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Abstract 17 

Selecting economically feasible policies for maximizing crew motivation and performance is a 18 

multifaceted problem, and each aspect of the process poses considerable unique challenges for 19 

construction practitioners. Fuzzy agent-based modeling (FABM) addresses some of the challenges 20 

of predicting crew performance (e.g., it accounts for both subjective uncertainties and crew 21 

dynamics), but strategy selection is a decision-making problem that is also compounded by expert 22 

disagreements, insufficient information, and differing stakeholder priorities. This paper proposes 23 
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a methodology for integrating multi-criteria decision-making (MCDM) with fuzzy agent-based 24 

modeling (FABM) to develop a decision support model that simulates the complex relationships 25 

and social interactions between crews and crew members for use in decision-making. This model 26 

also accounts for dynamic construction environments and captures the subjective factors that 27 

influence crew motivation and performance. The contributions of this paper are twofold. First, it 28 

proposes a methodology that will help improve decision-making processes in construction by 29 

expanding the scope of MCDM through integration with FABM. Second, it develops a fuzzy 30 

agent-based multi-criteria decision-making model that helps construction practitioners adopt 31 

economically feasible strategies for improving the motivation and performance of construction 32 

crews. Furthermore, the proposed methodology can be adapted to several construction problems 33 

to help decision makers prioritize and select from several strategies intended to improve different 34 

crew performance measures. 35 

Author keywords: Fuzzy agent-based modeling; multi-criteria decision-making; construction; 36 

crew performance; fuzzy logic 37 

Introduction 38 

Agent-based modeling (ABM), a technique for simulating or modeling systems that considers the 39 

emergent behaviors and interactions of several “agents” (e.g., crew members, supervisors, etc.) 40 

with each other and the environment, is a useful tool for exploring the potential outcomes of 41 

multiple scenarios. In the complex environment of construction decision-making, ABM allows 42 

practitioners to explore multiple simulations and reach an appropriate “decision space,” which is 43 

a set of options (i.e., scenarios) that are at the disposal of decision makers (Klein et al. 2009). 44 

However, ABM does not account for all the challenges decision makers face in the construction 45 

industry, such as changing contexts and subjective uncertainty. Raoufi and Fayek (2018c) 46 
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therefore developed fuzzy agent-based modeling (FABM), which integrates fuzzy logic with 47 

agent-based models, making it possible to address construction-related problems that are highly 48 

dynamic and involve subjective uncertainties. After applying FABM to a problem, the decision 49 

maker still has to evaluate the consequences of each scenario and make a selection. When a 50 

problem involves only one single criterion, the choice is straightforward as the decision maker 51 

simply needs to choose the scenario with the highest preference rating. However, when scenarios 52 

with multiple criteria are involved, considerations related to the weights of criteria, preference 53 

dependence, and conflicts among criteria complicate the problem and more sophisticated methods 54 

must be used (Tzeng and Huang 2011). One such method is multi-criteria decision-making 55 

(MCDM), which is capable of evaluating alternative scenarios in terms of several criteria (i.e., 56 

objectives) while accounting for experts’ preferences (Shahdany and Roozbahani 2016). 57 

In a motivation-related context, the problem of selecting strategies to improve crew 58 

motivation and performance can be considered a multi-criteria decision-making problem that 59 

involves experts (i.e., stakeholders who are responsible for the success of the project). Because 60 

construction is a dynamic process that is influenced by different factors, selecting the right strategy 61 

is a combination of a simulation problem and a decision-making problem. The decision-making 62 

component focuses on improving a performance measure by processing several alternatives and 63 

considering objectives (e.g., cost and schedule) while selecting variables for use in the simulation. 64 

The simulation aspect of the problem is the analysis of input measurements to produce an output 65 

for a given performance measure, such as crew performance. A comprehensive model needs to 66 

simulate the crew performance output and incorporate the assessment of several variations of 67 

inputs (i.e., parameters) and crew performance outputs for use in selecting the right strategy (i.e., 68 

combination of specified inputs). 69 
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To address both the decision-making and simulation aspects of the strategy selection problem, 70 

an approach is required that incorporates an MCDM model with a simulation technique that uses 71 

fuzzy logic principles (i.e., FABM). The MCDM model incorporates the multiple, sometimes 72 

conflicting opinions of experts and FABM simulates the subjective and dynamic nature of 73 

construction problems, enabling practitioners to select effective strategies for improving a given 74 

performance measure (e.g., crew motivation or crew performance). However, even though MCDM 75 

and ABM have been used extensively in construction as standalone techniques, there is a gap in 76 

the literature on incorporating MCDM with FABM. This paper develops a methodology for 77 

integrating MCDM and FABM and illustrates the methodology with an analysis of a real-world 78 

case study of improving construction crew motivation and performance. 79 

The paper is organized as follows: A literature review of MCDM in construction is presented, 80 

followed by a literature review of ABM, its applications in construction, and its use and limitations 81 

