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Abstract

Model Predictive Control (MPC) is widely applied in the process industry nowadays.

Chemical processes are corrupted by all kinds of uncertainties, such as measure-

ment noises, disturbances and parameter uncertainties. Without consideration of

uncertainties, conventional MPC will cause various problems, for example, violation

of constraints and sub-optimal results. Chance constrained MPC (CCMPC) is in-

troduced to generate a safe and optimal control strategy to minimize the effect of

uncertainties.

In this thesis, two types of uncertainties in the state space model are considered:

system noises and parameter uncertainties. Robust optimization (RO) approxima-

tion, a novel method dealing with joint chance constraints, is investigated to solve

CCMPC problem. This method leads to results close to the true optimal and is not

restricted to certain types of distribution. This work is further applied on the steam

assisted gravity drainage (SAGD) process. Constraint violations are greatly reduced

by using the RO method.

For system noises, the RO method can be directly applied with the inclusion of

uncertainty sets. The type of uncertainty set is selected based on the distribution.

Two-layer optimization is proposed, one layer guarantees probability satisfaction and

the other layer deals with optimizing the cost. Compared with traditional analyt-

ical methods, RO method is not limited to specific distribution and shows better

performance in objective function.
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For parameter uncertainties, random variables are multiplied with each other,

increasing the difficulty to solve the problem. Stochastic tubes help to get rid of

multiplicative uncertainty by requiring the tubes to satisfy the constraints. The

problem is solved by the RO based tube method. Exponential growth in computation

time is avoided. It also guarantees recursive feasibility and stability but results in

conservative solutions.

Finally, the RO method is applied to CCMPC of the SAGD process. A state

space model is obtained as a proxy model from the production data. The control

strategy is calculated based on the proxy model. The developed control strategy is

then applied to a reservoir simulator and gives satisfactory results. RO based CCMPC

greatly reduces violations due to uncertainties. The SAGD performance is improved

by avoiding operating close to critical conditions.
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Chapter 1

Introduction

1.1 Motivation

MPC is widely used in the process industries. MPC has advantages in taking care

of multiple inputs and outputs, incorporating constraints and optimizing system per-

formance. In conventional MPC, however, uncertainties are not taken into account.

This raises various issues, including in-feasibility and sub-optimality. Robust MPC

(RMPC) and stochastic MPC (SMPC) are the two main approaches dealing with

uncertainty problem in MPC. RMPC assumes that uncertainties lie in a bounded set

and gives control actions based on the worst case [1], [2]. SMPC, however, incor-

porates the distribution of uncertainty. Constraint types in SMPC include chance

constraints, maximum violation and expectation on constraints. Chance constrained

MPC (CCMPC), includes a general case and gives user freedom to tune the risk. It

exploits probability guarantees which give a trade-off between control performance

and fulfillment of constraints [3]. In terms of SMPC approaches, three categories

can be classified: stochastic programming based approach [4], [5], [6], [7], [8], [9],

stochastic tube approaches [10], [11], and affine parameterization of control policy

[12], [13]. Stochastic programming approaches, including analytical approaches [4],

[5], [6], [7] and sampling methods [8], [9], are naturally adopted to CCMPC. By

separating system states into deterministic components and random components,

stochastic tube approaches help solve the problem of intractability generally existed

in CCMPC. Affine parameterization in feedback control policy offers better solution
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than open-loop method. The affine structure helps reducing calculation effort to a

limited amount. We will focus on all three methods in the thesis. By the structure

of chance constraints, it can be separated into individual chance constrained problem

[10], [11] and joint chance constrained problem [6]. Individual chance constrained

problem is much easier to solve and can be included in the joint chance constrained

problem. We focus on solving joint chance constrained problem in the thesis.

CCMPC problems do not have a general solution. Certain assumptions have to

be made (i.e. Gaussian distribution) for a lot of methods [14], [15]. In robust opti-

mization (RO), constraints are guaranteed regardless of the uncertainty distribution,

as long as the random variables are in a bounded set. The advantage it shows in

dealing with arbitrary distributions brings us to utilize the RO method in CCMPC.

Modeling uncertainty comes not only in additive uncertainty but also in multi-

plicative uncertainty. RO based method can deal with additive noise in a state space

model. However, multiplicative uncertainty induced by unknown parameters poses

difficulty in using the RO based method. Propagation of uncertainty over the pre-

diction horizon introduces significant conservativeness and computational complexity

[16]. By defining regions which include the predicted states and propagating these

regions from one time step to the next via one-step-ahead calculation, this problem

can be solved. Stochastic tube approaches are thus introduced [10], [11], [16]. Tube

methods also provide guarantees for recursive feasibility and stability [3]. We use

stochastic tubes to convert multiplicative uncertainty into forms which can be solved

by RO method.

In SAGD process, PID controllers are widely used for sub-cool control. However,

advanced process control methods (i.e. MPC) are still rarely used. One important

reason is that we do not have an accurate model describing SAGD behavior. Reservoir

simulators allow us to do various tests and get rich data for modeling. This leads

to an interest of building proxy models and applying advanced CCMPC in SAGD

process.
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1.2 Thesis contributions

The main contribution of this thesis is developing robust optimization approxima-

tion based chance constrained model predictive control (RO based CCMPC) method,

which is not restricted by certain types of uncertainty distributions compared to other

methods. The method can be applied to state space models with system noise or para-

metric uncertainty. Specifically, the contributions of this thesis are summarized as

follows:

1. Developed an RO based CCMPC method for state space model with system

noise;

2. Combined stochastic tube MPC with RO based methods to solve parametric

uncertainty problem;

3. Built data-driven proxy models from simulation of SAGD process;

4. Implemented RO based CCMPC in the reservoir simulator of SAGD process.

1.3 Thesis outline

The layout of this thesis is as follows:

Chapter 2 proposes RO based CCMPC method and compares it with other meth-

ods. A closed-loop structure is introduced to improve RO method performance. RO

method is tested in two case studies: CSTR and hydrodesulfuration process.

Chapter 3 deals with parameter uncertainty in CCMPC problems. Stochastic

tube methods are introduced to convert chance constraints into the forms which can

be solved by RO based CCMPC method.

Chapter 4 aims to implement RO based CCMPC in SAGD process. A state

space proxy model is built from simulation data. The control input from RO based

CCMPC method is calculated by treating the proxy model as the real process model.

The control strategy is tested on the reservoir simulator.

Chapter 5 concludes the thesis.
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Chapter 2

Chance Constrained Model
Predictive Control in Dealing with
System Noises

2.1 Introduction

A critical challenge for planning and control in the process industry is the presence of

uncertainty. Due to imperfect knowledge of the process, disturbances and measure-

ment noises, uncertainty exists in both model parameters and system states. Various

issues arise due to the uncertainties, including poor performance, instability or vio-

lation of the constraints [17], [18], [19]. The focus in our work is on the restriction of

violations while minimizing the cost in the presence of uncertainties.

Generally, there are two kinds of constraints: hard constraints and soft constraints.

Hard constraints are required to be satisfied arbitrarily. Examples are those con-

straints related to operational safety, product quality or equipment capacity. For

example, the flow rate in a pipeline cannot exceed its capacity. These constraints

are usually critical requirements which have zero tolerance for the violation. Soft

constraints are not required to be guaranteed 100%, which means that the system

can tolerate a certain degree of violations. Examples are those related to process

performance, like temperature in building climate control [13]. The temperature is

supposed to be kept in the comfort zone, but not required to be always satisfied. As

soft constraint is closely related to the performance, it is usually user-defined.
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For the soft constraints, based on measures of the constraint violation, it can be

separated into three groups: constraints on the expectation, constraints on the worst

case and probabilistic constraints.

E[g(x, ξ)] ≤ 0

sup
ξ
g(x, ξ) ≤ 0

Prob(g(x, ξ) ≤ 0) ≥ 1− δ

where, x is the decision variable and ξ is the random variable.

These three measures have different purposes in dealing with soft constraints. It

is interesting to note that in probabilistic constraints (δ is called violation risk), if

δ = 0.5, the constraints on expectation hold. If δ = 0, the constraints on worst

case hold. The probabilistic constraints define a more general case. Probabilistic

constraint is usually referred to as chance constraint in literature.

Over the nominal operation which ignores uncertainties, the inclusion of chance

constraints provides several advantages:

1. A guarantee on the satisfaction of constraints under uncertainties: given the

tolerance on violation, we can guarantee a probability that the constraints will

be satisfied;

2. Better performance: in optimizing the profit, it usually happens when optimal

point is close to or on the boundary of the constraints. By tuning the risk of

violation, the user can freely determine whether to achieve better performance

or to have less risk.

Chance constrained problems are difficult to solve because it is hard to check fea-

sibility of the chance constraints and most of the feasible regions are non-convex [7].

Special cases which can be equivalently converted into convex problems can be found

in [14], [20]. Generally speaking, most chance constrained problems are solved through

approximation methods. There are two main categories: sampling based methods and

analytical approximations [6]. The sampling methods include sample average approx-

imation which requires large number of samples and computational effort [9], [6], and
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scenario approach which has great conservativeness [20]. Analytical approximations

try to approximate the chance constraints with deterministic formulations. We will

discuss in details about the analytical methods, which include ellipsoidal relaxation

[6], iterative risk allocation [5] and robust optimization approximation method [7].

The process model in the thesis is discrete-time state space model. In this chapter

only system noises added to the states are considered as uncertainties.

This chapter is organized as follows: preliminaries of CCMPC are given in Section

2.2, problem formulation is described in Section 2.3, Section 2.4 presents different

methods for CCMPC, and lastly in Section 2.5, two case studies are given.

2.2 Preliminaries

Definition 2.2.1. (Joint Chance Constraint) A joint chance constraint is defined

when several constraints have to be jointly fulfilled with probability 1− δ:

Prob(ψj(x, ξ) ≤ 0, ∀j) ≥ 1− δ (2.1)

Definition 2.2.2. (Individual Chance Constraint) An individual chance con-

straint is defined when a single constraint is required to be fulfilled with probability

1− δ:

Prob(ψ(x, ξ) ≤ 0) ≥ 1− δ (2.2)

Definition 2.2.3. (Active Constraint)

min
x
f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

The ith constraint is called active constraint at optimal solution x∗ if gi(x
∗) = 0.

Theorem 2.2.1. (Boole’s Inequality) For a countable set of events E1, E2, E3, · · ·,

the probability of the union of these events is smaller than the summation of the

probability of each individual one.

Prob

(
∪
i
Ei

)
≤
∑
i

P (Ei)
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2.3 Problem Formulation

2.3.1 System Description

The discrete state space model is described as:

xk+1 = Axk +Buk +Wωk (2.3)

with current time step k ∈ N, system state xk ∈ Rn, control input uk ∈ Rm, and

process noise ωk ∈ Rq is a stationary process which follows a certain distribution.

Model predictive control, as its name suggests, includes two parts: prediction and

control. At each time instant k, a measurement of xk is taken, based on the model,

and the prediction of state in N steps is formulated. Prediction cost is minimized

under system constraints. Then only the input calculated at first step is applied to

the system. The prediction and control will be repeated at next time instant k + 1.

The objective function is defined as:

J∗(xk) = min
uk|k,...,uk+N−1|k

Vf (xk+N |k) +
N−1∑
i=0

lk(xk+i|k, uk+i|k) (2.4)

The constraints are defined as:

lh ≤ uk+i−1|k ≤ gh, 1 ≤ i ≤ N (2.5)

Prob(ls ≤ xk+i|k ≤ gs) ≥ 1− δi, 1 ≤ i ≤ N (2.6)

where k is current time instant, k + i is future time instant, N is prediction horizon,

uk+i−1|k is future input at time k + i − 1, xk+i|k is predicted state at time k + i,

lk : Rn × Rm → R+0 is stage cost, and Vf : Rn → R+0 is terminal cost, δi is allowed

risk for violating the constraint at time instant k + i, lh and gh are lower and upper

bound of the hard constraint respectively, ls and gs are lower and upper bound of the

soft constraint respectively.

With open-loop policy, the inputs are given arbitrarily. The inputs are required to

satisfy the hard constraints. Future states are required to satisfy the soft constraints.
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After introducing MPC, the predicted states will be reformulated in a vector form

based on 2.3:

x = Gxk +Hu + Pξ

where,

G =


A
A2

...
AN

 , H =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 , P =


W 0 · · · 0
AW W · · · 0

...
...

. . .
...

AN−1W AN−2W · · · W



x =


xk+1|k
xk+2|k

...
xk+N |k

 ,u =


uk
uk+1

...
uk+N−1

 , ξ =


ωk
ωk+1

...
ωk+N−1


The constraints are written in vector form based on 2.5, 2.6:

lh ≤ u ≤ gh

Prob(ls ≤ Rix ≤ gs) ≥ 1− δi, 1 ≤ i ≤ N

where,

Ri =
[
0n×n 0n×n · · · In · · · 0n×n 0n×n

]
n×nN , lh =

lh...
lh


mN×1

,gh =

gh...
gh


mN×1

In Ri, In is n× n identity matrix in ith block.

The objective function in 2.4 is usually formulated as a quadratic form of cost:

min
u

E[xTQobjx + uTRobju]

Denote: Qqua = HTQobjH + Robj, Qlin = x(k)TGTQobjH, c = x(k)TGTQobjGx(k) +

trace(P TQobjP ). Thus we have

min
u

[uTQquau + 2Qlinu + c] (2.7)

Then the constraints can be equivalently written into:

Prob(Si(Gx(k) +Hu + Pξ) ≤ s) ≥ 1− δi, 1 ≤ i ≤ N (2.8)

lh ≤ u ≤ gh (2.9)
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Where,

Si =

[
02n×n 02n×n · · ·

[
In
−In

]
· · · 02n×n 02n×n

]
, s =

[
gs
−ls

]

In Si,

[
In
−In

]
is 2n× n matrix in ith block.

2.3.2 Chance Constrained Problem

From 2.8, we know that there are N joint chance constraints. As the terms inside

the probability equation 2.8 are in a linear form, we can further simplify it into the

following:

Prob(y0i + yiξ ≤ 0) ≥ 1− δi, ∀i (2.10)

where,

y0i = Si(Gx(k) +Hu)− s

yi = SiP

We can also write the joint chance constraint in an explicit way:

Prob(yj0i + yjiξ ≤ 0, j = 1, 2, · · · , 2n) ≥ 1− δi, ∀i (2.11)

where yj0i,y
j
i denotes jth row of y0i,yi.

yj0i = Fjy0i,y
j
i = Fjyi 1 ≤ j ≤ 2n

Fj =
[
0 0 · · · 1jth · · · 0 0

]
1×2n

Thus 2.10 is equivalent to:

Prob(yj0i + yjiξ ≤ 0, ∀j) ≥ 1− δi, ∀i (2.12)

where,

yj0i = FjSi(Gx(k) +Hu)− Fjs

yji = FjSiP

9



2.4 Chance Constrained MPC Methods

As we have introduced before, there is no closed-form solution of chance constrained

problem generally. Most methods deal with chance constraint by approximation, and

formulate it into a deterministic problem with conservatism introduced [6], [13], [7].

2.4.1 Ellipsoidal Relaxation Method

Gaussian distribution is most widely used in statistics. By estimating the mean value

and covariance of the process noise from collected data, most uncertainties in real

process can be approximated by Gaussian distribution. Assume the process noise

in 2.3 follows Gaussian distribution ξ ∼ N(µ,Σξ). In order to evaluate the chance

constraints, one needs to calculate the integral of multivariate Gaussian distribution.

However, there is no analytical form of multivariate Gaussian integral over arbitrary

region. But there does exist analytical solution over ellipsoidal region. Ellipsoidal

method can relax the problem into a tractable form.

The ellipsoidal region is defined as the set S(ξ) = {ξ|(ξ − µ)TΣ−1
ξ (ξ − µ) ≤ r2}.

