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Abstract 

In recent years, many regions worldwide have suffered from natural hazards related to the 

impact of human activities and climate change, such as floods and droughts, sea level rise, extreme 

weather events and an accelerated hydrological cycle.  In Africa, the driest continent on Earth, 

climate change has led to more frequent occurrences of droughts of greater severity. Beside climate 

change, human activities have also incurred negative environmental impact which in turn has 

likely affected the climate at a wide range of temporal-spatial scales worldwide. For example, in 

the Middle East, floods of greater magnitude have been occurring more frequently in recent 

decades, which could be attributed partly to rapid urbanization or the effect of climate change, or 

both. In the Nile River basin (NRB), recurring droughts and increasing population have led to 

rising tension between competing users for water. Therefore, to develop more effective mitigation 

strategies against the potential impact of climate change, there is an urgent need to better 

understand changes to the hydrologic cycle of arid regions and linkage to regional climate change. 

The objectives of this dissertation are: 1) To investigate the potential implications of 

urbanization and climate change to the flood risk of Egypt and Saudi Arabia of arid climate in the 

Middle East. 2) To develop a GIS decision support system to delineate flood susceptibility zones 

in the Middle East. 3) To analyze the long-term impact of rapid urbanization on urban climate in 

a hot and arid environment. 4) To assess how past and future anthropogenic climate change and 

land use change (LUC) patterns have impacted arid regions’ environment, water resources, and 

ecosystems. 5) To develop a remote sensing-based water management model in arid regions of 

Middle East to help water managers devise sustainable water use planning and management. 6) To 
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analyze the interdecadal variability in the hydroclimate of the Nile River basin and possible 

linkages to large-scale climate patterns. 7) To investigate the key climatic changes that contributed 

to recent increasing aridity of the Nile river basin. 

Chapter 1. From analyzing the implications of urbanization and climate change to the flood 

risk management of two governorates in Egypt, the results show that since 1970s, urbanization has 

led to higher flood risk despite of the decline in precipitation, because annual surface runoff and 

runoff anomaly show an increasing trend of 12.7 and 14.39 mm/decade, respectively.  The surface 

runoff time series of the two governorates is also developed, which is one of such database first 

developed in Egypt, and it can be used to investigate the hydrologic impact of urbanization.  

Chapter 2. A multi-criteria approach to map flood susceptibility zones in the Middle East 

was developed. An analytical hierarchy procedure was employed to derive the weight of each 

susceptibility factor.  An analysis was done to test the sensitivity of susceptibility factors to the 

flood susceptibility zones of urban watersheds, and the contribution of different susceptibility 

factors in developing urban flood susceptibility maps. The multi-criteria methodology was applied 

to the Riyadh Province, the central region of Saudi Arabia, where the flood susceptibility maps 

developed were validated against historical flood records and re-applied in the Riyadh city of 

different spatial scale. The results show that the proposed methodology is useful for general urban 

planning and assessment of flood susceptibility. Based on results obtained from the sensitivity 

analysis, it is advisable to consider six or more susceptibility factors in developing urban flood 

susceptibility maps, especially factors related to surface runoff and flow accumulation. 

Chapter 3. To study the influence of rapid urbanization on urban climate of Middle Eastern 

countries, the long-term impact of rapid urbanization on air temperature (Ta), relative humidity 

(RH), vapor pressure (VP) and human thermal comfort in the Cairo governorate of Egypt was 
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analyzed. Land use change (LUC) between 1973 and 2017 were derived from Landsat satellite 

data. Next, non-parametric change point and trend detection algorithms were applied to Ta, RH 

and VP over 1950-2017 to assess the impact of urbanization on the urban climate of Egypt. Three 

historical thermal comfort indices: temperature humidity index (THI), effective temperature index 

(ETI) and relative strain index (RSI) were estimated from climate data collected between 1950 and 

2017 to assess the impact of urbanization on human thermal comfort. The result shows that rapid 

urbanization in the Cairo governorate had led to severe heat stress levels and thermal discomfort 

risk in urban areas with limited vegetation covers.  

Chapter 4. To investigate the impact of anthropogenic climate change, human activities and 

land use change (LUC) on the environment and ecosystem services in arid regions, Earth 

observation data, Markov Chain, Cellular Automata, Pettit’s and Mann-Kendall tests were used to 

characterize the dynamic of LUC over coastal regions of Saudi Arabia and their impacts on 

regional climate and environment. Future effects of LUC and climate change in the study area, 

were also projected.  The analysis shows that human alteration from natural vegetation and forests 

to other land uses after 1970s had resulted in the loss, degradation, and fragmentation of forests 

and vegetation, all of which have significant negative effects on the biodiversity of the region.  

Chapter 5. Using meteorological data, gridded climate and satellite data, a water 

management model was developed in arid regions of Middle East. First, the FAO Penman-

Monteith method was used to model the spatial distribution of  potential evapotransipration (ETo) 

on a grid-by-grid basis over the central regions of Saudi Arabia. Then, crop coefficients (Kc) were 

modelled as a function of 16-day time-series MODIS normalized difference vegetation index 

(NDVI). Actual evapotranspiration (AET) at daily, monthly and annual time scales were estimated 

from a soil water balance (SWB) model, Kc maps and ETo. The analysis of NDVI-Kc relationships 
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at each pixel, showed strong agreement between NDVI modeled Kc and actual Kc which fits crop 

growth conditions in the field. The average daily AET data show a statistically significant positive 

trend of 1.5 mm/decade in the study area since 1990. The positive trend in AET is expected to give 

rise to more severe droughts in the future.  Therefore, a strategic management of irrigated water is 

necessary to minimize unnecessary wastage. 

Chapter 6. A comprehensive analysis on the interannual to interdecadal variability in the 

hydroclimate of the Nile River basin (NRB) and possible teleconnection to large-scale climate 

patterns, the spatio-temporal variability, frequency, intensity, change point and trend of monthly 

precipitation, precipitation anomaly, temperature, temperature anomaly, geopotential height, 

relative humidity, specific humidity, actual evapotranspiration (AET), and wind stresses data over 

the basin level was conducted. The results show significant hydroclimate changes in NRB in recent 

decades. Besides climate warming, statistical analysis, wavelet transform coherence (WTC) 

analysis, composite analysis, and detrended cross-correlation analysis (DCCA) also show that 

beside ENSO, IOD plays a crucial role on NRB’s hydroclimate variability over inter-decadal and 

longer timescales. 

Chapter 7. The primary driving factors that contributed to recent increased aridity of the Nile 

river basin (NRB) were identified. Besides climate warming, statistical and wavelet transform 

coherence (WTC) analysis shows that the influence of stronger ENSO and Indian Ocean dipole 

(IOD) in NRB has increased after 1980s, particularly the influence of IOD on NRB’s hydroclimate 

over inter-decadal timescales. A shift in zonal winds (westward) and meridional winds (southward) 

associated with stronger El Niño events has contributed to the increased aridity of NRB after 

1970s, given stream function, GPH and U-wind anomalies associated with El Niño show that 

changes in regional atmospheric circulations during more persistent and stronger El Niño has 
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resulted in drier NRB. After 1970s, WTC between El Niño, IOD, sc-PDSI (self-calibrating Palmer 

Drought Severity Index) and SPI (Standard Precipitation Index) shows significant anti-phase 

relationships, which again demonstrates that more frequent and severe El Niño, IOD and SST 

gradient over the Arabian Sea (WTIO) in recent years has led to more severe droughts in NRB. 

Furthermore, from WTC and strong negative correlations between SPI, sc-PDSI and WTIO, 

NRB’s hydroclimate is shown to be more strongly influenced by WTIO than by IOD, and the Nile 

flow is more strongly teleconnected to IOD and WTIO than El Niño at inter-annual and inter-

decadal time scales. Contrary to past finding, our results show that IOD and WTIO are better 

predictors of the Nile flow than El Niño. Climate projections suggest that under the combined 

impact of warming and stronger WTIO and El Niño events, future droughts of the NRB are 

expected to worsen.   

Conclusions and future work are provided in Chapter 8. 

 

 



vii 
 

Preface 

This thesis is my original work and is organized in an article format. The thesis consists of 

eight chapters and each chapter is written as an integrated paper for journal submission. As such, 

each chapter contains standalone introductions, methods, results and conclusions. A general 

introduction section is provided at the beginning of the thesis, research conclusions and 

recommendations are summarized in Chapter 8, and supplementary materials are provided at the 

end of thesis. Chapter 1 of the thesis has been published as Mahmoud, S. H., & Gan, T. Y. (2018). 

Urbanization and climate change implications in flood risk management: Developing an efficient 

decision support system for flood susceptibility mapping. Science of The Total Environment, 636, 

152-167. Chapter 2 has been published as Mahmoud, S. H., & Gan, T. Y. (2018). Multi-criteria 

approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner 

Production, 196, 216-229.  Chapter 3 has been published as Mahmoud, S. H., & Gan, T. Y. (2018). 

Long-term impact of rapid urbanization on urban climate and human thermal comfort in hot-arid 

environment. Building and Environment, 142, 83-100. 

 Chapter 4 has been published as Mahmoud, S. H., & Gan, T. Y. (2018). Impact of 

anthropogenic climate change and human activities on environment and ecosystem services in arid 

regions. Science of the Total Environment, 633, 1329-1344. Chapter 5 has been published as 

Mahmoud, S. H., & Gan, T. Y. (2019). Irrigation water management in arid regions of Middle East: 

assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques 

and meteorological data. Agricultural Water Management, 212, 35-47.  The work on Chapter 6 has 
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been submitted to Journal of Climate Dynamics as Mahmoud, S.H., Gan, T.Y. 2020. Multidecadal 

variability in the Nile River Basin hydroclimate controlled by ENSO and Indian Ocean Dipole.  

Chapter 7 Worsening Drought of Nile Basin by Atmospheric Circulation Shift, Stronger 

ENSO and Indian Niño has been written to be submitted to one of Nature journals. In addition, I 

am planning to reorganize the work in the supplementary section (Mahmoud, S.H & Gan, T.Y) into 

three other journal articles. An aggregated bibliography has been provided for the entire thesis to 

avoid references overlapping.  
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General Introduction 

 

In recent decades, many regions worldwide have suffered from the significant impact of 

human activities, urbaiziation, climate change, hydrologic extremes such as floods and droughts, 

rising sea level, extreme weather events and an accelerated hydrological cycle.  In Africa, the driest 

continent on Earth, has been linked to more frequent occurrences of severe droughts, rising 

temperature and altered precipitation patterns (Ramanathan et at., 2001; Shanahan et al., 2009; 

Williams and Funk, 2011). Beside climate change, human activities have also incurred negative 

environmental impact which in turn will affect the climate at a wide range of scales worldwide. 

For example, in the Middle East, floods of greater magnitude have been occurring more frequently 

in recent decades, which could be attributed partly to rapid urbanization or the effect of climate 

change or both. There is a lack of flood susceptibility studies in arid regions of Africa and 

information related to the influence of climate change and urbanization in surface hydrology of 

these regions. An analysis of long-term surface runoff data of urban areas can generally reveal the 

effects of urbanization. However, most studies have not considered the effects of both urbanization 

and climate change impact to urban surface runoff and the development of flood susceptibility 

maps, e.g., (Cherqui et al., 2015; Chen et al., 2015; Xiao et al., 2017; Hong et al., 2017; Termeh 

et al., 2018; Zhao et al., 2018).  

The frequent occurrences of extreme weather have caused flooding to be one of the most 

destructive natural hazards in arid regions. In arid regions of Africa, surface runoff from high 

latitude regions tend to post a threat to its urban residents, facilities, and infrastructure. Recent 

flooding events that occurred in countries such as Egypt and others in Africa show that arid/semi-

arid regions in the Middle East region are susceptible to floods. Therefore, it is critical to control 
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floods through proper land use management. Owing to their magnitude and sudden arrival often 

with minimal warning, floods usually lead to serious disasters locally. Since the 1970s, population 

growth in Africa has increased dramatically and therefore urbanization has become a major issue 

socially and politically. Rapid urbanization has also led to an imbalance between demand and 

supply, the available infrastructure is under stress, and the urban climate is altered. Therefore, 

more efforts are needed to better understand the influence of rapid urbanization on urban climate 

in many if not all Middle Eastern countries of arid climate. There also a need for how land use 

change (LUC) and climate change have affected the ecosystems and the environment at various 

spatiotemporal scales. Under the impact of global warming, many hydroclimate variables of arid 

regions have changed, therefore there is an essential need for a strategic management of water 

resources, which are limited in many Middle Eastern countries. The development of models to 

estimate irrigation water requirement based on remotely sensed data applicable over large areas in 

arid regions of Middle East can be challenging because irrigation water requirements are essential 

but available water resources are limited.  

In a larger scale, recurring droughts and increasing population have led to rising tension  

between competing users for water in the Nile River basin (NRB). Therefore, there is a need for 

better understanding of the hydrological cycle of arid regions and linkage to regional climate 

change to better develop mitigation strategies against the potential impact of future climate change. 

Most of the published research on the NRB climatology and climate change impact studies has 

been concentrated in the upper BNB stream countries (Cheung et.al., 2008; Zhang et al., 2012; 

Muhire and Ahmed, 2015; Ongoma et.al., 2018). Other studies analyzed the effects of climate 

change on a specific hydroclimate variable such as precipitation, temperature and streamflows at 

sub-basin level (Phillips and McIntyre, 2000; Nyeko-Ogiramoi et al., 2013; Taye and Willems, 
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2012; Tierney et al., 2013; Onyutha, 2016; Onyutha and Willems, 2015). However, impact of 

climate change on the hydroclimate of the NRB in a lumped manner is still unclear. Therefore, it 

is necessary to improve our understanding of the hydrological cycle and variability in hydroclimate 

variables of the Nile River basin, giving there is generally a lack of similar studies at the basin 

level. The results from such studies would help us to better develop mitigation strategies for these 

riparian countries against the potential impact of climate change.  

In this thesis, the potential implications of urbanization and climate change to the flood risk 

of Egypt and Saudi Arabia of arid climate in the Middle East are examined in Chapters 1. Then, 

in Chapters 2, a GIS decision support system was developd to delineate flood susceptibility zones 

in the Middle East to develop more effective mitigation strategies against the potential impact of 

climate change and urbanization. The log-term impact of rapid urbanization on urban climate in 

arid environment is presented in Chapter 3. Important information on how past and future 

anthropogenic climate change and land use change (LUC) patterns have impacted arid regions’ 

environment, water resources, and ecosystems in Chapter 4. In Chapter 5,  a remote sensing-based 

water management model is developed to help water managers devise sustainable water use 

planning and management in arid regions of Middle East. After devoting the first five chapters on 

the regional impacts of climate change, human activities and urbanization in arid regions’ climate, 

water resources and ecosystem services, the last two chapters (Chapter 6 and 7) expands to inter-

annual to interdecadal variability in the hydroclimate of the Nile River basin and possible linkages 

to large-scale climate patterns (Chapter 6). Then, the primary driving factors that contributed to 

recent increased aridity of the Nile river basin (NRB) were identified and is presented in Chapter 

7. An overall summary and recommendations of all conclusions from Chapters 1-7 is presented in 

Chapter 8.  
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Chapter 1 has been published in the Journal of Science of The Total Environment with the 

following citation: Mahmoud, S. H., & Gan, T. Y. (2018). Urbanization and climate change 

implications in flood risk management: Developing an efficient decision support system for flood 

susceptibility mapping. Science of The Total Environment, 636, 152-167.  

The effects of urbanization and climate change impact to the flood risk of two governorates 

in Egypt were analyzed. Non-parametric change point and trend detection algorithms were applied 

to the annual rainfall, rainfall anomaly, and temperature anomaly of both study sites. Next, change 

points and trends of the annual and monthly surface runoff data generated by the Curve Number 

method over 1948-2014 were also analyzed to detect the effects of urbanization on the surface 

runoff. Lastly, a GIS decision support system was developed to delineate flood susceptibility zones 

for the two governorates. The significant decline in annual rainfall and rainfall anomaly after 1994 

at 8.96 and 15.3 mm/decade respectively was likely due to climate change impact, especially 

significant warming trend since 1976 at 0.16 oC/decade, though that could partly be attributed to 

rapid urbanization.  

Since 1970, effects of urbanization to flood risk are clear, because despite a decline in 

rainfall, the annual surface runoff and runoff anomaly show positive trends of 12.7 and of 14.39 

mm/decade, respectively. Eleven flood contributing factors have been identified and used in 

mapping flood susceptibility zones of both sites. In the El-Beheira Governorate, 9.2%, 17.9%, 

32.3%, 28.3% and 12.3% of its area are categorized as very high, high, moderate, low and very 

low susceptibility to flooding, respectively. Similarly, in Alexandria Governorate, 15.9%, 33.5%, 

41%, 8.8% and 0.8% of its area are categorized as very high, high, moderate, low and very low 

susceptibility to flooding, respectively. Very high and high susceptible zones are located in the 

northern, northwestern and northeastern parts of the Beheira Governorates, and in the northeastern 
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and northwestern parts of Alexandria.  The flood related information obtained in this study will be 

useful to assist mitigating potential flood damages and future land use planning of both 

governorates of Egypt. 

 

Chapter 2 has been published in the Journal of Cleaner Production with the following 

citation: Mahmoud, S. H., & Gan, T. Y. (2018). Multi-criteria approach to develop flood 

susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216-229.  

The research study introduced a methodology for identifying flood susceptibility zones using 

a multi-criteria analysis. The methodology was applied in the Riyadh Province, the central region 

of Saudi Arabia, validated using historical flood records and re-applied in the Riyadh city to assess 

the effect of scale on the results. The methodology incorporates 10 susceptibility factors: flow 

accumulation, annual rainfall, slope, runoff, land use/cover, elevation, geology, soil type, distance 

from the drainage network, and drainage density. An analytical hierarchy process was employed 

to derive the weight of each susceptibility factor, and sensitivity analysis was done to test how 

sensitive are the results to changes in the weights of susceptibility factors, and to evaluate the 

contribution of different susceptibility factors in developing the flood susceptibility maps. These 

maps were found to be in good agreement with historical flood events in the Riyadh province and 

Riyadh city and so they should be useful to assist flood mitigation and for future land use planning 

in both Riyadh province and Riyadh city. The proposed methodology is useful for general planning 

and assessment purposes, since it has been shown to be independent of scale, given similar flood 

susceptibility zones for the Riyadh region were obtained from both large-scale and small-scale 

models. The highest flood susceptibility areas are found in northern, northeastern, and 

northwestern parts of the Riyadh Province. Key contributing factors to flood susceptibility are 
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surface runoff, flow accumulation, soil type, elevation, distance to drainage network, drainage 

density, land use, slope, and geology. Based on results obtained from the sensitivity analysis, it is 

advisable to consider six or more susceptibility factors in developing flood susceptibility maps, 

especially factors related to surface runoff and flow accumulation. 

Chapter 3 has been published in the Journal of Building and Environment with the following 

citation: Mahmoud, S. H., & Gan, T. Y. (2018). Long-term impact of rapid urbanization on urban 

climate and human thermal comfort in hot-arid environment. Building and Environment, 142, 83-

100. 

The long-term impact of rapid urbanization on air temperature (Ta), relative humidity (RH), 

vapor pressure (VP) and human thermal comfort in the Cairo governorate of Egypt was analyzed. 

Land use change (LUC) between 1973 and 2017 were derived from Landsat satellite data. Next, 

non-parametric change point and trend detection algorithms were applied to Ta, RH and VP over 

1950-2017 to estimate the impacts of urbanization on urban climate. Three historical thermal 

comfort indices: temperature humidity index (THI), effective temperature index (ETI) and relative 

strain index (RSI) were estimated from climate data collected between 1950 and 2017 to assess 

the impact of urbanization on human thermal comfort. The results reveal substantial LUC, rapid 

increasing impervious surface areas in low-lying areas of Cairo at 75.2 km2 /decade since the 

1990s. Rapid urbanization had resulted in a statistically significant change point in Ta after 1995 

with a warming trend of 0.19 oC /decade, a negative trend in RH of 0.55% /decade and a rising 

trend in VP of 0.24 hPa /decade. Severe heat stress levels emerged and persisted every July-

September since 1994. THI, ETI, and RSI show statistically significant change points at 1994 and 

a rising trend of 0.33 0C /decade, 0.29 0C /decade, and 0.06 /decade, respectively. The highest 

thermal discomfort risk was found in urban areas of the old Cairo, but the risk is marginally smaller 
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at new cities where there are vegetation covers. This study clearly demonstrates the impacts of 

rapid urbanization on the urban climate of hot-arid environment. 

 

Chapter 4 has been published in the Journal of Science of The Total Environment with the 

following citation: Mahmoud, S. H., & Gan, T. Y. (2018). Impact of anthropogenic climate change 

and human activities on environment and ecosystem services in arid regions. Science of the Total 

Environment, 633, 1329-1344.  

The implications of anthropogenic climate change, human activities and land use change 

(LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were 

analyzed. Earth observations data was used to drive land use categories between 1970-2014. Next, 

a Markov-CA model was developed to characterize the dynamic of LUC between 2014-2100 and 

their impacts on regions’ climate and environment. Non-parametric change point and trend 

detection algorithms were applied to temperature, precipitation and greenhouse gases data to 

investigate the presence of anthropogenic climate change. Lastly, climate models were used to 

project future climate change between 2014-2100. The analysis of LUC revealed that between 

1970 and 2014, built up areas experienced the greatest growth during the study period, leading to 

a significant monotonic trend. Urban areas increased by 2349.61 km2 between 1970 and 2014, an 

average increase of more than 53.4 km2 /yr. The projected LUC between 2014- 2100 indicate a 

continued increase in urban areas and irrigated cropland. 

 Human alteration of land use from natural vegetation and forests to other uses after 1970, 

resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on 

the biodiversity of the region. Resulting in a statistically significant change point in temperature 

anomaly after 1968 with a warming trend of 0.24 oC/decade and a downward trend in precipitation 

anomaly of 12.2 mm/decade. Total greenhouse gas emissions including all anthropogenic sources 
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showed a statistically significant positive trend of 78090 Kt/decade after 1991. This is reflected in 

the future projection of temperature anomaly between 1900-2100 with a future warming trend of 

0.19 0C/decade. In conclusion, human activities, industrial revelation, deforestation, land use 

transformation and increase in greenhouse gases had significant implications on the environment 

and ecosystem services of the study area. 

Chapter 5 has been published in the Journal of Agricultural Water Management with the 

following citation: Mahmoud, S. H., & Gan, T. Y. (2019). Irrigation water management in arid 

regions of Middle East: assessing spatio-temporal variation of actual evapotranspiration through 

remote sensing techniques and meteorological data. Agricultural Water Management, 212, 35-47.  

Spatial and temporal distribution of reference (ETo) and actual evapotranspiration (AET) over 

the central region of Saudi Arabia during 1950–2013 are estimated using remote sensing and GIS 

techniques.  Firstly, the FAO Penman-Monteith method was used to model the spatial distribution 

of ETo on a grid-by-grid basis using data collected from meteorological stations and GIS 

techniques. Then, crop coefficients (Kc) were modeled as a function of 16-day time-series MODIS 

normalized difference vegetation index (NDVI). Next, using Kc maps and ETo as input, daily AET 

was simulated by the soil water balance (SWB) model and aggregated to monthly and annual AET. 

From empirical NDVI-Kc relationships developed and applicable at pixel level, Kc derived from 

the NDVI-Kc relationships agree well with Kc recommended by FAO over various crop growth 

stages in the field. The monthly AET maps for 1950-2013 show a gradual increase in AET during 

the crop-growing season in January to May but a subsequent decline as the season progresses from 

June to December. The AET estimated for January to June are arranged in descending order, which 

are May (3.67-44.7 mm/day), April (5.99-36.8 mm/day), March (2.96-32.7 mm/day), February 

(0.68-20 mm/day), June (2.42-17.7 mm/day) and January (1-11 mm/day), respectively. Statistical 
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analysis shows that statistically significant change point in daily AET generally occurred in 1990, 

such that the long-term average daily AET of 1950-1990 at 3.6 mm/day increased to about 5.3 

mm/day between 1990 and 2016 with a positive trend of 1.5 mm/decade. The annual AET 

estimated for irrigated cropland in northern and central regions of Riyadh, Al-Qassim province 

and Hail province range from 1200 to 2900 mm/year.  In these regions, low AET values are found 

in shrubland, grassland, and other natural vegetation. The annual AET estimated by the SWB 

model are about 9-11% higher than modeled AET in the study area, where the long-term average 

daily AET estimated for 1950-2013 range from 2 mm/day to 30 mm/day.  Representative AET 

maps derived from applying the NDVI-Kc relationships to the SWB model will be useful to 

achieve the planning and management of sustainable water use in arid regions of Middle East.  

Chapter 6. Our analysis of the Nile River basin (NRB) hydroclimate shows significant 

climate change impact in recent decades: a decreasing trend in precipitation at 16.2 mm/decade 

since 1970s, increasing trend in wind speed and zonal wind stress at 0.02 m/decade and 1.51 

m2/s2/decade respectively since 1975, increasing trend in geopotential height (GPH) at 3.1 

m/decade since 1976, warming trend at 0.19°C/decade, decreasing trend in relative humidity (RH) 

since 1977, and increasing trend in actual evapotranspiration (AET) at 1.2 mm/decade since 1995, 

mainly from water bodies of many riparian countries of NRB between 1985 and 2017. Higher AET 

in recent decades can be partly attributed to stronger El Niño amplitudes. Composite analysis of 

NRB’s hydroclimate data between 1948 and 2017 also shows significant changes across the entire 

NRB: a drop in daily precipitation in the NRB except for Uganda. RH has decreased by 1-

5%/decade after 1985. The decrease in RH, soil moisture, had been the most significant in Uganda, 

Sudan, and northwestern Ethiopia where the increase in temperature, GPH, AET and wind stresses 

had also been the highest. Specific humidity decreased in Sudan, northwestern regions of Ethiopia 
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(in lowland) except Uganda. The increase in scalar, zonal, meridional wind was maximum in 

Uganda, Sudan, and northwestern regions of Ethiopia between 1985 and 2017.  

The composite analysis also showed that GPH become thicker in the last few decades as 

the temperature increases. Besides climate warming, statistical analysis, wavelet transform 

coherence (WTC) analysis, composite analysis, and detrended cross-correlation analysis (DCCA) 

also show that beside ENSO, IOD plays a crucial role on NRB’s hydroclimate variability over 

inter-decadal and longer timescales. This is s particularly evident in the strong correlation between 

El Niño 3.4, surface temperature Ts (𝜌 = 0.97), GPH (𝜌 = 0.81), relative humidity (𝜌 = -0.97), 

precipitation ( 𝜌 = -0.7). There is also a significant positive correlation between AET and El Niño 

3.4 (𝜌 =0.93) in contrast to negative correlation between AET and IOD (𝜌 = -0.47), which shows 

that El Niño affect the AET of NRB. The correlation of these hydroclimate variables with IOD are 

generally high but lower than with El Niño’s. However, WTC showed that IOD plays a more 

important role on the hydroclimate variability in the NRB at longer timescales than El Niño. There 

is also a strong negative correlation between IOD and the NRB precipitation. The results from this 

study improve our understanding of the NRB hydroclimate and help us to better develop mitigation 

strategies for these riparian countries against the potential impact of climate change.  

Chapter 7. Low precipitation and warming have been attributed as key drivers to droughts 

of Africa.  From the analysis of hydroclimate data, we identify key driving forces behind the recent 

increasing aridity of the Nile river basin (NRB). Our results show that the increased influence of 

stronger ENSO and Indian Ocean dipole (IOD) in NRB after 1980s, particularly the influence of 

IOD and SST gradient over the Arabian Sea (WTIO), have significantly contributed to NRB’s 

drought severity over inter-annual to inter-decadal timescales. Further, shift in zonal winds 

(westward) and meridional winds (southward) associated with stronger El Niño events, and 
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southward shift of atmospheric stream functions have contributed to the increased aridity of NRB 

after 1970s. Recent changes in atmospheric circulations represented by stream function, 

geopotential height and zonal/meridional wind anomalies associated with El Niño, which has 

become more persistent and stronger, has resulted in drier NRB, where its streamflow at gauging 

stations have decreased from 13.7 to 114.1 CBM/decade. Contrary to past findings, we also show 

that IOD and WTIO are better predictors of the Nile streamflow than El Niño. Furthermore, climate 

projections suggest that under the combined impact of warming and stronger WTIO and El Niño 

events, future droughts of the NRB will worsen.   
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Chapter 1 Urbanization and climate change implications in flood risk management  

1.1 Introduction 

In recent years, because of urbanization, there is an increase in flood risk even in arid regions 

with a limited amount of annual rainfall. Various flood risk studies reported the effect of 

urbanization in surface runoff (Satterthwaite, 2008, Zhang et al., 2008a; Fernández et al., 2010).  

These studies reported that increase in urban areas and impervious surfaces have led to an increase 

in surface runoff because less water is lost by soil infiltration. On the other hand, there are studies 

that attributed the rising frequency of flood occurrences to the impact of climate change (Gizaw 

and Gan, 2015; Jiang et al., 2015). Precipitation in arid regions tends to be more variable in time 

than in humid regions (Pilgrim, 1988), and so are more vulnerable to hydrologic extremes such as 

flood and droughts. In the driest continent of Africa, climate change has been linked to more 

frequent occurrences of severe droughts, rising temperature and altered precipitation patterns 

(Ramanathan et at., 2001; Shanahan et al., 2009; Williams and Funk, 2011). In countries such as 

Egypt, floods have been occurring more frequently and in greater severity in recent decades. A 

hypothesis is herein investigated whether increasing flood events in Egypt are due to rapid 

urbanization or the effect of climate change.  

Therefore, we will investigate the implications of urbanization and climate change in the 

flood risk of Egypt, which is representative of the climate of other arid regions in the Middle East. 

The recurrent occurrences of flooding in Egypt, especially in its coastal regions has led to 

catastrophic and costly damage to properties and threat to human life, which may be because of 

rapid urbanization along the Nile River. In northern, coastal regions of Egypt’s Nile Delta and 

coastal areas along the Mediterranean Sea, flood discharge from wadi basins can be a threat to 
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coastal cities, towns, and villages. Since 1990, more than seven hundred people in Egypt had lost 

their life because of flash floods, and about 250,000 people were affected (Guha-Sapir et al., 2014). 

Therefore, flood-susceptible areas should be identified so that responses to flooding emergencies 

can be executed quickly and effectively. Historically, Egypt’s most affected regions are El-

Beheira, Alexandria, Sinai, Matruh, Cairo, and Giza, which are vulnerable to the potential threat 

of increased surface runoff, particularly in arid regions where people tend to be ill-prepared against 

flood hazards. 

    An analysis of long-term surface runoff data of urban areas can generally reveal the effects 

of urbanization. A limited number of studies have used the runoff curve number method to 

compute surface runoff and its effects to urban communities (Lim et al., 2006; Shi et al., 2007; 

Banasik et al., 2014). However, most studies have not considered the effects of both urbanization 

and climate change impact to urban surface runoff and the development of flood susceptibility 

maps, e.g., (Cherqui et al., 2015; Chen et al., 2015; Xiao et al., 2017; Hong et al., 2017; Termeh 

et al., 2018; Zhao et al., 2018). Methods such as Multi-criteria decision support system and analytic 

hierarchy process have proven to be effective tools in developing flood susceptibility maps (Ouma 

and Tateishi, 2014; Kazakis et al., 2015; Melesse and Abtew, 2016). Researchers have used various 

hydrologic and climatic data that contribute to floodings, such as precipitation, runoff, digital 

elevation model (DEM), curvature, geology, land use/cover (urbanization), soil type, topographic 

wetness index and slope (Şen, 2004; Nouh, 2006). However, because of a lack of data, only a 

limited number of studies have used comprehensive datasets in delineating flood-prone areas of 

river basins.  For instance, Fernandez and Lutz (2010) used five flood contributing factors to 

analyze flood-prone areas in the Tucumán Province of Argentina: distance to the drainage 

channels, topography, groundwater table depths, and land use.  Kazakis et.al (2015) mapped flood 
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hazard areas of the Rhodope–Evros region of Greece based on seven factors, namely, flow 

accumulation, distance from the drainage network, elevation, land use, rainfall intensity and 

geology. Tehrany et.al (2015) did that for Malaysia using ten factors: altitude, slope, curvature, 

stream power index (SPI), topographic wetness index (TWI), distance from the river, geology, 

land use/cover (LULC), soil, and annual surface runoff, but they used a different set of factors in 

an earlier study (Tehrany et al., 2013).  

  We expect that a systematic analysis of a comprehensive dataset will lead to a representative 

delineation of flood susceptibility areas, which can later be validated against ground observations 

of past flood events. Elkhrachy (2015) used an AHP approach to map flood hazards zones in 

Najran city of Saudi Arabia. Among the conditions considered, annual surface runoff, soil type, 

surface slope, surface roughness, drainage density, distance to the main channel and land use, 

Elkhrachy (2015) assigned a weighting factor of 35.5% to the annual surface runoff, making it one 

of the most important factors in flood susceptibility mapping. Many past studies derived the 

relative contribution of each factor to floods based on authors’ experience, literature review and 

weighting methods and validate final flood susceptibility maps developed against historical flood 

records. Flash floods occur periodically in El-Beheira and Alexandria governorates due to a lack 

of proper drainage systems and rapid urbanization. In 2013, surface runoff destroyed about 

121 km2 of agricultural land in El-Beheira governorate. Alexandria governorate also suffered from 

increased surface runoff that badly flooded streets of the coastal city and damaged many private 

properties. Residents of Alexandria expressed their outrage at the former government of 

Alexandria that failed to efficiently flood-proof the city against foreseeable events. In recent years, 

floods in El-Beheira had caused twenty-five deaths, forced hundreds of schools to shut down, 

dozens of people were forced to evacuate from their homes, and large swathes of buildings in the 
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region were destroyed. Therefore, the objective of this study was to investigate the effects of 

urbanization and climate change in the flood risk management of arid regions, in addition, to 

developing flood susceptibility maps to support decision making in the rescue operation. 

To achieve our objectives, we first analyzed the variability and trends of the annual 

precipitation and temperature of the two governorates to estimate the possible impact of climate 

change. Next, to estimate the effects of urbanization to the flood risk of the two governorates, we 

applied the runoff curve number method to develop the time series of surface runoff for the two 

governorates between 1948-2014. Change point detections and trend analysis techniques were then 

applied to the surface runoff data to find the change points and trend.  Surface runoff anomalies 

were also analyzed to assess the influence of urbanization in surface runoff. Finally, we developed 

a GIS decision support system to delineate flood susceptibility zones in the Beheira and Alexandria 

Governorates of Egypt.  The accuracy of the flood susceptibility maps developed was verified with 

historical flood records. 

This study is necessary given there is generally a lack of flood susceptibility maps in Egypt 

and information related to the influence of climate change and urbanization in the surface runoff 

of Egypt. Similar situations are found in many if not all Middle Eastern countries of arid climate.  

Other than useful for flood risk management, flood susceptibility maps we have developed will 

also benefit planners and governments in choosing suitable locations for future developments and 

in mitigating potential flood damages and future land use planning in Beheira and Alexandria 

governorates. Furthermore, the surface runoff time series developed could be used in other 

hydrological studies in the two governorates of Egypt.  
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1.2 Study area 

This study was conducted in two governorates of Egypt.  The first is the El-Beheira governorate 

(Figure 1.1) is located in the north coastal region of Egypt’s Nile Delta (30.61°N, 30.43°E) with an 

area of about 10,130 km2. El-Beheira’s annual rainfall ranges from 29 mm/year in the south to 190 

mm/yr in the north. The second is the Alexandria governorate (31.20° N, 29.92° E) which lies along 

the Mediterranean coast, at about 70 km northwest of the Nile Delta (Figure 1.1) occupying an area 

of 2818 km2 and an average annual rainfall of about 169 mm/yr. Alexandria’s rainfall 

predominantly occurs along the north coastal area, which is heavily urbanized, and it decreases 

quickly southwards.   

 

Figure 1.1 Location of Beheira and Alexandria governorates in Egypt 

1.3 Research methodology 

1.3.1 Change point analysis 

Long-term monthly rainfall and temperature data between 1948-2014 were obtained from the 

University of Delaware and processed to derive mean annual temperature and rainfall, rainfall and 

temperature anomalies between 1948 and 2014.  We applied two nonparametric, change point 
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detection methods, SNHT and Buishand's methods to mean monthly rainfall, annual rainfall, and 

rainfall anomaly data.  We also conducted trend analysis on temperature data to detect warming 

trends which has been attributed to rising concentration of greenhouse gases caused by 

anthropogenic activities (Ren et al., 2008; Yan et al., 2010; Banasik et al., 2014). The SNHT test 

has been commonly used to detect a shift in the mean value of climate time-series (Wijngaard et 

al., 2003; Wang et al., 2007; Zhang et al., 2008b). The test check for a null hypothesis (no change 

point or trend) and an alternative hypothesis, where the time series tested may have a change point 

or a trend, or both:  

𝑀𝑥 = 𝑥�̅�1 + (𝑛 − 𝑥)�̅�2           where x = 1, 2, 3…, n.                          (1-1) 

𝑀𝑥  is a statistic to compute the mean temperature/rainfall value at year x with the mean value at 

year n-x.   

