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Abstract

Fast and reliable depth estimation is currently an important area of discussion in
the field of computer vision. Relevant applications of depth information include
hand-eye coordination, navigation, and obstacle avoidance. There are two main
approaches to the problem —- disparity analysis and vergence control. Both of
these methods have been derived using anthropomorphic evidence, which also
shows that the human visual system can be characterized as a variable-resolution
system: foveal information is processed at very high spatial resolution whercas
peripheral information is processed at low spatial resolution. Although the quan-
titative aspects of this variable-resolution processing are known quite precisely,
its applications to different areas of vision have not been fully explored.

This thesis describes a method for performing fast and accurate vergence con-
trol using a variable-resolution framework. We show that this approach generates
a matching function (with vergence angle as the free variable) which increases to
a peak corresponding to the correct match and then decreases. The shape of the
matching function helps in obtaining, quickly and reliably, correct vergence with
respect to a given object. It is additionally shown that variable resolution images
can be obtained by lenses similar to fish-eye. To validate the theoretical anal-
ysis, experimental results are presented, introducing a comparison between the
matching functions generated by our approach with those generated by a similar

vergence control approach that uses a uniform-resolution framework.
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Chapter 1

Introduction

Humans perceive the world that surrounds them in a wide variety of ways. Our
brain acts as a multisensor interpreter, merging together information of different
types and from different sources, and giving some meaning to it. Perception is,
and always has been, essential for human beings to survive and interact with the
environment. From control and manipulation of objects to simple navigation, we
require a great deal of coordination between our senses and our actions. Of the
five different ways we have to sense the objects and events around us (i.e., seeing,
hearing, tasting, smelling, and touching), vision ranks as the most important one.
This import.::mce lies not only in the fact that vision represents the richest source
of perceptual information, but also from the evidence of its being a dominant
sense [34]. In other words, if other senses give us conflicting information about a
certain object, we usually follow the information that was retrieved through our
sense of vision.

Although vision has been extensively studied in fields like neurophysiology and
psychophysiology, its research attention in the computing science field has been
limited to the past 30 years. The importance of vision research in computing
science comes from mainly two application areas: improvement of image data for
human interpretation and usage, and automatic scene analysis for autonomous

machine perception. In the first area of application, image processing techniques



such as image enhancement, restoration and filtering [15] have been successfully
used. In the second application area, high level vision tasks such as depth esti-
mation, motion sensing and tracking, pattern recognition and identification, and
obstacle avoidance need to be performed. Unfortunately, and in spite of consid-
erable research in computer vision a general solution for the visual perception
problem is far from being achieved. But even though a general solution is not yet
feasible, computer vision has been successful in many domains [9). This success
is often due to limiting the scope of the problem so that it is reduced in a way
that it becomes feasible to solve. “The chances of success are greatly increased by
limiting the domain of application, simplifying the task to be performed, increas-
ing the amount of image data used, and providing adequate computing power”
A. Rosenfeld [9].

Among the problems to solve in the area of computer vision, recovering 3-1
structure from a scene is one of the most important and challenging. Although
biological evidence shows that humans and other advanced animals use their visual
systems to perform this task in an automatic way, when the problem is approached
from the computer vision point of view, it is far from simple. When a camera
records a scene, the 3-D structure gets mapped into a 2-D image. This results in
a loss of information which makes it almost impossible to reconstruct a 3-D model
of the scene from a single image. Consequently, methods that have approached
the problem from a general point of view, that is, without very detailed knowledge
about the objects in the scene, use multiple cameras (stereo) to simultaneously
observe the scene. They obtain in this way the means for recovering at least some
of the 3-D information lost. A fast and accurate depth recovering system could
be used in applications such as hand-eye coordinavion, navigation, and obstacle
avoidance, and in other tasks which are hazardous or difficult for humans to

perform.



1.1 Depth Perception

Depth perception, is usually referred to as the task of determining how far an
object is from an observer. We use this kind of perception continuously through-
out the day — for reaching for objects or for avoiding them, even for appreciating
them better. Although reiiable depth estimation arises from the interpretation of
several different sources of information [34], one important source of evidence is
the hinocular visual information (stereopsis). Because our two eyes are located in
the front of our head, we are provided with two views of the world from slightly
different reference points, and our binocular field of view is almost completely
duplicated. The slight differences (or disparities) between the views seen by our
left and right eyes allows us to perceive depth. The magnitude of the disparity,
denends on the distance between the objects in the scene and the observer. If
an object is very close to the viewer, the resulting disparity will be large; if the
object is far away from the observer, the disparity will be very small. Figure 1.1

illustrates this disparity for a cup placed very close to the observer. As we can

see, there are noticeable differences between the two views.

Left Rye View Right Eye View

Figure 1.1: Disparity Caused by Difference in Perspectives.

Another important source of depth information is the oculomotor accommo-
dation and convergence. This refers to the motor responses of the muscles in our
eyes due to the distance between the object of interest and the observer. In order

to clearly see an object, our eyes have to focus (accommodate) and converge on it.



Objects that are close to us require more focusing and convergence than objects

that are farther away. Figure 1.2 shows the two views converging on a cup placed

very close to the viewer,

Left Eye View Right Eye View

Figure 1.2: Converging Views of a Cup.

The two main approaches in computer vision to the problem of depth percep-
tion were derived from the evidence of disparity and convergence. The first one
is a passive approach referred to as Disparity Analysis. It involves processing the
information obtained with a static stereo pair of cameras which observe a scene
from two different perspectives and attempt to establish correspondence between
common locations in the scene. The second approach is an active one, known as
vergence control. It transforms the passive analysis of the scene into an active
interaction with it, by means of rotating one of the cameras in the stereo pair
until both cameras “lock at” the same object.

Current implementations of the disparity analysis approach have been suc-
cessful to a certain extent [18, 11, 38]. However, this approach does not prevent
problems related to occlusions and strong depth discontinuities. Additionally, it
has very high computational cost to compute, and requires knowledge about the
internal parameters of the camera system, mainly focal length.

The advantages of active approaches to solving several vision problems are well
understood [1]. In the particular case of vergence control, the interaction with

the scene not only provides the algorithm with a sequence of images to analyze



but also simplifies the analysis. In order to actively observe a scene it is necessary
that the eyes (cameras) have fast and accurate vergence control techniques. Eye
movements are also closely linked with the process of foveation: information about
a scene is obtained with high resolution in a small region around the point of
attention of the eye, while the resolution drops continuously as we move into the
periphery [33].

Although this problem has been approached in different ways, i.e., using uni-
form resolution, multiresolution, and log-polar transform, there is not yet an

approach that clearly meets all of the following criteria :

(i) Not dependent on window size, but rather has some way of reducing the

importance of the region depending on the distance from the fovea.
(ii) Has translation invariance propertics in the foveal region.

(iii) Has a matching function (with vergence angle as the free variable) which

increases to a peak corresponding to the correct match and then decreases.

(iv) Is very simple to design and implement.

In this thesis, we attempt to satisfy the above criteria in a single vergence
control scheme, henceforth called Variable Resolution Vergence Control (VRVC).
Our algorithm is based on an approximation to images obtained by fish-eye lenses,
combined with a simple correlation function. The algorithm does not need to
suppress the periphery; on the contrary it uses the periphery to guide the vergence

process.

1.2 Thesis Objective

The objective of this work is to design a methodology for performing fast
and reliable vergence control using a camera system with panning capabilities.
The experiments will be conducted with real images, captured using an active

camera system, and artificial images, created using a graphics environment with



predefined models and a perspective projection scheme. A detailed description of
both environments can be found in Chapter 5. We will focus the experimental
work on the analysis and comparison of the matching function, which helps in

obtaining (rapidly and reliably) the vergence angle for a given object in the scene.

1.3 Thesis Organization

The organization of the thesis is as follows: Chapter 2 briefly describes some
of the previous research on passive and active stereo matching algorithms.

In Chapter 3, a summary of some of the more popular feature extraction,
thresholding, and matching techniques is presented. A detailed description of the
methods used in this thesis is shown.

Chapter 4 explains the Fish Eye Transform (FET), the variable resolution
approach that we applied to the vergence control problem, and the significance
of some of its parameters. It also discusses the modeling and calibration of fish
eye lenses.

A system overview is presented in Chapter 5. The environments used to
produce the images, and the process involved in the vergence control analysis are
described.

Chapter 6 discusses the utility of the FET in designing a simple and fast
vergence control scheme.

In Chapter 7, the experimental results of our vergence control algorithm are
shown. Comparisons with a uniform resolution vergence control algorithm and
discussions about the different scenes are also presented.

The conclusions and future research are presented in Chapter 8.



Chapter 2

Review of Previous Work

In this chapter, we discuss some of the different approaches to the stereo
matching paradigm. We start by presenting a brief description of the so called

“passive” algorithms, and then we move on to the active approaches.

2.1 Di-parity Analysis

Let us first summarize the major steps of the passive stereopsis process [22]

[13]. There are three main steps involved in measuring stereo disparity :

(i) A particular location on a surface in the scene must be selected from one

image.
(ii) That same location has to be identified in the other image(s).

(i1i) The disparity between the two (or more) corresponding image points is then

measured.

In order to establish corresponding points between the two images, a prepro-
cessing step to obtain well defined feature characteristics is often used. Lately,

edge features (including not only location, but also strength and direction) have



been widely used in the matching process [16] [18]. However, this has not al-
ways been the case. Earlier approaches to stereo vision used area-based matching
schemes in which patches from two images were paired. Several feature extractors
have been used. Among the most popular are the global edge detectors (Marr and
Hildreth [23] and Canny [8]), and the window gradient edge detectors (Roberts,
Sobel and Prewitt [3]).

