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Abstract 
 

Childhood cancer survivorship has increased drastically over the previous several decades, 

consequently increasing the frequency of chronic conditions in survivors. Female childhood 

cancer survivors are at an increased risk of developing nonsurgical premature menopause 

(NSPM) due to toxicities from their treatment. NSPM occurs when ovarian function is retained 

for at least 5 years following cancer diagnosis, but menopause develops naturally before age 40. 

Such a condition can negatively impact quality of life and reduce potential reproductive years. 

The literature details risk factors including an older age at cancer diagnosis, and treatment with 

high doses of alkylating agents and radiation. In order to aid physicians, patients and their 

families have informed discussions regarding fertility preservation, I aimed to develop prediction 

algorithms of the absolute risk an individual has of developing NSPM.  

 

The Childhood Cancer Survivor Study cohort was the primary data source for this project. Due 

to the presence of both stratified random sampling and participant loss to follow-up within the 

cohort, I initially investigated methods for combining sampling and censoring weights in the 

estimation of model accuracy measures to aid in model evaluation. I designed and implemented 

four simulation studies, varying the relationship between sampling design, censoring distribution 

and risk score distribution, and assessed weighting scenarios with distinct combinations of 

censoring and sampling weights. Depending on the study setting, different weighting scenarios 

gave reasonable estimates, and ignoring or inadequately accounting for weights resulted in 

biased accuracy estimates. 
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Candidate risk prediction models were developed on a training set of 4,054 observations from 

the Childhood Cancer Survivor Study cohort using a time-specific logistic regression model with 

competing risks (TLR-CR), a Fine-Gray regression (FGR) model and a random survival forest 

model with competing risks (RSF-CR). Model performance and accuracy were measured using 

the time-specific area under the ROC curve (AUCt), the time-specific average positive predictive 

value (APt), and calibration curves on both the training set and an internal validation set of 1,454 

observations. 

 

Model accuracy values and curves were presented for 15 years post cancer diagnosis as an 

illustration of overall model performance. All three models performed similarly on the training 

set. The estimated AUCt values decreased when internal validation was conducted; however APt 

values were still larger than the event rate. The APt / Event Rate ratio for the TLR-CR model 

increased from the training set performance. AUCt and APt values on the test set calculated over 

10-20 years post cancer diagnosis displayed similar findings. The models were well calibrated 

for low risk patients, however only the TLR-CR model was consistently well calibrated for high 

risk patients on both datasets. Moving forward, model performance on individuals with clinically 

verified ovarian status will be assessed through validation on an external cohort. The future 

practical application of the risk estimates as a risk scoring system aims to have a positive impact 

on the quality of life of survivors well into their adulthood. 
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1 Introduction 

Advancements in cancer treatment over the previous few decades have dramatically increased 

the survival rate of childhood cancer
1
. Today, over 80% of children diagnosed with cancer will 

survive for more than 5 years, and it is estimated that by 2020 there will be close to 500,000 

childhood cancer survivors (CCSs) living in the United States (US)
2
. However, CCSs are at an 

increased risk of developing long-term morbidities resulting from their primary cancer as well as 

its therapies
3,4

. These long-term conditions, known as late effects, have the ability to impact any 

organ system and can present through conditions including myocardial infarction, congestive 

heart failure, as well as premature gonadal failure
4
. Late effects can appear during treatment, 

shortly after its completion, or even years in the future. Recent studies have indicated that all 

long term CCSs will develop at least one late effect in their lifetime as a direct consequence of 

their previous treatment, emphasizing how frequently these conditions are observed
5
. 

 

A predominant late effect arising in female childhood cancer survivors is premature ovarian 

dysfunction. Premature ovarian dysfunction can be categorized into acute ovarian failure (AOF) 

and nonsurgical premature menopause (NSPM), dependent upon when ovarian function is 

compromised. AOF is diagnosed when an individual either never experiences menarche 

following cancer treatment, or permanently ceases to menstruate within 5 years of being 

diagnosed and treated with cancer
6
. Approximately 6.3% of female CCSs (215 out of 3,390 total) 

developed AOF once their treatment was finished as measured in a retrospective cohort study 

conducted by Chemaitilly et al. in 2006
6
. Conversely, NSPM occurs when females maintain 

regular ovarian function for a minimum of 5 years after cancer diagnosis and treatment, but 

menstruation stops naturally for at least 6 months before reaching age 40 (not resulting from 
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pregnancy, surgery or medication)
7
. In the general population, the prevalence of premature 

menopause is approximately 1%
8
, whereas a 2018 study by Levine et al. reported that 9% of 

CCSs develop NSPM by age 40
9
. Additionally, cancer survivors have 10.5 times (95% 

Confidence Interval (CI) = (4.2, 26.3)) the risk of developing NSPM compared to their otherwise 

healthy siblings
9
.  

 

There is an urgent need to identify individuals at a high risk of developing NSPM, due to the 

impact of this condition in CCSs and the potential time-sensitivity of intervening. Although risk 

factors have been identified for NSPM, physicians lack the ability to obtain a risk estimate for 

specific patients. Therefore, using data from the Childhood Cancer Survivor Study (CCSS), a 

retrospective cohort study of 5-year cancer survivors from across North America, the main aim 

of this research is to develop prediction models which will predict the absolute risk of an 

individual childhood cancer patient developing NSPM.  

 

Future extensions of the model will ideally provide oncologists, family physicians and 

obstetricians with personalized risk estimates of their patients developing NSPM. Collaboration 

with knowledge translation experts will help to facilitate the development of a risk scoring 

system, which can be applied in a clinical setting by practitioners to aid in discussions of fertility 

preservation. Individuals with a risk estimate above a threshold risk can require further 

discussion of fertility preservation either immediately or in the years following treatment 

completion. If the risk of developing NSPM is low until the patient reaches their mid to late 20s, 

then discussions and decision making can be deferred until after treatment is completed. If the 

risk is high immediately post treatment, discussions can occur beforehand, potentially allowing 
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for the preservation of reproductive opportunities in the future. Individuals at a low risk of 

developing NSPM at any time can be consoled and spared from undergoing unnecessary 

procedures. Ultimately, the research goal is to improve the lives and wellbeing of female cancer 

survivors well into their adulthood, and to ensure that any lasting impacts from treatment 

exposures are considered and appropriate action is taken. 

 

This thesis is structured as follows. The remainder of Chapter 1 reviews the literature on 

premature menopause and risk factors in CCSs, as well as describing the statistical methods to be 

used during model development and evaluation. Chapter 2 explores the characteristics of the 

CCSS dataset obtained. Chapter 3 presents simulation studies to assess various weighting 

methods for model evaluation. Chapter 4 highlights model development and evaluation. Finally, 

Chapter 5 summarizes the findings, discusses study limitations, and provides recommendations 

for future research.  
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1.1 Literature Review 

 

1.1.1 Background 

Menopause is an inevitable life stage in surviving females
10

. Natural menopause is defined as the 

permanent cessation of menstruation (amenorrhea for at least 12 months) resulting from the loss 

of ovarian follicular activity
11

. It follows the period known as the menopausal transition (or 

“perimenopause”), which is characterized by menstrual variability and the increased frequency 

of anovulatory cycles (menstrual cycles where no ovulation occurs)
11

. In the general population, 

natural menopause occurs at an average age of 50.4 years, with the majority of women entering 

menopause between ages 45 and 55
4,12

. Early menopause is defined as menopause between ages 

40 and 45, and premature menopause is defined as menopause before age 40
12

.  

 

Physiology of Menopause 

Ovarian follicles are the functional units of the ovaries, with each ovarian follicle containing 

theca and granulosa cells as well as an immature oocyte
13

. The immature oocyte has the potential 

to mature into an egg in preparation for fertilization
14

. The quantity of ovarian follicles in the 

ovaries reaches a peak level of 7 million
15

 at approximately 6 months gestation, and begins to 

decline exponentially thereafter
4,13,16

. By the age of puberty, roughly 300,000 ovarian follicles 

remain, and only around 400 mature oocytes will be released during ovulation over an entire 

lifetime
4,13,16

. The number and quality of ovarian follicles in the ovaries defines an individual’s 

ovarian reserve, which in itself determines the probability of successful reproduction
16

. 

Following ages 35-37, the exponential decrease in ovarian follicle reserve is accelerated
4
, and it 

is suggested that among other factors menopause is triggered when the number of follicles falls 
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below a set level
7
. In postmenopausal women, the number of follicles remaining is minimal, and 

it is possible for none to be present at all
10

. The decrease in ovarian follicle reserve (therefore, 

the decrease in eggs available for fertilization) along with the increase in anovulatory cycles 

leads to the decline in reproductive capability of females with advancing age
11

. 

 

The cycle of ovarian follicle development and stimulation is regulated by hormones released 

from the hypothalamus and pituitary gland. The gonadotropin hormones, (follicle stimulating 

hormone (FSH) and luteinizing hormone), are released from the anterior pituitary and stimulate 

the growth of a subset of approximately 30 dormant ovarian follicles, of which one follicle will 

attain more rapid growth and become the dominant follicle
10,13

. These hormones are under 

negative feedback from ovarian steroids and inhibins
13

. FSH in particular is inhibited by inhibin 

B, which is produced by the group of ovarian follicles along with estradiol
10

. As the number of 

follicles decreases with advancing age, the production of inhibin B and estradiol are 

decreased
10,11

. These low inhibin B levels no longer inhibit the secretion of FSH thereby 

allowing it to increase in concentration
10,11

. Elevated FSH levels are a characteristic present 

during the initial transition to the early menopausal phase. However, in women experiencing 

regular menstrual cycle length it is unlikely that this change would be detected without testing
11

. 

The anti-Mullerian hormone (AMH) is also produced by the group of ovarian follicles, and 

similar to inhibin B, decreases in concentration with the decline of follicle numbers
16

. 

Monitoring AMH levels can provide an estimate of the magnitude of the ovarian reserve. A high 

concentration of AMH is associated with sufficient follicle numbers, and lower concentrations 

with limited reserve
16

.  
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Physiologically, women may begin to notice irregularity in menstrual cycle length and an 

increase in the frequency of anovulatory cycles resulting from low estradiol and high FSH levels 

indicative of the perimenopause stage
10,11

. Subsequently, the late menopausal phase is 

characterized by bouts of amenorrhea for at least 60 days, which eventually culminates in the 

final menstrual period signifying that menopause has been reached
10,11

. High FSH levels 

accompanying low inhibin B and estradiol levels are prominent characteristics around the time of 

the final menstrual period and continue into the stage of post-menopause
11

. Along with the 

distinctive loss of menstruation, menopause can include symptoms such as hot flashes, night 

sweats, and an increase in the rate of bone loss due to the absence of estradiol in the brain and 

ovaries
10

.  

 

Impacts of Premature Menopause 

There are a variety of ways in which the process of ovulation and menstruation can be 

jeopardized prematurely, but regardless of the cause, any form of early ovarian dysfunction 

negatively impacts the quality of life of women, and increases the probability of developing 

chronic diseases
10,17-19

. Women entering menopause prematurely undergo the loss of important 

ovarian hormones (such as estrogen), and are at an increased risk of overall mortality, as well as 

for developing conditions such as osteoporosis and various cardiovascular diseases (including 

coronary heart disease)
10,17,18

.  

 

Women with premature menopause are significantly more likely to record lower values of 

physical and mental health compared to women with normal ovarian function, as well as 

reporting a decreased overall quality of life
19

. Informational, social and emotional support from 
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the diagnosing physician were mentioned as being absent when women received their diagnosis 

of NSPM, and many recalled the entire experience as traumatic
19

. Additionally, a higher 

proportion of women with premature ovarian dysfunction were diagnosed with anxiety and 

depression compared to the general population
8,17,20

. An increase in the quantity of psychological 

support around the time of diagnosis with ovarian dysfunction was mentioned as potentially 

being useful to alleviate a portion of the stress accompanying the diagnosis
19

.  

 

A primary concern of women diagnosed with ovarian dysfunction is reproductive inability, and 

the associated feelings of inadequacy and shame from infertility
19,21

. In a study by Singer et al. in 

2011 specifically conducted to observe the experiences of women with premature menopause, 

92% of participants indicated that the impact on fertility was a major consequence of their 

diagnosis, and 75% of participants identified infertility as a specific concern
19

. The lack of 

reproductive ability is reported to be linked to a lower sense of self-worth and feelings of 

abnormality
19

. Many women felt fearful of being rejected by potential partners due to the 

humiliation of their condition and therefore were hesitant to disclose their infertility to others
19,20

. 

The inability to conceive can cause negative emotions such as jealousy and resentment toward 

friends and family members with children, due to the emphasis that is placed on women to 

become mothers
20

.  

 

Fertility Preservation 

With regards to childhood cancer patients, future fertility potential may not be at the forefront of 

a patient or her family’s mind as she prepares to initiate cancer treatment, particularly if the 

patient is very young. However, it is important to be sufficiently informed of the potential 
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consequences that a treatment plan may pose later in life before it is undertaken. Compromised 

reproductive ability may be highly likely to occur based on the proposed doses and agents that 

are to be used during cancer treatment. Interventions to offer reproductive opportunities in the 

future should be evaluated and discussed if deemed necessary (this is termed oncofertility 

counselling
22

). Unfortunately, there is evidence that fertility procedures are not being discussed 

with patients and their families as often as they should be
23

. When pressed for reasons for not 

exploring these options, physicians cited “not at a significant risk” and “too young” in 29% and 

27% of circumstances respectively
23

. 

 

Fertility preservation services may be feasible for childhood cancer patients
24

. Oocyte and 

ovarian tissue cryopreservation are two procedures that are worth mentioning in particular. 

Oocyte cryopreservation involves extracting and freezing oocytes for future use, and is currently 

the preferred method for female cancer patients
22,25,26

. Cryopreservation is the process of 

freezing cells such that all biological functions are arrested, with the intention of later allowing 

them to thaw and resume normal function
26

. Although the patient is required to be post-

pubescent, the oocytes do not need to be fertilized, which makes it a viable option for those 

without a partner. The procedure requires ovarian stimulation which may take up to a few 

weeks
25,27

. This may not be possible beforehand if treatment needs to be initiated immediately 

following diagnosis, though may be completed post treatment before entering premature 

menopause
4,6

.  

 

Ovarian stimulation is the process of suppressing the pituitary gland and stimulating the ovaries 

to induce follicular growth and mature the oocytes
22,25

. The mature oocytes can then be harvested 
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through oocyte pick up, and frozen through cryopreservation for future use. Ovarian stimulation 

itself can pose challenges and potential drawbacks, as it requires the use of a transvaginal 

ultrasound and oocyte pickup using a needle, which can be traumatic and painful without general 

anesthetic
28

. As oocyte cryopreservation in cancer patients is still a relatively new procedure, 

there are limited measures of its success in attaining pregnancy and live birth
22

. However, live 

births have been reported in the small sample of cancer survivors who thawed and used 

cryopreserved oocytes
22

. Data has indicated that the rate of pregnancy from the use of 

cryopreserved and thawed oocytes is comparable between cancer survivors and the general 

population
22

.  

 

Alternatively, ovarian tissue cryopreservation, although still considered experimental, has 

demonstrated significant advantages over alternate methods in many cases. It is performed 

without ovarian stimulation and therefore is the only option for prepubertal girls as well as those 

who are time-sensitive, allowing the procedure to be completed as quickly as necessary
4,28,29

. 

Methods for performing ovarian tissue cryopreservation were described in a study published in 

2016 conducted by Abir et al
30

. Patients underwent general anesthetic for the laparoscopic 

removal of ovarian tissue
30

. A partial oophorectomy was performed for post-pubertal adolescents 

due to the larger volume of ovarian tissue available, whereas a complete oophorectomy was 

required for prepubertal females with small ovaries
30

. The retrieved ovarian tissue was 

subsequently sliced and cryopreserved for future use
30

.  

 

While promising, oocyte and ovarian tissue cryopreservation can unfortunately be invasive, 

expensive, and particularly traumatic to young patients
4,25

. Complications, such as bleeding and 



 

10 

 

infection, can occur in both procedures
27,31

. Ovarian tissue cryopreservation has increased risks 

due to the invasive nature of the surgery required to obtain the tissue, as well as the potential to 

reintroduce the cancer cells back into the individual upon use of the tissue
4,30

. Therefore, it is 

crucial to identify whether fertility preservation interventions should be discussed right away or 

if it is safe to postpone the discussion until the individual is older without compromising future 

reproductive potential. 

 

 

1.1.2 Risk Factors for Premature Menopause in the General Population 

Certain lifestyle characteristics have been identified to be significantly independently associated 

with a decrease in the age at natural menopause in the general population of women. Analysis 

has shown that smoking increases the risk of premature menopause by 43% in otherwise healthy 

women
32

. Women recruited in the study by Hyland et al. in 2015 who were ever smokers had a 

significantly higher odds ratio (OR) for developing premature menopause compared to those 

women who were never-smokers (OR: 1.27, 95% CI = (1.18, 1.37))33
. Women who began 

smoking before the age of 15 were menopausal approximately 21.6 months earlier than those 

women who were never-smokers
33

. After adjusting for other factors, women who were never-

smokers but were exposed to high doses of second-hand smoke attained menopause 13 months 

earlier than the standard average menopausal age (OR = 1.17 (95% CI = (1.05,1.30)) indicating 

that any tobacco exposure may impact the age a woman enters menopause
33

.  

 

Furthermore, exposure to tobacco is hypothesized to influence the development of many adverse 

late effects in cancer survivors, as well as impacting the development of second malignant 
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neoplasms (SMN)
34

. Nevertheless, a substantial number of CCSs are current smokers, albeit at a 

lower rate than in the general population (14% of CCSs based on the CCSS follow-up 2003 

survey vs. 29% in the general population)
35

. Specifically, data on smoking patterns in survivors 

of childhood cancer show that 15% of female cancer survivors were current cigarette smokers as 

of 2012
36

. The youngest age category (age 18−44) comprised the highest percentage (35.2%) of 

female smokers
36

. 

 

While studies have shown that timing of natural menopause is associated with ethnicity, this 

finding is still controversial
37,38

. In a study performed by Delellis Henderson et al. in 2008, 

ethnicity was found to be significantly associated with age of natural menopause in women from 

the Multiethnic Cohort Study after adjusting for other factors
37

. Compared to the reference 

population of non-Latina Whites, Japanese-American women were significantly less likely to 

develop early menopause (hazard ratio (HR) = 0.93, (95% CI = (0.90, 0.95)))
37

. Both US and 

non-US born Latina women were at a significant increased risk of developing early menopause 

compared to non-Latina Whites (HR = 1.10 (95% CI= (1.07, 1.14)), HR = 1.25 (95% CI = (1.21, 

1.30)) respectively) and no significant difference was found between non-Latina Whites and 

African American women (HR = 0.99 (95% CI = (0.96, 1.02)))
37

.  

 

 

1.1.3 Risk Factors for Premature Menopause in Childhood Cancer Survivors 

Extensive research has been undertaken on the various risk factors for the development of NSPM 

in CCSs following cancer treatment completion
39

. Treatment exposures, such as chemotherapy 

and radiation therapy (RT), have been identified as main risk factors for the development of late 
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effects in CCSs. Their toxic effects on the reproductive organs are known as gonadotoxic effects, 

and can contribute to ovarian dysfunction through multiple pathways and methods
40

. 

 

Chemotherapy 

The risk of developing premature menopause is associated with the specific chemotherapy agent 

used and the cumulative dosage of exposure to agents
4,41

. Chemotherapy agents fall into 

numerous classes, including alkylating agents, anthracyclines and antimetabolites, all of which 

are categorized based on their structure and action
42

. They are appropriate for cancer treatment as 

the rapidly dividing cancer cells are more sensitive to DNA damage and do not have time for 

repairs
42

.  

 

Alkylating agents work by interacting with DNA and preventing cell division and growth, and 

are the class of chemotherapy agents that have the highest potential to cause gonadotoxic 

damage
6,27,40,42

. In contrast to other treatment exposures, the gonadotoxic effect of alkylating 

agents for women is specific to the ovaries, leaving the uterus unharmed
40

. Although the primary 

goal of alkylating agents is to cause damage to the cancer cells, these drugs can also do damage 

to the surrounding healthy tissues (to the ovaries in particular, as they are attracted to the 

maturing cells)
40,42

. Alkylating agents instigate follicle depletion in the ovaries, reducing the 

number of ovarian follicles available for maturation and reproduction, and increasing the 

potential for menopause
40

. Compared to the general population, patients exposed to alkylating 

agents as their only treatment had reduced ovarian reserve, with procarbazine (an alkylating 

agent) exposure associated with a significant decrease in reserve size and levels of important 

ovarian hormones
43

. 
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Normalization of the cumulative doses of alkylating agents can be attained through the 

cyclophosphamide equivalent dose (CED). The CED standardizes the exposures of 10 common 

alkylating agents (cyclophosphamide included) to the units of cyclophosphamide to allow for 

quantification and comparison of exposures independent of the study cohort
44

. The risk of NSPM 

is significantly larger with an increased exposure to alkylating agents in total, corresponding to 

an increased value of CED
9,44

. In a 2006 study by Sklar et al. on premature menopause in the 

CCSS, it was determined that although the risk associated with NSPM was increased with any 

exposure to these agents, the risk was further increased with increasing dosage levels, indicative 

of a dose-response relationship
45

. For patients with a CED value greater than or equal to 4000 

mg/m
2
 and less than 8000 mg/m

2
, the relative risk (RR) of developing NSPM was 2.74 (95% CI 

= (1.13, 6.61), p = 0.025) compared to individuals without any alkylating agent exposure
44

. This 

risk was further increased for individuals with a CED value greater than 8000 mg/m
2
, with a RR 

of developing NSPM equal to 4.19 (95% CI = (2.18, 8.08), p < 0.001) times that of an individual 

without any exposure
44

.  

 

A specific alkylating agent included in the calculation of the CED is procarbazine, which is a 

drug predominantly used to treat Hodgkin lymphoma
46

. Of all the agents included in the CED 

calculation, procarbazine is found to have the most significant impact on NSPM development
9
. 

In the original cohort of the CCSS, 39.7% of survivors who were treated with a procarbazine 

dose ≥ 4000 mg/m
2
 had developed NSPM by age 40

9
. Furthermore, univariate analysis showed 

that the CED variable is no longer significant when the contribution of procarbazine is removed
9
. 

In the 2018 study published by Levine et al., exposure to a procarbazine dose ≥ 4000 mg/m
2
 led 

to an OR of 8.96 (95% CI = (5.02, 16.00), p < 0.0001) for developing NSPM compared to no 
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exposure
9
. However, treatment protocols have recently been modified in order to reduce the use 

of high quantities of harmful exposures
46

. This has led to the limited use of procarbazine as a 

treatment exposure except in the specific cases of Hodgkin lymphoma, and therefore, is not a 

strong risk factor in the majority of patients who remain unexposed
46

. 

 

Radiation Therapy 

RT uses energy from electrically charged particles to invoke cell death in the exposed tissue, 

with the aim of destroying cancer cells and causing the least amount of harm to normal cells
47

. 

Oocytes are particularly vulnerable to the genomic damage caused by radiation exposure, with 

cell death causing significant decreases in the reserve of ovarian follicles
40

. Childhood exposure 

to radiation has been implicated in numerous outcomes related to ovarian dysfunction, as the 

gonadotoxic effects of radiation impact not only the ovaries but the uterus as well
40

. The 

likelihood of becoming pregnant in adulthood is significantly reduced after exposure to 

abdominal or pelvic radiation
48

. Pregnancy complications, such as the risk of spontaneous 

abortion, preterm birth, low birth weight, and stillbirth, are increased after exposure to 

radiation
40,49

. 