Where  �̅�1 =
1

𝑥
 ∑

(𝑥𝑖−�̅�)

𝑠

𝑛
𝑖=1  and �̅�2 =

1

𝑛−𝑥
 ∑

(𝑥𝑖−�̅�)

𝑠

𝑛
𝑖=𝑥+1           

Where s is the number of positive minus the number of negative differences between xi+1 and xi, 

(xi+1 - xi), i = 1, 2…, n-1. If s is positive, xi+1 > xi, and if s is negative, then xi+1 < xi. The year x is 

considered as a change point if the value of  𝑀𝑥 is maximum. To reject the null hypothesis the 

following statistic should be achieved; The value of 𝑇0 should be greater than the critical value of 

the test.  

𝑇0 = 𝑚𝑎𝑥
1≤𝑥≤𝑛

𝑀𝑥                                                                                                                                   (1-2)  

Buishand's method works in a similar manner but instead on comparing the mean at each year to 

the critical value, the test uses the adjusted partial sum defined as:  

𝑆𝑢𝑚0 = 0                                                                                                                   (1-3) 

 𝑆𝑢𝑚𝑥 = ∑ (𝑥𝑖 − �̅�)
𝑥
𝑖=1                                                                                             (1-4) 
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If  𝑆𝑢𝑚0 = 0 , the time series is homogeneous, and we accept the null hypothesis.  However, if 

𝑆𝑢𝑚𝑥 is maximum or minimum which means there is a change point at year x.  The magnitude of 

𝑆𝑢𝑚𝑥  indicates the type of shift in the time series such that a maximum value indicates a 

downward shift and a minimum value indicates upward shift. The adjusted range, A is as follow: 

 𝐴 =
( 𝑚𝑎𝑥
0≤𝑥≤𝑛

𝑆𝑢𝑚𝑥− 𝑚𝑖𝑛
0≤𝑥≤𝑛

𝑆𝑢𝑚𝑥)

𝑆
                                                                        (1-5) 

Where 𝐴
√𝑛  
⁄ is then compared with the critical values of the test according to Buishand (1982), 

to check if the change point is statistically significant. Then, the non-parametric Mann–Kendall 

was used to detect trend in temperature anomalies and monthly, annual and anomaly rainfall time 

series between 1948 and 2014:  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                                     (1-6) 

Each data point 𝑥𝑖   is considered as a reference and compared with the remaining data points 𝑥𝑗  : 

𝑆𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1                  𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0 

0                     𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1                   𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

                                                (1-7) 

The variance statistic is calculated as follow: 

𝑉𝑎𝑟 (𝑆) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑗(𝑡𝑗−1)(2𝑡𝑗+5)

𝑝
𝑗=1

18
                              (1-8) 

Where p is the number of groups in which each group consists of data points of equal values, and 

tj is the number of data points in the jth group. Using the following Z-transformation, the statistic 

S is approximately normally distributed: 

𝑍 =

{
 

 
𝑆−1

(𝑉𝑎𝑟 (𝑆))0.5
                  𝑖𝑓 𝑆 > 0 

0                               𝑖𝑓 𝑆 = 0
𝑆+1

(𝑉𝑎𝑟 (𝑆))0.5
                𝑖𝑓 𝑆 < 0

                                                     (1-9) 

The slope (Tj) is computed according to Sen (1968) as follow: 

𝑇𝑗 =
𝑥𝑗−𝑥𝑖

𝑗−1
                                                                                             (1-10) 



8 
 

The sign of the slope indicates if the trend of the time series is positive or negative. 

1.3.2 Effects of Urbanization in surface runoff  

In general, there is a lack of surface runoff data in Egypt and Middle East Countries. Therefore, 

surface runoff data was estimated from the popular curve number method to transform to surface 

runoff and soil infiltration loss (Zhan and Huang, 2004; Bo et al., 2011). In the absence of detailed 

watershed information, this method is practical for it only requires general information such as 

landuse, treatment or practice, soil hydrologic condition, hydrologic soil group, and antecedent 

moisture condition to determine the curve number (CN) needed to estimate the storage at saturation 

and then the surface runoff. A composite or a really weighted CN is often for a river basin with 

several sub-regions (Zhan and Huang, 2004).  The curve number method was applied to the two 

governorates based on their respective hydrological soil groups, land use, and slope.  

A series of Landsat images of 1972-2014 were obtained from the U.S. Department of the Interior 

U.S. Geological Survey and classified into land use maps to track changes in urbanization over the 

years. The urban areas remained more or less unchanged over 1948-1970, but starting in 1970, 

urban areas gradually increased. Based on the hydrological soil groups, land use maps of different 

years, we calculated the CN for the two governorates, and update them every four years. From 

applying monthly rainfall data of 1948-2014 to the CN calculated, we derived the monthly and 

annual surface runoff data between 1948 and 2014.  Next, two nonparametric change point tests, 

SNHT and Buishand's were applied on monthly, annual surface runoff, and surface runoff anomaly 

to detect possible change points in the surface runoff. The trends of these surface runoff data were 

estimated using the Mann–Kendall trend test. The magnitude of change in the surface runoff was 

estimated using Sen’s slope method. There is no historical runoff data exist for the two study areas. 
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So, our results were validated against annual surface runoff data of 2006-2014 and was found to 

agree well with recorded annual surface runoff.   

1.3.3 Flood susceptibility mapping 

After investigating effects of rapid urbanization and climate change in surface runoff, we 

developed the following flood susceptibility maps by an approach shown in Figure 1.2 for the 

flood risk management of the two governorates of Egypt.  

 
Figure 1.2 Workflow chart 

 

1.3.4 Selection Criteria and Data Processing 

Compared with past flood susceptibility studies, we have used a field survey and historical 

flood records of Egypt to identify eleven factors based on their relations to flooding in Egypt, to 

map flood susceptibility zones of the two governorates: land use/cover, rainfall intensity, runoff, 
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flow accumulation, drainage density, distance from the drainage network, elevation, slope, soil 

type, geology, and curvature.   

1.3.5 Assessment of factors susceptibility level 

From the literature review, and the ranking method of Saaty (1980), we ranked the above 

eleven factors with respect to their respective level of susceptibility and relevance to flood hazards 

as shown in Table 1.1. The susceptibility to flood in the two governorates is strongly related to the 

level of urbanization since surface runoff increases with urbanization.  In contrast, permeable soils 

or areas with forest covers and shrubland tend to have lower surface runoff (Jacinto et al., 2014). 

In other words, soil types affect the water holding capacity and infiltration characteristics of an 

area which consequently affects its susceptibility to flood (Nyarko, 2002). According to Hill et al. 

(2010), even under dry moisture conditions, flooding can occur in clayey soil subjected to intensive 

rainfall. Rainfall intensity also plays an important role in flood susceptibility, for more intensive 

rainfall events lead to more surface runoff and vice versa. A densed drainage network and steeper 

slope can also lead to significant increase in surface runoff, and so more likely to result in flooding, 

especially in areas located close to flow accumulation path. Each flood susceptibility factor in 

Table 1.1 is classified under five classes, ranging from very high to very low flood susceptibility 

as follows:  5 “very high flood susceptibility”, 4 “high flood susceptibility”, 3 “moderate flood 

susceptibility”, 2 “low flood susceptibility” and 1 “very low flood susceptibility”. 

 
Table 1.1 Susceptibility levels of various watershed and climatic factors in relation to flooding 

Thematic layers Classes Rating 

Flow accumulation (pixels) 

0-850 1 

850-1250 2 

1250-3415 3 

3415-17525 4 



11 
 

17525-10885000 5 

Distance to drainage network (m) 

<150 5 

150-350 4 

350-750 3 

750-1250 2 

>1250 1 

Elevation (m) 

-26-18' 5 

18-70 4 

70-121 3 

121-172 2 

172-221 1 

LULC 

Irrigated cropland 3 

Grassland 2 

Shrubland 4 

Sparse vegetation 3 

Built up areas 5 

Vegetation regularly flooded 4 

Bare soil 2 

Water bodies 5 

Rainfall intensity units MFI 

0-42 1 

42-75 2 

75-105 3 

105-150 4 

150-191 5 

Slope (%) 

0-2 5 

2-5. 4 

5-15. 3 

15-35 2 

35-90 1 

Geology 

Holocene 3 

Pleistocene 2 

Quaternary  3 

Sea 5 

Cenozoic 2 

Water 4 

Runoff (mm/yr) 
0-25 1 

25-50 2 
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50-75 3 

75-150 4 

150-184 5 

Soil type 

Dunes or shifting sands  1 

Calcaric Fluvisols 2 

Calcaric Regosols  4 

Eutric Gleysols  4 

Inland water 4 

Calcisols and gypsisols 3 

Calcic Yermosols 4 

Gleyic Solonchaks  5 

Drainage density (km/km2) 

0-0.37 1 

0.37-0.65 2 

0.65-1 3 

1-2.9 4 

2.9-5.3 5 

Curvature  

Concave 1 

Flat  1 

Convex  3 

 

1.3.6 Assignment of weights to watershed and climatic factors 

Under an analytical hierarchy process, watershed and climatic factors were assigned with weights 

using the pairwise ranking and rank sum methods. The TerrSet Geospatial Monitoring and 

Modeling System was used to obtain optimal weights from the principal eigenvector of the 

pairwise comparison matrix (Janssen and Van Herwijnen, 1994). The rank sum method of Eq (11) 

was used to validate weights derived for each flood related factor based on the pairwise comparison 

between each two factors. 

𝑊𝑘
rs =

𝑛+1−𝑘

∑ (𝑛+1−𝑖)𝑛
𝑖=1

                                                               (1-11) 

Where W is the weighting factor while k of number 1 to 11 represents one of the flood related 

factors. The accuracy of each pairwise comparison was assessed by the consistency index of Saaty 
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(1977, 1980, 1990), which is a measure of departure from the consistency or inconsistency of 

pairwise judgments in the comparison matrices. The analytical hierarchy process for rating each 

cell in the matrix is shown in Table 1.2.  This rating was systematically calculated in a pairwise 

comparison approach via a matrix operation by multiplying factors of a row with other factors of 

a corresponding column. Because the matrix is symmetrical, it is only necessary to compute the 

ratings for half of the matrix. 

The consistency ratio of the matrix obtained was 0.06 which means an acceptable consistency 

(Saaty, 1977). The final consistency ratios obtained for each flood related factor are shown in 

Table 1.3. 
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Table 1.2 Analytical Hierarchy Process. 

 
Table 1.3 Normalized flood susceptibility factors  

 

 

Factors    Flow accumulation Distance  Elevation Land use/cover Rainfall intensity Slope Geology Runoff Soil type Drainage density Curvature  

Flow accumulation 1 2 2 3 3 5 7 1 2 2 7 
Distance drainage network 1/2 1 1 2 2 3 4 1/2 1/4 1 4 
Elevation 1/2 1 1 2 2 2 5 1/3 1/2 1 5 
Land use/cover 1/3 1/2 1/2 1 2 5 5 1/2 1/5 1/2 3 
Rainfall intensity 1/3 1/2 1/2 1/2 1 3 4 1/2 1/2 1/3 4 
Slope 1/5 1/3 1/2 1/5 1/3 1 3 1/4 1/2 2 3 
Geology 1/7 1/4 1/5 1/5 1/4 1/3 1 1/6 1/3 1/3 2 
Runoff 1 2 3 4 2 4 6 1 2 4 6 
Soil type ½ 4 2 5 2 2 3 1/2 1 2 3 
Drainage density ½ 1 1 2 3 1/2 3 1/4 1/2 1 3 
Curvature    1/7 1/4 1/5 1/3 1/5 1/3 1/2 1/6 1/3 1/3 1 

 Flow accumulation Distance  Elevation Land use/cover Rainfall intensity Slope Geology Runoff Soil type Drainage density Curvature  
Flow accumulation 0.19 0.16 0.17 0.15 0.17 0.19 0.17 0.20 0.25 0.14 0.17 
Distance drainage network 0.10 0.08 0.08 0.10 0.11 0.11 0.10 0.10 0.03 0.07 0.10 
Elevation 0.10 0.08 0.08 0.10 0.11 0.08 0.12 0.07 0.06 0.07 0.12 
Land use/cover 0.06 0.04 0.04 0.05 0.11 0.19 0.12 0.05 0.02 0.03 0.07 
Rainfall intensity 0.06 0.04 0.04 0.02 0.06 0.11 0.10 0.10 0.06 0.02 0.10 
Slope 0.04 0.03 0.04 0.01 0.02 0.04 0.07 0.05 0.06 0.14 0.07 
Geology 0.03 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.04 0.02 0.05 
Runoff 0.19 0.16 0.25 0.20 0.11 0.15 0.15 0.20 0.25 0.28 0.15 
Soil type 0.10 0.31 0.17 0.25 0.11 0.08 0.07 0.10 0.12 0.14 0.07 
Drainage density 0.10 0.08 0.08 0.10 0.17 0.02 0.07 0.05 0.06 0.07 0.07 
Curvature   0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.03 0.04 0.02 0.02 
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1.4 Results and Discussions  

1.4.1 Impact of climate change in flood risk 

From applying SNHT and Buishand’s change point detection techniques to temperature anomalies 

between 1948 and 2014, a statistically significant change point in temperature anomaly was 

detected in 1976 (Figure 1.3), because the mean temperature anomaly of -0.333 oC/yr between 

1948-1976 increased to 0.242 oC/yr between 1976-2014. This increase in temperature anomaly is 

attributed to climate change caused by rising concentration of greenhouse gases, rapid 

urbanization, and deforestation (Grimmond, 2007; Ren et al., 2008; Yan et al., 2010; Banasik et 

al., 2014).  A statistically significant warming trend of 0.16 oC/decade in the two governorates was 

detected by the Mann–Kendall trend test (Table 1.4).  Similar studies show that urbanization or 

more impervious surfaces have led to rising temperature in urban areas and higher surface runoff 

than in non-urban areas of the same governorates (Bounoua et al., 2015).  

 
Figure 1.3 Warming trend in temperature anomaly in the two governorates 
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Table 1.4  Climate variables and surface runoff change detection and trend 

 

To investigate if climate change impact has contributed to recent flooding in the two governorates, 

we conducted trend analysis and change point detection in annual rainfall and rainfall anomalies.  

Both SNHT and Buishand’s tests detected statistically significant change points in annual rainfall 

and rainfall anomalies in 1994, because the average annual rainfall decreased from 139.73 mm/yr 

between 1948 and 1994 to 98.82 mm/yr between 1994 and 2014 (Figure 1.4). Trend analysis also 

reveals statistically significant declining trends in annual rainfall since 1994 at the rate of 8.96 

mm/decade. To further confirm the declining trend in annual rainfall we checked rainfall 

anomalies. Similarly, statistically significant declining trends were detected in rainfall anomaly at 

15.3 mm/decade (Figure 1.5).   

  
SNHT Buishand's test 

 
Mann-Kendall trend test 

Variable Year T trend T p-value  trend Mb Ma p-value trend Sen's slope 

Annual rainfall 1948-2014 1994 Ha 1994 0.0232 Ha 139.7 98.82 0.0009 - 0.896 

Rainfall anomaly 1948-2014 1994 Ha 1994 0.0236 Ha 12.21 -28.7 0.0089 - 1.530 

Temperature anomaly 1948-2014 1976 Ha 1976 < 0.0001 Ha -0.333 0.242 < 0.0001 + 0.016 

Monthly runoff 1948-2014 1984 Ha 1984 < 0.0001 Ha 2.47 7.23 0.0003 + 0.015 

Annual runoff 1948-2014 1970 Ha 1970 < 0.0001 Ha 21.15 76.55 < 0.0001 + 1.27 

Runoff anomaly 1948-2014 1970 Ha 1970 < 0.0001 Ha -36.38 19.02 < 0.0002 + 1.439 
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Figure 1.4 Mean annual rainfall time series and trend in the two governorates 

 
Figure 1.5  Rainfall anomaly in the two governorates 

Under a warming trend since 1976 of 0.16 oC/decade, it seems that climate change has resulted in 

a significant decline in rainfall anomalies and annual rainfall in the two governorates.  According 

to some past studies, urbanization has a major effect on the surface energy budget of the 

atmosphere (Kerschgens and Drauschke, 1986), resulted in the heat island effect in addition to 

climate warming caused by greenhouse effects (Changnon and Huff, 1986). Cao et al. (2018) 

studied the impact of rapid urbanization on the summer temperature in eastern China where they 

projected extensive warming trends up to 5 °C, 3 °C, and 2 °C under three different urban growth 
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scenarios. According to Arsiso et al. (2018), land use change is the second most important 

anthropogenic influence on climate beside the emission of greenhouse gases, e.g., they reported 

that urbanization has caused climate warming. In addition, urbanization has also contributed to 

increased flood risk in many regions globally (Gu et al., 2011; Birhanu et al., 2016). In China, Gu 

et al. (2011) reported an increase in flood susceptibility because of rapid urbanization. Similarly, 

Birhanu et al. (2016) found that rapid urbanization has resulted in an increase in flood susceptibility 

of Addis Ababa of Ethiopia. Some studies even found a causal relationship between urbanization 

and carbon emissions.  For example, Xu et al. (2018) reported that urbanization had the most 

obvious impact on carbon emissions of the Pearl River Delta of China; Fu et al. (2016) found that 

urbanization has resulted in a significant increasing trend of about 1.8 oK per decade in the 

metropolitan area of Atlanta, Georgia, USA. 

1.4.2 Effects of Urbanization on surface runoff  

The monthly surface runoff estimated by the CN method show high temporal variability 

between 1948 and 2014. Statistically significant change points were at 1984, after which monthly 

surface runoff increased from 2.47 mm/m between 1948 and 1984 to 7.23 mm/m between 1984 

and 2014.  Despite of a decline annual precipitation, a statistically significant positive trend in 

monthly surface runoff at 0.015 mm/m (18 mm/decade) was also detected after 1984 (Figure 1.6) 

because of rapid urbanization, as reflected in higher curve number in the two governorates. Long-

term monthly surface runoff ranges from 0 to 99 mm/month, with the highest surface runoff since 

1984 occurring in January, February, November, and December, which have been the months with 

recurrent flooding every year, where 50 to 99 mm of surface runoff could be generated in a few 

hours. In the last few decades, because of noticeable increase in impervious surfaces in Alexandria 
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and El-Beheira, more surface runoff has been generated, which shows the effects of urbanization 

on the flood risk of arid regions of Egypt.  

 

Figure 1.6 Urbanization implication in monthly surface runoff time series, and trend in the two 

governorates 
Because of urbanization, annual surface runoff in the two governorates has been relatively high 

with respect to the annual precipitation. Annual surface runoff range widely, from 2.29 mm/yr to 

242.86 mm/yr, with a long-term annual mean of 57.5 mm/yr and a standard deviation of 53.2 

mm/yr. According to the surface runoff data estimated using the CN method, the two governorates 

generated more than 150 mm/yr of surface runoff in 1991, 1992, 1994, 2000, 2002, 2006, 2009, 

2012 and 2013. The last four years of high surface runoff estimated agree with historical flooding 

records of the two governorates in 2006, 2009, 2012 and 2013. The effects of urbanization in 

surface runoff become clearer by increasing the time scale of the analysis (Figure 1.7). Other 

studies also found that rapid urbanization has led to increased surface runoff (Guan et al., 2016; 

Chen et al., 2017; Bian et al., 2017). From the statistically significant change point in surface 

runoff detected in 1970, the mean annual surface runoff had increased from 21.15 mm/yr between 

1948 and 1970 to 76.55 mm/yr between 1970 and 2014. In other words, the annual runoff had been 
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increasing at a statistically significant positive trend of 12.7 mm/decade since 1970s, which agrees 

with rapid urban expansion after 1970. This was partly because between 1970 to 2014, Egypt had 

experienced a significant increase in population from 35 million in 1970 to more than 100 million 

in 2014.  

 
Figure 1.7 Annual surface runoff time series, and trend in the two governorates 
Similarly, the analysis of surface runoff anomalies (Figure 1.8) shows significant temporal 

variations with a change point detected in 1970, such that the mean surface runoff anomaly 

increased from -36.38 mm/yr between 1948-1970 to 19.02 mm/yr between 1970 and 2014. This 

means a statistically significant positive trend of 14.39 mm/decade after 1970. Again, years with 

relatively high surface runoff anomalies are 1991, 1992, 1994, 2000, 2002, 2003, 2006, 2009, 2012 

and 2013 since surface runoff increased with rapid urbanization.  The estimated surface runoff 

anomalies also agree with historical flood records in 2006, 2009, 2012 and 2013 in both 

governorates, respectively. Similarly, surface runoff anomalies with reference to the long-term, 

mean annual surface runoff has an increasing trend at 14.39 mm/decade. It seems that the curve 

number (CN) method applied to the two governorates has realistically accounted for the effects of 

urbanization on the surface runoff values. 
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Figure 1.8 Surface runoff anomaly time series, and trend in the two governorates 

 After investigated the effect of climate change and urbanization on the surface runoff, we further 

developed the flood susceptibility model of the two governorates to identify their flood-prone areas 

useful for flood risk management. 

1.4.3 Development of database for factors related to floods  

• Elevation, slope and flow accumulation 

Digital elevation model (DEM) and its derivatives are very useful to develop flood 

susceptibility model in any region (Pradhan, 2009).  DEM data of 30m resolution (Figure 1.9(a)) 

was obtained from the U.S. Department of the Interior U.S. Geological Survey to generate a map 

representing the slope (%) of the study area (Figure 1.9(b)). As expected, flood prone areas are 

detected in low lying and flat areas. In relating elevation/slope to flood susceptibility, the two 

governorates were divided into five elevations and five slope zones. On the basis of historical flood 

records, low lying areas (elevations between -26 and +18 m) with mild slopes (0 to 2%) are prone 

to flooding and so are assigned with very high flood ratings, and vice versa. In contrast, steep 

slopes tend to have rapid flows and so are less prone to flooding.  Next, areas with 2–5% slope are 

also relatively susceptible to flooding, areas with 5–15% slope are moderately susceptible to 
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flooding, while areas with 15–35% slope or higher have low to very low susceptibility to flooding. 

Figure 1.9(c) shows accumulation paths that contribute flow to a specific cell (group of pixels). 

Flow paths or drainage networks in a flow accumulation map identify cells where water will 

potentially accumulate, or where surface runoff will converge.  Therefore, flow accumulation is 

crucial in flood studies for an increase in the accumulation of flow to an area or cell means an 

increase in the flood susceptibility of that area/cell (Lehner et al., 2006).  

In an area represented by a set of pixels joined together spatially, the numbers of surrounding 

pixels that contribute flow to a particular pixel vary widely, ranging from small to very high 

numbers.  In general, pixels that represent buildings or municipal infrastructure tend to have a 

larger number of pixels that contribute to flow.   In Figure 1.9c, red and blue-green pixels are those 

with high flow accumulation, green and yellow pixels have lower, while grey pixels have very low 

flow accumulation. Pixels with high flow accumulation are where surface runoff tends to converge 

(concentrated flow) and consequently are vulnerable to flood hazards, and vice versa. In this study, 

the total number of pixels in the flow accumulation map is 10885000. These pixels are divided 

into five zones, pixels with very low (0-850) to very large (17525-10885000) number of pixels 

contributing to flow accumulation.    
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Figure 1.9 Conditioning factors for flood susceptibility: (a) DEM, (b) slope, (c) flow accumulation, (d) 

drainage density, (e) distance from the drainage network, (f) land use/cover, (h) rainfall intensity, (i) runoff, 

(j) geology, (k) soil type, (l) curvature 

a b 
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Figure 1.9 (continued) 
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Figure 1.9 (continued) 
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• Drainage density and distance to drainage network 

The drainage density maps of the two governorates, defined as the total length of all streams 

in a drainage basin divided by the total area of the drainage basin, (Figure 1.9(d)) was prepared 

using the density analysis tool of ArcGIS.  In these maps, the drainage density is classified into 

five classes, such that a dense drainage network means a high flow accumulation path and more 

likely to get flooded. These five classes are categorized as ‘very high’ (2.9-5.3 Km/Km2), ‘high’ 

(1-2.9 Km/Km2), ‘moderate’ (0.65-1 Km/Km2), ‘low’ (0.37-0.65 Km/Km2), and ‘very low’ (0-

0.37 Km/Km2) drainage density, respectively. Furthermore, areas located close to the drainage 

network and flow accumulation path tend to have a higher susceptibility to flooding (Islam and 

Sado, 2000). To delineate flood susceptible zones based on the proximity to the flow path defined 

as the buffer distance, the two governorates were delineated into five classes with very high, high, 

moderate, low and very low susceptibility to flooding (Figure 1.9(e)), which are validated against 

records of areas subjected to historical floods. Based on the historical flood record, areas located 

within 150m from the drainage network were classified as areas highly susceptible to flood hazard. 

Next, areas that are at a distance of 350, 750, 1250 and >1250 m from the drainage network are 

classified as areas of high, moderate, low and very low, susceptibility to flooding hazards, 

respectively. As expected, areas near the drainage network (within 150m) are highly susceptible 

to flood hazard, which decreases as the distance away from the river network increases, as found 

in other studies, e.g., Kazakis et al (2015).  

• Land use/cover, rainfall intensity and surface runoff  

To track how urbanization has contributed to increase in the surface runoff of Egypt, we also 

categorized a Landsat image every four years between 1970 and 2014 into classes of landuse for 

the two governorates by supervised classification, e.g., training samples of various land use types 
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were collected in field surveys and matched with spectral signatures of corresponding pixels of 

Landsat images (Figure 1.9(f) shows the land use map of 2014). Landsat images are remotely 

sensed data widely used to monitor the environment, e.g., Hossain et al. (2013), Biftu and Gan 

(2004).  Eight landuse classes were identified: irrigated cropland, grassland, shrubland, sparse 

vegetation, built-up areas, vegetation regularly flooded, bare soil and water bodies. The classified 

images were validated using the Kappa Agreement Index (KIA) where a KIA value exceeding 0.8 

represents good classification performance (Jensen, 2005). The overall KIA statistic obtained was 

0.938 which demonstrates that the classified land use maps are accurate. Under moderate storms, 

our analysis shows that flooding is more likely to occur in an urban than a rural environment.   

Rainfall intensity (Figure 1.9(h)) is expressed by a modified Fournier index (MFI) which is the 

sum of mean monthly rainfall intensity estimated from 66 years of monthly rainfall data.  As high 

surface runoff corresponds to months and years of the high rainfall intensity, high rainfall intensity 

means more susceptibility to flash flooding and vice versa. Despite of low annual rainfall, a major 

cause of flooding in the study area are infrequent occurrences of extremely heavy, short-duration 

rain storms over soils of low water absorptive capacity, resulting in excessive overland flow which, 

enhanced by urbanized land of steep relief converges to the channel network as a flash flood. 

Therefore, despite generally low annual rainfall in Egypt, the occurrences of very intensive storms 

still result in flooding problems. For the study area, MFI values that range between 28 and 191 

mm/yr are classified into five classes according to the potential for flood occurrences (Table 1.1).  

From the 1948-2014 surface runoff data for the two governorates, surface runoff varies from as 

low as 4 to a max of 184 mm/year (see the latest surface runoff of Figure 1.9(i)). The runoff depth 

tends to increase in urban areas due to compacted soils and the presence of impervious areas 
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because of urbanization, which leads to periodic occurrences of flash floods in Alexandria and 

Beheira.  

The highest runoff depth was recorded within northern and northeastern parts of the Beheira 

governorates, which contain following regions: Edko, El Mahmoudiyah, Abu Hummus, Rosetta, 

Shubrakhit, Damanhur, Rahmaniya, Kafr el-Dawwar, and Wadi El Natrun, with surface runoff 

depth ranging from 65 to 184 mm/year.  High runoff depths (81-184 mm/yr) have also occurred in 

northeastern and northwestern parts of Alexandra that consists of following cities: Montazah, El-

Raml, Sidi Gaber, Bab Sharq, Al Attareen, Moharrem Beik, El-Dekheila, El-Agamy, and El-

Ameriah. Towards south and western parts of Alexandria (Karamouz and Mina El-Bassal) and 

southwestern region of Beheira, the runoff depth tends to be slightly lower because these regions 

are dominated by agriculture land. However, these areas recently suffered unexpected flash floods 

which incurred huge damages. Given major historical floods had occurred for surface runoff higher 

than 150 mm/yr, e.g., the likelihood of a flood risk increases as the amount of surface runoff 

increase, the runoff depth map was classified as follows: ‘very high susceptibility’ (150-184 

mm/yr), ‘high susceptibility’’ (75-150 mm/yr), ‘moderate susceptibility’’ (50-75 mm/yr), ‘low 

susceptibility’’ (25-50 mm/yr), and ‘very low susceptibility’’ (0-25), respectively. 

•  Soil type, geology and curvature 

The soil map of the two governorates was prepared from the soil data published by the Egyptian 

government (Figure 1.9(j)), with following main soil types identified according to the FAO (1974) 

soil classification procedure: Calcaric Fluvisols; Calcaric Regosols; Calcic Yermosols; Gleyic 

Solonchaks; Eutric Gleysols; Calcisols; Gypsisols and shifting sands. Calcaric Fluvisols soils have 

the potential to become croplands because of their high infiltration rate which reduces the soil 

erosion problems and the susceptibility to flooding. Calcaric Regosols soil can be found in highly 
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urbanized, coastal lowlands of Alexandria where flooding is usually a major concern. Calcic 

Yermosols soils consist of clay accumulation and therefore of high susceptibility to flooding. 

Gleyic Solonchaks and Yermosols soils have moderate to low infiltration rate due to high clay 

content. Eutric Gleysols soils also tend to be easily saturated, and so are highly 

susceptible to flooding.  Calcisols and gypsisols soils have poor water-holding capacity, and of 

low susceptibility to flooding due to the low clay content.  

Figure 1.9(k) shows six geological groups in the two governorates assigned with various 

susceptibility levels to flooding: Holocene, Pleistocene, Quaternary, Cenozoic, and rocks undersea 

and rocks with groundwater. Cenozoic rocks and Pleistocene sand and gravel rocks (Itoh et al., 

2001) are assigned low susceptibility to flood occurrences because of high hydraulic permeability; 

while both Quaternary rocks and Holocene clay deposits are assigned moderate susceptibility to 

flooding because of high porosity, and moderate to high permeability, respectively.  We used 

ArcGIS 10.1 to produce the curvature map (Figure 1.9(l)) of which a positive curvature is convex, 

a zero curvature is flat, and a negative curvature is concave, respectively.  Curvature highly 

influences the surface flow, for concave and flat shapes tend to retain more water and for a longer 

period than convex shapes (Moghaddam et al. 2015; Lee and Pradhan 2006).  Therefore, 

concave/flat shapes are considered as low flood susceptibility zones while convex shapes as high 

flood susceptibility zones because a convex slope could generate higher surface runoff than a 

concave slope during heavy rainfall. 

1.4.4 Flood Susceptibility Zones  

Finally, after developing the flood susceptibility model, physical factors related to flooding, 

we used the model and the information to generate flood susceptibility maps by combining the 

eleven-factor maps using a weighted approach from weighting factors developed in Table 1.5 and 



30 
 

the weight module of TerrSet Geospatial Monitoring and Modeling System. The susceptibility 

model generated flood susceptibility maps for both governorates, each with five vulnerability 

classes ranging from Very high, High, Moderate, Low, to Very low. For the Beheira Governorate 

area (Table 1.6), 9.2% (930.1 Km2) and 17.9% (1815.2 Km2), 32.3% (3269.7 Km2), 28.3% (2869.2 

Km2) and 12.3% (1245.8 Km2) are assigned very high and high susceptibility, moderate, low and 

very low susceptibility, respectively. For the Alexandria Governorate area, 15.9% (400.1 Km2), 

33.5% (841.9 Km2), 41% (1028.3 Km2), 8.8% (220.6 Km2) and 0.8% (19.7 Km2) are assigned 

very high and high susceptibility, moderate, low and very low susceptibility, respectively (Table 

1.6).  

Table 1.5 Weight (percent of influence) 

 

SL.NO. Thematic layers 

 

Weight 

 

Weight % 

1 Flow accumulation 0.178 17.8 

2 Distance drainage network 0.089 8.9 

3 Elevation 0.090 9.0 

4 Land use/cover 0.073 7.3 

5 Rainfall intensity 0.066 6.6 

6 Slope 0.052 5.2 

7 Geology 0.025 2.5 

8 Runoff 0.189 18.9 

9 Soil type 0.138 13.8 

10 Drainage density 0.079 7.9 

11 Curvature  0.022 2.2 
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Table 1.6 Classes of Flood susceptibility and number of historical flood events. 

 
Beheira Governorate  Alexandria Governorate 

Flood 

susceptibility  
Area (Km2)  Area (%) # of events  Area (Km2)  Area (%) # of events 

Very low 1245.8 12.3 -  19.7 0.8 - 

Low 2869.2 28.3 1  220.6 8.8 - 

Medium 3269.7 32.3 4  1028.3 41 1 

High 1815.2 17.9 17  841.9 33.5 9 

Very high 930.1 9.2 21  400.1 15.9 14 

 

Figure 1.10 shows the spatial distribution of flood susceptibility zones in Beheira Governorate 

where most of very high and high susceptible zones are located in northern, northwestern and 

northeastern parts, which consist of the following areas: Edko, El Mahmoudiyah, Aboul Matamir, 

Abu Hummus, Rosetta, Shubrakhit, Damanhur, Rahmaniya, Kafr el-Dawwar, and Wadi El Natrun. 

In the last few decades, there had been an increasing trend in the occurrence of flood events due 

to rapid urbanization. Flooding in these areas has been occurring every winter, causing heavy 

damage to roads, agricultural lands, and cities. In November 2015, the low-lying areas in Wadi al-

Natrun, al-Rahmaniya, Aboul Matamir, Kafr al-Dawar and Edko areas were flooded by heavy 

rainfall event, as was also confirmed from the surface runoff estimated for El-Beheira. By a 

collaboration between Egyptian armed forces and Beheira’ local authorities, many lives were 

rescued from flooded homes during flood events. However, still twenty-five people were killed in 

the Beheira governorate, either from drowning or electrocution caused by heavy rain occurring in 

villages such as Wadi Al-Natroun Valley, El Mahmoudiyah, Abu Hummus, Rosetta, Shubrakhit, 

Damanhur, Rahmaniya, and Kafr el-Dawwar. Hundreds of schools were shut down due to floods. 

Large swathes of homeland in the region had been devastated as well. 
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The level of damage to areas affected by the flooding in Beheira governorate, which included 

cities such as Damanhour, Edkou, and Kafr El Dawar and in the Mediterranean city of Alexandria, 

had caused public outrage and provoked criticism of the government’s negligence and cities' poor 

infrastructure. Therefore, the Egyptian government allocated two billion Egyptian pounds to help 

solving problems of flooding, such as upgrading the sewage and drainage systems of the coastal 

city of Alexandria and Beheira governorate, under the supervision of the military.  There are also 

zones with high to moderate susceptibility to floods in El Delengat, Etay El Barud, Hosh Issa, 

Kom Hamada, Nubariyah, and Badr (see Figure 1.10).  

A good match between records of historical flood events and the developed flood 

susceptibility map for districts of Alexandria governorates (Figure 1.11, Table 1.6) demonstrate 

the accuracy and credibility of the map since many recorded flood events fall within areas with 

high flood susceptibility, such as Montazah, El-Raml, Sidi Gaber, Bab Sharq, Al Attareen, 

Moharrem Beik, El-Dekheila, El-Agamy, and Borg El Arab.  For example, in November 2015, 

Alexandria was paralyzed when a severe rainstorm amounted to five times the mean November 

rainfall occurred over the city within a few days, which left many streets flooded, slowed down 

the traffic, and the Burj Al Arab Stadium was inundated with flood water partly due to a lack of 

proper drainage systems. Seven people died from electric shock when a power cable of the tram 

line in Moharrem Beik fell into the flood water.  
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Figure 1.10 Flood susceptibility map for the districts of Beheira governorates 
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Figure 1.11 Flood susceptibility map for Districts of Alexandria governorates 

Furthermore, rising sea levels attributed to melting of Arctic sea ice, Greenland and glaciers 

worldwide because of climate change would also contribute to flooding in Alexandria, for seawater 

had flooded streets of Alexandria on multiple occasions. Despite a decrease in annual precipitation, 

unpredictable intesive rain events of short durations exacerbate chances of flooding, compounded 
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by poor drainage systems and rapid urbanization. Alexander the Great constructed the ancient 

Alexandria city on shores of the Mediterranean Sea in 332 B.C. A part of that ancient city lies 6 to 

8 m under seawater because of sea level rise in modern times (La Riche, 1996). The areas 

submerged in seawater and surrounding coastal regions of Alexandria are evidence of the impact 

of changing climate. Since 1989, more than 58 meters of coastlines have vanished every year in 

Rasheed, also known as Rosetta. Flooding in these areas could displace entire communities in 

Alexandria and in the low-lying Nile Delta, where Winter storms have flooded Alexandria's streets 

with seawater annually. 

Therefore, flood susceptibility maps will be useful to the Egyptian Civil Defence authority for 

conducting rescue operations during flash flood events; for municipal planners and engineers in 

choosing suitable locations to implement developments in the two governorates; for land use 

planning and flood mitigation in municipalities. For example, according to these maps, northern 

and northeastern parts of Beheira governorates, and northeastern and northwestern parts of 

Alexandra will likely be inundated during flood events, partly because of their poor, under-

developed drainage systems.  