Linear edge segments have also been considered as matching elements for sterco
[26, 2]. In the segment-based matching algorithm, edge points are extracted,
usually using a template (window) based edge detector, and then aligned and
connected using a group of line models. The description of each edge segment is
stored for the subsequent step of matching, saving information about the start
and end points, orientation, and average grey-level intensity.

Once the features have been extracted from the two (or more) images, corre-
spondence among homologous features needs to be established. This matching
step is the most important stage in the process of stereopsis, a problem that is
far from simple.

Earlier approaches, such as area-based and some initial feature-based algo-
rithms, used cross correlation for matching. These approaches have several short-
comings, as pointed vut by [13] {22]. Most significantly, the area-based techniques
have the disadvantage of using the intensity values at each pixel directly, mak-
ing them sensitive to changes in ahsolute intensity, contrast, illumination, and
perspective caused by differences in the viewing positions.

To alleviate some of these deficiencies, several other methods (16, 17, 26, 2, 18,
6], including those using multi-resolution techniques, were developed. All these
methods use either edge points or edge segments as their matching primitives,
thus making them more stable towards changes in contrast and ambient light-
ing. Furthermore, matching among edge features makes the comparison simpler.
However, these algorithms are susceptible to ambiguity in the correspondence
[22], that is, a local feature or group of features in one image may match equally

well with a number of features or groups of features in the other image(s).



'To overcome this problem, primarily two constraints have been introduced in
the literature. The first one enforces the disparities of features in a window to have
similar values. That is if, for a single feature, more than one match occurs within
a region (window), then the one having disparity closest to the dominant disparity
in the region is accepted. Grimson’s [16] initial implementation of the Marr and
Poggio [22) theory uses this disambiguation criterion. Also the algorithms by
Medioni and Nevatia [26] and Ayache and Faverjon [2] use the same idea applied
to segment-based matching. The second constraint that has been used is the so-
called figural continuity [25]. Figural continuity is an extension of the continuity
constraint described ahove. It assumes that edges due to surface limits or surface
markings are to be continuous, thereby resulting in continuity of disparity along
the figural contours. Mayhew and Frisby [25] use this constraint to solve matching
ambiguities alung cdge segments. Grimson [17], in his modified implementation
of the Marr and Poggio theory, uses the figural continuity constraint along the

edges at a coarse edge density in order to avoid ambiguity at finer edge densities.
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Figure 2.1: Parallel Axis Imaging Geometry.



Once the correspondence has been established, we obtain a disparity value d
for every matched pair of points PL(X,Y.) and Pr(Xg, Yr) as, d = Xt = Xg.
Using the parallel axis stereo geometry model (see Figure 2.1) and the disparity
information obtained, we are now able to reconstruct the 3-1) position of the
point P(r,y,z) that originated the pair of points P, and Pr. Figure 2.1 shows
the pinhole approximaticn models of the two cameras with their image planes, I,
and Ip, reflected about their centers of projection, Or and Og. The focal length
of each camera is f, and *he separation between them (sterco baseline) is b, Using
similar triangles, the relat:ve x position of the point P(r,y, z) with respect to O,

and Op will be given by

o = Xy
' f
tn = zrXR

f

Knowing that the separation between the cameras is b, and because they are

located in the same Z plane, then

b = x, —rn
z = z,=2zR
=Xy
b+1’R = —7!-
. zXn
R = —F
S
Solving for z we will obtain
bf
z = =
X. - Xn
)

10
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Figure 2.2: Top View of the Parallel Axis Imaging Geometry.

Assuming that the world coordinates X, Y and Z coincide with the coordinate
axis of the left camera X, Y, and Z, then the r and y positions for point P will
be

, = N
= 4
_

vy = 4

2.2 Vergence Control

The active vision model of stereopsis differs from tne passive model described
above in that it uses a dynamic pair (or more) of cameras. This kind of system
[27] [10] is based on the model described by [30, 7). A head has two cameras which
can be tilted (rotated about the horizontal axis) together and panned (rotated

about the vertical axis) independently. An additional movement, called “gaze” in

11



the literature, pans the two cameras together in a movement equivalent to turning
the neck. The problem of disparity measurement becomes one of vergence angle
estimation. As described before, vergence is the process of adjusting the angle
between the eyes (cameras in our system) in order that the stereo pair “looks at”
the same object. Figure 2.3 shows a simplified model of the imaging geometry
used for vergence control. The left camera in this figure remains orthogonal to
the X axis, while the other pans attempting to locate the object of attention. A
more general approach, shown in Figure 2.4, incorporates panning capabilities to

the left camera as well.

cbjoc:'
)
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.
.
.
.
— ___________.__/:‘
I .

basalipe

Figure 2.3: Vergence Control Imaging Geometry.

The vergence process is usually modeled as in [27]. One of the cameras is
assumed to be fixed (static camera), the other pans (active camera) until both
“look at” the same object. As in the passive approaches, a preliminary feature
extraction step has to be executed in order to improve the performance in the
matching stage. The active approaches to vergence control described in the liter-
ature [27, 10, 19] use mainly edges (strength and direction) or edge segments as
their matching features.

The use of non-linear image transformation in disparity analysis was discussed
in [39]. The technique developed, known as Cepstral filtering, was later applied

to vergence control by various other researchers [27]. There are two problems



with algorithms based on Cepstral filters. First, the window size to which the
method is applied must be carefully determined, so that the object of interest lies
within the windows in the stereo pair. Also the windows should not be so large
that peripheral objects are included. Thus the window size is very much scene
dependent. That is, in order to obtain the correct window one must have detailed
knowledge of placement of objects in the three dimensional space. The second
problem with the Cepstral filter is computational cost.

Other approaches like the log-polar transform (32, 37] and those that use
variable resolution schemas like the one proposed in this thesis, are based on
physical descriptions of the human visual system. These descriptions are the
result of extensive psychophysical and neurophysiological studies that show that
the mapping from the retinal space into the striate cortex is not homogeneous
and that it can be summarized by the cortical magnification factor. The cortical
magnification factor can be described as “the ratio of the distance moved across
the surface of the cortex to the corresponding distance moved by a spot across the
surface of the retina” [33]. A first approximation of this factor can be expressed
as an inverse linear function of eccentricity in the retinal space, i.e., M « E-!
where M is cortical magnification and E is eccentricity in the retina [29, 31, 33].
'These studies also show that the retino-cortical mapping can be approximated by
a complex logarithm [33]. More specifically, let (r, #) denote the polar coordinates
of the retinal image and [u(r,#), v(r, 8)] denote the cartesian coordinates for the
cortex. We can then define the mapping using the complex variables z = re*
for the retina, w = u(z) + iv(z) for the cortex, and the mapping function w =
log(z) = log(r) + #(@ + 2kx) for integer k. Finally, it is emphasized that this
approximation is intended to be applied only to the central 20 — 30° of the visual
field.

The log-polar transform mapping scheme uses the idea described above, but
without considering the visual field restriction. It has often been used to simplify
some visual tasks [32, 37, 24, 19, 40]. This transformation is rotation invariant,

i.e., radial lines (concentric circles) in a uniform resolution image get mapped onto
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horizontal lines (vertical lines) in the transformed image. Rotational invariance
allows rotated versions of an object o appear translated on the angular axis
(32, 37). Even though the log-polar transform has certain desirable properties, ita
application to vergence (or disparity) cstimation has been limited [35]. There are
two main weakmnesses in this transform. The first one lies in the fact that lines
get mapped onto curves, making recovery of vergence (or disparity) extremely
difficult. The second consists in the need for specialized hardware to produce

such images in real-time.

Object

Left
Camera

Right
Camera

baseline = b

Figure 2.4: Top View of the Vergence Control Imaging Geometry.

Once the vergence angle has been estimated, we can use the law of sines to

calculate the depth.

a b c

sina  sinf8  siny

from where we obtain

bsin a

sin
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bsiny
c = —
sin
z = asiny=csina

We will now review some of the most popular feature extraction, threshold-
ing, and matching techniques. Later on we will consider an alternative image

transform, namely the Fish Eye Transform, and study its properties.
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Chapter 3

Edge Detection and Matching

Feature extraction and matching are the two main components in the process
of vergence control. The feature extraction step makes the matching stage simpler
and makes the whole process less sensitive to the changes in illumination, contrast,
intensity and perspective caused by changes in the viewer position. Edge points
and segments are image attributes which have been widely used for image analysis
and classification in a wide range of applications, including disparity analysis and
vergence control. In this chapter we describe some of the most popular edge
detection, thresholding and matching techniques in the literature and describe in

more detail the ones that we use to implement our vergence control.

3.1 Edge Detection

Because of its usefulness in high level vision tasks, edge extraction has become
an important problem to solve in image processing. A large number of approaches
have been presented in the literature, some of which are summarized in this
chapter. Unfortunately, edge extraction is a difficult problem both to solve and
to define. For this reason, we will start with a definition of the concept “edge”.
An edge is defined to be an abrupt change of gray levels in an image and its

location is defined to be the midpoint (inflection point) of the edge slope [28].
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Figure 3.1 shows an ideal step edge and a more realistic representation of it. It

also illustrates the two most popular ways of locating edges: finding the local

maxima using the first derivative of f(x), or looking for the zero crossings in the

second derivative of f(x). Step edges are by far the most common type of edges

present in images, but other types like roof and spike edges [12] are also present.

