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Abstract

Music-driven character animation extracts musical features from a song and uses them to 

create an animation. This thesis presents a system that builds a new animation directly 

from musical attributes, rather than simply synchronizing it to the music like similar 

systems. Using a simple script that identifies the movements involved in the 

performance and their timing, the user can control the animation of characters easily. 

Another unique feature of the system is its ability to incorporate multiple characters into 

the same animation, both with synchronized and unsynchronized movements. Two 

prototype systems are developed in this thesis: one incorporates hip-hop movement and 

the other integrates Celtic dance. An evaluation of the results from the Celtic system 

shows that the majority of animations are found to be appealing to viewers and that 

altering the music can change the attractiveness of the final result.
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Chapter 1

Introduction
Animations, whether they are in movies, television or video games, always capture the 

viewer’s interest more if they are accompanied by music. Music has the capability to set 

the mood for a scene and can alter the viewer’s perception of what she is seeing. The 

ability to tie the correct type of music in with an animation is a difficult and time- 

consuming process. For example, music with a dark and sinister undertone would not fit 

well with an animation that projects love and happiness through its movements and 

interactions. In the same way, a bright and cheerful song is ill suited for a sequence of 

events that are meant to frighten a viewer. Not only is choosing the proper type of music 

important, but proper synchronization of music with the events in an animation is 

essential when attempting to secure the attention of a viewer. An interesting animation 

brings with it a “wow” factor, enticing the viewer to watch and appreciate the work. This 

can be achieved through a good combination of interesting movements and relevant 

music.

One method of unifying character animation and music is through direct 

synchronization. This process takes an already existing sequence of motions and a piece 

of music and lines them up so that movements occur in time to the music. While this 

technique is certainly effective, it is unable to mold the animation sequence so it fits the 

music. The user must still choose the correct type of music to suit the animation as well 

as build the animation herself, either through keyframes, physics-based equations or 

motion capture data. This thesis proposes a method that uses musical attributes such as 

the beat and dynamics to build an animation that fits user specifications and is tailored to 

the music. The user will be able to choose any type of music she desires and create an 

animation that is not only automatically synchronized to the music, but also projects key 

elements of the music’s mood as well.

Building a character animation system that is driven by music requires an efficient 

beat detection algorithm. Many synchronization systems use MIDI files to retrieve 

musical information because of the easy data extraction they provide. The main problem 

with MIDI files is that they are not widely accessible by everyone and it is necessary to

1
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own specific software in order to make use of them. The system specified in this thesis 

uses .wav files in order to create a more user-friendly system. Musical attribute 

extraction is more difficult when using .wav files, but several signal processing methods 

exist that allow for fairly accurate beat detection. Goto built and revised a beat prediction 

algorithm that uses previous knowledge to determine where the next beat in a song will 

occur [17,18,19]. This thesis uses part of Goto’s algorithm to determine beat onsets, but 

modifies it by combining it with a tempo detection algorithm designed by Tzanetakis 

[40], This modification simplifies the original algorithm while still providing accurate 

beat detection.

Producing high-quality character animation has proven to be difficult for 

inexperienced users. Animation systems such as Autodesk’s Maya and Discreet’s 3D 

Studio Max are intimidating for a new user because of the enormous amount of features 

they provide. Setting up and animating a character is extremely time consuming and it 

generally takes practice and experience for a user to satisfactorily manipulate a human 

body. The system presented in this thesis provides a user-friendly method for creating a 

high-quality character animation where the user chooses pre-built movements to build a 

motion sequence. Through the use of a script file, the user can choose the order of 

specific movements and build a dance routine for a character, or set of characters, of her 

choosing. This ensures that she does not have to struggle with positioning character 

joints in order to achieve a specific motion. The system also gives the user the chance to 

experiment with different types of characters by supporting interchangeable characters. 

The user can change the appearance of the characters in the animation and easily use 

different characters in the same motion sequence. Maximum user control is provided by 

this system without relying on the user for the key components of the animation.

The main contributions of this thesis include:

• the development of a system that builds a new animation directly from musical 

attributes, rather than synchronizing an already existing animation to music.

• the implementation of a signal processing-based beat detection algorithm based 

on Goto’s beat onset method and Tzanetakis’ tempo recognition method, as well 

as a novel dynamics extraction algorithm.

2
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• the development of a script file that allows for the animation of several characters 

and the ability to specify and build different movement routines for each 

character.

• the development of a mapping design that encourages the user to experiment with 

matching different musical attributes to different movements.

Background information and related research are addressed in Chapter 2 of this thesis. 

The musical analysis algorithms used for tempo recognition, beat detection and dynamics 

extraction are detailed in Chapter 3. The next two chapters discuss the two types of 

systems implemented: Hip-Hop based animation (Chapter 4) and Celtic dancing (Chapter 

5). Results are presented in Chapter 6, along with a detailed explanation of the 

evaluation methods used to analyze the results. Future work is discussed in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 2

Background and Related Work

Synthesizing a unique animation directly from music is a topic that has not been explored 

in much depth. In fact, the majority of research into this area has been done on 

synchronizing an already existing animation with a piece of music. Few methods discuss 

how to take the information retrieved from the music file and use it to directly create a 

new animation. Music-driven character animation involves both music analysis and 

movement synthesis. Music analysis is performed through beat detection and dynamics 

extraction. Research in beat detection has led to various options for this component of 

the system, but a fast and accurate method is imperative to producing a faithful 

interpretation of the music. Realistic character animation of a human figure is extremely 

important for synthesizing believable dance motion. The system discussed in this thesis 

relies on movements that can be combined easily and changed to reflect the mood of the 

music. The process of combining music and movement must be believable, with 

mappings that correctly match the music’s impression to the impression of the 

movements.

In this chapter the various components that contribute to music-driven character 

animation are reviewed. These techniques are divided into five categories: music 

analysis, character motion, primitive movements, mapping techniques and synchronizing 

music with motion. Music analysis discusses several beat and tempo tracking algorithms 

that are used to retrieve information from audio data through signal processing. The 

following section, character motion, reviews systems that address the problem of 

animating a human character. Character animation is generally performed through one of 

three ways: motion capture-based methods, physically based animation equations and 

keyframed techniques. Algorithms in each of these categories are described. Music- 

driven character animation demonstrates that complex motions can be created using 

combinations of simpler primitive movements. Algorithms in other areas of computer 

graphics have also made this observation and their ideas will be commented on in the 

primitives section. Performing mapping between musical features and motion primitives

4
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is a key component of music-driven character animation, so techniques with similar goals 

will be addressed in the section dedicated to mapping methods. Lastly, several 

synchronization techniques between music and motion are discussed in detail. 

Synchronization is the technique most similar to music-driven character animation 

because the end goal of both systems is the same: an interesting animation that moves 

reliably with the music. The path taken to arrive at the goal is vastly different however, 

and these differences will be discussed throughout this thesis.

2.1 Music Analysis

The major components that most listeners can distinguish when listening to a piece of 

music are the beat and the dynamics. The beat is a consistent pulse that sounds through 

the entire song and gives a sense of the tempo or speed of the music. The dynamics are 

the loud and soft levels that occur throughout the piece and the transitions between them. 

These two attributes, along with the tempo, are the musical components that we are 

looking to extract in our system. These attributes can be detected from either MIDI data 

or audio data. MIDI data can easily provide the desired information, but MIDI files are 

not readily available to users. We choose to use audio files rather than MIDI files for this 

reason.

Performing music analysis on audio files is not a trivial task. Unlike with MIDI data, 

it is a great deal more difficult to obtain chord information and musical note data such as 

pitch and tone. Audio files, however, are more accessible to all types of users and 

research into audio analysis has started to make good progress. The following section 

provides details on existing techniques for tempo recognition and beat detection, 

including signal processing methods employed to divide the data into more manageable 

components.

2.1.1 Signal Processing Techniques

There are several key signal processing components in every music analysis algorithm. 

The most popular methods for separating the signal into manageable frequency 

components are the Fast Fourier Transform, the Discrete Wavelet Transform and 

filterbanks.

5
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The Fourier Transform (FT) is an extremely popular method in image and signal 

processing. It decomposes a signal in the time domain and outputs a representation in the 

frequency domain. The continuous FT  is defined by

F(u) = ^ f(x)exp[-j27tux]dx  (2.1)

where J{x) is a continuous function. It extracts frequencies from the signal so that each 

frequency can be examined individually. If the continuous function f(x) is discretized by 

sampling then the continuous FT can no longer be used on the signal. A discrete Fourier 

Transform (DFT) that deals with sampled sequences is defined as

F(u) = ^ f ( x ) e x p [ - j 2 m x / N ]  (2.2)

where the values of u correspond to samples in the continuous function. In the early days 

of computers, the major difficulty with using the FT and DFT was that they were not 

suitable for implementation on a PC due to the number of complex multiplications and 

additions required by each equation. For an N point sequence of samples, the DFT 

requires N multiplications, which is computationally expensive when N is a large 

number.

X
♦

Figure 2.1: The Fourier Transform takes a time-based signal (left) and converts it to a 
frequency-based signal (right). These diagrams were taken from [16].

The Fast Fourier Transform (FFT) rectifies this problem by rearranging the DFT 

equation so it uses fewer multiplications, resulting in a computationally efficient equation 

that uses Nlog2N multiplications. An important requirement for achieving this 

effectiveness is that the number of samples must be a power of 2. The FFT equation is 

defined by
|  N - 1

F{u)  = — Y f ( x ) W J  where Wn = e x p [ - ;2 ^ /N ] . (2.3)

6
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This equation is easier and faster to implement on the slower computers and although 

today’s computers are quick enough to use both the DFT and the FFT, the FFT is still the 

more popular method. More information on the FFT can be found in [15].

The power spectrum is built from the FFT and denotes a signal’s power. The power 

spectrum represents the magnitude of the different frequencies of a signal as divided by 

the FFT. The most common way to calculate the power spectrum is to perform the FFT 

on the signal and multiply the result by its complex conjugate. However, the FFT of the 

autocorrelation function also results in the power spectrum. The power spectrum is used 

by some beat detection algorithms to determine the points at which the signal’s power is 

increasing. This narrows down possible positions for the beat onsets.

The Discrete Wavelet Transform (DWT) is another algorithm that is used to separate 

a signal into its frequency components [15,21,30,31]. Unlike the DFT, which cannot give 

frequency and time information at the same time, the DWT is a time-frequency 

representation of a signal that preserves complete information of the signal. The signal is 

passed through a series of high pass filters to analyze high frequencies and low pass 

filters to analyze low frequencies. The signal is separated into detail coefficients using 

the high pass filter and approximation coefficients using the low pass filter. The 

approximation coefficients are often considered the most important section of a signal 

when performing musical analysis because the beat is generally found in the low 

frequency information. The DWT is extremely useful for separating out the important 

low frequency information from the signal so that it can be further analyzed. One pass of 

the DWT involves performing convolution between the signal and each filter and then 

downsampling by 2. Without downsampling the number of samples in each subsignal 

would be equal to the total number of samples in the input signal. This would result in 

twice as much information as needed. By resampling, complete information of the signal 

can be retained without storing extra samples. The frequency bandwidth for each level is 

also split into two, with the higher frequency bands separated into the detail coefficients 

and the lower frequency bands separated into the approximation coefficients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I I H jD ~ 1000 samples

S I 1000 samples

-1000 samples

S I  1000 samples

—500 coofs

jZhCD-pp] -5 0 0  coefs

Figure 2.2: The diagram on the left displays passing a signal through a high pass filter 
and a low pass filter. The result is two complementary subsignals and twice as much data 
as found in the original signal. The diagram on the right performs the same filtering 
operation, but downsamples the subsignals by 2. This still provides complete information 
about the original signal but reduces the number of samples by half. Both diagrams were 
taken from [30].

The signal can be decomposed further by sending the approximation coefficients 

through another high pass and low pass filter set and subsampling by 2. This can 

continue through many levels. The detail coefficients are maintained throughout the 

entire process without any further processing. Figure 2.3 displays the decomposition at 

several levels. The same high pass and low pass filters are used throughout all the levels 

but the sizes change along with the subsignals. The signal is continuously decomposed 

into subsignals that complement each other at each level without much loss of 

information from the original signal. In the end, the original signal is represented by the 

sets of detail and approximation coefficients obtained through the hierarchical wavelet 

decomposition.

Filterbanks are also used to isolate different frequencies in a signal [15]. A 

filterbank is made up of a set of parallel filters that include low-pass, bandpass and high- 

pass filters. According to the filters used, the filterbank splits the signal into several 

subbands that can be analyzed separately. The number of subbands that exit the 

filterbank is equal to the number of filters used. Characteristically, filterbanks can 

include two processes: the analysis process and the synthesis process. The analysis 

method is used to deconstruct a signal while the synthesis method is used to reconstruct 

it. The analysis process filters the signal into frequency bands and then performs 

downsampling on each band. The synthesis process takes each frequency band as input, 

performs upsampling and the same filtering as used in the synthesis process, and then

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x[n] f=0 - 7t

Level 1 
DWT coefficients

Level 2 
DWT coefficients

Level 3 T 
DWT coefficients

Figure 2.3: The Discrete Wavelet Transform (DWT) decomposes a signal into several 
frequency levels (as denoted by /  at each level) by using highpass (g[n]) and lowpass 
filters (h[n]) and subsampling the results by 2. The length of the signal determines how 
many times the decomposition process can be performed. This diagram was taken from 
[31].

combines the frequency bands to generate the original signal. Filterbanks are appealing 

because they allow the user to choose the number of subbands to separate the signal into, 

as well as the types of filters used by the filterbank.

2.1.2 Tempo and Beat Detection

The beats of a song are the most widely recognized method of following music. It is 

fairly easy for even the most inexperienced listener to track beats through a piece of 

music. Dancing to a song is generally reliant on the beat because it provides cues for the 

dancer to change motions. Beat positions are the most important aspect of music analysis 

because they provide the structure of a piece of music. This structure is used in all dance 

styles and it changes from song to song. The beat structure is entirely dependent on the 

tempo or speed of the music. The system in this thesis uses beats to help control the

9
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timing of the movements. The amount of time each movement receives to complete its 

motion is entirely dependent on the beats, so it is important that the beat detection 

algorithm is accurate and consistent. Beat detection for audio analysis has been studied 

for over a decade and many methods have been proposed. Some of these techniques are 

detailed in this section.

Several well-known beat detection algorithms have been proposed and refined by 

Goto et al. [17, 18, 19]. His techniques perform beat onset prediction in real-time using 

the Fast Fourier Transform (FFT) and the resulting frequency spectrum. He refines the 

accuracy of the onset algorithm by detecting and using chord change information and 

drum patterns. Beat prediction is used to determine where the next beat will occur. By 

using autocorrelation and cross-correlation, the algorithm looks back in time at previous 

onset positions and uses the calculated distance between beats (inter-beat interval) to 

determine the next onset position. Multiple agents are used to track different beat 

hypotheses across seven frequency ranges so that the system will not lose track of the 

beats over time due to bad predictions. Specific parameters are used to track the beats, 

including frequency range, beat type (strong or weak) and inter-beat interval, allowing for 

hypotheses to take into account different pieces of information. More detailed 

information about Goto’s beat detection algorithm is given in Chapter 3.

The tempo of a piece of music can be a key component in tracking the beat across 

time. The tempo implies the speed of the beat occurrences and is used by many 

algorithms in order to make beat prediction easier. Tzanetakis et al. implement a fairly 

reliable system that is able to analyze a piece of music and return its tempo in beats per 

minute [40], They use the discrete wavelet transform (DWT) rather than the Fast Fourier 

Transform (FFT) to represent the audio signal in the frequency-time domain. A 

histogram accumulates the top candidate tempos throughout the analysis of each section 

of the audio signal. A steady beat is necessary for this method to work because it does not 

track tempo changes over time. The algorithm is discussed more in Chapter 3.

Unlike Goto, most algorithms use tempo detection to reinforce the beat onset 

detection algorithm. Methods such as Scheirer’s [33] and Dixon’s [10] use the tempo in 

conjunction with their beat prediction and are able to track tempo changes. Scheirer uses 

a frequency filterbank to separate the signal into six frequency bands and a filterbank of

10
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comb filter resonators is employed for each band to determine the strongest signal period. 

Each resonator has a delay time T, which will respond strongest to a signal with period T. 

The delays vary across frequency bands and cover the range of possible beat frequencies. 

The results of all the comb filters are summed across all frequency bands and the delay 

time of the resonator with the highest value is taken as the tempo T. Using comb filter 

resonators allows the algorithm to track tempo changes because when the tempo changes, 

the strength of the resonator of the old tempo will decrease and the resonator that 

corresponds to the new tempo will grow stronger.

Input

Tempo

EnergyBiengyBiengy

Envelope
Extractor

P e * -
Picking

Comb
R esonant
Filterbank

Frequency
Filterbank

Comb
R esonant
Filterbank

D ifferentiator

Figure 2.4: Scheirer’s beat detection system tracks a song’s tempo using a frequency 
filterbank and comb filter resonators. The frequency filterbank splits the signal into 
several frequency bands while the comb filters examine each band and search for a tempo 
that corresponds to the resonator’s delay time. The diagram above was adopted from the 
original work.

The next beat position is predicted using each comb filter’s vector of delays. The 

vector corresponds to the resonator’s next n samples of output, which are its detected

11
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tempos over the next portion of the signal. The vectors are summed up across frequency 

bands and the peak value corresponds to the next beat position. Many beat detection 

algorithms need the music to contain drums, as the low frequency sound makes beat 

tracking easier. Scheirer’s method does not use this assumption and therefore should 

work with more types of music.

Tempo tracking is also performed by Dixon and used for multiple agent beat 

prediction [10]. Like most beat detection algorithms, the signal is divided into several 

frequency bands. Note onsets are detected and used to calculate the inter-onset interval 

(IOI). The IOIs are clustered according to note structure: half note, quarter note, and 

eighth note, with larger IOIs corresponding to half notes and smaller IOIs corresponding 

to eighth notes. The 8 seconds of music previous to the current window can be used to 

update tempo clusters by grouping IOIs of similar values from that period in time. The 

average IOI is noted as the tempo of the cluster and clusters with similar tempos are 

grouped together. The tempo representing the resulting cluster is updated and the 10 best 

tempo estimates are stored. This allows for tempo tracking and updating over time, 

which will result in a more accurate beat detection algorithm. Each agent is then given a 

tempo hypothesis corresponding to one of the clusters, as well as an IOI value from 

within the cluster. The signal is explored a section at a time using tolerance windows. 

Each window is separated into an inner window and an outer window. Note onsets that 

lie within the inner window are marked as beats, while those that fall within the outer 

window are stored as beat possibilities. A new agent is created for each of these 

possibilities, where the original agent assumes the candidate is a beat while the new agent 

assumes the candidate is not a beat. The creation of new agents allows for all 

possibilities to be considered, but also adds to the overhead of the system. Agents 

evaluate themselves and the beat sequence of the agent with the highest score becomes 

the final result of beat positions within the musical signal.

Music features other than beats and tempo have been studied and identified using 

audio signal processing. Like Goto, Uhle and Herre consider the structure of music, 

except they look for pulse levels at the note, beat and bar levels rather than strong and 

weak beats [41]. They identify note onsets and use the interval between notes, called the 

tatum, to detect tempo candidates, and finally the time signature. Uhle and Herre use the

12
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Figure 2.5: Using multiple agents to track beat hypotheses is a popular method in beat 
detection algorithms. In Dixon’s algorithm, values A to F across the top represent the 
beat onsets, with the solid squares representing predicted beat times that occur on an 
onset and the hollow squares representing predicted beat times that don’t correspond to 
onsets. Squares which occur close together (Agentl) correspond to a faster tempo than 
circles that occur further apart (Agent2). The diagram above was adopted from Dixon’s 
original work.

assumption that the ratios between tatum periods, beat periods and bar periods are nearly 

integer values. This assumption simplifies the algorithm by narrowing down the 

candidates for the tempo and time signature. In a way similar to many other beat 

detection algorithms, they use a running window to split the audio signal into frequency 

bands. The envelope of the band is extracted and note onsets are detected using high pass 

filtering and half-wave rectification. Peak-picking of inter-onset-intervals (IOIs) from a 

histogram is used to choose the tatum period. Once the tatum period has been 

discovered, autocorrelation is performed on the envelope and the resulting peaks that are 

integer multiples of the tatum period are extracted. These peaks represent tempo 

candidates. The tempo candidates are subsequently used to determine bar length 

candidates by choosing the peaks in the autocorrelation result that are integer multiples of 

the tempo candidates. This algorithm is able to extract more of the musical structure than 

most other methods; however, it is extremely dependent on the accuracy of the note 

detection. Unfortunately, it is also not able to determine the beat positions of the song so 

it is best used for tempo detection.

Jensen and Anderson also use note onsets to help them compute the inter-beat- 

interval and detect the positions of the beats [22, 23]. The note onsets are detected using 

the high frequency content (HFC) of the audio signal. They determine that this audio

13
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feature provides them with the best note onset results by performing several tests and 

computing error measures for comparison with other audio features, such as amplitude 

and spectral irregularity. Using the detected onsets, they generate a beat induction 

histogram to calculate the current beat interval. The histogram is updated for each new 

note onset with a Gaussian curve at the interval values corresponding to the distance 

between the new onset and the previous one. The maximum peak of the histogram is 

considered the current beat interval. The beat detection algorithm takes each note onset 

and calculates the distance to a previously detected beat position. If the distance 

corresponds to the current beat interval, then all the note onsets within that interval are 

compared. Using the information from the HFC analysis, the height of the onset peaks 

are measured against one another. If the current note onset peak is the strongest in the 

interval then it is chosen as the next beat and the algorithm proceeds to the next interval.

Current beat interval

o
Lire

f
Ignored b eats 

 >

If

* A.. M l  I ^  A„i.y.A LL A.

B eat location

Time

Figure 2.6: Using the previous beat and the estimated current beat interval, Jensen and 
Anderson’s algorithm determines if the current note onset (the peak pointed to by the 
Beat location arrow) is the next beat in the audio signal. This diagram was adopted from 
Jensen and Anderson’s original work.

A fairly unique method for detecting beats in an audio signal involves recurrent 

timing networks [20]. These networks allow a signal to be compared with itself at 

different points in the past. They can be used to detect patterns and periodicities and then
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proceed to use that information to make future predictions. The delay loops in a network 

are similar to memory in that they retain the temporal structure of patterns for later 

comparison. Whenever the pulses entering the network as input match the pulses arriving 

through the loop (patterns previously detected and stored), the magnitude of the pulse 

entering the loop increases. This results in recurring patterns being built up in the loop, 

which is extremely useful with respect to detecting recurring beats. Harper and Jemigan 

first process the input audio signal and send a resulting pulse signal to the system. Each 

pulse in the signal corresponds to the position at which a sound onset was detected. 

Details on detecting the sound onsets were omitted from the paper. Computing distances 

between the current onset pulse and previous ones forms a histogram where the intervals 

that have the highest peaks become tempo hypotheses. Similar to the agent-based 

systems mentioned previously, this algorithm uses a group of detection nodes, each of 

which corresponds to a beat period hypothesis. Nodes evaluate their success individually 

and the node with the highest final score is chosen as the beat output. Each node contains 

a recurrent timing network where the number of delay loops corresponds to the node’s 

beat period hypothesis. The loop in the network with the highest activation level 

corresponds to the next beat position. An output signal of pulses is built, where each 

pulse denotes the position of a beat as detected by the network. Although the concept 

behind this method is unique, it suffers from a problem that occurs with most other 

existing beat detection methods. It has problems detecting beats in jazz and classical 

songs, which are traditionally songs without a strong steady beat, and so its range of 

types of music is limited.

2.2 Character Motion

Realistically portraying human motion is a difficult task that has been studied through 

various views. Body joints are positioned and rotated from one position and orientation 

to the next in order to create motion over time. There are three main categories of 

character animation: keyframing, motion capture data and physics-based equations. In 

most character animation cases there exists a trade-off between complexity and realism. 

Physics-based equations provide physically realistic animations, but they are complicated 

and difficult to implement. Keyframing techniques are fast and efficient, but their
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realism is based on the animator’s ability to reproduce movement. Motion capture is fast 

to use and accurate, but it can be extremely difficult to obtain the data needed as the 

quality of the motion is based on the experience of the actor. Algorithms implemented 

within each of these categories are discussed in this section. Choosing a particular 

method for character animation depends on the purpose of the system, the level of 

realism and detail required and the speed necessary for making the system achieve its 

goals. All three types of techniques were considered for the implementation of our 

system, but keyframing was chosen because it best fits the Celtic style of dance and the 

goals of the animation system.

2.2.1 Keyframed Motion

Keyframed animation is the earliest form of computer animation. The animator sets the 

position and orientation of the character’s body parts or joints at specific frames and the 

system interpolates between the frames to create an animation. It is a less realistic form 

of animation than physics-based animation or motion-capture data but it is generally 

faster and easier, especially when using an animation system such as Autodesk’s Maya or 

Discreet’s 3D Studio Max. Keyframed motion is also not subject to the same constraints 

as motion-capture data and physics-based animation. Unlike systems that use motion- 

capture data, the movements can be altered from the original and the animator is free to 

experiment with a huge range of motion rather than being constrained to the sequences in 

the motion database. Movement that looks good is not always physically correct and 

keyframed motion can take advantage of its lack of physical constraints to create visually 

appealing animations.

Thome et al.’s Motion Doodles approach is a novel way of sketching character 

motion using keyframed animation and mapping [38]. The character is supplied by the 

user and is animated according to system specifications. The user creates the animation 

by using a sequence of lines, loops and arcs called gestures. The sketched motion is then 

mapped to a set of motions that will make up the desired animation. Each gesture is 

mapped to a specific motion where the height, start and end points and time taken to draw 

the gesture all make subtle changes to the movement. The gestures give the user 

complete control over the generation of the animation without the concern of how to
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design individual movements. A parser is included in the system to split up the input 

gesture sequence into recognizable individual gestures. The final animation is 

synthesized by using keyframes and a Catmull-Rom interpolant. The root or center-of- 

mass of the character is placed halfway between the feet and uses parabolic curves for 

placement during movements that are airborne, such as jumps and flips. Inverse 

kinematics is used for motions where the character comes into contact with the ground. 

