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Abstract 

Robots are expected to do increasingly challenging tasks in complex environments. Because of the 

complexity, robots must use their sensors to understand the nature of a task and to monitor its exe­

cution. Visual servoing proposes several methods for using visual feedback to control the execution 

of tasks. A drawback of visual servoing is that it controls the motion of a robot at the velocity level. 

Thus, visual servoing is neither compatible with robots that require position commands nor do they 

provide a natural interface for path planning in special Euclidean space. 

This thesis proposes an image-based feed-forward control system that is based on a formulation 

that is similar to its feedback counterparts. Specifically, the system requires image-based errors that 

are derived from the image space. Instead of mapping the errors to velocities, however, the errors 

are mapped to variations of the robot's position through an interaction matrix called the visuomotor 

function. After deriving the functions of various tasks, this thesis proposes a method toapproximate 

the parameters of the visuomotor systems. The approximation is composed of two stages that are 

computed on-line. In the first stage, the parameters specific to a 3D point are estimated with an 

incremental least squares algorithm based on QR factorization. Then, these parameters are made 

available to neighboring 3D points by generalizing them in the stereo space. 

Experiments were done in simulations and on real robots for the following tasks: gaze control of 

a robotic head, 3D translations, mobile robots and 6 degrees of freedom motion. Results were also 

compared with a feed-forward system based on 3D reconstructions from stereo images. 
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Chapter 1 

Introduction 

An important open research problem in robotics is to control the motion of a robot by using visual 
feedback. Formally, the definition of vision guided robotics is: Given a task that is derived from 
images and given that visual feedback is provided by cameras, coordinate and control the motion of 
the robot to do the task? 

Because of its positive repercussion on productivity, industrial robotics is a major economical 
engine. According to the Robotic Industries Association, the industrys trade group, orders for robots 
by North American manufacturers surpassed $ 1 billion in 2005 [13]. Yet, despite decades of intense 
research and development in robotics, most robots are confined to factories where they do repetitive 
tasks in well engineered environments such as assembly lines. For example, fixtures are used to carry 
parts along assembly lines and pegs are used to position and orient the fixtures in the workspace. 
The accuracy of the fixture mechanisms enables a robot to "blindly" manipulate the content with 
little or no feedback from sensors. The benefits of these assembly lines are such that they often 
outweigh the costs of reconfiguring the plants for new products. 

Robots, however, are no longer the exclusivity of plants. During the last decade, service robots 
have emerged in households and in research labs around the world. These robots operate in less 
engineered environments such as warehouses, houses, on land, underwater and in the air, with little 
or no human oversight. For example: the Staples warehouse in Chambersburg, PA is automated 
with storage and retrieval mobile robots, the Roomba vacuuming robot is in more than 1.5 million 
houses and five competitors finished the 212km course of the 2005 DARPA Grand Challenge. To 
operate, these robots must sense and interact with their environment. Without arguing about the 
degree of autonomy of such robots, it is undeniable that they exhibit greater autonomy when com­
pared to their industrial counterparts. Although complete autonomy is a formidable challenge that 
will seemingly require several more decades to address, low level interaction is within the reach of 
today's technology. Research in this area mainly focuses on motion planning and control by relying 
on the feedback from various sensors. 

Despite all the variables that are considered to determine which sensor is appropriate for a spe­
cific task, a popular solution is to formulate and control tasks from visual information. Irrespective 
of the motivations, the use of visual feedback to control motion, also known as visual servoing, has 
been consistently at die forefront of research in robotics for over a decade. Since its early days in 
the mid 80s, visual servoing tracks are now a major component of all major robotics conferences. 

The objective of visual servoing is to enable a robot to do tasks by solely relying on visual 
feedback. First, a task is defined from images and then visual feedback is used to guide the robot 
toward the goal. In their simplest forms, tasks are defined by the parameters of image features such as 
the pixel coordinates of a target, the parameters of lines or moments of surfaces. In a more complex 
form, the tasks are defined by the relative transformations between bodies in the environment. 

As with any control mechanism, an important consideration is the convergence of the control law. 
For some applications, a locally convergent control law is sufficient. In particular, such controllers 
are applicable to robots working in structured environments [6]. Often, however, it is essential to 
consider global convergence. Equally important is that many systems must generate an explicit plan 
on how to do a task. Examples of such systems are industrial robots that only accept position com­
mands or autonomous robots that must be accountable for their actions. Therefore, it is not enough 
to guarantee that a task will be accomplished as many systems must plan how a task will be ac­
complished. Despite two decades of intense research in visual servoing, no solution that addresses 
simultaneously these considerations has been proposed. Global convergence for arbitrary tasks re­
mains an open problem and existing visual servoing methods require assumptions about the task, 
the environment or the robot. Furthermore, the integration of motion planing with visual servoing 
has been limited to very specific cases [115]. 
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1.1 Motivation and Purpose 
In the literature, the problem of visual servoing is addressed from two perspectives: position-based 
visual servoing (PBVS) and image-based visual servoing (IBVS) [100,12,35, 36]. In PBVS, a task 
is defined by a Cartesian transformation that represents the relative pose between the coordinate 
frame of the camera and the coordinate frame of the environment or a body present in the environ­
ment. Images are used to estimate the current relative pose between the coordinate frames and the 
control loop is closed by computing the position error ep between the two frames. The error is then 
related to the camera velocity v by the position-based interaction matrix Lp according to 

e p = Lpw. 

The main challenge of PBVS concerns the estimation of pose error ep. Typically, solutions to 
this problem require a calibrated camera and knowledge about the environment such as maps for 
localization [63] or a CAD model to estimate all the degrees of freedom (DOF) of the body [122]. 

A position-based feed-forward architecture, known as look-then-move, consists of estimating the 
relative pose at sparse way points along a path. In this particular case, visual feedback is only used 
at each way point and each motion segment consists of a trajectory determined by an independent 
motion controller. Look-then-move is one of the few strategies that enable feed-forward control 
because the trajectory during each motion segment is not driven by visual feedback. As a result, 
look-then-move is the main vision-guided solution for industrial robot because these controllers 
impose their own trajectory generators. 

In IBVS, a task is defined by a vector p* representing the desired parameters of a set of image 
features. The features, such as the coordinates of a target, lines, areas and other moments, are 
extracted from the images. As the robot moves, each feature is tracked between frames and the 
current parameters are represented by the vector p. The role of the controller is to regulate each 
feature to its desired parameters such that the image-based error ej = p* — p = 0. In the literature, 
this task is expressed by the first order approximation [64] 

ej = L/v, (1.1) 

where Li is referred as the image-based interaction matrix. The idea is to estimate the velocity 
of the camera at each iteration by measuring an error vector ej and solving Equation 1.1. In gen­
eral, because of the relative ease and robustness of estimating the parameters of image features, the 
IBVS formulation is known to be computationally cheaper than PBVS. Despite its strengths, the 
formulation of Equation 1.1 has several theoretical and practical limitations. The main theoretical 
limitations are its local convergence and the conditioning of the interaction matrix. First, Equation 
1.1 represents the first order approximation of image projection [ 181]. It follows that methods based 
on Equation 1.1 are asymptotically convergent around ej = 0 and, thus, more suited for active 
tracking [43, 135, 130]. Second, the interaction matrix must remain full rank throughout the task. 
To this day, research in IBVS focuses almost exclusively on answering these two challenges. 

The practical limitations of IBVS are particularly acute within the context of autonomous and 
industrial robotics. First, the control law expressed by Equation 1.1 imposes a trajectory to each 
image feature, and, consequently, to the robot. This potentially leads to undesirable trajectories [32] 
or to singularities. Methods for generating image-based trajectories have been developed [141,165], 
but such methods do not consider the motion of the robot in Cartesian space. Second, in order to 
respect the first order approximation, each feature must be tracked at a sufficiently high rate and 
must remain within the field of view of the camera [45]. Within the context of autonomous robotics, 
however, requiring the visibility of the features at all time imposes several practical limitations. 
First, it is possible to imagine a situation in which an autonomous robot must do a task that involves 
moving behind an obstacle and loosing visual contact with the targets. Second, because IBVS forces 
the robot to keep all targets within the field of view of the camera, IBVS tasks impose important 
constraints on the motor system especially for tasks that involve six degrees of freedom. This limits 
the performance of other concurrent tasks that share the vision or the motor systems. Examples of 
such tasks includes: panning to detect obstacles and map the environment, shift of attention, and 
responding to other perceptual cues such as noises. Likewise, typical industrial manipulators can 
only interpolate their motion in joint or Cartesian space and these trajectories can push features 
outside the field of view [114, 115]. 

In summary, despite two decades of intense research in the field of visual servoing, no satisfac­
tory solution has addressed the challenge of image-based feed -forward control faced by autonomous 
robots or industrial robots. Interestingly, PBVS and IBVS complement their respective strengths. 
On one hand, PBVS is globally convergent and, in particular, look-then-move is suitable for feed­
forward control and motion planning. This is a virtue for autonomous and industrial robots because 
these robots must be able to plan each motion ahead of execution. The challenge of pose estimation, 
however, makes PBVS and look-then-move less attractive for non-engineered environments. On 
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Image-Based 

Position-Based 

Feedback 
IBVS 

Input: Image-based velocity ej 
Output: Velocity v 
Control Law: ej = Ljv 

PBVS 
Input: Position-based velocity ep 
Output: Velocity v 
Control Law: ep = Lpv 

Feed-forward 
Visuomotor Function 

Input: Image-based error e/ 
Output: Position E 
Control Law: ej = V"E 

Look-then-move 
Input: Position-based error ep 
Output: Positions E 
Control Law: ep = IE 

Table 1.1: Compared to other methods, the visuomotor function defines a control law that maps 
image-based errors to position commands. 

the other hand, IBVS is locally convergent and does not extend to feed-forward control and motion 
planning. 

The purpose of this thesis is to propose the visuomotor function as a new solution to feed­
forward control of vision-guided robots. The proposed system merges the benefits of look-then-
move with those of IBVS. The visuomotor function provides the capability of feed-forward control 
in non-engineered environments by using image-based errors. An important aspect of this research 
is that it does not propose a switching control method where the position-based controller and the 
image-based controller are used in alternation [57]. Instead, the proposed method truly merges 
both methods by using the range of IBVS control laws and the domain of look-then-move control 
laws. The comparison between the proposed research and the existing methods is illustrated in Table 
1.1. Table 1.1 shows the combinations of feed-forward and feedback control loops versus image-
based and position-based errors. While researchers have mostly focussed on IBVS and PBVS, 
the visuomotor function is the only known method that aims to map directly image-based error to 
position commands in different task spaces. 

1.2 Objectives 
Human performance is used as the gold standard in many areas of robotics and computational intel­
ligence [50]. Hand-eye coordination is no exception to this rule as human visuomotor performances 
are arguably the most developed. Although the visuomotor system in humans is too complex and 
misunderstood to be considered as a benchmark, its capabilities and limitations are well defined and 
are relevant to outline the specifications of visuomotor systems for autonomous robots. 

An early theory about the human visuomotor system was based on a construction of a 3D rep­
resentation of the environment from images [137]. As a first stage, the visual input is processed to 
recreate the 3D geometry of the environment that surrounds an individual. In the second stage, the 
3D representation is used by the motor system to plan motion and control the movement. Later, this 
theory was undermined by neurophy siological research that demonstrated the existence of the dorsal 
and ventral streams in die brain and their distinct role regarding motion control and perception [143]. 
The role of the dorsal stream for hand-eye coordination was demonstrated by noting that individuals 
with perceptual deficiencies are able to control their motion from visual input. For example, patients 
with visual agnosia1 preserve their visuomotor abilities and are able to accomplish vision guided 
tasks even though their perception of the tasks is inconsistent with reality [143]. Although counter­
intuitive, such findings suggest that humans are able to do a task despite being able to perceive their 
environment correctly. 

Also, it was found that the hand-eye system of humans is well calibrated and is capable of 
feed-forward motion [140]. For example, experiments have demonstrated the ability of humans 
to perform visuomotor tasks without using visual feedback by reaching for illuminated targets in 
darkness [82]. 

Finally, the capability of humans to recalibrate their visuomotor system is well documented. 
Experiments have demonstrated this by having subjects performing a task while distorting the visual 
input with lenses or prisms [40]. Results showed that humans are able to compensate for the visual 
distortion and to recalibrate their visuomotor system. It appears, however, that the visual system is 
not significantly affected by the recalibration. Instead, alteration of the proprioceptive representation 

1 Patient with visual form agnosia have visual perception deficiencies. For example, they fail to recognize or replicate 
objects or geometrie despite being able to detect them. 
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accounts for most of the recalibration [185, 17]. Also, the recalibration affects only the limbs that 
are observed under the visual distortion, which suggest that the recalibration does not even affect 
the whole visuomotor system [38,19]. 

These studies demonstrate that vision-guided motion control and planning in human does not 
depend on 3D perception of the environment, but rather on a dedicated pathway that maps visual 
input to motor output [143]. Without claiming to replicate the human visuomotor system, these 
aforementioned characteristics are the inspiration behind the research presented in this thesis. The 
objective of this thesis is to combine such capabilities in a single vision guided framework called the 
visuomotor function. The objective of the function is to map image-based errors directly to special 
Euclidean transformations without requiring the knowledge of 3D geometry or pose estimation. 

Following the discussion about the capabilities of human's visuomotor system, the objective of 
this thesis is to propose a visuomotor function with the following characteristics: 

1. The visual input must be image-based and only the coordinates of image targets are extracted 
from die images. 

2. The output of the control law is a transformation in a task space (i.e. SE(3)). That is, path 
planners and trajectory generators can be used to determine how the robot do a task. 

3. The visuomotor is an interaction matrix that maps directly the input to the output. 

4. Knowledge or the estimation of die structure of the environment, such as the 3D geometry, is 
not required. 

5. The approximation of the visuomotor function must be transparent and on-line, that is the 
visuomotor system must self-calibrate. 

1.3 Contributions 
Based on the discussion of sections 1.1 and 1.2, this thesis introduces die visuomotor function. The 
function relates arbitrary errors in the image space to a motion of the camera in The integrity of the 
visuomotor function is ensured by a transparent and continuous approximation algorithm. 

Compared to IB VS that relates image-based errors to the velocity of the camera, the visuomotor 
function defines an interaction matrix that maps the same error to a transformation in the task space 
of the robot (i.e. SE(3)). 

The merit of the visuomotor function is that it addresses challenges that are specific to au­
tonomous and industrial robots. First, because the range of the visuomotor function represents 
position commands, it enables the use of path planners and high level decision making algorithms. 
That is, since the solution to die visuomotor function is a rigid transformation that is expressed with 
respect to the current position of the end-effector, a trajectory generator can outline a path in the task 
space between the current and desired position of the end-effector. Similarly, this transformation can 
be passed to a path planner such as a PRM [106] to avoid collisions and other obstacles. Second, 
because the errors are image-based, the system can be used easily in non-engineered environments. 

The research included in this thesis has been die focus of the several scientific contributions. The 
contributions are presented in chronological order. 

• [116, 117, 118] These contributions introduced the idea of relating arbitrary image-based 
variations to variations in the configuration space of the robot. Even though the mathematical 
formulation of the visuomotor function is specific to a pan-tilt unit, the papers present the 
advantages of the visuomotor function for the problem of controlling a robotic head. The pa­
pers present techniques and algorithms used in the subsequent papers. In particular, recursive 
least squares [118] is used to estimate the parameters of the visuomotor function and cerebel­
lar model articulation controller [116, 117] is used to generalize them and approximate the 
global function. 

• [119] This contribution introduced the derivation of the visuomotor function for translational 
tasks. The theory presents how the visuomotor function relates the coordinate errors of image 
targets to motor error in translational task space. Using the method of recursive least squares 
presented in the previous papers, the parameters of the function are estimated on-line and the 
system is able to develop hand-eye coordination for reaching tasks in a short time. 

• [120] This paper extends die formulation of the visuomotor function presented in [119] to the 
displacement of all six degrees of freedom (translations and rotations) of the end-effector. The 
main contribution is the derivation of the linear equations that relate the error in feature space 
to die error in the special Euclidean space (SE{3)). Despite the greater dimensionality of 
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the new formulation, experiments showed the convergence of the system in a relatively short 
time. 

• The visuomotor was also derived for the task space of mobile robots. In this research, the task 
space consists of planar translations and panning. The result is a compact representation of 
the visuomotor function. 
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Chapter 2 

Background and Review 

2.1 Visual Servoing Architectures 
The earliest use of visual feedback in robotics is traced back to the 1960s [50]. Within the structured 
environment of the Blocks Micro World, Marvin Minsky and Seymour Papert used a robotic arm 
with five degrees of freedom and a vision system to construct structures with blocks. Their program 
was derived from earlier work by Patrick Winston in which a computer learned to recognize simple 
block scenes. Later, their research spun off the Copy Demo project led by Winston and Berthold 
Horn [187]. In the late 1960s, a similar project assembled car water pumps from randomly scattered 
parts [23]. 

Throughout the following decades, robot vision emerged as a field of its own. Among the areas 
that compose robot vision, visual servoing addresses a fundamental problem of how to use visual 
feedback to control the motion of a robot [12, 100, 35, 36]. Visual servoing systems are defined 
by the domain and the range of control law. In general, the input space is derived from the visual 
system whereas the output space aims at the motor system. Within these guidelines, many variants 
have been investigated. According to the literature, input spaces are either labeled as position-based 
or image-based with some specific hybrid cases. Typically, the ranges of the control laws are referred 
as direct or indirect. 

2.1.1 Input: Visual System 
In visual servoing, the domain of the control law is used to define the commands and, consequently, 
to determine the processing involved by the visual system. Informally, any information extracted 
can be used to specify a command and this diversity is reflected in the literature with commands 
defined by: points, lines, image moments, poses, optical flow, triangular meshes, homographies and 
luminance. Because every domain has different attributes, the choice of a specific domain, or a 
combination thereof, depends on the application. In some applications, it is possible to estimate the 
relative pose between the coordinate frame of a body and the coordinate frame of the camera. Under 
these conditions, a command represents the desired relative pose between the coordinate frames of 
the body and the camera. In general, this domain corresponds to the special Euclidean SE{2>) group 
of transformations, but it is possible to restrict the domain to a specific subspace. 

If the pose cannot be estimated, then the parameters of image features can be used as input. 
Obviously, the input space varies according to the type and the number of features that are used. For 
these reasons, it is convenient to represent the parameters of all features by a d dimensional vector. 
An image-based command in p* e Kd specifies the desired parameters of each selected features. 
The most common features are: points, lines and surface moments (area, centroid and covariance). 

2.1.2 Output: Motor System 

The range of the control law is defined by any space that can be used to drive a motor system or any 
related sub-controller. In general, these spaces represent any positions, velocities and accelerations 
that are defined in either joint space or operation space. In these cases, known as indirect visual 
servoing, the range of the control law must be fed to sub-controllers that are responsible for driving 
the motor system. 

The range can also span forces and moments in operation space or torques in joint space. In the 
literature, these controllers are referred as direct visual servoing because the error is used to drive 
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Figure 2.1: Direct visual servoing. 

each motor directly. Direct visual servoing generally involves the additional burden of the dynamics 
of the manipulator [145], 

2.2 Direct visual servoing 
In direct visual servoing, the control law directly maps the input error to the motors as torques as 
illustrated in Figure 2.1. 

Research in direct visual servoing has been at best fragmentary for several reasons. First, the 
frequencies required to control the motor system of a manipulator are typically much higher than 
the rates of commercial cameras. For examples, the frequency of Unimation Mark II controllers 
operate at 1kHz [47] and the controller of the Whole Arm Manipulator (WAM) used in this thesis 
operates at 500Hz. In comparison, most cameras operate at 30 frames per seconds and few advanced 
cameras have rates as high as 200 frames per second and experimental imaging systems have rates 
up to 1000 frames per second [146]. Low frequency is thus a main concern in the stability anal­
ysis of a direct visual servoing system [45]. Moreover, high frame rates increases the bandwidth 
requirements and the toll on the computing resources to process each frame. Thus, either the com­
puting resources must be scaled for the additional image processing or computationally inexpensive 
image processing algorithms must be considered. Second, many robotic platforms accept Cartesian 
position commands. With this convenient abstraction, the end-effector of a manipulator is repre­
sented as a coordinate frame in Cartesian space. This representation greatly simplifies the design of 
algorithms and increases the portability between robots. 

Nevertheless, some research groups have concentrated their efforts on direct visual servoing. 
Most notably, Kelly showed how a two links planar robot can be controlled from visual feedback 
[107]. The task consists of moving the end-effector over a target by using a camera placed above 
and perpendicular to the workspace of the robot. The image coordinates of the target and the end-
effector are measured in the image and the error is the difference between the two measurements. 
The controller outputs die torque of each motor from the evaluation of the manipulator's Jacobian. 
This paper exposes the complexity created by the inclusion of the manipulator's dynamics in the 
control law. Furthermore, the experiments consist of simulations and assume continuous visual 
feedback. A similar controller was presented in [108]. This paper introduced a saturation function 
in the control law to limit joint torques and, consequently, large motion between images. 

Direct visual controllers are evaluated in [160]. The aforementioned controllers [107, 108] are 
compared to a controller similar to the one presented in [160]. Again, the experiments are based 
on the simulation of a planar manipulator with two degrees of freedom. Results indicate that the 
transient response of the controller proposed in [107] is the shortest but also suffers from overshoot. 
In comparison, the controller presented in [108] does not overshoot, but has a longer response. 