in decision-making. Next, a methodology for integrating FABM and MCDM into a fuzzy agent-82 

based decision-making (FABM-MCDM) model is proposed. A case study on crew motivation and 83 

performance is then used to illustrate the model. Finally, conclusions and recommendations for 84 

future research are presented. 85 

Literature Review 86 

Multi-criteria Decision-Making  87 

Decision-making is a critical aspect of construction-related processes (e.g., policy making, 88 

budgeting, risk and safety, planning and scheduling, bidding and tendering, productivity and 89 

performance, etc.). These processes usually require that several criteria be analyzed before a 90 

decision is made, usually in an environment of differing stakeholder priorities, insufficient 91 
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information, and expert disagreements. MCDM is an analytic method that assesses the advantages 92 

and disadvantages of different alternatives based on a set of multiple criteria (Pirdashti et al. 2009). 93 

A study by Zardari et al. (2015) classifies MCDM approaches as elementary methods, unique 94 

synthesis criterion methods, or outranking methods. Elementary methods involve no 95 

computational requirements; they are simple and best suited for problems involving a single 96 

decision maker who is choosing between very few alternatives. These methods can also fall under 97 

the category “non-compensatory decision-making,” which is when the positive attributes of an 98 

alternative cannot compensate for the negative attributes of another alternative; in such situations, 99 

the alternatives are quickly evaluated with minimal effort and an acceptable loss of accuracy. For 100 

example, pros and cons analysis, max-min and min-max methods, the lexicographic method, and 101 

elimination by aspect belong to this category. The unique synthesis approach entails aggregating 102 

varying points of view into a single function that will be optimized. This approach is based on the 103 

use of utility functions that can be applied to transfer the raw performance values of alternatives, 104 

in terms of diverse criteria, to a common dimensionless scale, usually in the interval [0,1]. Some 105 

examples include the simple multi-attribute rating technique (SMART), multi-attribute utility 106 

theory (MAUT), the technique for order of preference by similarity to ideal solution (TOPSIS), 107 

multi-attribute value theory (MAVT) and the analytic hierarchy process (AHP). The use of utility 108 

maximization and the selection of the alternative(s) with the highest value can make the unique 109 

synthesis approach a compensatory method. In compensatory methods, the positive (i.e., equal or 110 

higher) value of one attribute can compensate for the negative value of another attribute (Lee and 111 

Anderson 2009). Outranking synthesis methods, the third category, involve developing an 112 

outranking relationship that represents the preferences of the decision maker using available 113 

information. When the nature of decision-making does not allow compensatory relationships to be 114 
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established for use as parameters, or if the decision maker has a preference structure of a non-115 

compensatory nature (Vetschera and Almeida 2012), outranking methods can be effectively used 116 

to good effect. Some of the methods in this category introduce discrimination (e.g., indifference 117 

or preference) thresholds at each criterion level to locally model the decision maker’s preference. 118 

Examples include ELimination and Choice Expressing REality (ELECTRE) and the preference 119 

ranking organization method for enrichment evaluation (PROMETHEE). 120 

Modeling MCDM problems using different techniques is likely to produce different results, 121 

and ease of applicability and accuracy must be considered when choosing which technique to use 122 

to solve the problem. The popularity of the AHP in the areas of engineering, management, 123 

economics, and sociology stems from its ease of use, its flexibility to integrate both qualitative and 124 

quantitative properties, the extensive literature on the topic, and its ability to deal with tangible 125 

and intangible criteria (Lee 2014). Sabzi and King (2015) evaluated six popular outranking 126 

methods using the same decision matrix to simulate the MCDM process for flood management: 127 

simple additive weights (SAW), comprehensive programming (CP), TOPSIS, AHP, ELECTRE 128 

and VIKOR. Because of the AHP’s aforementioned qualities, Sabzi and King (2015) chose to use 129 

this method to process information in the decision matrix and perform multiple pairwise 130 

comparisons of alternatives in terms of criteria. 131 

Agent-Based Modeling 132 

Since the first construction-related ABM models were developed in the early 2000s, the 133 

application of ABM in construction has increased significantly in areas such as supply chain 134 

management, claims management, infrastructure management, equipment management, bidding 135 

strategies, procurement, site safety, and workers’ behavior (Jabri and Zayed 2017). Eid and 136 

El-adaway (2017) presented a decision-making framework that used ABM to capture a host 137 
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community’s ever-changing recovery process in the aftermath of a natural disaster. Some 138 

researchers have proposed methods of integrating ABM and other models. Ben-Alon and Sacks 139 