The probability under the ellipsoidal region is:

Pξ =
1√

|Σξ|(2π)nξ

∫
(ξ−µ)T Σ−1

ξ (ξ−µ)≤r2

exp

(
− 1

2
(ξ − µ)TΣ−1

ξ (ξ − µ)

)
dξ (2.13)

From [21], we know that the integral is equivalent to one-dimensional integral with

χ2 distribution:

Pξ =
1

2

nξ

2 Γ(
nξ

2
)

∫ r2

0

χnξ/2−1exp(−χ/2)dχ

By letting Pξ = 1 − δi, the confidence radius r can be calculated from χ2 distri-

bution table. Thus the probability requirement in 2.10 can be replaced by requiring

(ξ − µ)TΣ−1
ξ (ξ − µ) ≤ r2. If for ∀ξ ∈ S(ξ), the inequality y0i + yiξ ≤ 0 is satisfied,

then the chance constraint 2.10 is certainly satisfied.

It is equivalent to satisfying the following condition for the above inequality to

10



hold:

sup
ξ∈S(ξ)

{y0i + yiξ} ≤ 0

To calculate the upper bound of the above equation, we need to use Cauchy-

Schwarz Inequality: |〈u,v〉|2 ≤ 〈u,u〉 · 〈v,v〉. By letting σ = ξ − µ, we have yjiσ ≤√
yjiΣξy

j
i

T ·
√
σTΣ−1

ξ σ. As we know σTΣ−1
ξ σ ≤ r2, we have yjiσ ≤ r

√
yjiΣξy

j
i

T
.

Thus, by doing the above approximations, the deterministic constraints are ob-

tained:

yj0i + yjiµ+ r

√
yjiΣξy

j
i

T ≤ 0, ∀j (2.14)

To summarize, the ellipsoidal method has two steps:

1. Calculate the equivalent radius r from χ2 distribution based on the probability

requirement 1− δi and uncertainty dimension nξ;

2. Formulate the approximate deterministic constraints 2.14

No slack variables are introduced in the formulated constraints. As decision vari-

ables u are in yj0i, the problem falls in the form of linear programming, which is

solvable in polynomial time. However, the guarantee of probability satisfaction does

not take in consideration of the structure of constraints, which will yield a rather con-

servative result. As the dimension of uncertainty ξ increases, the confidence radius r

will increase causing the conservatism to increase. In MPC problem, the dimension

of ξ is usually large due to the long prediction horizon, thus the conservatism in

ellipsoidal relaxation method is severe.

2.4.2 Boole’s Inequality and Iterative Risk Allocation

Similar to Ellipsoidal Relaxation, the Boole’s method also assumes the process noise

can be approximated by Gaussian distribution ξ ∼ N(µ,Σξ). Before introducing

Boole’s method, we first take a look at how to solve individual chance constraint with

Gaussian distribution.

11



Assume the individual risk is given as: δij. We have the following formulation of

individual chance constraint:

Prob(yj0i + yjiξ ≤ 0) ≥ 1− δij (2.15)

It is equivalent to forming it into constraint of violation restriction:

Prob(yj0i + yjiξ ≥ 0) ≤ δij (2.16)

To calculate the univariate integral in 2.16, the random variable yjiξ needs to be

normalized first. We have:

ξSTD =
yjiξ − yjiµ√

yjiσξy
j
i

T
∼ N(0, 1)

Thus equation 2.16 can be formulated as:

Prob(ξSTD ≥
−yj0i − yjiµ√

yjiσξy
j
i

T
) ≤ δij

As we know the cumulative distribution function (CDF) of the standard normal

distribution is denoted as: Φ(x).

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt

We have,

1− Φ(x) =

∫ ∞
x

ξSTDdξ ≤ δij, x =
−yj0i − yjiµ√

yjiσξy
j
i

T

As Φ(x) is a monotonically increasing function, the above inequalities can be

formulated as:

yj0i + yjiµ+ Φ−1(1− δij)
√

yjiΣξy
j
i

T ≤ 0 (2.17)

Thus, we know that for individual chance constraint 2.16 with Gaussian distribu-

tion, it is equivalent to the second-order cone constraint 2.17. This becomes rather

easy to solve if we can covert the joint chance constraint into individual chance con-

straints.
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The joint chance constraint 2.11 is converted to the form of probability of violation

here.

Prob

(
{y1

0i + y1
i ξ ≥ 0}∪ . . .∪{yj0i + yjiξ ≥ 0}∪ . . .∪{y2n

0i + y2n
i ξ ≥ 0}

)
≤ δi (2.18)

As a matter of simplification, we use Prob(yj0i + yjiξ ≥ 0, j = 1 ∪ 2 ∪ · · · ∪ 2n) to

denote the left-hand side of 2.18.

Boole’s inequality is used to bound the probability violation. So if we require the

summation of the probability of violation smaller than the required risk, then the

joint probability of violation must be satisfied.

Prob(yj0i + yjiξ ≥ 0, j = 1 ∪ 2 ∪ · · · ∪ 2n) ≤
n∑
j=1

Prob(yj0i + yjiξ ≥ 0) ≤ δi (2.19)

Equivalently, we can write:

Prob(yj0i + yjiξ ≥ 0) ≤ δij
2n∑
j=1

δij ≤ δi
(2.20)

where, δij is the individual risk.

But still, there remains one question of how to allocate the joint risk δi on each

individual chance constraint. A straight forward idea is to average the risk on all the

individual chance constraints. By averaging the risk, δij =
δi
n

, we have:

yj0i + yjiµ+ Φ−1(1− δi
n

)

√
yjiΣξy

j
i

T ≤ 0 ∀i, j (2.21)

However, we know there are some constraints which are more likely to have viola-

tions and some constraints which tend to have less or zero chance to violate. Having

equal risk for them will lead to conservative solutions. Therefor, we need better

allocation method to yield better optimization result.

The risk allocation problem can then be formulated as:

min
U,δ

E[uTQquau + 2Qlinu + c] (2.22)

13



subject to

lh ≤ u ≤ uh (2.23)

yj0i + yjiµ+ Φ−1(1− δij)
√

yjiΣξy
j
i

T ≤ 0 ∀i, j (2.24)

2n∑
j=1

δij ≤ δi ∀i (2.25)

δij ≥ 0 ∀i, j (2.26)

yj0i = FjSi(Gxk +Hu)− Fjs ∀i, j (2.27)

yji = FjSiP ∀i, j (2.28)

We can prove that the above problem is a convex optimization problem. It is

known that convex optimization is defined on minimizing convex or maximizing con-

cave functions over convex sets. The constraints 2.23, 2.25 - 2.28 are all linear con-

straints. It leaves to us to prove 2.24 is convex.

Denote fij(u) = yj0i + yjiµ and gij(δij) = Φ−1(1 − δij)

√
yjiΣξy

j
i

T
and let u∗ =

λu1 + (1 − λ)u2 and δ∗ij = λδ1
ij + (1 − λ)δ2

ij. It is easy to know that fij(u
∗) =

λfij(u1) + (1 − λ)fij(u2). Also we know that Φ−1(x) is convex function for x > 0.5.

Affine function preserves convexity. So Φ−1(1 − x) is convex function for x < 0.5.

Thus,

λ(Φ−1(1− δ1
ij)) + (1− λ)(Φ−1(1− δ2

ij)) ≥ Φ−1(1− δ∗ij)

So we have,

gij(δ
∗
ij) ≤ λgij(δ

1
ij) + (1− λ)gij(δ

2
ij)

Thus, if

fij(u1) + gij(δ
1
ij) ≤ 0, fij(u2) + gij(δ

2
ij) ≤ 0

we know,

fij(u
∗) + gij(δ

∗
ij) ≤ λ

(
fij(u1) + gij(δ

1
ij)
)

+ (1− λ)
(
fij(u2) + gij(δ

2
ij)
)
≤ 0

But the problem exists in the fact there is no analytical form of inverse cumulative

distribution function (icdf) Φ−1, which makes the problem hard to solve.

Here we introduce a sub-optimal method to solve it.
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Knowing that, by loosening active constraint (increasing the feasible region), we

have more chance to search for a better result. Iterative risk allocation (IRA) follows

the idea that, by giving more risk from inactive constraints to active constraints, a

better result will be obtained.

The method includes two parts: searching for better allocation of risk and solv-

ing the optimization problem with the allocated risk. A two-stage optimization is

formulated here:

Upper-stage Optimization (Risk Allocation):

min
δ

J∗(δ)

s.t.
2n∑
j=1

δij ≤ δ ∀i

δij ≥ 0 ∀i, j

δ ∈ {δ|∃u that satisfies 2.23, 2.24, 2.27, 2.28}

(2.29)

Lower-stage Optimization (Individual Chance Constraints):

J∗(δ) = min
u

E[uTQquau + 2Qlinu + c]

s.t. u satisfies 2.23, 2.24, 2.27, 2.28
(2.30)

The lower-stage optimization obtains the allocated risk from the upper-stage and

solves individual chance constrained problem. Based on the result calculated from

lower-stage optimization, upper-stage will continuously allocate risk from inactive

constraints to active constraints. We will illustrate further how to allocate the risk.

Let δ and δ′ both be risk assignments,R(δ) andR(δ′) be the corresponding feasible

region of u defined by 2.23, 2.24, 2.27 and 2.28. For most applicable cases, we can

assume δi ≤ 0.5, thus we have δij ≤ 0.5. If δij ≤ δ′ij ≤ 0.5, then 0 ≤ Φ−1(1 − δ′ij) ≤

Φ−1(1− δij). Noticing the constraint 2.24, we know that R(δ) ⊆ R(δ′). Therefore we

know J∗(δ) ≥ J∗(δ′). So the value of J∗ decreases or keeps the same as δ increases.

Also, another property is that, for inactive constraint 2.24 with δij, we can always

15



Table 2.1: Algorithm for Iterative Risk Allocation

Algorithm for Iterative Risk Allocation

1. Initial risk given: δ(0)ij =
δi
2n

∀i, j, n = 0;

2. Solve lower-stage optimization 2.30 with δ(n), the optimal result J∗;

3. Calculate the number of active individual chance constraint of joint chance
constraint i: Nactive,i ∀i;

4. If
∑N

i=1 Nactive,i = 0 or 2nN , then stop the iteration with U∗, δ∗, J∗;

5. Let δ′n = δn. ∀i, j, if the constraint 2.24 is inactive, tighten associated risk:

δ′(n)ij = αδ(n)ij + (1− α)

(
1− Φ(− yj0i + yjiµ√

yjiΣξy
j
i

T
)

)

6. Calculate the residual risk as: δresidual,i = δ(n)i −
∑2n

j=1 δ
′
(n)ij ∀i

7. Let δ(n+1) = δ′(n). ∀i, j, if the constraint 2.24 is active, loosen the associated
risk:

δ(n+1)ij = δ(n)ij + δresidual,i/Nactive,i ∀i, j

8. Let n = n + 1. For n > 1, check if |J∗ − Jprev ∗ | < ε, if so, stop the iteration
with U∗, δ∗, J∗. If not, continue with the 2nd step.

find another δ′ij which satisfies,

δij > δ′ij (2.31)

yj0i
∗

+ yji
∗
µ+ Φ−1(1− δij)

√
yji
∗
Σξy

j
i

∗T
< yj0i

∗
+ yji

∗
µ+ Φ−1(1− δ′ij)

√
yji
∗
Σξy

j
i

∗T
< 0 ∀i, j

(2.32)

where yj0i
∗

and yji
∗

are optimal values from u∗ given δ.

It means if we can find any δ′ij which satisfies the above inequalities, the optimal

value does not change while some extra risk δij − δ′ij has been freed. The extra risk

can be allocated to the active constraints. The IRA algorithm is listed in Table 2.1.

In Fig 2.1, it shows that the objective function value is getting smaller in IRA
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iteration by iteration.
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Figure 2.1: Objective Value after Each Iteration

In most cases, the IRA method is less conservative than the ellipsoidal relaxation

because the constraint structure is taken into consideration together with the proba-

bility satisfaction. The lower-stage optimization is second-order cone programming.

The total calculation time depends on the upper stage: the number of iterations it

takes for the objective value to converge. It depends on case to case, but in general,

the IRA method is moderate in time consumption in solving CCMPC.

For the conservatism, it mainly comes from the Boole’s inequality. We will illus-

trate first from the example with two random events E1 and E2. The probability

of the union of these two events equals: Prob(E1 ∪ E2) = Prob(E1) + Prob(E2) −

Prob(E1 ∩E2). The Boole’s inequality upper bound the joint chance constraint with

Prob(E1∪E2) ≤ Prob(E1) + Prob(E2). The conservatism comes from the part where

both E1, E2 happens, which is Prob(E1∩E2). An illustration is shown in the Fig 2.2.

However, to quantify the conservatism is hard. One reason is that it is difficult

to calculate Prob(Ei ∩ . . . ∩ Ej), the other reason is that multiple cases will increase

the difficulty in the mathematical formulation of the conservatism in probability. To

help quantify the conservatism, we assume the random events E1, . . . , Ej, . . . , E2n is

independent of each other, with the true probability of violation δij. It happens in

the case when each state has its independent source of disturbance or noise, which
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Figure 2.2: Illustration of Conservatism in Boole’s Inequality

does not affect other states.

So we have the probability of union of these events:

Prob(E1 ∪ . . . ∪ E2n) = 1− Prob(E1 ∩ . . . ∩ E2n)

= 1− Prob(E1) ∩ . . . ∩ Prob(E2n)

= 1−
2n∏
j=1

(1− δij)

Thus the probability conservatism can be evaluated as:

δi − Prob(E1 ∪ . . . ∪ E2n) =
2n∏
j=1

(1− δij)− (1− δi)

From arithmetic-geometric mean inequality, we know that:

(1− δi
2n

)
2n

≥
2n∏
j=1

(1− δij) ≥ 1− δi

The left-hand equality establishes when δij1 = δij2 , ∀j1, j2 ∈ [1, 2n]. The right-

hand equality establishes when δijk = δi, δij = 0 ifj 6= jk. So the conservatism has

the upper and lower bound as:

(1− δi
2n

)
2n

− (1− δi) ≥
2n∏
j=1

(1− δij)− (1− δi) ≥ 0

So under the independence condition and given δi, n, the conservatism is mini-

mized when the joint chance constraint can be converted into one individual chance
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constraint, which means that there is only one δijk = δi. It happens often when there

is only one active constraint on the system state. The conservatism is maximized

when each individual chance constraint shares the same risk.

Here is an evaluation in Table 2.2 on the maximum conservatism from the effect

of δi, n. It shows that the conservatism increases significantly when δi increases. The

conservatism only increases slightly when n increases. It can be seen that when δi ≤

0.2, the conservatism maintains a moderate value. When δi > 0.2, the conservatism

increases significantly.

Table 2.2: Conservatism Evaluation

2n δi Conservatism Percentage%
10 0.1 0.0044 4.38
20 0.1 0.0046 4.61
30 0.1 0.0047 4.69
40 0.1 0.0047 4.72
50 0.1 0.0047 4.75

20 0.1 0.0046 4.61
20 0.2 0.0179 8.95
20 0.3 0.0391 13.05
20 0.4 0.0676 16.90
20 0.5 0.1027 20.54

2.4.3 Robust Optimization Approximation Method

Robust counterpart optimization has been developed by a lot of researchers. In robust

counterpart optimization, the best solution is searched for in the uncertainty-induced

set [22]. It is required in robust optimization that the uncertainty-induced set covers

the whole uncertainty space. Such a condition guarantees that, if there is a solution,

it is feasible for all the possible uncertainties. In stochastic programming, however,

the uncertainty-induced set does not necessarily need to cover the whole uncertainty

space [23]. We look for the set which is large enough to satisfy the probability and

satisfy the constraints. It is illustrated in Fig 2.3.
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Figure 2.3: Uncertainty Set Relation

It is similar to the idea in ellipsoidal relaxation method. The difference is that

in ellipsoidal method, uncertainty region is built without consideration of the con-

straint structure, while in RO method, constraints are fully considered to decide on

the uncertainty set. Another difference is that ellipsoidal method is based on Gaus-

sian distribution, while RO method can be applied on arbitrary distributions. The

distribution information is used but not restricted to certain types. A selection of

uncertainty set shape is important in getting less conservative result.