A recurrent problem with direct visual servoing is the instabilities caused by the latency and 
sampling rate of the vision system [45, 183]. This problem becomes chronic when a target is ma­
neuvering. To overcome this problem, Koivo and Houshangi developed an adaptive controller based 
on a auto-regressive model to grasp a moving target with unknown dynamic [111]. 
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Figure 2.3: Image-based visual servoing 

2.3 Indirect Visual Servoing 
Because of the complexity of direct control laws, indirect controllers have become the de facto 
benchmark in visual servoing. An indirect control law outputs commands that are expressed in 
Cartesian space. Typically, these commands are defined by transformation in the space of special 
Euclidean transformations (SE(S)) or twists. Then, these commands are passed to lower level 
controllers that regulate each motor of the system. The indirect architecture is depicted in Figure 
2.2. 

Typically, the inside loop is composed of joint controllers that operate at a suitable rate[45]. 
This architecture allows the visual feedback to operate at a much lower rate because it is confined 
to the outer loop. As the large majority of the research in visual servoing is based on the indirect 
architecture, the review of indirect visual servoing methods will follow in the upcoming sections. 
The following section will classify the control laws according to their domain. Namely, if the control 
laws are position-based or image-based. 

2.4 Image-Based Visual Servoing 
Image-based visual servoing consists of performing a "visual alignment" by directly regulating the 
parameters of image feature. That is, the command specifies the desired parameters of a set of 
selected image features. As illustrated in Figure 2.3, image-based visual servoing methods propose 
control laws that regulate the parameters of image feature to their desired values. 

Virtually any image feature can be used for image-based visual servoing. However, the most 
popular feature, and perhaps the most intuitive for understanding IBVS, are image points. An image 
point p^ = \xi 2/j] has two parameters that represent the horizontal and vertical image coor­
dinates of a three dimensional target P. A command, denoted p*, represents the desired image 



coordinates for P . Given pj and p,, the role of the controller is to move the robot such that the 
error e, = p | - p ^ = 0. 

In IBVS, the role of the vision system is limited to extracting features from the images. Since 
feature extraction does not rely on calibrated cameras, IBVS has little or no bias and the task is 
completed when each feature e = 0. This characteristic is known to make IBVS methods more 
robust than their PBVS counterparts. Another advantage is that a command can be directly extracted 
from an image. That is, a command can be generated by showing the desired image to the system 
and extracting the desired features from the image. 

The main challenge of IBVS lies in the design of the control law or selecting the appropriate 
features for a given task. An early IBVS method using image points was introduced in [184]. In 
addition to introducing most of the IBVS terminology, the authors are among the first to formulate 
the problem as a first order approximation. They also provide tools for assessing the stability of 
their controller. Weiss et al. introduced the nature of the relationship between the velocities of 
image points pj and the body velocity of the camera's v = \y u>] , where v represents the linear 
velocity and iv represents the angular velocity. 

They expressed this relationship as 
Pi = £v (2.1) 

where L is known as the interaction matrix1. Their formulation of L, however, lacks the knowledge 
of a realistic camera model. As such, they were not able to pin down an exact analytical formulation 
ofL. 

With progress in computer vision, Espiau et al [64] were able to detail the nature of the interac­
tion matrix for several features. First, they outline the nature of the interaction matrix. Then, they 
formulate the problem of IBVS as a task Junction [164] given by 

e/ = P* - Pi (2.2) 

in which the error ej must regulate to ej = 0. Then, they derive an image-based interaction matrix 
Li that relates the velocity of the camera v to the time derivative of the error e / with 

e, = L / V . (2.3) 

Substituting e/ = — \er and solving Equation 2.3 results in 

v = -AZ,+e7 (2.4) 

where L~\ represents the Moore-Penrose pseudo-inverse of Lj. The differential nature of equation 
2.3 ensures the exponential decay of ej . 

The interaction matrices proposed in [64] are Jacobians that relates the instantaneous variations 
of image features to the twist of the camera. As an example, the formulation of the interaction matrix 
for image point given by 

LI{vi,
cz) = 

0 4z H 

-XiVi 

-Ar 
/ 

r+*? 
/ 

Xilfi 
f 

-Vi (2.5) 

where / is the focal length of the camera lens. An important observation is that the evaluation of L/ 
depends on the parameters p^ and the depth cz of the corresponding 3D point P. In that respect, 
IBVS requires calibrated cameras and the 3D information of each point. Methods such as [55] can 
be used if a 3D model of the scene is available. Others have used motion cues [34,170] to estimate 
the depth of image points. 

Several problems arise from the formulation of Equation (2.4). First, poor conditioning and sin­
gularities of Li results in instabilities. Although methods to avoid singularities have been proposed 
[167], such methods assume that the task does not constraint all the degrees of freedom and the 
singularities are avoided by motion within the kernel of L/. 

Second, the exponential decay of e / dictates the trajectory of v and thus the motion of the robot. 
By Equation 2.4, the control law clearly regulates the error of the features parameters. Under this 
control law, each feature follows an image-based trajectory that drives the exponential decrease of 
ej . Although these trajectories are favorable in the image space, the corresponding trajectories in 
the configuration space of the robot are not always desirable. A classic example of this, known as the 
Chaumette conundrum [32], is illustrated in Figure 2.4(a). The initial coordinates of four points are 
denoted by black dots. The task consists of moving the points to their desired coordinates indicated 

'The terms "image Jacobian" and "interaction matrix" are often used interchangeably in the literature. 
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(a) 45° rotation. (b) 180° rotation. 

Figure 2.4: Chaumette conundrum. 

by circles. Clearly, the only motion required in this example is to rotate the camera around its optical 
axis by 45°. Under the image-based control law of equation 2.4, however, each point describes a 
straight line between its initial and final coordinates as indicated by the arrows. If a snapshot is 
taken during this trajectory, the square enclosing the four points (dashed square in Figure 2.4(a)) 
is smaller than the original enclosing square. This suggest that the camera needs moves backward 
while rotating. An extreme instance of this problem is illustrated in Figure 2.4(b) where a pure 
rotation of 180° around the optical axis is desired. To follow this image-based trajectory, the camera 
first moves back at infinity such that all the points intersect in the center, then rotate 180° and, finally, 
move forward. 

Third, the differential nature of equation (2.4) also suggests that it is only locally valid. As such, 
the equation is only valid around the neighborhood of p^. For certain configuration of image features 
and Pj — p*, the system may converge to a local minimum [32]. This will be analyzed in further 
details in the coming sections. 

Finally, the exponential decrease of e r typically implies that the initial camera velocities v is 
violent and decreases as e j decreases. This characteristic further complicates motion planning as 
the gain A of the controller must be adapted to decelerate or accelerate the motion of the robot. 

Overcoming these challenges has been the topic of most visual servoing research during the last 
decade. A strategy is to improve the control laws by avoiding direct evaluation of the interaction 
matrix or by modifying the nature of equation (2.4). Another strategy is to design image features 
with desirable properties for specific control tasks. 

2.4.1 Control Laws 
Most of the research in IBVS focuses on addressing the challenges related to the evaluation of 
the interaction matrix. The common denominator is to replace the exact evaluation of L\ by an 

approximation L~f. These solutions are grouped according to the estimation method. Others, known 
as hybrid controllers, aim to decouple L\ to obtain desired behavior. 

Time Varying Interaction Matrix 

Instead of evaluating Lj at each iteration, the interaction matrix is incrementally updated by using 
the input/output variations observed between consecutive iterations. In [103] the update algorithm 
is based on Broyden's method for secant updates. Given an initial approximation, the interaction 
matrix incorporates the previous variations into the current estimate of L f. Formally, the expression 
for L\ at the k + 1 iteration is obtained from Lf at the k iteration according to 

Lf(k + l) = Lf(k) + dK. 

The main advantage of this method is the approximation of the interaction matrix without knowledge 
o f / and C 2 . 
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Depth Invariance 

In this method, the depth z of each point is set to the depth z* at its desired location. Thus, 

Lf = Lf is constant and only the depth of each point in the desired pose is required. Convergence 
is only guaranteed in the neighborhood around the desired configuration. In addition, the constant 
interaction matrix can lead to undesirable motion and features are not constrained to remain within 
the field of view. 

Projective Invariance 

Projective invariance is used to design interaction matrices that do not depend on the intrinsic param­
eters of the camera [127]. The method define a projective space in P2 by assigning the projective 
basis to three non-collinear points in the image and projecting the remaining points on the basis. The 

result is the collapse of the interaction matrix to the identity matrix, such that Lf = I. The analysis 
of local stability for large calibration errors is reported in [128]. 

2nd Order Approximation 

Instead of the first order approximation of Equation, a second order approximation is obtained by 
formulating Lj as [129] 

tI = ^(LI + LI*) (2.6) 

where Li represents the average of the current interaction matrix Li and the interaction matrix in 
the desired configuration Li*. The presence of L% in Equation 2.6, however, suggest that knowledge 
of the depth of each point is required. 

Hybrid IBVS 

Hybrid control laws decouple a task or its degrees of freedom in two or more independent control 
laws. The idea is to control each component individually. 

Perhaps the most cited example of this approach is the 2Vi method presented in [133]. The 
stability of the method is presented in [132]. 2Vi visual servoing controls the motion by using two 
decoupled control processes simultaneously. The first one controls the rotational component and the 
second one controls the translational component. It follows that the right hand side of equation (2.4) 
is written as 

Lv = Lv[pi,Z)v + Lu{pi)u> (2.7) 

where Ll/{pi, Z) and Lu{p^) are the columns of the Jacobian corresponding to translational and 
rotational motion. 

The decoupling of the translation and the rotation are explained as follow. Given a planar surface, 
it is possible to estimate the rotation between two views from the corresponding homography. If a 
3D point P lies on a plane and its projective coordinates are given by p, then the transformation of 
the plane by an homogeneous transformation 

R t 
0 1 

(2.8) E = 

with (R, t) € SE(3), correspond to a 3 x 3 homography H of the image plane. That is, given 

P' = E 

we obtain [67] 
ap' = Hp 

where a is a scale factor and p and p ' are the projective coordinates of P and P ' respectively. Since 
H is defined up to a scale factor it has 8 degrees of freedom and a solution requires four pairs of 
corresponding points p ' <-> p. Using H, the rotation R and a scaled translation are recovered with 
[67,131] 

H = R+~ (2.9) 
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where n is the normal of the planar surface and d* is the distance between the camera at the desired 
location and the planar surface. Following this, the rotation is controlled with PBVS (3D) while the 
translation is controlled under IBVS (2D). 

Another similar approach was suggested in [53]. Instead of extracting the rotation R, the trans-
lational motion is first handled by 

v = t — 
d* 

where d is the distance between the camera in its current position and the plane. Using this, the 
rotational motion is controlled by 

u> = - £ £ ( p + Lvv). 

Recently, Corke addressed the camera retreat problem (Figure 2.4(a)) by controlling the z axis 
independently from the x and y axes [46]. The control law is expressed as 

P = LXyYXy + LZYZ 

where rxy = [ux vv u>x ajy] and r2 = \yz w j . To enable this partitioning, the method 
relies on two novel image features. The first one, 9^, controls the rotation around the optical axis. 
It is determined by the angle between the line connecting the points p« to p., and the horizontal 
baseline. The control of the rotation around the optical axis (u>z) becomes 

where jUz is the control gain. The second feature, a, represents the area of the polygon determined 
by the points. It is used to control translations along the optical axis and is invariant to rotation about 
the same axis. Control of this feature is given by 

«*=7», (**-*) • (2.10) 

A comparison of previous three hybrid methods ([133, 53,46]) is reported in [75]. 
In [126], each point of the target is projected onto a spherical image of unit radius and the feature 

is the centroid of the projections. Using the velocity of the centroid in the image enables to decouple 
the translational and rotational velocities. 

Instead of decoupling the velocity of the end effector, Oh and Allen partition the degrees of 
freedoms of the robot [148]. Their method allows the specialization of each DOF according to their 
transient response. loints with large bandwidth are used for fast moving targets and the others are 
used for slow targets. 

Other Control Law 

Classic control laws (PI, linear quadratic Gaussian and pole assignment) were evaluated for visual 
servoing in [152]. The feature used is the optical flow of a target moving at a constant depth. The 
strategy is for the controller to regulate the flow to zero. The same authors analyzes three adaptive 
controllers in [151] along the same benchmarks. 

Ruf et al. proposed a different relationship between the velocities of features and the camera 
velocity [162]. Instead of relating variations in features space to the camera velocity, the velocity is 
expressed in a projective space such that the interaction matrix relates two projective spaces. That 
is, rotations and translations of the camera are represented by projective transformations by deriving 
a projective interaction matrix. 

2.4.2 Stability 
The stability of IBVS is analyzed by using the Lyapunov function candidate 

£(*) = | lMt) | |2 

with the time derivative 

C(t) = ef (t)e/(t) 

= -XeJit^L+etit). 
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From Lyapunov second theorem, Equation 2.4 is asymptotically stable if C is negative definite. For 

this it is sufficient to show that LiLf is positive definite. Because L/ is an M x 6 matrix (6 < M) 

and LiLf is an M x M matrix with rank(L/L+) < 6, then (LiLf) is at best positive semi-
definite. Therefore, IBVS methods are not globally convergent and only asymptotic convergence 
around ej = 0 is ensured [35]. 

2.4.3 Image-Based Trajectories 
A drawback of the interaction matrix stems from the representation of a first order approximation of 
a nonlinear system. The implication of the first order approximation is that it converges asymptot­
ically around ej = 0. Attempts for global convergence have mainly used image-based trajectories 
Po, . . . , p* to insert intermediate commands between the initial image features po and the desired 
one p*. These commands are applied successively to the controller such that each feature follows 
a deterministic trajectory. Because die 3D geometry of bodies involved in an image-based servo-
ing task is unknown, these trajectories are not planned offline but instead are computed on the fly 
according to some rules. 

Feddema and Mitchell designed a feature-based trajectory generator to compute a sequence of 
pixel coordinates between a current view and a desired view [68]. Their generator allows asyn­
chronous control and ensures that features stay within the field of view. The trajectory predicts the 
path of a feature by using velocity constraints of the features within each segment of the trajectory. 
The feature used in their work is the center point of the segment linking two points, the segment's 
length as well as its orientation. They also derive a Jacobian in order to predict how the features 
move between two control steps. Their method, however, can control only one feature at the time 
because the combined trajectories can violate the rigidity constraint of the body. 

Park uses an uncalibrated stereo system to synthesize intermediate views of a gripper [153]. 
These intermediate images are inserted between the initial and desired configurations to generate 
intermediate visual servoing goals. Another path planing method interpolates images stored in a 
tracking database to generate intermediate goals [142]. Similarly, trajectory generation is used for 
a collision detection algorithm based on visual servoing [98] with uncalibrated stereo vision. As in 
[39], it uses the constraint that projected obstacles cannot intersect the projected trajectory. Potential 
fields are used in [141] to generate image-based trajectory where the desired configuration defines 
the attractive field and the repulsive field is defined by obstacles and image borders. Another method 
also based on potential fields is presented in [90]. Recently, Schram proposed a trajectory generator 
that minimizes the amount of translation while keeping the target within the field of view [165]. 

2.4.4 Camera Model 
Like other problems in computer vision, using a specific camera model can often simplify the formu­
lation at the cost of a few assumptions. In [41], the mapping between the initial and reference views 
is captured by an affine transformation by assuming a planar target and an affine camera model. The 
velocity of the end-effector is related to the degrees of freedom of the affine transformation by a 
linear transformation based on the parameters of the plane. A similar method is extended to handle 
discrete time and adaptive to depth in [44]. 

The same method is expanded in [5] by modeling the image velocity by a linear transformation 
around the centroid of the object and formulating an interaction matrix that relates two-dimensional 
appearance variations to 3D relative motion between the camera and the body. Drummond and 
Cipolla use a similar approach by approximating the affine transformation by a linear combination 
of basis functions derived from Lie algebra [62]. 

Others have focused on increasing the robustness of IBVS. Since the interaction matrix depends 
on intrinsic parameters of the camera, calibration errors can affect the stability of the system. Control 
methods that are invariant to intrinsic parameters were presented in [84, 127] 

Recently, omnidirectional cameras [79,80] have been used in IBVS [177,71]. The idea is to use 
the projection of features on an omnidirectional camera to decouple the rotation degrees of freedom 
from the translation degrees of freedom. 

2.4.5 Stereo IBVS 
A study of tasks that can be accomplished using stereo cameras with and without proper calibration 
is presented in [96]. The authors elaborate on the conditions under which positioning tasks can be 
accomplished with IBVS or PBVS. Some of the conclusions are 

• Positioning is possible with a weakly calibrated stereo system if the task to be achieved is 
projective invariant. 
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• Only specific projective invariant tasks are possible with uncalibrated stereo system. 

IBVS can be extended seamlessly to stereo cameras. For stereo cameras, one must note that 
both cameras do not share the same coordinate frame such that one of them must act as the reference 
frame. Since, the velocity of the left camera Lv relates to the velocity of the right camera Rv by 
L v = Ad v where Ad is the adjoint matrix defined by [145] 

Ad: 
R [t]xR 
0 R 

the interaction matrix for stereo cameras is denoted by 

r L Li 
AdRLr 

(2.11) 

An important observation is that although each stereo point provides 4 equations, the rank of Equa­
tion 2.11 is 3 because each stereo point (4D) encodes a 3D point. 

An early stereo IBVS was introduced in [97]. Their method uses an affine camera model to 
estimate the geometry. Active contours are used to track the gripper with the constraint that it 
deforms according to the camera model. 

Hager proposed one of the few visual servoing systems with a standalone stereo rig [86]. The 
image projections of a 3D point P on the robot's end effector is defined by [Lpf Rpf] where 
Lpf and flpf are the projection of P in the left and right images respectively. The first task is to 
project P £ R4 into a lower space with a transformation $ : M4 —• R3. This transformation consists 
of projecting L p f and flpf on one of the epipolar lines and then on the line perpendicular to it. The 
result is obtained by keeping each projection on the epipole and averaging the projections on the 
lines perpendicular to it. This work was extended to different alignment tasks in [85] namely: point 
to point, point to line and line to point. 

2.4.6 Image Features 
All the IBVS methods discussed so far were developed around point features where the parameter 
of each feature are (x, y) image coordinates. 

One of the few methods to use line features is presented in [6]. The research targets automated 
welding applications where a manipulator mounted with a welding arc must follow the seam of two 
intersecting metal sheets. Because the system uses line features, it also implies a form trajectory 
generation as the tool control point must follow the line. The line is represented by bi-normalized 
Pliicker coordinates, which define a pencil of parallel lines lying on a plane, and the depth of the 
line. With these coordinates, a switching control strategy is used to decouple the control of rotation 
and translation the system first orients and then positions the camera. 

IBVS has also been used with fields of optical flows, such as the method discussed in [49] 
and with some applications presented in [48]. The image flow is modeled as a polynomial whose 
parameters are used as features for IBVS. The location of an image point p, after k frames is defined 
by 

k 

P = PO + X ) P 5 * 

where St is the time interval between each image and p is estimated by a quadratic motion model. 
Chaumette uses image moments of binary images [33]. The image Jacobian is designed to relate 

camera velocity to moments variations. To use this method, the object must be segmented from the 
image and only planar objects are considered. 

A quantitative approach to measure how the performances (speed and accuracy) of image-based 
visual servoing depends on the selection of features is presented in [91]. The measure, called sensi­
tivity, is related to the rank of the image Jacobian and consequently to the stability of the system. It is 
shown that the sensitivity is zero when the image Jacobian is rank deficient and that using redundant 
features increases the sensitivity and performances. 

2.5 Position-Based Visual Servoing 
The domain that is used to define commands is a key factor that determines the complexity of the 
vision system in the feedback segment of the controller. An important consideration in the choice 
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of the domain is the a priori knowledge about the task and about the environment. In practice, 
relevant knowledge for visual servoing includes the geometry of bodies in the environment and the 
calibration of the hand-eye system. For applications such as manipulators operating on assembly 
lines, this knowledge is often available. In industrial environments, the relative orientation and 
translation between the coordinate frame of the camera and coordinate frame of a body can be 
estimated and compared to a position-based command as illustrated by Figure 2.5. Formally, let the 
relative orientation and translation between the coordinate frame of a camera C and the coordinate 
frame of a body O be represented by the homogeneous transformation CE0 e SE(3) (Figure 2.6). 
Given a desired transformation c" E0, the task of the control law is to regulate c Ec= I, where I 
denote the identity matrix. 

2.5.1 Control Law 
Contrary to IBVS, PBVS allows to find "optimal" trajectory in SE(3). This should not come as 
a surprise since the domain of the PBVS control laws is SE(3). Thus, whereas IBVS control the 
trajectory of targets in the image space, PBVS control the trajectory of the camera in SE(3). As 
expected, however, one drawback of PBVS is that it provides little control over the trajectory of 
image targets. Thus, whereas IBVS does not control the trajectory of the camera in SE(3), PBVS 
does not control the trajectory of targets in the image space. 

Although research in PBVS is more scarce than research in IBVS, several algorithms have been 
developed to address the challenges of PBVS 

Look-then-Move 

Perhaps the most intuitive PBVS strategy is known as "look-then-move". Given that CE0 is esti­
mated from an image, the control law commands the robot with the transformation c* Ec- If the 
calibration of the system is accurate, then only one control iteration is required [101]. Otherwise, a 

is estimated and a new command is used. This formulation is known as look-then-move new CE. 
o 
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because the following estimation of GE0 is processed after the robot has completed its motion seg­
ment. One advantage of this delay is that it provides the vision system a reasonable amount of time 
to compute CE0. Depending on the context, an accurate estimation of °E0 can require several 
seconds to compute. For example, to pick a body with a gripper requires estimating the pose of the 
body but also to evaluate different grasps. 