We considered eleven contributing factors in developing flood susceptibility maps, such as 

surface runoff, flow accumulation, soil type, rainfall intensity, drainage density, land use, slope, 

and others, which are generally more than factors considered in other studies. For instance, 

probably due to a lack of available information, Kazakis et al. (2015) who used seven flood 

contributing factors: flow accumulation, distance from the drainage network, elevation, land use, 

rainfall intensity and geology to map flood susceptibility zones in Rhodope–Evros region of 

Greece, considered flow accumulation as the most important contributing factor to flood, instead 

of surface runoff. In another study by Elkhrachy (2015), even though he also ranked surface runoff 
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as the most important contributing factor, the weighting factor assigned for surface runoff of 35.5% 

may be too high (compared to 18.9% in our study) partly because he only used six factors in his 

study.  

1.5 Conclusions and recommendations 

In this study, we investigated the effects of urbanization and climate change to the flood risk 

of Beheira and Alexandria governorates of Egypt, developed a flood susceptibility model, and 

their flood susceptibility maps useful for rescue operations during flood hazards.  We investigated 

changes to annual rainfall and temperature, and effects of urbanization to flood risk by using the 

runoff curve number method to estimate surface runoff time series for the two governorates over 

1948-2014. Anomalies in surface runoff were computed to examine the effect of urbanization on 

the surface runoff time series generated. Finally, we developed a GIS decision support system to 

delineate flood susceptibility zones in the two governorates of Egypt.  Likely related climate 

change impact, the annual rainfall of the two governorates had declined since 1994 at about 8.96 

mm/decade, while rainfall anomalies had declined at about 15.3 mm/decade which is statistically 

significant.  Since 1976, the climate has been warming at about 0.16 oC/decade partly due to effects 

of rising concentrations of greenhouse gases and partly due to rapid urbanization with a noticeable 

increase in impervious surfaces in Alexandria and El-Beheira in recent decades. Because of 

urbanization, the flood risk of both arid regions has increased, despite of a decline in the annual 

rainfall, for the annual surface runoff show a significant increasing trend of 12.7 mm/decade after 

1970 because of rapid urbanization in both two governorates. With reference to the long-term 

annual surface runoff, the surface runoff anomalies of both governorates show upward trend of 

14.39 mm/decade after 1970. 
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The flood susceptibility model delineated flood susceptibility zones in the Beheira Governorate 

to 9.2% (930.1 Km2), 17.9% (1815.2 Km2), 32.3% (3269.7 Km2), 28.3% (2869.2 Km2) and 12.3% 

(1245.8 Km2) of its area as very high, high moderate, low and very low susceptibility to flooding, 

respectively. In contrast, for Alexandria Governorate, the flood susceptibility model delineated 

15.9% (400.1 Km2), 33.5% (841.9 Km2), 41% (1028.3 Km2), 8.8% (220.6 Km2) and 0.8% (19.7 

Km2) of its area as very high, high, moderate, low and very low susceptibility to flooding, 

respectively. The very high and high susceptible zones were located in the northern, northwestern 

and northeastern parts of the Beheira governorates, which include Edko, El Mahmoudiyah, Aboul 

Matamir, Abu Hummus, Rosetta, Shubrakhit, Damanhur, Rahmaniya, Kafr el-Dawwar, and Wadi 

El Natrun, where for the past decade flooding had occurred every winter, causing heavy damages 

to roads, agricultural lands and cities. Floods had also occurred in some high to moderate 

susceptible zones such as El Delengat, Etay El Barud, Hosh Issa, Kom Hamada, Nubariyah, and 

Badr. For the Alexandria governorates, areas classified as high and very high susceptible zones 

are Montazah, El-Raml, Sidi Gaber, Bab Sharq, Al Attareen, Moharrem Beik, El-Dekheila, El-

Agamy, Borg El Arab, and El-Ameriah areas where many flood events had occurred. From 

checking historical flood events against flood susceptibility zones of these maps, the results show 

that they are in good agreement, which demonstrates the accuracy of these maps. 

Similar surface runoff data developed for Beheira and Alexandria governorates can be 

replicated for other governorates of Egypt. Such data and flood susceptibility maps developed will 

be beneficial to planners and governments for choosing suitable locations for future developments 

to minimize potential flood damages in Beheira and Alexandria governorates.  To develop 

representative flood susceptibility maps, as many flood contributing factors as possible should be 

considered unless appropriate data are not available. 
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Chapter 2 Multi-criteria Approach to develop flood susceptibility maps in arid regions  

2.1 Introduction 

Millions of people are affected by flooding every year worldwide.  Therefore, it is critical to 

control floods through proper land use management. Owing to their magnitude and sudden arrival 

often with minimal warning, floods usually lead to serious disasters locally.  In other words, 

effective flood prevention has been a significant challenge in many countries. The frequent 

occurrences of extreme weather have caused flooding to be one of the most destructive natural 

hazards in arid regions. Many studies show that the rising number of major flood events is mainly 

due to the rapid increase in artificial surfaces, extensive urbanization and deforestation (Bronstert, 

2003; Christensen and Christensen, 2003). Therefore, representative maps of flood-prone areas 

should be developed to prepare a fast and effective response under flooding circumstances. In the 

Arabian Peninsula, surface runoff from high latitude regions tend to post a threat to its urban 

residents, facilities, and infrastructure. Recent flooding events that occurred in Mecca, Jizan, Al-

Baha, Riyadh, Jeddah, and Abha regions among others in the Kingdom of Saudi Arabia (KSA) 

show that arid/semi-arid regions in the Middle East region are susceptible to floods. Therefore, 

developing flood warning systems in any of these regions could be one of the most effective ways 

to reduce the loss of life and property damage due to flooding (Negri et al., 2005).  

Conjunctive applications of GIS (Geographic Information System), and multiple criteria 

decision support system (MCDSS) helps researchers to manage large amounts of data in solving 

complex problems. The Analytic Hierarchy Process (AHP) developed by Saaty (1980) is one of 

the most popular methods in applying a multi-criteria decision support system to optimize decision 

making under a set of qualitative, quantitative, and sometimes conflicting factors. Saaty (2008) 

proposed a procedure that involves arranging variables in a hierarchy from which the best possible 



39 
 

solution is determined via a pairwise comparison. The application of AHP and GIS in an integrated 

manner has been successful in various studies such as flood susceptibility mapping (Kazakis et al., 

2015), landfall delineation, natural hazard (Fernandez and Lutz, 2010; Ahn and Merwade, 2015; 

Singh et al.,2017) and geo-environmental studies (Ju et al., 2012; Mahmoud and Tang, 2015; Singh 

et al.,2017; Patra et al., 2018). For example, Mahmoud and Tang (2015) applied AHP for managing 

the stormwater of the United Kingdom using five factors: rainfall excess, slope, curve number, 

land cover/use, and soil texture.  To control flooding in UK, they developed a stormwater 

management map for UK that shows areas ranging from very high to low stormwater harvesting 

potential.  They also identified locations for constructing flood control facilities based on a 

weighted combination of such factors, in which soil type and runoff depth contributed about 70% 

in developing maps for stormwater management, which is expected surface runoff is closely linked 

to flood occurrences (Nouh, 2006). 

Other factors used in flood susceptibility mapping are such as flow accumulation, annual 

rainfall, elevation, distance from the drainage network, geology, slope, runoff, land use/cover, soil 

type, and drainage density. Fernandez and Lutz (2010) attempted to map urban flood susceptibility 

zones in the Tucumán Province, Argentina, using AHP. Due to a lack of spatial data, he only used 

five factors which are the distance to the drainage channels, topography, groundwater table depths, 

and urban land use.  There is a lack of test on the effect of scale in flood susceptibility mapping, 

say from large to small scales, or vice versa, e.g. (Fernandez and Lutz, 2010; Kazakis et al., 2015). 

To improve our understanding of the effect of scale, testing the effect can be achieved by 

comparing results obtained from flood susceptibility maps for large-scale to small-scale areas 

located in the same region.  
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In the past few decades, AHP has been applied to many diverse applications of Decision 

Support Systems (DSS), such as applying an AHP-DSS in flood susceptibility mapping. For 

example, Chen et al. (2011) integrated AHP and GIS to delineate flood susceptibility zones in two 

cities of Taiwan. Tehrany et al. (2013) identified flood susceptibility areas in the Kelantan River 

basin using an advanced rule-based decision tree and ensemble statistical method and 10 

susceptibility factors: DEM, curvature, geology, river, SPI, rainfall, land use/cover, soil type, TWI, 

and slope. Kazakis et al. (2015) delineated flood susceptibility zones in the Rhodope–Evros region 

of Greece using seven factors which were weighted according to their contribution to flood 

occurrences based on AHP. The factors with the highest weights of influence identified were 

elevation, slope, and distance from the drainage network. The flood susceptibility map developed 

was validated against observed flood records. Elkhrachy (2015) also used AHP to generate flood 

susceptibility map for the Najran city, KSA. AHP was used to determine relative weights of flood 

susceptibility factors, of which runoff and soil type were the dominant factors that contributed 

35.5% to surface runoff in the flood susceptibility map, while less important factors were surface 

slope, surface roughness, drainage density, and land use. 

Hsu et al. (2017) employed AHP and GIS to map flood susceptibility zones in the Fangshan 

District, China, using nine susceptibility factors such as rainstorm intensity and frequency, 

elevation, slope, river network density, and others. The flood susceptibility maps they developed 

agree well with historical flood records. In another study, Trail et al., (2017) integrated five factors 

into an AHP to map flood susceptibility zones in coastal lowland areas of central Vietnam, of 

which h they showed that elevation and distance to drainage network play a major role in the 

development of flood susceptibility zones.  It seems common for many studies to miss factors such 

as surface runoff and drainage density in flood susceptibility mapping, in which important factors 
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to be considered are such as surface runoff, drainage density, annual rainfall, distance to drainage 

network, soil type, and land use. Using a limited number of factors in flood susceptibility mapping 

will increase the possibility of getting some over-rated factors. 

It is important to develop flood susceptibility maps in Riyadh province, the central region of 

Saudi Arabia (18 % of KSA total area) where recurring flood events have occurred, for possible 

rescue operations and for including migration procedures in future land use planning in both the 

Riyadh province and Riyadh city. A multi-criteria approach is introduced to identify flood 

susceptibility zones and then a sensitivity analysis was done to examine how sensitive are the 

results to changes in weights applied to susceptibility factors and the relative importance of these 

susceptibility factors. The methodology was applied in Riyadh Province, and the result was 

validated against historical flood records. To test the effect of scale in the proposed methodology, 

it was applied again in the Riyadh City which is only 4.85 % in area of the Riyadh Province, and 

0.89 % of the total area of KSA.  

2.2 Study area 

The Riyadh Province (24°38′' N and longitude 46°43′ E) (Figure 2.1(a)), located in central 

Arabia, was selected as the study site because the entire study area has no flood susceptibility 

maps. Similar to most arid regions in the Middle East, where rainfall is scarce, there is a general 

lack of proper drainage system which tends to cause catastrophic flooding when extreme weather 

occurs. In the last 30 years, KSA constructed many rainwater harvesting dams in the mountainous 

region for agriculture development (Mahmoud and Alazba, 2015). Furthermore, floods could 

occur because of rugged topography and geological structures. Figure 2.1(b) shows that a flood 

event in the northern Riyadh province had caused severe damages to infrastructure and private 

properties.  
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Figure 2.1 (a) Location of Riyadh Province in KSA. (b) Photos of flood taken on November 16, 2013, in Riyadh Province. 

b 
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2.3 Materials and methods 

2.3.1 Selection of susceptibility factors and data processing 

Information from different data sources was collected and a database was developed in a 

geospatial environment. Ten susceptibility factors were selected based on literature reviews, which 

are flow accumulation, distance from the drainage network, elevation, LULC, annual rainfall, 

geology, slope, runoff, soil type, and drainage density. These factors were then characterized based 

on field survey and long-term flood records in KSA. Based on earlier studies (Fernandez and Lutz, 

2010; Elkhrachy, 2015; Bathrellos et al., 2016; Hong et al., 2018), the importance of each flood 

susceptibility class such as flow accumulation, annual rainfall, geology, distance from the drainage 

network, slope, runoff, soil type, elevation, LULC, and drainage density. Because the susceptibility 

factors were measured on different scales, certain reclassifications were necessary to convert 

susceptibility factors to five comparable units or susceptibility classes: 5 (very high susceptibility), 

4 (high susceptibility), 3 (medium susceptibility), 2 (low susceptibility), and 1 (very low 

susceptibility) as shown in Table 2.1, based on their contributions to flooding probability. For 

instance, based on historical flood records, the elevation of the study area was divided into five 

categories. An area with low elevation (0–250 m) falls under very high susceptibility category, 

while an area at a high elevation falls under a very low susceptibility category (Jacinto et al., 2014).  

Similarly, the raster slope map was classified into five classes. Areas with 0–2 % slope was 

assigned a very high susceptibility to flooding; areas with 2–5 % slope has high susceptibility to 

flooding; areas of 5–15 % slope has moderate susceptibility to flooding; areas of 15–35 % slope 

has low susceptibility to flooding; while areas of slope higher than 35 % has very low susceptibility 

to flooding. Moreover, clay soils may result in greater surface runoff than sandy soils; higher 

annual rainfall can lead to more surface runoff; high soil moisture content can increase the risk of 
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flooding more than dry soil; and land cover and land use are other factors that influence the 

occurrence of flood (Alexakis et al., 2014). Topographic elements are also important, e.g. surface 

slope is also an important flood susceptibility indicator because when the slope increases, the flow 

velocity will also increase; a denser drainage network means more flow accumulation and so a 

higher possibility of flood occurrences. On the other hand, dense vegetation cover and farmland 

reduces the probability of flooding because they restrict flow path, but built-up areas or 

urbanization generate more surface runoff. 

Table 2.1 Classes of the flood susceptibility factors and their ratings 

Number Thematic layers Classes Rating 

1 Flow accumulation (pixels) 

0-250 1 

731-2195 2 

2195-3415 3 

3415-15125 4 

15125-151000 5 

2 Distance to drainage network (m) 

<200 5 

200-500 4 

500-1000 3 

1000-2000 2 

>2000 1 

3 Elevation (m) 

0-286 5 

286-485 4 

485-697 3 

697-899 2 

899-1523 1 

4 LULC 

Irrigated cropland 3 

Forest 1 

Shrubland 4 

Sparse vegetation 2 

Built up areas 5 

Bare soil 2 

Water bodies 5 
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5 Annual rainfall mm/yr 

0-45 1 

45-79 2 

79-120 3 

120-170 4 

170-230 5 

6 Slope (%) 

0-2 5 

2-5. 4 

5-15. 3 

15-35 2 

35-90 1 

7 Geology 

Cenozoic   2 

Mesozoic - Jurassic and Cretaceous   3 

Mesozoic – Triassic   2 

Plutonic rocks  5 

Precambrian (Archean+Proterozoic) 4 

Quaternary  3 

Upper paleozoic (Dev,Car,Per)   1 

8 Runoff (mm/yr) 

0-25 1 

25-47 2 

47-74 3 

74-144 4 

144-179 5 

9 Soil type 

Arenosols 1 

Lithosols 2 

Miscellaneous land units 4 

Regosols 2 

Solonchaks 3 

Yermosols 5 

10 Drainage density (km/km2) 

0-0.25 1 

0.25-0.35 2 

0.35-0.72 3 

0.72-0.9 4 

0.9-1.85 5 
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2.3.2 Assignment of weights for susceptibility factors 

Analytical hierarchy process (AHP) was applied to create a pairwise matrix of conditional factors. 

AHP is a well-known approach for analyzing complex problems.  In flood susceptibility studies, 

various researchers have used the pairwise rating techniques to capture the importance and 

contributions of each conditional factors in flood mapping (Sinha et al., 2008; Zou et al., 2013; Hu 

et al., 2017). In this approach, all flood susceptibility factors were arranged in a hierarchical 

manner to facilitate pairwise comparison (Table 2.2). In this study, we evaluated the relative 

importance of susceptibility factors based on a comparative scale proposed by Saaty (1980) that 

consists of integer numbers of 1 to 9, where 1 means that the factors are equally important, while 

9 is much more important than others. Table 2.2 illustrates a 10 × 10 pairwise comparison matrix, 

where diagonal elements are equal to 1 because it compares the importance of each factor to itself. 

The remaining values in each row reflect the relative importance of other factors, e.g., the first row 

in Table 2.2 illustrates the relative importance of flow accumulation compared to other factors (in 

columns).  For instance, the importance of flow accumulation is 3 times that of land use, 5 times 

that of the slope, and 7 times that of geology. Similarly, comparison of rows values is inverse of 

the pairwise comparison (e.g., land use, slope, and geology are 1/3, 1/5, 1/7 the importance of flow 

accumulation, respectively).  

To estimate the respective contribution of key factors to flood susceptibility, weights associated 

with the key factors were calculated using the rank sum method. Principal eigenvectors of the 

pairwise matrix were calculated and then used to optimize the weight calculation procedures. The 

multi-criteria AHP weighting is based on the approach proposed by Janssen and Van Herwijnen 

(1994) as: 

𝑊𝑗 =
𝑚+1−𝑗

∑ (𝑚+1−𝑖)𝑚
𝑖=1

                                                                             (2-1) 
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where 𝑊𝑗  is the weight for each factor, and j is the factor number and range from 1-10 

The consistency index was calculated and validated with acceptable value to ensure a 

representative pairwise comparison matrix. This index is calculated as follows:  

consistency index =
𝜇−𝑚

𝑚−1
                                                                (2-2) 

where, 𝜇  is the average of the consistency vector and m is the number of susceptibility factors 

used to create the pairwise comparison according to Saaty (1990). The consistency ratio was then 

calculated as follows: 

consistency ratio =  
CI

RI 
                                                                         (2-3)   

where, CI is the consistency index, and RI is the random index which is dependent on the number 

of factors used in the pairwise matrix (Saaty 1980, 1990). The model so developed produced an 

acceptable consistency ratio which was less than the recommended ratio of Saaty (1980). The 

normalized susceptibility factors are presented in Table 2.3,  
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Table 2.2 Factors of flood susceptibility: Analytical Hierarchy Process. 
 

 

 Table 2.3 Normalized flood susceptibility factors: Analytical Hierarchy Process. 

Factors Flow accumulation Dist. to drainage net Elevation Land use/cover Rainfall intensity Slope Geology Runoff Soil type Drainage density 
Flow accumulation 0.20 0.14 0.18 0.12 0.17 0.18 0.16 0.21 0.23 0.11 
Dist. to drainage net. 0.10 0.07 0.09 0.12 0.17 0.14 0.13 0.07 0.02 0.06 
Elevation 0.10 0.07 0.09 0.12 0.17 0.14 0.13 0.11 0.04 0.06 
Land use/cover 0.07 0.02 0.03 0.04 0.11 0.14 0.11 0.03 0.02 0.03 
Annual rainfall 0.07 0.02 0.03 0.02 0.06 0.14 0.11 0.11 0.23 0.02 
Slope 0.04 0.02 0.02 0.01 0.01 0.04 0.07 0.07 0.06 0.17 
Geology 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.04 0.02 
Runoff 0.20 0.21 0.18 0.27 0.11 0.11 0.13 0.21 0.23 0.28 
Soil type 0.10 0.35 0.27 0.23 0.03 0.07 0.07 0.11 0.11 0.22 
Drainage density 0.10 0.07 0.09 0.08 0.17 0.01 0.07 0.04 0.03 0.06 

 

Factors  Flow accumulation Dist. to drainage net Elevation Land use/cover Rainfall intensity Slope Geology Runoff Soil type Drainage density 
Flow accumulation 1 2 2 3 3 5 7 1 2 2 
Dist. to drainage net 1/2 1 1 3 3 4 6 1/3 1/5 1 
Elevation 1/2 1 1 3 3 4 6 1/2 1/3 1 
Land use/cover 1/3 1/3 1/3 1 2 4 5 1/7 1/6 1/2 
Annual rainfall 1/3 1/3 1/3 1/2 1 4 5 1/2 2 1/3 
Slope 1/5 1/4 1/4 1/4 1/4 1 3 1/3 1/2 3 
Geology 1/7 1/6 1/6 1/5 1/5 1/3 1 1/6 1/3 1/3 
Runoff 1 3 2 7 2 3 6 1 2 5 
Soil type 1/2 5 3 6 1/2 2 3 1/2 1 4 
Drainage density 1/2 1 1 2 3 1/3 3 1/5 1/4 1 
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2.3.3 Flood susceptibility index 

After calculating the weights, a flood susceptibility index (FSI) was defined based on conditional 

factors and their percentage of influence as follows 

FSI = ∑(𝑊𝑗 ∗ 𝑋𝑗)                                                                  (2-4)    

Where, W is the weight of factors j and X is the susceptibility classes to flooding provided in Table 

2.1. Furthermore, the FSI derived are classified into five flood susceptibility classes according to 

the probability of flood occurrence. Finally, flood susceptibility classes were derived from this 

index (FSI) and the total area of each class was estimated and validated against historical flood 

records in the study area. The same approach was applied to the small-scale study area (Riyadh 

city) to identify scale effects on the developed FSI. 

2.3.4  Model sensitivity analysis 

Developing a flood susceptibility model involves a set of factors related to flood susceptibility. In 

previous studies,  various flood susceptibility factors were employed,  and some of these factors 

are strongly inter-related, such as i) rainfall and surface runoff (Saharia et al., 2017; Tang et al., 

2018); ii) surface runoff, soil  type, and land use (Elkhrachy, 2015; Mojaddadi et al., 2017; Shehata 

and Mizunaga, 2018); iii) flow accumulation and distance from the drainage network (Kazakis et 

al. 2015; Zehra and Afsar, 2016; Dou et al., 2018). A sensitivity analysis of these inter-

relationships was conducted to check how sensitive the results are to changes in the list of 

susceptibility factors considered in the analysis. The following test cases were conducted: (a) Case 

1: annual rainfall is removed from the model, (b) Case 2: runoff is removed from the model, (c) 

Case 3: soil type and land use were eliminated from the model, (d) Case 4: distance to drainage 

network was eliminated from the model, (e) Case 5: test the approach of Kazakis et al. (2015) 

based on seven susceptibility factors: flow accumulation, elevation, land use, slope, distance from 
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the drainage network, annual rainfall, and geology. The results of Case 5 were compared with the 

results of Kazakis et al. (2015). The flood susceptibility map obtained for each case was compared 

with historical flood records to check the accuracy of the flood susceptibility maps developed from 

these test cases.  

2.4 Results and discussions  

2.4.1 Development of flood susceptibility factors database 

By conjunctively applying AHP with a multicriteria decision analysis to the study site involving 

10 susceptibility factors, the extent of each flood susceptibility zone was identified. Thematic maps 

in Figure 2.2 shows the spatial distributions of these factors. 

Elevation and slope. 

 To obtain the slope map (Fig. 2(b)), a DEM dataset of 30m resolution (Figure 2.2(a)) was 

processed using ArcGIS 10.1 such as filling sinks and removing continuous flat regions to maintain 

flow continuity. Elevation and slope are two key factors that influence the susceptibility of any 

area to flooding (Pradhan, 2009). Mostly, flood-prone areas tend to have low surface slopes, and 

located in low-elevation zones, e.g., elevation classification is often employed in flood mapping 

studies (Fernandez and Lutz 2010; Dahri and Habib, 2017). On the other hand, how high the 

elevation of any region is relative to elevations of surrounding regions, and it should be categorized 

on the basis of historical flood events. Furthermore, given slope defined as the percentage of an 

area elevation model does not vary much between regions, similar ratings have been assigned to 

slope percentages in different studies, such that a high rating was given to areas with a low slope 

and vice versa (Mahmoud and Tang, 2015; Dahri and Habib, 2017).  
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Figure 2.2 Susceptibility factors used in this study: (a) DEM, (b) slope, (c) flow accumulation, (d) drainage 

density, (e) distance from the drainage network, (f) land use/cover, (g) annual rainfall, (h) geology, (i) soil 

type, (j) runoff

(c) (d) 

(a) (b) 
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Figure 2.2 (continued)  

 

 

 

(g) (h) 

(e) (f) 
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Figure 2.2 Continued  

Flow accumulation.  

Flow accumulation is likely the most important parameter in delineating flood susceptibility zones 

(Kazakis et al. 2015). In other words, high flow accumulation means high susceptibility to flooding 

(Lehner et al., 2006). Buildings and other municipal infrastructure located in high flow accumulation 

areas are naturally more vulnerable to flooding. Flow accumulation in a study area (Figure 2.2(c)) means 

the accumulation of flow from surrounding cells and paths, leading to increased flow in a specific cell, 

and which helps to map out the convergence zone of surface runoff. In Figure 2.2(c), blue and green 

pixels represent high flow accumulation while the back-surrounding (black pixels) low flow 

accumulation. Areas with more flow accumulations tend to be more vulnerable to flooding for such 

areas act as convergent points for surface runoff. In this study, flow accumulation values are classified 

into five classes, ranging from very low (0–250 pixels) to very high (3430–151000 pixels) flow 

accumulation.   

(i) (j) 
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Drainage density.  

Higher drainage density generally means greater surface runoff and therefore higher probability of 

flooding, and vice versa. Figure 2.2(d) shows the drainage density map of the study area calculated from 

the drainage network classified into five classes ranging from very high to low drainage densities.  As 

expected, the susceptibility to flooding decreases from very high drainage density (0.9–1.85 km/km2), 

which means very high susceptibility to flooding: to high (0.72–0.9 km/km2), moderate (0.35–0.72 

km/km2), low (0.25–0.35 km/km2), and very low (0–0.25 km/km2) drainage densities. Kumar et al 

(2007) reported that areas with high drainage density mean high flood susceptibility because a higher 

drainage density means more surface runoff generation than areas with low drainage density (Srivastava 

and Bhattacharya, 2006).  Therefore, flood risk will increase with an expansion in the drainage network, 

which is a critical factor in surface runoff generation (Ogden et. Al, 2011).  This drainage density 

classification has also been used in other studies (Elkhrachy, 2015).  

Distance from the drainage Network.  

Areas located far away from the drainage network are generally less likely to suffer flooding than areas 

that are nearby because the latter are within the flow path of surface runoff.  Relating flood susceptibility 

to the distance from the drainage network can be subjective even though ideally it should be based on 

historical records.  For example, Samanta et al (2016) considered areas at a distance <100m from the 

drainage network have high flood susceptibility while areas at distance >2000 m have very low flood 

susceptibility. Pradhan (2009) considered areas located within 90m from the drainage network have high 

flood susceptibility. Similar to studies that follow the paradigm, areas within shorter distances from the 

drainage network are more likely to suffer from flooding (Islam and Sado, 2000), flood-prone zones of 

the study site are delineated accordingly.  Based on historical flood data, areas that are within 200 m 

from the drainage network are classified as very highly susceptible to flooding, while areas within a 
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distance of 500, 1000, 2000, and >2000 m from the drainage network are considered to have high, 

moderate, low, and very low susceptibility to flooding, respectively (Figure 2.2(e)).  

Land use classification.  

By supervised classification using multiple ground control points collected from google earth images 

and a field survey, a 2015 Landsat image of 30 m spatial resolution was used to generate for the study 

site (Figure 2.2(f)) a land use map categorized into seven classes: irrigated cropland, forest, shrubland, 

sparse vegetation, built-up areas, bare soil, and water bodies. The Kappa index of agreement (KIA) was 

used to evaluate the classified land use map based on a random number of ground control points such 

that KIA > 0.8 implies high accuracy (Jensen, 2005). Given the KIA obtained is 0.946, the land use map 

developed is representative.  Because urbanization can generate more surface runoff than bare soil and 

vegetation cover, in this study built-up areas are assigned with relatively large weights (Samanta et al., 

2016; Kourgialas and Karatzas, 2011).  

Annual rainfall.  

Figure 2.2(g) presents the mean annual rainfall for the study area.  As expected, the susceptibility to 

flooding increases with higher rainfall depth. Even in an arid region such as Riyadh, it can experience 

extreme rain events leading to very high surface runoff and flooding (Mahmoud and Alazba, 2015), 

which could get worse with urbanization. Surface runoff is controlled by topography, slope and the 

drainage network. Almost everywhere in KSA is prone to flooding, especially in central Saudi Arabia, 

where very intensive rainfall could occur in extensively urbanized areas, leading to flooding. The annual 

rainfall at Riyadh, ranging from 41 to 230 mm/year is classified into five classes in relation to their 

contribution to flood occurrences (Table 2.1). For example, annual rainfall ranging from 170 to 230 

mm/year is considered high because it means high flood susceptibility.   

Geology.  
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The geology of Riyadh Province is very complex, varies from region to region, which affects its 

hydrologic processes.  Figure 2.2(h) shows the geology of the Riyadh Province divided into seven 

geological classes, which range from Precambrian, to Quaternary rocks and to Paleozoic rocks.  At 

33.6%, Mesozoic–Jurassic and Cretaceous rocks, considered to have moderate susceptibility zones for 

flooding, occupy the largest area in the study site. The 2nd most prevalent is the Precambrian rocks that 

occupy 15.6% of the study area.  These rocks are extremely rich in clay, have low permeability and 

therefore are classified to be of high susceptibility to flooding.  Next is the Plutonic rocks which occupy 

13.8% of the study area, has very low porosity and therefore are also of high flood susceptibility. 

Quaternary rocks that occupy 12.6 % of the total area are classified as of moderate susceptibility to 

flooding due to its medium infiltration rate.  Cenozoic rocks that occupy 10.8% of the study area are 

characterized by high infiltration rate and therefore have low flood susceptibility.  Lastly, Upper 

Paleozoic and Mesozoic–Triassic rocks that occupy only 8% and 5.7% of the study area have low and 

very low susceptibility, respectively.  

Soil type.  

The soil map of the Riyadh Province presented in Figure 2.2(i) shows six soil types identified. Arenosols 

which only constitutes 1.4 % of the study area is a sandy soil characterized with high permeability, and 

so it is classified to be of very low susceptibility to flooding because of its high rate of infiltration. 

Lithosols soil that occupies 12.6 % of the study area has a low clay content, very high infiltration rate 

and so of low flood susceptibility (Mahmoud and Alazba, 2015).  Miscellaneous soil that occupies 

10.3% of the study area has a low sand content and therefore of high susceptibility zones. Regosols, 

which constitute 62.6 % of the total area, is mainly characterized by rocky surface, coarse texture, high 

infiltration rate, and therefore of low flood susceptibility. Solonchaks soils that occupy 11.2 % of the 

study area has a moderate infiltration rate, and so has moderate flood susceptibly.  Lastly, Yermosols 
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soil that occupies only 1.9% of the study area has low infiltration rate due to its clay content and so it 

constitutes very high susceptibility zones.    

Surface runoff.  

The curve number (CN) for Riyadh Province was developed using the CN of NRCS (Natural Resources 

Conservation Service) method. A CN is based on the area's hydrologic soil group, land use, treatment 

and hydrologic condition estimated using a GIS. Next, the monthly runoff depth is estimated based on 

the monthly rainfall depth and the CN of Riyadh.  Lastly, the spatial distribution of annual surface runoff 

(Figure 2.2(j)) is developed as a runoff depth map classified into five classes, categorized as “very high 

susceptibility” (144–179 mm/year), “high susceptibility” (74–144 mm/year), “moderate susceptibility” 

(47–74 mm/year), “low susceptibility” (25–47 mm/year), and “very low susceptibility” (0–25 mm/year). 

Similarly, Elkhrachy (2015) included surface runoff in their study commonly found in urbanized areas 

with extensive impervious surfaces, and which had improved the results of Samanta et al. (2016), and 

this study. However, surface runoff was not considered in some studies, e.g., Tehrany et al., (2013); 

Kazakis et al. (2015); and Samanta et al. (2016).  

2.4.2 Flood susceptibility zones in Riyadh Province (large-scale) 

A model has been developed to generate a flood susceptibility map from integrating thematic maps of 

10 factors. Table 2.4 shows the final weight for each factor, which reflects its estimated contribution to 

flood occurrences in the Riyadh Province: surface runoff (19.3%), flow accumulation (16.9%), soil type 

(15.7%), elevation (10.2%), distance to drainage network (9.7%), annual rainfall (8%), drainage density 

(7.1%), land use (6%), slope (5%), and geology (2%). Figure 2.3 shows that the final flood susceptibility 

map developed for the Riyadh province was classified into five susceptibility classes: very high, high, 

moderate, low, and very low susceptibility. Table 2.5 shows the estimated area of each susceptibility 

class: 3.4% (13033.6 km2), 14.4% (54658.6 km2), 27.9% (106277.7 km2), 36.5% (138784.3 km2), and 
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17.8% (67743.7 km2) of the study area are classified as very high, high, moderate, low, and very low 

susceptibility zones, respectively. This means that 45.7% of the study area is characterized by very high 

to moderate flood susceptibility zones which explains reasons behind the recurrent flood events in the 

Riyadh province. These zones have slope ranging from 0-5 %, annual rainfall ranging from 120 to 230 

mm/year, and consist mainly of built-up areas, shrublands, and irrigated croplands.  Miscellaneous land 

units and Yermosols are the main soil types in the very high to high susceptibility zones. The primary 

geological structures include plutonic and Precambrian rocks. These zones have a drainage density 

ranging from 0.72 to 1.85 km/km2, and with an accumulative path of 200–500 m.  Areas that fall within 

200 m buffer zones of the drainage network are found to be highly prone to flooding, but areas far away 

have a lower susceptibility to flooding, as also found by Kazakis et al. (2015). 

The flood susceptibility map shows that most of the very high and high susceptibility zones are 

located within northern, northeastern, and northwestern regions of the Riyadh Province. Historically, 

several neighborhoods in these regions had suffered very high flooding caused by high surface runoff, 

which ranged from 110 to 179 mm/year, such as Wadi Hanifa, Wadi Nisah, Wadi Ghilanah, and Wadi 

Nimar. These wadis witnessed many flooding events in recent years. Urban and built-up areas within 

these wadis are prone to flooding because during heavy rain runoff from surrounding areas will flow to 

these wadis, which will suddenly filled with water. The very low and low susceptibility zones are located 

in western parts of the Riyadh Province. There are also some high to moderate susceptibility zones 

located in central Riyadh Province, some moderate flood susceptibility zones in Wadi Nisah and Wadi 

Hanifah, and high susceptibility zones are restricted to northeastern part of the Riyadh Province.  

 

Table 2.4 Percent of influence 

SL.NO. Thematic layers Weight Weight % 

1 Flow accumulation 0.169 16.9 
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2 Distance to drainage network 0.097 9.7 

3 Elevation 0.102 10.2 

4 Land use/cover 0.06 6 

5 Annual rainfall 0.08 8 

6 Slope 0.05 5 

7 Geology 0.02 2 

8 Runoff 0.193 19.3 

9 Soil type 0.157 15.7 

10 Drainage density 0.071 7.1 

 

Table 2.5 Susceptibility classes and flood records 

Flood susceptibility  Riyadh Province  Riyadh region neighborhoods 

 

Area (Km2)  Area (%) 
# of 

events 
 Area (Km2)  Area (%) # of events 

Very low 67743.7 17.8 0  - - - 

Low 138784.3 36.5 9  - - - 

Medium 106277.7 27.9 28  9037.5 40.9 8 

High 54658.6 14.4 68  4704.3 29.5 4 

Very high 13033.6 3.4 33  4718.5 29.6 13 

 

When an intense rain event occurs, the highest surface runoff is observed in urban and built-up areas of 

Riyadh due to the increase in impervious surface which decreases the soil infiltration loss, and factors 

that contribute to increase in surface runoff such as topography, rainfall of high intensity, slope and 

geology of the area. The impact of increased urbanization is evident in recurrent flood events observed 

in some parts of Riyadh. While moderate and low flood susceptibility zones can be seen in the 

southeastern portions of Riyadh. In summary, factors that contribute to flood susceptibility in Riyadh 

include soil types, annual rainfall and low elevation.  The southeastern regions of Riyadh province have 

the largest CN, ranging over 40–100. These areas are mainly urban areas and government buildings, 

universities and schools. Under large CN, most of the rainfall in these areas is transformed to surface 
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runoff, resulting in loss of lives and properties. Because the surface runoff of the Riyadh province is 

generally high, it is included as a key factor in this study. Sometimes even areas with low surface runoff 

could suffer major floods that caused huge damages to the infrastructure. Southwestern Riyadh belong 

to very low and low susceptibility zones partly because they have high elevation. Figure 2.3 shows 

Riyadh City and its surroundings have moderate, high and very high flood susceptibility risk.  

 

 

 

 

 

 



62 
 

 

Figure 2.3 Flood susceptibility map for Central Arabia 

2.4.3  Flood susceptibility map for Riyadh City (small-scale) 

The flood susceptibility map for the Riyadh City, which is part of the Riyadh Province, was similarly 

developed based on 10 thematic maps. However, the flood susceptibility map developed (Figure 2.4) 

has three vulnerability classes: very high, high, and moderate. As shown in Table 2.5, 29.6 % (4718.5 

km2) and 29.5 % (4704.3 km2) of the Riyadh City belong to very high and high flood susceptibility 
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zones dominated by urban and built-up areas, respectively, while 40.9 % (9037.5 km2) belong to 

moderate susceptibility zones.  