 

Radiation impacts the risk of premature menopause depending on the specific site it is 

administered to and dosage level
4,40,49

. Direct radiation to the ovaries (through abdominal, pelvic 

or total body radiation) at doses of radiation greater than 10 Grays (Gy) has been linked to a high 

risk of developing NSPM and ovarian dysfunction, although exposure to scatter radiation from 

other body areas can confer significant damage
40,45

. Nevertheless, individuals exposed to any 

dose of radiation experience an increased risk of developing NSPM compared to those without 
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any exposure
45

. The OR was 2.73 (95% CI = (1.33, 5.61), p = 0.0062) for the development of 

NSPM for individuals with ovarian radiation doses < 5 Gy compared to no radiation exposure, 

and increased to 8.02 (95% CI = (2.81, 22.85), p < 0.0001) for individuals with ovarian radiation 

doses ≥ 5 Gy
9
. 

 

Radiation to the Hypothalamic-Pituitary-Ovarian (HPO) axis has additionally been linked to a 

high risk of ovarian complications and dysfunction
4,48

. As stated previously, the hypothalamus 

and pituitary gland release hormones which are necessary for ovarian development and 

stimulation. Damage to the hypothalamus and pituitary through cranial radiation modifies the 

timing of the release of these hormones, consequently contributing to atypical ovarian 

development, and may result in lower pregnancy rates
4
. In particular, doses of radiation greater 

than 35 Gy have been identified as high risk for impacting fertility, compared to lower doses
48

. 

In contrast to AOF and NSPM, the effects of the damage caused to the pituitary and 

hypothalamus can be moderated through the routine administration of gonadotropic hormones 

allowing the patient to achieve normal ovarian function and providing the opportunity for future 

reproductive possibilities
50,51

.  

 

Additional Treatment Related Risk Factors 

The combined use of both radiation and chemotherapy in an individual is a common treatment 

protocol, with 27.4% of patients in the original cohort of the CCSS having received exposure to 

alkylating agents and ovarian radiation
9,42

. Although exposure to alkylating agents or ovarian 

radiation during treatment individually are both classified as major risk factors for the 

development of NSPM, their combined use in a patient poses the greatest risk
39,45

. The 
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cumulative incidence of NSPM in CCSs who were exposed to both alkylating agents and 

abdominal/pelvic radiation approached 30% by age 40
45

.  

 

The risk of treatment in preparation for stem cell transplantation (SCT) and bone marrow 

transplantation (BMT) on the development of NSPM has recently been assessed in the original 

cohort of the CCSS
9
. 17 individuals received SCT, and exposure was found to have a significant 

increase in the odds of the development premature menopause (OR = 6.35, 95% CI = (1.19, 

33.93), p = 0.0307)
9
. During the 1970s and early 1980s, preparation for SCT treatment was 

generally preceded by total body irradiation (TBI), where the body is flushed with high doses of 

radiation
46

. In more recent periods however, preparation with TBI was replaced by treatment 

with high doses of chemotherapy agents, particularly cyclophosphamide and busulfan
40

. 

 

An additional risk factor demonstrated to increase the risk of premature menopause in CCSs is 

an older age at initial cancer diagnosis and therefore an older age at treatment. In a study of 

cancer patient survivors treated with chemotherapy only, the risk of AOF increased significantly 

with an older age of cancer diagnosis
52

. As the ovarian follicle reserve decreases with increasing 

age, an older patient will have a lower number of ovarian follicles compared to a younger 

patient. Radiation and chemotherapy both accelerate the depletion of the number of ovarian 

follicles and cause damage to the ovaries, contributing to an earlier timing of menopause
4,7

. 

Therefore, in general, the older a female is when she is treated for cancer, the less follicle reserve 

she possesses and the more vulnerable she is to potential damage caused by treatment 

exposures
7,40

. Younger ovaries have been shown to be more resistant to the toxins administered 

through radiation
6,7

. For example, for a female at age 12, the mean sterilizing dose of radiation to 
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the ovaries is 18 Gy
4
. Conversely, a female at age 45 requires an ovarian radiation dose of only 

9.5 Gy to produce the same effect
4
.  
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1.2 Methodology Review 

 

1.2.1 Measures of Association 

It is crucial to ensure sufficient knowledge of the terminology used during risk prediction, 

particularly with respect to the measures estimated by the models and their subsequent 

implications. Of particular importance to epidemiological studies are the measures of prevalence 

and incidence, and their relationship to the absolute risk, relative risk and the odds ratio. 

 

Prevalence and Incidence Measures 

The prevalence and incidence of an event are common epidemiological measures estimated in a 

population. The population for which these measures are estimated is termed the population at 

risk
53

. Individuals are defined as being within the population at risk under the condition that if 

they were to develop the event during the pre-specified time period, they would be counted as 

cases in the calculation
53

. The prevalence is a static measure of event frequency in the 

population, as it represents the proportion of the population that observed an event at a specific 

time 𝑡0
54

. Prevalence is calculated from the ratio of the number of cases present at 𝑡0 (known as 

prevalent cases) and the size of the risk set of the population
54

. 

 

Prevalence =  
Number of Cases at 𝑡0

Total Population at Risk
 

 

The prevalence can also be calculated over a specific time period using the period prevalence. 

The numerator includes those cases that developed within the specified time period, and the 

denominator is the average population within the specified time period.  
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Period Prevalence =
Number of Cases in a Specified Time Period

Average Population at Risk
 

 

The incidence of an event is a population measure used to examine the change in event 

occurrence over time
54

. Incidence can be represented by the cumulative incidence, as well as the 

incidence rate. The cumulative incidence is the ratio of the number of new cases which 

developed during a specified time period and the number of individuals at risk at the beginning 

of the time period
54

. A condition posed by the cumulative incidence is that it must only be used 

in closed populations, where there is no entry or exit of participants during the study period and 

all individuals included in the analysis are at risk throughout the entire period
53,54

. This 

assumption is rarely realistic as often individuals are not under observation for the entire duration 

of the time period, and this contradiction may lead to bias in the estimated cumulative incidence 

measure
53

.  

 

Cumulative Incidence =  
Number of New Cases Over the Time Period

Total Population at Risk Initially
 

 

The incidence rate provides an estimate of the development of cases for each unit of person-time 

measured
53

. It may be used in situations which do not require participants to be observed for the 

entire study period as it incorporates the time at risk for each individual in the study. This can be 

measured in terms of the number of person-years (PY) at risk contributed to the study. The 

denominator in the incidence rate is composed of the sum of the total PY contributed by the all 

individuals within the study
53

. 
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Incidence Rate =  
Number of New Cases Over the Time Period

Total PY at Risk
 

 

Absolute Risk, Relative Risk and the Odds Ratio 

Absolute risk is the term used to define the incidence of an event and indicates the magnitude of 

the risk of an event within a population
53

. Essentially, the absolute risk represents the probability 

of an individual developing the event of interest
53

. The relative risk (RR) is used to compare the 

incidence (or risk) of an event in a group with an exposure present (the exposed group) to the 

risk of the event in a group without an exposure present (the unexposed group)
53

. It is computed 

as the ratio of the incidence in the exposed group to the incidence in the unexposed group (or the 

probability of the event occurring in the exposed group compared to the probability of the event 

occurring in the unexposed group)
53

.  

 

RR =
Probability of Event in the Exposed Group

Probability of Event in the Unexposed Group
 

 

The RR is useful for comparing event risk between exposure statuses. A value for the RR greater 

than 1 indicates that the risk of event in the exposed group is greater than that of the unexposed 

group; similarly, a RR less than 1 indicates that the risk of the event in the exposed group is less 

than that of the unexposed group
53

. As incidence is a dynamic measure, the RR can be estimated 

from studies where participants are observed over a length of time
53

. Therefore, there are 

limitations on when the RR is an appropriate measure.  
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For situations where the participants are not followed over time, the RR cannot be calculated 

directly
53

. In case-control studies, the odds ratio (OR) compares the odds of exposure in cases 

(individuals with the event) to the odds of exposure in controls (individuals without the event), 

where the odds of an event are calculated as the probability of the event occurring (P) divided by 

the probability of the event not occurring (1-P)
53

.  

 

ORCase Control  =  
Odds of Exposure in Cases

Odds of Exposure in Controls
 

 

For cohort studies and other studies where the subjects are measured over time, the incidence is 

an appropriate measure to calculate. In these studies, the odds ratio can be calculated as the odds 

of becoming a case based on exposure. 

 

ORCohort =  
Odds that an Individual with the Event is Exposed

Odds that an Individual with no Event is Exposed
 

 

Similar to the interpretation of the RR, an OR greater than 1 indicates a positive relationship 

between the exposure and the event, and less than 1 indicates a negative relationship with the 

event
53

. The RR can be estimated from the OR assuming that the cases and controls selected are 

an adequate representation of the underlying population, and the prevalence of the event is small 

(the rare disease assumption)
53

. This assumption states that the OR is a good estimate of the RR 

if the prevalence of the event in the population is less than 10%
53,55

.  
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1.2.2 Survival Analysis 

Individuals within a prospective study are followed for a length of time to potentially observe the 

development of an event of interest. Depending on the study objective, this event of interest 

could be an injury, the diagnosis or relapse of an illness, or death from a certain cause. 

Investigators recruit participants to a study if they meet predetermined inclusion criteria. For 

example, the original cohort in the Childhood Cancer Survivor Study was composed of patients 

diagnosed at participating institutions with eligible cancers before age 21 between January 1, 

1970 and December 31, 1986 who had survived at least 5 years
56

.  

 

Participants who meet the inclusion criteria and become enrolled are regarded as the risk set of 

the study. Being in the risk set implies that the individual is at risk for the development of the 

event of interest. When the individual no longer meets the criteria for being at risk for the event, 

they are removed from the risk set. The study design may allow individuals to enter the study at 

various calendar times, and therefore allow them to be under observation for different lengths of 

time. The majority of studies have set periods within which patients are initially recruited, are 

subsequently observed for a length of time, and monitored for the development of the event.  

 

Survival Data 

Survival analysis is primarily interested in the time-to-event for study participants, or the length 

of time from study entry until the event occurs. The random variable 𝑇𝑖 represents the complete 

follow-up time of patient 𝑖 within a study. Time is characterized as a continuous variable with 𝑇𝑖 

defined on [0, ∞)57
. For those who observed the event of interest within the study period, the 

time from the start of observation to the event of interest for the 𝑖th individual is recorded and 
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denoted by the random variable 𝑇𝑖
∗. However, not all individuals observe the event of interest. 

The study may terminate before the individual has experienced the event, or the individual may 

be lost to follow-up (LTFU) within the study period.  

 

An individual is LTFU if they were at one time participating in the study, but are no longer able 

to be contacted or followed up with
57

. Individuals who do not have the event of interest within 

the study period or are LTFU are said to be right censored
57

. 𝐶𝑖
∗ denotes the time from the start of 

observation of patient 𝑖 until the observation of the individual ceases (the censoring time). 𝑇𝑖, the 

complete follow-up time of patient 𝑖, can therefore be expressed as the minimum of 𝑇𝑖
∗ and 𝐶𝑖

∗ as 

only one time value is typically observed (𝑇𝑖 =  min(𝑇𝑖
∗, 𝐶𝑖

∗)). 𝛿𝑖 is an indicator variable which 

takes the value 1 if the individual observes the event (𝑇𝑖
∗ < 𝐶𝑖

∗) and 0 if the individual is censored 

(𝑇𝑖
∗> 𝐶𝑖

∗)
57

. Therefore, survival data includes a pair of outcome data for each individual, 

consisting of the follow-up time and the status indicator (𝑇𝑖, 𝛿𝑖). 

 

Survival Functions 

Three functions which can be estimated from survival data include the probability density 

function, the survivor function, and the hazard function. These functions are based on the 

random variable 𝑇𝑖 (the complete follow-up time). The probability density function is defined as: 

 

𝑓(𝑡) = lim
∆𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡)

∆𝑡
 

 

and represents the probability of the event of interest occurring at time 𝑡57
. The survivor function 

is given by:  
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𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) =  ∫ 𝑓(𝑥) 𝑑𝑥

∞

𝑡

 

 

where the function 𝑓(𝑡) represents the probability density function
57

. In the context of survival 

analysis, the word “surviving” can be interpreted as time without the event. Therefore, the 

survivor function measures the probability of being event free up to time 𝑡57
. The relationship 

between the survivor function and the probability density function can also be expressed as 

𝑓(𝑡) =  −𝑆′(𝑡)57
. The survivor functions is a decreasing continuous function with 𝑆(0) = 1 and 

𝑆(∞) =  lim𝑡 →∞ 𝑆(𝑡) = 0, implying that the probability of survival at baseline is one hundred 

percent, and as the time of study approaches infinity, the probability of survival tends to zero
57

.  

 

The hazard function (also known as the hazard rate), measures the instantaneous incidence rate 

of the event of interest
57

. It represents the probability that the event will occur at time 𝑡 given that 

the individual has been event free up to time 𝑡57
. The equation for the hazard function is: 

 

𝜆(𝑡) =  lim
∆𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 +  ∆𝑡 | 𝑇 ≥ 𝑡)

∆𝑡
 

 

where 𝜆(𝑡) is the hazard rate at time 𝑡. The hazard rate can also be expressed as the ratio 

between the previous two functions: 

 

𝜆(𝑡) =  
𝑓(𝑡)

𝑆(𝑡)
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Cox Proportional Hazards Regression 

The Cox proportional hazards (PH) model, proposed by David R. Cox in his 1972 paper, is the 

most common method used to model survival data
58

. It assesses the effect of predictors and 

covariates on the hazard rate, but leaves the baseline hazard unspecified
59

. The general form of 

this model is:  

 

𝜆𝑖(𝑡) =  𝜆0(𝑡)exp(𝛴𝛽𝑝𝑋𝑝𝑖) 

 

𝜆0(𝑡) represents the baseline hazard function (a nonnegative unspecified function of time) and 

𝛽𝑝 is a column vector of coefficients. The 𝑋𝑝𝑖’s represent the 𝑝 explanatory variables. The Cox 

PH model falls into the category of semiparametric models, which implies that some of the 

parameters are estimated (𝛽𝑝) while others are left unknown (𝜆0(𝑡)) 
59

. 

 

This semiparametric nature can be achieved due to the assumption that while holding all else 

constant, the hazard ratio (HR) remains constant over time between two levels of a covariate (the 

proportional hazards assumption)
59

. The HR is the ratio of hazard rates for two distinct 

individuals (𝜆1(𝑡) and 𝜆2(𝑡)) who take on different values for a specific covariate 𝑋 (𝑋1 and 𝑋2 

respectively)
59

: 

 

HR =  
𝜆1(𝑡)

𝜆2(𝑡)
                         

HR =  
𝜆0(𝑡)exp (𝑋1𝛽)

𝜆0(𝑡)exp (𝑋2𝛽)
       

HR = exp(𝛽(𝑋1 −  𝑋2)) 
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Based on the model, the baseline hazard function, 𝜆0(𝑡), is the same for both individuals and 

cancels out. The exp (𝛽) produced by the Cox PH model represents the HR for the specific 

covariate 𝑋 corresponding to 𝛽 and is interpreted as the change in hazard from one level of 

covariate to another
59

. 

 

The underlying assumption of proportional hazards is crucial to use the Cox PH model with the 

desired interpretation of the hazard ratio. This assumption can be visually tested by plotting 

− log(log(𝑆(𝑡))) (where 𝑆(𝑡) is the survivor function) against time for different covariate 

levels. If the proportional hazards assumption holds, the lines will be parallel and differ by 𝛽57
. 

The assumption can also be tested by assessing the Schoenfeld residuals, whereby a large 

resulting p-value provides no evidence against the proportional hazards assumption
57

. A method 

for correcting a violation of the PH assumption is to fit time dependent variables into the model, 

which allows for the effect of a covariate to change over time
57

. The proportionality assumption 

can also fail when variables are omitted from the analysis in error
59

. However, if the proportional 

hazards assumption is not met, it is recommended to examine alternative models.  

 

An additional assumption accompanying the proportional hazards assumption is that the 

continuous or ordinal independent variables (or a function of the continuous or ordinal 

independent variables) have a linear effect on the log hazard, as demonstrated by the log of the 

hazard equation
57

: 

 

log (𝜆𝑖(𝑡)) =  log(𝜆0(𝑡)) + 𝛴𝛽𝑝𝑋𝑝𝑖 
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Martingale residuals can be used to assess the functional form of the continuous independent 

variables in the model, and to confirm if a linear relationship between independent variables and 

the log hazard is appropriate, particularly in the presence of censoring events
59,60

. Essentially, 

martingale residuals compare the observed number of events for the 𝑖th individual to the 

expected number of events based on the individual specific hazard equation
59

:  

 

𝑀�̂� =  𝛿𝑖 −  𝛬0̂(𝑡𝑖)exp (𝛴�̂�𝑝𝑋𝑝𝑖) 

 

𝛿𝑖 is the censoring indicator, 𝛬0̂(𝑡𝑖) is the cumulative baseline hazard function for the 𝑖th 

individual at their latest follow-up time, and 𝛴�̂�𝑝𝑋𝑝𝑖 are the estimated coefficients from the 

model, and the observed covariate values for the 𝑖th individual
59,60

. Each martingale residual has 

an expected value of 0 under the correct model, and the sum of all observed martingale residuals 

is also 0
59

. Once these residuals are calculated, they are plotted against the variable of interest 

and smoothed using a smoothing algorithm (such as a lowess smoother) to ease in the 

identification of a pattern in the data
59,61

. If the resulting curve is linear, then including the 

variable in the model as a linear variable is appropriate
59,61

. In contrast, for curves which do not 

appear linear when plotted, a transformation may have to be applied to the variable in order to 

correctly include it in the model
59

. 

 

Competing Risk Models 

Although a study may be undertaken to explicitly observe one event of interest in its population, 

this objective may be precluded by the development of other events which prevent the individual 

from observing the event of interest
62

. These events are called competing risk events
62

. For 
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example, in a study measuring the time to recurrence of primary cancer in a group of cancer 

survivors, the study population is susceptible to many external events which would inhibit a 

relapse, including cancer in a new location or death. An individual who experiences a competing 

risk event is unlike an individual who is censored due to LTFU. Individuals who are censored are 

still assumed to be at risk for the event of interest, just unable to be observed. It is assumed that 

once a competing risk event has occurred, that individual is no longer at risk for the event of 

interest in the future
62

.  

 

All subjects recruited and observed in a study are under the assumption that they have the 

possibility to experience all the events. Usually, only the time to the first event is recorded, 

regardless of the events’ importance to the study objective. That being said, there is still 

information provided by the participants who observe competing events which should be 

included in the model. With the introduction of competing events, 𝛿𝑖, the status indicator of 

survival data pairs, is able to take more values. Previously, a value of 0 indicated that the 

individual was censored, and a value of 1 indicated that the individual observed the event of 

interest. With competing risk events introduced into the model, 𝛿𝑖 can take on 𝐾 values in additi 

on to 0 and 1 (𝐾 = 2, … , 𝑘 where 𝑘 represents the number of competing events in the situation). 

 

The cause specific hazard for event 𝑘 (CSHk), 𝜆𝑘(𝑡), is defined as the instantaneous rate of 

failure at time 𝑡 from cause 𝑘, given that no failure from any cause has occurred previously
63

. 

 

𝜆𝑘(𝑡) = lim
∆𝑡 →0

Pr(𝑡 ≤ 𝑇 < 𝑡 +  ∆𝑡, failure from cause 𝑘 |𝑇 ≥ 𝑡)

∆𝑡
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Returning to the previous cancer recurrence example, this quantity would measure the 

instantaneous probability of primary cancer relapse (the event of interest) at time 𝑡 given that up 

until time 𝑡 the patient was completely event free. The CSH for event 𝑘 can be modelled using 

the Cox PH model by treating the remaining events as censoring events provided all events are 

assumed to be independent
63

. In general, the assumption of independence between events is 

impractical and therefore often competing risk events cannot simply be treated as censoring.  

 

The cumulative incidence function for event 𝑘 (CIFk) at time 𝑡 from cause 𝑘 represents the 

probability of failure from cause 𝑘 up to 𝑡62
.  

 

CIFk = Pr (𝑇 ≤ 𝑡, 𝛿𝑖 = 𝑘) 

 

A semiparametric model was developed by Fine and Gray to model the CIF by involving the use 

of the subdistribution hazard function, which can be written as
64

: 

 

𝜆𝑘
∗ (𝑡) =  lim

∆𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, failure from cause 𝑘 | 𝑇 ≥ 𝑡 ∪ (𝑇 ≤ 𝑡 ∩ not cause 𝑘)) 

∆𝑡
 

 

The value of the subdistribution hazard represents the instantaneous probability of failure from 

cause 𝑘 at time 𝑡 given that either no failure has occurred before time 𝑡 if a failure did occur, it 

was a failure from another cause
63

. Essentially, those individuals who experienced competing 

events remain in the risk set instead of being removed, even though they are technically no 

longer at risk.  
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The Fine and Gray model (also known as Fine-Gray Regression (FGR)) has a similar form to the 

Cox PH model, whereby it is semiparametric and leaves the baseline subdistribution hazard 

unspecified
63

. 

 

𝜆𝑘
∗ (𝑡) =  𝜆𝑘0

∗ (𝑡)exp (𝛴𝛽𝑝𝑋𝑝𝑖)  

 

The resulting exponentiated coefficients, exp (𝛽), are interpreted as the subdistribution hazard 

ratios (SHR) and compare one level of a covariate to another while holding all else constant
63

. 

The direction of the SHR will specify the direction of the effect of the specific covariate on the 

CIFk, however does not give the exact magnitude of the effect of the covariate
62

. The equation 

for obtaining the predicted probability of an event at a specific time from the FGR model 

involves the estimated coefficients from the FGR model as well as the baseline cumulative 

incidence function (CIF0)
62

: 

 

1 − CIFk(𝑡) = (1 − CIFk,0(𝑡))
exp( 𝑋𝛽)

 

 

Depending on the study objective, the ideal method to implement for modelling competing risks 

can differ
62

. If the question is focused on answering etiologic questions about the exposure and 

outcome relationship, then the CSH model is fine to use as the regression is solely assessing the 

influence of covariates on a specific event type
62

. When the focus is on prediction, and 

determining the absolute incidence of an event occurring, then using FGR is recommended as it 

models the effect of covariates on the cumulative incidence while taking into account competing 

risk events
62

. 
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Random Survival Forests 

Tree-based methods aim to divide the covariate space into 𝑘 non-overlapping regions using 

recursive binary partitioning to partition the outcome
65,66

. Although traditionally applied to 

classification and regression problems, tree based methods have been expanded to solve 

prediction problems for survival data, and the steps for the latter follow roughly the same format 

as the former. Random survival forests (RSF) aim to divide the covariate space into groups with 

similar time-to-event outcomes
67

. Benefits of the survival tree methods include their flexibility 

and ability to handle high dimensional covariates; however their potential to favour variables 

with multiple split points can result in bias
67

.  

 

A decision tree is developed based on the set of observations, a node splitting rule, and a 

stopping rule
65

. The node splitting rule determines how the observations are partitioned (or 

“divided”) at each node. The rule is chosen such that the split results in the greatest reduction in 

node impurity, or so the observations within each partition are more homogeneous
66

. A stopping 

rule is assigned to determine how large the tree will grow; ideally such that each resulting 

partition contains at least some predetermined minimum number of observations
67

. The terminal 

nodes (nodes which do not divide further) are referred to as leaves. All of the observations within 

a terminal node will be assigned the same predicted value for the response (in the case of 

survival data, this is the same estimate of time-to-event). 