Despite its relative simplicity, look-then-move has several advantages. First, because the range 
of the control law spans SE(3), paths and trajectories can be planned to meet specific needs such 
as avoiding collision between the manipulator and obstacles. Examples are straight lines in SE(3) 
with bell-shaped velocity curves. For more complex trajectories, such as quintic splines [125], it is 
possible to sample ep asynchronously and to close the control loop at a higher frequency by splicing 
the current trajectory with a new trajectory on-line. 

First Order Approximation 

First order approximation control laws are similar to look-then-move. The main difference between 
the two methods is that the range of look-then-move typically spans SE(3) whereas the range of 
first order control laws span the space of twists (generally R6). For this reason, first order control 
laws require control loops that operate at higher frequencies. 

If CE0 can be estimated at a sufficiently high rate, then it is possible to formulate the control 
law as a first order approximation. As with D3VS, this control law is expressed by 

eP = -ALpV (2.12) 

where v is the camera velocity and where ep 

eP 

lo zo 
0u 

(2.13) 

represents the translational error ( c t 0 — c * t 0 ) and the rotational error (axis u and angle 6). As a 
general rule in operation space control, the control of the translation and die rotation are decoupled 
[24]. In PBVS, this is represented by the 6 x 6 position-based interaction matrix defined by 

LP = -h [%]x 
0 Lflu 

(2.14) 

where [ ] denotes a skew-symmetric matrix. In Equation 2.14, the choice of the rotation control 
law Leu is defined by [134] 

L*u = /3-^[u] x + ( l - J f f ) ) M x . (2.15) 

It is also possible to formulate the rotational control law with other representations. From the 
Rodrigues formula, it is known that the rotation matrix R e SO(3) associated with du is 

R = cos(9)I + sin(0) [u] X + (1 - cos(0))uuT. (2.16) 

By differentiating Equation 2.16, Martinet and Gallice [138] have expressed L#u as 

L0u = -^(Xiace(R)I3-R
T). (2.17) 

Another strategy is to track a position-based trajectory with the translational error 

t(i) = ct0(t) - c \ 0 (2.18) 

and on the rotational error 

u(i) sin(0(f)) = l ( n (t) x rj + r2(i) x r^ + r3(t) x r*) (2.19) 

where r, and r | are the i* columns of the rotation matrices c R0 e SO(3) and c RQ € 50(3) 
respectively [124]. It is also possible to control the rotation through a different parametnzation such 
as roll, pitch and yaw [186]. 

In general, PBVS methods do not guarantee that the object will remain within the field of view. 
This is a serious drawback when tracking GE0 because such methods typically rely on tracking 
features on the object's surface. One solution to overcome this challenge involve decoupled control 
of the depth of the object [ 180] to "zoom out" when the body is near die borders of the field of view. 
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Stability 

From the development of Section 2.4.2, global asymptotic stability for PBVS is obtained if the 
pose estimation is accurate. This is readily demonstrated by showing that LpLp1 = 1$ is positive 
definite. Given that pose estimation incur errors, a more reasonable formulation is to assume that 

Lp1 is approximated by Lp1. Thus, LpLp1 must be positive definite. 
Although PBVS has the potential for global asymptotic stability, this is rarely the case given the 

errors incurred from the pose estimation. Furthermore, not only does the pose uncertainty represent 
a bias in the formulation of the error ep, but the pose uncertainty is also present in the formulation 
of Lp, thus affecting the robustness of PBVS. 

2.5.2 Pose Estimation 

Whereas extracting features for IBVS is considered an advantage because of the relative ease and 
robustness, the main challenge in PBVS is to estimate the pose °E0. Estimating CE0 requires 
knowledge about the geometry of the body and a calibrated camera. The geometry is required 
to establish a correspondence between image features and 3D landmarks but it is also required 
because estimating CE0 implies that the body has a known inertial coordinate frame. As with 3D 
reconstruction methods, the accuracy of c E0 is severely limited by the accuracy of the calibration 
and the resolution of the cameras. 

The main difficulty of PBVS is the estimation of CE0. Sometimes, this problem is reduced to 
tracking EQ given that an initial estimate is provided. Several methods have been developed to 
estimate CE0. Methods are categorized along several criteria such as camera calibration, available 
geometry and the number of views and assumptions about the object. By itself, pose estimation is 
a vast area within computer vision and an in depth review of this area is beyond the scope of this 
thesis. Nevertheless, some of the main methods are reviewed in the next sections for inclusiveness. 

Pose Estimation: Single Camera 

In general, the estimation of EQ by using a single camera requires knowledge about the geometry 
of the observed body and a calibrated camera. A popular algorithm for this is presented in [55]. It 
is an analytic method that requires four points and proceeds in two steps. The first step estimates 
CE0 by solving the system of equations of a scaled orthographic projection. The second step is 
an iterative algorithm in which the estimate is used to re-project the point back on the image plane. 
Then, the reprojected points are used to compute a new estimate with the same method used in the 
first step. 

Another two step algorithm is presented in [186]. The first step projects points of the object on 
the image plane according to an initial estimate of the pose. Then, an extended Kalman filter is used 
to improve the estimate of c E0 by observing the actual projections. In addition to requiring the 
geometry of the target, the nature of the Kalman filter suggests an adequate initial guess. 

Lowe uses nonlinear least squares to fit a parametrized 3D model to image features [122]. First, 
a model is constructed from the object's occluding boundaries. Then a transformation tree is defined 
with the root representing the camera's coordinate frame. Each node of the tree represents a Carte­
sian transformation that is applied to its children and the points of the model are contained in the 
leafs. The parameters of CEQ are estimated by matching the model to the edges of an image and by 
minimizing the error between the edges of the image and the edges of the model. 

A variation of PBVS is presented in Alhaj, [3]. The author uses optical flow to reconstruct 3D 
properties of a surface. By assuming a planar surface, the motion of the camera is used to determine 
the normal of the plane [1]. The task is to regulate the current plane normal to the desired values. 
The algorithm assumes brightness constancy and small displacements. 

In [172], a different approach is used to estimate the pose. A wire-frame representation of the 
scene is used in a virtual world. The pose of the camera is estimated in the virtual world and is used 
to track the pose of the camera in reality. The non-linear estimation is solved by the Gauss-Newton 
algorithm. 

In [4], stereo optical flow is used to estimate the 3D coordinates of a moving object. The control 
strategy is used to predict the coordinates of the object in order to account for computing latency. 
Experiments consisted of picking up a circling miniature train. 
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Figure 2.7: Two views geometry. 

Pose Estimation: Multiple Cameras 

It is possible to recover three dimensional information of a scene if two or more views are used. The 
accuracy of such reconstructions depends on the camera model used to represent image formation 
as well as the accuracy of the cameras calibration. This section only discusses pose estimation 
methods based on the pinhole camera model and presents a brief summary of the theory behind 
three dimensional reconstruction. 

Let the coordinate frames I and r of two cameras be related by a rotation matrix R € SO(S) and 
a translation vector t e R3 as illustrated by Figure 2.7. 

A 3D point P has the coordinates lP = [lX lY lZ] in the coordinate frame I and the 

coordinates r P = \^X rY rZ\ in the coordinate frame r. It follows that 

' P = R(rP - t) . 

The projective coordinates of each point in their respective coordinate frame are given by 

(2.20) 

V 
lK,lP; : rKJV (2.21) 

where K contains the intrinsic parameters of a camera 

K 
f/Sx 
0 
0 

s 

-f/sy 
0 

Ox 

Oy 

1 
(2.22) 

The intrinsic parameters are denned by the focal length / of the lens, the horizontal and vertical 
scaling sx, sy of the CCD array, the coordinates of the optical axis (ox,oy) and camera skew s. 
Many calibration methods have been researched to estimate these parameters [89] and most of them 
require calibration patterns or structured environments. 

The actual coordinates in the images are determined by 

VL„ 1 
xi 

LVi. 

\lx~\ 
Tz 
i 

r* 
JL 

*-rz 
(2.23) 

If die intrinsic parameters lKt,
 rKr, the rotation R and the translation t are known, then the 

coordinates of P (or r P if the coordinate frame r is chosen as the reference) can be determined 
by triangulation. If the intrinsic parameters of both cameras are known, but R and t are not, the 
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Calibration 
Intrinsic and extrinsic parameters 
Intrinsic parameters 
No parameters 

3D reconstruction 
Absolute coordinates 
Up to an unknown scale factor 
Up to an unknown projective transformation 

Table 2.1: Geometric reconstruction versus camera calibration. 

coordinates of P can be recovered up to an unknown scale. 
essential matrix E relates the two 3D coordinates by 

in which essential matrix E is defined by 

rVTElV = 0. 

E = RTX, 

Using epipolar geometry [89], the 

(2.24) 

and where Tx is the skew symmetric matrix of t. Substituting equation (2.21) in equation (2.24) 
results in 

pjEpi = 0. (2.25) 

The solution to find E requires a system of at least 8 equations. Then, from E, it is possible to 
recover the normalized translation t = t/ | | t | | and the rotation R [181]. Consequently, the 3D 
reconstruction of a scene is only up to a unknown scale factor. This scale factor can be determined 
if the distance between two points is provided. 

If the cameras are not calibrated, the 3D coordinates can only be recovered up to an unknown 
projective transformation. Using equation (2.23) in (2.25) we get 

r p T F / p = 0 (2.26) 

where the fundamental matrix F is defined by 

F = rKr
TElKx. 

As with the essential matrix, at least 8 corresponding points are required to estimate F [88]. Us­
ing F, a projective reconstruction is determined along the standard projective basis ( [0 0 0 1]T, 
[0 0 1 0]T, [0 10 0]T, [10 0 0]T, [111 1]T) derived from the combinations of five image points. 
The unknown projective transformation can be determined given the Cartesian coordinates of the 
five points associated used to determine the basis. 

Table 2.1 summarizes the structures that can be determined given the level of camera calibration. 
Because robots move in a Cartesian space, the cameras must be fully calibrated to implement 

PBVS based on 3D reconstruction. Within this context, the body's inertial coordinate frame must 
be determined from the estimated 3D points and the relative pose between this coordinate frame and 
the coordinate frame of a camera is used to regulate the manipulator. 

Pose Estimation: Vision-Based Localization 

The problem of localization and the related problem of simultaneous localization and mapping 
(SLAM) is often encountered in mobile robotics. Despite the focus on mobile robots, the problems 
addressed in these areas are similar to the more general problem of pose estimation. In particular, the 
problem of localization of a mobile robot is defined as determining its coordinates on a floor and its 
orientation 0 with respect to an inertial coordinate frame. Typically, these parameters are computed 
by estimating the 3D coordinates of visual landmarks and by comparing the coordinates to those 
stored in a map. From the two sets of 3 D coordinates, the translation and heading of the robot can be 
estimated by various methods [21,22]. The map is either provided beforehand or constructed while 
exploring the environment. 

Because odometry measurements are unreliable, most successful methods use filters to estimate 
the position s of a robot from an observation o. In particular, Bayes filter, defined by 

P(s\o) = 
P(o\s)P(s) 

Pip) ' 
(2.27) 
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represents the probability of being in a position s, given an observation o. In a dynamic system, 
a sequence of motions at are performed and a sequence of observations Oj are measured. Markov 
localization methods seek to evaluate the posterior probability at each time interval t 

P(st\oi, • • •, ou o i , . . . , at-i). (2.28) 

by using the Markov assumption, 

P(st\si,...,St-i,ai,...,at-i) = P(st\st-i,at-i). (2.29) 

The solution to equation (2.28) is evaluated in three steps 

1. Prediction 
P(st) = £ P(st\st^, at_i)P(*_i) (2.30) 

St-l 

2. Update 
P(st) = aP(ot\st)P(st) (2.31) 

3. Estimate 
s* = MAP(P(st)) (2.32) 

Depending on the model used to represent the probability distribution and the domain, several 
variants of the above Markov localization framework were developed. Markov localization is mostly 
used with discrete spaces [31, 73, 110, 169, 179]. Kalman filters were used in cases where the 
distribution is Gaussian and linearized dynamics and observation models are used [113, 166, 171]. 
Similarly, several methods remove the linear constraints by using extended Kalman filters [51] A 
powerful approximation method to handle multi-modal distribution and partially observable states is 
importance sampling [60,121]. Localization methods based on samples, also known as Monte Carlo 
localization, were successfully used in [54, 72]. Several other methods have combined sampling 
methods with Rao-Blackwellised estimators instead of the maximum a posteriori (MAP) estimator 
[61]. 

Ego Motion 

Similarly to pose estimation, ego motion estimation refers to estimating the camera displacement 
between two views. The nuance stems from the assumption that ego motion typically assumes small 
variations between frames. Therefore, several methods rely on dense flow field, which is not always 
available or reliable. 

A simple and efficient ego motion estimation method is presented in [87]. Kalman filters are 
used to track corners and recovers the ego motion and the 3D coordinates of the corners. Irani et 
al. derive the motion equations for points on a plane to compute region alignment of planar surfaces 
and recover 3D camera motion [102]. The parameters of the motion found by employing a search 
algorithm bounded by geometric constraints[70]. Heeger and Jepson use a subspace method to 
partition the flow field with three sets of equations representing translation, rotation and depth [94]. 

2.5.3 Hand-Eye Calibration 
Another area of research related to visual servoing is hand-eye calibration. Hand-eye calibration 
is related to camera calibration and multiple view geometry discussed in previous section. It seeks 
to estimate the extrinsic parameters X of the camera with respect to the coordinate frame of the 
end-effector. This calibration is essential for the control law to make sense of any measurements 
captured by a sensor fixed on an end-effector. 

Let BEc denote the homogeneous transformation between the coordinate frame of the camera 
and coordinate frame of the base of the robot. Also, let BET& be the transformation from die robot 
base to the end-effector. Given that BEc is determined from the extrinsic parameters of the camera 
and BETQ from the forward kinematics, X is the solution to the hand-eye equation [37] 

BECX = XBET&. (2.33) 

Evaluating the solution to equation (2.33) requires two views. 
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Research on hand-eye calibration is concerned by computing a reliable solution to equation 
(2.33). Proposed methods include linear solutions [188], closed-form [59, 37], nonlinear optimiza­
tion [59]. Other methods have employed structure from motion [7] or recursive least-squares that 
can be applied on line [8]. 

It is important to note that visual servoing systems must account for this hand-eye calibration. 
For example, in PBVS, the relative pose of the body is expressed in the coordinate frame of the 
camera as opposed to the coordinate frame of the end-effector. Accordingly, in IBVS, the velocity 
corresponds to the body velocity of the camera, not the velocity of the end-effector. Thus, the 
coordinate frame of the camera must be configured as the tool control point of the robot in order for 
the output of any control law to be applied to the appropriate coordinate frame. 

2.5.4 Learning and Sensory Control 

Learning methods have also been used in sensory control methods. Several of them are used within 
the context of embodiment [25] for high level interaction with humanoids. 

A hand-eye system for dropping objects on the wagons of a miniature train is presented in [30]. 
The hand-eye coordination is learned by moving a light bulb at some specific points on a mesh grid 
and recording the position of the bulb on the table and the state of the robot. The motion of the robot 
in the workspace is then determined by interpolating over the look up table. 

A 2 DOF stereo algorithm that learns to track a target is introduced in [150]. The method trains a 
neural network with self-organizing fovea. The fovea is characterized with a higher density of units 
in area that are within the reach of the first corrective motion (saccade). 

In [ 18], the authors experiments with various approximations to learn non-linear controllers used 
for robotics applications. Among the approximators are: multilayer perceptrons, radial basis func­
tion network and fuzzy controllers. Iterative learning control [9] is used to approximate the linearity 
around a point of a nonlinear function. Iterative control learning is also used for a position/force 
controller in [16]. 

Learning has also been used in grasping and manipulation. In [163], the robot learns a grasping 
approach for objects. An object is represented by its three semi-major axis. The axes are extracted 
from range images by fitting a super-quadratic surface to the data. Then the interval estimation 
algorithm is used to keep track of the success rate of each action and a confidence interval is assigned 
to each rate. Finally, the IE algorithm is extended to a continuous space by using a decision tree. RBF 
neural network was used in another grasping research [156]. The network performs an appearance 
based object recognition and evaluates a grasp. 

Baroglio et al. used learning to control every aspect of an industrial robot. Their effort involves 
approximating non-linear continuous functions with neural networks. Among the types tested are 
multilayer perceptrons, radial basis functions and fuzzy controllers. 

Learning has also been applied to high dimension spaces. In [74], a Utah/MIT hand with 16 DOF 
is used for dexterous manipulation. To reduce the dimensionality, the authors use virtual fingers in 
order to represent a manipulation with a minimal number of DOF (even though all DOF are actually 
used to perform the manipulation). This representation is used to learn manipulation primitives on 
objects. Then, the primitives are used on different objects and the appropriate parameters are found 
with a nearest neighbor algorithm. The learning is based on the evolution strategy. 

Target reaching and pointing using learning is proposed in [136, 58]. In [136], the humanoid 
learned to locate its arm in the images and track a visual target. Learning was used to create a map 
between the orientation of the gaze and the arm state in order to move the end effector at the center 
of the visual field. In [58], Q-learning was used to reach and grasp a spherical object randomly 
placed in the workspace. To cope with the dimensionality of state-action spaces, the task is broken 
into a sequence of sub-tasks, namely centering and approaching, each with their own discrete action 
and state spaces. 

A method for a mobile robot to learn how to shoot a ball into a goal is presented in [11]. A 
state is defined by discretizing the relative position and size of the ball with respect to the robot and 
the relative position, size and orientation of the goal. The action space is defined by 9 commands 
controlling the wheels. Q-learning is used to estimate the action value function. 

A handful of learning methods have been specifically applied to visual servoing. A learning 
approach has also been used to estimate the image Jacobian [104]. In [76, 78, 77, 178], Q-learning 
is used for visual servoing. The authors point out several merits of using learning, namely that 
calibrations of sensors and actuators are not required. Furthermore, they demonstrate the flexibility 
of their method by using on a mobile robot and an underwater vehicle. 
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Chapter 3 

Visuomotor Function 

The interaction matrix used in IBVS and PBVS involves a first order approximation. This approx­
imation relates the exponential decrease of the error vector e to the velocity of the camera. For 
IBVS, the interaction matrix relates velocities of image features to the camera velocity, even though 
the minimization is done by using the errors of features instead the errors velocity. Although the 
IBVS interaction matrix has several advantages its domain limits the planning of tasks and trajec­
tories. A drawback of IBVS is that it is not suitable for feed-forward position commands that are 
expected by several manipulators, especially industrial ones. The trajectories in feature space or 
task space can conform to some guidelines or rules, but these trajectories are generated on-line such 
that a motion cannot be planned ahead of its execution. Furthermore, B3VS also requires that a 
minimum number of features remain visible throughout the entire motion. This reduces the range 
of tasks that a robot can perform as the targets must remain visible. That is each target must stay 
within the field of view of the camera and must not become occluded during the task. It is important 
to note that these restrictions are not caused by the range of IBVS interaction matrices but by their 
domain. From the literature, the range of an IBVS interaction matrix is the velocity of image-based 
errors.The domain, however, consists of the space of twists (M6) and planning motion in SE(3) 
from this space is counter intuitive. 

Instead of deriving an IBVS interaction matrix whose domain is the space of twists, this chap­
ter introduces an interaction matrix called the visuomotor function whose domain is the special 
Euclidean space SE(3) and the co-domain are variations of image coordinates 

V : SE(3) -> M.d. 

Thus, V aims at combining the advantages of range of IBVS interaction matrices with the domain 
of PBVS look-then-move. 

3.1 Visuomotor Function 
Following the visual servoing nomenclature, the visuomotor function formulation can be derived 
from an eye-in-hand or a eye-to-hand configuration. In a typical eye-in-hand configuration, the 
camera is mounted on the end-effector and the control law controls the motion of the camera's 
coordinate frame. In a eye-to-hand configuration, the camera is mounted on a separate base and the 
control law controls the motion of the robots tool control point (TCP). 

Because the visuomotor function relates variations of image coordinates to variation in SE(3) it 
is defined for a single camera. But for reasons that will be explained in Chapter 4, two cameras will 
be necessary. For this reason, the equations presented in this chapter use the L and R superscripts to 
distinguish between the right and left cameras even though the theory presented in this chapter only 
concerns a single camera. 

The illustration for an eye-in-hand configuration used to derive the visuomotor function is pre­
sented in Fig. 3.1. The configuration consists of two cameras, left and right, with their respective 
coordinate frames L and R. The positions of each camera relative to the coordinate frame of a stereo 
frame S is defined according to the homogeneous transformations LES and RES. The frame S is 

attached to the end-effector of the robot. Since LES and RES are arbitrary, the coordinate frame of 
the end-effector coincides with S. The coordinate frame B represents the base of the robot and it 
relates to the frame S by the robot's kinematics denoted by SEB. Since SEB is obtained from the 
kinematics the following derivations are expressed in the frame S. 
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Figure 3.1: Geometric model: Camera frames L and R are mounted on a stereo rig S. 

The objective of the visuomotor function is to relate arbitrary variations of image coordinates to 
a relative transformation of the end-effector's coordinate frame. For conciseness, equations will be 
derived only for the left camera. Derivations for the right camera are identical in every way. 