 

Figure 2.4 Flood susceptibility map for Riyadh’s neighborhood 

Unfortunately, southeastern and southwestern parts of the city, with important infrastructure and 

administrative offices, are in the middle of very high flood susceptibility zones. However, to the west 

of Riyadh City, high and medium flood susceptibility zones are common, which include low lying areas 

such as Wadi Nisah and Wadi Hanifah. These two wadis act like a lake collecting surface runoff coming 

from surrounding areas, making them the most prone to flooding zones in the city (Figure 2.4). Wadi 
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Hanifah of 4 km2 in area and highly populated, lies in very high to moderate flood susceptibility zones. 

This wadi, with buildings and heavy constructions, is flooded almost yearly even though its storage 

capacity exceeds 0.7 million m3 of rainwater.  However, the impact of future floods could be mitigated 

if flood susceptibility studies are carried out and applied for any further development.  According to 

historical records, 319 people had lost their lives due to flooding in Saudi Arabia since 1964 (Table 2.6), 

which is a relatively large number in this arid country.  This shows that flooding could impact arid 

regions with severe consequences especially if no flood proofing efforts are implemented in such 

regions.  For example, the 2005 Riyadh flood due to severe rainfall claimed the life of seven people. 

Another recent flood was the 2010 Al-Riyadh flood that resulted in severe damages to infrastructure.  

Table 2.6 Examples of major floods in Saudi Arabia from 1964 to 2013 

# of Event Event Date Totals deaths Total affected 

2 Flood 4/4/1964 20 1000 

3 Flood 24-12-1985 32 5000 

2 Flood 8/8/2003 - 13000 

2 Flood 14-04-2004 - 430 

1 Flood 22-01-2005 29 - 

3 Flood 28-04-2005 34 - 

1 Flood 24-11-2009 161 10000 

2 Flood 10/7/2010 - 85 

3 Flood 14-04-2012 19 1021 

2 Flood 2/5/2013 24 - 

 

2.4.4 Models validation (large-scale and small-scale) 

To verify the two susceptibility models, the flood susceptibility maps developed are compared 

against actual historical flood records. The results reveal quite good agreement between the 

susceptibility maps with historical records. It seems that the proposed method can develop representative 

flood susceptibility mapping in other study areas for it does not depend on the scale of the study site. 

Figure 4 shows that historical flood records occurred in areas designated by the susceptibility map as 
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very high to high flood susceptibility. For example, in the flood event of November 16, 2013 in Riyadh 

City, streets and major facilities were flooded after heavy rainfall storm hit the city, leading to traffic 

jams, and death of more than 20 people. Out of 138 historical flooding events of the Riyadh province, 

101 flooding records occurred within the very high and high flood susceptibility zones. In addition, there 

were only 28 flood events recorded in moderate flood susceptibility zones and only 9 events in low flood 

susceptibility areas.  In another word, the flood susceptibility zones developed out of the factors and 

their weights to yield accurate results in both the Riyadh Province and the city. This shows that the 

adopted flood susceptibility method can predict the likelihood an area will be flooded quite accurately.  

Further, the results obtained from both models compare well with historical flood events which 

demonstrate that the performance of the adopted flood susceptibility model is likely not scale dependent.  

2.4.5  Sensitivity analysis (test cases) 

A sensitivity analysis shows that eliminating certain susceptibility factors from the model will result 

in different weights as shown in Table 2.7. For instance, in Case 1, if rainfall was eliminated as a 

susceptibility factor from the model, the weights of other key factors such as runoff increased from 

19.3% to 22.1%, soil type and flow accumulations increased from 15.7% and 16.9% to 18.2% and 

18.8%, respectively. If runoff is eliminated, key factors will be flow accumulation, soil type, distant to 

drainage network and elevation. Similar weights were obtained from the AHP, if land use and soil type 

were not considered as susceptibility factors. In Case 5, if the same susceptibility factors are used as in 

Kazakis et al. (2015), the weights obtained for this study are the same as the previous study. Some 

susceptibility factors have a larger influence than others on the final weights (Table 2.7).  
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Table 2.7 Sensitivity analysis for weights. 

 
Case 1 Case 2 Case 3 Case 4 Case 5 

Thematic layers Weight Weight % Weight Weight % Weight Weight % Weight Weight % Weight Weight % 

Flow accumulation 0.19 18.8 0.203 20.3 0.217 21.7 0.191 19.1 0.3 30 

Distance to drainage network 0.1 9.7 0.121 12.1 0.132 13.2 
  

0.21 21 

Elevation 0.1 10.4 0.123 12.3 0.138 13.8 0.119 11.9 0.21 21 

Land use/cover 0.06 6.1 0.076 7.6 
  

0.074 7.4 0.12 12 

Annual rainfall 
  

0.094 9.4 0.087 8.7 0.096 9.6 0.1 10 

Slope 0.06 5.9 0.061 6.1 0.069 6.9 0.058 5.8 0.05 5 

Geology 0.02 2.4 0.023 2.3 0.024 2.4 0.023 2.3 0.03 3 

Runoff 0.22 22.1 
  

0.236 23.6 0.211 21.1 
  

Soil type 0.18 18.2 0.207 20.7 
  

0.148 14.8 
  

Drainage density 0.06 6.5 0.091 9.1 0.097 9.7 0.08 8 
  

 

Figure 2.5 shows the final flood susceptibility map for the Riyadh Province for cases presented 

earlier. If rainfall is eliminated as a susceptibility factor, the very high and high susceptibility zones will 

be mainly located within northern, northeastern, and northwestern regions of the Riyadh Province 

(Figure 2.5(a)) because by eliminating rainfall, the weight of runoff will increase. On the other hand, if 

runoff is not considered as a susceptibility factor, the very high and high susceptibility zones will be 

found all over the study area, even in rural areas (Figure 2.5(b)). This shows the crucial role of runoff 

as a susceptibility factor. Figure 2.5(c) shows that by eliminating soil type and land use from the model, 

the very high and high susceptibility zones will mainly locate within the northern, northeastern, and 

northwestern parts of the Riyadh Province. Despite surface runoff, soil  type, and land use are very inter-

related, eliminating the last two factors will lead to low flood susceptibility in cities and urban areas. 

Therefore, researchers tend to include highly inter-related factors in the same model (Elkhrachy, 2015; 

Mojaddadi et al., 2017; Shehata and Mizunaga, 2018). Even though some factors are highly inter-related, 

each factor considered will add more information to the model and make the results more realistic. For 

instance, if the flood susceptibility map is developed without the rainfall as a susceptibility factor, 74 

flood historical records are found to have occurred within the very high and high flood susceptibility 
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zones, 48 historical records in moderate flood susceptibility zones and only 16 events in low flood 

susceptibility zones. This means that removing this factor from the model, somewhat decreases the 

accuracy of the flood susceptibility map developed even though the results are still acceptable. However, 

if runoff is not included as a susceptibility factor, the model will fail to successfully predict locations of 

historical flood records. In that case (see Table 2.8), only 35 flood records fall within the very high and 

high flood susceptibility zones and 24 flood events in the very low and low flood susceptibility zones. 

Therefore, it is important to consider this factor in the model. If soil type and land use are not considered 

as susceptibility factors, 89 flood records fall within the very high and high flood susceptibility and 30 

flood events in the very low and low flood susceptibility zones (Table 2.8), which again shows the 

importance of these two factors.  

 

 

 

a b 
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Figure 2.5 Sensitivity analysis for weights: (a) flood susceptibility if annual rainfall was eliminated, (b) if runoff 

is not considered as susceptibility factor, (c) if soil type and land use were eliminated, (d) if distance to drainage 

network is not a susceptibility factor, (e) flood susceptibility if  adopting the same  susceptibility used in 

Kazakis et al. 2015. 

c d 

e 
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Table 2.8 Number of historical flood events in the test cases. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Flood susceptibility  # of events 

Very low 0 5 1 1 17 

Low 16 37 29 31 35 

Medium 48 61 19 35 20 

High 61 27 77 40 57 

Very high 13 8 12 11 9 

 

On the other hand, if distance to drainage network is not a susceptibility factor, most of the study area 

falling within the low and very low susceptibility zones, including major cities and urban areas (Figure 

2.5(d)). In that case, 31 flood events fall within the very low and low susceptibility zones and only 51 

flood records fall within the very high and high susceptibility zones (Table 2.8), which demonstrates 

that this factor should be included in this study and in previous studies such as Kazakis et al. (2015); 

Zehra and Afsar (2016); and Dou et al. (2018). To compare this study with previous studies, another 

model was developed using the same factors as Kazakis et al. (2015) and the results are shown in Figure 

2.5(e). The elimination of runoff, drainage density and soil type have a critical impact on the final 

weights and the final outcomes, resulting in three susceptibility factors dominating the final weights; 

flow accumulation (30%), distance to drainage network (21%) and elevation (21%). In that case, the 

performance of the model deteriorated significantly, with only 66 flood records fall within the very high 

and high flood susceptibility zones and 52 flood records fall within the very low and low flood 

susceptibility zones. This again shows the importance of including runoff, drainage density and soil type 

as key susceptibility factors. In general, flow accumulation has been shown to be a key contributor to 

flood susceptibility. The contribution of flow accumulation to flood susceptibility could be more 

important than geology, slope, annual rainfall and land use. The geology of the study area was found to 

play a relatively minor role compared to other factors listed above. On the other hand, soil types 

generally play a major role in the flood susceptibility of a region for more soil infiltration loss means 
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less surface runoff and vice versa. Soil types classified under hydrological soil groups is one of several 

key information required by the CN method. Therefore, to avoid any susceptibility factor to be unduly 

dominating, it is generally advisable to consider six to ten factors in delineating flood susceptibility 

zones, of which factors surface runoff and flow accumulation tend to have larger weights than other 

factors such as soil type, elevation and distance to drainage network, and drainage density. 

2.5  Conclusions and recommendations  

In this study, the spatial distribution of flood susceptibility zones of the Riyadh province and the 

Riyadh City of Saudi Arabia were mapped using the Analytic Hierarchy Process (AHP) method. 

According to our findings, very high and high flood susceptibility zones are mainly identified in the 

northern, northeastern, and northwestern parts of the Riyadh Province typically in areas with slopes < 5 

%, dense flow accumulation, high annual rainfall, extensive built-up areas, and high runoff depth, where 

according to historical records, a large number of flood events had occurred in recent years.  According 

to the flood susceptibility map, Riyadh City and its surrounding areas are prone to flooding. In contrast, 

western parts of Riyadh province are classified in zones of very low to low flood susceptibility. Using 

historical flood records, the methodology chosen is shown to develop reliable flood susceptibility maps 

which should be used to assist flood mitigation and in future land use planning in both the province and 

the city of Riyadh. Further, reliable results obtained for both the Province and the City of Riyadh show 

that this methodology is useful for planning and flood assessment purposes, and its reliability is 

independent of the scale of the study site.   

The proposed methodology in developing flood susceptibility maps should be more extensively 

tested in other regions of different climate regimes and basin characteristics. The importance of each 

contributing factor to floods and the optimal number factors to include in the model should also be 

further tested against historical flood records of the region. This study shows that key contributing 
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factors in developing flood susceptibility maps are: surface runoff, flow accumulation, soil type, 

elevation, distance to drainage network, drainage density, land use, slope, and geology.  The optimized 

weights obtained for the factors are sensitive to the number of factors included in the model. Typically, 

if less than six factors or if key important factors are not included, it could produce unrepresentative 

weights dominated by a single weight which increase the possibility of over-rating some contributing 

factors. It is generally advisable to include more than six factors, from which based on AHP larger 

weights tend to be for factors related to flow such as surface runoff and flow accumulation, followed by 

factors related to soil type, elevation and distance to drainage density. Sensitivity analysis is useful to 

examine the influence of each susceptibility factor in developing mapping flood susceptibility maps. 
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Chapter 3 Impact of urbanization on Urban Climate and Human thermal comfort  

3.1 Introduction 

Since the 1970s, population growth in Egypt has increased dramatically from 35 million (1970) to 

about 100 million (2017) and therefore urbanization has become a major issue socially and politically. 

The Cairo governate, the capital of Egypt, is likely one of the most densely populated regions in the 

world with a population of over 10 million concentrated in an area of 2886 km2 (Goldschmidt, 2008). 

Rapid urbanization has led to an imbalance between demand and supply, the available infrastructure is 

under stress, and the urban climate in Egypt is altered.  A rapid expansion of urban areas within Cairo 

governates has resulted in serious environmental and social problems, such as the rise of urban slum 

communities. Many studies have showed the usefulness of remotely sensed (RS) data in monitoring 

landuse information and the earth surface obtained from an integration of RS data and geographic 

information systems (GIS) (Eastman and Fulk, 1993; Jensen and Cowen, 1999; Lu et al., 2004; Longley 

et al., 2005). Various change detections techniques were used in past studies such as band differencing, 

principal component analysis and band ratioing, to detect the change and to monitor historical land use 

changes (Lu et al., 2004, Srivastava et al., 2012; Petrosillo et al., 2013). In addition, neural network 

models such as the support vector machine (SVM) have been successfully applied in land use 

classifications of small cities, and small-scale studies (Ustuner et al., 2015; Martins et al., 2016). There 

are studies that used ensemble learning techniques to detect long-term land use and land cover changes 

(Giacinto and Roli, 2001; Han and Liu, 2015; Chakraborty et al., 2016).  

In the last few decades, several studies have investigated the impact of rapid urbanization on urban 

climate [Unkasevic et al., 2001; Liu et al., 2009; Myint et al., 2013; Mahmoud and Gan, 2018a,b). 

According to these studies, urban growth has caused increased air temperature (Liu et al., 2009; Lee, 

1991; Streutker, 2003; Fu and Weng, 2016), but decreased relative humidity (Liu et al., 2009; Wolkoff 
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and Kjaergaard, 2007). Relative humidity, a ratio of actual to saturation water vapor of air, and is closely 

dependent on the air temperature, has a significant impact on the local climate (Wypych, 2010). In 

addition, relative humidity and air temperature are important climate variables because of their impact 

on human physiological comfort (Wolkoff and Kjaergaard, 2007; Wypych, 2010). Wolkoff and 

Kjaergaard (2007) stated that variability in temperature and relative humidity have a great impact on 

human health and energy requirements. Adebayo (1991) found that urbanization has a significant effect 

on relative humidity and vapor pressure. Similar observations were found in other countries e.g. Lee 

(1991) found a strong relationship between the urban heat island and urban vapor pressure in London, 

UK. In a different study, Liu et al. (2009) analyzed urban-rural humidity and temperature differences in 

the Beijing area, China.  Their study showed that urbanization has led to a significant increase in air 

temperature and a decrease in relative humidity.  

Most of earlier studies that investigated the impact of urbanization on urban heat island have assessed 

the relation between urbanization and human thermal comfort in cities e.g. (Mahmoud, 2011; 

Shaharuddin et al., 2014; Eludoyin et al., 2014; Ghaffarianhoseini et al., 2015; Morris et al., 2017; Yahia 

et al., 2018; Li et al., 2018). These studies have shown that increased air temperature in cities will 

increase heat stress, energy consumption that causes an increase in the emissions of greenhouse gases. 

Furthermore, several studies reported that urbanization has a significant impact on human thermal 

comfort. For instance, Shaharuddin et al. (2014) reported that land use change caused an increase in air 

surface temperature and led to the Urban Heat Island effect (UHI). In a different study, Mahmoud (2011) 

who investigated users’ thermal comfort in an urban park in Cairo, Egypt found the human comfort to 

depend on landscape zones because human thermal comfort varies widely in a hot and arid environment. 

Li et al. (2018) shows that under both reanalysis data and simulations of CMIP5 global climate models, 
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apparent temperature, the human-perceived equivalent temperature, has increased faster than air 

temperature over land. 

Various studies reported positive improvement in urban climate by increasing areas occupied by 

vegetation cover, which help to decrease air temperature and increase the air humidity or water vapor 

(Mahmoud, 2011; Emmanuel, 2005). Emmanuel (2005) analyzed the implications of land cover change 

on human thermal comfort based on two indices; the temperature humidity index (THI) and relative 

strain index (RSI]) in the Colombo Metropolitan Region, Sri Lanka. He found a strong correlation 

between thermal discomfort and land cover change, with an increasing trend in thermal discomfort in 

urban areas compared to rural areas.  Similarly, in Malaysia, Morris et al. (2007) found that the level of 

urbanization had a significant effect on urban climatology and human thermal comfort, resulting in a 

significant increase in THI, RSI and the effective temperature index (ETI). In eastern China, Cao et al. 

(2018) found that future urban expansion will lead to an increase in air temperatures and sensible heat 

flux, and urban expansion (increase in impervious surfaces) will greatly reduce relative humidity, which 

will increase the thermal discomfort of urban residents. 

This study will provide important information to the influence of rapid urbanization on long-term 

air temperature, relative humidity, vapor pressure and human thermal comfort in Egypt. Similar impacts 

are found in many if not all Middle Eastern countries of arid climate. The main objectives of our study 

are (1) to detect land use change at different spatial and temporal scales in Cairo, Egypt; (2) to estimate 

the effects of historical land use change on the urban climate of Egypt; and (3) to assess impacts of land 

use change on human thermal comfort. To achieve these objectives, earth observation data was 

employed to measure land use change in Cairo governorate between 1973-2017. Buishand's non-

parametric change point detection and Mann-Kendall tests were applied on monthly air temperature, 

relative humidity, and vapor pressure data over 1950-2017, to estimate the impacts of urbanization on 
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urban climate in the region. Then, the non-parametric Mann–Kendall was used to detect trends in annual 

air temperature, relative humidity, vapor pressure, and their anomalies between 1950 and 2017. To 

detect the impact of urbanization on human thermal comfort, three historical thermal comfort indices 

series were developed between 1950 and 2017: Temperature Humidity Index-THI, Relative Strain 

Index-RSI, and Effective Temperature Index (ETI). Change point detections and trend analysis 

techniques were applied to monthly, annual THI, RSI, and ETI and their anomalies to assess the 

influence of urbanization on human thermal comfort. The results will be useful to urban planners for 

regions of other arid environments. 

3.2 Data and Research Methods  

3.2.1 Study area and data sets 

Cairo governate of Egypt (Figure 3.1), located at 30°02'N and 31°21'E, in the middle of the Delta 

Region in Egypt. Cairo is one of the densest urban areas on Earth, where there has been extensive land 

use changes but no official studies have been conducted on how urban expansion has affected the urban 

climate. The rapid urban expansion that is not well planned has resulted in an imbalance between 

demand and supply and has resulted in the stress of available infrastructure.  Any data on when and how 

urban changes have affected the climate and human thermal comfort could be of great help in city 

planning and management. Two new cities within Cairo; Shrouk city (67 Km2) and New Cairo (275 

Km2) are considered in this study to track their urban growth in the last 45 years over the desert of old 

Cairo. Landsat images were obtained from the U.S. Department of the Interior U.S. Geological Survey 

(Table 3.1). Digital elevation model, population, road network, land price, in addition to ground control 

points obtained from Visual interpretations of Google Earth images and field survey were used to 

support the land use classification process. Monthly air temperature, relative humidity data between 

1950-2017 were derived from the 20th Century Reanalysis V2 Dataset, and monthly vapor pressure data 
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from the CRU TS4.01 vapor pressure dataset. Natural disaster events for Egypt between 1954 and 2016 

were obtained from the Emergency Events Database of Universite Catholique de Louvain (2018) which 

consists of meteorological, hydrological, and climatological disasters data such as flooding, extreme 

temperature, dry mass movement and convective storm and their impacts on human health issues in 

Egypt. The number of heat-related deaths and people affected by extreme temperature in Cairo and 

Egypt between 1954 and 2016 were extracted from this database and checked against historical thermal 

comfort indices. 

Table 3.1 Data used in this study: Landsat data from 1973–2017 

Product Type (Cloud Cover %) Format Date of acquisition Resolution (m) Images Used for the study 

L1T (0%) GEOTIFF 29/01/1973 30 Landsat 1 -5 MSS 

L1T (0%) GEOTIFF 20./09/1984 30 Landsat 1 -5 MSS 

L1T (0%) GEOTIFF 16/02/1990 30 Landsat 5 TM “Band 1 -7” 

L1T (0%) GEOTIFF 30/09/1998 30 Landsat 7 ETM+ “Band 1 -8” 

L1T (0%) GEOTIFF 24/08/2006 30 Landsat 7 ETM+   

L1T (0%) GEOTIFF 01/10/2017 30 Landsat 8  
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Figure 3.1 Location of study area 

3.2.2 Historical land use dynamics  

Cloud-free Landsat images of 30m spatial resolution were resampled using the nearest neighbour 

algorithm, keeping the original brightness and pixel values. The resultant root mean squared error of 

each image was less than 0.64 pixel. Furthermore, the images have been radiometrically corrected to a 

base image (SPOT-5 “2.5 m”) using manually identified pseudo-invariant features (PIFs). After 

identifying 14 PIFs, a linear regression was used to transform the data of each band onto the same 

radiometric reference. Finally, prior to land use classifications, these images were preprocessed and 

corrected for atmospheric absorption using the cost function of IDRISI Selva. Two field surveys were 

conducted to collect data to support land use classification, which include ground control points, visual 

interpretations of Google Earth images together with satellite night images that highlight locations of 

urban areas. More than 700 ground control points were collected. A database for each land use class was 

developed using ArcGIS. The Maximum Likelihood Supervised Classification (MLC) and the ISO 

Cluster Unsupervised Classification methods were performed on Landsat images to produce land use 
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maps.  The Iso Cluster Unsupervised Classification was used to collect more training data and to check 

the results obtained from the two supervised classification methods.  

Based on the collected ground control points, a supervised signature extraction using the MLC to 

classify the Landsat images into different land use maps. These two methods are widely used in land 

use classification (Srivastava et al., 2012; Kolios and Stylios, 2013, Silva et al., 2018). 70% of data 

collected in the two field surveys was used for landuse classification and 30% of the data for validating 

the classified land use maps. Four main land use categories have been identified in Cairo: Water bodies, 

Urban and built-up areas, Cropland or Vegetation, and Bare soil. Finally, each land use map developed 

was checked against the validation dataset with respect to some simple random patterns. Then, a change 

detection technique was applied between two land use maps to evaluate the dynamics and patterns of 

land use change in Cairo. The area percentages of each land use category over time were calculated to 

detect the trends in land use change. To estimate land use dynamics, a net change between earlier and 

newer land use maps was derived for each land use category. Historical change or urban expansion in 

new cities in Cairo was also derived to provide essential information about the state of land uses or 

urbanization in Cairo.   

3.2.3 Urban climate change detection 

Effects of urbanization on urban climate have long been documented (Liu et al., 2009; Fu and Weng, 

2016; Cao, 2018), which include an increase in air temperature, a decrease in relative humidity, and an 

increase in vapor pressure, which are also investigated in this study. Buishand's nonparametric test has 

been used to detect change points in climate time series (Jarušková, 1996; Buishand, 2013; Minaei and 

Irannezhad, 2018).  However, the non-parametric Mann–Kendall has been more widely applied to detect 

the trend and variability in regional climate (Yue et al., 2002; Gocic and Trajkovic, 2013; Abahous et 

al., 2007; Worku et al., 2018). Long-term monthly air temperature, relative humidity, and vapor pressure 
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data were processed to derive mean annual and anomalies of air temperature, relative humidity and 

vapor pressure between 1950 and 2017.  Buishand's nonparametric detection method was applied on 

monthly, annual and anomalies of air temperature, relative humidity, and vapor pressure data to detect 

change points of urban climate of the region.  This test check for a null hypothesis (no change point) 

and an alternative hypothesis, where change point is detected. Next, the non-parametric Mann–Kendall 

was also adopted to investigate the  long-term trend in monthly, annual and anomalies of air temperature, 

relative humidity and vapor pressure between 1950 and 2017. The Buishand test (Buishand, 1982) 

utilizes the adjusted partial sums or cumulative deviations from the mean given by 

𝑆0
∗ = 0                                                                                                                                       (3-1) 

𝑆𝑘
∗ = ∑ (𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)

𝑘
𝑖=1                                k =1, 2, …….., n                                                  (3-2) 

If Sk∗  , the cumulative deviations from the mean fluctuates around zero, the null hypothesis is accepted. 

On the other hand, if there is an increase or decrease in the cumulative deviations from the mean at a 

particular year k, the alternative hypothesis is accepted. The test of significance is based on the rescaled, 

adjusted partial sums obtained by dividing the cumulative deviations from the mean by the standard 

deviation:  

𝑆𝑘
∗∗ = 𝑆𝑘

∗/𝜎                                                                                                                               (3-3) 

𝜎2 = ∑ (𝑥𝑡 − 𝑥𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1 /𝑛                                                                                                    (3-4) 

Q statistic, sensitive to departures in the series from the variable mean, is esimtated as follow: 

𝑄 = 𝑀𝑎𝑥|𝑆𝑘
∗∗| − 𝑀𝑖𝑛|𝑆𝑘

∗∗|                                                                                                       (3-5) 

 0 ≤ 𝑘 ≤ 𝑛 

where a high Q indicates a large departure level. If  𝑄
√𝑛
⁄   > tabulated critical value obtained from a 

table of the Kolmogorow-Smirnov goodness-of-fit statistic (Buishand, 1982), the null hypothesis is 

rejected and therefore at year k, a change point is detected. To detect the trend of a climate data, the 

Mann–Kendall test was applied as follows:  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                                         (3-6) 
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To estimate trend for a time series 𝑥𝑖 , i = 1, 2… n-1 and 𝑥𝑗 ,  j = i +1, i+2…. n. Each 𝑥𝑖   is a reference and 

compared with remaining data points 𝑥𝑗   (see 7): 

𝑆𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1                  𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0 

0                     𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1                   𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

                                                                   (3-7) 

The variance statistic for each climate variable is then calculated as follow: 

𝑉𝑎𝑟 (𝑆) =
1

18
(𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)

𝑝
𝑗=1 )                    (3-8) 

Where p is the number of groups in which each group consists of data points of equal values, and tj is the number 

of data points in the jth group. Using the following Z-transformation, S is approximately normally distributed: 

𝑍 = {

(𝑆 − 1)/ √𝑉𝑎𝑟 (𝑆)      𝑖𝑓 𝑆 > 0 

0                                      𝑖𝑓 𝑆 = 0

(𝑆 + 1)/ √𝑉𝑎𝑟 (𝑆)     𝑖𝑓 𝑆 < 0

                                                            (3-9) 

The slope (Tj) is computed according to Sen (1968) as follow: 

𝑇𝑗 = (𝑥𝑗 − 𝑥𝑖)/(𝑗 − 1)                                                                                     (3-10) 

The trend magnitude is obtained from the slope estimator method (Sen, 1968). The sign of the slope 

indicates if the trend of the time series is positive or negative.  

3.2.4 Thermal comfort indices 

 To detect the impact of urbanization on human thermal comfort, three historical thermal comfort indices 

series were estimated from data collected between 1950 and 2017, the Temperature Humidity Index-

THI, Relative Strain Index-RSI, and Effective Temperature Index (ETI), which were developed to 

evaluate the thermal comfort in hot, humid and tropical countries (Emmanuel, 2005; Hwang et al., 2011; 

Eludoyin et al., 2014; Fang et al., 2018; Johansson et al., 2018).  The climate of Egypt can be divided 

into two seasons, a mild winter from November to April and a hot and dry summer from May to October. 

In this study, historical human thermal comfort indices were estimated only for summer seasons. THI, 

also known as the Discomfort Index, was first developed by Thom (1959) to estimate an approximate 
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thermal stress level in a city over time. This index is also highly utilized in urban cities design.  Thom 

(1959) classified THI as 21 ≤THI ≤ 23 uncomfortable, 23.8 ≤ THI ≤ 26.1 very uncomfortable, and THI 

≥ 26.67 serious discomforts. Other studies found that THI values of 22-25 0C are thermally comfortable 

(Emmanuel, 2005; Eludoyin et al., 2014; Morris et al., 2017). THI was calculated as follow: 

THI = 0.8Ta + 0.002Ta x RH                                                                                               (3-11) 

Where 𝑇𝑎  is air temperature “oC”, and RH is relative humidity in %. 

Matzarakis (2001) reported that increase in urbanization in Greece had caused an increase in 

temperature-related diseases. Similar studies reported a strong connection between ETI and human 

health issues in different countries (Williams and Boren, 2008; Coêlho and Gonçalves, 2008; Ostro et 

al., 2011). For instance, Ostro et al. (2011) conducted a study in California, USA to study the effect of 

ETI on human health. The study showed that an increase in ETI had increased mortality and hospital 

admissions, which are also found by Coêlho and Gonçalves (2010) in another similar study. Different 

studies (Emmanuel, 2005; Eludoyin et al., 2014; Morris et al., 2017) found that the thermally 

comfortable ETI that ranges between 22.5 to 25.5 0C, is based on air temperature and relative humidity 

as follow: 

ETI = Ta − 0.4(Ta − 10) (1 − 0.002RH)                                                                 (3-12) 

The third thermal comfort index is the RSI, which is closely related to human mortality rate. Different 

studies reported the thermally comfortable range for this index are 0.14-0.2 (Emmanuel, 2005; Eludoyin 

et al., 2014; Morris et al., 2017). This index was calculated as follow: 

RSI = (Ta − 21)/(58 − VP)                                                                           (3-13) 

Where 𝑇𝑎   is air temperature “oC” and VP is vapor pressure “hPa”.  

The above change point detection and trend analysis techniques were applied to monthly, annual and anomalies 

THI, RSI, and ETI to assess the influence of urbanization on human thermal comfort.  
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3.3 Discussion of Results 

3.3.1 Land use dynamics  

The Landsat images are classified into four primary classes: water bodies, urban and built-up areas, and 

cropland/ vegetation. An assessment of the accuracy of the classified images was determined by both 

simple random patterns. The results showed an overall good accuracy, as the accuracy of the land use 

maps for 1973, 1984, 1990, 1998, 2006, and 2017 was estimated to be 80.13%, 85.6%, 88.16%, 86.80%, 

87.31%, and 94.56%, respectively (Table 3.2). Given the Egyptian population has drastically increased 

from 35 million in 1970 to 100 million in 2017 has led to a drastic change and rapid urbanization, which 

occurred after 1973 (Figure 3.2). The land use classes identified show that bare soil was the largest class 

throughout the study period, but it was shrinking with time, leading to less available land for 

development. LUC in Cairo had followed a dynamic pattern. People tend to invest in new houses rather 

than occupying them, resulting in the lower population density in newer cities, as has been the case in 

New Cairo and Shrouk City. The greatest increase was observed in urban and built-up areas at the 

expense of bare soil, from 142.5 Km2 in 1973 to 473.7 Km2 in 2017. 

Table 3.2 Accuracy assessment and validation 

 
 

1973 1984 1990 1998 2006 2017 

Land use class UA (%) Kappa UA (%) Kappa UA (%) Kappa UA (%) Kappa UA (%) Kappa UA (%) Kappa 

Water bodies 80.20 0.72 78.12 0.71 86.80 0.69 89.10 0.82 79.61 0.88 93.21 0.86 

Urban and built up areas 79.90 0.81 92.62 0.82 90.35 0.77 90.20 0.86 94.58 0.98 96.85 0.92 

Bare soil 84.20 0.62 88.22 0.71 88.12 0.67 79.60 0.83 88.50 0.78 95.47 0.79 

Cropland/Vegetation 76.20 0.86 83.44 0.76 87.35 0.73 88.29 0.78 86.55 0.85 92.69 0.89 

OA 80.13 0.75 85.60 0.75 88.16 0.71 86.80 0.82 87.31 0.87 94.56 0.87 

   UA, user’s accuracy; Kappa, index of agreement; OA, overall accuracy 
 

In the past, little was known about the spatial and temporal changes of LUC that have shaped the urban 

expansion of Cairo. Such data are also lacking in other provinces of Egypt where extensive LUC has 

also taken place without much official statistics on LUC patterns. The extent of land use distributions 
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throughout the study period (1973-2017) is presented in Table 3.3.  An analysis of LUC change in the 

region shows a dramatic increase in urban and built-up areas, as shown in Table 3.3.  Urbanized areas 

had rapidly increased from 142.5 km2 (4.9 % of total area) in 1973 to 194.4 km2 (6.7%) in 1984, a 

34.6% increase in just 11 years. In this period vegetated land had marginally increased from 36.6 km2 

(1.3%) in 1973 to 52.2 km2 (1.8%) in 1984 (Table 3.4).  
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Figure 3.2 Space distribution of land use type from 1973 to 2017 in Cairo. 
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Figure 3.2 (continued) 
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Figure 3.2 (continued) 
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Table 3.3 Area measurements of land use within Cairo for each subperiod and the full period 1973–2017 

 
1973 1984 1990 1998 2006 2017 

Land use class Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

Urban and built up areas 142.5 4.9 194.4 6.7 250.7 8.7 298.4 10.3 378.5 13.1 473.7 16.4 

Cropland /Vegetation 36.2 1.3 52.2 1.8 58.0 2.0 47.5 1.6 79.1 2.7 128.7 4.5 

Bare soil 2708.0 93.8 2640.5 91.5 2578.1 89.3 2535.7 87.8 2427.6 84.1 2283.3 79.1 

Water bodies 0.0 0.0 0.0 0.0 0.1 0.0 5.3 0.2 1.6 0.1 1.1 0.0 

 
Table 3.4 Detected land use gains and losses within Cairo for each subperiod and the full period 1973-2017 

  1984-1973 1990-1984 1998-1990 2006-1998 2017-2006 

Land use class  Km2  %  Km2 %  Km2  %  Km2  %  Km2  % 

Urban and built up areas 51.9 36.41 56.30 28.96 47.66 19.01 80.10 26.84 95.23 25.16 

Cropland /Vegetation 16.0 44.26 5.73 10.96 -10.41 -17.96 31.58 66.41 49.60 62.69 

Bare soil -67.5 -2.49 -62.41 -2.36 -42.45 -1.65 -108.03 -4.26 -144.35 -5.95 

Water bodies 0.0 250.00 0.03 114.29 5.20 9626.67 -3.64 -69.38 -0.47 -29.43 

 

Between 1984 and 1990, urban areas grew from 194.4 km2 (6.7%) in 1984 to 250.7 km2 (8.6%) 

in 1990.  Relative to 1984, there was a significant increase in urban areas between 1990-2017. 

In general, the spatial patterns of LUC changes in Cairo for 1973, 1984,1990, 1998, 2006, and 

2017 (Figure 3.2 and Table 3.3) show that urban areas and vegetated land dominated the direction 

of urbanization in Cairo. In other words, over 1990-2017, urbanized areas replaced most of the 

bare soil, extending into the low-lying areas of Cairo along the direction of roads. According to 

previous studies, population density plays a major role on the locations of urbanization, even 

though elevations and road network are also main drivers of land use change in Cairo. The trend 

of urbanization in developing countries such as Egypt is also dictated by the cost of development, 

and services and roads are easier to implement in low-lying areas. Another reason behind the 

expansion of urban areas in new cities is the attitude of people, instead of just population density, 

e.g., most residents of old Cairo tend to invest in new homes in new cities which led to this large 

urban expansion, giving rise to the emergence of what’s called ghost cities, which become 

moderately populated only 40 to 50 years after their constructions. Urban areas in Cairo had 
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considerably increased by 331.2 km2 between 1973 and 2017, an average increase of more than 

7.52 km2 per year. Overall, the trend in land use change is dominated by urban growth in new 

cities. Factors such as land price, socioeconomic and distance to nearest roads contributed to 

shifting most of the urban growth toward New Cairo (Figure 3.3) and Shrouk City (Figure 3.4).  

Area occupied by each land use class in new cities are shown in Figure 3.5. In New Cairo, a 

city that did not exist before 1973 started growing after 1990.  Urban areas in New Cairo City (see 

Figure 3.3 and Figure 3.5(a)) occupied 90 Km2 in 2017 compared to 4 Km2 in 1990 (Figure 3.5(a)). 

Similarly, the Shrouk City (Figure 3.4 and Figure 3.5(b)) also grew after 1990. The Cramer’s V 

test was used to relate driving factors for land use change and the level of urbanization, a “statistic 

measuring the strength of association or dependency between two (nominal) categorical variables” 

(Woo and Chi, 2003). Variables that had Cramer’s V of 0.4 or higher are good indicators of the 

major drivers of land use change (Eastman and Fulk, 1993). The overall Cramer’s V for the six 

classes ranged from 0.6 to 0.72, with highest values observed for distance to nearest road, land 

price, built-up areas, bare soil as the main drivers for LUC. The trend of LUC in the Shrouk City 

is lower than that in the New Cairo city (Figure 3.5). Since early 1990s there was a significant shift 

in the concept of new cities leading to an increase in land price because of demand attributed to 

investment opportunities.  Geographic elements to infrastructure such as distance to roads, distance 

from cities, and infrastructure availability had influenced the direction of land use change in 

different cities globally in the past. In contrast, the direction of urban expansion in new cities of 

Cairo has been towards low-lying areas of Cairo, as confirmed from the Cramer’s V test for 

autocorrelation between urbanization and the direction of urban growth. 
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Figure 3.3 Space distribution of land use type from 1973 to 2017 in New Cairo City 
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Figure 3.4 Space distribution of land use type from 1973 to 2017 in Shrouk City. 
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Figure 3.5 Trend of land use change in New Cairo City (a) and Shrouk City (b) 

3.3.2  Influence of urbanization on urban climate 

 Studies showing how rapid urbanization had affected air temperature are well documented, 

e.g. (Shojaei et al., 1993; Mushore et al., 2017; Tong et al., 2008; Silva et al., 2018). For instance, 

Mushore et al. (2017) projected a continuous increase in urban surface temperatures through to 

2045 due to rapid urbanization. In the present study, from applying the Buishand’s change 

detection test to average annual air temperature and air temperature anomalies between 1950 and 

2017, a statistically significant change points in annual air temperature and air temperature 

anomaly were both detected in 1995 (Figure 3.6). The mean annual air temperature of 21.68 oC 

and air temperature anomalies of 0.287 oC between 1950-1995 had increased to 22.57 oC and 0.6 

oC between 1995-2017, respectively. This increase in air temperature is attributed to a significant 

increase in urban areas between 1990-2017.  
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The Mann–Kendall trend test detected a statistically significant warming trend of 0.19 oC 

/decade in the mean annual air temperature and air temperature anomalies (Table 3.5).  Similar 

studies show that urbanization or more impervious surfaces have led to rising temperature in 

urban areas. For example, Silva et al. (2018) found that rapid urbanization in Paço do Lumiar 

County, Brazil had a remarkable impact on its surface temperature, resulting in 5.3 0C increase 

in urban surface temperature between 1988 and 2014 (a warming trend of 2.03 0C /decade), 

because of the increase in the areas of impervious surfaces. Xiong et al. (2012) who studied the 

impact of urbanization in the urban climate of Guangzhou, South China stated that the highest 

increase in temperature anomalies was strongly associated with built-up areas. 