 

Bootstrap sampling has been shown to increase the stability of predictors and reduce variance in 

model building for a wide variety of modelling approaches
65

. In general, bootstrap sampling is 

performed by repeatedly sampling 𝑁 observations from the original data set with replacement 
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(once the observations are sampled, they are put back into the sample) in order to generate the set 

of bootstrap data sets
68

. 𝐵 bootstrapped samples of size 𝑁 are generated from the original 

dataset
68

. A survival tree is then built on the 𝑏th dataset to obtain prediction estimates
68

. 

Subsequently, an average is taken of the 𝐵 prediction estimates, a process known as bootstrap 

aggregation or “bagging”
65,68

.  

 

The method of random forest is similar to bagging, although introduces a step which decorrelates 

the developed trees from one another
68,69

. Similarly, 𝐵 bootstrap samples are drawn from the 

original data set and a tree is grown for each bootstrap sample. However, at each node, only √𝑝 

variables from the available set of 𝑝 covariates are selected for inclusion as split candidates
68

. 

This allows the generated bootstrapped trees to be distinct, as not all variables are evaluated at 

every split
68,69

. This is particularly beneficial should a few variables be particularly strong 

predictors and therefore prominent in the majority of splits
68

. The process of only choosing a 

subset of √𝑝 variables for consideration at each split point allows other variables to be 

considered when the strong predictors are excluded, which ultimately results in reduced 

correlation between the ensuing trees
68,69

. Results from random forest have been shown to have 

reduced bias and variance, and produce a smaller prediction error than other procedures, 

including bagging alone
69

.  

 

Unlike regression and classification trees which have an established measure of node impurity to 

use for splitting the nodes, there is no such measure universally acknowledged for survival data, 

providing a challenge for the development of survival forests
66,67

. The most frequently used 

splitting rule for survival data with censoring is the logrank test statistic, which compares a 



 

33 

 

weighted version of the Nelson-Aalen cumulative hazard estimator between daughter nodes
70

. 

The Nelson-Aalen cumulative hazard estimator (�̂�(𝑡)) is a non-parametric estimate of the hazard 

function of an event at time 𝑡, which is defined as
57

:  

 

�̂�(𝑡) =  ∫
∑ I(T = s, δi = 1)i

∑ I(T ≥ s)i
ds

𝑡

0

 

 

The logrank test statistic is subsequently computed by weighting the difference between the 

Nelson-Aalen cumulative hazard estimators obtained from each daughter node by the number of 

events observed in each node and dividing by the variance of the weighted difference measure
70

. 

The best split is chosen as the one that maximizes the logrank test statistic, or results in the 

greatest difference between cumulative hazards estimators
70

. For trees with survival data 

incorporating competing risks, the superior splits are determined by maximizing the weighted 

difference between the cumulative incidences of events between daughter nodes (Gray’s test 

statistic) which assesses the direct effect of covariates on the cumulative incidence of the event 

of interest, and is appropriate for studies interested in predicting the probabilities of events
71

.  

 

 

1.2.3 Time-specific Logistic Regression 

Logistic regression is a regression technique for binary outcome variables, which indicate yes or 

no if the event of interest occurred
68

. The logistic function modelled by logistic regression is:  

 

Pr(𝑌 |𝑋𝑖)  =
exp (𝛽0 + ∑ 𝛽𝑝𝑋𝑝𝑖)

1 +  exp (𝛽0 + ∑ 𝛽𝑝𝑋𝑝𝑖)
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where 𝑌 is the binary variable representing the occurrence of the event, 𝑋𝑝𝑖 is a vector of 

covariate values for the 𝑖th individual, and 𝛽𝑝 are the coefficients corresponding to the 

covariates
68

. The logistic regression equation can be presented in many forms; however the most 

common is the log odds equation
68

: 

 

logit(Pr(𝑌|𝑋𝑖)) = log (
Pr(𝑌|𝑋𝑖)

1 − Pr(𝑌|𝑋𝑖)
) =  𝛽0 + 𝛴𝛽𝑝𝑋𝑝𝑖 

 

The log odds form represents one of the assumptions of logistic regression, which is that there 

exists a linear relationship between the covariates and the log odds of the event. Additional 

assumptions for using logistic regression include ensuring that covariates are not highly 

correlated and that the observations are independent (no repeated measures). 

 

The measure of association estimated through logistic regression is the OR, which is given by 

exp (𝛽𝑝). The odds of the occurrence of the event will be increased by exp (𝛽𝑝) for a one unit 

increase in the corresponding covariate value (𝑋𝑝), while holding all other covariates constant
68

. 

Although not directly estimated, the RR can be estimated from the OR provided by logistic 

regression assuming that the rare disease assumption is valid as described previously. Obtaining 

predicted probabilities of event occurrence using logistic regression involves rearranging the log 

odds equation back to the original logistic form and plugging in the estimated coefficients and 

individual covariate values.  

 

Logistic regression is unlike the aforementioned survival models, as it does not deal with time-

to-event data. Logistic regression can be used to provide an estimate of the odds of the event at a 
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specific time of interest and the resulting predicted probability can subsequently be computed. 

Time-specific logistic regression (TLR) estimates can be computed for each of the pre-specified 

time periods required. To account for censoring of event time which can occur due to LTFU or 

an unobserved event during the study period, the method of inverse probability-of-censoring 

weights can be applied (described in detail in Chapters 3 and 4).  

 

 

1.2.4 Model Performance and Accuracy Assessments 

Following the development of prediction models, it is important to evaluate model performance 

to aid in determining the superior model.  

 

The Receiver Operating Characteristic Curve and the Area under the Curve 

The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are 

methods used to assess the discrimination of a classifier (either a model or a diagnostic test)
72

. 

The discrimination refers to the ability of the classifier to correctly classify the outcome as 

positive (event observed) or negative (no event observed)
73

. The ROC curve plots the sensitivity 

against 1 - the specificity of a diagnostic test for different threshold values
72

. The sensitivity of a 

diagnostic test measures how well the test is able to correctly predict a positive outcome when a 

positive outcome is present (a “true” positive (TP))
72

. It uses the ratio of TP to the total number 

of observations with a positive outcome (TP + false negatives (FN)) which gives the true positive 

rate
72

. In contrast, the specificity measures how well the diagnostic test is able to correctly 

identify a negative outcome when a negative outcome is present (the ratio of true negatives (TN) 

to all observations classified as negative (TN + false positive (FP))
72

. 
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Sensitivity =
TP

TP + FN
 

 

Specificity =
TN

TN + FP
 

 

Visually, the closer the plot is to a straight line through the origin (45-degree angle), the less 

ability the classifier has to discriminate between positive and negative outcomes
72

. A straight line 

through the origin indicates that the test does no better than selecting each outcome by chance
72

. 

Optimally, the curve will be high in the upper left corner
72

. 

 

The AUC value summarizes the discrimination ability of a classifier based on the ROC curve. It 

is the area under the ROC curve, and represents the probability that a randomly chosen 

observation with a positive outcome will be ranked higher than a randomly chosen observation 

with a negative outcome
72

. Values for the AUC range from 0.5 to 1.0, with 0.5 indicating no 

discrimination, and corresponding to an ROC curve with a straight line through the origin
72

. 

Values greater than 0.5 indicate the model has some ability to distinguish between positive and 

negative outcomes, and ideally the value will be close to 1.0
72

. 

 

The Precision Recall Curve and the Area under the Curve  

Although discrimination has consistently been used in clinical studies to evaluate diagnostic 

tests, evidence has shown that the AUC measure is inappropriate for evaluating the accuracy of 

prospective risk prediction models, as the AUC is comprised of two retrospective measures 

(sensitivity and specificity)
74

. Therefore, the positive predictive value (PPV) has been proposed 
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as a more suitable evaluator of prospective risk prediction models as it is calculated using data 

from a prospective cohort
74

. The PPV of a test corresponds to the proportion of individuals 

classified with a positive outcome who actually have a positive outcome
72,75

.  

 

PPV =
TP

TP + FP
 

 

The precision-recall curve (PR) was developed to summarize the PPV of a test and used to assess 

its’ accuracy
74,75

. The PR curve plots the PPV (also known as precision) against the sensitivity 

(also known as recall) of a diagnostic test for various threshold values
75

. A non-informative PR 

curve will be a horizontal line intersecting the y-axis at the value of the event rate in the 

population
74

. 

 

The PR curve has been shown to provide a more honest estimate of model performance when the 

outcome of interest is of low prevalence in the target population
75

. It does not take into account 

the number of individuals correctly identified with a negative outcome (the TNs), which is high 

in a population with a low event rate, and would overinflate the estimate of the performance of a 

classifier
75,76

. The PR curve can be summarized by the area under the precision recall curve 

(AUCPR)
75,76

. The AUCPR value is denoted as the average positive predictive value (AP) with a 

range between the prevalence of the event in the population and 1.0, with 1.0 occurring when 

positive outcomes are always assigned a higher value than negative outcomes
74,75

. Values greater 

than the prevalence of the outcome in the population indicate that the test provides some 

discriminatory ability. To evaluate models for incidence over time, the time-dependent AP can 

be used to assess the model predictive accuracy.  
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Calibration Curves  

Calibration is a measure of the agreement between observed outcomes and the predicted 

probabilities from a model, and indicates the reliability of the resulting predictions
73,77

. A model 

is said to be well calibrated if for a subpopulation assigned a predicted risk of 𝑝, the observed 

proportion of individuals with the event is close to 𝑝77
. For example, assume a group of 100 

individuals were each given a predicted probability of 0.20 for developing NSPM. The model 

would be deemed reliable if on average 20% (or 20 out of the 100 individuals) developed the 

event. Frequently, the results will be presented through a calibration curve, which gives a 

graphical assessment of the calibration
73

. A calibration curve representing perfect agreement 

between predicted probability and observed probability will be a 45-degree line
73

. 
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2 Exploratory Data Analysis 

2.1 Background 

Childhood cancer survival has been steadily increasing over the latter half of the 20
th

 century
1
. 

Based on estimates from the Surveillance, Epidemiology, and End Results (SEER) Program, the 

probability of surviving a childhood cancer diagnosis during the period of 1975-1979 was 

67.8%
2
. This probability increased to almost 80% by 1995-1999, surpassed 81% during the first 

5 years of the 21
st
 century, and is currently over this value

2,3
. Due to the increased quantity of 

patients surviving childhood cancer, and the high likelihood of negative conditions developing 

during survival, there is an essential need to assess the impact of cancer treatment on the 

development of chronic conditions
4
. 

 

Consequently, the CCSS, a multi-institutional retrospective cohort study with a study population 

of over 24,000 cancer survivors was developed
4
. The CCSS uses questionnaires to follow-up 

childhood cancer survivors and assess the impact of their cancer and its treatment on the 

development of many conditions, including chronic physical and mental health disorders, second 

cancers, organ dysfunction and early death
4
. The study began in 1994 with an original cohort of 

over 14,000 individuals who were diagnosed with a malignant neoplasm between January 1, 

1970 and December 31, 1986 before age 21
4
. The project was subsequently expanded in 2007 to 

include an additional 10,000 more survivors diagnosed between 1987 and 1999 comprising the 

expansion cohort
5
. 
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Population Selection 

Participants were selected for the CCSS cohorts from participating institutions across North 

America
4
. Individuals were eligible for the cohort if they were diagnosed and treated within one 

of the above specified time periods for leukemia, a central nervous system (CNS) malignancy 

(excluding meningioma and craniopharyngioma), Hodgkin lymphoma, non-Hodgkin lymphoma, 

neuroblastoma, soft tissue sarcoma, kidney cancer or bone cancer, and were 5 year survivors 

from the date of their initial diagnosis
4
. Out of 20,276 individuals eligible for the original cohort, 

and 14,962 eligible for the expansion cohort, 69.4% (n = 14,361) and 66.8% (n = 10,002) 

respectively were enrolled in the study. 

 

Selection of individuals for the expansion cohort was performed through stratified random 

sampling. In an effort to expand research on low prevalence diagnoses of interest
6,7

, individuals 

diagnosed with acute lymphoblastic leukemia (the most common childhood cancer) were 

undersampled
8
. Therefore, analysis using data from the combination of both cohorts requires 

weighting individuals within the expansion cohort with sampling weights to be analogous to the 

original cohort. 

 

Survey Content 

Initially, participants completed a baseline survey, which requested information regarding 

various demographic and lifestyle characteristics. These included questions regarding ethnicity, 

health habits (such as physical activity levels, smoking and alcohol consumption), education and 

employment history, medical conditions, prescribed medications, offspring and pregnancy 

history, as well as a family history
9,10

. Medical charts were reviewed by the CCSS centres to 
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obtain treatment data for each patient, specifically with respect to radiation and chemotherapy 

exposures. Information was collected regarding the specific chemotherapy agents and their 

respective doses, as well as radiation dose and location. Following the baseline survey, follow-up 

surveys were periodically administered to obtain updated information regarding health and well-

being and to monitor the development of any adverse events. Five follow-up questionnaires 

(follow-up surveys 1-5) were released to the original cohort, and one follow-up questionnaire 

was released to the expansion cohort (identical to the follow-up 5 survey for the original cohort). 

A copy of the survey questions specific to determining ovarian status is included in Appendix A. 

Table 2.1 details when the surveys were released, as well as which surveys provided information 

sufficient to determine ovarian status. 

 

Table 2.1 CCSS surveys released to the original and expansion cohorts 

  

Survey Years Released 
Information Sufficient for 

Determining Ovarian Status 

Original Cohort 

Original Baseline 10/1992 – 12/2002 No 

Follow-up 1 (2000) 02/2000 – 12/2002 Yes 

Follow-up 2 (2003) 11/2002 – 04/2005  No 

Follow-up 3 (2005) 04/2005 – 11/2006 No 

Follow-up 4 (2007) 07/2007 – 11/2009 Yes 

Follow-up 5 (2014) 2014 – 2016 Yes 

Expansion Cohort 

Expansion Baseline 05/2008 - present Yes 

Follow-up 5 (2014) 2014 – 2016 Yes 
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CCSS Study Sample Eligibility 

For the purpose of developing risk prediction models for NSPM in childhood cancer survivors, 

data from the female survivors in the CCSS cohort was obtained. Initial exclusion criteria 

included failure to participate in a follow-up survey with sufficient menstrual history (MH) 

information to determine ovarian status, survey completion through a proxy (for individuals who 

were less than 18 at the latest follow-up survey completion, or those who were deceased 

following the 5 year survival window), as well as the absence of key MH information to 

determine ovarian status.  

 

Individuals who overlapped with the St Jude Lifetime Cohort Study (SJLIFE) were set aside for 

external validation. Individuals with cranial or pituitary radiation greater than 30 Gy were 

excluded, as targeted high dose radiation to the brain can influence the timing of the release of 

important ovarian hormones as described in Chapter 1. Those with a SMN within the first 5 

years of the primary cancer diagnosis were excluded, as consistent treatment exposure 

information was not uniformly collected. As individuals with AOF are no longer at risk of 

developing NSPM, those individuals were excluded during the analysis. Exclusions were also 

made for individuals with missing treatment exposure records for radiation and chemotherapy. 

 

CCSS Study Sample Exclusions 

Of the 11,336 females who completed the baseline survey, data was received for 8,770 

individuals (77.4%). From the 2,566 excluded individuals, 1,774 individuals were excluded for 

failing to participate on a follow-up survey with sufficient MH information, 766 were excluded 

due to survey completion through a proxy, and 26 were excluded due to missing key MH 
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information. Within the remaining 8,770 individuals, 932 overlapped with the SJLIFE cohort, 

808 individuals were exposed to cranial radiation greater than 30 Gy or had suspected pituitary 

dysfunction, the age at menopause was unable to be determined for 73 individuals, and 9 

individuals had a SMN within 5 years. 1,086 individuals with missing treatment exposure 

records and 354 individuals with AOF were excluded during model development. A summary of 

the exclusions made from the total eligible sample is provided in Table 2.2. 

 

The total study sample was comprised of 5,508 individuals, of which 4,054 (73.6%) were 

designated as training data for model development, and the remaining 1,454 (26.4%) were test 

data for internal validation. After accounting for sampling weights, the total study sample size 

was 6,252, with a training set of 4,644 (74.3%) and a test set of 1,608 (25.7%). All reported 

frequencies, population measures, and figures for the remainder of Chapter 2 are weighted with 

sampling weights. 
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Table 2.2 CCSS study sample exclusions 

 
Number of Observations 

Total Number of CCSS Female Participants 11,336 

No participation on survey with MH information 1,774 

Proxy provided MH information 766 

Excluded for missing key MH information 26 

Data Received from CCSS 8,770 

Overlap with SJLIFE Cohort 932 

Cranial or pituitary radiation > 30 Gy 808 

Inability to determine age at menopause 73 

SMN within 5 years of primary cancer diagnosis 9 

Interim Total 6,948 

Missing key treatment data  1,086 

Diagnosis of AOF 354 

Training Data 4,054 

Test Data 1,454 

Total (unweighted) 5,508 

MH is menstrual health, CCSS is the Childhood Cancer Survivor Study, SJLIFE is the St Jude 

Lifetime Cohort Study, SMN is second malignant neoplasm and AOF is acute ovarian failure. 
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2.2 Baseline Characteristics 

 

Diagnosis and Treatment Period 

The years that an individual could be diagnosed with and treated for cancer to be eligible to 

participate in the CCSS were from 1970-1999. In order to observe the distribution of participants 

within this time period, the 30 years were divided into 6 categories (called “treatment periods”), 

which each category representing 5 consecutive years. Assessing the distribution of risk factors 

for NSPM by treatment period is important to observe how treatment exposures may differ and 

contribute to the increase in childhood cancer survivorship.  

 

Age at Cancer Diagnosis 

As described in Chapter 1, an increased age at cancer diagnosis is a risk factor for NSPM. In 

order to ensure consistency across treatment periods, the distribution of age at cancer diagnosis 

was examined. The average age at cancer diagnosis was 7.90 years, ranging from 0 to 21.0 with 

a median age of 6.3 (Table 2.3). Visually, the distribution of age at cancer diagnosis follows the 

same pattern in all the treatment periods, whereby there is an initial spike of diagnoses, followed 

by a decline (Figure 2.1). The percent of cancer diagnoses increases to a smaller peak around 

approximately age 15. The most recent treatment period has a lower percentage of individuals in 

the youngest age group (diagnosis age 0 and 1) compared to the remaining treatment periods, as 

many individuals diagnosed between those ages in that time period would not be eligible for the 

study based on their current attained age. 
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Table 2.3 Age at cancer diagnosis by treatment period 

Frequency 

Diagnosis and Treatment Period  

1970-1974 1975-1979 1980-1984 1985-1989 1990-1994 1995-1999 Overall 

n (%) 
365 

(7.9) 

658 

(14.2) 

912 

(19.6) 

893 

(19.3) 

957 

(20.6) 

859 

(18.5) 
4,644 

Median 

Age 
6.8 7.5 5.7 5.9 5.1 8.1 6.3 

Mean 

(95% CI) 

8.5 

(7.8, 9.1) 

8.7 

(8.2, 9.1) 

7.7 

(7.3, 8.1) 

7.4 

(7.0, 7.8) 

6.9 

(6.5, 7.3) 

8.9 

(8.4, 9.4) 

7.9 

(7.7, 8.1) 

 

 

 

Figure 2.1 Age at cancer diagnosis by treatment period  
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Age at Menarche 

131 individuals did not provide information on their age at menarche and 21 individuals were 

excluded due to suspected reporting or data entry error. Therefore, there were 4,446 individuals 

who provided accurate information regarding their age at menarche. Overall, the median age at 

menarche was 12 years. Visually, there is a large peak in the age at menarche in all cohorts at 

approximately 12 years old, with the majority of ages at menarche occurring between ages 10 

and 15 (Figure 2.2). 

 

 

Figure 2.2 Age at menarche by treatment period  
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Primary Cancer Diagnosis  

Patients were classified into 13 categories based on their primary cancer diagnosis group 

according to the International Classification of Diseases for Oncology (ICD-O)
4
. Specific cancer 

diagnosis codes which were eligible for inclusion in the study can be accessed online at 

https://ccss.stjude.org/content/dam/en_US/shared/ccss/documents/icdocodes.pdf.  

 

The cancer diagnosis group with the highest proportion of individuals was acute lymphoblastic 

leukemia (ALL, n = 1,712) accounting for 36.9% of all diagnoses. The cancer diagnosis group 

with the lowest proportion of individuals was the group of medulloblastoma, primitive 

neuroectodermal tumor (PNET, n = 11; 0.2%), although “other bone tumors” and “other 

leukemia” had percentages less than 1% (Table 2.4).  
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Table 2.4 Frequency and percent of primary cancer diagnoses 

Cancer Diagnosis Group 
Total 
n (%) 

ALL 1,712 (36.9) 

Acute myeloid leukemia 151 (3.3) 

Astrocytomas 357 (7.7) 

Ewings sarcoma 126 (2.7) 

Hodgkin lymphoma 540 (11.6) 

Kidney tumors 519 (11.2) 

Medulloblastoma, PNET 11 (0.2) 

Neuroblastoma 337 (7.3) 

Non-Hodgkin lymphoma 262 (5.6) 

Osteosarcoma 283 (6.1) 

Other bone tumors 26 (0.6) 

Other CNS tumors 70 (1.5) 

Other leukemia 29 (0.6) 

Soft tissue sarcoma 221 (4.8) 

Total 4,644 

Percent represents column percent; PNET is a primitive neuroectodermal tumor, CNS is the 

central nervous system. 
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Race and Ethnicity 

Individuals self-reported their race and ethnicity as White, Black, American Indian or Alaskan 

native and Asian or Pacific Islander, and Hispanic (Yes/No). Their responses were compared to 

data from the United States of America (USA) census from the years 1970, 1980 and 1990
11

. 

4,034 individuals self-reported their race as White, which accounted for 86.9% of the total cohort 

(Table 2.5). Compared to the USA census data, the percent of White individuals during each 

treatment decade is slightly higher (93% versus 87.5%, 87.7% versus 83.1%, and 82.2% versus 

80.3% respectively). 

 

The percent of self-reported Black individuals was 4.6% overall. This is lower than the percent 

of Black individuals in the USA during 1970-1990, which ranged from 11.1% to 12.1% 

respectively (Table 2.5). There were a lower percentage of individuals identifying as Asian or 

Pacific Islander for all treatment periods within the study sample compared to the USA 

population (1.42% versus 1.73%). There were no individuals identifying as American Indian or 

Alaskan Native in the earliest treatment period (1970-1974), however by 1995-1999, they 

comprised 0.8% of the study population which aligns with the USA census proportion from the 

year 1990. 

 

88.8% of the study sample overall reported to not be of Hispanic origin (Table 2.5). This is 

slightly lower than the overall population percent in the USA during the study period which 

ranged from 95.5% to 91%. 403 individuals identified as Hispanic, representing 8.7%, and falls 

within the proportion of Hispanic individuals in the USA during the study period, which ranged 
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from an estimated 4.5% in 1970 to 9.0% in 1990. Hispanic origin for 116 individuals is 

unknown.  