1-D Signal
£(x) 4 £(x)
Midpoint
x x
Ideal Step Edge Realistic Representation of a Step Edge
£’ (x) £/ (x)
-------------- £(x)
x x
First Derivative of the Step Rdge Second Derivative of the Step Edge

Figure 3.1: Ideal and Realistic Step Edges

Edge extraction, as a low level vision tool, is important because it simplifies

the analysis of images by drastically reducing the amount of data to be processed.

Additionally, it preserves useful structural information about object boundaries

so that much of the original scene information can be recovered from an edge
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image.

3.1.1 Classification of Edge Detectors

Many ways of classifying edge detectors have been proposed. The most pop-
ular appears to be the one that classifies them from the point of view of their
originating approach [20], [12]. This classification criteria divides them n the

following ways :

e Local Methods

These methods involve convolution of the original image with a set of tem-
plates, which are based on a digital approximation of an operator that is

originally applied on continuous functions.

o Regional Methods

These methods involve the best fit of a function to a given image. Generally,
the process involves fitting a functional model of an edge to an area of the
original image. The best fit is formed by minimizing the error between the

model and the actual image.

e Global Methods

This is a very different approach used by experts in signal analysis and
digital filtering. The edge extraction problem is viewed as one of filtering

the image so that only the edges remain and all the rest is eliminated.

3.1.2 Local Methods

These methods are the oldest ones [20], [12]. They usually involve convolution
o\ ‘e image with a set of templates (windows), tuned to different orientations in
order to identify variations of the intensity levels in such orientations.

Generally, the set of templates used is based on an approximation of an oper-
ator which is originally applied to continuous functions and must be adapted to

the case of digital images.
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3.1.2.1 Gradient Operators

Gradient operators are first-order derivative operators adapted to the condi-
tions of digital images. The gradient for a continuous two dimensional function
is defined hy the vector :

af of

Vf(ray) = ['é;v —83

Its magnitude will be

[ras TN
|Vf(""y)l"\j(£/ +<('9;)

.. [8f/0y
a = tan™! (5?/7:;)

and its orientation,

In the discrete case, x, y and f(x,y) are positive integer numbers, so the partial
derivatives involved in the gradient operator can be approximated with finite
differences along the orthogonal directions x and y. Thus the x and y gradient

components for the discrete case can be written as :

V:f(ma!/) = f(:c,y)—f(:t—l,y)
Vof(z,y) = flz,y)— f(z,y—1)

and the magnitude will be

IV f(2,y)| = \/V=f(x,9)2 + 0, f(2,9)?

it can also be approximated by

V£ (2, 9)| + |V f(z,9)]

or by

max(lef(T, y)l ) 'Vyf(xv y)l)
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Finally the orientation can " e calculated as above

_ -1 va(-’l‘s y)
a = tan (—_———V:f(;r,y))

The magnitude of an edge (also called strength of an edge) represents how fast
the signal changes from a high to a low intensity level or vice versa. Its direction
(only meaningful in 2-D), points to the maximum slope (maximum magnitude)
of the edge.

It is important to mention at this point that the edge map of the image is
usually thresholded using the magnitude of the edges as a reference, in order to
eliminate noise (weak edges) as well as to obtain a more precise localization.

Roberts

Roberts operator uses a very similar concept to the one mentioned above.
This approximation computes the finite differences about an ideal element (pixel)
located at (z+3,y+3). So the finite differences are not calculated in the horizontal
(x) and vertical (y) directions with respect to a particular pixel, but instead

diagonally. Figure 3.2 shows the masks used by the Roberts operator.

Masks used:

yY+1]x+1Ly+1
X, y+1x+1y 0 -1 F oo
H1= Hz._
1 0 0 1
x+l,y

XYy

Figure 3.2: Roberts Mask

Because of the way the finite differences are calculated, this method will not
provide the gradient components with respect to x and y, so the magnitude could

be approximated by:

maz(|f(z,y) — f(z + Ly + 1)],|f(z + 1,y) - f(z,y + 1))

Prewitt and Sobel
Prewitt and Sobel operators use the same gradient principle, with the differ-

ence of computing it over a 3 by 3 neighborhood. Convolving the original image
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with each of the masks illustrated in Figure 3.3 will result in obtaining the x
and y gradient components, which can be combined (using the square root or the

maximum) to approximate the magnitude of the gradient of the image.

Masks Used:
Prewitt - - - -
1 0 -1 1 1 1
x-1y+ | x, y+1 Py Vixy) = |1 o -] WVfxy=Jo0 0 o0
.l 0 —l- :1 "l _l-
x-1,y] %y |xtLy] Sobel - - - -
0 -1 1 2 1
ety 1f -1 eyl Viixy = |2 0 2] Vrxy=Jo 0 0
L1 0 -1 o1 -2 -1

Figure 3.3: Prewitt and Sobel Masks

Prewitt
y+1 y+1
Vrf(l‘»y) = Z f(.'l'—l,i)— Z f($+l,l)
i=y-1 i=y-1
r+1 r+1
Vyf(z,y) = Zfzy-l _Zf(zy+1)

Additionally, as shown in Figure 3.3, the Sobel operator introduces weights in

its summation of the values of the elements :

Sobel
y+1 y+1

Vof(xy) = X fle-1)+fle-1y) - 3 fle+1,i) - flz+1,9)
i=y-1 i=y~1
z+1 z+1

va(T,y) = Z f(1,y+1)+f(1',y+l)- Z f(z,y—l)-f(:c,y—l)
i=r~1 i=z-1

The weights are introduced in order to enhance the computation over the

central pixel of the window while giving a smoothing effect over the rest.
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Kirsch

Kirsch operator is another example of gradient based edge extractors using
a 3 by 3 neighborhood, the main difference being that it computes the finite
differences in 8 possible directions. To illustrate better the way the operator is

computed we show in Figure 3.1, 3 of the 8 different masks used, with orientations

of 0°, 45°, and 90°.

Masks used:
3 3 -5 3 -5-5 5 -5 -§
Gf(xy) = [3 0 =5 G f(x.y) = 0 -S Gfxy) = |3 0 3 etc.
3 3 -5 k) 3 3 13

Figure 3.4: Kirsch Masks

The equations for calculating the gradient components in the & different di-

rections are;

y+1 y+1
Gi(z,y) = 3*[flz,y+ 1)+ 3 flz—1Li)+ flmy—1)]-5+ ¥ flz+1,i)
s=y—1 i=y—-1
y+1 z+1 v+1
Gaz,y) = 3+[ 3 fla~1L)+ 3 fli,y D] -5+ [} f(z +1,i) + fz,y +1)]
i=y—1 i=x i=y
z+1 41
Gs(z,y) = 3+[f(z=Ly)+ X fGy-1)+flz+1,p)-5% Y f(i,y+1)
izz-1 i=r-1
T+1 y+1 v+1
Gu(z,y) = 3*[_22 fEy=1)+3 flz+1, z)]—5*[f(xy+1)+§:fm—1 i)]
y+1 y+1
GS(mvy) = 3*[f(xay—1)+ Z f(.'t+1,t)+f(.'l‘,y+l)]—5* Z f($—'1,l)
i=y—1 s=y~1
y+1
Ge(z,y) = 3*[ ) flz+1,9)+ Z f(zy+1)l—5*lz flz - 1,4) + f(z,y = 1)]
i=y-1 i=z~1 i=y—1
z+1 z+1
Gi(z,y) = 3x[f(z+1,9)+ Z fGy+1)+ flz - Ly)] -5+ _}: fli,y-1)
z+1 z+1

Gs(z,y) = 3*[2 fGy+1)+ Z fl(z =1, z)]—5*[§:f(zy—l )+ f(z + 1,y)]

i=zr-1 i=y~-1 i=z
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The magnitude of the gradient will be obtained by

|V f(z,y)| = max(|Gi(z,y)])

and the orientation will correspond to the orientation of the Gi(z,y) that was
found to be maximum. The Sobel operator has also been approximated with this
kind of directional mask.

The use of larger gradient operator masks has the advantage of increasing
smoothing, thus reducing the noise sensitivity, but computing over larger neigh-

borhoods is computationally more expensive.

3.1.2.2 Laplacian Operators

The Laplacian is a second-order derivative operator defined in the continuous

case as.
2 2
Clfte, 0] = 55+ 50

and can be approximated on the discrete case by:

Vi f(x,9) = flz+ Ly)+ flr =1 +y) + flz,y + 1) + f(z,y — 1) — 4 % f(z,y)

Masks used:
010 1 1 1
Vitxy) = |1-4 1 Viixy = |1 -8 1
0 1 ¢ 1 1 1

Figure 3.5: Laplacian Masks

The laplacian operator does not give the x and y gradient components. In-
stead, after convolving with the mask, the zero crossings will indicate the precise
location of the edges according to the point of inflection criteria described above.
Figure 3.5 shows two different masks that have been used to approximate the

continuous Laplacian operator.



Gradient and Laplacian methods can be combined to form a more robust cdge
detector operator, overcoming the weaknesses of one method with the strengths
of the other (i.e. Laplacian will give the localization of the edge and Sobel will

provide the magnitude).

3.1.3 Regional Methods

The use of regional methods involves the best fit of a function to a given
image (20, 12, 28]. The methodology involves fitting to an n by n neighborhood a
surface of degree m < n?. The best fit is formed by minimizing the error between
the surface of degree m and the actual image (usually the least square criteria is
used).