The first step is to derive the projective coordinates in the left camera, denoted ^p, of a static 3D 

point with homogeneous coordinates B P = [BX BY BZ l] . The second step is to derive an 
expression relating the variation of Lp as a function of the relative rigid displacement of the frame 
S from EB to E'B according to the homogeneous transformation 

Sjpi Brp SE'S 
R 
0 

t 
1 

r i 
0 

T2 

0 
*3 

0 
t 
1 

where R e SO(3) is the rotation and t e R3 is the translation. 
First, the coordinates of P are transformed in the coordinate frame S by EB and in the 

coordinate frame of the (left) camera L by LES. Second, under the conventional pinhole camera 
model, ^ P is projected on the image plane according to the projection matrix K (Equation 2.22) 
such that 

r£„-| 

= KLES
SEB

BP. (3.1) 

From Equation 3.1, let matrix M be the combination of intrinsic and extrinsic parameters 

M = LKL
LES 

mi 
m2 

m3 

(3.2) 

Furthermore, given the initial position and orientation of die end-effector EB and noting diat S P = 
SEB

BV we get 
L p = M s P (3.3) 

The second step is to express the image coordinates of P after the displacement of the stereo 
frame S according to the transformation SE'B. Substituting SEB for SE'B in Equations 3.1 results 
in 

V 
v 
V = MSE'B

B~P. 

Again, noting that SE'B
BP = SE'S

SEB
B~P = SE'S

SP, Equation 3.4 becomes 

V = MSE'Q
SP. 

(3.4) 

(3.5) 
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The visuomotor function is derived from the difference between Equation 3.5 and Equation 3.3. 
Because the projective space is not closed under subtraction, the difference between Lp' and Lp is 
determined by transforming the homogeneous points in the real space, perform the subtraction, and 
transform the result back in the projective space. That is, if the image coordinates are defined by 

V 

then we obtain 

LPl 
r v Lxi 

Lzl Lz 
Lti' L, 

v v — 
Lz/h z 

L » V - V L y 
T7Z7Z 

Thus, from this operation, we obtain the variation A L p = Lp' — " p 

AV 
ALx~> 
ALy 
ALz 

LzLx' - LxLzr 

LzLy' - LyLz' 
LzLz' 

(3.6) 

Expanding Equation 3.6 results in 

A ^ P = 
ms^Pmi - mi S Pm3 
rri3 P m 2 — Ki2 P» i3 S-&I S E's

bP = N(Lp)i'E's
i'-p (3.7) 

m3BPm 3 

where N is called the visuomotor camera and is represented by 

N(Lp) = 

L L 

2 m i — 2:1113 
Lzm2 - Lj/m3 

l x m 3 

(3.8) 

Equation 3.7 is called the visuomotor junction as it relates the relative displacement of the end-
effector E's to variations of image coordinates ALp. It is important to note that S P is defined 
in the coordinate frame of the end-effector (S) such that any reference to the inertial frame B are 
avoided. Equation 3.7 has the same form than the usual projection equation (Equations 3.3). The 
main differences are that Equation 3.7 defines a projective variation instead of projective coordinates 
and the parameters of the visuomotor camera depend on the projective coordinates L p . Thus, the 
visuomotor camera is an active camera that projects variations oj coordinates resulting from the dis­
placement E's of a point S P . Comparatively, conventional camera model projects the coordinates 
of a point, not their variations. 

One observation about Equation 3.7 is that it projects the variation of P given a motion of the 
end-effector. As expected, this projection depends on the parameters of the actual camera but also on 
the projective coordinates of Lp. Also, Equation 3.7 is defined up to a scale of both sides. The right 
hand side will be analyzed in greater details in Section 3.3, but it is easy to demonstrated that given 
a vector A L p and a transformation SE'S then, for a constant K, any (nN(Lp), s P / « ) is a possible 
solution to Equation 3.7. Interestingly, ALp is a projective vector and, thus, it is also defined up to 
a scale ALp = «ALp. 

A final observation about Equation 3.7 is that motion constraints imposed by a task are reflected 
by the degrees of freedom (DOF) in the rotation R and the translation t. These constraints lead to 
the cancellation of elements in AT^p) and P . The following sections will present variants of the 
visuomotor function for a pan-tilt unit, a mobile robot, 3D translations and a 6DOF motion. 

3.1.1 6DOF Motion 
To use the visuomotor system, the visuomotor camera N(Lp) must be calibrated and the coordinates 
of S P must be known. In the coming sections, these parameters will be obtained by approximating 
the visuomotor system from pairs of observations (SE'S, A

Lp). For now, it is possible to expand 
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the products in Equation 3.7 to obtain a linear formulation. In Equation 3.7, this is done by coupling 
the parameters of N(Lp) with the coordinates of SP. As a result, A L p will be expressed by a linear 
combination between a matrix V and the elements of SE'S. 

In this thesis, the coupling of the parameters of N(Lp) with those of SE'S are called the visuo-
motor parameters since they relate directly the variation of the motor system to variations of the 
visual system. 

In general, the end-effector is free to move along and around any axis. For this general case, the 
visuomotor function for unconstrained motion is derived directly from Equation 3.7. Equation 3.7 is 
composed of one bilinear term and a total of 15 parameters (12 parameters in N(Lp) and 3 in S P) . 
Writing Equation 3.7 in terms of the inhomogeneous coordinates the image-based error is defined 
as follow 

= A V 
LALzi 

After a manipulation of Equation 3.7 we obtain the homogeneous equations 

0 = n^E'^P - e^^E^P 

0 = n2
SE's

3P - eyn3
sE's

sP. 

(3.9) 

(3.10) 

The linear formulation of Equations 3.9 and 3.10 generates 26 parameters per equation (13 parame­
ters for each bilinear term). Noting that the second bilinear term in both equations are equal up to a 
scale, the 13 parameters associated with them can be shared by both equations by factoring out ex 
and ey. Hence, this gives the choice of solving two systems of 26 unknowns or one system of 39 
unknowns. 

The homogeneity of Equations 3.9 and 3.10 can be removed given that 

and 

n3 = [n31 n32 n33 n34] 

exn3
sE's

sP = ex [n3i n32 n33] [R t] S P + exn3A 

eyn3
sE's

sP = ey [n31 n32 n33] [R t] SP + eyn34. 

(3.11) 

(3.12) 

If n34 7̂  0, then substituting Equations 3.11 and 3.12 in 3.9 and 3.10 and solving for ex and ey 
results in inhomogeneous equations 

where 

oi = 
" 3 4 ' 

ex = o i S ^ s P - e x o 3
s ^ s P 

ey = o2
sE's

sP - eyo3
sE's

sP 

[W31 n32 n33 0] 
o2 

n2 

H34' 
03 

«34 

(3.13) 

(3.14) 

(3.15) 

Multiplying out the bilinear terms we obtain the following matrix form of the 6 DOF visuomotor 
function 

e = V 
SE' 0i 

#14 
013] 

#26| 

027 

'27 

e38 0 
038 0 

SE'C 

Sir' where E's is a column vector composed of the elements of E's 

S-ci _ [„T „T „T ^T1T ?E's=[rf A 

(3.16) 

(3.17) 
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and where the visuomotor parameters are defined by 

01 = on
SX; > = O12 X; 0 3 = O13 X 

e4 = on
sY; e5 = o12

SY; 96 = o13
sY 

0-! = o n Z; #8 = "i2 •£; )0 = o13
sZ 

010 = On; 011 = 012! 012 = 013! 013 = 014 

014 = 021 X; 015 = 022 X] 016 = O23 X 

017 = 021 Y; 0i8 = 022 Y; 6IQ = 023 Y 

020 = 021 Z; 02i = 022 Z; 622 — °23 Z 

023 = O2l! 024 = °22! 025 = °23i 026 = 024 

027 — 031 X; 028 = O32 X; 029 = 033 X 

>32 = 0 3 3
Sy 

035 = °33 Z 

•• 0!12S X 

030 = 031 Y; #31 = 032 Y 

033 = °31 Z; W34 = O32 Z 

(3.18) 

036=031! 037 = 032! 038 = 033! 

3.1.2 Pan-Tilt Unit 
This sections considers the visuomotor function of stereo cameras mounted on the end-effector of a 
pan-tilt unit (PTU). A PTU consists of two DOF that orient a coordinate frame. In practice, PTUs 
also involves a 3D translation of the end-effector because of the design of the kinematic chains. In 
a typical PTU (Fig. 3.2), the PAN actuator moves the tilt link, which also includes the TILT 
actuator. Because of the physical presence of an actuator on each link, it is difficult to configure 
two actuators in order for them to act on the end-effector without involving any translation. This 
is illustrated by the modified DH [109] diagram of a PTU in Fig. 3.3. The frame S correspond to 
the end-effector of the PTU on which the left camera L is mounted. The PTU is composed of the 
coordinate frames of die pan (P) and tilt (T) links. The length of the tilt link generates a translation 
of the frame S with respect to die base frame and this translation must be accounted by EB to 
represent the true motion of the cameras widi respect to the coordinate frame B. In the formulation 
used to derive the visuomotor function, however, because the transformations LES and RES are 
arbitrary, the coordinate frame S can be displaced by a constant transformation. Thus, the length of 
tilt link can be absorbed by LES and RES such that the origin of frame S can be moved down and 
coincide with the origin of frame P. 

This property of positioning arbitrarily the coordinate frame S provides three advantages. First, 
it avoids complex kinematic designs that do pure rotations of a camera frame [83]. Second, the 
forward kinematics of the PTU does not need to be known and evaluated to determine the position 
of S and, consequently, of L . Finally, the transformation SE'S is reduced from 5 DOFs (2 DOFs for 
the explicit rotation and 3 DOFs for the implicit translation) to 2 DOFs rotational motion. 

Most commercial PTUs, as the one depicted in Figure 3.2, adopt a Z-Y Euler angles to parametrize 
rotations (Figure 3.4). That is, the coordinate frame rotates around the Z axis by an angle 6Z, fol­
lowed by a rotation around the Y axis by an angle 6y. As with all rotations parametrized by Euler 
angles, the order of the rotations matters. In this case, the transformation SE'S is represented by 

,-E'S'(0z!0y): 
R(Oz,Oy) 0 

0 1 

ru ri2 r13 0 
T21 T22 0 0 
r3i r 3 2 r 3 3 0 
0 0 0 1 

(3.19) 

Using the pan-tilt model, Equation 3.7 becomes 

e = N(Lp) R{ez,ey) o 
0 1 

(3.20) 

From the 6 DOF visuomotor function, the unused terms ( t , and r23) are removed such that we 
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Figure 3.2: Kinematics of a pan-tilt unit: A typical PTU involves a translation of its end-effector. 

A" 

Figure 3.3: Modified Denavit-Hartenberg diagram of a PTU mounted with camera (frame C). 
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Figure 3.4: Z-Y Euler angles. 

ex = [rf r f n 3 r3 3 1 -exrj -cxi\ -exri3 - e ^ m ] 013 (3.21) 

033 
.^35. 

0 H 

020 
#22 

#27 

<?33 

^35. 

Equations 3.21 and 3.22 is expressed in the matrix form named the visuomotor function for a 
pan-tilt unit 

JT „ T T-13 r 3 3 1 -eyrf -eyr% - e „ r 1 3 - e x r 3 3 ] (3.22) 

e = VPTU 

r i 

r i 3 

1 

VPTUI(B) - exvPTu3(0) 
vPTU2(0) - eyvpTU3(e) 

T2 

r i 3 

7"33 
1 

where the functions VPTUI, VPTU2 and vprua are defined by 

VpTUl (9) = [01 • • • 07 09 013] 

V PTC/2 (#) = [014 ••• 020 022 026] 

VpTUz{0)= [027 ••• 033 035 0J 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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3.1.3 Translation 
The derivation of the visuomotor function for 3D translations is now covered. For a translation 
t = [tx tv tz] the expression for sE'g is 

Snt E's(t) = h f 
0 1 

1 0 
0 1 
0 0 
0 0 

0 tx 

0 ty 
1 tz 

0 1 

(3.27) 

As for the visuomotor for PTU, an expression of the visuomotor function for translation is de­
rived from Equations 3.7. Inserting 3.27 in 3.7 gives 

= {tT 1 -ext
T] 

ey = [tT 1 -ext
T] 

10 

#13 

#36 

#37 

#38. 

#23 

#26 

#36 

#37 

#38 

(3.28) 

(3.29) 

Equations 3.28 and 3.29 express a linear relation between measurements (motion and image 
coordinates) and parameters environment and the parameters of the sensors. Since the Equations 
3.28 and 3.29 are already linear in t they are expressed in the following matrix form 

e = Vr 
vTi(e) - exvT3(0) 
vT2(9) - eyvTZ{0) 

where the functions VTI, I>T2 and VTZ are defined by 

i>ri(0) = [ 0 i o ••• #13] 

VT2{9) = [#23 • •• #26 J 

VT3(e) = [#36 #37 #38 0] 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

3.1.4 Mobile Robot 

Typical mobile robots are modeled as planar robots. The model used in this thesis is illustrated 
in Fig. 3.5. The motion is composed by a rotation around the Z axis by an angle 9Z followed by a 
translation t in the X—Y plane. Accordingly, the motion of the robot is defined by the homogeneous 
transformation 

Hi ri2 0 tx 

\RM) tl 3E3(ex,t) = 
0 1 

r i 2 
0 
0 

J*n 
0 
0 

0 
1 
0 

ty 

0 
1 

(3.34) 
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Figure 3.5: Geometric model: Camera frames Z, and R relative to the world frame W. 

Substituting sEs(9z,t) in 3.7 and simplifying results in 

= [rn »*i2 *x ty 1 -ex^n -ea;ri2 - e ^ -exty] 

' #i + #5 
#4 — #2 

#10 

#11 

#13 (3.35) 
#27 + #31 

#30 - #28 

#36 

#37 

#14 + #18 

#17 - #15 

#23 

#24 

#26 (3.36) 
#27 + #31 

#30 — #28 

#36 
#37 

As for the translation, Equations 3.35 and 3.36 express a linear formulation between measurements 
(motion and image coordinates) and parameters (environment and sensor). 

Again, Equations 3.35 and 3.36 can be expressed in the matrix form called the visuomotor 
function for mobile robots 

ey = [rn ri2 tx ty 1 -eym -eyru -eytx -evty] 

e = V, M 

rn 
»*12 

VMi(y) -exvMz{f) 
VMi(y) -eyvMZ{v) 

ri2 

ty 

1 

(3.37) 
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where the functions VMI, VM2 and VMS are defined by 

VMI{V)= ["I ••• "5] 

«M2W = ["6 ••• "10] 

UM3(0) = ["11 ••• "14 0] . 

(3.38) 

(3.39) 

(3.40) 

The reason for changing the parameters 6 to v is because the combinations of the 6 in Equations 
3.35 and 3.36. 

ei" 

_&n_ 

= 

vr 

7». 
1 

3.2 Solution to the Visuomotor Function 
Equations 3.16, 3.23, 3.30 and 3.37 express the linear relations between variations of image coor­
dinate and the motion of a camera for different tasks. Each matrix V is supported by a vector of 
visuomotor parameters 0 whose dimensionality depends on the task. In Section 3.3, a method will 
be presented to estimate the vectors on-line. For now, the concern is about solving for the motion of 
the camera E's given an error vector e and a matrix V. Starting with 6 DOF tasks, the motion of 
the end-effector is given by the solution to Equation 3.16. Given n image-based errors ê  we obtain 
the following system of equations 

(3.41) 

Provided that 12 < 2n equations are available, the elements of the motion 3E'S can be esti­
mated from a least squares solution. The solution to Equation 3.41, however, does not respect the 
constraints of SE(3). That is the solution of Equation 3.41 has twelve dimensions, whereas a trans­
formation in SE(3) has only six degrees of freedom. The reason is that the vectors ri , r-2 and r^ 
form a R9 vector instead of forming a 3 x 3 matrix in SO(3). Hence, Equation 3.41 requires an 
appropriate representation for the rotation. Unfortunately, no other chart on SO'(3) defines a linear 
transformation. This implies that replacing ri , 1-2 and r3 with another representation involves non 
linear least squares. Also, the representation must be chosen with care since it is a topological fact 
that any three-dimensional chart on £0(3) has singular configurations [145]. For example, ZYZ 
Euler angles are singular for Y = 0 (Gimbal lock), and, consequently, singular at R = I. Another 
example are rotation vectors or unit vectors and angles which are singular for angles that are multiple 
of 2n. Rotation representations that are singular at R = J have no appeal for a control law that aims 
at R = I. Unit quaternions have the advantage of being a two-to-one mapping everywhere, but they 
must be normalized to one. Even though a un-normalized quaternion will represent a rotation after 
being normalized, it is preferable to solve the equations with the constraint because the translation 
is not affected by the normalization. 

After considering the various charts on SO(3), none of them has all the desired properties to 
solve Equation 3.41. Although they lead to messy equations, Euler angles is perhaps the least 
constraining representation because it only imposes a constraint on one parameter. Also, using the 
ZYX Euler angles, the representation is only singular for Y = ±n/2, thus no singularity at R = / . 
Finally, successful algorithms for non-linear pose estimation with ZYX Euler angles have been 
reported [122]. 

To derive the upcoming non-linear equations, the following rotation matrices are defined in order 
to estimate the solution to Equation 3.41 in terms of the ZYX Euler angles 

Rx(4>) = 

Ry(P) 

Rz(a) = 

1 0 0 
0 cos((/>) — sin(̂ >) 
0 sin($) cos(<£) 
cos(/3) 0 sin(/3) 

0 1 0 
- sin(/?) 0 cos(/3) 

cos(a) — sin(a) 0 
sin(a) cos(a) 0 

0 0 1 
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6 DOF Motion Estimation 

For 6 DOF, define the vector of motion parameters as 

X6DOF = [a 0 <£ t T ] J 

and define the function to be minimized as 

/ 6 D O F ( ^ , X 6 D O F ) = V 

[Rz(a)Ry(p)Rx(<f>)}9xl 

t 
1 

- e = 0 (3.42) 

where the [ ] operator indicates the stacking of columns into a 9 x 1 vector. Given a sufficient 
number of equations, the least squares solution to Equation 3.42 is found by using Levenberg-
Marquardt algorithm (LMA) [157]. For the sake of conciseness, die exact formulation of JSDOF 
and its Jacobian are presented in the Appendix A.l. Once 'X.QDOF has been estimated, SE'S can be 
determined and passed to a position controller. 

PTU Motion Estimation 

For PTU, the vector of motion parameters is simply 

KPTU = [a 0\ 

and the target function fpru for the parameters 9X is given by 

cos(a) cos(/3) 
sin(a) 

— sin(/3) cos(a) 
— cos(/?) sin(a) 

cos(a) - e = 0. (3.43) 
sin(/3) sin(a) 

sinGS) 
cos(/3) 

1 

Again, because of the non linearity of Equation 3.43, LMA is used to estimate the least squares 
solution. 

Translation Motion Estimation 

Because the translation motion does not involve rotation, the motion is estimated from linear least 
square. Given n vectors 8T and a vector e, the translation parameters 

x r = t 

are estimated by solving the linear least squares problem 

fpTu(&,XPTu) = VpTU 

VT (3.44) 

Mobile Robot Motion Estimation 
The case of mobile robot motion is similar to the 6DOF and the PTU cases in that it involves a 
rotation. Using the motion parameters 

XM = [a tX ty\ , 
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the target function becomes 

/ M ( ^ ) X M ) — VM 

which is again solved by using LMA. 

cos(a) 
sin (a) 

ty 
1 

(3.45) 

3.3 Estimation of the Visuomotor Parameters 
Section 3.1 derived the visuomotor functions for different task spaces. The function for a transla-
tional task (Equations 3.28 and 3.29) and the function for a planar task (Equations 3.35 and 3.36) 
were formulated as a system of linear equations. The function for a pan-tilt task (Equations 3.21 and 
3.22) and the function for a 6 DOF task (Equations 3.13 and 3.14), however, were expressed with 
bilinear terms. Nevertheless, it is possible to express the bilinear terms with a linear term as derived 
in Equations 3.16 and 3.23. 

To compute the solutions presented in Section 3.2, the matrix V must be evaluated and, thus, the 
visuomotor parameters 0 that compose V must be known. These parameters are estimated on-line 
from pairs of measurements (SES , e) by using an incremental least-squares algorithm [149]. 

First, Equation 3.16 is manipulated to obtain 

se = 
0 

0 
? E' JE'C 

e (3.46) 

Given an overdetermined system of equations z.0 = e, the QR factorization of the M x N 
matrix S, with AT < M, is given by 

Z = QR = Q 
0 

where Q i s a M x M orthogonal matrix and RisaM x N matrix composed of the TV x N upper 
triangular matrix Rx. The least squares solution OLS is given by 

QTe = z = ROLS. 

A similar result is obtained by considering the augmented system [S e] 

[S e] = [Qi qjv+i] Rx z 
0 p 

(3.47) 

where p= ||e — E6LS \\ 2 is the minimum residual and Qx is obtained from the thin QR factorization 
B — QxRi. The least squares solution to Equation 3.47 is found by solving RXOLS = z [81]. 

The rank-fe update is done by adding the k x N matrix Sj to E and noting that 

/ 0 
0 Q 

At this point, all that needs to be done is to transform 

applying an orthogonal transformation Qi we get 
R 

to an upper triangular matrix. By 

/ 0 
0 Q QiQi R 

QR = Q Rx z 
0 A 

(3.48) 

and the new least squares solution is found by solving RXOLS = z. 
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In the case of rank-1 update, that is H« = £,-, the matrix 

is triangulated by a succession of N + 1 Givens rotations 

is Hessenberg upper triangular and 

Qi = GN • • • Gi = R 

which requires 3 * (N + l )2 flops. Furthermore, since the new solution only depends on R, the 
computation of Q is not necessary and only a (JV + 1) x (N + 1) matrix must be allocated to 
accommodate R. 

