. 
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Figure 4.12: Gibbs free energy of a nucleating spherical droplet. 
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Figure 4.13: Phase diagram of 4He confined in Vycor. Figure created from the data 
of Reference [122] 
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4.2.3 Typical thermodynamic path 

Figure 4.14a shows the thermodynamic path during a typical measurement, as we 

cool our cell from about 4 K to low temperature. 

The cell and Vycor sample are initially filled with 4He to a high enough pressure 

at 4.4 K to ensure that everything (bulk and confined 4He) solidifies at low tem­

perature. Recall that the fill line blocks at the 1 K pot on the dilution fridge (at 

essentially the start - before any freezing in our cell takes place) and so the total 

amount of 4He in the cell during a measurement is fixed (i.e., the thermodynamic 

path we are following are isopycnals). 

As we decrease the temperature of our cell, there is an associated decrease in 

pressure within our sample. The decrease in pressure is a result of an increasing 

fluid density of a fixed amount of 4He in a constant volume. As we reach point A 

(2.8 K, 68.4 bar), the bulk 4He in the cell begins to freeze. Here, the pressure drops 

more rapidly as bulk 4He around the Vycor sample begins to freeze. This time, the 

decrease in pressure is a result of the solid's greater density and the fixed amount 

of 4He in a constant volume. The bulk melting curve is followed down until point B 

(2.1 K, 41.6 bar), which indicates the conclusion of freezing of 4He in bulk. Below 

point B the pressure is very nearly constant since the thermal expansion of solid 4He 

is small (and the compressibility is large, to be precise). Note that the 4He confined 

to the Vycor pores does not begin to freeze until sufficient undercooling is achieved, 

as previously discussed in section 4.2.2, at point C (1.7 K, 40.8 bar). There is a small 

decrease in pressure associated with the freezing in the pores, but it is too small to 

be visible in Fig 4.14a. The bulk 4He in the cell and around the Vycor sample acts 

as a reservoir so that freezing in the pores occurs essentially at constant pressure. 

After the initial cool-down, the cell could be warmed and cooled, re-tracing the 

thermodynamic path and confirming that the plug in the fill line had not slipped. 

Once the 4He in the pores was frozen, the pressure in the cell is essentially constant 

as we approach absolute zero. 

Figure 4.14b shows the Vycor capacitance, Cvycor, corresponding to the pressure 

of Figure 4.14a. Recall that the capacitance is a reflection of the 4He density in the 

pores. The decrease between point A and point B is due to liquid 4He leaving the 

pores as the pressure in the cell drops as the bulk 4He freezes. Below point B, the 

pressure and the liquid density in the pores is nearly constant; the slope of Cvycor is 
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Figure 4.14: a) the thermodynamic path followed during a typical measurement, 
with b) the associated density capacitance. See text for meaning of letters. The 
solid line is the accepted melting curve for 4He, taken from [151]. 
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just the background temperature dependence of the dielectric constant of the Vycor 

glass itself (details in section 4.5). Freezing in the pores begins at point C, where 

CVycor rises suddenly due to the larger density of solid 4He. This requires that 4He 

be drawn into the pores from the surrounding bulk solid bath (i.e., that pressure 

equilibrium is maintained at melting on this time scale). Not all of the 4He in the 

pores will freeze at once: there exists a narrow freezing band (because of the narrow 

pore radius band in the Vycor) over which gradually more and more of the liquid 

is converted into solid as the temperature is lowered. Once the 4He in the pores 

has completely frozen, Cvyc0r follows the background temperature dependence of 

the dielectric constant of the Vycor glass. 

4.3 Onset of freezing 

Despite the background temperature dependence of Gvyc0r (due to "two levels sys­

tems" in the glass, to be discussed in section 4.5), we can extract the jump in 

capacitance, AC/, associated with freezing. 

The jumps in Fig 4.15a-f (AC/ = 0.0011 pF) are about 2.8 % the total change 

due to filling and pressurizing with liquid to 38.1 bar (AC = 0.0395 pF). This is 

significantly smaller than the 6 % density increase when bulk 4He freezes at this 

temperature [136]. This could be due to a large fraction of the 4He (i.e., the dense 

surface layer) which is already highly localized and so would not participate in 

freezing and melting. However, it is also possible that some of the 4He simply 

remains liquid at these pressures. We would expect the amount of liquid remaining 

at low temperatures to decrease with increasing pressure, but Figure 4.15 shows 

that this isn't the case. The increases in capacitance associated with freezing are 

essentially the same at all pressures in the 35-55 bar range, in contrast to what 

would be expected if the 4He was only partially frozen at some lower pressures. 

Figure 4.16 shows the density change Ap for 4He in Vycor as we measure it, along 

with the 4He in Vycor results obtained by Adams et al. [122]. In their experiment, 

they are able to measure the pressure in the pores of a Vycor powder on freezing 

and melting while simultaneously obtaining the volume change and latent heat on 

freezing. The density change for bulk freezing [136, 137] in the same temperature 

range is also included, for comparison. 
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Figure 4.15: The sudden increase in density capacitance associated with the onset of 
freezing in the pores of Vycor: a) 51 = 0.00105 pF at 36.2 bar, b) 62 = 0.00110 pF 
at 36.8 bar, c)<53 = 0.00107 pF at 39.3 bar, d) S4 = 0.00108 pF at 48.3 bar, e) 
<55 = 0.00113 pF at 53.8 bar, f) 66 = 0.00108 pF at 54.0 bar. 
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Figure 4.16: Solid-liquid density change associated with freezing. D's are for bulk 
values, as measured by Grilly et al. [137, 136]; A's are for 4He confined in Vycor, 
as measured by Adams et al. [122]; A's are for 4He confined in Vycor, as reported 
in this thesis. Solid lines are guides to the eye. The reason for the difference in the 
data between that reported in this thesis and of [122] is not known. 
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4.4 Hysteresis between freezing and melt ing 

When the sample was later warmed, the 4He in the pores melted at higher tempera­

ture and over a narrow temperature range, as shown in Figure 4.17. The hysteresis 

between freezing and melting is a common feature of adsorbates in small pores [134]. 

The hysteresis arises from the energy barrier associated with surface formation that 

must be overcome to form disconnected blobs of solid within the pore network. 
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Figure 4.17: Hysteresis between freezing and melting, at 39.3 bar. The »'s are 
cooling and the o's are warming. 

4.5 At lower t empera tu res 

While the goings-on near melting are interesting, it was an observation at low tem­

perature that motivated this study. Following solidification of the 4He within the 

pores, we then cooled the solid 4He-filled Vycor sample to look for any changes in 
4He density that might mimic superfluidity in a torsional oscillator. Possible scenar­

ios of mimicking behaviour could include de-wetting transitions or crystallographic 
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phase transitions. For example, were the 4He to leave the hep phase (assuming 

that the 4He is indeed in the hep phase), then the density of the solid within the 

pores would change, thereby altering the system's moment of inertia and showing 

up as a period change in a torsional oscillator experiment. Figure 4.18 shows the 

capacitance data over the full range of the temperatures investigated for a 36.6 bar 

sample, where the letters A, B, and C were defined in subsection 4.2.3. 

The dielectric (and thermal and acoustic) properties of amorphous materials, 

such as Vycor, exhibit different behaviours from those of crystalline substances at 

very low temperatures and the smooth capacitance minimum, located at ~85 mK in 

Figure 4.18, is typical of dielectric glasses. The minimum reflects coupling to "two 

level systems" and not changes in the 4He density (e.g., the effect would be present 

in empty Vycor). For a nice short review of two level systems [138, 139], see chapter 

3 of Mulders' doctoral dissertation [140]. 
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Figure 4.18: Vycor capacitance, from 4 K to 30 mK. 

Experimentally, such behaviour has been observed in various amorphous ma-
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terials. (In fact, the temperature dependence is sharp enough that several glasses 

prove useful as a thermometer!) Figure 4.19, displaying measurements made on an 

OH-doped vitreous silica called Suprasil, provides an example of how the dielectric 

properties of amorphous glass change with temperature, as a function of frequency. 

The minimum that we observe at ~85 mK and with a 1 kHz measurement is not 

inconsistent with the dielectric measurements shown in Figure 4.19. 
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Figure 4.19: Variation of the capacitance in Suprasil glass as a function of tempera­
ture [141], The negative slope of e(T) on the low temperature side of the minimum 
is due to resonant interactions and is frequency independent provided hus <C kT-
At higher temperatures, where the slope is positive, relaxation interactions becomes 
dominant. 

x 

'-

-
_ 

— 

— 

~ 
-
~ 

-. 
-
. 
_ — 
; 

• 

I 1 1 I I U[ 1 1 1 l"l MT| 1 

, W W l 1 ^ 

'\» 
\ 

9 
J> 

% 

A 

B ilO.M7.-3.OV 

A 1 K I 1 2 - 1 . 0 V 

m 10fcHi£~Q<01V 

i t « i i)j[ x... ,i . j . - i ^ u i i — i,,.,.. 

r r 

t> 

* 

1 

i i 

11 m y 

Q 

I 

J J 

0 « 

tl 
•" 

* 

lot 

A * 

• • 

*« 

i— 

* 

* 
* 

X_ 

•T-1 

* 

• 
• 

_ t _ 

1 1 H H 

r 

__ 
-

~ 

~ 

-
* i 

m 

• _ 
* 
_ • 

w 

. 
1 1 l l l l 

To further confirm that the minimum in our capacitance was in no way related 

to the solid 4He, we took an analogous measurement of liquid 4He at saturated 

vapour pressure confined in the pores of Vycor, where the superfluid transition is 

at around 2 K, at low temperature. As is shown in Figure 4.20, the minimum in 

capacitance remains: it is an effect of the porous Vycor glass and not of the 4He. 
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(Without question, capacitance measurements of our empty Vycor sample should 

have been performed. Unfortunately, the significance of this measurement only 

became apparent after 4He had been adsorbed onto the cold Vycor pores.) 
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Figure 4.20: Vycor filled with liquid 4He at saturated vapour pressure. 

0.20 

Figures 4.21 and 4.22 show the capacitance data at low temperature and in the 

region of greatest interest (i.e., where Kim and Chan observe NCRI). If there was a 

low temperature transition which resulted in 4He being expelled from the pores of 

the Vycor, then it would show up as a sudden decrease in capacitance, but we saw 

no such change in the range below 200 mK where Kim and Chan saw decoupling in 

their torsional oscillator. The arrow in Figures 4.21 and 4.22 show the magnitude 

of the change that would be expected if 1% of the 4He were to leave the pores. 

Since movement of 4He out of (or into) the pores might occur very slowly (Kim 

and Chan observed time constants on the order of one hour for their oscillator 

period to stabilize), we waited overnight at our lowest temperature (about 30 mK) 

and then warmed up our sample. Figure 4.23 shows our density capacitance data on 

cooling through the minimum at ~85 mK down to base temperature and then on 
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Figure 4.21: Density change of solid 4He in Vycor at low T and at 36.6 bar. The 
arrow indicates the size of change we'd expect to see for a 1% density effect. 
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Figure 4.22: Density change of solid 4He in Vycor at low T and at 53.6 bar. The 
arrow indicates the size of change we'd expect to see for a 1% density effect. 
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warming back through the minimum, about 20 hours later. The measured difference 

in density capacitance is about 5 ppm, which is a change in density equal to 0.05%. 

Figure 4.24 shows the same measurement made in a different experimental cell. Here, 

the measured difference in density capacitance after cooling to base temperature and 

then waiting overnight is about 3 ppm, which is a change in density equal to 0.03%. 

Both measurements support the claim that 4He does not move out of (or into) the 

pores, even very slowly. 
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Figure 4.23: Low temperature stability of the confined 4He density at 36.6 bar (i.e., 
the minimum from Figure 4.21). «'s show cooling and o's show warming. 
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Figure 4.24: Low temperature stability of the confined 4He density at 57 bar (the 
data shown in this plot was taken in the Vycor squeezing cell, to be described in 
Chapter 6, which did not have an in site pressure gauge). »'s show cooling and o's 
show warming. 
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4.6 Conclusions 

Motivated by claims of a supersolid phase in 4He, we have taken some dielectric 

measurements of 4He freezing in the pores of Vycor. We have confirmed that the 

density change associated with freezing is substantially smaller than in bulk, telling 

us that not all of the 4He in the pores is actually participating in solidification. 

Or, although unlikely, that it all does freeze, but the volume change associated with 

freezing is small in the pores of Vycor (for reasons unknown). If some of the confined 
4He remained liquid (say, as some thin film that lines the pore), then it is entirely 

possible that the superfluid-like behaviour observed by Kim and Chan in their tor­

sional oscillator experiment is actually superfluidity in that thin film. However, we 

expect that the thickness of this film (i.e., the amount of 4He that remains liquid) 

would be dependent on pressure. Our measurements, though, strongly suggest that 

the amount of 4He that solidifies in the pores is independent of pressure. We cannot 

rule out the presence of a persistent liquid layer. What we can say is that there 

likely exists an amorphous 4He film strongly adsorbed to the pore wall, having a 

density already near that of the solid phase and thereby not really contributing to 

the change in density upon complete solidification. The properties of such a film 

are unknown, but it is conceivable that it could display superfluid-like behaviour. 

In fact, Path Integral Monte Carlo (PIMC) simulations [142] support the persistent 

liquid layer model to explain the NCRI observations, as it is found that 4He forms 

a distinct layered structure. The first layer is solid-like and highly localized; the 

second layer is disordered (some atoms are not localized and they could give rise to 

the observed superfluid response); higher layers are then nearly perfect crystals and 

only participate in the superfluidity in so far as they are close to the second layer. 

Variational Monte Carlo simulations [143] further support the persistent liquid layer 

model. Those "experiments" conclude that the layer in contact with the pore is al­

ways solid. For their narrow pore radius (R = 1.3 nm, roughly half that of Vycor), 

as the density is increased, solidification takes place layer by layer, starting from the 

pore wall. Their pore radius is too small to allow a bulk-like solid to nucleate in the 

liquid region at the center of the pore, and in order to have a complete crystalline 

order in all the layers a pressure greater than 200 bar was required. 

Figure 4.16 suggests that about 70% of the 4He confined in the pores of Vycor 

does not participate in freezing. If this were the case, and taking a spherical pore 
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radius of 3.5 nm, then it would be an outer shell 1.2 nm thick that remains "un­

frozen" . This thickness corresponds to 3-4 layers of adsorbed 4He not participating 

in a phase change, which seems plausible and is not inconsistent with the theoretical 

results mentioned above. 

We also find no evidence of any sudden density changes, such as a crystallo-

graphic phase transition, nor any signs of the solid 4He leaving the Vycor, such 

as a de-wetting transition, at low temperatures. Anything of this sort would have 

altered the moment of inertia in a torsional oscillator and could have looked like 

mass decoupling (or, perhaps, it would have increased the moment of inertia). Our 

results leave no doubt that the 4He stays put at low temperatures. 

This first set of measurements described rule out some of the most obvious alter­

native explanations to the NCRI observed for solid 4He in Vycor, thus strengthening 

the supersolid claims. It then becomes interesting, however, to see whether solid 4He 

exhibits any of the other unusual flow properties of a superfluid. If we naively as­

sume that a supersolid behaves in an analogous way to a superfluid, there are other 

experiments one could do to help solve this mystery. Some of these experiments are 

described in the following chapters. 
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Chapter 5 

Pressure Induced Flow of Solid 
Helium (Vycor) 

Other than the torsional oscillator experiments, there has not (yet) been a direct 

observation of supersolid behavior of He, either in bulk or under confinement. 

However, the small critical velocities implied and the apparent sensitivity to 3He 

impurities may affect dc flow (or other properties) even more strongly than the 

decoupling in the torsional oscillator measurements. It is important to recall that 

solids have many properties not shared by liquids (e.g., a lattice with shear rigidity) 

and a supersolid may not exhibit all of the effects we typically associate with super­

fluidity (e.g., superleaks, persistent currents, thermo-mechanical effects, quantized 

vortices, second sound, etc.). Below we describe an experiment to look for one such 

property in solid 4He in Vycor: superflow in response to applied pressure. 

5.1 Vycor experimental design 

Since the measurements discussed in the previous chapter essentially rule out what 

we believe to be the most obvious alternate explanations of the decoupling observed 

in solid 4He in Vycor, it became interesting to see whether or not solid 4He exhibited 

any of the other unusual flow properties of a superfluid. 

By suddenly increasing the pressure in a cell containing the same Vycor sam­

ple used in our freezing experiment, we were able to monitor the pressure induced 

flow of solid 4He into the pores. It is known that thermally activated vacancies can 

transport mass in a pressure gradient. Beamish et al. [144] reported on results of 

ultrasonic attenuation and velocity measurements of helium freezing in Vycor, in 

which they observed attenuation peaks whose dependence on frequency and temper-
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ature was characteristic of a thermally activated relaxation process. The mechanism 

responsible was identified as the relaxation of ultrasonic stresses in the solid helium 

via vacancy diffusion. The diffusion rates and activation energy for diffusion which 

they extracted were consistent with those determined in other experiments on solid 

helium [35]. They note that when interpreting other freezing experiments in Vycor 

it is imperative to consider mass transport due to this vacancy-diffusion mechanism, 

since it can allow for pressure equilibrium to be maintained between the helium in 

the pores and bulk helium outside. 

Therefore, we expected to see flow at temperatures near the melting point, and 

further expected that this flow rate should decrease rapidly with temperature. 

5.1.1 Cell construct ion 

The density and temperature measurements were performed simultaneously in one 

cell. The Vycor sample (the same one that was used in the freezing experiment 

described in Chapter 4) was sealed into a beryllium copper pressure "squeezing" 

cell, with a flexible diaphragm machined into one end and an external piezoelectric 

actuator designed to compress the helium by up to 1%. A schematic and image 

of the cell are shown in Figures 5.1 and 5.2, respectively. The internal volume of 

the cell was 1.2 cm3, much larger than the 0.018 cm3 volume in the Vycor pores. 

A spring loaded clamp arrangement held the thin Vycor parallel plate capacitor 

inside the cell. Crystals were again grown using the blocked capillary technique. 

A 0.004" i.d. capillary, thermally anchored at several points on the fridge, was 

used to introduce helium to the cell. Temperatures were measured with a calibrated 

germanium thermometer above about 50 mK, with a 60Co nuclear orientation and/or 
3He melting curve thermometer for lower temperatures. 

5.1.2 Piezo-mechanics 

5.1.2.1 Generation of motion by piezo-electrical devices 

Piezo-actuators make use of the deformation of electro-active PZT-ceramics (PZT: 

lead (Pb) zirconia (Zr) titanate (Ti)) when subjected to an electrical field; the sub­

sequent deformation may be used to produce motions and/or forces. This is com­

plementary to the effect of piezo-electricity, where electrical charges are produced 

upon application of mechanical stress to the ceramic. 

In the simplest case, a single PZT layer is used for piezo-mechanical conversion. 
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Figure 5.1: Schematic image of the Vycor squeezing cell. 

Figure 5.2: Image of the Vycor squeezing cell, next to a quarter for scale. 
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Such a PZT monolayer structure, as shown in Figure 5.3, behaves as a capacitive 

element (where the piezo-ceramic is a dielectric enclosed by two thin conductive 

electrode coatings). When this "piezo-capacitor" is charged by applying a voltage, 

a deformation is created. 

electrode 

electrode 

PZT ceramic 

Figure 5.3: Schematic of a piezo-electric single layer element. 

Stacked piezo-actuators (i.e., stacking several single layers to increase the total 

stroke, like the one shown in Figure 5.4) make use of the increase of the ceramic 

thickness in direction of the applied electrical field, known as the d33 effect. In 

practice, axial strain rates up to 2%o of stack's length can be achieved under certain 

conditions. Similar to normal elastic deformation of a solid state body, the thickness 

expansion ^33) of a PZT layer is accompanied by an in-plane shrinking, as shown 

in Figure 5.3. This is called the d3i effect, which is complementary in motion to the 

d33 effect while showing roughly half the linear strain. 

5.1.2.2 Thermal properties 

Piezo-actuators show self-heating proportional to the reactive power balance during 

dynamic operation. The self-heating is increased with drive frequency and ampli­

tude, and is further enhanced by the poor internal heat sinking (the sole mechanical 

contacts of the PZT stack are its end-faces). In order to avoid measurable heat­

ing at base temperatures (e.g., 0.1 mK at temperatures below 50 mK), frequency 

limitations for the operation of piezo-actuators exist. In fact, normal low-voltage 

actuators with mid-sized diameters, like the one we used, come with the warning 

that they tend to overheat for frequencies in the range of about 200 Hz/full stroke 
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Figure 5.4: Image of the lead (Pb) zirconium (Zr) titanate (Ti) (PZT) piezoelectric 
stack, next to a quarter for scale. The black polymer coating around the PZT stack 
protects the brittle ceramic against "less skillful" handling (e.g., mechanical impact, 
chemical contamination) and exotic driving conditions (e.g., cryogenic temperatures, 
vacuum). Polymers are much more flexible than PZT-ceramics and do therefore not 
adversely affect the piezo-action. 

operation, presumably causing irreparable damage to the stack. Near the lowest 

temperatures of the dilution refrigerator, for example, a 150 Vdc stroke caused 

noticeable transient heating (about 1 mK at 29 mK). 

The piezo-mechanical (and electrical) properties of PZT ceramic are a function 

of temperature. When piezo-actuators are cooled down towards absolute zero, they 

suffer from a reduced piezo-elongation factor (d33). For example, the stroke of our 

piezo-actuator at 4 K is about 6% its room temperature value (nominally 20 /jm). 

5.2 Measurements in Vycor 

As discussed in Chapter 4, our measurement of capacitance across the helium-filled 

Vycor glass is a direct probe of the density of the helium within the Vycor pores. 

We started at a pressure high enough to completely freeze the helium in the pores 

and cooled to a temperature between near melting and 30 mK. We then suddenly 

(over about 10 seconds) compressed the helium by applying 150 Vdc (Regulated 

Power Supply, Model 71, Lambda Electronics Corp.) to the piezoelectric actuator 

while monitoring the helium density in the Vycor. By increasing the pressure in 

the reservoir around the Vycor, helium is encouraged to flow into the Vycor to 
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equilibrate the newly created pressure gradient. 

5.3 High temperature squeezing 

Figure 5.5 shows data representative of the results of such "squeezes" at five temper­

atures between 1.8 K and 0.5 K (T F = 2.05 K at 57 bar for this data). At 1.1 K and 

warmer, the density capacitance responded to the pressure step in two stages. First, 

there was an immediate capacitance jump (an elastic response) of about 0.133 fF, 

which occurred within the measurement time of our capacitance bridge (i.e., during 

the 10 seconds taken to increase the pressure). Second, there followed a slower, 

temperature-dependent increase (a plastic response). The time constant associated 

with the slower increase varied from less than 30 seconds at 1.8 K to well over an 

hour at 1.1 K. At temperatures below 700 mK (e.g., the 500 mK data in Figure 5.5) 

there was no measurable density capacitance change following the initial jump. 

3.7672 ' -i - : r- - i— » 

0 5 10 15 20 

Time (minutes) 

Figure 5.5: Density capacitance response of helium-filled Vycor to a rapid com­
pression of the surrounding helium by 0.1 bar. From top to bottom, the curves 
correspond to temperatures 1.8 K (•), 1.5 K (A), 1.3 K (A) , 1.1 K (o), and 0.5 K 
(•). Horizontal line through the 0.5 K data is a guide to the eye. 
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5.3.1 Elastic response of Vycor t o A P 

The initial 0.133 fF jumps in Figure 5.5 are due to the elastic compression of the 

Vycor capacitor. Even if no helium flows into the pores, a pressure change, AP, will 

nonetheless elastically compress the capacitor and produce a geometric change in 

the density capacitance, ACvycor, relative to the initial density capacitance, Cvycor. 