(2017) proposed a hybrid model of ABM and building information modeling (BIM) to better study 140 

production systems in construction that can capture the motivation and behavior of individual 141 

crews and workers, as well as their interactions within a physical and process environment; this is 142 

difficult to accomplish with other simulation methods (e.g., discrete event simulation). Cheng et 143 

al. (2018) integrated ABM and BIM to simulate accidents on offshore oil and gas platforms to 144 

evaluate and improve evacuation planning. Xiao et al. (2018) used ABM to study, from economic 145 

and ecological perspectives, the impact of water demand management on the behaviors of different 146 

municipal and industrial users. Raoufi and Fayek (2018c) advanced the application of FABM 147 

approaches to handle uncertainties related to construction when measuring crew motivation and 148 

performance. 149 

ABM can be directly used for decision-making when the decision-making elements have been 150 

explicitly modeled (Bernhardt et al. 2007) and the mechanisms of the decision-making of agents 151 

(i.e., individuals) have been properly explained (Lee 2014). For example, Eid and El-adaway 152 

(2018) proposed a holistic sustainable disaster recovery approach using a decision-making 153 

framework that employs ABM; Wang (2013) used ABM in the design of a collaborative decision-154 

making process to improve congestion and delays in air traffic; and Yang et al. (2009) applied 155 

ABM in a decision support system for inventory management. However, for some problem 156 

contexts (e.g., improving crew performance) where proposed strategies for output improvement 157 

differ based on company objectives and experts’ assessments and where the selection of 158 

alternatives has to be weighed in terms of multiple, sometimes conflicting criteria, using ABM 159 

alone can become computationally demanding. In these cases, focusing on ABM’s ability to carry 160 
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out simulations with different parameters, boundaries, and constraints and combining the model 161 

with proven decision-making tools can help produce a more applicable model. The work of 162 

Marzouk and Mohamed (2018) reflects such an approach, as they integrated simulation results 163 

from ABM and BIM into an MCDM model to evaluate the evacuation performance of buildings 164 

under different scenarios in case of fire emergency. However, detailed studies on incorporating the 165 

subjective nature of construction environments into ABM and using those models to evaluate 166 

several scenarios for use in decision-making are lacking. Incorporating a decision-making tool into 167 

ABM, specifically FABM, can therefore prove useful as it enables scenario analysis and decision-168 

making to improve performance measures for several types of construction problems. 169 

Fuzzy Agent-Based Multi-criteria Decision-Making Model Development 170 

When working to improve construction crew motivation and performance, practitioners must be 171 

able to both simulate the subjectivity and dynamism of the problem and select the strategy that 172 

will best satisfy a given set of objectives. An appropriate tool must therefore be developed that can 173 

handle subjective variables in simulation with the use of fuzzy logic concepts, capture dynamism 174 

with the use of dynamic modeling tools such as ABM, and process several simulation outputs in 175 

order to select solutions targeted to improve chosen criteria with the use of MCDM. This section 176 

presents a methodology for integrating FABM with MCDM to develop such a model. The data set 177 

and initial simulation model (i.e., FABM) were obtained from Raoufi and Fayek (2018c) and 178 

expanded to enable the development of the integrated model. The fuzzy agent-based–multi-criteria 179 

decision-making model (FABM-MCDM) has two major components, as highlighted in Fig. 1. The 180 

first component is the MCDM analysis, in which the AHP is used to rank alternatives, which are 181 

the inputs to the model. The second component is the FABM technique, in which a parametric 182 

study is applied to rank scenarios according to their outputs, which are performance measures (i.e., 183 
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task performance, contextual performance, and counterproductive behavior). These two 184 

components of the FABM-MCDM model are described in the following section. 185 

 186 
Fig. 1. FABM-MCDM model. 187 

Multi-criteria Decision-Making Model Component 188 

The purpose of the MCDM component in the FABM-MCDM is to rank the inputs of the model 189 

according to their influence on the outputs. Inputs with a significant influence on crew performance 190 

will be ranked and used as parameters for the model’s second component (i.e., FABM). 191 

The inputs, shown in Table 1, are labeled “alternatives” (Alt.). Since the AHP was adopted 192 

for this study, pairwise comparisons are used to rank the alternatives according to their importance 193 

for three criteria (i.e., task performance [C1], contextual performance [C2], and counterproductive 194 

behavior [C3]). At the same time, pairwise comparisons will also be used to weight the criteria, as 195 

the importance of each criterion depends on the project context. The importance levels of the three 196 

criteria (AHP Level 1) are aggregated to form the goal of the hierarchical structure (i.e., crew 197 

performance), as shown in Fig. 2. The sub-criteria (AHP Level 2) inform the experts who are 198 

completing the pairwise comparison decision matrix as to what metrics are used to produce each 199 

of the performance measurements at Level 1. This allows experts to give emphasis to the 200 

performance metrics that are more relevant to their project when performing the pairwise 201 

comparisons for the criteria matrix.  202 
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 203 
Fig. 2. Hierarchical structure of crew performance. 204 