 

 

Table 2.5 Self-reported race and ethnicity by treatment period 

 

 

Diagnosis and Treatment Period 
Total 

n (%) 1970-1974 

n (%) 
1975-1979 

n (%) 
1980-1984 

n (%) 
1985-1989 

n (%) 
1990-1994 

n (%) 
1995-1999 

n (%) 

Race 

American Indian 

or Alaskan Native 
0 

1 

(0.2) 

4 

(0.4) 

5 

(0.6) 

1 

(0.1) 

7 

(0.8) 

18 

(0.4) 

Asian or Pacific 

Islander 

1 

(0.3) 

5 

(0.8) 

11 

(1.2) 

14 

(1.6) 

9 

(0.9) 

26 

(3.0) 

66 

(1.4) 

Black 
15 

(4.1) 

12 

(1.8) 

29 

(3.2) 

43 

(4.8) 

60 

(6.2) 

55 

(6.4) 

213 

(4.6) 

Mixed Race 
5 

(1.4) 
0 

14 

(1.5) 

2 

(0.2) 
0 0 

21 

(0.5) 

Unknown 
9 

(2.5) 

20 

(3.0) 

35 

(3.8) 

65 

(7.3) 

77 

(8.1) 

86 

(10.0) 

292 

(6.3) 

White 
335 

(91.8) 

620 

(94.2) 

819 

(89.8) 

764 

(85.5) 

810 

(84.6) 

686 

(79.8) 

4,034 

(86.9) 

Hispanic Origin 

No 
331 

(90.7) 

604 

(91.8) 

826 

(90.6) 

781 

(87.5) 

847 

(88.6) 

736 

(85.7) 

4,126 

(88.8) 

Yes 
15 

(4.1) 

34 

(5.2) 

49 

(5.4) 

87 

(9.8) 

99 

(10.4) 

118 

(13.8) 

403 

(8.7) 

Unknown 
19 

(5.2) 

20 

(3.0) 

37 

(4.1) 

25 

(2.8) 

10 

(1.1) 

5 

(0.6) 

116 

(2.5) 

Percent represents column percent 
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Second Malignant Neoplasms 

Due to the lack of availability of consistent treatment data, any individual diagnosed with a SMN 

within 5 years of their primary cancer diagnosis was excluded from the study sample. 195 

individuals reported having a SMN after 5 years following their primary cancer diagnosis 

accounting for 4.2% of the total study population (Table 2.6). The ovarian status category with 

the highest proportion of survivors developing a SMN was NSPM, with 10.4% of the individuals 

diagnosed. 

 

Table 2.6 Second malignant neoplasms by ovarian status 

 

SMN 

Ovarian Status 
Total 

n (%) Normal  

n (%) 
SPM 

n (%) 
NSPM 

n (%) 

No 
4,081 

(91.7) 

204 

(4.6) 

164 

(3.7) 

4,449 

(95.8) 

Yes 
160 

(82.2) 

16 

(8.2) 

19 

(9.5) 

195 

(4.2) 

 

Percent represents row percent; Normal represents normal ovarian status at last MH survey 

completion before SMN diagnosis. SMN is second malignant neoplasm, SPM is surgical 

premature menopause, and NSPM is nonsurgical premature menopause. 
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2.3 Exposure Characteristics 

Specific covariates examined as potential predictors involved the risk factors for NSPM, 

including age at cancer diagnosis and treatment exposures. Factors regarding chemotherapy 

assessed during model development included overall chemotherapy exposure (Yes/No), 

procarbazine exposure (Yes/No), and the cyclophosphamide equivalent dose (CED)
12

. Radiation 

therapy exposures included overall radiation exposure, maximum prescribed radiation dose to the 

abdomen, pelvis, total body, and minimum radiation dose to the ovaries. Collaboration with 

oncologists and researchers helped to ensure that all biologically significant factors and 

interactions were assessed during model development. Unless otherwise stated, table percents 

represent column percent. 
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Radiation Therapy Exposure 

In the earlier periods of diagnosis, over 60% of survivors were exposed to radiation (Table 2.7). 

However, beginning in 1985, there was a reduction in the use of radiation and the percent of 

individuals exposed to radiation within each treatment period decreased. In the most recent 

treatment period, only 24% of survivors had exposure to radiation. Regions where radiation 

exposure is relevant for the development of NSPM include abdominal, pelvic, and ovarian 

radiation. 

 

Table 2.7 Frequency of radiation exposure by treatment period 

Received 

Radiation 

Diagnosis and Treatment Period 

Total 

n (%) 1970-1974 

n (%) 
1975-1979 

n (%) 
1980-1984 

n (%) 
1985-1989 

n (%) 
1990-1994 

n (%) 
1995-1999 

n (%) 

No 
122 

(33.4) 

225 

(34.2) 

438 

(48.0) 

598 

(66.9) 

737 

(77.0) 

653 

(76.0) 

2,773 

(59.7) 

Yes 
243 

(66.6) 

433 

(65.8) 

474 

(52.0) 

296 

(33.1) 

220 

(23.0) 

206 

(24.0) 

1,872 

(40.3) 
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Maximum Abdominal Radiation Dose 

1,872 individuals were exposed to abdominal radiation. Except for the earliest treatment period 

(1970-1974) which had a median maximum abdominal radiation dose of 12 Gy, the median 

maximum dose of abdominal radiation was 2 Gy in all treatment periods (Figure 2.3). The 

earliest treatment period also had the largest maximum abdominal radiation dose of 60 Gy and 

the largest mean exposure of 14.9 Gy (95% CI = (12.9, 16.8)). Although the range of magnitude 

of exposure to abdominal radiation was similar across the treatment periods, the mean maximum 

doses are decreasing. 

 

 

Figure 2.3 Maximum abdominal radiation dose by treatment period 
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Maximum Pelvic Radiation Dose 

1,872 individuals had exposure to pelvic radiation. All treatment periods had a median and 

minimum dose of maximum pelvic radiation of 0.2 Gy and overall, a decreasing trend is seen in 

the magnitude as treatment period increases (Figure 2.4). All individuals with exposure to pelvic 

radiation also had exposure to abdominal radiation. 

 

 

Figure 2.4 Maximum pelvic radiation dose by treatment period 
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Pituitary Radiation  

Only participants with < 30 Gy of pituitary radiation are included in the analyses, as targeted 

cranial and pituitary radiation greater than 30 Gy can influence the timing of the release of 

important reproductive hormones as previously discussed. 11 participants had no information for 

their pituitary radiation exposure, and 1,865 individuals had exposure to pituitary radiation < 30 

Gy. For individuals with exposure to pituitary radiation, the median pituitary radiation dose 

overall was 1.3 Gy, ranging from a minimum of 0.002 Gy to a maximum of 28.6 Gy (Figure 

2.5). Exposure to pituitary radiation decreased over time, with the lowest range of dose exposure 

observed in the most recent treatment period. All individuals with exposure to abdominal, pelvic 

and ovarian radiation had exposure to pituitary radiation. 

 

 

Figure 2.5 Pituitary radiation dose by treatment period  
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Minimum Ovarian Radiation 

The specific magnitude of radiation exposure to the ovaries was calculated based on the dose 

received through abdominal, pelvic and total body irradiation. 1,871 individuals had exposure to 

ovarian radiation. The largest median dose of ovarian radiation was reported in the earliest 

treatment period (1970-1974) with a dose of 0.58 Gy. Overall, a decreasing trend is seen in the 

magnitude of ovarian radiation dose as the treatment period increases (Figure 2.6). The largest 

maximum ovarian radiation dose was 45.5 Gy in the most recent treatment period (1995-1999). 

The range of exposure to ovarian radiation is similar after excluding the earliest treatment period. 

 

 

Figure 2.6 Minimum ovarian radiation dose by treatment period 
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Chemotherapy Exposure 

Over all treatment periods, more individuals are exposed o chemotherapy than not (Table 2.8). 

The lowest proportion of chemotherapy exposure was during the first treatment period, where 

only 71.8% of the 365 individuals were exposed. For the remaining treatment periods, this value 

was above 80%. 

 

Table 2.8 Frequency of chemotherapy exposure by treatment period 

Received 

Chemotherapy 

Diagnosis and Treatment Period 
Total 

n (%) 1970-1974 

n (%) 
1975-1979 

n (%) 
1980-1984 

n (%) 
1985-1989 

n (%) 
1990-1994 

n (%) 
1995-1999 

n (%) 

No 
103 

(28.2) 

131 

(19.9) 

163 

(17.9) 

120 

(13.4) 

160 

(16.7) 

130 

(15.1) 

807 

(17.4) 

Yes 
262 

(71.8) 

527 

(80.1) 

749 

(82.1) 

773 

(86.6) 

797 

(83.3) 

729 

(84.9) 

3,837 

(82.6) 
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Cyclophosphamide Equivalent Dose 

The cyclophosphamide equivalent dose (CED) is a measure of the cumulative alkylating agent 

exposure calculated through the standardization of 10 common alkylating agents 

(cyclophosphamide included) to the units of cyclophosphamide
12

. The equation for the 

calculation of the CED value is as follows: 

 

CED (mg/m
2
) = 1.0 (cumulative cyclophosphamide dose (mg/m

2
))  

+ 0.244 (cumulative ifosfamide dose (mg/m
2
))  

+ 0.857 (cumulative procarbazine dose (mg/m
2
))  

+ 14.286 (cumulative chlorambucil dose (mg/m
2
))  

+ 15.0 (cumulative carmustine dose (mg/m
2
))  

+ 16.0 (cumulative lomustine dose (mg/m
2
))  

+ 40.0 (cumulative melphalan dose (mg/m
2
))  

+ 50.0 (cumulative thiotepa dose (mg/m
2
))  

+ 100.0 (cumulative nitrogen mustard dose (mg/m
2
))  

+ 8.823 (cumulative busulfan dose (mg/m
2
)) 
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Cyclophosphamide Equivalent Dose Distribution 

2,198 individuals were exposed to an alkylating agent included within the equation for 

calculating the CED value. CED values over all treatment periods ranged from 0.001 g/m
2
 to 

74.1 g/m
2
 with a median of 6.2 g/m

2
. The earliest treatment period had the largest mean and 

median of exposure and a slight decreasing trend is observed as the years increase (Figure 2.7). 

 

 

Figure 2.7 Distribution of CED values by treatment period 

 

CED is the cyclophosphamide equivalent dose 
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Procarbazine Dose 

337 individuals had exposure to procarbazine during their treatment. 95% (n = 320) of these 

individuals were diagnosed with Hodgkin lymphoma, with diagnoses including astrocytomas, 

medulloblastomas, non-Hodgkin lymphoma and other CNS tumours accounting for the 

remaining 5%. 5 individuals exposed to procarbazine were missing doses, leaving 332 

individuals with values for the dose of procarbazine. The 1990-1994 treatment period had the 

largest maximum procarbazine dose of 17.5 g/m
2
; but overall had a much narrower distribution 

of values and smaller median and mean exposure doses compared to the remaining treatment 

periods (Figure 2.8). 

 

 

Figure 2.8 Procarbazine dose by treatment period 
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Bone Marrow Transplant 

Specific BMT data was not uniformly collected for patients in the original cohort, but the 

procedure was generally preceded by TBI. Therefore, exposure to TBI was used as a proxy for 

indicating a bone marrow transplant in these individuals. In the expansion cohort, high doses of 

busulfan and cyclophosphamide generally replaced the preceding exposure of TBI for a BMT, 

but overall, more accurate data was collected for these participants. All individuals within the 

expansion cohort who had TBI exposure subsequently underwent a BMT. Overall, 158 

individuals underwent a BMT, representing 3.4% of the total cohort (Table 2.9). However, the 

proportion of individuals within each treatment period who underwent this procedure varied. No 

individual underwent a BMT in the earliest treatment period, and less than 1% of individuals in 

the following two treatment periods were exposed. In the last 3 treatment periods, over 5% 

individuals within each category underwent a BMT. 

 

Table 2.9 Frequency of BMT by treatment period 

BMT 

Diagnosis and Treatment Period 

Total 

n (%) 1970-1974 

n (%) 
1975-1979 

n (%) 
1980-1984 

n (%) 
1985-1989 

n (%) 
1990-1994 

n (%) 
1995-1999 

n (%) 

Yes - 
3 

(0.5) 

8 

(0.9) 

50 

(5.6) 

50 

(5.3) 

47  

(5.5) 

158 

(3.4) 

No 
365 

(100) 

655 

(99.5) 

904 

(99.1) 

843 

(94.4) 

906 

(94.7) 

812 

(94.5) 

4,486 

(96.6) 

 

BMT is a bone marrow transplant 
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Treatment Combinations 

There were 15 different combinations of relevant treatment exposures identified in the study 

sample. 1,509 individuals (32.5%) did not have any exposure to the primary treatment exposures 

assessed in the analysis. 23.6% of individuals had chemotherapy treatment (through an alkylating 

agent included in the CED value) as their only exposure. 19.4% of individuals were exposed to 

abdominal, pelvic, ovarian and pituitary radiation during their treatment without any additional 

treatment exposures. 19% of individuals were exposed to the above radiation treatments as well 

as an alkylating agent through the CED value. 34 individuals had exposure to the above radiation 

treatments, TBI before a BMT, as well as chemotherapy treatment with an alkylating agent. The 

remaining distribution of treatment combinations can be found in Table 2.10. 
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Table 2.10 Combinations of treatment exposures 

Abdominal 

RT 

Pelvic 

RT 

Ovarian 

RT 

Pituitary 

RT 
TBI BMT 

Alkylating 

Agent 

Total 

n (%) 

X X X X X X X 34 

(0.73) 

X X X X X X 
 

9 

(0.19) 

X X X X 
   

901 

(19.40) 

X X X X 
 

X X 36 

(0.78) 

X X X X 
 

X 
 

8 

(0.18) 

X X X X 
  

X 883 

(19.01) 

X X 
 

X 
  

X 1 

(0.02) 

     
X X 56 

(1.21) 

   
X 

   
4 

(0.08) 

     
X 

 
16 

(0.33) 

      
X 1,189 

(25.60) 

4,644 

X represents whether the specific treatment was used in the regime, total number indicates the 

number of individuals who received the treatment regime. RT is radiation therapy, TBI is total 

body irradiation and BMT is bone marrow transplant 
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2.4 Outcome Characteristics 

Age at Last Menstrual History Survey Completion 

The age at which the individual completed the most recent survey with MH information indicates 

who remains at risk, as individuals are at risk for NSPM until they reach age 40 (or experience a 

competing event). The median age at last MH contact overall was 32 (minimum age = 18, 

maximum age 65), however this ranged from age 46 (minimum = 26, maximum = 65) in the 

earliest treatment period, to only 24 (minimum = 18, maximum = 41) in the most recent (Table 

2.11). In the most recent treatment period, the vast majority of individuals have not reached age 

40 yet, and are therefore still at risk for NSPM. This is in contrast to individuals from the earliest 

treatment periods, where the median age at last MH survey completion is greater than age 40. 

The difference in median age at last MH survey completion indicates a discrepancy in the 

proportion of individuals still at risk between the treatment periods.  

 

 



 

75 

 

Table 2.11 Age at last menstrual health contact by treatment period 

Last MH Contact 

Age (years) 

Diagnosis and Treatment Period 
Total 

1970-1974 1975-1979 1980-1984 1985-1989 1990-1994 1995-1999 

Minimum 26 20 18 18 18 18 18 

Median 46 42 35 32 27 24 32 

Maximum 65 60 55 50 45 41 65 

Mean 

(95% CI) 

45.6 

(44.8, 46.4) 

42.0 

(41.4, 42.7) 

35.6 

(35.0, 36.1) 

32.7 

(32.1, 33.0) 

27.7 

(27.2, 28.1) 

25.4 

(24.9, 25.8) 

33.2 

(32.9, 33.5) 

 

MH is menstrual health 
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Ovarian Status 

Data from responses to the survey questions assisted in classifying patients as having AOF, 

NSPM, SPM or neither. Since AOF is defined as amenorrhea within 5 years of diagnosis
13

, a 

positive diagnosis can be determined by comparing the date of diagnosis with answers and dates 

indicating a loss of menstruation. A diagnosis of NSPM can be determined by assessing those 

individuals who retained normal ovarian function for at least 5 years after treatment but have 

indicated a lack of menstruation for at least 6 months before age 40. 

 

Under the heading “Other Medical Conditions” in the follow-up 1 survey completed by the 

original cohort, an individual could indicate a hysterectomy or oophorectomy. In the remaining 

surveys released to the original and expansion cohorts, participants were asked to indicate if any 

of the following surgical procedures had been completed and the age at occurrence: removal of 

one ovary, removal of both ovaries or removal of uterus. After a surgical event such as a 

hysterectomy or bilateral oophorectomy, a patient is classified with SPM. 

 

220 individuals (4.5%) underwent a surgical procedure initiating menopause prior to age 40, 

however the stratum-specific percentages of surgical premature menopause differ between 

treatment periods (Table 2.12). Over 8% of individuals diagnosed and treated within the first two 

treatment periods (during the 1970s) were classified as having SPM. In the most recent treatment 

periods, only 1.4% and 0.5% of individuals were classified with SPM respectively. This contrast 

can in part be attributed to the difference in median follow-up time between the various 

treatment periods, and the age specific probability of SPM which is higher with an increased 
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attained age. Therefore, the vast majority of individuals are still at risk for SPM in the most 

recent treatment periods.  

 

Overall, the majority of individuals had normal ovarian function at the time of latest assessment 

(Table 2.12). Out of 4,918 individuals, 4,242 were classified as normal accounting for 86.2%. 

5.6% of individuals (n = 274) were diagnosed with AOF and 3.7% of individuals (n = 183) were 

diagnosed with NSPM. The percent of cases within each treatment period does not differ 

considerably and range from a low of 2.8% during 1980-1984 to a high of 4.9% in 1970-1974. 

The slight differences are once again attributable to the difference in follow-up length between 

the various periods of diagnosis and treatment, and these percentages may adjust as individuals 

age and are diagnosed. 
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Table 2.12 Ovarian status stratified by treatment period  

Ovarian Status 

Diagnosis and Treatment Period 

Total 

n (%) 1970-1974 

n (%) 
1975-1979 

n (%) 
1980-1984 

n (%) 
1985-1989 

n (%) 
1990-1994 

n (%) 
1995-1999 

n (%) 

Normal 
310 

(76.4) 

578 

(82.5) 

828 

(87.7) 

800 

(86.8) 

900 

(89.2) 

825 

(88.1) 

4,242 

(86.2) 

AOF 
41 

(10.1) 

43 

(6.1) 

32 

(3.4) 

29 

(3.1) 

53 

(5.2) 

77 

(8.2) 

274 

(5.6) 

SPM 
35 

(8.6) 

57 

(8.1) 

58 

(6.1) 

50 

(5.5) 

14 

(1.4) 

5 

(0.5) 

220 

(4.5) 

NSPM 
20 

(4.9) 

23 

(3.3) 

26 

(2.8) 

43 

(4.6) 

42 

(4.2) 

29 

(3.1) 

183 

(3.7) 

Total 406 701 944 922 1,009 936 4,918 

AOF is acute ovarian failure, SPM is surgical premature menopause and NSPM is nonsurgical premature menopause. Individuals 

with AOF are included in this table for descriptive purposes but are not included during model development.  
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Cumulative Incidence Curves 

The curves in Figure 2.9 demonstrate the cumulative incidence trends for NSPM and SPM 

respectively. While the cumulative incidence of NSPM linearly increases with attained age, the 

cumulative incidence of SPM appears to follow an exponential distribution similar to the 

distribution of SPM observed for women in the general population of the USA
14

. Prevalence and 

incidence measures begin at age 26, as that is the latest age that an individual could have entered 

the CCSS cohort. At age 26, the cumulative incidence of NSPM was higher than the cumulative 

incidence of SPM by approximately 2.5%. With its exponential increase however, the 

cumulative incidence of SPM surpasses that of NSPM just after age 35. Stratified by treatment 

decade, the cumulative incidence curves for NSPM and SPM follow the same trend (Figure 

2.10). The large jumps in the latest treatment decade are indicative of the lack of individuals with 

the events during that period. 

 

 

Figure 2.9 Cumulative incidence of NSPM and SPM 

NSPM is nonsurgical premature menopause, SPM is surgical premature menopause 
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Nonsurgical Premature Menopause 

 
 

 

Surgical Premature Menopause 

 
 

Figure 2.10 Cumulative incidence curves for NSPM and SPM by treatment decade 
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Prevalence 

The prevalence at age 26 is a point prevalence value; however the remaining prevalence 

measures are calculated by using the period prevalence equation as in Chapter 1. The numerator 

includes those cases of NSPM or SPM that developed before age 26, as well as those individuals 

who developed the event during the time period. The denominator is the average population, 

which is taken by averaging the population size for each study year within the specific time 

period of interest.  

 

The prevalence for NSPM was 3.21% (95% CI = (2.63%, 3.79%)) at age 26 (Table 2.13). By age 

30, the period prevalence was 4.04% (95% CI = (3.36%, 4.73%)) and increased to 5.83% (95% 

CI = (4.96%, 6.71%)) by age 35. By age 40, the maximum age for which NSPM could be 

observed, the period prevalence was 7.81% (95% CI = (6.72, 8.90)). The prevalence values for 

SPM display a different trend compared to those for NSPM, with a larger increase in prevalence 

for each subsequent period. The prevalence of SPM at age 26 was 0.91%, increased to 2.22% by 

age 30, 5.33% by age 35, and 9.40% by age 40, which surpasses the prevalence of NSPM. 
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Table 2.13 Period prevalence values for NSPM and SPM 

Time 

Period 

Population Size 

 at Specific Age 

Average Period 

Population Size 

NSPM 

n 

NSPM  

%  

(95% CI) 

SPM 

n 

SPM 

%  

(95% CI) 

By Age 26 3,525 3,525 113 
3.21 

(2.63, 3.79) 
32 

0.91 

(0.60, 1.22) 

By Age 30 2,814 3,185 129 
4.04 

(3.36, 4.73) 
71 

2.22 

(1.71, 2.74) 

By Age 35 1,951 2,743 160 
5.83 

(4.96, 6.71) 
146 

5.33 

(4.49, 6.17) 

By Age 40 1,311 2,343 183 
7.81 

(6.72, 8.90) 
220 

9.38 

(8.20, 10.56) 

 

NSPM is nonsurgical premature menopause and SPM is surgical premature menopause. The prevalence estimate calculated at age 26 

is a point prevalence value. 
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Incidence Rates 

Incidence rates for NSPM and SPM were calculated using Poisson regression for 10,000 PY at 

risk. Overall, the cumulative incidence rate for NSPM development by age 26, 30, 35 and 40 was 

similar (within 17.7 - 21.5 events per 10,000 PY). For the development of NSPM between ages 

of interest, the lowest incidence rate (7.4 events per 10,000 PY) occurred between ages 26-30, 

increased to 32.3 events per 10,000 PY for ages 30-35, and reached a maximum of 44.4 events 

per 10,000 PY between ages 35-40 (Table 2.14). No NSPM events were recorded between ages 

35-40 for individuals diagnosed from 1990 onwards due to the low number of individuals having 

reached that age range. For SPM, the incidence rate increases with an increase in age instead of 

remaining similar. A similar increasing trend was observed for incidence rates calculated 

between ages of interest. 
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Table 2.14 Incidence rates for NSPM and SPM 

Time 

Diagnosis Year  

1970-1974 

IR 

(95% CI) 

1975-1979  
IR 

(95% CI) 

1980-1984 
IR 

(95% CI) 

1985-1989 
IR 

(95% CI) 

1990-1994 
IR 

(95% CI) 

1995-1999  
IR 

(95% CI) 

Total  
IR 

(95% CI) 

NSPM 

By Age 26 
13.3 

(6.0, 29.5) 

5.0 

(1.9, 13.4) 

10.4 

(5.9, 18.2) 

23.2 

(13.5, 39.9) 

29.9 

(19.3, 46.4) 

32.2 

(18.4, 56.3) 

19.9 

(15.5, 25.5) 

Between 

Ages 26-30 

14.5 

(3.6, 58.2) 

8.5 

(2,1, 34.0) 

3.4 

(0.5, 24.1) 

7.5  

(1.6,29.9) 

6.2 

(0.9, 44.4) 

8.5 

(1.2, 60.7) 

7.4 

(3.9, 14.2) 

Between 

Ages 30-35 

32.7 

(13.6, 78.9) 

37.8 

(20.3, 70.2) 

13.8 

(5.2, 36.8) 

43.6 

(16.5, 115.0) 

49.2 

(20.4, 118.8) 

30.0 

(7.5, 120.7) 

32.3 

(22.2, 47.1) 

Between 

Ages 35-40 

55.0 

(26.3, 115.1) 

33.8 

(16.1, 71.0) 

57.2 

(29.7, 110.0) 

53.3 

(22.1, 128.3) 
- - 

44.4 

(30.7, 64.4) 

SPM 

By Age 26 
2.2 

(0.3, 15.8) 

5.0 

(1.9, 13.3) 

8.6 

(4.5, 16.0) 

4.3 

(1.8, 10.4) 

1.8 

(0.5, 7.4) 

1.2 

(0.2, 8.8) 

4.2 

(2.8, 6.3) 

Between 

Ages 26-30 

50.9 

(24.3, 106.6) 

46.6 

(25.8, 84.2) 

23.8 

(11.3, 49.8) 

29.8 

(14.9, 59.8) 

12.5 

(3.1, 49.9) 

8.5 

(1.2, 60.5) 

29.6 

(21.4, 41.1) 

Between 

Ages 30-35 

52.3 

(26.2, 104.6) 

56.6 

(34.2, 93.9) 

62.2 

(39.2, 98.6) 

94.3 

(49.2, 180.6) 

37.8 

(14.1, 100.9) 

45.0 

(14.5, 139.2) 

61.9 

(47.1, 81.3) 

Between 

Ages 35-40 

149.3 

(95.3, 233.9) 

130.5 

(89.4, 190.5) 

146.1 

(96.9, 220.4) 

198.6 

(114.5, 344.5) 

177.2 

(78.7, 399.0) 
- 

149.0 

(120.5, 184.2) 

 

IR is the incidence rate, NSPM is nonsurgical premature menopause and SPM is surgical premature menopause. 
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3 Evaluating Model Accuracy under Sampling Frame for Time-to-Event 

Data 

Abstract 

Background 

Both sampling design and loss to follow-up of participants can impact the analysis of cohort 

studies. In order to obtain consistent parameter estimates, weights are required to account for 

these features in model development and evaluation. We considered several weight estimators 

that utilize sampling and censoring weights in the estimation of model accuracy measures. 