Such a change is temperature independent, immediate, and can be calculated from 

Vycor's dielectric and elastic constants. If subjected to a change in pressure, AP, 

then our Vycor capacitor will experience a change in volume, AV, relative to its 

uncompressed volume, V, the magnitude of which is a function of its bulk modulus, 

K-vycor- This change may be written as 

* J Y vycor 

Strictly speaking, we require the bulk modulus of the Vycor/helium system, but for 

all intents and purposes this is equal to the bulk modulus of the Vycor alone. 

The volume of our Vycor capacitor (of radius r and thickness t) is given by 

V = nr\ (5.2) 

and so it follows that 

^ = » ^ + £ (5.3) 
V r t 

Assuming isotropy (for the sake of simplicity), Equations 5.3 and 5.1 together imply 

Ar At - 1 A P 

r t "\ K 
* ** *J J.\. vycor 

(5.4) 

The capacitance of our Vycor capacitor (with dielectric constant evycor) is given by 

^ 'vycor — Cvycor 7 i 

(5.5) 

and so it follows that 
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— _ — + 2 - - . (b.b) 
^ vycor c vycor ' L 

The change in the dielectric constant is due to the change in density of the helium-

filled Vycor system. Recalling the Clausius-Mosotti equation (Equation 4.1), it 

follows that 

Ap A(e - 1 ) A(e + 2) _ Ae Ae 

p ( £ - l ) (e + 2) ( £ - 1 ) (e + 2) 

3Ae 
( £ - l ) ( £ + 2)-

So, for our Vycor sample, 

&£vycor ^Pvycor \^vycor 

- i ) ( + 2) 
£vycor Pvycor 06Vycor 

And, as 

we may write 

^Pvycor _ AV _ AP 

pvycor * •**• vycor 

£±£vycor K^vycor *-)\p vycor ~r~ ^) *-^* 

£yycor ^^ vycor -**• 

Inserting Equations 5.4 and 5.10 into Equation 5,6 yields 

^^vycor I \£vycor *-)\£-vycor ~r £) ^vycor \ ^ - ^ 

^vycor \ £ vycor / *-'-**• vycor 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

If we then take Vycor's dielectric constant (evycor — 3.1) as well as its bulk modulus 

{Kvycor = 1-0 x 1010 Pa), we expect ACvycor/Cvycor - (8.2 x 10 - 1 1 Pa"1) AP. The 

0.133 fF jump, therefore, implies a pressure increase of about 4.3 bar. 
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5.3.2 Plastic response of Vycor to AP 

If solid helium subsequently flows into the Vycor to equalize the pressures after 

compression, then the density capacitance will increase further, but at a slower rate 

which depends on the flow velocity. This density capacitance change depends on the 

compressibility of the helium in the pores, which can be estimated from the data of 

Figure 5.6. 
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Figure 5.6: Density capacitance during cooling at 36.2 bar (o) and 54.0 bar (o). The 
inset shows the same two plots over a smaller temperature range. 

The compressibility of a solid is given by 

H- V\AP 
(5.12) 

And as - A V / V = A/>/^>, we can write 

0 = 
1 Ap 

A~P~p~' 
(5.13) 
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Inserting Equation 5.7 brings us to 

Recalling that the capacitance of the 4He in the pores of Vycor is given by 

C = (KEHe ~ 1)C0, (5.15) 

we find that 

AC A ( e / r e - l ) AeHe 

C (£He - 1) (£He ~ 1) ' 
(5.16) 

which finally leads us to 

1 3 AC , r i „ , 
" = A P ( ^ ) 7 T <"7> 

Looking at the 36.2 bar and 54.0 bar data at 1.45 K of Figure 5.6 (i.e., a difference 

in pressure of AP = 17.8 bar = 1.78 x 106 Pa), the density capacitance difference 

between the two is AC = 0.002 pF. The adsorption isotherm of Figure 4.11 showed 

that helium's contribution to the density capacitance is 0.052 pF at 1.8 K. This 

allows us to estimate the solid's compressibility (a measure of the relative volume 

change of a fluid or solid as a response to a pressure change) as 2.1 x 10~8 P a - 1 (at 

1.45 K), slightly less than the corresponding value for bulk helium (2.3 x 10 - 8 P a - 1 

at 54.5 bar [145]). 

For a 4.3 bar pressure step, equilibrating the pressure inside and outside the 

pores would produce a change of about 4.8 x 10 - 4 pF, roughly what we observe 

(about three times the magnitude of the elastic response). 

The observed change in capacitance after the initial jump is a combination of 

two factors. There is an increase in capacitance due to the helium flowing into the 

pores and equilibrating the pressures, and there is a decrease resulting from the 

Vycor glass springing back into its original dimensions. 

The flow-induced density capacitance changes in Figure 5.5 occurred more slowly 

as the temperature was reduced. This is consistent with mass transport via a ther­

mally activated process, presumably the diffusion of vacancies in the solid helium 
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or in a disordered layer at the pore walls. Vacancy diffusion in solid 4He has been 

studied under confinement [144] and in bulk [146]. Such a stress-induced migration 

of vacancies is often referred to as vacancy creep or self-diffusion. The diffusion of 

vacancies within the interior of the crystal cannot alter its external shape; however, 

the migration of vacancies to or from the surfaces of a crystal or discontinuities in a 

polycrystalline solid (e.g., grain boundaries, dislocations) does induce shape change. 

For example, the arrival or departure of a vacancy at a surface causes matter to 

be subtracted or added. This is the very basis of vacancy creep: a slow, diffusion-

controlled change in shape at elevated temperatures in response to a constant ap­

plied stress. Nabarro-Herring creep [147] is a form of diffusion-controlled creep, in 

which atoms/vacancies diffuse through the lattice causing grains to elongate along 

the stress axis. 

Above 1.3 K, the capacitances approached similar final values within the time 

shown; at 1.1 K the changes continued for much longer (e.g., many hours) and we 

did not wait long enough to determine the asymptotic value. (It should be noted 

that the flow behavior depended slightly on the thermal history of the sample and 

differences between the final capacitance values may reflect defect creation associated 

with deformation of the bulk solid and annealing at the higher temperatures. This 

will be discussed in the section 5.5). At 0.5 K we saw no flow at all. 

Even though the results of Figure 5.5 are not systematic enough to provide 

a precise activation energy for the pressure induced flow (an empirical parameter 

characterizing the exponential temperature dependence of the rate coefficient), it is 

possible to determine an approximate value. If T is the time constant associated 

with the flow and E a is the activation energy for the quasi-particles participating in 

the flow at a temperature T, then we can write the rate of the observed flow as 

- = Ae~E^^T, (5.18) 
T 

where A is a pre-exponential factor. By writing Equation 5.18 for two different 

temperatures and taking the ratio, we obtain a relation for the activation energy 

Eg -Info/nY , , 
kB-.i/T2-m' (5-19) 

Physically, the time constant represents the time it takes the system's step re-
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sponse to reach 63.2% of its final asymptotic value (i.e., [1 - e_1] times its final 

value). Prom the data in Figure 5.5 (as well as data from a squeeze at 1.7 K, not 

shown in Figure 5.5 to avoid clutter), and assuming that the 1.8 K data had reached 

the asymptotic value after about 20 minutes, we obtain time constants of TI.S ~ 10 s, 

Ti.7 « 15 s, TI.5 « 30 s, TI.3 « 60 s. Through application of Equation 5.19, we obtain 

activation energies of (f*)i.&-i.7 « 12.4 K, (g ) L »_ i . 5 « 9-9 K, ( g ) i . s - i . 3 « 8.4 K, 

(f*)i.7-i:6 « 8.8 K, ( ^ ) i . 7 - i ^ ~ 7.7 K, (^ ) i . 5 ^i .3 w 6.8 K. Again, our results are 

not systematic enough to provide a precise activation energy, but the data between 

1.3 and 1.8 K indicate a value around 9 K. 

Alternatively, we could take Equation 5.18 and plot ln ( l / r ) against (1/T), as 

shown in Figure 5.7. The negative slope of this line gives us an activation energy of 

8.2 K. 
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Figure 5.7: The determination of the activation energy of the quasi-particles in the 
pressure-induced flow of solid 4He in Vycor. 

The essential result is that solid helium near its melting point flows in Vycor 
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when an external pressure is applied, but this flow is negligible at temperatures 

below about half the melting temperature of the sample. 

5.4 Low temperature squeezing 

The most interesting question is whether or not the solid helium in the Vycor re­

sponds to a pressure difference when cooled below 200 mK (where Kim and Chan 

saw decoupling). Figure 5.8 shows our density capacitance results at 88 mK when 

the; pressure was raised (by an estimated 4.3 bar), held for over four hours, and 

then returned to its original value. By taking data at the capacitance minimum of 

Figure 4.22 (88 mK), we eliminated potential background effects of the small tem­

perature changes caused by heating in the piezoelectric actuator. As can be seen, 

there is no indication of any density change within the Vycor following the initial 

capacitance jump. This measurement was also taken at 13 mK above (101 mK, 

shown in Figure 5.10) and below (75 mK, shown in Figure 5.9) the capacitance 

minimum, yielding the same result within the resolution of our system. 
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Figure 5.8: Density capacitance change for a compression at 88 mK, followed by a 
decompression 260 minutes later. Lines are a guide to the eye. The ever-so-slight 
negative slope in the data is attributed to instrumental drift. 
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Figure 5.9: Density capacitance change for a compression at 75 mK, followed by 
a decompression 55 minutes later, a second compression 30 minutes later, and a 
second decompression 30 minutes later. Lines are a guide to the eye. 

About 0.5% of the helium was shown to decouple in Kim and Chan's Vycor 

measurements. If this fraction were to flow from the surface to the center of our 

sample at their critical velocity (~ 10 /Ltm/s), then a 1% density change outside the 

pores would be transmitted throughout the pores within a few seconds. Figure 5.8 

shows that any pressure-induced helium flow in our experiments must occur at 

much lower speeds. Assuming that helium does flow into the Vycor through the 

perforations in the electrodes and its edges (totalling about 30% of the sample's 

outer surface), we can put a limit on the flow velocity of the helium into the pores 

by looking at the noise in our signal. Note that an increase in measured density 

capacitance (beyond the elastic compression of the Vycor) must be due to an increase 

of the helium density within the pores; such an increase in helium density would be 

the result of a movement of helium mass from the surrounding solid helium reservoir 

to inside the Vycor, and may be expressed as 

AM = AtcjiAp = pvav(0.ZA)r, (5.20) 
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Figure 5.10: Density capacitance change for a compression at 101 mK, followed by 
a decompression 40 minutes later. Lines are a guide to the eye. 

where AM is the amount of mass that moves into the Vycor sample (of area A, 

thickness t, and porosity 4>), Ap is the resulting density change within the Vycor, p 

is the density of the helium, vav is the average velocity at which the helium flows, 

and r is the time interval over which the helium is allowed to move into the Vycor. 

This permits us to write 

t(j) Ap 

(0.3)r7' 
(5.21) 

Recalling that 

AC = 4>(eHe ~ 1)C„, (5.22) 

it follows that 

AC A(eHe - 1) 
C 

Ae He 

( e / T e - 1 ) ( S f f e - 1 ) ' 
(5.23) 
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And recalling that 

AP 3 A g
 ftMl 

T = (e-l)(e + 2Y (5"24) 

we get 

AC _ (eHe + 2) Ap 
C o p 

which finally allows us to write Equation 5.21 as 

t4> 3 AC 
V - = ( 0 . 3 ) r ( ^ e + 2 ) ^ - _ (5-26) 

As a reminder, our Vycor was 0.52 mm in thickness and had a porosity equal to 

0.28; the noise in our density capacitance reading (see Figure 5.8) is 0.00002 pF and 

the density capacitance of the helium itself is 0.052 pF. With that, we find that the 

average flow velocity, vav must be less than or equal to 0.012 nm/s. If we further 

consider that the helium that flows into the Vycor is a supersolid component, which 

is of the order 0.5% of the total helium density, then we can put an upper limit on 

the critical velocity, vc, of this supersolid component of 3 nm/s (i.e., pvav = psvc). 

We extended our squeezing measurements down to 48 mK with no indication of 

mass flow. Below this temperature, dissipation in the piezoelectric actuator would 

heat the cell slightly (~ 1 mK) and prevented accurate measurements. 

5.5 Sensitivity to sample history 

Not surprisingly, the measured response to deformation was sensitive to both the 

thermal history (whether it had been annealed, or if its current temperature had 

been reached from above or below, etc.) and the mechanical history (whether it 

had been previously deformed) of the polycrystalline sample. Figure 5.11 provides 

an example of how simple mechanical history of a sample (TV = 1.46 K at 34 bar, 

with bulk melting at ~ 1.9 K) can affect the measurement. Here, the sample was 

solidified and cooled directly to 0.5 K, where it was then compressed. The first 

compression results in an immediate increase in the density capacitance (due to 

the elastic compression of the Vycor), followed by a slower increase in the density 
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capacitance (cause unknown). Decompression results only in an immediate decrease 

of the density capacitance, equal in magnitude to the initial immediate increase 

following compression. Subsequent compressions and decompressions result solely 

in this elastic response. 
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Figure 5.11: Deformation history dependence of pressure-induced flow at 0.5 K. The 
first squeeze is for a crystal that has not been annealed, nor previously compressed. 
The magnitude of the elastic response for both compression/decompression sets is 
the same. 

Figure 5.12 shows measurements on a sample (T^ = 2.12 K at 57 bar, with 

bulk melting at ~ 2.5 K) with a more involved thermal and mechanical history. The 

crystal was grown slowly, 2.55 K to 2.10 K at 1 mK per 120 seconds, and then cooled 

to 2.06 K and compressed twice. Once the density capacitance had equilibrated, the 

sample was cooled to 2.0 K and compressed again (top curve). We then repeated 

this process at 1.9 K, 1.8 K, and 1.5 K, before returning to 2.0 K for another 

compression (bottom curve). The curves have not been offset. The difference in 

shape and absolute value of the density capacitance curves serves to remind us that 
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returning to the same temperature is not at all equivalent to returning to the same 

thermodynamic state of the sample. 
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Figure 5.12: Thermal history dependence of pressure-induced flow at 2.0 K. The 
top curve (•) is the pressure-induced flow response in a crystal at 2.0 K, reached 
from cooling from warmer temperatures, and with minimal mechanical history. The 
bottom curve (o) is the pressure-induced flow response in a crystal at 2.0 K, reached 
from warming from cooler temperatures, with significant mechanical history. The 
offset between the curves is real. 

A further complication to these measurements (which was not fully understood 

at the time of their collection) was the common occurrence of a background drift. 

Figure 5.13 shows an example of this drift as the sample sat for 6 hours overnight 

at a constant temperature of 0.5 K, at 57 bar. 

Figures 5.14, 5.15, and 5.16 show examples of this drift occurring as we were 

applying the pressure difference. The dashed lines in each are guides to the eye, 

and are intended to show how the thermally activated background drift slows as the 

temperature is reduced (i.e., the slope of the dashed line is steepest in Figure 5.14 

at 1.9 K and gentlest in Figure 5.16 at 1.5 K). 
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Figure 5.13: Overnight (6 hour) background drift as the sample sits at 0.5 K. 

These background drifts are likely caused by a shifting of the Vycor sample 

inside our cell, as extended defects re-organize themselves within the strained crystal. 

Recall that the initial squeeze to which the sample is subjected is uniaxial and so 

the initial sample compression is certainly not isotropic: pressure gradients will exist 

between the volume directly below the diaphragm and the regions near the cell wall. 

This sort of compression may relax by bulk flow to a more isotropic compression, 

and such bulk flow could shift the position of the Vycor sample. The capacitance we 

measure includes an effect from fringe fields (about 10% of the total capacitance), 

and such fields are sensitive to the precise geometry of the of the capacitor within 

its immediate environment. Shifting the Vycor capacitor's position will result in a 

change of the density capacitance we measure even though the density of the helium 

within the Vycor is unchanged. Admittedly, we held a poor understanding of the 

pressure response of bulk 4He at the time of these experiments (a good motivation 

for the bulk flow experiments that follow, and the subsequent care we took to always 

start from the same "pressure-annealed" state). 
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Figure 5.14: Squeezes during the background drift at 1.9 K. The rate at which the 
(downward) background drift occurs is a function of temperature. 
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Figure 5.15: Squeezes during the background drift at 1.8 K. The rate at which the 
(downward) background drift occurs is a function of temperature. 
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Figure 5.16: Squeezes during the background drift at 1.5 K. The rate at which the 
(downward) background drift occurs is a function of temperature. 

5.6 Conclusions 

The NCRI observed in Kim and Chan's torsional oscillator measurements appears to 

be a fundamental property of solid helium at low temperatures. Our measurements 

rule out alternative explanations of their results based on redistribution of mass 

in Vycor rather than supersolid decoupling. However, we do not see any evidence 

of pressure induced flow in the temperature range where they observed supersolid-

ity. This is consistent with previous experiments by Greywall[41] in which a small 

pressure difference (~ bar) between two sample chambers filled with solid 4He and 

joined by fine capillaries was measured as a function of temperature. For temper­

atures greater than 30 mK and for pressures between 25 and 50 bar there were no 

indications (i.e., a similar limit of 0.002 /an/s, using Kim and Chan's bulk supersolid 

fraction of 1.5%, on pressure-induced flow of bulk solid helium through capillaries) 

of "superfiuid flow" in the capillary. 

If a supersolid exists, then this experiment shows that its flow properties must 

be quite different from that of superfluids, since the chemical potential difference 

created by a pressure change does not appear to produce superflow. 
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Chapter 6 

Pressure Induced Flow of Solid 
Helium (Bulk) 

The observation of NCRI in bulk solid 4He [9] suggests that the superfluid-like 

behaviour is a general property of solid helium and not the result of confinement in 

any particular medium. It should be made clear, however, that this discovery does 

not diminish the importance of the Vycor torsional oscillator results [10]. In fact, 

the problem arguably becomes more difficult to solve as possible explanations for 

the NCRI should apply to both systems (confinement and bulk). While it is entirely 

possible that two separate mechanisms act for each system, it seems unlikely. As 

an example, recall that mass can be transported in bulk crystals via the motion 

of extended defects like dislocations or grain boundaries. Some have noted [18, 61] 

that such defects may be essential for supersolidity. But these very same defects 

would be pinned in small pores and would not explain the observed NCRI in Vycor. 

Therefore, it seems unlikely (although, certainly not impossible) that such defects 

are required for supersolidity. All the same, in discovering that the NCRI was 

not a result of confinement, the more pertinent experiments became those which 

investigate the properties of bulk solid 4He. 

6.1 Bulk experimental design 

The motivation behind the experiment described here is that, other than the tor­

sional oscillator experiments, there had not to date been any direct observations of 

supersolid behavior, either in bulk or in small pores. However, the small critical 

velocities (fj,m/s) and the sensitivity to 3He impurities (at the ppb level) may affect 

dc flow (or other properties) even more strongly than the torsional oscillator mea-
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surements. Also, and more fundamentally, we must keep in mind that solids have 

properties not shared by liquids (e.g., a lattice with shear rigidity) and a supersolid 

simply may not exhibit all of the effects we associate with superfluidity (e.g., su-

perleaks, persistent currents, thermo-mechanical effects, quantized vortices, second 

sound, etc.). Here we describe a set of experiments to look for one such property in 

solid 4He: superflow in response to pressure differences. We have used a piezoelec-

trically driven diaphragm to study the pressure-induced flow of solid 4He through 

an array of capillaries at low temperatures. We applied small pressure differences 

(3 to 100 mbar) at low temperatures (down to 35 mK) and used both isotopically 

purified 4He (1 ppb 3He concentration [148]) and 4He with the natural isotopic com­

position (typically 0.3 ppm 3He). We made both dc and low frequency ac (below 

1 Hz) measurements, but did not see any evidence of flow below about 1 K. 

6.1.1 Glass capillary array sample 

Glass capillary arrays [149] (GCAs) consist of tens of thousands of precision glass 

capillary tubes fused together to produce a uniform and mechanically rigid structure 

(see Figures 6.1,6.2,6.3). 

Figure 6.1: SEM image of our GCA. 

The manufacture of these arrays begins with the fusion of drawn and clad glass 

111 



Figure 6.2: Close-up SEM image of our GCA. 

Figure 6.3: Even closer-up SEM image of our GCA. 
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fibres. The holes of the capillaries are created via a chemical etching process, pro­

ducing a smooth interface between the polished surfaces of the cladding and the 

etch-able core. After the chemical removal of the etch-able core element, few defects 

larger than 1/100th of a capillary diameter remain. The etched holes are individu­

ally straight and parallel, and the diameters in a close-packed array typically vary 

by less than 5% from one to another, and by less than 2% along their length. 

6.1.2 Cell construction 

The pressure and temperature measurements were performed simultaneously in one 

cell (the "squeezing" cell). A schematic of the cell is shown in Figure 6.4, with a 

magnified view of the central part of the cell shown in Figure 6.5, and an image of 

the cell is shown in Figure 6.6. Our beryllium copper cell consisted of two cylin­

drical chambers connected by a GCA porous barrier (roughly 36,000 parallel glass 

capillaries, 25 fim in diameter, and 3 mm long). The porous barrier had an open 

cross-sectional area A = 0.18 cm2. The outer wall of the larger chamber (diame­

ter = 25 mm, height « 1 mm, volume Vi = 0.49 cm3) included a flexible diaphragm 

which could be moved with an external piezoelectric actuator (APC International, 

model PSt 150/10 x 10 x 18 [150]) to compress the helium. The smaller chamber 

(diameter = 7 mm, height « 0.3 mm, V2 = 0.01 cm3) included an in situ Straty-

Adams capacitive pressure gauge which, when used with a 1 kHz automatic bridge 

(Andeen-Hagerling 2550A), had a resolution and stability better than 0.2 mbar. A 

simple block diagram of the electronics used to make our measurements is shown 

in Figure 6.7. Data collection (i.e., automatic capacitance bridge readouts) was 

automated by a computer. 

The cell, which had a total volume (including the GCA channels and fill line) 

Vtotal = 0.79 cm3, was mounted onto the bottom of the mixing chamber of our 

dilution refrigerator. A 0.004" i.d. capillary, thermally anchored at several points 

on the fridge, was used to introduce 4He to the cell. Temperatures were measured 

with a calibrated germanium thermometer above about 50 mK, with a 60Co nuclear 

orientation and/or He melting curve thermometer for lower temperatures. 
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GCA 

Straty-Adams gauge 

fill line \ ^ piezoelectric stack 

solid helium ' diaphragm 

Figure 6.4: Schematic image of the bulk squeezing cell, with the GCA in place. 

GCA 

Straty-Adams gauge 

large chamber 

small chamber 

Figure 6.5: Close-up schematic image of the bulk squeezing cell, with the GCA in 
place. 

114 



llinllltiliiSiBil 
ilillllilll llllllllil l l ^ ^ B i l l 

SWWg^^r5^-.^! 
Ear B h n > 

juSrv" 
ji*t s 
gfa-* _• 
•5 »* 

W". 

MS 
• i - . 

1 • 
r > 

r™ 
' " i i 

*• " 
. • 

" • 

- • ! / -

• 

' -
• . * . 