3.3.1 Decoupling of the Visuomotor Parameters 
The visuomotor parameters in Equation 3.18 are the result of the coupling between the homogeneous 
coordinates of S P and the parameters of the visuomotor cameras Oij. This coupling can be removed 
by applying a rank-1 approximation to the parameters. For example, noting that 

>X 
3Y 

[031 O32 033] = 

$27 $28 $29 

$30 $31 $32 

$33 $34 $35 

$36 $37 $38 

= A, 

the singular value decomposition (SVD) of the matrix A is used to compute a rank-1 approximation. 
That is, given the SVD decomposition A = UT,VT, the rank-1 approximation is obtained from 

A = (TiVLivJ 

where CTI is the largest singular value, ui is the first column of the 4 x 4 matrix U and vf is the 
first row of the 3 x 3 matrix VT. Given that the coordinates of S P are homogeneous, we obtain the 
following result 

S P = U l / u 1 4 

where 1114 represents the 4th element of ui and the vector [031 032 033] is obtained from 

[031 032 033] = v f 01U14. 

From there, the other Oy can be recovered as well. 

3.4 Summary 
This chapter introduced the concept of the visuomotor function. Contrary to other methods, the 
visuomotor function has the characteristic of implementing feed-forward control by mapping vari­
ations of measured image coordinates to variations in task space. Thus, the visuomotor function 
uses the range of IB VS with the domain of look-then-move. The interaction between the variations 
in the sensor space and the variations in the task space is captured by a set of parameters whose 
dimensionality depends on the task. Four task spaces were presented in this thesis: pan-tilt of a 
robotic head, translation, planar motion and general 6D0F task. Given an error vector e and the 
visuomotor parameters for a point S P , the solution of the visuomotor function corresponds to the 
motion generating the vector e. These visuomotor parameters are estimated on-line from training 
data by using a recursive least-squares algorithm. In the next chapter, a method will be presented to 
generalize the visuomotor parameters to 3D volumes around S P . 
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Chapter 4 

Generalization and Function 
Approximation 

Section 3.1 introduced several visuomotor functions as a method to estimate the motion in task 
space from variations of image coordinates. Section 3.3 presented on-line methods to estimate the 
parameters of these functions. 

From Equations 3.18, the visuomotor parameters depends on the coordinates SX, SY and SZ 
of a point. It follows that any visuomotor parameters is only valid for a specific 3D point and, 
consequently, every 3D point has a vector of visuomotor parameters. By itself, it is tempting to 
perceive this as a caveat of the visuomotor camera. Indeed, the calibration of passive camera is 
often perceived as a requirement that should be avoided. But given that projective cameras are 
passive, each projection of a point generates few equations. This is supported by the argument that 
3D reconstruction is more accurate given a large amount of well conditioned views of a target. The 
accuracy of the solution comes from the additional equations that are generated from the different 
views. Yet, with a passive camera, there is no mechanism to store permanently observations about 
S P or about die interaction of the camera with SP. That is, the parameters of a passive camera 
only contain information about the sensor itself and these parameters have no relationship to the 
environment. 

On the other hand, given that the visuomotor parameters depend on the coordinates of S P , the 
visuomotor function can store the "characteristics" of P that were obtained from hundreds or thou­
sands of interactions. In the case of the visuomotor function, these characteristics are the variations 
of SP projections given a displacement of the end-effector. Thus, the visuomotor parameters allows 
to store information about S P and that information can be obtained from several views. 

Following this, let define a function 6 ( S P ) = 6 that maps the 3D coordinates of a point to a 
vector of visuomotor parameters 

0 : P -> R™ 

where P represents the 3D coordinates of points that are projected in the field of view of the camera 
and n is the dimension of the vector of visuomotor parameters. The dimensionality of the parameter 
space depends on the task considered in Chapter 3. One drawback of using a single projection is that 
the Euclidean coordinates of S P can only be determined up to a scale. By adding a second camera, 
however, it is well known that the coordinates of SV can be estimated from 3D reconstruction [181]. 
Instead of aiming to estimate the coordinates of S P , let the coordinates of S P be encoded by the 
stereo coordinates s by the function 

S : P - > S 

where S c N4 represent the space of stereo coordinates defined by the Cartesian product of both 
image spaces 

8 = 1 x 1 , (4.1) 

with the image spaces defined by 

I = {{x,y) e N2|0 < x < N,0 < y < M} 

where M is the height and N the width in pixels of an image. 
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Figure 4.1: Two 1 x 4 cameras with identical intrinsic and extrinsic parameters. The shaded areas 
delimit the 4 possible stereo codes. 

The cardinality of S, denoted by |S|, determines the total number of stereo codes that are avail­
able to encode 3D coordinates and is given by 

|S| = (MN)(MN) 

Let ^P n R P denote the 3D space that is visible from both cameras simultaneously and define the 
corresponding subset of stereo points as §LPnRP. Essentially, §z.PnRP represents the subset of stereo 
points that are obtained from 3D points that are within the field of view of both cameras. 

To understand the relation 0 between the space P and R", this chapter analyzes the composition 
of the function 0 with the function <S. The result is a function 0 s = 0 o S : §Lj.nRP —> R™, 
that maps stereo coordinates to the parameter space. First, an upper bound on the cardinality of the 
domain §Lpnfli» is presented. This bound is used as a guide to determine the scale of the memory re­
quirement for approximating 9 S from input-output data. Second, a method is presented to condense 
the domain §LPnRP in order to approximate ©5 by a function ©s 

4.1 Upper Bound on |§z,Pn/jP| 

To derive a bound on [Sz,pn«F|, two important characteristics of <S are presented. First, because of 
the discretization done by a CCD array, several points in LP n RP project to a single stereo point 
in SiPn«p- So S is non injective and this property implies that the stereo coordinates of a 3D point 
are also associated with other 3D points. These points are confined within the volume that is carved 
by the intersections of frustums from both cameras. Second, because of the relative position and 
orientation of the cameras, most stereo codes in S are not associated with any point in LP n R¥. 
That is, most codes provided by the stereo cameras are never observed in practice and are effectively 
wasted. Thus, in general, the function <S(SP) is also non surjective. 

The nature of the non injectiveness and the non surjectiveness of S is demonstrated in the fol­
lowing examples. Define two 1 x 4 line cameras with identical intrinsic parameters. From Equation 
4.1, |S| = 4 x 4. = 16 and, thus, 16 stereo codes are available to encode the volume LP n flP. 
Now, assume that the extrinsic parameters are also identical, such that Lpt = Rpi for any S P . As 
illustrated in Figure 4.1, this configuration is clearly non surjective because only 4 stereo codes are 
possible (|Sr,PnBp| = 4) and 75% of the stereo codes are unused. 

This means that, although the stereo cameras provide 16 different coordinates, only 4 of them 
can be used. Also, the function is non injective because all the points within a shaded area share the 
same stereo code. 

If one of the cameras is slightly translated, >S becomes "less injective" and "less surjective". 
Figure 4.2 shows that a small lateral translation of a camera yields |§LPnRP| = 10 and 37.5% of 
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Figure 4.2: Two 1 x 4 cameras with a translation between their coordinate frames. The regions 
1 , . . . , 10 represent the 10 possible stereo codes. 

stereo codes are unused. As a last example, the configuration of Figure 4.3 shows that the function 
<S is now surjective as |SLpnRi»| = 16 and all stereo codes are used. Nevertheless, the function is 
still non injective. 

Although surjectiveness is possible in previous 2D example, it is impossible to have two M xN 
cameras, with 1 < M and 1 < N, that are configured such that the frustum of every Rpi intersects 
the frustums, of all L-pi. From epipolar geometry [89], the coordinates of Lpi are constrained by 
the epipolar line Le defined by Rpt as illustrated in Fig. 4.4. The epipolar line L e is defined as the 
projection in the left camera of the ray that connects S P to the origin of the right camera. Therefore, 
the length in pixels of the longest epipolar line is used to bound the maximum number of stereo codes 
that is generated by any epipolar line. Given that the longest epipolar line in a M x N rectangular 
image is the image diagonal and that for any image point ^p^, Lpi is constrained to an epipolar line, 
then the number of observable stereo codes is bounded by 

|StPn«p| < MN^/M2 + N2. 

From the previous equations, it is possible to bound the number of individual parameter vectors 
required to represent any visuomotor function. For example, two 320 x 240 cameras have at most 
(320)(240)\/3202 + 2402 = 30720000 stereo points to represents any 3D space, which represents 
only 0.52% of all the possible (320Q)(2402) stereo points. Therefore, the visuomotor function must 
store at most 30720000 vectors of visuomotor parameters. For the special case of registered images 
with horizontal epipolar lines, a tighter bound is given by 24.576e6. 

Although large, memory allocation of this magnitude falls within the capabilities of today's 
computers. A more practical concern, however, is the amount of data necessary to estimate each set 
of parameters. Since each vector 6 involves a least squares solution, the problem of accumulating 
enough equations to estimate each of them is impractical. Furthermore, it is possible that the param­
eters associated with a stereo point are not available yet, but that the parameters of a neighboring 
stereo point are. In such cases, it should be possible to interpolate the neighboring parameters and 
estimate the unknown parameters. To solve this problem, a sensible approach is to generalize the 
parameters of each stereo coordinates to neighboring stereo coordinates. 

This solution suggests computing an approximation 0 5 by using a sparse representation of the 
domain StPnBP . A strategy to address this problem involves methods often used in clustering and 
pattern recognition. The following sections will discuss about instance-based learning and review 
the main algorithms to approximate @s from training data. 
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Figure 4.3: Two 1 x 4 cameras oriented in a way to use all 16 stereo codes. 

Figure 4.4: Epipolar geometry. The point SP projects to ̂ p and Rp. The epipolar line L e constrains 
the coordinates of L p. 
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4.2 Instance-Based Learning 
Instance-based learning (IBL) methods form a category of algorithms concerned with query time 
classification. IBL aims at approximating the function 9 = ©s(s) from N pairs (sk, 9k), 1 < k < 
N, of training data. A characteristic of IBL algorithms is that the classification of the training data is 
performed at query time. It follows that the approximation 9 = 05 (s) can be constructed incremen­
tally as new data pairs (sk,9k) become available. In its simplest form, IBL involves accumulating 
raw data and each query is matched directly to a database. In a more elaborate form, IBL scatters 
basis functions throughout the domain of the function and each query results in the interpolated 
output of the functions. 

The following sections will outline the main IBL algorithms. Over the years, these algorithms 
have been subjected to several modifications and improvements that are often aimed at specific 
applications. Within the context of approximating 0$, the criteria that are sought are scalability to 
large data sets, computational efficiency and accuracy of the approximation. 

4.2.1 X-Nearest Neighbors 
if-nearest neighbors (ifNN) is perhaps one of the most straightforward methods to approximate a 
function from sparse data [ 144]. The intuition is that each training pair (sfc, 9k) is represented by an 
entry in a database. Given a query point sq, the distances between sg and each s/. are evaluated and 
the algorithm returns the K points with the shortest distance. When K = 1, the algorithm returns 
the closest neighbor and the algorithm is equivalent to a Voronoi diagram [52]. 

Several specific data structures and query algorithms have been proposed for KNN. Among 
them, kd trees [52] recursively divide points along each dimension, fcrf-trees enable sub-linear exact 
search and fast approximation search algorithms have also been proposed [20]. A main disadvantage 
of fcd-trees, however, is that adding a new point requires a costly re-balancing of the tree. Also, JfNN 
methods are not suitable for incremental updates as the database is allowed to grow arbitrarily large 
as N increases. For non-injective functions, if NN algorithms imply that only one mapping will be 
represented in the database. In the case of 0 s (s), several points S P are mapped to the same stereo 
code s and each must be represented. 

4.2.2 Locally Weighted Regression 
Similarly to ATNN, locally weighted regression (LWR) uses the nearest neighbors to approximate 
05(s)[14,15]. Contrary to KNN, however, LWR weights each nearest neighbor and the function / 
is approximated by fitting a function through nearest neighbors. 

In practice, LWR often boils down to evaluating a least squares solution over the If-nearest 
neighbors of the query point where the squared error is weighted according to the distance between 
the query point and each nearest neighbor. 

Because it approximates a function by considering several points within a neighborhood, LWR 
provides better generalization than iiTNN. As with jfiTNN, however, LWR does not address the issue 
of non-injectiveness as a single instance of the mapping S : K3 —> § is represented in the database. 
Also, LWR does not provide any mechanism to handle sets of training data that grow arbitrarily 
large. Thus, for a database that grows incrementally over a long period of time, re-balancing the 
underlying data structures periodically is computationally expensive. 

4.2.3 Radial Basis Functions 
As with LWR, radial basis function (RBF) approximates a function by weighting a set of near­
est neighbors [144]. The weight attributed to each neighbor i is computed by a kernel function 
K(d(sq,Si)), where the function d evaluates the distance between the query point sq and the i* 
neighbor. The approximation 9 = ©s(s) is computed by 

L 

Qs(sg)=wo + ^2wiK(d(si,sq)) 
«=i 

where the value of each weight wp,.. •, WL is determined from the training data. Effectively, this 
equation represents a two layer artificial neural network in which the first layer is composed of units 
evaluating the kernel functions and the second layer performs the combination of filters output. 
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By far, the most widely used kernel function is the Gaussian function 

Ki(s) = exp I - l ( s - Hif^is - Mi) j 

with mean /x̂  and covariance matrix Sj. It is known that Gaussian kernel enables RBF networks to 
approximate any function within an arbitrary error [144]. 

RBF with Gaussian kernels represents a specific case of a Gaussian mixture, for which the mean 
and covariance of each kernel are determined and only the amplitudes wj must be estimated [ 13 9]. If 
the training set is relatively small, a kernel can be centered at each data point. This has the advantage 
of fitting the training data exactly but it does not extend to on-line approximation since the number 
of data points can grow arbitrarily large. Also, the kernel functions can be grouped around clusters 
in the data set by using the EM algorithm [56]. Alternatively, the kernels can be centered at arbitrary 
intervals throughout the domain of ©5. Thus, for a large set of data, ©5 can be approximated by 
a relatively small number of kernels that are adequately distributed. Unlike KNN and LWR, this 
ensures that a fixed number of kernels are used to approximate ©5 throughout the entire training. 
One drawback of RBF networks is that for high dimensional spaces, the number of kernels required 
to adequately cover the domain can be large. Since each kernel function is defined over a broad 
support, typically the space of real numbers, the number of weights that must be updated for each 
training pair (sfc, 6k) can be large and computationally expensive. Similarly, to approximate ©s(sg), 
the entire set of kernel functions is evaluated. 

4.2.4 Cerebellar Model Articulation Controller 
Much like RBF, cerebellar model articulation controller (CMAC) globally approximates a func­
tion through a combination of local approximations [2]. The main difference between RBF and 
CMAC is the spatial support and layout of the kernel functions. Although CMAC can be extended 
to various spatial support, each filter is usually supported by a hypercube. A convenient represen­
tation of CMAC is to consider a set of L piecewise constant basis functions, as illustrated in the 
2D example of Fig. 4.5. To facilitate the description CMAC and its notation, this section will de­
part from the previous ones in that it will aim to approximate a function y = /(x) instead of the 
usual 0 = ©5(3). Let j e t and let X& 6 R2. Furthermore, define L binary basis functions 

b(x) = [61 (x) . . . &L(X)] , of which only a fixed number T < L are activated according to 

, , . 11 if x activates the Ith basis function 

toWHn A • • (4-2) 
10 otherwise 

Then, given a weight vector w = [wi . . . WL] and a query point xg, the approximation of 
/ (x9) is given by the piecewise linear interpolations 

y = b T (x , )w (4.3) 

Thus, given the basis functions b(x) and some data (x^, j/fc), the aim of CMAC is to determine the 
optimal values of the weight vector w. 

Typically, the mapping b(x) is designed such that two nearby inputs xi and X2 will activate some 
of the same basis functions (see Fig. 4.5). This is illustrated in Fig. 4.5 where the two neighboring 
inputs xi and X2 activate the basis function b^_2. Therefore, a methodical arrangement of the 
receptive fields consists of overlays (also called tilings) such as the one presented in Fig. 4.6(a) 
[ 176]. Each overlay is composed of a number of adjacent, non overlapping receptive cells that cover 
the entire input space. To ensure that each input is covered by exactly T receptive cells, T overlays 
are superposed with a relative offset such as the example of Fig. 4.6(b) for two tilings. 

In the context of the approximating Qs, x G R2 must be replaced by the stereo space s £ § 
and the output y is replaced by one of the visuomotor parameters 0» (1 < i < 36). Also, each basis 
function is assigned a set of weight vectors w$, one for each visuomotor parameter. 

Modeling Capabilities 

Although CMAC was developed in 1970s, no thorough analysis of CMAC was investigated until 
1989 [154]. To understand the limitations of CMAC one must study the type of function that CMAC 
is capable of modeling and the convergence of the algorithm. Originally, it was reported that CMAC 
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Figure 4.6: Positioning of receptive fields. 
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always converge with arbitrary accuracy on univariate and multivariate inputs [66]. Later, this claim 
was shown to be erroneous as CMAC cannot reproduce arbitrary multivariate look-up tables [28]. 
The same research also concludes, however, that CMAC is able to model exactly functions that 
are the linear combinations of univariate constant functions. The authors demonstrate their claim 
by proving that the dimension of the set of L basis function of a CMAC network is L - (T - 1). 
This important result implies that when the basis functions overlap each other (1 < T), the space 
spanned by the basis functions is of lesser dimension than the number of basis functions L. As 
a consequence, given N pairs of input-output (xi, j / i ) , . . . , (XN,VN) with L <= N, the N x L 
matrix 

-b(X1r 
B = 

used to solve the system of equations 

Bw = 

b(x w ) 3 
(4.4) 

2/1 

Vn 

= Y (4.5) 

has rank(B) < L — (T — 1). As such, when more than one overlay is used (1 < T), rank(B) < L 
and the matrix B is singular. The generalization also affects adversely the dimension of the range of 
B. The conclusion from these findings is that there is a space of multivariate functions that have no 
CMAC equivalent and this space increases as T increases. 

Brown et al. demonstrate, however, that CMAC is able to model functions that are defined by 
a linear combination of piecewise constant functions. In detail, they demonstrate how a function 
/ ( x ) = Ylifi{xi)' where each fi(xi) is a piecewise constant function, can have an equivalent 
CMAC representation. 

Convergence 

The convergence properties of CMAC have been studied and debated [27, 29, 154, 155, 66, 65]. 
Because CMAC uses piecewise constant interpolants, the output is also piecewise constant. Thus, 
CMAC can only model exactly piecewise constant functions. The formulation of CMAC by piece-
wise constant interpolants suggest formulating the problem as an optimization over a set of basis 
functions. Early research diought that the basis functions are always linearly independent and, thus, 
the linear optimization was done on a full rank system [66, 65]. Later on, as mentioned in the 
previous section, it was demonstrated that linearly independence of the basis functions is only a 
property of univariate CMAC and that die basis functions of multivariate CMAC are always linearly 
dependent, resulting in an optimization problem on a rank deficient system [29], 

Parks and Militzer [154] were among the first to provide formal answers about the convergence 
of the original CMAC algorithm presented by Albus in [2]. Their research shows that CMAC either 
converges to a fixed point or a "limit cycle" when the data are presented in "cyclic training". For 
"random training", they conjecture that CMAC converges to "capture zones". Parks and Militzer 
also compared several learning algorithms to train a CMAC network. Namely, those are 

1. Albus-Kaczmarz learning algorithm. 

2. Moving average training. 

3. Partially optimized step length in the last perpendicular direction. 

4. Training at the point widi maximum error. 

5. Partial Gram-Schmidt. 
Although all these methods aim at solving Equation 4.5, they are formulated as recursive algorithms. 
The reason for incremental algorithm is essentially related to the computational cost of solving 
Equation 4.5 directly. Noting that B is an N x L matrix and N is often in the order of N ^ 10000 
while L »— 1000, solving Equation 4.5 through the Penrose-More or singular value decomposition 
(SVD) is a challenge for real-time systems. The conclusions are that despite partial Gram-Schmidt 
is able to approximate die functions exceptionally well, it only does so in die absence of noise 
and it is computationally expensive. In comparison, the Albus-Kaczmarz algorithm has a median 
convergence rate but has the cheapest computational cost. 

In other research, the convergence of a least mean square algorithm is presented in [26]. He et 
al. present a LMS algorithm with variable learning rate, but assumed that B is full rank. Similarly 
to the recursive least squares algorithm presented in Section 3.3, an algorithm based on the normal 
equation [158] and on the QR factorization [159] were presented. 
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4.3 Approximation of 65 
CMAC and RBF are effective on-line approximation algorithms [175] that have comparable per­
formances [112]. Because of the convenient shapes of each cell, however, CMAC with Albus-
Kaczmarz, has the advantage of being computationally very efficient [174]. As will be outlined in 
Chapter 5, the computational efficiency of CMAC, enables several updates of parameters at each 
iteration by queuing the updates. 

The two important components of CMAC are the computation of the basis vector b(s) and the 
algorithm used to update the weight vector w. In this thesis, the basis vector is obtained from a set 
of hashing functions while the Albus-Kaczmarz algorithm is used to update the weights. 

