
University of Alberta

M usic-D riven C haracter Anim ation

by

/ \
D anielle K ristin Sauer \ * J

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

M aster o f Science

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30017-6
Our file Notre reference
ISBN: 978-0-494-30017-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Music-driven character animation extracts musical features from a song and uses them to

create an animation. This thesis presents a system that builds a new animation directly

from musical attributes, rather than simply synchronizing it to the music like similar

systems. Using a simple script that identifies the movements involved in the

performance and their timing, the user can control the animation of characters easily.

Another unique feature of the system is its ability to incorporate multiple characters into

the same animation, both with synchronized and unsynchronized movements. Two

prototype systems are developed in this thesis: one incorporates hip-hop movement and

the other integrates Celtic dance. An evaluation of the results from the Celtic system

shows that the majority of animations are found to be appealing to viewers and that

altering the music can change the attractiveness of the final result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments
First and foremost I would like to thank my fiance, Steven Enns. He has been my rock

for the last two years, providing endless encouragement and support. He dragged me

away when I needed a break, consoled me when nothing was going my way, and cooked

for me when I was too enthralled in my work to notice the time. I could not possibly

have done this without him.

I owe another huge thank-you to my advisor, Herb Yang. He provided me with

insight and inspiration and motivated me to achieve things I never thought possible. His

dedication and enthusiasm towards my work made the past two years a fantastic

experience. He was always available when I had a problem and his lightning fast e-mail

response time was deeply appreciated.

I also want to thank the members of my group: Nathan Funk, Cheng Lei, Hai Mao,

Daniel Neilson, Xuejie Qin, and Jason Selzer. Their input and feedback into my work

solved many of my problems and prevented a few wrong turns along the way. Another

person to whom I must give my gratitude is David Thue. I went to him for a lot of my

problems with Maya, and even when he couldn’t provide me with the solution, he

somehow managed to help me figure it out myself.

Last, but certainly not least, I would like to thank my parents. They have been my

role models throughout my life and have given me the skills necessary for completing

this thesis. My dad has gifted me with his patience and my mom with her persistence,

both of which are qualities that I needed these past two years. They continue to guide

and encourage me, even when I don’t realize that I need it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter 1: Introduction..1

Chapter 2: Background and Related Work..4
2.1 Music Analysis... 5

2.1.1 Signal Processing Techniques... 5
2.1.2 Tempo and Beat Detection.. 9

2.2 Character M otion... 15
2.2.1 Keyframed M otion..16
2.2.2 Motion-Capture D ata ... 17
2.2.3 Physical-Based M otion..20

2.3 Synchronizing Music with M otion... 22
2.3.1 Synthesizing New Motion... 22
2.3.2 Direct Motion Editing..24
2.3.3 Detecting Motion Features.. 25
2.3.4 Keyframed Techniques..26

2.4 Labanotation.. 27
2.5 Motion Prim itives... 28
2.6 M apping..29

Chapter 3: Music Analysis..32
3.1 Tempo Detection..32

3.1.1 Algorithm Details..32
3.1.2 Tempo Detection Results.. 36

3.2 Beat Detection.. 39
3.2.1 Original Algorithm D etails... 40
3.2.2 New Algorithm D etails..41
3.2.3 Beat Detection Testing and Results...45

3.3 Dynamics Extraction Algorithm..51

Chapter 4: Hip-Hop System..54
4.1 System Overview... 55
4.2 Script F iles..................................... 56

4.2.1 Designing Script Files.. 56
4.2.2 Parsing Script F iles.. 58

4.3 Mappings... 61
4.4 Primitive Movements.. 63
4.5 Problems with the Hip-Hop System ... 72

Chapter 5: Celtic System...75
5.1 System Overview...76
5.2 Script F iles.. 77

5.2.1 Master Script File..78
5.2.2 Secondary Script F ile... 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.3 Parsing Script F iles.. 85
5.3 Mappings...87

5.3.1 Mapping Beats to Movement Tim ing..88
5.3.2 Mapping Dynamics to Movement Distances...89

5.4 Constraints..90
5.5 Routines..91

5.5.1 Built-in Routines.. 91
5.5.2 User Designed Routines.. 95

5.6 Primitive Movements..96
5.7 Applications of Celtic System ...100

Chapter 6: Results and Evaluation..104
6.1 Results... 104
6.2 Evaluation...116

6.2.1 Evaluation R esults... 117
6.2.2 Discussion..119

Chapter 7: Conclusion...121
7.1 Contributions.. 121
7.2 Future W o rk ... 122

References...124

A Animation Parameters.. 128

B Evaluation Form.. 130

C Script Files... 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 3.1: Comparison of the old and new beat detection algorithms using a

synthetic signal with a tempo of 82 bpm. The audio signal is 22 seconds in
length, with a total of 31 beats. Testing is cut off at a noise level of V2 the
beep’s amplitude because this is where the new algorithm fails considerably.
The second and third columns denote the number of beats out of 31 detected
correctly by each algorithm..46

Table 3.2: The results of using the old beat detection algorithm on 10 synthetic
signals with random seeds and a tempo of 153.3682 bpm. Eight different
noise levels are used, ranging from l/100th of the beep amplitude to Vi of the
beep amplitude... 48

Table 3.3: The results from performing beat detection with the new beat detection
algorithm on ten synthetic signals with a tempo of 153.3682. Each signal
was created with a different random seed and eight noise levels were used,
ranging from 1/100 to Vi of the beep’s amplitude...49

Table 6.1: Values that represent the time taken to build the script file, bake IK
keys in Maya and render the entire animation for each song......................................116

Table 6.2: Overall results of the evaluation, taking into account the responses of
all 18 people involved in the assessment of the animations.. 118

Table 6.3: Results of the evaluation split up by group into evaluators with dancing
experience, evaluators with computer programming experience and
evaluators with experience in neither... 119

Table A .l: Lists the parameters that change for each animation...129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 2.1: The Fourier Transform takes a time-based signal (left) and converts it

to a frequency-based signal (right). These diagrams were taken from [16]..................6
Figure 2.2: The diagram on the left displays passing a signal through a high pass

filter and a low pass filter. The result is two complementary subsignals and
twice as much data as found in the original signal. The diagram on the right
performs the same filtering operation, but downsamples the subsignals by 2.
This still provides complete information about the original signal but reduces
the number of samples by half. Both diagrams were taken from [30]..........................8

Figure 2.3: The Discrete Wavelet Transform (DWT) decomposes a signal into
several frequency levels (as denoted by / at each level) by using highpass
(g[n]) and lowpass filters (h[n]) and subsampling the results by 2. The
length of the signal determines how many times the decomposition process
can be performed. This diagram was taken from [31].. 9

Figure 2.4: Scheirer’s beat detection system tracks a song’s tempo using a
frequency filterbank and comb filter resonators. The frequency filterbank
splits the signal into several frequency bands while the comb filters examine
each band and search for a tempo that corresponds to the resonator’s delay
time. The diagram above was adopted from the original work....................................11

Figure 2.5: Using multiple agents to track beat hypotheses is a popular method in
beat detection algorithms. In Dixon’s algorithm, values A to F across the top
represent the beat onsets, with the solid squares representing predicted beat
times that occur on an onset and the hollow squares representing predicted
beat times that don’t correspond to onsets. Squares which occur close
together (Agentl) correspond to a faster tempo than circles that occur further
apart (Agent2). The diagram above was adopted from Dixon’s original
work... 13

Figure 2.6: Using the previous beat and the estimated current beat interval,
Jensen and Anderson’s algorithm determines if the current note onset (the
peak pointed to by the Beat location arrow) is the next beat in the audio
signal. This diagram was adopted from Jensen and Anderson’s original
work... 14

Figure 2.7: Pre-conditions, expected performance and post-conditions for the
physics-based Fall controller designed by Faloutsos. The controller takes
into account velocity, balance and environmental parameters such as ground
contact. This controller diagram was redone based on Faloutsos’ Fall
controller...21

Figure 2.8: Example of Labanotation from the Dance Notation Bureau website
[9]...27

Figure 3.1: An example of a beat histogram produced by the tempo detection
algorithm. The values across the bottom represent the possible tempos. For
this particular Celtic song, “Siamsa,” the tempo is detected to be 117 beats
per minute... 37

Figure 3.2: A beat histogram for a 30 second Beatles song. The tempo is
identified as 161 bpm when, in actuality, the tempo is 82 bpm. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm recognizes the faster beat as the tempo because it occurs more
often in the signal...

Figure 3.3: The results of the new beat detection algorithm on a synthesized signal
with a tempo of 82 bpm. The noise level is 1/2 and a 35% threshold value is
used. Blue lines represent the original beats in the signal and red lines the
beat positions detected by the algorithm. The top image displays the full
signal after beat detection, while the bottom image a closer view of the
distance between actual beats and detected ones..

Figure 3.4: The results of the new beat detection algorithm on a synthesized signal
with a tempo of 153.3682 bpm. The noise level is 1/100. Blue lines
represent the original beats in the signal and red lines represent the beat
positions detected by the algorithm..

Figure 3.5: A signal graph of the Celtic song “Warriors” used by the Celtic
animation system. The tempo of this song is 135 bpm. The blue lines
symbolize the original signal and the red lines represent the detected beats.
One can see a space where a beat should occur around the 65,000-sample
position, as marked by the green square. The algorithm is able to recover
from this missing beat and rediscover the beat structure immediately................

Figure 3.6: A graph of a segment of the musical signal from the rock song
“Brown Eyed Girl” by Van Morrison. The tempo of this song is 76 bpm and
it is significantly slower than the Celtic song displayed above in Figure 3.5.
The blue lines symbolize the original signal and the red lines represent the
detected beats. The intervals between detected beats are noticeably larger in
this signal because of the slower tempo...

Figure 4.1: An example of a script file segment for the Hip-Hop animation
system. The mappings between body parts in the scene and primitive
movements are defined, along with the mappings between movements and
musical attributes. The user can create different intervals of movements to
make the animation more interesting..

Figure 4.2: Keywords and punctuation are extremely important to the parser when
gathering information from the script file. The parser relies on both features
to divide up the script details into their proper structures for later use by the
animation system...

Figure 4.3: The pseudo code of the downHead primitive function using the Ease-
In-Ease-Out function...

Figure 4.4: The graph above denotes a sine curve from 0 to 4n . The blue line
symbolizes the whole sine curve while the red line represents the segment of
the curve that best describe the Jump motion. The four changes of direction
in the red curve are obvious and they are used to portray the preparation,
jumping, landing and post-landing motions of the Jump primitive.....................

Figure 4.5: Results from the “Jump” primitive movement. The character bends
his knees to prepare for takeover, jumps into the air, and bends his knees to
brace for impact upon landing. This motion follows the sine curve shown in
Figure 4.4..

Figure 4.6: The pseudo code of the Jump primitive movement based on a sine
equation...

38

47

50

51

52

59

60

67

68

70

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: An example of an unappealing movement combination where the right
foot and arm are simply lifting and lowering on each beat... 73

Figure 5.1: An example of a master script file using two characters. The names of
the objects in the scene corresponding to the system’s main body parts are
specified under the CHARACTER headings. The mappings of each character
to a secondary script file and each user designed routine name
(SHUFFLECLICK and DUALCUT) to its corresponding text file are defined
under the MAPPING heading..79

Figure 5.2: A secondary script file allows the user to design her motion sequence
by specifying primitive movements, built-in routines and user designed
routines in the order she wants them performed in the animation. A user can
utilize loops, parentheses and rests in order to retain maximum control over
the timing of the animation.. 82

Figure 5.3: An example of synchronizing a dance over multiple characters. Each
movement in a sequence takes the same amount of time for completion as the
movement directly across from it in the other character’s sequence. The
sequences involve movements that are different from the other character as
well as the same. This is the easiest way to synchronize over the animation............84

Figure 5.4: Another example of synchronizing data over multiple characters.
Unlike the figure above, the movements in this sequence are performed off-
synch. The Shufflehopback routine performed by Character 1 takes 1.5 beats
of time and the lines under Character 2 from Stepforward to Stamp also take
1.5 beats of time. The Jumpback primitive at the end of both sequences is
performed at the same time because the movements prior to it are
synchronized in time, if not in movement..85

Figure 5.5: The pseudo code for the built-in Shufflehopback routine. It uses the
TapOut, TapBack, ShortHop and StampDown primitive movements........................ 95

Figure 5.6: The pseudocode for the Stamp primitive movement, using the sine
equation for smooth movement... 99

Figure 5.7: The pseudo code of the Cross primitive movement. The side of the
body that the front foot is on (right or left) determines the direction that the
movement travels...100

Figure 5.8: The diagrams above are segments from two secondary script files used
to control multiple characters...102

Figure 6.1: Results from the “Cut” primitive movement... 105
Figure 6.2: Results from the “ClickHeelsIn” (frames 1,8 and 14) and

“ClickHeelsOut” (frames 29 and 40) primitive movements....................................... 106
Figure 6.3: Sequential images displaying the different positions involved in the

“FrontClickJump” Celtic routine...108
Figure 6.3: These results display one way of using the Celtic system’s timing

aspects to combine movements. The corresponding script file is shown in
the last row on the right.. 110

Figure 6.4: The system is easily able to accommodate multiple characters in the
same scene, as demonstrated in the picture above. Sixteen girls are utilized
in this particular performance.. I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.5: Results displaying how the system can use multiple characters and
synchronize them all to perform the same motion at the same time. The
characters in this scene are performing the “Jumpback” Celtic routine.................... 113

Figure 6.6: Results from six characters performing unsynchronized movement.
The characters are split into three groups of two, with each group performing
a routine different from the other groups... 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction
Animations, whether they are in movies, television or video games, always capture the

viewer’s interest more if they are accompanied by music. Music has the capability to set

the mood for a scene and can alter the viewer’s perception of what she is seeing. The

ability to tie the correct type of music in with an animation is a difficult and time-

consuming process. For example, music with a dark and sinister undertone would not fit

well with an animation that projects love and happiness through its movements and

interactions. In the same way, a bright and cheerful song is ill suited for a sequence of

events that are meant to frighten a viewer. Not only is choosing the proper type of music

important, but proper synchronization of music with the events in an animation is

essential when attempting to secure the attention of a viewer. An interesting animation

brings with it a “wow” factor, enticing the viewer to watch and appreciate the work. This

can be achieved through a good combination of interesting movements and relevant

music.

One method of unifying character animation and music is through direct

synchronization. This process takes an already existing sequence of motions and a piece

of music and lines them up so that movements occur in time to the music. While this

technique is certainly effective, it is unable to mold the animation sequence so it fits the

music. The user must still choose the correct type of music to suit the animation as well

as build the animation herself, either through keyframes, physics-based equations or

motion capture data. This thesis proposes a method that uses musical attributes such as

the beat and dynamics to build an animation that fits user specifications and is tailored to

the music. The user will be able to choose any type of music she desires and create an

animation that is not only automatically synchronized to the music, but also projects key

elements of the music’s mood as well.

Building a character animation system that is driven by music requires an efficient

beat detection algorithm. Many synchronization systems use MIDI files to retrieve

musical information because of the easy data extraction they provide. The main problem

with MIDI files is that they are not widely accessible by everyone and it is necessary to

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

own specific software in order to make use of them. The system specified in this thesis

uses .wav files in order to create a more user-friendly system. Musical attribute

extraction is more difficult when using .wav files, but several signal processing methods

exist that allow for fairly accurate beat detection. Goto built and revised a beat prediction

algorithm that uses previous knowledge to determine where the next beat in a song will

occur [17,18,19]. This thesis uses part of Goto’s algorithm to determine beat onsets, but

modifies it by combining it with a tempo detection algorithm designed by Tzanetakis

[40], This modification simplifies the original algorithm while still providing accurate

beat detection.

Producing high-quality character animation has proven to be difficult for

inexperienced users. Animation systems such as Autodesk’s Maya and Discreet’s 3D

Studio Max are intimidating for a new user because of the enormous amount of features

they provide. Setting up and animating a character is extremely time consuming and it

generally takes practice and experience for a user to satisfactorily manipulate a human

body. The system presented in this thesis provides a user-friendly method for creating a

high-quality character animation where the user chooses pre-built movements to build a

motion sequence. Through the use of a script file, the user can choose the order of

specific movements and build a dance routine for a character, or set of characters, of her

choosing. This ensures that she does not have to struggle with positioning character

joints in order to achieve a specific motion. The system also gives the user the chance to

experiment with different types of characters by supporting interchangeable characters.

The user can change the appearance of the characters in the animation and easily use

different characters in the same motion sequence. Maximum user control is provided by

this system without relying on the user for the key components of the animation.

The main contributions of this thesis include:

• the development of a system that builds a new animation directly from musical

attributes, rather than synchronizing an already existing animation to music.

• the implementation of a signal processing-based beat detection algorithm based

on Goto’s beat onset method and Tzanetakis’ tempo recognition method, as well

as a novel dynamics extraction algorithm.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• the development of a script file that allows for the animation of several characters

and the ability to specify and build different movement routines for each

character.

• the development of a mapping design that encourages the user to experiment with

matching different musical attributes to different movements.

Background information and related research are addressed in Chapter 2 of this thesis.

The musical analysis algorithms used for tempo recognition, beat detection and dynamics

extraction are detailed in Chapter 3. The next two chapters discuss the two types of

systems implemented: Hip-Hop based animation (Chapter 4) and Celtic dancing (Chapter

5). Results are presented in Chapter 6, along with a detailed explanation of the

evaluation methods used to analyze the results. Future work is discussed in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Chapter 2

Background and Related Work

Synthesizing a unique animation directly from music is a topic that has not been explored

in much depth. In fact, the majority of research into this area has been done on

synchronizing an already existing animation with a piece of music. Few methods discuss

how to take the information retrieved from the music file and use it to directly create a

new animation. Music-driven character animation involves both music analysis and

movement synthesis. Music analysis is performed through beat detection and dynamics

extraction. Research in beat detection has led to various options for this component of

the system, but a fast and accurate method is imperative to producing a faithful

interpretation of the music. Realistic character animation of a human figure is extremely

important for synthesizing believable dance motion. The system discussed in this thesis

relies on movements that can be combined easily and changed to reflect the mood of the

music. The process of combining music and movement must be believable, with

mappings that correctly match the music’s impression to the impression of the

movements.

In this chapter the various components that contribute to music-driven character

animation are reviewed. These techniques are divided into five categories: music

analysis, character motion, primitive movements, mapping techniques and synchronizing

music with motion. Music analysis discusses several beat and tempo tracking algorithms

that are used to retrieve information from audio data through signal processing. The

following section, character motion, reviews systems that address the problem of

animating a human character. Character animation is generally performed through one of

three ways: motion capture-based methods, physically based animation equations and

keyframed techniques. Algorithms in each of these categories are described. Music-

driven character animation demonstrates that complex motions can be created using

combinations of simpler primitive movements. Algorithms in other areas of computer

graphics have also made this observation and their ideas will be commented on in the

primitives section. Performing mapping between musical features and motion primitives

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a key component of music-driven character animation, so techniques with similar goals

will be addressed in the section dedicated to mapping methods. Lastly, several

synchronization techniques between music and motion are discussed in detail.

Synchronization is the technique most similar to music-driven character animation

because the end goal of both systems is the same: an interesting animation that moves

reliably with the music. The path taken to arrive at the goal is vastly different however,

and these differences will be discussed throughout this thesis.

2.1 Music Analysis

The major components that most listeners can distinguish when listening to a piece of

music are the beat and the dynamics. The beat is a consistent pulse that sounds through

the entire song and gives a sense of the tempo or speed of the music. The dynamics are

the loud and soft levels that occur throughout the piece and the transitions between them.

These two attributes, along with the tempo, are the musical components that we are

looking to extract in our system. These attributes can be detected from either MIDI data

or audio data. MIDI data can easily provide the desired information, but MIDI files are

not readily available to users. We choose to use audio files rather than MIDI files for this

reason.

Performing music analysis on audio files is not a trivial task. Unlike with MIDI data,

it is a great deal more difficult to obtain chord information and musical note data such as

pitch and tone. Audio files, however, are more accessible to all types of users and

research into audio analysis has started to make good progress. The following section

provides details on existing techniques for tempo recognition and beat detection,

including signal processing methods employed to divide the data into more manageable

components.

2.1.1 Signal Processing Techniques

There are several key signal processing components in every music analysis algorithm.

The most popular methods for separating the signal into manageable frequency

components are the Fast Fourier Transform, the Discrete Wavelet Transform and

filterbanks.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Fourier Transform (FT) is an extremely popular method in image and signal

processing. It decomposes a signal in the time domain and outputs a representation in the

frequency domain. The continuous FT is defined by

F(u) = ^ f(x)exp[-j27tux]dx (2.1)

where J{x) is a continuous function. It extracts frequencies from the signal so that each

frequency can be examined individually. If the continuous function f(x) is discretized by

sampling then the continuous FT can no longer be used on the signal. A discrete Fourier

Transform (DFT) that deals with sampled sequences is defined as

F(u) = ^ f (x) e x p [- j 2 m x / N] (2.2)

where the values of u correspond to samples in the continuous function. In the early days

of computers, the major difficulty with using the FT and DFT was that they were not

suitable for implementation on a PC due to the number of complex multiplications and

additions required by each equation. For an N point sequence of samples, the DFT

requires N multiplications, which is computationally expensive when N is a large

number.

X
♦

Figure 2.1: The Fourier Transform takes a time-based signal (left) and converts it to a
frequency-based signal (right). These diagrams were taken from [16].

The Fast Fourier Transform (FFT) rectifies this problem by rearranging the DFT

equation so it uses fewer multiplications, resulting in a computationally efficient equation

that uses Nlog2N multiplications. An important requirement for achieving this

effectiveness is that the number of samples must be a power of 2. The FFT equation is

defined by
| N - 1

F{u) = — Y f (x) W J where Wn = e x p [- ;2 ^ /N] . (2.3)

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This equation is easier and faster to implement on the slower computers and although

today’s computers are quick enough to use both the DFT and the FFT, the FFT is still the

more popular method. More information on the FFT can be found in [15].

The power spectrum is built from the FFT and denotes a signal’s power. The power

spectrum represents the magnitude of the different frequencies of a signal as divided by

the FFT. The most common way to calculate the power spectrum is to perform the FFT

on the signal and multiply the result by its complex conjugate. However, the FFT of the

autocorrelation function also results in the power spectrum. The power spectrum is used

by some beat detection algorithms to determine the points at which the signal’s power is

increasing. This narrows down possible positions for the beat onsets.

The Discrete Wavelet Transform (DWT) is another algorithm that is used to separate

a signal into its frequency components [15,21,30,31]. Unlike the DFT, which cannot give

frequency and time information at the same time, the DWT is a time-frequency

representation of a signal that preserves complete information of the signal. The signal is

passed through a series of high pass filters to analyze high frequencies and low pass

filters to analyze low frequencies. The signal is separated into detail coefficients using

the high pass filter and approximation coefficients using the low pass filter. The

approximation coefficients are often considered the most important section of a signal

when performing musical analysis because the beat is generally found in the low

frequency information. The DWT is extremely useful for separating out the important

low frequency information from the signal so that it can be further analyzed. One pass of

the DWT involves performing convolution between the signal and each filter and then

downsampling by 2. Without downsampling the number of samples in each subsignal

would be equal to the total number of samples in the input signal. This would result in

twice as much information as needed. By resampling, complete information of the signal

can be retained without storing extra samples. The frequency bandwidth for each level is

also split into two, with the higher frequency bands separated into the detail coefficients

and the lower frequency bands separated into the approximation coefficients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I H jD ~ 1000 samples

S I 1000 samples

-1000 samples

S I 1000 samples

—500 coofs

jZhCD-pp] -5 0 0 coefs

Figure 2.2: The diagram on the left displays passing a signal through a high pass filter
and a low pass filter. The result is two complementary subsignals and twice as much data
as found in the original signal. The diagram on the right performs the same filtering
operation, but downsamples the subsignals by 2. This still provides complete information
about the original signal but reduces the number of samples by half. Both diagrams were
taken from [30].

The signal can be decomposed further by sending the approximation coefficients

through another high pass and low pass filter set and subsampling by 2. This can

continue through many levels. The detail coefficients are maintained throughout the

entire process without any further processing. Figure 2.3 displays the decomposition at

several levels. The same high pass and low pass filters are used throughout all the levels

but the sizes change along with the subsignals. The signal is continuously decomposed

into subsignals that complement each other at each level without much loss of

information from the original signal. In the end, the original signal is represented by the

sets of detail and approximation coefficients obtained through the hierarchical wavelet

decomposition.

Filterbanks are also used to isolate different frequencies in a signal [15]. A

filterbank is made up of a set of parallel filters that include low-pass, bandpass and high-

pass filters. According to the filters used, the filterbank splits the signal into several

subbands that can be analyzed separately. The number of subbands that exit the

filterbank is equal to the number of filters used. Characteristically, filterbanks can

include two processes: the analysis process and the synthesis process. The analysis

method is used to deconstruct a signal while the synthesis method is used to reconstruct

it. The analysis process filters the signal into frequency bands and then performs

downsampling on each band. The synthesis process takes each frequency band as input,

performs upsampling and the same filtering as used in the synthesis process, and then

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x[n] f=0 - 7t

Level 1
DWT coefficients

Level 2
DWT coefficients

Level 3 T
DWT coefficients

Figure 2.3: The Discrete Wavelet Transform (DWT) decomposes a signal into several
frequency levels (as denoted by / at each level) by using highpass (g[n]) and lowpass
filters (h[n]) and subsampling the results by 2. The length of the signal determines how
many times the decomposition process can be performed. This diagram was taken from
[31].

combines the frequency bands to generate the original signal. Filterbanks are appealing

because they allow the user to choose the number of subbands to separate the signal into,

as well as the types of filters used by the filterbank.

2.1.2 Tempo and Beat Detection

The beats of a song are the most widely recognized method of following music. It is

fairly easy for even the most inexperienced listener to track beats through a piece of

music. Dancing to a song is generally reliant on the beat because it provides cues for the

dancer to change motions. Beat positions are the most important aspect of music analysis

because they provide the structure of a piece of music. This structure is used in all dance

styles and it changes from song to song. The beat structure is entirely dependent on the

tempo or speed of the music. The system in this thesis uses beats to help control the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timing of the movements. The amount of time each movement receives to complete its

motion is entirely dependent on the beats, so it is important that the beat detection

algorithm is accurate and consistent. Beat detection for audio analysis has been studied

for over a decade and many methods have been proposed. Some of these techniques are

detailed in this section.

Several well-known beat detection algorithms have been proposed and refined by

Goto et al. [17, 18, 19]. His techniques perform beat onset prediction in real-time using

the Fast Fourier Transform (FFT) and the resulting frequency spectrum. He refines the

accuracy of the onset algorithm by detecting and using chord change information and

drum patterns. Beat prediction is used to determine where the next beat will occur. By

using autocorrelation and cross-correlation, the algorithm looks back in time at previous

onset positions and uses the calculated distance between beats (inter-beat interval) to

determine the next onset position. Multiple agents are used to track different beat

hypotheses across seven frequency ranges so that the system will not lose track of the

beats over time due to bad predictions. Specific parameters are used to track the beats,

including frequency range, beat type (strong or weak) and inter-beat interval, allowing for

hypotheses to take into account different pieces of information. More detailed

information about Goto’s beat detection algorithm is given in Chapter 3.

