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Finite-Difference Relaxation for Parallel
Computation of Ionized Field of HVDC Lines

Peng Liu , Student Member, IEEE, and Venkata Dinavahi, Senior Member, IEEE

Abstract—Ionized field calculations for high-voltage direct
current (HVDC) transmission line is a computationally demanding
problem, which can benefit from the application of massively
parallel high-performance compute architectures. The finite
element method (FEM) commonly employed to solve this problem
is both memory and execution time intensive. In this paper, a
finite-difference relaxation (FDR) method is proposed to solve a
unipolar and a bipolar ionized field problem in an HVDC line.
The novel FDR method has several advantages over FEM. First,
the scheme is suitable for massively parallel computation and
runs much faster: Compared with the commercial FEM software
Comsol Multiphysics, the speed-up is more than 14 times in
CPU parallelization and 35 times in graphics processor parallel
implementation, while providing high accuracy. Moreover, the set
of equations in FDR need not be assembled; instead, it is solved by
a relaxation scheme and requires much less memory than FEM.
Additionally, differentiated grid size with interpolation techniques
is proposed to improve the flexibility of FDR for problem domain
containing irregular geometries or disproportional sizes.

Index Terms—Finite-difference method, graphics processors,
HVDC lines, ionized field, Jacobi method, multi-core, many-core,
parallel algorithms, relaxation.

I. INTRODUCTION

H IGH-VOLTAGE direct current has such advantages as
lower cost and lower power loss over alternating current

for bulk power transmission over long distance that new projects
are spouting up world-wide. Environmental problems caused by
the occurrence of corona on the high voltage conductor have
received much attention with the widespread use of HVDC
transmission lines in the last few decades.

Since these transmission lines are generally operated above
their corona onset voltage, space charges are generated around
the energized conductor. These space charges migrate in a man-
ner determined by the electric field; at the same time, the electric
field is modified by these space charges. The mutual interaction
of electric field and space charges eventually leads to an sus-
tained steady-state, which is governed by Poisson’s equation
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and current continuity equation for unipolar lines [1]. The phys-
ical details of the corona and the mutual interaction process are
often deemphasized, therefore investigators usually focused on
obtaining the solution of the mathematical model, which can be
necessarily described by coupled nonlinear partial differential
equations (PDE) for 2-D problems.

The analytical solution of an ionized field was first obtained
by Townsend in 1914 although it was only applicable for cases
with regular geometry such as concentric spheres or coaxial
cylinders [2]. For such 2-D problems as conductor-to-ground
arrangements, the solutions of the coupled nonlinear PDEs re-
lied on some simplifying assumptions, among which Deutsch’s
assumption was exclusively employed by investigators before
the 1970s [1]. Deutsch’s assumption reduced the 2-D problem
to 1-D computation along flux lines by assuming that the space
charges affect only the magnitude and not the direction of the
electric field [3]. This assumption is still utilized in methods
such as the flux tracing method owing to its simplicity [4]–[6].
Janischewskyj et al. for the first time solved the PDEs with-
out resorting to Deutsch’s assumption using the finite element
method in 1979 [7]. Then Takuma et al. in 1981 proposed the
upstream FEM to overcome numerical instability caused by the
accumulated error in each iteration [8]. To handle the nonlinear-
ity of the problem, both [7] and [8] solved the coupled equations
iteratively based on a predictor-corrector algorithm. Thereafter
FEM was dominantly used in ionized field calculation. More
complicated configurations which considered the effect of wind
velocity, bipolar conductors and bundled conductors were inves-
tigated using FEM in [9]–[15]. Improved Galerkin method based
FEM, combination of FEM with the method of characteristics
or the finite volume method, and other numerical techniques
and iterative strategies were proposed to make the calculation
more stable and more efficient in [16]–[21]. Recently 3-D FEM
was also explored to solve the ionized field in the presence of
human bodies and buildings in [22]–[25].

Nevertheless, it’s generally highly acknowledged that FEM
is CPU and memory intensive, particularly for those cases
where a large number of discretized nodes and repeat calcula-
tions are necessary. Nowadays high-performance parallel com-
puting is being explored to speed up iterative linear solvers,
among which the conjugate gradient (CG) solver is most widely
employed. Based on [26], the Jacobi method has advantages
over CG method when applied in MapReduce framework,
which is based on a single instruction stream multiple data
stream (SIMD) paradigm. However, the prerequisite of Jacobi
method that the system of linear equations should be diagonally
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dominant restricted its use in a FEM solver. In addition, graphics
processors (GPUs) as another commonly used SIMD paradigm
are limited by the device memory for large-scale FEM problems
[27]. GPUs have been exploited for the simulation of large-scale
power systems in several areas including transient stability sim-
ulation, electromagnetic transient simulation, and dynamic state
estimation [28]–[31].