4.3.1 Vector of Basis Functions 
Using CMAC, 0 s is approximated by L 4D hypercubes organized in T overlays. In practice, the 
mapping b(sg) is done by a set of T hashing functions hj : SL 

pnBP —> ^ with 1 < j' < T, where 
each hj is only allowed to activate one basis function on the j , h overlay. Hence, for T overlays, a 
query point sq e §Lpn

Rp is mapped to T basis functions according to 
T 

Ms,) = £ M s « ) - (4-6) 

Once determined, the basis functions are used to approximate the parameters by summing the 
weight vectors 

[b(s,)wi~ 
e = es(Sg) = 

b( s g )w n 

(4.7) 

where w,, 1 < i < 38 indicates the weight vector associated with the visuomotor parameter 0j. 
The stacking of b(s9)w* is necessary since the CMAC assumes by default a single output. Thus, 38 
weight vectors are necessary and each visuomotor parameter is associated to a w j t 

4.3.2 Albus-Kaczmarz Learning Algorithm 
The original algorithm proposed by Albus [2], aimed at using the training data (sk, Ok) to incremen­
tally adjust the vector w to obtain an accurate approximation. The algorithm itself has its roots in 
Rosenblatt's Perceptron [161] and even further to Hebbian theory [93]. 

Given N equations (sk,Ok), the goal of the algorithm is to find suitable values w to satisfy, 
if possible, Equation 4.3. In the case of approximating 6 5 , the vectors Ok are obtained from the 
incremental least squares (Section 3.3). In vector form, the vector Wj after k + 1 updates, denoted 
by Wi,fc+i is given by 

Wj,fe+i = witk + (0j,k+i ~ b ( s f c + i ) T w a ) — Y ^ - , (4.8) 

where &itk+i represents the h + 1th estimate of the i* visuomotor parameter. Essentially, Equation 
4.8 adds the correction 6itk+i — b(sfc+i)

TWj)fc to the current weights. Then, correction is distributed 

uniformly on the T weights that have contributed to the error by multiplying with b ^ , + " . 
It was later found that this method is identical to the one presented by Kaczmarz in 1937, known 

as the Kaczmarz method [105]. Originally, the iterative method was designed to solve systems of 
linear equations and has been used in several areas such as signal processing, machine learning 
and computer tomography where it is known under the name Algebraic Reconstruction Technique 
(ART) [147]. Kaczmarz also reported that the distribution vector ' s j + " can be multiplied by a 
factor 0 < e < 2 and still preserve convergence. An identical finding was also reported in [92]. 

Perhaps the most significant problem with Albus-Kaczmarz method is that the convergence de­
pends on the order in which the equations are presented. Parks and Militzer clearly demonstrate 
this by analyzing the convergence of the algorithm according if the data is presented in cyclic order 
"cyclic training" or if the in random order "random training" [154]. Although better convergence has 
been reported with "random training" [95,69,147], no theoretical derivation of this convergence has 
been demonstrated other than the conjecture in [154]. Recently, however, Stromher and Vershynin 
have proposed a randomized Kaczmarz algorithm with exponential decay [173]. Their algorithm 
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selects an equation with a probability that is determined by its relevance. Although Stromher's algo­
rithm fills a large gap in Kaczmarz algorithms, the method is not suitable for on line approximation 
because the algorithm only selects specifics equations with the implication that all the equations are 
initially available. 
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Chapter 5 

Experiments 

Experiments were conducted to assess the performance of the visuomotor function. This chapter 
involves experiments in simulations and with real robots. The aim of these experiments is to evaluate 
the performance of the visuomotor function for each task presented in Chapter 3. 

As mentioned in Chapter 4, stereo cameras are used to index the visuomotor parameters by 
using an approximation of the function 65 . These parameters, however, only capture the image-
based variation of a single camera. That is, even though two cameras are used, the visuomotor 
parameters represent a single visuomotor camera. This implies that the second camera is used 
only to obtain a stereo point and it is not used to solve for the motion of the end-effector. It is 
possible, however, to obtain a vision motor function for both camera. In this case, two functions are 
approximated simultaneously (one function for the left and one function for the right) and, thus, two 
sets of parameters are associated with each stereo point: one set of parameters L9 is estimated for the 
left camera and one set of parameters R0 is estimated for the right camera. The difference between 
these two approaches is that in the latter case, since the domain of both functions is the motion of the 
end-effector, both functions can be combined to solve for the motion of the end-effector. Essentially, 
this implies that using two functions generates twice as many equations than using a single function. 
For example, in the 6DOF case, at least six equations are required to find a solution to the motion 
of the end-effector (Section 3.2). Since each image point provides two constraints, three points are 
required to find a solution. If a single function is used, then the error of three points must be defined 
in the corresponding camera. If two functions are used, however, the equations can be distributed in 
both function and, thus, both cameras. In the previous example, two equations can come from one 
camera and four from the other. If the image-based error of three points is defined in both cameras, 
then a total of 12 equations are available to solve for the motion of the end-effector. 

Furthermore, using two functions instead of one does not constrains a point to be visible from 
both cameras in the initial and in the desired positions. As long as a 3D point provides a stereo 
correspondence in the initial view and an image-based error is defined in either of the cameras, the 
point provides two constraints to the solution. In the case where the number of initial stereo corre­
spondences is insufficient, it is also possible to use the visuomotor parameters given by the desired 
views and to solve for the inverse of the motion. Although it is possible to use equations obtained 
from the initial and final views simultaneously, it must be remembered that the extra equations are 
redundant. 

In the following experiments, every simulation was done by using a single visuomotor function 
(associated with the left camera) while experiments performed on a real robot used two functions 
except experiments with a real PTU. 

5.1 Implementation Details 
Details about the implementation of the algorithms presented in Chapters 3 and 4 are now given. 
Simulations were implemented in Matlab while experiments on a read robot were implemented in 
C++. 

Incremental Least Squares 

The incremental least squares algorithm based on the QR factorization can be easily implemented 
in C++ by linking to LAPACK and BLAS libraries. For each set of parameters, a sufficiently large 
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Figure 5.1: Overlays for 2D images. Each color represent an overlay and each bold contour repre­
sents the selected tile on each overlay. The yellow contour represent the boundary from the union of 
all the selected tiles. 

matrix must be maintained to store the upper triangular matrix R and k update equations. In the 
C++ implementation, the QR factorization is done by calling the LAPACK routine dgeqrf and the 
solution to the triangular system is computed by dtrtrs. As mentioned in Section 3.3, it is possible 
to formulate the problem with an upper Hessenberg matrix and to factorize by using a sequence of 
Givens rotations. Although this is computationally very efficient it is limited to rank-1 updates. For 
the simulations in Matlab, the QR factorization routine was simply called. 

CMAC 

Each visuomotor function is approximated by representing the stereo space S c N 4 with a CMAC. 
In the experiments, each image coordinate is encoded by 32 overlays with each overlay dissecting 
the image in a grid of 32 x 32 pixels. These values were chosen because they provide a resolution of 
1 pixel and a reasonable amount of generalization. This can be verified with the example of Figure 
5.1 with 4 grids of 4 x 4 pixels. The figure shows that by offsetting each grid by exactly one pixel 
along both x and y directions, each pixel is encoded by a unique combination of 4 tiles. Although 
the total area over which the parameters are generalized varies between image coordinates (see the 
yellow contour and the black dot in Figure 5.1) the 32 x 32 tiles provide a reasonable trade-off 
between generalization, accuracy and memory. 

In the example of Figure 5.1, the image delimited by the thick black square contains 20 x 20 = 
400 pixels. Yet, each overlay contains 5 x 5 = 25 tiles such that a total of 100 tiles are required 
for an approximation. Thus, for one 320 x 240 image and 32 overlays of 32 x 32 pixels, each of 
the 76,800 image coordinates is encoded by a unique combination of 32 tiles among 2,560 tiles. For 
640 x 480 images, each of the 307,200 pixels are encoded by the combination of 32 tiles among 
9,600 tiles. 

Levenberg-Marquardt 

In the C++ implementation, the solution to the motion of the end-effector was computed by using 
the Imder routine in the MINPACK package '. In the Matlab implementation, the routine LMFsolve 

'MINPACK is available from www.netlib.org. 
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available on the internet was used2. 

Updates Pipeline 

Approximating the visuomotor function involves updating several vectors of visuomotor parameters. 
The characteristic of these parameters is that they capture the interaction between the camera and 
a specific stereo point. The fact that each visuomotor parameter depends on the 3D coordinates 
of a point (see Equation 3.7) provides the capability to store information about that interaction for 
each point. The main drawback of the visuomotor approximation is that these parameters must be 
estimated. Because each tile contains a set of parameters, the total number of tiles (i.e. 2,560) is 
an upper bound on the number of sets of parameters that must be estimated. It is important to note, 
nevertheless, that some of these tiles might never be used. This claim is supported by the discussion 
of section 4.1 that demonstrates that not all 3D point can be represented by a stereo point. Because 
the relation between the 3D space and the stereo space depends on the configuration of the cameras, 
it is possible for a 3D point to be visible by only one camera. 

By itself, the estimation of the parameters with incremental least squares and the approximation 
with CMAC do not pose a problem. These algorithms are stable and divergence is exceptional. The 
main challenge stems from the amount of data that is required to estimate each set of parameters. 

The motivation for the visuomotor approach is that as the end-effector moves, the cameras track 
or match features in the stereo space and the observed variations are used to estimate the visuomotor 
parameters. The algorithm presented in this section collects these variations in a list and updates the 
parameters of all the tiles that are represented in the list. Although the algorithm can be extended to 
several points, it only requires that a single 3D target is tracked in both cameras in order to generate 
a sequence of stereo points si, S2,. . . , sn . 

For example, lets assume that the initial position and orientation of the end-effector with respect 
to the base frame is Sl EB e SE(3) and let si be the stereo coordinates of the target in that position. 
Now, let the robot move to a new position defined by SlEB according to the relative transformation 

Es. During the motion, the target is tracked and its coordinates are now S2. From X2 — Lx\, 
LV2 — hVi and s* ESi, the parameters 9 s (sx) = 0Sl are updated. The update procedure consists of 
updating the least squares estimate of 0Sl (Section 3.3) followed by the updating the weights vectors 
in the CMAC (Equation 4.8). Given the same data, it is also possible to update the parameters 
©5(S2) = 0S2- This comes from the observation that Lx\ - hxi, Ly\ - Lyi and SlES2 can be 
obtained from si, S2 and Sa Es 

Assume that the robot keeps moving and the end-effector is at position 3aEw and the target 
is has the coordinates S3. Then, from Lx$ - Lx\, Lys - Ly\ and SaESl the parameters 9Sl are 
updated once again. Using the above argument, the parameters ©5(s3) = 0S3 are also updated from 
Lx\ — Lxz, Lyi — Lyz and SlES3. Now, if S2ESi and S2 are stored, it is also possible to update the 
parameters 6S2 from Lx% — Lxi, Ly% - Lyi and 33ES2. Finally, it is also possible to update once 
again the parameters 0S3 from LX2 - Lx%, Lyi - Lys and S2ES3. 

This procedure can be repeated each time an observation ( Es , Sj) becomes available by using 
the combinations between pairs of observations as illustrated by Figure 5.2. Thus, if a list contains 
N pairs of observations (Sj Ex, sj) the parameters 0Si can be updated N - 1 times from the other 
observations in the list. Repeating the procedure for each node in the list yields a total of N(N — 1) 
updates. Consequently, each time a new observation (SiElySi) is obtained, the parameters 9Si are 
updated N times from all the (3jE1,Sj) in the list. Likewise, each observation in the list can be 
updated once from (Si E1, s,). The pipeline algorithm is outlined by the Algorithm 1. The routine 
UpdateParameters first updates the parameters with the incremental least squares and, then, the 
new estimate is propagated in the CMAC (Equation 4.8). 

As it will be demonstrated in the upcoming experiments, Algorithm 1 is capable of estimating 
the visuomotor parameters very efficiently. In the experiments, the updates were done incrementally 
and the initial pipeline only contains the initial observation (Sl ESi, si). Then, each new observation 

(StE1,Si) is used for one round of updates. As the number of observations in the pipeline grows, 
the number of updates performed during each iteration grows linearly. Realistically, given limited 
computational resources, the number of observations in the pipeline must be bounded. 

Thus, although the argument that the visuomotor function requires the estimation of a large set 
of parameters is valid, the challenge is addressed by taking advantage of the large amount of data 

2The file LMFsolve.m is available from the Matlab Central website. 
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Figure 5.2: Combination for updates. 

Algorithm 1 Approximate the visuomotor function 
l 
2: 
3 
4; 
5 
6: 
7: 
8: 
9: 

10: 
11 
12: 
13: 
14: 
15: 
16: 
17: 
18 
19 
20: 
21 
22: 
23: 

N<-0 
transformation <— 0 
stereo <— 0 
{Do one round of updates} 
loop 

SEW <— EndEffector() {Obtain the position of the end-effector} 
s «— StereoTargett5.^, W P ) {Obtain the stereo coordinates} 
for i = 1 to N do 

SiEw <— transformation[i] 
Sj <— sfereo[i] 
tiles *— GetTiles(sj) {Update the parameters associated with s,} 
for t = 1 to T do 

UpdateParameters(i«Zes[i], SiEw, SEW, s$, s) 
end for 
ttZes «— GetTiles(s) {Update the parameters associated with s} 
for t = 1 to T do 

UpdateParameters(fa7es[£], SEW, SiEw, s, st) 
end for 

end for 
N <-N + l 
transformation[N] <— SE} 

stereo[N] <— s 
end loop 

w 
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Figure 5.3: Configuration of the PTU used in the simulations. 

that is provided by the cameras and the robot. 

5.2 Pan-Tilt Unit 

PTU are often used in robotics to build robotic heads. Controlling the angles of a PTU from visual 
feedback, often called "gaze control", is perhaps the simplest task from an IBVS perspective. Since 
only two degrees of freedom are controlled two equations are required to control the pan and tilt 
angles. For this task, IBVS requires two equations which can be provided by the image-based error 
of a single image target. Because IBVS are feedback systems, the amount of pan and tilt involved 
in a task is never determined ahead or during the execution of the task. 

Typical feed-forward systems that can determine the amount of pan and tilt rely on 3D recon­
struction. This involves estimating the initial and desired 3D coordinates of the target in the coordi­
nate frame of the end-effector and then solving for the pan and tilt angles. 

Using the solution to the visuomotor function, the pan and tilt angles can be determined from the 
image-based error measured in one camera and the second camera is used only to index the table of 
parameters. Although using stereo cameras seems redundant to control a PTU, it must be recalled 
that most PTU do not merely orient the coordinate frame of a camera. That is, virtually every PTU 
also involve an amount of translation. It is for this reason that the parameters depends on the depth of 

P. In the case of a true PTU, then no translation is involved and a monocular camera is sufficient. 

5.2.1 Simulations: Visuomotor Function 
The simulations consist of projecting a 3D point in a virtual camera and generating motions by 
selecting random pan and tilt angles. Only angles that resulted in the point being projected within 
the field of view of the camera were retained. 

The horizontal baseline between the cameras was set to 20cm and both cameras were moved 
10cm in front of the end-effector (Figure 5.3). The intrinsic parameters of the virtual cameras were 
obtained from a 640 x 480 Point Grey Research Dragonfly. The parameters of the cameras are 
reported in Table 5.1. Gaussian noise with a standard deviation of 3 pixels was added to both image 
coordinates. 

Algorithm 1 was implemented and two thousand iterations were executed. The implementation 
of the routine EndEffectorQ samples random pan and tilt angles and returns a transformation 

*EW. Although the angles were randomly sampled, only the angles that resulted in WP being 
projected in the field of view of both cameras were selected. The routine StereoTarget returns the 
stereo coordinates of the point ^ P when the end-effector is in position SEW. 
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Focal length (horizontal): 469 
Focal length (vertical): 472 

Central point (horizontal): 344 
Central point (vertical): 255 

Table 5.1: Intrinsic camera parameters of the camera used in simulation. 

At the end of each iteration of Algorithm 1, the solution to the visuomotor function was com­
puted by solving 3.43 with xi~ x\, y%— y\ and from the parameters 0Sl. A sample of simulated 
angles and the solutions obtained during one simulation are presented in Figure 5.4. Figure 5.5 il­
lustrates the absolute errors between the simulated angles and the solutions (the absolute value of 
each error). The figures show that altfiough the initial solutions are erroneous, the solutions improve 
as more observations are gathered and updates are processed. The error stabilize after 100 frames, 
which is equivalent to 200 rank-1 updates. 

Because only the parameters of observed stereo point are estimated, an update map is presented 
in Figure 5.6. The intensity of a pixel indicates how many times the pixel was associated with a tile 
whose parameters were observed. For example each time that the pixel (Lx, Ly) was observed, the 
tiles that are associated with that pixel (see Figure 5.1) were updated. For each tile 1 < t < 32 
encoding (Lx, Ly), all the pixels that are masked by tiles[t] are incremented by 1 to indicate that 
they are associated with a tile that was updated. This process is repeated for all the stereo points s*. 
Because it is difficult to visualize the 4D space of stereo points, each image is visualized individually. 
Although this does represent the combination of left/right pixels inherent to stereo points, the maps 
provide an insight on how the updates are distributed in each image. One observation about Figure 
5.6 is that not all stereo points are observed. As mentioned in Chapter 4, not all stereo points can be 
observed, thus, not every tile is updated. Anotfier observation is that the random sampling of angles 
results in a relatively uniform distribution of updates. 

This simulation was repeated 100 times and the statistics about the mean absolute errors (Figure 
5.5) are presented in Figure 5.7. The plots indicates mat the mean absolute error converges to 
0.075rad for the pan angles and 0.05rads for the tilt angles with the standard deviation of 0.035rads 
and 0.02rads respectively. 

To demonstrate the robustness of the visuomotor approach, 100 more simulations were done. 
This time again, the parameters used to compute the solution to the function were those obtained 
from the projection of WP. The image-based errors however were obtained by the projection of 
WP + J\f(0,0.25m) where Af(0,0.25m) corrupts each coordinate of wP with a Gaussian distur­
bance of standard deviation 0.25m. In other words, this experiment aims to demonstrate that the 
parameters associated with a stereo point generalize well to neighboring 3D points. The results 
are illustrated in Figure 5.8. Compared to Figure 5.7, the disturbances roughly doubles the mean 
absolute error and the standard deviation. 

Real 

Experiments done with a real PTU involved two video cameras mounted on the wrist of a robot 
arm. The cameras used in the experiments were two Pyro IEEE 1394 webcams that were positioned 
approximately 20cm apart as illustrated in Figure 5.9. Each camera captured a 320 x 240 image 
in YUV422 format 30 times per second. One target in both images was tracked by the meanshift 
algorithm [42]. The pan-tilt system used in the following experiments used joints 5 and 6 of a 7 
DOF Whole Arm Manipulator (WAM). 

The procedure for this experiment follows the same guideline than the simulation with the ex­
ception that real data is collected. The meanshift tracker was initialized on a target and the target 
was tracked throughout the experiment. The back-drivable nature of the WAM enables moving the 
arm in gravity compensation and, by using this characteristic, the wrist was moved manually. At 
each frame, the image coordinates of the meanshift tracker and the corresponding position of the 
end-effector were recorded (see EndEffector and StereoTarget in Algorithm 1). The variations 
derived from the data were used to approximate the visuomotor function of one camera on-line. 
Algorithm 1 was used on-line with the data streaming from the cameras and the WAM. 

To compare the results of the experiments with those obtained in simulations, the solution of 
the visuomotor function was evaluated after each iteration of Algorithm 1. The pan and tilt angles 
are displayed with the solutions from the visuomotor function in Figure 5.10 and the corresponding 
absolute errors are presented in Figure 5.11. Compared to the simulation, the errors stabilize after 
400 frames. Beyond the 400th frame the mean absolute errors are 0.0419rad for the pan angles 
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(a) Pan angle (rad). 
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(b) Tilt angle (rad). 

Figure 5.4: Actual and estimate values of pan and tilt angles (only the last 80 iterations are illustrated 
for clarity reason) 
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Figure 5.5: Absolute error of pan and tilt angles. 
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100 200 300 400 500 600 100 200 300 400 500 600 

(a) Simulation PTU: Update map for the left camera, (b) Simulation PTU: Update map for the right camera. 

Figure 5.6: Update map. The intensity of a pixel reflects the amount times one of its tile was selected. 

and 0.041 lrad for the tilt angles with standard deviations of 0.0344 and 0.0310 respectively. One 
explanation for this is the conditioning of the observations used in simulation. Contrary to random 
angles, the angles used in this experiments vary smoothly and lead to poorly conditioned systems 
of equations. Also, by moving the PTU manually, the user tends to keep the target towards the 
center and generates small image-based errors. This can also be visualized from the update map of 
Figure 5.12 where the most updated areas are the most intense. The maps clearly demonstrate the 
bias towards the center of the image. Also, this concentration is a consequence of the configuration 
of both cameras. With the PTU, it is impossible to move away from the target such that the space 
§tjpnR]P is very limited. Hence, although the parameters of these stereo point get updated frequently, 
the equations are poorly conditioned. 

5.3 Translation 
Translational movements are often required to do reaching movements. From an IBVS perspective, 
translational tasks pose an interesting problem. In hybrid systems, such as 2!/2 visual servoing, the 
translation component is only determined up to a scale. Therefore, translation motions are controlled 
from the visual feedback. As with many IBVS tasks, this approach only considers the direction of 
the translation, but not the amount of translation involved. 