The tempo of a piece of music can be a key component in tracking the beat across

time. The tempo implies the speed of the beat occurrences and is used by many

algorithms in order to make beat prediction easier. Tzanetakis et al. implement a fairly

reliable system that is able to analyze a piece of music and return its tempo in beats per

minute [40], They use the discrete wavelet transform (DWT) rather than the Fast Fourier

Transform (FFT) to represent the audio signal in the frequency-time domain. A

histogram accumulates the top candidate tempos throughout the analysis of each section

of the audio signal. A steady beat is necessary for this method to work because it does not

track tempo changes over time. The algorithm is discussed more in Chapter 3.

Unlike Goto, most algorithms use tempo detection to reinforce the beat onset

detection algorithm. Methods such as Scheirer’s [33] and Dixon’s [10] use the tempo in

conjunction with their beat prediction and are able to track tempo changes. Scheirer uses

a frequency filterbank to separate the signal into six frequency bands and a filterbank of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comb filter resonators is employed for each band to determine the strongest signal period.

Each resonator has a delay time T, which will respond strongest to a signal with period T.

The delays vary across frequency bands and cover the range of possible beat frequencies.

The results of all the comb filters are summed across all frequency bands and the delay

time of the resonator with the highest value is taken as the tempo T. Using comb filter

resonators allows the algorithm to track tempo changes because when the tempo changes,

the strength of the resonator of the old tempo will decrease and the resonator that

corresponds to the new tempo will grow stronger.

Input

Tempo

EnergyBiengyBiengy

Envelope
Extractor

P e * -
Picking

Comb
R esonant
Filterbank

Frequency
Filterbank

Comb
R esonant
Filterbank

D ifferentiator

Figure 2.4: Scheirer’s beat detection system tracks a song’s tempo using a frequency
filterbank and comb filter resonators. The frequency filterbank splits the signal into
several frequency bands while the comb filters examine each band and search for a tempo
that corresponds to the resonator’s delay time. The diagram above was adopted from the
original work.

The next beat position is predicted using each comb filter’s vector of delays. The

vector corresponds to the resonator’s next n samples of output, which are its detected

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tempos over the next portion of the signal. The vectors are summed up across frequency

bands and the peak value corresponds to the next beat position. Many beat detection

algorithms need the music to contain drums, as the low frequency sound makes beat

tracking easier. Scheirer’s method does not use this assumption and therefore should

work with more types of music.

Tempo tracking is also performed by Dixon and used for multiple agent beat

prediction [10]. Like most beat detection algorithms, the signal is divided into several

frequency bands. Note onsets are detected and used to calculate the inter-onset interval

(IOI). The IOIs are clustered according to note structure: half note, quarter note, and

eighth note, with larger IOIs corresponding to half notes and smaller IOIs corresponding

to eighth notes. The 8 seconds of music previous to the current window can be used to

update tempo clusters by grouping IOIs of similar values from that period in time. The

average IOI is noted as the tempo of the cluster and clusters with similar tempos are

grouped together. The tempo representing the resulting cluster is updated and the 10 best

tempo estimates are stored. This allows for tempo tracking and updating over time,

which will result in a more accurate beat detection algorithm. Each agent is then given a

tempo hypothesis corresponding to one of the clusters, as well as an IOI value from

within the cluster. The signal is explored a section at a time using tolerance windows.

Each window is separated into an inner window and an outer window. Note onsets that

lie within the inner window are marked as beats, while those that fall within the outer

window are stored as beat possibilities. A new agent is created for each of these

possibilities, where the original agent assumes the candidate is a beat while the new agent

assumes the candidate is not a beat. The creation of new agents allows for all

possibilities to be considered, but also adds to the overhead of the system. Agents

evaluate themselves and the beat sequence of the agent with the highest score becomes

the final result of beat positions within the musical signal.

Music features other than beats and tempo have been studied and identified using

audio signal processing. Like Goto, Uhle and Herre consider the structure of music,

except they look for pulse levels at the note, beat and bar levels rather than strong and

weak beats [41]. They identify note onsets and use the interval between notes, called the

tatum, to detect tempo candidates, and finally the time signature. Uhle and Herre use the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A gent 1

A gent 2

A gent 2a

A gent 3

Figure 2.5: Using multiple agents to track beat hypotheses is a popular method in beat
detection algorithms. In Dixon’s algorithm, values A to F across the top represent the
beat onsets, with the solid squares representing predicted beat times that occur on an
onset and the hollow squares representing predicted beat times that don’t correspond to
onsets. Squares which occur close together (Agentl) correspond to a faster tempo than
circles that occur further apart (Agent2). The diagram above was adopted from Dixon’s
original work.

assumption that the ratios between tatum periods, beat periods and bar periods are nearly

integer values. This assumption simplifies the algorithm by narrowing down the

candidates for the tempo and time signature. In a way similar to many other beat

detection algorithms, they use a running window to split the audio signal into frequency

bands. The envelope of the band is extracted and note onsets are detected using high pass

filtering and half-wave rectification. Peak-picking of inter-onset-intervals (IOIs) from a

histogram is used to choose the tatum period. Once the tatum period has been

discovered, autocorrelation is performed on the envelope and the resulting peaks that are

integer multiples of the tatum period are extracted. These peaks represent tempo

candidates. The tempo candidates are subsequently used to determine bar length

candidates by choosing the peaks in the autocorrelation result that are integer multiples of

the tempo candidates. This algorithm is able to extract more of the musical structure than

most other methods; however, it is extremely dependent on the accuracy of the note

detection. Unfortunately, it is also not able to determine the beat positions of the song so

it is best used for tempo detection.

Jensen and Anderson also use note onsets to help them compute the inter-beat-

interval and detect the positions of the beats [22, 23]. The note onsets are detected using

the high frequency content (HFC) of the audio signal. They determine that this audio

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feature provides them with the best note onset results by performing several tests and

computing error measures for comparison with other audio features, such as amplitude

and spectral irregularity. Using the detected onsets, they generate a beat induction

histogram to calculate the current beat interval. The histogram is updated for each new

note onset with a Gaussian curve at the interval values corresponding to the distance

between the new onset and the previous one. The maximum peak of the histogram is

considered the current beat interval. The beat detection algorithm takes each note onset

and calculates the distance to a previously detected beat position. If the distance

corresponds to the current beat interval, then all the note onsets within that interval are

compared. Using the information from the HFC analysis, the height of the onset peaks

are measured against one another. If the current note onset peak is the strongest in the

interval then it is chosen as the next beat and the algorithm proceeds to the next interval.

Current beat interval

o
Lire

f
Ignored b eats

 >

If

* A.. M l I ^ A„i.y.A LL A.

B eat location

Time

Figure 2.6: Using the previous beat and the estimated current beat interval, Jensen and
Anderson’s algorithm determines if the current note onset (the peak pointed to by the
Beat location arrow) is the next beat in the audio signal. This diagram was adopted from
Jensen and Anderson’s original work.

A fairly unique method for detecting beats in an audio signal involves recurrent

timing networks [20]. These networks allow a signal to be compared with itself at

different points in the past. They can be used to detect patterns and periodicities and then

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proceed to use that information to make future predictions. The delay loops in a network

are similar to memory in that they retain the temporal structure of patterns for later

comparison. Whenever the pulses entering the network as input match the pulses arriving

through the loop (patterns previously detected and stored), the magnitude of the pulse

entering the loop increases. This results in recurring patterns being built up in the loop,

which is extremely useful with respect to detecting recurring beats. Harper and Jemigan

first process the input audio signal and send a resulting pulse signal to the system. Each

pulse in the signal corresponds to the position at which a sound onset was detected.

Details on detecting the sound onsets were omitted from the paper. Computing distances

between the current onset pulse and previous ones forms a histogram where the intervals

that have the highest peaks become tempo hypotheses. Similar to the agent-based

systems mentioned previously, this algorithm uses a group of detection nodes, each of

which corresponds to a beat period hypothesis. Nodes evaluate their success individually

and the node with the highest final score is chosen as the beat output. Each node contains

a recurrent timing network where the number of delay loops corresponds to the node’s

beat period hypothesis. The loop in the network with the highest activation level

corresponds to the next beat position. An output signal of pulses is built, where each

pulse denotes the position of a beat as detected by the network. Although the concept

behind this method is unique, it suffers from a problem that occurs with most other

existing beat detection methods. It has problems detecting beats in jazz and classical

songs, which are traditionally songs without a strong steady beat, and so its range of

types of music is limited.

2.2 Character Motion

Realistically portraying human motion is a difficult task that has been studied through

various views. Body joints are positioned and rotated from one position and orientation

to the next in order to create motion over time. There are three main categories of

character animation: keyframing, motion capture data and physics-based equations. In

most character animation cases there exists a trade-off between complexity and realism.

Physics-based equations provide physically realistic animations, but they are complicated

and difficult to implement. Keyframing techniques are fast and efficient, but their

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

realism is based on the animator’s ability to reproduce movement. Motion capture is fast

to use and accurate, but it can be extremely difficult to obtain the data needed as the

quality of the motion is based on the experience of the actor. Algorithms implemented

within each of these categories are discussed in this section. Choosing a particular

method for character animation depends on the purpose of the system, the level of

realism and detail required and the speed necessary for making the system achieve its

goals. All three types of techniques were considered for the implementation of our

system, but keyframing was chosen because it best fits the Celtic style of dance and the

goals of the animation system.

2.2.1 Keyframed Motion

Keyframed animation is the earliest form of computer animation. The animator sets the

position and orientation of the character’s body parts or joints at specific frames and the

system interpolates between the frames to create an animation. It is a less realistic form

of animation than physics-based animation or motion-capture data but it is generally

faster and easier, especially when using an animation system such as Autodesk’s Maya or

Discreet’s 3D Studio Max. Keyframed motion is also not subject to the same constraints

as motion-capture data and physics-based animation. Unlike systems that use motion-

capture data, the movements can be altered from the original and the animator is free to

experiment with a huge range of motion rather than being constrained to the sequences in

the motion database. Movement that looks good is not always physically correct and

keyframed motion can take advantage of its lack of physical constraints to create visually

appealing animations.

Thome et al.’s Motion Doodles approach is a novel way of sketching character

motion using keyframed animation and mapping [38]. The character is supplied by the

user and is animated according to system specifications. The user creates the animation

by using a sequence of lines, loops and arcs called gestures. The sketched motion is then

mapped to a set of motions that will make up the desired animation. Each gesture is

mapped to a specific motion where the height, start and end points and time taken to draw

the gesture all make subtle changes to the movement. The gestures give the user

complete control over the generation of the animation without the concern of how to

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design individual movements. A parser is included in the system to split up the input

gesture sequence into recognizable individual gestures. The final animation is

synthesized by using keyframes and a Catmull-Rom interpolant. The root or center-of-

mass of the character is placed halfway between the feet and uses parabolic curves for

placement during movements that are airborne, such as jumps and flips. Inverse

kinematics is used for motions where the character comes into contact with the ground.

Like the system detailed in this thesis, Thome’s work encourages experimentation by the

user.

Spacetime optimization is another method that can be used in combination with

keyframing to synthesize new movement. Liu and Popovic built a system for rapid

prototyping of realistic character motion from simple animations by using a small set of

specific keyframes and constraints [29]. The input consists of a character with joints and

an animation that contains joint angles at each frame. Environmental constraints, such as

feet staying on the ground, are automatically extracted from the input data and physical

constraints for the movement, such as gravity and momentum, are generated by the

system. Momentum is used to ensure realistic motion occurs between the user-defined

keyframes. The unconstrained, or in-flight, movements are separated from the

constrained, or on-the-ground, movements and transition poses are used to connect

constrained and unconstrained sections. The user can choose these poses or ask the

system to suggest some. The spacetime objective function is built for realistic movement

based on mass displacement, degree of freedom (DOF) deviation, and static balance.

Mass displacement ensures natural joint movements by determining the mass

displacement over the entire character. The variation between DOFs is minimized to

ensure smooth movement between frames, while the static balance is important in

realistic looking movements where the character is standing still. The full spacetime

optimization formulation minimizes the objective function while satisfying environment,

transition pose and momentum constraints.

2.2.2 Motion-Capture Data

Motion capture data involves capturing detailed movements performed by a real

performer and building a database of the movement sequences that can be used in topics

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as character animation for reconstructing the motion with computerized characters.

Motion capture systems are expensive to use and it can take a lot of time and effort to

retrieve the precise movements requested by the animator. The quality of the data is only

as good as the actor performing the movements and it can be difficult to modify the

existing data. Despite these drawbacks, motion capture data is widely popular for

character animation due to its realism and the ability for animators to reuse the data.

Once large databases of various types of movements are created, motion capture data will

become even more useful to character animation systems. Synthesizing new animations

based on existing motion capture data can be performed in many ways and some of these

methods are discussed in this section.

Splitting up motion capture sequences and using the pieces to build new sequences

requires transition control. Some movements cannot possibly occur in sequential order

due to extreme differences in positioning or the type of movement. Some approaches

address this problem by using directed graphs to determine connections between

movements. A directed graph can be fashioned by representing the vertices as individual

motion sequences and the edges as transitions between nodes [2]. An edge will exist

between two sequences if the last frame of the first vertex is sufficiently similar to the

first frame of the second vertex to allow a transition between the movements. The graph

edges are given costs to encourage the system to travel on certain paths: an edge with a

smooth transition between two frames is given a low cost, while an edge with a

discontinuous motion is given a high cost. In this case, the system only uses the clip

sequences that it has in order to create a new motion.

Another example of a directed graph method takes the opposite approach to building

the graph [25]. The edges of the graph represent the sequences of motion clips, while the

vertices denote transition points. A vertex exists between two clips if they can be

connected smoothly through blending techniques. In this method, the graph is not limited

to the motion clips found in the motion capture data. Kovar et al. implement an

algorithm that creates transition clips that can connect two segments of motion. These

clips can be placed in the graph between two vertices that would normally be

disconnected due to a lack of similarity in their data. This allows for a wider range of

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph paths and resulting animations. Neither motion graph algorithm makes changes to

the actual frame sequences themselves, only the order in which they are used.

A similar approach to the methods detailed above include Li et al.’s transition

matrix, whose format is that of a weighted, directed graph [28]. The motion capture data

is split into textons, or primitive movements, where each texton is modeled by a linear

dynamic system (LDS). The authors implement an algorithm to learn the motion textons

from the motion capture data, as well as their relationships to each other. The directed

graph is built such that each vertex is a texton and an edge’s weight corresponds to the

probability of transitioning between two textons. The user chooses the starting and

ending textons of the animation and the system finds a sequence that passes through them

by traversing the graph. This system can synthesize an animation in real-time, but

learning the texture of the motion (the individual textons and their relationships) takes

much longer. By dividing the original data into small primitive motions, the transition

matrix will have many options for creating a path and the resulting animation.

A technique for synthesizing new animation from motion capture data that differs

from directed graphs is optimization [32]. The purpose of optimization is to find a

motion that minimizes an objective function and best satisfies what the user wants while

still providing physically valid movements. The objective function involves three

components: minimizing torques, ensuring joint angle trajectory smoothness and ensuring

the resulting high-dimensional motion has angles and poses similar to those used in the

corresponding low-dimensional motion. In this method, the user specifies an initial

sketch of the motion through interpolation and a set of constraints, such as the starting

and ending poses for the animation. Optimization is difficult when a character has a large

number of degrees of freedom (DOF), so Safonova et al. solve this problem by reducing

the dimensionality of the original motion. They believe that five to ten degrees of

freedom can represent many human motions, rather than the sixty that are used by

complex and high quality characters. Finding motions using optimization for sixty DOF

is a difficult and time-consuming problem, so by reducing the DOF the complexity of the

algorithm is also reduced. The user chooses movements from a motion capture database

that have similar behaviour to the movements she wants performed in high-dimensional

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space. The system then synthesizes high-dimensional motion that is similar to the low

dimensional movement sequence.

2.2.3 Physical-Based Motion

Physics-based animation is an extremely realistic form of animating a character. Motion

is constrained by physics laws, joint torques and external forces such as the ground and

gravity. The purpose of this type of character animation is to model the motion as closely

to real life motion as possible. Although extremely realistic, physics-based motion is

time-consuming to implement and few character systems exist that contain a large

collection of movements.

Simple physics-based movements can be performed on a number of different

character types, such as lamps, cats and bipedals [26], User-interaction is key in this

system, as the mouse and keyboard are used to control movements. Keystrokes

correspond to different movement sequences set up in the system, while the mouse is able

to control joint angles for body parts such as the hip and knees in a walking animation.

Laslzo et al. use proportional-derivative (PD) controllers to compute the joint torques

while taking into account dampening and stiffness parameters.

r = k p(0d - 0) - k d0 (2.4)

0d represents the desired angle, 0 represents the current angle and 0 represents the

angular velocity. The dampening and stiffness parameters are kp and kj. Their state

machines combine similar movements into a single action group where the user can

choose a movement, such as taking the next step, and the state machine will choose

which movement in that group will be used. In most cases, the choice of the next

movement in physics-based animation is a direct result of past movements, so the authors

provide a checkpoint that allows the user to save the animation up to a point in time and

return to the end of the saved work to rework the next section of the animation if it does

not suit her standards. Laslzo uses fairly simple movements and gives the user the ability

to control the entire physics-based animation through mouse movement and keystrokes.

One system that has incorporated a number of physics-based movements is that of

Faloutsos et al. [12,13]. They create physics-based controllers that are called based on

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their suitability to perform the required action. Controllers can be integrated for simple

movements, such as balancing and stepping, or they can be implemented for complex

movements, such as walking and rolling over. Each controller comes with pre-conditions

and post-conditions that must be met in order for the controller to be chosen by the

system and successfully complete its objective. Pre-conditions involve the initial state of

the figure, environmental parameters such as whether the feet are in contact with the

ground, the character’s balance, and the target state. Post-conditions include similar

parameters to the pre-conditions; except these parameters contain values that should be

met by the time the controller is finished.

Pre-conditions:
Vertical Velocity: cv < 0.3 m/sec.
Balance: projection(c) € S.
Contact: hip not on ground, hands not on ground.

Execution:

If falling forward, face down v fy < 0.1.

If falling backward, face up vfy > -0 .1 .

Contact with the ground in 3 seconds.
Post-conditions:

Either
Velocity |c| < 0.3m/sec.

or
head on ground.

Figure 2.7: Pre-conditions, expected performance and post-conditions for the physics-
based Fall controller designed by Faloutsos. The controller takes into account velocity,
balance and environmental parameters such as ground contact. This controller diagram
was redone based on Faloutsos’ Fall controller.

Each controller rates its expected performance for the next task and this evaluation is

used by the system to decide which controller will be chosen next. Transitions between

controllers occur naturally in three instances: when a controller has finished, when the

user intervenes or when the controller detects that it has failed. The controller that best

suits the next piece of motion is then called by the system and used to continue the

animation.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Synchronizing Music with Motion

The purpose of most synchronization methods is to take an already existing animation

and synchronize it so that movement changes line up with beats in the given piece of

music. The result should be well coordinated so that it appears as though the animation

was originally built off of the music, rather than changed to match the music. In most

cases it is the animation data that is changed to suit the music, rather than the music to

suit the animation, so these techniques will be the ones mentioned in this section because

they are most similar to the system discussed in this thesis.

2.3.1 Synthesizing New Motion

Motion capture data is the most popular form of character animation because it is

realistic, easily used once retrieved, and can be manipulated through editing and blending

techniques, such as time-warping. The motion data can be split into smaller sequences

and rearranged to form new animations. An approach proposed by Kim et al. [24] uses a

movement transition graph to synthesize new motion sequences. In order to synchronize

the animation with the musical data, they look for the rhythm in the motion and match it

to the rhythm in the music. Moments where joints perform an obvious change in

direction are termed motion beats and these beats are used to split up the original motion

data into smaller basic movements. A clustering technique is used to group similar

motion beats and the best representative of each group becomes a node in the movement

transition graph. The edges in the graph represent the transitions between clustered

groups and are based on how smoothly the transition between movements occurs, as well

as whether such a transition fits the rules of the corresponding dance. The transition

graph is traversed and movements at each node are blended together until the end of the

dance is reached, resulting in a new formation of the original data. The dance is then

synchronized with the input MIDI data by timewarping the animation so the motion beats

and music beats are aligned. A major problem with this synchronization technique is that

the tempo of the motions beats must match the tempo of the song. This restricts the types

and speeds of songs that could be used as input and does not allow the user much

freedom in testing dances with different styles of music. Transition graphs are labeled

based on the type of dance and the rhythmic pattern to which its movements correspond
22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(eg: Waltz, Salsa). This setup does not permit experimentation with putting together

steps from different dances to produce a new style of dance.

Another method that uses motion capture data and a transition graph to organize the

sequences of motion data is found in the work of Alankus et al [1]. The motion data is

analyzed for frames that are similar to each other. Frames are similar only if an arbitrary

translation on the XZ plane and an arbitrary rotation on the Y axis exist such that the

transformed points in one frame f are closer to the non-transformed points in another

frame f than a threshold s. The transformation allows them to compare character poses

that are similar except for the position and rotation of the character. This leads to the

assumption that if two frames f and f) are similar, then frame f can easily make a

transition to fj+j. The transition graph is built to represent movements between dance

figures. A dance figure is defined as a sequence of frames f . . . f from the motion capture

data where there are frames in the motion capture data that are similar to the beginning

frame f and the ending frame fj of the sequence. This is necessary because the system

needs to be able to make a transition from this figure to another one in order to create an

animation. The authors only want frame transitions to occur between dance figures, so

the definition of a dance figure is further constrained to a movement sequence in which

there are no motion capture frames that are similar to any frames between the starting and

ending frames of a dance figure sequence. In a similar process to the extraction of

motion beats in Kim et al’s method [24], dance moves are identified based on significant

changes in the movement of a body part. The dance moves are synchronized to the music

data by traversing the transition graph and finding the sequence of dance figures that best

fits the music. A dance move is chosen if its timing can be changed by increasing or

decreasing the speed of the frame to fit the beat position. Both a greedy algorithm and a

genetic algorithm are used individually to improve the results.

The methods mentioned above synchronize a new animation without much regard to

the input music. The musical rhythm is used to speed up and slow down movements to

provide a well-synchronized animation, but the resulting motion sequence is chosen

based only on the beat structure of the music and not its mood or expression at a point in

time. Shiratori et al. [35] propose a new approach to music-motion synchronization that

uses musical features to choose motion segments that best match segments of the music.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Shiratori’s group believes that in real life the rhythm and intensity of dance movement is

synchronized to that of the music. They define the intensity of a musical piece as the

excitement level. For example, a quiet ballad has a low intensity level, while a hard rock

song has a high intensity level. The rhythm and intensity components are detected in

both the music and the motion data and used for synchronization. Once the motion

capture data and the music have been divided into segments, the rhythmic similarity

between a motion segment and a music segment is determined. This results in candidate

motion segments for each music segment. The list of candidate motion segments is put

through connectivity analysis to determine if the pose and movement from one segment

to the next is similar. The outcome of the analysis is a set of candidate segments that fit

the music’s rhythm and have natural transitions between each other. Shiratori uses a

Bhattacharyya coefficient to evaluate the intensity similarity between the music and

motion components. The final result is a motion sequence that fits the music’s rhythm

and intensity and has natural looking transitions between segments. This sequence can be

combined with the music for a newly synthesized animation that better suits the music.

Unlike this thesis work, their algorithm does not run in real-time and like the methods

mentioned previously, the algorithm only works well if the rhythm and intensity features

of the motion data are similar to the input music. If the music is not similar in timing or

in excitement level to the motion data provided, then realistic synchronization will not

occur.

2.3.2 Direct Motion Editing

Creating new animations for synchronization purposes does not always involve

rearranging motion capture data. Motion curves that the character will follow can be

altered using motion-editing techniques, resulting in a curve that changes as the music

does [6]. Cardie et al. implemented a system that contains several different motion

editing techniques, including filter banks, additive motion techniques, motion warping

and time warping. Filter banks divide the motion signal into components that can

individually be changed and put back together. Additive motion techniques blend

motions together, while motion warping blends a displacement map with the motion

curve. Time warping increases or decreases the speed of a sequence of frames so it can

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be better synchronized with the music. The user chooses the music feature to motion

editing mappings, where a specific music feature will cause its corresponding motion

editing technique to be performed on the motion curve. For example, motion warping

can be mapped to the musical beat by adding a point to the displacement map for each

beat, resulting in a jump in the signal at each displacement point. This mapping method

allows for interesting changes to the motion data and gives the user the ability to

experiment. Cardie et al. prefer to use keyframed animations rather than motion capture

data, although they claim that their system allows for both, because more motion editing

techniques can be performed on keyframed animations. This method is a much simpler

way of synchronizing music with animation than those of Kim et al. and Alankus et al.

because it does not make large changes to the motion data, such as rearranging

movements. The mapping method of Cardie et al. gives more user control than the

previous two and does not place restrictions on the movements or music given by the

user.

Goto mentions beat-driven real-time computer graphics in the form of his dancer

Cindy, which is synchronized to a dance sequence with music using his beat-tracking

algorithm [17]. The system contains pre-defined dance sequences and the user selects

one to synchronize with music. The timing of the sequence is automatically changed to

reflect the timing of the beats as detected in the music. This system has many similarities

to the one discussed in this thesis, but Goto does not provide much information on the

details of the system or any results, so it is difficult to compare his system with that in

this thesis.

2.3.3 Detecting Motion Features

Changing the motion data in order to synchronize it with the music can cause drastic

changes to the timing and appearance of the movements. To address this problem, Lee

and Lee propose a method that changes the timing of both the motion capture data and

the music [27]. Their feature mapping method is an extension of Cardie’s approach,

where both methods allow the user to select the music and motion features. Motion

features included in this system differ from Cardie’s system in that they are movements

in the animation rather than editing techniques. Lee and Lee use features such as

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

footsteps, arm-swinging motion, and occurrences when motion has stopped in the

animation. The footsteps are detected by using the vertical position of a foot and finding

the local minimum points in the movement. This is achieved by detecting the zero

crossing points of the first derivative where the second derivative is greater than zero.

Arm-swinging motion is found by looking for the local maximum points of the arm

movement, or the points where the arm is at the end of a swing motion (either in front or

behind the body). Using the Kinematic Centroid Segmentation technique, Lee and Lee

find the motion curve a2(t) of the arm from the following equation:

a2(t) = (C(t) - B (t) f (2.5)

B(t) is the position of the arm’s shoulder at time t and C(t) is the average positions of the

wrist, elbow and shoulder at time t. Dynamic programming is used to pair the music and

motion features that are closest in distance. Synchronization between the music and the

motion occurs by time-scaling the music features to match their corresponding motion

feature positions. Musical feature points are discarded if they change the music’s tempo

too much, but are later synchronized by time-warping the motion.

Shiratori et al. propose a similar motion feature detection method that follows the

position and speed of the arms, legs, and centre of mass (CM) [34]. Shiratori believes

that dancing is composed of many primitive movements. Unlike Lee and Lee, Shiratori

et al. uses the beat features from the music to help extract primitive movements in the

motion. Shiratori’s method assumes that for dancing, a keyframe occurs at the point

where the dancer momentarily stops dancing, which is usually at a beat. Once these

keyframes have been detected for the feet, arms and CM, the keyframe candidates where

the entire body has stopped moving are chosen as the motion features. The positions of

the motion features are then used to segment the motion sequence into primitive

movements and could be used to line up the primitive movements with the music beats.

2.3.4 Keyframed Techniques

Not all interesting character animation techniques involve motion capture data, as shown

by Taylor et al.’s work [37]. By using the ANIMUS framework for a virtual character,

they map musical features extracted from MIDI data to the character’s behaviour. The

user can input the music into the system through a piano or by singing into a microphone.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The non-human character is not controlled by motion capture data, but is still able to

convey the emotional significance of the music through its movements. The character

responds to the music according to the mapping functions designed by the system

designer. The musical features used by the system include pitch, amplitude, chord

information and vocal timbre. As these features change throughout the musical data, the

character’s movements will change as well. For example, if the character hears the sound

of a particular pitch, she will look around in the environment for the origin of the sound.