" 

;'~J:»\ 
i""- * , , AE 

"fAjB 
."'^8 
£""3fi 

,a Vijsfl 
' "'-V' 

--.«.>.-' 

Figure 6.6: Image of the bulk squeezing cell, next to a Canadian twoonie coin for 
scale. 
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Figure 6.7: Block diagram for the bulk squeezing experiment. 
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6.2 Measurements in bulk (without GCA) 

Before studying the pressure-induced flow of solid 4He across the GCA porous bar­

rier, we performed a few simple measurements in our cell without the GCA porous 

barrier. This involved growing a solid 4He sample in the open volume (see Fig­

ure 6.8 for a schematic) between the diaphragm and the pressure gauge, and then 

squeezing the sample (by flexing the diaphragm) while measuring how the pressure 

was transmitted across the sample to the pressure gauge. 

fill line piezoelectric stack 

Straty-Adams gauge 

solid helium / diaphragm 

Figure 6.8: Schematic image of the bulk squeezing cell, without the GCA installed. 

First, the Straty-Adams capacitive pressure gauge was calibrated against a room 

temperature Mensor pressure gauge. This involved filling the cell at low temperature 

with liquid helium to known pressures (measured by the Mensor pressure gauge on 

the gas handling system) and recording the capacitance of the Straty-Adams gauge. 

This was done at 5 bar intervals, for pressures between about 25 and 75 bar. The 

pressure is plotted against the capacitance, and a second-order polynomial is fit 

to the data; it is this polynomial, then, which is used to convert our capacitive 

read-outs to a pressure. 

The cell was then filled with high-pressure, commercially purified, liquid 4He 
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Figure 6.9: The 4He melting curve [151]. 

2.5 3.0 

(0.3 ppm 3He impurities) at 4.2 K and a solid sample was grown in the open volume 

of the cell using the blocked capillary technique. The melting curve of 4He is shown in 

Figure 6.9, with a focus on the thermodynamic phase space in which our crystals are 

grown. Subsequent phase diagrams showing the measured thermodynamic path do 

not include the lambda line (dividing the normal fluid from the superfiuid phase), as 

none of the solid samples presented in this thesis ever passed through the superfiuid 

phase. For this sample, freezing began at T = 2.39 K and P = 53.2 bar and was 

complete at T — 1.76 K and P = 29.9 bar (the sample subsequently passed along 

the bec/hep phase line upon further cooling, before entering the pure hep phase at 

1.70 K and 29.3 bar). This thermodynamic path is shown in Figure 6.10. It must be 

made clear that the path shown, here (and all others) is measured data of pressure 

versus temperature. 

The cell was then cooled to 1.60 K and the linearity of the compressions was 

tested. Figure 6.11 shows the pressure capacitance Cp increase which results from 

the application of a voltage to the PZT stack, thus compressing the sample. The 

left side of the plot shows the Cp increase (and subsequent decrease) resulting 

from the application (and subsequent removal) of 140 Vdc to the PZT stack. The 

118 



0.0 0.5 1.0 1.5 2.0 

Temperature (K) 
2.5 3.0 

Figure 6.10: The thermodynamic path for the solid 4He sample in open squeezing 
cell. Inset shows a close-up of the end of freezing. This data is the pressure versus 
temperature as we measured it. 

compression(decompression) results in a positive(negative) capacitance change of 

2.8 fF, corresponding to a pressure change of 0.08 bar within the sample, about 0.3% 

of the initial pressure. This change in pressure occurs effectively immediately. The 

right side of the plot shows the Cp increase (and subsequent decrease) resulting from 

the stepwise application (and subsequent removal) of five 25 Vdc and one 15 Vdc 

increases to the PZT stack. The total pressure change (0.08 bar) after the stepwise 

application of 140 Vdc is equal the total pressure change after the single application 

of 140 Vdc to the PZT stack, confirming the linearity of our compressions and 

decompressions. 

This measurement was also made at 750 mK and is shown in Figure 6.12. Here, 

140 Vdc compressions result in pressure changes of 0.1 bar. Given the solid's reduced 

compressibility at lower temperatures [145], a larger pressure change was expected 

for this measurement. What was unexpected, however, was that the pressure change 

deeper within the solid phase at 750 mK be ~ 20% greater than what was observed 

near melting (the solid's compressibility only changes by only a few percent with 

decreasing temperature). In hindsight, we suspect that at 1.6 K there may be some 

"flow" of solid to equilibrate the pressure over the entire volume of the cell. At lower 
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Figure 6.11: Pressure response to squeezes in open bulk cell containing solid 4He at 
1.60 K. Lines are guides to the eye. 

temperatures, pressure gradients would instead remain. 

Finally, this measurement was made at 50 mK and is shown in Figure 6.13. There 

is no discernable difference between the 750 mK and the 50 mK pressure changes, 

as expected given that the solid's compressibility is constant below ~ 1 K [145]. 
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Figure 6.12: Pressure response to squeezes in open bulk cell containing solid 4He at 
750 mK. Lines are guides to the eye. 
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Figure 6.13: Pressure response to squeezes in open bulk cell containing solid 4He at 
5G mK. Lines are guides to the eye. 
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6.3 Measurements in bulk (with GCA) 

The GCA was then epoxied into the cell, dividing the inner volume into two sepa­

rate chambers, as previously described. If helium moves a distance dx through the 

capillaries, the resulting pressure change is given by 

dP = —^—dx, (6.1) 
KHeV2 

where rc#e is the helium's compressibility. With a resolution on our capacitive 

pressure gauge equal to 0.2 mbar, we typically could detect a 0.3 nm displacement 

of solid 4He through the GCA. 

A back-of-the-envelope calculation of the elastic energy of the system suggests 

that we should not expect to see any elastic displacement of solid 4He across the 

entire 3 mm length of the capillaries in our GCA. Imagine one single channel, as 

shown in Figure 6.14, of radius r, which is filled with solid 4He, elastically compressed 

from the top by 51, where I characterizes the distance over which a deformation from 

equilibrium exists. 

r 

I 

Figure 6.14: Elastic deformation of solid helium in a channel. 

This system is subject to compressional strain 
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and to shear strain 

ec~j (6.2) 

es ~ - . (6.3) 
r 

The total elastic energy, Ee; of this system at fixed SI and r, then, is 

*< 4 -* 2 „ , 1 2 T Ed = EC + ES = -{K + -fi)ec
2V + - /xe/V, (6.4) 

where K and /x are the bulk and shear modulus of the solid helium, respectively. We 

use the longitudinal modulus (K + I//.) in this expression rather than just the bulk 

modulus K as we are only compressing in one direction (as in a longitudinal plane 

wave). We may then write 

1 SI2
 2 , 2 5l2

 2 , 1 SI2
 2 , , e _ , 

1 « 2 , 2 SI2
 2 1 r , o , 

= -zK—irr + -fJ.—nr + -/idi t7r. (6.6) 

Minimizing Equation 6.6 with respect to the characteristic penetration depth of the 

deformation I gives us 

dEel 1 6l2
 2 2 6l2

 2 1 2 

° = ~dT = " 2 ^ ^ - 3"p-m ' + 2 ^ ' • ( 6 J ) 

which simplifies to 

<WH- (6-8) 
As K « //, we can conclude that / « 1.5r; that is to say, the deformation only 

penetrates the length of the channel to a depth roughly equal to its diameter. So, 

we do not expect to see any elastic deformation at the opposite end of the GCA 

channels (which have length 120 times greater than their diameter). 
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Computer modelling was initiated to confirm that we should not expect such 

an elastic deformation to span the length of our channels. Specifically, a deforma­

tion analysis of low temperature bulk solid 4He within a GCA channel was done 

using a 3-D solid, stress-strain structural mechanics module within the COMSOL 

Multiphysics [152] simulation environment. Preliminary models predict that the ap­

plication of 100 mbar in the direction of the length of the 4He-filled channel results 

in a maximum compressional displacement of the order of the channel diameter 

•(~ 25^m), and that the characteristic depth to which the deformation exists does 

not extend beyond a few channel diameters (~ 75 /xm). This is consistent with the 

back-of-the-envelope calculation presented above. 

What we might expect to see, however, is plastic flow of solid 4He along the 

channels. Helium is a relatively soft solid, often likened to butter. Mass may be 

transported in bulk crystals via the motion of extended defects like grain boundaries 

or dislocations (e.g., the glide of dislocations on parallel sets of crystal planes). 

Mass may also be transported by vacancy motion. If a vacancy moves one lattice 

spacing to the left, a helium atom moves one lattice spacing to the right. Mass 

can be moved and crystals can be deformed through a mechanism called diffusional 

flow [147] (or vacancy creep), the stress-induced migration of vacancies. Because 

of the lattice mismatching between the helium crystals in the GCA pores and that 

which is strongly adsorbed to the GCA pore wall, a higher-than-usual density of 

such defects might be expected near the walls of the GCA. 

With an idea of what we might expect to see, we began by filling and pressurizing 

the cell at 4.2 K, using a room temperature gauge to calibrate our capacitive pressure 

gauge (as described earlier). The actuator and diaphragm were then calibrated in 

the liquid phase at 1.95 K and 36.4 bar, just below the melting curve. Figure 6.15 

shows the pressure response of the liquid in the small chamber when the full voltage 

(150 Vdc) was applied to the actuator, thus compressing the liquid in the large 

chamber. It should be pointed out that the capillary was blocked (by a closed 

needle valve) higher up along the fill line. As expected, the pressure increased 

immediately (within the few seconds the capacitance bridge took to respond), and 

returned to its original value when the diaphragm was released after about half an 

hour. The pressure change due to the compression was ^Puquid J=» 84 mbar. Using 

the liquid's compressibility {Kuquid ~ 3.6 x 10~3 ba r - 1 [1.51]) gives a volume change 

AV/Vtotai ~ 0.03%, corresponding to a diaphragm deflection of about l-fjxa. This is 
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consistent with the manufacturer's statement [150] that the full stroke (0 —> 150 Vdc) 

at low temperature is 6% of its room temperature value of 20 nm. 

36.52 
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36.40 
0 500 1000 1500 2000 2500 

Time (seconds) 

Figure 6.15: Pressure response to squeezes in liquid 4He, at 1.95 K and 36.4 bar. 
Lines are guides to the eye. 

Crystals were then grown using the blocked capillary, constant volume technique, 

with isotopically purified 4He (nominally 1 ppb 3He impurity concentration). This 

is the same gas used in Kim and Chan's torsional oscillator experiments [52]. We 

started with liquid at high pressure and monitored the cell pressure as it was cooled. 

At a pressure of 61.7 bar, freezing began at 2.60 K and was complete at a final 

pressure of 36.8 bar. This thermodynamic path is shown in Figure 6.16. 

We then annealed the solid by keeping it within 50 mK of its melting tem­

perature for at least 2 hours, thereby eliminating many of the pressure gradients 

created during freezing and thus producing a sharp melting onset (at TTO = 1.96 K), 

characteristic of a uniform density crystal, and as shown in Figure 6.17. 

Our basic flow measurement was made at temperatures below Tm by quickly 
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Figure 6.16: The thermodynamic path for solid 4He sample in open squeezing cell 
with GCA. Inset shows a close-up of the end of freezing. This data is the pressure 
versus temperature as we measured it. 

x>, 

S-i 

38.5 

38.0 

37.5 4 

37.0 

36.5 
1.90 1.92 1.94 1.96 1.98 

Temperature (K) 

2.00 

Figure 6.17: The elimination of pressure gradients through annealing. Pressure is 
measured in situ during blocked capillary freezing of 4He (•) and subsequent melting 
(o). Annealing essentially eliminates the initial pressure gradients (~ 200 mbar). 
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(over about 5 seconds) applying a dc voltage to the actuator to squeeze the solid 
4He, thus increasing the pressure in the large chamber. In contrast to the case 

where the cell contained liquid, the solid helium may flow through the GCA channels 

slowly, or not at all, and so the pressures in the two chambers may not equilibrate. 

However, even without flow, some pressure is transmitted to the second chamber, 

since a pressure difference will cause the GCA plate separating the chambers to 

flex elastically. This small deflection appears as an immediate pressure step in the 

other chamber. Any subsequent flow through the channels will further increase the 

pressure, but more slowly. 

The data in Figures 6.18 and 6.19 show the response to a pressure step when 

the cell contains isotopically purified solid 4He (1 ppb 3He impurity concentra­

tion). At 0.5 K (Figure 6.18) the pressure in the second chamber immediately 

changed by 38 mbar, corresponding to the GCA flexing by about 30 nm. Above 

about half the melting temperature, this initial jump was followed by a slower, 

temperature-dependent change due to flow. The curve in Figure 6.19 shows the 

response at 1.95 K, very close to melting. After the initial jump, the pressure con­

tinued to increase due to flow of solid through the channels, but stabilized within 

about half an hour. During this time, the GCA presumably relaxes to its original 

position. The total increase of 105 mbar is slightly larger than the correspond­

ing change with liquid helium, as expected given the solid's smaller compressibility 

(Ksoiid ~ 3.1 x 10~3 ba r - 1 [151]), and indicates that, near melting, flow through the 

channels can maintain pressure equilibrium between the two chambers. 

For all three sets of data, we confirmed the linearity of the response (i.e., the 

pressure changes were proportional to the voltage applied to the diaphragm actua­

tor). Figure 6.20 shows these results. 
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Figure 6.18: Pressure response to squeezes in solid 4He, at 500 mK and 36.6 bar. 
The magnitude of the vertical scale is the same as on Figure 6.15. Lines are guides 
to the eye. 
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Figure 6.19: Pressure response to squeezes in solid 4He, at 1.95 K and 37.1 bar. The 
magnitude of the vertical scale is the same as on Figure 6.15. Lines are guides to 
the eye. 
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Figure 6.20: The linearity of the pressure response to the compressions as a function 
of applied voltage. Data sets for the solid at 1.95 K (o) and for the liquid at 1.95 K 
(•) have been shifted vertically by a constant amount to agree with the data set for 
the solid 0.5 K (n) at 0 Vde. Lines are guides to the eye. 
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6.4 High temperature squeezing 

Figure 6.21 shows the response of a 42.0 bar sample of commercially purified solid 
4He (0.3 ppm 3He impurity concentration), with a melting temperature Tm = 2.12 K, 

when the larger chamber was suddenly compressed by about 0.1 bar and then de­

compressed 300 seconds later. The pressure in the smaller chamber responded in 

two stages. First, there was an immediate pressure increase caused by the GCA 

flexing elastically due to the pressure difference, thus compressing the helium in 

the smaller chamber. Second, there followed a slower, temperature-dependent pres­

sure increase as solid helium flowed through the 25 fun channels in response to the 

pressure gradient across the GCA. 

At 2.10 K (i.e., 20 mK below melting), the pressure stabilized within a minute 

following a compression and returned to its original value just as quickly after de­

compression. This confirms that both chambers experienced essentially the same 

compression (i.e., that flow of solid through the GCA equilibrated the pressures in 

the two chambers within a minute). We studied the response at lower temperatures, 

but between squeezes we always warmed the crystal to 2.10 K to ensure we started 

each measurement from a state of pressure equilibrium. 

The response of solid helium changed rapidly as the temperature was lowered. 

At 2.08 K the pressure increase after squeezing was essentially unchanged but after 

decompression the pressure did not return quite to its original value. At 2.04 K the 

pressure increase was smaller (by about 5%) and after decompression the pressure 

remained even higher, indicating that flow in the solid was no longer sufficient to 

completely eliminate the pressure difference between the two chambers. By 1.96 K 

the decompression produced only a small pressure drop and below 1.92 K there was 

almost no flow through the GCA after squeezing. This irreversible behavior due to 

flow is characteristic of plastic deformation, as axe the stress gradients that remain 

after compressing and decompressing. As can also be seen, the flow slowed as the 

temperature was lowered, but the complicated behavior we observed (e.g., note the 

small bump developing at the beginning of compression as early as 1.98 K) cannot 

be described simply with a thermally activated time constant. Instead, it appears 

to reflect the creation of defects (dislocations) and stress gradients during pressure-

induced flow and the subsequent partial annealing of these defects near the melting 

temperature. 
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Figure 6.21: Bulk 4He: Temperature dependence of pressure response to a compres­
sion/decompression near the melting point of a 42.0 bar sample with a 0.3 ppm 3He 
impurity concentration. 

Figure 6.22 shows the response of a 41.2 bar sample of commercially purified solid 
4He (0.3 ppm 3He impurity concentration), with a melting temperature T m = 2.08 K, 

for the same type of compression/decompression procedure as above. The behaviour 

is extremely similar to that shown in Figure 6.21. 

131 



J* 41.235 

t^ e 

2.00 Q p 
1.95 ^ 

9 0 ^jS® 

Figure 6.22: Bulk 4He: Temperature dependence of pressure response to a compres­
sion/decompression near the melting point of a 41.2 bar sample with a 0.3 ppm 3He 
impurity concentration. 
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6.5 Low temperature squeezing 

The most interesting question is whether solid helium will flow through the chan­

nels in the temperature range where Kim and Chan saw decoupling. Figure 6.23 

compares the pressure response at 35 mK to that at 500 mK in a sample of iso-

topically purified solid 4He (1 ppb 3He impurity concentration). They are offset for 

clarity and are essentially identical, with no indication of flow over a period of about 

20 hours. 
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Figure 6.23: Solid 4He response at 500 mK (upper curve, D's) and 35 mK (lower 
curve, »'s). Lines are guides to the eye and the curves are offset for clarity. Note 
the time scale, which is much longer than in Figures 6.21 and 6.22. 

The rate of pressure change, set by the noise in our data, is given by 

dP Avav 0.5 mbar 
dt KsolidVi 20 hours' 

(6.9) 

With A « 0.18 cm2, V2 ~ 0.01 cm3, and Ksoiid « 3.1 x 10 3 bar 1
1 this provides a 
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limit on the average flow velocity of the solid, 

vav = —vc < 1.2 x 10 
P 

-14 m/s. (6.10) 

Taking Kim and Chan's value of ^ w 0.01, we conclude that any supersolid 

fraction present in the helium moves at a velocity of 1.2 x 10~12 m/s. This is seven 

orders of magnitude below the supercritical velocities inferred from the Kim and 

Chan torsional oscillator experiments. 

For completeness, we also show Figure 6.24, which compares the pressure re­

sponse at 75 mK to that at 500 mK in a sample of commercially pure solid 4He 

(0.3 ppm 3He impurity concentration). They are offset for clarity and their magni­

tudes are essentially identical. There is no indication of flow over a period of about 

12 hours in the 75 mK sample. 
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Figure 6.24: Solid 4He response at 500 mK (upper curve, D's) and 75 mK (lower 
curve, »'s). Lines are guides to the eye and the curves are offset for clarity. Note 
the different time scales. 
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6.6 AC pressure induced flow 

A common point raised in response to the pressure-induced flow results presented 

above is that while these experiments measure a dc effect, the torsional oscillators 

are an ac probe (i.e., they oscillate back-and-forth). Therefore, we also made low 

frequency ac measurements using the piezoelectric actuator to produce smaller pres­

sure oscillations (±4 ~VPeak-to~peak, corresponding to ±3 mbar). The pressure was 

measured using a manual capacitance bridge (General Radio 1615-A, operating at 

10 kHz) with an analog lock-in amplifier, and the ac response was monitored with 

a digital lock-in amplifier(Stanford Research SR830 DSP). A simple block diagram 

of the electronics used to make our measurements is shown in Figure 6.25. Sample 

heating from the piezoelectric actuator limited these measurements to frequencies 

below 1 Hz, and so we were not able to make direct comparisons to the Kim and 

Chan torsional oscillator measurements at 1 kHz. • 

At 0.5 K the amplitude of the pressure oscillations was independent of frequency 

up to about 1 Hz, as expected since the GCA can flex very rapidly. Close to melting, 

the frequency dependence was considerably more complicated since, as Figures 6.21 

and 6.22 remind us, the solid can flow through the capillaries even on a time scale 

of a few seconds. We looked for ac flow at low temperatures by cooling a 34.3 bar 

sample of isotopically purified solid 4He (1 ppb 3He impurity concentration) below 

0.5 K. Figure 6.26 shows the amplitude of the pressure oscillations at a frequency 

of 0.1 Hz. It also shows 0.01 Hz data at 35 mK and at 0.5 K, illustrating the 

frequency independence over this temperature range. The resolution is better than 

for dc flow and the pressure amplitude is constant within ±0.02 mbar. No evidence 

of temperature dependence.is seen that could be attributed to the onset of flow 

through the capillaries. 

6.7 Conclusions 

For a supersolid fraction ps/p = 1%, our dc flow limit (obtained from Equation 6.10) 

implies a critical velocity vc < 1.2 x 10~12 m/s, seven orders of magnitude smaller 

than the critical velocity inferred from Kim and Chan's torsional oscillator mea­

surements and more than three orders of magnitude smaller than the limits set by 

previous flow experiments [41, 43]. Flow in solids often involves dislocations or grain 

boundaries, which can be immobilized by small concentrations of impurities. Our 
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Figure 6.25: Block diagram for the ac squeezing experiment. 
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Figure 6.26: AC pressure response in solid 4He at low temperatures. Solid symbols 
are taken at 0.1 Hz during cooling. Open squares at 35 mK and 500 mK were taken 
at 0.01 Hz. 

measurements using isotopically purified 4He were essentially identical to our results 

with commercially purified 4He, so the absence of pressure-induced superflow seems 

not to be due to impurity pinning of such defects (although it possible that such 

effects are sensitive to impurities even at the ppb level). There has also been a 

suggestion [84] that a surface melted layer could allow solid helium in a torsional 

oscillator to slip, providing an alternative, non-supersolid explanation of the bulk 

He decoupling. Our measurements appear to rule out such behavior at low tem­

peratures, although it may occur near melting. The torsional oscillator results were 

also consistent with the displacement, rather than the velocity, being limited to a 

critical value. We can put limits on possible displacements of the solid helium at 

low temperatures from the data in Figures 6.23 and 6.26. 

Recall that the bulk modulus K is given by 

K 
\dV)T 

(6.11) 

Solid 4He has a bulk modulus of ~ 325 bar, while the volume of the chamber is 
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11 mm3. A pressure increase in this chamber will result if its volume is decreased. We 

can correspond this decrease to some volume of solid 4He moving a distance h along 

the 36,000 GCA channels of radius r and into the chamber (i.e., AV = 36000 7rr2h). 

Since the pressure jumps at 35 and 500 mK of Figure 6.23 agree within 1 mbar, the 

corresponding displacements (i.e., the distance that solid 4He can travel along the 

length of our GCA capillaries) cannot differ by more than 2 nm. 

Our ac measurements are less sensitive to flow, but more sensitive to displace­

ments, and rule out movements of solid helium through the channels larger than 

0.03 nm. If we again assume that only a 1% supersolid fraction moves, this would 

imply supersolid displacements less than 3 nm, comparable to the amplitude of Kim 

and Chan's torsional oscillator at their critical velocity (for their 1 kHz oscillator, 

vc « 10 //m/s corresponds to an amplitude ve/w ~ 2 nm). These experiments show 

that static or low frequency pressure differences do not produce either superflow or 

unusual displacements at low temperatures in solid 4He. If the helium forms a su­

persolid, then its flow properties must be quite different from those of a superfluid, 

in which the chemical potential difference created by a pressure change would cause 

superflow. 
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Chapter 7 

Shear Modulus Study of Solid 
Helium 

The first, and so far only, evidence for supersolidity comes from torsional oscilla­

tor measurements in which the frequency increased at temperatures below about 

200 mK, suggesting that some of the solid helium decoupled from the oscillator. 

This behaviour has been interpreted in terms of the nonclassical rotational iner­

tia which characterizes a supersolid. The behaviour has been replicated by sev­

eral groups [53, 55, 54, 57, 56]; however, no clear signature has yet been seen in 

other properties (although a recently reported heat capacity peak supports the 

existence of such a new phase [97]). Persistent currents would provide definitive 

proof of supersolidity, but this challenging experiment has not yet been performed. 