Of course, with calibrated stereo cameras, the translation can be estimated from 3D reconstruc­
tions. Given a stereo correspondence in the initial image and a correspondence in the desired image, 
the 3D coordinates of the point in the initial and desired positions can be estimated and the transla­
tion can be recovered. 

Contrary to this approach, the visuomotor function uses the parameters associated with each 
stereo point involved in the task. Based on these parameters and the image-based errors, the visuo­
motor function is solved directly for the translation. Thus, at least three equations obtained from the 
image-based errors are required. These equations can come from a combination of sources. If one 
visuomotor function is used, the solution requires the image-based errors from at least two points 
(four equations). If two visuomotor functions are used, then the same 3D point provides two equa­
tions for each function for a total of four equations (two equations for the function of the left camera 
and two equations for the function of the right camera). 

Simulation: Visuomotor Function 

The simulations presented in this section are based on those presented in section 5.2.1. The cameras 
have the same internal and external parameters and the 3D translations were sampled randomly. 
The translations of the end-effector were confined to the interval [±lm ± l m ±lm] , although 
only the translations that kept the targets within the field of view of both cameras were used. One 
visuomotor function was used in the experiments, which implies that two 3D points were used to 
provide the constraints to the solution. 

Each simulation consisted of 500 iterations of Algorithm 1. After the each iteration, the transla­
tion between the initial position and the most recent one was estimated by solving Equation 3.44 by 
using the parameters 0Sl and the image-based errors obtained from Lxt — Lx\ and Lyi — hy\. The 
results of one simulation is illustrated in Figures 5.13,5.14 and 5.15. Each figure plots the simulated 
translations (X, Y, Z) along with the solutions to Equation 3.44. The figures also plots the absolute 
error for each of the solution. 
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(b) Mean and standard deviation of the absolute tilt error. 

Figure 5.7: Error statistics of 100 simulations. 
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(a) Mean and standard deviation of the absolute pan error after adding normal disturbance to the 3D point. 
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(b) Mean and standard deviation of the absolute tilt error after adding normal disturbance to the 3D point. 

Figure 5.8: Error statistics of 100 simulations. 
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Figure 5.9: Setup for the eye-in hand cameras used for the PTU and for the 6DOF experiments. 

This simulation was performed 100 times and the mean absolute error and its standard deviation 
are reported in Figure 5.16, 5.17 and 5.18. The reported errors show that the error of the solutions 
stabilize within 50 frames. The convergence can be verified by monitoring the condition number of 
the system of equations used to compute the least squares estimate of dSl. This information was 
recorded during one of the simulations and it is illustrated in Figure 5.19. The figure shows that the 
condition number stabilizes after 50 frames. Thus, any additional updates beyond the 50th frame 
has little influence on the estimation of the parameters and, consequently, on computing a solution. 

Again, to demonstrated the robustness of the visuomotor approach to disturbances, the system 
was asked to determined the translations of a point W~P + M(0,0.1) while using the parameters as­
sociated with the stereo point of WP. Thus 100 additional simulations were done and the results are 
shown in Figures 5.20 to 5.22. Clearly, the disturbances have a more negative effects on the results, 
especially when compared to those of the same experiment with a PTU. As it will be demonstrated 
in the next section, however, these results still compare favorably to the 3D reconstruction approach. 

Simulations: 3D Reconstruction 

In this section the performance of the simulations presented in the previous section are compared 
to estimating the translation from 3D reconstruction. The stereo rig used in these simulation was 
identical to the one used in the previous simulations. One of the 3D point used in the previous simu­
lations was also used in this experiment and the same cameras and noise were used. Furthermore, the 
exact camera parameters were used to perform the 3D reconstruction. That is, the parameters used 
for the perspective projection were also used for the 3D reconstruction. The algorithm employed for 
the 3D reconstruction is the maximum likelihood (ML) algorithm that minimizes re-projection er­
rors [89]. This algorithm is considered among the most accurate and robust and the Matlab routines 
were downloaded from the textbook's website3. 

The experiment consists of 100 simulation with each simulation performing 500 translations. 
The translations were selected according to the guideline presented in the previous section. First, 
WP was projected in the stereo cameras to the point sj and its 3D coordinates were estimated 
according to the ML algorithm. Then, the end-effector was translated and WV was projected to the 
point s2 and the final 3D coordinates were estimated from these projections. Finally, the translation 
was determined from subtracting the initial 3D coordinates from the final 3D coordinates. The 
results of the mean absolute errors and standard deviations over all the simulations are illustrated for 
each component in Figures 5.23 5.24 and 5.25. 

As illustrated, the results for the 3D reconstruction are surprisingly bad. For the X and Y 
components, the mean absolute error is consistent at 0.5m whereas it varies between 0.6m and 0.8m 
for the z component. The standard deviation averaging 0.45m is also strikingly large. Compared 
to the visuomotor simulations of Figures 5.16, 5.17 and 5.18, the errors from the 3D reconstruction 
more than 10 times greater. Yet, both methods used 4 equations to solve the same problem. In fact, 
the results obtained with 3D reconstructions are comparable to the results obtained in Figure 5.20 to 
5.22 where disturbances were added to the environment. 

3The code is available at http://www.robots.ox.ac.uk/ vgg/hzbook/code. The specific Matlab routine used in the experi­
ments is vggJC_from_xP_nonlin. 
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Figure 5.10: Real PTU: Pan and tilt angles. 
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Figure 5.11: Real PTU: Absolute errors. 
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(a) Real PTU: Update map for the left camera. (b) Real PTU: Update map for the right camera. 

Figure 5.12: Update map. The intensity of a pixel reflects the amount of updates. 

One explanation of this difference is that the 3D reconstruction propagates errors when estimat­
ing the initial coordinates and the final coordinates of WP. Since the translation is directly derived 
from these values, the errors from both estimations accumulate in the estimation of the translation. 
Contrary to this, the visuomotor approach does not transform the problem in the 3D space. There­
fore, no error is propagated in the 3D space and the solution only depends on the accuracy of the 
parameters and the input noise. 

Another explanation is that although the exact parameters of the camera were used for the 3D 
construction, these parameters only define the behavior of the sensor. Contrary to this, the parame­
ters of the visuomotor camera depend on the sensor and on the projective coordinates of the target 
and the parameters define the interaction of the camera with the environment. Furthermore, the pa­
rameters of the visuomotor camera are estimated by observation resulting from motion in a specific 
task space. Thus, the parameters associated with a stereo point represent the interaction of the cam­
era with a 3D point, or more correctly of a 3D volume, under the task space. And it is possible to 
store the parameters of such interactions because the visuomotor function is able to model such in­
teraction. In this sense, the visuomotor function has an unfair advantage over the 3D reconstruction 
methods. Yet it is the nature of the visuomotor function to dedicate parameters to each stereo point 
and it is the nature of the algorithms presented in this thesis to use a large amount of data in order to 
approximate them. 

4 DOF WAM 

Experiments for translations were performed with a 4 DOF Whole Arm Manipulator (WAM). A 
marker was installed on the end-effector of the WAM and the marker was tracked by meanshift 
trackers in both cameras. This standalone configuration was chosen because the (X, Y, Z) coor­
dinates of the end-effector are independent from its orientation. As such, the end-effector is not 
constrained to translational motions. Thus, the XYZ position of WP is determined by the transla­
tion of the end-effector. Because only one 3D point was used and 4 equations are required to solve 
for the translation, two visuomotor functions were used. That is visuomotor parameters were esti­
mated for the both cameras simultaneously. The solution of the translation was computed by direct 
least-squares using the Fortran routine dgelss. 

Using the Algorithm 1, the parameters were updated at the frame rate of the cameras (30fps). 
The routine EndEffector simply queried the forward kinematics of the arm, while the routine 
StereoTarget returned the image coordinates of the target. The arm was move manually in gravity 
compensation for 3000 frames. The results are illustrated in Figures 5.26, 5.27 and 5.28. These 
figures are the counterparts to the simulation results of Figures 5.13,5.14 and 5.15. 

As for the PTU, the main difference between the simulations and the real system is the conver­
gence horizon. The real system requires about 200 frames for the solutions to stabilize whereas the 
simulations converged within 50 frames. The mean absolute errors beyond the 500th frame were 
[0.0311m 0.0335m 0.1277m] with standard deviations of [0.0250m 0.0252m 0.0998m]. 
Again, the nature of the real motion appears main culprit for the slower convergence as illustrated 
by the evolution of the condition number for the system of equations for one of the tiles associated 
with si (Figure 5.29. Another possible cause is related to the eye-to-hand configuration used in 
the experiment. Because the marker on the end-effector has to remain visible to both cameras the 
volume in which the end-effector was able to move is significantly reduced. One reason is self-
occlusion where the target on the end-effector becomes occluded by the end-effector itself. In the 
simulation experiment,the end-effector was able to move in a 1m x 2m x 2m cube whereas in the 
end-effector of the WAM was restricted to a cube of about 0.6m x 0.8m x 0.6m. 
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Figure 5.13: Simulated translations along the X axis. 

60 



... i i i 

Visuomotor Function 
— — Kinematics 

480 482 484 486 488 490 492 494 496 498 
frames 

(a) Simulated Y translation. 

III M Myfi JIlwW ttmfMmm 
lull „ , i i 

mMJ 
100 150 200 250 300 

frames 
400 450 500 
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Figure 5.14: Simulated translations along the Y axis. 
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Figure 5.15: Simulated translations along the Z axis. 
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Figure 5.16: Mean and standard deviation of the absolute X error (100 simulations). 
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Figure 5.17: Mean and standard deviation of'the absolute Y error (100 simulations). 
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Figure 5.18: Mean and standard deviation of the absolute Z error (100 simulation). 
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Figure 5.19: Evolution of the condition number of for one tile with simulated data. 

64 



0.7-

0.5 

0.4 

0.2 

0.1 

0 

-0.1 

-0.2 

\ \ \ \ \ \ \ \ \ 

! ! ! ! ! ! T '•- ': 

50 100 150 200 250 300 350 400 450 500 
frames 

Figure 5.20: Mean and standard deviation of the absolute X error with additional disturbances (100 
simulations). 
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Figure 5.21: Mean and standard deviation of the absolute Y error with additional disturbances (100 
simulations). 
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Figure 5.22: Mean and standard deviation of the absolute Z error with additional disturbances (100 
simulation). 
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Figure 5.23: Error and standard deviation for X translations using 3D reconstruction (100 simula­
tions). 
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Figure 5.24: Error and standard deviation for Y translations using 3D reconstruction (100 simula­
tions). 
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Figure 5.25: Error and standard deviation for Z translations using 3D reconstruction (100 simula­
tions). 
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Figure 5.26: Translation along the X axis. 
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(b) Absolute translation error. 

Figure 5.27: Translation along the Y axis. 
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Figure 5.28: Translation along the Z axis. 
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Figure 5.29: Evolution of the condition number of for one tile with real data. 

5.4 6 Degrees of Freedom 
Generally, control of all six degrees of freedom is the benchmark for any visual servoing method 
and a large amount of research in visual servoing aims at solving this problem. Several methods that 
address this challenge were presented in Chapter 2. 

For 3D reconstruction methods, the rotation and translations can be obtained from two sets of 
3D points. Again, the first step is to obtain two sets of 3D coordinates from 3D reconstruction and 
then to fit a special Euclidean transformation to both sets. Several methods based on least squares 
have been proposed to that effect [10, 182]. 

With the visuomotor function, the transformation between two views can be computed directly 
from the parameters associated with each stereo point involved. In the following experiments twelve 
equations where used to estimate the six degrees of freedom of a transformation. 

5.4.1 Simulation: Visuomotor Function 
The simulations in this section follow the procedure outlined in the previous simulation sections. 
For the 6 DOF case, six 3D points were randomly sampled within the 3D space delimited by 
[±0.5m ±0.5m 2m ± 0.5m] . The end-effector was free to move in a [2m x 2m x 2m] cube 
and to rotate arbitrarily although only poses that projected all the points in the field of view of both 
cameras were selected. Each simulation involved 2,000 iterations of Algorithm 1 and a total of 
100 simulations were done. Given that the 2,000 iterations results in 2,000 observations and that 
Algorithm 1 processes N(N — 1) updates based on N observations, a total of 3,998,000 calls to 
UpdateParameters were processed during each simulation. After each iteration, the position and 
orientation of the end-effector with respect to the initial position was estimated by solving Equation 
3.42 with the parameters 9Sl and the errors Lxt — Lx1,

hyi - Lyx. Figures 5.30 to 5.35 illustrate the 
mean absolute errors between the simulated and estimated positions of the end-effector. 

All the plots show that the errors of the solution converge after 300 frames, which correspond 
to 600 rank-1 updates. The convergence can be verified by the condition number of the system of 
equations associated with a tile. For example, the plot of Figure 5.36 illustrates that the updates after 
the 100th frames provide little information about the visuomotor interaction. These results will now 
be compared to the 3D reconstruction in the next section. 

One of the main challenges of using many points is that it is preferable to have every point 
projected in the field of view of both cameras The reason why it is preferable for a point to be visible 
in both cameras is to be able to index the parameters associated with the stereo point. The other 
reason is to measure the image-based variations that are required to update the parameters. Although 
failure to keep points within the field of view is not critically important as in IBVS, it defeats the 
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Figure 5.30: 6 DOF simulations: Error and standard deviation for rotations around the X axis (100 
simulations). 
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Figure 5.31: 6 DOF simulations: Error and standard deviation for rotations around the Y axis (100 
simulations). 
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Figure 5.32: 6 DOF simulations: Error and standard deviation for rotations around the Z axis (100 
simulations). 
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Figure 5.33: 6 DOF simulations: Error and standard deviation for X translations (100 simulations). 
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Figure 5.34: 6 DOF simulations: Error and standard deviation for Y translations (100 simulations). 
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Figure 5.35: 6 DOF simulations: Error and standard deviation for Z translations (100 simulations). 
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Figure 5.36: Evolution of the condition number of for one tile with simulated data. 

purpose of the on line approximation algorithms. Since six points are used in the simulations, a total 
of 12 projections are constrained simultaneously, which inherently constrains the range of motion 
of the end-effector. One consequence of these constraints is that it limits the image-based variations 
of each target to a small area around their initial coordinates, which has an adverse effect on the 
distribution of updates in the stereo space. 

5.4.2 Simulations: 3D Reconstruction 

In this section the simulations of the visuomotor function approach for 6DOF is compared to a 
standard pose estimation based on 3D reconstruction. As for the translation experiments, the purpose 
of this experiment is to compare both approaches in simulations. 

The same six 3D points used in the previous simulations were used and the same cameras and 
noise model were used. Again, the exact camera parameters were used to compute the 3D recon­
struction. The algorithm employed for the 3D reconstruction is the same ML algorithm used in 
Section 5.3. 

As in the previous section, the experiment consisted of one hundred simulations, each involving 
2,000 transformations. The first step of each simulation is to transform the coordinates of each 3D 
point in the initial coordinate frame of the end-effector and then to project each point in both cam­
eras. From these initial projections, the initial 3D coordinates of each point are estimated by the 3D 
reconstruction algorithm. Then, for each transformation, the coordinates of each 3D point are trans­
formed in the new coordinate frame of the end-effector and then projected in both cameras. From 
these new projections, the new 3D coordinates of each point is estimated by the 3D reconstruction 
algorithm. Finally, the rotation and translation is estimated from the initial and new 3D coordinates. 
The algorithm used to estimate the rotation and translation is based on the least squares algorithm 
byAmnetal. [10]. 

Under Gaussian noise with a standard deviation of 3 pixels, the overall 3D reconstruction has 
a mean error of 0.0416m for the X coordinate, 0.0392m for the Y coordinate and 0.1135m for the 
Z coordinate. As expected, the Z coordinates are less accurate due to the perspective projections. 
Despite the relatively accurate 3D reconstruction, the least squares pose estimation between two sets 
of point performs poorly when compared lo the visuomotor function. The results of the mean errors 
and standard deviations over all the simulations are illustrated for all 6 DOF in Figures 5.37 to 5.42 

Compared to the corresponding graphs in Figures 5.30 to 5.35, the absolute error involved by the 
3D reconstruction is roughly twice the magnitude than the error of the visuomotor approach. What is 
more even striking is the difference between die standard deviations which are significantly greater 
in 3D reconstruction. Thus, from these simulations, the accuracy and robustness of the visuomotor 
approach over the 3D reconstruction appears significant over the 3D reconstruction approach. 

These results should be interpreted under the light that the visuomotor function bypasses the 3D 
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Figure 5.37: Error and standard deviation for rotations around the X axis using 3D reconstruction 
(100 simulations). 

reconstruction whereas 3D methods require two reconstructions operations. Instead, the approxi­
mation of the visuomotor function relies on 8,000,000 equations to capture the behavior of stereo 
points under 6 DOF motion. From the results presented in this section, it appears that the error 
incurred from the reconstruction must be unrealistically small to obtain a solution comparable to the 
the visuomotor function. 

Approximation of the Visuomotor Parameters 

The CMAC algorithm generalizes the estimates of the parameters in the stereo space. That is, after 
each least squares update, the parameters associated with a stereo point s is generalized over a small 
neighborhood such that the parameters can be used to approximate the parameters of neighboring 
stereo points. To validate CMAC approximation, this section compares the approximation of the 
visuomotor parameters to the true values derived analytically. 

In the first step, a simulation was executed during which 1000 3D points were sampled randomly 
within a 3m x 3m surface in the XZ plane (Y = 1). Each point was projected in both cameras 
such that a corresponding stereo point was obtained. From the 3D coordinates and the camera 
parameters, the visuomotor parameters were computed analytically from Equation 3.18 and the 
values were propagated in the CMAC. Following the training, 100 3D test points were sampled 
randomly and projected in the stereo cameras. For each stereo point, the visuomotor parameters 
were obtained from the CMAC and compared to the analytical values. Due to the large quantity of 
illustrations, the results of diis experiment are presented in the Appendix A.2. Results are shown 
only for elements that do not exibit constant values because CMAC was able to model these function 
exactly (errors in the range of 10~10). In this experiments, the parameters mat are reported are 
Gi,02,03,07,0s,0g,0i4,015,016,020,02i,022,027,028,029,033,034,035- Results are presented in 
Figures A.l to A.18. Each figure shows two illustrations. The left illustration shows the plane that 
results from the analytical values (i.e. the ground truth). To interpret die normal of these planes, the 
reader is refered to the definition of the parameters in Equation 3.18. The dots around the surface are 
the approximations of the parameters as given by the CMAC. In the right illustration, a histogram 
displays the distribution for the relative absolute error between each approximation and its true 
value. 

5.4.3 Real 
Experiments for 6 DOF motion were also conducted on the WAM. As for the PTU experiments, 
a hand-in-eye configuration was used (see Figure 5.9). This configuration was chosen instead of 
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Figure 5.38: Error and standard deviation for rotations around the Y axis using 3D reconstruction 
(100 simulations). 
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Figure 5.39: Error and standard deviation for rotations around the Z axis using 3D reconstruction 
(100 simulations). 
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Figure 5.40: Error and standard deviation for X translations using 3D reconstruction (100 simula­
tions). 
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Figure 5.41: Error and standard deviation for Y translations using 3D reconstruction (100 simula­
tions). 
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Figure 5.42: Error and standard deviation for Z translations using 3D reconstruction (100 simula­
tions). 

standalone cameras because it avoids tracking several features on the end-effector. Instead, with 
the eye-in-hand configuration, any feature in the environment can be tracked and this characteristic 
greatly simplifies the execution of the experiments. 

In this experiment two visuomotor functions were used, one for each camera, and three 3D 
targets were involved. That is, two sets of visuomotor parameters were computed. As before, 
the function L 6 was defined for the left camera. Also, the function RQ was defined for the 
right camera. It is important to note that the routine UpdateParameters is the same regarless of 
the camera that is being used. The only difference is that the image-based errors Le were used to 
approximate L Os and the image-based errors Re were used to approximate R® . This configuration 
was used for this experiment because it doubles the number of equations used to solve Equation 3.42. 
Given that three targets are used in each camera, a total of 12 equations are used to solve Equation 
3.42. If one visuomotor function would be used, then only six equations would be used. 

Algorithm 1 was used one more time to process the updates. Data was collected for 3,000 
frames by moving the arm manually and the pose of the end-effector was compared to the solution 
of Equation 3.42 after each iteration. One pipeline was assigned to each target in both cameras 
such that a total of six pipelines were used to process all the observations. Other than the increased 
number of pipelines, the procedure for this experiment was identical to the previous ones. Since 
3,000 observations were collected and six pipelines were operating, the processing was done offline 
due to computational limitations 4. Real-time computation for this experiment would require short 
pipelines and this would complicate tracking the evolution of the solution when using L0m and 
i?0B since the initial observations would be pushed out of the pipeline after a relatively short time. 

The results are presented in Figures 5.43 to 5.48. Each figure consists of two parts. The first one 
presents a few samples of an actual motion parameter obtained from the forward kinematics and the 
value obtained from the visuomotor function. The second part presents the absolute error between 
the actual and the estimate over the entire sequence. 