Hueckel’s approach

Hueckel considers how a theoretical edge should look (within a circular region)
and then finds, for each region in the original image, how much difference exists

with respect to the model, by using the least squares best fit criteria.

000oeDBe

7
Hueckel’s operator, graphic representation

Figure 3.6: Hueckels Regional Masks

In this method, two grey levels are assumed to exist in the evaluated area and
an abrupt change between them will indicate the presence of an edge. Fitting this
area with the base edge operators shown graphically in Figure 3.6 will identify the
candidate edges. The main disadvantage of this method is that each image has
to be fitted with several different edge models in order to identify a reasonable

number of edges, therefore making this approach very expensive to compute.
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3.1.4 Global Methods

The use of global methods involves a completely different process. It is used in
signal analysis and digital filtering. The edge extraction problem is viewed as one
of filtering the image so that only the edges remain and all the rest is eliminated.

Edge detectors designed on this basis have proved to be quite efficient for a
wide range of images. Unfortunately, these methods are much more computation-
ally expensive than the gradient operators mentioned above, The process involves
a convolution in the time domain of the digital image with digital approximations
of the analog filters to be used. Performing the convolution in the frequency
domain has been widely used to speed up the performance. As is well known, a
convolution of two functions in the time domain is equivalent to the multiplication
of 1heir independent representations in the frequency domain (fourier transforms).
Examples of these methods that have proved to be very effective are Marr and
Hildreth’s [23] zero-crossing operator, and Canny'’s [8] local maxima operator.

In general, the advantages of using global methods for edge extraction are :

e Image independence. They can be considered general methods that perform

reasonably well over almost any kind of image.

o Noise immunity. They are considerably less noise sensitive than the other

methods described above.

The main disadvantage of them is that they are computationally expensive.

3.1.4.1 Marr and Hildreth'’s Operator

Marr and Hildreth’s operator involves a convolution of the image being pro-
cessed with the laplacian of the gaussian and finding the zero-crossings of the re-
sulting image. A zero-crossing is the place where the value of a function changes

sign, i.e., passes from negative to positive or vice versa.

Z(Z)(z’ y) = I(z,y)® V(z) G(z,y)
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In the formula above, I(x,y) represents the N x M image intensity values,
G(x,y) is a two-dimensional gaussian distribution, with a standard deviation o,
of the form :

i 1 "2|'|’
("(Iﬂ y) € 2

2ra?’

and ® denotes the convolution operator, which in the discrete case can be obtained
by [15],

M~<1N-1
Hz,y)® v Gz, y) = Y Y I(m,n) v? G(x = m,y —n)

m=0 n=0
forr=0,1,2,... . M-1,y=0,1,2,... N-1.

The Laplacian (or second derivative) of the Gaussian (3G(x,y) is a circularly
symmetric Mexican-hat-shaped operator whose distribution in two dimensions

may be expressed by the formula

o? 9?
e = [=— +—]G(x
V' YG(z,y) (0x2+ay2) (x,y)
_ 2 2 .
= —l— 1 - l +y e 220!2
ot 202

But why convolve with 7?’G(x,y) ? There are two main reasons for this.
The first is that the Gaussian distribution will blur the image, effectively remov-
ing all structure at scales much smaller than the space constant o. Therefore,
an appropriate value of sigma will help in removing noise from the image. An
additional advantage of the Gaussian is that the blurring will be done smoothly
according to the shape of the operator, making it less likely to introduce changes
that were not present in the original image.

The second reason is related to using the Laplacian of the Gaussian 7(*'G(z, y)
as an operator. As mentioned before, the second derivative is a very good criterion
for identifying the location of an edge, in addition it is less expensive to compute
than the local maxima criteria for edge localization. A zero crossing in the result-

ing image Z(¥(z,y) will represent the inflection point of an edge in the original

26



image I(z,y). Unfortunately this process only produces information about the
location of the edges, but no knowledge is obtained about their magnitude or
direction.

In our implementation of this method, an additional step is used for the pur-
pose of classifying edges and removing noise. The source image is additionally
convolved with the first derivatives of the gaussian with respect to x and y, thus
finding the x and y (Z:(z,y), Z,(z,y) respectively) components of the gradient,

S0

Ze(x,y) = I(z,y)® V:G(z,y)
Zy(z,y) = I(z,y)® v, G(x,y)

where 7.G(r,y) and 7,G(z,y) represent the first derivatives of the Gaussian

with respect to x and y

_9G(zy) _ -z s
VIG(xay)- or - 21!'0"8 20

- aG(xay) - -~y _it,:
VVG(J'» y) - ay - 27',0‘6 20

Using the x and y gradient components, the magnitude and direction of each
edge are calculated. The adaptive thresholding technique described in the next
section is applied to remove noise (low magnitude edges). A classification of the
remaining edges is implemented, with the purpose of avoiding to a certain extent
false alignments during the matching stage of our vergence control process. The
edges are separated in four broad groups according to their gradient orientation,
two groups of horizontal edges defined by the intervals {15°, 165°), and [195° ,
345°), and two groups of vertical edges defined by [345°, 15°), and [165°, 195°).

Each group is assigned a different grey-level value in order to identify later
edges belonging to different groups (see Section 3.3). That is, only edges of the
same group in both images will be considered as a match. Table 3.1 shows the four

groups, the grey-level values assigned, and their intervals. The original idea of
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value [ Start [ | Finish)
g1 Group | 0] 345 15°
¢z Group 11 80 15° 165°
@3 Group TIT| 140 165° 195°
Os Group | 200 195° 345%

Table 3.1: Groups for Edge Classification

classifying edge pixels according to its orientation, comes from disparity analysis,
where only the vertical edges are considered for matching. Furthermore, only
edges with similar characteristics should be matched, i.c., edges due to changes
from dark to light in the image, should not be matched with edges due to changes

from light to dark.

3.2 Thresholding

Thresholding by itself covers a complete area of image processing. In this
section the thresholding concept is reviewed briefly. In general, thresholding can
be considered a separator function that will classify the elements of a set — in
this case a set of edge pixels from an image — into two sets (could be more)
separable using a threshold value.

Usually thresholding [3], [15] is represented by a binary function like

{ il f(z,y)> T
9(z,y) =

0 otherwise

where T is the Threshold value applied tc f(x,y). When applied to the edge
map of an image, the threshold value is usually compared to the magnitude of the
~dge pixels, obtaining in this way two sets of edge points, those whose magnitude
is larger than the threshold value (retained), and those whose magnitude is smallc:
than the threshold value (weak edges, eliminated).

The approach above, although one of the most popular, is highly image de-

pendent and noise sensitive. Other approaches like histogram thresholding, an
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adaptive threshold method, have shown better general performance and image
independence. In this thresholding technique, a percentage of the edge pixels are
retained. The threshold value is calculated using a histogram of the magnitudes
of the edges in the image, and the required percentage of edges that are to be
kept.

A

253 258 Magnitude
252 254

Threshold
Value

Figure 3.7: Histogram Thresholding

Figure 3.7 shows an example of the edge magnitude histogram. Once the
histogram has been computed, the total number of edges to be kept will be de-
termined by

K _ Tedges * K%
‘edges = 100

where Kedges represents the total number of edges to be kept, Tedges

the total number of edges present and K'% is the percentage of edges that the user

represents

wants to keep. The threshold value will be obtained by adding the frequencies

from higher to lower magnitude until the number of edges is larger or equal to

Keg ges'
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Thresholding is an important approach to performing image segmentation. In
the case of edge detection, it is useful to filter the magnitudes obtained from the
gradient operators above, generally filtering out the weak (low magnitude) edges

and thus removing most of the noise of the image.

3.3 Matching

Matching, within the context of disparity analysis and vergence control, can be
defined as the process of establishing correspondence among common features in
two or more images. The problem has been approached in several different ways
and in this section we will describe briefly the most popular ones. Let us start by
describing the matching approaches usec .y the disparity analysis methodology.

Earlier approaches to disparity analysis, such as area-based and some initial
feature-based algorithms, used cross correlation for matching. The main idea
behind this methodology is to find the highest correlation value for a patch or
subimage w(z,y) of size m x n, taken from the left image L(z,y), within the
right image R(z,y) of size M x N. The correlation between R(x,y) and w(z,y)
is defined by {15],

M-1N-1

C(s,t)= Y. S R(s,t)w(z + s,y +1)

s=0 =0
wherez =0,1,2,...,M-1,y =0,1,2,..., N—1, and the summation is evaluated
over the region where R and w overlap. This methodology is not only very
expensive to compute but also, as we pointed out in Chapter 2, using patches
of intensity values to perform the matching process makes it very sensitive to
changes in absolute intensity, contrast, illumination, and perspective caused by
differences in the viewing positions.

To make the systems more stable towards changes in illumination and con-
trast, other methods [16, 17, 26, 2, 18, 6], started using features like edges or edge
segments as their matching primitives. Furthermore, matching among edge fea-

tures makes the comparison simnpler. An additional simplification of the problem,
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called epipolar constraint, makes the matching process less complicated. This sim-
plification is due to the use of parallel imaging geometry, i.e. the pair of cameras
in the system have their optical axes mutually parallel (see Figure 2.1 in Chap-
ter 2). Since the displacement between the optical centers of the two cameras
is purely horizontal, the position of corresponding points in the two images can
differ only in the horizontal component, therefore restricting the search space for
matching to a line that is called the epipolar line. Consequently, our matching
problem has been reduced to that of finding for each feature in the left image
its corresponding pair along the epipolar line in the right image. However, these
algorithms are susceptible to ambiguity in the correspondence [22], that is, a local
feature or group of features in one image may inatch equally well with a number
of features or groups of features in the other image(s).