In this paper, a novel finite difference relaxation (FDR)
method is proposed to solve a unipolar and a bipolar conductor-
to-ground problem without Deutsch’s assumption. This method
requires much less memory than FEM because the finite-
difference equations need not be assembled. And FDR can be
massively parallelized in the GPU. The parallel implementa-
tions are carried out on multi-core CPU and many-core GPU,
and the results are compared with those obtained from commer-
cial FEM software Comsol Multiphysics with regard to accuracy
and computational efficiency. Additionally, for the bipolar case,
the current continuity equations are regarded as PDEs on elec-
tric potential rather than on ion density, and the solution process
using the FDR scheme is unconditionally stable.

This paper is organized as follows. Section II presents the
assumptions, the governing equations, the boundary conditions,
and the iterative scheme. Section III provides the implemen-
tation details of the FDR method with differentiated grid size.
Section IV gives the unipolar and bipolar case studies and the
result comparison of the FDR method and the FEM. Finally,
Section V presents the conclusion.

II. PROBLEM DESCRIPTION

A. Assumptions for Modeling

Since corona and the ionized field are complicated physical
phenomena, appropriate assumptions are necessary to build a
solvable mathematical model. The assumptions employed in
this paper are the following:

1) The ionized field is time-independent. All parameters in-
volved do not vary along the direction of the transmission
line, i.e. the problem is two-dimensional.

2) The thickness of the ionization layer around the conductor
is so small as to be neglected.

3) Ionic mobility is constant, and ion diffusion is neglected.
4) The electric potential of those nodes on the artificial

boundary is determined by the space charge free field,
which is defined by Laplacian equations.

The 2-D ionized field problem is a boundary value problem
(BVP), and the problem domain can be illustrated as in Fig. 1.
The rectangular domain may contain bipolar bundled conductors
or a single centered conductor for different cases.

B. Governing Equations

The governing equations of the bipolar ionized field are

∇2 · ϕ =
ρ− − ρ+

ε0
, (1)

∇ · (k+ρ+∇ϕ) =
Rρ+ρ−

e
, (2)

Fig. 1. Computational domain for bipolar conductor-to-ground arrangement.

∇ · (k−ρ−∇ϕ) =
Rρ+ρ−

e
, (3)

where ρ is the space charge density, ε0 the permittivity of free
space, ϕ the electric potential, k the ionic mobility, R is the
recombination rate, e the charge of the electron, and the super-
script + for positive and - for negative.

The three unknowns to be solved in the bipolar ionized field
problem are electric potential ϕ and the space charge densities
ρ+ and ρ−.

In the case of unipolar ionized fields, all the space charges
have the same polarity as the conductor. The governing equa-
tions of the unipolar ionized field with only positive conductor
can be obtained by forcing the negative space charge density to
0. The unknowns to be solved are electric potential ϕ and the
positive space charge density ρ+ . Equations (1)–(3) are reduced
to the following:

∇2 · ϕ = −ρ+

ε0
, (4)

∇ · (ρ+∇ϕ) = 0. (5)

C. Boundary Conditions

The product of two unknowns in the current continuity equa-
tion makes the problem nonlinear. The solution of the BVP can
be solved if the boundary conditions (BCs) are well-posed, i.e.,
neither undetermined nor overdetermined. Substituting (4) to
(5) yields the following equation:

∇ · ((−ε0∇2 · ϕ)∇ϕ) = 0. (6)

(6) is a nonlinear third-order PDE on ϕ, and three boundary
conditions on ϕ are required:

1) The electric potential on the conductor is the applied volt-
age V0 (Dirichlet type):

ϕC = V0 . (7)

2) The ground is taken as the reference (Dirichlet type):

ϕG = 0. (8)
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Fig. 2. Flow chart of the predictor-corrector algorithm.

3) The third boundary condition is usually selected from the
following two conditions. Only one can be applied or the
problem will be overdetermined.

a) The electric field strength at the conductor surface
is constant at the corona onset value (Kaptzov’s
assumption, Neumann type):

∂ϕ

∂n
= E0 . (9)

b) The charge density at the conductor surface is
known as ρ0 from experimental results:

ρC = ρ0 . (10)

In addition, truncation of the domain is necessary. The above
boundary conditions together with the previous assumption (4)
can define the problem well.