The pairwise comparisons are computed based on a scale of 1–7 (Saaty 2008). Discrete values 205 

between 1 and 7 are used to score the relative importance of alternatives in terms of each criterion, 206 

and the relative importance of each criterion to overall crew performance. The scores represent the 207 

following importance levels: 1 = equal importance, 3 = moderate importance, 5 = strong 208 

importance, and 7 = very strong importance; and values in between (2, 4, and 6) are compromises. 209 

For example, a score of Aij (=Ai/Aj) indicates the relative importance of alternative i when it is  210 

Table 1. Inputs for the FABM model. 211 

Alt. Inputs Range Description 

1 Number of crews Z+ Number of crews in the project 

2 Contact rate [0-3] 
Number of times there is contact between crews per 

simulation time unit 

3 Zealot percentage [0,1] Percentage of zealots in the project 

4 Susceptibility [0,1] Probability that an interaction leads to change in motivation 

5 

Non-interactive 

motivation 

variability 

[0,1] 
The rate of change in motivation level without contact with 

other agents 

6 
Initial motivation 

states of crews 
[0,1] 

Percentages of crews in each motivation state at the start of the 

simulation 

7 
Initial state of crew-

level situation 

String: 

"unsatisfied", 

"satisfied" 

Percentages of crews in each crew-level situation state at the 

start of the simulation  

8 

Initial state of 

project-level 

situation 

String: 

"unsatisfied", 

"medium", 

"satisfied" 

String parameter representing initial state of the project-level 

situation 
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9 
Crew-level 

situation variability 
R+ 

Rate of change in crew-level situation states per simulation 

time unit 

10 
Project-level 

situation variability 
R+ 

Rate of change in project-level situation states per simulation 

time unit 

compared with another alternative j in terms of criterion C. The rest of this section presents the 212 

ranking procedure for inputs; weights are also given to each criterion based on the same procedure. 213 

Each alternative matrix is a pairwise comparison of the inputs in terms of a single criterion. Eq. (1) 214 

shows the pairwise matrix, where m alternatives are compared in terms of a criterion. 215 

A1    A2    .    Am 216 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 (𝐴) =  
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  (1) 217 

After the pairwise matrix is formed for each criterion, the next step is to calculate the 218 

reciprocal matrix [R], which satisfies the following three properties (Saaty 1990): reflexivity (rii = 219 

1), reciprocity (rij = 1/rji), and transitivity (rik = rij * rjk). This matrix will be used to solve the 220 

eigenvalue problem shown in Eq. (2), where E is the eigenvector and λmax is the corresponding 221 

maximum eigenvalue. 222 

[R] = 
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 = λmax * E  (2) 223 

The resulting consistency index must be checked using Eq. (3), and it must be less than 0.1 224 

for the normalized eigenvector values to be used as weights for the criteria and alternatives (Saaty 225 

1980). The consistency index is a measurement of the consistency of the performed comparisons 226 

throughout all alternatives. For example, if alternative A1 is more important than A2, and 227 
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alternative A2 is more important than A3, then alternative A1 needs to be more important than A3 228 

in a consistent reciprocal matrix. 229 

𝜈 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
 (3) 230 

where 𝜈 is the consistency index, λmax is the maximum eigenvalue for the reciprocal matrix R, and 231 

m is the number of alternatives. 232 

After the consistency index is checked and found to be within the threshold, the resulting 233 

eigenvector (E1, E2…Em) is normalized for use as the final weight for the corresponding value of 234 

each alternative. The steps in Eqs. (2) and (3) are performed for all three criteria (i.e., C1, C2, and 235 

C3). The criteria are also weighted using the same procedure, but instead of an alternative matrix, 236 

as shown in Eq. (1), there will be a criteria matrix, where the weight of each criterion is obtained 237 

by performing a pairwise comparison and applying the AHP procedure described in this section. 238 

The final ranking for each alternative is produced by using a weighted sum to aggregate the scores 239 

of each alternative for each criterion. For m alternatives and n criteria, the final ranking is obtained 240 

by sorting the scores of the m alternatives, which are determined using Eq. (4), in descending order. 241 

𝐹𝑜𝑟  𝑖 = 1,𝑚: 𝑆𝑐𝑜𝑟𝑒 (𝐴𝑙𝑡𝑖) = ∑ 𝐸𝑖𝑗 ∗𝑛
𝑗=1 𝐶𝑗      𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1, 𝑛      (4) 242 

where 𝐸𝑖𝑗 is the weight of alternative i with respect to criterion j, and 𝐶𝑗 is the weight of criterion 243 

j. 244 

The output of the MCDM model is a ranking of all the alternatives (i.e., inputs) proposed by 245 

the experts. The ranking is then used to support the formulation of meaningful strategies that aim 246 

to improve crew performance. 247 

Fuzzy Agent-Based Modeling Component 248 

The FABM component of the FABM-MCDM is the integration of fuzzy logic and ABM in 249 

MATLAB and AnyLogic, respectively. FABM simulates the effects of a combination of inputs 250 
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(see Table 1) on three criteria (i.e., task performance, contextual performance, and 251 

counterproductive behavior). The main outputs of this model are variations in task performance, 252 

contextual performance, and counterproductive behavior over the lifetime of the project. 253 