To overcome the ambiguity problem described above, various approaches have
been proposed in the literature. Initially, additional information about the edge
features, like strength and direction or average strength for edge segments, was
used. That is, only features with similar strength and direction were considered to
match, reducing in this way the probability of spurious matches. Unfortunately
this kind of restriction is not enough to cope with the ambiguity problem, and
more robuct constraints had to be designed. The two main constraints reviewed in
the literature use information about the disparity values of the neighbor features
to solve the ambiguity. The first constraint enforces the disparities of features in
a window to have similar values. That is if, for a single feature, more than one
match occurs within a region (window), then the one having disparity closest to
the dominant disparity in the region is accepted. The second constraint that has
been used is the so-called figural continuity [25]. Figural continuity is an extension
of the continuity constraint described above. It assumes that edges due to surface
limits or surface markings are to be continuous, therefore resulting in continuity
.~ disparity along the figural contours.

Now let us summarize the matching approaches used in vergence control, ap-

proaches which are considerably more simple than the one described above for
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disparity analysis. Being an active approach, vergence control interacts with the
environment by panning the active camera in the system until it “looks at” the
object of attention of the passive camera. This panning process is analogous to
the search performed along the epipolar line in the disparity analysis methods,
therefore the matching problem is reduced to that of evaluating the proportion
of match between the two current images. In other words, without doing any
search, the corresponding features between the two images are computed. Con-
sequently, the matching process is performed iteratively comparing the original
image obtained from the static camera with each of the images captured during
the panning process of the active camera.

Using the same conjectures as above, vergence control uses edges or edge
segments as matching primitives. Direction and/or strength are also used to
reduce the ambiguity problem. Strictly speaking, for a given vergence angle «, a
feature f(z,y) in the static image I,(X, Y) is considered to have a match if there
is a feature g(x,y) with similar characteristics (similar direction and/or similar
strength) in the same position in the active image I,(X,Y). This consideration
though is too restrictive and sensitive to errors due to perspective and feature
extraction. Our implementation considers a tolerance window for the match to
occur. Additionallv the edge features need to belong to the same group (see Table
3.1). That is, fc e f(x,y) will be considered to have a match if there exists a
feature g(7, j) in the active image I(X,Y) such that
f(z,y) € G AND g(i,7) € G, AND :t—-g <1 <z+g ANDy—-g <j<y+;—i
where d defines the size of the tolerance window, and G,, denotes the orientation
group to which f(z,y) and ¢(i, ) belong.

Figural continuity constraints could be added to the matching process in order
to further reduce ambiguity problems, but this approach has not been addressed
in the literature, nor was it implemented as part of the matching process in this

thesis.
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Chapter 4

Fish Eye Transform

Only recently have variable-resolution imaging systems which imitate biolog-
ical systems such as the human eye been used in computer vision research. The
advantages of these methods have been briefly discussed earlier. The fish eye
transform (FET) introduced in this chapter, describes a variable resolution map-
ping function that generates an image with a high resolution fovea and a non-
linearly decreasing resolution towards the periphery. The FET is based on a
simplification of the complex logarithmic mapping described by Schwartz in [33].
This mapping is an approximation of the cortical magnification factor existent in
humans and other primates.

Figure 4.1 (a) shows an image and an approximation of the retino-cortical
mapping described by Schwartz (Figure 4.1 (c)) [33]. As can be seen, the foveal
region is projected at very high resolution, and resolution decreases continuously
in the periphery. The log-polar transform approximation which has been applied
to several visual tasks is also shown (Figure 4.1 (d)).

One problem of applying Schwartz’s method directly is that image continu-
ity across the vertical meridian is lost, and cannot be recovered easily. In our
approach we use a simplified variable-resolution (VR) projection method of the
following form : Let (r,0) denote the polar coordinates of the retinal image,

i.e., if (r,y) represent the cartesian coordinates in the retina, r = V¥ + y? and
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(a) (b)

Figure 4.1: (a) Input image, (b) Our approximation,
(c) Schwartz approximation (d) Log-Polar approximation.
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0 = tan~!(), then the cortical polar coordinates (p,0*) can be obtained as

p:
0 =

slog(1 + Ar) (4.1)
] (4.2)

and the corresponding cortical cartesian coordinates (z*,y*) are given by

*

z

y

= pcosf® (4.3)
= psinf* (4.4)

where s is a simple scaling factor, and A controls the amount of distortion over

the whole retinal image. The inverse mapping is given by

0‘

y

-y
tan (z_)
CE)

A
0.

rcoséd

rsind

Figure 4.1 (b) shows the resulting cortical image after using this simplified

projection method (A = 0.5, s = 26.3385). As we can observe, the image conti-

nuity is preserved. The disadvantage of the simplified mapping function is that

it produces a strong anisotropic distortion in peripheral regions for large values

of the distortion parameter A.

It is important to note that our approximation can be implemented simply by

using a special lens, such as wide angle or fish-eye. This is a major advantage of

the simplified VR mapping.
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4.1 Modeling and Calibration of Fish Eye Lenses

In order to better illustrate how our approximation can be implemented using
simple lenses, we present in this section the experimental results ot modeling and
calibrating the distortion caused by fish eye lenses. Two modeling alternatives
are evaluated, one using the FET (Equations 4.1 - 4.4), and the other using a
polynomial function to approximate the distortion. That is, the polynomial fish
eye transform (PFET for short) differs from the FET (Equation 4.1) in that
p = G(r) where G(r) is a polynomial in r.

To be able to measure the amount of distortion caused by a fish eye lens (for
the purpose of modeling it later), we need to first dctermine the optical center
of distortion (henceforth referred to as focus of distortion or FD). The focus of
distortion, unfortunately, does not usually correspond to the center of the digitized
image, therefore a methodology for establishing it accurately was developed. The

main steps of this technique are :

(i) A set of pictures is taken using a grid.

(ii) The curvature of each line in the grid is estimated and the lines with mini-

mum curvature are chosen. In the event of ties an average is used.

(i) The intersection of the minimum curvature lines in the two orthogonal di-

rections indicates the approximate center of distortion of the picture,

An average of several estimates of the center of distortion is evaluated in order
to obtain a better estimate. In Figure 4.2 we show a picture of the grid (left) and
the line pattern that was used to determine the curvature (rigat). Table 4.1 shows
the data collected after running the process over 10 grid images, resulting in an
estimated focus of distortion of (254.3, 222.9). Once the focus of distortion has
been calculated, the distortion over any direction can be evaluated. Considering
the FD as the point of reference, the distortion is similar in all directions.

Using the same grid images described above, we obtained a measure of the

distortion in four different directions (up, down, left and right) and averaged

36



—”
Wi

WL '

rish-eye Grid Image Line Extraction

Figure 4.2: Fish Eye Grid Image and its Curvature

their values to obtain a more reliable estimate. The distortion is expressed in
terms of radial distance (in pixels) between a pixel of the grid and the focus of
distortion, and is determined by comparing the expected position of such a pixel
with its measured position in the image. Figure 4.3 shows how the distortion
propagates in each direction, and its average.

The objective now is to find a function that represents the average distortion
calculated above. As mentioned previously, we demonstrate two approaches to
this problem. The first one fits a polynomial function to the average distortion
data using the least squares method. The second one uses the same idea to match
the FET described above.

The least squares method for curve fitting [14, 36] is a standard procedure for
determining the coefficients of a nonlinear function so that it represents a set of
recorded data. The accuracy is determined by minimizing the error between the
values predicted by the function and the actual data.

The polynomial (PFET) model, is similar to the FET except that p = G(r).
Where r is the radial distance for an undistorted image, p is the measured one,

and G(r) has the form

G(r) = a0+ arr +ax® + - +anr" = ) a;r°
2
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X y

image0 262 | 221
imagel 252 | 221
image?2 253 [ 221
image3 253 | 221
imaged 250 | 222
image5 254 | 222
image6 250 [ 216
image7 260 | 229
image8 260 | 228
imaged 249 | 228
[ Average 254.3 | 222.9
Standard Deviation | 4.45 [ 3.91

Table 4.1: Focus of Distortion Estimate

Using this polynomial function and a set of N data pairs (r;, p;), the objective

of the least squares method is to minimize an error function x

N

X = Ee =3 (pi — G(ri))?

i=1
which is equivalent to

N n )
x =3Y.(pi =Y a;rl)?

=1 j=0

For the minimum value, all the partial derivatives dx/dao, 3x/da,, - -

vanish, so we obtain

=Y an-Sar) (1) =0
aao =1 p' j=0a1i N
X _ v ) (er) =
b_a_l ;2(1% g)a.; (-r) =0
Ox N : n)

aan ; Zal ( " =0

)=0

K 8X/3an
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Figure 4.3: Graph of Fish Eye Distortion in Different Directions and the Average Value

Dividing all the equations by ~2 and reordering we obtain the following set

of n 4+ 1 equations with n 4+ 1 coefficients.

N n ) N

Z Z a;r = Z pi
i=13=0 i=1

N n ) N
22 gl (r) =3 pimy
=1 ;=0 =1

N n . N
Yol () =Y
i=13=0 i=1

To get a solution to the set of equations above, we can use almost any method
for solving a set of linear equations. In our case we used the Gauss-Jordan Elim-
ination method.