D. Predictor-Corrector Strategy

For the unipolar case, the problem could not be resolved di-
rectly because the governing PDEs containing the two unknowns
are coupled. The predictor-corrector algorithm proposed by [7]
and [8] is based on the fact that both (4) and (5) can be solved
once one unknown is assigned an initially predicted distribution.
Then the predicted distribution is corrected progressively by it-
eratively solving the two PDEs. One most common and simple
iterative procedures in [7] can be described as in Fig. 2. The
iterative strategy used may be a bit different yet the same solu-
tion can be achieved. For example, in [8], ϕ1(x, y) solved from
(4) was sequentially utilized by (5) to generate a new ρ(x, y).
In this paper, the flow chart shown in Fig. 2 is employed for the
unipolar case.

For the bipolar case, the iterative strategy to handle ϕ, ρ+ and
ρ− is very similar. The modified iterative strategy for the three
unknowns is presented in Section V.

Fig. 3. Domain discretization for 2-D boundary value problem.

III. FINITE-DIFFERENCE RELAXATION METHODOLOGY

A. Domain Discretization and FDR

The weighted residual method in FEM is widely utilized
instead of tediously constructing a functional based on the vari-
ational principle. The product of residual and weighted function
is integrated over the domain of each element, and a set of equa-
tions associated with nodes of each element can be obtained
by forcing the integration to be zero. Then these equations are
assembled and solved based on certain boundary conditions.

On the contrary, the finite-difference method is convenient
when forming equations by replacing derivative with difference
quotient in classic formulation; at the same time, a regular grid
is required. Fig. 3 shows a simple 2-D discretized domain. The
order of the PDE determines the number of nodes required for
difference equation derivation. For a second order PDE, the five-
nodes mode is sufficient. As shown in Fig. 3, every inner node
is surrounded by four nodes (either inner or boundary nodes).
A very important observation in [7] is that both the Poisson’s
equation and the current continuity equation can be rewritten as
the following second-order PDE on ϕ:

∇ · (α∇ϕ) = β. (11)

Equations (1)–(5) can be obtained by setting different α and
β. For example, (1) in 2-D domain can be rewritten as the
following form when α = 1 and β = (ρ− − ρ+)/ε0 :

∂2ϕ

∂x2 +
∂2ϕ

∂y2 =
ρ− − ρ+

ε0
. (12)

The second derivative in (12) can be replaced with a difference
equation at node (i, j) using central difference scheme in the
five-nodes mode as:

∂2ϕ

∂x2 =
ϕ(i − 1, j) + ϕ(i + 1, j) − 2ϕ(i, j)

Δ2x
, (13)

∂2ϕ

∂y2 =
ϕ(i, j − 1) + ϕ(i, j + 1) − 2ϕ(i, j)

Δ2y
. (14)
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Fig. 4. Differentiated grid size and interpolation in FDR.

Thus Poisson’s (1) at node (i, j) can be written as:

ϕ(i, j) =
Δ2xΔ2y

2(Δ2x + Δ2y)
·
(

ϕ(i − 1, j) + ϕ(i + 1, j)
Δ2x

+
ϕ(i, j − 1) + ϕ(i, j + 1)

Δ2y
+

ρ+(i, j) − ρ−(i, j)
ε0

)
. (15)

Similarly, setting α = ρ+ and β = 0, the current continuity
equation (5) can be rewritten as:

ϕ(i, j) =
Δ2xΔ2y

2(Δ2x + Δ2y)
·
(

ϕ(i − 1, j) + ϕ(i + 1, j)
Δ2x

+
ϕ(i, j − 1) + ϕ(i, j + 1)

Δ2y
+

ρ(i, j)
ε0

+
(ρ+(i + 1, j) − ρ+(i − 1, j))(ϕ(i + 1, j) − ϕ(i − 1, j))

4Δ2x

+
(ρ+(i, j + 1) − ρ+(i, j − 1))(ϕ(i, j + 1) − ϕ(i, j − 1))

4Δ2y

)
.