The general robust optimization can be written as:

min
x
f(x, ξ)

s.t. sup
ξ∈U

g(x, ξ) ≤ 0
(2.33)

while the chance constraint problem is:

min
x
f(x, ξ)

s.t. Prob(g(x, ξ) ≤ 0) ≥ 1− δ
(2.34)

The RO approximation method focuses on how to convert the constraints in 2.34

to 2.33. We will give the details of how to derive the RO approximated constraints

in the following.

Consider the joint linear chance constraints in 2.11, while the uncertainties are

assumed to have any kind of distribution.

By using maxima operator, the joint chance constraint can be transformed into

individual chance constraints. The equivalent expression is:

Prob(max
j
{yj0i + yjiξ} ≤ 0) ≥ 1− δi ∀i (2.35)
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Or equivalently,

Prob(max
j
{yj0i + yjiξ} > 0) ≤ δi ∀i (2.36)

For further derivation, define

ηi = max
j
{yj0i + yjiξ} (2.37)

The inequality constraint can be rewritten as

Prob(ηi > 0) ≤ δi (2.38)

Then the probability function can be replaced by expectation and indicator func-

tion,

Prob{ηi > 0} = E[1(0,+∞)(ηi)] (2.39)

An upper bound in figure is applied to indicator function. It is required with

ti > 0, [u]+ takes value u if it is positive, 0 otherwise.

1(0,+∞)(ηi) ≤
1

ti
{[ηi + ti]

+} (2.40)

Figure 2.4: Upper Bound on Indicator Function

Apply the relation in the indicator to the previous constraints. We have,

Prob(max
j
{yj0i + yji ξ} > 0) ≤ 1

ti
E[(max

j
{yj0i + yji ξ}+ ti)

+] (2.41)

Next, the right-hand-side of the above equation is further approximated with the

Meilijson and Nadas inequality on the expected maximum [24]:

E[(max
j
Xj + t)+] ≤ E[(Y + t)+] +

∑
j

E[(Xj − Y )+] for any r.v. Y (2.42)
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where Xj are random variables.

Let Y = w0i + wTi ξ, where w = [w1w2 . . . wm]T , and apply the above inequality

for the expectation term in the previous inequality.

E[(max
j
{yj0i + yji ξ}+ ti)

+] ≤ E[(ω0i + ωTi ξ + ti)
+

] +
∑
j

[(yj0i + yji
T
ξ − ω0i − ωTi ξ)

+

]

(2.43)

Define u0i = ω0i + ti, ui = ωi, v
j
0i = yj0i − ω0i and vji = yji − ωi. Substitute the new

variables into equation 2.43, we have:

E[(max
j
{yj0i + yji ξ}+ ti)

+] ≤ E[(u0i + uTi ξ)
+

] +
∑
j

E[(vj0i + vji
T
ξ)

+

] (2.44)

As discussed before, the uncertainty-induced set U is introduced here. Ui is the

uncertainty set for each joint chance constraint i. The upper bound of the expectation

is described in the following:

E[(µ0 + ξTµ)
+

] ≤ (µ0 + max
ξ∈U

ξTµ)
+

(2.45)

Based on the previous inequalities 2.44 and 2.45, the following relation holds:

E[(max
j
{yj0i + yji ξ}+ ti)

+] ≤ (u0i + max
ξ∈Ui

ξTui)
+

+
∑
j

(vj0i + max
ξ∈Ui

ξTvji )
+

(2.46)

Put it back to inequality 2.35:

Prob(max
j
{yj0i + yji ξ} > 0) ≤ 1

ti
{(u0i + max

ξ∈Ui

ξTui)
+

+
∑
j

(vj0i + max
ξ∈Ui

ξTvji )
+} (2.47)

The approximation then becomes:

1

ti
{(u0i + max

ξ∈Ui

ξTui)
+

+
∑
j

(vj0i + max
ξ∈Ui

ξTvji )
+} ≤ δi (2.48)

Let

φi = (u0i + max
ξ∈Ui

ξTui)
+

γji =
∑
j

(vj0i + max
ξ∈Ui

ξTvji )
+

We have:

φi +
∑
j

γji ≤ δiti (2.49)

22



Then remove the (·)+ terms, the following equivalent formulation is derived:

φi +
∑
j

γji ≤ δiti

φi ≥ u0i + max
ξ∈Ui

ξTui

φi ≥ 0

γji ≥ vj0i + max
ξ∈Ui

ξTvji

γji ≥ 0

(2.50)

To summarize, the approximation to multiple joint chance constraints is given by:

φi +
∑
j

γji ≤ δiti

φi ≥ u0i + max
ξ∈Ui

ξTui

φi ≥ 0

γji ≥ vj0i + max
ξ∈Ui

ξTvji ∀j

γji ≥ 0 ∀j

u0i = ω0i + ti

ui = ωi

vj0i = yj0i − ω0i ∀j

vji = yji − ωi ∀j

∀i (2.51)

Let us introduce different kinds of robust uncertainty set, including box, polyhe-

dral and ellipsoidal.

For the joint chance constraint, with a box type uncertainty set defined as Ui =

{ξ||ξk| ≤ ∆i, k = 1, . . . ,m}, the corresponding robust optimization approximation
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model is equivalent to,

φi +
∑
j

γji ≤ δiti

φi ≥ u0i + ∆i

∑
k

pki

− pki ≤ uki ≤ pki ∀k

φi ≥ 0

γji ≥ vj0i + ∆i

∑
k

qj,ki ∀j

− qj,ki ≤ vj,ki ≤ qj,ki ∀j, k

γji ≥ 0 ∀j

u0i = ω0i + ti

ui = ωi

vj0i = yj0i − ω0i ∀j

vji = yji − ωi ∀j

∀i (2.52)

For polyhedral type uncertainty set defined as Ui = {
∑m

k=1 |ξ| ≤ ∆i}, the corre-
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sponding robust optimization approximation model is equivalent to,

φi +
∑
j

γji ≤ δiti

φi ≥ u0i + ∆iz0i

z0i ≥ pki ∀k

− pki ≤ uki ≤ pki ∀k

φi ≥ 0

γji ≥ vj0i + ∆iz
j
i ∀j

zji ≤ qj,ki ∀j, k

− qj,ki ≤ vj,ki ≤ qj,ki ∀j, k

γji ≥ 0 ∀j

u0i = ω0i + ti

ui = ωi

vj0i = yj0i − ω0i ∀j

vji = yji − ωi ∀j

∀i (2.53)

For ellipsoidal type uncertainty set defined as Ui = {
∑m

k=1 ξ
2
k ≤ ∆2

i }, the corre-

sponding robust optimization approximation model is equivalent to,

φi +
∑
j

γji ≤ δiti

φi ≥ u0i + ∆i

√∑
k

(uki )
2

φi ≥ 0

γji ≥ vj0i + ∆i

√∑
k

(vj,ki )
2 ∀j

γji ≥ 0 ∀j

u0i = ω0i + ti

ui = ωi

vj0i = yj0i − ω0i ∀j

vji = yji − ωi ∀j

∀i (2.54)
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Still we need to bring the question of designing the set size ∆i which satisfies the

probability satisfaction. The uncertainty set which covers the whole uncertainty area

is surely too conservative. It is given in [23] that two methods are given to evaluate

the probability guarantees. One is prior probability bound, and the other is posterior

probability bound. For prior probability bound, probability guarantee with set size

is calculated first before optimization. For posterior probability bound, probability

is calculated directly from optimization result, which can be viewed as a probability

check.

Apparently, the result from prior probability method can be conservative or even

infeasible. The posterior probability method will lead to closer result to the true

optimal, but it takes more iterations.

We choose the posterior probability for closer approximation. A straightforward

and efficient way to calculate the probability is using Monte Carlo method. For

most of the cases, with smaller set size, probability of satisfaction will decrease and

objective becomes less conservative and vice versa [23], [7]. Bisection method has

been widely used in root finding for monotonic functions. So to get closer to the

probability satisfaction, bisection method is used to find appropriate set size ∆i.

Thus, the RO method can be separated into two stages: upper stage for finding

appropriate set size and lower stage for optimization with fixed set size.

Upper stage optimization:

min
∆

N∑
i=1

|pi − (1− δi)|

s.t.

pi =pi,satisfaction(∆) ∀i

(2.55)

Lower stage optimization with fixed ∆:

min
U,all other slack variables

{UTQquaU + 2QlinU + c}

s.t.

Lh ≤U ≤ Uh

2.52 or 2.53 or 2.54 based on the uncertainty type chosen

(2.56)
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Remark 1. The lower stage optimization will be solved with fixed set size ∆.

The result of optimal U∗, J∗, tcal and probability of satisfaction pi,satisfaction(∆) will

be given to the upper stage. The upper stage tries to find the closest result to the

required probability iteration by iteration.

Remark 2. The probability of satisfaction is estimated with Monte Carlo sam-

pling technique: NM samples are drawed to give the estimation of probability of

multiple joint chance constraints:

pi,satisfaction(∆) =
1

M

M∑
s=1

1(0,∞)

(
max
j
{yj0i + yjiξ

(s)} ≤ 0

)
∀i (2.57)

Remark 3. Here are some issues which need to be dealt with in the bisection

method. These issues happen due to the specific properties of multiple joint chance

constraints in model predictive control problems. The first one is to consider the time

progress in model predictive control. There will be certain occasions when the states

are far away from the boundary so that almost all possible uncertainties will not drive

the states to violate the constraints. The probability of satisfaction will always be

larger than the required one, then set size will equal to the lower bound.

Another issue we need to consider is that for each joint chance constraint, the

solution will be affected by the set size, and the solution will affect the probability of

other joint chance constraints. When changing all the set sizes simultaneously, some

joint chance constraints can fall into the zone where their probability can never be

satisfied. One solution is after a certain times of iterations, the upper bound will be

increased if the probability is still pretty small or the lower bound will be decreased

if the probability is still pretty large. The algorithm for optimization over the set size

is listed in Table 2.3.

Remark 4. The RO method approximates the joint chance constraint with linear

constraints. Uncertainty-induced set is brought to approximate the original uncer-

tainties. In this way, the distribution can be ignored to obtain a general method

for all kinds of distributions. However, due to the loss of the distribution informa-

tion, the uncertainty set shape becomes a key in deciding the performance. We give

the derivation for three kinds of uncertainty set here: box, ellipsoidal and polyhe-
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Table 2.3: Algorithm for Optimization over Set Size

Algorithm for Optimization over Set Size

1. Solve the lower stage problem with ∆i = ∆LBini
, ∀i

If pi,satisfaction(∆) ≥ 1− δi, ∀i,
Then ∆i = ∆LBini

, ∀i, Return

End

2. ∆i = (∆LBini
+ ∆UBini

)/2, ∀i, solve the lower stage optimization with ∆i, ∀i.

3. If last calculation is infeasible,

Then set pi = 1, ∀i

4. If pi < 1− δi − ptol or pi > 1− δi + ptol ∀i
If pi < 1− δi − ptol, Then ∆LB(i) = ∆i

If pi > 1− δi + ptol, Then ∆UB(i) = ∆i

∆i = 0.5(∆LB(i) + ∆UB(i))

End

5. If iteration = ITERtol

If pi < 1− δi − ptol, Then ∆UB(i) = ∆UBini
∀i

If pi > 1− δi + ptol, Then ∆LB(i) = ∆LBini
∀i

End

6. Solve the lower stage optimization with ∆

7. CONDITION i: If pi ∈ [1 − δi − ptol, 1 − δi + ptol] or pi ≥ 1 − δi + ptol with
∆i ∈ [∆LBini

,∆LBini
+ ∆tol], then CONDITION i is satisfied.

If all CONDITION i is satisfied, then CONDITION is satisfied.

If CONDITION is not satisfied, then come back to step 3. If satisfied, then
return.
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dral. The choice really depends on the fit to the distribution shape. Thus they can

have drawbacks when dealing with complicated distributions, like Gaussian mixture

models.

2.4.4 Comparison Case

To test and compare different methods, control is applied to the system defined by:

xk+1 = Axk +Buk +Wωk

A =

 1.2 0 0
0.17 0.87 0
−0.13 0.87 0

 ,B =

 0.17
7.2× 10−3

−0.1628

W =

 0.01 0
0 0.01

−0.01 0.01


The constraints are only soft constraints:

Prob(Ls ≤ xk+i ≤ Us) ≥ 1− δ i = 1, 2, . . . , N

Ls =

 −0.3
−0.2
−0.81

 ,Us =

1.01
1.10
0.42


The other parameters are: N = 10, δ = 0.025,∆δtol = 0.001. The system noise follows

standard Gaussian distribution: ωk ∼ N(0, I).

The initial state and reference state are respectively:

xini =

1
1
0

 , xref =

0
0
0


For each time step, the objective function is formulated as:

OBJ = min
ui

N∑
i=1

(xTi Qxi + uiRui)

s.t

Prob(Ls ≤ xi ≤ Us) ≥ 1− δ i = 1, 2, . . . , N

Then equivalently, the optimization problem can be formulated as in 2.7 and 2.8.

A more general form of chance constraint is then stated as 2.10. The problem is then

solved through 2.51 with RO method.

The result is shown in Fig 2.5.
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Figure 2.5: Comparison of Different Methods

The system evolves with the realization which is the mean value of the distur-

bances. From Fig 2.5a we can see that x3 keeps a safe distance from the boundary

in order not to violate the constraint in probability sense. The states eventually

converge to the steady states and the objective value decreases to zero. For the

probability of satisfaction, ellipsoidal method does not make it close enough to the

required probability due to its inherit conservatism. IRA and RO method have a

continuous transition from required probability to 100%.

The performance in objective value is compared by calculating difference between

each method, which are shown in the Fig 2.6a, 2.6b, 2.6c. It is obvious to see that

the ellipsoidal method remains the most conservative one. IRA and RO are close in
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Figure 2.6: Detailed Comparison of Different Methods

performance while IRA is better in time period [4, 13] and RO is better in time [1, 3]

and [14, 36]. When considering the calculation time, ellipsoidal method takes the least

time as expected, IRA is modest and RO takes the longest time. RO does not show

significant advantages over IRA when dealing with Gaussian noise. However, when

considering arbitrary distribution, RO is a good choice as a distribution-free method.

2.4.5 Closed-loop MPC

The performance in objective function can be further improved by including closed-

loop structure. We need to bring in game theory for further explanation. Suppose we

have two individuals to attend one game, one needs to predict the other’s movement
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in the future and prepares for the worst circumstance. It is similar situation in

the open-loop MPC. The controlled input is calculated based on all possible future

disturbances. The “controller” is the player who does not know any plan of the

other player called “disturbance”. However, closed-loop MPC comes from the idea

that after player “disturbance” plays in the future, the player “controller” employs

control policy u = u(x, ω) based on all the available knowledge of the “disturbance”

movement [25]. Thus the negative effect from disturbance is greatly reduced.

To restrict the control policies to a finite-dimensional subspace, affine disturbance

feedback is chosen. Define u = Mξ + h for the closed-loop control, we have:

ut+k|t =
k−1∑
j=0

M(t+k,t+j)|tωt+j|t + ht+j|t

M =


0 0 0 · · · 0

M(t+1,t)|t 0 0 · · · 0
M(t+2,t)|t M(t+2,t+1)|t 0 · · · 0

...
...

...
. . .