The problem now is deciding what degree of polynomiz. :epresents accurately
the recorded data. A standard way of solving this problem is to use the variance
of the fitted model with the observed data. One increases the degree of the

polynomial as long as there is a significant decrease in the variance o2, which is
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Figure 4.4: Goodness of Fit for PFET Model

computed by

N 2
2 X - i=1 €

O SN -n-1I - N-n=-1

For the PFET model described above, the quadric polynomial

0.3801167 + 0.972645r + 5.6469E — 412 — 6.T7T8E — 61r° + 9.1484 E — 94

was found to be a reasonably good approximation of the average distortion, having
a variance of 0.192238. Although it was not the best approximation, it was chosen
because the decrease in the variance for the polynomials of higher degree was not
significant. Figure 4.4 shows the recorded average distortion and a plot of the
polynomial model above. Figure 4.6 (left) shows the grid picture cumpensated
using this model.

Now let us move to the analysis of the FET model. The FET model can
also be expressed in terms of the radial distances r and p described above. The

function p = H(r) in this case is

p=H(r) =slog(l + Ar)
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Using the same concept of least squares we try to minimize a function x of

the form

N
X = 2 (pi ~ slog(1 + Ary))?

=1
At the minimum, the two partial derivatives 8x/8s and dx /0 vanish, so

we obtain

ax N ) il —
5 = Z_z(p,.—slog(l +Ah))(l +Ar.-) =0

1=1
x L . ) =
= = Y —2(p; - slog(1 + Ar;))(log(1 + Ari)) = 0

=1

Unfortunately, the unknown coefficients are not in a linear relation to the
equations as they were before, thus methods like Gauss-Jordan elimination cannot
be applied. Instead, successive evaluation techniques, and Newton’s method [14]

can be used. Using such techniques, we obtained the following coefficients :

318.177564 log (1 + 0.0036612r)

Figure 4.5 shows the average distortion function and a plot of the FET
model above. Figure 4.6 (right) shows the grid image after using this model for
compensation.

Although a better approximation can be achieved using the polynomial
model, the number of coefficients involved is much larger (in this case 5) and
their interpretation is unclear. In the case of the FET model, the amount of
distortion can be easily changed by modifying the “\” parameter and the scaling
factor “s” accordingly, while in the polynomial model this change will imply a
simultaneous modification of many coefficients. Furthermore, an inverse mapping
to restore the original image can be obtained using the inverse function of the
simplified Fio1' model. There is no simple way to obtain the inverse transform

for the polynomial model.
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Chapter 5

Application of Variable

Resolution in Vergence Control

In this chapter we describe how variable resolution helps in the vergence
process. We show, using theoretical analysis, the difference between the matching
functions for the uniform and variable resolution cases. A short description of this
work can be found in [5].

Vergence estimates are obtained by applying a simple correlation function to
the left and right edge images. For simplicity in analysis we assume the following
model (the actual matching technique used is described in Chapter 3). For a
given vergence «, a pixel (z, ) in the left image is considered to have a match if
U(i,j) =1 and U, (z,5) = 1,1 — ¢/2 <z < i+ c/2, where c denotes the range in
which an edge match is accepted, and U, U, represents the edge maps in the left
and right images respectively. Vergence estimates are obtained by summing edge
matches between the left and right images, centered at the point of attention in
both cases. The correlation function C%(z, j) is expected to have a local maximum
for the correct vergence angle a = ayp.

We will now consider the behavior of the matching function from a statistical

point of view. Let p denote the probability of having an edge at a pixel in a given
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window. For the correct vergence angle the value of C°(, ;) is expected to be P
since the edges match in the left and right window. However, when the angle is
outside the acceptance range of one pixel of length ¢, C°(i, j) is expected to be
p?, i.e., the probability that two edge points in the left and right window match
by chance. In other words,

P faw—5<agap+5

p? otherwise

C*(i,j) =
If resolution is increased, the acceptance range ¢ decreases correspondingly.
Hence if the resolution is increased by a factor r with respect to the unit of
resolution in the previous equation, then:
p fao— gz <a<an+y

cai) =14 "

p* otherwise

The above equation relates the correlation function to the resolution in an
image. A sketch of the matching function C? is shown in Figure 5.1 (a). As can
be seen, the matching function provides no clue about the location of ag outside
the matching range [ao — £, a0+ =]

Consider now the case of variable resolution and its effect on the shape of
the matching function. Assume that resolution varies between K, and R, and
for simplicity further assume that Ry = 0 and R, = R. To find the matching

function, V(4 j), in this case we integrate the matching function C2(i, j) over r

varying in the range [0, R]. That is,
R
Vi) = [ Coti,j)dr
0
or,

R
Veli,i)= [ plla (oot 2dr+ [ 2la g (a0t < e

(Here I denotes the indicator function. That is, I{A) = 1 if condition ‘A’ is

true, and is equal to 0 otherwise.)

=FE + E;
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R if =< R
vaig)=1 " ] | Toomel 7
p2|o:-a| +p (R - 2|n:—a|) if 2|aoc-a| s R
Or,
pR if o € (o % 57)

Ve(i,j) =
P(1 = Plipem + PR if a (a0t )

Intuitively the integral is obtained as follows. If the vergence is very close
to the actual value, then at any resolution the value of the matching function is
p, thus the value pR in the first case. When the value of the vergence (a) is not
very close to the true value, then the integral is a weighted sum of p and p? with
the weights being determined by how close o is to the true value.

The shape of the VR matching function is shown in Figure 5.1 (b). Note that
the plateau of the VR matching function is determined by the maximum resolution
R. As R increases the plateau becomes narrower. Comparing the shapes of the
uniform-resolution matching function (Fig. 5.1 (a)) and the VR matching function
(Fig. 5.1 (b)), we note an important dif.crei.ce. The uniform-resolution function
is a step function, and the values outside the correct matching range provide no
clue about the location of the peak. Moreover, at higher resolutions the matching
range becomes narrower. This is not the case for VR matching. The gradual
slope of the VR matching function allows a relatively simple search technique for

locating the peak. This is further illustrated in Chapter 6.



Chapter 6

Methodology and Experimental
Results

In the previous chapters, we have discussed different approaches to the prob-
lems of feature extraction, thresholding, matching and variable-resolution. A de-
tailed description of the methods that were implemented as part of this vergence
control system was given. In this chapter we describe the tools and equipment
that were used, how the different modules interact with each other, and a group
of experiments that will show the performance of our method. We start by de-
scribing the programming environment and the equipment layout, followed by the
specifications of the two environments nsed to generate the images. A complete
explanation of the methodology is presented next, finally we present four experi-

ments that will help us illustrate better the advantages of using our technique.

6.1 Programming Environment and Equipment Layout

All the modules described in this thesis were implemented in “C” language.
The user interfaces were implemented using tools from the X11/XView libraries,
with the exception of the user interface of the graphics environment, which was im-

plemented using tools from the VOGLE graphics library over a suntools/sunview



environment. Excluding the real image environment, all the software was exe-
cuted using a SPARC IPC Sun Workstation. A SUN3 with a Data-Translation
DT1451 frame digitizer board. connected via VME bus, was used for capturing
images in the real image environment. A CCD camera (NEC T1-23A) with stan-
dard video output was used as the input device connected to the DT1451. A

description of the camera mounting is given in Section 6.2.2.

6.2 Image Platforms

The experiments are conducted using images generated by two types of
environments. In the first one, artificial scenes are created using a graphics in-
terface. In the other, real images are captured by a camera system with panning
capabilities. The separation between the two viewing positions (cameras), and
the angle rotated in each pan step (manual for the real image environment), are

configurable parameters in both environments.

6.2.1 Graphics Environment

The graphic environment provides a mechanism for creating artificial scenes
based on predefined object mocdels (chair, cube, shelf and desk) that can be placed
at any position within the limits of the scene. This platform works by providing
different perspective projections (from two different view points along the hori-
zontal axis) of the artificially created scene. The different perspective projections
simulate the positions of the left and right cameras, as well as the panning process
involved in vergence. The basic add, move, and delete object tools are provided,
and special tools like changing the viewer position or executing the vergence pro-
cess are also available. During the vergence process, a sequence of images (raster
file format) are generated. One from the left perspective and a sequence from the
right perspective, each after performing a panning step (predefined angle). Fi-
nally, the scene description can be saved for further usage (repeat the experiment)

or reference.
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6.2.2 Real Image Environment

The camera system, along with the software written for it, provides a mech-
anism for capturing images of a real scene from two different viewing positions
along the horizontal axis. The system has panning capabilities, thereby providing

the means for performing the vergence process. Unfortunately, rotations equiva-

lent to tilt or gaze are not available.

Right Viewing Position Left Viewing Position

Figure 6.1: Active Camera System.

The camera system, consists of one camera mounted in a sliding device
with preset locking positions (6.5 and 13 inches), which will define the baseline
separation of the simulated stereo system. The bottom of the camera is attached
to a gear that allows it to rotate about the “y” axis (pan), providing in this way
the means of performing the vergence process. All the movements of the camera
are currently performed manually. Figure 6.1 shows the camera system and the
left and right viewing positions.

A user interface was developed to provide a high level tool for capturing
images. It makes use of the data-translation library (libdt.a), which provides
mechanisms for accessing the DT1451 memory via VME bus. The interface is
mousc driven and runs over a X11/Xview environment. The images captured by

the i1.:orface are 512 pixels width x 480 pixels height and are stored in standard
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raster format assuming a 256 grey-scale color map.