(16)

For those nodes on the boundary, the BCs can be either
Dirichlet type or Neumann type. Nodes located exactly on reg-
ular boundary (such as a line) are straightforward while nodes
near the circular conductor need special attention. For example,
in this paper, those nodes satisfying the following conditions
define the approximated conductor surface (Fig. 4(b)):

r < d < r +
√

Δ2x + Δ2y (17)

where d is the distance between a node and the conductor center,
r the conductor radius, and Δx, Δy are the spatial increment.
The approximation is more accurate when the grid layer is finer.
The values of the nodes on Dirichlet boundary are fixed and only
used as known value when updating the adjacent inner nodes.
Thus the finite difference equation applies only for inner nodes
and no equations are necessary for boundary nodes. For nodes on

Neumann boundary, the equation can be written with the help of
imaginary nodes, which are associated with inner nodes and ∂ϕ

∂n .
By writing the difference equation for each node, a set of

linear equations can also be obtained as in FEM. In FEM as-
sembling all the element equations often produces a large matrix
which calls for more memory, although the sparsity of the ma-
trix may enable saving of memory by exploring special data
storage methods. Undoubtedly, the tedious tasks undermine the
prospect for massively parallel computation. The solution phase
of FDR is quite different.

Indeed calculating one node based on the adjacent 4 nodes by
(15) can be regarded as a form of communication or information
exchange. At first glance, a single communication between one
node and its neighbors is probably meaningless because it never
knows whether the neighbors are of the desired solutions or
not. However, if all inner nodes update themselves repeatedly,
these communications can be very beneficial to find the final
solution. Intuitively, the prescribed value such as information
on the boundary will gradually flow into the entire domain by
iteratively updating each node. Convergence can be expected
when all values of inner nodes satisfy (15) if the problem is well-
posed. Each node is concerned with its own computation based
on the finite-difference equations and eventually a converged
solution satisfying all nodes can be achieved. Thus, the process
is called finite-difference relaxation. The following section will
reveal that the convergence of the FDR scheme is a mathematical
certainty.

B. Jacobi Method and Convergence Condition

There are two classes of algorithms for solving a linear sys-
tem of equations. Direct methods like Gauss elimination, or
equivalently LU factorization followed by back-substitution can
provide the exact solution after a finite sequence of operations.
Iterative methods such as the conjugate gradient method and the
Jacobi method are commonly used as they provide solutions for
desired error tolerances for a large-scale linear system. Indeed,
for Poisson’s equation, the set of finite-difference equations can
be written as the general form:

Ax = b, (18)

where A is a known sparse matrix associated with the coeffi-
cients of each unknown nodes and its neighbors indicated in
(15), x the unknown vector containing ϕ(i, j) of each unknown
node (boundary node excluded) and b the known vector related
to (ρ−(i, j) − ρ+(i, j))/ε0 and prescribed boundary values.

Note that most unknown nodes are surrounded by four other
unknown nodes, and the nodes right adjacent to the boundary
nodes have only two or three unknown neighbors.

Solution of the system can be obtained by the iterative
expression:

Pxk+1 = (P − A)xk + b, (19)

where P is the preconditioner and xk is the kth approximation
of x.

For the Jacobi method, the precoditioner P is set the diagonal
matrix of A. Indeed, A can be decomposed into a diagonal
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matrix D, and the remainder R. Thus the iteration formula for
Jacobi method can be written as:

xk+1 = −D−1Rxk + D−1b. (20)

The standard convergence condition is when the spectral ra-
dius of the iteration matrix is less than 1 [32], namely

ρ(D−1R) < 1. (21)

It is acknowledged that (21) is sufficiently satisfied if the
matrix is diagonally dominant, i.e., the absolute value of the
diagonal term is greater than the sum of absolute values of other
terms:

|aii | >
∑
j �=i

|aij |. (22)

It can be observed from (15) that the coefficient of each to-be-
updated inner node is equal to the summation of coefficients of
its four unknown neighbors, and the coefficient of those to-be-
updated nodes right adjacent to the boundary nodes is greater
than the summation of coefficients of its two or three unknown
neighbors. Thus, for most rows in coefficient matrix A, the
following equation is satisfied:

|aii | =
∑
j �=i

|aij |. (23)

If (23) is satisfied for all rows of A, the spectral radius is
equal to 1. However, for those nodes next to the known boundary
nodes, (22) is well satisfied for the corresponding row of A and
determine that the spectral radius is less than 1.