Parametric variation is used in the proposed model because it can effectively simulate varying 254 

sets of input combinations to obtain scenario analysis results. The main objective of the parametric 255 

study is to reduce the number of experimental analyses that need to be performed to achieve the 256 

target result, which is the best performance measure. This is done by simulating a combination of 257 

input intervals for the input variables of the model at every run, rather than using single values of 258 

inputs. Instead of having to simulate every possible set of input combinations, which may require 259 

infinite runs, scenarios are built by specifying ranges for each input and then performing analyses 260 

for all possible combinations within range. The results of FABM simulation are outputs of 261 

proposed scenarios as functions of task performance, contextual performance, and 262 

counterproductive behavior. The proposed scenarios are then ranked according to their effect on 263 

crew performance values. 264 

Case Study 265 

The following case study illustrates the FABM-MCDM process using the analysis procedure 266 

presented in the proposed model. Crew performance is defined as a function of three performance 267 

metrics, namely task performance, contextual performance, and counterproductive behavior. 268 

First, the alternatives listed in Table 1 are ranked according to the questionnaire shown in 269 

Table 2. These rankings are performed in terms of all three criteria. The criteria are weighted 270 

according to the questionnaire shown in Table 3. After obtaining the weight for each alternative in 271 

terms of each criterion, as well as the weight of each criterion, a weighted average aggregation is 272 
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performed on each alternative to obtain the overall score in terms of crew performance, as shown 273 

in Eq. (4). For example, for alternative 1 (number of crews), the overall score is: 274 

 𝑆𝑐𝑜𝑟𝑒 (𝐴𝑙𝑡1) = ∑ 𝐸1𝑗 ∗𝑛
𝑗=1 𝐶𝑗  ;      𝑤ℎ𝑒𝑟𝑒 𝑛 = 3                         (4)    275 

= 𝐸11𝐶1 +  𝐸12𝐶3 +  𝐸13𝐶3  276 

where E11, E12, and E13 are the weights of alternative 1 in terms of criteria 1, 2, and 3, respectively, 277 

and C1, C2, and C3 are the weights of criteria 1, 2, and 3, respectively. The data for the pairwise 278 

matrix can be obtained by following the procedure outlined in the methodology and responding to 279 

the questionnaire surveys shown in Table 2 and Table 3, which are used for ranking alternatives 280 

and criteria, respectively. 281 

The resulting pairwise matrix of alternatives for task performance is shown in Fig. 3, and it is 282 

used to rank the input variables as part of the MCDM process. In this paper, the pairwise matrix 283 

for alternatives with respect to the task performance criterion is based on hypothetical data used to 284 

illustrate the methodology. The alternative matrix (A) is calculated using Eq. (1) and the resulting 285 

pairwise matrix of alternatives is shown in Fig. 3. This pairwise matrix has also been used for the 286 

contextual performance and counterproductive behavior criteria matrices. 287 

Table 2. Questionnaire for ranking alternatives. 288 

  -7  -5 -3 1     3     5     7                                                                

Number of 

crews 

       Zealot percentage 
       Contact rate 
       Susceptibility 

       Non-interactive motivation 

variability 

       Initial motivation states of crews 
       Initial state of crew-level situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 
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To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “number of crews” parameter to each of the parameters listed on the right, using 

the scale above. 

Zealot 

percentage 

       Contact rate 
       Susceptibility 

       Non-interactive motivation 

variability 

       Initial motivation states of crews 
       Initial state of crew-level situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 

To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “zealot percentage” parameter to each of the parameters listed on the right, 

using the scale above. 

Contact rate 

       Susceptibility 

       Non-interactive motivation 

variability 

       Initial motivation states of crews 
       Initial state of crew-level situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 

To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “contact rate” parameter to each of the parameters listed on the right, using the 

scale above. 

Susceptibility 

       Non-interactive motivation 

variability 

       Initial motivation states of crews 
       Initial state of crew-level situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 

To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “susceptibility” parameter to each of the parameters listed on the right, using the 

scale above. 

Non-interactive 

motivation 

variability 

       Initial motivation states of crews 
       Initial state of crew-level situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 
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To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “non-interactive motivation variability” parameter to each of the parameters 

listed on the right, using the scale above. 

Initial state of 

crew-level 

situation 

       Initial state of project-level 

situation 
       Crew-level situation variability 

To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “initial motivation states of crews” parameter to each of the parameters listed on 

the right, using the scale above. 

Initial state of 

project-level 

situation 

       Crew-level situation variability 

To rank the alternatives presented in Table 1 in terms of their contribution to the task performance 

objective, compare the “initial state of project-level situation” parameter to each of the parameters 

listed on the right, using the scale above. 