The user is able to interact with the character through the music, making it an interesting

addition to musical performances; however, the user cannot change the mappings or the

character itself without help from the system designer.

2.4 Labanotation

Labanotation is a system for analyzing and recording human movement [5]. Its

movement notation is used in the dance community to record and analyze dance

movements and sequences. It is not specific to a particular dance style, but allows

choreographers to cover all ranges of movement. Similar to musicians using musical

scores to create songs, choreographers use labanotation to plan combinations of motions

and dances. Each symbol in labanotation consists of four pieces of information. The

shape specifies the direction of the movement; while the shading indicates whether the

movement is performed at a high level, middle level, or low level. The placement of the

symbol on the dance staff determines which body part is performing the movement, and

finally, the size or length of the symbol indicates how long the movement is performed

for.

Figure 2.8: Example of Labanotation from the Dance Notation Bureau website [9],

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The notation is fairly complicated and can take a long time to write out and as a

result, only a few people in the dance community use it faithfully. Several animation

systems have entered the market that allow users to translate labanotation to a 3D

animation (LabanDancer [42]) or create dance scores by choreographing dances

completely with 3D characters (DanceForms [8]). Labanotation is outside the scope of

this thesis and will not be discussed further.

2.5 Motion Primitives

It is the belief of the author of this thesis, along with others [14,42], that complex motion

can be simplified into a combination of basic movements called primitives. Dancing is a

real-world example that supports this theory. Long dance sequences can be split into

routines that consist of separate dance moves. The individual dance moves are the

primitives that are combined together to create dance routines and performances.

Identifying primitives is a difficult task, one that is performed to some extent by motion

segmentation as discussed above [2,24,26,27]. The majority of these methods segment

motions by identifying velocity changes between frames.

Fod et al. also implemented an algorithm for automatically detecting and segmenting

primitives from movement data [14]. Their system uses only arm movements and motion

data built from the joint angles of the arm to generate primitives to describe the arm

movements. Using an imitation model to animate the character, they build the animation

in several layers. The first layer, the perception layer, acquires the movement data and

selects meaningful data from the motion stream, such as significantly moving features

and prominent kinematic substructures. The encoding layer classifies movements into

primitives, refines the primitives, and encodes the movements using the primitives. This

layer outputs two components: the segment sequences that describe when a primitive

occurs and the set of constraints for creating primitive controllers. The last layer, the

action layer, performs the imitation by executing the segment list. Segmentation of the

motion data into primitives is done in two ways by the authors. The second method is a

more effective and accurate algorithm, where segmentation is performed based on

thresholding the angular velocity of a motion primitive. PD controllers are used to

execute the primitives by computing the necessary torque for the arm joints.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A method that exists outside character animation for characterizing primitive

movements is built from the kinematic theory and its deltalognormal model AA [43],

The kinematic theory can accurately describe kinematic relationships as well as complex

movements. It also allows an accurate depiction of human movement. The AA model is

expressed in terms of speed and is used by Woch and Plamondon to express five different

types of velocity profiles. Rather than segmenting motions entirely based on a single

velocity peak (or the lack of velocity at a specific point in time) as is done by most

primitive segmentation algorithms, this method can discover primitives with up to three

velocity peaks and up to two direction reversals. This allows for slightly more complex

primitives that would otherwise be described by several smaller primitives, which in turn

encourages motion sequence representations that are based on fewer primitives. This

method supports our belief that primitive movements can be more complicated than

simply changing direction or velocity. For example, the Hop primitive in our system

includes three directional changes and would not be found properly by most segmentation

methods. Woch and Plamondon’s method presents a new way to describe more

complicated primitives that can still be used to build complex motion.

2.6 Mapping

Mappings between features are extremely useful when using input data to drive an

animation. In the system discussed in this thesis, the musical attributes are mapped to

character movements. Similar mapping methods are used in facial animation to map

vocal attributes to facial movement, as well as in motion retargeting where the

movements of a performer are mapped to the movements of an animated character.

Using a concept similar to ours, many voice-driven facial animation systems analyze the

sound data and use certain features to drive the facial expression of the character. These

approaches give merit to our method and provide a good basis for comparison with other

data-driven animation systems. Motion retargeting provides another type of mapping that

uses important character features to create novel animation results. The nature of this

mapping is similar to a mapping method detailed in this thesis because both focus on

correctly matching movement to the corresponding character. Both types of mapping,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input features to movement and movement to the character in the scene, can be found in

music-motion synchronization.

Brand and Shan [3,4] attempt to drive facial expressions from vocal information by

learning from synchronized sound and video data. One of the goals of their system is to

learn mappings between vocal features and facial features for synthesis purposes. A

Hidden Markov Model represents the positions and velocities of facial features obtained

from Brand and Shan’s vision system, with each state representing a particular

expression. Training video data helps the system determine the most probable set of

facial states and the vocal features are then mapped to these states. Mapping between

expression and vocal information is achieved by computing the probability that a certain

vocal feature can be associated with a facial state. To synthesize facial dynamics for an

input vocal track the expression-voice mapping computed in the learning stage is used to

find the most probable sequence of matching expressions. Each state in this resulting

expression sequence is mapped to a final facial configuration in order to animate a

character. Like our method, their mapping technique uses features extracted from audio

data to drive the animation and create a unique sequence tailored to the input audio.

Another method of mapping in facial animation research is that of mapping between

facial expressions. Rather than determining the facial expression from the audio data,

Cao et al. [7] look at transitioning between two expressions within the same sentence.

The system is able to automatically determine the emotional expression of speech signals

using supervised machine learning techniques and classification methods. Five types of

emotion expressions are used to make up the emotional spaces: neutral, sad, angry,

happy, and frustrated. Cao’s emotional mapping function determines a transition

between two facial motions in two different emotional spaces. This is done through the

use of a training set that includes sentences where motion transitions through all five

emotional spaces and a Radial Basis Functions mapping function. Cao’s mapping

procedure allows for arbitrary sentences to transition smoothly between facial

expressions, resulting in an animation that expresses emotion corresponding to the audio

content.

Computer puppetry is a form of motion retargeting that takes motion capture data and

determines how to properly map it to an animated character with a different size and

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proportion than that of the actual performer [36]. This method is not as simple as directly

mapping joint angles and end-effector positions from the performer to the animated

character because the body proportions change the amount of movement necessary to

reach the same goal position. Shin’s system uses an importance-based approach to

automatically decide what the important features of the input movement are, as well as

how to use these features to recreate the input motion. The three features targeted by the

algorithm are the character’s root position, the joint angles and the end-effector positions.

The system will choose which feature is most important to the movement and move the

character in order to preserve the feature’s data. Shin’s method preserves enough of the

original motion by mapping the input feature data to the character data, but it is also able

to change the motion to best reflect the character’s proportions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Chapter 3

Music Analysis

Music analysis is performed by combining two different algorithms: Tzanetakis et al’s

tempo detection method [40] and Goto’s beat tracking method [17,18,19]. Tzanetakis’

method was faithfully followed in the implementation, but several changes have been

made to Goto’s method in order to make it work better for our purposes. The algorithms

are detailed in this chapter along with our version, which includes collaboration between

the two.

3.1 Tempo Detection

The speed of a song is an extremely important musical feature to composers and listeners

alike. The speed, or tempo, dictates the positions of the beats in a song and describes

how quickly the rhythm of the song will be performed. Corresponding dance movements

are also affected by a song’s tempo as their speeds are influenced by the beat positions.

We have implemented a tempo detection algorithm from Tzanetakis that is used in our

beat detection method to determine the positions of the beat in the music. Details of

Tzanetakis’ algorithm are presented in the next subsection. The results displayed include

histograms for two different types of music: rock and Celtic. The structure of all tempo

histograms is the same, so only two are shown for recognition purposes.

3.1.1 Algorithm Details

The tempo detection method we employ for the first step of our beat tracking method

uses the Discrete Wavelet Transform (DWT) to decompose the signal into a number of

octave frequency bands. The DWT is able to represent the signal’s information in time

and frequency space, rather than just the frequency space like the Fast Fourier Transform.

A pyramidal algorithm is used with the DWT to split the signal into several frequency

bands. Tzanetakis decomposes the signal into twelve levels of coefficients, but our

implementation only decomposes into five levels. We use only five levels of coefficients

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because experimentation found that five is the smallest number of levels with the same

effectiveness as that of twelve levels.

A windowing technique is used to divide the signal into small, equal-sized windows

that are analyzed one at a time by the algorithm. The results from the analysis of each

window are combined into a histogram. A window size of 65536 samples is used and

while Tzanetakis uses a frequency sampling rate of 22050 Hz, we use a sampling rate of

44100 Hz because it includes most audio signals. There is no noticeable difference

between using Tzanetakis’ sampling rate and ours. The step size for moving the window

is 512 seconds or 32768 samples. The signal in each window is decomposed by the

DWT, resulting in five sets of detail and approximation coefficients. We keep the

approximation coefficients and discard the detail ones because the approximation

coefficients hold the low frequency information, which is where the beat is generally

found in a piece of music. Due to the nature of the DWT, the number of coefficients at

each level is different, making it difficult to perform further analysis and combine the

information together. Upsampling is used to ensure all coefficient levels have the same

number of values. Each level is upsampled by a value of 2 ', where i is the level number.

This cancels out the downsampling performed by the DWT. Upsampling will sometimes

cause the signal at each level to be longer than the window size. The values at the end of

each level are discarded until the signal is the same size as the window, resulting in five

equal-sized levels of approximation coefficients. We can then proceed to perform the

steps for the tempo detection algorithm.

Full wave rectification is the first and simplest step, in which the absolute value of all

the samples in the signal is taken.

y[n] = abs(x\ri\) (3.1)

Low pass filtering of the rectified signal is performed according to a one-pole filter with

an alpha value of a = 0.99 . The one-pole filter was implemented according to the

definition and parameters given by Tzanetakis. This filtering operation goes through each

sample and computes its filtered value by taking into account the previous sample’s

filtered value.

y[n] = (1 - a)x[n] - ay[n -1] (3.2)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Downsampling is then performed on the low-pass filtered signal. A downsample value of

16 is used where k = 16 in Equation 3.3. Downsampling is performed to reduce the

computation time of the algorithm. The combination of full wave rectification, low pass

filtering and downsampling results in the amplitude envelope of each band of the original

signal. Extracting the envelope of a signal is a common technique in beat detection

algorithms because it is a simple method for detecting the spikes in the bass sounds that

can correspond to beats. It is important to note that downsampling results in a loss of

high frequency information. Indeed, the Shannon-Nyquist theorem proves that a band-

limited signal must be sampled at at least twice the cut-off frequency in order for the

samples to accurately represent the original signal. After downsampling by 16 the

highest frequency that can be represented, according to the Shannon-Nyquist Theorem, is

only 8 Hz. This could become problematic if the beats reside in the high frequency

information because then they would not be detected. This algorithm is designed based

on the assumption that beat information occurs in low frequency data, which is true in

most cases.

y = x[kn] (3.3)

Mean removal or normalization is performed on each amplitude envelope before the

autocorrelation stage. The mean value and standard deviation (std) of each frequency

band is calculated and the following equation produces a centered signal. The resulting

frequency bands are summed together into one envelope.

y[n] = (0.5 * (x[n] - E[x[n\]/std)) (3.4)

An important component that is incorporated into our implementation is the padding

of zeroes around the summed envelope so that it is the same size as the original window.

This addition is necessary for avoiding wraparound error in the autocorrelation function.

The computation of the power spectrum of the summed envelope is used for the

autocorrelation step. This is achieved simply by taking the FFT of the signal, multiplying

the result by its complex conjugate and performing the inverse FFT on the outcome.

Autocorrelation results in a symmetric signal so we remove the second half of the result

and concentrate on the data in the first half.

Our implementation for detecting the highest peaks of the autocorrelation function

differs from Tzanetakis, so we discuss the details here. For each window the highest 30

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

peaks, P, of the autocorrelation function are stored and used to find the top 3 peaks, T.

We do not simply take the highest 3 peaks of the signal because in some cases these

peaks can be extremely close to each other. The number 30 is large enough that 3 distinct

peaks should almost always be found in the window, but not so large that the algorithm

will constantly be looking for peaks where none exist.

We want a wide range of tempos so we can be sure that we are detecting the correct

one. We choose the highest peak in the list as the first of our top 3 peaks, Ti = Pj. We

then proceed to compare the second highest value of the 30 peaks, P2, with Tj. If the

distance between these peaks is greater than 60, then T2 = P2 , otherwise P2 is discarded.

The threshold of 60 was chosen through experimentation with different songs and found

to be a large enough distance that a peak outside the threshold would not be significantly

close to another peak. We go through the autocorrelation list until 3 peaks are found that

are sufficiently far apart but within the appropriate range for tempo detection, which is

between 40 and 200 beats per minute (bpm).

The three values in T are converted from sample numbers into beats per minute by

the following equation:

5, = 60/(/* • (& -1) / Fs) (3.5)

where 5, is the converted tempo in bpm, Fs is the frequency sampling rate of 44100 Hz, k

corresponds to the number used to downsample the envelope (k = 16 from Equation 3.3)

and 1<= i <= 3 for each value in T. These three tempo values are then added to the tempo

histogram that tracks the tempo values detected in each window of the signal. Having

one bin for every possible bpm value between 40 and 200 arranges the histogram

structure. The amplitude of each peak in T is added to the beat histogram at its

corresponding tempo bin. For example, if one of the values in S is 80 bpm, then the

amplitude value at its corresponding peak will be added to the histogram in bin 80. The

complete analysis of the entire signal over all the windows will result in a histogram with

peaks in certain tempo bins. The tempo bin with the highest amplitude is chosen as the

overall tempo of the song because its periodicity was detected the most throughout the

analysis.

In some cases the tempo analysis algorithm will detect the wrong tempo as the

estimated tempo of the audio file. This generally occurs when one of the two most

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detected tempo values is double the other one. When the audio signal is in 4/4 time, it is

possible to have two types of tempos: the first corresponds to every single beat (4/4 time)

and the second corresponds to every second beat (2/4 time). To account for this

difficulty, we compute the difference between the amplitude of the two peaks in the beat

histogram. If the difference is between an amplitude interval of 500 and 5000 units then

the estimated tempo of the audio file becomes the second highest peak in the histogram

rather than the first. The values of 500 and 5000 were acquired through extensive manual

experimentation with different musical songs. A user with musical experience listens to

each song and determines if the tempo is slow or fast. The user-estimated tempo is then

compared to the system-estimated tempo. In the cases where the system chooses the

wrong tempo, the system designer compares the peak values of the two tempos. In the

majority of cases, the system chooses incorrectly when the difference between the two

peaks is between 500 and 5000 units, so this interval is used to correct the tempo choice.

The process detailed above, from the DWT decomposition to the organization of the

beat histogram, is performed for every window in the signal. The tempo of the music file

is only determined after the entire signal has been analyzed.

3.1.2 Tempo Detection Results

The tempo detection algorithm is extremely efficient. It runs faster than real-time and is

very accurate. This technique was first tested on the four songs provided on Tzanetakis’

website [39]. These song types include hip-hop, rock, jazz and classical. We were able

to generate close to the same results as Tzanetakis, with a difference of less than 3 bpm

for the peak tempos. This disparity is most likely due to the difference in the Discrete

Wavelet Transform implementations used by the respective algorithms. Our music

analysis system is implemented using Matlab, including the DWT and FFT functions.

Tzanetakis’ system is built from his own C code, which may explain the difference in

results. We also choose to use the power spectrum to compute the algorithm’s

autocorrelation step, while Tzanetakis uses Equation 3.6. In the majority of the cases

tested, both algorithms give the same results.

y[fc] = ^ - ^ 4 r t] x [n + £] (3.6)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This algorithm does not do well with Jazz and classical songs because the beat is not

prominent in these types of music. These songs often do not have a strong beat because

they rarely use drums. A weak beat is extremely difficult to track, which results in an

inaccurate tempo. Another difficulty with this algorithm is its inability to track tempo

changes. Although most popular songs do not incur changes in speed, some Celtic songs

have a beat that varies over time due to the nature of the performance. Adjusting this

tempo detection algorithm to take speed changes into account is a component of our

future work.

Figure 3.1 below displays the resulting beat histogram of a Celtic song named

Siamsa. The highest peak is found at 117 bpm and the second highest peak at 58 bpm.

The second tempo is half the speed of the first because it detects periodicities on every

second beat rather than every beat. For example, if the song is in 4/4 time, a beat will be

detected on every quarter note. Beats can also be detected on the first and third quarter

notes to describe a song in 2/4 time, which is half the tempo of the 4/4 time. The song is

4 minutes and 29 seconds in length and the tempo detection algorithm took 3.0156

minutes to determine the tempo.

B ea t H is togram
3.5

2.5

cz
CD

05
CD

CD

0.5

180 20040 60 80 100 120
B PM

140 160

Figure 3.1: An example of a beat histogram produced by the tempo detection algorithm.
The values across the bottom represent the possible tempos. For this particular Celtic
song, “Siamsa,” the tempo is detected to be 117 beats per minute.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One of the difficulties with the tempo detection algorithm is that occasionally the

tempo with the second highest peak is the actual tempo of the song, rather than the one

that corresponds to the highest peak. This can be seen in Figure 3.2 where the highest

peak corresponds to a tempo of 161 bpm and the second highest peak represents a tempo

of 82 bpm, which is the correct tempo of the music. The music clip is 30 seconds in

length and it took the algorithm 18.656 seconds to identify the tempo. This audio file is

from a song by the Beatles and is taken from the testing set of Tzanetakis that is posted

on his website [39]. Both our implementation as well as Tzanetakis’ identified the

incorrect tempo for the song. When this problem occurs, the actual tempo is generally

the second highest peak in the histogram.

B e a t H is togram
2 . 5

CD

0 . 5

6 0 8 0 100 120 1 4 0 1 6 0 18 0 2004 0
B PM

Figure 3.2: A beat histogram for a 30 second Beatles song. The tempo is identified as
161 bpm when, in actuality, the tempo is 82 bpm. The algorithm recognizes the faster
beat as the tempo because it occurs more often in the signal.

The tempo of a piece of music is directly related to the speed that the beats occur in

the song. It is possible for multiple tempo values to be accurate in describing a piece of

music, but only one is actually correct. For example, say two listeners are tapping along

to the Beatles song from Figure 3.2. Listener 1 is tapping to the correct tempo (82 bpm),

while Listener 2 is tapping twice as fast (161 bpm). In terms of music, both listeners are

accurately tapping to a beat. The difference between them is that Listener 1 is tapping to

beats 1 and 3, while Listener 2 is tapping to beats 1,2,3 and 4. In this case, beats 1 and 3

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are the strong beats, while beats 2 and 4 are the weak beats. Strong beats are generally

the obvious beats in a piece of music, while the weak beats are the underlying beats that

occur between the strong ones. Tapping to all 4 beats is accurate, but tapping to only the

strong beats is more accurate, therefore the tempo corresponding to the strong beats is

chosen as the correct tempo. It can be tough for human listeners to pick the tempo

corresponding to the strong beat, which is why many algorithms have difficulties.

Currently a user with musical experience chooses the correct tempo.

This approach is not the only method to have difficulties with relationships between

tempos. Scheirer’s tempo induction algorithm also retrieves tempos that correspond to

strong and weak beat levels in a song [33]. Errors occur due to the algorithm’s inability

to understand the relationship between different beat levels, such as the ones that exist

between a strong beat and a weak beat. Dixon’s method addresses this problem by

grouping together tempos that are an integer multiple or divisor of each other [10]. He

uses this knowledge of relationships between beat types to create several tempo

hypotheses, each of which is tracked by a different agent in order to establish the correct

one. Unfortunately, the paper does not mention how successful the algorithm is in

determining the right tempo. Choosing the true tempo from several accurate tempos is a

problem that each tempo detection algorithm must face. The addition of extra musical

knowledge into an extraction method may assist in solving this dilemma.

3.2 Beat Detection

The most recognizable component of a piece of music is the underlying beat structure

that accompanies it. Dancers move to the beat, listeners tap a foot to it and musicians

compose according to it. The beat is very dependent on the tempo of a song because the

beats are positioned based on the music’s speed. Fast music will include a beat with little

time between positions, while the beat of a slow piece will have large interval times.

Tracking a beat through an audio signal is a difficult task that has been studied in

numerous forms.

Goto’s algorithm [17,18,19] was chosen for our musical analysis system because it is

referenced in every beat detection paper and is considered by many to be an excellent

technique for performing beat detection. There exist a few papers explaining the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm with different levels of detail, which makes it easier to implement and replace

some of the components with our own. Unlike other beat detection algorithms, this one

can be used on drumless music, which makes it more robust for possible input songs.

This section outlines the algorithm used to detect the beat onsets in the music and

displays results for music of different types and speeds.

3.2.1 Original Algorithm Details

Our original beat detection algorithm uses primarily the tempo to predict the next beat

position in the signal. The tempo can easily be converted to an inter-beat-interval (IBI)

that describes the distance between beats. The first beat in the signal is detected using a

simple version of Goto’s algorithm and each subsequent beat position is predicted by

adding the inter-beat-interval to the previous beat position. More details on Goto’s

algorithm are given in the next subsection.

This algorithm divides the signal into large sections where each section contains

approximately 5 beats (as determined by the tempo). This is done to reduce the amount

of data that the algorithm will examine at one time.

windowSize = IBI * 5 (3.7)

The window size is a multiple of 5 beats because this value gave the most accurate results

during testing. Window sizes ranging from 2 beats to the entire signal were tested and

sections consisting of 5 beats worked best.

Goto’s beat detection technique is used to determine the position of the first beat in

each section. The highest of the first 10 peaks in the section is chosen as the first beat

position. The next beat position in the section is predicted by adding the IBI to the first

detected position. The third beat position is found by adding the IBI to the previously

detected position, and this continues until all 5 beats in the section are determined.

bt = + IBI 2 < i <5 (3.8)

The algorithm moves onto the next section by moving a full window size in the signal

(there is no overlapping in this windowing technique) and using Goto’s method to detect

the first beat in the section. This continues until the entire signal has been examined.

The algorithm was unsuccessful for two main reasons. The first is because it relies

too heavily on the tempo rate for predicting beat positions. This method does not work

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properly because the tempo value is not generally an integer value and it is impossible to

always store the entire set of decimal values. The beat positions will shift over time due

to the integral tempo value, resulting in incorrectly detected beats that depend on the

onsets computed based on an inaccurate tempo value. This problem was one of the

reasons that the window size was chosen to be fairly small. By dividing the algorithm

into sections and detecting the first beat in each section, we could fix the beat position if

it went awry in the previous section due to an imprecise tempo rate. The second reason

the algorithm was unsuccessful was because it runs extremely slowly. It takes 5.4

minutes to examine a synthetic signal that is 22 seconds in length and 13.6 minutes to

analyze a musical signal that is 55 seconds. These two difficulties motivate us to develop

a modification of Goto’s beat detection algorithm based on our own improvements.

3.2.2 New Algorithm Details

The process behind beat detection is analyzing a musical signal and finding the positions

of all the beats. Goto’s original algorithm uses drum patterns and chord change

information to make the system more robust, but we have not included these features in

our implementation. Instead, we rely on Tzanetakis’ tempo algorithm detailed in the

previous section to give us more accuracy in determining a beat onset. Our system does

not require the precision that Goto’s algorithm strives for so we fashioned a simpler

version of his system that runs in close to real-time and does not require additional

musical knowledge.

This algorithm uses the FFT and power spectrum to build a signal in the time-

frequency domain. A moving Hanning window is used to analyze the signal piece by

piece, with a window size of 1024 samples and a step size of 256 samples. The Hanning

window is applied to the signal by multiplying it with an equal sized portion of the signal.

The FFT is applied to all samples within the window and the power spectrum is

computed by multiplying the FFT result by its complex conjugate. The values of the

power spectrum correspond to the power at each particular frequency. The window then

moves to the next section of the signal, with a % overlap with the information in the

previous window due to the step size. In order to convert all this information into the

time-frequency domain, it is necessary to compress the set of samples in each window

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into a single frame. Goto’s algorithm measures time in frame-time, where each frame

time corresponds to one window span, or 1024 samples. The power spectrum p(t,f) is

represented as the power of frequency / at frame-time t.

The next step of the algorithm involves extracting onset components from the power

spectrum. Onset components are found at frequencies where an increase of power

occurs. By searching the immediate neighborhood in time and frequency space around

p(t,f) the degree o f onset d(t,f) is calculated. The degree of onset is the amount of power

increase between the frame-times. The following segment details this step:

pp = median(pit -1 , / -1), p it -1 , /) , p it -1 , / +1))
mn = m in(p(t, /) , p it +1, /))
if mn > pp

d(t, f) = m axipit, /) , p it +1, /)) - pp
else

d i t , f) = 0 (3.9)

When pp is computed in Goto’s implementation he uses the maximum value of the

neighborhood. We choose to use the median to get a more faithful representation of the

whole section. If the median of the neighborhood around the previous frame-time is

smaller than the minimum power value of the current and next frame-times then the

power is increasing over time and an estimated onset component exists at this position in

time-frequency space.

The third step splits up the onset components into 7 frequency bands for further

analysis. The frequency-time space is converted to time space by adding up all the

frequency components within each frame-time t. Only the frequency components that

fall within the current frequency band i are involved in the summation.

D,(0 = X ^ / > O-IO)
/

This is executed for each of the seven frequency bands and performing convolution with

a Gaussian filter smoothes the result.

The three main steps of the algorithm are fairly similar to Goto’s original method.

The majority of the next few steps are new contributions of ours to the implementation to

integrate tempo information and to make the technique robust enough for our purposes.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To narrow down the range of possible beat positions, a threshold is used to remove

frame-times with the smallest amplitudes. This is based on the assumption that beat

sounds are fairly high in amplitude compared to other musical features. The threshold is

computed by multiplying the maximum value of each frequency band with a percentage

value. The percentage value ranges from 80-90% of the signal’s amplitude, meaning the

values in Dj(t) that fall within the highest 80-90% of the signal’s amplitude are retained

and the rest are discarded. It is important to note that the amplitude of the beat is

dependent on the amplitude of the signal. If the dynamics of the signal at a point in time

are soft, then the amplitude of the beat will be low to match this, as will the amplitudes of

the other musical features. This detail is the reasoning behind the choice of the

percentage value. If the percentage value does not cover the softer ranges of music then

the beats are not detected in those time intervals. The percentage value that works best

for the threshold changes from song to song and is manually set based on

experimentation.

The estimated onset times are put into onset-time vectors for further comparison

across frequency bands. For each frame-time a vector is created that denotes whether or

not an onset has been found in a frequency band at that point in time. A value of 1

denotes that an onset peak is detected and a value of 0 denotes that nothing is detected.

An onset rate-of-recurrence value for a frame-time is calculated by adding up the vector

values across all frequency bands. A result of 0 means that an onset peak has not been

detected in any frequency band at the current frame-time, while a result of 7 means that

an onset peak has been detected in all frequency bands. Storing only the frame-times

where an onset has been detected in more than one frequency band further narrows down

the number of estimated onset times.