C. Differentiated Grid Size

Few attempts using finite-difference method have been re-
ported in the literature due to the inflexibility when handling
irregular geometries and disproportional sizes. For example, in
the ionized field problem handled by FEM, the mesh size near
the conductor is fine enough to ensure accuracy while a rela-
tively coarse mesh is applied for the rest of the vast domain
to save computational resources. A square grid is the basis of
FDR, and it is one drawback compared with FEM. In order to
depict the contour of the thin conductor, high node density (or
fine grid) is needed around the conductor. And if the whole do-
main is filled with these dense nodes, the merits of FDR will
be impaired seriously. Whereas differentiated grid sizes can be
explored and the details are described below.

Fig. 4(a) shows a simplified scheme for applying two lay-
ers with differentiated grid sizes. Fig. 4(b) shows irregular ge-
ometries can be described accurately if the grid is fine enough.
Undoubtedly different mesh sizes will cause the communication
problem on the boundary separating the two layers. As shown in
Fig. 4(c), updating the outermost nodes of the fine grid will re-
quire the value of some non-existing nodes next to them, which
are the dashed nodes located out of the fine grid layer. However,
even though these dashed nodes are imaginary, their values can
be predicted as they are located in a cell (a square consisting of
four adjacent nodes) in the coarse grid. Therefore, an interpola-
tion technique similar with that of FEM is employed to predict

the desired value based on the nodes in the coarse grid layer.
Fig. 4(d) shows a local coordinate system. Assume the electric
potential at nodes A, B, C and D are ϕA , ϕB , ϕC and ϕD . For
any coordinate (ξ, η), the contribution (shape function) of each
node NA , NB , NC and ND can be written as:⎧⎪⎪⎨

⎪⎪⎩

NA = (ξ − 1)(η − 1),
NB = ξ(1 − η),
NC = η(1 − ξ),
ND = ξη.

(24)

Thus the interpolated value at any coordinate (ξ, η) can be
predicted as:

ϕ(ξ, η) = NAϕA + NB ϕB + NC ϕC + ND ϕD . (25)

By interpolation, the fine grid layer can obtain information
from the coarse grid layer. It should be noted that after all nodes
are updated, a similar process called retrieval is necessary so
that the coarse grid layer can obtain information from the fine
grid layer. The detailed process and the according node type are
described in the flow chart in Fig. 5. Thus, for each iteration, the
following three phases are always necessary for differentiated
grid sizes:

1) Interpolation: information flows from the coarse grid layer
to the fine grid layer.

2) Updating: each node is updated based on its neighbors.
3) Retrieval: information flows from the fine grid layer back

to the coarse grid layer.

IV. MASSIVELY PARALLEL IMPLEMENTATION

A. Data Dependency and Parallelism

As discussed above, once xk is available, xk+1 can be ob-
tained. Though nodes can be calculated independently, syn-
chronization is necessary between iterations to avoid updating
one node with its yet-to-be-updated neighbors multiple times.
Additionally, the interpolation and retrieval phase can also be
parallelized in each iteration, yet synchronization is also needed
between these phases.

In the FDR process, two matrices are needed for each variable
to store the node values of both coarse grid layer and fine grid
layer. To elaborate the process flowchart clearly, different node
types are classified based on the location (shown in Fig. 5(a)).
For example, type A, a, B and b are the solid and dashed inner
nodes in the two layers. Type C and c are boundary nodes while
type D and d represent the nodes to be updated in the retrieval
phase. The main flowchart is shown in Fig. 5(c).

B. Parallelization on CPU and GPU

The FDR program is parallelized on both multi-core CPU and
many-core GPU.

For CPU parallelization, multiple threads are launched by
the master thread and handle different parts of the tasks. Open
multi-processing (OpenMP) and POSIX Threads (Pthread) are
commonly used application programming interfaces (API) for
shared memory multiprocessor programming. OpenMP is rel-
atively higher level, and thus easier to use. The high-level

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 18,2022 at 20:14:41 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



124 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 33, NO. 1, FEBRUARY 2018

Fig. 5. Massively parallel implementation of FDR scheme on CPU and GPU.

feature results in inflexibility because it is difficult to control
each thread. Moreover, for the FDR iterative scheme, repeat-
edly launching and joining threads between iterations greatly
increases overhead for OpenMP. On the contrary, Pthread is a
lower level API that takes extremely fine-grained control over
threads. Each thread is launched and will not be joined until
the iteration process ends. Therefore, Pthread is utilized to im-
plement the CPU parallelization in this work. Considering the
number of cores available in CPU, the row-wise parallel imple-
mentation is employed, and the flowchart of the thread function
is described in Fig. 5(b).