Like the system detailed in this thesis, Thome’s work encourages experimentation by the 

user.

Spacetime optimization is another method that can be used in combination with 

keyframing to synthesize new movement. Liu and Popovic built a system for rapid 

prototyping of realistic character motion from simple animations by using a small set of 

specific keyframes and constraints [29]. The input consists of a character with joints and 

an animation that contains joint angles at each frame. Environmental constraints, such as 

feet staying on the ground, are automatically extracted from the input data and physical 

constraints for the movement, such as gravity and momentum, are generated by the 

system. Momentum is used to ensure realistic motion occurs between the user-defined 

keyframes. The unconstrained, or in-flight, movements are separated from the 

constrained, or on-the-ground, movements and transition poses are used to connect 

constrained and unconstrained sections. The user can choose these poses or ask the 

system to suggest some. The spacetime objective function is built for realistic movement 

based on mass displacement, degree of freedom (DOF) deviation, and static balance. 

Mass displacement ensures natural joint movements by determining the mass 

displacement over the entire character. The variation between DOFs is minimized to 

ensure smooth movement between frames, while the static balance is important in 

realistic looking movements where the character is standing still. The full spacetime 

optimization formulation minimizes the objective function while satisfying environment, 

transition pose and momentum constraints.

2.2.2 Motion-Capture Data

Motion capture data involves capturing detailed movements performed by a real 

performer and building a database of the movement sequences that can be used in topics
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such as character animation for reconstructing the motion with computerized characters. 

Motion capture systems are expensive to use and it can take a lot of time and effort to 

retrieve the precise movements requested by the animator. The quality of the data is only 

as good as the actor performing the movements and it can be difficult to modify the 

existing data. Despite these drawbacks, motion capture data is widely popular for 

character animation due to its realism and the ability for animators to reuse the data. 

Once large databases of various types of movements are created, motion capture data will 

become even more useful to character animation systems. Synthesizing new animations 

based on existing motion capture data can be performed in many ways and some of these 

methods are discussed in this section.

Splitting up motion capture sequences and using the pieces to build new sequences 

requires transition control. Some movements cannot possibly occur in sequential order 

due to extreme differences in positioning or the type of movement. Some approaches 

address this problem by using directed graphs to determine connections between 

movements. A directed graph can be fashioned by representing the vertices as individual 

motion sequences and the edges as transitions between nodes [2]. An edge will exist 

between two sequences if the last frame of the first vertex is sufficiently similar to the 

first frame of the second vertex to allow a transition between the movements. The graph 

edges are given costs to encourage the system to travel on certain paths: an edge with a 

smooth transition between two frames is given a low cost, while an edge with a 

discontinuous motion is given a high cost. In this case, the system only uses the clip 

sequences that it has in order to create a new motion.

Another example of a directed graph method takes the opposite approach to building 

the graph [25]. The edges of the graph represent the sequences of motion clips, while the 

vertices denote transition points. A vertex exists between two clips if they can be 

connected smoothly through blending techniques. In this method, the graph is not limited 

to the motion clips found in the motion capture data. Kovar et al. implement an 

algorithm that creates transition clips that can connect two segments of motion. These 

clips can be placed in the graph between two vertices that would normally be 

disconnected due to a lack of similarity in their data. This allows for a wider range of
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graph paths and resulting animations. Neither motion graph algorithm makes changes to 

the actual frame sequences themselves, only the order in which they are used.

A similar approach to the methods detailed above include Li et al.’s transition 

matrix, whose format is that of a weighted, directed graph [28]. The motion capture data 

is split into textons, or primitive movements, where each texton is modeled by a linear 

dynamic system (LDS). The authors implement an algorithm to learn the motion textons 

from the motion capture data, as well as their relationships to each other. The directed 

graph is built such that each vertex is a texton and an edge’s weight corresponds to the 

probability of transitioning between two textons. The user chooses the starting and 

ending textons of the animation and the system finds a sequence that passes through them 

by traversing the graph. This system can synthesize an animation in real-time, but 

learning the texture of the motion (the individual textons and their relationships) takes 

much longer. By dividing the original data into small primitive motions, the transition 

matrix will have many options for creating a path and the resulting animation.

A technique for synthesizing new animation from motion capture data that differs 

from directed graphs is optimization [32]. The purpose of optimization is to find a 

motion that minimizes an objective function and best satisfies what the user wants while 

still providing physically valid movements. The objective function involves three 

components: minimizing torques, ensuring joint angle trajectory smoothness and ensuring 

the resulting high-dimensional motion has angles and poses similar to those used in the 

corresponding low-dimensional motion. In this method, the user specifies an initial 

sketch of the motion through interpolation and a set of constraints, such as the starting 

and ending poses for the animation. Optimization is difficult when a character has a large 

number of degrees of freedom (DOF), so Safonova et al. solve this problem by reducing 

the dimensionality of the original motion. They believe that five to ten degrees of 

freedom can represent many human motions, rather than the sixty that are used by 

complex and high quality characters. Finding motions using optimization for sixty DOF 

is a difficult and time-consuming problem, so by reducing the DOF the complexity of the 

algorithm is also reduced. The user chooses movements from a motion capture database 

that have similar behaviour to the movements she wants performed in high-dimensional
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space. The system then synthesizes high-dimensional motion that is similar to the low

dimensional movement sequence.

2.2.3 Physical-Based Motion

Physics-based animation is an extremely realistic form of animating a character. Motion 

is constrained by physics laws, joint torques and external forces such as the ground and 

gravity. The purpose of this type of character animation is to model the motion as closely 

to real life motion as possible. Although extremely realistic, physics-based motion is 

time-consuming to implement and few character systems exist that contain a large 

collection of movements.

Simple physics-based movements can be performed on a number of different 

character types, such as lamps, cats and bipedals [26], User-interaction is key in this 

system, as the mouse and keyboard are used to control movements. Keystrokes 

correspond to different movement sequences set up in the system, while the mouse is able 

to control joint angles for body parts such as the hip and knees in a walking animation. 

Laslzo et al. use proportional-derivative (PD) controllers to compute the joint torques 

while taking into account dampening and stiffness parameters.

r  = k p(0d - 0 ) - k d0  (2.4)

0d represents the desired angle, 0  represents the current angle and 0  represents the 

angular velocity. The dampening and stiffness parameters are kp and kj. Their state 

machines combine similar movements into a single action group where the user can 

choose a movement, such as taking the next step, and the state machine will choose 

which movement in that group will be used. In most cases, the choice of the next 

movement in physics-based animation is a direct result of past movements, so the authors 

provide a checkpoint that allows the user to save the animation up to a point in time and 

return to the end of the saved work to rework the next section of the animation if it does 

not suit her standards. Laslzo uses fairly simple movements and gives the user the ability 

to control the entire physics-based animation through mouse movement and keystrokes.

One system that has incorporated a number of physics-based movements is that of 

Faloutsos et al. [12,13]. They create physics-based controllers that are called based on
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their suitability to perform the required action. Controllers can be integrated for simple 

movements, such as balancing and stepping, or they can be implemented for complex 

movements, such as walking and rolling over. Each controller comes with pre-conditions 

and post-conditions that must be met in order for the controller to be chosen by the 

system and successfully complete its objective. Pre-conditions involve the initial state of 

the figure, environmental parameters such as whether the feet are in contact with the 

ground, the character’s balance, and the target state. Post-conditions include similar 

parameters to the pre-conditions; except these parameters contain values that should be 

met by the time the controller is finished.

Pre-conditions:
Vertical Velocity: cv < 0.3 m/sec.
Balance: projection(c) € S.
Contact: hip not on ground, hands not on ground.

Execution:

If falling forward, face down v fy < 0.1.

If falling backward, face up vfy > -0 .1 .

Contact with the ground in 3 seconds.
Post-conditions:

Either
Velocity |c| < 0.3m/sec.

or
head on ground.

Figure 2.7: Pre-conditions, expected performance and post-conditions for the physics- 
based Fall controller designed by Faloutsos. The controller takes into account velocity, 
balance and environmental parameters such as ground contact. This controller diagram 
was redone based on Faloutsos’ Fall controller.

Each controller rates its expected performance for the next task and this evaluation is 

used by the system to decide which controller will be chosen next. Transitions between 

controllers occur naturally in three instances: when a controller has finished, when the 

user intervenes or when the controller detects that it has failed. The controller that best 

suits the next piece of motion is then called by the system and used to continue the 

animation.
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2.3 Synchronizing Music with Motion

The purpose of most synchronization methods is to take an already existing animation 

and synchronize it so that movement changes line up with beats in the given piece of 

music. The result should be well coordinated so that it appears as though the animation 

was originally built off of the music, rather than changed to match the music. In most 

cases it is the animation data that is changed to suit the music, rather than the music to 

suit the animation, so these techniques will be the ones mentioned in this section because 

they are most similar to the system discussed in this thesis.

2.3.1 Synthesizing New Motion

Motion capture data is the most popular form of character animation because it is 

realistic, easily used once retrieved, and can be manipulated through editing and blending 

techniques, such as time-warping. The motion data can be split into smaller sequences 

and rearranged to form new animations. An approach proposed by Kim et al. [24] uses a 

movement transition graph to synthesize new motion sequences. In order to synchronize 

the animation with the musical data, they look for the rhythm in the motion and match it 

to the rhythm in the music. Moments where joints perform an obvious change in 

direction are termed motion beats and these beats are used to split up the original motion 

data into smaller basic movements. A clustering technique is used to group similar 

motion beats and the best representative of each group becomes a node in the movement 

transition graph. The edges in the graph represent the transitions between clustered 

groups and are based on how smoothly the transition between movements occurs, as well 

as whether such a transition fits the rules of the corresponding dance. The transition 

graph is traversed and movements at each node are blended together until the end of the 

dance is reached, resulting in a new formation of the original data. The dance is then 

synchronized with the input MIDI data by timewarping the animation so the motion beats 

and music beats are aligned. A major problem with this synchronization technique is that 

the tempo of the motions beats must match the tempo of the song. This restricts the types 

and speeds of songs that could be used as input and does not allow the user much 

freedom in testing dances with different styles of music. Transition graphs are labeled 

based on the type of dance and the rhythmic pattern to which its movements correspond
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(eg: Waltz, Salsa). This setup does not permit experimentation with putting together 

steps from different dances to produce a new style of dance.

Another method that uses motion capture data and a transition graph to organize the 

sequences of motion data is found in the work of Alankus et al [1]. The motion data is 

analyzed for frames that are similar to each other. Frames are similar only if an arbitrary 

translation on the XZ plane and an arbitrary rotation on the Y axis exist such that the 

transformed points in one frame f  are closer to the non-transformed points in another 

frame f  than a threshold s. The transformation allows them to compare character poses 

that are similar except for the position and rotation of the character. This leads to the 

assumption that if two frames f  and f) are similar, then frame f  can easily make a 

transition to fj+j. The transition graph is built to represent movements between dance 

figures. A dance figure is defined as a sequence of frames f . . . f  from the motion capture 

data where there are frames in the motion capture data that are similar to the beginning 

frame f  and the ending frame fj  of the sequence. This is necessary because the system 

needs to be able to make a transition from this figure to another one in order to create an 

animation. The authors only want frame transitions to occur between dance figures, so 

the definition of a dance figure is further constrained to a movement sequence in which 

there are no motion capture frames that are similar to any frames between the starting and 

ending frames of a dance figure sequence. In a similar process to the extraction of 

motion beats in Kim et al’s method [24], dance moves are identified based on significant 

changes in the movement of a body part. The dance moves are synchronized to the music 

data by traversing the transition graph and finding the sequence of dance figures that best 

fits the music. A dance move is chosen if its timing can be changed by increasing or 

decreasing the speed of the frame to fit the beat position. Both a greedy algorithm and a 

genetic algorithm are used individually to improve the results.

The methods mentioned above synchronize a new animation without much regard to 

the input music. The musical rhythm is used to speed up and slow down movements to 

provide a well-synchronized animation, but the resulting motion sequence is chosen 

based only on the beat structure of the music and not its mood or expression at a point in 

time. Shiratori et al. [35] propose a new approach to music-motion synchronization that 

uses musical features to choose motion segments that best match segments of the music.
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Shiratori’s group believes that in real life the rhythm and intensity of dance movement is 

synchronized to that of the music. They define the intensity of a musical piece as the 

excitement level. For example, a quiet ballad has a low intensity level, while a hard rock 

song has a high intensity level. The rhythm and intensity components are detected in 

both the music and the motion data and used for synchronization. Once the motion 

capture data and the music have been divided into segments, the rhythmic similarity 

between a motion segment and a music segment is determined. This results in candidate 

motion segments for each music segment. The list of candidate motion segments is put 

through connectivity analysis to determine if the pose and movement from one segment 

to the next is similar. The outcome of the analysis is a set of candidate segments that fit 

the music’s rhythm and have natural transitions between each other. Shiratori uses a 

Bhattacharyya coefficient to evaluate the intensity similarity between the music and 

motion components. The final result is a motion sequence that fits the music’s rhythm 

and intensity and has natural looking transitions between segments. This sequence can be 

combined with the music for a newly synthesized animation that better suits the music. 

Unlike this thesis work, their algorithm does not run in real-time and like the methods 

mentioned previously, the algorithm only works well if the rhythm and intensity features 

of the motion data are similar to the input music. If the music is not similar in timing or 

in excitement level to the motion data provided, then realistic synchronization will not 

occur.

2.3.2 Direct Motion Editing

Creating new animations for synchronization purposes does not always involve 

rearranging motion capture data. Motion curves that the character will follow can be 

altered using motion-editing techniques, resulting in a curve that changes as the music 

does [6]. Cardie et al. implemented a system that contains several different motion 

editing techniques, including filter banks, additive motion techniques, motion warping 

and time warping. Filter banks divide the motion signal into components that can 

individually be changed and put back together. Additive motion techniques blend 

motions together, while motion warping blends a displacement map with the motion 

curve. Time warping increases or decreases the speed of a sequence of frames so it can
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be better synchronized with the music. The user chooses the music feature to motion 

editing mappings, where a specific music feature will cause its corresponding motion 

editing technique to be performed on the motion curve. For example, motion warping 

can be mapped to the musical beat by adding a point to the displacement map for each 

beat, resulting in a jump in the signal at each displacement point. This mapping method 

allows for interesting changes to the motion data and gives the user the ability to 

experiment. Cardie et al. prefer to use keyframed animations rather than motion capture 

data, although they claim that their system allows for both, because more motion editing 

techniques can be performed on keyframed animations. This method is a much simpler 

way of synchronizing music with animation than those of Kim et al. and Alankus et al. 

because it does not make large changes to the motion data, such as rearranging 

movements. The mapping method of Cardie et al. gives more user control than the 

previous two and does not place restrictions on the movements or music given by the 

user.

Goto mentions beat-driven real-time computer graphics in the form of his dancer 

Cindy, which is synchronized to a dance sequence with music using his beat-tracking 

algorithm [17]. The system contains pre-defined dance sequences and the user selects 

one to synchronize with music. The timing of the sequence is automatically changed to 

reflect the timing of the beats as detected in the music. This system has many similarities 

to the one discussed in this thesis, but Goto does not provide much information on the 

details of the system or any results, so it is difficult to compare his system with that in 

this thesis.

2.3.3 Detecting Motion Features

Changing the motion data in order to synchronize it with the music can cause drastic 

changes to the timing and appearance of the movements. To address this problem, Lee 

and Lee propose a method that changes the timing of both the motion capture data and 

the music [27]. Their feature mapping method is an extension of Cardie’s approach, 

where both methods allow the user to select the music and motion features. Motion 

features included in this system differ from Cardie’s system in that they are movements 

in the animation rather than editing techniques. Lee and Lee use features such as
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footsteps, arm-swinging motion, and occurrences when motion has stopped in the 

animation. The footsteps are detected by using the vertical position of a foot and finding 

the local minimum points in the movement. This is achieved by detecting the zero 

crossing points of the first derivative where the second derivative is greater than zero. 

Arm-swinging motion is found by looking for the local maximum points of the arm 

movement, or the points where the arm is at the end of a swing motion (either in front or 

behind the body). Using the Kinematic Centroid Segmentation technique, Lee and Lee 

find the motion curve a2(t) of the arm from the following equation:

a2(t) = (C(t) -  B ( t) f  (2.5)

B(t) is the position of the arm’s shoulder at time t and C(t) is the average positions of the 

wrist, elbow and shoulder at time t. Dynamic programming is used to pair the music and 

motion features that are closest in distance. Synchronization between the music and the 

motion occurs by time-scaling the music features to match their corresponding motion 

feature positions. Musical feature points are discarded if they change the music’s tempo 

too much, but are later synchronized by time-warping the motion.

Shiratori et al. propose a similar motion feature detection method that follows the 

position and speed of the arms, legs, and centre of mass (CM) [34]. Shiratori believes 

that dancing is composed of many primitive movements. Unlike Lee and Lee, Shiratori 

et al. uses the beat features from the music to help extract primitive movements in the 

motion. Shiratori’s method assumes that for dancing, a keyframe occurs at the point 

where the dancer momentarily stops dancing, which is usually at a beat. Once these 

keyframes have been detected for the feet, arms and CM, the keyframe candidates where 

the entire body has stopped moving are chosen as the motion features. The positions of 

the motion features are then used to segment the motion sequence into primitive 

movements and could be used to line up the primitive movements with the music beats.

2.3.4 Keyframed Techniques

Not all interesting character animation techniques involve motion capture data, as shown 

by Taylor et al.’s work [37]. By using the ANIMUS framework for a virtual character, 

they map musical features extracted from MIDI data to the character’s behaviour. The 

user can input the music into the system through a piano or by singing into a microphone.
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The non-human character is not controlled by motion capture data, but is still able to 

convey the emotional significance of the music through its movements. The character 

responds to the music according to the mapping functions designed by the system 

designer. The musical features used by the system include pitch, amplitude, chord 

information and vocal timbre. As these features change throughout the musical data, the 

character’s movements will change as well. For example, if the character hears the sound 

of a particular pitch, she will look around in the environment for the origin of the sound. 

The user is able to interact with the character through the music, making it an interesting 

addition to musical performances; however, the user cannot change the mappings or the 

character itself without help from the system designer.

2.4 Labanotation

Labanotation is a system for analyzing and recording human movement [5]. Its 

movement notation is used in the dance community to record and analyze dance 

movements and sequences. It is not specific to a particular dance style, but allows 

choreographers to cover all ranges of movement. Similar to musicians using musical 

scores to create songs, choreographers use labanotation to plan combinations of motions 

and dances. Each symbol in labanotation consists of four pieces of information. The 

shape specifies the direction of the movement; while the shading indicates whether the 

movement is performed at a high level, middle level, or low level. The placement of the 

symbol on the dance staff determines which body part is performing the movement, and 

finally, the size or length of the symbol indicates how long the movement is performed 

for.

Figure 2.8: Example of Labanotation from the Dance Notation Bureau website [9],
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The notation is fairly complicated and can take a long time to write out and as a 

result, only a few people in the dance community use it faithfully. Several animation 

systems have entered the market that allow users to translate labanotation to a 3D 

animation (LabanDancer [42]) or create dance scores by choreographing dances 

completely with 3D characters (DanceForms [8]). Labanotation is outside the scope of 

this thesis and will not be discussed further.

2.5 Motion Primitives

It is the belief of the author of this thesis, along with others [14,42], that complex motion 

can be simplified into a combination of basic movements called primitives. Dancing is a 

real-world example that supports this theory. Long dance sequences can be split into 

routines that consist of separate dance moves. The individual dance moves are the 

primitives that are combined together to create dance routines and performances. 

Identifying primitives is a difficult task, one that is performed to some extent by motion 

segmentation as discussed above [2,24,26,27]. The majority of these methods segment 

motions by identifying velocity changes between frames.

Fod et al. also implemented an algorithm for automatically detecting and segmenting 

primitives from movement data [14]. Their system uses only arm movements and motion 

data built from the joint angles of the arm to generate primitives to describe the arm 

movements. Using an imitation model to animate the character, they build the animation 

in several layers. The first layer, the perception layer, acquires the movement data and 

selects meaningful data from the motion stream, such as significantly moving features 

and prominent kinematic substructures. The encoding layer classifies movements into 

primitives, refines the primitives, and encodes the movements using the primitives. This 

layer outputs two components: the segment sequences that describe when a primitive 

occurs and the set of constraints for creating primitive controllers. The last layer, the 

action layer, performs the imitation by executing the segment list. Segmentation of the 

motion data into primitives is done in two ways by the authors. The second method is a 

more effective and accurate algorithm, where segmentation is performed based on 

thresholding the angular velocity of a motion primitive. PD controllers are used to 

execute the primitives by computing the necessary torque for the arm joints.
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A method that exists outside character animation for characterizing primitive 

movements is built from the kinematic theory and its deltalognormal model AA [43], 

The kinematic theory can accurately describe kinematic relationships as well as complex 

movements. It also allows an accurate depiction of human movement. The AA model is 

expressed in terms of speed and is used by Woch and Plamondon to express five different 

types of velocity profiles. Rather than segmenting motions entirely based on a single 

velocity peak (or the lack of velocity at a specific point in time) as is done by most 

primitive segmentation algorithms, this method can discover primitives with up to three 

velocity peaks and up to two direction reversals. This allows for slightly more complex 

primitives that would otherwise be described by several smaller primitives, which in turn 

encourages motion sequence representations that are based on fewer primitives. This 

method supports our belief that primitive movements can be more complicated than 

simply changing direction or velocity. For example, the Hop primitive in our system 

includes three directional changes and would not be found properly by most segmentation 

methods. Woch and Plamondon’s method presents a new way to describe more 

complicated primitives that can still be used to build complex motion.

2.6 Mapping

Mappings between features are extremely useful when using input data to drive an 

animation. In the system discussed in this thesis, the musical attributes are mapped to 

character movements. Similar mapping methods are used in facial animation to map 

vocal attributes to facial movement, as well as in motion retargeting where the 

movements of a performer are mapped to the movements of an animated character. 

Using a concept similar to ours, many voice-driven facial animation systems analyze the 

sound data and use certain features to drive the facial expression of the character. These 

approaches give merit to our method and provide a good basis for comparison with other 

data-driven animation systems. Motion retargeting provides another type of mapping that 

uses important character features to create novel animation results. The nature of this 

mapping is similar to a mapping method detailed in this thesis because both focus on 

correctly matching movement to the corresponding character. Both types of mapping,
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input features to movement and movement to the character in the scene, can be found in 

music-motion synchronization.

Brand and Shan [3,4] attempt to drive facial expressions from vocal information by 

learning from synchronized sound and video data. One of the goals of their system is to 

learn mappings between vocal features and facial features for synthesis purposes. A 

Hidden Markov Model represents the positions and velocities of facial features obtained 

from Brand and Shan’s vision system, with each state representing a particular 

expression. Training video data helps the system determine the most probable set of 

facial states and the vocal features are then mapped to these states. Mapping between 

expression and vocal information is achieved by computing the probability that a certain 

vocal feature can be associated with a facial state. To synthesize facial dynamics for an 

input vocal track the expression-voice mapping computed in the learning stage is used to 

find the most probable sequence of matching expressions. Each state in this resulting 

expression sequence is mapped to a final facial configuration in order to animate a 

character. Like our method, their mapping technique uses features extracted from audio 

data to drive the animation and create a unique sequence tailored to the input audio.

Another method of mapping in facial animation research is that of mapping between 

facial expressions. Rather than determining the facial expression from the audio data, 

Cao et al. [7] look at transitioning between two expressions within the same sentence. 

The system is able to automatically determine the emotional expression of speech signals 

using supervised machine learning techniques and classification methods. Five types of 

emotion expressions are used to make up the emotional spaces: neutral, sad, angry, 

happy, and frustrated. Cao’s emotional mapping function determines a transition 

between two facial motions in two different emotional spaces. This is done through the 

use of a training set that includes sentences where motion transitions through all five 

emotional spaces and a Radial Basis Functions mapping function. Cao’s mapping 

procedure allows for arbitrary sentences to transition smoothly between facial 

expressions, resulting in an animation that expresses emotion corresponding to the audio 

content.

Computer puppetry is a form of motion retargeting that takes motion capture data and 

determines how to properly map it to an animated character with a different size and
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proportion than that of the actual performer [36]. This method is not as simple as directly 

mapping joint angles and end-effector positions from the performer to the animated 

character because the body proportions change the amount of movement necessary to 

reach the same goal position. Shin’s system uses an importance-based approach to 

automatically decide what the important features of the input movement are, as well as 

how to use these features to recreate the input motion. The three features targeted by the 

algorithm are the character’s root position, the joint angles and the end-effector positions. 

The system will choose which feature is most important to the movement and move the 

character in order to preserve the feature’s data. Shin’s method preserves enough of the 

original motion by mapping the input feature data to the character data, but it is also able 

to change the motion to best reflect the character’s proportions.
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Chapter 3 

Music Analysis

Music analysis is performed by combining two different algorithms: Tzanetakis et al’s 

tempo detection method [40] and Goto’s beat tracking method [17,18,19]. Tzanetakis’ 

method was faithfully followed in the implementation, but several changes have been 

made to Goto’s method in order to make it work better for our purposes. The algorithms 

are detailed in this chapter along with our version, which includes collaboration between 

the two.

3.1 Tempo Detection

The speed of a song is an extremely important musical feature to composers and listeners 

alike. The speed, or tempo, dictates the positions of the beats in a song and describes 

how quickly the rhythm of the song will be performed. Corresponding dance movements 

are also affected by a song’s tempo as their speeds are influenced by the beat positions. 