...
M(t+N−1,t)|t M(t+N−1,t+1)|t M(t+N−1,t+2)|t · · · 0


(2.58)

The objective function is formulated as,

min
u

[hTQquah + 2Qlinh + c] (2.59)

where,

Qqua = HTQobjH +Robj, Qlin = xk
TGTQobjH

c = xk
TGTQobjGxk

The chance constraints 2.8 are reformulated as,

Prob{Si(Gxk +Hh+ (P +HM)ξ) ≤ s} ≥ 1− δi, 1 ≤ i ≤ N (2.60)

Equivalently, we have,

Prob(yj0i + yjiξ ≥ 0) ≤ δij, ∀i, j (2.61)

yj0i = Fj(Si(Gxk +Hh)− s), yji = FjSi(P +HM) ∀i, j (2.62)
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Thus, for the ellipsoidal method, the chance constraints are formulated as:

yj0i + yjiµ+ r

√
yjiΣξy

j
i

T ≤ 0, ∀i, j (2.63)

yj0i = Fj(Si(Gxk +Hh)− s), yji = FjSi(P +HM) ∀i, j (2.64)

Compared to the open-loop case, the deterministic part becomes a second-oder

cone constraint. It can be solved with great efficiency by interior point methods.

For IRA method, the chance constraints are formulated as:

yj0i + yjiµ+ Φ−1(1− δij)
√

yjiΣξy
j
i

T ≤ 0 ∀i, j (2.65)

yj0i = Fj(Si(Gxk +Hh)− s), yji = FjSi(P +HM) ∀i, j (2.66)

The diverging property of IRA method is preserved while the difference is the

same with ellipsoidal method: linear constraints are changed into second-oder cone

constraints.

For RO method, the deterministic constraints 2.52 2.53 2.54 are the same except

for the definition of yj0i,y
j
i . The difference is the same to the above two methods.

We can compare the improvement for a simple case study with RO method. The

previous example is still used here.

From Fig 2.7, we can tell that the closed-loop with disturbance affine feedback

behaves better than the open-loop in objective value. The linear constraints are now

second-oder cone constraints with more slack variables included. The total computa-

tional effort required by second-oder cone constraints is greater than linear program-

ming problems.

2.5 Case Study

2.5.1 Hydrodesulfuration Process

In Petroleum refineries the hydrodesulfuration process is used to remove sulfur from

the hydrocarbons to fulfill environmental policies. To perform the desulfuration reac-

tion, hydrogen is put in contact with hydrocarbon in fixed bed reactors with a specific

catalyst.
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Figure 2.7: Comparison of Open-loop and Closed-loop Using RO Method

Fig 2.8 shows a hydrodesulfuration process. Several key variables are explained

here: F1, F3, F5, F10 are feed-in molar flow rate of stream 1,3,5 and 10, stream 2 is shut

down due to high operation cost. F1, F10 are the manipulated variables. X1, X5 are

the molar fraction of hydrogen in stream 1 and 5. ξ2 is the molar fraction of hydrogen

in stream 3, which is a random variable following Gaussian distribution N(µ2, σ
2
2).

FH2
X is the hydrogen consumption rate inside the reactors, XH2 is the hydrogen molar

fraction correspondingly. X5, XH2 are the controlled variables. FHC is the flow rate

of hydrocarbon to be desulfurized. ξ1 is the hydrogen consumption rate and follows

Gaussian distribution N(µ1, σ
2
1). The parameters of the process are shown in Table

2.4.
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Figure 2.8: Hydrodesulfuration Process

We have the following equations describing model of the process:

F1X1 + F3ξ2 = F5X5

F1 + F3 = F5

τ2
dXH2

dt
= F5X5 − FH2

X − F10XH2

τ1
dFH2

X

dt
+ FH2

X = FHCξ1

where,

τ2 =
V P

ZRT
(2.67)

The constraints on manipulated variables:

FL
1 ≤ F1 ≤ FU

1

The constraints on controlled variables:

Prob(X5 ≥ XL
5 , XH2 ≥ XL

H2) ≥ α

The system model is linearized around the steady states FH2
Xss, X5ss and steady
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Table 2.4: Parameters in Hydro-desulfuration Process

Parameter Value Unit Parameter Value Unit

X1 0.991 1 µ1 12.5 kmol/m3

τ1 0.3 h µ2 0.85 1

τ2 132.9041 h σ1 0.4 kmol/m3

FL
1

0 kmol/h σ2 0.013 1

FU
1 1400 kmol/h XL

5 0.9 1

FHC 102 m3/h XL
H2 0.7 1

inputs F1si, F10si, ξ1si, ξ2si, then discretized:

xd(k + 1) = Adxd(k) +Bdud(k) +Wdξd(k)

yd(k) = Cxd(k) +Dud(k) + Pξd(k)

xd(k) =

[
∆FH2

X (k)
∆XH2(k)

]
, ud(k) =

[
∆F1(k)
∆F10(k)

]
, ξd(k) =

[
∆ξ1(k)
∆ξ2(k)

]
, yd(k) = ∆X5(k)

where the values of the parameters are in the Appendix. ∆ represents the difference

between the real value and the steady states.

The constraints are then formulated as,

FL
1 − F1si ≤ ∆F1(k) ≤ FH

1 − F1si

Prob(∆X5 ≥ XL
5 −X5ss,∆XH2 ≥ XL

H2 −XH2ss) ≥ α

The objective function in MPC problem is formulated as,

OBJ = min
ud(i)

N∑
i=1

(
xd(i)

TQxd(i) + ud(i)
TRud(i)

)
The solution procedures follow similar steps as in comparison case study.

In Fig 2.9, the system states and output are xd1(∆FH2
X ): hydrogen consumption

rate inside the reactor, xd2(∆XH2): hydrogen composition in the reactor, yd(∆X5):

hydrogen composition inside stream 5. The constraints are plotted as dashed lines.

From the comparison case we can see that nominal MPC cannot deal with the

uncertainties in feasibility. The violation on constraints cannot be regulated through
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Figure 2.9: Hydrodesulfuration Operation in Different Method

Table 2.5: Comparison of Probability Violation in Hydrodesulfuration Process

Different Methods in Probability Comparisons
RO Method Nominal MPC

Total Violation
Percentage %

10 49

X2 Violation
Percentage %

0 4

Y Violation
Percentage %

10 46

the method of nominal MPC. However, RO method shows significant improvement

over nominal MPC. The violation of the constraints is controlled at 10%.

2.5.2 Continuous Stirred-tank Reactor Process

The second case study is the continuous stirred-tank reactor (CSTR) process:

Consider a well-mixed, non-isothermal continuous stirred tank reactor in Fig 2.10

where three parallel irreversible elementary exothermic reactions take place of the

form A→ B, A→ C, A→ D. B is the desired product and C, D are by-products.

The feed to the reactor consists of pure A at flow rate F , temperature TA0 and
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molar concentration CA0. Due to the non-isothermal nature of the reactor, a jacket

is used to remove/provide heat Q to the reactor. The product temperature and

concentration are desired to be controlled. The parameters of CSTR are shown in

Table 2.6.

Figure 2.10: CSTR Illustration

The system model is described as the following,

dT

dt
=

F

Vr

(TA0 − T )−
3∑

i=1

ΔHi

σcp
ki0e

−Ei

RT CA +
Q

σcpVr

dCA

dt
=

F

Vr

(CA0 − CA)−
3∑

i=1

ki0e

−Ei

RT CA

The system is linearized at unsteady operation states and discretized:

xd(k + 1) = Adxd(k) + Bdud(k)

xm(k) = xd(k) +Wdωd(k)

xd(k) =

[
ΔT (k)
ΔCA(k)

]
, ud(k) =

[
ΔCA0(k)
ΔQ(k)

]
where xm(k) is the measured states at time k, Wdωd(k) is the measurement noise.

Wd =

[
0.1 0
0 0.001

]
, ω ∼ N(0, I).
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Table 2.6: Parameters in CSTR Process

Parameter Value Unit Parameter Value Unit

F 4.998 m3/h k10 3× 106 h−1

Vr 1 m3 k20 3× 105 h−1

R 8.314 KJ/kmol ·K k30 3× 105 h−1

TA0 300 K E1 5× 104 KJ/kmol

CA0 4 kmol/m3 E2 7.53× 104 KJ/kmol

∆H1 −5.0× 104 KJ/kmol E3 7.53× 104 KJ/kmol

∆H2 −5.2× 104 KJ/kmol σ 1000 kg/m3

∆H3 −5.4× 104 KJ/kmol cp 0.231 KJ/kg ·K

The constraints are defined as,

umin ≤ ud(k) ≤ umax ∀k

Prob(xmin ≤ xd(k) ≤ xmax) ≥ α ∀k ∈ steady state region

where α is the probability satisfaction. The chance constraints are imposed on the

system after states come into the “steady states region”: [xmin, xmax].
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Figure 2.11: State Trajectory with Different Methods

The solution procedures follow similar steps as in comparison case study.
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Table 2.7: Comparison of Probability Violation in CSTR

Different Methods in Probability Comparisons
RO method Nominal MPC

Total violation
percentage %

5.49 37.36

Temperature
violation

percentage %
5.49 37.36

Concentration
violation

percentage %
0 0

In the Fig 2.11a, 2.11b, blue line represents the system real response, red line

represents prediction of the states. As the system itself is nonlinear, the prediction

based on linear system is calculated to approximate the real states. In Fig 2.11a,

it also shows the probability satisfaction of the predicted states. The probability of

states satisfies the requirement of 90%. The average violation in RO method is 5.49%

while in nominal MPC violations raised by the uncertainty is as high as 37.36%. The

RO method takes in consideration of uncertainty and guarantees the violation to be

lower than the required amount.

2.6 Conclusions

In this chapter, we proposed RO method to solve chance constrained MPC problem

with additive system noises. A joint chance constrained problem under MPC frame-

work is formulated at first. Then ellipsoidal relaxation method and iterative risk

allocation are introduced but both show their drawbacks in sub-optimality and re-

strictions of uncertainty distributions. RO method is proposed as a distribution-free

method with results close to optimal solutions. A closed-loop structure can be fur-

ther included to improve the optimization performance. RO based chance constrained

MPC is also applied to two simulation case studies: hydrodesulfuration process and

CSTR process. Both case studies show a great reduction in constraint violation com-

pared to traditional MPC.
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Chapter 3

Chance Constrained Model
Predictive Control in Dealing with
Parameter Uncertainties

3.1 Introduction

The previous chapter deals with feasibility and optimality issues of system with addi-

tive noise. However, as all physical systems are inherently nonlinear and time-varying,

not all of them can be linearized with fixed parameters. Linear Parameter Varying

(LPV) systems are concerned with linear dynamics with exogenous non-stationary

parameters.

xk+1 = A(θk)xk +B(θk)uk +Wωk (3.1)

One problem that rises in the LPV system is the computational complexity. Com-

putational complexity grows exponentially with the prediction horizon N : given an

initial polyhedral uncertainty set with s vertices, the N step prediction will lie in a

polytope with sN vertices. Facing the problem of computational complexity, the pre-

dictive control of LPV system is restricted to systems with small prediction horizon.

Another issue with the LPV system is the multiplicative uncertainty. Consider the
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system with only parameter uncertainty:

xk+1|k = A(ωk)xk +B(ωk)uk

xk+2|k = A(ωk+1)A(ωk)xk + A(ωk+1)B(ωk)uk +B(ωk+1)uk+1

. . .

With further predictions in time, the uncertainty terms are multiplied by each

other. It is difficult to preserve the linear form of chance constraints on which we can

implement the methods we have introduced before.

Tube MPC is first introduced to solve robust MPC problem for additive noise

with reduced computational complexity. The constraint tightening approach [26],

[27], [28] or the tube MPC method [29] is done through tightening constraints on

nominal states with reduced calculation. The stochastic tube containing the noise is

constructed by propagating uncertainty set in the system dynamics. The constraints

on the nominal states are then tightened by excluding the stochastic tube. As the

prediction horizon increases, the stochastic tube will expand drastically, leading to

the shrinking of the nominal state constraint set. With a large prediction horizon,

it is hard to guarantee the feasibility of this method, which will also rise instability

problems.

Dual mode MPC is introduced in [26], [30] to provide a guarantee for recursive

feasibility and stability. State feedback parameter K is designed off-line for uncon-

strained system to guarantee stability: after the system comes into the terminal set,

the system can be steered into the robust invariant set autonomously. Terminal con-

straint is applied in the prediction horizon to guarantee recursive feasibility. Notice

that with additive noise, the system cannot be kept at the steady states, a robust

invariant set is defined of which the states will never come out when purely driven by

bounded disturbance.

With the success of tube based method in robust MPC, stochastic MPC becomes

more attractive to be studied as the distribution information is being used in stochas-

tic MPC, which helps to achieve a better performance. In [10], Mark Cannon proposes

one way of generating probabilistic tubes with ellipsoidal shape in LTI system with
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additive noise, using fixed cross-section and variable scaling. The scaling is varied to

guarantee the probability satisfaction. Ellipsoidal shape can be replaced by polyhe-

dral shape to approximate more general distributions. However, as the probabilistic

constraints are calculated to give the scaling before solving optimization problem, it

is easy to get conservative results. [31] proposes a related method for a more general

case when both additive and multiplicative uncertainty are included. The system is

divided into nominal dynamics and error dynamics, and the error is divided into two

parts: one with simple additive random variables, the other part which consists of

both additive and multiplicative random variables. The additive random variables

are required to satisfy the chance constraints similar to the method in [10], while the

other is constructed with robust tubes with bounding facets of fixed orientation. The

conservatism is reduced by optimizing tube size and facet number of the tubes. How-

ever, the conservatism introduced by scaling before solving the optimization problem

cannot be avoided. [32] proposes a different method in dealing with uncertainties.

Instead of excluding uncertainty tube from constraints, the uncertainty tube is added

to the nominal prediction in solving the optimization problem. The tube size is

treated as another optimized variable, reducing the conservatism in calculating scal-

ing at first. Nested tube methods are introduced in [16], where chance constraints

on predicted states are relaxed to constraints on the cross sections of the tubes and

probabilistic transitions between the tubes. By satisfying the constraints recursively,

dealing with multiplicative uncertainties is avoided. But it is computationally de-

manding to invoke constraints on all the nested tubes. In [33], scenario approach is

proposed in dealing with arbitrary distribution in LPV system. However, scenario

approach suffers from having large number of samples and high conservativeness. In

[34], both hard constraint and chance constraint are guaranteed by having states in

the tubes and the tubes satisfying the constraints. However, computation time is

severely increased by using mixed integer programming to solve chance constraints.

In [35], it follows the same idea of constructing a tube (an invariant set under control).

The difference is that explicit MPC is in use in [35] with all the calculations off-line.

A robust optimization approximation method based on polynomial tubes is pro-
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posed in this chapter. Feasibility is guaranteed by restraining the states in the tubes

and the tubes satisfying the constraints. The linear form is preserved using vertices

of polyhedral tubes. Robust optimization approximation is implemented on the re-

laxed form of linear chance constraints, with the guarantee that the method can deal

with arbitrary distribution. Recursive feasibility and stability is also guaranteed by

terminal constraint and feedback policy.

3.2 Notation and Preliminary

3.2.1 Polyhedral Sets

The state tube cross-sections are defined as polyhedral sets. Compared to other

convex sets (like ellipsoidal sets), the polyhedral sets have the advantage of approxi-

mating different shapes of convex sets and keeping linearity to most of the operations.

The difficulty is that the complexity of the polyhedral sets is not fixed by the space

dimension [34].

Definition 3.2.1. (Convex Polyhedral Set)

P(V, g) = {x|V x ≤ g} = {x|Vix ≤ gi, i = 1, 2, . . . , s} (3.2)

where Vi denotes the i-th row of the s× n matrix V and gi the i-th component of the

s× 1 vector g.

A polyhedral set includes the origin as an interior point if and only if g > 0. A

polyhedral set including the origin can be always represented as:

P(V,1) = P(V ) = {x|V x ≤ 1} = {x|Vix ≤ 1, i = 1, 2, . . . , s} (3.3)

where 1 =
[
1 1 . . . 1

]T
represents the column vector filled with one.