 

 
Figure 3.6 Long-term warming trend: (a) average annual air temperature, (b) air temperature anomalies 
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Table 3.5 Atmospheric variables and human thermal comforts indices trend 

 

 

 
Bushland’s test  

  
Mann-Kendall trend test 

Atmospheric variables Q T p-value  trend Mb Ma Kendall's tau p-value trend Sen's slope 

Air Temperature 19.98 1995 <0.0001 Ha 21.68 22.57 0.438 <0.0001 + 0.019 

Temperature anomaly 19.98 1995 < 0.0001 Ha 0.287 0.6 0.438 < 0.0001 + 0.019 

Monthly relative humidity 70.45 1967 0.0001 Ha 63.61 60.53 0.092 0.0001 - 0.055 

Avg. annual relative humidity 13.54 1966 0.0001 Ha 63.48 60.53 0.156 < 0.0001 - 0.048 

Relative humidity anomaly 13.54 1966 < 0.0001 Ha 0.543 -2.84 0.156 < 0.0001 - 0.048 

Monthly vapor pressure 55.85 1993 <0.0001 Ha 14.55 15.58 0.085 <0.0001 + 0.024 

Avg.annual vapor pressure 27.85 1993 <0.0001 Ha 14.59 15.76 0.532 <0.0001 + 0.029 

Vapor pressure anomaly 247 1993 <0.0001 Ha 0.162 1.052 

 

0.375 <0.0001 + 0.029 

Human thermal comfort indices           

Temperature–humidity index (THI) 24.07 1994 0.005 Ha 25.57 26.31  0.09   0.001 + 0.033 

Avg. annual THI 17.30 1984 <0.0001 Ha 25.53 26.11  0.468 <0.0001 + 0.019 

THI anomaly 17.08 1984 <0.0001 Ha -0.246 0.331  0.468 <0.0001 + 0.019 

Effective temperature index (ETI) 22.4 1994 0.001 Ha 24.32 25.71 0.078   0.002 + 0.029 

Avg. annual ETI 15.86 1984 <0.0001 Ha 24.26 24.9 0.428 <0.0001 + 0.016 

ETI anomaly 16.69 1984 <0.0001 Ha -0.178 0.252 0.428 <0.0001 + 0.016 

Relative strain index (RSI) 25.04 1994 0.004 Ha 0.175 0.205 0.086 0.0014 + 0.006 

Avg.annual RSI 16.97 1984 <0.0001 Ha 0.173 0.197 0.46 <0.0001 + 0.006 

RSI anomaly 18.25 1984 <0.0001 Ha -0.003 0.021 0.460 <0.0001 + 0.008 
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Studies on how rapid urban growth influences the relative humidity of urban areas (Emmanuel, 

2005; Um et al., 2007; Zhang et al., 2016) reported a considerable decrease in the relative humidity 

of urban areas due to rapid urbanization.  To investigate the impact of rapid urban growth in Cairo 

on its relative humidity, change point detections and trend analysis techniques were applied on 

monthly, annual and anomaly of relative humidity.  Buishand’s tests detected statistically 

significant change points in mean monthly relative humidity in 1967, when the monthly relative 

humidity decreased from 63.61% in 1950-1967 to 60.53 % in 1967-2017 (Figure 3.7(a)).  

Statistically significant declining trends are also detected in the mean monthly relative humidity 

since 1967 at the rate of 0.55 % /decade. 

Statistically significant change point is detected in both annual relative humidity and relative 

humidity anomalies in 1966 (Figure 3.7(b)). The results also show a very high variability in relative 

humidity due to a significant increase in impervious surfaces of Cairo. Figure 3.7(c) shows a 

continuous decline in relative humidity after 1966. The increase in impervious surfaces and built 

up areas has led to a decrease in long-term average relative humidity anomaly from 0.543% in 

1950-1966 to -2.84% in 1966-2017 (Table 3.5). Furthermore, mean annual relative humidity and 

relative humidity anomalies were also analysed, where statistically significant declining trends 

were also detected at 0.48 %/decade (Table 3.5).  This finding agrees with previous studies 

(Adebayo, 1991; Omoto et al., 1994; Zhang et al., 2016).  
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Figure 3.7  Long-term variability in relative humidity: (a) average monthly relative humidity, (b) average 

annual relative humidity, (c) relative humidity anomalies 
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Vapor pressure data between 1950 and 2017 also showed a statistically significant change point in 

the average monthly and annual vapor pressure and vapor pressure anomalies in 1993, as monthly 

vapor pressure series increased significantly after 1993, from 14.55 hPa in 1950-1993 to 15.58 hPa 

in 1993-2017 (Figure 3.8(a)). This again was the impact of rapid urbanization on urban climate, as 

the urbanization increases both air temperatures and vapor pressure, but it reduces the relative 

humidity.  The mean annual vapor pressure also increased from 14.59 hPa in 1950-1993 to 15.57 

hPa in 1993-2017 (Figure 3.8(b)), while long-term average vapor pressure anomalies increased 

significantly from 0.162 hPa in 1993 to 1.052 hPa in 1993-2017. Between 1950 and 1993, vapor 

pressure anomalies only had minimal changes, but after 1993 the vapor pressure anomalies 

increased significantly (Figure 3.8(c)).  

This increase can be attributed a significant increase in impervious surfaces in Cairo, as urban 

growth in new cities tends to have little vegetation cover, as also shown by Argüeso et al. (2015). 

To detect the magnitude of change in vapor pressure due to urbanization, trend detection 

techniques were applied to monthly vapor pressure, average annual and anomalies vapor pressure 

between 1950 and 2017. A statistically significant increasing trend was detected in monthly vapor 

pressure at 0.24 hPa /decade (Table 3.5). Similarly, a statistically significant rising trend was 

detected in the annual vapor pressure and vapor pressure anomalies at 0.29 hPa /decade (Table 

3.5).  
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Figure 3.8  Long-term variability in vapor pressure: (a) average monthly vapor pressure, (b) average 

annual vapor pressure, (c) vapor pressure anomalies 
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3.3.3 Impact of urbanization on historical thermal comfort indices 

The analysis of the historical thermal comfort indices showed a limited number of cold distress 

levels in the last 67 years in Cairo. On the other hand, there has been a very high variability in 

summer historical thermal comfort indices. The effect of urban growth on summer climate and 

heat-related human health issues in Cairo was investigated on three summer historical thermal 

comfort indices. From applying change detection techniques to monthly summer Temperature–

humidity index (THI) between 1950 and 2017, a statistically significant change point was detected 

in 1994 (Figure 3.9(a)), where the mean monthly THI increased from 25.57 0C in 1950-1994 to 

26.31 0C in 1994-2017. The monthly THI index over Cairo were strongly correlated with air 

temperature. Between 1950 and 1994, Cairo had a moderate thermal comfort conditions, with a 

long-term mean monthly THI (25.57 0C) is within the critical conditions, and no hot distress levels 

were observed during this period.  However, between 1994 and 2017, the influence of urbanization 

on human thermal comfort had increased. After 1994, the THI past the upper limits of the comfort 

zones (25.5 0C) due to rapid urbanization. The worst hot distress levels (26.5-33.52 0C of THI) 

were observed in 169 months out of 252 months between 1994 and 2017, compared to no hot 

distress observed prior to 1994.  

The highest recorded thermal discomfort levels (> 30 0C of THI) were observed in July, August 

and September between 1994 and 2017.  To relate changes in THI due to urban growth, trend 

detection techniques were applied to monthly THI records between 1950 and 2017, from which a 

statistically significant positive trend was detected at 0.33 0C /decade after 1994 (Table 3.5). This 

was attributed to a significant increase in urban and built-up areas in Cairo from 250.7 km2 in 1990 

to 473.7 km2 in 2017. Figure 3.9(b) shows the annual THI between 1950-2017 attributed to rapid 

urban growth in Cairo. Statistically significant change points were detected in annual THI and THI 

anomalies at 1984, where the mean annual THI and THI anomalies increased from 25.53 0C and -
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0.246 0C over 1950-1984 to 26.110C and 0.3310C over 1984-2017, respectively. Figure 3.9(c) 

shows the intensity of thermal discomfort level after 1984, as THI anomalies increased 

dramatically with time, leading to continuous hot distress between 1984 and 2017, except for 1991. 

A statistically significant increasing trend in annual THI and THI anomalies since 1984 was 

estimated at 0.19 0C /decade.  
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Figure 3.9  Long-term historical THI: (a) average monthly THI, (b) average annual THI, (c) THI anomalies 
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Figure 3.10 Long-term historical ETI: (a) average monthly ETI, (b) average annual ETI, (c) ETI anomalies 
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with both air temperature and vapor pressure and is negatively correlated with human comfort 

indices. This shows that as relative humidity decreases, hot distress will increase in Cairo. 

 

  

 
Figure 3.11 Long-term historical RSI: (a) average monthly RSI, (b) average annual RSI, (c) RSI anomalies 
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To further illustrate the relative importance of each index for the study area, the spatial distribution 

of thermal discomfort risk zones in the Cairo Governate was developed for each index. Figure 3.12 

shows the majority of urban and built-up areas fall within the very high and high-risk zones. Based 

on the THI index, 35.67% of the study area falls within the very high to high-risk thermal 

discomfort zones (Figure 3.12(a)), which agrees with results obtained from the RSI index (Table 

3.6).  These two indices showed similar thermal discomfort zones in the study area (Figure 3.12(a, 

b)). On the other hand, the spatial distribution of discomfort risk zones based on the ETI index 

only agree partially with previous findings.  The majority of New Cairo city falls within the 

moderate risk zone with ETI values at the upper thermal comfort limits. The highest thermal 

discomfort risk was found in urban areas located in northwestern parts of the old Cairo, but the 

risk is marginally smaller at new cities where there are vegetation covers.  In addition, located in 

higher latitudes, the temperature of new cities as expected is lower than the old Cairo. According 

to the spatial distribution of discomfort zones and the extent of urban and built-up areas in the 

study area, the THI and the RSI indices are likely indices that best represent the discomfort zones 

of the study area.  

Table 3.6 Areal distributions of thermal discomfort risk zones. 

 
Thermal discomfort risk zones THI RSI ETI 

 Area (%) 

Very high 17.63 17.74 9.57 

High 17.16 17.93 22.1 

Moderate 13.12 18.43 34.37 

Low 30 31.9 28.66 

Very low 21 13.98 5.2 

 
 
 
 
 



104 
 

 

 
 

Figure 3.12 Thermal discomfort risk zones: (a) THI risk zones, (b) RSI risk zones, (c) ETI risk zones 

 

3.3.4 Impacts of urbanization on temperature health-related illness 

Regarding impacts of urbanization on human thermal comfort in Cairo, Figure 3.13 shows that 

serious thermal discomfort began after 1994, when all thermal comfort indices exceeded the upper 

limits  (Figure 3.14).  Results also show that rapid urban growth caused air temperature to increase, 

relative humidity to decrease and vapor pressure to increase which leads to human discomfort. 

a b 

c 
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This thermal discomfort had affected human health in Cairo. Data obtained from the Emergency 

Events Database - Universite Catholique de Louvain shows a number of deaths and sickness due 

to hot distress in Cairo and Egypt that occurred between 1954 and 2016. Despite of limited records 

available, the effect of rising trends in thermal discomfort indices on health-related illness and 

deaths in Cairo is obvious. For example; in July 1995, the severe thermal discomfort in Cairo 

(30.54 0C of THI, 27.5 0C of ETI, 0.32 of RSI) had resulted in 32 deaths. Another example was 

the hot distress in July 1996 (28.42 0C of THI, 26.8 0C of ETI, 0.28 of RSI), causing 22 deaths. 

More recently, in August 2015, the thermal discomfort level had led to 110 deaths and 66 affected 

cases in one day (Table 3.7), because thermal comfort indices were way above upper critical limits 

(33.52 0C of THI, 28.5 0C of ETI, 0.409 of RSI). Findings from this study demonstrated the severe 

impacts of urban growth on the microclimate, human thermal discomfort and heat stress in Cairo.  

Results from this study should be useful in urban planning and development, and applicable to 

other governorates in Egypt and arid regions.  

 
Figure 3.13 Urban and built up changes against average annual THI and ETI 
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Figure 3.14 Thermal comfort above the upper limits: (a) THI-upper limits, (b) RSI-upper limits 

 
Table 3.7 Sample records of temperature health-related illness and deaths 

Start date End date Disaster type Total deaths Total affected 
 
THI 

 
RSI 

 
ETI 

12/6/1995 12/6/1995 Extreme temperature  32 0 
30.54 0.32 27.5 

7/7/1996 7/7/1996 Extreme temperature  22 0 
28.42 0.28 26.8  

9/8/2015 9/8/2015 Extreme temperature  110 66 
 
33.52 

 
0.409 

 
28.5 

 

3.4 Conclusion and recommendations  

 

In this study, the long-term impact of rapid urbanization on air temperature, relative humidity, 

vapor pressure and human thermal comfort in Egypt was analyzed. Three thermal comfort indices; 

temperature humidity index (THI), effective temperature index (ETI) and relative strain index 
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(RSI) were estimated from climate time series collected between 1950 and 2017. Over this study 

period, LUC in Cairo was dominated by the growth of new cities, with urban expansion at 75.2 

km2/decade, extending into low-lying areas of Cairo and along the direction of roads to lower the 

cost of development. This trend contributed to shifting most of the urban growth toward New Cairo 

and Shrouk City after 1990. The significant increase in urban and built-up areas between 1990 and 

2017 resulted in rising air temperature after 1995 at 0.19 oC /decade, relative humidity decreasing 

at 0.55 % /decade, and vapour pressure increasing at 0.24 hPa /decade.  These observed changes 

in the urban climate of Cairo are likely associated with significant LUC, such as growing 

impervious areas due to rapid urbanization since the 1990s. Heat stress problems and thermal 

discomfort began to emerge and persisted every July-September after 1994. The THI series 

computed between 1950 and 2017 showed a statistically significant change point at 1994 and 

thereafter a rising trend of 0.33 0C /decade. After 1994, the THI index exceeded the upper limits 

of the comfort zones because of rapid urbanization. Similarly, the ETI index computed for the 

1950-2017 data also show a statistically significant change point at 1994, and thereafter a rising 

trend of 0.29 0C /decade.  The RSI index also show a rising trend of 0.06 /decade.  

In conclusion, the rising level of thermal discomfort based on the positive trends of the three 

indices is primarily attributed to the significant LUC or rapid urbanization in Cairo and the new 

cities. The relative humidity is negatively correlated with both air temperature and vapor pressure, 

and negatively correlated with human comfort indices. This shows that as relative humidity 

decreases, hot distress will increase. Findings from this study demonstrate the significant impact 

of urban growth on the microclimate, heat stress or human thermal discomfort in Cairo. Findings 

of this study will benefit urban planners in the urban planning and development of Cairo and other 

regions of arid environments.  
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Chapter 4 Impact of anthropogenic climate change and human activities on environment 

and ecosystem services in arid regions 

4.1 Introduction 
 

Some countries have suffered from significant impact of climate change, such as rising sea level, 

extreme weather events and changing hydrological cycle. However, human activities could also 

incur severe negative effects on our environment which in turn affect our livelihood worldwide. 

There have been studies on how land use change (LUC) and climate change have affected the 

ecosystems and the environment at various spatiotemporal scales (Perrings et al., 2011; Tong et 

al., 2012; Reeves et al., 2018). In this study, we assess how have LUC patterns and climate change 

impacted the environment and ecosystem services of coastal regions of Arabia. In recent years, 

studies show that human activities, including LUC and deforestation, have resulted in major global 

environmental change and impacts (Verburg et al., 2011; Sirami et al., 2017; Prestele et al., 2017).  

In Saudi Arabia, for instance, the impact of human exploitation of water resources are obvious in 

the Layla Aflaj lakes and deep waterholes of the Al-Kharj region.  Since 1980s, excessive water 

consumption due to agriculture activities and domestic purposes have significantly depleted these 

resources (Schleusener et al., 2013).  Sadly, valuable water sources from limited number of natural 

lakes in Arabia formed by groundwater aquifers over many centuries are now the region’ history.  

In the past, the region was characterized by heavy rainfall and were large occupied by shrubland 

and forests (Thouless et al., 1991).  However, human activities and land use change had further 

decreased the already scarce water resources of this region, and similarly in other parts of the 

Arabian Peninsula. To mitigate the impact of severe droughts, growing population, and food 

security, multiple rainwater harvesting dams were constructed in high mountains to collect 
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rainwater for all purposes, forestlands were replaced by agriculture fields and wild animals were 

hunted for food.   

Human and climate change impacts on the arid environment are generally not well 

documented, even though such information will help us to better understand how these human 

activities will affect natural resources in the arid environment, and what conservation plans would 

be helpful. In recent decades, many LUC studies have been conducted (Shalaby et al., 2007; Wang 

et al., 2009; Woldesenbet et al., 2017), of which some have considered extensive LUC as the main 

drivers to biodiversity loss, fragmentation, habitat reduction, and food security (Wilson and Weng, 

2011; Nasta et al., 2017; Liang et al., 2017; Fu et al., 2017). It seems uncurbed human exploitation 

of natural resources could irreversibly impact the future of mankind in centuries to come.  From 

remotely sensed data acquired by earth observation satellites, it is now possible to use a geographic 

information system to derive various LUC patterns, trends and magnitude of high temporal and 

spatial resolutions (Lu et al., 2004; Long et al., 2007; Shalaby et al., 2007).  

Various change detection methods have been employed in LUC studies, such as the principal 

component analysis (PCA), band differencing, band ratioing, neural network, support vector 

machine, and post-classification techniques (Ridd and Liu, 1998; Lu et al., 2004; Petrosillo et al., 

2013).  However, the Markov Chains method has dominated many LUC studies (Pontius and 

Malanson, 2005). Researchers often combine this method with Cellular Automata (CA) to control 

the decision-making process and to enhance the ability to change/add or even modify factors that 

drives LUC in form of transition rules (Longley and Batty, 1996; Clarke and Gaydos, 1998; Zhang 

et al., 2009). Cellular Automata has been successfully utilized to project future LUC (Myint and 

Wang, 2006; Marshall and Randhir, 2008; Guan et al., 2011; Huishi et al., 2012; Huang et al., 

2014). By combining these two methods to a LUC study conducted in Norman, Oklahoma, USA, 

Myint and Wang (2006) achieved an accuracy of 86% which is of acceptable accuracy (Anderson 

et al., 1976; Townshend, 1981). Similar accuracy was obtained by Marshall and Randhir (2008) 
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to assess future land cover based on transition rules of Markov–CA.  More recently, Guan et al. 

(2011) and Huishi et al. (2012) found that a combination of Markov–CA is more accurate than 

other LUC models.  

Past studies suggest that LUC patterns would affect local temperature and precipitation (e.g., 

Pielke et al., 2007). Weng (2001) concluded that rapid urbanization led to climate warming 

because of increasing CO2 emissions. Moreover, Pielke (2005) showed that rising concentration 

of greenhouse gases in the atmosphere is the best-known impact of human activities on climate 

change and LUC. Pettit’s test and Mann-Kendall test have been widely used to detect changes in 

climate data. Pettit’s test (Pettit, 1979) is a popular non-parametric approach for detecting change 

points in the time series of climate variables (Ma et al., 2008; Mahé and Paturel, 2009; Martínez 

et al., 2010). The non-parametric Mann-Kendall (Sneyers, 1992) test is widely used to estimate 

trends in climate data and whether the trend is statistically significant (Zhang, et al., 2000; Yue et 

al., 2002; Dawood, 2017).  

We investigated the impacts of anthropogenic climate change and LUC caused by human 

activities on the environment and ecosystem services of the study sites. To achieve our objectives, 

we used earth observations data (EO) of satellites to derive land use categories at different spatial 

and temporal scales in the Jizzan Province-Arabia for 1970-2014. Then, using the Markov-CA 

approach, the temporal/spatial dynamics of LUC patterns in the study area for 2014-2100 were 

derived and their impacts on the climate, environment, and water resources were analyzed. Pettit’s 

and Mann-Kendall tests were applied on temperature data over 1900-2010, and precipitation data 

over 1948-2014 to detect change points and to estimate trends in the region. The impact of global 

warming due to increasing greenhouse gases were also analyzed between 1960 and 2015. Lastly, 

future effects of LUC and climate change in the study area, were analyzed using RCP4.5, RCP6.0 

and RCP8.5 climate change scenarios projected by climate models of CMIP5 and IPSL-CM5A-

LR between 2014-2100.  Without any major river, the water resources of Saudi Arabia depend 
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heavily on precipitation and groundwater sources.  Given evapotranspiration (ET) plays a major 

role in its climate and the fauna and flora of its desert environment, we have also estimated the 

potential ET of the study area over 1950-2016 and projected possible changes over 2016-2100.  

4.2 Data and Research Methods  

4.2.1 Study area and data sets 

As the Jizzan Province (Figure 4.1) lies on the coastal regions of Arabia (16°53′21″N 42°33′40″E), 

it has a different climate than the rest of Arabia. In the past Jizzan was dominated by forest, 

shrubland and different species of wild animals. The province also includes more than 100 islands 

in the Red Sea that in the past were rich in animals and biodiversity. Landsat cloud-free images 

for Jizzan in 1970, 1980, 1990, 2000, 2010, and 2014 were obtained from the King Abdulaziz City 

for Science and Technology (KACST) (Table 4.1). Monthly precipitation data between 1948-2014 

and temperature data between 1900-2010 were derived from the 20th Century Reanalysis V2 

Dataset. CO2 and other greenhouse gas emissions data were obtained from the Carbon Dioxide 

Analysis Center of Environmental Sciences Division, USA.  

 

Figure 4.1  Location map of Jizzan Province. Kingdom of Saudi Arabia. 
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Table 4.1 Earth observation data used in this study 

Product Type (Cloud Cover %) Format Date of acquisition Resolution (m) Images Used for the study 

L1T (0%) GEOTIFF 06/03/1970 30 Landsat 1 -5 MSS 

L1T (0%) GEOTIFF 01./09/1980 30 Landsat 1 -5 MSS 

L1T (0%) GEOTIFF 24/02/1990 30 Landsat 5 TM  “Band 1 -7” 

L1T (0%) GEOTIFF 04/01/2000 30 Landsat 7 ETM+  “Band 1 -8 ” 

L1T (0%) GEOTIFF 06/03/2000 2.5 SPOT-5  “PSM”  

L1T (0%) GEOTIFF 05/01/2010 30 Landsat 7 ETM+   

L1T (0%) GEOTIFF 03/04/2014 30 Landsat 8  

 

4.2.2 Land use classification and accuracy assessment 

Landsat images were preprocessed, made as mosaic, and geometrically corrected based on a 

rectified SPOT-5 “2.5m PSM” satellite image for the Jizzan province. This image also served as 

the reference image for land use classification and accuracy assessment. Then, these images were 

also atmospherically corrected by normalizing these images to the SPOT-5 image. Lastly, the 

Landsat images have been radiometrically normalized to the reference image based on manually 

identified 16 pseudo-invariant features (PIFs). Two field surveys were set up, the first was before 

land use classification to collect ground control points (GCP). Five hundred GCP were collected 

in the first trip for land use classification, which was performed using these GCP and visual 

interpretations of Google Earth images. In the second trip, we collected 100 points for validating 

the classified images.   

The popular, Iso Cluster Unsupervised and Maximum Likelihood Classification was applied 

to the Landsat images, to classify the land use/cover (Baker et al., 2006; Panda et al., 2009; 

Mukherjee et al., 2010; Jiménez-Bello et al., 2012). Six land use/cover classes were identified in 

each land use map: water bodies, built-up areas, bare soil, sparse vegetation, irrigated cropland, 

forest and shrubland. The accuracy of these maps was assessed using both simple random and 
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stratified random patterns. Further, a questionnaire consists of two types of questions was prepared 

to ask residents about anthropogenic effects on the region.  The first type consists of preliminary 

questions such as areas of cultivated lands, and number of groundwater wells used to irrigate crops. 

The second type of questions consist of three tables, which include affirmative statements about 

social and environmental impacts of oil discovery, climate change and human activities in the 

study area. The questionnaire was set up under a five-point scale (strongly agree, agree, not sure, 

disagree, strongly disagree) to allow farmers to choose the extent of their agreement or 

disagreement to each statement.  

4.2.3 Changes and Dynamics of Land Use/Cover  

The areal distribution of each land use class was estimated for all time periods to determine 

the dynamics and patterns of land use/cover change (LUC). LUC and trends were estimated in 

terms of gain, loss and net change for each temporal period by class. LUC drivers were then 

identified based on the Markov Chains transition probabilities. A coupled Markov–CA model was 

used to project changes and the future spatial distribution of LUC. From the results, we derive the 

transition probability matrix which represents the probability of each land use class to change to 

another class or to remain unchanged in the next time period.  Next, transition area matrices were 

developed to estimate the total area expected to change at each period. Finally, based on the 

historical LUC in the area, conditional probability images, one for each land use/cover class was 

developed to show the likelihood of each class will change to other classes or not. Five historical 

transition matrices were constructed from the cross-tabulation of the land use/cover maps between 

1970, 1980, 1990, 2000, 2010, and 2014. The time interval between the transition matrices was 10 

years. The approach of Pastor et al. (1993) was adopted to transform transition probabilities to 

annual time steps to consider the differences in the lengths of the last period (2010-2014) (Table 

4.3). Major drivers of land use dynamics in the study area for each study period were identified. 



114 
 

As expected, urbanization and agriculture activities at the expenses of forestland and shrubland 

were the major drivers for LUC. 

To project future LUC in the study area, we first tested the model’s ability to simulate 

historical LUC based on the annualized transition matrices.  Transition probabilities for future 

LUC are developed from trends observed in the past, e.g., the land use in 2010 was simulated on 

the basis of the 1990 and 2000 transition matrices. Various studies have adopted this approach 

(Araya and Cabral, 2010; Yang et al., 2014; Singh et al. 2015; Keshtkar and Voigt, 2016; Han and 

Jia, 2017). For instance, Araya and Cabral (2010) compared the actual land use map in 2010 

derived from EO data with that simulated for 2010 based on LUC between 1990 and 2000. 

Similarly, Singh et al. (2015) used actual transition probabilities between 2000 and 2010 to project 

LUC in 2020. In this study, we used the transition probability between 1970 and 1980 to simulate 

LUC in 1990. Similarly, the 2000 land use map was simulated from the 1980-1990 transition 

matrix.  Finally, the land use map of 2010 and 2014 were simulated based on transition probability 

matrices of 1990-2000 and 2000-2010, respectively.  

The main limitation of the Markov-CA model is that it assumes factors of past changes remain 

the same in the future. However, using multiple actual land use maps as an accuracy assessment, 

high accuracies of projection could be obtained (Yagoub and Al Bizreh, 2014; Guan, 2011). Guan 

et al. (2011) used the transition probability matrix of 1997–2006 to project LUC for 2024, which 

then was set as the starting year to project LUC for 2033, but again based on the transition 

probability matrix of 1997–2006, and 2033 as the starting year to project the 2042 LUC. In our 

study, we followed this approach and applied the Kappa Index of Agreement (KIA) to validate the 

model performance by comparing the simulated land use map at each year against the actual land 

maps. KIA was also used to test for spatial and quantitative agreement between every two maps. 

Table 4.2 shows how well the land use maps were classified. The overall accuracy of the land use 

maps for 1970, 1980, 1990, 2000, 2010, and 2014 was assessed to be 80.52%, 84.33%, 85.17%, 



115 
 

84.9%, 87.2%, and 94.8% respectively.  KAPPA indices for these maps estimated at 0.76, 0.755, 

0.717, 0.82, 0.85, and 0.89, respectively are all of acceptable accuracy. Next, the Markov–CA 

model was used to project the future LUC and land use map at 2025 based on the transition 

probability of 2010-2014, taking 2014 as the starting point. Then land use map at 2050 was 

simulated based on the same transition probability matrix but taking 2025 as the starting point. 

Finally, land use map at 2075 and 2100 was simulated taking 2050 and 2075 as the starting point 

respectively.   
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Table 4.2 Accuracy assessment and validation of land use-land cover maps 
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LULC 
Water bodies 80.2 79 0.72 78.12 76.5 0.71 86.8 77.6 0.69 89.1 90.9 0.82 79.61 70.4 0.88 93.21 94.6 0.86 

Built up areas 79.9 82.2 0.81 92.62 90.4 0.82 90.35 89.8 0.77 90.2 85.62 0.86 94.58 92.8 0.98 96.85 94.36 1 

Bare soil 84.2 84.8 0.62 88.22 78.2 0.71 88.12 85 0.67 79.6 75.43 0.83 88.5 84.64 0.78 95.47 93.85 0.79 

Sparsely vegetated 81.5 77.51 0.7 79.32 80.3 0.68 75.41 80.2 0.735 81.3 91.5 0.9 91.7 79.3 0.76 94.65 96.92 0.84 

Irrigated cropland 76.2 78.52 0.86 83.44 84.35 0.76 87.35 90.24 0.725 88.29 89 0.78 86.55 90.4 0.845 92.69 94.54 0.89 

Forest & shrubland 78.9 83.3 0.87 91.1 89.4 0.85 84.9 86.23 0.71 79.5 78.41 0.75 93.32 94.6 0.86 93.74 96.77 0.94 

OA 80.519 0.76 84.33 0.755 85.17 0.717 84.90 0.82 87.20 0.85 94.80 0.89 
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Table 4.3 Land use transitions probabilities 1970–2014 

 

4.2.4 Anthropogenic climate change detection  

Land-use change is a major player to climate change since it contributes to atmospheric CO2 

emission (Dale et al., 2011). Therefore, we also analyzed CO2 and other greenhouse gases 

emissions and their by-product: hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulfur 

 1970–1980 Markov matrix a       
Code Land cover/use class Water bodies Built up areas Bare soil Sparsely vegetated Irrigated cropland Forest and shrubland 
1 Water bodies 0 0.0491 0.0844 0.0055 0.0009 0.0005 
2 Built up areas 0.8597 0.1496 0.7078 0.0213 0.0014 0.0005 
3 Bare soil 0.1194 0.0177 0.8893 0.082 0.0044 0.0027 
4 Sparsely vegetated 0.004 0.0032 0.7375 0.2412 0.0124 0.0049 
5 Irrigated cropland 0.0007 0.0007 0.203 0.6457 0.1185 0.0318 
6 Forest and shrubland 0.0005 0.0003 0.0672 0.4327 0.267 0.2328 
 1980–1990 Markov matrix a       
Code Land cover/use class Water bodies Built up areas Bare soil Sparsely vegetated Irrigated cropland Forest and shrubland 
1 Water bodies 0.9231 0.0461 0.0285 0.0013 0.0006 0.0003 
2 Built up areas 0.1102 0.2392 0.6506 0 0 0 
3 Bare soil 0.0012 0.0167 0.9072 0.07 0.003 0.002 
4 Sparsely vegetated 0 0 0.6487 0.3317 0.0147 0.0049 
5 Irrigated cropland 0.0005 0 0 0.7752 0.1881 0.0362 
6 Forest and shrubland 0.0002 0.0004 0 0.3282 0.3078 0.3633 

 1990–2000 Markov matrix a       
Code Land cover/use class Water bodies Built up areas Bare soil Sparsely vegetated Irrigated cropland Forest and shrubland 
1 Water bodies 0.7992 0.0527 0.137 0.0093 0.0012 0.0006 
2 Built up areas 0.1278 0.053 0.7584 0.0562 0.0029 0.0017 
3 Bare soil 0.0067 0.0188 0.871 0.0944 0.0058 0.0033 
4 Sparsely vegetated 0.0018 0.0118 0.8261 0.1452 0.0101 0.005 
5 Irrigated cropland 0.0005 0.0001 0.5817 0.3526 0.0449 0.0203 
6 Forest and shrubland 0.0002 0 0.2593 0.4946 0.1474 0.0986 

 2000-2010 Markov matrix a 
      

Code Land cover/use class Water bodies Built up areas Bare soil Sparsely vegetated Irrigated cropland Forest and shrubland 
1 Water bodies 0.6152 0.0766 0.248 0.0271 0.0238 0.0093 
2 Built up areas 0.0399 0.5438 0.3791 0.0169 0.0164 0.0039 
3 Bare soil 0 0.1069 0.798 0.0577 0.0281 0.0083 
4 Sparsely vegetated 0.0001 0.0087 0.5982 0.2039 0.1613 0.0277 
5 Irrigated cropland 0 0.0032 0.3339 0.2021 0.3278 0.1329 
6 Forest and shrubland 0 0.0017 0.0807 0.0817 0.3756 0.4604 
 2010–2014 Markov matrix a    

   
Code Land cover/use class Water bodies Built up areas Bare soil Sparsely vegetated Irrigated cropland Forest and shrubland 
1 Water bodies 0.4735 0.1019 0.342 0.0369 0.0325 0.0132 
2 Built up areas 0.0477 0.4051 0.4871 0.0303 0.0231 0.0068 
3 Bare soil 0.0031 0.1354 0.7455 0.0644 0.04 0.0125 
4 Sparsely vegetated 0 0.0446 0.6555 0.1279 0.1282 0.0438 
5 Irrigated cropland 0 0.0177 0.4592 0.1584 0.2358 0.1289 
6 Forest and shrubland 0.002 0.0005 0.1767 0.1347 0.3598 0.3283 
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hexafluoride (SF6), all anthropogenic CH4 and N2O sources in thousand metric tons (Kt) of CO2 

equivalent. Change point and trend detections were applied to these data to detect climate change 

in the study area which might be attributed to LUC and increased global warming as suggested by 

Dale et al., (2011) and Searchinger et al. (2008).  For the Jizzan province, we analyzed the 

variability of long-term monthly precipitation and temperature anomalies from the long-term mean 

precipitation of 1948 to 2016, and long-term mean temperature of 1900-2010, respectively. To 

detect trends and change points, we used nonparametric, Pettitt (Pettitt, 1979) and Mann–Kendall 

tests (MK) on the time series of temperature, temperature anomaly, precipitation, precipitation 

anomaly, respectively. The magnitude of the trend is obtained from the slope estimator method 

(Sen, 1968). The sign of the slope indicates if the trend of the time series is positive or negative.  

Climate change scenarios of RCP4.5, RCP6.0 and RCP8.5 projected by climate models of 

CMIP5 and IPSL-CM5A-LR between 2014-2100 were used to project future warming in the study 

area. Future climate projections of these climate models were analyzed separately and then 

averaged for the study area. Statistical downscaling techniques of Frias et al. (2006) and Guo et 

al., (2014) based on empirical relationships between climate models’ output and local weather 

information were used to downscale climate models’ projections to local scale. Again, the Pettit’s 

test and Mann-Kendall approach were used to detect change points and trends of climate 

projections that have been downscaled statistically.  Given evapotranspiration (ET) plays a major 

role in the climate of a desert environment, the increase in ET has been linked to rising atmospheric 

CO2 concentration and climate warming (Kang et al.,1999; Abtew and Melesse, 2013).   

We estimated the potential ET of the study area over 1950-2016 and projected possible changes 

over 2016-2100 of the study area using Penman Monteith’s method (Allen et al., 1998).  

Precipitation surplus (precipitation - PET), which represents the hydrologic impact of climate 

change in the region, was also estimated.  
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4.3 Discussion of Results 

4.3.1 Impact of land use dynamics on environment  

Impacts of climate change and human activities to the study area have not been documented 

even though environmental changes such as plant distributions have been going on for years.  We 

have analyzed results of a survey based on questionnaire we developed with local farmers about 

possible environmental and social impacts of climate change and LUC on the study area. The local 

residence’s responses strongly advocated the high social and environmental costs associated with 

human activities such as mining of oil, LUC, and dams in the region are: loss of biodiversity and 

fertile soil, air and water pollution, degradation of farmland, damage to aquatic ecosystem, 

increased desertification and a decline in vegetative cover. Results of the analysis presented in  

Figures 4.2(a) and 4.2(b) reveal a large expansion in urban areas after 1970s, and a decline in 

irrigated cropland, forest, shrubland, and sparse vegetation cover during 1970s and 1980s, 

respectively.  During this period, many farmers left their agricultural land and migrated to cities 

for jobs, which led to a decline in vegetative cover and lumbering for industrial uses. The 

construction of five dams in 1970, 1998 and 2000 to store rainwater for agriculture activities and 

domestic purposes affected the biodiversity of the region, and significantly increased the LUC. 