Goto uses a multiple-agent beat prediction method to determine the correct position

for the next beat. We use a much simpler technique that utilizes the tempo information

calculated by Tzanetakis’ algorithm. An inter-beat-interval (IBI) is the distance between

two beat onsets and can be calculated based on the tempo of the song. A direct

relationship occurs between the speed of the song and the distance between beats and this

relationship is used to compute the IBI directly from the tempo. The tempo is first

converted from beats per minute to beats per second (bps) by dividing it by 60 (the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of seconds in a minute) and then converted to discrete samples by the simple

division of 44100/bps. The IBI is this conversion result divided by the original step size

of 256. The IBI must be in frame-times to correspond to the unit in which the beat onset

positions exist.

bps — bpm / 60
samples = 44100/ bps
IBI = samples / stepSize (3.11)

The first estimated beat is stored as the first true onset of the signal and used as a

comparison point for the next estimated beat in the list. The distance between this first

actual onset and the next estimated beat is calculated. If the distance is greater than the

IBI-error, where the error value is 5 frame-times, then it is stored as the next actual onset

in the signal. The threshold check ensures that the final beat onsets are not too close

together, as can be the case when the algorithm detects weak beat positions. Weak beats

are the beat sounds that occur between the actual beats of a song. They are generally

found at twice the tempo rate and half the distance between two actual beats and can be

mistaken by beat detection algorithms as real beats. Tracking of these beats is avoided by

using the IBI to ensure only beat positions that occur around or further than the known

interval are chosen. Beat positions that occur further than the known interval are

considered as a precaution for when the algorithm cannot detect beats around the current

estimated position. The algorithm will be able to recover itself by looking further in time

for the next beat while skipping the current estimated beat position. This procedure is

followed for all the estimated beats in the list and the end result is a vector of actual beat

onsets for the entire song. The beat positions must be converted from frame-times to

frames because Maya uses the unit of frames in its animation system. The conversion

equations use the step size of 256 samples, the frequency sampling rate of 44100

samples/second, represented by Fs, and a frame rate of 24 frames per second (fps).

beats = onsets ■ stepSize / Fs
frames = beats ■ fp s (3.12)

The beat detection algorithm has a good accuracy rate, but tweaking of the

percentage value for the beat onset threshold is necessary because the value that works

best changes from one song to the next. Despite the use of the IBI to prevent weak beats

from being detected, occasionally the algorithm will skip a true beat and choose the next

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weak beat. This occurs when the onset vector does not find any beats around the true

beat position. If the next weak beat position is greater than the distance threshold, as well

as the closest estimated beat to the current one, it is chosen. This is one problem that will

be addressed in future work because it has the tendency to change the detected beat

structure. The algorithm is extremely efficient at recovering once it has lost the correct

beat structure, usually taking no more than a couple of seconds to correctly identify the

beat once again. The results of our modified version of Goto’s algorithm are presented in

Section 3.2.3.

3.2.3 Beat Detection Testing and Results

Testing of the beat detection algorithm has to be performed manually in order to assure

accuracy. Both visual data and audio data are used to compare the generated results with

the true beat positions in the musical signals. Visual data is used for the synthesized

signals where the beat positions are discemable. Audio data is used for all other signals

where it is easier to hear the beat than find it in the signal.

Simple testing was performed first on synthesized audio signals that are composed of

beeps that represent the beat. The purpose of the simple synthesized signal is to

determine how well the beat detection algorithm can find the beats of a given tempo. A

user-determined tempo value is utilized to establish the IBI and short beeps are added to

the synthesized signal at positions derived from the previous beat position plus the EBI.

To make the synthesized signal more similar to real musical signals, beeps are added at

the quarter note level, the half note level and the whole note level. A single beep at

quarter note positions is not enough to synthesize a song similar to real music because

there are generally many instruments playing, which increases the amplitude of the beats.

Adding beeps at 1,2 and 4 times the frequency will increase the amplitude at those points

in a similar way to multiple instruments playing on the beats.

White noise is added into the signal through the use of a Matlab function named

randn. This function creates vectors and matrices filled with random numbers built from

a normalized distribution. The amplitude of the resulting noise signal is normalized and

then divided by a specific number, divisionNumber, to reduce the amount of noise. The

beeps are added into the noise signal to create the synthesized result.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s - ram/n(1000000,l)
mx = max(5)
signal - (s im x) / divisionNumber (3.13)

Different amounts of noise are added to each synthesized signal to determine how much

the noise level affects the beat detection algorithm. The noise’s division value varies

from 100 (small amount of noise) to 2 (intermediate amount of noise). The signal is also

tested with no noise at all. The new algorithm can detect only a small amount of beats

when the division value is 2, so testing was stopped at this point.

Noise Level Old Algorithm New Algorithm
none 28/31 31/31
1/100 31/31 31/31
1/50 31/31 31/31
1/25 31/31 31/31
1/16 31/31 31/31
1/8 31/31 31/31
1/6 31/31 31/31*
1/4 31/31 31/31**
1/2 20/31 12/31***

Table 3.1: Comparison of the old and new beat detection algorithms using a synthetic
signal with a tempo of 82 bpm. The audio signal is 22 seconds in length, with a total of
31 beats. Testing is cut off at a noise level of Vi the beep’s amplitude because this is
where the new algorithm fails considerably. The second and third columns denote the
number of beats out of 31 detected correctly by each algorithm.

Table 3.1 shows the noise level affecting both beat detection algorithms around the

same time. The signal with a noise level of Vi affects both algorithms, with the old

algorithm detecting eight more beats than the new one. The asterisk symbols in the New

Algorithm column of the table denote that different threshold values were used for testing

those three particular signals than for testing of the previous six signals. The six signals

with the smallest signal-to-noise ratio work perfectly with a threshold of 90%, while the

seventh signal (*) uses a threshold of 72%, the eighth signal (**) uses a threshold of 45%

and the ninth signal (***) uses a threshold of 35%. The new algorithm only detects 5

beats in each of these signals if the threshold value is left at 90%. Although the new

algorithm detects only 12/31 beats in the last synthesized signal, Figure 3.3 demonstrates

that the detected positions are not far from the actual beat positions.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T im e (s a m p le s)

 l _______________________ I___________________________ i— ---1-----
7 7.5 8 8.5

Time (samples) igS

Figure 3.3: The results of the new beat detection algorithm on a synthesized signal with a
tempo of 82 bpm. The noise level is 1/2 and a 35% threshold value is used. Blue lines
represent the original beats in the signal and red lines the beat positions detected by the
algorithm. The top image displays the full signal after beat detection, while the bottom
image a closer view of the distance between actual beats and detected ones.

Table 3.2 displays the results for testing the old beat detection algorithm on ten

synthetic signals with different random seeds and a tempo of 153.3682 bpm. The values

in each column represent the number of beats detected for each signal with a specific

noise level, where the noise level is denoted in the second row of the table. This testing

shows that the random seed does not affect the developing trend of the noise level

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Signal # Number of beats detected 758) for each noise level
1/100 1/50 1/25 1/16 1/8 1/6 1/4 1/2

1 35 45 40 45 35 43 40 40
2 45 45 41 35 48 37 42 30
3 45 35 35 35 36 43 35 22
4 38 40 35 40 40 35 35 32
5 35 35 38 35 35 37 35 31
6 35 35 35 35 35 45 35 33
7 35 39 39 39 35 35 39 38
8 38 35 35 35 45 40 35 36
9 40 35 35 40 35 35 36 41
10 35 35 35 35 35 35 40 36

Average
beats

detected

38.1
38

37.9
38

36.8
37

37.4
37

37.9
38

38.5
39

37.2
37

33.9
34

Table 3.2: The results of using the old beat detection algorithm on 10 synthetic signals
with random seeds and a tempo of 153.3682 bpm. Eight different noise levels are used,
ranging from l/100th of the beep amplitude to Vi of the beep amplitude.

influencing the accuracy of the algorithm. The average number of beats detected is fairly

even until the noise level reaches xh of the beep amplitude, at which the result dips.

Table 3.3 displays the results for testing the new beat detection algorithm on the ten

synthetic signals used in Table 3.2. The algorithm uses a threshold value of 90% to

obtain the majority of the results seen in Table 3.3. The asterisk symbols in the noise

level row (the second row) denote that different threshold values were used to obtain

these results than the threshold used in the first six columns. The threshold used by the

algorithm in column 7 (*) is 72% while the threshold used in column 8 (**) is 65% and

the threshold for column 9 (***) is 25%. This indicates that the new algorithm is quite

robust because its threshold value can be altered to reflect the signal. The results are

consistently excellent until the last noise level is reached, at which they drop off

considerably. This shows that the random seed does not affect the reliability of the new

beat detection algorithm. From the comparison of the values in Table 3.2 and Table 3.3,

it is evident that the new beat detection algorithm performs considerably better than the

old beat detection algorithm. In the majority of cases it detects 100% of the beats, while

the old algorithm detects 67% of the beats in the best case.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Signal # Number of beats detected (/58) for each noise level
1/100 1/50 1/25 1/16 1/8 1/6* j/4** 1/2***

1 58 58 58 58 58 58 58 27
2 58 58 58 58 58 58 58 22
3 58 58 58 58 58 58 58 18
4 58 58 58 58 58 58 58 22
5 58 58 58 58 58 58 58 17
6 58 58 58 58 58 58 57 11
7 58 58 58 58 58 58 58 19
8 58 58 58 58 58 58 58 17
9 58 58 58 58 58 58 58 19
10 58 58 58 58 58 58 58 16

Average 58 58 58 58 58 58 57.9 18.8
Beats

Detected
58 58 58 58 58 58 58 19

Table 3.3: The results from performing beat detection with the new beat detection
algorithm on ten synthetic signals with a tempo of 153.3682. Each signal was created
with a different random seed and eight noise levels were used, ranging from 1/100 to Vi
of the beep’s amplitude.

The old beat detection algorithm has problems with this synthetic signal because the

tempo is not an integer value. As displayed in Figure 3.4, the algorithm eventually loses

the beat pattern because it is using a detected tempo of exactly 153 bpm. The bottom

graph displays how far apart the detected beats are from the actual beats, showing the

inaccuracy of the old beat detection algorithm when the tempo is not an integer. The old

beat detection method does not take into account the small change in beat position that

occurs due to the decimal places in the actual tempo value. It uses the detected tempo

value to predict the next beat position, and in this case, the detected tempo value is not

precise enough to give accurate results. This is the major difficulty with the old

algorithm, which led to the development of the new beat detection method.

Once real audio data is introduced to the beat detection algorithm it is extremely

difficult to visually determine where the beats occur in some songs. Synthesized beep

sounds are added to the original audio signal at the positions detected by the algorithm. It

is then possible for one to listen to the audio signal and compare the timing of the

estimated beeps with the timing of the actual beats of the song. This testing is based on

the listener’s perception of the beats and our tester has an extensive musical background,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

0.8 -

0.6 -

0 .4 -

0.2 -Q>■̂3ZJ
•1 0 -
05

S - 0 . 2 -

-0 .4 -

- 0.6 -

- 0.8 -

-| i ii iii II i i n u n i m Mm i l
0 1 2 3 4 5 6 7 8 9 10

T im e (s a m p le s)

7.5 8
Time (samples)

Figure 3.4: The results of the old beat detection algorithm on a synthesized signal with a
tempo of 153.3682 bpm. The noise level is 1/100. Blue lines represent the original beats
in the signal and red lines represent the beat positions detected by the algorithm.

making it easy for her to accurately compare estimated beat positions with actual beat

positions. Similar to the procedure applied for synthesized signals, visual data is

acquired by graphing the original signal in one colour and graphing the beeps

corresponding to the estimated beats in another colour. In some cases it is easy to verify

if an estimated beat has been correctly placed, while other cases rely more on the audio

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 1.5 -

_____ i______ i______ i______ i______ 1______ i______ i______ i______ i______ i______ i____
1 2 3 4 5 6 7 8 9 10 11

Time (samples) x 1^5

Figure 3.5: A signal graph of the Celtic song “Warriors” used by the Celtic animation
system. The tempo of this song is 135 bpm. The blue lines symbolize the original signal
and the red lines represent the detected beats. One can see a space where a beat should
occur around the 65,000-sample position, as marked by the green square. The algorithm
is able to recover from this missing beat and rediscover the beat structure immediately.

data than the visual data. The visual data also helps us determine where problems occur

in the algorithm along with possible types, such as if the algorithm has missed a beat or if

the beat structure has gone awry. Some of these visual results for the new beat detection

algorithm are displayed in Figures 3.5 and 3.6.

3.3 Dynamics Extraction Algorithm

The dynamics of a musical piece are one of the few musical features that can change the

expression and mood of a song without actually changing the structure of the song itself.

Dynamics consist of the louds and softs of the music, including transitions between the

two that also known as crescendos (soft to loud) and decrescendos (loud to soft). The

dynamics levels are extracted because they are useful in creating corresponding

movement. Dance moves take into account dynamics and base the strength of a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. 6 0. 8 1 1. 2 1. 4 1. 6 1. 8
Time (samples) ^ 8

Figure 3.6: A graph of a segment of the musical signal from the rock song “Brown Eyed
Girl” by Van Morrison. The tempo of this song is 76 bpm and it is significantly slower
than the Celtic song displayed above in Figure 3.5. The blue lines symbolize the original
signal and the red lines represent the detected beats. The intervals between detected beats
are noticeably larger in this signal because of the slower tempo.

movement on the strength of the song at a point in time. The purpose of this extraction

algorithm is to detect the 50 positions where the dynamic level is highest and 50 positions

here the dynamic level is lowest. These positions represent the loud and soft dynamics

respectively.

Dynamics are extracted by using a moving window with a size of 44100 samples to

compute the power spectrum of the music signal. The FFT is performed on the

information in each window and the result is multiplied by its complex conjugate. The

inverse FFT is performed on the outcome. Since the signal is symmetric, the second half

of the signal is removed and the algorithm proceeds to calculate the absolute values for

the signal’s first half. The maximum and minimum values are located and added to a list

before the window is moved. This technique is performed for each window until the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entire signal has been analyzed, with the resulting list being comprised of the highest and

lowest values from each window.

Finally, the algorithm determines the 50 highest and lowest values in the temporary

list and stores them as the dynamic positions. The system detects 50 of the highest and

50 of the lowest values because we believe that 100 dynamic positions are enough to

build a complete representation of the dynamic structure of the song. These positions are

converted to frames by using Equation 3.12. Crescendos and decrescendos can also be

represented by the dynamic positions. A transition over time from a high dynamic value

to a low dynamic value signifies a decrescendo while a transition from a low dynamic

value to a high dynamic value signifies a crescendo. This information can also be used in

the animation system to help the motion better express the music.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Chapter 4

Hip-Hop System
Dancing is an art form that invites creativity, originality, imagination and inspiration to

its creation process. Dancing styles range from the structured dances found in ballroom

dancing to the chaos that exists in hip-hop dancing. One of the goals of the system

detailed in this thesis is to combine different music and dance styles and observe how

they interact with each other. The ability to experiment in this way is a fairly novel idea

that cannot be easily done with synchronization-based systems. The movements are built

based on beat onsets and musical dynamics expression. These motions reflect a specific

dance style but their timing and strength is completely based on the corresponding music

file. The resulting animation is a unique representation of a dance style that is

specifically tailored to a piece of music.

The hip-hop system is a prototype system for people to experiment with different

ways of arranging music and movement. The hip-hop dance style was chosen because it

is extremely interesting and unique in its composition. By viewing different dance

videos, it is also fairly apparent that complex dance sequences are made of smaller

primitive movements, which lends itself well to one of the main purposes of this system.

We are looking to show that primitive movements can be combined to create complex

dance sequences. Hip-hop is not a structured dance so it gives the user extreme freedom

to arrange the movements the way she wants without constraints. The system

automatically interpolates between all movements, which removes the responsibility from

the user to create smooth transitions between primitives.

This chapter presents the major components of the Hip-Hop system. Descriptions of

all the primitive movements implemented in the system are included, along with

explanations of the different mapping processes between music attributes and

movements. The creation and parsing of the script file is detailed and the purpose of the

random function is addressed. Lastly, problems of the system are described.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 System Overview

The Hip-Hop system is built from two key pieces: music analysis and motion synthesis.

The motion synthesis section involves interacting with the user, creating motion and

coordinating movements and music. This process involves script files, mappings and

primitive movements. These components control the animation and continuously interact

with one another to produce the final motion sequence.

One of the main goals of this system is to give the user as much control as possible

over the final animation without her having to build the movements herself. This is

achieved through a text file known as a script file. This file allows the user to specify the

movements that compose the animation. The user communicates her commands to the

system through the script file by identifying the movements that the character will

perform as well as the timing of the motions. Movement timing is controlled through a

process called mapping.

The mapping process is designed to allow the user to choose when certain

movements will occur and which body parts will perform the movements. Its purpose is

to ensure the user has control over the final result, giving her the opportunity to design

her own dance from scratch using various body parts, movements and musical attributes.

In many cases the user of the system will be inexperienced in animation and will be

unsure of the best way to set up the movement sequence and its subsequent mappings

between movements and music. A random function has been implemented that will

randomly choose the order of a set of movements for the user.

Primitive movements are simple movements that are used in combination to create

more interesting and complex motion. Several types of primitives are implemented in

this system and they can be used on any body part and at any point in time. Some

primitives work well with specific body parts, but the user is encouraged to experiment

with different groupings. The following sections provide more details on the motion

synthesis component of the animation system, including information on primitive

movements, mappings and script files.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Script Files

The user designs the animation through text files known as script files. They allow the

user to set up the order in which the movements are performed as well as all the

mappings between body parts, primitive motions and musical attributes. The script files

provide maximum control over the final result because they supply the system with all

the information it needs to build a motion sequence. The system has a special parser that

reads the script file and inputs its details into the animation component. The animation

component builds the motion sequence from the timing and movement information

entered by the user. This section discusses both the design of a script file and the parser

that inputs the corresponding information into the system.

4.2.1 Designing Script Files

The script file is designed so that the user can easily incorporate different combinations

of primitive movements and mappings into the animation, choose the time periods for the

mappings and use a character of her choice in the final result. Unlike other animations

systems such as Maya and 3D Studio Max, the user does not have to position the

character or set keyframes for movement. The script file provides the user with the

means for commanding the system to do these things for her.

The script file is set up so that the user is able to interchange the character used in the

animation. The script allows the user to call the various body parts of the character rig by

any term, rather than forcing the user to adhere to a strict naming policy. The system

proceeds to find the body part specified in the scene and move it according to directions.

Unlike the body parts, the user cannot change the names of the primitive movements.

These motions are given specific names by the animator during implementation and the

system will not recognize any other term. A mapping between a body part and a

primitive movement occurs by specifying first the name of the primitive movement and

then the name of the body part in the scene. The format is as follows:

MOVEMENT: bodyPartName

Examples:

• SWAY: UpperBody

• LIFT: RightArmCtrl

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multiple characters can be used through this mapping method simply by

incorporating their body part names into the script file. The system is unable to

determine the difference between characters because it only selects what is specified in

the script file. If the user chooses to use body part names that range across several

characters then those body parts will be moved regardless of whether they belong to the

same character or not. This procedure allows a user to move multiple characters in the

same way she would move a single character.

Two of the primitive movements perform special motions that require an object in

the scene. The Drum movement requires the name of the drum object that the character

will be drumming on and the Throw movement requires the name of the object the

character will be throwing in the air:

• DRUM: BodyPartName, DrumName;

• THROW: BodyPartName, ObjectName;

These movements need special consideration when creating the script file because the

system takes into account both the body part and the extra scene object when creating the

mapping. The object must be listed in the script file after the body part so that the parser

can tell the difference between the two components of the movement and perform the

correct motion.

Once the user has determined which body parts will be performing which

movements, she needs to decide when these movements will occur in the animation. The

timing is chosen through the primitive movement to musical attribute mappings. The

musical features that this system can map to are listed below. The labels used to call

them in the script file are found in parentheses behind the musical attribute term.

• Strong beat (STRONG_BEAT)

• Weak beat (WEAK_BEAT)

• Loud dynamics (LOUD_DYNAMICS)

• Soft dynamics (SOFT_DYNAMICS)

The format for defining the mapping in the script file is as follows:

MUSICAL_ATTRIBUTE

MOVEMENT: BodyPartName,

MOVEMENT2: BodyPartName2;

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The user can list as many movements under a musical attribute as she wants. Each

movement must be mapped to a body part however, and no body part name can occur

under the same musical attribute more than once. This constraint is to prevent the

character from attempting to perform two different movements with the same body part

at the same time.

An animation where the same movements are being performed for its entire duration

is mundane and uninteresting. The script file design allows the user to divide the

animation into smaller time periods and produce different mappings at each interval. The

user specifies the start frame and the corresponding mappings for each interval. This is

repeated for the number of intervals chosen by the user. The length of each interval

depends on the user, with an interval continuing until the next specified start frame has

been reached. The START keyword designates the beginning of each interval, with the

start frame number appearing directly after the term. The movements, music attributes

and body parts used in the animation can be changed from interval to interval, as well as

the manner in which they are mapped to each other. This creates a more interesting

animation where the character’s movements change over time. An example of a script

file is found in Figure 4.1.

4.2.2 Parsing Script Files

The script file can hold a large amount of information about an animation, including

numerous mappings and interval sections. This information must be handled by the

system in the proper way or else the resulting motion sequence will not follow the user’s

specifications. A special parser was implemented in order to properly organize the

information retrieved from the script file. This parser hunts for keywords in the script file

and uses these keywords to build up structures that hold mappings and maintain their

proper timing. It is the job of the parser to divide up the script information.

The five keywords that the parser searches for in the script file are START,

STRONG_BEAT, WEAK_BEAT, LOUD_DYNAMICS and SOFT_DYNAMICS. As it

retrieves each word in the script file in order, it checks if the new word matches one of

the musical attribute keywords. If a match occurs, the parser proceeds to recover all the

mappings corresponding to this particular keyword and store them in a specialized

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File Edit Format View Help

(START 180 “ ~..... ~ ~ ~j„
STRONG_BEAT g|k

; headbob: L e f tE a r c tr l ; m l
:WEAK_BEAT M l
\ headbob: R ig h tE a r c tr l; 1 1

! START 460 j§ (
I strong_ beat H i
i LIFT: L e f t F o o t c t r l , I t

l i f t : L eftA rm ctr l; mi
weak_ beat ■

l i f t : R ig h tF o o tc t r l , 8
LIFT: R ig h tA rm ctr l; H |

START 680
STRONG_BEAT j

t w is t : L eftG round, t
l i f t : R ig h tA rm ctr l, j

I LIFT: L eftA rm ctr l; (
WEAKLBEAT I

t w i s t : R ightG round, J
SWAY: UpperBody; j

g j j
•■5 I ' 1 I

Figure 4.1: An example of a script file segment for the Hip-Hop animation system. The
mappings between body parts in the scene and primitive movements are defined, along
with the mappings between movements and musical attributes. The user can create
different intervals of movements to make the animation more interesting.

structure. The punctuation used in the script file is extremely important is this process.

Punctuation symbols are used to divide up the information in the script file. A colon

character symbolizes the mapping between a primitive movement and a body part in the

scene. When the parser finds this character it knows that the word before the colon

corresponds to the name of a primitive movement and the word after it corresponds to a

body part. The comma (V) is found at the end of a body part name and symbolizes that

another movement-body part mapping follows the present one under the current musical

attribute. A semicolon represents the end of the list of movement-body part

mappings that are used when the current musical attribute occurs. When the parser

discovers this character, it knows that it has finished with this particular musical attribute

and that the next set of mappings will be for a new one. The parser continuously

retrieves data using this approach until the end of the file has been reached. A full

example of how punctuation is used can be seen in Figure 4.2 below.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are three special keywords that do not correspond to musical attributes, but that

the parser will still recognize. These keywords are: DRUM_NAME, DRUM_TYPE and

UPDOWNTYPE. The user specifies these terms after all the mappings for a time

interval have been identified. The drumming keywords contain information necessary for

the execution of the Drum primitive. The DRUM_NAME keyword indicates the name of

the drum object in the scene while the DRUM_TYPE keyword stipulates whether the

drumming movement between two arms will occur on the same beat or on alternate beats.

The UPDOWNTYPE keyword is used for the Updown primitive movement and, like the

DRUM_TYPE keyword, it identifies if the Updown movement between two arms will

occur on the same beat or on alternate beats. No punctuation is required for these

keywords. An example on their use is found in Figure 4.2.

1 File Edit Format View Help
..:............:.......... :..., : ■ ■

START 1 2 0 0
STRONG_BEAT

DRUM: R i q h t A r m C t r l ,
DRUM: L e f t A r m c t r l ;

WEAK_BEAT RANDOM
t a p : L e f t F o o t c t r l ,
TAP: R i g h t F o o t c t r l ;

DRUM_NAME
drum
DRUM_TYPE
a l t e r n a t e

START 1 6 6 0
STRONG_BEAT

THROW: L e f t A r m c t r l , l e f t D r u m s t i c k G r o u p ;
WEAK_BEAT

t h r o w : R i g h t A r m c t r l , r i g h t D r u m s t i c k G r o u p ;
LOUD_DYNAMICS

t w i s t : L e f t G r o u n d ;
SOFT_DYNAMICS

TWIST: R i g h t G r o u n d ;

at
f'tii

Figure 4.2: Keywords and punctuation are extremely important to the parser when
gathering information from the script file. The parser relies on both features to divide up
the script details into their proper structures for later use by the animation system.

While the parser is effective at dividing up the information into its proper structures,

it is not particularly robust. If the wrong punctuation is placed somewhere in the script

file the parser is not intelligent enough to decipher the user’s mistake. Misplaced

punctuation affects the way the rest of the script file is read, which results in an incorrect

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

final animation. The responsibility to check punctuation currently lies with the user and

this can lead to frustration. The parser was designed this way because it is difficult to

attempt to understand the user’s intent and then proceed to correct it. It is more

frustrating if the parser misunderstands the objective and changes the script file

incorrectly than if the user is left to make the corrections on her own.

4.3 Mappings

In order for the system to create an animation tailored to the music, it must have

knowledge of how the music affects the movements. This knowledge is provided by the

user through two different types of mapping. The first type of mapping is between body

parts and primitives, where the user chooses the body part that will perform a specific

primitive movement for a period of time. The second type of mapping is between

primitives and musical attributes. For each musical attribute the user can choose the

movement that will be performed when the attribute occurs in the music. This setup

encourages the user to experiment with different mapping combinations. Mappings are

the basis for the creation of the animation because they define what movements will

occur, when they will occur, and how they will be used by the system.

There are four musical attributes that are utilized by the system for mapping

purposes: strong beat, weak beat, loud dynamics and soft dynamics. The strong beats are

the pulses in the music that a listener taps her foot along with, while the weak beats are

the pulses in between the strong beats. In most pieces of popular music the beat is in 4/4

time. The strong beat occurs on the first and third beat, while the weak beat occurs on the

second and fourth beat.

The majority of the primitive movements work well when performed by any body

part. The animation system allows for the same movement to be repeated throughout the

animation at different times and by different body parts. For example, both of the

character’s arms can throw an object into the air at the same time. This encourages the

user to take advantage of movements that work well in the animation by repeating them

in different contexts. Each movement must be mapped to a body part in order for it to be

executed. There are no constraints on this mapping, so it is at the discretion of the user

when choosing primitive-body part combinations. The same movement can be mapped

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to more than one body part, but each body part can only be mapped to one movement in

each time interval. In essence, this means that a body part is not restricted to a single

movement over time. For example, a body part can be mapped to one movement when

the strong beat occurs and then mapped to a different movement when the weak beat

occurs because each beat takes place in a different time interval.

Mappings between primitives and musical attributes are not limited to one-to-one

relationships. Several primitives can be mapped to the same musical attribute. For

example, the movements Sway, Updown and Headbob can all occur on the strong beat.