Indeed, massive parallelization is perfectly suitable for the
updating phase because node calculations do not depend on each
other. CUDA is chosen for massive-thread parallel programming
on the GPU. A CUDA program separates the hardware resources
into CPU side (host) and GPU side (device). There is no shared
memory for two sides and thus copy operations are necessary
for data exchange.

In the CPU parallelization, each variable needs a copy op-
eration to store the updated value. A more efficient strategy is
explored for GPU implementation to reduce the required mem-
ory and accelerate the convergence. Indeed, it can be observed
that for all inner nodes in Fig. 4, all solid nodes are surrounded
by four dashed nodes and vice versa. Thus the calculation phase
can be separated into two steps: calculating all solid nodes in
parallel, and sequentially updating all the dashed nodes in par-
allel. In other words, the updated values of the solid nodes
are utilized by updating the dashed nodes within one itera-
tion. It is applicable for both the coarse grid layer and the fine
grid layer. This scheme is similar to the Gauss-Seidel method,
and the convergence is faster than that of the Jacobi method.
The flowchart of the device function is shown in Fig. 5(d).

The detailed parameters of the CPU and GPU are described in
Appendix A.

V. CASE STUDY AND RESULTS COMPARISON

A. Unipolar Case Study

1) Result Comparison of FDR vs FEM: Both Poisson’s (4)
and current continuity (5) can be solved with FDR if the dis-
tribution of space charge is provided. On the other hand, the
problem can also be solved with the equation-based modeling
in Comsol Multiphysics. Poisson’s equation is chosen in the
case study to comprehensively compare the FDR method and
the FEM. The parameters are shown in the Appendix B.

In order to obtain reliable results from FEM, mesh depen-
dency test is done on a sample point. It turned out that the FEM
results can be regarded as stable and reliable when the number
of nodes is more than 1500 in the case. Thus the FEM results are
assumed correct and can serve as a benchmark for evaluating
the accuracy of FDR.

Since the problem domain is 2-D, the sample line shown in
Fig. 1 is selected to plot the results clearly. The electric potential
along the selected path solved from both FEM and FDR is shown
in Fig. 6. When the number of nodes is 10,000, the maximum
relative difference between the FEM and the FDR method is
around 3%.

It is clear that the results of FDR converge to the results of
FEM when the maximum relative error ε between iterations
decreases. As an iterative method, the solution phase of FDR
can be described by the ε-iteration curve shown in Fig. 7. The
convergence speed is determined by the spectral radius men-
tioned above; convergence is faster when the spectral radius
is small. When the problem size increases, the percentage of
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Fig. 6. Electric potential comparison of FEM and FDR for unipolar case.

Fig. 7. Relative error vs iteration number for the FDR method.

boundary nodes decreases, and the spectral radius comes closer
to 1. However, to the author’s knowledge, it is difficult to quan-
tify the relationship of node number, spectral radius, and ε. It
was found from experience that the iteration can be deemed
convergent when ε is less than 10−6 if the number of nodes is
less than 50,000.

2) Accuracy and Efficiency Comparison of FDR vs FEM:
A comprehensive comparison of FDR and FEM with regard
to computation time and accuracy is presented in Table I. For
the CPU parallel implementation utilizing 16 processor cores,
the maximum speed-up is greater than 14 under different node
numbers. For GPU parallel implementation, the speedup is 30
times. As shown in the last column of Table I, the results of
FDR come closer to the correct solution as the number of nodes
increases.

Note that the built-in direct solver of Comsol Multiphysics
is applied, which turned out to be faster than its iterative solver
for the cases presented in the table. For example, the iterative
solver consumed 7.1 s while the direct solver consumed 5.56 s
when the node number is 40,000. Thus the speedup is with

respect to the execution time of the commercial software Comsol
Multiphysics, which can be regarded as highly optimized and
sufficiently efficient.

Similarly, the current continuity equation was simulated with
the proposed FDR scheme. Applying the iterative strategy in
Fig. 2, the final solution was obtained. The initial distribution
of ρ(x, y) and the solved ϕ1(x, y) and ϕ2(x, y) are presented
in the first row of Fig. 8. When the iteration converges, the final
solution of ρ(x, y), ϕ1(x, y) and ϕ2(x, y) is shown in the second
row of Fig. 8.