The extent of LUC distribution over the study period (1970-2014) is presented in Table 4.4. 

Urbanized areas increased from 106.82 km2 (0.81% of total area) in 1970 to 139.39 km2 (1%) in 

1980, a 25% increase in 10 years, while sparsely vegetated land declined dramatically from 

5290.94 km2 (40%) in 1970 to 2817.407 km2 (21%) in 1980.  

There was an increase in areas of water bodies from 70.47 km2 (0.5% of the total area) in 

1970 to 100.90 km2 (0.8%) in 1980 due to the construction of rainwater retention facilities, which 

helped farmers to recover loss of agricultural land in later years. From 1980 to 1990, areas of 

bare soil increased from 9395.7 km2 to 10147.2 km2, urbanized areas increased from 1.057% to 
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4% of the total area, but areas of forest and shrubland significantly decreased from 278.3 km2 to 

23.4 km2, which fortunately was restored to 221.7 km2 due to conservation efforts implemented 

in 2000.  Sparse vegetative cover continued to decline, losing more than 975.0 km2 of its 1980 

area to 1842.2 km2 in 1990 and to 1085.4 km2 in 2000, which marginally increased between 2010 

and 2014 to 1120.0 km2 in 2014.  Relative to 1980, irrigated cropland increased significantly 

from 450.4 km2 in 1980 to 1963.7 km2 over the 1990-2014 period. Table 4.5 shows LULCC (%) 

in the study area for each subperiod and the 1970–2014 period.  Spatial patterns of LUCs in the 

Jizzan Province for 1970, 1980, 1990, 2000, 2010, and 2014 given in Figure 4.2 show that bare 

soil and sparse vegetative cover were dominant, but over the years urbanization expanded in the 

coastal regions.  From 1990 to 2014, urbanized areas replaced most of the water bodies and 

extended into coastal areas, and consequently areas of bare soil and water bodies declined 

markedly.  The rate of urban expansion since 1970s was more than 53.4 km2 yr−1.  
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Figure 4.2 Spatial distribution of LULCC in Jizzan Province a) 1970, b) 1980, c) 1990, d) 2000, e) 2010, and f) 2014. 
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Table 4.4 Area measurements of land-cover /use within Jizzan province for each subperiod and the full period 1970–2014 

 

  1970 1980 1990 2000 2010 2014 

Code Land cover/use class Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) 
1 Water bodies 70.470 0.535 100.918 0.766 86.573 0.657 84.677 0.642 78.027 0.592 73.362 0.557 
2 Built up areas 106.820 0.810 139.392 1.057 532.915 4.043 1399.518 10.617 2223.766 16.870 2456.430 18.635 
3 Bare soil 5776.400 43.820 9395.668 71.276 10147.186 76.981 9608.147 72.891 7593.928 57.611 7020.124 53.256 
4 Sparsely vegetated 5290.940 40.137 2817.407 21.373 1842.248 13.976 1085.457 8.235 1129.829 8.571 1120.279 8.499 
5 Irrigated cropland 1065.295 8.081 450.4329 3.417 549.1719 4.166 781.9578 5.932 1792.368 13.598 1963.683 14.897 
6 Forest and shrubland 872.1918 6.616 278.3241 2.111 23.4 0.178 221.7375 1.682 363.5766 2.758 548.0865 4.158 

 
 

Table 4.5 Detected land cover/use gains and losses within Jizzan province for each subperiod and the full period 1970–2014 

 

  1970-1980 1980-1990 1990-2000 2000-2010 2010-2014 
Code Land cover/use class Change (Km2) Change (%) Change (Km2) Change (%) Change (Km2) Change (%) Change (Km2) Change (%) Change (Km2) Change (%) 
1 Water bodies -30.45 -0.23 14.35 0.11 1.90 0.01 6.65 0.05 4.67 5.98 
2 Built up areas -32.57 -0.25 -393.52 -2.99 -866.60 -6.57 -824.25 -6.25 -232.66 -10.46 
3 Bare soil -3619.27 -27.46 -751.52 -5.70 539.04 4.09 2014.22 15.28 573.80 7.56 
4 Sparsely vegetated 2473.53 18.76 975.16 7.40 756.79 5.74 -44.37 -0.34 9.55 0.85 
5 Irrigated cropland 614.86 4.66 -98.74 -0.75 -232.79 -1.77 -1010.41 -7.67 -171.32 -9.56 
6 Forest and shrubland 593.87 4.51 254.92 1.93 -198.34 -1.50 -141.84 -1.08 -184.51 -50.75 

Where (-) gain, (+) loss 
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LUC had significantly affected forest, shrubland and vegetation covers, which in turn might have 

affected ecosystems, natural habitat and biodiversity of the region. Human alteration of land use 

from natural vegetation and forests to other land uses typically results in a loss, degradation, and 

fragmentation of ecosystems, which tend to have negative effects on the biodiversity of the 

region, as also reported by local residents impacts over the years. Because of depleted 

groundwater resources, rainwater harvesting dams were constructed which substantially captured 

the surface water.  The regional change in hydrology due to human activities resulted in the loss 

of forest covers, altered landscape patterns and ecosystem of the region. 

 

4.3.2  Anthropogenic climate change and human activities  

We applied Pettit’s test to detect anthropogenic change points of the region, which reveals 

statistically significant change points in monthly temperature and temperature anomaly in 1968.  

The mean temperature anomaly increased significantly from -0.206 oC between 1900 and 1968 

(Mb: average before the change point) to 0.326 oC (Ma: average after the change point) between 

1968 and 2010 (Table 4.6). The Mann–Kendall trend test also show a statistically significant 

warming trend of 0.24 oC per decade since 1968, which reflects the impact of anthropogenic 

climate change and LUC such as decline in forest, shrubland, and sparsely vegetated land since 

1970 (Figure 4.3) due to agricultural development which reached its zenith in 2000s.  Similarly, 

from Pettitt’s test applied to monthly precipitation anomaly data for 1948-2014, a statistically 

significant change point was detected in 1967, as the mean precipitation anomaly declined from 

7.9 mm/yr (Mb= 7.9 mm/yr) between 1948-1967 to -3.12 mm/yr (Ma= -3.12 mm/yr) between 

1967-2010 (Figure 4.4). Trend analysis shows a statistically significant negative trend in 

precipitation anomaly of 12.2 mm/decade (Table 4.6).  
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Figure 4.3 Temperature anomaly and trend 

 
Figure 4.4 Precipitation anomaly and trend 

 

Table 4.6 Change point and trend detection 

  Pettitt test Mann–Kendall test   

 Years  t P trend Tau Sen's slope P trend 
 
Mb 

 
Ma 

T anomaly  
 
1900-2010 1968 < 0.0001 Ha 0.434 0.024 < 0.0001 + 

 
-0.206 

 
0.326 

Precipitation anomaly 1948-2014 1967 0.0001 Ha 0.133 -1.22 < 0.0001 - 
 

7.9 
 

-3.12 

CO2 emissions (Kt) 1960-2015 1985 < 0.0001 Ha 1 9434 < 0.0001 + 
 

78660 
 

337701 

 
Other greenhouse gas emissions HFC, PFC and SF6 (Kt) 1971-2012 1984 < 0.0001 Ha 0.6 48.85 < 0.0001 + 

 
 

884.4 

 
 

2025 

 
Total greenhouse gas emissions (Kt of CO2 equivalent) 1971-2012 1991 < 0.0001 Ha 0.94 7809 < 0.0001 + 

 
 

196902 

 
 

348896 
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Given rising temperature anomalies are mainly attributed to increasing concentrations of 

greenhouse gases due to burning of fossil fuels and the manufacture of cement (IPCC, 2013), we 

have analyzed changes to greenhouse gas emissions data between 1960 and 2015. We detected a 

statistically significant change point in CO2 emission data in 1985, such that CO2 emissions 

increased from 78660 Kt/yr between 1960 and 1985 to 337701 Kt/yr between 1985 and 2015 

(Figure 4.5), because of increasing consumption of solid, liquid, and gas fuels and flaring after 

1985. A trend analysis shows a statistically significant positive trend in CO2 emissions of 94340 

Kt/decade (Table 4.6).  

 
Figure 4.5 Carbon dioxide emissions timeseries and trend analysis 

 

Other greenhouse gases produced by industrial processes are such as hydrofluorocarbons 

(HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF6), as presented in Figure 4.6. These 

greenhouse gases also show statistically significant change point in 1984, where the mean annual 

HFC, PFC, and SF6 emissions increased dramatically from 884.4 Kt/yr between 1971 and 1984 to 

2025 Kt/yr between 1984 and 2012, and an overall statistically significant positive trend of 488.5 

Kt/decade. The warming effects of these greenhouse gases and LUC such as urbanization, 
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deforestation and construction of dams in the study area had resulted in the consistent, observed 

positive temperature trend since the mid-Twentieth Century.  Figure 4.7 shows the time series of 

total greenhouse gas emissions that include all anthropogenic sources, which show a statistically 

significant change point in 1991, with positive trend of 78090 Kt/decade (Table 4.6).  

 

 Figure 4.6 Other greenhouse gas emissions, HFC, PFC, and SF6 

 

Figure 4.7 Total greenhouse gas emissions including all anthropogenic sources 

From Figure 4.8(a) that shows the historical and projected change in temperature anomalies 

between 1900 and 2100, it can be seen that significant warming trend started to occur in 1970s 

attributed to human activities such as industrial boom, deforestation, rapid urbanization and 

increase in greenhouse gas emissions.  Future temperature anomalies in the study area simulated 
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by global climate models of CMIP5 and IPSL-CM5A-LR under three climate scenarios (RCP4.5, 

RCP6.0 and RCP8.5) project a continuous warming trend between 2014-2100.  Figure 4.8(b) 

shows the time series of the average temperature anomaly simulated by all climate models between 

1900 and 2100 with a statistically significant change point that occurred in 1999 and a projected 

warming trend of 0.19 0C/decade.  

 

 

Figure 4.8 Projection of temperature anomaly (a) average temperature anomaly trend (b) 
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The warming trend in the study area varies spatially with the nature of land use. We compare 

the projected change with the projected LUC patterns over the study area.  As a warming trend is 

expected to continue, especially in the mountains areas where the warming trend is projected at 

0.55 -0.83 °C/decade between 2014 and 2050.  In south and eastern parts of the Jizzan Province, 

warming is projected at 0.55 °C/decade (Figure 4.9(b)), where Ragab and Prudhomme (2002) 

projected that the temperature may increase by 1.5–2.5°C (0.41-0.7 °C/decade) in 2050. By 2075, 

mountains areas and its surroundings are projected to experience an increase in the mean annual 

temperature by 4.2-5 °C, a warming trend of 1.25-1.38 °C/decade between 2050 and 2070, while 

the temperature of south and western parts of Jizzan province is projected to increase by 2.3 to 3.3 

°C, a warming trend of 0.63-0.92 °C/decade between 2050 and 2075 (Figure 4.9(c)).  

The mean annual precipitation of Jizzan ranges spatially from 77 to 272 mm/year (Figure 

4.10(a)) with mountainous regions receiving the highest amount of 179-272 mm/year, followed by 

northeastern and northwestern regions with an annual rainfall ranging from 140 to 272 mm/year.  

As expected, high spatial variability of rainfall in Jizzan also means that Jizzan has high hydrologic 

variability (e.g., Jiang et al., 2014; Mwale et al., 2009).  However, the annual rainfall of Jizzan 

projected to 2050 (Figure 4.10(b)) is expected to decline by 6% in southeastern regions of Jizzan, 

and by 3% in northwestern, eastern, and southwestern regions which are occupied by built-up 

areas, crops, forest, and bare soil. The negative trend is projected to worsen from 2050 to 2075 

(Figure 4.10(c)), by as much as 8% in the mean annual rainfall in northwestern, eastern, and 

southwestern regions.  However, the negative trend is projected to be only 2% in both the 

southeastern and central regions. 

 

 

 

 



131 
 

 

Figure 4.9 Average annual temperature (a) and Future projection in 2050 (b) future projection in 2075 (c) 
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Figure 4.10 Average annual precipitation (a) and Future projection in 2050 (b) future projection in 2075 (c) 
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4.3.3 Land use change prediction  

The landuse of Jizzan is projected to increase in urbanization and irrigated cropland in 2025, 

2050, 2075, and 2100 as presented in Table 4.7 and Figure 4.11. The bare soil area is projected 

to decrease from 7020.1 km2 in 2014 to 6498.4 km2 in 2025, while water bodies areas are 

projected to decrease from 73.4 km2 in 2014 to 63.8 km2 in 2025. In contrast, urban areas are 

projected to increase from 2456.4 km2 in 2014 to 2640.6 km2 in 2025, and then to 2732.9 km2 in 

2050. Similarly, sparse vegetation, and forest and shrubland are projected to increase from 

1120.3 km2 and 548.1 km2 in 2014 to 1169.3 km2 and 648.5 km2 in 2025, respectively.  In 

addition, irrigated cropland is projected to substantially increase from 1963.6 km2 in 2014 to 

2161.2 km2 in 2025.   

By 2050, irrigated cropland is also projected to expand from an area of 2161 km2 in 2025 to 

2279.0 km2 in 2050, or a projected increase of 5% (Table 4.8). In contrast, bare soil is projected 

to decrease by 5%, sparse vegetative cover to decrease by 1%, but water bodies are projected to 

decrease significantly by almost 8% due to continued urbanization. For forest and shrubland, the 

model projected a 17% increase between 2025 and 2050. By 2075, the model projected urban 

areas, irrigated cropland, forest, and shrubland to increase by 0.8%, 1.5%, and 3%, respectively, 

but water bodies, bare soil, and sparsely vegetated land are projected to decline by 15%, 1%, and 

0.2%, respectively. However, between 2075 and 2100, urban areas, irrigated cropland, forest and 

shrubland, and sparsely vegetated areas are projected to increase by 1%, 4%, 0.5%, and 1% 

respectively. In contrast, water bodies are projected to decrease by 13% of its area in 2075, a 

slight decrease is also projected in bare soil by 2% of its area in 2075 (Table 4.8). 
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Figure 4.11 Spatial distribution of projected LULC a) 2025, b) 2050, c) 2075, d) 2100 
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Urbanization further exacerbated the climate change impact of rising greenhouse gases in 

the province, as warming trend became statistically significant after 1970, which happened to be 

the year urbanization began to exhibit increasing trend.  Spatially, the annual temperature is 

projected to increase most significantly within urban areas and mountainous regions by 2050 and 

2075. Mountainous areas are projected to be much warmer because the cooling effect of 

evapotranspiration is significantly reduced by deforestation, which were previously occupied by 

shrubland and forest reflects the impacts of deforestation in the warming trend. 
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Table 4.7 Area measurements of land cover/use projection 2025, 2050, 2075, and 2100 

 

  2025  2050  2075  2100  

Code Land cover/use class Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) 
1 Water bodies 63.800 0.484 58.900 0.447 50.102 0.380 43.669 0.331 
2 Built up areas 2640.653 20.032 2732.886 20.732 2753.937 20.892 2790.300 21.168 
3 Bare soil 6498.476 49.298 6164.481 46.765 6100.740 46.281 5970.401 45.292 
4 Sparsely vegetated 1169.357 8.871 1182.924 8.974 1180.068 8.952 1189.728 9.025 
5 Irrigated cropland 2161.152 16.395 2279.9475 17.296 2313.637 17.552 2400.4565 18.210 
6 Forest and shrubland 648.5265 4.920 762.8256 5.787 783.4806 5.944 787.4091 5.973 

 
 

Table 4.8 Expected gains and losses during projected period (2014-2100) 

 

  2014-2025 2025-2050 2050-2075 2075-2100 

Code Land cover/use class Change (Km2) Change (%) Change (Km2) Change (%) Change (Km2) Change (%) Change (Km2) Change (%) 
1 Water bodies 9.562 13.034 4.900 7.680 8.798 14.937 6.433 12.840 
2 Built up areas -184.223 -7.500 -92.233 -3.493 -21.050 -0.770 -36.363 -1.320 
3 Bare soil 521.648 7.431 333.995 5.140 63.741 1.034 130.339 2.136 
4 Sparsely vegetated -49.078 -4.381 -13.567 -1.160 2.856 0.241 -9.660 -0.819 
5 Irrigated cropland -197.469 -10.056 -118.7955 -5.497 -33.6895 -1.478 -86.8195 -3.753 
6 Forest and shrubland -100.44 -18.326 -114.2991 -17.624 -20.655 -2.708 -3.9285 -0.501 

Where (-) gain, (+) loss 
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4.3.4 Impacts of land use change and climate change on Fauna and Flora  

Results collected from the field survey and from the questionnaire reveal a strong agreement 

between our study and local residents, that increasing emissions of greenhouse gases and human 

activities have led to climate warming in the study area and a significant decline in its ecosystem 

services.  For their survival, in the past 50 years, many wild animals had migrated to cities and 

villages in search of water, which may jeopardize human health and life. LUC due to urbanization 

of rural and mountainous areas have likely contributed to the decline in annual rainfall at about 

12.2 mm/decade and the biodiversity of these areas. For example, the Arabian Baboon (Papio 

hamadryas) populations were partially controlled by their natural predators, leopards (Panthera 

pardus) and striped hyenas (Hyaena hyaena) but these predators have been hunted to extinction 

in these regions which have the habitats needed by the predators.  On the other hand, these areas 

are facing serious threats of loosing of their habitats due to major agricultural expansion and 

irrigation projects (Biquand et al., 1992 and Winney et al., 2004). In other words, aforementioned 

human activities have led to significant degradation of the environment, impacts on the 

Afrotropical biodiversity of the region, coastal marine ecosystems, fragmentation and destruction 

of habitats.  

The draining of coastal areas for tourism and ornamental projects have caused marked 

declines of many species of mammals and birds that rely on this habitat for food, either being 

eliminated or have migrated to other areas. Wading shorebirds, for example, have lost their niche 

due to the urbanization of most coastal areas in the Jizzan Province. The Farasan Islands, the first 

conservation protected area in Saudi Arabia, is home to the endangered Arabian gazelle, Gazella 

arabica (Lichtenstein), and serves as a rest area for many migratory bird in their migration route 

between Europe, northern Asia, and Africa. Farasan Ghazal is a distinctive subspecies of well-

known Arabic gazelle, native to the islands. For the last fifty years, this island supported large 
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populations of Farasan Ghazal because of low human impacts and consistent high annual rainfall 

(Thouless, 1991; Thouless and Al Bassri, 1991). Unfortunately, overhunting and a gradual 

decrease in the annual rainfall has led to a major collapse of this animal’s population.  

LUC has probably been a stronger driver of twentieth-century changes in wild plants and 

animals than climate change (Parmesan and Yohe, 2003). LUC pattern showed a large decline in 

flora and natural vegetation cover in the study area partly because rainwater, the only source of 

water that supports fauna and flora, has been decreasing in recent years. Moreover, significant 

deforestation, rapid urbanization, increased greenhouse gases have direct effects in plant 

distributions, as discussed before. Another impact of climate change is more ET loss, which in 

turn decrease the soil moisture and affecting plant growth (Narasimhan and Srinivasan, 2005).  

The annual ET time series estimated from local climatic factors for the study area over 1950-

2014 (Figure 4.12) has a statistically significant change point in 1975 with positive trend of 5.5 

mm/decade. The rising trend in ET would increase plant stress and enhance drought conditions. 

The annual ET is also projected to increase significantly from 1500 mm/yr in 2014 to about 1850 

mm/yr in 2100. If precipitation surplus, the net flux of water from the atmosphere to the soil 

surface is positive, it means wet soil; if it is negative, we will expect dry soil (Swenson and Wahr, 

2006).  Figure 4.13 shows a significant increase in water losses from the soil profile over time 

which means dry soil and it is expected to continue according to our future projection. Therefore, 

under diminishing soil moisture, warming trend and rapid urbanization, we expect the flora and 

natural vegetation cover in the study area to continue to decline in the 21st Century. 
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Figure 4.12 Annual Evapotranspiration trend and future projection 

 
Figure 4.13 Annual precipitation surplus and future projection 

 

4.4 Conclusions and recommendations 

We investigated the impact of anthropogenic climate change and human activities such as LUC on 

the environment and ecosystem services in the Jizzan Province, Arabia. First, we used earth 

observation data of the Landsat satellite to derive historical, 1970-2014, land use maps of Jizzan.  

Next, we used a Markov-CA model to project the dynamics of its LUC pattern over 2014-2100 in 

response to human activities and their impacts on the study area’s climate, environment, and water 
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resources. We applied Pettit’s and Mann-Kendall tests to detect change points and to estimate 

trends of temperature data of 1900-2010 and precipitation data of 1948-2014 and their anomalies, 

respectively. We have also detected change points and estimated trends of data of CO2 and several 

rare gases emitted between 1960 and 2015. Climate scenarios (RCP4.5, RCP6.0 and RCP8.5) of 

the study area projected by climate models of CMIP5 were used to project future warming in the 

study area between 2014-2100.   

Urbanization and LUC has significant impact the ecosystems, biodiversity and natural habitats 

of the Jizzan province. In 1970s, human impacts were minimal. However, following the 

construction of rain-harvesting dams which capture most surface runoff, and with urban 

expansion at about 53.4 km2 yr−1 which extended into coastal regions, areas of forest, shrubland, 

sparse vegetative cover, bare soil and water bodies declined markedly over 1990–2014. Likely 

due to climate change impact and urbanization, a statistically significant change point was 

detected in the monthly temperature data of Jizzan in 1968 and a warming trend of 0.24 oC per 

decade after 1970. The precipitation data also had a statistically significant change point in 1967, 

but a negative trend of 12.2 mm/decade.  Observed changes in the hydro-climatology of Jizzan 

are likely associated with significant LUC, such as urbanization and agricultural development 

(irrigated croplands) at the expense of vegetative cover, forest, shrubland, and sparse vegetative 

cover since 1970s.  

A statistically significant change point was detected in CO2 emissions data in 1985 and 

statistically significant positive trend of 94,340 Kt/decade. Other anthropogenic greenhouse 

gases mainly due to industrial processes also have a statistically significant positive trend of 

488.5 Kt/decade. On a whole, total greenhouse gas emissions including all anthropogenic sources 

have been increasing at a statistically significant trend of 78,090 Kt/decade after 1991. Therefore, 

it is very likely that long-term increasing emission of greenhouse gases, and aforementioned 
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human activities have resulted in warming trends observed in the study area and globally. Future 

projection of temperature anomaly between 1900-2100 showed a statistically significant future 

warming trend of 0.19 0C/decade after 1999. 

The spatial distribution of the projected annual temperature in 2050 and 2075, also shows 

that the highest increase in temperature is within urban areas and the mountains regions. The 

increase in the warming trend in the mountains areas which were previously occupied by 

shrubland and forest reflects the impacts of deforestation in the warming trend.  The warming 

trend in mountains regions is estimated at 0.55 -0.83 °C/decade between 2014 and 2050, and at 

0.55 °C/decade in south and eastern parts of Jizzan Province.  Precipitation is projected to 

continue declining while LUC such as urbanization and irrigated cropland are projected to 

continue towards the end of the 21st Century. 

In conclusion, to reduce the impacts of climate change and LUC, conservation plans for 

the Jizzan Province are essential to mitigate the significant impact human activities and global 

warming on the environment and ecosystem services of the study area in the 21st Century. 
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Chapter 5 Irrigation Water Management in arid regions of Middle East  

5.1 Introduction  

The Kingdom of Saudi Arabia (KSA) (24° N, 45° E) is the largest Arab country located in 

Western Asia. The kingdom has an area of 2.15 million square kilometers, but its mean annual 

rainfall is only about 112 mm/year (Mahmoud 2014 and Mahmoud et al., 2014). The agricultural 

sector of KSA equipped with modern irrigation technology has more than 1.1 million hectares of 

irrigated land (Department of Statistics and Information, 2008). Because of its arid climate, almost 

all agricultural lands are dependent on groundwater as the main source of water supply, which, 

however, is costly to withdraw (Mahmoud 2014 and Mahmoud et al., 2014). Major crops grown 

in Saudi Arabia include cereals (wheat, sorghum, barley, and millet), vegetables (tomato, 

watermelon, eggplant, potato, cucumber, and onions), fruits (dates, citrus, and grapes), and the 

forage crop of alfalfa. Agricultural water demand in KSA is very high, ranging between 83–90% 

of the total water demands during 1990–2009 (Chowdhury and Al-Zahrani, 2015).  Therefore, 

evapotranspiration (ET) loss from irrigated lands is a key factor to consider for water supply to the 

agriculture sector (for example, as part of an early warning system). As large amount of irrigated 

water are lost through ET partly dependent on irrigation methods employed (Mahmoud and 

Alazba, 2016), accurate regional estimation of ET will be helpful for effective management of 

irrigation water.  

Actual evapotranspiration (AET) reflects the crop’s water need which consists of transpiration 

and evaporation (Alberto et al. 2014; Senay et al. 2017; Olivera-Guerra et al., 2018). AET can be 

estimated by: (i) in situ measurements using lysimeters or flux towers, (ii) crop coefficients 

approach (Allen et al. 1998), and (iii) remotely sensed data (Kalma et al. 2008) and models, which 

are either based on empirical / statistical or energy balance approaches.  Using a spline model and 
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a linear sub-model dependent on elevation, McVicar et al. (2007) interpolated maximum (Tmax) 

and minimum (Tmin) air temperatures, wind speed (u) and vapor pressure (ea) to estimate the 

radiative energy affected by the topography (i.e., elevation, slope and aspect), to calculate ETo for 

each grid-cell of the Yellow River basin of China. The crop evapotranspiration (ETc), defined as 

Kc x ETo, is commonly used to estimate crop water requirements (Doorenbos and Pruitt, 1977; 

Allen et.al 1998).  Tables of Kc have been developed for crops of various growth stages, soil, and 

climate characteristics (Doorenbos and Pruitt, 1977; Allen et al., 1998).  From the strength and 

weaknesses of some potential evapotranspiration (PET) models developed for land covers 

commonly found in southwestern United States, Douglas et al. (2009) selected a PET model for 

Florida.  

Recent studies that applied remotely sensed (RS) data to estimate spatio-temporally estimated 

AET and crop-water consumption are such as Duchemin et al. 2006; Er-Raki et al. 2007; González-

Dugo and Mateos 2008; Er-Raki et al. 2010; Sánchez et al. 2010; Cruz-Blanco et al. 2014; Senay 

et al. 2017; and Parka et al. 2017.  Similar seasonal patterns of vegetation indices and 

evapotranspiration have been found over annual crops (Bausch, 1995; Duchemin et al., 2006; Er-

Raki et al., 2007). Agrometeorological monitoring of crop production is often done on a large 

spatial scale and small temporal resolutions using RS vegetation indices of visible and near-

infrared wavelengths, such as normalized difference vegetation index (NDVI) to assess the leaf 

area index, LAI, biomass, or the absorbed photosynthetically active radiation/ soil-adjusted 

vegetation index.  NDVI can be used to estimate real-time Kc given the high correlation between 

NDVI and Kc (Ray and Dadhwal, 2001; Er-Raki et al. 2007; González-Dugo et al. 2013; Mateos 

et al. 2013; Kullberg et al.2017; Campos et al.2017).  Because of this close relationship between 

NDVI and Kc, NDVI has been widely used for vegetation monitoring, crop yield assessment and 

drought detection (Justice and Townshen, 2002).  High NDVI values generally indicate more 
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photosynthetic activity. On the other hand, higher Kc due to higher temperature results in less soil 

water and therefore a decline in NDVI, while denser vegetation indices mean more ET losses 

which lower the land surface temperature (Boegh et al, 1999).  

Integrating remote sensing data into soil water balance models are one of the most commonly 

used methods for estimating crop water requirements (Bodner et al., 2007). For instance, Campos 

et al. (2016a) estimated the total soil moisture in soil layers of southwestern Spain based on AET 

and time series of multispectral imageries of (vegetation cover). They developed a simple linear 

relationship between the NDVI and Kc. Such a relationship has been shown to be effective in 

mapping AET of crops (Campos et al.,2016a, b; Toureiro et al. 2017). Senay et al. (2017) 

developed historical ET maps for major irrigation districts in California, USA using Landsat 

images.  Parka et al. (2017) estimated AET in northeast Asia using Kc, ETo, and surface soil 

moisture data from satellite images. They found that Kc estimated from NDVI data correspond 

well with observed Kc. Consoli and Vanella, (2014) mapped crop ET in southern Italy using a 

soil-water balance model driven with vegetation indices and climate data. The authors reported 

that this method has the potential to estimate crop water requirements and water management over 

large agricultural areas. Many earlier studies tend to estimate field scale crop coefficient and crop 

water requirements only for a specific crop, such as maize, soybean, cotton, and wheat 

(Ducheminet et al., 2006; Irmak et al., 2013; Campos et al.2017; Drerup et al.2017; Rozenstein et 

al. 2018).  

The development of models to estimate AET based on remotely sensed data applicable over 

large areas in arid regions of Middle East can be challenging because irrigation water requirements 

are essential but available water resources are limited. The objectives of the present study are: (1) 

To estimate Reference Evapotranspiration using data collected from meteorological stations and 

Geographic information system techniques on a grid-by-grid basis (2) Modeling Kc as a function 
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of 16-day time-series of MODIS-NDVI, (3) To estimate AET based on soil water balance, Kc, and 

ETo, and (4) To detect change points and trends in long-term average daily AET. 

5.2 Material and methods  

5.2.1 Description of the study area: 

The study area is in three provinces of central Saudi Arabia: (1) Al-Riyadh, (2) Al-Qassim and 

(3) Hail Province (Figure 5.1).  The Al-Riyadh Province has an area of 380497.8 km² and a 

population of 6,777,146 (2010), making it the second largest province of Saudi Arabia in terms of 

both area and population. It is located at the center of the Arabian Peninsula (24 ° 38' N and 46 ° 

43' E) on a large plateau, with an arid climate and an annual rainfall ranging from 41 to 230 

mm/year.  The Al-Qassim Province is one of the largest agricultural areas of central Saudi Arabia 

at 647 m above sea-level (26.31° E and 43.77° N). The Hail Province in north-central Saudi Arabia 

borders provinces of Madinah, Tabouk, Northern Border, Riyadh and Qassim. Hail is largely 

agricultural with a significant production of grains, date, and fruits. A large percentage of the 

kingdom's wheat production comes from Ha'il Provinces. Hail has a continental desert 

climate with hot summers and cool winters. With an arid to extremely arid climate pattern, Hail’s 

annual precipitation of about 110 mm comes from two peaks rainfall in March and November.  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Cereal
https://en.wikipedia.org/wiki/Date_palm
https://en.wikipedia.org/wiki/Desert_climate
https://en.wikipedia.org/wiki/Desert_climate


147 
 

 
 

Figure 5.1 Location map of the study area 
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5.2.2 Reference Evapotranspiration (ETo)  

Daily climate data between 1950 and 2013 was collected from weather stations located across the 

study area. In this study, ETo is the evapotranspiration from a hypothetical surface that consists of 

grass as the reference crop at 0.12-m height, actively growing, adequately watered, and with a surface 

roughness of 70 (s m-1) and an albedo of 0.23. The ETo of this reference surface is estimated 

according to the following Penman– Monteith equation (Allen et al., 1998) on a grid-by-grid basis.  

ETo = 
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Where  
   
ETo = reference evapotranspiration (mm/day) 

Rn =  net radiation at the crop surface (MJ/m2/day), 

G = soil heat flux density (MJ/m2/day), 

T = mean daily air temperature at  2 m height (oC), 

u2 = wind speed at 2 m height (m/s), 

es = saturation vapour pressure (kPa),  

ea = actual vapor pressure (kPa), 

  = slope vapor pressure curve (kPa/oC), 

 = psychrometric constant (kPa/oC). 

es- ea  =  saturation vapor pressure deficit (kPa) 

The data used in this study include elevation, latitude and longitude of selected climate stations, 

total monthly rain, maximum and minimum air temperature, relative humidity, wind speed at 2 m 

height, and daily sunshine hours. The Inverse Distance Weighted (IDW) interpolation function was 

utilized to interpolate the input daily climate data. Daily ETo was estimated from the Penman-

Montieth approach implemented within the main program of GIS to produce twelve maps of mean 

daily reference evapotranspiration for each month (mm/day).   
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5.2.3 Actual evapotranspiration estimated by a soil water balance model 

          The model uses soil water balance equations proposed by the Food and Agriculture 

Organization (FAO) (Allen et al., 1998). Inputs to the water balance model consist of observed 

climatic data and gridded soil property characteristics (two soil parameters) obtained from the IGBP-

DIS Global Gridded Surfaces of Selected Soil Characteristics database (Global Soil Data Task Group, 

2000). This soil database was derived from the soil physical attributes of the 1995 digital 1:5 million-

scale FAO Soil Map of the World and the Global Pedon Database.  More details about this dataset 

are given in Tempel et al. (1996), Global Soil Data Task Group (2000), and Batjes (2002a, b). The 

study area’s soil parameters were extracted using a 5x5 arc-minutes gridded format with ArcGIS 

10.1. The gridded water-holding capacity at 0.25∘ grid resolution was calculated using hydrologic 

soil properties linked to soil texture, and the wilting point (WP), field capacity (FC), and 

saturated water content (SAT) for each grid (Saxton and Rawls, 2006). The monthly soil water 

balance in mm of water is: 

 

       mm/month                R - AET - EP =SWC  mmmm                                   (5-2) 

 

         Where: ∆SWCm is the change in soil water content, EPm the effective precipitation, AETm the 

actual evapotranspiration, and Rm is the runoff for month m, which includes both surface runoff and 

subsurface drainage. SWC is less than or at most equal to SWCmax, which is the total maximum SWC 

available in the soil for evapotranspiration. If the monthly water input exceeds SWCmax, the excess 

becomes the runoff (Rm). Realistic initial SWC values are obtained via a trial and error search 

approach. 

Effective precipitation (EP), the portion of total precipitation used for crop production, is 

estimated according to the method of the USDA Soil Conservation Service (Dastane, 1974). The 
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method assumes that crops can use almost 60 to 80 percent of the precipitation, up to 250 mm/month. 

Beyond 250 mm/month, crops would only be able to use about 10 percent of that amount. Rainfall 

interception is that intercepted by plant canopy and litter and becomes evaporation loss. Interception 

loss plays an important role in the water budget because it reduces the amount of precipitation 

available for SWC. EP is the gross precipitation (GP) minus the precipitation intercepted by canopy 

cover and litter, and interception loss is a function of the storage space of canopy structure.  The 

amount of rainfall intercepted is proportional to the interception coefficients Kint. For each month, the 

Effective Precipitation is:   

mm/month     Kint) - (1 * P Gross = )K * P (Gross - P Gross = EP intm                  (5-3) 

 

Actual evapotranspiration (AET) is calculated as a function of meteorological, phenological and soil 

moisture conditions: 

 

                 mm/month               K * K * ETo = AET  soilvegmm                       (5-4) 

Kveg = vegetation coefficients dependent on vegetation characteristics  

Ksoil = the soil stress coefficients dependent on the volumetric soil water content (0-1).  

         Ksoil represents a reduction factor resulted from the limit imposed by the monthly soil water 

content (SWCm). At monthly time step, the model uses a simple algorithm to estimate Ksoil as a ratio 

of SWCm to the maximum SWC (Zomer et al., 2006): 

  SWC / SWC = K max msoil                                                                             (5-5) 

The maximum amount of soil water available for ET processes within the plant rooting depth zone is 

equal to the SWC at field capacity (SWCfc) minus the SWC at wilting point (SWCwp) times the rooting 

depth (RD). 

mm         )SWC - (SWC * RD = SWC wpfc max                                                         (6-6) 
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To estimate Kc, a land cover map that represents the extent of irrigated crops in the study area is 

developed for 2013 (Figure 5.2(a)). Phenological information for this map is based on NDVI 

estimated from remotely sensed spectral pixel values in the red and near-infrared spectra.  

 

Figure 5.2 (a) Land cover map; (b) Rainfall map of the study area 

 

Kc is estimated from NDVI data averaged between 2000 and 2013 available from the 16-day 

NDVI (MOD13A2). To validate NDVI derived from MODIS images, 258 sampling sites representing 

different climatology and vegetation covers were selected. A database of default Kc to be used in the 

ArcGIS ET calculation tool was also developed. The database contains 10 crop types (palm trees, 

grape, lemon, wheat, alfalfa, orange, olive, potato, sorghum vulgare, and millet), and land covers such 

as evergreen forest and scrublands.  For actual crops, Kc values are obtained from FAO's Water 

Development and Management Unit database, which also contains growing season dates. Kc is 

estimated from NDVI time series data. 

 

        Fig 2: (a) Land cover map; (b) Rainfall map of the study area

a b 
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       n         + NDVI *k  = K c
                                                                                        (5-7) 

 

(5-8) 

 

Kc varies significantly across the growth phase of crops, even though inter-annual variations 

are relatively small. The k and n coefficients in Equation (5-7) were determined from 10 different 

agriculture land use datasets throughout the season, so that the above equation is applicable to a wide 

range of agriculture land use over the whole growing season. The coefficients of determination (R2) 

is a statistic used to assess the goodness-of-fit ranging from 0 to 1 (perfect fit) for 12 linear models 

shown in Table 5.1, along with the mean square errors (MSE) and the root mean square of the errors 

(RMSE). These models were developed for each crop considered in this study and for the average 

monthly Kc and NDVI for the study area. These regression coefficients were calculated at 0.05 

significance level. Since a high R2 itself may be insufficient to establish a strong relationship between 

Kc and NDVI, the F-test of equality of variances was also applied to test the statistical significance 

of the relationship between Kc and NDVI, assuming both are of normal populations.  