The above definition can be achieved from 3.2 by dividing both sides of the in-

equality by gi > 0.

Its dual form is,

V(X) = {x|x = Xz =
s∑
i=1

Xizi, 1T z = 1, z ≥ 0} (3.4)
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where Xi is the i-th column of the n×s matrix X, and zi is the i-th component of the

s × 1 vector z. The column vector Xi can be regarded as vertices of the polyhedral

set.

Definition 3.2.2. (Polytope) A bounded polyhedral set is called polytope. We give

the definition of 0-symmetric convex polytope as:

P(V ) = {x| − 1 ≤ V x ≤ 1} = {x| − 1 ≤ Vix ≤ 1, i = 1, 2, . . . , s} (3.5)

3.2.2 Polyhedral Invariant Set and Contractive Set

Definition 3.2.3. (Positive Invariant Set) Given the system xk+1 = Φ(ω)xk, a

set X ⊂ Rn is said to be positive invariant if for every value of x(t) ∈ X such that

x(t+ 1) ∈ X .

Definition 3.2.4. (Pre-image Set) For a stable system xk+1 = Φ(ω)xk, consider

a time instant k and the set of all states at the previous time k − 1 for which, the

condition x(k) ∈ X is satisfied for all ω ∈ W . This set, named pre-image set, is

PreAS(X ) = {x|Φ(ω)x ∈ X , ∀ω ∈ W} (3.6)

Definition 3.2.5. (λ-contractive Set) For system xk+1 = Φ(ω)xk, if the following

condition holds:

ΨS(Φ(ω)x) ≤ λ, ∀ω ∈ W, ∀x ∈ S (3.7)

where ΦS(x) is the Minkowski function of S, for some 0 ≤ λ < 1, the set S is called

λ-contractive.

Definition 3.2.6. (Minkowski Function) Given a convex and compact set S, its

Minkowski function is

ΨS(x) = inf{λ ≥ 0 : x ∈ λS} (3.8)

Definition 3.2.7. (λ-contractive Pre-image Set)

Preλ-contractiveAS (X ) = {x|ΨX{Φ(ω)x} ≤ λ, ∀ω ∈ W, ∀x ∈ X} (3.9)
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Definition 3.2.8. (Spectral Radius) Given a square matrix A its spectral radius

is defined as the largest modulus of its eigenvalues Σ(A) = max{|λ : λ ∈ eig(A)|}.

Definition 3.2.9. (Joint Spectral Radius) For a set of matrices the joint spectral

radius of the set is defined as the supreme of the spectral radius of all possible products

of the generating matrices.

With the definitions given, we can construct the positive invariant set.

First, set notations are given here,

X−1 = PreAS(X ) ∩ X (3.10)

X−k−1 = PreAS(X−k) ∩ X−k (3.11)

X−∞ = lim
k→∞
X−k (3.12)

For system xk+1 = Φ(ω)xk, X is the convex feasible set that requires the states

to satisfy. The condition that there exists a convex set Xini such that for any x(0) ∈

Xini, x(k) ∈ X for all k ≥ 0 is that X−∞ is nonempty. Moreover, any such initial set

which satisfies the condition must be a subset of X−∞, namely:

Xini ∈ X−∞

where, X−∞ defines the polyhedral positive invariant set:

X−∞ = {x|V x ≤ 1} (3.13)

Furthermore, we want contractive property of the polyhedral set. We have,

X−1 = Preλ-contractive
AS (X ) ∩ X (3.14)

X−k−1 = Preλ-contractive
AS (X−k) ∩ X−k (3.15)

X−∞ = lim
k→∞
X−k (3.16)

If, for some k,

X−k = X−k−1 (3.17)

Then,

X−∞ = X−k (3.18)
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Table 3.1: Algorithm for Calculation of Contractive Set

Algorithm for calculation of λ-contractive set

1. Use the conservative feasible region as the initial polyhedral set:

X0 = {x|F (0) ≤ g(0)} = X = {x|GKx ≤ b, Fsx ≤ bs}, k = 0

2. Compute the λ-contractive pre-image set:

Preλ-contractive
AS (X ) = {x|F (k)Φix ≤ λg(k), ∀i}

3. Compute the polyhedral set X−k−1 = Preλ-contractive
AS (X−k)∩X−k and let matrices

F k+1 and gk+1 be those associated to the constraints representing set X−k−1,
say X−k−1 = {x|F (k+1)x ≤ g(k+1)}

4. Check if X−k−1 = X−k, if so, we can get P(V ) = X−k−1, else, let k = k+ 1 and
come back to step 2.

Thus, we have the λ-contractive polyhedral set as:

P(V ) = X−∞ (3.19)

The algorithm of calculation of λ-contractive set is given in Table 3.1.

Proposition 3.2.1. Let Pi = {x|Fix ≤ bi}, then P1 ⊆ P2 if and only if there exists

an element-wise nonnegative matrix H ≥ 0 satisfying:

HF1 = F2, Hb1 ≤ b2 (3.20)

3.3 Problem Formulation

As this chapter is concerned with parameter uncertainty, we only include multiplica-

tive uncertainties in the system matrices.

xk+1 = A(ωk)xk +B(ωk)uk (3.21)
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The prediction of states in the control horizon is defined as,

xk+i|k = A(ωk+i−1)xk+i−1|k +B(ωk+i−1)uk+i−1|k (3.22)

where, xk|k = xk is the current state measured.

The constraints are imposed on the predicted states and inputs,{
Guk+i−1|k ≤ b, ∀i > 0

Prob(Fsxk+i|k ≤ bs) ≥ 1− δi, ∀i > 0
(3.23)

As origin is treated as the steady state, we can further assume b > 0, bs > 0. The

chance constraints on the states can be converted into hard constraints by requiring

δi = 0. The probability distribution of (A,B) has finite support contained within a

polytope with vertices (A(j), B(j)) for j = 1, . . . , r.

(A,B) ∈ Conv(A(j), B(j)) (3.24)

where Conv stands for convex hull.

It can be written equivalently as:

A = A0 +
r∑
j=1

ωj∆Aj, B = B0 +
r∑
j=1

ωj∆Bj (3.25)

where ωj ∈ [0, 1] follows a certain distribution.

The MPC cost is expressed as,

Jk =
∞∑
i=0

Ek(xTk+i|kQxk+i|k + uTk+i|kRuk+i|k) (3.26)

We have already introduced in last chapter that the closed-loop control policy

uk = f(xk) has a better performance than arbitrary control input. However, a general

control policy has a computational load exponential to the prediction horizon. State-

affine feedback or disturbance-affine feedback greatly reduces the computation and

shows good performance. We employ a dual mode strategy here [34]:{
uk+i|k = Kxk+i|k + ck+i|k, 1 ≤ i ≤ N − 1

uk+i|k = Kxk+i|k, i ≥ N
(3.27)

48



The control policy follows an state-affine feedback. u = Kx is designed to be

stabilizing and optimal for the objective function 3.26 in the absence of constraints.

K is calculated off-line and will be explained in details next section. Perturbations

ck+i|k is calculated on-line to optimize the control performance with the constraints

present.

So the chance constraint problem in LPV system is formulated as:

min Jk

s.t.

xk+1 = A(ωk)xk +B(ωk)uk{
uk+i|k = Kxk+i|k + ck+i|k, 1 ≤ i ≤ N

uk+i|k = Kxk+i|k, i > N

Guk+i−1|k ≤ b, ∀i ≥ 1

Prob(Fsxk+i|k ≤ bs) ≥ 1− δi, ∀i ≥ 1

(3.28)

3.4 State Tube MPC

The offline calculation is started with feedback control policy:

uk+i = Kxk+i + ck+i, 0 ≤ i ≤ N − 1 (3.29)

where, K is calculated based on finding Quadratic Lyapunov function.

Consider the system now given by:

xk+1 = Φxk +Buk (3.30)

where, Φ = A+BK, uk = ck.

3.4.1 Stability of Unconstrained LPV System

The stability guarantee of unconstrained LPV system is given here. Consider uk =

Kxk as the feedback control law for xk+1 = A(ωk)xk+B(ωk)uk. It is known from Lay-

punov stability theorem for discrete system that the following condition can guarantee
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stability:

(A+BK)TP (A+BK)− P ≺ 0, (3.31)

P � 0 (3.32)

For the system associated with parameter uncertainty: Φ = Φ0+
∑r

j=1 ωj∆Φj, Φ0 =

A0+B0K, ∆Φj = ∆Aj+∆BjK. For any vector x, the set of all vectors y(ω) = Φ(ω)x

is a polytope and, since the norm is a convex function, the expression√
xTΦ(ω)TPΦ(ω)x = ||Φ(ω)x||P (3.33)

is thought of as a function of ω, and reaches the maximum on one of the vertices. [9]

So we have a equivalent condition by requirement on the polyhedral vertices of

the uncertainty set:

(Aj +BjK)TP (Aj +BjK)− P ≺ 0, j = 1, 2, . . . , r (3.34)

P � 0 (3.35)

By pre and post multiplying both sides by Q = P−1 and by defining KQ = R, we

have:

(QATj +RTBT
j )Q−1(AjQ+BjR)−Q ≺ 0, j = 1, 2, . . . , r (3.36)

Q � 0 (3.37)

It is known to be equivalent to the set of linear matrix inequalities (LMIs), [10][
Q QATj +RTBT

j

AjQ+BjR Q

]
� 0, j = 1, 2, . . . , r (3.38)

Q � 0 (3.39)

A feasible solution of Q can be calculated by semidefinite programming based on

some minimization criteria, like quadratic objective. The feedback parameter is thus

obtained: K = RQ−1.
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3.4.2 State Tube

The state tube cross-sections are constructed as the polyhedral set as:

Tk = {x|V x ≤ αk1}, ∀k ≥ 0 (3.40)

The tube size is parameterized by the variable αk. Parameter V is calculated

off-line to guarantee recursive feasibility, with a design factor λ.

V is chosen such that the polyhedral set {x|V x ≤ 1} defines a λ-contractive set

for system xk+1 = Φ(ω)xk, with λ < 1. It is equivalent to having positive invariant

set {x|V x ≤ 1} for system xk+1 =
Φ(ω)

λ
xk.

3.4.3 On-line Optimization

Here the constraints on the states are relaxed by requiring two conditions:

1. states belong to the tubes

2. constraints restrictions on the tubes

The state tubes have fixed structure defined from the polyhedral set. Set size is

being optimized on-line to guarantee the two required conditions.

The state tube will be used to refer to the sequence of sets {Tk}. The MPC

controller, at each time instant, should generate a state tube {Tk} and a sequence of

inputs {ck} such that, for all k ≥ 0:

Tk ⊆ {xk|Guk ≤ b} ∀k (3.41)

Tk ⊆ {xk|Prob(Fsxk+1 ≤ bs) ≥ p} ∀k (3.42)

Tk ⊆ {xk|Axk +Buk ∈ Tk+1}, ∀k (3.43)

x0 ∈ T0 (3.44)

Inequality 3.41 is the hard constraint imposed on the tube in the control horizon,

3.42 defines the chance constraint imposed on the tube, and 3.43 requires the states

to be confined in the tubes recursively (replaced by xk ∈ Tk), 3.44 requires the initial

states to be inside the initial tube.
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The inequality constraints 3.41, 3.42 and 3.43 are equivalent to 3.45, 3.46 and

3.47: {
Tk ⊆ {xk|GKxk +Gck ≤ b}, 0 ≤ k ≤ N − 1

Tk ⊆ {xk|GKxk ≤ b}, k ≥ N
(3.45)

{
Tk ⊆ {xk|Prob(FsΦ(ω)xk + FsBck ≤ bs) ≥ p}, 0 ≤ k ≤ N − 1

Tk ⊆ {xk|Prob(FsΦ(ω)xk ≤ bs) ≥ p}, k ≥ N
(3.46)

{
Tk ⊆ {xk|Φ(ω)xk +Bck ∈ Tk+1}, 0 ≤ k ≤ N − 1

Tk ⊆ {xk|Φ(ω)xk ∈ Tk+1}, k ≥ N
(3.47)

Tube Constraints

With Proposition 3.2.1, we can change the constraints into solvable formats.

First, we denote Φ(j) = Φ0+∆Φj. Then we would have, Φ =
∑r

j=1 ωjΦ
(j),

∑r
j=1 ωj =

1, ωj ≥ 0,∀j.

For the invariant set constraints 3.47, we can get the recursive constraints:{
V xk ≤ αk1

V (Φxk +Bck) ≤ αk+11
0 ≤ k ≤ N − 1 (3.48)

{
V xk ≤ αk1

V Φxk ≤ αk+11
k ≥ N (3.49)

From Φ =
∑r

j=1 ωjΦj, we know V Φxk =
∑r

j=1 ωjV Φ(j)xk. As 0 ≤ ωj < 1, we can

obtain maxV Φxk = maxrj=1 V Φ(j)xk.

So we can formulate the recursive constraints 3.48, 3.49 as:{
V xk ≤ αk1

V Φ(j)xk + V Bck ≤ αk+11
0 ≤ k ≤ N − 1, ∀j (3.50)

{
V xk ≤ αk1

V Φ(j)xk ≤ αk+11
k ≥ N, ∀j (3.51)

Let nonnegative matrix H(j) satisfy the condition H(j)V = V Φ(j), we can have

the inequality constraint formulated as:{
V xk ≤ αk1

H(j)V xk + V Bck ≤ αk+11
0 ≤ k ≤ N − 1, ∀j (3.52)
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{
V xk ≤ αk1

H(j)V xk ≤ αk+11
k ≥ N, ∀j (3.53)

From Proposition 3.2.1, we know that with the condition H(j)V = V Φ(j) and

V xk ≤ αk1, if H(j)αk1 + V B(j)ck ≤ αk+11 is satisfied, the inequality H(j)V xk +

V Bck ≤ αk1 will also be satisfied. So the states requirement can be relaxed into the

initial condition and recursive constraint:
V x0 ≤ α01

H(j)αk1 + V B(j)ck ≤ αk+11, 0 ≤ k ≤ N − 1,∀j

H(j)αk1 ≤ αk+11, k ≥ N, ∀j

(3.54)

where,

H(j)V = V φ(j) (3.55)

We will give here one choice of selecting H(j) off-line:

H(j) = arg min
H(j)
{‖ H(j) ‖1|H

(j)V = V Φ(j), H(j) ≥ 0, ∀j} (3.56)

where one-norm is defined as ‖ A ‖1 = max1≤i≤m(
∑n

j=1 |Aij|).

The purpose of minimizing the one-norm is to relax the constraints applied on

line. The user can of course choose other methods to select H(j) to get more optimal

result.

Hard Constraints

For the hard constraints 3.45, by letting HV = GK and following similar procedures,

we would yield the result:{
Hαk1 +Gck ≤ b, 0 ≤ k ≤ N − 1

Hαk1 ≤ b, k ≥ N
(3.57)

where, HV = GK.

H = arg min
H
{‖ H ‖1|HV = GK, H ≥ 0} (3.58)
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Soft Constraints

For soft constraints 3.46:{
Prob(FsΦkxk + FsBkck ≤ bs) ≥ p, 0 ≤ k ≤ N − 1

Prob(FsΦkxk ≤ bs) ≥ p, k ≥ N
(3.59)

For polyhedral set P(V ) = {x|V x ≤ 1}, and its dual V(Vg) = {x|x = Vgz,1
T z =

1, z ≥ 0}. Vg(i) is the ith column of Vg. In the state tubes, by adding the set size, we

have Tk = {xk|V xk ≤ αk1}, its dual form Tk = {xk|xk = αkVgz,1
T z = 1, z ≥ 0}.