 

Methods  

We designed and implemented four simulation settings, varying the relationship between 

sampling design, censoring distribution and risk score distribution. Within each simulation, we 

assessed weighting scenarios with distinct weight estimators.  

 

Results 

Depending on the relationship between sampling design, censoring distribution and risk score 

distribution, one or more weighting estimators gave consistent estimates of the true accuracy 

assessment values.  

 

Conclusions 

Ignoring or inadequately accounting for weights can result in biased estimates of accuracy 

measures and mislead investigators regarding the accuracy of the developed models. When 

assessing risk prediction models developed using data from cohort studies, investigators need to 

evaluate how sampling design and censoring of participants are related to the covariates and the 

implications these may have on their model development and evaluation. 
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3.1 Introduction 

The prominent feature of time-to-event data is censoring, which motivated the development of 

survival analysis methodology such as Kaplan-Meier’s product limit estimator and Cox’s 

proportional hazards regression
1,2

. The evaluation of corresponding risk prediction models 

developed using time-to-event data typically requires weighting observations with inverse 

probability-of-censoring weights to account for censoring, e.g., the time-specific area under the 

ROC curve (AUCt)
3
, the time-specific average positive predictive value (APt)

4
, and the Brier 

score
5
. Additionally, cohort studies may involve a sampling design that enriches certain groups 

of participants. For example, survivors with the most frequently observed diagnosis of childhood 

cancer were undersampled during recruitment for the expansion cohort of the Childhood Cancer 

Survivor Study, which allowed for a larger contribution of rarer cancers in order to aid in 

research
6
. Hence, study design should also be considered during analysis and assessment of 

models developed from such populations. 

 

While there exists abundant literature describing methods for accounting for design weights and 

censoring in model building
7-10

, there remains a lack of investigations on how to account for 

these features during model accuracy assessment using appropriate weights. This paper aims to 

provide insight into this area through simulation studies.  

 

Model Accuracy Assessment 

Following the development of risk prediction models, it is essential to assess their performance. 

Risk prediction models are often assessed on their ability to correctly discriminate the event 

status at a future time 𝑡 as positive (event observed) or negative (no event observed)
5
. Overall 
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model performance can be measured through the amount of explained variation (R
2
) by the 

model, as well as by the Brier score, which computes the squared difference between predicted 

probabilities and true event statuses for binary outcomes
5,11

. How well the resulting predicted 

probabilities compare to the observed event probabilities is evaluated using calibration curves, 

which provide an indication of model reliability
5
. Although a variety of methods for assessing 

model performance have been described, we chose to focus on the estimation of AUCt and APt 

values. The AUCt is a popular summary measure of discrimination which is widely used in 

medical literature. Model predictive power can be assessed using APt, which has shown to be a 

more suitable performance measure when the event rate is low in the population
4
.  

 

Inverse Probability-of-Censoring Weights 

Censoring occurs if individuals do not experience the event of interest during the study period or 

if they are lost to follow-up. The critical assumption for modelling censored time-to-event data is 

that the censoring process is at least independent, or ideally, non-informative
12

. We will focus on 

these two situations (non-informative and independent censoring) for this paper. For independent 

censoring, the event process and censoring process are assumed to be independent conditional on 

(a subset of) the covariates in the event time model. When censoring is non-informative, or 

“completely at random”, it assumes that there is no relationship whatsoever between the event 

and censoring time distributions (i.e. individuals who are censored have the same event risk as 

those who remain uncensored)
9
.  

 

For model evaluation at a specific time point 𝑡0 > 0, only a subset of the original study sample 

contributes full information, i.e., those individuals who have either not been censored by time 𝑡0 
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or those who had the event on or before 𝑡0
9,13

. Inverse probability-of-censoring weights (IPCW) 

are applied to the subset of individuals who contribute full information to account for the 

unknown event status of individuals censored before time 𝑡0
9
. The IPCW method allows the 

resulting estimates to be unbiased as long as the censoring distribution is specified correctly
9,13,14

. 

For non-informative censoring, the censoring distribution can be estimated using the Kaplan-

Meier method, and for independent censoring, the correct model-based estimate of the censoring 

distribution must be used. Individuals censored before time 𝑡0 are given a weight of 0 and only 

indirectly contribute information through their contribution to the estimation of the censoring 

distribution
9
. 

 

Sampling Weights 

Researchers may use one of a variety of sampling designs during participant enrollment 

depending on the aim of the study. Stratified random sampling occurs when individuals are 

divided into mutually exclusive sampling categories based on a characteristic (e.g., ethnicity or 

age group) and randomly sampled for the study from within each stratum
15

. By applying this 

sampling technique, investigators can enrich data from a particular subgroup that is of a lower 

proportion in the target population by oversampling the lower proportion subgroup and 

undersampling the other, more prevalent subgroups
15

. However, differential sampling causes the 

study sample to not be representative of the population of interest
16

. To draw appropriate 

inferences for the target population from the developed models, the sampling frame needs to be 

considered during analysis. 
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To account for the sampling design, observations are typically weighted by their inverse 

probability of being sampled, known as a sampling weight
8,17

. It can be shown that if the 

sampling scheme is unrelated to the outcome and the event time model is correctly specified, 

excluding sampling weights will not impact model parameter estimates
17

. However, ignoring 

sampling weights when the sampling category is related to the outcome (such as in informative 

sampling) can introduce bias into the parameter estimates, even after accounting for the sampling 

categories as a variable within the model
8,17

. Sampling weights may lead to an increase in the 

variance of parameter estimates; particularly if the variances within each sampling category are 

equal, the sample population size is small, or if there are substantial differences in the sampling 

probabilities between groups
18,19

. If the increase in variance from incorporating sampling weights 

is larger than the reduction of bias, the overall model error may increase when sampling weights 

are used. Therefore, the inclusion of sampling weights deserves careful consideration. 

 

Objectives 

We aim to investigate ways to combine both sampling and censoring weights in the estimation of 

model accuracy measures, and to answer two questions: 

1. Should sampling weights be accounted for while estimating the censoring distribution for the 

inverse probability-of-censoring weights? 

2. How can sampling and censoring weights be appropriately accounted for under various 

sampling and censoring settings?  

 

The remainder of this paper is structured as follows. Section 2 introduces the notation and 

weighting scenarios. Section 3 presents four simulation settings where the weighting scenarios 
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are evaluated. Results are presented in Section 4, and findings are discussed and summarized in 

Section 5. 

 

  

3.2 Methods 

Notation 

Sampling weights: 

                                                                                    𝑝𝑖 =
1

𝑠𝑖
                                                                      (1) 

𝑝𝑖 is the sampling weight for individuals from the ith sampling category, and 𝑠𝑖 is the probability 

an individual in sampling category 𝑖 is selected for the study from the target population. 

 

Following standard survival analysis notation, let 𝑇𝑗 and 𝐶𝑗 be the event and censoring times, 

respectively, for the 𝑗th individual. 𝑋𝑗 = min (𝑇𝑗 , 𝐶𝑗) is the observed time for the 𝑗th individual, 

and 𝛿𝑗 = 𝐼(𝑇𝑗 < 𝐶𝑗) is the event status indicator
12

; 1 for individuals who experienced the event, 

and 0 for censoring. 

  

The IPCW are given by 
4
: 

                                                        �̂�𝑡,𝑗 =  
𝐼(𝑋𝑗 < 𝑡)𝛿𝑗

�̂�(𝑋𝑗)
+  

𝐼(𝑋𝑗 ≥ 𝑡)

�̂�(𝑡)
                                                       (2) 

�̂�( ∙ ) is an estimator of the probability of remaining uncensored.  

 

�̂�( ∙ ) can be estimated using the Kaplan-Meier (KM) method if the censoring distribution is non-

informative. If the censoring distribution depends on a covariate included in the event time 



 

93 

 

model, then model-based estimates can be used for �̂�( ∙ ). If the censoring distribution is 

dependent on a covariate that is not a risk factor in the event time model, then the covariate can 

be ignored without jeopardizing the estimation of censoring weights. The problem arises if the 

censoring and event times both depend on an unmeasured covariate(s), leading to informative 

censoring (not discussed here). 

 

The non-parametric estimators for AUCt and APt are
4
: 

 

                                                 𝐴𝑈�̂�𝑡 =  
∑ �̂�𝑡,𝑗𝐼(𝑋𝑗 > 𝑡)TPF̂𝑡(𝑍𝑗)𝑛

𝑗=1

∑ �̂�𝑡,𝑗𝐼(𝑋𝑗 > 𝑡)𝑛
𝑗=1

                                                 (3)  

 

                                                     AP̂𝑡 =  
∑ �̂�𝑡,𝑗𝐼(𝑋𝑗 ≤ 𝑡)PPV̂𝑡(𝑍𝑗)𝑛

𝑗=1

∑ �̂�𝑡,𝑗𝐼(𝑋𝑗 ≤ 𝑡)𝑛
𝑗=1

                                                  (4)  

 

�̂�𝑡,𝑗 is the weight at time 𝑡 for individual 𝑗, 𝑍𝑗 is the risk score value for subject 𝑗 typically 

obtained from a model. TPF̂𝑡 is the estimated true positive fraction at 𝑡 (5) and PPV̂𝑡 is the 

estimated positive predictive value at 𝑡 (6).  

 

The non-parametric estimators for TPFt and PPVt are
4
: 

 

                                           TPF̂𝑡(𝑍𝑗) =  
∑ �̂�𝑡,𝑘𝐼(𝑋𝑘 ≤ 𝑡)𝐼(𝑍𝑘 ≥ 𝑍𝑗)𝑛

𝑘=1

∑ �̂�𝑡,𝑘𝐼(𝑋𝑘 ≤ 𝑡)𝑛
𝑘=1

                                         (5) 

                                           PPV̂𝑡(𝑍𝑗) =  
∑ �̂�𝑡,𝑘𝐼(𝑋𝑘 ≤ 𝑡)𝐼(𝑍𝑘 ≥ 𝑍𝑗)𝑛

𝑘=1

∑ �̂�𝑡,𝑘𝐼(𝑍𝑘 ≥ 𝑍𝑗)𝑛
𝑘=1

                                          (6) 
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Weighting Scenarios 

Various weighting scenarios were examined to assess the appropriate combination of censoring 

and sampling weights for �̂�𝑡,𝑗, the weight variable in (3 – 6).  

 

1. Unweighted. Individuals who were censored before time 𝑡 are ignored and given a weight of 

0. Individuals with the event at or before 𝑡, or those that remained at risk at 𝑡, were given a 

weight of 1. 

 

�̂�𝑡,𝑗 = 𝐼(𝑋𝑗 ≥ 𝑡) + 𝐼(𝑋𝑗 < 𝑡)𝛿𝑗 

 

2. Only sampling weights are included. Similar to scenario 1, except instead of the weight equal 

to 1 for individuals who have either not been censored by 𝑡 or those who have had the event 

on or before 𝑡, it is equal to their corresponding sampling weight, 𝑝𝑖. 

 

�̂�𝑡,𝑗 = 𝑝𝑖[𝐼(𝑋𝑗 ≥ 𝑡) + 𝐼(𝑋𝑗 < 𝑡)𝛿𝑗] 

 

Scenarios 3 and 4 only include IPCW, but assess whether the sampling design should be 

accounted for while estimating the censoring distribution. 

 

3. Only censoring weights included. The weights are estimated from the censoring distribution  

�̂�( ∙ ) which does not account for the sampling design (i.e. uses unweighted observations). 

 

IPCW1: �̂�𝑡,𝑗 = �̂�𝑡,𝑗
1 ≝ �̂�𝑡,𝑗 (�̂�( ∙ ))   
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4. Only censoring weights included. The weights are estimated from the censoring distribution 

�̂�𝑝𝑖( ∙ ) which does account for the sampling design in (2) (i.e., uses weighted observations in 

(2)). 

 

IPCW𝑝𝑖 : �̂�𝑡,𝑗 = �̂�𝑡,𝑗
𝑝𝑖  ≝  �̂�𝑡,𝑗 (�̂�𝑝𝑖( ∙ )) 

 

The following two scenarios are designed as double inverse probability weights
20

. They combine 

both censoring and sampling weights multiplicatively, and also assess whether the censoring 

distribution should account for the sampling design as in scenarios 3 and 4. The weights are 

given by: 

�̂�𝑡,𝑖 = (sampling weight) × (censoring weight) 

 

5.  

�̂�𝑡,𝑗 = 𝑝
𝑖
�̂�𝑡,𝑗

1  

6.  

      �̂�𝑡,𝑗 = 𝑝
𝑖
�̂�𝑡,𝑗

𝑝𝑖  

 

Table 3.1 summarizes these six scenarios. 
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Table 3.1 Weights for estimating AUCt, APt, and the event rate 

 

Weights 
Description Weight Equation 

Sampling Censoring 

- - Unweighted - 

Yes - Only sampling weights �̂�𝑡,𝑗 = 𝑝𝑖 

- IPCW1 
�̂�𝑡,𝑗

1  = IPCW estimated from the censoring 

distribution on unweighted samples 
�̂�𝑡,𝑗 = �̂�𝑡,𝑗

1  

- IPCW𝑝𝑖 
�̂�𝑡,𝑗

𝑝𝑖  = IPCW estimated from the censoring 

distribution on weighted samples 
�̂�𝑡,𝑗 = �̂�𝑡,𝑗

𝑝𝑖  

Yes IPCW1 �̂�𝑡,𝑗
1  multiplied by sampling weights �̂�𝑡,𝑗 = 𝑝𝑖�̂�𝑡,𝑗

1  

Yes IPCW𝑝𝑖 �̂�𝑡,𝑗
𝑝𝑖  multiplied by sampling weights �̂�𝑡,𝑗 = 𝑝𝑖�̂�𝑡,𝑗

𝑝𝑖  

𝐼𝑃𝐶𝑊1 = Inverse probability-of-censoring weights – unweighted observations used 

𝐼𝑃𝐶𝑊𝑝𝑖 = Inverse probability-of-censoring weights – weighted observations used 

 

 

 

 

 

 

 

 

 

 

 



 

97 

 

3.3 Simulation Studies 

The appropriate weight to use during model evaluation will depend on whether the relationship 

between sampling design and censoring distribution with the event risk is non-informative or 

independent. Therefore, we designed simulation settings to assess the four combinations of non-

informative and independent censoring and sampling. In the first setting, we assumed that the 

sampling design and censoring were both non-informative (i.e., unrelated to the distribution of 

event risk in the population). The second setting assumed the sampling design was independent 

but censoring was non-informative, and the third setting assumed non-informative sampling, but 

independent censoring. The last setting assumed both sampling design and censoring 

distributions were independent to the event risk distribution.  

 

We generated four distinct fixed populations of 500,000 random risk scores, 𝑍. 𝑍 represents the 

combined effect of multiple risk factors for an outcome, such as the combination of smoking 

status, age, and sex in the risk prediction of heart disease. The distribution of 𝑍 within each 

population is referred to as the risk score distribution. Within all populations, observations were 

randomly assigned to category 1 (40% of total population) or category 2 (60% of total 

population), to represent sampling design through a “sampling category” variable.  

 

To simulate non-informative sampling in simulation settings i) and iii), risk scores for all 

observations were generated from one right skewed beta distribution (𝑍 ~ beta(a = 0.8, b = 3), 

mean = 0.210, standard deviation (SD) = 0.185). To represent independent sampling in 

simulation settings ii) and iv), risk scores were generated from distribution 1 (𝑍 ~ beta(a =

0.8, b = 3), mean = 0.210, SD = 0.185) if sampling category = 1, and from distribution 2 
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(𝑍 ~ beta(a = 0.6, b = 4), mean = 0.131, SD = 0.142) if sampling category = 2, which was less 

variable than distribution 1. When the risk scores are obtained from different distributions for 

each sampling category, it follows that the sampling category is independent of the event time 

distribution conditional on 𝑍. 𝑍 was then scaled by the standard deviation of distribution 1, 

defined as 𝑍𝑠 =
𝑍

SD1
. 

 

In all simulations, the true event time was generated through a Weibull distribution 

(𝑇~ Weibull(3e−0.56𝑍𝑠 , 2), with a corresponding hazard function of 𝜆(𝑡) =
2

9
𝑡 ∙ exp (1.12𝑍𝑠). 

Non-informative censoring for settings i) and ii) was generated by obtaining a censoring time 

from a uniform distribution. For independent censoring in simulation settings iii) and iv), 

censoring time was generated from the following lognormal distribution, where 𝜀 ~ 𝑁(0,1): 

 

log(𝐶) = 1.4 −  𝛽𝑍𝑠  +  𝜀 

 

𝛽 was set equal to 0.93 for setting iii), and 1.02 for setting iv) in order to obtain similar censoring 

rates at the pre-specified time 𝑡0. The value of 𝑡0 was chosen such that the corresponding event 

rate in the simulated population was approximately 10%. A summary of simulation settings is 

presented in Table 3.2.  
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Table 3.2 Summary of simulation settings 

 

Setting 
Type of 

Sampling 

Type of 

Censoring 
True Event Time Risk Score Censoring Time 𝒕𝟎 

Censoring Rate  

Overall At 𝑡0 

i) Non-informative Non-informative 

𝑇~ Weibull(3e−0.56𝑍𝑠 , 2)  

Z ~ beta(a = 0.8, b = 3) 𝐶 ~ uniform(0, 2.4) 0.38 58.2 15.2 

ii) Independent Non-informative 
Category 1: Z ~ beta(a = 0.8, b = 3) 

Category 2: Z ~ beta(a = 0.6, b = 4) 
𝐶 ~ uniform(0, 3) 0.47 55.3 15.1 

iii) Non-informative Independent Z ~ beta(a = 0.8, b = 3) 
log(𝐶) = 1.4 − 0.93𝑍𝑠 +  ε 

ε ~ N(0,1) 
0.38 45.2 15.3 

iv) Independent Independent 
Category 1: Z ~ beta(a = 0.8, b = 3) 

Category 2: Z ~ beta(a = 0.6, b = 4) 

log(𝐶) = 1.4 − 1.02𝑍𝑠 +  ε 

ε ~ N(0,1) 
0.47 44.7 15.6 

 

𝑍𝑠 =
𝑍

𝑆𝐷1
, where 𝑆𝐷1 = 0.185 (the SD from distribution 1). 
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The overall population AUCt and APt values were obtained for risk score 𝑍𝑠 evaluated at 𝑡0 using 

the “APBinary” function from the <APTools> package in R
21

. Each simulation was repeated 500 

times. Within each repetition, a stratified random sample of 𝑛 observations was selected without 

replacement from the respective fixed population. We examined two sample sizes, 𝑛 = 800 and 

𝑛 = 3000, to assess the consistency of the estimators. Individuals in sampling category 1 were 

undersampled with a sampling probability of 0.2, leading to a sampling weight of 5. All 

individuals in category 2 were sampled proportionally, with a sampling weight of 1.  

 

The Cox proportional hazards model was fit to the weighted and unweighted study sample:  

 

𝜆(𝑡) = 𝜆0(𝑡)exp (𝛽𝑍𝑠) 

 

�̂�𝑡,𝑗 were computed according to each weighting scenario and used to obtain estimates of AUCt, 

APt and the event rate. For scenarios which included IPCW, three methods were used to estimate 

the censoring distribution in order to illustrate the effect of model misspecification: the Kaplan-

Meier method (IPCWKM), the Cox proportional hazards model (IPCWCox), and a lognormal 

model (IPCWLN). 
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3.4 Results 

Table 3.3 and Table 3.4 provide AUCt, APt and event rate estimates using the various estimates 

of �̂�𝑡,𝑗 shown in Table 3.1 for sample size 800 and 3000 respectively. In all studies, the estimates 

of the accuracy measures and event rate were identical regardless of whether the censoring 

distribution was estimated using unweighted or weighted observations, due to the sampling 

design and censoring time being either unrelated or independent given the risk score. Estimates 

were also the same regardless of whether weighted or unweighted observations were used during 

model development with Cox proportional hazards regression, as the coefficient estimates were 

very similar (Appendix B). This was expected as the sampling design and event time were 

designed to be either unrelated or independent given the risk score. Therefore, only results from 

IPCW1 scenarios are reported for all methods of estimating the censoring distribution. 

  

In all studies, censoring weights were necessary to include to produce consistent estimates, 

regardless of whether the censoring distribution was non-informative or independent. When 

censoring was non-informative, i.e. settings i) and ii), there were no differences in the point 

estimates and their SDs when either the KM method (IPCWKM) or the Cox proportional hazards 

model (IPCWCox) was used to estimate the censoring distribution. Modelling the censoring 

distribution with a lognormal distribution (IPCWLN) slightly biased the APt and event rate 

estimates.  

