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Abstract

Given a tree T consider one of its longest paths Pr. We define T
to be m-distant if all of its vertices are a distance at most m from Pr.
We will show that any 3-distant tree satisfying both of the following
properties is graceful.

1. The tree has a perfect matching.

2. The tree can be constructed by attaching paths of length two to
the vertices of a 1-distant tree (caterpillar); these attachments
are made by identifying an end vertex of each path of length two
with a vertex of the 1-distant tree.

Consequently, all 2-distant trees (lobsters) with perfect matchings are
graceful.

1 Introduction

All graphs considered herein will be finite with no loops or multiple edges.
Moreover, the vertex set and edge set of a graph G will be denoted by Vg
and Eq, respectively. We begin by defining a graceful labelling of a graph
[12].

Definition 1 A graceful labelling of a graph G is an injective function
I : Vg — {0,1,...,|Eg|} for which the associated function g : Eq —
{1,...,|E¢|} defined by g({u,v}) = |l(u) —l(v)| is bijective. A graph which

exhibits a graceful labelling is said to be graceful.

An example of a gracefully labelled tree is shown in Figure 1. The
notion of a graceful labelling was introduced by Rosa [12] who proved that
if all trees are graceful then the Ringel-Kotzig Conjecture [11] holds. This
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conjecture states that, for any n, Ko,,1 can be cyclically decomposed into
2n + 1 copies of any tree with n edges. In the same work, Rosa showed that
all caterpillars (trees for which the deletion of the pendant vertices gives
a path) are graceful. Bermond [1] conjectured that all lobsters (trees for
which the deletion of the pendant vertices gives a caterpillar) are graceful,
where most advancements towards verifying this conjecture consider only
very specific cases ([10],[4],[2]). In Section 2 we prove that all lobsters with
perfect matchings are graceful; however, before doing so we introduce the
definition of an m-distant tree.

1 8 6 5

Figure 1: A graceful labelling of a caterpillar.

Definition 2 For any tree T let Pr be one of its longest paths. We define
T to be m-distant if all of its vertices are a distance at most m from Pr.

Given this definition, we observe equivalences between paths and 0-
distant trees, caterpillars and 1-distant trees, and lobsters and 2-distant
trees. In [6], Ling defined a big lobster as a tree for which the deletion
of the pendant vertices gives a lobster. This progression of animal related
nomenclature motivates the definition of m-distant trees as a simplification
of the terminology.

2 Gracefulness of certain 3-distant trees
The following is our main result.

Theorem 3 Any 3-distant tree satisfying both of the following properties is
graceful.

1. The tree has a perfect matching.

2. The tree can be constructed by attaching paths of length two to the
vertices of a 1-distant tree (caterpillar); these attachments are made
by identifying an end vertex of each path of length two with a vertez
of the 1-distant tree.



Before proving Theorem 3, we would like to clarify the restriction placed
on 3-distant trees by the second condition of this theorem. To this effect,
an example of a 3-distant tree which has a perfect matching but does not
satisfy this condition is given in Figure 2; in this tree one might consider
the path of length two being attached to a 2-distant tree.
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Figure 2: An example of a 3-distant tree with a perfect matching that does
not satisfy the second condition of Theorem 3. Note that this tree has the
minimum number of vertices of all such trees with perfect matchings.

Proof. Consider a 3-distant tree T" on n = 2m vertices which satisfies the
conditions listed in Theorem 3. Let Cr be a maximum vertex subcaterpillar
to which the paths of length two are attached. Given that 7" has a perfect
matching, so does Cp; moreover, the perfect matching on Cr is a subset of
the perfect matching on 7. We denote the edge sets that constitute these
perfect matchings by M7 and Mc,., respectively.

Let Pc, be the maximal path in Cr and let eg; be an edge containing a
pendant vertex of Pr,. Note that our use of maximal subgraphs guarantees
that ep,; also contains a pendant vertex of T', thereby, eg 1 is an edge of Mr.
For 0 < i < |Mc,|, let e; 1 be the unique edge of M¢, which is at distance
1 from e;_1,; and furthest away from ep ;. Now let the other edges in Mr
which are at distance 1 from e; 1 be €;2,. .., ¢€; ¢(;); if there are no such edges
let f(i) = 1. Note that f(0) = 1, and that T consists exclusively of the %
edges of the form e; ; and the § — 1 edges that connect them. An example
of the edge denotation described above is given in Figure 3.