Table 3. Questionnaire for ranking criteria. 289 

   -7  -5  -3 1     3     5     7      

Task 

performance 

       Contextual performance 
       Counterproductive behavior 

To rank the alternatives presented in Table 1 in terms of their contribution to the crew 

performance objective, compare the “task performance” criterion to each of the criteria listed 

on the right, using the scale above. 

Contextual 

performance 
       Counterproductive behavior 

To rank the alternatives presented in Table 1 in terms of their contribution to the crew 

performance objective, compare the “contextual performance” criterion to each of the criteria 

listed on the right, using the scale above. 

 290 
Fig. 3. Pairwise matrix of alternatives [a]. 291 
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Next, Eq. (2) is applied to get the eigenvector and Eq. (3) is applied to get the consistency 292 

index. This is done separately for each criterion. The consistency index is calculated and found to 293 

be 0.082, which conforms with the maximum consistency index requirement of 0.1. The 294 

normalized eigenvector, which is used as weights for the alternatives, is calculated using Eq. (2). 295 

Finally, Eq. (4) is applied to obtain the weights for each alternative, which are shown in Table 4. 296 

As shown in Table 4, the highest-ranked alternatives (i.e., those with a significant contribution 297 

to the crew performance output) are alternatives 6, 2, 3, and 8. These inputs are used to propose 298 

scenarios and study their contributions to task performance, contextual performance, and 299 

counterproductive behavior. Proposed scenarios can differ according to the kinds of policies 300 

experts intend to implement to improve performance output (e.g., depending on their available 301 

budget, time, and resources), which are reflected in the weights experts assign to each alternative. 302 

Table 5 shows crew motivation and performance improvement strategies that companies can adopt 303 

and the associated values (i.e., ranges) for the input parameters used in the FABM simulation. 304 

The ranges of the selected inputs (i.e., parameters) are used in the FABM simulation for 305 

parametric variation. The remaining inputs are also used in the simulation, but they will have fixed 306 

values that are based on data specific to the project. Scenarios that are built based on the selected 307 

parameters (see Table 5) are used as inputs for the parametric variation, and are shown in Table 6. 308 

Keeping “initial state of project level situation” “satisfied” in the simulation, 27 (3*3*3) 309 

scenarios are simulated in the FABM for every criterion. Each scenario is labeled according to the 310 

initial values of contact rate, initial high-motivation states of crews, and zealot percentage. For 311 

example, scenario 1 is labeled “LLL,” which indicates low contact rate, low initial high-motivation 312 

states of crews, and low zealot percentage. Results are based on mean performance, computed at 313 

every time step (i.e., daily), and taking the value of the project’s last day. 314 
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Table 4. Weights for alternatives. 315 

Alternative 1 2 3 4  5 6 7 8 9 10 

Weight 0.128 0.698 0.303 0.093  0.093 1.000 0.263 0.303 0.190 0.190 

Table 5. Proposed company strategies. 316 

Parameter Strategy Range 

Contact rate 

Promoting interactions among crew members through 

interactive site orientations, safety meetings, and daily 

meetings 

[0-1] Low 

[1-2] Medium 

[2-3] High 

Zealot 

percentage 

Inclusion of crew members with a high level of 

experience whose motivation will not be affected by 

their environment; increasing the efficacy of crew 

members (at the individual level) through training 

[0-0.33] Low 

[0.33-0.66] Medium 

[0.66-1] High 

Initial 

motivation 

states of highly 

motivated 

crews 

Increasing commitment (engagement) at the individual 

and crew levels by improving relationships, 

belongingness, and communication between crews and 

crew members through team building activities; 

proposing incentives such as bonuses and vacation pay 

[0-1] Low 

[1-2] Medium 

[2-3] High 

Initial state of 

project-level 

situation 

Improving work/job conditions on the project by making 

resources readily available, such as quality equipment 

and other materials 

"Satisfactory" 

"Unsatisfactory" 

Table 6. Inputs used for parametric variation. 317 

Parameters 

Contact rate 

Initial high-

motivation states of 

crews  

Zealot percentage 

Initial state of 

project-level 

situation 

Low Low Low 

"Satisfied" Medium  Medium  Medium  

High High High 

Results and Discussion 318 

This section discusses the results of the FABM-MCDM process and analysis based on the different 319 

scenarios. The 27 policies, which are a combination of three ranges of inputs (i.e., low, medium, 320 

and high), have been arranged to better capture the relationships between performance measures 321 

and variations of contact rate, initial high-motivation states of crews, and zealot percentage. The 322 

effects of variations in each input on the different performance measures (i.e., task performance, 323 
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contextual performance, counterproductive behavior, and crew performance) were studied 324 

systematically by keeping one input constant while varying the others. For example, to see the 325 

results of variations in contact rate, contact rate is kept constant for the different values of initial 326 

high-motivation states of crews and zealot percentage. Thus, it is easy to observe when contact 327 

rate changes from low to medium to high while all other combinations of inputs are exhausted for 328 

each range of contact rate. For variations based on contact rate, scenarios 1–9 show the results of 329 

low contact rate and all other possible values of initial high-motivation states of crews and zealot 330 

percentage. Scenarios 10–18 and 19–27 show the results of medium and high contact rate values, 331 

respectively, while varying the other inputs. Linear graphs of the performance values are made by 332 

grouping the results of each set of nine scenarios, where each line traces the values for low, 333 

medium, and high values of contact rate. All results have been presented in this manner. 334 