Results show that the error of the solutions stabilize within approximately 400 frames. After 
which the solutions become relatively stable. Some of the plots show a bump around frame 700. 
This bump was caused by one of the trackers being blocked on the edge of an image as its target 
briefly exited the field of view.Also, the coordinate frames were oriented differently due to the hand-
eye configuration. As such, the X axis of die end-effector represents the Z axis in the camera frame 
and the Z axis of the end-effector represent the Y axis in the camera frame. The mean and standard 

4When a single pipeline is used, a rough maximum of 2000 updates can be processed per core per second. In the 
experiments, one core was used for each camera such that three pipelines were operating on each core. 
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Table 5.2: Mean absolute error and standard deviation for 6 DOF with real data. 

mean absolute error 
standard deviation 

Rx 
(rad) 

0.0646 
0.0449 

Ry 
(rad) 

0.0450 
0.0355 

Rz 

(rad) 
0.0521 
0.0466 

tx 

(m) 
0.0866 
0.0669 

ty 
(m) 

0.0921 
0.0655 

tz 
(m) 

0.0760 
0.0621 

deviation after the 800th frame (after the bump) are shown in Table 5.2. 
As for most experiments with real data, the density of the updates was concentrated around the 

center of the images (Figures 5.49). Again, this reflects the difficulty of distributing the updates 
when manipulating the arm manually. On the plus side, this allowed to collect a large amount of 
data for a relatively small area, which might be factor in the results. 

5.5 Mobile Robot 
Mobile robots are widely used in research and they are making inways in households and offices at 
a much faster pace than their manipulators counterparts. Yet, mobile robots, and in particular non-
holonomic ones pose a singular problem for IB VS methods. Because typical non-holonomic mobile 
robots cannot move laterally, IBVS cannot regulate tasks that involve only lateral movements. Fur­
thermore, the motion of non-holonomic robots often involve complex paths or trajectories that do 
not consider the visibility of each target. 

A large amount of research involving mobile robots aims at building maps from stereo images 
[63]. These maps are used by the robot to navigate and avoid obstacles. Typically, the maps are 
composed of 3D coordinates (often 2D) corresponding to visual landmarks. Among the available 
landmarks, Scale-invariant feature transform (SIFTs) [123] have been the most successful used in 
mapping applications. 

The experiments were executed on a RWI Magellan robot. Two cameras were mounted on the 
front of the robot roughly 20cm apart. First, the solution to Equation 3.45 is compared to measure­
ments obtained from the odometry. Finally, an example of a visual servoing task is presented. 

Evaluation in Cartesian Space 

The first experiment tests the solutions of the visuomotor function for positioning tasks. Algorithm 1 
was used for 512 iterations During this period of time the robot was move manually and two targets 
were tracked simultaneously in both cameras. 

Then, the solution to Equation 3.45 was used to estimate the relative displacement of the robot 
with respect to the initial position and the solution was compared to the odometry measurements, 
initial state. Results for the elements m , m, tx and ty are presented in Fig. 5.50. 

Visual Servoing with Feed-forward 

The last experiment demonstrates an example of a mobile robot using the solution of the visuomo­
tor function to do feed-forward motion control. For this, the system relies on SIFT [123] to match 
features between frames. The diagram of the system is illustrated in Figure 5.51. The first stage con­
sists of extracting SIFTs in both cameras. Because the visuomotor function requires stereo points, 
the features in each images were matched to obtain stereo correspondence. Since the cameras were 
installed manually, the search for stereo correspondence was exhaustive because the search could 
not be constrained to the usual horizontal epipolar lines. Given the stereo matches, the second stage 
obtains observations to update the visuomotor function. To obtain image-based variations and dis­
placements of the robot, each SIFT is matched against a database of keypoints. Each entry in a 
database includes the following 

1. SIFT descriptor for matching 

2. Most recent position or the robot from which the feature was observed 

3. Most recent image coordinates the feature was observed 

4. An odometry stamp. 
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Figure 5.43: 6DOF: Rotations around X. 
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Figure 5.44: 6DOF: Rotations around Y. 
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Figure 5.45: 6DOF: Rotations around Z. 
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Figure 5.46: 6DOF: Translations along the X axis. 
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Figure 5.47: 6DOF: Translations along the Y axis. 
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Figure 5.48: 6DOF: Translations along the Z axis. 
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(a) Update map for the left camera from real data. (b) Update map for the right camera from real data. 

Figure 5.49: Update map for 6DOF. The intensity of a pixel reflects the amount of updates. 
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Figure 5.50: Error between the motion estimation of the visuomotor function and the odometry. 
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Figure 5.51: Flow chart for processing and matching SIFT keypoints. 

The odometry stamp was used as an expiration date on the feature to avoid matches with old features 
due to the drifting of the odometry. Basically, any match that involved a feature that was detected 
more than 3m away was voided. This was necessary to avoid corrupting the parameters with inac­
curate data. The time stamp was determined empirically during unrelated experiments where it was 
determined that the robot could go on a reasonable straight line for roughly 3m. Thus, because of 
the time stamps, Algorithm 1 was not used and updates were performed only between the matched 
features. 

A feature that did not find a match in the database was added to the database only if its descriptor 
was sufficiently distinctive from the others. If a SIFT did find a match in the database, then the image 
and position variations where used to update the parameters associated with the stereo points. 

The robot was tethered to a dual core 3GHz desktop. Each camera used a separate core to extract 
and match the SIFT at around 5 frames per second. The SIFT parameters were tuned to produce 
around 200 keypoints per frame and between 10 to 50 stereo matches. Matches from the database 
typically varied between 0 and 15. 

The training stage consisted of moving the robot manually for an extended period of time within 
an area of approximately 12m2 in a room. During that time about 1000 keypoints were detected 
in the environment and added to the databases. These keypoints were used to establish correspon­
dences between frames. When a match was successfull in both cameras, then the image-based error 
was determined and the visuomotor parameters of the keypoint were updated. After the training, the 
robot was moved to its desired position and a snapshot was taken from which SIFT keypoints were 
extracted (bottom of Figure 5.52(a)). Finally, the robot was moved to its starting position. Then, 
another snapshot was taken and the keypoints were extracted (top of Figure 5.52(a)). The matching 
between initial and final keypoints resulted in 4 correspondences. Using these matches, the system 
estimated the transformation between the two views by solving Equation 3.45. This transformation 
was supplied to the position controller implemented for this experiments[168]. The target destina­
tion was marked on the floor at (—0.5m, —1.5m) away from the initial position with 0 heading (a 
pure translation). The motion of the robot is shown in Figure 5.53 and the approximate destination 
position is marked with a red square. During the motion, the robot completely lost visual contact 
with the destination, but, as it moved closer to the goal, more features were matched between the 
current and desired views. 

To avoid instability of the position controller, the motion was stopped when the odometry 
reached a 2.5cm radius around the destination and within 0.025 radian of the desired orientation. 
After the motion was stopped, a final snapshot was taken and the images were matched against the 
command images. This resulted in 11 matches and the average absolute error of their coordinates 
were 15 pixels for the x coordinates and 7 for the y coordinates. However, the robot stopped its 
trajectory with an error of 0.23 radian and 0.17m along the X axis and 0.21m along the Y axis. 

One of the main problem in this experiment is the combination of the non-linear drift of the 
odometry. Using a technique often used in SLAM [63], the robot was move in straight lines and 
then was fully rotated to increase the number of matches. Nevetheless, it was extremely difficult to 
obtain consistent odometry readings when moving over a distance greater than 3m. Therefore, every 
motion segment were kept short. 
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(a) Matches between the initial image and the command (b) Matches between the final image and the command 
image. image. 

Figure 5.52: SIFT matches. 

Figure 5.53: Trajectory of the robot. 
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Chapter 6 

Conclusion 

After several decades of research, visual servoing has become an established area within robotics. 
The strength of visual servoing methods is that their stability can often be established through Lya-
punov stability theorem. Although visual servoing has demonstrated its use in research environ­
ments, its deployment in commercial or industrial products has been sporadic. One reason for this 
slow transfer is the incompatibility between the output of visual servoing control laws and the input 
of commercial manipulators and path planning algorithm. Whereas the majority of visual servoing 
control laws span the space of twists, the input of most path planners and commercial robots span 
the space of special Euclidean transformations. One argument for using SE(3) commands is that 
it makes path planning and trajectories deterministic. That is, the motion of the arm can be fully 
determined ahead of its execution. A similar argument holds for autonomous robots. Undoubtedly, 
these robots will be required to use their sensors, including vision, to guide their motion and do tasks 
in natural environments. For many reasons, safety being one of them, these robots will be required 
to plan tasks ahead of executing them. 

To plan a task in SE(3), a goal position must be determined in SE(3). Furthermore, the com­
mand should not only account for the sensor that is used, but also for the interaction between the 
actuator, the sensor and the environment. The coupling actuator/sensor has been the cornerstone of 
most of the research in visual servoing where the visual feedback is directly coupled to the actuat­
ing. In feed-forward systems, however, the trend is to use the 3D space as the common denominator 
between the sensor and the actuator. That is, feed-forward systems often use the 3D reconstruction 
as die means rather than the objective. As such, much of the emphasis in feed-forward system has 
been on interpreting the 3D space from images. 

Recognizing the gap between IBVS and look-then-move PBVS, this thesis proposes an image-
based feed-forward system called the visuomotor function. From the perspective of visual servoing, 
the visuomotor function is an interaction matrix that maps elements of SE(3) to image-based vari­
ations. As such, the visuomotor function provides the feed-forward domain of of look-then-move 
systems and preserves the image-based range of IBVS control laws. 

The theory around the visuomotor function involves the definition of the visuomotor camera and 
its interaction with 3D points. Compared to passive cameras, die visuomotor camera is an active 
camera that projects the variations of 3D points caused by the displacement of the camera. Because 
of this property, the visuomotor function provides a set of visuomotor parameters for each 3D point. 
These parameters capture the behavior of each point for the rigid displacement of the camera. That 
is, given the visuomotor parameters of a 3D point and an image-based variation, the displacement of 
the end-effector is determined by the solution of the visuomotor function. The visuomotor function 
of four tasks often used in robotics were presented. Namely they are: six degrees of freedom motion, 
pan and tilt, 3D translations and planar motion. Although these function have the same structure, 
the dimensionality of the parameters space is reflected by the complexity of the interaction between 
the camera and the environment. The visuomotor function can also be used for feedback system at 
the cost of trading the SE(3) for velocities as the domain of the control law. This thesis showed the 
asymptotic stability of the visuomotor function. 

These visuomotor parameters are estimated on-line through a stable incremental least squares 
based on QR factorization. This algorithm enables the system to approximate the parameters of die 
visuomotor system on-line. The approximation is executed in real-time as the data is made available. 

Since each 3D point is associated to a set of visuomotor parameters a method for indexing these 
parameters from images coordinates is presented. Essentially, die proposed solution relies on the 
stereo coordinates of the 3D point. Compared to 3D reconstruction, however, the stereo cameras are 
not used to estimate 3D coordinates but to index the parameters of each point in a database. Because 
the parameters are continuously updated they are tuned to capture the image-based reaction of 3D 
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volumes to the motion of the camera. This reflects the distinction between 3D reconstruction and 
the visuomotor function approach. Whereas the former aims at representing the visual input by 3D 
coordinates, the later is only concerned by the interaction between the camera and the environment. 

Nevertheless, the domain of stereo coordinates is large and storing a distinct set of visuomotor 
parameters for every stereo point poses several challenges. To address these challenges, the stereo 
space is approximated by a CMAC algorithm. The benefits of the CMAC are two fold. First it 
avoids storing a large set of parameters. Second, and most importantly, it allows to generalize the 
parameters associated to a stereo point to neighboring stereo points. This second item avoids the 
necessity to estimate the visuomotor parameters associated with every stereo point. 

To cope with the amount of visuomotor parameters to estimate, an algorithm was presented 
to increase the amount of updates between observations. The algorithm is based on a pipeline 
that inserts the observations in a list as they become available. Then, the algorithm updates each 
set of parameters represented in the list from the new observation and, conversely, the new set of 
parameters represented by the new observation is updated from each entry in the list. The number 
of updates per frame grows linearly with the number of entries in the list. 

Experiments demonstrated the performance of the visuomotor approach for the different tasks 
presented in this work. The experiments involved hundreds of simulations and real experiments 
that involved the computation of thousands of solutions. In the case where a direct comparison was 
possible, the visuomotor function did significantly better than motion estimation based on 3D recon­
struction. The reason for these performances are two fold. First, the visuomotor function captures 
the interaction of the cameras with its environment. Since feed-forward control involves the motion 
of the camera in SE(3), the visuomotor function is able to capture the nature of this interaction. 
Second, the displacement of the camera is given directly from the solution to the visuomotor func­
tion. Thus, the solution is the result of only one optimization. The optimization algorithm depends 
on the nature of the problem and the Levenberg Marquardt algorithm was used for non-linear least 
squares problems and linear least squares was used otherwise. Compared to this, solutions obtained 
from 3D reconstructions required three optimizations. The first one is the estimation of the initial 
3D coordinates of each point. The second is the estimation of the final 3D coordinates of each point. 
The last one is the estimation of the 3D motion given the 3D estimates. 

Based on these results, the visuomotor function is a good alternative for feed-forward control 
and complements visual servoing by using the same error vector than IBVS methods. Interestingly, 
what would normally appear as the Achilles' heel of the visuomotor function is in fact its strength. 
Despite the large number of parameters and the generally negative perception of camera calibration, 
the parameters enable the visuomotor function to approximate very specific behaviors. Combined 
with the pipeline algorithm, the error of the solutions converges within a few seconds. In fact, if 
all the observations are queued, then the number of rank-1 updates processed after t frames is 2t2. 
Thus, at 30fps the algorithms generates 6,480,000 rank-1 updates for one minute of training. 

Among the possible improvements to the visuomotor function is the relative sensitivity to noise. 
The main source of this sensitivity was identified as the presence of ex and ey in the right hand side 
of Equations 3.13, 3.21, 3.28 and 3.35. Although the amount of noise involved in the experiments 
was reasonable, simulations have shown that the algorithm performs extremely well when the noise 
is isolated to the right-hand side error vector e. Even disturbing by a small amount the ex and ey 
that enter in the matrices typically produced better results. A possible algorithm to overcome this 
problem is partial total least squares [99]. The algorithm, however, requires an SVD factorization 
and incremental SVD algorithms are more involved than the ILS presented in Section 3.3. 

Another source of possible improvement would be a CMAC with a multi-resolution grids. One 
observation in the approximation of the visuomotor parameters is that the convergence of the condi­
tion number is a good indicator for the convergence of the parameters. Thus, the system could use 
the parameters of tiles with higher resolutions when these parameters have converged or use tiles 
with a lower resolution when tiles at higher resolutions have yet to be updated. 

A more involved venture would be to move away from the formalism of SE(3) and define the 
visuomotor function as the relation between image-based variations and variations in joint space. 
This would avoid any dependence on kinematics parameters and calibration. For example, each 
time that a robot changes its tool control point, the visuomotor function must be re-approximated 
because of the change in the kinematics chain. 

Finally, it is important to mention that whether it is feed-forward or feedback, vision-guided 
robotics is only as good as the hand-eye configuration allows it to be. It should be remembered that 
behind most image-based command there is an actual manipulation: picking an object, pressing a 
button, etc. Often, these manipulations will fail even though the visual task has been accomplished. 
Two explanations for this are the poor conditioning of image-based tasks and the resolution of the 
cameras. One approach to address these challenges is to control the viewpoint of the camera position 
the camera in order to optimize the success of the manipulation. This optimal viewpoint control 
is not considered as visual servoing per se, but rather a method that improves the conditioning 
of a visual servoing task. Humans are very proficient at this sort of process as we naturally do 
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fine manipulations by monitoring the tasks from adequate viewpoints. Yet little research has been 
invested in a solution to this problem, even though it could lift a burden of on the shoulder of visual 
servoing. 
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Appendix A 

Appendix 

A.l Visuomotor Function 6DOF 
To solve for the 6DOF motion, Equation 3.42 is expressed in terms of ZYX Euler angles 

cos(a) cos(/3) 
sin(a) cos(/3) 

- sin(/3) 
- sin(a) cos(0) + cos(a) sin(/3) sin(0) 
cos(a) cos(0) + sin(a) sin(/?) sin(</>) 

= V cos(/3) sin(c£) - e = 0. (A.l) 
sin(a) sin(4>) + cos(a) sin(^) cos((/>) 

- cos(a) sin((/>) + sin(a) sin(/3) cos(0) 
cos(/?) cos(</>) 

t 
1 

Given that the elements in V are labeled v%j, the elements of the Jacobian Jf are defined as 

f6DOF(0,x) = 
fx(0,x) 
MO**). 
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follow 

= — v\tx sin(a) cos(f3) + v^2 cos(a) cos(/?) 

+ VI,A{— cos(a) cos(</>) — sin(a) sin(/3) sin(^)) 

+ vi,b{— sin (a) cos(0) + cos(a) sin(/?) sm(<j>)) 

+ ui i7(cos(a) sin(^) - sin(a) sin(/3) cos(0)) 

+ wi,8(sin(a) sin(</>) + cos(a) sin(/3) cos(</>)) 

—— = —ui,i COS(Q) sin(/3) — u i ^ sin(a) sin(/3) 
a/? 

dJfx 

dtx 
dJfx 

dty 

dJf. 
dtz 

— v\fi cos(/?) + ui,4 cos(a) cos(/3) sin(<&) 

+ «i,5 sin(a) cos(/J) sin(</>) — Vite sin(/3) sin(</>) 

+ Ui^ cos(a) cos(/3) cos(^) + u^g sin(a<) cos(/?) cos(0) 

— wi)9sin(/3)cos(^)) 

= «i ;4(sin(a) sin(<̂ >) + cos(a) sin(/3) cos(^)) 

+ wi,5(~ cos(a) sin(0) + sin(o;) sin(/3) cos((^)) 

+ vitQ cos(/?) cos(<(>) + u i ^ s i i ^ a ) cos(</>) 

- cos(a) sin(/3) sin(</>)) + vi,&(— cos(a) cos(^) 

- sin(a) sin(/3) sin(0)) — 1^9 cos(/?) sin(<̂ >) 

= vi.io 

= v i . i i 

= «1,12 
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Figure A. 1: Comparaison between approximations of 6\ and analytical values. Distribution of rela­
tive absolute errors. 

da 

8J fv 
dp 

9Jfy 
d<f> 

dtx 

dtp 

dtz 

• —U2,i sin(a) cos(/3) + v^,2 COS(Q) COS(/3) 

+ u2,4(- cos(a) cos(0) - sin(a) sin(/J) sin(0)) 

+ v2,h{— sin(a) cos(0) + cos(a) sin(/3) sin(</>)) 

+ V2,7(cos(a) sm{(j>) — sin(a) sin(/3) cos{<j>)) 

+ ^2,8(sin(a) sin(< )̂ + cos(a) sin(/3) cos((/>)) 

= —i>2,i cos(a) sin(/3) - v2,2 sin (a) sin(/3) — u2,3 cos(/3) 

+ ^2,4 cos(a) cos(/3) sin(0) + ^2,5 sin(a) cos(/3) sin(</>) 

— U2,6 sin(/?) sin(̂ >) + «2,7 cos(a) cos(/3) cos(<̂ >) 

+ t>2,8 sin (a) cos(/3) cos(</>) — v-2$ sin(/3) cos(0) 

= i>2,4(sin(a) sm{4>) + cos(a) sin(/3) cos((/>)) 

+ v2fi(— cos(a) sin(</>) + sin(a) sin(/3) cos(0)) 

+ «2,6 cos(/J) cos((/>) + t;2,7(sin(a) cos(<£) — cos(a) sin(/3) sin(0)) 

+ V2,8(— cos(a) cos(</>) - sin(a) sin(/3) sin(0)) - u2,g cos(/3) sm(<f>) 

= «2,10 

= V 2 , l l 

l>2,12 

A.2 CMAC: Approximation of the Visuomotor Parameters 
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Figure A.2: Comparaison between approximations of 82 and analytical values. Distribution of rela­
tive absolute errors. 

15 _2 X 

Figure A.3: Comparaison between approximations of 63 and analytical values. Distribution of rela­
tive absolute errors. 
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Figure A.4: Comparaison between approximations of #7 and analytical values. Distribution of rela­
tive absolute errors. 

Figure A.5: Comparaison between approximations of 9% and analytical values. Distribution of rela­
tive absolute errors. 
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Figure A.6: Comparaison between approximations of Og and analytical values. Distribution of rela­
tive absolute errors. 

Figure A.7: Comparaison between approximations of 6u and analytical values. Distribution of 
relative absolute errors. 
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Figure A.8: Comparaison between approximations of #15 and analytical values. Distribution of 
relative absolute errors. 

Figure A.9: Comparaison between approximations of 616 and analytical values. Distribution of 
relative absolute errors. 
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Figure A.10: Comparaison between approximations of 620 and analytical values. Distribution of 
relative absolute errors. 

Figure A.ll: Comparaison between approximations of 02i and analytical values. Distribution of 
relative absolute errors. 
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Figure A. 12: Comparaison between approximations of #22 and analytical values. Distribution of 
relative absolute errors. 

Figure A. 13: Comparaison between approximations of O27 and analytical values. Distribution of 
relative absolute errors. 
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Figure A. 14: Comparaison between approximations of #28 and analytical values. Distribution of 
relative absolute errors. 
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Figure A.15: Comparaison between approximations of 629 and analytical values. Distribution of 
relative absolute errors. 
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Figure A. 16: Comparaison between approximations of #33 and analytical values. Distribution of 
relative absolute errors. 

1.5 -2 X 

Figure A. 17: Comparaison between approximations of #34 and analytical values. Distribution of 
relative absolute errors. 
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Figure A. 18: Comparaison between approximations of 035 and analytical values. Distribution of 
relative absolute errors. 
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