For each edge e; j of My we associate a unique value s; ;. Let sg1 = 0
and define s;1, 0 <4 < |[M¢, |, by

i—1
si1 =2 f(k)—si11— 1. (1)
k=0

Knowing that so 1 = 0 and 51,1 = 1, we can solve this recursive definition to



Figure 3: The edges of the perfect matching in a 3-distant tree satisfying
the conditions of Theorem 3.
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Mc,| and 1 < j < f(i), we define s; ; by

1—1

$ij =2 —2+2> f(k) —si1—1,
k=0

which, using equation

(
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\

(2), can be solved to obtain
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A graceful labelling of T' is achieved by labelling the endpoints of each
edge e;; as s;;j and n — 1 — s;; such that all labels of the form s(a) are
adjacent only to labels of the form n — 1 — s(f3), and vice versa. In order
to prove that such a labelling is graceful we must show that it satisfies the

following properties.

i. The vertex labels are distinct and between 0 and n — 1.



ii. The edge labels are distinct.
i. Since f(7) > 0 for all 4, 0 < i < |M¢, |, equations (2) and (4) give that
0<s;; (5)
for all 4, j. Using equations (1), (3), and (5), we observe that

‘MOT‘_I

1—1 i—1 7
sij <2423 flk) <2f(D)+2) f(k) <2 fk)< Y f(k)=n,
k=0 k=0 k=0 k=0

which gives 0 <s; ; <n—1and 0 <n—1-s5;; <n—1. That is, all
the vertex labels are between 0 and n — 1.

Assume, however, that the labels are not distinct. That is, there ex-
ists il,iQ,jl,jQ, (il,jl) 75 (ig,jQ), such that 3i1,j1 = 8i2,j2 or 3i1,j1 =
n — 1 —s;,;,. Let us first consider when there exists iy,12, j1, jo,
(i1,71) # (i2,72), such that s; j = s, j,, which requires that s;, ;, =
Siy,j» (mod 2). There are ten cases to consider, however, we will show
contradictions for only four of them as the remaining six cases use
similar arguments. In many of the arguments we will use the fact that
f(@) >0 foralli, 0 <i < |Mc,|

(a) j1 =j2 =1,i1 =iz = 0(mod 2). Without loss of generality, as-
sume that 7o > 71. In this case

Si1,j1 = Sizge

3- 31

= 2) fRk+1)=2) f(2k+1)
k=0 k=0

— ilzig,

which contradicts (i1,71) # (i2,72)-

(b) j1 =1 < j2,i; = 0(mod 2),iz = 1(mod 2),iz > i;. In this case

Sirg1 = Sizyge

iy ip=1_4
2 2
= 2 fRk+1)=2-2+2 )  [f(2k+1)
k=0 k=0
izglfl
= jo—1+ Y f(2k+1)=0,
b1

2



ip=1_y
2
which is a contradiction as j, — 1 > 0 and Z f2E+1) > 0.

i
k=7

(c) j1 =1<j2,i1 = 0(mod 2),iz = 1(mod 2),iz < ij. In this case

Siy,g1 = Siange

Q_ i2_1_1
2 2
= 2 fRk+1)=2j-2+2 )  [f(2k+1)
k=0 k=0
31 2y
= 2) fk+1)<2f(i)+2 Y f(2k+1)
k=0 k=0
-1 2
= 2 f2k+1)<2> f(2k+1)
k=0 k=0
1
= Y f(2k+1) <0,
k="2-"141

i
2
which is a contradiction as Z fE+1)>0.
k=211

(d) j1,j2 > 1,i; =iz = 0(mod 2). In this case

Si1,g1 = Sizje

i, in o
2 2

= 21142 f2k+2)=2j—-1+2) f(2k+2)
k=0 k=0

— jl = j23
which contradicts (i1,71) # (i2,72)-
() j1=j2=1,i; =iz = 1(mod 2).

(f) j1 =1 <j2,i1 = 1(mod 2),iz = 0(mod 2),iz > ij.
(g) jl =1 <j2,i1 = l(mod 2),i2 = O(mod 2),i2 < 1.