In the same way, several musical attributes can use the same movement. For example,

the Lift primitive can be performed when the strong beat and the weak beat occur. A

large number of mapping combinations exist, which results in the ability to create

numerous animations from the same set of movements. The user can take a set of

primitives and map them to the musical attributes. She can then take the same set of

primitives and simply change which musical attributes each one maps to in order to

produce a completely different animation. This type of mapping changes the time period

over which a movement occurs, resulting in a different representation of the music by the

character.

The script file ensures that the user has extensive control over the final animation, but

difficulties can occur if the user is unsure of when movements should be performed or if

she cannot formulate good mapping combinations. A random function was implemented

to resolve this issue. The purpose of the random function is to give the user control over

the movements that will occur, but remove the difficulty of deciding their timing. It

provides the user with a unique outlook on how the animation would look with different

movement groupings and is an easy way for her to experiment with mappings.

The random function takes a number of movement-body part pairs as input and

randomly chooses when each one will be used in the chosen time interval. The user

specifies the candidate movements in the script file, just as she would do normally, and

indicates that she wants to use the random function by indicating the keyword after the

musical attribute it applies to:

MUSICAL_ATTRIBUTE RANDOM

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The random function will first divide the interval into smaller subintervals. The

number of subintervals corresponds to the number of candidate movements, and the

length of each subinterval is chosen randomly. The movements that will occur in each

interval are then chosen randomly by the system and can be chosen more than once.

Only one movement will be selected for each subinterval. An advantage of using the

random function is that it is not predisposed to choose one movement over another, and

therefore it can create unique combinations that the user might not otherwise discover on

her own. The random function is called each time the system is restarted, with previous

sequences being removed, so the user can create several different animations from the

same script file.

4.4 Primitive Movements

It is our belief that complex movements can be decomposed into small primitive moves.

The majority of primitive movements can be used on any body part of the character, with

the main body parts utilized being the head, torso, arms, and legs. In the case of the

bunny figure displayed in the Results section, the ears can also move. The primitives can

be employed in any order by the user to create different combinations. The ability to use

the same primitive on more than one body part allows for a larger number of possible

movement combinations for the character at a point in time. The difficulty lies in

creating combinations that work well together and this is the responsibility of the user. A

total of ten major primitive movements are included in the system, with an additional

nine primitives being used to create some of the major ones. The user cannot call the

minor primitives in the script file. The minor primitives and their purposes make up the

first set of movements listed below, with the major primitives discussed second:

Minor Primitives:

• AwayDrum - moves a body part, usually an arm, away from the drum. This
movement generally occurs directly after the character has hit the drum and is
the reaction to the original movement. It is the second part of the Drum
movement.

• DownHead - used by the HeadBob primitive, it rotates the head downwards so
it is looking at the ground.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• LimbDown - once the character has released the object being thrown in the
ThrowObject primitive, this movement brings the arm back down to its original
position to catch the object. It is used to create a realistic throw and catch
movement by giving the appearance that the arm is reacting to the momentum of
the object by jerking downwards slightly as the object is caught.

• LimbUp - moves the character’s arm upwards in a throwing motion. It is used
in the ThrowObject primitive to create a realistic release motion.

• TapDown - this movement brings the body part, such as the foot, back down to
the ground after it has been rotated upwards. The original position has the foot
on its heel with the toes in the air. This movement is the finishing move of the
Tap primitive, which is meant to emulate a foot tapping to the beat.

• TapUp - the beginning of the Tap primitive, this motion rotates the body part,
such as the foot, upwards so that the toes and ball of the foot are in the air,
resulting in the foot balancing on its heel.

• Throw - this movement is used only for moving the object being thrown in the
ThrowObject primitive. It calculates the flight velocity necessary for the object
to travel to a certain height and takes into account gravity when computing the
distance traveled at each frame. It also rotates the object so that it will perform
1-2 spins in the air, just as an object being thrown in real life would. This works
especially well when drumsticks are thrown up.

• TowardsDrum - the beginning of the Drum primitive, this movement uses the
position of the drum in the scene to move the arm towards it. The purpose is to
hit the drum with a set of drumsticks, so the distance to the drum takes into
account the distance between the hand and the drumsticks in the hand, since we
want the drumsticks and not the hand to hit the drum.

• UpHead - rotates the body part back up from an orientation that is facing the
ground. This movement finishes the HeadBob primitive.

Major Primitives:

• Bend - a primitive motion that rotates a body part forward and down on one beat
and then back and up again on the next beat. An example is bending at the waist
to face the ground and then straightening back up.

• Drum - one of the most complicated motions, this primitive uses the arms to beat
on a drum from the left and right sides. It needs the world position of the drum in
the scene in order to compute the distance each arm needs to travel in order to hit
the drum correctly. Body movement is incorporated into this primitive to convey
the expression better. If a desired position is unreachable by the arm, the body

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

raises itself up in order to attain the position. Two different types of drumming
can be achieved with this movement. The user can choose alternate drumming,
where the arms take turns hitting the drum one at a time, or same drumming,
where the arms hit the drum at the same time. The arm moves towards the drum
and hits it on one beat and moves away from the drum to the original position on
the next beat.

• HeadBob - this primitive can be used on more than just the character’s head, but
its best example of use is creating a head bobbing motion in which the body part
rotates a small amount forward on one beat and then back to the original position
on the second beat. It differs from the Bend primitive because the bend primitive
always rotates a much larger amount as it tries to emulate the bending forward at
the waist motion. This primitive creates a small head bob motion.

• Jump - this primitive causes the character to bend at the knees, jump in the air,
bend at the knees upon landing and straighten up. It is generally paired with the
torso and looks to create a realistic jump of average height over a single time
interval.

• Lift - lifts a body part by a variable height and lowers it to the original height.
The motion of this primitive occurs in one time interval.

• Sway - this primitive works best when used by the torso or the head. It rotates
the body part so it juts out and up on one side and then swings to jut out on the
other. It is meant to emulate the swaying motion of the hips. A sway from one
side to the next occurs over one interval.

• Tap - a simple primitive that rotates a body part upwards around the x-axis in
one beat and back down to the original orientation in the next beat. Its purpose is
best compared to the character tapping her foot to the beat.

• ThrowObject - one of the most complicated primitives, this motion involves
tossing an object directly upwards in the air. The object can be anything in the
scene and it will be thrown up from the character’s hand, perform some turns as it
reaches its highest point, and be caught by the same hand. To create a realistic
throwing movement, the character’s arm will move down along the y-axis slightly
before swiftly move upwards to toss the object. Once the object has reached the
hand again, the arm will move downwards slightly along the y-axis to give the
appearance of cushioning the impact of the object. This is all performed in one
interval.

• Twist - this primitive rotates the body part around the y-axis in a twisting
motion. The orientation of the body part will change by a bearing of 30° before
rotating back to its original orientation, all in one interval.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• UpDown - moves a body part up to a specific height in one beat and down to a
specific height in the second beat. The body part is constantly alternating
between a high and a low height. This movement can be coordinated between
two body parts, where the user can choose if the movement will alternate or be
the same. If the movement alternates then one body part will move upwards as
the other is moving downwards, while if the movement is the same then both
body parts will rise and lower at the same time.

Dance movements should convey the expression of the music. Loud dynamics

should result in grand gestures and soft dynamics should result in subtle gestures. The

quality of the movement increases as its representation of the music becomes more

apparent to the viewer. The hip-hop movements implemented in this system are built to

change as the dynamic values change. A dynamic scale is incorporated into the

animation system where the values range from 1-5. A value of 1 denotes a soft dynamic,

while a value of 5 denotes a loud dynamic. The dynamic rate is computed at each frame

and used to build proper expression of the music in the primitive movements. The

distance that a movement travels is based on the current dynamic rate at the beginning of

the movement. Dynamic rates do not change while a movement is in the middle of its

execution because it results in choppy movements that switch positions in mid-movement

due to the final position for the movement varying at each frame.

Primitives are implemented in one of two ways. The first is through an ease-in-ease-

out function calculated using the following two equations:

u = (curr _ time - time _ start) /{time _ end - time _ start)

ease = (sm (u * 7 t-7 t/2) + l) / 2 (4.1)

where curr_time is the current frame, time_start is the starting frame for this interval and

time_end is the ending frame for the interval. The ease value is used to compute the

current translation or rotation value in the following way:

pos - pos + ease * (end _ pos - pos) (4.2)

An example of a function that uses the ease-in-ease-out function is the secondary

primitive downHead, detailed in Figure 4.3.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“DownHead” Secondary Primitive Movement

Input:
f <— current frame number
R i<— 3D rotation vector for the body part at the beginning of the movement
ts *— starting frame of current beat interval
te <— ending frame of current beat interval
D <— dynamic rate at beginning of movement

Output:
Ro 4— 3D rotation vector for body part at current frame

Begin
1 Ro <- Ri
2 e 4— ease value calculated by Equation 4.1
3 d <— the full distance the body part should move by the end of the movement, based

on Rix and D
4 Rox 4— new x-rotation value calculated by Equation 4.2

End of begin

Figure 4.3: The pseudo code of the downHead primitive function using the Ease-In-Ease-
Out function.

The second primitive example uses sine functions to create continuous movement.

This provides motion that is smooth and curve-like, unlike straight-line interpolation, as

well as more realistic looking than the motion provided by Equation 4.1. This type of

motion suits our primitives because the movements they emulate often move in curved

patterns in reality. The position and orientation equations are set up as follows:

pos = pos + dist * sin(c * frame) (4.3)

The variable dist defines the maximum distance that the body part will move from

the origin or original position. The variable c is generally filled in as n / total _tim e and

controls the speed of a movement, where total J im e is the number of frames between the

starting frame and ending frame of the movement’s time interval. This interval is based

on the amount of time between beats in the music. A song with a fast tempo results in a

small time interval because there are a small number of frames between beats. The same

concept applies to tempos that are slow. The larger this interval is, the slower the

movement is performed, while a smaller interval results in a faster movement because it

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has less time to accomplish its motion. An example of a primitive that uses this type of

movement is the Jump movement. The term c from Equation 4.3 of this movement is

different from the average sine function because it needs to use the sine curve for a period

and a half instead of half of a period. The movement starts at n and continues until 4n ,

with this section of the curve perfectly describing the Jump motion of bending at the

knees, jumping up and bending at the knees to land. This action is better displayed by the

graph in Figure 4.4. Results demonstrating this primitive movement can be seen in

Figure 4.5.

0.8

lum p0.6

0 .4

0.2

-0.2
landing

-0,4
preparation

- 0.6
p ost
landing

2 PI 3 PI 4P I

Figure 4.4: The graph above denotes a sine curve from 0 to 4n . The blue line
symbolizes the whole sine curve while the red line represents the segment of the curve
that best describe the Jump motion. The four changes of direction in the red curve are
obvious and they are used to portray the preparation, jumping, landing and post-landing
motions of the Jump primitive.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frame 1 frame 3

frame 6 frame 7

frame 9 frame 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

frame 15

Figure 4.5: Results from the “Jump” primitive movement. The character bends his knees
to prepare for takeover, jumps into the air, and bends his knees to brace for impact upon
landing. This motion follows the sine curve shown in Figure 4.4.

The design of the Jump primitive is described in Figure 4.6. In the cases where the

character is preparing to jump or landing from the jump, the distance that the body part

will move is smaller than that of the jump segment itself. This occurs because we only

want subtle movements at these points in time to depict jump preparation and the

resulting impact.

Unlike the other movements, physics equations are used to implement the Throw

primitive in order to create a fully realistic model. The flight velocity is computed using

the equation

where g represents gravity, height represents the distance the object will travel in the air

and Q is 90° because the object is travelling directly up along the vertical axis. This

velocity value is used to compute the time the flight will take. The corresponding

equation is

(4.4)

T =
2 - v s m &

(4.5)
8

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Jump” Primitive Movement

Input:
f <— current frame
Ti <— 3D translation vector for the body part at the beginning of the movement
ts <— starting frame of current beat interval
te <— ending frame of current beat interval

Output:
To <— 3D translation vector for the body part at the current frame

1 To <- Ti
2 tt <— time difference between ts and te that constitutes the time interval for the

motion
3 tc <— time difference between f and ts, used to denote the current frame within the

movement, rather than within the animation
4 d <— value that is 1/3 of tt, used to divide the movement into 3 sections:

preparation, jump and landing
5 If t c < d or tc> (tt - d) , then d <— small value depicting distance knees will bend

Else d *— large value depicting height of jump
6 Toy <— y-translation value of body part at current frame calculated by Equation 4.3

End of begin

Figure 4.6: The pseudo code of the Jump primitive movement based on a sine equation.

T is then divided by the movement’s total time interval in order to calculate a ratio of the

difference between how much time is available and how much time the movement takes.

Since we want the movement to take the allotted amount of frames available rather than

the time determined by the flight velocity, a new flight velocity is calculated based on

this ratio and by using the equation

To make the movement take k times longer, where k = timelnterval, the acceleration

Begin

ratio = T / timelnterval

yj2 • height ■ ratio2 ■ g (4.6)

(gravity) should be proportional to 1A2 because its units are in m/s2. This is why the

gravity value is multiplied by ratio2. The height of the ball at a particular time is

computed as follows:

p O S y = p O S y + V y ' t -

■ 2 2 ratio ■ g-t
2 (4.7)

v

1 \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Smooth transitions between movements are an important aspect of animation. Due to

the nature of the primitives and the ability of dynamics to change the starting and ending

positions of the movements, it is necessary to include a function that is able to interpolate

between movements over an interval of time. This function looks ahead in time to the

next beat in the music and retrieves the movements that will be occurring for each body

part. The dynamic rate for the next beat is also computed and subsequently used by each

look-ahead primitive.

The starting position of each movement for the next beat is determined based on the

position of the current beat and the look-ahead dynamic rate. Straight-line interpolation

is performed between the ending position of the last beat and the starting position of the

next beat. In the case where a body part is being used for both the strong beat and the

weak beat, interpolation is not performed between movements because there are no free

frames between beats. The next movement will automatically jump to its starting

position rather than smoothly moving there. This creates jerkiness in the motion due to

the lack of an even transition. If there are free frames between the ending time of one

movement and the starting time of the next then interpolation will be performed over the

entire set of frames.

4.5 Problems with the Hip-Hop System

The major problem with the Hip-Hop system is the inability to properly judge whether

the final result is correct. Evaluation of dancing is generally subjective, but most dances

have a structure that is followed in order to classify it as a certain dance type. Hip-hop

dancing has no structure and is therefore judged entirely according to a viewer’s opinion.

This lack of structure makes it extremely difficult to perform a fair evaluation of the work

because there are no rules by which we can judge the animation. Comparisons between

real examples and animated ones are nearly impossible due to the extreme versatility of

this dance type.

The range of movements that can be performed in a hip-hop dance is immense, so it

is difficult to pick out primitive movements that can be reused to create more complex

motion. This particular system is in need of a wider variety of movements that can be

used in combination with each other. We concentrated on implementing movements that

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be used by several body parts, but the animation would be more interesting if more

movements specific to certain body parts were included. The primitive movements need

to be more exciting and expressive of the music. The resulting animation is generally

unappealing to the viewer because the primitive movements cannot be combined well

enough to create complex motion. Figure 4.7 displays a good example of a movement

combination that is uninteresting to the viewer due to its overall simplicity and its lack of

musical expression. It uses the “Lift” primitive on the right arm and leg, displaying the

reusability of the movement, but it also demonstrates the necessity for more eye-catching

motion.

S I

Figure 4.7: An example of an unappealing movement combination where the right foot
and arm are simply lifting and lowering on each beat.

Another difficulty with the system stems from the script file. Although effective, the

setup of the script file still makes it difficult for the user to design the animation

according to a predetermined plan. The user can change movements within intervals, but

creating a continuously changing sequence of movements is extremely time-consuming.

It is also not practical for integrating multiple characters into the scene because the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characters are not handled individually. Movements for all characters are specified in the

same script file, which results in a file where it is difficult to determine which movements

correspond to which characters. The script file setup also does not give the impression of

creating a dance. It is difficult to picture what the final result will look like based on the

script file because it is split into mappings rather than dance movements. The user cannot

instantly determine when a movement will be performed, which makes it extremely

difficult to plan out and execute an already existing dance.

These problems are addressed with the introduction of a new dance system that is

built from a structured form of Celtic dance. The underlying purpose of the creation of

this new system is to make dances that are more appealing and interesting for the viewer

than those that could be created by the Hip-hop system. The next chapter discusses the

new system and its advantages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Chapter 5

Celtic System

One of the major problems of the Hip Hop system is the inability to compare the results

of the system with real life dance examples. Hip Hop exists in an extremely versatile

and creative environment where dance rules are not present and therefore evaluation of

dances is entirely subjective. We want a system where the results can be compared to

existing techniques and dance sequences and where the correctness of the results can be

more easily evaluated. We are looking to generate an animation that looks like Celtic

dancing, but is a unique variation of existing performances. Celtic dancing was chosen

because it is an interesting and exciting dance where the movements are performed

almost entirely by the legs. Using only three major body parts (two legs and the torso)

simplifies the system and allows us to concentrate on the main movements. The system

is provided with knowledge of Celtic dancing, including several preprogrammed

primitive movements and routines.

In Celtic dancing the position of the feet is extremely important in determining the

next movement in a sequence. In general, both feet are angled away from each other at

the heels and one foot is placed in front of the other foot. The front foot normally

initiates the movements and often determines in which direction the motion will occur.

Constraints are placed in the system to allow for this aspect of Celtic dancing. These

constraints are used to increase the reliability of the system by ensuring certain

movements are only performed by certain body parts, as determined by knowledge of the

Celtic dance.

The Celtic system is implemented in such a way so that the dance moves and

constraints are separate from the actual animation setup itself. This allows for other

dances to be included in the system without much adjustment on the part of the animation

system. The animator simply needs to implement a node that includes primitive

movements and knowledge of the new dance and add it to the animation system. The

addition of several new dances would allow the user to see how different dances work

with different types of music. The user could also mix and match movements from the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different dances to create a unique dance type. The setup of the Celtic system encourages

dance addition by the animator and experimentation by the user.

This chapter presents the important components of the Celtic system, including

primitive movements and how to combine them to create larger dance movements or

routines. Movement constraints and mappings between movements and musical

attributes are addressed. The two script files used by the system to create animation

sequences are discussed in detail. Lastly, applications of the system are outlined.

5.1 System Overview

Like the Hip-Hop system, the Celtic system is comprised of a music analysis component

and a motion synthesis component. However, the motion synthesis component of the

Celtic system is fairly different from that of the Hip-Hop system. It involves an

improved script file set-up, animator-chosen mappings between musical attributes and

movements, primitive Celtic movements and Celtic-based dance routines.

The script file allows the user to input a motion sequence based on built-in Celtic

movements. Its main purpose is to give maximum control over the final animation to the

user rather than the system. The new version of the script file is set up so that it is easier

for the user to input a pre-designed dance, as well as less confusing when multiple

characters are used in the scene. Two script files are employed for these purposes: the

main script file defines the body parts of each character in the scene, and the secondary

script file includes the Celtic movements to be used. The movements that the user can

specify in the secondary script file include both primitives and routines.

Mappings between movements and musical attributes are used to tailor the final

result so that it faithfully represents the input music. The timing of the musical attributes

directly influences the timing of the movements, as is the case in real life. Mappings in

this system occur between the beats and the movements, as well as between the dynamic

levels and the height or distance of some primitive movements. The animator has pre

determined these mappings and the user’s only choice is with respect to whether the

dynamics mapping is used or not. Mappings can also be defined between body parts and

primitive movements to determine which body part will perform a particular motion. The

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user can choose some of these mappings, although not all primitive movements are free

to be utilized by any body part.

In Celtic dance there exist various popular dance routines. Each routine involves a

selection of dance steps that are performed at specific times with respect to each other.

The user can call a built-in routine of primitive movements rather than the primitive

movements individually and get the same, if not a better, result with less work. The

timing of the routines has been pre-determined by the animator and included in the

system so that the user does not have to spend time figuring it out. The user is also free

to build her own routines from primitive movements and other built-in routines. This

option makes re-use of movement combinations within the secondary script file

extremely easy.

Primitive movements are fairly simple built-in movements that describe small Celtic

steps. We believe that complex motion is created from the grouping of several primitive

movements into a larger sequence, and this section of the system is built to demonstrate

this idea. The rest of this chapter will discuss more details on motion synthesis, including

the components of the script file, mappings, routines and primitive movements mentioned

above.

5.2 Script Files

Script files are utilized to give the user control over what occurs in the animation. They

are simple text files that list Celtic primitives and routines that the user wants performed

in the resulting animation. The system reads the script file using a specially designed

parser and records each movement in the system as it is read in the script file. The script

file is an easy and user-friendly method of allowing the user to create her own animation

through a combination of built-in primitives, built-in routines and user-designed routines.

The script file is also designed to allow for multiple characters in a scene. There is no

limit to the number of characters that can be specified by the user. The system is

designed so that multiple characters can use the same script file to perform the same

sequence of movements or they can use different script files to perform different

animation sequences.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the Celtic system there are two script files that are used to define the animation.

The first script file is the master script and it defines the characters and which secondary

script file each one uses. The secondary script file is used to define the animation by

listing the movements in the order they should be performed.

5.2.1 Master Script File

The system has been implemented so that the user is able to interchange the characters

used in animations, as well as to use multiple characters at the same time. We want the

user to have complete freedom from naming conventions when designing the character,

so a master script file is utilized to define each character being manipulated by the

system. The master script file also allows the user to define the secondary script file that

each character will use.

The system uses three main body parts: left leg, right leg and upper body (torso). In

order to manipulate a character, the system needs to be able to choose those body parts

from the scene. At the beginning of the main script file the user needs to define the name

of the object in the scene that corresponds to each of the main body parts in the system.

An example of this is

LEFTLEG: leftLegCtrl

where leftLegCtrl denotes the name of the character’s left leg in the scene. It is the user’s

responsibility to ensure that she is mapping the correct scene object to its corresponding

system body part. The object will be picked out of the scene and connected to the system

so they can share information.

Dynamics are one of the musical attributes that are mapped to movements. The

mapping of this attribute can be turned on and off through the master script file. This

gives the user the choice to allow dynamics to alter the movements or to use a constant

dynamic range through the animation. A complete example of a character definition in

the main script file is as follows:

CHARACTER 1

LEFTLEG: LeftLegCtrl,

RIGHTLEG: RightLegCtrl,

UPPERBODY: upperBodyGroup,

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DYNAMICS: off;

Mapping a character to a secondary script file is extremely easy. A full example of

an entire master script file can be found in Figure 5.1. Each character is defined by a

number, which ranges from CHARACTER 1 to CHARACTER n. Under the mapping

section of the master script file the name of the secondary script file that corresponds to

each character is specified. In Figure 5.1, the secondary script files are “warriorsLeft_l”

and “warriorsRight_l” . The .txt ending of the file is omitted by the user and added in by

the system when reading the file. User designed routines are also defined under the

mapping section. The user chooses the name for a routine and then specifies the text file

its movements are found in. The routine names in Figure 5.1 are SHUFFLECLICK and

DUALCUT, and their corresponding text files are shuffleclick and dualCut respectively.

The user utilizes this name when specifying the routine in the secondary script files and

the system will automatically read the movements from the file.

| File Edit Format View Help

CHARACTER 1
LEFTLEG : L e f t L e g C t r l ,
RIG HTLEG : R ig h t L e g C t r l ,
u p p e r b o d y : u p p e rB o d y G ro u p ,
l o c a t o r : L o c a t o r ,
DYNAMICS: o f f ;

CHARACTER 2
LEFTLEG : L e f t L e g c t r 1 1 ,
RIG HTLEG : R ig h t L e g C t r 1 1 ,
u p p e r b o d y : u p p e rB o d y c r o u p l,
LOCATOR: L o c a t o r l ,
d y n a m ic s : o f f ; |

i

MAPPING
c h a r a c t e r 1 : w a r r i o r s L e f t _X,
c h a r a c t e r 2 : w a r r io r s R ig h t_ J L ,
s h u f f l e c l i c k : s h u f f l e c l i c k ,
d u a l c u t : d u a lc u t ;

>

Figure 5.1: An example of a master script file using two characters. The names of the
objects in the scene corresponding to the system’s main body parts are specified under
the CHARACTER headings. The mappings of each character to a secondary script file
and each user designed routine name (SHUFFLECLICK and DUALCUT) to its
corresponding text file are defined under the MAPPING heading.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Secondary Script File

The secondary script file provides a blueprint of how the animation will look. Each

movement in the animation is specified in a secondary script file and read into the system

in the order listed. This script file defines the dance by using primitive movements, built-

in routines and user-designed routines. Unlike the master script file, the secondary script

file is not dependent on the characters in the scene. It is built to be easily changed and

reused in other animations without regard to who is using it. The purpose of the

secondary script file is to define the animation.

The user can construct her motion sequence simply by listing the movements she

wants included in her final animation. Each primitive movement and routine has a

corresponding name that needs to be specified in order to execute the motion. The user

must stick to these naming conventions when creating the secondary script file or the

correct movement will not be called. Primitive movements are specified by name and

some of them need a body part to be included. For example, when calling the STAMP

function, it needs to know which body part it is being applied to. The STAMP primitive

lifts and lowers a leg in a movement depicting a leg stamping on the ground, so it is

important for the system to known which leg is performing the motion.. Not all primitive

movements allow the user to choose the body part it is applied to, but the format for those

that support this option is STAMP: RightLeg. The colon after the movement’s name is

especially important because that is how the parser recognizes the movement as being

applied to a specific body part. Routines are specified only by name, such as

SHUFFLEHOPBACK, and like the primitive movements, must be spelled with capital

letters.

In some cases it may be necessary to start the motion sequence at a certain frame or

divide the sequence up into large intervals of time. The system is implemented so that

the user can choose a start time for each segment using the keyword START. When a

user adds this keyword into the secondary script file, the system will perform the first

movement at the frame number specified directly after START. The start keyword can

be used to divide the script file into different intervals of time. If a user wants a large

pause between movements, she can specify one group of movements to start at time X

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and another group of movements to start at time Y, where X < Y. This gives the user

control over the timing of the entire animation.

A movement or routine can be performed several times in a row by specifying the

name of the movement and then the number of times it should be performed directly after

it in the script line. There is no limit to the number of times a movement can be looped

through. Along with animation timing, the system provides the ability to control the

timing of individual movements. Movement timing can be influenced by the user through

the application of brackets and rests.

Brackets are used to indicate that more than one movement is performed at the same

time. In many of the built-in routines, several movements are performed at the same time

to create a realistic motion. The user can copy this by putting brackets around the

movements occurring in the same time interval. The first movement of the interval is

specified normally and the remaining movements are placed within brackets. The system

allows for up to 20 movements to be performed during the same time interval in the

animation, however, it does not ensure that the movements do not conflict. An example

of a routine using brackets is as follows:

L1ETLEG: RightLeg;

(HOP);

(L1TTLEG: LeftLeg);

Rests are used to stagger the starting and stopping times for movements. The

concept is adopted from music, where rests denote breaks between musical tones. The

rest is specified in the system by the ‘A’ character. Each rest is worth 1/8 of a beat, which

means that the length of a rest will change from one piece of music to the next. The

faster the song is, the shorter a rest will be. Rests can be placed before or after a

movement name and several rests can be used by one movement. If the rest is placed

before a movement, the movement will wait 1/8 of a beat before beginning. If the rest is

placed behind a movement, it will end 1/8 of a beat earlier. The number of rests used will

affect the length of the movement. The system counts the number of rests before and

after each movement and determines the starting and ending time of the movement from

the separate totals. Examples include:

AHOP;

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CROSSA;

AASTAMPA;
B

| File Edit Format View Help |

START 1 •Aj|
W AIT 3; . Jj
S ID ESTEP 1 0 ; ' ' 4:1

STEPFORWARD 1 4 1; ■ 31
SID ESTEP 5;
j u m p b a c k ;
SHUFFLEHOPBACK 5; : :S’
KNEEBENDHOP;
FRONTCLICKJUMP;
W AIT 2;
SHUFFLEHOPBACK 8;
DUALCUT;
c u t ;
w a it 2;
ZIG ZA G 3;
L IF T L E G : R ig h tL e g ;
(A H O P);
DROPLEG: R ig h tL e g ;
STEPFORWARD;
O h o p) ;
s t e p b a c k ;

<
V

Figure 5.2: A secondary script file allows the user to design her motion sequence by
specifying primitive movements, built-in routines and user designed routines in the order
she wants them performed in the animation. A user can utilize loops, parentheses and
rests in order to retain maximum control over the timing of the animation.