Variations Based on Contact Rate 335 

The results in the category “contact rate” show the variations in performance measures (i.e., task 336 

performance, contextual performance, counterproductive behavior, and crew performance) based 337 

on contact rate. The results are tabulated in Table 7. As shown in Fig. 4, a general trend of 338 

increasing crew performance can be seen as the contact rate increases. This increase becomes more 339 

pronounced for medium and high values of initial high-motivation states. For low values of the 340 

other parameters, the increase in contact rate did not have any effect. Hence, strategies intended to 341 

increase crew performance by increasing contact rate have to also include an increase in either of 342 

the other two parameters. An improvement to the crew performance recorded when all parameters 343 

are low (i.e., scenario 1) can be obtained by adopting scenario 7 (LHL), scenario 17 (MHM), or 344 

scenario 27 (HHH). All three scenarios indicate the need to keep the levels of initial high-345 

motivation states of crews higher. The choice of the scenario to be used as a strategy then depends 346 
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on the amount of improvement needed and the contextual situations (e.g., financial capability, time 347 

available, etc.) decision makers face when implementing a strategy. The effects of input parameter 348 

variations on task performance, contextual performance, counterproductive behavior, and crew 349 

performance are shown in Figs. 5a–5d, respectively. 350 

Table 7. Performance values based on contact rate. 351 

Scenario Label Task 

Performance 

Contextual 

Performance 

Counterproductive 

behavior 

Crew 

Performance 

1 LLL 0.819 0.752 0.760 0.777 

2 LLM 0.819 0.752 0.760 0.777 

3 LLH 0.820 0.754 0.760 0.778 

4 LML 0.819 0.761 0.767 0.782 

5 LMM 0.819 0.762 0.768 0.783 

6 LMH 0.820 0.762 0.768 0.783 

7 LHL 0.819 0.770 0.777 0.789 

8 LHM 0.819 0.770 0.777 0.789 

9 LHH 0.820 0.770 0.775 0.788 

10 MLL 0.819 0.752 0.760 0.777 

11 MLM 0.820 0.752 0.760 0.777 

12 MLH 0.820 0.753 0.760 0.778 

13 MML 0.819 0.760 0.766 0.782 

14 MMM 0.820 0.762 0.767 0.783 

15 MMH 0.820 0.762 0.770 0.784 

16 MHL 0.819 0.770 0.779 0.789 

17 MHM 0.820 0.770 0.779 0.790 

18 MHH 0.820 0.770 0.779 0.790 

19 HLL 0.819 0.752 0.760 0.777 

20 HLM 0.820 0.753 0.760 0.778 

21 HLH 0.820 0.753 0.760 0.778 

22 HML 0.820 0.761 0.767 0.783 

23 HMM 0.820 0.762 0.768 0.783 

24 HMH 0.820 0.762 0.770 0.784 

25 HHL 0.820 0.771 0.779 0.790 

26 HHM 0.820 0.772 0.779 0.790 

27 HHH 0.820 0.772 0.780 0.791 
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 352 
Fig. 4. Crew performance results based on contact rate. 353 

  354 
Fig. 5a. Task performance based on contact rate. 355 
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 356 
Fig. 5b. Contextual performance based on contact rate. 357 

 358 
Fig. 5c. Counterproductive behavior based on contact rate. 359 

 360 
Fig. 5d. Crew performance based on contact rate. 361 
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The results show that a high contact rate can produce higher task performance, but the effect 362 

of a high contact rate is constant throughout the rest of the policies, except HLL. Contextual 363 

performance outputs did not show a significant variation based on contact rate, but they seemed to 364 

be more affected by the initial high-motivation states of crews. This is consistent with the 365 

performance index used to measure contextual performance that includes “helping,” 366 