We have implemented a tempo detection algorithm from Tzanetakis that is used in our 

beat detection method to determine the positions of the beat in the music. Details of 

Tzanetakis’ algorithm are presented in the next subsection. The results displayed include 

histograms for two different types of music: rock and Celtic. The structure of all tempo 

histograms is the same, so only two are shown for recognition purposes.

3.1.1 Algorithm Details

The tempo detection method we employ for the first step of our beat tracking method 

uses the Discrete Wavelet Transform (DWT) to decompose the signal into a number of 

octave frequency bands. The DWT is able to represent the signal’s information in time 

and frequency space, rather than just the frequency space like the Fast Fourier Transform. 

A pyramidal algorithm is used with the DWT to split the signal into several frequency 

bands. Tzanetakis decomposes the signal into twelve levels of coefficients, but our 

implementation only decomposes into five levels. We use only five levels of coefficients
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because experimentation found that five is the smallest number of levels with the same 

effectiveness as that of twelve levels.

A windowing technique is used to divide the signal into small, equal-sized windows 

that are analyzed one at a time by the algorithm. The results from the analysis of each 

window are combined into a histogram. A window size of 65536 samples is used and 

while Tzanetakis uses a frequency sampling rate of 22050 Hz, we use a sampling rate of 

44100 Hz because it includes most audio signals. There is no noticeable difference 

between using Tzanetakis’ sampling rate and ours. The step size for moving the window 

is 512 seconds or 32768 samples. The signal in each window is decomposed by the 

DWT, resulting in five sets of detail and approximation coefficients. We keep the 

approximation coefficients and discard the detail ones because the approximation 

coefficients hold the low frequency information, which is where the beat is generally 

found in a piece of music. Due to the nature of the DWT, the number of coefficients at 

each level is different, making it difficult to perform further analysis and combine the 

information together. Upsampling is used to ensure all coefficient levels have the same 

number of values. Each level is upsampled by a value of 2 ', where i is the level number. 

This cancels out the downsampling performed by the DWT. Upsampling will sometimes 

cause the signal at each level to be longer than the window size. The values at the end of 

each level are discarded until the signal is the same size as the window, resulting in five 

equal-sized levels of approximation coefficients. We can then proceed to perform the 

steps for the tempo detection algorithm.

Full wave rectification is the first and simplest step, in which the absolute value of all 

the samples in the signal is taken.

y[n] = abs(x\ri\) (3.1)

Low pass filtering of the rectified signal is performed according to a one-pole filter with 

an alpha value of a  = 0.99 . The one-pole filter was implemented according to the 

definition and parameters given by Tzanetakis. This filtering operation goes through each 

sample and computes its filtered value by taking into account the previous sample’s 

filtered value.

y[n] = (1 -  a)x[n] -  ay[n -1 ] (3.2)
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Downsampling is then performed on the low-pass filtered signal. A downsample value of 

16 is used where k = 16 in Equation 3.3. Downsampling is performed to reduce the 

computation time of the algorithm. The combination of full wave rectification, low pass 

filtering and downsampling results in the amplitude envelope of each band of the original 

signal. Extracting the envelope of a signal is a common technique in beat detection 

algorithms because it is a simple method for detecting the spikes in the bass sounds that 

can correspond to beats. It is important to note that downsampling results in a loss of 

high frequency information. Indeed, the Shannon-Nyquist theorem proves that a band- 

limited signal must be sampled at at least twice the cut-off frequency in order for the 

samples to accurately represent the original signal. After downsampling by 16 the 

highest frequency that can be represented, according to the Shannon-Nyquist Theorem, is 

only 8 Hz. This could become problematic if the beats reside in the high frequency 

information because then they would not be detected. This algorithm is designed based 

on the assumption that beat information occurs in low frequency data, which is true in 

most cases.

y  = x[kn] (3.3)

Mean removal or normalization is performed on each amplitude envelope before the 

autocorrelation stage. The mean value and standard deviation (std) of each frequency 

band is calculated and the following equation produces a centered signal. The resulting 

frequency bands are summed together into one envelope.

y[n] = (0.5 * (x[n] -  E[x[n\]/std)) (3.4)

An important component that is incorporated into our implementation is the padding 

of zeroes around the summed envelope so that it is the same size as the original window. 

This addition is necessary for avoiding wraparound error in the autocorrelation function. 

The computation of the power spectrum of the summed envelope is used for the 

autocorrelation step. This is achieved simply by taking the FFT of the signal, multiplying 

the result by its complex conjugate and performing the inverse FFT on the outcome. 

Autocorrelation results in a symmetric signal so we remove the second half of the result 

and concentrate on the data in the first half.

Our implementation for detecting the highest peaks of the autocorrelation function 

differs from Tzanetakis, so we discuss the details here. For each window the highest 30
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peaks, P, of the autocorrelation function are stored and used to find the top 3 peaks, T. 

We do not simply take the highest 3 peaks of the signal because in some cases these 

peaks can be extremely close to each other. The number 30 is large enough that 3 distinct 

peaks should almost always be found in the window, but not so large that the algorithm 

will constantly be looking for peaks where none exist.

We want a wide range of tempos so we can be sure that we are detecting the correct 

one. We choose the highest peak in the list as the first of our top 3 peaks, Ti = Pj. We 

then proceed to compare the second highest value of the 30 peaks, P2, with Tj. If the 

distance between these peaks is greater than 60, then T2 = P2 , otherwise P2 is discarded. 

The threshold of 60 was chosen through experimentation with different songs and found 

to be a large enough distance that a peak outside the threshold would not be significantly 

close to another peak. We go through the autocorrelation list until 3 peaks are found that 

are sufficiently far apart but within the appropriate range for tempo detection, which is 

between 40 and 200 beats per minute (bpm).

The three values in T are converted from sample numbers into beats per minute by 

the following equation:

5, = 60/(/* • (& -1 ) /  Fs) (3.5)

where 5, is the converted tempo in bpm, Fs is the frequency sampling rate of 44100 Hz, k 

corresponds to the number used to downsample the envelope (k = 16 from Equation 3.3) 

and 1<= i <= 3 for each value in T. These three tempo values are then added to the tempo 

histogram that tracks the tempo values detected in each window of the signal. Having 

one bin for every possible bpm value between 40 and 200 arranges the histogram 

structure. The amplitude of each peak in T is added to the beat histogram at its 

corresponding tempo bin. For example, if one of the values in S is 80 bpm, then the 

amplitude value at its corresponding peak will be added to the histogram in bin 80. The 

complete analysis of the entire signal over all the windows will result in a histogram with 

peaks in certain tempo bins. The tempo bin with the highest amplitude is chosen as the 

overall tempo of the song because its periodicity was detected the most throughout the 

analysis.

In some cases the tempo analysis algorithm will detect the wrong tempo as the 

estimated tempo of the audio file. This generally occurs when one of the two most
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detected tempo values is double the other one. When the audio signal is in 4/4 time, it is 

possible to have two types of tempos: the first corresponds to every single beat (4/4 time) 

and the second corresponds to every second beat (2/4 time). To account for this 

difficulty, we compute the difference between the amplitude of the two peaks in the beat 

histogram. If the difference is between an amplitude interval of 500 and 5000 units then 

the estimated tempo of the audio file becomes the second highest peak in the histogram 

rather than the first. The values of 500 and 5000 were acquired through extensive manual 

experimentation with different musical songs. A user with musical experience listens to 

each song and determines if the tempo is slow or fast. The user-estimated tempo is then 

compared to the system-estimated tempo. In the cases where the system chooses the 

wrong tempo, the system designer compares the peak values of the two tempos. In the 

majority of cases, the system chooses incorrectly when the difference between the two 

peaks is between 500 and 5000 units, so this interval is used to correct the tempo choice.

The process detailed above, from the DWT decomposition to the organization of the 

beat histogram, is performed for every window in the signal. The tempo of the music file 

is only determined after the entire signal has been analyzed.

3.1.2 Tempo Detection Results

The tempo detection algorithm is extremely efficient. It runs faster than real-time and is 

very accurate. This technique was first tested on the four songs provided on Tzanetakis’ 

website [39]. These song types include hip-hop, rock, jazz and classical. We were able 

to generate close to the same results as Tzanetakis, with a difference of less than 3 bpm 

for the peak tempos. This disparity is most likely due to the difference in the Discrete 

Wavelet Transform implementations used by the respective algorithms. Our music 

analysis system is implemented using Matlab, including the DWT and FFT functions. 

Tzanetakis’ system is built from his own C code, which may explain the difference in 

results. We also choose to use the power spectrum to compute the algorithm’s 

autocorrelation step, while Tzanetakis uses Equation 3.6. In the majority of the cases 

tested, both algorithms give the same results.

y[fc] = ^ - ^ 4 r t ] x [ n  + £] (3.6)
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This algorithm does not do well with Jazz and classical songs because the beat is not 

prominent in these types of music. These songs often do not have a strong beat because 

they rarely use drums. A weak beat is extremely difficult to track, which results in an 

inaccurate tempo. Another difficulty with this algorithm is its inability to track tempo 

changes. Although most popular songs do not incur changes in speed, some Celtic songs 

have a beat that varies over time due to the nature of the performance. Adjusting this 

tempo detection algorithm to take speed changes into account is a component of our 

future work.

Figure 3.1 below displays the resulting beat histogram of a Celtic song named 

Siamsa. The highest peak is found at 117 bpm and the second highest peak at 58 bpm. 

The second tempo is half the speed of the first because it detects periodicities on every 

second beat rather than every beat. For example, if the song is in 4/4 time, a beat will be 

detected on every quarter note. Beats can also be detected on the first and third quarter 

notes to describe a song in 2/4 time, which is half the tempo of the 4/4 time. The song is 

4 minutes and 29 seconds in length and the tempo detection algorithm took 3.0156 

minutes to determine the tempo.
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Figure 3.1: An example of a beat histogram produced by the tempo detection algorithm. 
The values across the bottom represent the possible tempos. For this particular Celtic 
song, “Siamsa,” the tempo is detected to be 117 beats per minute.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



One of the difficulties with the tempo detection algorithm is that occasionally the 

tempo with the second highest peak is the actual tempo of the song, rather than the one 

that corresponds to the highest peak. This can be seen in Figure 3.2 where the highest 

peak corresponds to a tempo of 161 bpm and the second highest peak represents a tempo 

of 82 bpm, which is the correct tempo of the music. The music clip is 30 seconds in 

length and it took the algorithm 18.656 seconds to identify the tempo. This audio file is 

from a song by the Beatles and is taken from the testing set of Tzanetakis that is posted 

on his website [39]. Both our implementation as well as Tzanetakis’ identified the 

incorrect tempo for the song. When this problem occurs, the actual tempo is generally 

the second highest peak in the histogram.
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Figure 3.2: A beat histogram for a 30 second Beatles song. The tempo is identified as 
161 bpm when, in actuality, the tempo is 82 bpm. The algorithm recognizes the faster 
beat as the tempo because it occurs more often in the signal.

The tempo of a piece of music is directly related to the speed that the beats occur in 

the song. It is possible for multiple tempo values to be accurate in describing a piece of 

music, but only one is actually correct. For example, say two listeners are tapping along 

to the Beatles song from Figure 3.2. Listener 1 is tapping to the correct tempo (82 bpm), 

while Listener 2 is tapping twice as fast (161 bpm). In terms of music, both listeners are 

accurately tapping to a beat. The difference between them is that Listener 1 is tapping to 

beats 1 and 3, while Listener 2 is tapping to beats 1,2,3 and 4. In this case, beats 1 and 3
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are the strong beats, while beats 2 and 4 are the weak beats. Strong beats are generally 

the obvious beats in a piece of music, while the weak beats are the underlying beats that 

occur between the strong ones. Tapping to all 4 beats is accurate, but tapping to only the 

strong beats is more accurate, therefore the tempo corresponding to the strong beats is 

chosen as the correct tempo. It can be tough for human listeners to pick the tempo 

corresponding to the strong beat, which is why many algorithms have difficulties. 

Currently a user with musical experience chooses the correct tempo.

This approach is not the only method to have difficulties with relationships between 

tempos. Scheirer’s tempo induction algorithm also retrieves tempos that correspond to 

strong and weak beat levels in a song [33]. Errors occur due to the algorithm’s inability 

to understand the relationship between different beat levels, such as the ones that exist 

between a strong beat and a weak beat. Dixon’s method addresses this problem by 

grouping together tempos that are an integer multiple or divisor of each other [10]. He 

uses this knowledge of relationships between beat types to create several tempo 

hypotheses, each of which is tracked by a different agent in order to establish the correct 

one. Unfortunately, the paper does not mention how successful the algorithm is in 

determining the right tempo. Choosing the true tempo from several accurate tempos is a 

problem that each tempo detection algorithm must face. The addition of extra musical 

knowledge into an extraction method may assist in solving this dilemma.

3.2 Beat Detection

The most recognizable component of a piece of music is the underlying beat structure 

that accompanies it. Dancers move to the beat, listeners tap a foot to it and musicians 

compose according to it. The beat is very dependent on the tempo of a song because the 

beats are positioned based on the music’s speed. Fast music will include a beat with little 

time between positions, while the beat of a slow piece will have large interval times. 

Tracking a beat through an audio signal is a difficult task that has been studied in 

numerous forms.

Goto’s algorithm [17,18,19] was chosen for our musical analysis system because it is 

referenced in every beat detection paper and is considered by many to be an excellent 

technique for performing beat detection. There exist a few papers explaining the
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algorithm with different levels of detail, which makes it easier to implement and replace 

some of the components with our own. Unlike other beat detection algorithms, this one 

can be used on drumless music, which makes it more robust for possible input songs. 

This section outlines the algorithm used to detect the beat onsets in the music and 

displays results for music of different types and speeds.

3.2.1 Original Algorithm Details

Our original beat detection algorithm uses primarily the tempo to predict the next beat 

position in the signal. The tempo can easily be converted to an inter-beat-interval (IBI) 

that describes the distance between beats. The first beat in the signal is detected using a 

simple version of Goto’s algorithm and each subsequent beat position is predicted by 

adding the inter-beat-interval to the previous beat position. More details on Goto’s 

algorithm are given in the next subsection.

This algorithm divides the signal into large sections where each section contains 

approximately 5 beats (as determined by the tempo). This is done to reduce the amount 

of data that the algorithm will examine at one time.

windowSize = IBI * 5 (3.7)

The window size is a multiple of 5 beats because this value gave the most accurate results 

during testing. Window sizes ranging from 2 beats to the entire signal were tested and 

sections consisting of 5 beats worked best.

Goto’s beat detection technique is used to determine the position of the first beat in 

each section. The highest of the first 10 peaks in the section is chosen as the first beat 

position. The next beat position in the section is predicted by adding the IBI to the first 

detected position. The third beat position is found by adding the IBI to the previously 

detected position, and this continues until all 5 beats in the section are determined.

bt = + IBI 2 < i  <5  (3.8)

The algorithm moves onto the next section by moving a full window size in the signal 

(there is no overlapping in this windowing technique) and using Goto’s method to detect 

the first beat in the section. This continues until the entire signal has been examined.

The algorithm was unsuccessful for two main reasons. The first is because it relies 

too heavily on the tempo rate for predicting beat positions. This method does not work
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properly because the tempo value is not generally an integer value and it is impossible to 

always store the entire set of decimal values. The beat positions will shift over time due 

to the integral tempo value, resulting in incorrectly detected beats that depend on the 

onsets computed based on an inaccurate tempo value. This problem was one of the 

reasons that the window size was chosen to be fairly small. By dividing the algorithm 

into sections and detecting the first beat in each section, we could fix the beat position if 

it went awry in the previous section due to an imprecise tempo rate. The second reason 

the algorithm was unsuccessful was because it runs extremely slowly. It takes 5.4 

minutes to examine a synthetic signal that is 22 seconds in length and 13.6 minutes to 

analyze a musical signal that is 55 seconds. These two difficulties motivate us to develop 

a modification of Goto’s beat detection algorithm based on our own improvements.

3.2.2 New Algorithm Details

The process behind beat detection is analyzing a musical signal and finding the positions 

of all the beats. Goto’s original algorithm uses drum patterns and chord change 

information to make the system more robust, but we have not included these features in 

our implementation. Instead, we rely on Tzanetakis’ tempo algorithm detailed in the 

previous section to give us more accuracy in determining a beat onset. Our system does 

not require the precision that Goto’s algorithm strives for so we fashioned a simpler 

version of his system that runs in close to real-time and does not require additional 

musical knowledge.

This algorithm uses the FFT and power spectrum to build a signal in the time- 

frequency domain. A moving Hanning window is used to analyze the signal piece by 

piece, with a window size of 1024 samples and a step size of 256 samples. The Hanning 

window is applied to the signal by multiplying it with an equal sized portion of the signal. 

The FFT is applied to all samples within the window and the power spectrum is 

computed by multiplying the FFT result by its complex conjugate. The values of the 

power spectrum correspond to the power at each particular frequency. The window then 

moves to the next section of the signal, with a % overlap with the information in the 

previous window due to the step size. In order to convert all this information into the 

time-frequency domain, it is necessary to compress the set of samples in each window
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into a single frame. Goto’s algorithm measures time in frame-time, where each frame

time corresponds to one window span, or 1024 samples. The power spectrum p(t,f) is 

represented as the power of frequency / at frame-time t.

The next step of the algorithm involves extracting onset components from the power

spectrum. Onset components are found at frequencies where an increase of power

occurs. By searching the immediate neighborhood in time and frequency space around

p(t,f) the degree o f onset d(t,f) is calculated. The degree of onset is the amount of power

increase between the frame-times. The following segment details this step:

pp = median(pit -1 , /  -1 ), p it  -1 , / ) ,  p it  -1 , /  +1)) 
mn = m in(p(t, / ) ,  p it  +1, / ) )  
if mn > pp

d(t, f )  = m axipit, / ) ,  p it +1, / ) )  -  pp 
else

d i t , f )  = 0 (3.9)

When pp  is computed in Goto’s implementation he uses the maximum value of the 

neighborhood. We choose to use the median to get a more faithful representation of the 

whole section. If the median of the neighborhood around the previous frame-time is 

smaller than the minimum power value of the current and next frame-times then the 

power is increasing over time and an estimated onset component exists at this position in 

time-frequency space.

The third step splits up the onset components into 7 frequency bands for further 

analysis. The frequency-time space is converted to time space by adding up all the 

frequency components within each frame-time t. Only the frequency components that 

fall within the current frequency band i are involved in the summation.

D,(0 = X ^ / >  O-IO)
/

This is executed for each of the seven frequency bands and performing convolution with 

a Gaussian filter smoothes the result.

The three main steps of the algorithm are fairly similar to Goto’s original method. 

The majority of the next few steps are new contributions of ours to the implementation to 

integrate tempo information and to make the technique robust enough for our purposes.
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To narrow down the range of possible beat positions, a threshold is used to remove 

frame-times with the smallest amplitudes. This is based on the assumption that beat 

sounds are fairly high in amplitude compared to other musical features. The threshold is 

computed by multiplying the maximum value of each frequency band with a percentage 

value. The percentage value ranges from 80-90% of the signal’s amplitude, meaning the 

values in Dj(t) that fall within the highest 80-90% of the signal’s amplitude are retained 

and the rest are discarded. It is important to note that the amplitude of the beat is 

dependent on the amplitude of the signal. If the dynamics of the signal at a point in time 

are soft, then the amplitude of the beat will be low to match this, as will the amplitudes of 

the other musical features. This detail is the reasoning behind the choice of the 

percentage value. If the percentage value does not cover the softer ranges of music then 

the beats are not detected in those time intervals. The percentage value that works best 

for the threshold changes from song to song and is manually set based on 

experimentation.

The estimated onset times are put into onset-time vectors for further comparison 

across frequency bands. For each frame-time a vector is created that denotes whether or 

not an onset has been found in a frequency band at that point in time. A value of 1 

denotes that an onset peak is detected and a value of 0 denotes that nothing is detected. 

An onset rate-of-recurrence value for a frame-time is calculated by adding up the vector 

values across all frequency bands. A result of 0 means that an onset peak has not been 

detected in any frequency band at the current frame-time, while a result of 7 means that 

an onset peak has been detected in all frequency bands. Storing only the frame-times 

where an onset has been detected in more than one frequency band further narrows down 

the number of estimated onset times.

Goto uses a multiple-agent beat prediction method to determine the correct position 

for the next beat. We use a much simpler technique that utilizes the tempo information 

calculated by Tzanetakis’ algorithm. An inter-beat-interval (IBI) is the distance between 

two beat onsets and can be calculated based on the tempo of the song. A direct 

relationship occurs between the speed of the song and the distance between beats and this 

relationship is used to compute the IBI directly from the tempo. The tempo is first 

converted from beats per minute to beats per second (bps) by dividing it by 60 (the
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number of seconds in a minute) and then converted to discrete samples by the simple 

division of 44100/bps. The IBI is this conversion result divided by the original step size 

of 256. The IBI must be in frame-times to correspond to the unit in which the beat onset 

positions exist.

bps — bpm / 60 
samples = 44100/ bps
IBI = samples / stepSize (3.11)

The first estimated beat is stored as the first true onset of the signal and used as a 

comparison point for the next estimated beat in the list. The distance between this first 

actual onset and the next estimated beat is calculated. If the distance is greater than the 

IBI-error, where the error value is 5 frame-times, then it is stored as the next actual onset 

in the signal. The threshold check ensures that the final beat onsets are not too close 

together, as can be the case when the algorithm detects weak beat positions. Weak beats 

are the beat sounds that occur between the actual beats of a song. They are generally 

found at twice the tempo rate and half the distance between two actual beats and can be 

mistaken by beat detection algorithms as real beats. Tracking of these beats is avoided by 

using the IBI to ensure only beat positions that occur around or further than the known 

interval are chosen. Beat positions that occur further than the known interval are 

considered as a precaution for when the algorithm cannot detect beats around the current 

estimated position. The algorithm will be able to recover itself by looking further in time 

for the next beat while skipping the current estimated beat position. This procedure is 

followed for all the estimated beats in the list and the end result is a vector of actual beat 

onsets for the entire song. The beat positions must be converted from frame-times to 

frames because Maya uses the unit of frames in its animation system. The conversion 

equations use the step size of 256 samples, the frequency sampling rate of 44100 

samples/second, represented by Fs, and a frame rate of 24 frames per second (fps).

beats = onsets ■ stepSize / Fs
frames = beats ■ fp s  (3.12)

The beat detection algorithm has a good accuracy rate, but tweaking of the 

percentage value for the beat onset threshold is necessary because the value that works 

best changes from one song to the next. Despite the use of the IBI to prevent weak beats 

from being detected, occasionally the algorithm will skip a true beat and choose the next
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weak beat. This occurs when the onset vector does not find any beats around the true 

beat position. If the next weak beat position is greater than the distance threshold, as well 

as the closest estimated beat to the current one, it is chosen. This is one problem that will 

be addressed in future work because it has the tendency to change the detected beat 

structure. The algorithm is extremely efficient at recovering once it has lost the correct 

beat structure, usually taking no more than a couple of seconds to correctly identify the 

beat once again. The results of our modified version of Goto’s algorithm are presented in 

Section 3.2.3.

3.2.3 Beat Detection Testing and Results

Testing of the beat detection algorithm has to be performed manually in order to assure 

accuracy. Both visual data and audio data are used to compare the generated results with 

the true beat positions in the musical signals. Visual data is used for the synthesized 

signals where the beat positions are discemable. Audio data is used for all other signals 

where it is easier to hear the beat than find it in the signal.

Simple testing was performed first on synthesized audio signals that are composed of 

beeps that represent the beat. The purpose of the simple synthesized signal is to 

determine how well the beat detection algorithm can find the beats of a given tempo. A 

user-determined tempo value is utilized to establish the IBI and short beeps are added to 

the synthesized signal at positions derived from the previous beat position plus the EBI. 

To make the synthesized signal more similar to real musical signals, beeps are added at 

the quarter note level, the half note level and the whole note level. A single beep at 

quarter note positions is not enough to synthesize a song similar to real music because 

there are generally many instruments playing, which increases the amplitude of the beats. 

Adding beeps at 1,2 and 4 times the frequency will increase the amplitude at those points 

in a similar way to multiple instruments playing on the beats.

White noise is added into the signal through the use of a Matlab function named 

randn. This function creates vectors and matrices filled with random numbers built from 

a normalized distribution. The amplitude of the resulting noise signal is normalized and 

then divided by a specific number, divisionNumber, to reduce the amount of noise. The 

beeps are added into the noise signal to create the synthesized result.
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s -  ram/n(1000000,l) 
mx = max(5)
signal -  ( s im x ) / divisionNumber (3.13)

Different amounts of noise are added to each synthesized signal to determine how much 

the noise level affects the beat detection algorithm. The noise’s division value varies 

from 100 (small amount of noise) to 2 (intermediate amount of noise). The signal is also 

tested with no noise at all. The new algorithm can detect only a small amount of beats 

when the division value is 2, so testing was stopped at this point.

Noise Level Old Algorithm New Algorithm
none 28/31 31/31
1/100 31/31 31/31
1/50 31/31 31/31
1/25 31/31 31/31
1/16 31/31 31/31
1/8 31/31 31/31
1/6 31/31 31/31*
1/4 31/31 31/31**
1/2 20/31 12/31***

Table 3.1: Comparison of the old and new beat detection algorithms using a synthetic 
signal with a tempo of 82 bpm. The audio signal is 22 seconds in length, with a total of 
31 beats. Testing is cut off at a noise level of Vi the beep’s amplitude because this is 
where the new algorithm fails considerably. The second and third columns denote the 
number of beats out of 31 detected correctly by each algorithm.