An example of a secondary script file is found in Figure 5.2. The 1st line denotes the

starting frame for the animation is frame 1. The 2nd line specifies that the character will

wait for 3 half-beats, since each primitive movement is performed over an interval with

the length of half a beat. When a number follows a primitive or routine name, the system

will perform the movement as many times as specified by that number. The 3rd line

states that the Sidestep routine will be performed 10 consecutive times. This results in

the character moving across the stage. Each routine takes a different amount of time,

depending on how many primitive movements are involved. The Sidestep routine uses

two primitives, so each performance of the routine will take 1 beat. The 3rd line needs a

total of 10 beats to complete the motion. The 4th line concerns the Stepforward primitive,

which involves the character taking a single step forward with her back leg. The script

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file specifies that it will be performed 14 times, and since it involves only one primitive,

it will take 7 beats to complete. Line 5 uses the same routine as mentioned earlier in

conjunction with line 3. The 6th line is performed only once because there is no number

following the movement definition. The Jumpback routine uses two primitives and

therefore will take 1 beat of time. The Shufflehopback routine noted in line 7 is different

from earlier routines because it involves 4 primitives, but two of those primitives occur at

the same time. This results in a routine that takes 3 half-beats, or 1.5 beats to complete.

The user has specified that the character will perform this routine 5 times, so the entire

loop will use 7.5 beats. The Kneebendhop routine also takes 3 half-beats, or 1.5 beats, so

the 8th line will take 1.5 beats to complete because the routine is only being performed

once. Unlike any other routine, the FrontClickJump motion specified in line 9 uses 4

primitives and takes 2 full beats to finish performing. The rest of the lines specify either

routines or primitives and the number of times they should be performed in succession.

There are two exceptions in the above script file that need further explanation. The

first occurs in line 12, where the DualCut routine is specified. This routine is a user-

defined routine and its length in beat-halves depends on the number of primitives the user

specified in it. This particular routine calls two built-in routines: Cut and CutBack. Both

routines take 1 beat each to complete, so the DualCut routine uses 2 beats in total. The

timing of a user-defined routine is dependent on the user who designed it, so it is the

responsibility of the user to remember how long the routine takes to complete. Lines 16

and 17 provide an example of the second exception in the script file. Line 17 uses

brackets and one rest, linking it to line 16. In line 16 the character is commanded to lift

her right leg, while line 17 specifies that she is hopping at the same time. The Hop

primitive is performed at the same time due to the brackets around it, although the rest

symbol denotes that the primitive will wait % of a beat before starting. This results in the

character starting to lift her right leg and then Vs of a beat later, starting to hop.

One of the unique features of the Celtic system is the ability to use multiple

characters with different personalities. In some cases, the user may want multiple

characters to perform the same dance move at the same time, and in other cases, the user

may want the characters to perform different dance moves during the same time interval.

In order to synchronize multiple characters, it is imperative that the user keeps track of

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the movement timing for each character. Because the length of time for each movement

differs, the user must use combinations of movements that add up to the same total

amount of time across characters. An example can be seen in Figures 5.3 and 5.4, where

the characters both perform the same movements and different movements over time.

Figure 5.3 demonstrates using movements with the exact same timing sequence across

characters and the Figure 5.4 exhibits how one routine’s timing can be offset by a

combination of routines and primitives for continuous synchronization through different

moves. In order to keep the characters synchronized in time, the user must continuously

track the number of beats used by the movements. Movements cannot be performed at

the same time if one character has performed one less beat’s worth of movements than

another character. Tracking the time used across characters allows for easier

synchronization and off-synchronization of movements throughout the dance.

CHARACTER 1 CHARACTER 2

JUMPBACK; JUMPBACK;
LIFTLEG: RightLeg; LIFTLEG: LeftLeg;
HOP; DROPLEG: LeftLeg;
DROPLEG: RightLeg; HOP;
HOP; WAIT;
STEPFORWARD 4; STEPFORWARD 4;

Figure 5.3: An example of synchronizing a dance over multiple characters. Each
movement in a sequence takes the same amount of time for completion as the movement
directly across from it in the other character’s sequence. The sequences involve
movements that are different from the other character as well as the same. This is the
easiest way to synchronize over the animation.

The system does not restrict the movement order decided by the user. It does not

check to make sure that two movements can be performed properly at the same time or

that consecutive movements make a realistic sequence. The user must ensure that her

movement choices are realistic and that the order makes sense. For example, if the user

wants the character to lift her leg and then perform a tapout movement on the ground, she

must ensure that the character also lowers her leg. This type of movement transition is

not performed by the system because it is too difficult to decipher all possible transition

combinations between all the primitive movements and routines. Celtic movements are

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHARACTER 1 CHARACTER 2

HOP;
SHUFFLEHOPBACK;
JUMPBACK;

HOP;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
STAMP: RightLeg;
JUMPBACK;

Figure 5.4: Another example of synchronizing data over multiple characters. Unlike the
figure above, the movements in this sequence are performed off-synch. The
Shufflehopback routine performed by Character 1 takes 1.5 beats of time and the lines
under Character 2 from Stepforward to Stamp also take 1.5 beats of time. The Jumpback
primitive at the end of both sequences is performed at the same time because the
movements prior to it are synchronized in time, if not in movement.

provided that easily create transitions and so it is the user’s responsibility to check her

animation for inconsistencies.

5.2.3 Parsing Script Files

Once the user has designed the dance and built the script file it is necessary to input the

information into the animation system. Special parsers were built for the main script file

and the secondary script files. The information obtained from each file is dissimilar so

the setup of the parsers is significantly different. The parsers are extremely important

components of the animation file because they ensure that the script information is read

correctly.

The parser for the main script file is responsible for reading character information,

user-defined routine file names and secondary script file mappings. The word

CHARACTER denotes that character information follows and the parser uses this

keyword to determine the structures it will use for storage in the system. Special

keywords are then used to describe the body parts belonging to each character. These

keywords include RIGHTLEG, LEFTLEG and UPPERBODY. The parser recognizes

these words and stores the name of the corresponding scene object in a special structure

that is unique for each character. The parser gathers the character information for single

and multiple characters and selects the objects in the scene based on the given body part

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

names. The parser also identifies the keyword DYNAMICS. The parser records the

choice made by the user with respect to incorporating dynamics into movement. The

user must use the word “on” or “o f f ’ to denote that the dynamics feature is to be on or

off, respectively.

Once the user has described all the character information, she uses the keyword

MAPPING to denote the end of the character information and the beginning of the

movement information. If the parser finds the word CHARACTER after detecting the

mapping keyword, it knows that the next piece of information will be the name of the

secondary script file that the specified character will use. If this keyword is not the input

then the parser knows that a user-defined routine will be specified for use. It stores the

name of the routine and the name of the routine’s unique script file for later recognition

in the secondary script file parser.

The parser for the secondary script file is responsible for interpreting the design of

the dance. The parser retrieves the name of the secondary script file from the information

obtained from the parser of the main script file. This file is opened and the keyword

START is always the first word input from the script. This defines the starting frame for

this particular movement section. Once the interval’s starting frame has been established,

the parser reads in the movements one by one. It is searching for the following

grammatical components: ‘(‘, and If it finds a bracket then it realizes that the

next movement is a submovement, which means that it will be performed at the same

time as the previous movement. The movement is stored in the specially built movement

structure as a submovement of the previous one. The movement structure is set up

similar to a 2D array so that the main movements are stored in the first dimension and the

submovements are stored in the second dimension of the corresponding main movement.

If the parser finds a semicolon, it simply stores the name of the routine or movement for

use in the animation system. Lastly, if the parser finds a colon, it recognizes that a body

part will be specified for this particular movement and it stores them separately: the

movement name in the movement structure and the body part name in the body part

structure. The index into both structures is the same so that it is easy to coordinate

movements and body parts.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two exceptions exist in our parser setup. The first occurs when a user-defined

routine is specified in the script file. Each routine name read by the parser is compared to

a list of user-defined routine names. If the name does not exist on the list, the routine is

read into the movement structure as normal. If the name does exist on the list, the parser

calls itself using the script file specified for the user-defined routine. All the movements

in this special script file are read into the movement structure in order and the user-

defined routine name is discarded. In effect, the movements corresponding to the user-

defined routine are replacing the routine itself. The parser then continues on to the next

movement in the secondary script file.

The second exception occurs with respect to the built-in Turn routine. This routine

needs the direction and number of turns specified by the user in order to execute. The

name of the routine and the direction are stored in the same way a movement and

corresponding body part are stored. The number of turns being performed is stored in its

own structure because the looping amount is handled differently from other routines. The

loop number is used to determine how far the character will turn at once, rather than how

many full turns it will perform in a row.

Like the parser for the Hip-Hop system, this parser relies on proper grammar and

spelling to work properly. The user is responsible for checking that the script file is built

according to animator-determined instructions. The user is left to correct her own

mistakes because it avoids discrepancies that occur if the parser incorrectly changes an

aspect of the script file that was correct. The parsers for both script files are incredibly

effective, despite their inability to recognize errors in the script file design, and are a vast

improvement over the original script file design found in the Hip-Hop system.

5.3 Mappings

The main purpose of our animation system is to use music as the prime vehicle to drive

an animation. Musical attributes such as the beat are mapped to Celtic movements and

used to alter the motion based on the music. This system does not simply synchronize an

already existing animation with a piece of music, but it actually builds the animation

according to details extracted from the input song. Unlike synchronization methods, the

movements in our system change along with the music. We create a final animation that

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is tailored to fit the music chosen by the user while providing an interesting and

entertaining sequence of motion.

5.3.1 Mapping Beats to Movement Timing

The timing of the movements is based almost entirely on the tempo of the music, where

the faster the song, the faster the movements are performed. The position of the beats are

inputted into the animation component by the music analysis component and used to

determine the length of each movement’s time interval. The beat attribute is not mapped

to a specific movement or set of movements, but is used to structure the movements so

they occur on a beat, as is generally seen in real-life dancing.

Celtic dancing is a fairly high-speed dance, where several movements occur in the

space of one beat. In order to stay faithful to this style of dance, the mapping between

beats and movements was changed from the original one movement per beat found in the

Hip-Hop system. In this system two primitive movements are performed for each one

beat. This rule applies to routines with multiple primitives as well. Several routines use

three or four primitive movements and result in taking 1.5 or 2 beats to finish. This

timing can make coordinating a routine between several characters more difficult because

the user must be aware of the beat length of each routine, but it results in a more realistic

animation.

Rather than performing each routine in a single beat, we choose to map two

primitives to one beat because it provides smoother motion and better transitions between

primitives. If a routine such as FrontClickJump was performed in a single beat then four

primitives would have to be completed by the end of the beat. In the case where the user

inputs a fast song that results in a short time interval for each routine, this particular

routine becomes extremely choppy because each primitive only gets a small window of

time in which to complete its motion. By restricting the animation timing to two

primitives per beat we can be assured of providing smooth motion no matter how high

the song’s tempo is.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Mapping Dynamics to Movement Distances

Dynamics are a source of interest in music because they contribute to making a song

interesting and unique. Almost every listener can distinguish the loud sections from the

soft ones and the transitions between the levels. Dynamics can also affect the movements

used to dance to a particular song. Small and timid motions are not used on a song that is

loud, and large extreme motions are not used on a song that is consistently soft. In order

to make our animation more appealing we take the most interesting aspects of music,

such as the dynamics, and use them to directly change the movements to better reflect the

mood of the song.

The dynamics levels in the system range from 1 to 5, where 1 denotes soft dynamics

and 5 denotes loud ones. There exist several primitive movements where the dynamics

level affects the distance moved by a body part or the height of a jump or kick. The

higher the dynamic level is, the higher the height or the longer the distance will be. All

primitive movements have an animator-determined height or distance range. The current

height or distance value for the movement will always fall within this range, but will be

affected by the current dynamics level. For example, in the Hop primitive the height

range is from 0.6 to 3.0 units. The height of the primitive is calculated by the following

equation:

height = 0.6 • get Dynamics Level () (5.1)

The majority of the equations are calculated in this way, where the constant value (0.6 in

this case) is the low end of the range and the constant value multiplied by 5 is the high

end of the range.

The primitive movements that are altered based on the dynamics include:

• Hop/ShortHop/HopForward

• LiftLeg

• DropLeg/DropLegBehind

• LongStep

• SlideBehindStep

• Cross

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There exists an exception with respect to applying dynamics to primitive movements. In

most cases, the current dynamics level can simply be applied to the height or distance

value of a movement, however the DropLeg, DropLegBehind and SlideBehindStep

primitives cannot follow this. In general, once a character lifts a leg she will lower it at

some time or another. If the height of the leg is determined based on dynamics and the

dynamics level changes by the time she lowers it, she could be lowering the leg too much

or too little. It is necessary that the dynamics level for the DropLeg and DropLegBehind

primitives is the same as that of the LiftLeg primitive, while the SlideBehindStep

movement must have the same dynamics level as its counterpart LongStep.

5.4 Constraints

Foot position is an extremely important aspect of Celtic dance. It can help to determine

the next movement in a motion sequence or the direction the character moves in around

the stage. In many cases, the front foot is used as the starting foot for a routine or

movement. This is the main reason that the system keeps track of which foot is in front

and which is behind at each frame. We incorporate this Celtic knowledge into the system

through the implementation of constraints. These constraints are used in some primitive

movements and all built-in routines. Their purpose is to ensure that a primitive or routine

is being performed by the correct body part according to the rules of Celtic dance.

Only four primitives incorporate constraints into their implementations. For

example, the StepForward primitive movement switches the front foot with the back foot

by taking a step forward. Essentially, the back foot moves forward until it is positioned

in front of the opposite foot, similar to a walking motion. A constraint is used in this

routine to make sure that it is performed by only the back foot. If a user calls this

primitive with the front foot, the system will not perform the motion. The

SlideBehindStep primitive is also constrained to the back foot, while the StepBack and

LongStep movements use only the front foot.

Constraints are especially important to built-in routines because the routines are

created based on specific combinations of Celtic primitives. The constraints enforce the

rules for performing a specific routine, such as ensuring the front foot performs the first

movement. The animator, based on Celtic knowledge, chooses which body part performs

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which movement and uses the constraints to guarantee her design is followed. An

example of this is the FrontClickJump routine. This routine performs a scissor-kick

jump. The process starts with the front leg being lifted into the air. It is then lowered at

the same time the back leg is lifted into the air and the character hops in place. The back

leg is finally lowered down to the ground to complete the motion sequence. The first lift

and drop movements must be performed by the front leg, while the second set is

performed by the back leg. Foot constraints ensure that this order is followed and that the

motion conforms to Celtic dancing.

The constraints incorporate system knowledge of the positions of the character’s feet

with Celtic knowledge of how movements and routines should be performed. The use of

constraints in a movement or routine is decided entirely by the animator and cannot be

altered by the user. Constraints are used to enforce the integrity of Celtic dance and

make it easier for the user to put together realistic motion.

5.5 Routines

The dance routines implemented in this system are more complex dance steps than those

provided by the primitive movements. In many cases, Celtic dance has a dance step that

consists of several primitive motions, but it is referred to by the name of the dance step

rather than the primitives individually. Combining several primitive movements allows

for these complex routines to be created and used by the system. The user can use these

routines by specifying them by name. The routine will automatically call the appropriate

primitive movements to create the movement. The system handles two different types of

routines. The first is the built-in routine, as programmed by the animator, and the second

is a user-designed routine.

5.5.1 Built-in Routines

The built-in routine is implemented directly into the system by the animator. It makes

use of several primitive movements and controls the timing of them to create an actual

Celtic dance step. In some cases a movement is slightly altered so it fits into the routine

better. These routines are called by name and will call the primitive movements

themselves. Routines were implemented for some of the major Celtic dance moves. The

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

purpose of a routine is to make the animating process easier for the user. Rather than

having the user continuously specify small primitive movements in the same order, she

can call a routine that does the same thing. They save the user time and frustration

because the animator has already worked out the timing of the primitive movements so

that the routine is correct. This makes it easier for the user to create an entire Celtic

dance based on known Celtic movements. These routines are similar to how a person

would learn to Celtic dance and are taken directly from [11]. The majority of these

names are the ones used by dancers performing Celtic dance. Some routines, such as

CutBack, ClickZigZag, FrontClickJump and KneeBendHop were not given names in the

Celtic video, so their names are based on the movements used in the routine or similar

routines.

There are eleven Celtic routines implemented into the system. They include:

• ClickZigZag - uses the ClickHeelsOut and ClickHeelsIn primitives to
continuously rotate the feet in so they click at the heels and then back out to the
original orientation. The feet are moved so they are lined up beside each other.
This routine takes 1-1.5 beats for each performance. The timing change occurs
due to the modification of the position of the feet. Once the routine is finished
and the system is moving on to another routine, the feet need to be moved back
to their original position before this routine occurred. This movement needs an
extra half-beat. Essentially, if the routine is performed 3 times in a row, it will
take 3 beats for the routine motion and Vi beat to move the feet back into
position, for a total of 3.5 beats.

• Cut - uses the CutBend and Hop primitives to perform a specialized Celtic
jump using the front leg. Both primitives perform at the same time to achieve
the jump before the StampDown primitive is used to place the front foot back
into position. As the character hops in the air, the front leg bends at the knee
and rotates so that the foot is in position directly in front of the opposite knee.
There is a slight pause before the front leg is lowered to the ground. This
routine uses 1 beat for each occurrence.

• CutBack - uses the CutBend and Hop primitives to perform a jump using the
back leg. It is exactly the same as the Cut routine, except it uses the opposite
leg. It also uses 1 beat for each occasion it is used.

• FrontClickJump - one of the more interesting jumping routines, it uses the
Stamp, LiftLeg, Hop and DropLeg primitives. It stamps the back leg before
lifting the front leg out in front of the body. The back leg is lifted and the hop
movement is used as the front leg is lowered, producing a heel click in mid
jump. The back leg is then lowered to the ground. Both legs are off the ground

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and in front of the character for part of the routine. This routine needs 2 full
beats of time.

• JumpBack - used to switch the front foot and the back foot. This routine uses
the LiftLeg, DropLegBehind and HopForward primitives to create a jump that
lifts the front leg in front of the character and lowers it so it ends up behind the
back leg. The front leg is completely straight as it is lifted and lowered.
Because the HopForward primitive occurs at the same time as the
DropLegBehind primitive, the JumpBack routine uses only 1 beat.

• KneeBendHop - another jumping routine that uses the LiftLeg, KneeBend, Hop
and StampDown primitives. The front leg is lifted into the air in front of the
character, after which it is bent at the knee as the foot and the leg move directly
in front of the body during the hop movement. The knee is facing upwards. The
leg is then placed back on the ground in front of the back leg. This routine takes
1.5 beats to finish.

• Shufflehopback - An extremely popular Celtic dance move, this routine
involves switching the front and back feet in an interesting way. It makes use of
the TapOut, TapBack, ShortHop, and StampDown primitives. The character
taps out her front foot and then taps it back and behind the back foot while
hopping on the back foot. The original front foot is then placed down behind the
original back foot into position. The Shufflehopback routine needs 1.5 beats for
each occasion it is used.

• SideStep - used as a method for moving the character in space, this routine
allows the character to move from side to side. The front leg takes a short step
to its closest side and then the back leg follows it to the same side. This routine
uses the Cross primitive twice and needs 1 beat for each performance.

• SlidingStep - another method that moves a character in space, this routine
performs a diagonal step forward. The front foot takes an extended step forward
and slightly to the side using the LongStep primitive and the back foot slides
behind it using the SlideBehindStep primitive. This routine uses two primitives
in succession, so it needs 1 beat of time to finish the motion.

• Turn - this routine allows the character to change her overall orientation. She
can rotate in increments of 90° to face different directions. This is the most
complicated built-in routine, as its implementation is different from the other
routines and the turn can occur either to the left or to the right. It does not use
any primitives, but is classified as a routine because it involves several
movements. The character turns around the front leg. She starts by lifting the
leg that is not turning, rotating the other leg so it is on the ball of the foot, and
turns the torso slightly in the direction that she will be turning towards. The next
movement involves rotating the rest of the body some multiple of 90°, as
determined by the user. Lastly, the character rotates her torso back slightly to

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compensate for the original rotation in the first movement, rotates the turning
foot so that it is completely on the ground rather than on the ball of the foot, and
places the back leg down on the ground. As the character rotates around the
front foot, the back leg and upper body also rotate around the front foot so that
the character is constantly in the correct Celtic position. The correct Celtic
position involves both feet angled away from each other at the heels and one
foot placed in front of the other foot. The Turn routine requires 1.5 beats
because the character lifts her back leg, turns on the front leg, and lowers the
back leg, where each movement takes Vt a beat.

• ZigZag - involves the SwingHeelsIn and SwingHeelsOut primitives to
constantly rotate the heels in towards each other and then swing them back out
to their original position. The upper body moves up and down slightly during
this routine because the height of the heels in the air changes as the character
moves from the heels swinging out (heels at highest point) to heels swinging in
(heels at lowest point). Similar to the ClickZigZag routine, this routine uses two
primitives. However, this routine only needs 1 beat for each occurrence because
it does not change the position of the feet.

The timing aspect of a routine is extremely important. The built-in routines give the

animator the ability to have several primitives performed at the same time and at different

offsets. Each routine can use a different number of primitive movements to accomplish

its purpose. An example of a routine that uses different primitives and different offsets is

the Shufflehopback routine. Figure 5.5 displays the pseudo code for this routine,

including the primitive movements involved in creating the complex motion. The

Shufflehopback is comprised of three main time intervals, denoted by the term

movementCnt in Figure 5.5. Each interval takes place over half a beat interval in the

music, as chosen by the animator for primitive timing. The Shufflehopback routine will

take 1.5 beats to complete, with the TapOut primitive taking place over the first time

interval, TapBack and ShortHop occurring during the second time interval and

StampDown occurring over the third time interval. The ShortHop primitive does not

share the same movement start time as the TapBack primitive, despite both occurring in

the same time interval. The ShortHop has an offset of 2 from the TapBack so it will start

later and take less time to complete.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Shufflehopback” Routine

Input:
f <— current frame number
Vi <— 3D rotation or translation vector for the body part at the beginning of the

movement
ts <— starting frame of current beat interval
te 4— ending frame of current beat interval

Output:
Vo <— 3D rotation or translation vector

Begin
1 Vo 4- Vi
2 If body part is the front foot
3 If movementCnt = = 1

Vo 4— TapOut(f, Vi, ts, te)
4 Else if movementCnt = = 2

Vo 4— TapBack(f, Vi, ts, te)
5 Else if movementCnt = = 3

Vo <— StampDown(f, Vo, ts, te)
6 If f > ts+2 and movementCnt = = 2

Vo <— ShortHop(f, Vo, ts+2,te)
End of begin

Figure 5.5: The pseudo code for the built-in Shufflehopback routine. It uses the TapOut,
TapBack, ShortHop and StampDown primitive movements.

5.5.2 User Designed Routines

In some cases the user may want to use routines that are not implemented in the Celtic

system. The system allows for user-designed routines in which the user can define her

own routines through text files. The user can create her own dance moves by specifying

primitives or built-in routines and their order. There is no maximum length limit for a

routine, so the user is free to use as many primitives as necessary. The user-designed

routine makes it easier to create an animation sequence because the user can define

routines with combinations of movements that are used continuously in the animation.

For example, if the user finds that she is constantly using three primitives in the same

order in several places in her animation, she can put them into a routine. Rather than

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specifying the three primitives each time she wants that specific combination, she can

specify her specially designed routine instead. The system will retrieve the routine as

input and perform the primitives found in that routine.

In many routines the timing of movements is extremely important. While the

animator controls the timing for built-in routines during implementation, it is more

difficult to do this for user-designed routines. The system originally performed the

movements in the order they were specified, one after the other. The brackets and rest

features detailed in Section 5.2.2 were implemented into the system to give the user the

same control that the animator enjoys.

Rests and brackets can be used in combination in a routine that performs several

movements using a specific arrangement. In fact, the user is able to reconstruct the built-

in routines using a combination of primitives, rests and brackets. For example, the

Shufflehopback routine can be reconstructed as follows:

Shufflehopback: TAPOUT: RightLeg;

TAPBACK: RightLeg;

(ASHORTHOP);

STAMPDOWN: RightLeg;

Variations of built-in routines can also be created, as user designed routines are not

limited to exclusively using primitive movements. User designed routines promote

creativity and experimentation by the user because she is free to use any primitive or

built-in routine in the system, as well as control their order and timing. Once the routine

files are designed they can be reused in any animation and changed easily by the user.

5.6 Primitive Movements

The primitive movements implemented in this system were determined by studying

videos of Celtic dancing and establishing the simple movements that make up the larger

routines. An especially helpful video was Colin Dunne’s Irish dance instructional video,

“Celtic Feet.” [11] This video breaks down routines into primitive steps and displays how

they can be put together to create dance sequences. Most of the primitive movements

implemented in our Celtic system are modeled after the movements depicted in this

video. A total of twenty-four primitive movements have been implemented into the

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system. They can be used in different combinations to create routines, which are slightly

larger and more complex movements. The primitive movements and their purpose are

listed as follows:

• ClickHeelsIn - the feet line up horizontally, lift up onto the balls of the feet and
turn in so that the heels click against each other.

• ClickHeelsOut - once the heels have clicked against each other, this movement
rotates the feet so they are once again apart.

• Cross - used for moving the body in a sidestep movement, this primitive moves
the body to the side of the front leg. For example, if the front foot is the right
foot, the body will take a step to the right.

• CutBend - takes the front foot and bends it so that the foot is in front of the back
foot’s knee, both in distance and height. The knee should be sticking out to the
opposite side of the back foot.

• DropLeg - lowers a leg from the position where the leg is stretched out in front
of the body. The leg is lowered directly to the ground.

• DropLegBehind - lowers a leg from the position where the leg is stretched out in
front of the body, but places,the leg behind the other leg.

• HeelsUp - rotates the foot so that the character is on the balls of her feet.

• HeelsDown - rotates the foot so the character goes down from the balls of her
feet to the heels of her feet (the whole foot is solidly on the ground).

• Hop - performs a jumping motion on the spot.

• HopForward - performs a jumping motion that moves the character slightly
forward.

• KneeBend - lifts the leg and bends the knee so that leg is fairly close to the body,
with the knee bent and pointing up.

• LiftLeg - lif s the leg out and straight in front of the character.

• LongStep - takes a long step that equals the distance of several normal steps,
generally used with front foot.

• ShortHop - performs a jumping motion on the spot that does not go as high as
the normal Hop primitive.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• SlideBehindStep - used in conjunction with the LongStep primitive, it slides the
back foot in behind the front foot.

• Stamp - lifts a leg up slightly, bending at the knee, and lowers it back down to
the ground.