 

 

 

 

 

 

 

 

 

 

 

( ) ( )

( ) ( )  
















=

−−


=

−−

=
n

i
NDVINDVIcKcK

n

i
NDVINDVIcKcK

R

1
2*

2 2
1

1
*

2

2



153 
 

Table 5.1 Relationship between monthly NDVI and monthly crop coefficients under irrigated crop condition. 

 

5.2.4 Long-term average annual actual evapotranspiration at stations 

Three popular relationships between AET / PET and P/ PET, attributed to Schreiber (1904), 

Ol’dekop (1911) and Pike (1964), respectively, were used to estimate long-term average annual AET 

for the study area, as 
 

𝐴𝐸𝑇

𝑃𝐸𝑇
=

𝑃

𝑃𝐸𝑇
 (1 − 𝑒𝑥𝑝 (−

𝑃𝐸𝑇

𝑃
))                                                                                              (5-9) 

 
𝐴𝐸𝑇

𝑃𝐸𝑇
= 𝑡𝑎𝑛ℎ  (

𝑃

𝑃𝐸𝑇
)                                                                                                                 (5-10) 

 

𝐴𝐸𝑇

𝑃𝐸𝑇
= 

𝑃

𝑃𝐸𝑇
 /√(1 +

𝑃

𝑃𝐸𝑇
)2                                                                                                      (5-11) 

  

 

Vegetation type Linear equation R2 MSE RMSE 
palm tree Kc= 0.26 x NDVI+0.74 0.89 0.001 0.031 
grape Kc = -0.12 x NDVI+0.55 0.90 0.0001 0.01 
lemon Kc = -0.41 x NDVI+1.1 0.86 0.006 0.077 
wheat Kc = -0.32 x NDVI+1.026 0.714 0.150 0.387 
alfalfa Kc = 2.11 x NDVI-0.49 0.971 0.108 0.328 
orange Kc = 0.1 x NDVI + 0.77 0.76 0.002 0.044 
olive Kc =-0.04 x NDVI +0.73 0.77 0.008 0.089 
potato Kc = 0.21 x NDVI + 0.64 0.82 0.052 0.228 
sorghum vulgare Kc = 0.19 x NDVI + 0.74 0.915 0.02 0.141 
millet Kc = -0.32 x NDVI + 1.23 0.87 0.005 0.071 
Study area monthly Kc vs. NDVI 
Month Linear equation R2 MSE RMSE 
January Kc = 0.803 x NDVI + 0.398 0.72 0.007 0.083 
February Kc = 1.076 x NDVI + 0.224 0.74 0.017 0.130 
March Kc = 0.863 x NDVI + 0.314 0.90 0.008 0.090 
April Kc =1.081 x NDVI + 0.117 0.78 0.005 0.007 
May Kc = 1.061 x NDVI + 0.146 0.93 0.004 0.094 
June Kc = 1.117 x NDVI + 0.137 0.85 0.008 0.092 
July Kc =0.834 x NDVI + 0.368 0.82 0.011 0.106 
August Kc = 1.23 x NDVI + 0.028 0.95 0.004 0.066 
September Kc = 0.984 x NDVI + 0.221 0.72 0.015 0.124 
October Kc = 1.05 x NDVI + 0.162 0.87 0.009 0.095 
November Kc = 1.126 x NDVI + 0.085 0.90 0.004 0.064 
December Kc =0.639 x NDVI + 0.492 0.76 0.006 0.074 
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        Where AET and P are the actual evapotranspiration and long-term average annual precipitation, 

and PET is the long-term average annual potential evapotranspiration estimated by the Penman–

Monteith equation, respectively.  To select the most representative method from these three methods 

for the study area, long-term average values estimated from the three methods are compared with 

values obtained from the water balance method. The Buishand's nonparametric detection method was 

applied to detect change points in the daily AET of the study area. This is a test for a null hypothesis 

(no change point) and an alternative hypothesis, where change point is detected. Next, the 

nonparametric Mann-Kendall test was applied to estimate the long-term trend in daily AET between 

1950 and 2016. 

5.3 Discussions of Results: 

5.3.1 Spatial distribution of reference evapotranspiration  

The mean annual precipitation in the study area over the 63-year period was less than 140 

mm/year (Figure 5.2(b)), which is very low compared with the global mean annual rainfall of about 

1000 mm. Under such an arid climate, the lack of available water will be very severe during drought 

periods. Therefore, the variability of annual precipitation plays a very important role in the water 

resources management, development and conservation plans of the study area. The southeastern and 

southwestern parts of the Al-Riyadh province, and the northwestern parts of Hail province have the 

lowest mean annual rainfall of 41–110 mm/year. The Al-Qassim province, northern regions of the 

Al-Riyadh and Hail provinces, except its northwestern parts, received the highest mean annual 

precipitation of 120–230 mm/year. 

The spatial distributions of gridded ETo computed at 15 m resolution helps us to better 

understanding the spatial and temporal variability of the crop water demand for each month. The ETo 

of January is the lowest, ranging from 2.5 mm/day to 4.4 mm/day in the study area, while the highest 
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ETo are in July, ranging from 8.2 to 11.4 mm/day (Mahmoud and Gan, 2019). Between all twelve 

months, summer (April-September) evapotranspiration will be the highest as expected. Therefore, in 

the summer (April-September), ETo is the maximum in Al-Qassim Province, Hail Province, and in 

the northern portion of Al-Riyadh Province. From January to March and November to December, the 

maximum ETo will shift towards southeastern parts of Al-Qassim Province, Hail Province and Al-

Riyadh Province probably due to the seasonal variation in the relative humidity and wind speed in 

the study area (see supplementary materials in Mahmoud and Gan, 2019).  

From spatial distributions of annual ETo shown in Figure 5.3, it is obvious that there are a large 

spatial and seasonal variations in ETo in different regions of the study area.  The mean annual ETo 

ranges from 2127 to 2460 mm/yr, with the lowest annual ETo located in central and southwestern 

parts of Al-Riyadh province, and the northwestern parts of Hail province. The maximum ETo are 

found mainly over the Al-Qassim province. The results appear to provide comparable or better 

estimates of ETo than currently available PET methodologies using ground-based observations. 

Topography and climatic factors contribute to variations in annual ETo values, which are also related 

to latitudes, which seem to play a bigger role than the temporal fluctuations of ET. The results and 

ETo maps can be used for agroclimatic design. The results also show that geostatistics (IDW) is 

useful to represent the spatial variability of ETo over large geographical areas.  
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Figure 5.3 Spatial distribution of annual reference evapotranspiration. 

 

5.3.2 Monthly NDVI and Crop Coefficients Patterns for irrigated crops 

Monthly Kc values for crops were developed according to planting dates of actual crop database, 

which and Kc for other types of landcover were used to derive the relationships with 16-day MODIS 

NDVI (MOD13A2) data in the study area. Twelve simple linear regression models were developed 

to establish a general relationship between NDVI and the daily Kc values measured from 258 

sampling sites of varying climatology, crops, and cropping practices. The monthly linear regression 

models developed out of monthly NDVI-Kc estimated and modeled have an R2 of 0.72, 0.74, 0.9, 

0.78, 0.93, 0.85, 0.82, 0.95, 0.72, 0.87, 0.9, and 0.76, respectively (Table 5.1). These results are 
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comparable to Kc-NDVI relationships developed in previous studies (Mutiibwa and Irmak, 2013; Er-

Raki et al., 2013; Parka et al., 2017). For instance, Mutiibwa and Irmak (2013) derived Kc from NDVI 

data in the U.S. High Plains based on a regression model with R2 of 0.72 and RMSE of 0.12, which 

according to the authors represent a good model performance. In another study, Er-Raki et al. (2013) 

regarded R2 of 0.63 to be acceptable in deriving Kc for grapes of Northwestern Mexico. In our study, 

the results also show a strong correlation between monthly Kc and NDVI with low MSE and RMSE 

(Table 5.1).  Kc obtained from NDVI data of MODIS images are also comparable to Kc provided in 

FAO-56 (Allen et al., 1998).  As expected, simple regression models of NDVI and Kc developed for 

the 10 selected crops individually show higher goodness-of-fit statistics (higher R2) to field data 

collected in 258 sampling sites than similar monthly regression models developed for all irrigated 

crops of each month (Table 5.1).  

The number of days of an average year (DOY) with a maximum NDVI of 0.8 for palm trees 

(DOY 241), NDVImax of 0.64 for grape (DOY 193), NDVImax of 0.79 for wheat (DOY 129), NDVImax 

of 0.65 for lemon(DOY 289), NDVImax of 0.65for potato (DOY 113), NDVImax of 0.64 for orange 

(DOY 241), NDVImax of 0.77 for olive(DOY 49), NDVImax of 0.9 for sorghum vulgare (DOY 161), 

and NDVImax of 0.82 for millet (DOY 161), respectively. It is clear that the NDVI of irrigated alfalfa 

during the growing season is greater than that of other crops. Alfalfa seeds are usually planted on 8 

March and it is harvested every 30-40 days throughout the year. Kc derived from the NDVI of each 

pixel using the NDVI-Kc regression model developed generally shows strong agreement with actual 

Kc measured in the field over the growing stage of crops.  Twelve monthly Kc maps developed from 

NDVI data of MODIS images show spatial variability of Kc in the study area, and also temporal 

variations over the growing season (Figure 5.4). Figure 5.4 shows that the maximum Kc of crops for 

all irrigated lands range from < 0.5 to 1.2 for different months, such that high Kc values are generally 
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observed in January, February, March, May, August, and November, respectively. Spatial variations 

in Kc are partly attributed to different crop types and partly to different growth stages of crops because 

of different planting dates.   

 

 

Figure 5.4 Spatial distribution of monthly crop coefficients 
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Figure 5.4 (continued) 

5.3.3 Spatial distribution of monthly and annual actual evapotranspiration (AET) 

Monthly AET was estimated using the aforementioned soil water balance model driven with soil 

stress coefficients, monthly Kc and monthly ETo estimated from Equation 5.4. The AET output 

represents the average monthly evapotranspiration (mm) of irrigated cropland for the 1950-2013 

period. It is observed that Kc fluctuates between inter-monthly low-and high values throughout the 

year. With high water consumption by crops due to high irrigation water supply in February, March, 
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April and May, Kc in these months also increase dramatically. Monthly AET maps derived for the 

study area from the soil water balance model are shown in Figure 5.5. It should be noted that monthly 

Kc map derived from the twelve regression equations were based on NDVI extrapolated from NDVI 

data of 312 MODIS images of 16-day time step.   

 

Figure 5.5 Spatial distribution on monthly actual evapotranspiration 
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Figure 5.5 (continued) 

The monthly AET maps for 1950-2013 show a gradual increase in AET during the crop-growing 

season from January to May but a subsequent decline from June to December as the season progresses 

from summer to winter, and as plant transpiration decreases drastically in June, the month when most 

crops are harvested. The AET estimated for January to June arranged in descending order are May 

(3.67-44.7 mm/day), April (5.99-36.8 mm/day), March (2.96-32.7 mm/day), February (0.68-20 

mm/day), June (2.42-17.7 mm/day) and January (1-11 mm/day), respectively.  High AET losses in 

these months are of major concern because crops are irrigated from groundwater sources where the 
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rate of withdrawal far exceeds the rate of replenishment. The AET losses estimated are similar to 

AET of other regions of KSA (Mahmoud and Alazba, 2016; Madugundu et al., 2018). For instance, 

Madugundu et al., (2018) found that crop water requirements for carrot in the Riyadh region of Saudi 

Arabia in the summer were about 3243 mm (about 36 mm/day), and 620 mm in winter.  Crop water 

requirements for silage maize was 1622 mm in the summer, and 1359 mm in spring. Using a surface 

energy balance algorithm, Mahmoud and Alazba (2016) estimated the average daily AET in the 

southern and western regions of KSA varies widely, from 4.97 to 49 mm/day in April, and from 3.43 

to 48.9 mm/day in May.  In the study area, high AET losses found in some small spots in AET maps 

are mainly due to evaporation from water bodies such as lakes impounded behind rain harvesting 

dams and water storage facilities.  Such high AET values in an arid region such as Saudi Arabia are 

examples of mismanagement of irrigation water, which could cause soil salinity to increase. To 

address rising soil salinity problems, farmers resort to apply excessive amount of irrigation water; 

higher than the crop water requirement for leaching of soil salinity, which is a common issue in 

irrigated land in Saudi Arabia due to high evaporation loss of irrigated water.  

Figure 5.5 shows the spatial variations of AET over the study area, where maximum AET values 

are found in Al-Qassim Province, Hail Province, and in the northern portion of Al-Riyadh Province.  

The results also show that irrigated cropland has access to moisture because of irrigation and 

groundwater. So monthly AET of irrigated cropland depend on moisture availability and the 

atmospheric water demand.  From June to December, there were a gradual decrease in AET values. 

Where AET estimate ranged from 2.42 -17.7 mm/day in June, 0.85-9.1 mm/day in July, 0.64-6.57 

mm/day in August. The lowest observed values for AET were in September and October where its 

value ranged from 0-3.7 mm/day. The average annual AET estimated by the soil water balance model 

given in Figure 5.6(a) shows moderate AET in non-irrigated areas in the southern parts of Riyadh 
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(351-993 mm/year), in contrast to very high annual AET ranging from 1200 to 2900 mm/year in 

irrigated cropland in the northern and central region of Riyadh, Al-Qassim province and Hail 

province.  The average annual AET losses estimated using the Pike and Ol’dekop methods are 

unrealistically low even in irrigated crop field and the results are not presented. On the other hand, 

AET estimated by the Schreiber model, ranging from 492 to 2710 mm/year, agrees well with that 

estimated by the soil water balance model ranging from 351 to 2900 mm/year, and so it is shown in 

Figure 5.6(b). The annual AET estimated by the soil water balance model are about 9-11% greater 

than that estimate by the Schreiber model. 

 

 

Figure 5.6 a) Average annual actual evapotranspiration based on soil water balance model; b) 

Average annual actual evapotranspiration based on Schreiber equation. 

 

 

a b 
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5.3.4 Long-term average daily actual evapotranspiration 

Long-term average daily AET estimated by the soil water balance model for 1950-2016 (Figure 

5.7 generally agree with those obtained from field measurements as shown in Figure 5.8.  The long-

term average daily AET ranges from 2 mm/day to 30 mm/day in some areas. In general, uniform 

daily irrigation is applied to crops, from 0 to 2 mm/day for alfalfa during the initial crop growth stage, 

and from 1.0 to 5.0 mm/day for other crops, with the highest values for grapes under the driest 

conditions. From Buishand's change detection test applied to average daily AET between 1950 and 

2016, statistically significant change points in daily AET were detected in 1990 because the average 

daily AET of 3.6 mm/day over 1950-1990 had increased to 5.3 mm/day over 1990-2016. 

Furthermore, the Mann-Kendall trend test also detected a statistically significant positive trend of 1.5 

mm/decade in the average daily AET over 1990-2016, likely caused by climate warming in the last 

three decades. The recent rising trend in AET detected is expected to cause stress to crops and to 

enhance drought conditions (Mahmoud and Gan, 2018). 

 

Figure 5.7 Average daily actual evapotranspiration in the study area 
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To validate the soil water balance model developed in this study, both models estimated, and field 

observed daily AET via a water balance analysis for alfalfa crop are compared. Overall, Figure 5.8 

shows good agreements between model estimated and observed daily AET for alfalfa, even though 

the model estimated daily AET are about 4-5% higher than the observed AET for January to April, 

the period with the best agreement between both datasets. Between the end of April and the middle 

of June, estimated AET is about 2% lower than the observed AET, and even lower from July to 

August because of lower atmospheric demand of evaporation loss. The successful application of the 

soil water balance model developed in this study in deriving representative AET maps will be useful 

to achieve the planning and management of sustainable water use in arid regions of Middle East, such 

as the Kingdom of Saudi Arabia. 

 

Figure 5.8 Daily measured and modelled actual evapotranspiration for alfalfa crop 

 

5.4 Conclusion 

This study was designed to estimate average reference and AET over Al-Riyadh, Al-Qassim and 

Hail Province in the central region of Saudi Arabia during 1950–2013 using soil water balance model 

on daily, monthly and annual basis.  Firstly, the FAO Penman-Monteith method was used to model 

the spatial distribution of ETo on a grid-by-grid basis using data collected from meteorological 

stations and GIS techniques. Then, crop coefficients (Kc) were modeled as a function of 16-day time-
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series MODIS normalized difference vegetation index (NDVI). Next, using Kc maps and ETo as 

input, daily AET was simulated by the soil water balance (SWB) model and aggregated to monthly 

and annual AET. ETo is found to be the highest and of the most concern in Al-Qassim Province, Hail 

Province, and in the northern portion of Al-Riyadh Province. From January to March and from 

November - December there is a shift of maximum ETo towards southeastern parts of Al-Qassim 

Province, Hail Province and Al-Riyadh Province except in its northern portion. The annual ETo 

shows very high values in the entire study area as it ranged from 2127 to 2460 mm/year. From 

empirical NDVI-Kc relationships developed and applicable at pixel level, Kc derived from the NDVI-

Kc relationships agree well with Kc recommended by FAO over various crop growth stages in the 

field.  

The monthly AET maps for 1950-2013 show a gradual increase in AET during the crop-growing 

season in January to May but a subsequent decline as the season progresses from June to December. 

The AET estimated for January to June are arranged in descending order, which are May (3.67-44.7 

mm/day), April (5.99-36.8 mm/day), March (2.96-32.7 mm/day), February (0.68-20 mm/day), June 

(2.42-17.7 mm/day) and January (1-11 mm/day), respectively. Statistical analysis shows that 

statistically significant change point in daily AET generally occurred in 1990, such that the long-term 

average daily AET of 1950-1990 at 3.6 mm/day increased to about 5.3 mm/day between 1990 and 

2016 with a positive trend of 1.5 mm/decade. The annual AET estimated for irrigated cropland in 

northern and central regions of Riyadh, Al-Qassim province and Hail province range from 1200 to 

2900 mm/year.  In these regions, low AET values are found in shrubland, grassland, and other natural 

vegetation. The annual AET estimated by the SWB model are about 9-11% higher than modeled AET 

in the study area, where the long-term average daily AET estimated for 1950-2013 range from 2 

mm/day to 30 mm/day.  The lowest long-term average daily AET is observed from the start of August 
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to the end of September. The measured daily AET for alfalfa crop used to test and validate the SWB 

model. good agreement between SWB-based daily AET and the measured daily AET for alfalfa. 

Overall, there was very good agreements between model estimated and observed daily AET for 

alfalfa, even though the model estimated daily AET are about 4-5% higher than the observed AET 

for January to April, the period with the best agreement between both datasets. Between the end of 

April and the middle of June, estimated AET is about 2% lower than the observed AET, and even 

lower from July to August because of lower atmospheric demand of evaporation loss. Representative 

AET maps derived from applying the NDVI-Kc relationships to the SWB model will be useful to 

achieve the planning and management of sustainable water use in arid regions of Middle East.  
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Chapter 6 Multidecadal variability in the Nile River Basin hydroclimate  

6.1 Introduction  

Most of the published research on the Nile River basin (NRB) climatology and climate change 

impact studies have been concentrated in the upper BNB stream countries. However, in recent 

years, recurring droughts and increasing population have led to rising tension between competing 

users for water. There is a need for better understanding of the hydrological cycle of the entire Nile 

River basin (NRB) and linkage to regional climate change. Several previous studies have explored 

hydroclimate variability in the Nile River basin mostly at sub-basin level (Cheung et.al., 2008; 

Zhang et al., 2012; Muhire and Ahmed, 2015; Ongoma et.al., 2018). In Ethiopia, Cheung et.al., 

(2008) investigated the variability and trends in Ethiopian ‘precipitation between 1960 and 2002 

using precipitation observation data from 134 stations and found a significant decline in Kiremt 

precipitation over the Baro‐Akobo, Omo‐Ghibe, Rift Valley, and the southwestern and central 

regions of Ethiopia. In another study, Zhang et al., (2012) analyzed the spatio-temporal variations 

of precipitation in Sudan during 1948–2005 and reported a significant decreasing trend in annual 

precipitation over the central regions of Sudan after 1960s.  Similarly, Muhire and Ahmed (2015) 

observed a decrease in the frequency of precipitation over the northern, eastern and central plateau 

of Rwanda, the authors also reported an increase in total precipitation during the short rainy 

seasons mainly over the highlands, Kivu Lake. Ongoma et.al., (2018) examined changes and trends 

in Kenyan’ surface temperature between1951–2012 and reported a warming of + 0.15 °C/decade 

since 1970s, where its highland exhibited a more significant warming than its lowland.  

Other studies analyzed the effects of climate change on specific hydroclimate variables such 

as precipitation, temperature and streamflows at sub-basin level (Phillips and McIntyre, 2000; 
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Nyeko-Ogiramoi et al., 2013; Taye and Willems, 2012; Tierney et al., 2013; Onyutha, 2016; 

Onyutha and Willems, 2015). For example, Phillips and McIntyre (2000), Taye and Willems 

(2012), Nyeko-Ogiramoi et al. (2013), and Tierney et al., (2013) analyzed trend and variability in 

observed precipitation extremes of Uganda, the BNB, Lake Victoria basin, and East Africa 

respectively. These authors reported strong connection between inter-annual precipitation 

variability and climate indices such as El Niño and IOD. More recently, studies have shown that 

rapid urbanization and climate change are causing extreme weather conditions at a given location 

in the Nile River basin (e.g. Mahmoud and Gan, 2018 a,b; Seyoum, 2018), however, impact of 

climate change on the hydroclimate of the Nile River basin in a lumped manner is still unclear. 

For instance, downstream in Egypt, rapid urbanization and climate change had resulted in frequent 

deadly heat wave, warming trend of 0.19 °C/decade, a negative trend in relative humidity 

(0.55%/decade), and a rising trend in vapour pressure (0.24 hPa/decade) (Mahmoud and Gan, 

2018a). In another study, Mahmoud and Gan, (2018b) reported a downward trend of 8.96 

mm/decade in Egypt annual precipitation since 1994 (Mahmoud and Gan, 2018b). Upstream in 

Ethiopia, Seyoum, (2018) reported that the Upper BNB’ precipitation is strongly linked to El Niño-

Southern Oscillation (ENSO), specifically during the Kiremt season(June-September), this was 

evident from the strong negative correlation between El Niño (positive ENSO) and Upper BNB’ 

precipitation (ρ = -0.62).   

Statistical analysis techniques such as the least squares method, quantile perturbation method 

(QPM), Mann-Kendall (MK), Sen’s slope and Pettitt tests have been widely employed in the Upper 

BNB to assess trends in hydrological variables (Seleshi and Zanke, 2004; Cheung et al., 2008; 

Tesemma et al., 2010; Bitew et al., 2010; Tekleab et al. 2013; Mengistu et al., 2014; Tabari et al., 

2015; Seyoum, 2018). Most of these studies employed the non-parametric trends detection 

techniques to detect trends of meteorological variables (Gocic and Trajkovic, 2013; Tabari et al., 
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2015; Gebremedhin et al., 2016; Mahmoud and Gan, 2018a).  For example, Tekleab et al. (2013) 

applied MK and Pettitt tests to assess trends of the Upper BNB’ streamflow, temperature, and 

precipitation. This study showed a statistically significant increasing trend in surface temperature 

but no significant trends in mean seasonal precipitation or streamflow, this can be attributed to the 

limited number of meteorological gauges in the Upper BNB, which fail to capture accurate spatial 

distribution. Earlier studies also show that precipitation in the Ethiopian highlands, the Upper BNB 

and other regions significantly varies in space and that meteorological gauges are not enough 

(Bitew et al., 2010). In another study, Mengistu et al., (2014) used the least squares method to 

analyze the spatio-temporal variability and trends of the Upper BNB’ precipitation and surface 

temperature. Their study found an increasing trend in the Upper Blue Nile ‘precipitation and a 

statistically significant warming trend in the southwestern parts of the basin, whereas other studies 

reported a non-significant decreasing trends in annual precipitation in the Upper BNB based on 

MK and the Sen’s slope tests (Seleshi and Zanke, 2004; Cheung et al., 2008; Tesemma et al., 2010; 

Gebremicael et al., 2013; Tabari et al., 2015).   

On the other hand, a few studies have investigated the long-term trends of hydroclimate 

variables at the basin level (Onyutha and Willems, 2015; Onyutha, 2016a, b; Nashwan and 

Shahid). Onyutha (2016a) used nonparametric detection methods to drive the long-term variability 

of precipitation over the Nile River Riparian countries. This study concluded that the northern 

Riparian countries of the Nile River basin are significantly linked to Indian and Atlantic Oceans 

and El Niño. In a similar study, Onyutha and Willems, (2015) analyzed the spatio-temporal 

variability of annual precipitation at 37 station over the Nile River basin and reported significant 

linkages between station-based observed precipitation and El Niño, Indian and Atlantic Oceans. 

In another study, Onyutha (2016b) analyzed the changes in potential evapotranspiration (PET) 

between 1930 and 2012 in all the Nile River Riparian Countries. The author reported that seasonal 
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and annual PET in most of the Nile River Riparian Countries was generally above the long-term 

average after 1980s. In a more recent study, Nashwan and Shahid (2019) analyzed changes and 

trends in precipitation and temperature over the Nile River basin. The authors reported an 

increasing trend of 0.26–26.4 mm/decade in annual precipitation at Atbara sub-basins and other 

few locations in the Nile River basin and a decreasing of about − 76.6 mm/decade in Sobat sub-

basin. Moreover, a warming trend of 0.09–0.48 °C/decade in maximum temperatures over the Nile 

River basin and 0.17–0.50 °C/decade in minimum temperatures over majority of the Nile River 

basin. 

This study is necessary to improve our understanding of the hydrological cycle and variability 

in hydroclimate variables of the Nile River basin, giving there is generally a lack of similar studies 

at the basin level. Therefore, the objective of this study was to analyze the multidecadal variability 

in the Nile River basin hydroclimate and possible linkages to the large-scale climate patterns. To 

achieve our objectives, we analyzed the spatio-temporal variability, frequency, intensity, change 

point and trend of monthly precipitation, precipitation anomaly, temperature, temperature 

anomaly, geopotential height, relative humidity, specific humidity, actual evapotranspiration 

(AET), and wind stress data at the basin level. Given IOD has been shown to play a primary role 

on the precipitation of East Africa over inter-decadal timescales, therefore we have also 

investigated the IOD and El Niño role on NRB’s hydroclimate variability over inter-decadal and 

longer timescales. The results from this study would help us to better develop mitigation strategies 

for these riparian countries against the potential impact of climate change. 

6.2 Study area and data 

This study cover the entire area of the NRB (Figure 6.1), the NRB is situated in (31°N to 4°S, 

24°- 40°E), has a total catchment area of 3.4 million  km2, and is shared by 11 countries ( Burundi, 

Rwanda, Uganda, Kenya, Tanzania, South Sudan, Democratic Republic of Congo, Sudan, Eritrea, 
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Ethiopia, and Egypt). About 86% of NRB total area lies in Sudan, Ethiopia and Egypt. The 

northern parts of the basin including countries such as Egypt and Sudan exhibit an arid condition 

(Camberlin, 2009). The lowest average annual precipitation in the NRB is in Egypt which is almost 

15 mm//yr, while the highest amount of annual precipitation is in Ethiopia with 2292 mm/yr 

(Figure 6.2(a)). There are two wet seasons in the NRB, rainy season upstream registering 400 

mm/m from March to May and a wet season downstream with just 60 mm/m between July-

September. Temperature also varies spatially and temporally, large portions of Egypt and the 

White Nile region in Sudan have the highest annual mean surface temperatures (Tm) in the basin 

(27-31oC). On the other hand, the Ethiopian highlands and the equatorial lakes region (17- 28oC) 

with relatively lower temperature in areas near the coastal land (Figure 6.2(b)). Majority of 

irrigated cropland. Savana forest lies upstream in countries such as Ethiopia, Uganda, Burundi, 

Congo, Kenya, Rwanda, and Tanzania (Figure 6.2(c)). In these countries, rainfed agriculture in 

common, where most of the farmers depend on the rainy season to irrigate their crops. In Egypt 

and northern regions of Sudan, irrigated croplands are mainly in the Nile delta and floodplains of 

the main Nile River respectively. 
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Figure 6.1 Location map of the study area 

 

Figure 6.2 Spatial distribution of long-term average precipitation and surface temperature between 

1948 and 2017 (b), and 2017 land cover map for the Nile River basin (c) 

Historical monthly temperature, relative humidity, and specific humidity data from the year 

1900-2017 were extracted from the 20th Century Reanalysis V2 Dataset, the 20th Century 

a b c 
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Reanalysis V2 data provided by the NOAA/OAR/ESRL (https://www.esrl.noaa.gov/psd/). This 

data was filtered and developed in form of timeseries dataset. Temperature anomalies data from 

1910-2017 was derived from HadCRUT4 global temperature dataset, these datasets have been 

developed by the Climatic Research Unit (University of East Anglia) in conjunction with the 

Hadley Centre (UK Met Office).  Historical observed monthly precipitation data from 1948- 2017 

was derived from University of Delaware precipitation datasets, this dataset is created from a large 

number of climate stations from the Global Historical Climate Network. Monthly Geopotential 

height and zonal wind flow from 1900-2017 were derived from the NCEP Reanalysis Dataset. 

Digital elevation model (DEM) of 30 m resolution was obtained from the Global Elevation Model 

(GDEM) version 2 databases (http:// aster.usgs.gov).  

Monthly precipitation and temperature data in gridded form (0.5° × 0.5°) from 1948 -2017 

was obtained from the Global monthly precipitation / temperature data of the Princeton global 

forcings (Sheffield et al., 2006). These datasets are of the observational-reanalysis hybrid type 

(Sheffield et al., 2006), they are derived from a combinations of datasets which include the NCEP–

NCAR reanalysis dataset (Kalnay et al., 1996), the TRMM dataset, the CRU TS2.0, the GPCP, 

and the NASA Langley Research Center SRB products (Sheffield et al., 2006).These datasets are 

widely used in climatology studies due to their robustness for variability analyses (Hoell et al., 

2015; Zeng and Cai, 2016; Onyutha and Willems, 2017). Total atmospheric water vapor content 

was extracted from MODIS atmosphere profiles product (MOD07), and emissivity values were 

derived by averaging MODIS-bands 31 and 32. Land cover map was derived from the global land 

cover of Africa archive of the year 2008 and was updated using available Landsat images.  

 

 

https://www.esrl.noaa.gov/psd/
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6.3 Methods 

6.3.1 Spatio-temporal variability, trends and change points of NRB hydroclimate 

To monitor changes in NRB hydroclimate, precipitation, surface temperature, geopotential 

height, wind speed, meridional and zonal wind stresses, relative humidity (%), specific humidity, 

and AET were derived from remote sensing data and weather stations over the Nile river basin, as 

well as for each riparian countries of the Nile basin. We used a surface energy balance algorithm 

to model the spatio-temporal distribution of reference (ETo) and actual AET in the NRB (see 

Mahmoud and Alazba, 2016 for a detailed methods). Spatio-temporal distribution of monthly 

precipitation, temperature, wind speed, relative humidity, geopotential height, AET and specific 

humidity were analyzed to identify departure from long-term average, variability was derived in 

terms of anomalies precipitation, surface temperature, geopotential height, wind speed, meridional 

and zonal wind stresses, relative humidity (%), specific humidity, and AET. For example, 

precipitation anomalies have been calculated to find the dry and wet years in the record and used 

to assess frequency and severity of droughts (Zhai et al., 2005; Woldeamlak and Conway, 2007; 

Eiste et al., 2012; Mueller and Seneviratne, 2012). In the present study, precipitation anomalies 

were calculated from total annual precipitation compared with the long-term average precipitation 

from 1948 to 2017.  

To detect trends and change points in hydroclimate variables, we applied two non-parametric 

tests; Pettitt test and Mann–Kendall test (MK) on time-series data of precipitation, surface 

temperature, geopotential height, wind speed, meridional and zonal wind stresses, relative 

humidity (%), specific humidity, and AET. Pettitt's test is commonly used to test the degree of 

homogeneity of the hydrological data (Bitew et al., 2010; Tekleab et al. 2013; Mengistu et al., 

2014; Tabari et al., 2015; Mahmoud and Gan, 2018). While, MK non-parametric test is generally 

used to detect the trend and if a change point is detected. The Theil-Sen estimator was applied to 
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estimate the trend magnitudes of all hydroclimate variables. Data quality and length of 

hydroclimate records play an important role in trend analysis. Although, due to variability and the 

nature of climate in the NRB, full-time series trend may be non-significant as shown in previous 

studies (Seleshi and Zanke, 2004; Cheung et al., 2008; Tesemma et al., 2010; Gebremicael et al., 

2013; Tabari et al., 2015). Therefore, time-series of monthly precipitation, surface temperature, 

geopotential height, wind speed, meridional and zonal wind stresses, relative humidity (%), 

specific humidity, and AET were divided into short time periods to reveal any significant sub-

trends and short-durational climate fluctuations in the Nile basin.  

One of the main advantages of using MK trend test is its ability to detect monotonic trends in 

hydrological data and whether the trend is statistically significant or not. Trend is detected in form 

of + or – sign (increase or decrease), and therefore, the trend is less affected by the outliers (Birsan 

et al., 2005). The null hypothesis, H0, is that precipitation, surface temperature, geopotential height, 

wind speed, meridional and zonal wind stresses, relative humidity (%), specific humidity, and AET 

data come from a population with independent realizations and are identically distributed.  

6.3.2 Wavelet Analysis and wavelet coherence 

Wavelet analysis is a time-frequency analysis widely used to transform a time series of climate 

data into time and frequency domains, highlighting dominant modes of variability and frequency 

changes of the dominant oscillations of the time series. Compared to the traditional Fourier 

transform, this method is more powerful tool to analyze nonstationary series such as climate data 

(Jevrejeva et al., 2003; Maraun and Kurths, 2004). Another advantage of wavelet transformation 

over Fourier transform is its ability to search for periodicities in a series and analyzes the temporal 

behavior of the cycles present. The Morlet wavelet analysis was used to investigate the temporal 

variability, periodicities, and the cyclic behavior of precipitation, surface temperature, geopotential 

height, wind speed, meridional and zonal wind stresses, relative humidity (%), specific humidity, 
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and AET of the NRB. To evaluate the possible impacts of El Niño and IOD on the hydroclimate 

of the NRB, wavelet coherence was used to estimate the spatio-temporal correlation field between 

these hydroclimate variables and El Niño and IOD. The wavelet power spectra of each time series 

were calculated as follow: 

𝑊𝑥,Ψ(𝑠, 𝑡) = (𝑋 (𝑡) ∗ Ψ𝑠(𝑡))                                                                   (6-1) 

Where t is the time series, Ψ𝑠 is the Morlet mother wavelet at the scale s. The Morlet mother 

wavelet can be defined as follow: 

Ψ𝑠(𝜂) = 𝜋
−1

4⁄ 𝑒𝜄𝜔𝑠𝜂𝑒
−𝜂2

2
⁄                                                                       (6-2) 

where, 𝜂 and 𝜔𝑠_are time and frequency.   

In addition, wavelet coherence (WTC) was applied to measure the intensity of the common 

power between two time series, which is defined as the square of their cross-spectrum normalized 

by smoothed spectra of the two-time series. This method also calculates the cross-correlation 

between each two-time series (between 0 and 1) as a function of frequency.  To evaluate the 

possible impacts of El Niño and IOD on hydroclimate variables, cross-wavelet power and wavelet 

coherence, were used to detect the relationship between El Niño and IOD and precipitation, surface 

temperature, geopotential height, wind speed, meridional and zonal wind stresses, relative 

humidity (%), specific humidity, and AET. The WTC is presented as:  

𝑅2(𝑠, 𝑡) =
|𝑆(𝑠−1𝑊𝑥𝑦(𝑠,𝑡))|

2

𝑆(𝑠−1|𝑊𝑥(𝑠,𝑡)|
2)∗𝑆(𝑠−1|𝑊𝑦(𝑠,𝑡)|

2
)
                                                         (6-3) 

where S is a smoothing operator, x is the hydroclimate variable been analyzed and y is El Niño 

or IOD.  