Other experiments (i.e., Chapters 5 and 6) put extremely small bounds on possible 

pressure-driven DC mass flow [78, 79]. 

Although the amount of helium which decouples in different torsional oscillators 

varies widely, the measurements have many common features. Decoupling occurs 

below about 200 mK, with a gradual onset accompanied by a dissipation peak. It 

decreases at large oscillation amplitudes, which is interpreted in terms of a superflow 

critical velocity (vc ~ 10 /im/s). The magnitude of the decoupling is frequency 

independent, although its onset shifts with frequency. Its amplitude dependence 

appears to scale with velocity [56], but depends on the oscillation amplitude during 

cooling and is hysteretic. A crucial feature of the decoupling is its sensitivity to 3He. 

Most measurements used commercial 4He gas (with 3He concentration X3 ~ 0.3 ppm) 

but experiments [52, 58] with isotopically pure 4He (1 ppb 3He) show a sharper 

onset at a lower temperature, around 75 mK. Decoupling is usually larger in narrow 

annuli than in open cylinders [57] but begins at similar temperatures. Its magnitude 
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also depends on how the solid helium was grown and annealed, indicating that 

defects are important. Most samples were grown at constant volume under blocked 

capillary conditions, a procedure which involves substantial plastic deformation and 

is expected to produce a polycrystalline solid with many defects. Theoretical work 

also suggests that supersolidity does not occur in a perfect crystal [71, 61] and that 

vacancies [67], grain boundaries [80, 81], glassy regions [75] or dislocations [83, 153] 

are involved. Superflow associated with grain boundaries has been seen in solid 4He 

coexisting with liquid [82], but solidification at constant pressure (producing single 

crystals with fewer defects) still gives significant decoupling [58]. 

7.1 Experimental design 

Dislocation networks are an important defect to consider. Since their main effect is 

on mechanical behavior, we have made a detailed study of the elastic properties of 

solid 4He. This required a completely new method to measure the shear modulus \i 

at extremely low frequencies and amplitudes. Embedding piezoelectric transducers 

in the helium allowed us to measure /J, of the 4He within the gap separating the 

transducers directly at strains (stresses) as low as e = 2.2 x 10 - 9 (a = 0.03 Pa). 

This is two to three orders of magnitude lower than in previous ultrasonic [154, 155, 

156], internal friction [157] and torsional [158] measurements and is comparable to 

inertial stresses in torsional oscillator measurements. A low noise current amplifier 

allowed us to measure \x at frequencies down to 20 Hz, far lower than in any other 

measurements. These low amplitude and low frequency features proved crucial to 

our experiments. We could also excite and detect acoustic modes of solid 4He outside 

of the gap separating the transducers and within the surrounding solid 4He. The 

first such acoustic resonance was near 8000 Hz and had a quality factor Q ~ 2000 

at our lowest temperature. 

7.1.1 Cell construction 

The shear and acoustic resonance measurements were performed in the same cell. 

A schematic of the cell is shown in Figure 7.1 and an image of the cell is shown 

in Figure 7.2. Our OFHC cell consisted of a large inner volume ( « 25 cm3) into 

which our shear transducers were installed. The transducers were epoxied onto 

solid brass backing pieces, which were themselves rigidly mounted onto a solid brass 

support arm, ensuring that the faces between the transducers were parallel. The 
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cell also included an in situ Straty-Adams capacitive pressure gauge which, when 

used with a 1 kHz automatic bridge (Andeen-Hagerling 2550A), had a resolution 

and stability better than 0.2 mbar. The cell was mounted onto the bottom of the 

mixing chamber of our dilution refrigerator. A 0.004" i.d. CuNi capillary, thermally 

anchored at the 1 K pot of the fridge and at the 0.6 K step heat exchangers, was used 

to introduce 4He to the cell. The ^Hc used in these experiments ranged in isotopic 

purity from ~ 0.3 ppm 3He isotopic impurities down to nominally pure 1 ppb 3He 

isotopic impurities [148]. All crystals were grown using the constant volume, blocked 

capillary technique. Temperatures were measured with a calibrated germanium 

thermometer above about 50 mK, with a 60Co nuclear orientation thermometer for 

lower temperatures. 

fill line 

electrical 
feedthroughs 

piezoelectric transducers 

solid helium 

Straty-Adams gauge 

Figure 7.1: Schematic of the shear cell. The front faces of the transducers are 
grounded to the body of the cell. 

7.1.2 PZT transducers 

Displacements were generated and stresses were detected by two parallel-aligned 

shear transducers [159] with a helium-filled gap (D « 180 fim) between their faces. 

The transducers were made from PZT 5A material (quoted fundamental resonance 

at 500 kHz, with dimensions width W.— 9.6 mm, length L = 12.8 mm, thickness 

t = 2.1 mm). 
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Figure 7.2: Image of the shear cell, next to a Canadian quarter for scale. 

When a voltage is applied across a capacitor made of normal dielectric material, 

a charge results on the plates or electrodes of the capacitor. Charge can also be 

produced on the electrodes of a capacitor made of a piezoelectric material by the 

application of stress; this is known as the direct piezoelectric effect. Conversely, 

the application of a field to the material will result in strain; this is known as the 

inverse piezoelectric effect. Therefore, a piezo-ceramic is capable of acting as either 

a transmitting element, a sensing element, or both. 

Relationships between the applied forces and the resultant responses depend 

upon a number of factors: for example, the piezoelectric properties of the ceramic; 

the size and shape of the piezo-ceramic; and the direction of the electrical and 

mechanical excitation. There exist double subscripted coefficients associated with 

piezoelectric constants that link electrical and mechanical quantities. The first sub­

script gives the direction of the electrical field associated with the voltage applied, 

or the charge produced; the second subscript gives the direction of the mechanical 

stress or strain. 

The piezoelectric constant which relates the mechanical strain produced by an 

applied electric field are termed the strain constants, or the "d" coefficients (Equa­

tion 7.1). The units may then be expressed as m/m per V/m (i.e., m/V, and actual 

displacements (in m) are independent of transducer thickness). The subscripts in 
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dis indicate that the voltage is applied to the electrodes which are at right angles 

to the original poling electrodes and that the applied mechanical stress is shear. 

strain developed ,„ ,. 
d = applied electric field" <"> 

The piezoelectric constant which relates the electric field produced by a mechan­

ical stress are termed the voltage constants, or the "g" coefficients (Equation 7.2). 

The units may then be expressed as V/m per N/m2 (i.e., Vm/N) or V/m per Pa. 

The subscript in gi5 implies that the applied stress is shear and that the resulting 

electric field is perpendicular to the polarization axis (and charge is collected on 

electrodes which are at right angles to the original poling electrodes). 

open circuit electric field . „. 
g = — . (7.2) 

• applied mechanical stress 

Finally, whereas the relative dielectric constant is strictly a material property, 

the capacitance is a quantity which depends both on the type of material and its 

dimensions. At frequencies far below resonance, piezoelectric ceramic transducers 

are fundamentally capacitors. Consequently, the voltage coefficients gy are related 

to the charge coefficients d,j by the dielectric constant K» (as in a capacitor the 

voltage is related to the charge by the capacitance). 

dis = KiSogis, (7.3) 

7.2 Measurements in sample 

A simple block diagram of the electronics used to make our measurements is shown 

in Figure 7.3. Data collection (i.e., lock-in amplifier readouts) was automated by a 

computer. 

A voltage V applied to the driving transducer produces a shear displacement 

at its front face <5x = disV. Voltages were generated using a synthesized function 

generator (Stanford Research Systems DS345), capable of generating many standard 

waveforms with a frequency resolution of 1 /xHz. Sinusoidal outputs were employed 

for all measurements described below, the amplitude of which was adjustable from 

10 mVpp to 10 Vpp. The signal was split into a driving voltage for the PZT and 
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Figure 7.3: Block diagram for the shear experiment. 

a reference signal for the lock-in amplifier. The minimum amplitude to which the 

signal generator was set was 150 mVpp, near the reference detection limit of the 

lock-in amplifier. The driving voltage was attenuated from 150 mVpp by a series of 

electronic attenuators. The actual driving voltages (used to calculate strains) were 

measured using an auto-ranging microvolt digital multi-meter (Keithley 197). 

At room temperature, di5 is given by the manufacturer as 585 x 10~~12 m/V. In 

order to determine the low temperature value of this coefficient, consider that the 

electric field generated in the detecting transducer is 

E = #150-, (7.4) 

or that the voltage generated across the transducer is 

V = Et = gisat, (7.5) 
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where the stress u is related to the strain e by the shear modulus of the helium in 

the gap D «. 180 jim (/x = cr/e). The strain in the helium in the gap between the 

two transducers is 

_ 6x di$V 

so that the stress induced in the detecting transducer is 

(7.6) 

a = ^ - . (7.7) 
D 

The capacitance of the piezo-ceramic is given by 

C = * f * (7.8) 

where is A is the area of the electrodes. As q = CV, Equations 7.3, 7.5, and 7.8 

allow us to write the charge generated on the face of the stressed electrode as 

q = dmaA. (7.9) 

We measure this charge generated as a current I (at a drive frequency f) 

I = u)q = 2irfq = 2Trfd15(rA. (7.10) 

Coupled with Equation 7.7, we measure an output current from our detecting shear 

transducer equal to 

I = 27r/^d15
2/xV. (7.11) 

This output current I can be vanishingly small, and so we used an ultra-low-noise 

current preamplifier (Femto LCA-20K-200M) to magnify the signal. The pream­

plifier has an extremely low 14 fA/y/Wz equivalent input noise current, a 20 kHz 

bandwidth, and a gain of 2 x 108 V/A. This signal was then detected with a 2-

phase digital lock-in amplifier (Stanford Research System SR830 DSP), as R (the 

amplitude of I) and 9 (the phase .of 1). By measuring our signal in this way, back-
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grounds/crosstalk could be subtracted even if they had different phases. 

With that, we can write dis in terms of our experimental variables at low tem­

perature: 

^={^vj)'- <7'12) 

We must be careful to note that A is the overlapping area of the electrodes. The 

total area of each electrode is 1.23 x 10 m2, but our electrodes are horizontally 

offset from one another by about 3 mm (see Figure 7.4), so that the overlapping 

area is actually « 10~4 m2. For solid 4He at about 35 bar (fi « 1.5 x 107 Pa), we 

measured lrms « 25 pA at 2000 Hz for a driving voltage Vrms « 17.3 mV. This 

means that dis = 1.2 x 10~10 m/V for these transducers below 4 K (reduced to 21% 

of its room temperature value). 

Figure 7.4: The horizontal offset in the transducers. 

Returning to the original statement of this section, a voltage V applied to the 

driving transducer produces a shear displacement at its front face S x = d^V. 

Below the resonance frequency of solid 4He in the gap (v4/2D ~ 830 kHz), this 

creates a strain, e< = Sx/T), which then produces a shear stress, at = A»£t> o n the 

detecting transducer. The minimum detectable stress at 2000 Hz, set by noise in our 

146 



preamplifier (14 iA/y/Hz, resulting in ~ 2.5 fA at 30 s averaging), is <TJ ~ 10~5 Pa 

(which corresponds to a displacement 5x ~ 2 x 10~16 m and strain tt ~ 10 - 1 2) . 

After subtracting a background due to electrical crosstalk (the signal with liquid 
4He in the cell, a correction of less than 15%, see Figure 7.5) from the raw signal 

(Figure 7.6), the solid's shear modulus (~ 1.5 x 107 Pa) is proportional to I/f (recall 

Equation 7.12). It is important to note that the small resonances in the liquid 

background aren't individually considered; rather, we subtract an "average" smooth 

background. The shear modulus is nearly frequency independent below 4000 Hz, as 

shown in Figure 7.7. 

The 3 mm offset of the transducers (recall Figure 7.11) provided exposed surfaces 

which could be used to excite and detect acoustic modes of the solid helium outside 

the gap, surrounding the transducers. The first such resonance can be found near 

8000 Hz in Figure 7.6. 
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Figure 7.5: The liquid 4He background signal in the shear cell. Data were collected 
at T = 0.5 K and P = 22.1 bar, at a 24.5 mVpeafc sinusoidal drive. 
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Figure 7.6: The raw signal of solid 4He in the shear cell. Data were collected at 
T = 0,5 K and P = 33.3 bar, at a 24.5 rnVpeafc sinusoidal drive. Notice the difference 
in vertical scale from Figure 7.5. 
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Figure 7.7: The measurement of the shear modulus of solid *He. Both sets of 
data were collected at T = 0.5 K (liquid P = 22.1 bar; solid P = 33.3 bar), at a 
24.5 mVpeofc sinusoidal drive. 
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7.3 Shear modulus in gap 

The following section discusses the essential result of this experiment; namely, the 

anomalous stiffening of solid hep 4He at low temperatures. All solid samples are 

grown by first filling the cell with a high pressure liquid (~ 70 bar) at 4.2 K and then 

cooling. No special effort is taken to keep the fill line from the high-pressure gas 

cylinder to the cell open. As the dilution refrigerator is set into operation, parts of 

the fill line will reach temperatures near 1 K long before the cell reaches those same 

temperatures. As a result, a solid plug will develop in the fill line before the 4He 

in the sample cell freezes, meaning that no more 4He may enter (or leave) the cell 

during sample solidification (i.e., solidification occurs under constant density condi­

tions). This is referred to as the blocked capillary technique for sample growth, and 

presumably results in a poly crystalline solid sample with many defects. 0.3 ppm 3He 

was used for all samples discussed in this section (i.e. Section 7.3). Sometimes the 

sample was annealed before the measurement was made, other times it wasn't. Here, 

annealing means keeping the sample at a temperature slightly below melting for an 

extended period of time. We presume that this process improves the quality of the 

sample under study (e.g., results in fewer crystallographic defects), but we have no 

way of directly knowing this. The melting curve of 4He was given in Figure 6.9, 

and the thermodynamic path followed during each particular sample growth will 

be overlaid in the following subsections. Following that, the shear modulus of each 

sample is provided and discussed. In each case, the liquid background has been 

subtracted. 

7.3.1 Sample 300ppb29.3 

Figure 7.8 shows the thermodynamic path followed during the growth of sample 

300ppb29.3. As can be seen from the inset of Figure 7.8, solidification was complete 

at the upper bcc/hcp/liquid triple point; from there, the sample continued along 

the bec/hep line until entering the pure hep phase at T = 1.68 K and P — 29.3 bar. 

The helium used for this sample had an isotopic purity of 300 ppb 3He. 

Figure 7.9 shows the temperature dependence of the shear modulus of a sample 

300ppb29.3 (typical of all samples studied). Sample 300ppb29.3 was annealed before 

this measurement was taken by holding the cell temperature at 1.45 K for ~ 17 hours. 

We annealed the sample until the shear modulus was no longer changing as a function 
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of time. The data was collected as the sample was cooled. The measurement 

was made at 2000 Hz, at a driving voltage of 32.7 mVpeafc and a corresponding 

strain of 2.2 x 10~8. Below 200 mK, the shear modulus /x increases by about 11% 

(Afi ~ 16 bar). As mentioned above, this anomalous stiffening is our central result. 

The pressure in the cell is constant within 0.2 mbar in this temperature range, which 

rules out local density changes (e.g., freezing of small liquid regions) as the cause of 

the fj, increase and implies that the bulk modulus does not have a similar anomaly. 

0.0 0.5 1.0 1.5 2.0 

Temperature (K) 
2.5 3.0 

Figure 7.8: The thermodynamic path for sample 300ppb29.3. Inset shows a close-up 
of the end of freezing. This data is the pressure versus temperature as we measured 
it. 

Figure 7.10 shows a typical NCRI fraction from a torsional oscillator measure­

ment [51],; at a frequency of 910 Hz. The onset and shape, of the temperature 

dependence is essentially the same as that of shear modulus anomaly, A/i, shown in 

Figure 7.9. 
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Figure 7.9: Shear modulus anomaly in sample 300ppb29.3 as a function of temper­
ature, measured at 2000 Hz. 
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Figure 7.10: Typical NCRI fraction (65 bar) in a torsional oscillator operating at 
910 Hz. 
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7.3.2 Sample 300ppb34.0 

Figure 7.11 shows the thermodynamic path followed during the growth of another 

hep solid 4He sample, 300ppb34.0. As can be seen from the inset of Figure 7.11, 

solidification this time was complete before reaching the bcc/hcp/liquid triple point. 

The rounded knee, signalling the end of freezing, is commonly observed when no 

attempt is made to control the temperature of the cell while the dilution refrigerator 

is cooling and can be made sharper through annealing the sample (as was shown 

in Figure 6.17), or by way of a partial melt and re-freeze. The helium used for this 

sample also had an isotopic purity of 300 ppb 3He. 

Figure 7.12 shows the temperature dependence of the shear modulus \i of sample 

300ppb34.0. Sample 300ppb34.0 was annealed before this measurement was taken 

by holding the cell temperature at 1.70 K for ~ 10 hours. The data was collected as 

the sample was cooled. The measurement was made at 2000 Hz, at a driving voltage 

of 32.7 mVpeafc and a corresponding strain of 2.2 x 10~8. At low temperature, it 

increases by about 6% (Afi ~ 9 bar). 
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Figure 7.11: The thermodynamic path for sample 300ppb34.0. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we 
measured it. Data in grey shows sample 300ppb29.3. 
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Figure 7.12: Shear modulus anomaly in sample 300ppb34.0 as a function of temper­
ature, measured at 2000 Hz. 

7.3.3 Sample 300ppb33.3 

Figure 7.13 shows the thermodynamic path followed during the growth of sample 

300ppb33.3. As can be seen from the inset of Figure 7.13, this sample is at only a 

slightly lower pressure than the previous sample 300ppb34.0. As well, it has entered 

the hep phase without having first entered the mixed bec/hep phase. The helium 

used for this sample also had an isotopic purity of 300 ppb 3He. 

Figure 7.14 shows the temperature dependence of the shear modulus /t of sample 

300ppb33.3 (and looks cleaner than the previous sets of data, as it was taken with 

our then-newly-acquired current pre-amplifier). Sample 300ppb33.3 was annealed 

before this measurement was taken by holding the cell temperature at 1.70 K for 

~ 12 hours. The data was collected as the sample was cooled. The measurement 

was made at 2000 Hz, at a driving voltage of 32.7 mVpeafc and a corresponding strain 

of 2.2 x 10~8. At low temperature, it increases by about 8% (A/x ~ 12 bar). 

We observed variations in A/i of up to a factor of 2 over a total of 8 samples 
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Figure 7.13: The thermodynamic path for sample 300ppb33.3. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we 
measured it. Data in grey shows sample 300ppb29.3 and sample 300ppb34.0. 
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Figure 7.14: Shear modulus anomaly in sample 300ppb33.3 as a function of temper­
ature, measured at 2000 Hz. 
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in the pressure range 29-34 bar, and with varying concentrations of 3He impurities. 

This is similar to the range of NCRI seen in a single torsional oscillator. 

7.3.4 Frequency dependence 

Figure 7.15 shows the shear modulus anomaly at three frequencies (2000, 200 and 

20 Hz), at a driving voltage of 32.7 mVpeafc a n d a corresponding strain of 2.2 x 10 - 8 , 

in the sample 300ppb33.3 of Figure 7.14. The magnitude of the modulus increase is 

similar for each and is nearly independent of frequency over two orders of magnitude. 

This is in agreement with torsional oscillator experiments where a frequency inde­

pendent NCRI fraction is measured [56]. The transition is sharper at low frequency, 

and appears to begin at lower temperatures. 
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Figure 7.15: The shear modulus anomaly as a function of frequency in sample 
300ppb33.3. The 200 Hz and 20 Hz data have been shifted down for clarity. 

We did not measure the shear modulus fj, at frequencies below 20 Hz because 

the low signal-to-noise ratio required painfully long averaging times with the lock-in 

amplifier. For example, the 200 Hz data was collected over a period of 4 hours, 
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whereas the 20 Hz data was collected over a period of 12 hours. Measuring the 

shear modulus \i at a significantly lower frequency would have taken more than a 

full day, which is about as long as the dilution refrigerator can run without having 

to re-fill the pot (a process we know can disturb the signal). Additionally, and 

even at temperatures above the anomaly, the shear modulus fj, is not independent 

of frequency much below 20 Hz, as we measure it. A closer look at Figure 7.7 shows 

that the signal tends to roll off at the lowest frequencies, and that the effect is 

greater in the solid than in the liquid. The cause of this roll-off is unknown. 

Also, we did not perform measurements at frequencies above 2000 Hz because 

the shear modulus \i becomes frequency dependent near 4000 Hz. As will later be 

discussed in greater detail, an acoustic resonance exists in the cell, outside of the 

gap. This resonance is centered near 8000 Hz, and while its Q-factor is high, it is 

not infinite. As a result, measurements of I/f at frequencies near to the resonance 

give more than just the shear modulus /i of the solid in the gap. 

7.3.5 Amplitude dependence 

Figure 7.16 shows A/z at 2000 Hz for sample 300ppb33.3 at different strains (as 

calculated from the drive voltages using Equation 7.6). The shear modulus anomaly 

A/i is independent of drive amplitude for strains up to 2.2 x 10~8 and then begins 

to decrease. 

Nearly identical behavior was also observed at 200 Hz, as shown in Figure 7.17. 

The amplitude dependence begins at roughly the same drive level, indicating that 

Afi scales with either stress or strain and not with velocity. That stress or strain 

best parameterizes the magnitude of the shear anomaly A// and how this compares 

to analogous torsional oscillator measurements will be discussed in the following 

subsection. 

For an easier comparison of the data sets at 2000 Hz and 200 Hz, Figure 7.18 

shows them side-by-side (with the 200 Hz data plotted on a decreasing temperature 

scale). 

The low temperature values of the shear modulus I/fV are plotted in Figure 7.19. 

At the lowest strains, the shear modulus I/fV is constant; at the highest strains, 

the shear modulus I/fV decreases with increasing strain. These two regimes are 

demonstrated in Figure 7.19 by dashed lines, and are separated by a "critical strain" 

ec ^ 4.5 x 10~8, shown in grey. 
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Figure 7.16: The shear modulus anomaly as a function of strain amplitude at 
2000 Hz in sample 300ppb33.3. The data have been scaled by the driving volt­
age, have had the liquid background subtracted, and have been shifted to have 
equal /i at 300 mK at the lowest strain. 

The corresponding velocities in Figures 7.16 and 7.17 (v = wx: ~ 100 nm/s for 

e = 4.5 x 10~8 at 2000 Hz; ~ 10 nm/s for the same strain level at 200 Hz) are much 

smaller than the critical velocity (vc « 10 fim/s) inferred from torsional oscillator 

measurements. However, the stress levels (0.3 Pa) are comparable to inertial stresses 

in torsional oscillators. 

For example, consider the stresses involved in the annular torsional oscillator of 

Reference [10]. The torque acting on the solid sample in such a system is given by 

T = aAR, (7.13) 

where a is the shear stress at the walls, A is the area of the walls against which 

the solid sits, and R is the radius of the annulus. For a narrow cylindrical annulus, 

A = 47rRh, where h is the height of the walls, and the extra factor of 2 comes in 

because there is an inner and an outer wall whose area must be considered. The 

torque of the oscillator acting on the solid 4He may also be written as 

157 



U.HO 

0.45 -

> 
N 

? 0.44 -
< 

|JM 0.43 -
h-1 

0.42 -

\ 

^ 

1 : 1 1 

» 6.90 X10"9 

• 2.18 X10-" 
» 6.70 X10"8 

• 1.68 X10"7 

» 5.38 x 1 0 7 

* 1.68 X10-6 

1 • — • • • ! - • • "' 

0.00 0.05 0.10 0.15 0.20 0.25 

Temperature (K) 

0.30 

Figure 7.17: The shear modulus anomaly as a function of strain amplitude at 200 Hz 
in sample 300ppb33.3. The data have been scaled by the driving voltage, have had 
the liquid background subtracted, and have been shifted to have equal fi at 250 raK 
at the lowest strain. 
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Figure 7.19: The shear modulus anomaly as a function of strain amplitude at 
2000 Hz and 200 Hz in sample 300ppb33.3 at 18 mK. Dashed lines are a guide 
to the eye. The shaded region highlights the inferred "critical strain" ec. 