B. Practical Bipolar Case Study

1) Application of FDR: In practical HVDC applications,
bipolar bundled conductors are usually utilized for power trans-
mission. The case is more complicated, whereas the computa-
tion can still benefit from the merits of the FDR scheme. The
following section will elaborate how the FDR scheme is applied
for the full-scale bipolar bundled conductors. Fig. 9 shows the
structure of a typical ±500 kV HVDC lattice tower of the East-
ern Alberta HVDC line built by ATCO Electric Ltd., and the
geometric parameters are available online [33].

For the bipolar case, space is filled with ions of both polarities.
The ions of both polarities migrate to the ground, at the same
time, they migrate to the conductors with the opposite polarity.

In each iteration of the solution phase, the ϕ in (1) is solved
with the guessed or updated ρ+ and ρ−; and then the ρ+ in (2)
and the ρ− in (3) are solved respectively based on the obtained
ϕ in (1). However, the solution process of the current continuity
equations is likely to become unstable because of the accumu-
lated error of first-order derivative. Thus to counter instability,
it calls for numerical techniques like the upwind scheme in [8].
The current continuity equation in (2) and (3) can be seen as
a first order PDE on ρ (either ρ+ or ρ−), and it can also be
regarded as a second order PDE on ϕ. Mathematically, the sta-
bility of a first order PDE on u is conditional and depends on the
coefficients of u, ux and uy . However, the second order PDE
on ϕ in (11) can be solved with the FDR scheme efficiently if
the distributions of α and β are given (either guessed value or
constant) and the solution of the FDR scheme is unconditionally
stable. That is why the numerical stability issue is not a con-
cern in [7] as well as in the unipolar case studied above. Since
solving ρ+ based on known ϕ is unstable while solving ϕ based
on known ρ+ is unconditionally stable, the iterative strategy in
Fig. 2 is improved to solve the bipolar case to avoid numerical
instability.

The improved iteration process can be described with the
following steps:

1) Initial estimate of space charge ρ+ and ρ− are provided
based on boundary conditions.

2) Solve ϕ in (1), (2) and (3) respectively with the FDR
scheme based on the known ρ+ and ρ−. The results are
stored as ϕ, ϕ+ and ϕ−.

3) Update ρ+ based on ϕ − ϕ+ and ρ− based on ϕ − ϕ−.
4) Go to Step 2 with the updated ρ+ and ρ−. The process

is repeated until the maximum relative error between ϕ+

and ϕ− is smaller than the prescribed value ε.
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TABLE I
EFFICIENCY AND ACCURACY COMPARISON OF PROPOSED FDR METHOD WITH FEM

FDR solution time (s) and speed-up

Multi-core CPU Many-core GPU

Node number FEM solution time (s) Comsol Multiphysics Solution time - thread count Speed-up Solution time Speed-up Relative error

1 4 8 16

3600 0.9 0.182 0.065 0.050 0.050 18 0.028 32.1 4.63%
10,000 1.78 0.700 0.210 0.140 0.124 14.4 0.05 35.6 3.15%
40,000 5.56 2.960 0.816 0.512 0.38 14.6 0.18 30.8 1.68%

Fig. 8. Final converged solution of the unipolar ionized field attained from the proposed FDR method.

It is worth mentioning that solving (11) with the FDR scheme
is basically no different for either the unipolar case or the bipolar
case. For the case with multiple conductors, multiple Dirichlet
boundary conditions should be applied. Similarly, differentiated
grid sizes are employed in consideration of the thin conductor
in a vast space domain. As shown in Fig. 10, the fine grid layer
is applied around each conductor and the coarse grid layer is
applied for the rest domain. The nodes nearest to the conductor
in the fine grid layer are defined as Dirichlet boundary nodes
and the values are fixed in the FDR scheme. The node updating
(communication) pattern stays the same, and both the interpo-
lation and retrieval phase should be applied to every boundary
that separates the coarse grid layer and the fine grid layer.

2) Results and Discussion: According to the structure
shown in Fig. 9, the minimum height of the transmission line
is 12 m at the mid-span between towers. Thus the computa-
tional domain is obtained by spatial truncation. The width of
the truncated problem domain is 80 m and the height 25 m. The

geometric parameters are shown in Fig. 9 and other necessary
parameters are presented in Appendix C.