 

When censoring was independent, i.e. settings iii) and iv), using IPCWKM to estimate the 

censoring probability produced biased AUCt, APt and event rate estimates. When the censoring 

distribution was correctly specified using the lognormal distribution (IPCWLN), consistent 
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estimates were obtained with or without sampling weights. Estimates of the AUCt, APt and event 

rate were not significantly different from the population quantities when IPCWCox was combined 

with sampling weights multiplicatively; however, resulted in large empirical standard deviations. 

 

When sampling was non-informative (in settings i) and iii)), including sampling weights 

multiplicatively was not required to produce consistent accuracy estimates. However, under the 

independent sampling of settings ii) and iv), the influence of sampling weights was observed. 

Both sampling and censoring weights were needed to give consistent estimates of the population 

quantities and excluding sampling weights produced biased estimates of the AUCt and APt as 

well as the event rate. 
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Table 3.3 Simulation results; 𝑛 =  800  
 

Scenario 

Setting i) Setting ii) Setting iii) Setting iv) 

Non-informative Sampling,  

Non-informative Censoring 

Independent Sampling,  

Non-informative Censoring 

Non-informative Sampling,  

Independent Censoring 

Independent Sampling,  

Independent Censoring 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

Population Values 0.832 0.487 0.100 0.810 0.478 0.102 0.832 0.487 0.100 0.810 0.478 0.102 

Weights             

Sampling Censoring             

- - 
0.831 

(0.027) 

0.502 

(0.061) 

0.107 

(0.012) 

0.793 

(0.035) 

0.432 

(0.067) 

0.091 

(0.011) 

0.808 

(0.034) 

0.423 

(0.068) 

0.077 

(0.010) 

0.750 

(0.041) 

0.326 

(0.066) 

0.069 

(0.010) 

Yes - 
0.829 

(0.037) 

0.508 

(0.078) 

0.107 

(0.016) 

0.813 

(0.040) 

0.504 

(0.091) 

0.109 

(0.016) 

0.803 

(0.046) 

0.421 

(0.088) 

0.077 

(0.013) 

0.765 

(0.049) 

0.377 

(0.096) 

0.078 

(0.014) 

- IPCWKM 
0.830 

(0.027) 

0.487 

(0.061) 

0.101 

(0.011) 

0.792 

(0.036) 

0.418 

(0.067) 

0.086 

(0.010) 

0.807 

(0.035) 

0.407 

(0.067) 

0.073 

(0.009) 

0.748 

(0.041) 

0.314 

(0.066) 

0.066 

(0.009) 

Yes IPCWKM 
0.829 

(0.037) 

0.493 

(0.078) 

0.101 

(0.015) 

0.811 

(0.040) 

0.490 

(0.091) 

0.103 

(0.015) 

0.802 

(0.046) 

0.406 

(0.087) 

0.072 

(0.012) 

0.763 

(0.079) 

0.364 

(0.095) 

0.074 

(0.014) 

- IPCWCox 
0.830 

(0.028) 

0.487 

(0.062) 

0.101 

(0.011) 

0.792 

(0.036) 

0.418 

(0.067) 

0.086 

(0.010) 

0.831 

(0.044) 

0.503 

(0.161) 

0.103 

(0.024) 

0.782 

(0.069) 

0.420 

(0.199) 

0.097 

(0.068) 

Yes IPCWCox 
0.829 

(0.037) 

0.493 

(0.078) 

0.101 

(0.015) 

0.812 

(0.040) 

0.490 

(0.091) 

0.103 

(0.015) 

0.825 

(0.053) 

0.498 

(0.168) 

0.102 

(0.028) 

0.794 

(0.080) 

0.468 

(0.220) 

0.114 

(0.082) 

 

- 
IPCWLN 

0.830 

(0.028) 

0.479 

(0.061) 

0.096 

(0.011) 

0.792 

(0.036) 

0.410 

(0.066) 

0.082 

(0.010) 

0.830 

(0.034) 

0.504 

(0.115) 

0.100 

(0.014) 

0.781 

(0.046) 

0.416 

(0.137) 

0.086 

(0.016) 

Yes IPCWLN 
0.828 

(0.037) 

0.485 

(0.078) 

0.096 

(0.014) 

0.811 

(0.040) 

0.481 

(0.090) 

0.098 

(0.015) 

0.825 

(0.045) 

0.501 

(0.133) 

0.100 

(0.019) 

0.795 

(0.059) 

0.470 

(0.172) 

0.101 

(0.028) 

SD is the empirical standard deviation of the mean 
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Table 3.4 Simulation results; 𝑛 =  3000  

 

Scenario 

Setting i) Setting ii) Setting iii) Setting iv) 

Non-informative Sampling,  

Non-informative Censoring 

Independent Sampling,  

Non-informative Censoring 

Non-informative Sampling,  

Independent Censoring 

Independent Sampling,  

Independent Censoring 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

AUCt̂ 
Mean 

(SD) 

APt̂ 
Mean 

(SD) 

Event 

Rate 

(SD) 

Population Values 0.832 0.487 0.100 0.810 0.478 0.102 0.832 0.487 0.100 0.810 0.478 0.102 

Weights             

Sampling Censoring             

- - 
0.830 

(0.014) 

0.500 

(0.030) 

0.108 

(0.006) 

0.791 

(0.017) 

0.424 

(0.033) 

0.091 

(0.006) 

0.810 

(0.017) 

0.421 

(0.034) 

0.078 

(0.005) 

0.754 

(0.021) 

0.326 

(0.036) 

0.069 

(0.005) 

Yes - 
0.831 

(0.018) 

0.501 

(0.039) 

0.107 

(0.008) 

0.812 

(0.020) 

0.496 

(0.047) 

0.109 

(0.009) 

0.807 

(0.023) 

0.418 

(0.046) 

0.078 

(0.007) 

0.771 

(0.025) 

0.376 

(0.053) 

0.078 

(0.007) 

- IPCWKM 
0.829 

(0.014) 

0.485 

(0.030) 

0.101 

(0.005) 

0.790 

(0.017) 

0.410 

(0.033) 

0.086 

(0.005) 

0.808 

(0.017) 

0.404 

(0.034) 

0.073 

(0.005) 

0.753 

(0.021) 

0.314 

(0.036) 

0.066 

(0.004) 

Yes IPCWKM 
0.830 

(0.018) 

0.486 

(0.039) 

0.101 

(0.007) 

0.811 

(0.020) 

0.482 

(0.047) 

0.103 

(0.008) 

0.805 

(0.024) 

0.402 

(0.046) 

0.073 

(0.007) 

0.769 

(0.025) 

0.362 

(0.053) 

0.074 

(0.007) 

- IPCWCox 
0.830 

(0.014) 

0.485 

(0.030) 

0.101 

(0.005) 

0.790 

(0.017) 

0.410 

(0.033) 

0.086 

(0.005) 

0.840 

(0.031) 

0.523 

(0.131) 

0.111 

(0.051) 

0.805 

(0.065) 

0.476 

(0.200) 

0.109 

(0.074) 

Yes IPCWCox 
0.830 

(0.018) 

0.486 

(0.039) 

0.101 

(0.007) 

0.811 

(0.020) 

0.482 

(0.047) 

0.103 

(0.008) 

0.836 

(0.037) 

0.516 

(0.143) 

0.111 

(0.048) 

0.819 

(0.068) 

0.528 

(0.210) 

0.130 

(0.091) 

 

- 
IPCWLN 

0.829 

(0.014) 

0.476 

(0.030) 

0.097 

(0.005) 

0.789 

(0.017) 

0.401 

(0.033) 

0.082 

(0.005) 

0.834 

(0.017) 

0.505 

(0.062) 

0.101 

(0.008) 

0.790 

(0.022) 

0.423 

(0.077) 

0.086 

(0.007) 

Yes IPCWLN 
0.830 

(0.018) 

0.477 

(0.039) 

0.096 

(0.007) 

0.810 

(0.020) 

0.473 

(0.047) 

0.099 

(0.008) 

0.831 

(0.023) 

0.501 

(0.080) 

0.101 

(0.010) 

0.807 

(0.030) 

0.486 

(0.107) 

0.102 

(0.014) 

SD is the empirical standard deviation of the mean 
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3.5 Discussion 

Current literature highlights the importance of including sampling weights during model 

development, and discusses procedures for applying IPCW to account for censoring of 

observations for the estimation of unbiased model parameters
7-10

. We designed and conducted 

simulation studies to evaluate weighting methods in order to determine the appropriate weights 

to use when evaluating survival model performance under a sampling design. As the assumption 

of at least independent censoring is critical for the analysis of censored time-to-event data, we 

did not assess scenarios with informative censoring, and instead focused on non-informative and 

independent censoring situations. A non-informative sampling or censoring relationship was 

simulated by independently generating the event time, censoring time and sampling category 

variables. Independent sampling was simulated by generating risk scores based on sampling 

category variable. Independent censoring was simulated by computing the censoring time from 

the risk scores.  

 

In all simulations, we observed that identical results were produced regardless if sampling design 

was accounted for while estimating the censoring distribution. That is, identical estimates were 

obtained if weighted or unweighted observations were used to estimate the censoring 

distribution. The implications of this finding are applicable to modelling the censoring 

distribution in order to obtain IPCW – if sampling and censoring are at least independent, then an 

unweighted sample can be used to estimate the censoring distribution.  

 

Our simulations provide empirical evidence that IPCW to account for censoring must be 

included when performance metrics are estimated for survival algorithms. When sampling is 
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independent of the event time conditional on covariates, sampling weights are to be included 

multiplicatively to produce unbiased estimates. If censoring is non-informative, the censoring 

distribution for calculating IPCW can be estimated with the Kaplan-Meier method (IPCWKM). 

 

For situations with independent censoring, if the cohort sampling design is non-informative and 

the censoring distribution is correctly specified (IPCWLN in our case), then sampling design is 

ignorable, and including only IPCWLN produces unbiased accuracy estimates. However, if the 

censoring distribution is correctly specified but the sampling design is independent, sampling 

weights are non-ignorable and must be included multiplicatively in order to produce unbiased 

estimates. Study results for the specific situations that we assessed are summarized in Table 3.5. 

 

Table 3.5 Summary of findings 

Setting Type of Sampling Type of Censoring 
Weights 

Sampling  Censoring  

i) Non-informative Non-informative No/Yes IPCWKM or IPCWcox 

ii) Independent Non-informative Yes IPCWKM or IPCWcox 

iii) Non-informative Independent No/Yes IPCWLN  

iv) Independent Independent Yes IPCWLN 

 

 

Our study confirms the theoretical result that in order to use IPCW to consistently estimate the 

required measures, the censoring distribution must be correctly specified in the calculation
14

. 

When settings iii) and iv) were simulated with independent censoring, only the weighting 

scenarios which correctly specified the censoring distribution, i.e., using IPCWLN, produced 
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consistent estimates for all required measures. When a non-informative censoring distribution 

was assumed (IPCWKM) or when the censoring distribution was modelled incorrectly (IPCWCox), 

biased estimates were produced. Additionally, estimates of the APt from scenarios where 

IPCWCox was used were highly variable compared to those with IPCWLN or IPCWKM, indicating 

the consequences of model misspecification for the censoring distribution. This study was 

performed in a hypothetical situation where the model-based estimator of the censoring 

distribution is known. Therefore it may be difficult to ascertain what the correct model-based 

estimator is when using data from a real population.  

 

We focused on determining the correct method for combining sampling and censoring weights 

for model accuracy estimates, as the incorporation of weights during model development has 

been thoroughly evaluated elsewhere
7,8,10,14

. We evaluated a situation where sampling design 

does not have an effect on the coefficient estimates of the model, and is therefore ignorable 

during model development. Therefore, our findings may not extend to other circumstances where 

the sampling design impacts model coefficient estimation, such as under informative sampling.  

 

When assessing risk prediction models developed using data from cohort studies, investigators 

should pay close attention to sampling design and carefully model the censoring distribution. 

Inadequately accounting for weights can result in accuracy estimates which do not reflect the 

model performance in the target population of their risk prediction models. In particular, an 

assessment of how the risk score distribution is related to both the sampling design and censoring 

distribution should be undertaken in order to ensure that the correct weights are used when 

model performance is evaluated. 
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4 Risk Prediction for Nonsurgical Premature Menopause in Childhood 

Cancer Survivors 

Abstract 

Introduction 

Female childhood cancer survivors are at an increased risk of developing nonsurgical premature 

menopause (NSPM) due to toxicities from their treatment. For NSPM to occur, menopause must 

develop non-surgically before age 40, with ovarian function having been retained for at least 5 

years following a cancer diagnosis. Such a condition can negatively impact quality of life and 

reduce potential reproductive years. Risk factors for NSPM in the literature include an older age 

at cancer diagnosis and treatment with high doses of chemotherapy and radiation. In order to 

facilitate informed discussions between physicians, patients, and their families regarding the 

need for fertility preservation interventions, we aimed to develop prediction algorithms to 

estimate the risk of patients developing NSPM.  

 

Methods 

Data was acquired for 5,508 female participants of the Childhood Cancer Survivor Study. 

Candidate models were developed on a training set of 4,054 observations using the time-specific 

logistic regression model with competing risks (TLR-CR), the Fine-Gray regression model 

(FGR), and the random survival forest method with competing risks (RSF-CR). Model 

performance and accuracy were measured using the time-specific area under the ROC curve 

(AUCt), the time-specific average positive predictive value (APt), and calibration curves on both 

the training set and a test set of 1,454 observations for internal validation. 
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Results 

Following model development, final predictor variables consisted of various risk factors 

including minimum ovarian radiation dose, cumulative chemotherapy exposure, bone marrow 

transplant, and age at cancer diagnosis. During model evaluation, the TLR-CR, FGR, and RSF-

CR models performed similarly on the training set. At 15 years post cancer diagnosis, AUCt 

values were between 0.72-0.77, and APt values were larger than the event rate of 1.7% (APt = 

5.0-6.0%) indicating adequate model performance. All APtvalues remained larger than the event 

rate of 2.5% (APt= 8.4-9.9%), and the ratio between APt and the event rate increased for the RSF-

CR and TLR-CR models. AUCt and APt values from the test set over 10-20 years post cancer 

diagnosis showed similar findings. The models were well calibrated on both datasets, especially 

for low risk patients, but only the TLR-CR model was consistently well calibrated for high risk 

patients. 

 

Conclusions 

Obtaining risk estimates for NSPM has the potential to improve the lives of childhood cancer 

survivors by providing information to enhance discussions of fertility preservation. Overall, the 

TLR-CR model performed consistently with good calibration from the training to test set, and 

was the best model of the three. Moving forward, generalizability will be assessed through 

validation on an external cohort. 
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4.1 Introduction 

The increased survival rate following a childhood cancer diagnosis over the previous few 

decades has consequently increased the number of survivors who are at risk of developing 

chronic conditions later in life due to the toxicities of their treatment
1
. Ovarian dysfunction is a 

primary concern of female childhood cancer survivors after completing chemotherapy or 

radiation treatment
2,3

. Nonsurgical premature menopause (NSPM), a specific form of ovarian 

dysfunction, occurs when ovarian function is maintained for at least 5 years after diagnosis with 

cancer, but menopause develops naturally before age 40
4
. NSPM can severely limit potential 

reproductive years, reduce quality of life, and increase anxiety and depressive feelings
2,3,5-7

. 

Female childhood cancer survivors have a significantly increased risk of developing NSPM 

compared to females in the general population
8
, and are 10.5 times more likely to develop the 

condition compared to their otherwise healthy siblings
8
. 

 

Risk factors for NSPM have been well established, and include exposure to high doses of certain 

chemotherapy agents, targeted ovarian radiation, as well as an older age at cancer diagnosis
8,9

. It 

was reported that exposure to greater than 5 Gy of ovarian radiation significantly increased the 

odds of developing NSPM by 700%, and that individuals receiving a dose of procarbazine 

greater than or equal to 4000 mg/m
2
 had 9 times the odds of developing NSPM compared to 

individuals with no exposure
8
. 

 

Cancer patients are also at risk to develop acute ovarian failure (AOF), which occurs when a 

patient either fails to achieve menarche by 18 years of age or stops menstruating within 5 years 

of their cancer diagnosis
10

. In 2006, Chemaitilly et al. estimated that 6.3% of female childhood 
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cancer survivors developed AOF following treatment
10

. Additionally, surgical premature 

menopause (SPM) can occur, where hysterectomies or bilateral oophorectomies before age 40 

result in the onset of menopause.  

 

Interventions to preserve future reproductive opportunities, such as oocyte and ovarian tissue 

cryopreservation, can be performed prior to or shortly following cancer treatment. However, 

these options may be time-sensitive, invasive, and traumatic to young girls
11-13

. In order to 

inform discussions of fertility preservation, the primary objective of this research was to develop 

a risk prediction model to estimate the individual absolute risk of a childhood cancer survivor 

developing NSPM following cancer treatment. 

 

 

4.2 Methods 

Study Population 

The Childhood Cancer Survivor Study (CCSS), a multi-institutional cohort study of over 24,000 

childhood cancer survivors from across North America, was the primary source of data for this 

project
14

. The study is composed of an original cohort of cancer survivors diagnosed between 

1970 and 1986, and an expansion cohort of survivors diagnosed between 1987 and 1999. 

Eligibility criteria included being diagnosed and treated for leukemia, a central nervous system 

(CNS) malignancy, Hodgkin lymphoma, non-Hodgkin lymphoma, neuroblastoma, soft tissue 

sarcoma, kidney cancer, or bone cancer before age 21
14

. Participants had to be 5-year survivors 

from the date of their initial diagnosis
14

.  
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Data from the female survivors in the CCSS was used to develop risk prediction models for 

NSPM. Follow-up surveys 1, 4 and 5 from the original cohort, and the baseline and follow-up 

survey from the expansion cohort provided adequate information to determine ovarian status. Of 

the 11,336 females who completed a baseline survey, 8,770 (77.4%) were eligible for inclusion 

(Table 4.1). Reasons for excluding the 2,566 participants at this stage included insufficient 

information to determine ovarian status (n = 1,774), survey completion through a proxy (n = 766, 

representing participants less than age 18 at latest follow-up survey completion or those who 

were deceased following the 5 year survival mark), or the absence of necessary menstrual history 

information (n = 26).  

 

Individuals within the CCSS who overlapped with the St Jude Lifetime Cohort Study (SJLIFE, 

n=932) were set aside for external validation (Table 4.1). Further exclusions were made if 

participants experienced cranial radiation exposure greater than 30 Gy and/or had suspected 

pituitary dysfunction (n = 808), lack of/no information on age at menopause (n = 73), or a second 

malignancy within 5 years of the primary cancer diagnosis (n=9). Finally, 1,086 individuals were 

excluded due to missing treatment exposure information.  

 

Participants were classified into 4 ovarian status categories; normal function, AOF, SPM or 

NSPM. Individuals diagnosed with AOF (n = 354, Table 4.1) were excluded from NSPM model 

development as AOF individuals are not at risk of developing NSPM. Individuals who 

underwent SPM cannot subsequently develop NSPM, and therefore SPM is a competing risk 

event for NSPM. SPM events will be treated as competing risk events during model development 
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and analysis. A method for graphically assessing the independence of competing events is 

described in Appendix E.  

 

The total unweighted study sample was comprised of 5,508 individuals, of which 4,054 (73.6%) 

were designated as training data for model development, and the remaining 1,454 (26.4%) as test 

data for internal validation. 

 

Table 4.1 Study sample exclusions 

 Number of 

Observations 

Total Number of CCSS Female Participants 11,336 

Invalid or Missing Menstrual History Information 2,566 

Data Received from CCSS 8,770 

Overlap with External Validation Cohort 932 

Cranial or Pituitary Radiation > 30 Gy 808 

Missing Age at Menopause 73 

Second Malignancy within 5 Years of Primary Cancer 9 

Interim Total 6,948 

Missing Key Treatment Information  1,086 

Diagnosis of AOF 354 

Training Data 4,054 (73.6%) 

Test Data 1,454 (26.4%) 

Total  5,508 

CCSS is the Childhood Cancer Survivor Study, and AOF is acute ovarian failure 
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Statistical Analysis 

Potential predictor variables assessed during model development included age at cancer 

diagnosis, age at menarche, cancer type, and treatment exposure and doses (for chemotherapy 

and radiation exposure). A treatment period variable (composed of 6 categories, each 

representing 5 consecutive years from 1970-1999) was included to assess an influence of 

treatment year on the risk of NSPM for the regression models.  

 

Individuals were considered at risk for NSPM from the time they entered the study (5 years after 

their diagnosis date) until they either had NSPM, SPM, reached age 40, or were lost to follow-

up. The self-reported age at last menstrual period was used as a proxy for the time of entering 

menopause, and women who survived past age 40 without entering menopause were censored at 

age 40. Individuals who died during the study (before reaching menopause or age 40) were 

censored at the age of last survey completion before their death, due to the I nability to determine 

ovarian status at time of death. Methods to estimate the risk of NSPM included the Fine-Gray 

regression (FGR) model
15,16

, the time-specific logistic regression with competing risks (TLR-

CR) model
17

, and the random survival forest method with competing risks (RSF-CR) with a 

minimum node size of 10 observations
18,19

.  

 

During recruitment of participants for the expansion cohort, individuals diagnosed with the most 

common childhood cancer, acute lymphoblastic leukemia (ALL), were undersampled through 

stratified random sampling in order to allow for more intensive research on rare cancers
20

. Thus, 

individuals in the expansion cohort were weighted with sampling weights, defined as the inverse 

of the probability that they were selected for the study, in order to be representative of the target 
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population. Those diagnosed with ALL when they were less than 1 year of age or greater than 10 

years of age were assigned a sampling weight of 1.21, and those diagnosed between age 1 and 10 

were assigned a sampling weight of 3.63
21

. Sampling weights were incorporated in all reported 

descriptive characteristics and analyses.  

 

A double inverse probability weight was applied when using the TLR-CR model to model the 

NSPM status (Appendix C) and all model accuracy assessment evaluations in order to account 

for both sampling design and censoring under competing risks. This weight was chosen based on 

our previous research into the correct combination of sampling and censoring weights for 

assessing model performance
22

. The censoring distribution was estimated assuming independent 

censoring with the Cox proportional hazards model, a decision which is examined further in the 

discussion. 