T — Ia = Ja/R, (7.14) 

where a is the angular acceleration and I = MR2 = 27rphtR3 is the moment of inertia 

of the solid. The stress exerted by the walls on the solid is 

r la 
~RA = AJR?' 

(7.15) 

This may be re-written as 

2nphtR3 pt 
* = RZ(4«RhfV = J""' 

(7.16) 

where p is the density of the solid, t is the width of the annular channel, w is the 

frequency of oscillation, and v is its linear velocity. Prom the 910 Hz torsional 

oscillator of Reference [9] at 41 bar (p sa 160 kg/m3), which had an annular width 
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of 0.63 mm, we calculate at ~ 0.15 Pa at their highest velocity, 520 /im/s. 

7.3.6 H y s t e r e s i s 

A recurring theme to this chapter is the comparison of our shear modulus anomaly 

A/i to the NCRI fraction measured in torsional oscillator experiments. Continuing 

along these comparative lines, it is important to know that hysteretic behavior 

has been observed in torsional oscillator decoupling in a double resonance torsional 

oscillator operating at 496 and 1173 Hz [56]. (In fact, this hysteretic behaviour 

has also been observed in single resonance torsional oscillators [160].) A torsional 

oscillation is initiated with a relatively high drive level at 300 mK. While keeping the 

drive level constant, the torsional oscillator is then cooled down and held at 19 mK, 

where the rim velocity of the torsional oscillator becomes 610 /im/s. (The process 

is likened to a field cooled procedure in the studies of superconducting materials.) 

As the drive level is then decreased, the NCRI fraction increases and eventually 

attains the low velocity limit consistent with their previous measurements. When 

the drive level is subsequently increased, however, the measured NCRI fraction does 

not diminish; specifically, the NCRI fraction remains constant up to 610 /im/s. The 

authors concede that it is conceivable that the high NCRI fraction would decay to 

the low value at the highest rim velocity given enough time, but their estimated 

time constant for this is greater than 100 hours. As well, if the torsional oscillation 

is cooled down to 19 mK with low rim velocity near 10 /im/s (as in a nearly zero-

field cooled process) and the drive level is subsequently increased, then the NCRI 

fraction again does not diminish. The observed history dependence of the NCRI 

fraction on the initial state set by the rim velocity at low temperature seems to be 

an important characteristics of the supersolid state. 

Similarly, the observed behaviour in fi is reversible at temperatures above about 

100 mK and at lower drive amplitudes where there is no amplitude dependence (as 

shown in Figures 7.16, 7.17, 7.18, and 7.19). Figures 7.20 and 7.21 demonstrate this 

behaviour for sample 300ppm33.3. To be explicit, Figures 7.20 and 7.21 plot data 

from a completely separate measurement and are not simply the 17 and 100 mK 

data from Figures 7.16 through 7.19. 

The lower curves in Figure 7.20 (circles) show the magnitude of fi at 2000 Hz 

and 100 mK, as a function of strain. The shear modulus increases as the strain is 

decreased from above 1 x 10~6 down to almost 1 x 10 - 9 (•), and then reversibly 
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decreases as the strain is once again increased (o). The finite slope of these curves 

is consistent with Figure 7.16 which shows that, at 100 mK, the magnitude of the 

shear modulus increases with decreasing strain. However, they also show that, at 

100 mK, the magnitude of the shear anomaly is constant at strains equal to or less 

than e = 2.2 x 10~8, which is inconsistent with what we measure at the lowest strains 

in Figure 7.20 (i.e., the e = 2.2 x 10 - 9 data point). Unfortunately, this discrepancy 

cannot be explained. (A liquid background was subtracted from this data but with 

the assumption that it was independent of temperature and scaled perfectly with 

drive voltage. These assumptions might not hold and could possibly be the source 

of the slight upturn in the data at the lowest strains in Figure 7.20, as well as in the 

following Figures 7.21, 7.22, and 7.23.) 

After having taken this measurement, the sample was cooled to the base temper­

ature of the dilution fridge while driving at high strain (e — 1.7 x 10~6) at 2000 Hz. 

The upper curves in Figure 7.20 (squares) show the resultant magnitude of the 

anomaly at 2000 Hz and 17 mK, as a function of strain. When the sample has been 

cooled at high amplitude and the drive is then reduced at low temperature from 

strains above 1 x 10~6 down to almost 1 x 10~9 (•), /i increases. The general shape 

of this curve at is expected from Figure 7.16 for reasons similar to those outlined 

above. However, they also show that, at 17 mK, the magnitude of the shear anomaly 

is constant at strains equal to or less than e = 2.2 x 10~8, which is inconsistent with 

what we measure at the lowest strains in Figure 7.20 (i.e., again, the e = 2.2 x 10~9 

data point). As before, this discrepancy cannot be explained. 

Alternatively, we could say that the anomaly increases with decreasing strain. 

Explicitly, the anomaly is (roughly) the difference between the 100 mK (circles) and 

17 mK (squares) shear modulus, and is the analog of the torsional oscillator NCRI. 

This is as expected from Figure 7.16 which shows that the magnitude of the anomaly 

increase with decreasing strain. There is no discrepancy here, as both Figures 7.16 

and 7.20 show that the shear modulus anomaly is constant at strains equal to or 

less than e = 2.2 x 10 - 8 . 

When the drive is then increased at 17 mK from strains of almost 1 x 10 - 9 

to above 1 x 10~6 (a), // does not decrease (with the exception, again, of the 

e = 2.2 x 10~ a da ta point). In terms of the shear modulus anomaly A/x, it does not 

decrease at all as the strain is increased. In fact, the 17 mK shear modulus anomaly 

A/z. actually increases slightly as the strain is increased beyond e = 2.2 x 10 - 8 . The 
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reason for this could be one of equilibration times for the curves measured in Fig­

ure 7.16; for example, a slower cooling ramp might have resulted in a steeper curve 

and a greater value for the shear modulus /J at 100 mK. 

These slight discrepancies aside, it is clear that the low temperature behaviour 

of the shear modulus /x is hysteretic. The region at which this hysteretic behaviour 

begins (e.g., a "critical strain" ec) is highlighted by the grey region in Figure 7.20, 

spanning the strains e = (2 - 7) x 10~8, consistent with the range e = (4 - 5) x 10~8 

determined in Figure 7.19. 
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Figure 7.20: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at high 
drive, as a function of decreasing and then increasing strain in sample 300ppm33.3. 
The behaviour is not reversible at 17 mK. The shaded region highlights the inferred 
"critical strain" er. 

Figure 7.21 is meant to show how the behaviour of the shear modulus ji changes 

after the sample has been cooled at low drive, rather than at high drive as in 

Figure 7.20. 

The lower curves in Figure 7.21 (circles) show the magnitude of p, at 2000 Hz 
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and 100 mK, as a function of strain. The shear modulus is measured as the strain is 

increased from almost 1 x 10~9 up to above 1 x 10~6 (o), and then back down again 

(•) - essentially the same data as the lower curve in Figure 7.20, as the behaviour is 

reversible. The sample is then cooled to the base temperature of the dilution fridge 

while under low strain (e = 2.2 x 10 - 9) at 2000 Hz. 

The upper curves in Figure 7.21 (squares) show the resultant magnitude of the 

anomaly at 2000 Hz and 17 mK, as a function of strain. When the sample has been 

cooled at low amplitude and the drive is then increased at low temperature from 

strains of almost 1 x 10~9 to above 1 x 10~6 (a), the anomaly behaves essentially as 

it did in Figure 7.20. The one difference appears at the highest strain e = 1 . 7 x 10~6, 

where the magnitude of the shear modulus anomaly does decreases slightly. When 

the strain is subsequently reduced (•), a small hysteresis loop is formed. We expected 

to observe identical behaviour as that shown in Figure 7.20, and the reason for this 

slight decrease in the shear modulus anomaly at this highest strain is unknown. 

Perhaps the dilution refrigerator was accidentally bumped at this measurement, an 

event that we know can cause significant shifts in the data. We believe that had 

we stopped increasing the strain at e = 5.4 x 10~7, the behaviour would have been 

completely reversible. So, while a small hysteresis loop does exist in this data set, 

we describe this behaviour as reversible. 

Figures 7.22 and 7.23 show the same sort of measurement as in Figures 7.20 

and 7.21 on a solid 4He sample with 50 ppb 3He impurity concentration, which 

came off the melting curve at 33.1 bar (sample 050ppb33.1, not annealed before 

these measurements were taken). They are intended to show the same reversible 

behaviour at higher temperature (150 mK), the same hysteretic behaviour at low 

temperature (20 mK) when the sample has been cooled at high drive amplitude, 

and the same reversible behaviour at low temperature (20 mK) when the sample 

has been cooled at low drive amplitude. 

Figure 7.22 shows the same increase in /x at the lowest strains at 150 mK and 

the same hysteresis at 20 mK at higher strains, as in Figure 7.20. The region at 

which this hysteretic behaviour begins (e.g., the "critical strain" ec) is highlighted 

by the grey region in Figure 7.22, spanning the strains e = (3 - 5) x 10~8, consistent 

with our previous measures of this variable. There is also an increase in /J. at the 

lowest strains which (again) cannot be explained. 

Figure 7.23 shows reversible behaviour in the shear modulus at 150 mK and at 
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Figure 7.21: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at low 
drive, as a function of increasing and then decreasing strain in sample 300ppm33.3. 
The behaviour is almost reversible at 17 mK. 

20 mK, nearly identical to what was observed in Figure 7.21. 

Returning now to the comparison of the shear modulus anomaly A/x in our ex­

periments to the NCRI in the torsional oscillator experiments, the reduction in the 

NCRI fraction as the drive level is increased was observed to be the same for both 

496 and 1173 Hz when plotted as a function of cell rim velocity [56]. When the 

NCRI fraction is plotted against displacement amplitude or acceleration, the reduc­

tion does not coincide in the two modes. The authors take this observation as a 

demonstration that it is velocity, not displacement amplitude (strain) nor accelera­

tion (stress) applied to the solid, that best parameterizes the reduction in the NCRI 

fraction. This contrasts our observation, as explained above, that A/x scales with ei­

ther stress or strain but not with velocity. It is not clear why these two observations 

seemingly contradict each other, but it must be kept in mind that fundamentally 

different properties are being studied. These torsional oscillator experiments probe 

inertial effects, while our shear experiments probe elastic effects. 

Finally, the torsional oscillator experiments reveal no history dependence at 

63 mK; the measured NCRI fraction does not depend on how the initial state is 
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Figure 7.22: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at high 
drive, as a function of decreasing and then increasing strain in sample 300ppm33.1. 
The behaviour is not reversible at 17 mK. The shaded region highlights the inferred 
"critical strain" er. 

reached [56]. The border between the history dependent low temperature behavior 

and the reversible higher temperature behavior appears to be around 40 mK, close 

to the temperature where the NCRI fraction begins to decrease. This is consistent 

with our observation that the behaviour of the anomaly as a function of strain is 

reversible at 100 mK but not at 17 mK in sample 300ppb33.3, and at 150 mK but 

not at 20 mK in sample 050ppb33.1. 

7.4 Acoustic resonance in cell 

The essential result of the experiments described above is the observation of a large 

anomalous increase in /i with the same temperature dependence as the decoupling 

in torsional oscillators. This effect was confirmed by simultaneously measuring the 

frequency fr and damping 1/Q of an acoustic resonance in the cell. 

A quick estimate (Equation 7.17) tells us that we should expect to observe a 

resonance in our shear cell around a frequency 
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Figure 7.23: Behaviour of the shear modulus anomaly at 2000 Hz, cooled at low 
drive, as a function of increasing and then decreasing strain in sample 300ppm33.1. 
The behaviour is almost reversible at 17 mK. 

fr = 
Vshear (7.17) 

where vshear is the speed of shear sound in the solid and L is the smallest relevant 

cell dimension. Taking the speed of shear sound in solid 4He to be ~ 300 m/s and 

the characteristic length in our shear cell to be ~ 2 cm (its diameter), we predict an 

acoustic resonance in the shear cell near 7500 Hz. Note that this is a resonance of the 

helium in the whole cell and not in the gap between the piezoelectric transducers. 

Computer modelling was also initiated to confirm that we should expect to find 

an acoustic resonance in our shear cell. Specifically, an eigenfrequency analysis of 

the bulk solid ^He within the cell was done using a 3-D solid, stress-strain structural 

mechanics module within the CQMSOL Multiphysics [152] simulation environment. 

This was done using a realistic model of the cell's internal geometry. Preliminary 

models predicted an acoustic resonance in the cell around 10 kHz. 
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7.4.1 Acoustic resonance peak position 

Measurements of the low temperature (18 mK) frequency fr and damping 1/Q of the 

acoustic resonance in the cell were made at drive voltages ranging from 2 nVpeak to 

1.4 Vpeafc, with the purpose of determining a drive amplitude independent regime. 

For example, we discovered early on that the position of the acoustic resonance 

shifted to lower frequencies at higher drive amplitudes. We also noted that the 

shape of the acoustic resonance was asymmetric at higher drive amplitudes and 

that the asymmetry was a function of the direction of the frequency sweep. To, 

best characterize the behaviour of this acoustic resonance solely as a function of 

temperature, we need to eliminate the effects of these other variables. So, to ensure 

that the acoustic resonance was measured in a drive amplitude independent regime, 

its amplitude and position were studied at low temperature, as a function of drive 

amplitude. 

Figure 7.24 shows the behaviour of the acoustic resonance as a function of drive 

voltage in an annealed sample of isotopically pure 4He (i.e., nominally 1 ppb 3He 

isotopic impurity concentration) that solidified at 33.4 bar, hereafter referred to as 

sample 001ppb33.4. The data of Figure 7.24 is re-plotted (in three sets per figure) 

in Figures 7.25, 7.26, 7.27, 7.28, 7.29 for greater clarity. For each of the following 

figures, the lowest drive amplitude displayed on one is the highest drive amplitude 

displayed on the next. As well, each of these data sets was measured as the frequency 

of the drive was increased. 

It is clear from Figures 7.24 through 7.29 that, for drive amplitudes greater 

than ~ 50 /xV, the position of the resonance is a function of drive amplitude. It 

is natural to suppose that the shift in fr is a result of our sample heating, but a 

quick estimate of the power would suggest otherwise. Equations 7.3 and 7.8 allow 

us to calculate the capacitance of the PZT transducer. As the manufacturer quotes 

dis = 585 x 1(T12 m/V and g i 5 = 38.2 x 1(T3 Vm/N, the capacitance of the PZT 

is CPZT « 7.3 x 1(T10 F. So, it has an impedance Z = 1/wC « 28 kQ at 7900 Hz. 

Now, as an example, consider the 34.6 mV drive of Figure 7.26 - the dissipation 

must be (considerably) less than P = V2 /Z = 4.3 x 10 - 8 W. It seems very unlikely 

that such a small heat input could shift fr by more than 125 Hz in frequency space. 

Figures 7.24 through 7.29 further demonstrate that, for drive amplitudes greater 

than ~ 50 /xV, the symmetry of the acoustic resonance is governed by the drive 
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Figure 7.24: Behaviour of the resonance peak at 18 mK, as a function of drive 
amplitude. 
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Figure 7.25: Behaviour of the resonance peak at 18 mK, at a drive amplitude of 
1425.8 mV, 356.2 mV, and 34.6 mV. 
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Figure 7.26: Behaviour of the resonance peak at 18 mK, at a drive amplitude of 
34.6 mV, 10.9 mV, and 3.4 mV. 
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Figure 7.28: Behaviour of the resonance peak at 18 mK; at a drive amplitude of 
332 itV, 102 (j.V, and 32 /xV. 
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Figure 7.29: Behaviour of the resonance peak at 18 mK, at a drive amplitude of 
32 juV, 8 fiY, and 2 fxV. 

amplitude. More specifically, we observe that our acoustic resonance behaves as a 

nonlinear oscillator, displaying bi-stability and hysteresis for sufficiently strong driv­

ing amplitudes. That is, the nonlinear oscillator (the acoustic resonance) oscillates 

either with a large amplitude or a small amplitude - this behaviour is most apparent 

in Figure 7.27. 

While certainly interesting in its own right, the nonlinearity of the acoustic reso­

nance was beyond the scope of this experimental investigation and was therefore not 

studied in great detail. In fact, the nonlinearity of the acoustic resonance of sample 

01ppb33.4 was not studied at all; however, a few days worth of time were spent 

observing the nonlinear character of the acoustic resonance in sample 300ppb29.3. 

Figure 7.30 shows the bi-stable and hysteretic nature of the acoustic resonance in 

sample 300ppb29.3 at 126 mV drive and 50 mK. The curve labelled "increasing fre­

quency" in Figure 7.30 is comparable to the curve labelled "356.2 mV" in Figure 7.25 

(i.e., they are of similar drive amplitude and were both taken as the frequency was 

increased). , 

Figure 7.31 shows a decreased bi-stable and hysteretic nature of the same acous-
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Figure 7.30: Hysteretic behaviour of the acoustic resonance at 126 mV drive ampli­
tude and 50 rnK, in sample 300ppb29.3. 

tic resonance (in sample 300ppb29.3) at 760 //V drive and 50 mK. The curve labelled 

"increasing frequency" in Figure 7.31 is comparable to the curve labelled "1.1 mV" 

in Figure 7.27 (i.e., they are of similar drive amplitude and were both taken as the 

frequency was increased). 

Figure 7.32 shows an absence of bi-stability and hysteresis of the same acoustic 

resonance (in sample 300ppb29.3) at 22 JXV drive and 50 mK. The curve labelled 

"increasing frequency" in Figure 7.32 is comparable to the curve labelled "32 /xV" 

in Figure 7.29 (i.e., they are of similar drive amplitude and were both taken as the 

frequency was increased). 

Provided that the excitation is driven at an amplitude of less than about 50 /xV, 

we observe no hysteresis in the acoustic resonance. Also at sufficiently low excitation, 

we observe that fr and Q are independent of the drive amplitude, as shown in 

Figure 7.33. 

With this knowledge in mind, our subsequent study of the temperature depen­

dence of the acoustic resonance was performed at a driving amplitude of 32 iiV (i.e., 

in the amplitude independent regime). All future plots of acoustic resonances, peak 

positions, Q's (or 1/Q's), etc., are in this low amplitude regime (where they are 
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Figure 7.31: Hysteretic behaviour of the acoustic resonance at 760 /xV drive ampli­
tude and 50. mK, in sample 300ppb29.3. 
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Figure 7.33: Acoustic resonance in sample 001ppb33.4 at 18 mK, scaled by its low 
drive amplitude. 

independent of drive amplitude). 

7.4.1.1 Sample 300ppb33.3 

This sample is presented first because its acoustic resonance was studied in the 

greatest detail. Figure 7.34 shows the acoustic resonance in sample 300ppb33.3 at 

300 mK (refer back to the thermodynamic path on the phase diagram of Figure 7.13). 

Recall that sample 300ppb33.3 had been annealed before these measurements were 

taken. 

The resonance frequency fr of this peak is (7782 ± 2) Hz. The amplitude of 

this peak- is (0.00106 ± 0.00001) pA/Hz. Both of these measures are shown in 

Figure 7.34 (for clarity and here only). No liquid/background subtractions were 

made in the analysis of these acoustic resonance peaks, as the effect was on the 

order of 0.2% of the total signal. We can also assign a quality factor Q to this 

resonance peak. Physically speaking, Q is 2TT times the ratio of the total energy 

stored divided by the energy lost in a single cycle. Equivalently (and for sufficiently 

large values of Q, such as in the. torsional oscillator experiments), the quality factor 

is approximately the number of oscillations required for a freely oscillating system's 
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Figure 7.34: Acoustic resonance in sample 300ppb33.3 at 300 mK. 

energy to fall off to l/e2?r of its original energy. When the system is driven by a 

sinusoidal drive, its resonant behavior depends strongly on Q. Resonant systems 

respond to frequencies close to their natural frequency much more strongly than 

they respond to other frequencies. A system with a high Q resonates with a greater 

amplitude at the resonant frequency than one with a low Q factor, and its response 

falls off more rapidly as the frequency moves away from resonance. The width of the 

resonance is given by Af = f r/Q, where Af, the bandwidth, is the width of the range 

of frequencies for which the energy is at least half its peak value (the full width at 

half-maximum). The peak shown in Figure 7.34 has a Q of ~ 250. The dissipation 

of the peak is defined as 1/Q. 

It should be stated that the peak fr, amplitude, and Q were all determined 

manually (i.e., by eye and not by a computer peak fitting algorithm). Of course, a 

computer program could also be used to determine these values. Figure 7.35 shows 

the same data as plotted in Figure 7.34, along with a simple 4-parameter Lorentzian 

curve, fitted by SigmaPlot, to that same data. The equation used to fit the data is 
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y = 2/0 + 
l + C^T*)2' 

(7.18) 

where yo is a vertical offset, a is the peak amplitude, b is the full width of the peak 

at its half maximum, and xo is the resonant frequency fr. For the fit in Figure 7.35, 

the resonance frequency fr is 7780 Hz, the peak amplitude is 0.00103 pA/Hz, and the 

half width of the curve at half its maximum is 16 Hz, implying Q = 243. So, there 

is no discrepancy between the values determined by eye and those determined via a 

fitting program. Of course, this is a relatively "clean" peak - estimates become more 

difficult as the shape of the peak is distorted (as will be discussed momentarily). 

Still, the analysis presented here is largely qualitative in nature and the values 

determined by eye will suffice for our purposes. 

0.0000 

7600 7650 7700 7750 7800 7850 7900 
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Figure 7.35: Acoustic resonance in sample 300ppb33.3 at 300 mK, with an overlaid 
Lorentzian fit. 

Figure 7.36 shows the same acoustic resonance in the shear cell for sample 
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300ppb33.3 at 18 mK. 
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Figure 7.36: Acoustic resonance in sample 300ppb33.3 at 18 mK. 

The resonance frequency fr of this peak is (8141 ± 3) Hz. The amplitude is much 

more difficult to determine because of a destructive interference very near to the 

resonance frequency, resulting in what looks to be a double-peak. The interference 

likely arises from the background signal of the cell; referring back to Figure 7.5, there 

are a handful of smaller resonances that exist in the 8100-8200 Hz neighborhood. 

In principle, this background could be subtracted from our signal, but the effort is 

not worth the payoff (as I will soon argue). It is possible to estimate the amplitude 

by manually (e.g., by eye) removing the effect of the interference. Figure 7.37 

demonstrates what is intended by this admittedly crude technique, where the dashed 

lines guide the eye along the shape of roughly where the peak (alone) sits. Using 

this method, the amplitude is (0.014 ± 0.002) pA/Hz, and the Q is ~ 2000. 

Again, we can use a computer program to fit a curve to this data. Figure 7.38 

shows the same data as plotted in Figure 7.36 (minus the range which contained the 
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Figure 7.37: Acoustic resonance in sample 300ppb33.3 at 18 mK with a rough 
estimate of the true shape of the peak. 

interference), along with the 4-parameter Lorentzian curve, fitted by SigmaPlot, to 

that same data. For the fit in Figure 7.38, the resonance frequency fr is 8138 Hz, 

the peak amplitude is 0.016 pA/Hz, and the half width of the curve at half its' 

maximum is 3 Hz, implying Q = 1356. There is very little difference between the 

values determined by eye and those determined via the fitting program, even though 

we aren't dealing with a "clean" peak. 