Following the iterative steps listed above, the bipolar problem
with bundled conductors can be resolved with both the FEM and
the FDR scheme. It turned out the FDR scheme can be perfectly
applied in problems with multiple Dirichlet boundary condi-
tions. The result comparison of the calculated electric potential
along the sample line using FDR and FEM is shown in Fig. 11.
The electric field strength near the ground is shown in Fig. 12
and the contour agrees well with that in [22].

The calculated distribution of the electric potential is shown
in the Fig. 13.

The distribution of the positive and negative ion density dis-
tribution are presented in the Fig. 14. The results agree with the
physical facts that ions of both polarities migrate to the ground
and to the conductor with the opposite polarity.

The speed-up of the bipolar case is similar to the unipolar
case and can be inferred from Table I. For both cases, repeatedly
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Fig. 9. Structure of ±500 kV DC lattice tower of the Eastern Alberta HVDC
Line.

Fig. 10. Differentiated grid layer for multiple Dirichlet boundaries of the
4-conductor bundle.

solving ϕ in (11) based on α and β is the critical part of the work
and consumes most of the computational time. The α and β may
vary for different cases, however, the performance improvement
of the FDR compared with FEM regarding accuracy and speed-
up is independent of α and β provided that the problem is
well-posed.

Note that in the bipolar case study, the ion density on the con-
ductor surface is set as the boundary condition. This boundary
condition is usually replaced by the Kaptzov’s assumption. In

Fig. 11. Result comparison of electric potential along the sample line.

Fig. 12. Result comparison of electric field distribution on the ground.

Fig. 13. Electric potential distribution for the bipolar case.
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Fig. 14. Ion density distribution for the bipolar case. (a) Positive ion density
distribution. (b) Negative ion density distribution.

that case, the ion density on the conductor should be updated
in each iteration based on Ek − E0 , where Ek is the calcu-
lated electric field strength on the conductor surface in the kth

iteration and E0 the corona onset value.

VI. CONCLUSION

In this paper, a finite-difference relaxation (FDR) method
is proposed for the computation of both unipolar and bipolar
ionized fields in HVDC transmission lines. Instead of solving the
current continuity equation as a first order PDE on ion density,
this paper solves it as a second order PDE on electric potential.
The numerical instability problem is perfectly solved because
the FDR scheme applied for (11) is unconditionally stable. The
proposed FDR method has the following advantages over the
finite element method.

1) The scheme is suitable for massively parallel computation:
compared with the commercial FEM software Comsol
Multiphysics, the speedup is more than 14 times in CPU
parallelization and 35 times in GPU parallel implemen-
tation. The maximum relative difference compared with
the FEM is around 3%, and acceptable for engineering
computation.

2) The set of equations in the FDR scheme does not have to be
assembled. Instead, it is solved by a relaxation scheme and
requires much less memory than FEM. For n nodes, the
necessary memory required is Θ(n) for the FDR method
and Θ(n2) for the FEM.

3) Differentiated grid size and interpolation are employed to
improve the accuracy and scalability of FDR applied to a
vast domain containing a disproportionately thin conduc-
tor. Thus FDR can be more flexible when used to handle
any domain containing irregular geometries or dispropor-
tionate geometry sizes. It is reasonable to conclude that
all well-posed second-order PDE having the form of (11)
can benefit from the proposed FDR scheme in lieu of
FEM with regard to computational efficiency, accuracy,
and scalability.

APPENDIX

A. Computation Resources

The GPU version is GeForce GTX Titan Black, with 2880
cores, 889 MHz clock frequency, and 4 GB memory. The CPU
version is Intel E5-2620, with 16 cores, 2.1 GHz clock fre-
quency, and 32 GB memory.

B. Unipolar Case Study

The domain width is 2 m, the domain height 2 m, the
conductor radius 0.005m, the applied voltage on conductor
20 kV, and the space charge density on conductor 2e-6 C/m2 .
The initial distribution of space charge density is guessed as
10−8/

√
(x − 1)2 + (y − 1)2 C/m2 . The sample line is defined

by two points: (0, 0) and (1, 1).

C. Practical Bipolar Case Study

The applied voltage on conductor is ±500 kV, the permit-
tivity of free space 8.854e-12 F/m, the positive ionic mobility
1.4e-4 m2 /V·s, the negative ionic mobility 1.8e-4 m2 /V·s, the
recombination rate 2e-12 m2 /s2 , the charge of electron 1.602e-
19C, and the space charge density on each conductor 2e-6 C/m2 .
The sample line is defined by two points: (0, 12.5) and (80, 12.5).
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