6.3 Methodology

Images from two view points are generated, either created artificially or
captured by the camera system. The left or right camera, henceforth called the
static camera, is adjusted so that it “looks at” the desired object, i.e., has the
object over which we will perform the verging process in the center of the image.
The opposite camera (left or right), henceforth called the active camera, will start
from a viewing position that does not have the object in question in the center,
and will execute a sequence of panning steps. The panning is performed until the
camera has rotated beyond having the object in the center of the image. An image
is captured after every pan step. Image sequences that will further illustrate the
process, using both image platforms can be found in Seciion 6.4.

The analysis stage consists of three steps: resizing, feature extraction, and
matching. Figure 6.2 shows a flowchart displaying the interaction of the main
modules of the analysis stage of the system. The resizing step scales the original
image to a size that would be less computationally expensive to process (the
processing size is a configurable parameter of the system). In variable resolution,
the images are resized by calculating an appropriate scaling factor s according to
the desired distortion factor A and the processing image size (See FET in Chapter
4). In the case of uniform resolution, the images are scaled by subsampling. Figure
6.3 (top) shows the left and right images in uniform resolution after being scaled
to a 256 by 256 size. Figure 6.4 (top) shows the left and right images in variable
resolution after being scaled to a 256 by 256 size using a scaling factor s of 52.677
and a distortion factor A of 0.15. The resizing step is the only one during the
analysis that will handle images in uniform resolution and in variable resolution
differently.

The feature extraction step is responsible of obtaining the edge map of the

image being pror~ssed. As pointed out earlier, matching using the grey-level
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(e) Visual Representation of Matching

Figure 6.4: Variable Resolution Process
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values has several shortcomings, thus feature matching is recommended. In the
experiments presented in this chapter, Section 6.4, edge features are used in the
matching process. Edges, as well as their gradient direction and magnitude, are
obtained using the modified version of the Marr-Hi, freth operator [23] described
in Chapter 3 Section 3.1.4.1. The edges with low magnitude (weak edges) are
eliminated using the adaptive thresholding techuique described also in Chapter 3
but Section 3.2. The remaining edges are classified into 4 broad groups according
to their gradient direction (see Table 3.1). A different grey-level value is assigned
to each group to identify edges belonging to different groups. This classification
helps in reducing the false alignments during the matching process, i.e., edges
of one group in one image cannot be matched with edges of other groups in
the other image. Figure 6.3 (middle) shows the left and right images after the
feature extraction stage during a uniform resolution analysis. Figure 6.4 (middle)
shows the left and right images after the feature extraction stage during a variable
resolution analysis.

The matching ;.rocess is performed iteratively, comparing the original image
obtained from the static camera with each * he images captured during the
panning process of the active camera. As a\~cribed in Chapter 3 Section 3.3,
the matching is evaluated using a very simple correlation function that takes
into account a matching window and the group to which the edge belongs. Only
edges of the same group within the tolerance window in both images are matched.
This simple correlation function allows us to avoid, to a certain extent, false edge
alignments. Figures 6.3 (bottom) and 6.4 (bottom) show a visual representation
of the matching process in uniform resolution and variable resolution respectively.
The total number of edge matches is divided by the total amount of features in
the static image and then recorded for each correlation performed. The results
are plotted to show the performance. Examples of the graphs generated by both

methods are illustrated in the next section.



6.4 Experimental Results

We now present four experiments that will show the performance of our
method in the two differe:t environments. In the experiments presented through
this section, two different approaches using the same source images are compared,
our approach using the variable resolution (FET) scheme introduced in Chapter
4, and an analogous approach that uses a uniform resolution scheme. Along with
the experiments, we present four subsections that will clearly describe the effect

of modifying each key parameter individually in the system.

6.4.1 Experiment 1 (Real Environment)

In this first experiment presented we use images from the real camera system.
A real scene was captured from the two viewing positions. For this experiment
the filing cabinet in the left image (see Figure 6.5 (a)) is the object of interest. A
sequence of 16 images was taken from the right viewing position (after slidding the
camera 6.5 inches), each after performing one panning step of approximately 1.29°
(see Figure 6.5 (b) to (h)), achieving in this way a total rotation of 19.40°. The
analysis over these images was performed in both uniform resolution and variable
resolution. The processing image size used was 128 x 128 pixels, obtained by
subsampling for the uniform resolution arnalysis, and % using a distortion factor
A of 0.5 and a scaling factor s of 13.17, the thresholding value applied to the
images during the analysis was 40 %. Figure 6.6 shows the matching performance
of both experiments. Observe that the peak of the VR function is obtained for
10 rotation steps. This indeed appears to be the correct vergence for the filing
cabinet (comparing Figures 6.5 {a) and 6.5 (e)).

Additional experiraents were performed with the objective of showing the
effect of changing the d:stori:on factor A and the thresholding value used for edge
detection. The two following subsections describe how these changes affect the

shape of the matching function in the system.
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(a) Left Image (b) Right Image {(c) 3.08 Deg Rotation (d) 7.76 Deg Rotation

(e) 10.33 Deg Rotation (f) 12.94 Deg Rotation (g) 15.52 Dag Rotation (h) 19.41 Deg Rotation

Figure 6.5: Image Sequence for Real Experiment 1
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6.4.1.1 Effect of Changing the Distortion Factor A

In this section, we use the same image sequence of the experiment above (see

Figure 6.5) to illustrate how changes in the distortion factor A affect the shape of

the matching function. We performed the analysis using the following distortion

(M) and scaling (s) factors,

Al 0.01

0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70 | 0.80

0.90

s | 50.40

24.38

19.50

16.18

14.70

13.80

13.17

12.69

12.32 | 12.01

11.75

to produce images of 128 x 128 pixels.

Match

0.258
0.236
0.214
0.192

Proportion 0.17

0.148
0.126
0.104
0.082

Table 6.1: Distortion and Scaling Factors

i

1

8

12

Rotated Angle (in degrees)

Figure 6.7: Effect of Changing the Distortion Factor (small values)

As can be observed from figures 6.7 and 6.8, the graph grows smoother as we

increase the value of the distortion factor A\. With a very small distortion factor

like 0.01 the graph shows several local maxima, making it difficult to search for

the global maxima that will indicate the proper match. With a large ) like 0.5 or

0.7 the graph grows more evenly, making it much easier to search for the global

maxima.
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Figure 6.8: Effect of Changing the Distortion Factor (large values)

6.4.1.2 Effect of Changing the Thresholding Value

We now present how changes in the thresholding value affect the matching

function. Using the source images shown in Figure 6.5 we performed the analysis

in variable resolution (using A = 0.5 and s = 13.17) and in uniform resolution,

for different thresholding values (25%, 30%, 35%, 40%, 45%, and 50%).
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Figure 6.9: Effect of Changing the Thresholding Value Variable Resolution

Graph 6.9 shows the thresholding analysis using variable resolution, we can
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Figure 6.10: Effect of Changing the Thresholding Value Uniform Resolution

observe that the performance is very similar, with a slight smoothing effect caused
by the reduction in the percentage of edges to be kept (from 50 % to 30 %). Even
though the thresholding analysis in uniform resolution (see Figure 6.10) shows a
similar smoothing effect, this is not enough to eliminate the erroneous peaks that

appear at 1.5° and 6.5° degrees of rotation.

6.4.2 Experiment 2 (Graphics Environment)

The next experiment presented was conducted uzing the graphics platform.
A scene with 7 “bjects, all at different depths, was created. For this experiment
the chair in the center of the left image (see Figure 6.11 (a)) was chosen to be the
object of attention. A sequence of 42 images was taken from the right viewing
position, each after performing one panning step of 0.5° for a total rotation of
21° (see Figure 6.11 (b) to (h)). As before, the analysis over these images was
performed in both uniform resolution and variable resolution (using a distortion
factor of 0.5). Graph 6.13 shows the matching function for the two methods.

This experiment demonstrates the usefulness of the VR scheme for clut-
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{b) Right Image (c) 2 Deg Rotation (d) 4.5 Deg Rotation

(e) 7 Deg Rotation (£) 9.5 Deg Rotation (g) 12 Deg Rotation (h) 19.5 Deg Rotation

Figure 6.11: Image Sequence in Uniform Resolution for Artificial Experiment

{a) Left Image (b) Right Image (c) 2 Deg Rotation (d) 4.5 Deg Rotation

(@) 7 Deg Rotation (£) 9.5 Deg Rotation {(g) 12 Deg Rotation (h) 19.5 Deg Rotation

Figure 6.12: Image Sequence in Variable Resolution for Artificial Experiment
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Figure 6.13: Matching Function for Artificial Experiment

tered environments. In uniform resolution the fovea is not emphasized, which
creates many erroneous peaks in the matching function. The VR function in-
creases to a unique peak and then decreases. Taking advantage of the flexibility
that the graphics platform provides, we conducted an experiment that will show
the changes in the matching function for an object at different depths. The results

of such experiment are presented in the following subsection.