So the states inside the tube can also be written as: xk =
∑m

i=1 λiVg(i)αk,
∑m

i=1 λi =

1, ∀λi ≥ 0. Thus we know,

FsΦkxk = FsΦk

m∑
i=1

λiVg(i)αk =
m∑
i=1

λiFsΦkVg(i)αk ≤ max
i
FsΦkVg(i)αk

m∑
i=1

λi = 1, ∀λi ≥ 0

(3.60)

where,

max
i
FsΦkVg(i)αk = max(

[
FsΦkVg(1)αk . . . FsΦkVg(i)αk . . . FsΦkVg(m)αk

]
, 1)

(3.61)

where, max(A, 1) is defined as maximization of matrix A over the 1st dimension (row).

For example,

max(

[
1 2 3
4 3 2

]
, 1) =

[
3
4

]
(3.62)

The soft constraints 3.59 are then relaxed to, (as a matter of simplification, the

derivation for k ≥ N is omitted)

Prob[max
i
FsΦkVg(i)αk + FsBkck ≤ bs] ≥ p, 0 ≤ k ≤ N − 1 (3.63)

It is equivalent to,

Prob[FsΦkVg(i)αk + FsBkck ≤ bs, ∀i] ≥ p, 0 ≤ k ≤ N − 1 (3.64)
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The inequality inside the probability constraint becomes:

Fs(Φ0 + 0.5
r∑
j=1

∆Φj)Vg(i)αk + Fs(B0 + 0.5
r∑
j=1

∆Bj)ck − bs+

[
Fs

∆Φ1

2
Vg(i)αk + Fs

∆B1

2
ck . . . Fs

∆Φr

2
Vg(i)αk + Fs

∆Br

2
ck

]2ω1,k − 1
...

2ωr,k − 1

 ≤ 0,

i = 1, . . . ,m
(3.65)

For time 0 ≤ k ≤ N − 1, let:

ξk =

2ω1 − 1
...

2ωr − 1

 , yi0,k = Fs(Φ0 + 0.5
r∑
j=1

∆Φj)Vg(i)αk + Fs(B0 + 0.5
r∑
j=1

∆Bj)ck − bs

yik =

[
Fs

∆Φ1

2
Vg(i)αk + Fs

∆B1

2
ck . . . Fs

∆Φr

2
Vg(i)αk + Fs

∆Br

2
ck

]T
The probability constraint can be derived as:

Prob[yi0,k + yik
T
ξk ≤ 0, i = 1, . . . ,m] ≥ p, 0 ≤ k ≤ N − 1 (3.66)

Use q to denote the index of soft constraint, and Q to denote the number of soft

constraints (number of rows in bs).

Let yi,q0,k = rqy
i
0,k,y

i,q
k

T
= rqy

i
k
T

.

We have,

Prob[max
i,q

(yi,q0,k + yi,qk
T
ξk) ≤ 0, i = 1, . . . ,m, q = 1, . . . , Q] ≥ p, 0 ≤ k ≤ N − 1

(3.67)
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Apply the RO method here in solving the chance constraints, we have:

φk +
∑
j

γi,qk ≤ δktk

φk ≥ u0k + max
ξ∈Uk

ξTuk

φk ≥ 0

γi,qk ≥ vi,q0k + max
ξ∈Uk

ξTvi,qk ∀i, q

γi,qk ≥ 0 ∀i, q

u0k = ω0k + tk

uk = ωk

vi,q0k = yi,q0k − ω0k ∀j

vi,qk = yi,qk − ωk ∀i, q

0 ≤ k ≤ N − 1 (3.68)

For time k ≥ N , let:

ξk =

2ω1 − 1
...

2ωr − 1

 , yi0,k = Fs(Φ0 + 0.5
r∑
j=1

∆Φj)Vg(i)αk − bs

yik =

[
Fs

∆Φ1

2
Vg(i)αk . . . Fs

∆Φr

2
Vg(i)αk

]T
The RO approximated constraints are also constructed in the same form as in

3.68.

Terminal Constraints

The second mode is defined for the time k ≥ N , which is infinite time horizon. A

finite period is definitely preferred in solving the problem. We want to have a terminal

time instant M such that M ≥ N and there always exist tubes after time M which

satisfy the feasibility constraint of both hard constraint 3.57 and soft constraint 3.71:

Hαk1 ≤ b, k ≥M (3.69)

Prob[Hs(i)αk1 ≤ bs, ∀i] ≥ p, k ≥M (3.70)

To find the time instant M which satisfies the conditions, we need to give some

proofs here.
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For k ≥ N , the soft constraints can also be defined as:

Prob[Hs(i)αk ≤ bs, ∀i] ≥ p, k ≥ N (3.71)

where,

Hs(i) = Fs(Φ0 +
1

2

r∑
j=1

∆Φj)Vg(i) +
Fs
2

[
∆Φ1Vg(i) ∆Φ2Vg(i) . . . ∆ΦrVg(i)

]
ξk

In [35]: the set P(V,1) = {x|V x ≤ 1} is a positively invariant set of system

xk+1 = Φxk if there exists non-negative matrix H(j) that,

H(j)V = V Φ(j), ∀j (3.72)

(H(j) − I)1 ≤ 0, ∀j (3.73)

where the inequality constraints require to be satisfied element-wise.

Recall the definition of joint spectral radius in 3.2.9. Design positive invariant set

P(V,1) for the system xk+1 =
Φ

λ
xk.

Thus, we have:
H(j)

λ
V = V

Φ(j)

λ
, ∀j

(
H(j)

λ
− I)1 ≤ 0, ∀j

(3.74)

Thus, we have:

H(j)1 ≤ λ1, ∀j (3.75)

(H(j)1)m ≤ λ, ∀j (3.76)

where m denotes the row number.

As H(j) is nonnegative, we have |H(j)|∞ = maxmH
(j)1 ≤ λ. So we can give the

conclusion that:

For the λ-contractive set {x|V x ≤ 1} of system xk+1 = Φ(ω)xk and satisfaction

of H(j)V = V Φ(j), we have |H(j)|∞ ≤ λ for all j.

Then we can find the condition of the existence of M which satisfies the recursive

feasibility. We can show that as long as M ≥ N , there exists tube size αk which

satisfies the above requirements. Proof is given as the following:
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Construct the sequence of α̃k which satisfies the tube conditions:

α̃k = αk, 0 ≤ k ≤M (3.77)

α̃k+1 = max
j,m

[(H(j))mαk1], k ≥M + 1 (3.78)

Then we can get,
α̃k+1 ≤ max

j,m
|(H(j))m|∞α̃k

= max
j
|H(j)|∞α̃k

= λα̃k

(3.79)

As we know,

Hα̃M1 ≤ b (3.80)

Prob[Hs(i)α̃M1 ≤ bs, ∀i] ≥ p (3.81)

Assume b ≥ 0, from 3.79, 3.80, we have:

Hα̃M+l1 ≤ λlHα̃M1 ≤ λlb (3.82)

Assume bs ≥ 0,from 3.79, 3.81, we have:

Hs(i)α̃M+l1 ≤ λlHs(i)α̃M1 ≤ Hs(i)α̃M1, ∀i (3.83)

Prob[Hs(i)α̃M1 ≤ bs, ∀i] ≥ p (3.84)

Thus, we can get:

Prob[Hs(i)α̃M+l1 ≤ bs, ∀i] ≥ p (3.85)

So we know that as long as M ≥ N , there always exists solution αk with k ≥ M

that satisfies the feasibility constraint. It is equivalent to saying as long as N is large

enough so that cN = 0, recursive feasibility is guaranteed.

In summary, we have the constraint as:

Tube Constraints:

V x0 ≤ α01

H(j)αk1 + V B(j)ck ≤αk+11, 0 ≤ k ≤ N − 1,∀j

H(j)αN1 ≤ αN+11, ∀j

(3.86)
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Hard Constraints:

Hαk1 +Gck ≤ b, 0 ≤ k ≤ N − 1

HαN1 ≤ b
(3.87)

Soft Constraints:

φk +
∑
j

γi,qk ≤ δktk

φk ≥ u0k + max
ξ∈Uk

ξTuk

φk ≥ 0

γi,qk ≥ vi,q0k + max
ξ∈Uk

ξTvi,qk ∀i, q

γi,qk ≥ 0 ∀i, q

u0k = ω0k + tk

uk = ωk

vi,q0k = yi,q0k − ω0k ∀j

vi,qk = yi,qk − ωk ∀i, q

∀k (3.88)

where,

yi0,k = Fs(Φ0 + 0.5
r∑
j=1

∆Φj)Vg(i)αk + Fs(B0 + 0.5
r∑
j=1

∆Bj)ck − bs

yik =

[
Fs

∆Φ1

2
Vg(i)αk + Fs

∆B1

2
ck . . . Fs

∆Φr

2
Vg(i)αk + Fs

∆Br

2
ck

]T
, 0 ≤ k ≤ N − 1

yi0,k = Fs(Φ0 + 0.5
r∑
j=1

∆Φj)Vg(i)αk − bs

yik =

[
Fs

∆Φ1

2
Vg(i)αk . . . Fs

∆Φr

2
Vg(i)αk

]T
, k = N

Objective Function

The objective function is formulated as a quadratic function of expected states and

inputs:

min
αk,ck

((Ex)TQx(Ex) + (Eu)TQu(Eu)) (3.89)
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where,

x =


xk+1|k
xk+2|k

...
xk+N |k

 , u =


uk|k
uk+1|k

...
uk+N−1|k

 (3.90)

Here we also define:

Exk+i+1|k = A0Exk+i|k +B0uk+i|k, i ≥ 0 (3.91)

Exk|k = xk (3.92)

Thus for the expected augmented states, we have:

Ex = Gxk +Hu, Eu = KEx + c (3.93)

where,

G =


A0

A2
0

...
AN0

 , H =


B0 0 · · · 0
A0B0 B0 · · · 0

...
...

. . .
...

AN−1
0 B0 AN−2

0 B0 · · · B0

 ,

KM =


K 0 · · · 0
0 K · · · 0
...

...
. . .

...
0 0 . . . K

 , c =


ck|k
ck+1|k

...
ck+N−1|k


As,

Ex = (I −HKM)−1Gxk + (I −HKM)−1Hc (3.94)

Eu = K(I −HKM)−1Gxk + [K(I −HKM)−1Hc + c]c (3.95)

By letting,

Qxx = (I −HKM)−1G, Qxc = (I −HKM)−1H, (3.96)

Qux = KM(I −HKM)−1G, Quc = [K(I −HKM)−1Hc + c] (3.97)

The objective function is equivalent to,

min
αk,ck

cTQqcc + 2Qlc +m (3.98)

where, Qqc = QT
xcQxQxc + QT

ucQuQuc, Ql = xT (QT
xxQxQxc + QT

uxQuQuc), m =

xTk (QT
xxQxQxx +QT

uxQuQux)xk.
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3.5 Case Study

We give a case study here utilizing the method of state tube MPC method based on

RO approximation:

The state space is given as:

xt+1 = A(ω)xt +B(ω)ut

A(ω) = A0 +
3∑
i=1

ωi∆
(i)
A , B(ω) = B0 +

3∑
i=1

ωi∆
(i)
B

A0 =

[
0.3221 −0.6774
0.8659 −1.7650

]
, B0 =

[
−0.5045
−1.9386

]
∆

(1)
A =

[
0 0.05

−0.05 0

]
, ∆

(2)
A =

[
0.01 0
0.05 −0.01

]
, ∆

(3)
A =

[
−0.01 −0.05

0 0.01

]
∆

(1)
B =

[
0.0478
0.0589

]
, ∆

(2)
B =

[
−0.0478
−0.0589

]
, ∆

(3)
B =

[
0
0

]
, N = 5

The matrices defining the constraints 3.23 are:

G =

[
−0.1
0.1

]
, Fs =

 9 3
−9 −3
0 6.67

 , b =

[
1
1

]
, bs =

1
1
1


The matrices defining the objective 3.26 is:

Qx = 10, Qu = 0

To use RO based tube method, objective function is reformulated as in 3.98, con-

straints are reformulated as a composition of tube constraints 3.86, hard constraints

3.87 and soft constraints 3.88.

For simulation results, λ-contractive set P(V ) 3.19 is plotted in Fig 3.1. System

trajectory with probability requirement 70% and 90% are drawn in Fig 3.2. Detailed

results are recorded in Table 3.2.

From the results, we can tell that: the probability constraint is satisfied within

the tolerance. The objective function performs better with less restraint on the prob-

ability satisfaction. Different trajectories under different probability requirements are

plotted in Fig 3.2a, 3.2b. The constraint violation happens at step 2. The state comes

to the original at step 5.
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Table 3.2: Comparison in LPV System Case Study

Required Probability P = 0.7 Required Probability P = 0.9
Monte Carlo Simulated Probability

PMC = 0.69
Monte Carlo Simulated Probability

PMC = 0.8999
Objective Value OBJ = 0.0399 Objective Value OBJ = 0.0495

Tube Size α =
[0.9972 1.3445 1.6729 1.6123 1.7303]

Tube Size α =
[0.9972 1.2695 1.6621 1.5844 1.6905]

Iteration Time Niter = 5 Iteration Time Niter = 3
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Figure 3.2: System Trajectory with Tube MPC
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3.6 Conclusions

This chapter extended RO based CCMPC to systems with parameter uncertainty.

However, RO method cannot be directly applied due to multiplicative uncertainties.

Stochastic tubes are introduced to help solving the problem. By imposing constraints

on the tubes, multiplicative uncertainties are reduced. The proposed method also

guarantees a recursive feasibility and stability. However, this method can be con-

servative in solutions and are sensitive to initial states. It also requires uncertainty

distribution to be bounded. A numerical case study is shown at the end with proba-

bility requirement satisfied.
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Chapter 4

Application of CCMPC in SAGD
Process

4.1 Introduction

Alberta is rich in oil sands deposit. However, oil sands extraction is different from

conventional oil development. The two main methods for oil sands extractions are:

open mining and steam assisted gravity drainage (SAGD) process. Open mining deals

mainly with oil sands in shallow areas. SAGD is designed for oil sands buried deep

under ground. SAGD was introduced by Butler in the 1970s [36]. He also brought

the concept of steam chamber and developed analytical models [37]. The model

described the relationship between chamber shape and time, bitumen drainage rate

and chamber height. The concepts and related theories Butler built for the SAGD

process greatly stimulated the technology to be applied in industry. It is now one of

the premier recovery methods for heavy oil and oil sands [38].

Oil sand is a mixture of sand, clay and other minerals, water and bitumen, which

is heavy and extremely viscous. Traditional pumping method cannot extract oil sands

from deep underground. However, as the temperature goes up, bitumen viscosity will

drop significantly, which makes it possible for the bitumen to be extracted. SAGD

is a typical thermal recovery method efficient in extracting oil sands from deep un-

derground. A typical SAGD process refers to a pair of wells draining horizontally.

The well pair includes one injection well and one production well, with a distance
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of 3 to 5 meters in between each other. The injection well injects hot steam into

the horizontal wellbore, heating bitumen and reducing its viscosity. The production

well extracts bitumen drained into the lower wellbore. During the process, steam

chamber expands both vertically and horizontally. Based on shape of steam chamber

and production amount, the process is separated into four periods: start-up, ramp-

up, peak and blow-down. Start-up is the period which requires establishment of oil

mobility between the two wells. The temperature between the well pair is sufficiently

high which makes the oil flowable enough to gather around the production well. Oil

mobility is achieved by circulating steam in each of the well. It usually takes three

to six months. During the ramp-up period, which is around half a year to two years,

the chamber expands quickly. More steam is injected and more bitumen is produced.

Then in peak period, production rises to maximum amount and chamber touches

the top of pay zone. The peak period lasts for three to six years with maximum

injection and production rate. After the peak period, energy usage efficiency signif-

icantly drops and production keeps falling down. It takes three to five years for the

final period. For a reservoir with SAGD implemented, it takes ten to twenty years

for the whole process to complete. The whole plant combines fuel and gas system,

steam generator, injection and production system, oil treating equipment and water

recycling system. In this thesis, only the underground reservoir part is being studied.

For later mentioning of the SAGD process, it is meant to be the underground part.