 

Model accuracy was assessed using the area under the time-specific receiver operating 

characteristic (ROCt) curve (AUCt, measuring discrimination) and the time-specific average 

positive predictive value, which corresponds to the area under the time-specific precision-recall 

curve (APt, measuring predictive accuracy). The “APBinary” function from the <APTools> 

package in R was used to compute the estimates at specific follow-up times
23,24

. Performance 

was also assessed through calibration curves, where well calibrated models can be expected to 

produce reliable predictions
25

. As the models included competing risk events, calibration plots 

were generated by grouping observations and plotting mean predicted probabilities for NSPM 

against the corresponding observed cumulative incidence (Appendix D)
26

. Analysis was 

performed using Stata version 14.2, R version 3.4.3, and SAS version 14.1. 
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4.3 Results 

Model Development 

Of the 4,644 patients (accounting for sampling weights) in the training set with complete data, 

183 developed NSPM, and 219 had SPM. At 15 years post cancer diagnosis, the event rate for 

NSPM was 0.017. Demographic and treatment characteristics of the survivors are presented in 

Table 4.2 and are similar between the training and test datasets. Model development, along with 

the variable effect sizes in the final models, is presented Appendix F. The final regression 

models included minimum ovarian radiation dose, the cyclophosphamide equivalent dose value 

(CED value, a measure of cumulative chemotherapy exposure), a bone marrow transplant (BMT) 

indicator, age at cancer diagnosis, and a treatment period variable. Interactions between clinical 

variables were examined but not included in order to obtain the most parsimonious models, and 

supported by a recent study which identified no significant interactions
8
. In addition to the 

treatment exposure variables in the regression models, the RSF-CR model included age at 

menarche, maximum abdominal and pelvic radiation doses, specific year of diagnosis (instead of 

treatment period), and cancer type for prediction. 
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Table 4.2 Characteristics of the CCSS study sample 

Characteristic 

CCSS Training Set  

n = 4,644*  

 CCSS Test Set  

n = 1,608* 

 

n (%)  n (%)  

Age at Cancer Diagnosis     

< 5 1,958 (42.2)  683 (42.5)  

5 – 9 1,023 (22.0)  327 (20.3)  

10 – 14 950 (20.5)  311 (19.3)  

≥ 15 713 (15.4)  287 (17.8)  

Cancer Diagnosis     

Bone cancer 435 (9.4)  167 (10.4)  

Central nervous system 438 (9.4)  145 (9.0)  

Hodgkin lymphoma 540 (11.6)  210 (13.1)  

Kidney tumors 519 (11.2)  183 (11.4)  

Leukemia 1,892 (40.7)  606 (37.7)  

Non-Hodgkin lymphoma 262 (5.6)  95 (5.9)  

Neuroblastoma 337 (7.3)  123 (7.7)  

Soft tissue sarcoma 221 (4.8)  79 (4.9)  

Cyclophosphamide Equivalent Dose, mg/m
2
  

None 2,446 (52.7)  873 (54.3)  

<4000 801 (17.2)  286 (17.8)  

4000 - 7999 550 (11.8)  169 (10.5)  

≥ 8000 847 (18.2)  279 (17.4)  

Ovarian Radiation Dose, Gy     

None 2,774 (59.7)  912 (56.7)  

<5 1,698 (36.6)  626 (38.9)  

5-9 48 (1.0)  27 (1.7)  

10 - 14 85 (1.8)  30 (1.9)  

15 - 19 15 (0.3)  6 (0.4)  

≥ 20 24 (0.5)  7 (0.4)  

Bone Marrow Transplant     

Yes 158 (3.4)  57 (3.5)  

No 4,486 (96.6)  1,551 (96.5)  

Treatment Period     

1970-1974 365 (7.9)  151 (9.4)  

1975-1979 658 (14.2)  244 (15.2)  

1980-1984 912 (19.6)  328 (20.4)  

1985-1989 893 (19.3)  307 (19.1)  

1990-1994 957 (20.6)  302 (18.8)  

1995-1999 859 (18.5)  275 (17.1)  

 

*Frequencies adjusted for sampling weights 
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Model Evaluation 

AUCt and APt values were computed on both the training and test sets; estimates for 15 years 

post cancer diagnosis are presented in Table 4.3. On the training set, the values were similar for 

all models, and AUCt estimates ranged from 0.75 to 0.77 indicating adequate performance. A 

similar pattern was observed for the APt estimates which ranged from 0.058 to 0.069, with all 

estimates considerably larger than the population event rate of 0.017. The NSPM event rate was 

0.025 in the test set. AUCt estimates were lower on the test set than their training set 

counterparts, with the largest decrease observed in the FGR model (from 0.76 to 0.59). The APt / 

Event Rate ratio increased for the TLR-CR model, implying a relative increase in predictive 

ability by the model. Although the APt point estimates increased, the APt / Event Rate ratio 

decreased from 3.41 to 3.36 for the FGR model and from 4.06 to 3.60 for the RSF-CR model.  

 

ROCt and PRt curves for both the training and test set at 15 years post cancer diagnosis are 

provided in Figure 4.1. Visually, the ROCt curves on the test set are less concave than those on 

the training set, and lie closer to the centre diagonal, indicating a reduction in the discriminatory 

ability of the model. In contrast, the PRt curves on the test set show an improved positive 

predictive value for low true positive rates compared to the training set.  

 

On the test set, AUCt and APt values were computed every 6 months from 10 to 20 years post 

cancer diagnosis, and plotted in Figure 4.2. The values were not computed for less than 10 years 

post cancer diagnosis, as the event rate in the population was essentially 0. The performance of 

the three models over this time period was consistent with their point estimates at 15 years post 

cancer diagnosis. The AUCt estimates for each model remained similar during the time frame, 
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with those from the FGR model lower than those from the TLR-CR and RSF-CR models. 

Throughout the entire time frame, all APt estimates were larger than the corresponding 

population event rate. The APt estimates for the FGR and TLR-CR models essentially identical 

until 14 years post cancer diagnosis, and were similar throughout the remainder of the time 

period. Although the APt values from the RSF-CR model were lower initially, they steadily 

increased and surpassed the other two models for the majority of the time frame.  

 

The calibration of the developed models was assessed using the calibration curves. At 15 years 

post cancer diagnosis, both regression models performed well for all predicted probabilities on 

the training set, illustrated by the blue and red lines following closely to the centre diagonal 

(Figure 4.3). The RSF-CR model performs well initially, however overestimates the actual 

observed risk for participants at a higher risk. When model calibration was assessed on the test 

dataset, both regression models continued to perform well at 15 years post cancer diagnosis; the 

TLR-CR model in particular improved its performance for larger predicted probabilities. The 

RSF-CR model continued to overestimate the actual observed risk. Calibration curves using the 

test set for 12 and 18 years post cancer diagnosis are included in Appendix G, and reflect similar 

conclusions made from 15 years post cancer diagnosis. 
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Table 4.3 Model performance and accuracy assessment values 

 FGR Model TLR-CR Model RSF-CR Model 

AUCt Value  

(95% CI) 
  

Training Set 
0.76 

(0.69, 0.82) 

0.77 

(0.71, 0.83) 

0.75 

(0.64, 0.81) 

Test Set 
0.59 

 (0.49, 0.72) 

0.66 

(0.56, 0.77) 

0.73 

(0.61, 0.82) 

𝐀𝐏𝐭 Value 

(95% CI) 
   

Training Set 
0.058 

(0.040, 0.118) 

0.060 

(0.040, 0.129) 

0.069 

(0.040, 0.147) 

Test Set 
0.084 

(0.032, 0.208) 

0.099 

 (0.045, 0.245) 

0.090 

(0.051, 0.239) 

𝐀𝐏𝐭 / Event Rate Ratio   

Training Set  

(Event rate = 0.017) 
3.41 3.53 4.06 

Test Set 

(Event rate = 0.025) 
3.36 3.96 3.60 

Values are computed for 15 years post cancer diagnosis. FGR is the Fine-Gray regression model, TLR-

CR is the time-specific logistic regression model with competing risks, RSF-CR is the random survival 

forest model with competing risks, AUCt is the time-specific area under the receiver operating 

characteristic curve, APt is the time-specific average positive predictive value. 
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Training Set 

 

Test Set 

 

Figure 4.1 ROCt and PRt curves 

Curves are computed for 15 years post cancer diagnosis. FGR is the Fine-Gray regression model, RSF-

CR is the random survival forest model with competing risks, TLR-CR is the time-specific logistic 

regression model with competing risks, TPR is the true positive rate, FPR is the false positive rate and 

PPV is the positive predictive value. 
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Figure 4.2 AUCt and APt values over time on the test set 

FGR is the Fine-Gray regression model, RSF-CR is the random survival forest model with competing 

risks, TLR-CR is the time-specific logistic regression model with competing risks. 

 

    Training Set                         Test Set     

   

Figure 4.3 Calibration curves 

Curves are computed for 15 years post cancer diagnosis. FGR is the Fine-Gray regression model, RSF-

CR is the random survival forest model with competing risks, TLR-CR is the time-specific logistic 

regression model with competing risks. 
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4.4 Discussion 

This research represents is the first step toward developing a risk prediction algorithm for 

clinicians to utilize during fertility discussions with their patients. Three risk prediction models 

were developed and evaluated in order to model the risk of childhood cancer survivors 

developing NSPM; a Fine-Gray regression model, a time-specific logistic regression model with 

competing risks, and a random survival forest model with competing risks.  

 

After accounting for all assessment measures, the TLR-CR model provided a better performance 

than the other models. Recent evidence has shown that time-to-event model assessment using 

AUCt values can be incomplete
24

 and therefore, more consideration was placed on the results 

obtained from the APtvalues, APt / Event Rate ratios, and calibration curves when comparing 

model performance. Although the AUCt value decreased for the TLR-CR model, internal 

validation demonstrated that it was very well calibrated. The test set event rate at 15 years post 

cancer diagnosis was 0.025, but the TLR-CR model was able to accurately predict the observed 

probability for up to 0.25. During clinical applications, this improved accuracy would provide 

patients at the highest risk with a more personalized prognosis than would otherwise be obtained 

from assessment of the average event rate at 15 years post cancer diagnosis alone. Likewise, this 

model serves to help reassure patients at a low risk.  

 

While the RSF-CR model had the largest test set AUCt value, the calibration of the model was 

lacking. Consistently, the RSF-CR model predicted a probability that was larger than the 

observed probability, particularly for high risk patients. Obtaining a risk estimate larger than the 

actual risk would be problematic for clinical applications, as we aim to provide reliable risk 
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predictions to patients, especially if the information given is to help inform decisions 

surrounding surgical interventions. If patients were assigned a significantly larger predicted 

probability compared to their actual risk, it may result in unnecessary interventions, potentially 

causing unintentional psychological distress, adverse health outcomes, and financial burdens 

from procedures. To mitigate the poor calibration issue, individuals with a predicted risk great 

than 0.10 could be stratified into a “high risk” patient group. Individuals would not be provided 

with specific prediction estimates, and this would avoid the negative implications with the lack 

of calibration for larger values.  

 

Weights 

As censoring can influence the estimation and evaluation of risk prediction models, weighting 

was required during analysis to account for missing information from those censored before their 

event time. Inverse probability-of-censoring weights (IPCW) were calculated by taking the 

inverse of the censoring distribution – the probability that an individual remains uncensored at a 

specific time point. Using the IPCW method to account for censoring is valid when the event and 

censoring processes are at least independent given the value of covariates. If censoring is 

assumed to be non-informative (analogous to “missing completely at random”), then the 

censoring distribution can be estimated using the Kaplan-Meier method. If censoring is 

independent (analogous to “missing at random”), the censoring distribution must be correctly 

specified using a model-based estimator in order to obtain consistent estimates of AUCt and APt.  

 

For model development and analysis in our analyses, weights were developed to account for both 

censoring of individuals during follow-up and the stratified random sampling design. The format 
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of the weights was chosen from our previous research into how best to combine sampling and 

censoring weights for obtaining unbiased accuracy assessment values
22

. Censoring weights were 

computed using IPCW assuming that censoring was independent. The censoring distribution was 

estimated using the Cox proportional hazards model, with both age at cancer diagnosis and 

treatment period included as predictor variables. Sampling weights to account for the stratified 

sampling of the expansion cohort were subsequently included multiplicatively. 

 

Treatment Period Effect 

Cancer treatment methods have advanced over the years, reflecting an increase in knowledge and 

technology. Changes in treatment generally involved increasing the number of individuals who 

received chemotherapy (but with no substantial increases in dose) and decreasing the dose and 

number of individuals who received radiation
21,28

. However, even after accounting for treatment 

changes, cancer survivorship would not have increased to the magnitude that it is seen to, 

implying that some unmeasured effect is contributing to survivorship
28

. Although treatment 

exposure doses were included in the models, treatment period remained an independent variable 

which significantly contributed during model development and to the model AUCt and APt. All 

known treatment exposure changes were accounted for, therefore, the treatment period variable 

in our models is acting as a proxy for some other effect, such as increases in the quality of 

supportive care or environmental factors. Regardless, including the treatment period variable 

consequently poses an issue for prediction. 

 

Prediction models are developed for application to a set of current patients. However, the 

categories of the treatment period variable are specifically related to the sample population and 
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are therefore not relevant for the new set of cancer patients whose risks are to be predicted. By 

excluding the treatment period variable from modelling, predictions can be made for current 

patients, but the aspect that treatment period is accounting for is neglected. We propose to 

include the treatment period variable in the final models and give a range of predicted risks for 

prospective patients from all six treatment periods to enhance applicability to a new population. 

 

There is evidence that the treatment period effect may be explained by a relationship with cancer 

diagnoses which had large improvements in 5-year survival. Acute lymphoblastic leukemia, 

acute myeloid leukemia, Ewings sarcoma, medulloblastoma, neuroblastoma, non-Hodgkin 

lymphoma, osteosarcoma, other bone tumors and other leukemia had increases in 5-year 

survivorship of over 23% 
29

. Higher proportions of these individuals were exposed to BMT, with 

the percentage of exposure increasing over time, an aspect which may explain the increase in 

survivorship. The remaining cancer diagnoses, including astrocytomas, Hodgkin lymphoma, 

kidney tumors, other CNS tumors and soft tissue sarcoma, increased over this period as well, 

however their increases ranged from only 10-16%
29

. When stratified analysis was performed, the 

significance of the treatment period effect disappeared for those diagnoses that did not have as 

large an increase in cancer survivorship, and remained for those individuals who did (Appendix 

H). Therefore, the significant treatment period effect that was found during modelling may be 

attributable to the large increase in survivorship that is seen in those select diagnoses.  

 

Follow-up Length 

A limitation remains with the length of follow-up time contributed by individuals diagnosed in 

the expansion cohort period (1987-1999). Many individuals diagnosed during this period have 



  

129 

 

not been followed for long enough to observe the development of the event. The median age at 

NSPM for the entire cohort was 24; however the median age at last follow-up was only 28 in the 

expansion cohort (compared to age 37 in the original cohort). Furthermore, during the most 

recent menstrual health survey collection in 2014, individuals diagnosed in 1999 in infancy or 

young childhood would only be 15. In the dataset, all individuals must be over 18 to have their 

information included, which is another limitation of case ascertainment from self-reported data. 

Therefore, individuals from earlier treatment periods have a greater contribution to the model 

estimation and evaluation. As those individuals were treated a long time ago, they may not 

represent the characteristics and outcomes of the expansion cohort patients diagnosed most 

recently, which are likely to be more closely aligned with the characteristics of current patients. 

With continued follow-up and data collection, further information regarding individuals from the 

expansion cohort will be provided and allow for the increased contribution of their data in 

analysis. 

 

Conclusions 

Developing risk prediction models is the first step in assessing the risk prediction of NSPM, 

which involved developing models using self-reported menstrual history data. Future directions 

may involve investigating multiple imputation to consider information from the 1,086 

individuals who were excluded due to missing treatment data. The next step moving forward 

involves confirming the results from self-reported menstrual history data with a group of 

individuals with clinically verified ovarian status in order to assess the external validity of the 

model. The SJLIFE cohort has clinically verified ovarian status classifications for its 

participants, which provides the ideal platform to assess model performance in the wider 
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population. Ultimately, the developed models will play a role in the risk assessment of NSPM, 

and help families by providing additional information during their decision making process. The 

practical application of risk estimates will ideally have a positive impact on the quality of life of 

survivors well into their adulthood. 
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5 Conclusions 

5.1 Summary  

Nonsurgical premature menopause has emerged as a frequently observed chronic condition in 

female CCSs following treatment, and obtaining predicted risk estimates for individual patients 

has the potential to improve long-term quality of life. Chapter 1 highlighted the research of risk 

factors for the development of NSPM, which primarily include high doses of chemotherapy, 

treatment with procarbazine, an older age at cancer diagnosis, preparation for a bone marrow 

transplant, and targeted radiation to the ovaries
1,2

. Modelling the risk of NSPM involves 

knowledge of epidemiological and statistical techniques, which were also described in Chapter 1, 

and an examination of the study sample characteristics described in Chapter 2. 

 

In Chapter 3, I assessed the appropriate combination of sampling design and censoring weights 

for analysis and assessment of data from cohort studies using simulation studies, which was 

crucial to ensure the correct implementation of weights during model development and 

evaluation. Weighting scenarios were assessed on four settings, which differed based on the 

relationship of the censoring distribution and sampling design with the event risk distribution.  

 

Regardless of the relationship, censoring weights were required in order to obtain unbiased 

estimates. Under non-informative sampling, scenarios which included sampling weights 

multiplicatively and those that did not produced identical estimates. However, when sampling 

was independent, it was necessary to include sampling weights multiplicatively in order to 

ensure the estimates were unbiased. The study confirmed that in order to obtain consistent 

estimates when censoring is independent, the model for the censoring distribution must be 
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specified correctly. Otherwise, the resulting estimates were biased and produced large empirical 

standard deviations. In summary, investigators must pay close attention to the influence of 

sampling design and censoring distribution on the evaluation of their risk prediction models. 

Inadequately modelling or neglecting to include censoring weights can result in biased estimates 

which do not accurately represent the model performance.  

 

In Chapter 4, three models to predict the risk of NSPM were developed and evaluated. These 

included a time-specific logistic regression model with competing risks, a Fine-Gray regression 

model, and a random survival forest model with competing risks. I presented AUCt values, APt 

values, and calibration curves at 15 years post cancer diagnosis as an example of model 

performance, and assessed these measures every half year from 10 to 20 years post cancer 

diagnosis on the test set of data.  

 

Assessment of all three models on the training set was similar, but following internal validation 

the TLR-CR model provided the best overall performance. Although the AUCt values decreased, 

the performance of the model evaluated using the APt / Event Rate ratio and calibration increased 

when it was assessed on the test set. The model was able to provide reliable predictions at 15 

years post cancer diagnosis for patients with risk estimates of up to 0.25, compared to an event 

rate in the sample of 0.025 – results which were supported when the model was assessed at 12 

and 18 years post cancer diagnosis. Moving forward, external validation with the SJLIFE cohort 

study will help to provide an accurate representation of how the model performs in general, as 

participants have clinically verified ovarian status as opposed to self-reported menstrual history. 
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5.2 Study Limitations 

Measurement error in a study is broadly divided into two categories: random error and 

systematic error
3
. Random error is the presence of unpredictable statistical fluctuations in the 

estimates of the true population values
4
. Systematic error, also known as “bias”, is observed 

through methodical errors in the study design or how the results are interpreted
3
. Although many 

measures were taken to reduce the potential for bias, completely eliminating all impacts and/or 

accounting for all bias during analysis is unrealistic
3,5

. The CCSS is a retrospective cohort study, 

implying that information was collected for a past experience, and is therefore susceptible to 

forms of bias based on the specific study design. Model development was performed using 

CCSS data, implying that the biases highlighted below may have arisen during the study. 

 

Selection bias occurs when individuals who are selected to participate in the study differ from 

the target population, resulting in an apparent association between exposure and outcome
3,5

. 

Nonresponse bias, a form of selection bias, may arise in studies when individuals who completed 

surveys are systematically different from individuals who were contacted but did not complete 

survey
5
. Therefore, the study population may not be representative of all individuals contacted. 

Similar to nonresponse bias is volunteer bias, where there are systematic differences between the 

individuals who completed the survey and the target population as a whole
5
.  

 

As information from the CCSS cohort was obtained through self-administered surveys, there 

exists potential for both nonresponse bias and volunteer bias. Individuals had to be willing to 

complete the baseline survey (as well as follow-up surveys with information about menstrual 

history for the original cohort participants) to be considered for inclusion in the study population. 
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Should the individuals who did participate have different health outcomes and treatment 

exposures from the individuals who did not complete the survey or from the target population 

overall, it could impact the magnitude and direction of any observed associations which would 

influence the calculation of the predicted risk estimate for each individual. 

 

Information bias (also known as measurement bias) occurs when exposure or outcome details are 

recorded incorrectly
3
. In terms of survey design, each CCSS survey contained numerous pages 

for survivors to complete. With such a long survey, survivors may have neglected to complete 

the questions as accurately as possible for reasons such as fatigue, failure to follow instructions, 

or inattention. Questions were also different (or phrased differently) between the surveys 

distributed to the original and the expansion cohorts which could lead to inconsistent information 

collected between cohorts. For example, the follow-up 1 survey released to the original cohort 

requested “Age at Last Natural Menstrual Period” in years of age, whereas the expansion 

baseline survey asked the same question, but specifically requested the age in years and months.  

 

Although treatment exposure data was collected from medical records, baseline information and 

menstrual history was self-reported, implying that recall bias, a type of information bias, may 

have occurred
3
. Specifically, individuals may have reported inaccurate ages for when they began 

or finished menstruating depending on their ovarian status, which would influence the time at 

risk outcome used in model development
3
. There were also many individuals excluded based on 

missing crucial data components. As model development was primarily restricted to individuals 

with complete information on the variables of interest, their exposures may not be representative 

of all individuals, implying a lack of generalizability of the models.  
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Since data was collected from patients who were diagnosed between 1970 and 1999, a 

considerable amount of time has passed. In fact, the earliest diagnoses in the study occurred 

almost 50 years ago! The treatment methods and regimes used during those times are quite 

different from current standards, and the results may not be generalizable to the current 

population, even after accounting for differences. A temporal difference in treatment methods is 

supported by the inclusion of the treatment period variable in model development, which 

remained a significant contributor to model performance, specifically when modelling was 

performed on diagnoses with large increases in cancer survivorship. Prediction models are 

developed for application on a set of current patients; however, the categories of the treatment 

period variable are specifically related to the sample population and are therefore not relevant for 

a new population. Providing a range of predicted probabilities to patients using all 6 treatment 

period categories is one potential solution to enhance applicability to a new population.  

 

Predicting the risk of NSPM at specific ages is the ultimate objective of the project. However, 

developing models at specific ages was hindered by large observation weights resulting from the 

estimation of the corresponding censoring distribution. For age-specific models, a unique time at 

risk is computed for each individual based on their age at cancer diagnosis. For those diagnosed 

in infancy or early childhood, the length of time at risk before ages 30 or 40 is quite large, and 

the corresponding probability of remaining uncensored is low. It follows that the inverse of a low 

probability is a very large weight. The current models can be used to obtain age-specific 

predictions by calculating the length of time since cancer diagnosis before a specific age and 

computing the risk estimate at that length of time. Future research in this area could involve 

assessing methods that account for large weights when developing age-specific models. 
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5.3 Recommendations for Future Directions and Applications 

Having information on the risk of NSPM development appropriately disseminated to clinicians is 

crucial for the success and durability of this project. Following external validation, the risk 

estimates produced by the model will be translated into a risk scoring system, which will 

categorize risk estimates into levels. The ultimate goal of this modelling work is to generate age-

specific risk estimates that can be offered to relevant clinicians in the format of a user-friendly 

decision making tool. 

 

Collaboration with developers will help to create a web and mobile application, aligning well 

with current trends in medical and health research output. This application will be used by 

physicians to obtain an estimate of the risk their patient has of developing NSPM based on their 

specific proposed course of treatment. The application must be designed appropriately for its 

purpose with a simple interface to facilitate use. The physician will input patient characteristics 

and the proposed treatment plan (including age of cancer diagnosis and the magnitudes of 

planned treatment exposures) into the application to obtain a risk estimate for specific ages 

following treatment.  

 

In order for this application to be successful, it requires interest and support from the intended 

audience. A proposed method of rolling out the application is by having small trials at specific 

hospitals, ensuring the staff is properly trained to use the application. These small trials will help 

to identify problems and allow for adjustments before the tool is implemented more broadly. A 

gradual roll out can help assess clinical outcomes of using the application: Does the application 

aid in the decision making process? Do fertility intervention decisions change when an informed 
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risk estimate is provided? A future study could investigate decision making based on model 

prediction of NSPM, including whether the risk estimate contributed to easier decisions. Overall, 

it will be crucial to determine if clinicians are using the application and if patients are finding it 

helpful during fertility preservation discussions. 