Table 3.1 shows the noise level affecting both beat detection algorithms around the 

same time. The signal with a noise level of Vi affects both algorithms, with the old 

algorithm detecting eight more beats than the new one. The asterisk symbols in the New 

Algorithm column of the table denote that different threshold values were used for testing 

those three particular signals than for testing of the previous six signals. The six signals 

with the smallest signal-to-noise ratio work perfectly with a threshold of 90%, while the 

seventh signal (*) uses a threshold of 72%, the eighth signal (**) uses a threshold of 45% 

and the ninth signal (***) uses a threshold of 35%. The new algorithm only detects 5 

beats in each of these signals if the threshold value is left at 90%. Although the new 

algorithm detects only 12/31 beats in the last synthesized signal, Figure 3.3 demonstrates 

that the detected positions are not far from the actual beat positions.
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Figure 3.3: The results of the new beat detection algorithm on a synthesized signal with a 
tempo of 82 bpm. The noise level is 1/2 and a 35% threshold value is used. Blue lines 
represent the original beats in the signal and red lines the beat positions detected by the 
algorithm. The top image displays the full signal after beat detection, while the bottom 
image a closer view of the distance between actual beats and detected ones.

Table 3.2 displays the results for testing the old beat detection algorithm on ten 

synthetic signals with different random seeds and a tempo of 153.3682 bpm. The values 

in each column represent the number of beats detected for each signal with a specific 

noise level, where the noise level is denoted in the second row of the table. This testing 

shows that the random seed does not affect the developing trend of the noise level
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Signal # Number of beats detected 758) for each noise level
1/100 1/50 1/25 1/16 1/8 1/6 1/4 1/2

1 35 45 40 45 35 43 40 40
2 45 45 41 35 48 37 42 30
3 45 35 35 35 36 43 35 22
4 38 40 35 40 40 35 35 32
5 35 35 38 35 35 37 35 31
6 35 35 35 35 35 45 35 33
7 35 39 39 39 35 35 39 38
8 38 35 35 35 45 40 35 36
9 40 35 35 40 35 35 36 41
10 35 35 35 35 35 35 40 36

Average
beats

detected

38.1
38

37.9
38

36.8
37

37.4
37

37.9
38

38.5
39

37.2
37

33.9
34

Table 3.2: The results of using the old beat detection algorithm on 10 synthetic signals 
with random seeds and a tempo of 153.3682 bpm. Eight different noise levels are used, 
ranging from l/100th of the beep amplitude to Vi of the beep amplitude.

influencing the accuracy of the algorithm. The average number of beats detected is fairly 

even until the noise level reaches xh  of the beep amplitude, at which the result dips.

Table 3.3 displays the results for testing the new beat detection algorithm on the ten 

synthetic signals used in Table 3.2. The algorithm uses a threshold value of 90% to 

obtain the majority of the results seen in Table 3.3. The asterisk symbols in the noise 

level row (the second row) denote that different threshold values were used to obtain 

these results than the threshold used in the first six columns. The threshold used by the 

algorithm in column 7 (*) is 72% while the threshold used in column 8 (**) is 65% and 

the threshold for column 9 (***) is 25%. This indicates that the new algorithm is quite 

robust because its threshold value can be altered to reflect the signal. The results are 

consistently excellent until the last noise level is reached, at which they drop off 

considerably. This shows that the random seed does not affect the reliability of the new 

beat detection algorithm. From the comparison of the values in Table 3.2 and Table 3.3, 

it is evident that the new beat detection algorithm performs considerably better than the 

old beat detection algorithm. In the majority of cases it detects 100% of the beats, while 

the old algorithm detects 67% of the beats in the best case.
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Signal # Number of beats detected (/58) for each noise level
1/100 1/50 1/25 1/16 1/8 1/6* j/4** 1/2***

1 58 58 58 58 58 58 58 27
2 58 58 58 58 58 58 58 22
3 58 58 58 58 58 58 58 18
4 58 58 58 58 58 58 58 22
5 58 58 58 58 58 58 58 17
6 58 58 58 58 58 58 57 11
7 58 58 58 58 58 58 58 19
8 58 58 58 58 58 58 58 17
9 58 58 58 58 58 58 58 19
10 58 58 58 58 58 58 58 16

Average 58 58 58 58 58 58 57.9 18.8
Beats

Detected
58 58 58 58 58 58 58 19

Table 3.3: The results from performing beat detection with the new beat detection 
algorithm on ten synthetic signals with a tempo of 153.3682. Each signal was created 
with a different random seed and eight noise levels were used, ranging from 1/100 to Vi 
of the beep’s amplitude.

The old beat detection algorithm has problems with this synthetic signal because the 

tempo is not an integer value. As displayed in Figure 3.4, the algorithm eventually loses 

the beat pattern because it is using a detected tempo of exactly 153 bpm. The bottom 

graph displays how far apart the detected beats are from the actual beats, showing the 

inaccuracy of the old beat detection algorithm when the tempo is not an integer. The old 

beat detection method does not take into account the small change in beat position that 

occurs due to the decimal places in the actual tempo value. It uses the detected tempo 

value to predict the next beat position, and in this case, the detected tempo value is not 

precise enough to give accurate results. This is the major difficulty with the old 

algorithm, which led to the development of the new beat detection method.

Once real audio data is introduced to the beat detection algorithm it is extremely 

difficult to visually determine where the beats occur in some songs. Synthesized beep 

sounds are added to the original audio signal at the positions detected by the algorithm. It 

is then possible for one to listen to the audio signal and compare the timing of the 

estimated beeps with the timing of the actual beats of the song. This testing is based on 

the listener’s perception of the beats and our tester has an extensive musical background,
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Figure 3.4: The results of the old beat detection algorithm on a synthesized signal with a 
tempo of 153.3682 bpm. The noise level is 1/100. Blue lines represent the original beats 
in the signal and red lines represent the beat positions detected by the algorithm.

making it easy for her to accurately compare estimated beat positions with actual beat 

positions. Similar to the procedure applied for synthesized signals, visual data is 

acquired by graphing the original signal in one colour and graphing the beeps 

corresponding to the estimated beats in another colour. In some cases it is easy to verify 

if an estimated beat has been correctly placed, while other cases rely more on the audio
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Figure 3.5: A signal graph of the Celtic song “Warriors” used by the Celtic animation 
system. The tempo of this song is 135 bpm. The blue lines symbolize the original signal 
and the red lines represent the detected beats. One can see a space where a beat should 
occur around the 65,000-sample position, as marked by the green square. The algorithm 
is able to recover from this missing beat and rediscover the beat structure immediately.

data than the visual data. The visual data also helps us determine where problems occur 

in the algorithm along with possible types, such as if the algorithm has missed a beat or if 

the beat structure has gone awry. Some of these visual results for the new beat detection 

algorithm are displayed in Figures 3.5 and 3.6.

3.3 Dynamics Extraction Algorithm

The dynamics of a musical piece are one of the few musical features that can change the 

expression and mood of a song without actually changing the structure of the song itself. 

Dynamics consist of the louds and softs of the music, including transitions between the 

two that also known as crescendos (soft to loud) and decrescendos (loud to soft). The 

dynamics levels are extracted because they are useful in creating corresponding 

movement. Dance moves take into account dynamics and base the strength of a
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Figure 3.6: A graph of a segment of the musical signal from the rock song “Brown Eyed 
Girl” by Van Morrison. The tempo of this song is 76 bpm and it is significantly slower 
than the Celtic song displayed above in Figure 3.5. The blue lines symbolize the original 
signal and the red lines represent the detected beats. The intervals between detected beats 
are noticeably larger in this signal because of the slower tempo.

movement on the strength of the song at a point in time. The purpose of this extraction 

algorithm is to detect the 50 positions where the dynamic level is highest and 50 positions 

here the dynamic level is lowest. These positions represent the loud and soft dynamics 

respectively.

Dynamics are extracted by using a moving window with a size of 44100 samples to 

compute the power spectrum of the music signal. The FFT is performed on the 

information in each window and the result is multiplied by its complex conjugate. The 

inverse FFT is performed on the outcome. Since the signal is symmetric, the second half 

of the signal is removed and the algorithm proceeds to calculate the absolute values for 

the signal’s first half. The maximum and minimum values are located and added to a list 

before the window is moved. This technique is performed for each window until the
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entire signal has been analyzed, with the resulting list being comprised of the highest and 

lowest values from each window.

Finally, the algorithm determines the 50 highest and lowest values in the temporary 

list and stores them as the dynamic positions. The system detects 50 of the highest and 

50 of the lowest values because we believe that 100 dynamic positions are enough to 

build a complete representation of the dynamic structure of the song. These positions are 

converted to frames by using Equation 3.12. Crescendos and decrescendos can also be 

represented by the dynamic positions. A transition over time from a high dynamic value 

to a low dynamic value signifies a decrescendo while a transition from a low dynamic 

value to a high dynamic value signifies a crescendo. This information can also be used in 

the animation system to help the motion better express the music.
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Chapter 4 

Hip-Hop System
Dancing is an art form that invites creativity, originality, imagination and inspiration to 

its creation process. Dancing styles range from the structured dances found in ballroom 

dancing to the chaos that exists in hip-hop dancing. One of the goals of the system 

detailed in this thesis is to combine different music and dance styles and observe how 

they interact with each other. The ability to experiment in this way is a fairly novel idea 

that cannot be easily done with synchronization-based systems. The movements are built 

based on beat onsets and musical dynamics expression. These motions reflect a specific 

dance style but their timing and strength is completely based on the corresponding music 

file. The resulting animation is a unique representation of a dance style that is 

specifically tailored to a piece of music.

The hip-hop system is a prototype system for people to experiment with different 

ways of arranging music and movement. The hip-hop dance style was chosen because it 

is extremely interesting and unique in its composition. By viewing different dance 

videos, it is also fairly apparent that complex dance sequences are made of smaller 

primitive movements, which lends itself well to one of the main purposes of this system. 

We are looking to show that primitive movements can be combined to create complex 

dance sequences. Hip-hop is not a structured dance so it gives the user extreme freedom 

to arrange the movements the way she wants without constraints. The system 

automatically interpolates between all movements, which removes the responsibility from 

the user to create smooth transitions between primitives.

This chapter presents the major components of the Hip-Hop system. Descriptions of 

all the primitive movements implemented in the system are included, along with 

explanations of the different mapping processes between music attributes and 

movements. The creation and parsing of the script file is detailed and the purpose of the 

random function is addressed. Lastly, problems of the system are described.
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4.1 System Overview

The Hip-Hop system is built from two key pieces: music analysis and motion synthesis. 

The motion synthesis section involves interacting with the user, creating motion and 

coordinating movements and music. This process involves script files, mappings and 

primitive movements. These components control the animation and continuously interact 

with one another to produce the final motion sequence.

One of the main goals of this system is to give the user as much control as possible 

over the final animation without her having to build the movements herself. This is 

achieved through a text file known as a script file. This file allows the user to specify the 

movements that compose the animation. The user communicates her commands to the 

system through the script file by identifying the movements that the character will 

perform as well as the timing of the motions. Movement timing is controlled through a 

process called mapping.

The mapping process is designed to allow the user to choose when certain 

movements will occur and which body parts will perform the movements. Its purpose is 

to ensure the user has control over the final result, giving her the opportunity to design 

her own dance from scratch using various body parts, movements and musical attributes. 

In many cases the user of the system will be inexperienced in animation and will be 

unsure of the best way to set up the movement sequence and its subsequent mappings 

between movements and music. A random function has been implemented that will 

randomly choose the order of a set of movements for the user.

Primitive movements are simple movements that are used in combination to create 

more interesting and complex motion. Several types of primitives are implemented in 

this system and they can be used on any body part and at any point in time. Some 

primitives work well with specific body parts, but the user is encouraged to experiment 

with different groupings. The following sections provide more details on the motion 

synthesis component of the animation system, including information on primitive 

movements, mappings and script files.
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4.2 Script Files

The user designs the animation through text files known as script files. They allow the 

user to set up the order in which the movements are performed as well as all the 

mappings between body parts, primitive motions and musical attributes. The script files 

provide maximum control over the final result because they supply the system with all 

the information it needs to build a motion sequence. The system has a special parser that 

reads the script file and inputs its details into the animation component. The animation 

component builds the motion sequence from the timing and movement information 

entered by the user. This section discusses both the design of a script file and the parser 

that inputs the corresponding information into the system.

4.2.1 Designing Script Files

The script file is designed so that the user can easily incorporate different combinations 

of primitive movements and mappings into the animation, choose the time periods for the 

mappings and use a character of her choice in the final result. Unlike other animations 

systems such as Maya and 3D Studio Max, the user does not have to position the 

character or set keyframes for movement. The script file provides the user with the 

means for commanding the system to do these things for her.

The script file is set up so that the user is able to interchange the character used in the 

animation. The script allows the user to call the various body parts of the character rig by 

any term, rather than forcing the user to adhere to a strict naming policy. The system 

proceeds to find the body part specified in the scene and move it according to directions. 

Unlike the body parts, the user cannot change the names of the primitive movements. 

These motions are given specific names by the animator during implementation and the 

system will not recognize any other term. A mapping between a body part and a 

primitive movement occurs by specifying first the name of the primitive movement and 

then the name of the body part in the scene. The format is as follows:

MOVEMENT: bodyPartName 

Examples:

• SWAY: UpperBody

• LIFT: RightArmCtrl
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Multiple characters can be used through this mapping method simply by 

incorporating their body part names into the script file. The system is unable to 

determine the difference between characters because it only selects what is specified in 

the script file. If the user chooses to use body part names that range across several 

characters then those body parts will be moved regardless of whether they belong to the 

same character or not. This procedure allows a user to move multiple characters in the 

same way she would move a single character.

Two of the primitive movements perform special motions that require an object in 

the scene. The Drum movement requires the name of the drum object that the character 

will be drumming on and the Throw movement requires the name of the object the 

character will be throwing in the air:

• DRUM: BodyPartName, DrumName;

• THROW: BodyPartName, ObjectName;

These movements need special consideration when creating the script file because the 

system takes into account both the body part and the extra scene object when creating the 

mapping. The object must be listed in the script file after the body part so that the parser 

can tell the difference between the two components of the movement and perform the 

correct motion.

Once the user has determined which body parts will be performing which 

movements, she needs to decide when these movements will occur in the animation. The 

timing is chosen through the primitive movement to musical attribute mappings. The 

musical features that this system can map to are listed below. The labels used to call 

them in the script file are found in parentheses behind the musical attribute term.

• Strong beat (STRONG_BEAT)

• Weak beat (WEAK_BEAT)

• Loud dynamics (LOUD_DYNAMICS)

• Soft dynamics (SOFT_DYNAMICS)

The format for defining the mapping in the script file is as follows:

MUSICAL_ATTRIBUTE 

MOVEMENT: BodyPartName,

MOVEMENT2: BodyPartName2;
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The user can list as many movements under a musical attribute as she wants. Each 

movement must be mapped to a body part however, and no body part name can occur 

under the same musical attribute more than once. This constraint is to prevent the 

character from attempting to perform two different movements with the same body part 

at the same time.

An animation where the same movements are being performed for its entire duration 

is mundane and uninteresting. The script file design allows the user to divide the 

animation into smaller time periods and produce different mappings at each interval. The 

user specifies the start frame and the corresponding mappings for each interval. This is 

repeated for the number of intervals chosen by the user. The length of each interval 

depends on the user, with an interval continuing until the next specified start frame has 

been reached. The START  keyword designates the beginning of each interval, with the 

start frame number appearing directly after the term. The movements, music attributes 

and body parts used in the animation can be changed from interval to interval, as well as 

the manner in which they are mapped to each other. This creates a more interesting 

animation where the character’s movements change over time. An example of a script 

file is found in Figure 4.1.

4.2.2 Parsing Script Files

The script file can hold a large amount of information about an animation, including 

numerous mappings and interval sections. This information must be handled by the 

system in the proper way or else the resulting motion sequence will not follow the user’s 

specifications. A special parser was implemented in order to properly organize the 

information retrieved from the script file. This parser hunts for keywords in the script file 

and uses these keywords to build up structures that hold mappings and maintain their 

proper timing. It is the job of the parser to divide up the script information.

The five keywords that the parser searches for in the script file are START, 

STRONG_BEAT, WEAK_BEAT, LOUD_DYNAMICS and SOFT_DYNAMICS. As it 

retrieves each word in the script file in order, it checks if the new word matches one of 

the musical attribute keywords. If a match occurs, the parser proceeds to recover all the 

mappings corresponding to this particular keyword and store them in a specialized
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File Edit Format View Help

(START 180      “ .... ~.....       ~ ~ .... .       ~j„
STRONG_BEAT g|k

; headbob: L e f tE a r c tr l ;  m l
:WEAK_BEAT M l
\ headbob: R ig h tE a r c tr l;  1 1

! START 460  j§ (
I strong_ beat H i
i LIFT: L e f t F o o t c t r l ,  I t

l i f t :  L eftA rm ctr l; mi
weak_ beat ■

l i f t : R ig h tF o o tc t r l ,  8
LIFT: R ig h tA rm ctr l; H |

START 680
STRONG_BEAT j

t w is t : L eftG round, t
l i f t : R ig h tA rm ctr l, j

I LIFT: L eftA rm ctr l; (
WEAKLBEAT I

t w i s t :  R ightG round, J
SWAY: UpperBody; j

g j j
•■5 I ' 1 I

Figure 4.1: An example of a script file segment for the Hip-Hop animation system. The 
mappings between body parts in the scene and primitive movements are defined, along 
with the mappings between movements and musical attributes. The user can create 
different intervals of movements to make the animation more interesting.

structure. The punctuation used in the script file is extremely important is this process. 

Punctuation symbols are used to divide up the information in the script file. A colon 

character symbolizes the mapping between a primitive movement and a body part in the 

scene. When the parser finds this character it knows that the word before the colon 

corresponds to the name of a primitive movement and the word after it corresponds to a 

body part. The comma (V ) is found at the end of a body part name and symbolizes that 

another movement-body part mapping follows the present one under the current musical 

attribute. A semicolon represents the end of the list of movement-body part 

mappings that are used when the current musical attribute occurs. When the parser 

discovers this character, it knows that it has finished with this particular musical attribute 

and that the next set of mappings will be for a new one. The parser continuously 

retrieves data using this approach until the end of the file has been reached. A full 

example of how punctuation is used can be seen in Figure 4.2 below.
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There are three special keywords that do not correspond to musical attributes, but that 

the parser will still recognize. These keywords are: DRUM_NAME, DRUM_TYPE and 

UPDOWNTYPE. The user specifies these terms after all the mappings for a time 

interval have been identified. The drumming keywords contain information necessary for 

the execution of the Drum primitive. The DRUM_NAME keyword indicates the name of 

the drum object in the scene while the DRUM_TYPE keyword stipulates whether the 

drumming movement between two arms will occur on the same beat or on alternate beats. 

The UPDOWNTYPE keyword is used for the Updown primitive movement and, like the 

DRUM_TYPE keyword, it identifies if the Updown movement between two arms will 

occur on the same beat or on alternate beats. No punctuation is required for these 

keywords. An example on their use is found in Figure 4.2.

1 File Edit Format View Help
..:............ ....:.......... .......... :..., ...... : ■  ■

START 1 2 0 0  
STRONG_BEAT

DRUM: R i q h t A r m C t r l ,
DRUM: L e f t A r m c t r l ;

WEAK_BEAT RANDOM 
t a p : L e f t F o o t c t r l ,
TAP: R i g h t F o o t c t r l ;

DRUM_NAME
drum
DRUM_TYPE
a l t e r n a t e

START 1 6 6 0  
STRONG_BEAT

THROW: L e f t A r m c t r l ,  l e f t D r u m s t i c k G r o u p ;  
WEAK_BEAT

t h r o w : R i g h t A r m c t r l ,  r i g h t D r u m s t i c k G r o u p ;
LOUD_DYNAMICS

t w i s t : L e f t G r o u n d ;
SOFT_DYNAMICS

TWIST: R i g h t G r o u n d ;

at
f'tii

Figure 4.2: Keywords and punctuation are extremely important to the parser when 
gathering information from the script file. The parser relies on both features to divide up 
the script details into their proper structures for later use by the animation system.

While the parser is effective at dividing up the information into its proper structures, 

it is not particularly robust. If the wrong punctuation is placed somewhere in the script 

file the parser is not intelligent enough to decipher the user’s mistake. Misplaced 

punctuation affects the way the rest of the script file is read, which results in an incorrect

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



final animation. The responsibility to check punctuation currently lies with the user and 

this can lead to frustration. The parser was designed this way because it is difficult to 

attempt to understand the user’s intent and then proceed to correct it. It is more 

frustrating if the parser misunderstands the objective and changes the script file 

incorrectly than if the user is left to make the corrections on her own.

4.3 Mappings

In order for the system to create an animation tailored to the music, it must have 

knowledge of how the music affects the movements. This knowledge is provided by the 

user through two different types of mapping. The first type of mapping is between body 

parts and primitives, where the user chooses the body part that will perform a specific 

primitive movement for a period of time. The second type of mapping is between 

primitives and musical attributes. For each musical attribute the user can choose the 

movement that will be performed when the attribute occurs in the music. This setup 

encourages the user to experiment with different mapping combinations. Mappings are 

the basis for the creation of the animation because they define what movements will 

occur, when they will occur, and how they will be used by the system.

There are four musical attributes that are utilized by the system for mapping 

purposes: strong beat, weak beat, loud dynamics and soft dynamics. The strong beats are 

the pulses in the music that a listener taps her foot along with, while the weak beats are 

the pulses in between the strong beats. In most pieces of popular music the beat is in 4/4 

time. The strong beat occurs on the first and third beat, while the weak beat occurs on the 

second and fourth beat.

The majority of the primitive movements work well when performed by any body 

part. The animation system allows for the same movement to be repeated throughout the 

animation at different times and by different body parts. For example, both of the 

character’s arms can throw an object into the air at the same time. This encourages the 

user to take advantage of movements that work well in the animation by repeating them 

in different contexts. Each movement must be mapped to a body part in order for it to be 

executed. There are no constraints on this mapping, so it is at the discretion of the user 

when choosing primitive-body part combinations. The same movement can be mapped
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to more than one body part, but each body part can only be mapped to one movement in 

each time interval. In essence, this means that a body part is not restricted to a single 

movement over time. For example, a body part can be mapped to one movement when 

the strong beat occurs and then mapped to a different movement when the weak beat 

occurs because each beat takes place in a different time interval.

Mappings between primitives and musical attributes are not limited to one-to-one 

relationships. Several primitives can be mapped to the same musical attribute. For 

example, the movements Sway, Updown and Headbob can all occur on the strong beat. 

In the same way, several musical attributes can use the same movement. For example, 

the Lift primitive can be performed when the strong beat and the weak beat occur. A 

large number of mapping combinations exist, which results in the ability to create 

numerous animations from the same set of movements. The user can take a set of 

primitives and map them to the musical attributes. She can then take the same set of 

primitives and simply change which musical attributes each one maps to in order to 

produce a completely different animation. This type of mapping changes the time period 

over which a movement occurs, resulting in a different representation of the music by the 

character.

The script file ensures that the user has extensive control over the final animation, but 

difficulties can occur if the user is unsure of when movements should be performed or if 

she cannot formulate good mapping combinations. A random function was implemented 

to resolve this issue. The purpose of the random function is to give the user control over 

the movements that will occur, but remove the difficulty of deciding their timing. It 

provides the user with a unique outlook on how the animation would look with different 

movement groupings and is an easy way for her to experiment with mappings.

The random function takes a number of movement-body part pairs as input and 

randomly chooses when each one will be used in the chosen time interval. The user 

specifies the candidate movements in the script file, just as she would do normally, and 

indicates that she wants to use the random function by indicating the keyword after the 

musical attribute it applies to:

MUSICAL_ATTRIBUTE RANDOM
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The random function will first divide the interval into smaller subintervals. The 

number of subintervals corresponds to the number of candidate movements, and the 

length of each subinterval is chosen randomly. The movements that will occur in each 

interval are then chosen randomly by the system and can be chosen more than once. 

Only one movement will be selected for each subinterval. An advantage of using the 

random function is that it is not predisposed to choose one movement over another, and 

therefore it can create unique combinations that the user might not otherwise discover on 

her own. The random function is called each time the system is restarted, with previous 

sequences being removed, so the user can create several different animations from the 

same script file.

4.4 Primitive Movements

It is our belief that complex movements can be decomposed into small primitive moves. 

The majority of primitive movements can be used on any body part of the character, with 

the main body parts utilized being the head, torso, arms, and legs. In the case of the 

bunny figure displayed in the Results section, the ears can also move. The primitives can 

be employed in any order by the user to create different combinations. The ability to use 

the same primitive on more than one body part allows for a larger number of possible 

movement combinations for the character at a point in time. The difficulty lies in 

creating combinations that work well together and this is the responsibility of the user. A 

total of ten major primitive movements are included in the system, with an additional 

nine primitives being used to create some of the major ones. The user cannot call the 

minor primitives in the script file. The minor primitives and their purposes make up the 

first set of movements listed below, with the major primitives discussed second:

Minor Primitives:

• AwayDrum -  moves a body part, usually an arm, away from the drum. This 
movement generally occurs directly after the character has hit the drum and is 
the reaction to the original movement. It is the second part of the Drum 
movement.

• DownHead -  used by the HeadBob primitive, it rotates the head downwards so 
it is looking at the ground.
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•  LimbDown -  once the character has released the object being thrown in the 
ThrowObject primitive, this movement brings the arm back down to its original 
position to catch the object. It is used to create a realistic throw and catch 
movement by giving the appearance that the arm is reacting to the momentum of 
the object by jerking downwards slightly as the object is caught.

• LimbUp -  moves the character’s arm upwards in a throwing motion. It is used 
in the ThrowObject primitive to create a realistic release motion.

• TapDown -  this movement brings the body part, such as the foot, back down to 
the ground after it has been rotated upwards. The original position has the foot 
on its heel with the toes in the air. This movement is the finishing move of the 
Tap primitive, which is meant to emulate a foot tapping to the beat.