“cooperating,” “motivating,” “compliance,” and “initiative” (Raoufi and Fayek 2018 a, b), and it 367 

is dependent on crews becoming and staying motivated. 368 

Variations Based on Initial Percentage of Highly Motivated Crews  369 

The results for this category show variations in performance measures (i.e., task performance, 370 

contextual performance, counterproductive behavior, and crew performance) based on the initial 371 

percentage of highly motivated crews. As shown in Fig. 6, there is a general trend of increasing 372 

crew performance as the initial percentage of high motivation level increases. There is no direct 373 

relationship between the influence of the other inputs and the crew performance output when the 374 

motivation state is kept constant.  When the initial motivation level is kept constant, variations in 375 

the values of other parameters did not have a significant influence on crew performance. This lack 376 

of influence is even more visible in the values of task performance, contextual performance, and 377 

counterproductive behavior. Another significant finding is the level of influence the parameter 378 

initial high-motivation states of crews has on crew performance. In policies 1–9, for example, for 379 

low contact rate and low zealot percentage, increasing the initial high-motivation states of crews 380 

from low to medium visibly improves the crew performance measure. This change is even more 381 

visible for higher values of contact rate and zealot percentage. The effects of input parameter 382 

variations on task performance, contextual performance, counterproductive behavior, and crew 383 

performance are shown in Figs. 7a–7d, respectively. In these figures, the scenarios are grouped 384 



24 

according to motivation state (i.e., low, medium, and high) while the values of contact rate and 385 

zealot percentage are varied. 386 

 387 
Fig. 6. Crew performance results based on initial high-motivation states of crews. 388 

 389 
Fig. 7a. Task performance based on initial percentage of highly motivated crews. 390 

 391 
Fig. 7b. Contextual performance based on initial percentage of highly motivated crews. 392 
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 393 
Fig. 7c. Counterproductive behavior based on initial percentage of highly motivated crews. 394 

 395 
Fig. 7d. Crew performance based on initial percentage of highly motivated crews. 396 

The results for task performance, contextual performance, and counterproductive behavior 397 

show that an increase in the initial motivation of crews produces an increase in the performance 398 

measures, especially for scenarios with a high motivation level, as shown in Figs. 7a, 7b, and 7c. 399 

Policy selection may therefore depend on which output measures are targeted for improvement 400 

and which policy provides the desired result using the least amount of resources. 401 

Variations Based on Zealot Percentage  402 

The results for this category show variations in performance measures (i.e., task performance, 403 

contextual performance, counterproductive behavior, and crew performance) based on zealot 404 
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percentage. As shown in Fig. 8, variations in crew performance occurred mainly because of 405 

variations in the initial high-motivation states of crews. Zealot percentage can be understood as a 406 

parameter that enables better performance when it is combined with other parameters, such as 407 

contact rate. The effects of input parameter variations on task performance, contextual 408 

performance, counterproductive behavior, and crew performance are shown in Figs. 9a–9d, 409 

respectively. In these figures, the scenarios are grouped according to zealot percentage (i.e., low, 410 

medium, and high) while the values of contact rate and initial high-motivation state are varied. 411 

 412 
Fig. 8. Crew performance results based on zealot percentage. 413 

 414 
Fig. 9a. Task performance based on zealot percentage. 415 
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 416 
Fig. 9b. Contextual performance based on zealot percentage. 417 

 418 
Fig. 9c. Counterproductive behavior based on zealot percentage. 419 

 420 
Fig. 9d. Crew performance based on zealot percentage. 421 



28 

An analysis of the effect of the initial high-motivation states of crews on contextual 422 

performance, counterproductive behavior, and overall crew performance shows there is a visible 423 

direct correlation between the initial motivation of crews and output measures, as shown in Figs. 424 

9b, 9c, and 9d. Policy selection may therefore depend on which output measures are targeted for 425 

improvement and which policy provides the desired result using the least amount of resources. 426 

Conclusion 427 

In this paper, a methodology for the development of a fuzzy agent-based multi-criteria decision-428 

making (FABM-MCDM) model is provided to address the need for decision support tools for use 429 

in construction, where problems exist in a dynamic environment with subjective uncertainties. The 430 

methodology is then elaborated using collected field data on construction crew motivation and 431 

performance. This paper demonstrates that the developed methodology is able to offer an 432 

applicable and representative approach to the overall process of decision-making in construction 433 

by integrating the capacity of FABM to address dynamic and subjective problems with MCDM’s 434 

capacity to address multiple, sometimes conflicting expert opinions. 435 

The contributions of this paper are twofold. First, it proposes a methodology to integrate 436 

FABM with MCDM in order to improve decision-making processes in construction. Second, it 437 

develops an FABM-MCDM model that helps construction practitioners adopt economically 438 

feasible strategies that improve the motivation and performance of construction crews. 439 

Furthermore, the methodology proposed in the study can be adapted to several construction 440 

problems to help decision makers prioritize and select from several strategies intended to improve 441 

different crew performance measures. 442 

In the future, sensitivity analysis of the MCDM model should be performed to analyze which 443 

alternatives have the most influence on the decision-making process. When the AHP is used in 444 
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decision-making, changes in an individual piece of data or a minor change in the weights of criteria 445 

should be studied, as these may have an influence on the ranking of inputs, and thereby on the 446 

strategies that are adopted at the company level. Furthermore, the applicability of the developed 447 

decision support model should be validated with data from other construction contexts (e.g., 448 

building construction) to ensure the model can be applied to the development of strategies for 449 

performance improvement in other sectors of the construction industry. 450 
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