 

Many other factors contribute to fertility preservation decisions, including the psychological toll 

and financial costs of procedures. The formation of a multidisciplinary team involving fertility 

experts, oncologists, and psychologists is key to address the many concerns that will no doubt be 

brought up during this time. It would be beneficial to have counselling provided to patients to 

discuss the emotional stresses of surgery. Support groups may be established for families and 

individuals who have gone through these procedures to create a sense of community. In addition 

to treatment costs, there is the cost of the fertility preservation itself to consider
6
. Costs 

associated with the harvesting of oocyte or ovarian tissue as well as any additional storage fees 

(which may need to be paid on a yearly basis until used) should be conveyed to the patient and 

their family during discussions, as medical insurance coverage may vary
6
. Families will need to 

balance the cost of surgery and storage with the potential for reduced reproduction.  

 

Although fertility preservation has been advocated for by many researchers
7
, the surgical 

procedures for oocyte and ovarian tissue cryopreservation are still experimental and 

accompanied by risks and complications, such as bleeding and infection
6,8

. With ovarian tissue 

cryopreservation, there is the potential to reintroduce the original cancer back into the individual 

when the ovarian tissue is replanted
8
. Physicians may not feel comfortable with the procedure 

being performed on young girls and may be less likely to discuss it as an option
9
. This would 
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prevent patients from being informed of the NSPM risk and fertility options. For individuals with 

a substantial risk of developing NSPM, not only should these procedures be offered by 

clinicians, but they should be advocated for and accessible to those who are interested. In 

situations where the physician is reluctant to discuss fertility procedures, patients should have 

access to an alternative medical professional who will ensure the patient is fully informed of 

their options. 

 

The application of a risk prediction model will substantially benefit the quality of life of CCSs by 

increasing the likelihood of future reproduction. By incorporating knowledge of risk estimates 

appropriately into patient care, clinicians and oncologists can facilitate informed discussions 

around the need for fertility preservation services with patients and their families. An accurate 

risk estimate of NSPM development following cancer treatment is the first step towards 

developing an important clinical tool for improving care outcomes in childhood cancer survivors. 
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Appendices 

Appendix A Menstrual history survey questions  

 

Ovarian status classifications for female original cohort participants were derived using variables 

from follow-up 1 (items 19-19d), follow-up 4 (items F13-F16, J33-J34) and the follow-up 5 

questionnaire (items G13-G16, J35-J36). Ovarian status classifications for female expansion 

cohort participants were derived using variables from the expansion baseline questionnaire 

(items E13 –E16, I33-I34) and the follow-up 5 questionnaire. Copies of the surveys administered 

to the CCSS participants were obtained from the Childhood Cancer Survivor Study website 

(https://ccss.stjude.org/tools-and-documents/questionnaires/baseline-and-follow-up-

questionnaires.html) and the specific questions pertaining to ovarian status classification are 

included below. 
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Figure A1 Follow-up 1 survey (2000) 
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Figure A2 Follow-up 4 survey (2007) 

 

 



  

159 

 

 

 
 
 

 

 

 

 

Figure A3 Follow-up 5 survey (2014)  
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Figure A4 Expansion cohort baseline survey (2008 – present) 
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Appendix B Simulation study coefficient estimates 

 

There were no significant differences in the estimates of the coefficient from the Cox PH model 

for weighted and unweighted samples as shown in Table B1, and all estimates were not 

significantly different from the true coefficient value of 1.115. In each study, the weighted 

sample produced larger standard deviations for the coefficient estimate than the unweighted 

sample, illustrating the bias-variance trade-off. In settings i) and ii), where the censoring 

distribution was non-informative, coefficient estimates had slightly non-significant differences 

between the weighted and unweighted samples. In settings iii) and iv), with an independent 

relationship between the risk score and censoring distributions, coefficient estimates were 

identical between the weighted and unweighted samples.  

 

Table B1 Mean coefficient estimates 

 

Truth Setting i) Setting ii) Setting iii) Setting iv) 

𝛽 Mean �̂� (SD) Mean �̂� (SD) Mean �̂� (SD) Mean �̂� (SD) 

Unweighted 

1.115 

1.111 (0.028) 1.119 (0.034) 1.121 (0.037) 1.118 (0.043) 

Weighted 1.113 (0.039) 1.125 (0.042) 1.121 (0.050) 1.118 (0.060) 
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Appendix C Inverse probability-of-censoring weight calculations 

 

Notation 

Let: 

𝑡0 = time point of interest 

𝑋𝑖 = event time for the 𝑖th individual 

𝛿𝑖 = censoring indicator (0 is censored, 1 is the event, 2 is the competing risk event) 

𝐺(∙) = the estimated survivor function of the censoring distribution (computed treating all 

competing events the same as if they were events of interest) 

�̂�𝑡0,𝑖= the estimated weight at time 𝑡0 for the 𝑖th individual 

 

The inverse probability-of-censoring weights (IPCW) are calculated as follows: 

 

�̂�𝑡0,𝑖 =  
𝐼(𝑋𝑖 < 𝑡0)𝐼(𝛿𝑖 = 1)

�̂�(𝑋𝑖)
+  

𝐼(𝑋𝑖 ≥ 𝑡0)

�̂�(𝑡0)
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Table C1 IPCW for survival models with competing risks 

Situation Time at event 𝜹𝒊 Status at 𝒕𝟎 Weight at 𝒕𝟎 

1 𝑋1 < 𝑡0 0 unknown 0 

2 𝑋2 <  𝑡0 1 or 2 1 or 2 
1

�̂�(𝑋2)
 

3  𝑋3 ≥ 𝑡0 0, 1 or 2 0 
1

�̂�(𝑡0)
 

 

𝑋𝑖 is the observed survival time for the 𝑖th individual 𝛿𝑖, is the event indicator, 𝑡0 is the time 

point of interest, and �̂�(∙) is an estimate of the censoring distribution. 

 

 

Table C2 IPCW for time-specific logistic regression with competing risks 

Situation Time at event 𝜹𝒊 Status at 𝒕𝟎 Weight at 𝒕𝟎 

1 𝑋1 < 𝑡0 0 or 2 unknown 0 

2 𝑋2 <  𝑡0 1 1 
1

�̂�(𝑋2)
 

3  𝑋3 ≥ 𝑡0 0, 1 or 2 0 
1

�̂�(𝑡0)
 

 

𝑋𝑖 is the observed survival time for the 𝑖th individual 𝛿𝑖, is the event indicator, 𝑡0 is the time 

point of interest, and �̂�(∙) is an estimate of the censoring distribution. 
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Appendix D Computing calibration curves for competing risk prediction models 

 

Step 1: Generate predicted probabilities at the time point of interest 𝑡 =  𝑡0 using a competing 

risk model 

Step 2: Rank the observations based on their predicted probability values and divide into 𝑛 

groups 

Step 3: Within each group, calculate the average predicted risk at 𝑡0 

Step 4: Within each group, calculate the cumulative incidence function (which accounts for 

competing risks) at 𝑡0  

 

For each group, obtain the observed and predicted probabilities: 

Group Observed Predicted 

Group 1 
Cumulative Incidence at  𝑡0 

(from individuals in Group 1) 

Mean predicted probabilities  

(from individuals in Group 1) 

Group 2 
Cumulative Incidence at  𝑡0 

(from individuals in Group 2) 

Mean predicted probabilities  

(from individuals in Group 2) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Group 𝑛 
Cumulative Incidence at  𝑡0 

(from individuals in Group 𝑛) 

Mean predicted probabilities  

(from individuals in Group 𝑛) 

 

Step 5: Compute a lowess curve of observed versus predicted probabilities 
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Appendix E Checking independence of competing risk events 

 

Suppose 𝑇1 and 𝑇2 are two statistically independent processes, both subject to a non-informative 

censoring process, 𝐶.  

 

Let 𝐹1(𝑡) denote 𝑃(𝑇1 < 𝑡), and 𝐹2(𝑡) denote 𝑃(𝑇2 < 𝑡). 

𝑋 = min(𝑇1, 𝑇2) ,     𝛿 =  {
0    𝑋𝑋 = 𝐶
1    𝑋𝑋 = 𝑇1

2    𝑋𝑋 = 𝑇2

 

𝑋𝑋 = min (𝑋, 𝐶) 
 

 

Then: 

𝐹𝑋(𝑡) = 𝑃(𝑋 < 𝑡) = 𝑃(min(𝑇1, 𝑇2) < 𝑡) 

          ≝ CIF1(𝑡) + CIF2(𝑡) 

           = 𝑃(𝑇1 < 𝑡, 𝑇2 ≥ 𝑡) + 𝑃(𝑇1 ≤ 𝑇2 < 𝑡) + 𝑃(𝑇2 < 𝑡, 𝑇1 ≥ 𝑡) + 𝑃(𝑇2 ≤ 𝑇1 < 𝑡) 

          = 𝑃(𝑇1 < 𝑡, 𝑇2 ≥ 𝑡) + 𝑃(𝑇2 < 𝑡, 𝑇1 ≥ 𝑡) + 𝑃(𝑇1 < 𝑡, 𝑇2 < 𝑡) 

 

Using the independence assumption 

          = 𝐹1(𝑡)𝑆2(𝑡) + 𝐹2(𝑡)𝑆1(𝑡) + 𝐹1(𝑡)𝐹2(𝑡) 

           = 𝐹1(𝑡) + 𝐹2(𝑡) − 𝐹1(𝑡)𝐹2(𝑡) 

(1) 

(2) 

(3) 

(4) 

 

 

(5) 

(6) 

 

This provides a graphical check for the independence of  𝑇1 and 𝑇2.
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Appendix F Model analysis 

 

1. Time-specific Logistic Regression with Competing Risks (at 15 years post diagnosis) 

Assuming independent censoring and sampling, the observation weights for logistic regression 

are given by:  

𝐼𝑃𝐶𝑊𝐶𝑜𝑥
1 × 𝑝𝑗 

The censoring distribution, �̂�(𝑡), is estimated using Cox proportional hazards regression with 

treatment period and age at diagnosis as covariates. 
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Table F1 TLR-CR univariate analysis 

Variable Coefficient Odds Ratio p-value 

Age at Cancer Diagnosis 0.050 1.051 0.008 

BMT Exposure 1.996 7.360 <0.001 

CED Value 0.015 1.015 0.326 

Hispanic Origin 0.737 2.090 0.026 

Minimum Ovarian RT Dose 0.101 1.106 <0.001 

Race    

Black -0.509 0.601 0.487 

Asian or Pacific Islander 0.620 1.859 0.405 

American Indian or Alaskan Native 1.453 4.276 0.176 

Smoked at least 100 cigarettes -0.013 0.987 0.973 

Treatment Period    

1975 – 1979 0.101 1.106 0.887 

1980 – 1984 0.046 1.047 0.946 

1985 – 1989 0.460 1.584 0.513 

1990 – 1994 0.991 2.694 0.119 

1995 – 1999 1.418 4.129 0.027 

BMT exposure = No is the reference category for the BMT exposure variable, Hispanic origin = 

No is the reference category for the Hispanic origin variable, White is the reference category for 

the race variable, smoked at least 100 cigarettes = No is the reference category for the “smoked 

at least 100 cigarettes” variable, and 1970-1974 is the reference category for the treatment 

period variable.  
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Race Overall Significance: 

Wald Test:  

Wald chi
2
(3) = 3.06 

p-value = 0.3821 

 

Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 15.44 

p-value = 0.0086 

 

 

TLR-CR Univariate Analysis Summary:  

Age at cancer diagnosis, BMT exposure, Hispanic origin, minimum ovarian RT dose, and 

treatment period have p-values less than 0.20 and are retained for multivariate regression. CED 

value will be included in multivariate regression as it is a biologically important variable, and 

clinicians have recommended its inclusion. The race and “smoked at least 100 cigarettes” 

variables were not significant in the analysis (p-values > 0.20) and therefore are not retained for 

multivariate analysis. 
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Table F2 TLR-CR intermediate multivariate analysis 

Variable Coefficient Odds Ratio p-value 

Age at Cancer Diagnosis 0.054 1.055 0.007 

BMT Exposure 1.395 4.035 0.002 

CED Value 0.001 1.001 0.963 

Hispanic Origin 0.516 1.675 0.148 

Minimum Ovarian RT Dose 0.093 1.097 0.001 

Treatment Period 
   

1975 – 1979 0.207 1.230 0.776 

1980 – 1984 0.182 1.200 0.793 

1985 – 1989 0.478 1.613 0.491 

1990 – 1994 1.044 2.841 0.119 

1995 – 1999 1.316 3.728 0.057 

BMT exposure = No is the reference category for the BMT exposure variable, Hispanic origin = 

No is the reference category for the Hispanic origin variable, and 1970-1974 is the reference 

category for the treatment period variable.  

 

Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 9.44 

p-value = 0.0928 
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TLR-CR Intermediate Multivariate Analysis Summary: 

After accounting for the other variables in the model, age at cancer diagnosis, BMT exposure, 

and minimum ovarian RT dose are significant with p-values less than 0.05. CED value will 

continue to be included as a biologically important variable, even though the associated p-value 

is larger than 0.05 (p-value = 0.972).  Both the treatment period variable and the Hispanic origin 

variable are non-significant. As model prediction and performance was improved when the 

treatment period variable was included in the model, it is retained in the multivariate regression 

model. 

 

Table F3 TLR-CR multivariate analysis 

Variable Coefficient Odds Ratio p-value 

Age at Cancer Diagnosis 0.054 1.055 0.007 

BMT Exposure 1.438 4.212 <0.0001 

CED Value -0.001 0.999 0.972 

Minimum Ovarian RT Dose 0.094 1.099 <0.0001 

Treatment Period 
   

1975 – 1979 0.247 1.280 0.730 

1980 – 1984 0.216 1.241 0.754 

1985 – 1989 0.557 1.745 0.403 

1990 – 1994 1.140 3.127 0.073 

1995 – 1999 1.434 4.195 0.022 

BMT exposure = No is the reference category for the BMT exposure variable, and 1970-1974 is 

the reference category for the treatment period variable.  
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Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 11.32 

p-value = 0.0453 

 

 

TLR-CR Multivariate Analysis Summary:  

After accounting for the other variables in the model, age at cancer diagnosis, BMT exposure, 

minimum ovarian RT dose, and treatment period are significant with p-values less than 0.05. 

CED value will continue to be included as a biologically important variable, even though the 

associated p-value is larger than 0.05 (p-value = 0.972).  
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2. Fine-Gray Regression 

Assuming independent sampling, sampling weights are included as observation weights during 

model development (𝑝𝑗). Censoring is inherently accounted for during model development with 

Fine-Gray regression.  
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Table F4 FGR univariate analysis 

Variable Coefficient 
Subdistribution 

Hazard Ratio 
p-value 

Age at Cancer Diagnosis 0.043 1.044 0.004 

BMT Exposure 1.738 5.686 <0.001 

CED Value 0.022 1.022 0.006 

Hispanic Origin 0.569 1.766 0.031 

Minimum Ovarian RT Dose 0.087 1.091 <0.001 

Race    

Black 0.118 1.125 0.750 

Asian or Pacific Islander 0.783 2.188 0.085 

American Indian or Alaskan Native 0.638 1.893 0.533 

Smoked at least 100 cigarettes 0.070 1.073 0.754 

Treatment Period    

1975 – 1979 -0.414 0.661 0.172 

1980 – 1984 -0.528 0.590 0.073 

1985 – 1989 0.082 1.085 0.785 

1990 – 1994 0.248 1.281 0.397 

1995 – 1999 0.359 1.432 0.290 

BMT exposure = No is the reference category for the BMT exposure variable, Hispanic origin = 

No is the reference category for the Hispanic origin variable, White is the reference category for 

the race variable, smoked at least 100 cigarettes = No is the reference category for the “smoked 

at least 100 cigarettes” variable, and 1970-1974 is the reference category for the treatment 

period variable.  
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Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 12.92 

p-value = 0.0242 

 

Race Overall Significance: 

Wald Test:  

Wald chi
2
(3) = 3.32 

p-value = 0.3444 

 

 

FGR Univariate Summary:  

All variables except for the “smoked at least 100 cigarettes” variable and the race variable have 

p-values less than 0.20, and are therefore retained for multivariate regression. As the p-values for 

the “smoked at least 100 cigarettes” variable and the race variable are non-significant (p-values = 

0.754 and 0.3444 respectively), they will not be retained in the multivariate analysis.  
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Table F5 FGR intermediate multivariate analysis 

Variable Coefficient 
Subdistribution 

Hazard Ratio 
p-value 

Age at Cancer Diagnosis 0.046 1.047 0.002 

BMT Exposure 1.296 3.655 <0.001 

CED Value 0.014 1.014 0.143 

Hispanic Origin 0.472 1.603 0.088 

Minimum Ovarian RT Dose 0.077 1.080 <0.001 

Treatment Period    

1975 – 1979 -0.293 0.746 0.347 

1980 – 1984 -0.457 0.633 0.137 

1985 – 1989 -0.003 0.997 0.991 

1990 – 1994 0.298 1.347 0.342 

1995 – 1999 0.255 1.290 0.499 

BMT exposure = No is the reference category for the BMT exposure variable, Hispanic origin = 

No is the reference category for the Hispanic origin variable, and 1970-1974 is the reference 

category for the treatment period variable.  

 

Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 8.28 

p-value = 0.1412 
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FGR Intermediate Multivariate Analysis Summary: 

After accounting for the other variables in the model, age at cancer diagnosis, BMT exposure, 

and minimum ovarian radiation dose are significant, and will be retained. Both the Hispanic 

origin variable and the treatment period variable are non-significant. CED value will continue to 

be included as a biologically important variable, even though the associated p-value is larger 

than 0.05 (p-value = 0.143). As model prediction and performance was improved when the 

treatment period variable was included in the model, it is retained in the multivariate regression 

model. 
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Table F6 FGR multivariate analysis 

Variable Coefficient 
Subdistribution 

Hazard Ratio 
p-value 

Age at Cancer Diagnosis 0.045 1.046 0.003 

BMT Exposure 1.272 3.568 <0.001 

CED Value 0.016 1.016 0.074 

Minimum Ovarian RT Dose 0.075 1.078 <0.001 

Treatment Period    

1975 – 1979 -0.315 0.730 0.305 

1980 – 1984 -0.400 0.670 0.178 

1985 – 1989 0.140 1.150 0.643 

1990 – 1994 0.333 1.395 0.275 

1995 – 1999 0.318 1.374 0.378 

BMT exposure = No is the reference category for the BMT exposure variable, and 1970-1974 is 

the reference category for the treatment period variable.  

 

Treatment Period Overall Significance: 

Wald Test:  

Wald chi
2
(5) = 9.86 

p-value = 0.0793 
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FGR Multivariate Analysis Summary:  

After accounting for the other variables in the model, minimum ovarian RT dose, BMT 

exposure, and age at cancer diagnosis are significant with p-values less than 0.05. CED value 

will continue to be included as a biologically important variable, even though the p-value is 

slightly larger than 0.05 (p-value = 0.074).   

 

Using the Wald test, the treatment period variable was only marginally significant. However, 

when the variable was excluded, there was slight confounding with BMT exposure observed. 

Additionally, model prediction and performance was improved when the treatment period 

variable was included in the model, and therefore it is retained in the multivariate regression 

model.  
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3. Random Survival Forest with Competing Risks 

Table F7 RSF-CR variable importance  

Variables 

CV Set 1 CV Set 2 CV Set 3 CV Set 4 CV Set 5 
Entire Training 

Set 

Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value 

Procarbazine Dose  1 0.0411 1 0.0368 2 0.0245 2 0.0341 1 0.0377 1 0.0381 

Age at Cancer Diagnosis  2 0.0372 5 0.0156 6 0.0061 5 0.0103 5 0.0133 7 0.0123 

BMT Exposure 3 0.0229 2 0.0343 3 0.0226 3 0.0282 2 0.0199 2 0.0322 

Age at Menarche  4 0.0156 6 0.0109 5 0.0091 6 0.0069 7 0.0043 5 0.0149 

Year of Cancer Diagnosis  5 0.0098 3 0.0301 4 0.0146 1 0.0368 6 0.0110 3 0.0276 

Maximum Abdomen RT Dose 6 0.0034 10 -0.0022 9 -0.0032 7 0.0046 9 -0.0028 9 0.0037 

CED Value 7 0.0025 8 0.0049 10 -0.0042 8 0.0026 10 -0.0097 8 0.0088 

Minimum Ovarian RT Dose 8 0.0022 4 0.0183 7 0.0050 4 0.0193 3 0.0186 4 0.0169 

Cancer Diagnosis Category 9 0.000 7 0.0090 8 0.0005 9 0.0023 8 0.0017 10 -0.0001 

Maximum Pelvic RT Dose 10 -0.0039 9 -0.0021 1 0.0267 10 0.0022 4 0.0134 6 0.0126 

CV is cross validation and ‘Value’ represents the variable importance (VIMP), calculated by comparing the prediction performance 

for a variable which has been permuted to the original prediction performance. 
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Appendix G Test set calibration curves for 12 and 18 years post cancer diagnosis 

 

Figure G1 Calibration curves for 12 years post cancer diagnosis 

 

 

 

Figure G2 Calibration curves for 18 years post cancer diagnosis 
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Appendix H Examining cancer diagnoses with improved survival 

 

Cancer diagnoses with large increases in survivorship (defined as Group 2) were characterized 

by an increase in 5-year survival of greater than 23%, based on information from “Ward E, et al., 

Childhood and Adolescent Cancer Statistics, 2014. CA Cancer J Clin 2014; 64:83-103”. Cancer 

diagnoses included in Group 1 had increases in 5-year survival of 16% or less. 

 

 

Table H1 Cancer diagnoses with and without large increases in survivorship 

 

Group 1 Group 2 

Astrocytomas (16%) 

Hodgkin lymphoma (10%) 

Kidney tumors (15%) 

Other CNS tumors (16%) 

Soft tissue sarcoma (15%) 

Acute lymphoblastic leukemia (33%) 

Acute myeloid leukemia (43%) 

Ewings sarcoma (30%) 

Medulloblastoma (23%) 

Neuroblastoma (25%) 

Non-Hodgkin lymphoma (38%) 

Osteosarcoma (26%) 

Other bone tumors (24%) 

Other leukemia (36%) 

Number of Observations = 1,707 Number of Observations = 2,347 

CNS is central nervous system; percent in brackets represents the absolute increase in 5-year 

survival percent from 1975-1979 to 2003-2009 
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Table H2 Stratified time-specific logistic regression with competing risks output 

 

Variable 
Group 1 Group 2 

OR (p-value) OR (p-value) 

Minimum Ovarian RT Dose 1.127 (<0.001) 1.047 (0.408) 

BMT Exposure 1 (omitted) 6.601 (0.001) 

CED Value 1.003 (0.878) 0.998 (0.924) 

Age at Cancer Diagnosis 1.077 (0.028) 1.038 (0.120) 

Treatment Period   

1975 – 1979  1.480 (0.678) 1.041 (0.973) 

1980 – 1984  1.861 (0.492) 0.706 (0.773) 

1985 – 1989  2.974 (0.229) 1.212 (0.870) 

1990 – 1994  2.261 (0.364) 4.235 (0.170) 

1995 – 1999  2.584 (0.295) 6.524 (0.078) 

Significance of Treatment 

Period Variable (Wald Test) 

Non-significant  

(p = 0.783) 

Significant  

(p = 0.037) 

Evaluated at 15 years post cancer diagnosis. 1970-1974 is the reference category for the 

treatment period variable, and BMT exposure = No is the reference category for the BMT 

exposure variable; RT is radiation therapy, BMT is bone marrow transplant, CED is the 

cyclophosphamide equivalent dose, and OR is the odds ratio 