• TapUp -  the beginning of the Tap primitive, this motion rotates the body part, 
such as the foot, upwards so that the toes and ball of the foot are in the air, 
resulting in the foot balancing on its heel.

• Throw -  this movement is used only for moving the object being thrown in the 
ThrowObject primitive. It calculates the flight velocity necessary for the object 
to travel to a certain height and takes into account gravity when computing the 
distance traveled at each frame. It also rotates the object so that it will perform 
1-2 spins in the air, just as an object being thrown in real life would. This works 
especially well when drumsticks are thrown up.

•  TowardsDrum -  the beginning of the Drum primitive, this movement uses the 
position of the drum in the scene to move the arm towards it. The purpose is to 
hit the drum with a set of drumsticks, so the distance to the drum takes into 
account the distance between the hand and the drumsticks in the hand, since we 
want the drumsticks and not the hand to hit the drum.

•  UpHead -  rotates the body part back up from an orientation that is facing the 
ground. This movement finishes the HeadBob primitive.

Major Primitives:

• Bend -  a primitive motion that rotates a body part forward and down on one beat 
and then back and up again on the next beat. An example is bending at the waist 
to face the ground and then straightening back up.

•  Drum -  one of the most complicated motions, this primitive uses the arms to beat 
on a drum from the left and right sides. It needs the world position of the drum in 
the scene in order to compute the distance each arm needs to travel in order to hit 
the drum correctly. Body movement is incorporated into this primitive to convey 
the expression better. If a desired position is unreachable by the arm, the body
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raises itself up in order to attain the position. Two different types of drumming 
can be achieved with this movement. The user can choose alternate drumming, 
where the arms take turns hitting the drum one at a time, or same drumming, 
where the arms hit the drum at the same time. The arm moves towards the drum 
and hits it on one beat and moves away from the drum to the original position on 
the next beat.

• HeadBob -  this primitive can be used on more than just the character’s head, but 
its best example of use is creating a head bobbing motion in which the body part 
rotates a small amount forward on one beat and then back to the original position 
on the second beat. It differs from the Bend primitive because the bend primitive 
always rotates a much larger amount as it tries to emulate the bending forward at 
the waist motion. This primitive creates a small head bob motion.

• Jump -  this primitive causes the character to bend at the knees, jump in the air, 
bend at the knees upon landing and straighten up. It is generally paired with the 
torso and looks to create a realistic jump of average height over a single time 
interval.

• Lift -  lifts a body part by a variable height and lowers it to the original height. 
The motion of this primitive occurs in one time interval.

• Sway -  this primitive works best when used by the torso or the head. It rotates 
the body part so it juts out and up on one side and then swings to jut out on the 
other. It is meant to emulate the swaying motion of the hips. A sway from one 
side to the next occurs over one interval.

• Tap -  a simple primitive that rotates a body part upwards around the x-axis in 
one beat and back down to the original orientation in the next beat. Its purpose is 
best compared to the character tapping her foot to the beat.

• ThrowObject -  one of the most complicated primitives, this motion involves 
tossing an object directly upwards in the air. The object can be anything in the 
scene and it will be thrown up from the character’s hand, perform some turns as it 
reaches its highest point, and be caught by the same hand. To create a realistic 
throwing movement, the character’s arm will move down along the y-axis slightly 
before swiftly move upwards to toss the object. Once the object has reached the 
hand again, the arm will move downwards slightly along the y-axis to give the 
appearance of cushioning the impact of the object. This is all performed in one 
interval.

• Twist -  this primitive rotates the body part around the y-axis in a twisting 
motion. The orientation of the body part will change by a bearing of 30° before 
rotating back to its original orientation, all in one interval.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• UpDown -  moves a body part up to a specific height in one beat and down to a 
specific height in the second beat. The body part is constantly alternating 
between a high and a low height. This movement can be coordinated between 
two body parts, where the user can choose if the movement will alternate or be 
the same. If the movement alternates then one body part will move upwards as 
the other is moving downwards, while if the movement is the same then both 
body parts will rise and lower at the same time.

Dance movements should convey the expression of the music. Loud dynamics 

should result in grand gestures and soft dynamics should result in subtle gestures. The 

quality of the movement increases as its representation of the music becomes more 

apparent to the viewer. The hip-hop movements implemented in this system are built to 

change as the dynamic values change. A dynamic scale is incorporated into the 

animation system where the values range from 1-5. A value of 1 denotes a soft dynamic, 

while a value of 5 denotes a loud dynamic. The dynamic rate is computed at each frame 

and used to build proper expression of the music in the primitive movements. The 

distance that a movement travels is based on the current dynamic rate at the beginning of 

the movement. Dynamic rates do not change while a movement is in the middle of its 

execution because it results in choppy movements that switch positions in mid-movement 

due to the final position for the movement varying at each frame.

Primitives are implemented in one of two ways. The first is through an ease-in-ease- 

out function calculated using the following two equations:

u = (curr _ time -  time _ start) /{time _ end -  time _ start) 

ease = (sm (u * 7 t-7 t/2 ) + l ) / 2  (4.1)

where curr_time is the current frame, time_start is the starting frame for this interval and 

time_end is the ending frame for the interval. The ease value is used to compute the 

current translation or rotation value in the following way:

pos -  pos + ease * (end _ pos -  pos) (4.2)

An example of a function that uses the ease-in-ease-out function is the secondary 

primitive downHead, detailed in Figure 4.3.
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“DownHead” Secondary Primitive Movement 

Input:
f <— current frame number
R i<— 3D rotation vector for the body part at the beginning of the movement 
ts *— starting frame of current beat interval 
te <— ending frame of current beat interval 
D <— dynamic rate at beginning of movement

Output:
Ro 4— 3D rotation vector for body part at current frame

Begin
1 Ro <- Ri
2 e 4— ease value calculated by Equation 4.1
3 d <— the full distance the body part should move by the end of the movement, based

on Rix and D
4 Rox 4— new x-rotation value calculated by Equation 4.2 

End of begin

Figure 4.3: The pseudo code of the downHead primitive function using the Ease-In-Ease- 
Out function.

The second primitive example uses sine functions to create continuous movement. 

This provides motion that is smooth and curve-like, unlike straight-line interpolation, as 

well as more realistic looking than the motion provided by Equation 4.1. This type of 

motion suits our primitives because the movements they emulate often move in curved 

patterns in reality. The position and orientation equations are set up as follows:

pos = pos + dist * sin(c * frame) (4.3)

The variable dist defines the maximum distance that the body part will move from 

the origin or original position. The variable c is generally filled in as n / total _tim e  and 

controls the speed of a movement, where total J im e  is the number of frames between the 

starting frame and ending frame of the movement’s time interval. This interval is based 

on the amount of time between beats in the music. A song with a fast tempo results in a 

small time interval because there are a small number of frames between beats. The same 

concept applies to tempos that are slow. The larger this interval is, the slower the 

movement is performed, while a smaller interval results in a faster movement because it
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has less time to accomplish its motion. An example of a primitive that uses this type of 

movement is the Jump movement. The term c from Equation 4.3 of this movement is 

different from the average sine function because it needs to use the sine curve for a period 

and a half instead of half of a period. The movement starts at n  and continues until 4n  , 

with this section of the curve perfectly describing the Jump motion of bending at the 

knees, jumping up and bending at the knees to land. This action is better displayed by the 

graph in Figure 4.4. Results demonstrating this primitive movement can be seen in 

Figure 4.5.

0.8

lum p0.6

0 .4

0.2

-0.2
landing

-0,4
preparation

- 0.6
p ost
landing

2 PI 3  PI 4P I

Figure 4.4: The graph above denotes a sine curve from 0 to 4n  . The blue line 
symbolizes the whole sine curve while the red line represents the segment of the curve 
that best describe the Jump motion. The four changes of direction in the red curve are 
obvious and they are used to portray the preparation, jumping, landing and post-landing 
motions of the Jump primitive.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frame 1 frame 3

frame 6 frame 7

frame 9 frame 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



frame 15

Figure 4.5: Results from the “Jump” primitive movement. The character bends his knees 
to prepare for takeover, jumps into the air, and bends his knees to brace for impact upon 
landing. This motion follows the sine curve shown in Figure 4.4.

The design of the Jump primitive is described in Figure 4.6. In the cases where the 

character is preparing to jump or landing from the jump, the distance that the body part 

will move is smaller than that of the jump segment itself. This occurs because we only 

want subtle movements at these points in time to depict jump preparation and the 

resulting impact.

Unlike the other movements, physics equations are used to implement the Throw 

primitive in order to create a fully realistic model. The flight velocity is computed using 

the equation

where g represents gravity, height represents the distance the object will travel in the air 

and Q is 90° because the object is travelling directly up along the vertical axis. This 

velocity value is used to compute the time the flight will take. The corresponding 

equation is

(4.4)

T =
2 - v s m &

(4.5)
8
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“Jump” Primitive Movement 

Input:
f  <— current frame
Ti <— 3D translation vector for the body part at the beginning of the movement 
ts <— starting frame of current beat interval 
te <— ending frame of current beat interval

Output:
To <— 3D translation vector for the body part at the current frame

1 To <- Ti
2 tt <— time difference between ts and te that constitutes the time interval for the 

motion
3 tc <— time difference between f and ts, used to denote the current frame within the

movement, rather than within the animation
4 d <— value that is 1/3 of tt, used to divide the movement into 3 sections:

preparation, jump and landing
5 If t c < d  or tc> (tt -  d ) , then d <— small value depicting distance knees will bend 

Else d *— large value depicting height of jump
6 Toy <— y-translation value of body part at current frame calculated by Equation 4.3 

End of begin

Figure 4.6: The pseudo code of the Jump primitive movement based on a sine equation.

T is then divided by the movement’s total time interval in order to calculate a ratio of the 

difference between how much time is available and how much time the movement takes. 

Since we want the movement to take the allotted amount of frames available rather than 

the time determined by the flight velocity, a new flight velocity is calculated based on 

this ratio and by using the equation

To make the movement take k times longer, where k = timelnterval, the acceleration

Begin

ratio = T  / timelnterval

yj2 • height ■ ratio2 ■ g (4.6)

(gravity) should be proportional to 1A2 because its units are in m/s2. This is why the 

gravity value is multiplied by ratio2. The height of the ball at a particular time is 

computed as follows:

p O S y  =  p O S y  +  V y ' t -

■ 2 2 ratio ■ g-t
2 (4.7)

v

1 \
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Smooth transitions between movements are an important aspect of animation. Due to 

the nature of the primitives and the ability of dynamics to change the starting and ending 

positions of the movements, it is necessary to include a function that is able to interpolate 

between movements over an interval of time. This function looks ahead in time to the 

next beat in the music and retrieves the movements that will be occurring for each body 

part. The dynamic rate for the next beat is also computed and subsequently used by each 

look-ahead primitive.

The starting position of each movement for the next beat is determined based on the 

position of the current beat and the look-ahead dynamic rate. Straight-line interpolation 

is performed between the ending position of the last beat and the starting position of the 

next beat. In the case where a body part is being used for both the strong beat and the 

weak beat, interpolation is not performed between movements because there are no free 

frames between beats. The next movement will automatically jump to its starting 

position rather than smoothly moving there. This creates jerkiness in the motion due to 

the lack of an even transition. If there are free frames between the ending time of one 

movement and the starting time of the next then interpolation will be performed over the 

entire set of frames.

4.5 Problems with the Hip-Hop System

The major problem with the Hip-Hop system is the inability to properly judge whether 

the final result is correct. Evaluation of dancing is generally subjective, but most dances 

have a structure that is followed in order to classify it as a certain dance type. Hip-hop 

dancing has no structure and is therefore judged entirely according to a viewer’s opinion. 

This lack of structure makes it extremely difficult to perform a fair evaluation of the work 

because there are no rules by which we can judge the animation. Comparisons between 

real examples and animated ones are nearly impossible due to the extreme versatility of 

this dance type.

The range of movements that can be performed in a hip-hop dance is immense, so it 

is difficult to pick out primitive movements that can be reused to create more complex 

motion. This particular system is in need of a wider variety of movements that can be 

used in combination with each other. We concentrated on implementing movements that
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can be used by several body parts, but the animation would be more interesting if more 

movements specific to certain body parts were included. The primitive movements need 

to be more exciting and expressive of the music. The resulting animation is generally 

unappealing to the viewer because the primitive movements cannot be combined well 

enough to create complex motion. Figure 4.7 displays a good example of a movement 

combination that is uninteresting to the viewer due to its overall simplicity and its lack of 

musical expression. It uses the “Lift” primitive on the right arm and leg, displaying the 

reusability of the movement, but it also demonstrates the necessity for more eye-catching 

motion.

S I

Figure 4.7: An example of an unappealing movement combination where the right foot 
and arm are simply lifting and lowering on each beat.

Another difficulty with the system stems from the script file. Although effective, the 

setup of the script file still makes it difficult for the user to design the animation 

according to a predetermined plan. The user can change movements within intervals, but 

creating a continuously changing sequence of movements is extremely time-consuming. 

It is also not practical for integrating multiple characters into the scene because the
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characters are not handled individually. Movements for all characters are specified in the 

same script file, which results in a file where it is difficult to determine which movements 

correspond to which characters. The script file setup also does not give the impression of 

creating a dance. It is difficult to picture what the final result will look like based on the 

script file because it is split into mappings rather than dance movements. The user cannot 

instantly determine when a movement will be performed, which makes it extremely 

difficult to plan out and execute an already existing dance.

These problems are addressed with the introduction of a new dance system that is 

built from a structured form of Celtic dance. The underlying purpose of the creation of 

this new system is to make dances that are more appealing and interesting for the viewer 

than those that could be created by the Hip-hop system. The next chapter discusses the 

new system and its advantages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Chapter 5 

Celtic System

One of the major problems of the Hip Hop system is the inability to compare the results 

of the system with real life dance examples. Hip Hop exists in an extremely versatile 

and creative environment where dance rules are not present and therefore evaluation of 

dances is entirely subjective. We want a system where the results can be compared to 

existing techniques and dance sequences and where the correctness of the results can be 

more easily evaluated. We are looking to generate an animation that looks like Celtic 

dancing, but is a unique variation of existing performances. Celtic dancing was chosen 

because it is an interesting and exciting dance where the movements are performed 

almost entirely by the legs. Using only three major body parts (two legs and the torso) 

simplifies the system and allows us to concentrate on the main movements. The system 

is provided with knowledge of Celtic dancing, including several preprogrammed 

primitive movements and routines.

In Celtic dancing the position of the feet is extremely important in determining the 

next movement in a sequence. In general, both feet are angled away from each other at 

the heels and one foot is placed in front of the other foot. The front foot normally 

initiates the movements and often determines in which direction the motion will occur. 

Constraints are placed in the system to allow for this aspect of Celtic dancing. These 

constraints are used to increase the reliability of the system by ensuring certain 

movements are only performed by certain body parts, as determined by knowledge of the 

Celtic dance.

The Celtic system is implemented in such a way so that the dance moves and 

constraints are separate from the actual animation setup itself. This allows for other 

dances to be included in the system without much adjustment on the part of the animation 

system. The animator simply needs to implement a node that includes primitive 

movements and knowledge of the new dance and add it to the animation system. The 

addition of several new dances would allow the user to see how different dances work 

with different types of music. The user could also mix and match movements from the
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different dances to create a unique dance type. The setup of the Celtic system encourages 

dance addition by the animator and experimentation by the user.

This chapter presents the important components of the Celtic system, including 

primitive movements and how to combine them to create larger dance movements or 

routines. Movement constraints and mappings between movements and musical 

attributes are addressed. The two script files used by the system to create animation 

sequences are discussed in detail. Lastly, applications of the system are outlined.

5.1 System Overview

Like the Hip-Hop system, the Celtic system is comprised of a music analysis component 

and a motion synthesis component. However, the motion synthesis component of the 

Celtic system is fairly different from that of the Hip-Hop system. It involves an 

improved script file set-up, animator-chosen mappings between musical attributes and 

movements, primitive Celtic movements and Celtic-based dance routines.

The script file allows the user to input a motion sequence based on built-in Celtic 

movements. Its main purpose is to give maximum control over the final animation to the 

user rather than the system. The new version of the script file is set up so that it is easier 

for the user to input a pre-designed dance, as well as less confusing when multiple 

characters are used in the scene. Two script files are employed for these purposes: the 

main script file defines the body parts of each character in the scene, and the secondary 

script file includes the Celtic movements to be used. The movements that the user can 

specify in the secondary script file include both primitives and routines.

Mappings between movements and musical attributes are used to tailor the final 

result so that it faithfully represents the input music. The timing of the musical attributes 

directly influences the timing of the movements, as is the case in real life. Mappings in 

this system occur between the beats and the movements, as well as between the dynamic 

levels and the height or distance of some primitive movements. The animator has pre

determined these mappings and the user’s only choice is with respect to whether the 

dynamics mapping is used or not. Mappings can also be defined between body parts and 

primitive movements to determine which body part will perform a particular motion. The
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user can choose some of these mappings, although not all primitive movements are free 

to be utilized by any body part.

In Celtic dance there exist various popular dance routines. Each routine involves a 

selection of dance steps that are performed at specific times with respect to each other. 

The user can call a built-in routine of primitive movements rather than the primitive 

movements individually and get the same, if not a better, result with less work. The 

timing of the routines has been pre-determined by the animator and included in the 

system so that the user does not have to spend time figuring it out. The user is also free 

to build her own routines from primitive movements and other built-in routines. This 

option makes re-use of movement combinations within the secondary script file 

extremely easy.

Primitive movements are fairly simple built-in movements that describe small Celtic 

steps. We believe that complex motion is created from the grouping of several primitive 

movements into a larger sequence, and this section of the system is built to demonstrate 

this idea. The rest of this chapter will discuss more details on motion synthesis, including 

the components of the script file, mappings, routines and primitive movements mentioned 

above.

5.2 Script Files

Script files are utilized to give the user control over what occurs in the animation. They 

are simple text files that list Celtic primitives and routines that the user wants performed 

in the resulting animation. The system reads the script file using a specially designed 

parser and records each movement in the system as it is read in the script file. The script 

file is an easy and user-friendly method of allowing the user to create her own animation 

through a combination of built-in primitives, built-in routines and user-designed routines. 

The script file is also designed to allow for multiple characters in a scene. There is no 

limit to the number of characters that can be specified by the user. The system is 

designed so that multiple characters can use the same script file to perform the same 

sequence of movements or they can use different script files to perform different 

animation sequences.
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In the Celtic system there are two script files that are used to define the animation. 

The first script file is the master script and it defines the characters and which secondary 

script file each one uses. The secondary script file is used to define the animation by 

listing the movements in the order they should be performed.

5.2.1 Master Script File

The system has been implemented so that the user is able to interchange the characters 

used in animations, as well as to use multiple characters at the same time. We want the 

user to have complete freedom from naming conventions when designing the character, 

so a master script file is utilized to define each character being manipulated by the 

system. The master script file also allows the user to define the secondary script file that 

each character will use.

The system uses three main body parts: left leg, right leg and upper body (torso). In 

order to manipulate a character, the system needs to be able to choose those body parts 

from the scene. At the beginning of the main script file the user needs to define the name 

of the object in the scene that corresponds to each of the main body parts in the system. 

An example of this is

LEFTLEG: leftLegCtrl 

where leftLegCtrl denotes the name of the character’s left leg in the scene. It is the user’s 

responsibility to ensure that she is mapping the correct scene object to its corresponding 

system body part. The object will be picked out of the scene and connected to the system 

so they can share information.

Dynamics are one of the musical attributes that are mapped to movements. The 

mapping of this attribute can be turned on and off through the master script file. This 

gives the user the choice to allow dynamics to alter the movements or to use a constant 

dynamic range through the animation. A complete example of a character definition in 

the main script file is as follows:

CHARACTER 1 

LEFTLEG: LeftLegCtrl,

RIGHTLEG: RightLegCtrl,

UPPERBODY: upperBodyGroup,
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DYNAMICS: off;

Mapping a character to a secondary script file is extremely easy. A full example of 

an entire master script file can be found in Figure 5.1. Each character is defined by a 

number, which ranges from CHARACTER 1 to CHARACTER n. Under the mapping 

section of the master script file the name of the secondary script file that corresponds to 

each character is specified. In Figure 5.1, the secondary script files are “warriorsLeft_l” 

and “warriorsRight_l” . The .txt ending of the file is omitted by the user and added in by 

the system when reading the file. User designed routines are also defined under the 

mapping section. The user chooses the name for a routine and then specifies the text file 

its movements are found in. The routine names in Figure 5.1 are SHUFFLECLICK and 

DUALCUT, and their corresponding text files are shuffleclick and dualCut respectively. 

The user utilizes this name when specifying the routine in the secondary script files and 

the system will automatically read the movements from the file.

| File Edit Format View Help

CHARACTER 1
LEFTLEG : L e f t L e g C t r l ,  
RIG HTLEG : R ig h t L e g C t r l ,  
u p p e r b o d y : u p p e rB o d y G ro u p , 
l o c a t o r : L o c a t o r ,
DYNAMICS: o f f ;

CHARACTER 2
LEFTLEG : L e f t L e g c t r 1 1 ,  
RIG HTLEG : R ig h t L e g C t r 1 1 , 
u p p e r b o d y : u p p e rB o d y c r o u p l,  
LOCATOR: L o c a t o r l ,
d y n a m ic s : o f f ; |

i

MAPPING
c h a r a c t e r  1 :  w a r r i o r s L e f t _X,  
c h a r a c t e r  2 :  w a r r io r s R ig h t_ J L ,  
s h u f f l e c l i c k :  s h u f f l e c l i c k ,  
d u a l c u t :  d u a lc u t ;

>

Figure 5.1: An example of a master script file using two characters. The names of the 
objects in the scene corresponding to the system’s main body parts are specified under 
the CHARACTER headings. The mappings of each character to a secondary script file 
and each user designed routine name (SHUFFLECLICK and DUALCUT) to its 
corresponding text file are defined under the MAPPING heading.
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5.2.2 Secondary Script File

The secondary script file provides a blueprint of how the animation will look. Each 

movement in the animation is specified in a secondary script file and read into the system 

in the order listed. This script file defines the dance by using primitive movements, built- 

in routines and user-designed routines. Unlike the master script file, the secondary script 

file is not dependent on the characters in the scene. It is built to be easily changed and 

reused in other animations without regard to who is using it. The purpose of the 

secondary script file is to define the animation.

The user can construct her motion sequence simply by listing the movements she 

wants included in her final animation. Each primitive movement and routine has a 

corresponding name that needs to be specified in order to execute the motion. The user 

must stick to these naming conventions when creating the secondary script file or the 

correct movement will not be called. Primitive movements are specified by name and 

some of them need a body part to be included. For example, when calling the STAMP 

function, it needs to know which body part it is being applied to. The STAMP primitive 

lifts and lowers a leg in a movement depicting a leg stamping on the ground, so it is 

important for the system to known which leg is performing the motion.. Not all primitive 

movements allow the user to choose the body part it is applied to, but the format for those 

that support this option is STAMP: RightLeg. The colon after the movement’s name is 

especially important because that is how the parser recognizes the movement as being 

applied to a specific body part. Routines are specified only by name, such as 

SHUFFLEHOPBACK, and like the primitive movements, must be spelled with capital 

letters.

In some cases it may be necessary to start the motion sequence at a certain frame or 

divide the sequence up into large intervals of time. The system is implemented so that 

the user can choose a start time for each segment using the keyword START. When a 

user adds this keyword into the secondary script file, the system will perform the first 

movement at the frame number specified directly after START. The start keyword can 

be used to divide the script file into different intervals of time. If a user wants a large 

pause between movements, she can specify one group of movements to start at time X
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and another group of movements to start at time Y, where X < Y. This gives the user 

control over the timing of the entire animation.

A movement or routine can be performed several times in a row by specifying the 

name of the movement and then the number of times it should be performed directly after 

it in the script line. There is no limit to the number of times a movement can be looped 

through. Along with animation timing, the system provides the ability to control the 

timing of individual movements. Movement timing can be influenced by the user through 

the application of brackets and rests.

Brackets are used to indicate that more than one movement is performed at the same 

time. In many of the built-in routines, several movements are performed at the same time 

to create a realistic motion. The user can copy this by putting brackets around the 

movements occurring in the same time interval. The first movement of the interval is 

specified normally and the remaining movements are placed within brackets. The system 

allows for up to 20 movements to be performed during the same time interval in the 

animation, however, it does not ensure that the movements do not conflict. An example 

of a routine using brackets is as follows:

L1ETLEG: RightLeg;

(HOP);

(L1TTLEG: LeftLeg);

Rests are used to stagger the starting and stopping times for movements. The 

concept is adopted from music, where rests denote breaks between musical tones. The 

rest is specified in the system by the ‘A’ character. Each rest is worth 1/8 of a beat, which 

means that the length of a rest will change from one piece of music to the next. The 

faster the song is, the shorter a rest will be. Rests can be placed before or after a 

movement name and several rests can be used by one movement. If the rest is placed 

before a movement, the movement will wait 1/8 of a beat before beginning. If the rest is 

placed behind a movement, it will end 1/8 of a beat earlier. The number of rests used will 

affect the length of the movement. The system counts the number of rests before and 

after each movement and determines the starting and ending time of the movement from 

the separate totals. Examples include:

AHOP;
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CROSSA;

AASTAMPA;
B

| File Edit Format View Help |

START 1 •Aj|
W AIT 3; . Jj
S ID ESTEP 1 0 ; ' ' 4:1

STEPFORWARD 1 4 1; ■ 31
SID ESTEP 5;
j u m p b a c k ;
SHUFFLEHOPBACK 5; : :S’
KNEEBENDHOP;
FRONTCLICKJUMP;
W AIT 2;
SHUFFLEHOPBACK 8;
DUALCUT;
c u t ;
w a it  2;
ZIG ZA G  3;
L IF T L E G : R ig h tL e g ;
(A H O P );
DROPLEG: R ig h tL e g ;
STEPFORWARD;
O h o p ) ;
s t e p b a c k ;

<
V

Figure 5.2: A secondary script file allows the user to design her motion sequence by 
specifying primitive movements, built-in routines and user designed routines in the order 
she wants them performed in the animation. A user can utilize loops, parentheses and 
rests in order to retain maximum control over the timing of the animation.