() j1,j2 > 1,i1 = iz = 1(mod 2).
(i) j1,d2 > 1,i =i = 0(mod 2).
(j) j1,d2 > 1,i1 = i2 = 1(mod 2).

Let us now consider when there exists 1,142, 1, j2, (i1,71) # (i2,j2),
such that s;, j, = n — 1 — s;,j,, which requires that s;, j, # s, j,
(mod 2). There are six cases to consider; however, we will show con-
tradictions for only two of them as the remaining four cases use similar
arguments to reach a contradiction.

(a) j1 =j2 =1,i; = 0(mod 2),iz = 1(mod 2). In this case

Sip g1 =M — 1 — Sy

i ig—1
1 1

2
= 2 fk+1)=n-1-1-2 >  f(2k+2)
k=0 k=0
Q, ig—1 1

2

: _
= 2+42) fRE+1)+2 Y fRk+2)=n
k=0 k=0
‘MOT|72

= 2f(0)+2 Y f(k)>n
k=1

|MCT ‘71

= 2 Z f(k) > n,
k=0

|MCT‘71
which is a contradiction as 2 Z f(k) =n.
k=0



(b) j1 =1 < j2,i; =iz = 0(mod 2). In this case

Sipgi =1 — 1= Siy 5

3 29
= 2) fRk+1)=n-1-2p+1-2) f(2k+2)
k=0 k=0
3 22
= 2) fRk+1)+25+2) fRk+2) =n
k=0 k=0
31 22
= 2) f@k+1)+2f(i)+2 ) f2k+2)>n
k=0 k=0
= 2 fRE+1)+2) f2k+2)>n
k=0 k=0
|MCT‘71
= 2 >  f(k)>n
k=1
|MCT‘
= 2 Z f(k) > n,
k=0
|MCT‘_1
which is a contradiction as 2 Z f(k) =n.
k=0
(¢) j1 =j2 =1,i; = 1(mod 2),iz = 0(mod 2).
(d) j1 =1 <j2,i1 =iz = 1(mod 2).
(e) j1.j2 > 1,i; = 0(mod 2),iz = 1(mod 2).
(f) j1.j2 > 1,iz = 1(mod 2),iz = 0(mod 2).

Having shown the vertex labels distinct, it remains to show the edge
labels distinct.

ii. First consider edges of the form e; ;. The value of such an edge is
|n —1—s;; —s;j| =|n—1-2s;;|, which is odd. Since the s; ; values



are distinct,

In—1—=2s; .| =|n—1=2s;, ]
— n—1-— 282'17]'1 =1+ 282'2,]'2 —n
= n—1- Siy g1 = Siajo
= (i1,1) = (i2, J2)-
Thereby, the edges of the form e;; have distinct labels, utilizing all
the odd labels from 1 to n — 1.

Now consider the edges formed in connecting e; 1 with e;_; 1, 1 <17 <
|Mc,.|. Such an edge has value

In—1—si—11 — Si,1]

i—1
= ’rL—1—82',1,1—22]0(]{?)4‘14‘87;,171
k=0

which is even. Moreover, no two such edges have the same value
because f(i) > 0 for all i, 0 < i < |[M¢,|.

Finally consider the edges formed in connecting e;; with e; j, 1 <17 <
|Mc,|, 1 < j < f(i). Such an edge has value

In —1—sij = sil
i—1
= In—1-27+2-2> f(k)+si1+1- s
k=0

i—1
= n-2j+2-2> f(k),
k=0

which is even. No two such edges have the same value, otherwise there
would be some e; ; for which j > f(¢). Using the same argument, no
such edge can have the same value as an edge connecting e;; with
ei—1,1, 1 <i < |Mg,|.

Having now shown the edge labels distinct, T" is graceful. 0

0



The graceful labelling of an 3-distant tree satisfying both of the con-
ditions of Theorem 3 is shown in Figure 4. Given that all 2-distant trees
are 3-distant, and that all 2-distant trees with perfect matchings satisfy the
second condition of Theorem 3, we obtain the following corollary which par-
tially addresses the conjecture of Bermond that all 2-distant trees (lobsters)
are graceful [1].

Corollary 4 All 2-distant trees (lobsters) with perfect matchings are grace-
ful.

15
2 6 5 7
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Figure 4: The graceful labelling of a 3-distant tree satisfying the conditions
of Theorem 3.
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