As stated above, we will be using the values deterrnined by eye and not those 

determined by a fitting program. Those extracted by eye are less time consuming 

to determine and, more important, our analysis is fairly insensitive to the small 

differences that do exist between the two techniques. For example, we will be ex­

amining the temperature dependence of the peak position of the acoustic resonance 

(i.e., fr(T)), and the difference fr(300 mK) - fr(18 mK) is two orders of magnitude 

greater than the error in any value of fr(T). Also, we will be studying the dissi­

pation 1/Q (x 103) of the acoustic resonance. While it is conceivable that values 

determined by eye and by fitting differ by as much as a factor of 2, it is unlikely, 

in any case, conservative error bars have been included for every dissipation data 
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Figure 7.38: Acoustic resonance in sample 3O0ppb33.3 at 18 mK, with an overlaid 
Lorentzian fit. 

point (and are largest when the peak is not "clean"). 

Figures 7.39 and 7.40 show how the resonance peak in sample 300ppb33.3 evolves 

as a function of temperature. Both plot the same data, but the latter has its 

temperature scale reversed. 

Figure 7.41 plots the temperature dependence of the peak position of the acoustic 

resonance for sample 300ppb33.3 as a function of temperature. Comparing the 

temperature dependence of the resonance frequency fr to that of the shear modulus 

fi, it is clear that the two measurements probe the same elastic changes. 
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Figure 7.39: Acoustic resonance in sample 300ppb33.3 as a function of temperature 
(from the "front"). 
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Figure 7.40: Acoustic resonance in sample 300ppb33.3 as a function of temperature 
(from the "back"). 
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Figure 7.41: Peak position of the acoustic resonance in sample 300ppb33.3 as a 
function of temperature, compared to the associated shear modulus anomaly. 
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The changes in fr (~ 4%) are about half as large as for fj. (~ 8%), as expected 

since fr varies with sound speed, as the square root of elastic moduli. As a brief 

aside, the computer modelling of the acoustic resonance in our cell was extended to 

calculate how the resonant frequency would shift given a 15% change in the shear 

modulus or bulk modulus of the solid 4He. Table 7.1 summarizes the results of this 

simulation for the lowest mode, fi. The modelling shows that fr depends almost 

entirely on the shear modulus, and not the bulk modulus (otherwise, we would 

expect A/ r/f r to be less than half of A/x//i). 

Shear modulus (15.6 MPa) 
decreased 15% 
increased 15% 

fixed 
fixed 

Bulk Modulus (33.5 MPa) 
fixed 
fixed 

decreased 15% 
increased 15% 

Afi (kHz) 
-1.01 
+0.94 
-0.22 
+0.20 

% change 
-6.4 
+5.9 
-1.4 
+1.2 

Table 7.1: Simulation response of the lowest resonant mode to changes in the shear 
and bulk modulus. 

If supersolidity produces a decoupling of a supersolid fraction from the lattice 

which responds to shear deformation in acoustic resonances [27], we wouldn't expect 

our low frequency (essentially static) shear modulus measurements to agree with the 

acoustic resonance frequencies. (If some supersolid fraction decoupled, the sound 

speeds would increase even more than expected from the shear modulus increases. 

We wouldn't be able to separate out a ~ 1% effect due to decoupling from the ~ 10% 

modulus effect, but if the supersolid density were ~ 50% it would be obvious.) 

The corresponding dissipation 1/Q, shown in Figure 7.42, is largest near 140 mK, 

near where fr is changing rapidly. The maximum dissipation consistently occurs at 

a temperature slightly above the inflection in the fr curve (or the shear modulus 

fj, curve). In torsional oscillator experiments, the dissipation peak typically occurs 

at a temperature slightly below the inflection in the NCRI fraction curve (which is 

analogous to our shear modulus fj, curve). This may be due to their lower frequencies, 

which span from ~ 185 Hz to ~ 1500 Hz. 

Figure 7.43 shows the change in dissipation versus the change in resonance fre­

quency scaled by its low temperature value for the acoustic resonances of sample 

300ppb33.3. For this sample, A(Q _ 1) « 11 x 10~3 is about a factor of five smaller 
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than its Afr/fr ?« 50 x 10 3 . A comparison of this type of measurement to torsional 

oscillator data is made toward the end of this section. 
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Figure 7.42: Dissipation in the acoustic resonance in sample 300ppb33.3 as a func­
tion of temperature, compared to its peak position. 
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Figure 7.43: Change in dissipation of the acoustic resonance in sample 300ppb33.3 
as a function of the scaled change in resonance frequency. 
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7.4.1.2 Sample 300ppb34.0 

Figure 7.44 shows the acoustic resonance in sample 300ppb34.0 at 300 mK (refer 

back to the thermodynamic path on the phase diagram of Figure 7.11). Recall 

that sample 300ppb34.0 had been annealed before these measurements were taken. 

The data presented here is noisier than that of the previous section because it was 

collected without the current preamplifier (recall the block diagram of Figure 7.3). 
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Figure 7.44: Acoustic resonance in sample 300ppb34.0 at 300 mK. 

The resonance frequency fr of this peak is (7816 ± 4) Hz; its amplitude is 

measured (0.00104 ± 0.00004) p'A/Hz and it has a Q of ~ 300. 

Figure 7.45 shows the acoustic resonance that we measure in the shear cell for 

the sample 300ppb34.0 at 33 mK. 

The resonance frequency fr of this peak is (8148 ± 5) Hz; its amplitude is 

(0.0027 ± 0.0004) pA/Hz and it has a Q of ~ 800. As explained above, these 

values have been determined by eye, without the aid of a fitting algorithm. For 

the reader who remains unconvinced that this technique will suffice, we again use 
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Figure 7.45: Acoustic resonance in sample 300ppb34.0 at 33 mK. 

a computer program to fit a curve to this data. Figure 7.46 shows the same data 

as plotted in Figure 7.45 (minus the range which contained the interference), along 

with the 4-parameter Lorentzian curve, fitted by SigmaPlot, to that same data. For 

the fit in Figure 7.46, the resonance frequency fr is 8153 Hz, the peak amplitude is 

0.032 pA/Hz, and the half width of the curve at half its maximum is 10 Hz, implying 

Q = 408. As before, there is very little difference between the values determined 

by eye and those determined via the fitting program, even though we aren't dealing 

with a "clean" peak. As a reminder, conservative error bars have been included for 

the dissipation data. 

Figures 7.47 and 7.48 show how the resonance peak in sample 300ppb34.0 evolves 

as a function of temperature. Both plot the same data, but the latter has its tem­

perature scale reversed. As was the case in the previous sample, the peak shifts to 

higher frequency with decreasing temperature, experiencing a maximum in dissipa­

tion near where it moves through frequency space most quickly. 

Figure 7.49 plots the resonance frequency for sample 300ppb34.0 as a function 

of temperature. Comparing the temperature dependence of the resonance frequency 

ir to that of the shear modulus /i, it is again clear that the two measurements probe 
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Figure 7.46: Acoustic resonance in sample 300ppb34.0 at 18 mK, with an overlaid 
Lorentzian fit. 

the same elastic changes. The changes in fr (~ 4%) are about half as large as for fi 

(~6%). 

The corresponding dissipation 1/Q, shown in Figure 7.50, is largest near 110 mK, 

near where fr is changing rapidly. Again, the maximum dissipation occurs at a 

temperature slightly above the inflection in the fr curve (or the shear modulus fi 

curve). 

Figure 7.51 shows the change in dissipation versus the change in resonance fre­

quency scaled by its low temperature value for the acoustic resonances of sample 

300ppb34.0. For this sample, A(Q_ 1) « 8 x 10~3 is about a factor of five smaller 

than its Afr/fr « 42 x 10"3. 
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Figure 7.47: Acoustic resonance in sample 300ppb34.0 as a function of temperature 
(from the "front"). 
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Figure 7.48: Acoustic resonance in sample 300ppb34.0 as a function of temperature 
(from the "back"). 
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Figure 7.49: Acoustic resonance in sample 300ppb34.0 compared to shear modulus 
anomaly. 
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Figure 7.50: Acoustic resonance in sample 300ppb34.0 and its dissipation. 
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Figure 7.51: Change in dissipation of the acoustic resonance in sample 30Qppb34.0 
as a function of the scaled change in resonance frequency. 
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7.4.1.3 Sample 300ppb29.3 

Figure 7.52 shows the acoustic resonance in sample 300ppb29.3 at 200 mK (refer 

back to the thermodynamic path on the phase diagram of Figure 7.8). Sample 

300ppb29.3 had not been annealed before these measurements were taken. 
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Figure 7.52: Acoustic resonance in sample 300ppb34.0 at 200 mK. 

The resonance frequency fr of this peak is (7814 ± 4) Hz; its amplitude is 

measured (0.00176 ± 0.00005) pA/Hz and it has a Q of - 650. 

Figure 7.53 shows the acoustic resonance that we measure in the shear cell for 

the sample 300ppb34.0 at 35 mK. 

The resonance frequency fr of this peak is (7943 ± 1) Hz; its amplitude is 

measured (0.051 ± 0.001) pA/Hz and it has a Q of ~ 1750. This peak is "clean" 

enough that no comparison to a fitting algorithm will be provided. 

Figures 7.54 and 7.55 show how the resonance peak in sample 300ppb29.3 evolves 

as a function of temperature. As was presented before, both plot the same data, but 

the latter has its temperature scale reversed. Once again, the peak shifts to higher 
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Figure 7.53: Acoustic resonance in sample 300ppb34.0 at 35 mK. 

frequency with decreasing temperature, experiencing a maximum in dissipation near 

where it moves through frequency space most quickly. 

Figure 7.56 plots the resonance frequency of sample 300ppb29.3 as a function 

of temperature. This was one of the first measurements made on (i and it was 

done before we had all of our electronics set to the proper sensitivities; therefore, 

the \x data plotted here shows a digitization step, ji appears to change by ~ 4%; 

however, the digitization means that this value could be off by as much as a factor 

of two. Also, this measurement was made at 100 Hz (as opposed to 2000 Hz), but 

Figure 7.15 reminds us that A/x is unaffected by the measurement frequency. The 

changes in fr (~ 2%) are about half as large as for //, as before. 

The corresponding dissipation 1/Q, shown in Figure 7.57, is largest near 150 mK, 

near where fr is changing rapidly. In conformity with our previous measurements, 

the maximum dissipation occurs at a temperature slightly above the inflection in 

the fr curve (or the shear modulus \x curve). 

Figure 7.58 shows the change in dissipation versus the change in resonance fre­

quency scaled by its low temperature value for the acoustic resonances of sample 

3300ppb29.3. For this sample, A(Q _ 1) « 2 x 10~3 is a factor of eight smaller than 
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Figure 7.54: Acoustic resonance in sample 300ppb29.3 as a function of temperature 
(from the "front"). 

its Afr/fr « 16 x 10 - 3 . 

In a simple oscillator the maximum dissipation A(Q_ 1) should equal the fre­

quency shift Afr/fr. Figure 7.59 shows the change in dissipation versus the change 

in resonance frequency scaled by its low temperature value for the acoustic reso­

nances of all three samples discussed above. Recall that A(Q_ 1) was smaller than 

Afr/fr by a factor ranging from five to eight. Similar differences in torsional oscilla­

tor measurements have been ascribed [161] to sample inhomogeneity. For example, 

Fig. 2 of Reference [51] shows A(Q_ 1) « 3 x 10 - 6 , about a factor of six or seven 

smaller than its Aw/u PS 20 x 10~6. In other examples, Rittner and Reppy [54] 

show data very close to the homogeneous expectation (i.e., their Fig. 2 shows 

A(Q - 1 ) « 12 x 1CT6 and Aw/u « 18 x 1(T6); conversely, Kim and Chan [9, 51] 

also have data in which the factor ranges up to about 100. 
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Figure 7.55: Acoustic resonance in sample 300ppb29.3 as a function of temperature 
(from the "back"). 
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Figure 7.56: Acoustic resonance in 300ppb29.3 compared to shear modulus anomaly. 
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Figure 7.57: Acoustic resonance in sample 300ppb29.3 and its dissipation. 
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Figure 7.58: Change in dissipation of the acoustic resonance in sample 300ppb29.3 
as a function of the scaled change in resonance frequency. 
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Figure 7.59: Summary of the change in dissipation of the acoustic resonance as a 
function of the scaled change in resonance frequency. »'s are for sample 300ppb33.3, 
o's are for sample 300ppb34.0, and A's are for sample 300ppb29.3. 
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7.5 3He dependence 

A striking feature of torsional oscillator experiments is their sensitivity to 3He. We 

grew samples from isotopically pure 4He (1 ppb 3He - the same gas used in torsional 

oscillator measurements [52]) and from intermediate concentrations made by mixing 

with commercial 4He (0.3 ppm 3He). We compare their behavior in Figure 7.60. The 

anomaly shifts to lower temperatures as the 3He concentration decreases. 
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Figure 7.60: Shear modulus anomaly in solid 4He at 2000 Hz, for different 3He 
impurity concentrations: 1 ppb (33.4 bar, • ) , 45 ppb (33.0 bar, o), 85 ppb (33.5 bar, 
• ) , and 0.3 ppm 3He (33.3 bar, o). Changes Afi have been scaled by their values 
at the lowest temperature (18 mK) in order to compare temperature dependence. 
The sizes of the anomalies AJJ before scaling were: 14.9% for 1 ppb data; 7.8% for 
45 ppb data; 16.6% for 85 ppb data; and 8.3% for 0.3 ppm data. 

We also show similarly scaled decoupling data from torsional oscillator experi­

ments [9, 52] on 1 ppb and 0.3 ppm 3He samples in Figures 7.6.1 and 7.62, respec­

tively. In reference to this borrowed data, samples were grown using two different 

techniques. Some samples were grown using the blocked capillary technique (BC), 
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which was described earlier in this thesis. This technique results in a polycrystalline 

sample with a relatively high level of associated disorder. Other samples were grown 

using the constant temperature (CT) technique. This technique involves keeping the 

fill line from high-pressure cylinder to experimental cell open during crystal growth. 

The pressure in the experimental cell is slowly increased at low temperature (around 

1 K) until solidification begins, and then is kept fixed until solidification is complete. 

This technique results in single crystal that occupies the entire cell (or, at worst, 

a few large crystals), with very little presumed associated disorder. Returning to 

Figures 7.61 and 7.62, the onset temperatures and shapes of the curves agree very 

well (roughly within the sample to sample variations in torsional oscillator measure­

ments). 
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Figure 7.61: Shear modulus anomaly at 2000 Hz and NCR! at 1072 Hz in solid 4He 
at 1 ppb 3He impurity concentration. Changes A/i have been scaled by the values 
at the lowest temperature (18 mK) and NCRI has been similarly scaled in order 
to compare temperature dependence. The NCRI data is that of Reference [58]; the 
letters CT mean that the sample was grown at a constant temperature (of 1.38 K), 
and the letters BC mean that the sample was grown using the blocked capillary 
technique (and solidification was complete at 1.80 K and 2.17 K), 
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Figure 7.62: Shear modulus anomaly at 2000 Hz and NCRI at 910 Hz in solid 4He 
at 0.3 ppm 3He impurity concentration. Changes Aju have been scaled by the values 
at the lowest temperature (18 mK) and NCRI has been similarly scaled in order 
to compare temperature dependence. The NCRI data is that of Reference [9]; the 
letters BC mean that the sample was grown using the blocked capillary technique. 

Figure 7.63 shows the shear modulus anomaly at three frequencies (2000, 200 

and 20 Hz), at a driving voltage of 32.7 mVpeafc and a corresponding strain of 

2.2 x l0~8 , in the 1 ppb 3He sample at 33.4 bar of Figure 7.60. It is not possible 

to say whether the magnitude of the modulus increase is the same for each, as 

sufficiently low temperatures were not achieved to "saturate" the value for A/i. The 

transition temperature appears to decrease with frequency, but does not appear 

sharper at low frequency (as was the case in samples with greater 3He impurity 

concentrations). 

7.5.1 Acoustic resonance peak position at lppb 3He 

Now that the shear modulus anomaly has been examined at lower 3He concentra­

tions, we'll follow through a quick study of the acoustic resonance at lower 3He 

concentrations. 
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Figure 7.63: The shear modulus anomaly as a function of frequency in sample 
001ppb33.4. The 200 Hz and 2000s Hz data have been shifted up for clarity. 

7.5.1.1 Sample 001ppb33.4 

Figure 7.64 shows the thermodynamic path followed during the growth of sample 

001ppb33.4. As can be seen from the inset of Figure 7.64, this sample is at only a 

slightly higher pressure than the sample 300ppb33.3. Also note that it has entered 

the hep phase without having first entered the mixed bec/hep phase. The helium 

used for this sample also had an isotopic purity of 1 ppb 3He. 

Figure 7.65 shows the acoustic resonance in sample 001ppb33.4 at 150 mK. 

Sample 001ppb33.4 had not been annealed before these measurements were taken. 

The resonance frequency fr of this peak is (7591 ± 2) Hz; its amplitude is 

(0.006 ± 0.003) pA/Hz and it has a Q of ~ 1100. As before, these values have been 

determined by eye, without the aid of a fitting algorithm. 

Figure 7.66 shows the acoustic resonance that we measure in the shear cell for 

the sample 001ppb33.4 at 24 mK. 

The resonance frequency tr of this peak is (8023 ± 3) Hz; its amplitude is 

measured (0.030 ± 0.005) pA/Hz and it has a Q of ~ 1000. 

Figures 7.67 and 7.68 demonstrate how the acoustic resonance peak in the sample 
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Figure 7.64: The thermodynamic path for sample 001ppb33.4. Inset shows a close-
up of the end of freezing. This data is the pressure versus temperature as we 
measured it. Data in grey shows sample 300ppb29.3, sample 300ppb34.0, and sample 
300ppb33.3. 
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Figure 7.65: Acoustic resonance in sample 001ppb33.4 at 150 mK. 
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Figure 7.66: Acoustic resonance in sample 001ppb33:4 at 24 mK. 

001ppb33.4 evolves as a function of temperature. Just as before, both plot the same 

data, but the latter has its temperature scale reversed. At the risk of sounding like 

a broken record, the peak shifts to higher frequency with decreasing temperature, 

experiencing a maximum in dissipation near where it moves through frequency space 

most quickly. 

Figure 7.69 plots the resonance frequency for the sample 001ppb33.4 as a function 

of temperature. Comparing the temperature dependence of the resonance frequency 

fr to that of the shear modulus fi, it is again clear that the two measurements probe 

the same elastic changes. The changes in fr (~ 5%) are about half as large as for 

H (~ 11%), and the corresponding dissipation 1/Q (see Figure 7.70 is largest near 

70 mK, near where fr is changing rapidly. Last, but certainly not least, Figure 7.71 

shows the change in dissipation versus the change in resonance frequency scaled by 

its low temperature value for the acoustic resonances of sample 001ppb33.4. For 

this sample, A(Q_ 1) w 2 x 10~3 is about a factor of twenty-five smaller than its 

Afr/fr « 55 x 10~3. 
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Figure 7.67: Acoustic resonance in sample 001ppb33.4 as a function of temperature 
(from the "front"). 
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Figure 7.68: Acoustic resonance in sample 001ppb33.4 as a function of temperature 
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Figure 7.69: Acoustic resonance in sample 001ppb33.4 compared to shear modulus 
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Figure 7.70: Acoustic resonance in sample 001ppb33.4 and its dissipation. 
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7.6 Annealing and stress effects 

Another fascinating feature of the torsional oscillator results is the NCRI dependence 

on sample history. For example, the NCRI fraction can be nearly eliminated through 

annealing [54] (a process which presumably results in a reduced number of crystal 

defects), or can be made remarkably large through quench cooling [57] (a process 

which results in an increased number of crystal defects). Other groups performing 

torsional oscillator experiments have noted similar behaviour. In order to begin to 

understand the role of defects, we studied some the properties of our samples before 

and after annealing. What follows is little more than scratching the surface of the 

effects of annealing and stress, although one important conclusion is drawn - it is 

largely the high temperature behaviour that is affected by annealing and stressing 

the solid, not the low temperature behaviour. 

To begin, we studied some the properties of sample 001ppb33.4 (please refer 

back to Figure 7.64) before and after annealing. This sample was annealed for 11 

hours at 1.70 K (~ 0.2 K below T m ) . We continued annealing the sample until the 

measured shear modulus near melting no longer changed as a function of time, as 

shown in Figure 7.72. 

As shown in Figure 7.73, the annealing process reduced A/x from 11.3% to 7.4%, 

but it was largely the high temperature behavior which changed. The values of fi 

and fr at the lowest temperature were almost unaffected by annealing. For example, 

at 25 mK fr decreased by less than 0.2% (as shown in Figure 7.74). At 25 mK /i 

increased by only 0.3%, whereas at 0.5 K, n increased by 2.9%. Unfortunately, the 

analogous measurement was not made for fr at 0.5 K. The low temperature values 

appear to reflect an intrinsic shear modulus and the effect of defects is mostly to 

reduce /x at higher temperatures. 

We also applied large acoustic stresses (~ 700 Pa) to the annealed sample at 

~ 20 mK in an attempt to create additional defects. These large stresses were created 

by applying a large driving voltage to the piezoelectric transducers (~ 1.5 V) and 

then sweeping the frequency over the range of the acoustic resonance. (In hindsight, 

this might not be relevant to the low frequency /V measurement, since the large 

amplitude at resonance presumably affects the solid 4He outside of the gap, but 

doesn't necessarily have a larger effect on the solid 4He in the gap than applying, 

for example, ~ 1.5 V at 1000 Hz.) Figure 7.75 shows that the value of fi remains 
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Figure 7.72: Annealing time for sample 001ppb33.4 at 1.70 K. 

12 

0.0110 

0.0108 

0.0106 

3 0.0104 

< 0.0102 -I 

^ 0.0100 

0.0098 -

0.0096 -

0.0094 

0.01 0.02 

• before anneal 
o after anneal 

0.05 0.1 0.2 

Temperature (K) 

0.5 

Figure 7.73: Effect of annealing shear modulus anomaly in sample 001ppb33.4. Both 
data sets taken on cooling. 
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Figure 7.74: Effect of annealing on resonant frequency in sample 001ppb33.4, at 
25 mK. 

essentially unchanged at low temperature but does change at high temperature 

(which, to be clear, means above 100 mK but below 500 mK). Warming above 0.6 K 

undoes these effects, indicating that defects introduced by stressing the crystal are 

only stable at low temperatures. Ultrasonic measurements [156] on bcc and hep 3He 

showed similar effects of large stresses. 

Figure 7.76 shows that the value of fr remains virtually unchanged at low tem­

perature (a 0.3% increase). There is no data showing how much fr is affected at high 

temperatures by stressing. (In hindsight - which is always clearer than foresight -

and knowing that // and fr probe different volumes of the cell, one would expect that, 

depending on the procedure, the large stresses would affect each of those properties 

differently; annealing, on the other hand, might be expected to affect fi and fr in 

the same way.) 
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Figure 7.75: Effect of stressing on shear modulus anomaly in sample 001ppb33.4. 
The "before stress" data set taken on cooling, "after stress" data set taken on 
warming. 
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Figure 7.76: Effect of stressing on resonant frequency in sample 001ppb33.4 at 
20 mK. 
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We also studied some of the properties of sample 300ppb33.3 (please refer back 

to Figure 7.13) before and after annealing. This sample was annealed for 15 hours at 

1.70 K (~ 0.2 K below T m ) . We continued annealing the sample until the measured 

shear modulus near melting no longer changed as a function of time, as shown in 

Figure 7.77. 
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Figure 7.77: Annealing time for sample 300ppb33.3 at 1.70 K. 