• StampDown - lowers a leg to the ground from a slightly raised position.

• StepForward - takes a single step forward. This primitive is always performed
by the back foot so it moves in front of the front foot.

• StepBack - takes a single step backwards. This primitive is always performed by
the front foot so that it moves behind the back foot.

• SwingHeelsIn - rotates the heels of the feet in towards each other without
contact. The feet stay at their original position for the duration of this movement.

• SwingHeelsOut - used in conjunction with the SwingHeelsIn primitive, it rotates
the heels back out to their original orientation from the inward orientation.

• TapOut - moves foot slightly forward along the ground. This primitive taps the
ground as it moves forward in a convex type motion and is generally used on the
front foot.

• TapBack - moves the foot back behind the other leg as it taps the ground in a
convex type motion. It is used in conjunction with TapOut, and so assumes the
foot is already slightly out in front of the body.

• Wait - pauses the motion for a time length determined by the animator. The
character does not move during this primitive.

Movement in general is very smooth and occurs in curves rather than in straight lines.

For this reason, Equation 4.3 is used to compute the position and rotation of each body

part at a given point in time. A simple example of the implementation of such a primitive

is the Stamp movement, shown in Figure 5.6, where a foot lifts off the ground to a certain

height and then stamps back down on the ground in the same time interval.

In the majority of the primitive movements there are constraints placed on the motion

for each body part. These constraints include the direction (right or left) that the

primitive moves the body to, which body parts are moved by a primitive, and how much

each body part is moved. For example, in many cases the torso of the character will

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Stamp” Primitive Movement

Input:
f *— current frame number
Vi <— 3D translation vector for the body part at the beginning of the movement
ts <— starting frame of current beat interval
te <— ending frame of current beat interval

Output:
Vo <— 3D translation vector

Begin
1 Vo <- Vi
2 tt <— te - ts
3 time *— f - ts
4 dist <— height that foot will raise off the ground
5 Voy <— new y-position value calculated by Equation 4.3

End of begin

Figure 5.6: The pseudocode for the Stamp primitive movement, using the sine equation
for smooth movement.

perform a motion that moves only half the distance of the feet, keeping the balance of the

body even. There also exist some primitives in which the movement is performed only

by the front foot. The implementation of these primitives is more complicated than the

one displayed above because they need extra information about the character and its set

up. An example of one of these primitives is displayed in Figure 5.7.

In this particular function, the distance moved by the feet differs from the distance

moved by the torso/upper body. This is because the upper body is always halfway

between the two feet, creating a balance for the character. By comparing the name of the

current body part being moved with the string “upperbody,” the function can determine if

it is moving a foot or the torso and act appropriately. The Cross function moves the

character in a sidestep motion across the stage. It is necessary to know the direction that

the character is going to move, so the name of the current front foot is compared to the

strings “right” and “left”. The direction is determined solely by the front foot, which

results in the character stepping to the right if the right foot is the front foot and to the left

otherwise.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Cross” Primitive Movement

Input:
f <— current frame number
Vi <— 3D translation vector for the body part at the beginning of the movement
ts <— starting frame of current beat interval
te <— ending frame of current beat interval

Output:
Vo *— 3D translation vector

Begin
1 Vo <- Vi
2 tt <— te - ts
2 If body part is the torso then dist <— (0.6 • getDynamicsLevelQ) I 2.0
3 Else dist <— 0.6 • getDynamicsLevelQ
4 If the front foot is the right foot then negate dist so the movement direction

changes from the left to the right
5 c <— n 1(2 ■ tt) (controls the speed for changing the body part’s x-position and is

used in Equation 4.3)
6 Vox *— new x-position calculated by Equation 4.3
7 dist2 <— small value corresponding to distance from ground that foot lifts as it steps
8 c2 <— n I tt (controls the speed for changing the body part’s y-position and is used

in Equation 4.3)
7 Voy <— new y-position calculated by Equation 4.3

End of begin

Figure 5.7: The pseudo code of the Cross primitive movement. The side of the body that
the front foot is on (right or left) determines the direction that the movement travels.

5.7 Applications of Celtic System

This animation system is a unique music-driven approach to character animation. Its

purpose is to create a unique animation with the structure of a Celtic dance but that is

tailored to suit the chosen music. The resulting animation needs to be interesting,

exciting and expressive of the corresponding music. Our system provides a user friendly

and flexible way to create such an animation. It includes distinctive features that are not

included in synchronization-based systems, making it a distinctly more appealing method

of generating music-driven animation.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The majority of synchronization methods display their advantages using a single

character. While the movement of a single character is interesting, multiple characters

can create a performance that is more visually stunning than that of one character.

Synchronizing multiple characters to the music is a difficult task for synchronization

systems to perform, which is why most researchers do not include it in their work. One

of the unique features of our system is the ability and ease to move several characters in a

scene to create a performance. This set-up is extremely useful for Celtic dancing where

the most interesting dances are performed by a troupe. The user is able to include as

many dancers as she wants in an animation, making it easy for her to design a dance for a

large troupe of characters.

One of the distinctive aspects of our system is the ability to give each character a

different personality. Dancers are not limited to performing the same dance together. A

different secondary script file can be created for each dancer in the scene and linked

through the main script file. Hence, the user can synchronize movement between

characters as well as infuse individuality into the motion. Several combinations of

multiple characters are possible, many of them used in Celtic dancing itself. The

majority of the troupe dancers can use the same secondary script file while the principal

dancer in the troupe can be assigned to a different one to make her stand out. Dancers

can be split into groups, where each group dances to its own set of movements, or each

dancer can be given her own dance sequence. The master script file is set up to give the

user the freedom to design new characters and incorporate them into the animation.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SID ESTEP ILO;
STEPFORWARD 1 0 ;

iSHUFFLEHOPBACK 4 ;
I L IF T L E G : L e f tL e g ;
j(A H O P);
i d r o p l e g : L e f tL e g ;
I (a h o p) ;

i STEPBACK 4 ;
SID ESTEP 5;

HOP 2 ;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;

I FRONTCLICKJUMP;
IW A IT 2;
ISHUFFLEHOPBACK 8;
I d u a l c u t ;
[c u t ;
I w a it 2 ;
IZ IG ZA G 3;
IL IF T L E G : R ig h tL e g ;
| (a h o p) ;

r i-. _ . . _ - . .rr.______ __________* . _________________________________" g

File Edit Format V iew He lp

 a
i

j i i START 1
I W A IT 3;

S ID ESTEP 1 0 ;

File Edit Format View Help

STEPFORWARD 1 0 ;
ISHUFFLEHOPBACK 4 ;

8 l i f t l e g : R ig h tL e g ;
; | (AHOP);

d r o p l e g : R ig h tL e g ;

!
(a h o p) ;
STEPFORWARD 4 ;
SID ESTEP 5;
JUMPBACK;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;

! FRONTCLICKJUMP;
! w a i t 2 ;

SHUFFLEHOPBACK 8;

m CAH0P);

I d u a l c u t ;
i c u t ;
! w a it 2 ;
I Z IG ZA G 3;
j l i f t l e g : R ig h tL e g ;

Figure 5.8: The diagrams above are segments from two secondary script files used to
control multiple characters.

Figure 5.8 demonstrates how two secondary script files can be used to control

multiple characters. They have been synchronized so that the movements are exactly the

same in some intervals and different in others. Synchronization occurs when two

movements have the same timing and will take the same amount of time to complete.

For example, in line 2, the Shufflehopback routine takes 1.5 beats, so the Wait primitive

is called 3 consecutive times to make its completion time the same as the Shufflehopback

routine. This ensures that the Sidestep routine in line 3 is started at the same time by

each character. In order to have synchronization across multiple script files, it is

necessary to ensure that the timing for groups of movements is the same. This is best

done by determining the amount of time one movement or group of movements takes and

filling in the other script files with a set of movements that takes the same amount of time

to perform. Figure 5.8 is a good example of how different movements can be

synchronized in time. By using the secondary script files in conjunction in the same

animation we create two characters that are performing the same dance with different

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

personalities. As far as we know, this is not attempted by any animation system similar

to ours.

Our script file is not only unique in its ability to incorporate multiple characters with

different personalities into an animation, but its capability to manipulate movement is an

exceptional technique as well. The brackets and rests used by the system to organize

motion allow for movements to be combined in the same time interval and at staggered

starting and stopping times. This technique permits multiple characters to move out of

synch by performing movements in the same time interval but with a time gap between

them. The user can also make a character perform more than one movement at the same

time by using brackets in the script file. The time staggering technique is extremely

difficult to do in synchronization-based approaches because it requires long and tedious

work by the user to exactly align starting and ending positions for multiple movements

for multiple characters. The majority of synchronization methods use motion capture

data, so it is challenging to combine movements into the same interval unless the

resulting movement already exists in the data. The ability of our system to provide both

of these methods makes it extremely usable and flexible.

Both introductory and experienced animators can use our system to experiment with

dance and musical attributes. It provides more flexibility than synchronization methods

whose purpose is similar to that of our system and it gives users more control over the

final result. Since Maya provides the interface for the animation, it is convenient for the

user to build up characters and a scene using Maya’s extensive features. Our system

supplies the user with an efficient and convenient method for coordinating music with

movement, making it a unique resource in character animation.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Results and Evaluation

6.1 Results

The Celtic system is comprised of many primitive movements and more complex

routines. Primitive movements are not necessarily as simple as lifting a leg or stomping a

foot. More complicated primitives exist, such as rotating and bending a leg so that it

forms the Celtic “Cut” movement, or jumping in the air and bending the knees on

downward impact. One of the main purposes of the Celtic system is to demonstrate that

any type of primitive movement can be combined with other primitives to create an

interesting sequence of motion. The primitives themselves must look good in order for

the viewer’s interest to be captured. The results in Figures 6.1 and 6.2 display three

primitive movements of different difficulty levels. Figure 6.1 shows the “Cut” primitive

movement, which involves both translation and rotation of the leg in a certain way in

order to obtain the desired look. This is one of the more complicated primitives because

it requires fairly precise rotation and position values. The images in Figure 6.2 present

two primitives: “ClickHeelsIn” and “ClickHeelsOut”. Unlike the Cut primitive, these

movements are fairly simple in their motion, only requiring the rotation of the heels

towards and away from each other.

Frame 1 Frame 7

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 13 Frame 24
Figure 6.1: Results from the “Cut” primitive movement.

Frame 1

Frame 14

Frame 8

Frame 29

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•WWW"1 •
life

I p M M W i B B
Frame 40

Figure 6.2: Results from the “ClickHeelsIn” (frames 1,8 and 14) and “ClickHeelsOut”
(frames 29 and 40) primitive movements.

The Celtic system’s routines, whether built-in or user-contributed, generally require

the use of several primitive movements. The “FrontClickJump” routine, presented in

Figure 6.3, is one of the most interesting routines, and yet it only uses three primitive

movements: “LiftLeg,” “Hop” and “DropLeg”. It is an excellent example of how two

fairly simple movements can be combined to create an exciting motion sequence.

Frame 1 Frame 24

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 41Frame 33

Frame 50Frame 46

Frame 62Frame 54

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Frame 69 Frame 86
Figure 6.3: Sequential images displaying the different positions involved in the
“FrontClickJump” Celtic routine.

The script file provides control over many key aspects of the animation, including the

number of characters involved in the scene, the movements performed by each character

and the timing of the movements. As far as we know, these features are unique to this

system. Figure 6.3 demonstrates the use of the timing features. The character starts the

movement in the second image by lifting her leg. In the fourth image, or lA of a beat

later, she begins the hop motion. Both primitives end at the same time in the last frame.

The corresponding script file uses a set of brackets and two rest symbols to create this

motion. Each rest symbol represents a delay of % of a beat, so the hop movement could

be started earlier by removing one of the rests or later by adding another rest. The timing

features promote tailoring of user-built routines so that users can meticulously create

combinations of movements that are not already included in the system.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 1 Frame 4

Frame 8 Frame 11

Frame 15 Frame 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Frame 26
Figure 6.3: These results display one way of using the Celtic system’s timing aspects to
combine movements. The corresponding script file is shown in the last row on the right.

Multiple characters in a Celtic performance can make the movements more dramatic

and interesting for the viewer. The Celtic system supports two types of multiple

character movement: synchronized and unsynchronized. Synchronized movement, as

shown in Figure 6.5, involves all the characters performing the same movement at the

same time. This particular scene involves sixteen characters using the same script file.

Figure 6.6 demonstrates unsynchronized movement between six characters. The first and

sixth characters are performing a “Sidestep” movement in all the images, while the

second and fifth characters are performing a “Shufflehopback” routine in images 1-6 and

a “Cut” motion in images 7-11. The third and fourth characters are performing a “Cut”

motion in images 1-6 and a “CutBack” motion in images 7-11. Each group of characters

is performing at the same time as the other groups but their movements are not the same,

resulting in an unsynchronized performance. These results demonstrate how different

characters can possess different personalities and yet still fit into the overall presentation.

More examples of synchronized and unsynchronized routines can be found in the

supplemental video.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.4: The system is easily able to accommodate multiple characters in the same
scene, as demonstrated in the picture above. Sixteen girls are utilized in this particular
performance.

Frame 980 Frame 983

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 985 Frame 994

Frame 996 Frame 999

Frame 1002Frame 1001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Frame 1007
Figure 6.5: Results displaying how the system can use multiple characters and
synchronize them all to perform the same motion at the same time. The characters in this
scene are performing the “Jumpback” Celtic routine.

Frame 1214Frame 1212

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 1217 Frame 1220

Frame 1235Frame 1233

Frame 1244Frame 1238

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 1250 Frame 1254
Figure 6.6: Results from six characters performing unsynchronized movement. The
characters are split into three groups of two, with each group performing a routine
different from the other groups.

The timing values for the animations used in the Evaluation and the animations with

multiple characters shown above are displayed in Table 6.1. The values in this table

demonstrate how long it takes to build a script file, bake the Inverse Kinematic keys in

Maya and render the final result. The time trials were performed on an AMD Athlon 64

3000+ running at 1.81GHz with 2.0GB of RAM. The table gives the user an idea of how

long it takes to put together an animation like the ones displayed in the accompanying

video. It is important to note that there are values in the Building Script File column that

are 0. This is because the script file built for BrownEyedGirl was used for all the other

animations without a time value. The reusability of the script file reduced the amount of

time needed to create these animations by removing the need to build a script file from

scratch. This displays one of the important aspects of the Celtic system. The IK baking

time and the rendering time are highly dependent on the number of characters in a scene.

The two animations with multiple characters, TwentyFieryNights and Six_Warriors, take

more time to bake and render because they involve sixteen and six characters

respectively. The number of frames involved in each animation also affects the baking

and rendering times. The longer an animation, the higher the values in these columns

should be. The number of frames used by each animation is noted in Appendix A.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Animation Manually Building Baking IK Keys Rendering

the Script File (minutes) (hours)

BrownEyedGirl 30-60 mins 17 13

Eminem 0 7 5.5

FieryNights 0 12 9

Finale 0 12 9

GetltStarted 0 12 9

Nutcracker 0 19 16

Six_Warriors 6-9 hrs 80 15-18

Twenty_FieryNights 1-1.5 hrs 4-6 hrs 45

Warriors 0 9 7

WideOpenSpaces 0 14 12

Table 6.1: Values that represent the time taken to build the script file, bake IK keys in
Maya and render the entire animation for each song.

6.2 Evaluation

The evaluation of a piece of music or a dance performance is generally subjective and

extremely dependent on the preferences of the listener or viewer. This makes it

exceptionally difficult to quantitatively determine if an animation is good or not. A

qualitative evaluation was designed to assess the success of the Celtic system. There are

two objectives in performing this evaluation. The first is to determine if the approach

taken by the Celtic system is successful in creating appealing animations. The second is

to establish if changing the music can also create appealing animations.

The evaluation involves 3 groups of 6 users per group. Each group represents a

different user background. The first group incorporates users with dancing experience.

These users apply their knowledge of movement to determine if an animation is good or

not. The second group includes users with computer programming experience. This

group of users has a technical background and will view the animations less artistically

than the previous group. They will be able to focus on how well the parts fit together

rather than concentrating on how accurate the movements are. The third group

incorporates users with neither dancing nor programming experience. These users can

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

view the animations without any previous prejudices or expectations and are

representative of an inexperienced user who may find the system useful.

The evaluation involves 8 animation videos with a single dancer in each. One of our

objectives is to determine how different music affects the end result, so a different piece

of music is used for each animation. The music types used include celtic, hip-hop, rap,

rock, country and classical. The tempos range from 67 bpm to 171 bpm. The evaluator

is asked to specify for each animation whether or not she liked the animation. The

answer choices are a simple “yes” or “no.” She is then asked to states reasons for her

answer. The reasons can give us a good idea of how a user’s background affects her

opinion. The evaluation document requests that the user form an opinion based solely on

the merits of a single animation, without comparison to other animations. The evaluation

concentrates on determining how successful our approach is by observing how the

changing system parameters affect the user’s opinion. The evaluation form provided to

each user is found in Appendix B.

6.2.1 Evaluation Results

The overall results of the evaluation are found in Table 6.2. These results are based on

all 18 of the people involved in assessing the 8 animations. The two animations with the

highest number of ‘yes’ answers are both animations using Celtic music. The

FieryNights animation was found appealing by 94% of the evaluators, while the Warriors

animation was appreciated by 89% of the evaluators. It is interesting to note that the

animations with the highest tempo (Eminem at 171 bpm) and the lowest tempo

(Nutcracker at 67 bpm) are the animations found the least appealing by the majority of

evaluators. The Eminem animation was only enjoyed by 50% of the evaluators, while the

Nutcracker animation was liked by only 39%. These songs, however, also belong to

musical types that do not typically suit dancing. Both rap and classical are difficult styles

for an average person to dance to, so it makes sense that most people would feel that the

dancing does not suit the music. The majority of respondents enjoy the remaining four

animations, all of which correspond to music types that are traditionally easy to dance to.

GetltStarted and WideOpenSpaces were appealing to 78% of evaluators, 72% of

participants enjoyed the Finale animation, while BrownEyedGirl was appreciated by 65%

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of those involved. It is important to note that due to the small sample size, in many cases

a single vote separates the success of one animation over another. For example, a single

vote separates Finale, at 13-5, from the GetltStarted and WideOpenSpaces animations,

both at 14-4. A single vote also separates BrownEyedGirl at 12-6 from the Finale

sequence. A larger sample size is necessary in order to get a true sense of which

animations are considered most appealing.

Animation Number of ‘yes’

responses

Number of ‘no’

responses

Percentage of

people who liked

the animation

BrownEyedGirl 12 6 67%

Eminem 9 9 50%

FieryNights 17 1 94%

Finale 13 5 72%

GetltStarted 14 4 78%

Nutcracker 7 11 39%

Warriors 16 2 89%

WideOpenSpaces 14 4 78%

Table 6.2: Overall results of the evaluation, taking into account the responses of all 18
people involved in the assessment of the animations.

The results from Table 6.2 have been divided based on their respective evaluator

groupings. Several animations exist where all members of a group have found the result

appealing. Participants with previous dancing experience enjoy Warriors best, with

FieryNights and BrownEyedGirl tied for second. Those with computer programming

experience enjoy FieryNights, GetltStarted and WideOpenSpaces the most of all the

animations. Evaluators with no experience like FieryNights and Warriors the best, with

Finale a close second. It is interesting to note that the animations liked best by the

programming group all fall within the tempo range of 90-110 bpm. The participants with

no experience overwhelmingly enjoy the animations with Celtic style music the most.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The group of dancers also seem to enjoy the animations with Celtic style, as two of the

top three animations were paired with Celtic music.

The computer programming group is the only group where the majority of

participants disliked an animation. 5 out of 6 evaluators disliked both the Eminem and

Nutcracker animations. Interestingly enough, these animations represent the fastest and

the slowest tempos of all the songs. The evaluators in the group with no experience in

dancing or computer programming were undecided as to whether they enjoyed

BrownEyedGirl and the Nutcracker, as the responses were split evenly between yes and

no. These animations correspond to the two slowest songs of the group. The group of

dancers were also split evenly with respect to the Nutcracker animation.

Animation Dancing

Experience

Computer

Programming

Experience

Neither

Yes No Yes No Yes No

BrownEyedGirl 5 1 4 2 3 3

Eminem 4 2 1 5 4 2

FieryNights 5 1 6 0 6 0

Finale 4 2 4 2 5 1

GetltStarted 4 2 6 0 4 2

Nutcracker 3 3 1 5 3 3

Warriors 6 0 4 2 6 0

WideOpenSpaces 4 2 6 0 4 2

Table 6.3: Results of the evaluation split up by group into evaluators with dancing
experience, evaluators with computer programming experience and evaluators with
experience in neither.

6.2.2 Discussion

According to the results displayed in Table 6.3, each group of participants views the

animations in a different way and has a different opinion as to what constitutes an

appealing animation. Those with computer programming experience appear to enjoy the

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

animations within a certain tempo range best, while evaluators in the groups with a

dancing background and with no experience appreciate the animations paired with Celtic

music. Both the tempo and musical type of a song have emerged as key factors in

determining how appealing an animation is to a viewer. Background experience,

however, also seems to make an impact on how a person views an animation.

Each participant was asked to give reasoning behind her response for each animation.

The responses of those in the dancing group focus on the motion itself and how realistic it

appears. They enjoy animations where the motion is believable, which correlates well to

their background experience. Most members of the computer programming group

discuss the synchronization of the moves to the music. Their responses focus on how

well the movements match the music and they all looked for association between the

beats in the music and the timing of the motion. Based on their responses, these

participants appear to find an animation appealing if it correlates well to the music. It is

our belief that this is due to their logical background and their ability to examine how

well pieces fit together. The group with no related background experience viewed the

animations in a different way than the previous two groups. Rather than focusing on the

motion or the timing, they were able to examine the animation as a whole and base their

opinions on the overall look of the result. Many responses discussed background features

and camera angles, which are important aspects of a performance that can capture and

hold a viewer’s attention. Participants in this group made mention of the motion and how

well it suited the music, but their comments generally pertained to the complete

appearance of the animation.

The objectives of this qualitative evaluation were to first determine if our Celtic

system is successful in building appealing animations, and secondly to establish if

altering the music can change whether an animation is interesting or not. The results of

the evaluation show that our objectives have been met. The majority of participants

found most of the animations appealing, especially those that used Celtic music with

Celtic movement. The results also led to the observation that the style and tempo of the

corresponding music can change the attractiveness of the final animation. This leads us

to believe that the system discussed in this thesis is successful in achieving its goals and

is therefore a worthwhile project.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

7.1 Contributions

This thesis presents a new music-driven character animation system that supports data-

driven mappings of musical features to movements. The system helps users of all

experience levels to produce appealing animations based on input music of any type and

primitive dance moves and routines. This animation system has progressed through two

levels of design and implementation: the Hip-Hop system and the Celtic system. The

Hip-Hop system was unsuccessful in generating interesting animations, but its concepts

paved the way for an improved character animation system involving Celtic dance. The

Celtic system was built on overcoming the shortcomings of the Hip-Hop system,

incorporating a better script file set-up, easier integration of multiple characters and more

primitive movements. The Celtic system achieves the goals that the Hip-Hop system

could not reach: a user-friendly system that creates exciting animations by combining

primitive movements into complex motion.

One of the major contributions of this work to the area of character animation is its

ability to build a motion sequence directly from extracted musical features. Unlike

synchronization-based methods that simply alter an existing animation’s timing in

accordance to the musical beat, this system creates movements based on the musical

beats and dynamics. The movements can easily change to reflect the mood and timing of

the music, a feature that is not possible in systems similar to ours.

Another feature that is not supported in other systems is the ability to control multiple

characters with different personalities in an animation. The user can build and easily

integrate a troupe of dancers into the system. The dancers are not limited to performing

the same movements, as the Celtic system is set up so that each character can use its own

script file. Synchronization between characters is encouraged, but individuality makes

the animation less mundane.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our system is designed to be flexible for both the user and the animator. The system

is set up to support extra primitive movements, as well as more dance types than just

Celtic. The addition of other types of movements will encourage experimentation

between dance structures, allowing a choreographer to easily mix moves from across

different dance categories. Flexibility for the user is provided through both the script file

and the musical input. Any type of music with noticeable beats can be used by the

system to generate a specifically tailored animation that expresses the music. The script

file gives the user a high level of control over the final animation and results that reflect

her style and preference.

7.2 Future Work

One of the major shortcomings of the system is the occasional inaccuracy of the beat

detection algorithm. In some cases, it takes a large amount of manual tweaking to

retrieve the correct beat onsets, a problem that is rectified by designing a completely

automatic algorithm that can determine beat positions without user interference. Since

the musical experience level of the user will vary, it is improbable that she will be able to

choose the correct parameters without much experimentation. Future work in the musical

analysis section will include a better beat detection algorithm and the extraction of more

musical features, including note pitch and melody. Mapping more of the important

musical features to the movements will result in an animation that more truthfully

represents the music. The tempo detection algorithm will also be improved to include the

ability to track tempo changes over the duration of a song. This addition will improve the

beat detection algorithm by making it more robust to songs with multiple mood changes.

Currently the system’s primitive movements are implemented according to the

proportions of the character displayed in the Results section. The script file will easily

accept characters of varying heights and proportions, but the movements will not map to

these characters correctly. Further investigation into mapping movements between

characters of different proportions will increase the flexibility of the system. Another

option for dealing with this problem is the implementation of collision detection.

Collision detection will prevent interpenetration of limbs of any character by taking

measures to move the body part around the point rather than through it. This technique

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would remove the need for specialized mapping for characters of different proportions,

but it may be more difficult and time-consuming to implement.

In order to faithfully represent Celtic dance, more primitives and routines need to be

built into the system. The addition of extra movements will give the user more choices

when designing a dance and produce a more accurate depiction of real Celtic

performances. The system does not need to be limited to Celtic dance, however.

Different types of dances can be added to future versions in order to increase the scope of

the system and encourage experimentation between styles. Ballroom dances such as the

Waltz or culture-based dances such as the Spanish Flamenco are among the possible

dance types that could be incorporated into the Celtic system.

Lastly, the ability to randomly generate sections of a dance, or even an entire dance,

automatically is a concept that should be included in the Celtic system. A simplified

method was incorporated into the Hip-Hop system but it was never integrated in the

Celtic system due to a lack of time. This function can be used to demonstrate the system

to new users or fill in movements when a user has run out of ideas. It would increase the

flexibility of the system and provide extra help for users with little experience or only a

short amount of time.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Alankus, G., Bayazit, A.A., and Bayazit, B. Automated Motion Synthesis for
Dancing Characters. Computer Animation and Virtual Worlds 16, 3-4 (2005), 259-
271.

[2] Arikan, O. and Forsyth, D.A. Interactive Motion Generation from Examples. ACM
Transactions on Graphics 21, 3 (2002), 483-490.

[3] Brand, M. Voice Puppetry. International Conference on Computer Graphics and
Interactive Techniques, 21-28, 1999.

[4] Brand, M. and Shan, K. Voice-driven Animation. Technical Report TR1998-020,
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts, 1998. Also
appears, Workshop on Perceptual User Interfaces, San Francisco, California,
November 1998.

[5] Calvert, T., Wilke, L., Ryman, R., and Fox, I. Applications of Computers to Dance.
IEEE Computer Graphics and Applications (March/April 2005), 6-12.

[6] Cardie, M., Barthe, L., Brooks, S. and Robinson, P. Music-Driven Motion Editing:
Local Motion Transformation Guided by Music Analysis. In Proceedings o f
Eurographics UK, 38-44, 2002.