An example of a secondary script file is found in Figure 5.2. The 1st line denotes the 

starting frame for the animation is frame 1. The 2nd line specifies that the character will 

wait for 3 half-beats, since each primitive movement is performed over an interval with 

the length of half a beat. When a number follows a primitive or routine name, the system 

will perform the movement as many times as specified by that number. The 3rd line 

states that the Sidestep routine will be performed 10 consecutive times. This results in 

the character moving across the stage. Each routine takes a different amount of time, 

depending on how many primitive movements are involved. The Sidestep routine uses 

two primitives, so each performance of the routine will take 1 beat. The 3rd line needs a 

total of 10 beats to complete the motion. The 4th line concerns the Stepforward primitive, 

which involves the character taking a single step forward with her back leg. The script
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file specifies that it will be performed 14 times, and since it involves only one primitive, 

it will take 7 beats to complete. Line 5 uses the same routine as mentioned earlier in 

conjunction with line 3. The 6th line is performed only once because there is no number 

following the movement definition. The Jumpback routine uses two primitives and 

therefore will take 1 beat of time. The Shufflehopback routine noted in line 7 is different 

from earlier routines because it involves 4 primitives, but two of those primitives occur at 

the same time. This results in a routine that takes 3 half-beats, or 1.5 beats to complete. 

The user has specified that the character will perform this routine 5 times, so the entire 

loop will use 7.5 beats. The Kneebendhop routine also takes 3 half-beats, or 1.5 beats, so 

the 8th line will take 1.5 beats to complete because the routine is only being performed 

once. Unlike any other routine, the FrontClickJump motion specified in line 9 uses 4 

primitives and takes 2 full beats to finish performing. The rest of the lines specify either 

routines or primitives and the number of times they should be performed in succession.

There are two exceptions in the above script file that need further explanation. The 

first occurs in line 12, where the DualCut routine is specified. This routine is a user- 

defined routine and its length in beat-halves depends on the number of primitives the user 

specified in it. This particular routine calls two built-in routines: Cut and CutBack. Both 

routines take 1 beat each to complete, so the DualCut routine uses 2 beats in total. The 

timing of a user-defined routine is dependent on the user who designed it, so it is the 

responsibility of the user to remember how long the routine takes to complete. Lines 16 

and 17 provide an example of the second exception in the script file. Line 17 uses 

brackets and one rest, linking it to line 16. In line 16 the character is commanded to lift 

her right leg, while line 17 specifies that she is hopping at the same time. The Hop 

primitive is performed at the same time due to the brackets around it, although the rest 

symbol denotes that the primitive will wait % of a beat before starting. This results in the 

character starting to lift her right leg and then Vs of a beat later, starting to hop.

One of the unique features of the Celtic system is the ability to use multiple 

characters with different personalities. In some cases, the user may want multiple 

characters to perform the same dance move at the same time, and in other cases, the user 

may want the characters to perform different dance moves during the same time interval. 

In order to synchronize multiple characters, it is imperative that the user keeps track of
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the movement timing for each character. Because the length of time for each movement 

differs, the user must use combinations of movements that add up to the same total 

amount of time across characters. An example can be seen in Figures 5.3 and 5.4, where 

the characters both perform the same movements and different movements over time. 

Figure 5.3 demonstrates using movements with the exact same timing sequence across 

characters and the Figure 5.4 exhibits how one routine’s timing can be offset by a 

combination of routines and primitives for continuous synchronization through different 

moves. In order to keep the characters synchronized in time, the user must continuously 

track the number of beats used by the movements. Movements cannot be performed at 

the same time if one character has performed one less beat’s worth of movements than 

another character. Tracking the time used across characters allows for easier 

synchronization and off-synchronization of movements throughout the dance.

CHARACTER 1 CHARACTER 2

JUMPBACK; JUMPBACK;
LIFTLEG: RightLeg; LIFTLEG: LeftLeg;
HOP; DROPLEG: LeftLeg;
DROPLEG: RightLeg; HOP;
HOP; WAIT;
STEPFORWARD 4; STEPFORWARD 4;

Figure 5.3: An example of synchronizing a dance over multiple characters. Each 
movement in a sequence takes the same amount of time for completion as the movement 
directly across from it in the other character’s sequence. The sequences involve 
movements that are different from the other character as well as the same. This is the 
easiest way to synchronize over the animation.

The system does not restrict the movement order decided by the user. It does not 

check to make sure that two movements can be performed properly at the same time or 

that consecutive movements make a realistic sequence. The user must ensure that her 

movement choices are realistic and that the order makes sense. For example, if the user 

wants the character to lift her leg and then perform a tapout movement on the ground, she 

must ensure that the character also lowers her leg. This type of movement transition is 

not performed by the system because it is too difficult to decipher all possible transition 

combinations between all the primitive movements and routines. Celtic movements are
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CHARACTER 1 CHARACTER 2

HOP;
SHUFFLEHOPBACK;
JUMPBACK;

HOP;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
STAMP: RightLeg; 
JUMPBACK;

Figure 5.4: Another example of synchronizing data over multiple characters. Unlike the 
figure above, the movements in this sequence are performed off-synch. The 
Shufflehopback routine performed by Character 1 takes 1.5 beats of time and the lines 
under Character 2 from Stepforward to Stamp also take 1.5 beats of time. The Jumpback 
primitive at the end of both sequences is performed at the same time because the 
movements prior to it are synchronized in time, if not in movement.

provided that easily create transitions and so it is the user’s responsibility to check her 

animation for inconsistencies.

5.2.3 Parsing Script Files

Once the user has designed the dance and built the script file it is necessary to input the 

information into the animation system. Special parsers were built for the main script file 

and the secondary script files. The information obtained from each file is dissimilar so 

the setup of the parsers is significantly different. The parsers are extremely important 

components of the animation file because they ensure that the script information is read 

correctly.

The parser for the main script file is responsible for reading character information, 

user-defined routine file names and secondary script file mappings. The word 

CHARACTER denotes that character information follows and the parser uses this 

keyword to determine the structures it will use for storage in the system. Special 

keywords are then used to describe the body parts belonging to each character. These 

keywords include RIGHTLEG, LEFTLEG and UPPERBODY. The parser recognizes 

these words and stores the name of the corresponding scene object in a special structure 

that is unique for each character. The parser gathers the character information for single 

and multiple characters and selects the objects in the scene based on the given body part
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names. The parser also identifies the keyword DYNAMICS. The parser records the 

choice made by the user with respect to incorporating dynamics into movement. The 

user must use the word “on” or “o f f ’ to denote that the dynamics feature is to be on or 

off, respectively.

Once the user has described all the character information, she uses the keyword 

MAPPING to denote the end of the character information and the beginning of the 

movement information. If the parser finds the word CHARACTER after detecting the 

mapping keyword, it knows that the next piece of information will be the name of the 

secondary script file that the specified character will use. If this keyword is not the input 

then the parser knows that a user-defined routine will be specified for use. It stores the 

name of the routine and the name of the routine’s unique script file for later recognition 

in the secondary script file parser.

The parser for the secondary script file is responsible for interpreting the design of 

the dance. The parser retrieves the name of the secondary script file from the information 

obtained from the parser of the main script file. This file is opened and the keyword 

START is always the first word input from the script. This defines the starting frame for 

this particular movement section. Once the interval’s starting frame has been established, 

the parser reads in the movements one by one. It is searching for the following 

grammatical components: ‘( ‘, and If it finds a bracket then it realizes that the 

next movement is a submovement, which means that it will be performed at the same 

time as the previous movement. The movement is stored in the specially built movement 

structure as a submovement of the previous one. The movement structure is set up 

similar to a 2D array so that the main movements are stored in the first dimension and the 

submovements are stored in the second dimension of the corresponding main movement. 

If the parser finds a semicolon, it simply stores the name of the routine or movement for 

use in the animation system. Lastly, if the parser finds a colon, it recognizes that a body 

part will be specified for this particular movement and it stores them separately: the 

movement name in the movement structure and the body part name in the body part 

structure. The index into both structures is the same so that it is easy to coordinate 

movements and body parts.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Two exceptions exist in our parser setup. The first occurs when a user-defined 

routine is specified in the script file. Each routine name read by the parser is compared to 

a list of user-defined routine names. If the name does not exist on the list, the routine is 

read into the movement structure as normal. If the name does exist on the list, the parser 

calls itself using the script file specified for the user-defined routine. All the movements 

in this special script file are read into the movement structure in order and the user- 

defined routine name is discarded. In effect, the movements corresponding to the user- 

defined routine are replacing the routine itself. The parser then continues on to the next 

movement in the secondary script file.

The second exception occurs with respect to the built-in Turn routine. This routine 

needs the direction and number of turns specified by the user in order to execute. The 

name of the routine and the direction are stored in the same way a movement and 

corresponding body part are stored. The number of turns being performed is stored in its 

own structure because the looping amount is handled differently from other routines. The 

loop number is used to determine how far the character will turn at once, rather than how 

many full turns it will perform in a row.

Like the parser for the Hip-Hop system, this parser relies on proper grammar and 

spelling to work properly. The user is responsible for checking that the script file is built 

according to animator-determined instructions. The user is left to correct her own 

mistakes because it avoids discrepancies that occur if the parser incorrectly changes an 

aspect of the script file that was correct. The parsers for both script files are incredibly 

effective, despite their inability to recognize errors in the script file design, and are a vast 

improvement over the original script file design found in the Hip-Hop system.

5.3 Mappings

The main purpose of our animation system is to use music as the prime vehicle to drive 

an animation. Musical attributes such as the beat are mapped to Celtic movements and 

used to alter the motion based on the music. This system does not simply synchronize an 

already existing animation with a piece of music, but it actually builds the animation 

according to details extracted from the input song. Unlike synchronization methods, the 

movements in our system change along with the music. We create a final animation that
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is tailored to fit the music chosen by the user while providing an interesting and 

entertaining sequence of motion.

5.3.1 Mapping Beats to Movement Timing

The timing of the movements is based almost entirely on the tempo of the music, where 

the faster the song, the faster the movements are performed. The position of the beats are 

inputted into the animation component by the music analysis component and used to 

determine the length of each movement’s time interval. The beat attribute is not mapped 

to a specific movement or set of movements, but is used to structure the movements so 

they occur on a beat, as is generally seen in real-life dancing.

Celtic dancing is a fairly high-speed dance, where several movements occur in the 

space of one beat. In order to stay faithful to this style of dance, the mapping between 

beats and movements was changed from the original one movement per beat found in the 

Hip-Hop system. In this system two primitive movements are performed for each one 

beat. This rule applies to routines with multiple primitives as well. Several routines use 

three or four primitive movements and result in taking 1.5 or 2 beats to finish. This 

timing can make coordinating a routine between several characters more difficult because 

the user must be aware of the beat length of each routine, but it results in a more realistic 

animation.

Rather than performing each routine in a single beat, we choose to map two 

primitives to one beat because it provides smoother motion and better transitions between 

primitives. If a routine such as FrontClickJump was performed in a single beat then four 

primitives would have to be completed by the end of the beat. In the case where the user 

inputs a fast song that results in a short time interval for each routine, this particular 

routine becomes extremely choppy because each primitive only gets a small window of 

time in which to complete its motion. By restricting the animation timing to two 

primitives per beat we can be assured of providing smooth motion no matter how high 

the song’s tempo is.
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5.3.2 Mapping Dynamics to Movement Distances

Dynamics are a source of interest in music because they contribute to making a song 

interesting and unique. Almost every listener can distinguish the loud sections from the 

soft ones and the transitions between the levels. Dynamics can also affect the movements 

used to dance to a particular song. Small and timid motions are not used on a song that is 

loud, and large extreme motions are not used on a song that is consistently soft. In order 

to make our animation more appealing we take the most interesting aspects of music, 

such as the dynamics, and use them to directly change the movements to better reflect the 

mood of the song.

The dynamics levels in the system range from 1 to 5, where 1 denotes soft dynamics 

and 5 denotes loud ones. There exist several primitive movements where the dynamics 

level affects the distance moved by a body part or the height of a jump or kick. The 

higher the dynamic level is, the higher the height or the longer the distance will be. All 

primitive movements have an animator-determined height or distance range. The current 

height or distance value for the movement will always fall within this range, but will be 

affected by the current dynamics level. For example, in the Hop primitive the height 

range is from 0.6 to 3.0 units. The height of the primitive is calculated by the following 

equation:

height = 0.6 • get Dynamics Level () (5.1)

The majority of the equations are calculated in this way, where the constant value (0.6 in 

this case) is the low end of the range and the constant value multiplied by 5 is the high 

end of the range.

The primitive movements that are altered based on the dynamics include:

• Hop/ShortHop/HopForward

• LiftLeg

• DropLeg/DropLegBehind

• LongStep

• SlideBehindStep

• Cross
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There exists an exception with respect to applying dynamics to primitive movements. In 

most cases, the current dynamics level can simply be applied to the height or distance 

value of a movement, however the DropLeg, DropLegBehind and SlideBehindStep 

primitives cannot follow this. In general, once a character lifts a leg she will lower it at 

some time or another. If the height of the leg is determined based on dynamics and the 

dynamics level changes by the time she lowers it, she could be lowering the leg too much 

or too little. It is necessary that the dynamics level for the DropLeg and DropLegBehind 

primitives is the same as that of the LiftLeg primitive, while the SlideBehindStep 

movement must have the same dynamics level as its counterpart LongStep.

5.4 Constraints

Foot position is an extremely important aspect of Celtic dance. It can help to determine 

the next movement in a motion sequence or the direction the character moves in around 

the stage. In many cases, the front foot is used as the starting foot for a routine or 

movement. This is the main reason that the system keeps track of which foot is in front 

and which is behind at each frame. We incorporate this Celtic knowledge into the system 

through the implementation of constraints. These constraints are used in some primitive 

movements and all built-in routines. Their purpose is to ensure that a primitive or routine 

is being performed by the correct body part according to the rules of Celtic dance.

Only four primitives incorporate constraints into their implementations. For 

example, the StepForward primitive movement switches the front foot with the back foot 

by taking a step forward. Essentially, the back foot moves forward until it is positioned 

in front of the opposite foot, similar to a walking motion. A constraint is used in this 

routine to make sure that it is performed by only the back foot. If a user calls this 

primitive with the front foot, the system will not perform the motion. The 

SlideBehindStep primitive is also constrained to the back foot, while the StepBack and 

LongStep movements use only the front foot.

Constraints are especially important to built-in routines because the routines are 

created based on specific combinations of Celtic primitives. The constraints enforce the 

rules for performing a specific routine, such as ensuring the front foot performs the first 

movement. The animator, based on Celtic knowledge, chooses which body part performs
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which movement and uses the constraints to guarantee her design is followed. An 

example of this is the FrontClickJump routine. This routine performs a scissor-kick 

jump. The process starts with the front leg being lifted into the air. It is then lowered at 

the same time the back leg is lifted into the air and the character hops in place. The back 

leg is finally lowered down to the ground to complete the motion sequence. The first lift 

and drop movements must be performed by the front leg, while the second set is 

performed by the back leg. Foot constraints ensure that this order is followed and that the 

motion conforms to Celtic dancing.

The constraints incorporate system knowledge of the positions of the character’s feet 

with Celtic knowledge of how movements and routines should be performed. The use of 

constraints in a movement or routine is decided entirely by the animator and cannot be 

altered by the user. Constraints are used to enforce the integrity of Celtic dance and 

make it easier for the user to put together realistic motion.

5.5 Routines

The dance routines implemented in this system are more complex dance steps than those 

provided by the primitive movements. In many cases, Celtic dance has a dance step that 

consists of several primitive motions, but it is referred to by the name of the dance step 

rather than the primitives individually. Combining several primitive movements allows 

for these complex routines to be created and used by the system. The user can use these 

routines by specifying them by name. The routine will automatically call the appropriate 

primitive movements to create the movement. The system handles two different types of 

routines. The first is the built-in routine, as programmed by the animator, and the second 

is a user-designed routine.

5.5.1 Built-in Routines

The built-in routine is implemented directly into the system by the animator. It makes 

use of several primitive movements and controls the timing of them to create an actual 

Celtic dance step. In some cases a movement is slightly altered so it fits into the routine 

better. These routines are called by name and will call the primitive movements 

themselves. Routines were implemented for some of the major Celtic dance moves. The
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purpose of a routine is to make the animating process easier for the user. Rather than 

having the user continuously specify small primitive movements in the same order, she 

can call a routine that does the same thing. They save the user time and frustration 

because the animator has already worked out the timing of the primitive movements so 

that the routine is correct. This makes it easier for the user to create an entire Celtic 

dance based on known Celtic movements. These routines are similar to how a person 

would learn to Celtic dance and are taken directly from [11]. The majority of these 

names are the ones used by dancers performing Celtic dance. Some routines, such as 

CutBack, ClickZigZag, FrontClickJump and KneeBendHop were not given names in the 

Celtic video, so their names are based on the movements used in the routine or similar 

routines.

There are eleven Celtic routines implemented into the system. They include:

• ClickZigZag -  uses the ClickHeelsOut and ClickHeelsIn primitives to 
continuously rotate the feet in so they click at the heels and then back out to the 
original orientation. The feet are moved so they are lined up beside each other. 
This routine takes 1-1.5 beats for each performance. The timing change occurs 
due to the modification of the position of the feet. Once the routine is finished 
and the system is moving on to another routine, the feet need to be moved back 
to their original position before this routine occurred. This movement needs an 
extra half-beat. Essentially, if the routine is performed 3 times in a row, it will 
take 3 beats for the routine motion and Vi beat to move the feet back into 
position, for a total of 3.5 beats.

• Cut -  uses the CutBend and Hop primitives to perform a specialized Celtic 
jump using the front leg. Both primitives perform at the same time to achieve 
the jump before the StampDown primitive is used to place the front foot back 
into position. As the character hops in the air, the front leg bends at the knee 
and rotates so that the foot is in position directly in front of the opposite knee. 
There is a slight pause before the front leg is lowered to the ground. This 
routine uses 1 beat for each occurrence.

• CutBack -  uses the CutBend and Hop primitives to perform a jump using the 
back leg. It is exactly the same as the Cut routine, except it uses the opposite 
leg. It also uses 1 beat for each occasion it is used.

• FrontClickJump -  one of the more interesting jumping routines, it uses the 
Stamp, LiftLeg, Hop and DropLeg primitives. It stamps the back leg before 
lifting the front leg out in front of the body. The back leg is lifted and the hop 
movement is used as the front leg is lowered, producing a heel click in mid
jump. The back leg is then lowered to the ground. Both legs are off the ground
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and in front of the character for part of the routine. This routine needs 2 full 
beats of time.

• JumpBack -  used to switch the front foot and the back foot. This routine uses 
the LiftLeg, DropLegBehind and HopForward primitives to create a jump that 
lifts the front leg in front of the character and lowers it so it ends up behind the 
back leg. The front leg is completely straight as it is lifted and lowered. 
Because the HopForward primitive occurs at the same time as the 
DropLegBehind primitive, the JumpBack routine uses only 1 beat.

• KneeBendHop -  another jumping routine that uses the LiftLeg, KneeBend, Hop 
and StampDown primitives. The front leg is lifted into the air in front of the 
character, after which it is bent at the knee as the foot and the leg move directly 
in front of the body during the hop movement. The knee is facing upwards. The 
leg is then placed back on the ground in front of the back leg. This routine takes 
1.5 beats to finish.

• Shufflehopback -  An extremely popular Celtic dance move, this routine 
involves switching the front and back feet in an interesting way. It makes use of 
the TapOut, TapBack, ShortHop, and StampDown primitives. The character 
taps out her front foot and then taps it back and behind the back foot while 
hopping on the back foot. The original front foot is then placed down behind the 
original back foot into position. The Shufflehopback routine needs 1.5 beats for 
each occasion it is used.

• SideStep -  used as a method for moving the character in space, this routine 
allows the character to move from side to side. The front leg takes a short step 
to its closest side and then the back leg follows it to the same side. This routine 
uses the Cross primitive twice and needs 1 beat for each performance.

• SlidingStep -  another method that moves a character in space, this routine 
performs a diagonal step forward. The front foot takes an extended step forward 
and slightly to the side using the LongStep primitive and the back foot slides 
behind it using the SlideBehindStep primitive. This routine uses two primitives 
in succession, so it needs 1 beat of time to finish the motion.

• Turn -  this routine allows the character to change her overall orientation. She 
can rotate in increments of 90° to face different directions. This is the most 
complicated built-in routine, as its implementation is different from the other 
routines and the turn can occur either to the left or to the right. It does not use 
any primitives, but is classified as a routine because it involves several 
movements. The character turns around the front leg. She starts by lifting the 
leg that is not turning, rotating the other leg so it is on the ball of the foot, and 
turns the torso slightly in the direction that she will be turning towards. The next 
movement involves rotating the rest of the body some multiple of 90°, as 
determined by the user. Lastly, the character rotates her torso back slightly to
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compensate for the original rotation in the first movement, rotates the turning 
foot so that it is completely on the ground rather than on the ball of the foot, and 
places the back leg down on the ground. As the character rotates around the 
front foot, the back leg and upper body also rotate around the front foot so that 
the character is constantly in the correct Celtic position. The correct Celtic 
position involves both feet angled away from each other at the heels and one 
foot placed in front of the other foot. The Turn routine requires 1.5 beats 
because the character lifts her back leg, turns on the front leg, and lowers the 
back leg, where each movement takes Vt a beat.

•  ZigZag -  involves the SwingHeelsIn and SwingHeelsOut primitives to 
constantly rotate the heels in towards each other and then swing them back out 
to their original position. The upper body moves up and down slightly during 
this routine because the height of the heels in the air changes as the character 
moves from the heels swinging out (heels at highest point) to heels swinging in 
(heels at lowest point). Similar to the ClickZigZag routine, this routine uses two 
primitives. However, this routine only needs 1 beat for each occurrence because 
it does not change the position of the feet.

The timing aspect of a routine is extremely important. The built-in routines give the 

animator the ability to have several primitives performed at the same time and at different 

offsets. Each routine can use a different number of primitive movements to accomplish 

its purpose. An example of a routine that uses different primitives and different offsets is 

the Shufflehopback routine. Figure 5.5 displays the pseudo code for this routine, 

including the primitive movements involved in creating the complex motion. The 

Shufflehopback is comprised of three main time intervals, denoted by the term 

movementCnt in Figure 5.5. Each interval takes place over half a beat interval in the 

music, as chosen by the animator for primitive timing. The Shufflehopback routine will 

take 1.5 beats to complete, with the TapOut primitive taking place over the first time 

interval, TapBack and ShortHop occurring during the second time interval and 

StampDown occurring over the third time interval. The ShortHop primitive does not 

share the same movement start time as the TapBack primitive, despite both occurring in 

the same time interval. The ShortHop has an offset of 2 from the TapBack so it will start 

later and take less time to complete.
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“Shufflehopback” Routine 

Input:
f  <— current frame number
Vi <— 3D rotation or translation vector for the body part at the beginning of the 

movement
ts <— starting frame of current beat interval 
te 4— ending frame of current beat interval

Output:
Vo <— 3D rotation or translation vector

Begin
1 Vo 4-  Vi
2 If body part is the front foot
3 If movementCnt = = 1

Vo 4— TapOut(f, Vi, ts, te)
4 Else if movementCnt = = 2

Vo 4— TapBack(f, Vi, ts, te)
5 Else if movementCnt = = 3

Vo <— StampDown(f, Vo, ts, te)
6 If f > ts+2 and movementCnt = = 2

Vo <— ShortHop(f, Vo, ts+2,te)
End of begin

Figure 5.5: The pseudo code for the built-in Shufflehopback routine. It uses the TapOut, 
TapBack, ShortHop and StampDown primitive movements.

5.5.2 User Designed Routines

In some cases the user may want to use routines that are not implemented in the Celtic 

system. The system allows for user-designed routines in which the user can define her 

own routines through text files. The user can create her own dance moves by specifying 

primitives or built-in routines and their order. There is no maximum length limit for a 

routine, so the user is free to use as many primitives as necessary. The user-designed 

routine makes it easier to create an animation sequence because the user can define 

routines with combinations of movements that are used continuously in the animation. 

For example, if the user finds that she is constantly using three primitives in the same 

order in several places in her animation, she can put them into a routine. Rather than
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specifying the three primitives each time she wants that specific combination, she can 

specify her specially designed routine instead. The system will retrieve the routine as 

input and perform the primitives found in that routine.

In many routines the timing of movements is extremely important. While the 

animator controls the timing for built-in routines during implementation, it is more 

difficult to do this for user-designed routines. The system originally performed the 

movements in the order they were specified, one after the other. The brackets and rest 

features detailed in Section 5.2.2 were implemented into the system to give the user the 

same control that the animator enjoys.

Rests and brackets can be used in combination in a routine that performs several 

movements using a specific arrangement. In fact, the user is able to reconstruct the built- 

in routines using a combination of primitives, rests and brackets. For example, the 

Shufflehopback routine can be reconstructed as follows:

Shufflehopback: TAPOUT: RightLeg;

TAPBACK: RightLeg;

(ASHORTHOP);

STAMPDOWN: RightLeg;

Variations of built-in routines can also be created, as user designed routines are not 

limited to exclusively using primitive movements. User designed routines promote 

creativity and experimentation by the user because she is free to use any primitive or 

built-in routine in the system, as well as control their order and timing. Once the routine 

files are designed they can be reused in any animation and changed easily by the user.