6.4.2.1 Matching Function for Different Depths

Three scenes with a single object (bookshelf) were created using the graphics
environment, with the only difference of having the object at different depths (1
m, 1.1 m, and 1.4 m). The separation between the two viewing positions was set
to 22 c¢m, and a sequence of 42 images was taken from the right viewing position
(21° of total rotation). Figures 6.14 and 6.15 show the results of the analysis
of the three scenes in uniform and variable resolution respectively. As expected,
the required rotation to obtain the appropriate match for objects that are far

away is less than that required for objects that are closer. We can observe this
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phenomenon in Figures 6.14 and 6.15.
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Figure 6.14: Matching Function in Uniform Resolution
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6.4.3 Experiment 3 (Real Environment)

Images captured with the real camera system were used in this experiment.
Two viewing positions separated by a baseline of 6.5 inches were used to obtain
the left and right perspective views of the scene. In this case, the toy in the center
of the right image (top left Figure 6.16) is the object of attention of the analysis.
A sequence of 24 images were captured from the left viewing position, each after
one panning step of approximately 0.59° for a total rotation of 13.58°. Figure 6.16
shows some of the images of the sequence, the complete sequence is not presented
to save space. The analysis was performed in variable (A = 0.5, s = 13.17) and
uniform resolution, using a processing image size of 128 x 128 pixels.

Figure 6.17 shows the matching function for the real experiment 2. Observe
that the VR graph has a much more prominent peak, compared to the uniform
resolution graph, for the correct vergence angle. The peak near 0° rotation is
caused by the peripheral objects, all of which are far away, therefore almost no

rotation is required for them to match.

6.4.3.1 Multiple Thresholding

When most of the peripheral objects are located very far from the object
of interest, i.e., strong depth discontinuities between the object of attention and
the peripheral objects exist within the scene, the matching function describes two
peaks, as shown in Figure 6.17 — one due to the objects in the periphery and the
other due to t1e object of attention in the fovea. The variable resolution approach
to vergence control, by itself, cannot avoid this type of matching problem, so
additional processing needs to be performed.

To compensate and improve the performance of our method under the
circumstances described above, a modification of the thresholding step in our
methodology was deviced. This modification considers the usage of different
threshold percentages for the periphery and for the fovea, trying in this way to
highlight the importance of the features corresponding to the object of attention

while reducing it for those corresponding :~ the objects in the periphery.

63



64

(a) Right Image (b) Left Imsge

(d) Lafr Image after 1.72 deg rotatiocn (d) Left Image after 4.59 deg rotation

(o) Laf: Image after 7.45 deg rotation (£) Left Image after 10.32 deg rotatica

Figure 6.16: Image Sequence for Real Experiment 2
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In the case of the variable resolution analysis the boundary between the
foveal and peripheral regions is defined by the FET mapping function. When the
radius of the original image turns larger than the radius of the variable resolution
image, the shrinking process starts, together with the periphery. That is, when a
pixel p(x,y) in the uniform resolution (UR) image gets mapped into a pixel q(z*,
") in the variable resolution (VR) image, and the distance from p(x,y) to the
center of the UR image is larger than the distance from q(z*, y*) to the center of
the VR image the mapping a shrinking process is taking place, this indicates that
this pixels belong to the periphery of the VR image. In the uniform resolution
analysis, the modification was also implemented to provide a comparison measure.
Although in uniform resolution there is no foveal or peripheral regions, the foveal
threshold was applied to one third of the total area in the central region of the
image, and the peripheral threshold was applied to the rest. Figure 6.18 shows
a comparison between the uniform-resolution matching functions. As can be
observed from the multiple threshold analysis, there is no sensible improvement in

the shape of the matching function. Figure 6.19 shows the analogous comparison
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between the variable-resolution matching functions. In this case, the multiple
thresholding technique helped in reducing the height of the peak due to peripheral

matches while slightly enhancing the peak due to matches in the fovea.

6.4.4 Experiment 4 (Real Environment)

The final experiment was conducted using images captured by the real cam-
era environment. For this experiment the cup in the center of the left (static)
image (see Figure 6.20 (a)) is the object of attention. A sequence of 21 images
was taken from the right viewing position, each after performing one panning
step of approximately 0.99° for a total rotation of 19.45° (see Figure 6.20 (b) to
(f)). Figure 6.21 illustrates the matching performance of the experiments con-
ducted in uniform resolution (dashed line) and variable resolution (solid line).
The distortion factor used to generate the variable resolution images was 0.5.

As reviewed in Section 6.4.3.1 the matching function shows two peaks due to
strong depth discontinuities between the object of attention and the background.
The peak obtained after 15° of rotation is due to the proper match of the object in
the fovea. It is understandable that the peak is not as prominent as the one shown
in Figure 6.17, because as can be noted in Figures 6.20 (a) and (e) the background
around the cup has changed from black in Figure 6.20 (a) to almost white in Figure
6.20 (e). This change in the background surrounding the cup changed drastically
the strength of the edges due to the contour of the cup, therefore making them
very susceptible to be removed during the adaptive thresholding stage. Changes
in the direction of the edges due to radically different backgrounds were observed
in other experiments. The uniform resolution matching function, barely shows
the peak resulting from matching the object of attention. This is because of the
lack of feature information about the contour of it, as well as the strong depth
discontinuities.

A multiple thresholding analysis was computed, using threshold values of
10%, 20%, and 30% for the periphery and 50% for the fovea, to try to improve the

shape of the matching functions. Figure 6.22 shows the matching functions for
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the m Itiple thresholding analysis using uniform resolution. Although, a slight
improvement can be observed in the peak due to the match of the object of
attention, no change can be noted for the peak at 0° rotation. Figure 6.23 shows
the analogous analysis using variable resolution. In this case, a reduction in the
height of the peak at 0° rotation can be identified; unfortunately, there is also a
slight reduction fo1 the peak av 15° of rotation.

Figures 6.17, 6.13, 6.6, and 6.2} demonstrate the validity of the theoretical
analysis in Chapter 5. Variable resolution clearly assists the vergence process hy
creating a smoother matching function with a clear and high peak. This peak can
be used to derive the angle between a stereo pair of cameras, so that both “look
at” the same object. The vergence angle determines the depth of the object in

the fovea (see Section 2.2).
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Chapter 7

Conclusions and Future

Research

In this thesis we have presented a method for controlling vergence move-
ments using a variable-resolution representation of the input image. The method
relies on a very simple scheme for matching edges of the left and right views, com-
bined with constraints for eliminating false edge alignments. The power of this
method is derived solely from the variable-resolution approach, and it could be
further enhanced by using better edge matching schemes. The method described
is most uscful for solving problems in stereo vergence, although it could be used
for determining disparity for any object in a pair of left and right images. The
advantages of the variable resolution scheme are lost in scenes containing small
objects with large depth discontinuities. It should be pointed out, however, that
it is these situations that also create problems for the human visual system. To
cope with such situations, multiple thresholding techniques applied to the fovea
and the periphery were briefly presented. A variable distortion factor A that grows
with the vergence angle, or a multiresolution scheme may have to be used.

We also presentcd two methods for modeling and calibration of fish-eye

lenses. The first model (FET) is simple and efficient, however the second (PFET)
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model fits real fish-eye lenses more accurately. Experimental results demonstrat-
ing the validity of the two models were also presented.

Simplified vergence control is not the only advantage of variable-resolution
vision. Recently it has been shown that the complexity of character thinning and
boundary following [21, 4] problems can be greatly reduced by using templates
with a high-resolution center and a low-resolution periphery. At the same time,
the performance of such algorithms has been demonstrated to be superior com-
pared to uniform resolution methods. In general, variable-resolution schemes can
reduce the complexity of many perceptual tasks. This is achieved at the cost of
restricting detailed vision to a small part of the visual input. In order to obtain
elaborate and detailed descriptions of a whoic scene, multiple variable-resolution
images must be integrated across fi:au,ons, and thus cortrol of head and eye

movements becomes a crucial part of the perceptual process.

7.1 Future Research

At present, the methodology has been implemented over a real image en-
vironment which has only one camera, that can be shifted about the x axis to
simulate the different perspectives obtained with a stereo system. A complete
sterec system, including an accuraie way of estimating the panning angle of the
caneras, nezds to b : acquired in order to improve the reliability and performance
of the method. The stereo system could be used as well for performing accuracy
of depth estimation tests and the results compared with those of other vergence
control methods.

Although a real-ti.ne implementation (strictly speaking) using the method-
ology presented, is difficult to conceive, the use of a dedicated real-time platform
such as the Maxvideo20 pipeline image-processor, will certainly speed up the
process considerably.

It was found that edge direction and strength features are very sensitive to

bachground changes caused by the camera rotation. As mentiv..ed in Section 3.3,



the use of a better matching scheme, utilizing constraints like figural continuity,
will help in solving this problem as well as improve the still existent ambiguity.
‘I'he use of a variable distortion factor A that grows with the vergence angle,
to improve the performance of the methodology for scenes with strong depth
discontinuities, could be studied. In addition, it would he interesting to investigate
the repercussions of changes in the distance between the optical centers of the
cameras (baseline), and how errors in estimating this parameter would affect t
accuracy of depth estimation.

Fish-eye lenses whose distortion has not been optically compensated could
be used to obtain the variable-resolution images, reducing in this way the compu-
tational cost of the algorithm. Analysis of the performance of our methodology
using such lenses will have to be evaluated.

In the long term this methodology could be integrated with tracking technol-
ogy to produce a more complete system. In such environment, vergence control
will not only provide additional information to the tracking process making it
more accurate, but working together with it, will make possible to keep contin-
uous depth information about an object in the scene even if it moves. This is
particularly important for performin,- higher level tasks like Hand-eye coordina-

tion, navigation, or obstacle avoidance.
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