[7] Cao, Y., Tien, W.C., Faloutsos, P., and Pighin, F. Expressive Speech-Driven Facial
Animation. ACM Transactions on Graphics 24, 4 (October 2005), 1283-1302.

[8] Dance Forms 1.0. http://www.charactermotion.com/danceforms/. Viewed on
August 30, 2006.

[9] Dance Notation Bureau. http://www.dancenotation.org/lnbasics/frameO.html.
Viewed on June 21, 2006.

[10] Dixon, S. On the Analysis of Musical Expression in Audio Signals. Storage and
Retrieval fo r Media Databases 5021 (2003), 122-132.

[11] Dunne, C. Celtic Feet. ISBN: 156938147X. Acom Media, 1996.

[12] Faloutsos, P., van de Panne, M., and Terzopoulos, D. The Virtual St Stuntman:
Dynamic Characters with a Repertoire of Autonomous Motor Skills. Computers &
Graphics 25, 7 (2001), 933-953.

[13] Faloutsos, P., van de Panne, M., and Terzopoulos, D. Composable Controllers for
Physics-Based Character Animation. In Proceedings o f S1GGRAPH, 251-260,
2001 .

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.charactermotion.com/danceforms/
http://www.dancenotation.org/lnbasics/frameO.html

[14] Fod, A., Mataric, M.J., and Jenkins, O. Automated Derivation of Primitives for
Movement Classification. Autonomous Robots 12, 1 (January 2002), 39-54.

[15] Fliege, N.J. Multirate Digital Signal Processing. John Wiley & Sons, Ltd.
Chichester, 1994,141-143, 256-258.

[16] Gonzalez, R.C. and Wintz, P. Digital Image Processing. Addison-Wesley
Publishing Company, Massachusetts, 1977, 36-47, 78-82.

[17] Goto, M. An Audio-based Real-time Beat Tracking System for Music With or
Without Drum-sounds. Journal o f New Music Research 30, 2 (June 2001), 159-
171.

[18] Goto, M. and Muraoka, Y. A Beat Tracking System for Acoustic Signals of Music.
In Proceedings o f ACM Multimedia, 365-372, 1994.

[19] Goto, M. and Muraoka, Y. Real-time Beat Tracking for Drumless Audio Signals:
Chord Change Detection for Musical Decisions. Speech Communication 27, 3-4
(April 1999), 311-335.

[20] Harper, R. and Jemigan, M.E. Self-Adjusting Beat Detection and Prediction in
Music. In Proceedings o f Acoustics, Speech, and Signal Processing 4 (May 2004),
245-248.

[21] Jan, J. Discrete Signal Filtering, Analysis and Restoration. Institution of Electrical
Engineers, 2000, 56.

[22] Jensen, K. and Andersen, T.H. Beat Estimation on the Beat. In IEEE Workshop on
Applications o f Signal Processing to Audio and Acoustics, 2003.

[23] Jensen, K. and Andersen, T.H. Real-time Beat Estimation using Feature Extraction.
In Proceedings o f Computer Music Modeling and Retrieval Symposium, ser.
Lecture Notes in Computer Science, 2003.

[24] Kim, T., II Park, S., and Shin, S.Y. Rhythmic-Motion Synthesis Based on Motion-
Beat Analysis. In Proceedings o f SIGGRAPH, 392-401, 2003.

[25] Kovar, L. Gleicher, M. and Pighim, F. Motion Graphs. ACM Transactions on
Graphics, 473-482, 2002.

[26] Laszlo, J., van de Panne M., and Fiume, E. Interactive Control for Physically-based
Animation. ACM Transactions on Graphics, 201-208, 2000.

[27] Lee, H. and Lee, I. Automatic Synchronization of Background Music and Motion
in Computer Animation. In Proceedings o f Eurographics 24, 3 (2005), 353-362.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] Li, Y., Wang., T., and Shum, H.Y. Motion Texture: A Two-Level Statistical Model
for Character Motion Synthesis. ACM Transactions on Graphics, 465-472, 2002.

[29] Liu, C.K. and Popovic, Z. Synthesis of Complex Dynamic Character Motion from
Simple Animations. ACM Transactions on Graphics, 408-416, 2002.

[30] Matlab’s Wavelet Toolbox: The Discrete Wavelet Transform.
http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html.
Viewed on May 31,2005.

[31] Polikar, R. The Wavelet Tutorial Part IV.
http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html. Viewed on May 30,
2005.

[32] Safonova, A., Hodgins, J.K., and Pollard, N.S. Synthesizing Physically Realistic
Human Motion in Low-Dimensional, Behavior-Specific Spaces. ACM Transactions
on Graphics 23, 3 (August 2004), 514-521.

[33] Scheirer, E. Tempo and Beat Analysis of Acoustic Musical Signals. The Journal o f
the Acoustical Society o f America 103, 1 (January 1998), 588-601.

[34] Shiratori, T., Nakazawa, A., and Ikeuchi, K. Detecting Dance Motion Structure
through Music Analysis. In Proceedings o f International Conference on Face and
Gesture Recognition, 857-862, 2004.

[35] Shiratori, T., Nakazawa, A., and Ikeuchi, K. Dancing-to-Music Character
Animation. To appear in Eurographics 25, 3 (2006).

[36] Sturman, D. Computer Puppetry. IEEE Computer Graphics and Applications 18, 1
(January 1998), 38-45.

[37] Taylor, R., Torres, D., and Boulanger, P. Using Music to Interact with a Virtual
Character. In Proceedings o f New Interfaces fo r Musical Expressions, 220-223,
2005.

[38] Thome, M., Burke, D., and van de Panne, M. Motion Doodles: An Interface for
Sketching Character Motion. ACM Transactions on Graphics 23, 3 (2004), 424-
431.

[39] Tzanetakis, G. http://www.cs.uvic.ca/~gtzan/work/proiects/pastc.html

[40] Tzanetakis, G., Essl, G., and Cook, P. Audio Analysis using the Discrete Wavelet
Transform. In Proceedings WSES International Conference on Acoustics and
Music: Theory and Applications, 2001.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html
http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html
http://www.cs.uvic.ca/~gtzan/work/proiects/pastc.html

[41] Uhle, C. and Herre, J. Estimation of Tempo, Micro Time and Time Signature from
Percussive Music. In Proceedings o f the 6th International Conference on Digital
Audio Effects, 2003.

[42] Wilke, L., Calvert, T., Ryman, R., and Fox I. From Dance Notation to Human
Animation: The LabanDancer Project: Motion Capture and Retrieval. Computer
Animation and Virtual Worlds, 16, 3-4 (July 2005), 201-211.

[43] Woch, A. and Plamondon, R. Using the Framework of the Kinematic Theory for
the Definition of a Movement Primitive. Motor Control 8, 4 (October 2004), 547-
557.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Animation Parameters

A.l Common Parameters

The parameters common to all the animations mentioned in this thesis are listed as
follows.

SIZE..640x480
RESOLUTION..72 pixels/inch
FRAME RATE..48 fps
FORMAT OF RENDERING..JPEG images
RENDER SETTINGS..Production Quality

anti-aliasing
RENDERING SOFTWARE...Maya and RenderPal
MOVIE GENERATION PROGRAM USED................ VirtualDub
VIEWING PROGRAM USED.. Windows Media Player

or Winamp

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 Altered Parameters

The parameters that are different between all the animations mentioned in this thesis are
listed in the table below.

Animation
(.avi)

Beat
Detection
Threshold

Secondary
Script File

(•txt)

Maya model file
(.mb)

Total
number

of
frames

BrownEyedGirl 76% singleChar BAKED_BEGSingle 4050
Eminem 90% singleChar BAKED_

EminemSingle
1750

FieryNights 80% singleChar BAKED_
FieryNightsSingle

2850

Finale 90% singleChar BAKED_FinaleSingle 2880
GetltStarted singleChar BAKED_GISSingle 2850
Nutcracker 90% singleChar BAKED_

NutcrackerSingle
4350

Six_Warriors 84% warriorsLeft_l
warriorsLeft_2
warriorsLeft_3

warriorsRight_l
warriorsRight_2
warriorsRight_3

masha_Troupe 2730

Twenty_FieryNights 80% fieryGroup masha_T wentyChars 4200
Warriors 84% singleChar BAKED_WarriorsS 2250

WideOpenSpaces 90% singleChar BAKED_WOSSingle 3300
Table A .l: Lists the parameters that change for each animation.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Evaluation Form

Please choose the option(s) that best describe you:
r Dancing r Computer Programming F Neither

Instructions:
Give your opinion on whether or not you like the animation by clicking the appropriate
option button. Your opinion should be solely based on an individual animation’s merit
and not with respect to whether you like it more or less than other animations in the
group. After each response, please give a reason for your answer.

Animation Response

„ „ _ . . . C Yes C N oBrownEyedGirl. avi
Reason:

Eminem.avi
Reason:

FieryNights.avi
Reason:

Finale.avi
Reason:

GetItStarted.avi
Reason:

Nutcracker.avi
Reason:

Warriors.avi
Reason:

C Yes C N o

C Yes C No

C Yes CNo

C Yes C No

C Yes C No

C Yes C No

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w . , _ q C Y es C N oWideOpenSpaces.avi
Reason:

Please e-mail the completed form to sauer@cs.ualberta.ca. Your participation is greatly
appreciated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

mailto:sauer@cs.ualberta.ca

Appendix C

Script Piles

C.l Primary and Secondary Scripts for Evaluation animations

Primary Script

CHARACTER 1
LEFTLEG: LeftLegCtrl,
RIGHTLEG: RightLegCtrl,
UPPERBODY: upperBodyGroup,
LOCATOR: Locator,
DYNAMICS: on;

MAPPING
CHARACTER 1: SingleChar,
HOPSTEP: HopStep,
SHUFFLECLICK: shuffleclick,
DUALCUT: dualCut;

Secondary Script - “SingIeChar.txt”

START 1
SHUFFLEHOPBACK 3;
STEPFORWARD 3;
SHUFFLEHOPBACK 3;
STEPBACK 3;
FRONTCLICKJUMP;
JUMPBACK;
SLIDINGSTEP;
DUALCUT;
DUALCUT;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
CUT;
SLIDINGSTEP 2;
KNEEBENDHOP;
JUMPBACK;
SLIDINGSTEP 2;
CUT;
SHUFFLEHOPBACK;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CUTBACK;
FRONTCLICKJUMP 2;
STEPFORWARD 10;
ZIGZAG 2;
CLICKZIGZAG 2;
TURN: Right;
SLIDINGSTEP 3;
FRONTCLICKJUMP;
JUMPBACK;
STEPBACK 5;
TURN: Left;
KNEEBENDHOP;
SHUFFLEHOPBACK;
KNEEBENDHOP;
SIDESTEP 10;
DUALCUT;
STAMP: RightLeg;
HOP;
STAMP: LeftLeg;
FRONTCLICKJUMP;
STEPFORWARD;
(AHOP);
CUTBACK;
SHUFFLEHOPBACK;
SLIDINGSTEP;
TURN: Left;
STEPFORWARD 3;
HOP;
KNEEBENDHOP;
SHUFFLEHOPBACK;
TURN: Left 3;
STEPFORWARD;
(AHOP);
KNEEBENDHOP;
CUTBACK;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
STEPBACK;
(AHOP);
SLIDINGSTEP 2;
SHUFFLEHOPBACK;
SLIDINGSTEP 2;
FRONTCLICKJUMP;
STAMP: LeftLeg;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.2 Primary and Secondary Script Files for SixWarriors.avi

The primary script file below uses terms such as EXPORT_June22:LeftLegCtrl to
describe a character’s body part. This is a name given to the body part by Maya to
distinguish between the different characters. The full name of each body part includes
EXPORT_June## due to Maya’s import process when importing a character into a scene.
The character file imported into the scene is called EXPORT_June 19 and Maya
increases the number with each new character that is imported into the scene.

Primary Script File

CHARACTER 1
LEFTLEG: EXPORT_June22:LeftLegCtrl,
RIGHTLEG: EXPORT_June22:RightLegCtrl,
UPPERBODY: EXPORT_June22:upperBodyGroup,
LOCATOR: EXPORT_June22:Locator,
DYNAMICS: off;

CHARACTER 2
LEFTLEG: EXPORT_Junel9:LeftLegCtrl,
RIGHTLEG: EXPORT_Junel9:RightLegCtrl,
UPPERBODY: EXPORT_Junel9:upperBodyGroup,
LOCATOR: EXPORT_Junel9:Locator,
DYNAMICS: off;

CHARACTER 3
LEFTLEG: EXPORT_June20:LeftLegCtrl,
RIGHTLEG: EXPORT_June20:RightLegCtrl,
UPPERBODY: EXPORT_June20:upperBodyGroup,
LOCATOR: EXPORT_June20:Locator,
DYNAMICS: off;

CHARACTER 4
LEFTLEG: EXPORT_June21:LeftLegCtrl,
RIGHTLEG: EXPORT_June21 :RightLegCtrl,
UPPERBODY: EXPORT_June21 :upperBodyGroup,
LOCATOR: EXPORT_June21:Locator,
DYNAMICS: off;

CHARACTER 5
LEFTLEG: EXPORT_June23:LeftLegCtrl,
RIGHTLEG: EXPORT_June23:RightLegCtrl,
UPPERBODY: EXPORT_June23 :upperBodyGroup,
LOCATOR: EXPORT_June23:Locator,
DYNAMICS: off;

CHARACTER 6
LEFTLEG: EXPORT_June24: LeftLegCtrl,
RIGHTLEG: EXPORT_June24:RightLegCtrl,
UPPERBODY: EXPORT_June24:upperBodyGroup,
LOCATOR: EXPORT_June24:Locator,

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DYNAMICS: off;

MAPPING
CHARACTER 1: warriorsLeft_l,
CHARACTER 2: warriorsRight_l,
CHARACTER 3: warriorsLeft_2,
CHARACTER 4: warriorsRight_2,
CHARACTER 5: warriorsLeft_3,
CHARACTER 6: warriorsRight_3,
SHUFFLECLICK: shuffleclick,
DUALCUT: dualCut;

Secondary Script Files

warriorsLeft_l .txt warriorsLeft 2.txt warriorsLeft 3.txt
START 1
WAIT 3;

START 1
WAIT 3;
SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
(AHOP);
STEPFORWARD 4;
SIDESTEP 5;
JUMPBACK;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
WAIT 2;
SHUFFLEHOPBACK 8;
DUALCUT;
CUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK;
SIDESTEP 3;
JUMPBACK;

START 1
WAIT 3;
SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
(AHOP);
STEPFORWARD 4;
SIDESTEP 5;
JUMPBACK;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
JUMPBACK;
STEPFORWARD 8;
SIDESTEP 3;
SHUFFLEHOPBACK 4;
DUALCUT;
JUMPBACK;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK;
SIDESTEP 6 ; _________

SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
(AHOP);
STEPFORWARD 4;
SIDESTEP 5;
JUMPBACK;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
WAIT 2;
STEPBACK 24;
SIDESTEP 3;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
SIDESTEP 6;
HOP 2;
DUALCUT;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HOP 2; JUMPBACK; WAIT;
DUALCUT; DUALCUT; STAMP: RightLeg;
KNEEBENDHOP; WAIT; FRONTCLICKJUMP 2;
WATT 2; STAMP: RightLeg; CUT;
STAMP: RightLeg; FRONTCLICKJUMP 2; HOP;
FRONTCLICKJUMP 2; CUT; STEPFORWARD 16;
CUT; HOP; DUALCUT;
HOP; STEPBACK 16; KNEEBENDHOP;
STEPBACK 8; DUALCUT; STAMP: RightLeg;
CLICKZIGZAG 3; KNEEBENDHOP; SHUFFLEHOPBACK 2;
STAMP: LeftLeg; STAMP: RightLeg; LIFTLEG: RightLeg;
DUALCUT; SHUFFLEHOPBACK 2; (AHOP);
KNEEBENDHOP; LIFTLEG: RightLeg; DROPLEG: RightLeg;
STAMP: RightLeg; (AHOP); SHUFFLEHOPBACK;
SHUFFLEHOPBACK 2; DROPLEG: RightLeg; LIFTLEG: LeftLeg;
LIFTLEG: RightLeg; SHUFFLEHOPBACK; (AHOP);
(AHOP); LIFTLEG: LeftLeg; DROPLEG: LeftLeg;
DROPLEG: RightLeg; (AHOP); HOP;
SHUFFLEHOPBACK; DROPLEG: LeftLeg; STAMP: RightLeg;
LIFTLEG: LeftLeg; HOP; STEPFORWARD 4;
(AHOP); STAMP: RightLeg; KNEEBENDHOP;
DROPLEG: LeftLeg; STEPFORWARD 4; SHUFFLEHOPBACK;
HOP; KNEEBENDHOP; KNEEBENDHOP;
STAMP: RightLeg; SHUFFLEHOPBACK; CUT;
WAIT 4; KNEEBENDHOP; STEPBACK 4;
KNEEBENDHOP; CUT; TURN: Left;
SHUFFLEHOPBACK; STEPBACK 4; SHUFFLEHOPBACK;
KNEEBENDHOP; TURN: Left; CLICKZIGZAG 2;
CUT; SHUFFLEHOPBACK; HOP;
WAIT 4; CLICKZIGZAG 2; ZIGZAG 2;
TURN: Right; HOP; HOP;
SHUFFLEHOPBACK; ZIGZAG 2; TURN: Right;
CLICKZIGZAG 2; HOP; FRONTCLICKJUMP;
HOP; TURN: Right; DUALCUT;
ZIGZAG 2; FRONTCLICKJUMP; TURN: Left 4;
HOP; DUALCUT; STAMP: RightLeg;
TURN: Left; TURN: Left 4;
FRONTCLICKJUMP; STAMP: RightLeg;
DUALCUT;
TURN: Left 4;
STAMP: RightLeg;

warriors Right_1 warriorsRight_2 warriors Right_3
START 1
SHUFFLEHOPBACK;

START 1
SHUFFLEHOPBACK;

START 1
SHUFFLEHOPBACK;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
(AHOP);
STEPBACK 4;
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
WATT 2;
SHUFFLEHOPBACK 8;
DUALCUT;
CUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
DUALCUT;
LIFTLEG: LeftLeg;
DROPLEG: LeftLeg;
JUMPBACK 2;
DUALCUT;
KNEEBENDHOP;
WAIT 2;
STAMP: RightLeg;
FRONTCLICKJUMP 2;
CUT;
HOP;
FRONTCLICKJUMP;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
(AHOP);
STAMP: LeftLeg;
HOP;
CLICKZIGZAG 3;

SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
(AHOP);
STEPBACK 4;
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
WAIT 2;
STEPBACK 8;
SIDESTEP 3;
SHUFFLEHOPBACK 4;
DUALCUT;
WAIT 2;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
HOP 2;
SIDESTEP 3;
JUMPBACK 2;
DUALCUT;
KNEEBENDHOP;
WAIT 2;
STAMP: RightLeg;
FRONTCLICKJUMP 2;
CUT;
HOP;
STEPFORWARD 8;
CLICKZIGZAG 3;
STAMP: LeftLeg;
DUALCUT;
KNEEBENDHOP;
STAMP: RightLeg;
SHUFFLEHOPBACK 2;
LIFTLEG: RightLeg;
(AHOP);_______________

SIDESTEP 10;
STEPFORWARD 10;
SHUFFLEHOPBACK 4;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
(AHOP);
STEPBACK 4;
SIDESTEP 5;
HOP 2;
SHUFFLEHOPBACK 5;
KNEEBENDHOP;
FRONTCLICKJUMP;
JUMPBACK;
STEPFORWARD 24;
SIDESTEP 3;
JUMPBACK;
ZIGZAG 3;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK;
SIDESTEP 9;
JUMPBACK;
FRONTCLICKJUMP 2;
CUT;
HOP;
STEPBACK 24;
SHUFFLEHOPBACK 2;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
SHUFFLEHOPBACK;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
HOP;
STAMP: RightLeg;
WAIT 4;
KNEEBENDHOP;
SHUFFLEHOPBACK;
KNEEBENDHOP;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STAMP: LeftLeg; DROPLEG: RightLeg; CUT;
DUALCUT; SHUFFLEHOPBACK; WAIT 4;
KNEEBENDHOP; LIFTLEG: LeftLeg; TURN: Right;
STAMP: RightLeg; (AHOP); SHUFFLEHOPBACK;
SHUFFLEHOPBACK 2; DROPLEG: LeftLeg; CLICKZIGZAG 2;
LIFTLEG: RightLeg; HOP; HOP;
(AHOP); STAMP: RightLeg; ZIGZAG 2;
DROPLEG: RightLeg; WAIT 4; HOP;
SHUFFLEHOPBACK; KNEEBENDHOP; TURN: Left;
LIFTLEG: LeftLeg; SHUFFLEHOPBACK; FRONTCLICKJUMP;
(AHOP); KNEEBENDHOP; DUALCUT;
DROPLEG: LeftLeg; CUT; TURN: Left 4;
HOP; WAIT 4; STAMP: RightLeg;
STAMP: RightLeg; TURN: Right;
STEPFORWARD 4; SHUFFLEHOPBACK;
KNEEBENDHOP; CLICKZIGZAG 2;
SHUFFLEHOPBACK; HOP;
KNEEBENDHOP; ZIGZAG 2;
CUT; HOP;
STEPBACK 4; TURN: Left;
TURN: Left; FRONTCLICKJUMP;
SHUFFLEHOPBACK; DUALCUT;
CLICKZIGZAG 2; TURN: Left 4;
HOP; STAMP: RightLeg;
ZIGZAG 2;
HOP;
TURN: Right;
FRONTCLICKJUMP;
DUALCUT;
TURN: Left 4;
STAMP: RightLeg;

C.3 Primary and Secondary Script Files for TwentyFieryNights.avi

Primary Script File

CHARACTER 1
LEFTLEG: LeftLegCtrl,
RIGHTLEG: RightLegCtrl,
UPPERBODY: upperBodyGroup,
LOCATOR: Locator,
DYNAMICS: off;

CHARACTER 2
LEFTLEG: EXPORT_MashaLocator3: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator3: Ri ghtLegCtrl,

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UPPERBODY: EXPORT_MashaLocator3:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator3:Locator,
DYNAMICS: off;

CHARACTER 3
LEFTLEG: EXPORT_MashaLocator4:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator4:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator4:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator4:Locator,
DYNAMICS: off;

CHARACTER 4
LEFTLEG: EXPORT_MashaLocator5:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator5:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator5:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator5:Locator,
DYNAMICS: off;

CHARACTER 5
LEFTLEG: EXPORT_MashaLocator6 :LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator6:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator6:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator6:Locator,
DYNAMICS: off;

CHARACTER 6
LEFTLEG: EXPORT_MashaLocator7:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator7:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator7:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator7:Locator,
DYNAMICS: off;

CHARACTER 7
LEFTLEG: EXPORT_MashaLocator8:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator8:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator8:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator8:Locator,
DYNAMICS: off;

CHARACTER 8
LEFTLEG: EXPORT_MashaLocator9: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator9:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocator9:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator9:Locator,
DYNAMICS: off;

CHARACTER 9
LEFTLEG: EXPORT_MashaLocatorlO:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorlO:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorlO:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator 10:Locator,
DYNAMICS: off;

CHARACTER 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEFTLEG: EXPORT_MashaLocatorl 1 :LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl LRightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl 1 :upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl l:Locator,
DYNAMICS: off;

CHARACTER 11
LEFTLEG: EXPORT_MashaLocator 12: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl2:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl2:upperBodyGroup,
LOCATOR: EXPORT_MashaLocator 12:Locator,
DYNAMICS: off;

CHARACTER 12
LEFTLEG: EXPORT_MashaLocatorl3:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocator 13: RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl3:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl3:Locator,
DYNAMICS: off;

CHARACTER 13
LEFTLEG: EXPORT_MashaLocator 14: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl4:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl4:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl4:Locator,
DYNAMICS: off;

CHARACTER 14
LEFTLEG: EXPORT_MashaLocator 15 :LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl5:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl5:upperBodyGroup,
LOCATOR: EXPORT_MashaLoc ator 15 :Locator,
DYNAMICS: off;

CHARACTER 15
LEFTLEG: EXPORT_MashaLocator 16: LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl6:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl6:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl6:Locator,
DYNAMICS: off;

CHARACTER 16
LEFTLEG: EXPORT_MashaLocatorl7:LeftLegCtrl,
RIGHTLEG: EXPORT_MashaLocatorl7:RightLegCtrl,
UPPERBODY: EXPORT_MashaLocatorl7:upperBodyGroup,
LOCATOR: EXPORT_MashaLocatorl7:Locator,
DYNAMICS: off;

MAPPING
CHARACTER 1: fieryGroup,
CHARACTER 2: fieryGroup,
CHARACTER 3: fieryGroup,

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHARACTER 4: fieryGroup,
CHARACTER 5: fieryGroup,
CHARACTER 6: fieryGroup,
CHARACTER 7: fieryGroup,
CHARACTER 8: fieryGroup,
CHARACTER 9: fieryGroup,
CHARACTER 10: fieryGroup,
CHARACTER 11: fieryGroup,
CHARACTER 12: fieryGroup,
CHARACTER 13: fieryGroup,
CHARACTER 14: fieryGroup,
CHARACTER 15: fieryGroup,
CHARACTER 16: fieryGroup,
SHUFFLECLICK: shuffleclick,
DUALCUT: dualCut;

Secondary Script File

START 1
SHUFFLEHOPBACK 3;
CLICKZIGZAG 3;
SHUFFLEHOPBACK 3;
CLICKZIGZAG 3;
SIDESTEP 2;
SHUFFLEHOPBACK;
STAMP: RightLeg;
SIDESTEP 2;
SHUFFLEHOPBACK 3;
KNEEBENDHOP;
SHUFFLEHOPBACK 3;
KNEEBENDHOP;
SLIDINGSTEP 2;
JUMPBACK;
SLIDINGSTEP 2;
SHUFFLECLICK;
FRONTCLICKJUMP;
SHUFFLECLICK;
FRONTCLICKJUMP;
HOP;
STAMP: LeftLeg;
STAMP: LeftLeg;
KNEEBENDHOP;
TURN: Left 2;
STEPFORWARD 4;
TURN: Right 2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DUALCUT;
JUMPBACK;
DUALCUT;
LIFTLEG: RightLeg;
(AHOP);
DROPLEG: RightLeg;
(AHOP);
STAMP: LeftLeg;
STAMP: LeftLeg;
HOP;
SHUFFLEHOPBACK 3;
STAMP: RightLeg;
DUALCUT;
DUALCUT;
HOP;
FRONTCLICKJUMP 2;
SHUFFLECLICK;
SHUFFLECLICK;
SIDESTEP 5;
JUMPBACK;
SHUFFLECLICK;
SHUFFLECLICK;
SIDESTEP 6;
FRONTCLICKJUMP 2;
SLIDINGSTEP;
SHUFFLEHOPBACK;
SLIDINGSTEP;
LIFTLEG: LeftLeg;
(AHOP);
DROPLEG: LeftLeg;
(AHOP);
HOP;
KNEEBENDHOP;
CUTBACK;
DUALCUT;
STAMP: LeftLeg;
STAMP: RightLeg;
HOP;
SHUFFLEHOPBACK 2;
STEPFORWARD;
(AHOP);
STEPBACK;
(AHOP);
JUMPBACK 2;
FRONTCLICKJUMP;
DUALCUT;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DUALCUT;
SIDESTEP;
SLIDINGSTEP;
SHUFFLEHOPBACK;
SIDESTEP;
SLIDINGSTEP;
TURN: Left 4;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