Many studies and industry practices have shown that it is important to keep the

steam chamber well developed so that neither liquid around producer accumulates

nor is steam produced. In other words, maintain the liquid-steam interface in between

the horizontal injector and producer. It is called steam trap by Butler first, using

analogy of the operation in steam-heated radiator [39], [40]. Without using steam

trap, various problems can be introduced. If the condensate and bitumen are removed

quickly from producer, steam has a tendency to flow directly to producer, leading to

steam breakthrough. Instead of transferring heat to the reservoir, steam is greatly

wasted by being passed to producer directly. If the condensate and bitumen are

not removed in time, it leads to liquid-steam interface higher than injector well.
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Figure 4.1: SAGD Process Illustration

Steam coming out of the injector would loss a lot of heat to the liquid pool before

getting to the boundary of chamber. While in reality, interface level is difficult to

measure. Thermal measuring methods are shown to be effective in reflecting the

interface position [41]. Sub-cool is introduced as the temperature difference between

tubing steam saturated temperature and tubing temperature at certain parts of the

producer. Sub-cool can reflect the distance between interface and producer. When

sub-cool is small and close to zero, the interface is close to the production well. While

sub-cool is high, the interface is far away from the production well. Sub-cool values

can be different with different geological parameters, measured locations, operating

conditions and various factors. In current literatures and applications, set-point of

sub-cool is usually given by operator experience. Sub-cool is required to be operated

in a safe region, which will not lead to steam breakthrough or energy waste. The range

usually runs from 10 to 50F. Conventionally, sub-cool control is implemented using

production rate (pump frequency) as control variable. Increasing production rate will
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cause the interface to drop down, with smaller sub-cool. Decreasing production rate

will cause the interface to rise, with larger sub-cool. Steam injection has an opposite

effect, but much more slowly, which is not used in sub-cool control yet. Currently

in industry, sub-cool is being controlled manually or by PID controller with pump

frequency as the manipulate variable.

Another important factor is the chamber pressure, measured at certain parts of

the injector and producer. Inadequate steam chamber pressure can lead to safety

issues, like steam chamber collapse or fracture. If there exist thief zones (gas cap),

with chamber pressure higher than gas-cap pressure, steam and some of the bitumen

will possibly be pushed into the gas cap [42], [43]. Also small chamber pressure

encourages fluid inflow from surrounding areas, for example, water from connected

aquifers [44]. Apart from operation safety, economic benefits are also affected by

the chamber pressures. An industry study in Hangingstone reservoir pointed out

the reduction in injection pressure led to a suspension of vertical growth of the steam

chamber [45],[46]. While at the same time, low pressure gravity drainage is seen as an

economic way of operating the SAGD process, by fully utilizing gravity as the driving

mechanism [47]. Other important performance evaluation factors include: water-cut,

cumulative steam oil ratio (cSOR), recovery factor (RF), etc. Water-cut denotes the

amount of water contained in the total liquid produced. The water contains both

steam injected and original water underground. A low water-cut is preferred as to

further reduce the energy used to extract the bitumen. cSOR is defined as:

cSOR =

∫ T
0
qsteam(t)dt∫ T

0
qbitumen(t)dt

(4.1)

cSOR measures the average volume of steam required to produce one barrel of bitu-

men. The less cSOR is, the more energy we save in obtaining bitumen. RF is the

recoverable amount of bitumen, it indicates the maximum extent we can extract from

the reservoir.

Modeling of the SAGD process started from Roger Butler’s analytical model to
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predict oil production rate:

q = 2L

√
2kgαρ0φδS0H

mµos
(4.2)

Butler model is based on fundamental theory of flow and heat transfer, with the

assumption that steam chamber does not touch the pay zone top and geographical

parameters are uniform. It is generally acknowledged that the production rate in 4.2

is overestimated. Butler used this model as a tool to evaluate the feasibility of SAGD

technique in oil sands extraction. Later improvement is based on modifying the pa-

rameters of 4.2, which can give a better estimation. However, the developed analytical

equations have not been used in control and optimization for their inaccuracies.

Figure 4.2: Illustration of Butler Model

Simulator based modeling is another important research area with fast develop-

ment these years. Development in geostatistics and increased computation power help

obtaining reliable simulation results [48]. Reservoir simulation brings into the benefit

of generating field performance under various production schemes. It aids selection

of an optimal set of producing conditions for the reservoir.

In evaluating SAGD economics, SOR comes first than oil rate per well pair. It

has been stated that capital and operating cost of producer wells only account for

20 − 30% of the total supply cost, while steam supply accounts for more than half.

The reduction of steam used can result in less bitumen produced, but the reduction in

SOR can greatly compensate the reduction in bitumen production [47]. The process
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mechanism remains gravity driven fundamentally. Additional steam capacity to in-

crease the pressure gradient is seen as an unattractive investment [47]. Topics about

SAGD optimization in literature are mostly based on heuristic methods and treat the

simulator as a black box. Typical methods include DECE (a heuristic optimizer de-

veloped by CMG) [49], genetic algorithm [50], trail and error method [47], [51]. The

previous methods are computationally expensive due to time-consuming reservoir

numerical simulations. Large number of decision variables is also another problem.

Experimental design methods help reduce number of choices in variable selection

[52], [49]. Surrogate model or proxy model is proposed to deal with the expensive

computation effort [52], [53], [54], [55], [56], [57]. However, these surrogate models

require complicated model structures,which bring great difficulty in implementing in

real-time control and optimization. Simpler and effective models are desired.

Our intention here is to get a simple and reliable model of SAGD process for

CCMPC.

4.2 Numerical Simulator

From the modeling point of view, numerical simulator serves as an important tool

for modeling as it can provide process performance information in various circum-

stances, either in the situation of different geological parameters or in the situation

of different operating conditions. Another reason is that doing identification experi-

ment on SAGD process can be extremely expensive. Experiment test not only reduces

economy benefit but also increases the operation risk.

Our research is based on the reservoir numerical simulator: Petroleum Experts.

Petroleum Experts is a state of art software in petroleum engineering. Its distin-

guished feature REVEAL includes the thermal recovery process of heavy oil. We

designed a simple case of one well pair to study its production behavior.

Simulation parameters are given in Table 4.1.

In the simulation work, grid dimension is reduced to 2, with only one grid in the

horizontal dimension. The reason is that the simulation time can be significantly large
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Table 4.1: SAGD Process Parameters

Types of Parameters Name Value

Geology
Parameters

Grid Number 1× 73× 55
Total Length 1329ft×1120.7ft×165ft
Top Depth 340 ft

Porosity 0.3
Horizontal

Permeability
2500md

Vertical
Permeability

1750md

Operation
Data

Preheat Period 83 days
Preheat Injection

Rate
495.27 STB/day

Preheat Injection
Heat

1127.86 BTU/lb

Steam Quality 0.9

Physical
Properties

Swc 0.3
Sowc 0.2
Sogc 0.2
Sgc 0.05

Initial
Condition

Original Oil in
Place

8.30045× 109 STB

Initial Pressure 217 psia
Initial

Temperature
60 F

in 3 dimensions, taking around 3 to 5 hours for a simulation of ten years. The 2 di-

mensional simulation can greatly reduce the simulation time to several minutes. With

uniform property along the well dimension, 2D simulation does not show apparent

difference from 3D simulation.

It shows the expansion of the steam chamber in Fig 4.3. The chamber grows

rapidly in vertical direction at the beginning. When the chamber touches the over-

burden, it grows horizontally.

As we have introduced before, it is important to have the sub-cool and chamber

pressure at certain levels, or the production efficiency can be greatly hindered, even
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Figure 4.3: Chamber Expansion in Simulation

dangerous operating situations can happen. Appropriate operating conditions need

to be applied for such requirements. Feedback control is implemented here as a

simple method to maintain the appropriate working conditions. The feedback utilizes

two PID controllers separately for sub-cool control and pressure control. Production

profiles are shown in Fig 4.4a, 4.4b, 4.4c, 4.4d. PID controllers intend to operate sub-

cool at 40F and chamber pressure at 217psia. The controller parameters are fixed

through the whole operating period, but time-varying property of the system still

leads to large variations of the controlled variables.

The operation profile varies a lot in the sub-cool, chamber pressure and water-

cut during the first year. The first year includes the start-up period and a rapid

chamber expansion time. Communication between the two wells is established and

chamber expands to touch larger areas of bitumen. Peak production periods happen

between the 4th year and 8th year. In the period between day 1500 and 3500, sub-

cool varies from 27.4F to 58.9F and chamber pressure varies from 221.5Psia to

235.9Psia. It is desirable to maintain these variables around specific levels and reduce

their fluctuations for better economy benefit. As we have mentioned before, too

large or too small the sub-cool or chamber pressure is will lead to various safety

issues or poor economic behaviors. The purpose in this chapter is to obtain models

for CCMPC and implement CCMPC on SAGD. It is desirable to obtain reliable

predictions, maintain the system feasibility while the system is pushed towards better

economic performance.
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(a) Injection and Production Profile (b) Sub-cool Profile

(c) Chamber Pressure Profile (d) Water Cut Profile

Figure 4.4: Detailed Comparison of Different Methods

4.3 Economic Evaluation of SAGD Process

The peak period in SAGD process yields the largest amount of bitumen with a cham-

ber already maturely developed. So we focus on the time horizon in between day

1500 and 3500. Before evaluating the economic profit of SAGD process, controller

for the peak period is finely tuned to reduce steady state error and dynamic error.

In sub-cool control, manipulated variable is production rate, controlled variable is

sub-cool. In chamber pressure control, manipulated variable is injection rate and

controlled variable is chamber pressure. For sub-cool control, the tuning parame-

ters are Kp = 50, KI = 40, maximum variation for liquid produced and sub-cool are

16.19% and 16.64% respectively. For chamber pressure control, the tuning parameters

are Kp = 50, KI = 60, KD = 2, maximum variation for liquid injected and chamber
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Table 4.2: Comparison in Different Sub-cool Set-point

Sub-cool Set-point 25F Sub-cool Set-point 40F
Cumulative Bitumen Production

1.60× 105STB
Cumulative Bitumen Production

1.58× 105STB
cSOR 2.149 cSOR 2.177

Table 4.3: Comparison in Different Chamber Pressure Set-point

Chamber Pressure Set-point 211Psia Chamber Pressure Set-point 217Psia
Cumulative Bitumen Production

1.5836× 105STB
Cumulative Bitumen Production

1.5828× 105STB
cSOR 2.1684 cSOR 2.2287

pressure are 18.88% and 2.02%.

With a finely tuned system, we examine economic benefits with different set-

points. It has shown that for a certain range and time period, lower sub-cool and

lower chamber pressure yield better economic performance. A typical comparison is

given in Table 4.2 and Table 4.3. With lower sub-cool and lower chamber pressure,

more bitumen is produced with less steam used.

When the system has high sub-cool or high chamber pressure, we want to drive

the system to low set-points with satisfaction of constraints. As a case study, we

focus on transferring the system from 40F to 25F in sub-cool, and from 217Psia to

211Psia in chamber pressure, to yield more economic profit. We try to track the new

set-points fast and satisfy probabilistic constraints.

However, merely using PID controllers can have problems in tracking new states.

First one is during transition, PID controllers can drive sub-cool into a lower zone.

Too low the sub-cool (e.g. 10F) is will lead to steam breakthrough Fig 4.5a. Another

problem is the change of injection rate. Time constant for chamber pressure is rather

large (up to 100 days). To reduce the response time, the injector is forced to shut

down (simulator has a low limit of 100 STB/d). In Fig 4.5b, the set-point changes

from 217 Psia to 191.7 Psia, and injector is forced to drop down to the lowest injection

rate. However, for most of the cases, it cannot be tolerated to vary the injection rate a

lot. Due to these problems, CCMPC is brought in. But there still exists the question
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whether we shall put CCMPC in replace of PID controllers or put CCMPC at upper

layer to give set-points to PID controllers. To answer this question, we will analyze

the SAGD system with simulation tests.

(a) Steam Breakthrough with Sub-cool
Set-point 10F

(b) Injector Forced to be Shut Down with
Chamber Pressure Drop

Figure 4.5: Violations of Operating Conditions

4.4 Nonlinearity and Time-Varying Property of SAGD

Process

In this section, we will analyze briefly about nonlinearity and time-varying property

of SAGD process. From control point of view, the independent inputs to the system

are injection rate and production rate. Note that the injection rate refers to the flow

rate of steam injected, and the production rate refers to the flow rate of the produced

liquid, which includes both bitumen, water and small amounts of gas. It is mostly

argued that producer pump frequency is directly manipulated in industry. It can

be shown that in simulation and in industry data that, flow rate and frequency are

highly linear correlated. We select the flow rate for its easy use in the simulator. An

equivalent pump frequency can be easily obtained from the flow rate. The outputs

are selected as sub-cool and chamber pressure. It can be noticed from the previous

sections that sub-cool and chamber pressure are vital to the operation safety and

economy benefits. No measurement noises are added to the system in simulation.

Our focus is on the peak period from day 1500 to 2300 in Fig 4.6. Although
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bitumen production reaches the maximum, steam injected and liquid production keeps

slightly increasing to keep the chamber expanding. A constant injection rate and

production rate is given to the process. Fig 4.7a shows the response of sub-cool. For

some periods, a steady state of sub-cool can be reached in 20 to 30 days. However,

sub-cool keeps increasing due to the unbalance between production rate and bitumen

drainage rate. Even if we try to increase the value of production rate, we can not find

a steady operating point for a time longer than 30 days because of the time-varying

property (chamber expanding, etc). The response of chamber pressure is shown in

Fig 4.7b. A slight drop is shown in the response of chamber pressure. In 20 days,

the chamber pressure can still drop 4 psia, which can be negligible in a short time

horizon. But in years, it can still become a problem. We try to use the trend to modify

the injection and production profile to obtain a stable system response. Sigmoid

function f(x) =
1

1 + e−x
is used here to fit the trend. The response of sub-cool and

chamber pressure is shown in Fig 4.8a, 4.8b. The improvement is that the sub-cool

and chamber pressure varies around a set-point. But sub-cool shows a behavior of

large fluctuation. We reason the fluctuation as a result of expanding chamber and

unbalance between the injection rate and production rate. Chamber pressure shows

a smaller moving trend with fluctuation (around 1 to 2 psia in 20 days) than the

constant input. From this, we can tell that both sub-cool and chamber pressure show

a nonlinear and time-varying property, which makes it hard to find a steady operating

point.

Figure 4.6: Injection Rate and Production Rate Profile
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(a) Sub-cool (b) Chamber Pressure

Figure 4.7: Response with Constant Input

(a) Sub-cool (b) Chamber Pressure

Figure 4.8: Response with Sigmoid Function Input

By taking a closer look at detailed sub-cool behavior, we also notice that the sub-

cool would have different behaviors in different operating regions. The sub-cool tends

to be flat at regions when the sub-cool is relatively large, and tends to fluctuate when

the sub-cool is in the middle of range, tends to varies a lot when sub-cool is small

or close to zero. It can be explained in simple illustrations. In Fig 4.9, we show the

cross-section area of the steam chamber and liquid production zone. Liquid steam

interface is at the level where we want to control. To show the dynamic behavior

of high and low sub-cool, we show the illustration in Fig 4.10. For low sub-cool, we

have a low steam-liquid interface in the left figure. For high sub-cool, we have a high

steam-liquid interface in the right figure. Knowing that sub-cool is mostly affected

by the interface level, we assume that same change in interface level will lead to same

76



change in sub-cool. With the change of same liquid amount in the liquid zone, the

distance change, however, will be larger in the left figure than in the right figure.

From our assumption, we will have larger change in sub-cool for the circumstance

with low sub-cool.

Figure 4.9: Illustration of Steam Interface and Sub-cool

Figure 4.10: Illustration of High Sub-cool and Low Sub-cool

The behavior of sub-cool and chamber pressure exhibits a strong nonlinearity and

time-varying property. However, we can still observe consistent properties of the

SAGD process.