16 

As shown in Figure 7.78, the annealing process reduced Afj, from 9.8% to 7.7%, 

and it was more so the high temperature behavior which changed. The values of /i 

and fr at the lowest temperature were almost unaffected by annealing. For example, 

at 18 mK fr increased by only 0.1% (as shown in Figure 7.79). At 18 mK, fi decreased 

by only 0.5%, whereas at 0.4 K, /z increased by 1.1%. At 0.4 K, fr increased by 3.8% 

(as shown in Figure 7.80). Again, the low temperature values appear to reflect an 

intrinsic shear modulus and the effect of defects is mostly to change /J, at higher 

temperatures. 

We then, once again, applied large acoustic stresses (~ 700 Pa) to the annealed 
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Figure 7.78: Effect of annealing on shear modulus anomaly in sample 300ppb33.3. 
Both data sets taken on cooling. 
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Figure 7.79: Effect of annealing on resonant frequency in sample 300ppb33.3, at 
18 mK. 
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Figure 7.80: Effect of annealing on resonant frequency in sample 300ppb33.3, at 
400 mK. 

crystal at 18 mK in an attempt to create additional defects. Here, the values of fi 

changed at both low and high temperature, as shown in Figure 7.81. There is no 

corresponding fr data to study. Stressing the crystal in this way caused fi to increase 

by 1.4% at low temperature, and by 3.8% at 400 mK. Alternatively, we could say that 

stressing the crystal caused the anomaly A/x (as measured between low temperature 

and 400 mK) to decrease from 7.7% to 5.3%, as shown in Figure 7.82. Again, 

warming above 0.6 K undoes these effects, restoring the anomaly A/i back to 7.7%. 
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Figure 7.81: Effect of stressing on shear modulus anomaly in sample 300ppb33.3. 
The "before stress" data set taken on cooling, "after stress" data set taken on 
warming. 
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Figure 7.82: Effect of stressing on shear modulus anomaly in sample 3Q0ppb33.3, 
with data shifted. The "before stress" data set taken on cooling, "after stress" 
data set taken on warming. Also, "after stress" data has been shifted to agree with 
"before stress" data at low temperature. 

219 



Finally, we consider sample 300ppb29.3 (please refer back to Figure 7.8) before 

and after annealing. This sample was annealed for 10 hours at 1.45 K (~ 0.3 K 

below T m ) . As before, we continued annealing the sample until the measured shear 

modulus near melting no longer changed as a function of time (this data unavailable). 

As shown in Figure 7.83, the annealing process enhanced A/n from 6.0% to 11.1%, 

and it was mostly the high temperature behavior which changed. The values of /x 

and fr at the lowest temperature were almost unaffected by annealing. For example, 

at 50 mK fr increased by 0.1% (as shown in Figure 7.84) and /x decreased by only 

4.3%. At 0.2 K, however, fr decreased by 1.8% (as shown in Figure 7.85) and /x 

decreased by 10.2%. To reiterate, we conclude that the low temperature values 

appear to reflect an intrinsic shear modulus and the effect of defects is mostly to 

reduce /x at higher temperatures. 
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Figure 7.83: Effect of annealing on shear modulus anomaly in sample 300ppb29.3. 
Both data sets taken on cooling. 

As before, we then applied large acoustic stresses (~ 700 Pa) at the base temper-
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Figure 7.84: Effect of annealing on resonant frequency in sample 300ppb29.3, at 
50 mK. 
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Figure 7.85: Effect of annealing on resonant frequency in sample 300ppb29.3, at 
200 mK. 
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ature of the annealed crystal in an attempt to create additional defects. Again, the 

values of /J, and fr changed at high temperature but not at low temperature, as shown 

in Figure 7.86. One last time, warming above 0.6 K undoes these effects: the defects 

introduced by stressing the crystal seem to be stable only at low temperatures. 
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Figure 7.86: Effect of stressing on shear modulus anomaly in sample 300ppb29.3. 
The "before stress" data set taken on cooling, "after stress" data set taken on 
warming. 

7.7 Discussion 

The modulus changes at low temperatures are very large: orders of magnitude larger 

than expected in defect-free crystals (e.g., than are seen in ultrasonic measurements 

on single crystals [49, 154]). It is difficult to imagine small concentrations of point 

defects having such significant effects. Dislocations, however, can dramatically affect 

the elastic properties of solids and may lead to anomalous low temperature behavior 

in quantum crystals like helium [162]. 
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Much of what is known about dislocations in metals has been directly confirmed 

through electron microscopy (and other techniques) which can monitor their motion. 

In solid helium, of course, direct observation isn't possible, and so what is known 

is much more indirect. Most dislocation information for solid helium comes from 

acoustic experiments [154, 155, 156, 163, 164], plastic deformation [38, 165], and 

internal friction [157, 158] studies, although dislocations have been shown to be 

important in thermal conductivity [166, 167, 168], ion motion [169], and perhaps 

even heat capacity of solid helium [87]. Recent synchrotron X-ray tomography on 

solid helium [170] has even given some pictorial confirmations that dislocations really 

do exist in solid helium. 

7.7.1 Di s loca t ion bas ics 

Dislocations can be easily conceptualized in (semi-)two-dimensional structural car­

toons on the atomic scale. They are typically introduced and thought of as extra 

lattice planes inserted into the crystal that do not extend all the way through, ending 

at the dislocation line. The schematic of Figure 7.87 displays a three-dimensional 

view of an edge dislocation in a cubic primitive lattice, and should serve as the 

quintessential illustration of what an edge dislocation looks like. The upside-down 

T is an end view of the dislocation itself and the dashed gray line is its glide plane, 

along which it may move. It is imperative, however, to remember that this is just 

a cartoon. First, such a crystal very rarely exists in nature - with the exception of 

polonium, all real lattices are more complicated. Second, the exact structure of real 

dislocations will never be so simple - edge dislocations are just an extreme form of 

the possible dislocation structures. A mental expansion of Figure 7.87 (no easy feat) 

shows that a dislocation cannot end in the interior of an otherwise perfect crystal. 

Dislocations must end on either: a crystal surface; an internal surface or interface 

(e.g., a grain boundary); at a point where other dislocations intersect, forming a 

dislocation node; or on itself, forming a closed dislocation loop (it is worth making 

the "closed" distinction, since dislocations between pinning nodes are often referred 

to as "loops"). 

Figure 7.87 should also illuminate the fact that dislocations are one-dimensional 

defects. Beyond the edge dislocation, a screw dislocation is the other primary type 

(which result in a helical nature of the lattice in its vicinity). Mixed dislocations are 

intermediate between these. In all cases, the crystal lattice is disturbed only along 
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Figure 7.87: Schematic of an edge dislocation [171]. 

the dislocation line (ignoring the inverse-proportionally smaller elastic deformations 

that exist as we move away from the dislocation) and described at any point by its 

line vector t(x,y,z). 

The characteristic parameter of a dislocation is its Burgers vector, denoted 

b(x,y,z), which specifies the magnitude and direction of the lattice distortion of 

dislocation in a crystal lattice. To determine b of a dislocation, a closed circuit sur­

rounding the dislocation is traced in the real crystal. This circuit is then mapped 

onto an ideal crystal; the circuit does not close and the closure vector defines b . 

The Burgers vector is perpendicular to the direction of an edge dislocation, and 

is parallel to the direction of a screw dislocation. The magnitude of b (= b) is a 

measure for the strength of the dislocation, or the amount of elastic deformation 

in the core of the dislocation. The glide plane is the plane defined by the Burgers 

vector b and the line vector t. (A pure screw dislocation has no particular glide 

plane since b and t are parallel and thus do not define a plane. In principle, then, 

a screw dislocation could move on any plane; in practice, certain restrictions exist.) 
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The existence of a Burgers vector implies that the bonds between atoms in the 

dislocation core itself are not in an equilibrium configuration (i.e., at their minimum 

enthalpy), and so dislocations possess both energy (per unit of length, with a greater 

contribution coming from the elastic field than from the core) and entropy. Note in 

Figure 7.87 how the region above the dislocation (with the inserted half-plane) is 

in compression, while the region below the dislocation (without the half-plane) is in 

tension. As these atoms are displaced from their perfect lattice sites, the resulting 

distortion produces a displacement field in the crystal around the dislocation. The 

displacement field is given by u(x,y,z), thus defining the displacement of atoms. The 

displacement field leads to the existence of a corresponding stress field and strain 

field. With the components ux, Uj,, u2 representing projections of u on the x, y, and 

z axes, the nine components of the strain tensor are directly given in terms of the 

first derivatives of these displacement components. The normal strains are given by 

the diagonal elements of the strain tensor: 

£ x x - dx, em- dy, ezz- d z . ^ , i y j 

The shear strains are given by the off-diagonal elements of the tensor: 

1 !duy duz\ 
£yz-£zy-2 y dz < dy y 

-K£ + £l' <™> 

1 / d u x duy 
£xy ~ £yx ~ 2 \dy ' dx 

The dislocation, therefore, is a source of internal stress in the crystal. In all 

regions of the crystal except right at the center of the dislocation core, the stress is 

small enough to be treated by conventional linear elasticity theory. Moreover, it is 

generally sufficient to use isotropic theory, further simplifying things. If the elastic 

field is known, it is possible to calculate the force that a dislocation exerts on other 

dislocations, or, more generally, any interaction with elastic fields from other defects 

or from external forces can be calculated. It is also then possible to calculate the 
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energy contained in the elastic field produced by a dislocation. Calculations of this 

sort are beyond the scope of this thesis. 

Also pertinent to the discussion of our results is that dislocations can be made to 

move, as shown in the cartoon of Figure 7.88. Panel A shows the application of an 

external force to the right on the top half of a crystal containing an edge dislocation 

and an external force to the left on the bottom half of the same crystal. When 

under the influence of external forces, internal stress are caused within the crystal. 

Panels B and C show how the bonds between atoms in the vicinity of the dislocation 

re-configure to minimize the internal stress. Panel D shows how the movement of 

a dislocation moves the whole crystal on one side of the glide plane relative to the 

other side. Plastic deformation therefore proceeds, atomic step by atomic step, by 

the (generation and) movement of dislocations. 

If a dislocation is to move within a plane of atoms in the unit cell, a critical shear 

stress equal to the maximum of the Peierls potential is needed. The magnitude of 

this force varies periodically as the dislocation moves within the plane and through 

the crystal lattice. The Peierls stress also depends on the width of a dislocation 

core and the distance between planes. It decreases with increasing distance between 

atomic planes and, since the distance between planes increases with planar density, 

slip of the dislocation is preferred on closely packed planes. 

7.7.2 Di s loca t ion specifics 

In a real crystal, dislocations will form a 3-dimensional network. The dislocations 

within the network are pinned at nodes where they intersect, and may be character­

ized by several parameters. Their Burgers vector b (on the order of an interatomic 

spacing) has already been discussed, but they may be further characterized by their 

density A (which is the total dislocation length per unit volume, and so carries units 

of m/m3 , or # /m 2 ) . The dislocation density A can vary in 4He and is not easy 

to extract from measurements, which may not be sensitive to screw dislocations. 

The estimates of dislocation densities in solid helium come largely from analysis of 

acoustic/ultrasonic data. The ultrasonic estimates of [154, 155, 156] are the most 

likely to be quantitatively correct since they come from an analysis of the com­

plete temperature and frequency dependence of sound velocities and attenuations. 

The low frequency acoustic measurements (e.g., [158]) and some of the ultrasonic 

measurements (e.g., [163]) are limited to a single low frequency or to temperatures 
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Figure 7.88: Schematic of dislocation movement. 
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relatively near melting. This is important, since the damping of dislocations is due 

to thermal excitations, largely phonons, and therefore is strongly temperature de­

pendent (~ T3) and there is a frequency-dependent crossover from under-damped 

to over-damped motion of dislocations as T increases. As the ultrasonic measure­

ments of [154, 155, 156] (3-50 MHz) required fairly high quality single crystals, they 

were all done with crystals grown at constant pressure. The work of [163] probably 

involved poorer quality crystals and might have inferred much higher dislocation 

densities. Typical values are A = (106 - 105) cm - 2 . 

The network loop length between nodes Ljv is another important characteriz­

ing parameter. Typical values are L^ = (5 -10) x 10~6 m, but it should be noted 

that these come from ultrasonic measurements on relatively high quality single crys­

tals [154, 155, 156]. Figure 7.89 shows a cartoon diagram of what is meant by the 

network loop length between nodes. More realistically, the dislocation loop length 

should likely be treated as an (exponential) distribution of lengths. 

Dislocations can also be pinned, albeit less strongly, by crystallographic impu­

rities - in the case of solid 4He, by 3He isotopic impurities. The impurity pinning 

length Lp (see Figure 7.90) is determined by the binding energy E s between the 

impurity and a dislocation, the temperature T, and the impurity concentration X3. 

LN 

Figure 7.89: Schematic of a dislocation network, pinned at the intersection of dislo­
cations. 
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Figure 7.90: Schematic of a dislocation network, pinned at the intersection of dislo­
cations and by 3He impurity atoms (shown as small gray dots). 

As outlined above, dislocations will move in response to a shear stress in their 

glide plane. For solid 4He in the hep phase, there is one dominant slip system (as 

in most hep metals): edge dislocations gliding in the basal plane, perpendicular to 

the c-axis. (This motion is related to the total stress by an orientation factor R 

which accounts for the fact that only shear components of the stress normal to the 

Burgers vector act on the dislocation. R typically varies between 0 and 0.5 in hep 
4He [172], and also depends on the type of dislocation.) 

The motion of dislocations is well-described by the "vibrating string" model of 

Granato and Liicke [173]. In this model, a dislocation behaves like a damped vibrat­

ing string. The mathematical model for the equation of motion for the transverse 

displacement £(y,t) of the dislocation is 

Aw+Bi-C4=h°- (7'21) 

This is shown in Figure 7.91, where the plane of the paper is the slip plane. For 

Equation 7.21, A is the effective mass per unit length, B is the damping force per unit 

length, and C is the effective tension per unit length in a bowed out dislocation. 

The term on the right is the force per unit length exerted on the dislocation by 

the external shearing stress. The constants are given by A = 7rpb2, where p is 

the density of the material and b is the Burgers vector, and C = 2/^b2/ir(l - v), 

where /x is the shear modulus and v is Poisson's ratio. Both the effective mass 

and the effective string tension result from the energy in the elastic strain field 
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around the dislocation. These expressions include only the elastic energy of the 

dislocation strain field and ignore the core structure of the dislocations, the effects, 

of anisotropy, and the differences between edge and screw dislocations. The damping 

coefficient B is treated as a parameter to be determined from experiment, and is 

due to the interaction of thermal phonons with the dislocations (and, so, increase 

with temperature). The dominant contribution at low temperature is dislocation 

"flutter" [174] in the stress field of the thermal phonons, radiating energy and giving 

a low temperature damping B ~ T3 . 

k 

- • y 
o i 

Figure 7.91: Bowed out dislocation. The dislocation has length L The displacement 
of the dislocation from its equilibrium position is given by £, while y denotes the 
coordinate of an element of the dislocation line. 

Below the dislocation loops' resonance frequencies (typically in the MHz range), 

inertia and damping are not important and they simply bow out between pinning 

points like a rubber band, as was shown schematically in Figure 7.91. Such displace­

ment creates a strain which adds to the elastic strain of the crystal and reduces the 

solid's shear modulus- For example, as this dislocation bows outward by some aver­

age displacement £, an area ££ is displaced by one Burgers vector b, giving a strain 

(due to dislocations): 

ed = RAb£, (7,22) 

where the orientation factor R is included to find the strain in a particular direction 

(e.g., along an applied stress). In the static/DC limit, we ignore time-dependent 
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effects and Equation 7.21 simplifies to 

dy2 ~c^k = b^ (7-23) 

for constant stress a (i.e. independent of y). The solution to Equation 7.23 is 

Z(y) = -^y2 + dy + e. (7.24) 

Applying the boundary conditions £(0) = 0 and £(£) = 0 yields 

J., •. ba n bla . „ . 
^ = -2Cy+2Cy- ( 7 - 2 5 ) 

The average displacement of a dislocation, then, is 

do £(y)dy 

24 fib 

Equation 7.22 can then be re-written as 

1 b£2a 
12 C 

v ; a. (7.26) 

ed = - ^ R A f - . (7-27) 

With ajfi = e, and ê  equal to the dislocation-responsible change in this value (i.e., 

Ae), we find that 

Ae = AM = ^zARKe. (7.28) 
e fi 24 v ; 

In the absence of impurity pinning, £ is simply the network length L/v, which 

is largest for low density dislocation networks with few intersections. In annealed 

crystals with well-defined networks, ALJV2 is a geometric constant (e.g., 3 for a 
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cubic network) and A/u can be nearly independent of the dislocation density. (Prom 

ultrasound measurements of single crystals [175, 176, 154], it is usually found that 

0.1 < AL/v2 < 0.2.) For the random orientations expected in polycrystalline samples, 

the average anisotropy factor R is about 0.2, so dislocations can reduce /i by as much 

as 30%. 

When impurities are added, Lp can become smaller than Ljv (recall Figures 7.89 

and 7.90), reducing the dislocation strain. Impurity pinning is very effective since a 

single pinning site at the middle of a loop reduces its contribution to /z by a factor 

of four. At temperatures below EJJ, impurities condense onto dislocations giving an 
EM. 

enhanced concentration xp = X3 ekbT, where X3 is their bulk concentration. Pinning 

will be significant when X£> increases to the point where a typical dislocation loop has 

an impurity bound to it (i.e., when XD ~ a/Ljv, where a is the atomic spacing along 

the dislocation). This implies that the shear modulus will recover to its intrinsic 

value below a pinning temperature which decreases with impurity concentration: 

En 1 
TP = - = £ r (7-29) 

Our results are consistent with this picture. Ultrasonic measurements [154, 155, 

156] on helium single crystals give dislocation densities A ~ 106 cm - 2 (polycrystals 

are expected to have higher densities). Typical loop lengths are ~ 5 /mi, giving 

resonant frequencies ~ 15 MHz. Values of RAL2 range from about 0.01 in ultrasonic 

experiments to 1.0 in a low frequency measurement [158]. The dominant slip system 

for hep 4He is edge dislocations gliding in the basal plane [177]. -3He impurities 

bind to these with Eg/kg in the range 0.3 K [154] to 0.7 K [158]. Using values 

Ejs/ks = 0.6 K, a = 0.35 nm, and L^r = 5 /xm, we arrive at Tp = 110 mK for 

X3 = 0.3 ppm, decreasing to 54 mK for X3 = 1 ppb. This is very close to the 

temperatures where we observe fi to increase. 

As a brief aside, Chan and collaborators also contemplate a crossover from 

network-pinning to impurity-pinning (when the average distance Lp between con­

densed 3He atoms becomes less than Ljv). Their X3-dependent crossover temperature 

accounts for zigzagging of dislocations for energy minimization and is of the form 

T^-2EB{ln\^0S.\y (7.30) 
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Here, b is the magnitude of the Burger's vector of a dislocation and fi is the shear 

modulus of 4He. In order to reveal a possible connection between 3He impurity-

pinning and the observed X3 dependence of NCRI, they identify crossover tem­

peratures (i.e., the onset of NCRI) for varying levels of X3 and fit Equation 7.30 

to their data by adjusting the parameters Lp and Eg. Their best fit parameters 

(Lp ~ 1.5 /mi and E B ~ 0.5 K) are not inconsistent with those found in the litera­

ture. 

A pinned dislocation is not forever immobile, however. Large stresses can tear 

dislocations away from 3He pinning sites and reduce the shear modulus. The critical 

stress for this breakaway can be estimated [173] as about 4 Pa for Lp = 5 /xm. This 

corresponds to a strain of e ~ 3 x 10~7, a level where we see strong amplitude de­

pendence. Stress-induced breakaway can also produce hysteresis (e.g., if impurities 

are unable to bind to rapidly moving dislocations when a sample is cooled at large 

drive amplitudes [158]). 

It is also useful to determine a relevant displacement (e.g., the amplitude of 

dislocation motion when behaviour of the shear modulus anomaly A/x shows ampli­

tude dependence). The maximum deviation of a dislocation is determined by setting 

y = £/2 in Equation 7.25 and is given by 

. A ^ 1 - " > £ * • • (7-31) 

Using typical values v « 0.3, f « 5 x 10~6 m, b « 3.5 x 10 - 1 0 m, and fi« 1.5 x 107 Pa, 

we get £m w (6.5 x 10~10)<7. In other words, the maximum displacement is roughly 

2 lattice spacings per Pa. Our shear modulus measurements were made at stress 

levels a « 0.33 Pa, corresponding to £m ~ 0.2 nm. The amplitude dependence of 

Afj, was measured to set in at stress levels ~ 0.68 Pa, corresponding to £m « 0.4 nm, 

or about one lattice spacing. As a comparison, the "critical displacement" inferred 

from torsional oscillator experiments is ~ 2 nm (the displacement of a dislocation 

can be much larger than the amplitude of torsional oscillator motion). 

The increase in /i, its magnitude and frequency dependence, the temperature 

at which stiffening occurs and its dependence on 3He concentration, the amplitude 

dependence and its associated hysteresis - these are all consistent with a picture of 

a network of dislocations pinned by 3He impurities (using dislocation parameters 

determined in earlier experiments on hep 4He). The effects of annealing can be 
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understood in terms of changes in dislocation density A; note that Afi depends only 

on the combination AL^ and so can increase, decrease, or even remain unchanged 

when dislocations disappear. 

To help illustrate this point* Figure 7.92 shows a cartoon example of a (cubic) 

network of dislocations. The dislocation density is given as the total dislocation 

length (3LAT) per unit volume (L^), so that AL2
N — 3. 

•7\ 

y\ 

!£ 
^L 

~A 

•7\ 

V-

V-

~A 
Figure 7.92: Schematic of a (cubic) dislocation network, pinned at the intersection 
of dislocations. 

Annealing will result in some of these dislocations disappearing from the network. 

Figure 7.93 shows a cartoon of the (cubic) network of dislocations from Figure 7.92, 

with roughly half of the dislocations annealed away (i.e., removed). In this carefully 

chosen example, L^ has doubled, but A has been quartered, meaning that still 

ALjy — 3. Removal of a different number of dislocations and/or of different specific 

dislocations can result in an increase or decrease in the product AL^. 

Large stresses were also observed to change A/i, probably by introducing more 
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Figure 7.93: Schematic of an "annealed" (cubic) dislocation network, pinned at the 
intersection of dislocations. 

dislocations or pinning existing ones, an effect also seen in ultrasonic measure­

ments [156]. Overall, our experiments show that the low temperature modulus 

is largely unaffected by annealing or stressing, as expected since dislocations are 

then pinned by impurities. Instead, fi softens when the temperature is raised to 

the point where 3He impurities are able to "boil off" from the dislocations, thereby 

allowing them to move in response to shear stress. 

In contrast to our results, previous torsional measurements [158] on the shear 

modulus of solid hep 4He at comparable strains (e = 10~7) showed no change between 

0.5 K and 17 mK. The torsional oscillators in such experiments are run with solid 
4He only in the torsion rod (as opposed to also in the torsion bob); here, a torsional 

oscillator was used to make shear modulus measurements on solid 4He at 331 Hz with 

torsional standing waves. With commercially pure 4He (0.3 ppm 3He) and at strains 

e = 10~7, no change in ji was observed below 0.5 K. Interestingly, they do observe 

a softening of the solid sample, but at temperatures near 1 K. The temperature 

at which this transition occurs can be made to decrease with increasing strain, 

nearing 100 mK at relatively high strains e = 10~5. With ultra-pure 4He (nominally 

2.4 ppb 3He), no change in /z is observed at all, down to 17 mK. This is an apparent 

235 



discrepancy with our results. Unfortunately, it is not possible to be more specific 

since this difference is not understood, nor is it easy to speculate without more 

details on how they calibrated their strains and 3He impurity concentrations. 