5.6 Primitive Movements

The primitive movements implemented in this system were determined by studying 

videos of Celtic dancing and establishing the simple movements that make up the larger 

routines. An especially helpful video was Colin Dunne’s Irish dance instructional video, 

“Celtic Feet.” [11] This video breaks down routines into primitive steps and displays how 

they can be put together to create dance sequences. Most of the primitive movements 

implemented in our Celtic system are modeled after the movements depicted in this 

video. A total of twenty-four primitive movements have been implemented into the

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system. They can be used in different combinations to create routines, which are slightly 

larger and more complex movements. The primitive movements and their purpose are 

listed as follows:

• ClickHeelsIn -  the feet line up horizontally, lift up onto the balls of the feet and 
turn in so that the heels click against each other.

• ClickHeelsOut -  once the heels have clicked against each other, this movement 
rotates the feet so they are once again apart.

• Cross -  used for moving the body in a sidestep movement, this primitive moves 
the body to the side of the front leg. For example, if the front foot is the right 
foot, the body will take a step to the right.

• CutBend -  takes the front foot and bends it so that the foot is in front of the back 
foot’s knee, both in distance and height. The knee should be sticking out to the 
opposite side of the back foot.

• DropLeg -  lowers a leg from the position where the leg is stretched out in front 
of the body. The leg is lowered directly to the ground.

• DropLegBehind -  lowers a leg from the position where the leg is stretched out in 
front of the body, but places,the leg behind the other leg.

• HeelsUp -  rotates the foot so that the character is on the balls of her feet.

• HeelsDown -  rotates the foot so the character goes down from the balls of her 
feet to the heels of her feet (the whole foot is solidly on the ground).

• Hop -  performs a jumping motion on the spot.

• HopForward -  performs a jumping motion that moves the character slightly 
forward.

• KneeBend -  lifts the leg and bends the knee so that leg is fairly close to the body, 
with the knee bent and pointing up.

• LiftLeg -  lif s the leg out and straight in front of the character.

• LongStep -  takes a long step that equals the distance of several normal steps, 
generally used with front foot.

• ShortHop -  performs a jumping motion on the spot that does not go as high as 
the normal Hop primitive.
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• SlideBehindStep -  used in conjunction with the LongStep primitive, it slides the 
back foot in behind the front foot.

• Stamp -  lifts a leg up slightly, bending at the knee, and lowers it back down to 
the ground.

• StampDown -  lowers a leg to the ground from a slightly raised position.

• StepForward -  takes a single step forward. This primitive is always performed 
by the back foot so it moves in front of the front foot.

• StepBack -  takes a single step backwards. This primitive is always performed by 
the front foot so that it moves behind the back foot.

• SwingHeelsIn -  rotates the heels of the feet in towards each other without 
contact. The feet stay at their original position for the duration of this movement.

• SwingHeelsOut -  used in conjunction with the SwingHeelsIn primitive, it rotates 
the heels back out to their original orientation from the inward orientation.

• TapOut -  moves foot slightly forward along the ground. This primitive taps the 
ground as it moves forward in a convex type motion and is generally used on the 
front foot.

• TapBack -  moves the foot back behind the other leg as it taps the ground in a 
convex type motion. It is used in conjunction with TapOut, and so assumes the 
foot is already slightly out in front of the body.

• Wait -  pauses the motion for a time length determined by the animator. The 
character does not move during this primitive.

Movement in general is very smooth and occurs in curves rather than in straight lines. 

For this reason, Equation 4.3 is used to compute the position and rotation of each body 

part at a given point in time. A simple example of the implementation of such a primitive 

is the Stamp movement, shown in Figure 5.6, where a foot lifts off the ground to a certain 

height and then stamps back down on the ground in the same time interval.

In the majority of the primitive movements there are constraints placed on the motion 

for each body part. These constraints include the direction (right or left) that the 

primitive moves the body to, which body parts are moved by a primitive, and how much 

each body part is moved. For example, in many cases the torso of the character will

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



“Stamp” Primitive Movement 

Input:
f *— current frame number
Vi <— 3D translation vector for the body part at the beginning of the movement 
ts <— starting frame of current beat interval 
te <— ending frame of current beat interval

Output:
Vo <— 3D translation vector

Begin
1 Vo <- Vi
2 tt <— te -  ts
3 time *— f -  ts
4 dist <— height that foot will raise off the ground
5 Voy <— new y-position value calculated by Equation 4.3 

End of begin

Figure 5.6: The pseudocode for the Stamp primitive movement, using the sine equation 
for smooth movement.

perform a motion that moves only half the distance of the feet, keeping the balance of the 

body even. There also exist some primitives in which the movement is performed only 

by the front foot. The implementation of these primitives is more complicated than the 

one displayed above because they need extra information about the character and its set

up. An example of one of these primitives is displayed in Figure 5.7.

In this particular function, the distance moved by the feet differs from the distance 

moved by the torso/upper body. This is because the upper body is always halfway 

between the two feet, creating a balance for the character. By comparing the name of the 

current body part being moved with the string “upperbody,” the function can determine if 

it is moving a foot or the torso and act appropriately. The Cross function moves the 

character in a sidestep motion across the stage. It is necessary to know the direction that 

the character is going to move, so the name of the current front foot is compared to the 

strings “right” and “left”. The direction is determined solely by the front foot, which 

results in the character stepping to the right if the right foot is the front foot and to the left 

otherwise.
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“Cross” Primitive Movement 

Input:
f <— current frame number
Vi <— 3D translation vector for the body part at the beginning of the movement 
ts <— starting frame of current beat interval 
te <— ending frame of current beat interval

Output:
Vo *— 3D translation vector

Begin
1 Vo <- Vi
2 tt <— te -  ts
2 If body part is the torso then dist <— (0.6 • getDynamicsLevelQ) I 2.0
3 Else dist <— 0.6 • getDynamicsLevelQ
4 If the front foot is the right foot then negate dist so the movement direction 

changes from the left to the right
5 c <— n  1(2 ■ tt) (controls the speed for changing the body part’s x-position and is 

used in Equation 4.3)
6 Vox *— new x-position calculated by Equation 4.3
7 dist2 <— small value corresponding to distance from ground that foot lifts as it steps
8 c2 <— n  I tt (controls the speed for changing the body part’s y-position and is used 

in Equation 4.3)
7 Voy <— new y-position calculated by Equation 4.3 

End of begin

Figure 5.7: The pseudo code of the Cross primitive movement. The side of the body that 
the front foot is on (right or left) determines the direction that the movement travels.

5.7 Applications of Celtic System

This animation system is a unique music-driven approach to character animation. Its 

purpose is to create a unique animation with the structure of a Celtic dance but that is 

tailored to suit the chosen music. The resulting animation needs to be interesting, 

exciting and expressive of the corresponding music. Our system provides a user friendly 

and flexible way to create such an animation. It includes distinctive features that are not 

included in synchronization-based systems, making it a distinctly more appealing method 

of generating music-driven animation.
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The majority of synchronization methods display their advantages using a single 

character. While the movement of a single character is interesting, multiple characters 

can create a performance that is more visually stunning than that of one character. 

Synchronizing multiple characters to the music is a difficult task for synchronization 

systems to perform, which is why most researchers do not include it in their work. One 

of the unique features of our system is the ability and ease to move several characters in a 

scene to create a performance. This set-up is extremely useful for Celtic dancing where 

the most interesting dances are performed by a troupe. The user is able to include as 

many dancers as she wants in an animation, making it easy for her to design a dance for a 

large troupe of characters.

One of the distinctive aspects of our system is the ability to give each character a 

different personality. Dancers are not limited to performing the same dance together. A 

different secondary script file can be created for each dancer in the scene and linked 

through the main script file. Hence, the user can synchronize movement between 

characters as well as infuse individuality into the motion. Several combinations of 

multiple characters are possible, many of them used in Celtic dancing itself. The 

majority of the troupe dancers can use the same secondary script file while the principal 

dancer in the troupe can be assigned to a different one to make her stand out. Dancers 

can be split into groups, where each group dances to its own set of movements, or each 

dancer can be given her own dance sequence. The master script file is set up to give the 

user the freedom to design new characters and incorporate them into the animation.
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SID ESTEP ILO; 
STEPFORWARD 1 0 ;  

iSHUFFLEHOPBACK 4 ;
I L IF T L E G : L e f tL e g ;  
j(A H O P );
i d r o p l e g : L e f tL e g ;  
I ( a h o p ) ;

i STEPBACK 4 ;  
SID ESTEP 5;

HOP 2 ;
SHUFFLEHOPBACK 5; 
KNEEBENDHOP;

I FRONTCLICKJUMP;
IW A IT  2;
ISHUFFLEHOPBACK 8;
I d u a l c u t ;
[ c u t ;
I w a it  2 ;
IZ IG ZA G  3;
IL IF T L E G : R ig h tL e g ;  
| ( a h o p ) ;

r i-.  _ . . _ -  .  .rr.______ __________* . _________________________________" g

File Edit Format V iew He lp

 a
i

j i i  START 1  
I  W A IT 3;

S ID ESTEP 1 0 ;

File Edit Format View Help

STEPFORWARD 1 0 ;
ISHUFFLEHOPBACK 4 ;

8 l i f t l e g : R ig h tL e g ;
; | ( AHOP);

d r o p l e g : R ig h tL e g ;

!
( a h o p ) ;
STEPFORWARD 4 ;  
SID ESTEP 5; 
JUMPBACK;
SHUFFLEHOPBACK 5; 
KNEEBENDHOP;

! FRONTCLICKJUMP;
! w a i t  2 ;

SHUFFLEHOPBACK 8;

m  CAH0P);

I d u a l c u t ; 
i c u t ;
! w a it  2 ;
I Z IG ZA G  3; 
j l i f t l e g : R ig h tL e g ;

Figure 5.8: The diagrams above are segments from two secondary script files used to 
control multiple characters.

Figure 5.8 demonstrates how two secondary script files can be used to control 

multiple characters. They have been synchronized so that the movements are exactly the 

same in some intervals and different in others. Synchronization occurs when two 

movements have the same timing and will take the same amount of time to complete. 

For example, in line 2, the Shufflehopback routine takes 1.5 beats, so the Wait primitive 

is called 3 consecutive times to make its completion time the same as the Shufflehopback 

routine. This ensures that the Sidestep routine in line 3 is started at the same time by 

each character. In order to have synchronization across multiple script files, it is 

necessary to ensure that the timing for groups of movements is the same. This is best 

done by determining the amount of time one movement or group of movements takes and 

filling in the other script files with a set of movements that takes the same amount of time 

to perform. Figure 5.8 is a good example of how different movements can be 

synchronized in time. By using the secondary script files in conjunction in the same 

animation we create two characters that are performing the same dance with different
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personalities. As far as we know, this is not attempted by any animation system similar 

to ours.

Our script file is not only unique in its ability to incorporate multiple characters with 

different personalities into an animation, but its capability to manipulate movement is an 

exceptional technique as well. The brackets and rests used by the system to organize 

motion allow for movements to be combined in the same time interval and at staggered 

starting and stopping times. This technique permits multiple characters to move out of 

synch by performing movements in the same time interval but with a time gap between 

them. The user can also make a character perform more than one movement at the same 

time by using brackets in the script file. The time staggering technique is extremely 

difficult to do in synchronization-based approaches because it requires long and tedious 

work by the user to exactly align starting and ending positions for multiple movements 

for multiple characters. The majority of synchronization methods use motion capture 

data, so it is challenging to combine movements into the same interval unless the 

resulting movement already exists in the data. The ability of our system to provide both 

of these methods makes it extremely usable and flexible.

Both introductory and experienced animators can use our system to experiment with 

dance and musical attributes. It provides more flexibility than synchronization methods 

whose purpose is similar to that of our system and it gives users more control over the 

final result. Since Maya provides the interface for the animation, it is convenient for the 

user to build up characters and a scene using Maya’s extensive features. Our system 

supplies the user with an efficient and convenient method for coordinating music with 

movement, making it a unique resource in character animation.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Results and Evaluation

6.1 Results

The Celtic system is comprised of many primitive movements and more complex 

routines. Primitive movements are not necessarily as simple as lifting a leg or stomping a 

foot. More complicated primitives exist, such as rotating and bending a leg so that it 

forms the Celtic “Cut” movement, or jumping in the air and bending the knees on 

downward impact. One of the main purposes of the Celtic system is to demonstrate that 

any type of primitive movement can be combined with other primitives to create an 

interesting sequence of motion. The primitives themselves must look good in order for 

the viewer’s interest to be captured. The results in Figures 6.1 and 6.2 display three 

primitive movements of different difficulty levels. Figure 6.1 shows the “Cut” primitive 

movement, which involves both translation and rotation of the leg in a certain way in 

order to obtain the desired look. This is one of the more complicated primitives because 

it requires fairly precise rotation and position values. The images in Figure 6.2 present 

two primitives: “ClickHeelsIn” and “ClickHeelsOut”. Unlike the Cut primitive, these 

movements are fairly simple in their motion, only requiring the rotation of the heels 

towards and away from each other.

Frame 1 Frame 7
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Frame 13 Frame 24
Figure 6.1: Results from the “Cut” primitive movement.

Frame 1

Frame 14

Frame 8

Frame 29
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life

I p M M W i B B
Frame 40

Figure 6.2: Results from the “ClickHeelsIn” (frames 1,8 and 14) and “ClickHeelsOut” 
(frames 29 and 40) primitive movements.

The Celtic system’s routines, whether built-in or user-contributed, generally require 

the use of several primitive movements. The “FrontClickJump” routine, presented in 

Figure 6.3, is one of the most interesting routines, and yet it only uses three primitive 

movements: “LiftLeg,” “Hop” and “DropLeg”. It is an excellent example of how two 

fairly simple movements can be combined to create an exciting motion sequence.

Frame 1 Frame 24
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Frame 41Frame 33

Frame 50Frame 46

Frame 62Frame 54
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Frame 69 Frame 86
Figure 6.3: Sequential images displaying the different positions involved in the 
“FrontClickJump” Celtic routine.

The script file provides control over many key aspects of the animation, including the 

number of characters involved in the scene, the movements performed by each character 

and the timing of the movements. As far as we know, these features are unique to this 

system. Figure 6.3 demonstrates the use of the timing features. The character starts the 

movement in the second image by lifting her leg. In the fourth image, or lA of a beat 

later, she begins the hop motion. Both primitives end at the same time in the last frame. 

The corresponding script file uses a set of brackets and two rest symbols to create this 

motion. Each rest symbol represents a delay of % of a beat, so the hop movement could 

be started earlier by removing one of the rests or later by adding another rest. The timing 

features promote tailoring of user-built routines so that users can meticulously create 

combinations of movements that are not already included in the system.
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Frame 1 Frame 4

Frame 8 Frame 11

Frame 15 Frame 18
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Frame 26
Figure 6.3: These results display one way of using the Celtic system’s timing aspects to 
combine movements. The corresponding script file is shown in the last row on the right.

Multiple characters in a Celtic performance can make the movements more dramatic 

and interesting for the viewer. The Celtic system supports two types of multiple 

character movement: synchronized and unsynchronized. Synchronized movement, as 

shown in Figure 6.5, involves all the characters performing the same movement at the 

same time. This particular scene involves sixteen characters using the same script file. 

Figure 6.6 demonstrates unsynchronized movement between six characters. The first and 

sixth characters are performing a “Sidestep” movement in all the images, while the 

second and fifth characters are performing a “Shufflehopback” routine in images 1-6 and 

a “Cut” motion in images 7-11. The third and fourth characters are performing a “Cut” 

motion in images 1-6 and a “CutBack” motion in images 7-11. Each group of characters 

is performing at the same time as the other groups but their movements are not the same, 

resulting in an unsynchronized performance. These results demonstrate how different 

characters can possess different personalities and yet still fit into the overall presentation. 

More examples of synchronized and unsynchronized routines can be found in the 

supplemental video.
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Figure 6.4: The system is easily able to accommodate multiple characters in the same 
scene, as demonstrated in the picture above. Sixteen girls are utilized in this particular 
performance.

Frame 980 Frame 983
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Frame 985 Frame 994

Frame 996 Frame 999

Frame 1002Frame 1001
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Frame 1007
Figure 6.5: Results displaying how the system can use multiple characters and 
synchronize them all to perform the same motion at the same time. The characters in this 
scene are performing the “Jumpback” Celtic routine.

Frame 1214Frame 1212
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Frame 1217 Frame 1220

Frame 1235Frame 1233

Frame 1244Frame 1238
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Frame 1250 Frame 1254
Figure 6.6: Results from six characters performing unsynchronized movement. The 
characters are split into three groups of two, with each group performing a routine 
different from the other groups.

The timing values for the animations used in the Evaluation and the animations with 

multiple characters shown above are displayed in Table 6.1. The values in this table 

demonstrate how long it takes to build a script file, bake the Inverse Kinematic keys in 

Maya and render the final result. The time trials were performed on an AMD Athlon 64 

3000+ running at 1.81GHz with 2.0GB of RAM. The table gives the user an idea of how 

long it takes to put together an animation like the ones displayed in the accompanying 

video. It is important to note that there are values in the Building Script File column that 

are 0. This is because the script file built for BrownEyedGirl was used for all the other 

animations without a time value. The reusability of the script file reduced the amount of 

time needed to create these animations by removing the need to build a script file from 

scratch. This displays one of the important aspects of the Celtic system. The IK baking 

time and the rendering time are highly dependent on the number of characters in a scene. 

The two animations with multiple characters, TwentyFieryNights and Six_Warriors, take 

more time to bake and render because they involve sixteen and six characters 

respectively. The number of frames involved in each animation also affects the baking 

and rendering times. The longer an animation, the higher the values in these columns 

should be. The number of frames used by each animation is noted in Appendix A.
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Animation Manually Building Baking IK Keys Rendering

the Script File (minutes) (hours)

BrownEyedGirl 30-60 mins 17 13

Eminem 0 7 5.5

FieryNights 0 12 9

Finale 0 12 9

GetltStarted 0 12 9

Nutcracker 0 19 16

Six_Warriors 6-9 hrs 80 15-18

Twenty_FieryNights 1-1.5 hrs 4-6 hrs 45

Warriors 0 9 7

WideOpenSpaces 0 14 12

Table 6.1: Values that represent the time taken to build the script file, bake IK keys in 
Maya and render the entire animation for each song.

6.2 Evaluation

The evaluation of a piece of music or a dance performance is generally subjective and 

extremely dependent on the preferences of the listener or viewer. This makes it 

exceptionally difficult to quantitatively determine if an animation is good or not. A 

qualitative evaluation was designed to assess the success of the Celtic system. There are 

two objectives in performing this evaluation. The first is to determine if the approach 

taken by the Celtic system is successful in creating appealing animations. The second is 

to establish if changing the music can also create appealing animations.

The evaluation involves 3 groups of 6 users per group. Each group represents a 

different user background. The first group incorporates users with dancing experience. 

These users apply their knowledge of movement to determine if an animation is good or 

not. The second group includes users with computer programming experience. This 

group of users has a technical background and will view the animations less artistically 

than the previous group. They will be able to focus on how well the parts fit together 

rather than concentrating on how accurate the movements are. The third group 

incorporates users with neither dancing nor programming experience. These users can
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view the animations without any previous prejudices or expectations and are 

representative of an inexperienced user who may find the system useful.

The evaluation involves 8 animation videos with a single dancer in each. One of our 

objectives is to determine how different music affects the end result, so a different piece 

of music is used for each animation. The music types used include celtic, hip-hop, rap, 

rock, country and classical. The tempos range from 67 bpm to 171 bpm. The evaluator 

is asked to specify for each animation whether or not she liked the animation. The 

answer choices are a simple “yes” or “no.” She is then asked to states reasons for her 

answer. The reasons can give us a good idea of how a user’s background affects her 

opinion. The evaluation document requests that the user form an opinion based solely on 

the merits of a single animation, without comparison to other animations. The evaluation 

concentrates on determining how successful our approach is by observing how the 

changing system parameters affect the user’s opinion. The evaluation form provided to 

each user is found in Appendix B.

6.2.1 Evaluation Results

The overall results of the evaluation are found in Table 6.2. These results are based on 

all 18 of the people involved in assessing the 8 animations. The two animations with the 

highest number of ‘yes’ answers are both animations using Celtic music. The 

FieryNights animation was found appealing by 94% of the evaluators, while the Warriors 

animation was appreciated by 89% of the evaluators. It is interesting to note that the 

animations with the highest tempo (Eminem at 171 bpm) and the lowest tempo 

(Nutcracker at 67 bpm) are the animations found the least appealing by the majority of 

evaluators. The Eminem animation was only enjoyed by 50% of the evaluators, while the 

Nutcracker animation was liked by only 39%. These songs, however, also belong to 

musical types that do not typically suit dancing. Both rap and classical are difficult styles 

for an average person to dance to, so it makes sense that most people would feel that the 

dancing does not suit the music. The majority of respondents enjoy the remaining four 

animations, all of which correspond to music types that are traditionally easy to dance to. 

GetltStarted and WideOpenSpaces were appealing to 78% of evaluators, 72% of 

participants enjoyed the Finale animation, while BrownEyedGirl was appreciated by 65%
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of those involved. It is important to note that due to the small sample size, in many cases 

a single vote separates the success of one animation over another. For example, a single 

vote separates Finale, at 13-5, from the GetltStarted and WideOpenSpaces animations, 

both at 14-4. A single vote also separates BrownEyedGirl at 12-6 from the Finale 

sequence. A larger sample size is necessary in order to get a true sense of which 

animations are considered most appealing.

Animation Number of ‘yes’ 

responses

Number of ‘no’ 

responses

Percentage of 

people who liked 

the animation

BrownEyedGirl 12 6 67%

Eminem 9 9 50%

FieryNights 17 1 94%

Finale 13 5 72%

GetltStarted 14 4 78%

Nutcracker 7 11 39%

Warriors 16 2 89%

WideOpenSpaces 14 4 78%

Table 6.2: Overall results of the evaluation, taking into account the responses of all 18 
people involved in the assessment of the animations.

The results from Table 6.2 have been divided based on their respective evaluator 

groupings. Several animations exist where all members of a group have found the result 

appealing. Participants with previous dancing experience enjoy Warriors best, with 

FieryNights and BrownEyedGirl tied for second. Those with computer programming 

experience enjoy FieryNights, GetltStarted and WideOpenSpaces the most of all the 

animations. Evaluators with no experience like FieryNights and Warriors the best, with 

Finale a close second. It is interesting to note that the animations liked best by the 

programming group all fall within the tempo range of 90-110 bpm. The participants with 

no experience overwhelmingly enjoy the animations with Celtic style music the most.
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The group of dancers also seem to enjoy the animations with Celtic style, as two of the 

top three animations were paired with Celtic music.

The computer programming group is the only group where the majority of 

participants disliked an animation. 5 out of 6 evaluators disliked both the Eminem and 

Nutcracker animations. Interestingly enough, these animations represent the fastest and 

the slowest tempos of all the songs. The evaluators in the group with no experience in 

dancing or computer programming were undecided as to whether they enjoyed 

BrownEyedGirl and the Nutcracker, as the responses were split evenly between yes and 

no. These animations correspond to the two slowest songs of the group. The group of 

dancers were also split evenly with respect to the Nutcracker animation.

Animation Dancing

Experience

Computer

Programming

Experience

Neither

Yes No Yes No Yes No

BrownEyedGirl 5 1 4 2 3 3

Eminem 4 2 1 5 4 2

FieryNights 5 1 6 0 6 0

Finale 4 2 4 2 5 1

GetltStarted 4 2 6 0 4 2

Nutcracker 3 3 1 5 3 3

Warriors 6 0 4 2 6 0

WideOpenSpaces 4 2 6 0 4 2

Table 6.3: Results of the evaluation split up by group into evaluators with dancing 
experience, evaluators with computer programming experience and evaluators with 
experience in neither.

6.2.2 Discussion

According to the results displayed in Table 6.3, each group of participants views the 

animations in a different way and has a different opinion as to what constitutes an 

appealing animation. Those with computer programming experience appear to enjoy the
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animations within a certain tempo range best, while evaluators in the groups with a 

dancing background and with no experience appreciate the animations paired with Celtic 

music. Both the tempo and musical type of a song have emerged as key factors in 

determining how appealing an animation is to a viewer. Background experience, 

however, also seems to make an impact on how a person views an animation.

Each participant was asked to give reasoning behind her response for each animation. 

The responses of those in the dancing group focus on the motion itself and how realistic it 

appears. They enjoy animations where the motion is believable, which correlates well to 

their background experience. Most members of the computer programming group 

discuss the synchronization of the moves to the music. Their responses focus on how 

well the movements match the music and they all looked for association between the 

beats in the music and the timing of the motion. Based on their responses, these 

participants appear to find an animation appealing if it correlates well to the music. It is 

our belief that this is due to their logical background and their ability to examine how 

well pieces fit together. The group with no related background experience viewed the 

animations in a different way than the previous two groups. Rather than focusing on the 

motion or the timing, they were able to examine the animation as a whole and base their 

opinions on the overall look of the result. Many responses discussed background features 

and camera angles, which are important aspects of a performance that can capture and 

hold a viewer’s attention. Participants in this group made mention of the motion and how 

well it suited the music, but their comments generally pertained to the complete 

appearance of the animation.