1. Different behaviors for sub-cool in different operating regions;

2. Trend of the production rate and injection rate in different periods.
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4.5 System Identification of Closed-loop System

Due to the nonlinearity and time-varying property of the SAGD process, it is hard to

do open-loop identification of SAGD process. However the system with a fine tuned

controller possesses linear time invariant property and is easy to identify, CCMPC is

going to be applied at upper layer, giving set-points to PID controllers. It tries to

bring the system from low yield to high yield while satisfying probabilistic constraints.

So our modeling focuses on the whole system with both PID controllers and SAGD

process. The reasons of having closed-loop can be summarized as the following:

1. Unstable systems must be operated in closed-loop;

2. Operational constraints may require closed-loop control;

3. Closed-loop controller maintains the system close to the operating point of

interest;

The system we want to build is shown in Fig 4.11. A general system identification

includes:

1. Selection of measured variables and controlled variables, which include system

inputs, measured disturbances, outputs;

2. Preliminary process tests: nominal operation test, step test, staircase test, white

noise test. The purpose is to get a general structure of the system model, also

estimate parameter of system gain, time constant, frequency band width and

time delay;

3. Experiment with persistent excitation;

4. Model structure selection;

5. Obtain model parameters based on certain criteria;

6. Model validation: correlation and autocorrelation analysis, fitness test.
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Table 4.4: Step Test Result

Response

Reference
Reference Change in
Sub-cool

Reference Change in
Chamber Pressure

Response in Sub-cool K = 1, td = 0, τ = 25 Small Effect
Response in Chamber
Pressure

Small Effect K = 1, td = 0, τ = 70

For the variables selection, system outputs are sub-cool and chamber pressure,

system inputs are sub-cool external reference and chamber pressure external refer-

ence to PID controllers. As for the simulation, we does not add measurement noise.

The system uncertainties are assumed to be uncertainties coming from inaccurate

modeling and SAGD process. Preliminary step test has given for an estimate of the

parameters shown in Table 4.4.

To identify the closed-loop system, persistently exciting reference signals are given

to PID controllers. One persistently exciting signal is pseudorandom binary signal

(PRBS). It is a signal that shifts between two levels in a certain fashion [58]. PRBS

requires the user to select the levels and bandwidth. In previous section of economic

evaluation, we have focused on tracking the new set-point. So the levels we have are,

40F, 25F for sub-cool and 217Psia, 211Psia for chamber pressure respectively. For

bandwidth, we need to roughly guess the time constant of the process. A rough guess

of the sub-cool and chamber pressure are 25 days and 70 days as shown in Table 4.4.

In Matlab, the bandwidth is expressed as fractions of the Nyquist frequency:

0 ≤ ω ≤ kTs
πτ

(4.3)

where, k usually takes value between 2 and 3, Ts is sampling time, which is 1 day

here, τ is time constant estimate.

PRBS is given to the simulator for generating training and validation data. State

space model, with its easy implication in control and optimization, is selected as

model structure.

79



Figure 4.11: Closed-loop System Diagram

4.5.1 Subspace Method

A brief introduction is given [59] of using subspace methods for estimating state space

models. Only the procedures are given here:

A general state space model is given as:

x(t+ 1) = Ax(t) +Bu(t) + ω(t)

y(t) = Cx(t) +Du(t) + v(t)
(4.4)

where, y(t) is a p-dimensional column vector, u(t) is a m-dimensional column vector,

and x(t) is n-dimension. ω(t) and v(t) are Gaussian white noise.

The first step is to estimate the observability matrix Or. To estimate the observ-

ability matrix, we write the system output in augmented vectors.

Yr(t) = Orx(t) + SrUr(t) + V (t) (4.5)

where,

Yr(t) =


y(t)

y(t+ 1)
...

y(t+ r − 1)

 , Ur(t) =


u(t)

u(t+ 1)
...

u(t+ r − 1)



V (t) =


v(t)

Cω(t) + v(t+ 1)
CAω(t) + Cω(t+ 1) + v(t+ 2)

...
CAr−1ω(t) + CAr−2ω(t+ 1) + · · ·+ v(t+ r − 1)


(4.6)
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By defining,
Y =

[
Yr(1) Yr(2) · · · Yr(N)

]
X =

[
x(1) x(2) · · · x(N)

]
U =

[
Ur(1) Ur(2) · · · Ur(N)

]
V =

[
V (1) V (2) · · · V (N)

]
(4.7)

we have,

Y = OrX + SrU + V (4.8)

The observability matrix Or is estimated by getting rid of U and V , we will show

the result as:

G = Or =
1

N
YΠ⊥UT ΦT (4.9)

where,

Π⊥UT = I − UT (UUT )
−1
U

Φ =
[
ϕs(1) ϕs(2) · · · ϕs(N)

]
, ϕs(t) =



y(t− 1)
...

y(t− s1)
u(t− 1)

...
u(t− s2)


Notice that here, ϕs(t) is chosen to be uncorrelated with V (t). As long as the

requirement is satisfied, we can get any arbitrary combination of ϕs(t), which will

end in different realizations of state space model. Here ϕs(t) is a special choice

satisfying the condition.

Then we can obtain the matrix C and A:

C = Or(1 : p, 1 : n)

Or(p+ 1 : pr, 1 : n) = Or(1 : p(r − 1), 1 : n)A
(4.10)

Notice that 1 : n is defined in the format as in MATLAB, denoting row number

and column number. The latter equation is solved in a least squares sense.

After obtaining C and A, we continue to estimate B, D and x0 from linear regres-

sion problem.

arg min
B,D,x0

1

N

N∑
t=1

||y(t)− C(qI − A)−1Bu(t)−Du(t)− C(qI − A)−1x0δ(t)||
2

(4.11)
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Lastly, the noise is estimated:

X̂ = LŶ , L = R−1UT
1

ω(t) = x̂(t+ 1)− Âx̂(t)− B̂u(t)

v(t) = y(t)− Ĉx̂(t)− D̂u(t)

(4.12)

Further details in given in the reference [59].

We have the infinite step prediction of training data in Fig 4.12a, infinite step

prediction of validation data in Fig 4.12b, auto-correlation and cross-correlation of

residuals shown in Fig 4.12c, 4.12d, 4.12e. We have the prediction fitness for sub-cool

60.78% in training and 61.69% in validation, for chamber pressure 72.27% in training

and 68.69% in validation. The auto-correlation and cross-correlation test also pass.
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Time Response Comparison
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(a) Training Prediction Result
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(b) Validation Prediction Result
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Figure 4.12: Training and Validation Result
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4.6 CCMPC on Linear Proxy Model

From the previous section, we get the linear proxy model:

x(t+ 1) = Ax(t) +Bu(t) +Wω(t)

y(t) = Cx(t) + ω(t)
(4.13)

where, y1 is sub-cool, y2 is chamber pressure, u1 is the external reference of sub-cool,

u2 is the external reference of chamber pressure, ω(t) ∼ N(0, σ2).

The steady states are given by xs = (I − A)−1Bus. In the prediction horizon N ,

we have:

x = Gx(k) +Hu + Pξ (4.14)

where,

G =


A
A2

...
AN

, H =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B



P =


W 0 · · · 0
AW W · · · 0

...
...

. . .
...

AN−1W AN−2W · · · W



x =


xk+1|k
xk+2|k

...
xk+N |k

, u =


uk

uk + 1
...

uk+N−1

 , ξ =


ωk
ωk+1

...
ωk+N−1


Thus, we have:

xk+i|k = Rix, ωk+i|k = riξ

yk+i|k = Cxk+i|k + ωk+i|k

= CRiGx(k) + CRiHu + (CRiP + ri)ξ

(4.15)

where,
Ri =

[
0n×n 0n×n · · · In · · · 0n×n 0n×n

]
n×nN

ri =
[
0q×q 0q×q · · · Iq · · · 0q×q 0q×q

]
q×qN

In Ri, In is n× n identity matrix in ith block. In ri, Iq is q × q identity matrix in

ith block.
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The soft constraints are defined as:

Prob[yk+i|k ≥ s] ≥ 1− δi, i = 1, 2, · · · , N (4.16)

where,

s =

[
ylb1
ylb2

]
Equivalently, we can write,

Prob[y0i + yiξ ≤ 0] ≥ 1− δi, i = 1, · · · , N (4.17)

where,
y0i = s− CRiGx(k)− CRiHu

yi = −(CRiP + ri)
(4.18)

Thus the optimization at each step is solved as:

min
u

(Ex− xs)
′Qx(Ex− xs) + (u− us)

′Qu(u− us)

s.t.Ex = Gx(k) +Hu

Prob[y0i + yiξ ≤ 0] ≥ 1− δi, i = 1, · · · , N

(4.19)

where, δi = 0.1, ∀i

The result on simulation of the proxy model is shown in Fig 4.13a, 4.13b, 4.13c.

Red dashed line shows lower bound. The result is shown with nominal prediction

when the realization of noise equals its expectation value. For time response of sub-

cool, rising time tr is 4 days, settling time ts equals 18 days, and the stabilizing error

is within 0.09F . For the response of chamber pressure, it is a much slower process,

but still reaches within 1Psia error in 30 days. For consideration of constraints,

both sub-cool and chamber pressure keep a safe distance from the boundary with

a minimum distance of 3.9F and 1.9Psia. Notice in Fig 4.13a, the reference given

to the controller is small at the beginning, to get a faster respond. The set-point is

adjusted backwards soon to avoid constraint violation and obtain stabilized output.

The result is shown with a probability of satsifaction of 90%. However for arbitrary

set-point given, which is shown in Fig 4.13d, the result is much worse: chamber

pressure drops below the lower constraint and does not stabilize. For the nominal
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trajectory of sub-cool, it does not violate, the minimum distance from the boundary

is 1.54F . By merely arbitrary set-point, the system cannot be stabilized nor satisfy

the constraints.
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(a) Chamber Pressure and Sub-cool Ref-
erence Signal Using CCMPC
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(b) Process Output Chamber Pressure
and Sub-cool Using CCMPC
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(c) Probability of Satisfaction Using
CCMPC
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(d) Chamber Pressure and Sub-cool Re-
sponse under Original Arbitrary Set-
point

Figure 4.13: Comparison Between Performance with and without CCMPC

Record the CCMPC control inputs (reference signals to PID controllers) from

selected measured outputs, and it is shown with 3D plots in Fig 4.14a, 4.14b. For de-

tailed analysis of the control policy, the control input is plotted with each individual

output in 2D plot in Fig 4.15a, 4.15b, 4.15c, 4.15d. For sub-cool control, the output

of sub-cool is the major factor while chamber pressure is the minor factor. Larger
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sub-cool will force the sub-cool set-point to be smaller and wise versa. For chamber

pressure in most of the cases, larger chamber pressure will force the sub-cool con-

trol input to be smaller because the bitumen drainage rate is higher when chamber

pressure is larger. Even though it is not monotonic all the time. However, for low

sub-cool, the chamber pressure almost does not affect for the sub-cool control. For

chamber pressure control, larger chamber pressure will force the chamber pressure

control input to be smaller and wise versa. The sub-cool almost has no affect on

selecting the chamber pressure control input except for some small ranges.
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(b) Chamber Pressure Control Input with
Measured Outputs of Chamber Pressure
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Figure 4.14: Recorded Control in 3 Dimension

The controller is also tested on the Petroleum Experts for the performance. A

comparison between arbitrary set-point and CCMPC is given in Fig 4.16. The sub-

cool control shows a great performance with fast response and keeps good track of

required set point. It also keeps a safe distance from violating the constraints. For

chamber pressure control, it also keeps away from the constraints and reduces the

variations of chamber pressure greatly. In Table 4.5, we also show the comparison in

violation of constraints. Arbitrary set-point method has a much larger violation with

37.60%, while CCMPC satisfies probabilistic constraints with 100%.

Due to the discrepancy between proxy model and simulator, CCMPC does not

push the control performance limit to 90% of probability satisfaction. CCMPC
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(c) Chamber Pressure Input to PID con-
troller with Measured Outputs of Cham-
ber Pressure
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(d) Chamber Pressure Input to PID con-
troller with Measured Outputs of Sub-cool

Figure 4.15: Calculated Control Input with Measured Output

achieves a conservative result with no violations of constraints. Certainly, safety

issues due to the system uncertainties are greatly reduced with the use of CCMPC.

If a better proxy model can be developed, CCMPC can achieve better performance

in its application.

4.7 Conclusions

In this chapter, SAGD simulation is set up in REVEAL. Various tests are given and

SAGD process shows a strong nonlinearity and time-varying property. To compensate
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Table 4.5: Comparison between CCMPC and without CCMPC

Violation with CCMPC Violation without CCMPC
0% 37.60%
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Figure 4.16: Response Comparison between CCMPC and without CCMPC

this deficiency, CCMPC is designed at upper level, giving reference signals to PID

controllers of the SAGD process. State space model is identified using subspace

method. CCMPC is designed on the proxy model (state space model). Off-line

control input is pre-recorded and implemented in the simulator. The result shows

that with the use of CCMPC, violation of constraints and variation of system output

are all greatly reduced.
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Chapter 5

Conclusions

5.1 Summary of this thesis

This thesis focuses on chance constrained MPC methods for linear system with addi-

tive and multiplicative uncertainty. Conventional methods are restricted by certain

distributions. RO method is proposed to deal with arbitrary distribution. RO based

CCMPC is further applied to SAGD process. Constraint violations due to uncertain-

ties are greatly reduced.

Motivation, thesis contributions and thesis outline are included in Chapter 1.

Chapter 2 first formulates the chance constrained problem in MPC. Two typi-

cal analytical methods are given, including ellipsoidal relaxation and iterative risk

allocation. However, both methods have to assume Gaussian distribution of the un-

certainty. RO method is proposed based on the idea of robust optimization and

uncertainty set. Probability of random variables within the set is calculated based

on Monte Carlo method. Arbitrary distributions can be included in this framework.

With one layer having guarantee of the probability, another layer is being used to

optimize the cost. The optimization performance can be further improved with the

inclusion of closed-loop framework.

Chapter 3 proposes how to deal with multiplicative (parametric) uncertainty with

RO based CCMPC. Stochastic tubes are introduced to relax the original constraints

into recursive ones. The recursive constraints preserve linear chance constraint forms,

which can be solved by RO method. Apart from that, a recursive feasibility is also
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guaranteed.

Chapter 4 applies RO based CCMPC to SAGD process. Different sets of operation

data are generated from reservoir simulator first. Linear state space model is built

with sub-space method. The linear state space model is treated as a proxy model

for the real process. CCMPC is tested on the reservoir simulator and greatly reduces

violations due to uncertainties.

5.2 Directions of future work

This thesis focuses on RO based CCMPC and its applications. The work includes

optimization, control and identification of process with uncertainties. To improve the

performance of RO method, following aspects can be considered in the future:

1. In the formulation of robust optimization approximation, t is given in
1

t
[(η + t)]+

as upper bound for the indicator function. t controls the difference between up-

per bound and indicator function. Investigation of how the value t will affect

the objective function is needed for further research.

2. Stochastic tubes constructed for LPV system have requirements for both sta-

bility and feasibility. It should be pointed out that not all initial states in the

feasible region can be included in the stochastic tubes. The use of stochastic

tubes requires the initial states to be in a smaller area than the original fea-

sible region. Efforts to expand stochastic tubes to include larger areas can be

meaningful to the current work.

3. Gaussian process (GP) dynamical model is one non-parametric method to cap-

ture the nonlinearities of data. GP is a stochastic process governing the prop-

erties of the functions. Without explicit form of the function, GP can give

inference of the prediction distribution. Further investigation into GP dynamic

model might help increase model accuracy of SAGD process.

4. In application of SAGD process, CCMPC is implemented to the reservoir simu-

lator based on a fixed proxy model. As we know, SAGD process itself possesses
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time-varying properties. Adaptive models built from real-time operation data

need to be implemented. Better performance can be achieved with adaptive

models.
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