7.7.3 I n s u m m a r y 

The key features of the data presented in this chapter may all be well-understood 

in terms of the dislocation model of Granato and Liicke, outlined above, in which 

the dislocation lines between stable nodes can bend when stress is applied to the 

crystal. This elastic dislocation motion reduces the shear modulus. 
3He impurity atoms tend to bind to the dislocation lines at low temperatures 

and pin this dislocation motion. Such pinning decreases dislocation loop lengths 

and results in an intrinsic shear modulus \i at low temperature which is essentially 

unaffected by annealing or stressing the sample (processes which presumably change 

both dislocation number and density within the sample). 

When the temperature is increased, the 3He impurity atoms unbind from the 

dislocation lines and a break away occurs. Dislocation line lengths increase and 

the shear modulus fi of the solid softens; namely, we observe that A/z//i < 30%, as 

expected from Equation 7.28. Furthermore, the temperature at which this crossover 

behaviour occurs as a function of bulk 3He impurity concentration makes sense, as 

given by Equation 7.29. 

As the applied strain is increased, the speed at which dislocations move increases 

and the more difficult it becomes for a 3He impurity atom to condense on or "grab 

on" to dislocations. The result is that fewer 3He impurity atoms serve as pinning 

sites and the dislocation loop lengths will, to a greater extent, remain unchanged 

as the temperature is reduced. With that, the magnitude of the shear modulus 

anomaly A/x is decreased (and, under sufficiently high strain, made to disappear). 

If these quickly moving dislocations are then made to slow down (i.e., the applied 

strain is reduced) at low temperature, 3He impurity atoms can then pin - and stay 

pinned - on the dislocations back up to large strains. 
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Chapter 8 

Summary 

This thesis began with an introduction to some of the basic concepts behind super­

fluidity and an extension of them to the solid phase of 4He. Experimental data were 

then presented for: the freezing of 4He under confinement; the pressure-induced flow 

of solid 4He under confinement and in bulk; and, the elastic properties of solid 4He 

at low temperatures, amplitudes, and frequencies. In this final chapter, I will try to 

bring together these concepts with the results of our experiments. 

8.1 Summary of background material 

Helium behaves quite differently from the heavier inert gas solids and solid helium 

is a uniquely 'quantum' solid. The van der Waals attraction is not capable of over­

coming the quantum zero-point motion of the atoms and, unless external pressures 

are applied, helium will remain a liquid all the way down to absolute zero. Quantum 

effects play an important role in the fluid phase, as superfluidity exemplifies, and 

are likewise significant in the solid phase; consequently, it is important to study the 

fundamental properties of quantum solid helium. 

One of the first works to consider the quantum nature of solid 4He was by 

Andreev and Lifshitz [28], who proposed that its significant quantum fluctuations 

might, at low enough temperature, permit for a dilute gas of vacancies (i.e., non­

thermal zero point vacancies) within the solid and that these could Bose-Einstein 

condense, resulting in a crystal that was neither a solid nor a liquid. This supersolid 

phase would possess the characteristic properties of a regular solid (e.g., a periodic 

lattice, a non-zero-shear modulus) but also share some properties with a superfluid 

namely (e.g., frictionless flow). 

It wasn't until 2004, however, when Kim and Chan [9, 10] provided the first 
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supporting experimental evidence for supersolidity. 

Using a solid 4He-filled torsional oscillator, they have made observations consis­

tent with a portion of the solid 4He ceasing to oscillate with the rest of the system, 

flowing through the solid matrix without encountering any frictional resistance: 

namely, a supersolid phase transition. Importantly, the same result with solid 4He 

has been reproduced in at least four other groups [53, 54, 55, 56]. 

8.2 Summary of experimental results 

The four experiments described in this thesis, presented in the order in which they 

were performed, were all motivated by the remarkable supersolid interpretation of 

recent torsional oscillator results on solid 4He. With them, we are able to provide 

evidence that supports the supersolid claim, as well as confounding it. The overall 

picture that emerges from these studies is that solid 4He is proving to be at least 

as weird as anyone ever could have predicted. As strange as it is, however, we still 

find success in defining some of its fundamental mechanical properties. 

8.2.1 Dielectric measurements of helium freezing in Vycor 

In our first experiment, we studied how 4He freezes when it is subjected to confine­

ment on the nanometer scale, in porous Vycor glass (i.e., the system in which the 

supersolid state was first observed) [78]. This was directly motivated by the fact 

that obvious alternative explanations to the superfluid-like behaviour observed in 

the torsional oscillator experiments existed. 

Some of these possible mechanisms were tied to the understanding that confine­

ment can restrict freezing: perhaps the superfluid-like signal was actually coming 

from a liquid portion of the system. With that, we took some dielectric measure­

ments of 4He freezing in the pores of Vycor. We were able to confirm that the 

density change associated with freezing is substantially smaller than in bulk, which 

implies that not all of the 4He in the pores is actually participating in solidification. 

(It could also mean, although this seems more unlikely, that all of the 4He does 

indeed solidify, but that the volume change associated with freezing, for unknown 

reasons, is small in the pores of Vycor.) If some of the confined 4He remained liquid, 

say as some thin film that coats the pore wall, then it is perfectly plausible that the 

superfluid-like behaviour observed in the torsional oscillator experiments is nothing 

more than superfluidity in that thin film. (Should this be the case, however, we 
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expect that the thickness of this film would be a function of pressure. Our mea­

surements suggest otherwise, that the amount of 4He that solidifies in the pores is 

independent of pressure.) 

The presence of a persistent liquid layer, then, cannot be ruled out. In fact, 

there very likely exists an amorphous 4He film strongly adsorbed to the pore wall, 

having a density already near that of the solid phase and thereby minimally con­

tributing to the change in density upon freezing. Path Integral Monte Carlo (PIMC) 

simulations [142] and Variational Monte Carlo simulations [143] both support the 

persistent liquid layer model to explain the NCRJ observations. Our density change 

measurements of solid 4He in Vycor (~ 70% of the bulk value) suggest a thickness 

of this film corresponding to 3-4 layers of adsorbed 4He and is consistent with these 

Monte Carlo results. 

Some other potential mechanisms are cultivated from the understanding that a 

torsional oscillator is a highly sensitive probe of the moment of inertia of a system 

(i.e., its total mass along with how that mass is distributed). For example, the pores 

of Vycor are small enough that it isn't obvious which (if any) crystallographic phase 

the solid 4He within takes. Should the solid undergo a crystallographic phase tran­

sition, it might re-distribute its mass and, therefore, change the system's moment 

of inertia. Just as a figure skater spins faster by pulling in her arms, so too might a 

torsional probe oscillate more quickly if its solid 4He matrix shuffles into a tighter 

packing fraction. 

Alternatively, one should keep in mind that solid 4He is a notoriously poor wetter 

of surfaces. It is known that solid H2 undergoes a de-wetting transition from Vycor 

at reduced temperatures [116], causing the solid H2 to be expelled from its Vycor 

confines and reducing the period of the torsional probe taking measurements on that 

very same piece of Vycor. It was worth confirming that a similar phenomena does 

not occur with solid 4He. Indeed, it does not. We found no evidence of any sudden 

density changes, such as a crystallographic phase transition, nor any signs of the 

solid 4He leaving the Vycor, such as a de-wetting transition, at low temperatures. 

Any such behaviour would have altered the moment of inertia in a torsional oscillator 

and could have mimicked mass decoupling. Our results leave little doubt that the 

solid 4He stays put a t low temperatures. 
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8.2.2 Pressure-induced flow of solid helium 

Our first set of measurements, described in the previous section, effectively ruled 

out some of the most obvious alternative explanations to the NCRI observed for 

solid 4He in Vycor: they seemed to strengthen the supersolid claim. With that, 

it became extremely interesting to see whether solid 4He would exhibit any of the 

other unusual flow properties of a superfluid. Of course, no one could say how a 

supersolid should behave - no one had ever studied one before. All one could go 

on was the (perhaps naive) assumption that a supersolid would behave in roughly 

the same way as a superfluid. Besides, if we knew exactly what we were doing, it 

wouldn't be research. 

Some of the unusual properties of superfluids that one could explore in solid 4He 

include superleaks, persistent currents, second sound, and quantized vortices. We 

chose to study the response of solid 4He to pressure differences, in order to look 

for unusual flow properties that might be associated with supersolidity. Superfiow 

is a hallmark of superfluidity in liquid 4He; it is natural to look for this in the re­

gion where solid 4He decouples from torsional oscillators. An early experiment [41] 

solidified 4He in two chambers with pressure differences (of order 1 bar) between 

them, but saw no flow through the solid 4He in the connecting capillaries, implying 

either that superfiow only occurred below the lowest temperature of the measure­

ment (30 mK) or that it had a critical velocity much smaller than the 10 /xm/s 

inferred from Kim and Chan's torsional oscillator results. A later experiment [43] 

extended to lower temperatures (4 mK) without seeing any flow through solid 4He. 

The pressure difference was established by different liquid-solid interface heights in 

a U-tube, so this experiment was necessarily done at coexistence on the melting 

curve. 

While two null results had already been obtained, neither studied solid 4He in 

the pores of Vycor. We also felt that we could significantly improve on the sensitivity 

of these previous measurements. So, we studied the flow of solid 4He in response to 

pressure differences: in our first such experiment, the 4He was confined in the pores 

of Vycor [78]; in the second, we studied bulk solid [79] in an experiment conceptually 

similar to that of Greywall [41]. Both experiments used a beryllium copper cell 

with a flexible diaphragm and an in situ capacitive pressure gauge. The diaphragm 

was coupled to an external piezoelectric (PZT) actuator stack to compress the 4He 
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inside the cell. In both sets of experiments, the 4He was always solidified using 

the blocked capillary method and the cell was always initially filled with liquid at 

sufficiently high pressure to ensure that the 4He in all internal volumes would freeze 

at low temperatures. Pressure gradients grown into the sample during solidification 

were eliminated by annealing our samples near their melting temperatures before 

beginning our flow measurements. 

8.2.2.1 Vycor 

For the Vycor experiment, our sample was a Vycor disc onto which copper electrodes 

were evaporated, to measure (via the sample's capacitance) the density of the helium 

within the pores. A typical flow measurement then involved suddenly compressing 

the 4He by applying a voltage to the piezoelectric actuator, forcing the 4He to flow 

into the pores of the Vycor, while monitoring it via the sample capacitance. 

The sample responded to the applied pressure step in two stages. First, there 

was an initial jump in density capacitance simply due to the elastic compression 

of the Vycor capacitor. Second, as solid 4He then flowed into the Vycor pores 

to equilibrate the pressures after compression, the density capacitance increased 

further, at a slower rate reflecting the flow velocity of the solid 4He. The rate 

of flow was strongly dependent on temperature, occurring most rapidly at higher 

temperatures (e.g., equalizing pressures in less than a minute very near to melting). 

Below about half of the melting temperature (in the neighborhood of 1 K), the 

flow was too slow to measure. The temperature dependence that we observed was 

consistent with mass transport via a thermally activated process, with an activation 

energy of about 8 or 9 K. Lower temperature measurements (e.g., around 0.5 K) 

showed no flow (and only the initial elastic jump). 

The most interesting question, of course, was whether or not we would observe 

any flow in the temperature range below 200 mK, where Kim and Chan saw decou­

pling of solid helium from Vycor [9]. The answer to that question was no. Our data 

allowed us to put an upper limit of 3 nm/s on any superflow at low temperatures. 

This limit is considerably smaller than the critical velocity of about 10 /xm/s inferred 

from the torsional oscillator measurements. 
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8.2.2.2 Bulk 

For the bulk experiments, the cell was divided into two chambers. The larger cham­

ber (0.49 cm3) included the diaphragm and the smaller one (0.01 cm3) had a pressure 

gauge. The chambers were separated by a glass capillary array (GCA), a plate con­

taining 36,000 parallel capillaries, each 3 mm long and 25 /xm in diameter, through 

which the 4He could flow. The 4He was always solidified using the blocked capil­

lary method and the cell was initially filled with liquid at sufficiently high pressure 

to ensure that all the 4He in and around the GCA channels would freeze at low 

temperatures. Pressure gradients grown into the sample during solidification were 

eliminated by annealing our samples near their melting temperatures before begin­

ning our flow measurements. Our bulk flow measurements were done in a similar 

way to those of Vycor: a typical flow measurement involved suddenly compress­

ing the 4He by applying a voltage to the piezoelectric actuator, forcing the 4He to 

flow through the channels of the GCA, while monitoring the flow into the smaller 

chamber via the pressure gauge. 

Not surprisingly, we found that liquid flows easily through the GCA channels, 

keeping the two chambers in pressure equilibrium after a compression and serving 

as a calibration of our diaphragm and piezoelectric stack. (A voltage step of 150 V 

applied to the stack produced a pressure change of 84 mbar, implying a volume 

change of 0.03% and a diaphragm deflection of about 1 p,m.) Also not very sur­

prisingly, we observed that the solid near melting (e.g., within about 10 mK) does 

flow in response to an applied pressure difference; the pressures in the two cham­

bers equilibrated within about half an hour (compared to a second or less for liquid 

helium). As the temperature is lowered, even if just by another 10 mK, the pres­

sures did not completely equilibrate. Below about half of the melting temperature 

of the crystal (around 1 K) we saw no evidence of flow. For example, the effect of a 

compression at 0.5 K was an immediate smaller (38 mbar) pressure response in the 

second chamber, but this was simply a reflection of the elastic bending of the GCA 

plate (analogous to the elastic compression of the Vycor sample) due to the pressure 

gradient across it. (A pressure difference of 100 mbar due to compressing the solid 

in the larger chamber bent the plate by about 30 nm, thus compressing the solid 
4He in the smaller chamber and producing this observed pressure step.) There was 

no subsequent pressure change that would indicate flow between the two chambers 
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and the pressure returned immediately to its original value when the diaphragm was 

released. 

We looked for unusual pressure-induced flow below 200 mK, again and to no 

avail. The response of a squeeze at 35 mK was identical to the response at 0.5 K, 

with no evidence of flow through the channels. After having monitored the pressure 

following a squeeze for up to 20 hours with the same null result, we put an extremely 

stringent limit on the pressure-induced superflow in solid 4He at low temperatures 

of 1.2 x 10~12 m/s. This is seven orders of magnitude smaller than the 10 /xm/s 

critical velocity inferred from the torsional oscillator amplitude dependence. 

In these experiments, we also compared the flow of isotopically pure 4He (about 

1 ppb 3He) to that of commercial helium (about 0.3 ppm 3He). The behavior 

was essentially identical, making it unlikely that 3He impurity atoms are somehow 

responsible for the absence of flow at low temperatures. 

In short, our experiments show that static pressure gradients do not produce 

superflow at low temperatures in solid 4He. If the NCRI seen in torsional oscillator 

measurements is due to supersolidity, we conclude that its behavior must be quite 

different from that of a superfluid. 

Of course, the amplitude dependence of the decoupling seen in the torsional 

oscillator measurements does not have to be due to a critical velocity vc (about 

10 |um/s). For example, it could be due to an effect that depends on the maxi­

mum displacement xc = vc/u; (about 2 nm) or one that depends on the maximum 

acceleration ac = vcw (about 0.1 m/s2) of the solid 4He, and the distinction is im­

portant in comparing experiments at different frequencies. For example, a limit on 

displacement could prevent a DC measurement (like ours) from observing superflow. 

Alternatively, a limit on acceleration could prevent high frequency ultrasonic mea­

surements (like those on solid 4He in Vycor [104,144]) from observing the decoupling 

of a supersolid component. 

Keeping this in mind, we looked for AC flow in our measurements (albeit at 

rather low frequencies, 0.01 to 1 Hz) but saw no evidence of solid 4He motion 

through the GCA channels at low temperatures. With these AG measurements, we 

put an upper limit on the average displacement of the 4He in our work of about 

0.03 nm. If only the 1% NCRI fraction moves, this corresponds to a 3 nm motion: 

slightly larger than the displacement at which NCRI starts to decrease in Kim and 

Chans experiments. So, we can not rule out the possibility of a critical displacement. 
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Dislocations provide one mechanism for limiting displacements in solid 4He. This 

was the line of thinking that carried us into our final set of experiments. 

8.2.3 Shear modulus study of solid helium 

Mass can be transported by the motion of dislocations, and dislocations can be 

pinned by 3He impurities, even at the ppm level [154, 175], or by interactions with 

other defects arid surfaces. That the torsional oscillator results [52] are so extremely 

sensitive of 3He (down to the ppb level!) might serve as a clue that dislocations are 

somehow or another involved in the observed NCRI. Decoupling is usually larger 

in narrow annuli than in open cylinders [57] but begins at similar temperatures; its 

magnitude (and its elimination) also depends on how the solid 4He was grown and 

annealed, and strongly suggests that the NCRI behavior involves defects. Theo­

retical work [71, 61, 81, 75, 83, 153] also suggests that defects are involved. These 

should also affect the solid's mechanical behaviour and this was the driving force 

behind our final set of experiments. 

In an investigation of elastic properties, we have made the first direct measure­

ment of the shear modulus of solid 4He at low temperatures. This study required 

the development of a new experimental technique, although conceptually quite sim­

ple. A sample of solid 4He is grown between two parallel plates (piezoelectric shear 

transducers). One plate, the driving transducer, is moved in a direction parallel to 

the second plate. The solid 4He transmits the resulting elastic shear stress between 

the plates, and this is measured by the second plate, the detecting transducer. This 

new method allowed us to measure the shear modulus fi of solid 4He directly at 

strains (stresses) as low as e — 2.2 x 10~9 (a = 0.03 Pa), this is two to three or­

ders of magnitude lower than in previous torsional [158], internal friction [157], and 

ultrasonic measurements [154, 155]. We also measured /x at frequencies as low as 

20 Hz, far lower than in any previous experiments. 

What we found was that the shear modulus \i of solid 4He increases by about 

Ap ~ 10% as the temperature is reduced from 200 mK to 20 mK. More significant 

than the existence of A/i alone was that the temperature dependence of A/u closely 

tracks the decoupling in the torsional oscillator experiments. Furthermore, it has 

the same dependence on measurement amplitude, 3He impurity concentration, and 

annealing as the decoupling seen in torsional oscillator experiments. 

This unusual effect was confirmed through a simultaneous measurement of the 
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frequency and damping of a resonance in our sample (outside of the gap, surrounding 

the transducers). This resonance was also found to have the same dependence 

on temperature, measurement amplitude, 3He isotopic impurity concentration, and 

annealing as the torsional oscillator results. This is the first clear observation of 

directly related phenomena in other properties of solid 4He. 

Upon observing this phenomena, thought was given to what might be the root 

cause of these effects. While a solid's strength and shear modulus are indeed a func­

tion of the intrinsic nature of the perfect crystalline solid, they also depend strongly 

on defects within the solid (such as dislocations and grain boundaries). Noteworthy 

is the knowledge that the same seems to be true for the torsional oscillator exper­

iments, in which the results depend on the quality of the crystal, with the largest 

effects seen in the most defective samples. Indeed, dislocations can dramatically 

affect elastic properties (e.g., can produce a frequency-independent reduction of the 

shear modulus [173] as large as 30%) and lead to unusual behaviour in quantum 

crystals [162]. 

The results we obtained are well-explained as the behaviour of dislocations and 

their interaction with trace amounts of 3He impurities in the solid 4He. When dis­

locations are free to move in response to a shear stress, they can relax the stress in 

a crystal and so lower its shear modulus. Impurities of 3He tend to bind to dislo­

cations in solid 4He at low temperatures [154] and so can restrict their motion. As 

the temperature is increased, the 3He unbinds from the dislocations and a break­

away, allowing the dislocations to move more freely and reducing /x. The observed 

dependence of the shear modulus on the concentration of 3He is consistent with this 

idea. 

As it was torsional oscillator results which motivated this work and as the two 

sets of measurements share all essential features (even though they measure very 

different properties - shear modulus and sound speed versus moment of inertia and 

density), one can't help but ask: is the shear modulus anomaly directly related to 

the frequency shifts and dissipation in torsional oscillator experiments? 

The anomalous behaviours have the same temperature dependence and both 

transitions are accompanied by similar dissipation peaks. They are both strongly 

amplitude dependent (starting at comparable stress levels) as well as having very 

similar amplitude-dependent hysteresis at low temperatures. In both types of mea­

surements, the magnitude of the anomaly is frequency independent, but its onset 
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is broadened and shifts to higher temperature with increasing frequency. Tiny 3He 

impurity concentrations have the same sort of dramatic effect on the onset temper­

ature, and annealing changes the magnitude of both anomalies. 

Considering these remarkable similarities, it seems safe to say that the two sets 

of effects are related. This, then, raises the more challenging issue of determining 

how the two sets of effects are related. 

One possibility is that the modulus increase stiffens the torsional oscillator, in­

creasing its frequency and mimicking mass decoupling. Interpreting a torsional 

oscillator frequency as a direct measure of mass assumes that the oscillator head 

is infinitely stiff and that the solid helium moves rigidly with its walls, neither of 

which is exactly true. We initially stated [178] that an increase in the shear modulus 

of 4He would improve its coupling to the torsional oscillator and thus decrease its 

frequency (that is, the opposite of the observed behaviour). However, we have since 

been shown that this statement is incorrect [179]; namely, that the stiffening of the 

solid 4He shear modulus would increase the frequency of a torsional oscillator. The 

question then is whether the increase in the 4He shear modulus observed at low 

temperatures (which will increase the torsional oscillator frequency and so mimic 

decoupling) is of the right magnitude. The answer to this query is reserved for 

another student, and another thesis. 

Alternatively, an increase in fj, could raise the frequency of a torsional oscillator 

by increasing the stiffness of its head (which is assumed to be infinite for an ideal 

model of a torsional oscillator). Preliminary estimates for typical oscillators suggest 

that this effect is several orders of magnitude too small to account for the observed 

decoupling. However, simulations are underway in an effort to confirm the mag­

nitude of these sorts of effects [160], as the effect is sensitive to the details of the 

torsional oscillator design. It should also be remembered that when the flow path 

in a torsional oscillator annulus is blocked the decoupling is nearly eliminated, even 

though this would barely change the contribution by the solid 4He to its stiffness. 

Our observations do not provide an obvious mechanical, nori-supersblid explanation 

of the frequency changes in torsional oscillators (recall that there is strong evidence 

for frequency independence of the NCPJ). 

It is perfectly plausible that the \i anomaly and the decoupling observed in 

torsional oscillator measurements are both fundamental properties of a supersolid 

phase [94]. If this were the case [83, 153], then it would be natural for them to have 
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a common dependence on temperature, 3He, et cetera. 

However, it is not unreasonable to argue that mobile dislocations could affect a 

supersolid response. Perhaps the torsional oscillators truly are observing a super-

solid state, and our shear experiment has allowed for us to observe behaviour which 

kills the supersolid state. For example, vortices [96] could be pinned by station­

ary dislocations but could introduce dissipation and destroy the supersolidity when 

dislocations begin to move above 100 mK. 

The decoupling seen in porous media [10] remains a puzzle, as it is hard to 

imagine dislocations existing, let alone moving, in the 7 rnn pores of Vycor glass. 

The precise connection between our elastic measurements and decoupling of solid 

helium from torsional oscillators is not certain, but it is clear that the two are 

closely related and that models of supersolidity should consider the effects of moving 

dislocations. 
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