The objectives of this qualitative evaluation were to first determine if our Celtic 

system is successful in building appealing animations, and secondly to establish if 

altering the music can change whether an animation is interesting or not. The results of 

the evaluation show that our objectives have been met. The majority of participants 

found most of the animations appealing, especially those that used Celtic music with 

Celtic movement. The results also led to the observation that the style and tempo of the 

corresponding music can change the attractiveness of the final animation. This leads us 

to believe that the system discussed in this thesis is successful in achieving its goals and 

is therefore a worthwhile project.
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Chapter 7 

Conclusion

7.1 Contributions

This thesis presents a new music-driven character animation system that supports data- 

driven mappings of musical features to movements. The system helps users of all 

experience levels to produce appealing animations based on input music of any type and 

primitive dance moves and routines. This animation system has progressed through two 

levels of design and implementation: the Hip-Hop system and the Celtic system. The 

Hip-Hop system was unsuccessful in generating interesting animations, but its concepts 

paved the way for an improved character animation system involving Celtic dance. The 

Celtic system was built on overcoming the shortcomings of the Hip-Hop system, 

incorporating a better script file set-up, easier integration of multiple characters and more 

primitive movements. The Celtic system achieves the goals that the Hip-Hop system 

could not reach: a user-friendly system that creates exciting animations by combining 

primitive movements into complex motion.

One of the major contributions of this work to the area of character animation is its 

ability to build a motion sequence directly from extracted musical features. Unlike 

synchronization-based methods that simply alter an existing animation’s timing in 

accordance to the musical beat, this system creates movements based on the musical 

beats and dynamics. The movements can easily change to reflect the mood and timing of 

the music, a feature that is not possible in systems similar to ours.

Another feature that is not supported in other systems is the ability to control multiple 

characters with different personalities in an animation. The user can build and easily 

integrate a troupe of dancers into the system. The dancers are not limited to performing 

the same movements, as the Celtic system is set up so that each character can use its own 

script file. Synchronization between characters is encouraged, but individuality makes 

the animation less mundane.
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Our system is designed to be flexible for both the user and the animator. The system 

is set up to support extra primitive movements, as well as more dance types than just 

Celtic. The addition of other types of movements will encourage experimentation 

between dance structures, allowing a choreographer to easily mix moves from across 

different dance categories. Flexibility for the user is provided through both the script file 

and the musical input. Any type of music with noticeable beats can be used by the 

system to generate a specifically tailored animation that expresses the music. The script 

file gives the user a high level of control over the final animation and results that reflect 

her style and preference.

7.2 Future Work

One of the major shortcomings of the system is the occasional inaccuracy of the beat 

detection algorithm. In some cases, it takes a large amount of manual tweaking to 

retrieve the correct beat onsets, a problem that is rectified by designing a completely 

automatic algorithm that can determine beat positions without user interference. Since 

the musical experience level of the user will vary, it is improbable that she will be able to 

choose the correct parameters without much experimentation. Future work in the musical 

analysis section will include a better beat detection algorithm and the extraction of more 

musical features, including note pitch and melody. Mapping more of the important 

musical features to the movements will result in an animation that more truthfully 

represents the music. The tempo detection algorithm will also be improved to include the 

ability to track tempo changes over the duration of a song. This addition will improve the 

beat detection algorithm by making it more robust to songs with multiple mood changes.

Currently the system’s primitive movements are implemented according to the 

proportions of the character displayed in the Results section. The script file will easily 

accept characters of varying heights and proportions, but the movements will not map to 

these characters correctly. Further investigation into mapping movements between 

characters of different proportions will increase the flexibility of the system. Another 

option for dealing with this problem is the implementation of collision detection. 

Collision detection will prevent interpenetration of limbs of any character by taking 

measures to move the body part around the point rather than through it. This technique
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would remove the need for specialized mapping for characters of different proportions, 

but it may be more difficult and time-consuming to implement.

In order to faithfully represent Celtic dance, more primitives and routines need to be 

built into the system. The addition of extra movements will give the user more choices 

when designing a dance and produce a more accurate depiction of real Celtic 

performances. The system does not need to be limited to Celtic dance, however. 

Different types of dances can be added to future versions in order to increase the scope of 

the system and encourage experimentation between styles. Ballroom dances such as the 

Waltz or culture-based dances such as the Spanish Flamenco are among the possible 

dance types that could be incorporated into the Celtic system.

Lastly, the ability to randomly generate sections of a dance, or even an entire dance, 

automatically is a concept that should be included in the Celtic system. A simplified 

method was incorporated into the Hip-Hop system but it was never integrated in the 

Celtic system due to a lack of time. This function can be used to demonstrate the system 

to new users or fill in movements when a user has run out of ideas. It would increase the 

flexibility of the system and provide extra help for users with little experience or only a 

short amount of time.
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Appendix A

Animation Parameters

A.l Common Parameters

The parameters common to all the animations mentioned in this thesis are listed as 
follows.

SIZE......................................................................................640x480
RESOLUTION....................................................................72 pixels/inch
FRAME RATE....................................................................48 fps
FORMAT OF RENDERING............................................JPEG images
RENDER SETTINGS........................................................Production Quality

anti-aliasing
RENDERING SOFTWARE.............................................Maya and RenderPal
MOVIE GENERATION PROGRAM USED................ VirtualDub
VIEWING PROGRAM USED.......................................... Windows Media Player

or Winamp
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A.2 Altered Parameters

The parameters that are different between all the animations mentioned in this thesis are 
listed in the table below.

Animation
(.avi)

Beat
Detection
Threshold

Secondary 
Script File 

(•txt)

Maya model file 
(.mb)

Total
number

of
frames

BrownEyedGirl 76% singleChar BAKED_BEGSingle 4050
Eminem 90% singleChar BAKED_

EminemSingle
1750

FieryNights 80% singleChar BAKED_
FieryNightsSingle

2850

Finale 90% singleChar BAKED_FinaleSingle 2880
GetltStarted singleChar BAKED_GISSingle 2850
Nutcracker 90% singleChar BAKED_

NutcrackerSingle
4350

Six_Warriors 84% warriorsLeft_l
warriorsLeft_2
warriorsLeft_3

warriorsRight_l
warriorsRight_2
warriorsRight_3

masha_Troupe 2730

Twenty_FieryNights 80% fieryGroup masha_T wentyChars 4200
Warriors 84% singleChar BAKED_WarriorsS 2250

WideOpenSpaces 90% singleChar BAKED_WOSSingle 3300
Table A .l: Lists the parameters that change for each animation.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Evaluation Form

Please choose the option(s) that best describe you:
r  Dancing r  Computer Programming F  Neither

Instructions:
Give your opinion on whether or not you like the animation by clicking the appropriate 
option button. Your opinion should be solely based on an individual animation’s merit 
and not with respect to whether you like it more or less than other animations in the 
group. After each response, please give a reason for your answer.

Animation Response

„  „  _ .  . . C  Yes C N oBrownEyedGirl. avi
Reason:

Eminem.avi
Reason:

FieryNights.avi
Reason:

Finale.avi
Reason:

GetItStarted.avi
Reason:

Nutcracker.avi
Reason:

Warriors.avi
Reason:

C  Yes C N o

C Yes C No

C Yes CNo

C Yes C No

C Yes C No

C Yes C No
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w . ,  _ q C Y es  C N oWideOpenSpaces.avi
Reason:

Please e-mail the completed form to sauer@cs.ualberta.ca. Your participation is greatly 
appreciated.
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Appendix C

Script Piles

C.l Primary and Secondary Scripts for Evaluation animations

Primary Script

CHARACTER 1 
LEFTLEG: LeftLegCtrl,
RIGHTLEG: RightLegCtrl,
UPPERBODY: upperBodyGroup,
LOCATOR: Locator,
DYNAMICS: on;

MAPPING 
CHARACTER 1: SingleChar,
HOPSTEP: HopStep,
SHUFFLECLICK: shuffleclick,
DUALCUT: dualCut;

Secondary Script -  “SingIeChar.txt”

START 1
SHUFFLEHOPBACK 3; 
STEPFORWARD 3; 
SHUFFLEHOPBACK 3;
STEPBACK 3;
FRONTCLICKJUMP;
JUMPBACK;
SLIDINGSTEP;
DUALCUT;
DUALCUT;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
CUT;
SLIDINGSTEP 2;
KNEEBENDHOP;
JUMPBACK;
SLIDINGSTEP 2;
CUT;
SHUFFLEHOPBACK;
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CUTBACK; 
FRONTCLICKJUMP 2; 
STEPFORWARD 10; 
ZIGZAG 2; 
CLICKZIGZAG 2; 
TURN: Right; 
SLIDINGSTEP 3; 
FRONTCLICKJUMP; 
JUMPBACK; 
STEPBACK 5;
TURN: Left;
KNEEBENDHOP;
SHUFFLEHOPBACK;
KNEEBENDHOP;
SIDESTEP 10;
DUALCUT;
STAMP: RightLeg; 
HOP;
STAMP: LeftLeg; 
FRONTCLICKJUMP; 
STEPFORWARD; 
(AHOP);
CUTBACK;
SHUFFLEHOPBACK;
SLIDINGSTEP;
TURN: Left; 
STEPFORWARD 3; 
HOP;
KNEEBENDHOP; 
SHUFFLEHOPBACK; 
TURN: Left 3; 
STEPFORWARD; 
(AHOP);
KNEEBENDHOP;
CUTBACK;
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
STEPBACK;
(AHOP);
SLIDINGSTEP 2; 
SHUFFLEHOPBACK; 
SLIDINGSTEP 2; 
FRONTCLICKJUMP; 
STAMP: LeftLeg;
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C.2 Primary and Secondary Script Files for SixWarriors.avi

The primary script file below uses terms such as EXPORT_June22:LeftLegCtrl to 
describe a character’s body part. This is a name given to the body part by Maya to 
distinguish between the different characters. The full name of each body part includes 
EXPORT_June## due to Maya’s import process when importing a character into a scene. 
The character file imported into the scene is called EXPORT_June 19 and Maya 
increases the number with each new character that is imported into the scene.

Primary Script File

CHARACTER 1
LEFTLEG: EXPORT_June22:LeftLegCtrl,
RIGHTLEG: EXPORT_June22:RightLegCtrl,
UPPERBODY: EXPORT_June22:upperBodyGroup,
LOCATOR: EXPORT_June22:Locator,
DYNAMICS: off;

CHARACTER 2 
LEFTLEG: EXPORT_Junel9:LeftLegCtrl,
RIGHTLEG: EXPORT_Junel9:RightLegCtrl,
UPPERBODY: EXPORT_Junel9:upperBodyGroup,
LOCATOR: EXPORT_Junel9:Locator,
DYNAMICS: off;

CHARACTER 3 
LEFTLEG: EXPORT_June20:LeftLegCtrl,
RIGHTLEG: EXPORT_June20:RightLegCtrl,
UPPERBODY: EXPORT_June20:upperBodyGroup,
LOCATOR: EXPORT_June20:Locator,
DYNAMICS: off;

CHARACTER 4 
LEFTLEG: EXPORT_June21:LeftLegCtrl,
RIGHTLEG: EXPORT_June21 :RightLegCtrl,
UPPERBODY: EXPORT_June21 :upperBodyGroup,
LOCATOR: EXPORT_June21:Locator,
DYNAMICS: off;

CHARACTER 5
LEFTLEG: EXPORT_June23:LeftLegCtrl,
RIGHTLEG: EXPORT_June23:RightLegCtrl,
UPPERBODY: EXPORT_June23 :upperBodyGroup,
LOCATOR: EXPORT_June23:Locator,
DYNAMICS: off;

CHARACTER 6 
LEFTLEG: EXPORT_June24: LeftLegCtrl,
RIGHTLEG: EXPORT_June24:RightLegCtrl,
UPPERBODY: EXPORT_June24:upperBodyGroup,
LOCATOR: EXPORT_June24:Locator,
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DYNAMICS: off;

MAPPING 
CHARACTER 1: warriorsLeft_l, 
CHARACTER 2: warriorsRight_l, 
CHARACTER 3: warriorsLeft_2, 
CHARACTER 4: warriorsRight_2, 
CHARACTER 5: warriorsLeft_3, 
CHARACTER 6: warriorsRight_3, 
SHUFFLECLICK: shuffleclick, 
DUALCUT: dualCut;

Secondary Script Files

warriorsLeft_l .txt warriorsLeft 2.txt warriorsLeft 3.txt
START 1 
WAIT 3;

START 1 
WAIT 3;
SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg; 
(AHOP);
STEPFORWARD 4; 
SIDESTEP 5; 
JUMPBACK; 
SHUFFLEHOPBACK 5; 
KNEEBENDHOP; 
FRONTCLICKJUMP; 
WAIT 2;
SHUFFLEHOPBACK 8; 
DUALCUT;
CUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK; 
SIDESTEP 3; 
JUMPBACK;

START 1 
WAIT 3;
SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg; 
(AHOP);
STEPFORWARD 4; 
SIDESTEP 5; 
JUMPBACK; 
SHUFFLEHOPBACK 5; 
KNEEBENDHOP; 
FRONTCLICKJUMP; 
JUMPBACK; 
STEPFORWARD 8; 
SIDESTEP 3; 
SHUFFLEHOPBACK 4; 
DUALCUT; 
JUMPBACK;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK;
SIDESTEP 6 ; _________

SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg; 
(AHOP);
STEPFORWARD 4; 
SIDESTEP 5; 
JUMPBACK; 
SHUFFLEHOPBACK 5; 
KNEEBENDHOP; 
FRONTCLICKJUMP; 
WAIT 2;
STEPBACK 24; 
SIDESTEP 3;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
SIDESTEP 6;
HOP 2;
DUALCUT;
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HOP 2; JUMPBACK; WAIT;
DUALCUT; DUALCUT; STAMP: RightLeg;
KNEEBENDHOP; WAIT; FRONTCLICKJUMP 2;
WATT 2; STAMP: RightLeg; CUT;
STAMP: RightLeg; FRONTCLICKJUMP 2; HOP;
FRONTCLICKJUMP 2; CUT; STEPFORWARD 16;
CUT; HOP; DUALCUT;
HOP; STEPBACK 16; KNEEBENDHOP;
STEPBACK 8; DUALCUT; STAMP: RightLeg;
CLICKZIGZAG 3; KNEEBENDHOP; SHUFFLEHOPBACK 2;
STAMP: LeftLeg; STAMP: RightLeg; LIFTLEG: RightLeg;
DUALCUT; SHUFFLEHOPBACK 2; (AHOP);
KNEEBENDHOP; LIFTLEG: RightLeg; DROPLEG: RightLeg;
STAMP: RightLeg; (AHOP); SHUFFLEHOPBACK;
SHUFFLEHOPBACK 2; DROPLEG: RightLeg; LIFTLEG: LeftLeg;
LIFTLEG: RightLeg; SHUFFLEHOPBACK; (AHOP);
(AHOP); LIFTLEG: LeftLeg; DROPLEG: LeftLeg;
DROPLEG: RightLeg; (AHOP); HOP;
SHUFFLEHOPBACK; DROPLEG: LeftLeg; STAMP: RightLeg;
LIFTLEG: LeftLeg; HOP; STEPFORWARD 4;
(AHOP); STAMP: RightLeg; KNEEBENDHOP;
DROPLEG: LeftLeg; STEPFORWARD 4; SHUFFLEHOPBACK;
HOP; KNEEBENDHOP; KNEEBENDHOP;
STAMP: RightLeg; SHUFFLEHOPBACK; CUT;
WAIT 4; KNEEBENDHOP; STEPBACK 4;
KNEEBENDHOP; CUT; TURN: Left;
SHUFFLEHOPBACK; STEPBACK 4; SHUFFLEHOPBACK;
KNEEBENDHOP; TURN: Left; CLICKZIGZAG 2;
CUT; SHUFFLEHOPBACK; HOP;
WAIT 4; CLICKZIGZAG 2; ZIGZAG 2;
TURN: Right; HOP; HOP;
SHUFFLEHOPBACK; ZIGZAG 2; TURN: Right;
CLICKZIGZAG 2; HOP; FRONTCLICKJUMP;
HOP; TURN: Right; DUALCUT;
ZIGZAG 2; FRONTCLICKJUMP; TURN: Left 4;
HOP; DUALCUT; STAMP: RightLeg;
TURN: Left; TURN: Left 4;
FRONTCLICKJUMP; STAMP: RightLeg;
DUALCUT; 
TURN: Left 4; 
STAMP: RightLeg;

warriors Right_1 warriorsRight_2 warriors Right_3
START 1
SHUFFLEHOPBACK;

START 1
SHUFFLEHOPBACK;

START 1
SHUFFLEHOPBACK;
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SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
(AHOP);
STEPBACK 4; 
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5; 
KNEEBENDHOP; 
FRONTCLICKJUMP; 
WATT 2;
SHUFFLEHOPBACK 8; 
DUALCUT;
CUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
DUALCUT;
LIFTLEG: LeftLeg; 
DROPLEG: LeftLeg; 
JUMPBACK 2; 
DUALCUT; 
KNEEBENDHOP; 
WAIT 2;
STAMP: RightLeg; 
FRONTCLICKJUMP 2; 
CUT;
HOP;
FRONTCLICKJUMP; 
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
(AHOP);
STAMP: LeftLeg;
HOP;
CLICKZIGZAG 3;

SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
(AHOP);
STEPBACK 4; 
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5; 
KNEEBENDHOP; 
FRONTCLICKJUMP; 
WAIT 2;
STEPBACK 8; 
SIDESTEP 3; 
SHUFFLEHOPBACK 4; 
DUALCUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
SIDESTEP 3; 
JUMPBACK 2; 
DUALCUT; 
KNEEBENDHOP;
WAIT 2;
STAMP: RightLeg; 
FRONTCLICKJUMP 2; 
CUT;
HOP;
STEPFORWARD 8; 
CLICKZIGZAG 3; 
STAMP: LeftLeg; 
DUALCUT; 
KNEEBENDHOP; 
STAMP: RightLeg; 
SHUFFLEHOPBACK 2; 
LIFTLEG: RightLeg; 
(AHOP);_______________

SIDESTEP 10; 
STEPFORWARD 10; 
SHUFFLEHOPBACK 4; 
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
(AHOP);
STEPBACK 4; 
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
JUMPBACK;
STEPFORWARD 24;
SIDESTEP 3;
JUMPBACK;
ZIGZAG 3;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK;
SIDESTEP 9; 
JUMPBACK; 
FRONTCLICKJUMP 2; 
CUT;
HOP;
STEPBACK 24; 
SHUFFLEHOPBACK 2; 
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg; 
SHUFFLEHOPBACK; 
LIFTLEG: LeftLeg; 
(AHOP);
DROPLEG: LeftLeg; 
HOP;
STAMP: RightLeg; 
WAIT 4;
KNEEBENDHOP;
SHUFFLEHOPBACK;
KNEEBENDHOP;
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STAMP: LeftLeg; DROPLEG: RightLeg; CUT;
DUALCUT; SHUFFLEHOPBACK; WAIT 4;
KNEEBENDHOP; LIFTLEG: LeftLeg; TURN: Right;
STAMP: RightLeg; (AHOP); SHUFFLEHOPBACK;
SHUFFLEHOPBACK 2; DROPLEG: LeftLeg; CLICKZIGZAG 2;
LIFTLEG: RightLeg; HOP; HOP;
(AHOP); STAMP: RightLeg; ZIGZAG 2;
DROPLEG: RightLeg; WAIT 4; HOP;
SHUFFLEHOPBACK; KNEEBENDHOP; TURN: Left;
LIFTLEG: LeftLeg; SHUFFLEHOPBACK; FRONTCLICKJUMP;
(AHOP); KNEEBENDHOP; DUALCUT;
DROPLEG: LeftLeg; CUT; TURN: Left 4;
HOP; WAIT 4; STAMP: RightLeg;
STAMP: RightLeg; TURN: Right;
STEPFORWARD 4; SHUFFLEHOPBACK;
KNEEBENDHOP; CLICKZIGZAG 2;
SHUFFLEHOPBACK; HOP;
KNEEBENDHOP; ZIGZAG 2;
CUT; HOP;
STEPBACK 4; TURN: Left;
TURN: Left; FRONTCLICKJUMP;
SHUFFLEHOPBACK; DUALCUT;
CLICKZIGZAG 2; TURN: Left 4;
HOP; STAMP: RightLeg;
ZIGZAG 2;
HOP;
TURN: Right;
FRONTCLICKJUMP;
DUALCUT;
TURN: Left 4;
STAMP: RightLeg;

C.3 Primary and Secondary Script Files for TwentyFieryNights.avi

Primary Script File

CHARACTER 1 
LEFTLEG: LeftLegCtrl,
RIGHTLEG: RightLegCtrl,
UPPERBODY: upperBodyGroup,
LOCATOR: Locator,
DYNAMICS: off;

CHARACTER 2 
LEFTLEG: EXPORT_MashaLocator3: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator3: Ri ghtLegCtrl,
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UPPERBODY: EXPORT_MashaLocator3:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator3:Locator,
DYNAMICS: off;

CHARACTER 3 
LEFTLEG: EXPORT_MashaLocator4:LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator4:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator4:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator4:Locator,
DYNAMICS: off;

CHARACTER 4 
LEFTLEG: EXPORT_MashaLocator5:LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator5:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator5:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator5:Locator,
DYNAMICS: off;

CHARACTER 5 
LEFTLEG: EXPORT_MashaLocator6 :LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator6:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator6:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator6:Locator,
DYNAMICS: off;

CHARACTER 6 
LEFTLEG: EXPORT_MashaLocator7:LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator7:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator7:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator7:Locator,
DYNAMICS: off;

CHARACTER 7 
LEFTLEG: EXPORT_MashaLocator8:LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator8:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator8:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator8:Locator,
DYNAMICS: off;

CHARACTER 8 
LEFTLEG: EXPORT_MashaLocator9: LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocator9:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocator9:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator9:Locator,
DYNAMICS: off;

CHARACTER 9 
LEFTLEG: EXPORT_MashaLocatorlO:LeftLegCtrl, 
RIGHTLEG: EXPORT_MashaLocatorlO:RightLegCtrl, 
UPPERBODY: EXPORT_MashaLocatorlO:upperBodyGroup, 
LOCATOR: EXPORT_MashaLocator 10:Locator, 
DYNAMICS: off;

CHARACTER 10
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LEFTLEG: EXPORT_MashaLocatorl 1 :LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl LRightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl 1 :upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl l:Locator,
DYNAMICS: off;

CHARACTER 11 
LEFTLEG: EXPORT_MashaLocator 12: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl2:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl2:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator 12:Locator,
DYNAMICS: off;

CHARACTER 12 
LEFTLEG: EXPORT_MashaLocatorl3:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator 13: RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl3:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl3:Locator,
DYNAMICS: off;

CHARACTER 13 
LEFTLEG: EXPORT_MashaLocator 14: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl4:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl4:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl4:Locator,
DYNAMICS: off;

CHARACTER 14 
LEFTLEG: EXPORT_MashaLocator 15 :LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl5:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl5:upperBodyGroup,
LOCATOR: EXPORT_MashaLoc ator 15 :Locator,
DYNAMICS: off;

CHARACTER 15 
LEFTLEG: EXPORT_MashaLocator 16: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl6:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl6:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl6:Locator,
DYNAMICS: off;

CHARACTER 16 
LEFTLEG: EXPORT_MashaLocatorl7:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl7:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl7:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl7:Locator,
DYNAMICS: off;

MAPPING 
CHARACTER 1: fieryGroup,
CHARACTER 2: fieryGroup,
CHARACTER 3: fieryGroup,
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CHARACTER 4: fieryGroup, 
CHARACTER 5: fieryGroup, 
CHARACTER 6: fieryGroup, 
CHARACTER 7: fieryGroup, 
CHARACTER 8: fieryGroup, 
CHARACTER 9: fieryGroup, 
CHARACTER 10: fieryGroup, 
CHARACTER 11: fieryGroup, 
CHARACTER 12: fieryGroup, 
CHARACTER 13: fieryGroup, 
CHARACTER 14: fieryGroup, 
CHARACTER 15: fieryGroup, 
CHARACTER 16: fieryGroup, 
SHUFFLECLICK: shuffleclick, 
DUALCUT: dualCut;

Secondary Script File

START 1
SHUFFLEHOPBACK 3; 
CLICKZIGZAG 3; 
SHUFFLEHOPBACK 3; 
CLICKZIGZAG 3; 
SIDESTEP 2; 
SHUFFLEHOPBACK; 
STAMP: RightLeg; 
SIDESTEP 2; 
SHUFFLEHOPBACK 3; 
KNEEBENDHOP; 
SHUFFLEHOPBACK 3; 
KNEEBENDHOP; 
SLIDINGSTEP 2; 
JUMPBACK; 
SLIDINGSTEP 2; 
SHUFFLECLICK; 
FRONTCLICKJUMP; 
SHUFFLECLICK; 
FRONTCLICKJUMP; 
HOP;
STAMP: LeftLeg; 
STAMP: LeftLeg; 
KNEEBENDHOP; 
TURN: Left 2; 
STEPFORWARD 4; 
TURN: Right 2;
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DUALCUT;
JUMPBACK;
DUALCUT;
LIFTLEG: RightLeg; 
(AHOP);
DROPLEG: RightLeg; 
(AHOP);
STAMP: LeftLeg; 
STAMP: LeftLeg;
HOP;
SHUFFLEHOPBACK 3; 
STAMP: RightLeg; 
DUALCUT;
DUALCUT;
HOP;
FRONTCLICKJUMP 2;
SHUFFLECLICK;
SHUFFLECLICK;
SIDESTEP 5;
JUMPBACK;
SHUFFLECLICK;
SHUFFLECLICK;
SIDESTEP 6;
FRONTCLICKJUMP 2;
SLIDINGSTEP;
SHUFFLEHOPBACK;
SLIDINGSTEP;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg; 
(AHOP);
HOP;
KNEEBENDHOP;
CUTBACK;
DUALCUT;
STAMP: LeftLeg; 
STAMP: RightLeg;
HOP;
SHUFFLEHOPBACK 2;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK 2;
FRONTCLICKJUMP;
DUALCUT;
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DUALCUT;
SIDESTEP;
SLIDINGSTEP;
SHUFFLEHOPBACK;
SIDESTEP;
SLIDINGSTEP;
TURN: Left 4;
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