6.3.3 Composite analysis and cross-correlation 

To investigate the hydroclimate variability and the spatio-temporal changes in the NRB 

riparian countries ‘climate, composite maps of precipitation, surface air temperature (0C), 

geopotential height (GPH), relative humidity (%), specific humidity, scalar wind, meridional wind, 
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zonal wind, soil moisture (kg/m2), surface runoff (mm), and potential evaporation (mm) were 

derived from data of 1985-2017 minus data of 1948-1984. The observed ENSO and Indian Ocean 

dipole (IOD) amplitude over the NRB were derived and analyzed. The Indian Ocean dipole (IOD), 

also known as the Indian “Niño”, was computed as the difference between the western pole over 

the Arabian Sea (50°E - 70°E, 10°S - 10°N) and the southeast Indian Ocean  (90°E to 110°E, 10°S 

to 0°N). ENSO and IOD amplitude were estimated as the standard deviation (SD) of the Niño3.4 

and IOD index over 30-year windows from 1920 to 2017 using the ERSST data sets. Then, 

detrended cross-correlation analysis (DCCA) was used to investigate the role of ENSO and IOD 

on the NRB’s hydroclimate variability over inter-decadal and longer timescales. Cross correlations 

between IOD and El Niño 3.4 amplitudes and NRB surface temperature, GPH, precipitation 

anomaly, relative humidity, and AET were used to analyze the ENSO and IOD Teleconnections 

on NRB hydroclimate. NRB’s hydroclimate data were computed over 30-year running periods 

from 1920 to 2017.In recent years, several studies have employed DCCA to investigate the long-

range cross-correlations between two climate variables (nonstationary time series) (Hajian and 

Movahed, 2010; Baranowski et al., 2015; Dobrica et al., 2018; Liu et al., 2018). The DCCA 

coefficients of hydroclimate variable x(i) and El Niño or IOD y(i) were calculated as follow: 

𝑋𝑘 = ∑ 𝑥𝑖
𝑘
𝑖=1  𝑎𝑛𝑑 𝑌𝑘 = ∑ 𝑦𝑖

𝑘
𝑖=1  , where k = 1, …., N.                                                    (6-4) 

First, the hydroclimate variables, El Niño, and IOD were divided into equal length 

segments (𝑁𝑛). Then, using regression models, we have defined the local trend in each segment 

�̌�𝑛,𝑠(𝑘) and �̌�𝑛,𝑠(𝑘), where 𝑠 = 1,… ,𝑁𝑛. The time series data 𝑋𝑘 𝑎𝑛𝑑 𝑌𝑘 are detrended by 

subtracting the local trends �̌�𝑛,𝑠(𝑘) and �̌�𝑛,𝑠(𝑘) from original time-series in each segment. Next, 

we calculated the detrended covariance and variance function in each segment as follow: 

𝐹𝐷𝐶𝐶𝐴
2 (𝑛) =

1

𝑛𝑁𝑛
∑  ∑ [𝑋(𝑘) − �̌�𝑛,𝑠(𝑘][𝑌(𝑘) − �̌�𝑛,𝑠(𝑘]

𝑛𝑠
𝑘=𝑛(𝑠−1)+1

𝑁𝑛 
𝑠=1                                 (6-5) 

Then, the detrended variance of the two-time series, 𝑓𝐷𝐹,   is calculated as follow: 
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𝑓
𝐷𝐹𝐴,𝑋 (𝑛)=√

1

𝑁−𝑛
∑ [1 (𝑛−1)⁄ ∑ (𝑋𝑘−�̃�𝑘,𝑖)

𝑖+𝑛
𝑘 ]𝑁−𝑛

𝑖=1

                                              (6-6) 

𝑓
𝐷𝐹𝐴,𝑌 (𝑛)=√

1

𝑁−𝑛
∑ [1 (𝑛−1)⁄ ∑ (𝑌𝑘−�̃�𝑘,𝑖)

𝑖+𝑛
𝑘 ]𝑁−𝑛

𝑖=1

                                               (6-7) 

This calculation is repeated for all segment, if the series are power-law cross-correlated, then 

𝑉𝐷𝐶𝐶𝐴 ~ 𝑛
2𝜏. The 𝜏 exponent is the long-range power-law cross correlation between two-time 

series, and is calculated through linear regression of log[𝑉𝐷𝐶𝐶𝐴(𝑛)] and log n. Finally, the DCCA 

cross correlation coefficient (𝜌) was calculated according to: 

𝜌 =
𝐹𝐷𝐶𝐶𝐴
2  (𝑛)

𝑓𝐷𝐹𝐴,𝑋 (𝑛)𝑓𝐷𝐹𝐴,𝑌 (𝑛)
                                                                           (6-8) 

The value of 𝜌 ranges from -1 to 1, a value of 𝜌 = 0  means there is no cross-correlation between 

the two-time series being analyzed.   

6.4 Results and discussion 

6.4.1 Nile River Basin hydroclimate variability and trends 

The NRB has experienced significant climate change impact in recent decades, as shown in 

the detected change point of 1976, and a statistically significant warming trend of 0.19 °C/decade 

over 1910-2017 (Figure 6.3(a)). The results also show a significant increase in the long-term 

average surface temperature anomaly from -0.1°C between 1910 and 1976 to 0.523 °C between 

1976 and 2017 (Table 6.1, Figure 6.3(a)). Mean monthly surface temperature also showed a 

statistically significant change point in 1987, and a warming trend of 0.14 oC/decade. Because 

mean monthly surface temperature increased from 28.65 oC between 1900-1987 to 29.11 oC 

between 1978 and 2017 (Table 6.1). The NRB also experienced a significant increase in daily 

maximum temperature of about 0.35 oC/decade since 1975. In case of monthly precipitation data, 

summary statistics revealed that the maximum, minimum, standard deviation, were 279.9, 27, and 

55.915 respectively. A statistically significant change point was detected in 1970 in the monthly 
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precipitation anomaly data with an overall decreasing trend of 16.2 mm/decade (Figure 6.3(b), 

Table 6.1), because monthly precipitation anomaly decreased from 55.7 mm/m between 1948 and 

1970 to -29.14 mm/m between 1970 and 2017. Summary statistics also revealed that mean monthly 

precipitation dropped from 138.68 between 1948-1970 mm/m to 130.04 mm/m between 1970-

2017 over the NRB. Overall it is concluded that temporal variability in temperature and 

precipitation worsened drying of the NRB. Warming trend also reflects higher availability of 

energy for evapotranspiration; as, evapotranspiration rate is directly proportional to surface 

temperature. 

Moreover, a statistically significant change point was detected in wind speed in 1975, and the 

mean wind speed increased from 2.7 m/s over 1948-1975 to 2.9 m/s over 1975-2017 (Figure 6.3(c), 

Table 6.1), which means a statistically significant increasing trend of 0.02 m/decade. This is 

critical as high wind speed tends to replace the saturated air from earth surface with dry air. For 

the 1948-2017 relative humidity data, there was a statistically significant change point in 1977, 

but a significant decreasing trend of 0.35% /decade after 1977 (Figure 6.3(d)). The monthly 

specific humidity data of 1948-2016 had a statistically significant change point in 1966, and an 

overall statistically significant decreasing trend of 0.15 gm/kg per decade, with the mean specific 

humidity declined from 13.34 gm/kg in 1948-1966 to 12.42 gm/kg in 1966-2017 (Figure 6.3(e)). 

This is critical as high wind speed tends to replace the saturated air from earth surface with dry air 

which cause more evapotranspiration. Similarly, monthly 1000-mb geopotential height (GPH) data 

had a statistically significant change point in 1976, with a mean GPH increasing from 88.79 m 

over 1948-1976 to 105.36 m over 1976-2016 (Figure 6.3(f)), an overall statistically significant 

increasing trend of 3.1 m/decade. As expected, higher surface temperature had resulted in higher 

GPH (Gong et al., 2007), which, as a measure of the atmospheric pressure level, means the lower 

atmosphere had become warmer.  
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In addition, from the 1950-2017 reference and actual evapotranspiration (AET) estimated for 

NRB using a surface energy balance algorithm (Figure 6.3(g)), the AET of NRB has increased 

significantly, which is also shown by other studies, that higher AET is related to higher wind speed 

and wind stress, warming and lower RH (Eslamian et al., 2011; Fischer and Knutti, 2013; Zaroug 

et al., 2014). In the present study, AET anomaly showed a statistically significant change point in 

1995 with an upward trend of 1.2 mm/decade (Figure 6.3(g), Table 6.1). Figure 6.3(g) also shows 

a significant increase in AET anomaly after 1995, the long-term average AET anomaly increased 

from -2.7 mm between 1948 and 1995 to 4.7 mm between 1995 and 2017.  

 

Table 6.1 Change point and trend analysis of hydroclimate variables over the NRB 

  
Pettitt test Mann–Kendall test   

Nile river basin  Years  K t P trend Tau Sen's slope P trend Mb Ma 

Monthly Tm  1900-2017 44607 1987 0.011 Ha 0.05 0.014 < 0.0001 + 28.65 29.11 

Daily Tmax 1900-2017 589200 1975 0.002 Ha 0.45 0.035 < 0.0001 + 36.7 37.7 

T anomaly  1910-2017 2442 1976 < 0.0001 Ha 0.56 0.019 < 0.0001 + -0.10 0.523 

Monthly precipitation  1948-2017 11873 1970 0.0362 H0 0.069 -0.12 0.006 - 138.67 130.03 

Precipitation anomaly 1948-2017 586 1970 0.0001 Ha 0.25 -1.622 0.003 - 55.75 -29.14 

Geopotential height 1948-2017 86077 1976 < 0.0001 Ha 0.394 0.31 < 0.0001 + 88.79 105.37 

Relative humidity 1948-2017 24125 1977 0.0004 Ha 0.144 -0.035 < 0.0001 - 44.3 42.13 

Specific humidity  1900-2017 47200 1966 < 0.0001 Ha 0.254 -0.015 < 0.0001 - 13.34 12.42 

Wind speed  1948-2017  56785 1975 < 0.0001 Ha 0.60 0.002 < 0.0001 + 2.7 2.9 

AET 1948-2017 1522 1995 < 0.0001 Ha 0.34 0.12 < 0.0001 + -2.72 4.8 
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Figure 6.3 Temporal variability and trend of (a) temperature anomaly, (b) precipitation anomaly, 

(c) wind speed, (d) relative humidity, (e) specific humidity, (f) geopotential height, and (g) AET 
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Figure 6.3 (continued) 

6.4.2 Spatial variability of the Nile River basin hydroclimate under climate warming 

The analysis of spatial distribution of precipitation in the NRB revealed a high variability of 

precipitation amounts between the riparian of the NRB. On average, annual precipitation in the 

NRB is approximately 700 mm. However, this amount differs significantly from one country to 

another, with the lowest precipitation being in Egypt and very high in Ethiopia and medium to 

high in the equatorial lake’s region “Burundi, Congo, Kenya, Rwanda, Tanzania and Uganda”. 

Spatially, there is a gradual decrease and high variability of precipitation from upstream “Ethiopia” 

which have an annual average of 803-1581 mm/yr in the rainy season from mid-June to September 

to downstream “Egypt” with an annual precipitation range from 0-112 mm/yr (Figure 6.2(a)). 

Some downstream countries like Egypt and Sudan is mostly desert where drought is common. 

Despite high precipitation in central area of Sudan, recurrent droughts events were recorded in 

recent years.  

Composite analysis of NRB’s hydroclimate data between 1948 and 2017 also shows significant 

changes across the entire NRB (Figures 6.4 and 6.5). For instance, the composite mean map of 

precipitation shows a drop in daily precipitation in the NRB except for Uganda which had an 

increase of 1.5-3.5 mm/day between 1985 and 2017 (Figures 6.4(a)). On the other hand, specific 
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humidity decreased in Sudan, northwestern regions of Ethiopia (in lowland). Uganda had a 

different pattern where specific humidity increased by 2-3 g/kg between 1985 and 2017 (Figures 

6.4(b)). The increase in scalar wind was maximum in Uganda, Sudan, and northwestern regions of 

Ethiopia with an average increase of 0.2-0.8 m2/sec2 between 1985 and 2017 (Figures 6.4(c)).  

Meridional and Zonal wind also showed similar increase in these regions (Figures 6.4(d-e)).  

The composite mean of geopotential height shows 5-15 m increase in the NRB between 1985 

and 2017 compared to the mean between 1948 and 1984 (Figures 6.4(f)). The highest increase was 

in Egypt and Sudan (downstream) with an average increase of 3-5 m/decade. Upstream riparian of 

the basin such as Ethiopia had an increase of 1.5-3.75 m/decade. These results revealed that 

geopotential height become thicker in the last few decades as the temperature increases. The 

composite mean of surface temperature also shows an increase of 0.16-0.4 Co/decade over the 

NRB, with highest increase observed in Sudan and Egypt (Figures 6.5(a)). This finding agrees well 

with the earlier results from trend analysis. Because of climate warming, relative humidity has 

decreased by 1-5%/decade after 1985, with the largest decrease in Ethiopia, Uganda, and Sudan 

where warming has also been the worst (Figures 6.5(b)). The surface soil moisture shows high 

spatial variabilities in NRB but a decreasing trend of 16-45 mm/decade between 1985 and 2017 

(Figures 6.5(c)).  A slight decrease in surface runoff can also be seen in Ethiopia, Uganda, and 

Sudan, while there is no change over Egypt (Figures 6.5(d)). Significant evaporation losses 

recently observed in water bodies of many riparian countries of NRB between 1985 and 2017 

(Figures 6.5(e)). The aforementioned changes related to warming had resulted in decreased daily 

precipitation, lower specific humidity in Sudan, northwestern regions of Ethiopia (in lowland), 

lower annual surface runoff over Ethiopia, Uganda, and Sudan, and higher potential 

evapotranspiration over Ethiopia, Uganda, and Sudan (Figures 6.5(e)). 
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Figure 6.4 Composite maps of (a) Precipitation, (b) Specific humidity, (c) Scalar wind, (d) Meridional 

wind, (e) Zonal wind, (f) GPH for 1985 to 2017 minus 1948 to 1984 
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Figure 6.5 Composite maps of (a) air temperature (0C), (b) relative humidity (%), (c) soil moisture 

(kg/m2), (d) surface runoff (mm), and (e) potential evaporation (mm). 
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6.4.3 Influence of Indian Ocean dipole (IOD) and ENSO on NRB’s hydroclimate 

To evaluate the possible impacts of El Nino 3.4 on hydroclimate variables in the NRB, 

wavelet coherence and detrended cross-correlation function, was used to detect the relationship 

between hydroclimate variables and El Niño 3.4 and IOD. The wavelet coherence plots (WTC) 

between El Nino 3.4, IOD, and precipitation, surface temperature, geopotential height, wind speed, 

meridional and zonal wind stresses, relative humidity (%), specific humidity, and AET of the NRB 

are shown in Figures 6.6 and 6.7. The arrows show the phase difference: right-pointing arrows 

indicates that the two-time series are in phase signals, while left-pointing arrows represents anti-

phase signals and mean that one time series leads (lags) the other by 90o. Wavelet coherence 

analysis showed that the hydroclimate of NRB is strongly correlated with El Niño (based on 

Niño3.4) (Figure 6.6). The influence of El Nino 3.4 on precipitation can be seen in wavelet 

coherence plot (Figure 6.6(a)). Precipitation exhibits coherent spatial patterns with respect to El 

Niño, as the wavelet coherence spectra revealed a statistically significant coherency at 2-4 yr band 

in 1960s and 1970s and indicates anti-phase relationships between precipitation and El Nino 3.4 

after 1970s. 

The coherence spectrum plots between El Nino 3.4 and surface temperature show statistically 

significant power at 2–4-yr bands in 1920 to 1940, 1950 to 1970, and 1975 to 2012 over NRB 

(Figure 6.6(b)). After 1970s, there was a consistently strong coherence at 4–8-yr bands between 

El Nino 3.4 and surface temperature. This observed strong in-phase relationship between El Nino 

3.4 and surface temperature after 1970 indicates that El Nino 3.4 leads the warming trend in the 

NRB.  Similarly, the power of the wavelet coherence between El Nino 3.4 and geopotential height 

(Figure 6.6(c)) was consistently strong at 4–8-yr band between 1975 and 2012, which is expected 

because of the close relationship between geopotential height and air temperature. In addition, 

there was a strong 1–2-yr wavelet coherence in the 1980s and the 1990s between El Nino 3.4 and 
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relative humidity (anti-phase) (Figure 6.6(d)), and a stronger 4–8yr wavelet coherence after the 

2000s.  
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Figure 6.6 Wavelet coherence between El Nino 3.4 and (a) precipitation, (b) temperature, (c) 

relative humidity, (d) geopotential height, (e) meridional wind stress, (f) zonal wind stresses, (g) 

AET 

Given IOD has been shown to play a primary role on the precipitation of East Africa over 

inter-decadal timescales (Tierney at al., 2013), we have also investigated the teleconnection of the 

dipole mode to NRB’s climate, to ENSO and to the Indian Ocean, over a wide range of time scales. 

Beside ENSO, our results also show that IOD plays a crucial role on NRB’s hydroclimate 

variability over inter-decadal and longer timescales. The wavelet coherence spectrum plots 

between AET and El Niño and IOD show in-phase, statistically significant coherent relationship 

at 2-4 and 8-14-years band after 1970s (Figures 6.6(g), 7.7(g)), which peaked at the 14–16-year 

time scale after 2000s. On the other hand, the wavelet coherence between IOD and AET show that 

IOD mainly lead AET after 2000s. The higher AET after 1970s can be partly attributed to stronger 

El Niño amplitudes, as shown by strong wavelet coherence between zonal and meridional wind 

stresses and AET at 1-2 years bands (Figure 6.6(e, f)). Their recurrent in-phase and anti-phase 

relationships at 1-2 years bands demonstrate the effect of positive (negative) wind stress anomalies 

when El Niño was active. while IOD, meridional and zonal wind stresses showed in-phase 

coherence after 2000s (Figure 6.7(e, f)). It seems both increasing meridional wind stress anomalies 

and stronger El Niño episodes have contributed to changes in the heat content of NRB. 
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Figure 6.7 Wavelet coherence between IOD and (a) surface temperature, (b) GPH, (c) 

precipitation, (d) relative humidity, (e) meridional wind stress, (f) zonal wind stresses, (g) AET 

The wavelet coherence plot between IOD and surface temperature (Ts) shows statistically 

significant, interannual (1-4yr) in-phase and anti-phase relationships over 1905 and 2018, 

revealing the interannual response of Ts and GPH to the variability of IOD in the last 100 years. 

At inter-decadal time scale, IOD and Ts show only significant, in-phase coherence at 8–16, 16-32, 

32-64-year bands over 1975-2018 (Figure 6.7(a)). On the other hand, IOD and GPH were 

continuously in phase with significant coherent spatial pattern at 2-4- and 4-8-years band after 

1970s (Figure 6.7(b)). The wavelet coherence spectrum plot between precipitation and IOD shows 

in phase relationship with significant coherent spatial pattern at 2-4- and 4-8-year band after 1990, 

and an anti-phase relationship at 32-year band between 1948 and 2018 (Figure 6.7(c)). This strong 

anti-phase relationship shows that IOD primarily influenced NRB’s precipitation at inter-decadal 

timescales. There is a strong in-phase relationship between IOD and relative humidity at 2-4 yr 

band over 1998-2008, and at 4-8 and 8-16-year bands over 1960-1980, and an anti-phase 

relationship in the 32-64-year band (Figure 6.7(d)).  

Figure 6.8(a-e) shows that the hydroclimate of NRB is strongly teleconnected to El Niño and 

IOD, especially to El Niño, with high positive or negative correlations between El Niño 3.4, 

surface temperature Ts (𝜌 = 0.97), GPH (𝜌 =  0.81), relative humidity (𝜌 = -0.97), precipitation ( 

𝜌 = -0.7). There is also a significant positive correlation between AET and El Niño 3.4 (𝜌 =0.93) 

in contrast to negative correlation between AET and IOD (𝜌 = -0.47) (Fig 8e), which shows that 

El Niño affect the AET of NRB. The correlation of these hydroclimate variables with IOD are 

generally lower than with El Niño’s (Figure 6.8(a-e)). However, IOD still plays an important role 

on the hydroclimate variability in the NRB, such as its effect on NRB’s surface temperature and 

precipitation anomalies under neutral ENSO conditions. The strong negative correlation of IOD 
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with precipitation (𝜌 = -0.37) suggest that besides El Niño, IOD has also impacted the precipitation 

of the NRB, as shown by Tierney at al. (2013) the mechanism that teleconnects East African 

precipitation to ENSO and IOD.   
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Figure 6.8 ENSO and IOD Teleconnections on NRB hydroclimate.  IOD and El Niño 3.4 amplitudes cross- 

correlations with NRB surface temperature (a), GPH (b), precipitation anomaly (c), relative humidity (d), 

AET (e). Surface temperature anomaly, precipitation anomaly, relative humidity, and AET are computed 

over 30-year running periods from 1920 to 2017, El Niño 3.4 and IOD amplitude are the SD of El Niño 3.4 

and IOD indexes over 30-year windows from 1920 to 2017 using the ERSST data sets. The numbers in the 

top right are the cross-correlation coefficient between hydrologic variables and IOD amplitude (brown 

colour) and El Niño 3.4 amplitude (red colour) at the 5% level. In a and c, black and yellow points represent 

neutral ENSO conditions and strong positive IOD in 1961, green point is the response on surface 

temperature “increase” and decrease in precipitation anomalies “decrease” in the same year. 

6.5 Conclusion 

The present study aimed at improving our understanding of the hydrological cycle and 

variability in hydroclimate variables of the Nile River basin. Change point detection, trend 

analysis, wavelet coherence and detrended cross-correlation function were used to analyze the 

variability in the Nile River basin hydroclimate at a wide range of time scales and possible linkages 

to the large-scale climate patterns. First, we analyzed the spatio-temporal variability, frequency, 

intensity, change point and trend of monthly precipitation, precipitation anomaly, temperature, 

temperature anomaly, geopotential height, relative humidity, specific humidity, actual 

evapotranspiration (AET), and wind stress data at the basin level. Next, we also investigated the 

IOD and El Niño role on NRB’s hydroclimate variability over inter-decadal and longer timescales. 

Our analysis shows that the NRB has experienced significant climate change impact in recent 

decades, as shown in the detected change point of 1976, and a statistically significant warming 

trend of 0.19 °C/decade over 1910-2017. A statistically significant change point was detected in 

1970 in the monthly precipitation anomaly data with an overall decreasing trend of 16.2 

mm/decade. Moreover, a statistically significant change point was detected in wind speed in 1975, 
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with a statistically significant increasing trend of 0.02 m/decade. This is critical as high wind speed 

tends to replace the saturated air from earth surface with dry air.  

For the 1948-2017 relative humidity data, there was a statistically significant change point in 

1977, and a significant decreasing trend of 0.35% /decade after 1977. Similarly, monthly 1000-mb 

geopotential height (GPH) data had a statistically significant change point in 1976, with an overall 

statistically significant increasing trend of 3.1 m/decade, which, as a measure of the atmospheric 

pressure level, means the lower atmosphere had become warmer. The monthly specific humidity 

data of 1948-2016 had a statistically significant change point in 1966, and an overall statistically 

significant decreasing trend of 0.15 gm/kg per decade. The AET anomaly of the NRB has increased 

significantly, with a statistically significant change point in 1995 with an upward trend of 1.2 

mm/decade. This can be attributed to a higher wind speed and wind stress, warming and lower 

RH.  

Composite analysis of NRB’s hydroclimate data between 1948 and 2017 also shows 

significant changes across the entire NRB. Beside ENSO, our results also show that IOD plays a 

crucial role on NRB’s hydroclimate variability over inter-decadal and longer timescales. The 

wavelet coherence spectrum plots between AET and El Niño and IOD show in-phase, statistically 

significant coherent relationship at 2-4 and 8-14-years band after 1970s (Figs 6g, 7g), which 

peaked at the 14–16-year time scale after 2000s. On the other hand, the wavelet coherence between 

IOD and AET show that IOD mainly lead AET after 2000s. The higher AET after 1970s can be 

partly attributed to stronger El Niño amplitudes, as shown by strong wavelet coherence between 

zonal and meridional wind stresses and AET at 1-2 years bands. Their recurrent in-phase and anti-

phase relationships at 1-2 years bands demonstrate the effect of positive (negative) wind stress 

anomalies when El Niño was active. while IOD, meridional and zonal wind stresses showed in-

phase coherence after 2000s. It seems both increasing meridional wind stress anomalies and 
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stronger El Niño episodes have contributed to changes in the heat content of NRB. A detailed cross 

correlation (ρ) analysis shows that the hydroclimate of NRB is strongly teleconnected to El Niño 

and IOD, especially to El Niño, with positive or negative correlations between El Niño 3.4, surface 

temperature (Ts) (ρ =  0.97), GPH (ρ =  0.81), relative humidity (ρ = -0.97) and precipitation (ρ = 

-0.7). The correlation of these climate variables with IOD are generally lower than with El Niño. 

However, IOD still plays an important role on the hydroclimate variability in the NRB, such as its 

effect on NRB’s surface temperature and precipitation anomalies under neutral ENSO conditions, 

The results from this study would help us to better develop mitigation strategies for these riparian 

countries against the potential impact of climate change. 
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Chapter 7 Worsening Drought of Nile River Basin by Atmospheric Circulation Shift, 

Stronger ENSO and Indian Ocean Dipole 

7.1 Introduction  

Since the beginning of ancient civilizations in Africa, the Nile River has been the major source 

of water supply to its eleven riparian countries.  However, in recent years, recurring droughts and 

increasing population have led to rising tension between competing users for water. There is a 

need to better understand changes in the hydrological cycle of the Nile River Basin (NRB). Among 

various causes of droughts identified in Africa (Giannini et al., 2003; Zeng, 2003; Shanahan et al., 

2009; Williams and Funk, 2011) are the decline in precipitation related to warming caused by 

rising concentration of greenhouse gases (Ramanathan et al., 2001; Williams and Funk, 2011).   

Intervals of severe droughts in NRB lasting for periods ranging from decades to centuries are 

linked to variations in Atlantic temperatures (Shanahan et al., 2009). Studies show that 

precipitation in the Blue Nile basin (BNB) (Ramanathan et al., 2001; Seleshi et al., 2006; Nyeko-

Ogiramoi et al., 2013; Onyutha et al., 2016) with high spatial and temporal variabilities is affected 

by El Niño Southern Oscillation (ENSO) such that positive anomalies (wet years) tend to occur 

during the negative phase of ENSO  (Gissila et al., 2004; Segele et al., 2009; Abtew et al., 2009), 

while negative anomalies (dry years) during the positive phase of ENSO, and the timing of ENSO 

events. Conversely, BNB’s precipitation and flow tend to be high during La Nina years but low 

during El Niño years (Cai et al., 2015; Kim et al., 2014), and extreme droughts correspond to 

strong El Niño events. Long-term variations of the precipitation of NRB is also strongly controlled 

by the African monsoon (Zhao et al., 2012). Subsequently, a relevant question to the observed 

drought variability of NRB is whether droughts of NRB are primarily caused by precipitation 
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anomalies attributed to ENSO, or has other factors also contributed to its drought severity, such as 

the warming trend of Africa (Serdeczny et al., 2016), increasing frequency of extreme El Niño 

events under climate warming (Cai et al., 2014; Kim et al., 2014), and changes in atmospheric 

circulations (Siam et al., 2013). 

The flow of NRB comes from two sources, the Blue Nile and the White Nile which join at 

Khartoum -the capital city of Sudan. The BNB occupies about 11% of the NRB but it contributes 

about 60% of the Nile River flow (Serdeczny et al., 2016). With a total catchment area of 3.1 

million km2, the NRB is shared by eleven countries, namely, Burundi, Rwanda, Uganda, Kenya, 

Tanzania, South Sudan, Democratic Republic of Congo, Sudan, Eritrea, Ethiopia, and Egypt. 

About 86% of NRB’s area lies in Sudan, Ethiopia and Egypt. Despite of its recurrent occurrences, 

we have yet to explain droughts of NRB satisfactorily because most past drought studies mainly 

focus on precipitation anomalies, soil moisture, and vegetation indices of the BNB (Gissila et al., 

2004; Seleshi et al., 2006; Nyeko-Ogiramoi et al., 2013; Tabari et al., 2015).  To gain a 

comprehensive perspective on the potential impact of climate change to droughts of NRB, we 

conducted detailed analysis, sensitivities of its meteorological, agricultural, and hydrological 

droughts, and factors contributing to such droughts.  We have also investigated the variability of 

the Nile flow data over 1900-2012 in three gaging stations, and implications of flow variability to 

the severity and intensity of hydrological droughts in each riparian country of the NRB.  The results 

from this study would help us to develop mitigation strategies for these riparian countries against 

the potential impact of future droughts.  
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7.2 Methods 

7.2.1 Description of datasets used in this study  

• Monthly mean temperature (tm), relative humidity, and specific humidity data from the year 1900-

2016 were extracted from the 20th Century Reanalysis V2 Dataset, the 20th Century Reanalysis 

V2 data provided by the NOAA/OAR/ESRL (https://www.esrl.noaa.gov/psd/). This data was 

filtered and developed in form of timeseries dataset.  

• Temperature anomalies data from 1910-2017was derived from HadCRUT4 global temperature 

dataset, these datasets have been developed by the Climatic Research Unit (University of East 

Anglia) in conjunction with the Hadley Centre (UK Met Office).   

• Monthly Precipitation time series data from 1948- 2016 was derived from University of Delaware 

precipitation datasets, this dataset is created from a large number of climate stations from the Global 

Historical Climate Network.  

• Monthly Geopotential height, monthly zonal, and meridional wind speed and zonal wind flow from 

1948-2017 were drawn from the National Centers for Environmental Prediction– National Center 

for Atmospheric Research (NCEP– NCAR) reanalysis 1 (NCEP-R1) and the 40-yr European 

Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40).  

• Land cover map was derived from the global land cover of Africa archive of the year 2008 and was 

updated using available Landsat images. (http://www.africover.org./index.htm) 

• Digital elevation model (DEM) of 30 m resolution was obtained from the Global Elevation Model 

(GDEM) version 2 databases (http:// aster.usgs.gov).  

• Long term observed monthly Nile River flow data were collected from three stations, the monthly 

flows at Dongola station-Sudan, Aswan dam station (1900-1984), and the Blue Nile station in 

Khartoum from 1900 to 1984 were extracted from the Global River Discharge Database (RivDIS 

https://www.esrl.noaa.gov/psd/
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v1.1), in addition we obtained the monthly flows at the Blue Nile station from recorded 

measurements between 1984-2010. 

• Monthly precipitation and temperature data in gridded form (0.5° × 0.5°) from 1948 -2010 was 

obtained from the Global monthly precipitation / temperature data of the Princeton global forcings 

from the link   

http://hydrology.princeton.edu.login.ezproxy.library.ualberta.ca/data/pgf/0.5deg/monthly/. 

These datasets are of the observational-reanalysis hybrid type, they are derived from a 

combinations of datasets which include the NCEP–NCAR reanalysis dataset (Kalnay et al., 1996), 

the TRMM dataset, the CRU TS2.0, the GPCP, and the NASA Langley Research Center SRB 

products (Sheffield et al., 2006).These datasets are widely used in climatology studies due to their 

robustness for variability analyses (Hoell et al., 2015; Zeng and Cai, 2016; Onyutha and Willems, 

2017). 

• Total atmospheric water vapor content was extracted from MODIS atmosphere profiles product 

(MOD07) (Borbas et al., 2016), and emissivity values were derived by averaging MODIS-bands 

31 and 32.   

• Area-Averaged of Ground water storage daily 0.25 deg data [GLDAS Model 

GLDAS_CLSM025_D v2.0] were derived from GLADS-CLSM025 between 1948-2014 and the 

Gravity Recovery and Climate Experiment (GRACE) between 2003 and 2017. NRB’s soil moisture 

data were derived from ERA-Interim, FLDAS and GLADS dataset datasets. 

• Warm spell duration (WSD), the annual number of days contributing to events where 6 or more 

consecutive days experience a daily maximum temperature TX > 90th percentile were extracted 

from the HadEX2 observational data set. 

• CMIP5 models. We analysed the historical runs over the period 1905-2017 and RCP2.6, RCP4.5, 

and RCP8.5 experiments over the period 2017-2100 from 34 global climate models (GCMs) of 

CMIP5. The models included ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, CSIRO-MK3-6-

0, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-R, HadGEM2-CC, 

http://hydrology.princeton.edu.login.ezproxy.library.ualberta.ca/data/pgf/0.5deg/monthly/
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HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC5, MIROC-ESM, 

MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M and NorESM1-ME.  

7.2.2 Change points and trends  

To identify main drivers to meteorological droughts of NRB, we first did a detailed analysis 

of monthly precipitation, precipitation anomaly, temperature, temperature anomaly, geopotential 

height, relative humidity, specific humidity, actual evapotranspiration, and zonal and meridional 

wind stresses data of the NRB; and flow, soil moisture content (SMC), and groundwater storage 

(GWS) data in relation to its agricultural and hydrological droughts. Change detection techniques 

and trend analysis were employed to detect abrupt changes and trends in these meteorological 

variables 

7.2.3 Spatiotemporal variability of reference and actual evapotranspiration 

We used surface energy balance algorithm to model the spatiotemporal distribution of 

reference (ETo) and actual evapotranspiration (AET) in the NRB, variability in AET was measured 

in form of anomalies in annual AET. Food and Agriculture Organization (FAO) method (Monteith, 

1965) was used to model reference evapotranspiration on a grid-by-grid basis using Eq. (7.1). The 

data included elevation, total monthly precipitation, maximum and minimum air temperature, 

relative humidity, wind speed at 2m height.  
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Where,    

Rn= net radiation at the crop surface (MJ/m2/day), G = soil heat flux density (MJ/m2/day), T = 

mean daily air temperature at 2 m height (°C), u2 = wind speed at 2 m height (m/s), es = saturation 

vapor pressure (kPa), ea = actual vapor pressure (kPa),  = slope vapor pressure curve (kPa/°C),  

= psychrometric constant (kPa/°C), es- ea = saturation vapor pressure deficit (kPa) 
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Modelling AET was based on surface energy balance algorithm (SEBAL). First, using the input 

data, the net solar radiation (Rn), NDVI, albedo, roughness length, and soil heat flux (G) were 

calculated in ArcGIS 10.1. ESRI’s ArcGIS Solar Analyst tool according to Fu and Rich (1999).   

Latent heat flux  insET ( W m-2) which represents the energy amount used for the surface evaporation and 

plant transpiration processes was then estimated based on equation 7.2.  

HGRET nins −−=                                                                                         (7-2) 

Where Rn (W m-2) is the net radiation, G (W m-2) is the soil heat flux at the surface, H (W m-2) is 

the sensible heat. Rn is computed from downward and upward shortwave and long-wave radiation 

based on eq 3.  


−−−−−= RlRlRlRsRn o )1()1(                                        (7-3) 

Where   is the surface albedo obtained from MODIS albedos products, these products were 

developed based on atmospherically corrected, cloud-cleared reflectance observations from the 

MODIS sensors on NASA’s Aqua and Terra satellites.  


Rs is the incoming shortwave radiation calculated by the elevation- based method (Ruiz‐Arias et 

al., 2009) as follow using the following formula swdCOSRs  =


1367   

where, COS  is the cosine of the solar incidence angle, d is the inverse squared relative earth-sun 

distance, and sw is the atmospheric transmissivity. The atmospheric transmissivity values were 

determined based on clear sky and relatively dry conditions obtained using the following elevation-

based relationship, 510275.0 −+= Zsw  where Z is the elevation above sea level (m).  While, 

the incoming longwave radiance 
Rl and the outgoing longwave radiation 

Rl  were calculated 

based on the Stefan–Boltzmann equation and MODIS-based surface temperature (Ts) and (Ta) as 

input, i.e. 
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4
so TRl =


                                                               (7-4) 

 409.0)ln(85.0 asw TRl −=                                         (7-5)    

where  is the Stefan Boltzmann constant (5.67 ×10-8 W m-2 K-2), o  is the broad-band surface 

emissivity computed using an empirical equation from NDVI and the leaf area index (LAI) 

assuming that NDVI> 0 as described in the SEBAL manual. Soil heat flux were then modeled 

based on the relationship developed by Bastiaanssen (1995): 
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The last component of the energy balance model was to calculate the sensible heat flux from the 

equation of heat transport:  
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Where   is the air density (kg m-3), pc  is the specific heat of air (1004 J kg-1 k-1), ∆𝑇 is the near 

surface temperature difference (K), and ahr   is the aerodynamic resistance to heat transport (s/m), 

z1 is a height just above the zero displacement distance height of the plant canopy set to 0.1 m for 

each pixel, and z2 is the reference height just above the plant canopy set to 2 m for each pixel. u* 

is the friction velocity (m/s), and k is the von Karman constant (0.4).  
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Based on known values of the land surface friction (Zm) and NDVI we calculated Zm for each pixel 

by a regression equation according to the pixel NDVI value following the procedure of Wang et 

al. (2005) Finally, we computed the instantaneous 
insET  for each pixel by applying Eq. (10). Then, 

the evaporative fraction (EF) which is the ratio of instantaneous 
insET  to the reference ET from 

Penman—Monteith method.  

ETo
ETinst=EF                                                                                                     (7-11) 

ETsebal = EF × ETo                                                                                     (7-12) 

We then calculated monthly and annual AET after determining the cumulative ETo and the ratio, 

(Km), of the cumulative reference evapotranspiration ET to the average potential ET over the 

period. The monthly ET, (AETm), was then computed as follows: 
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AET anomalies were calculated from total annual AET compared with the long-term average 

AET from 2003 to 2016 to find the departure in AET and the impact of climate change in AET 

variability.  

7.2.4 Meteorological drought variability and trend using standardized precipitation index 

The Standardized Precipitation Index (SPI) is a widely used index to characterize 

meteorological drought due to its capability of detecting drought at multiple time scales (Chen et 

al., 2009; Méndez and Magaña, 2010). Therefore, we used SPI to identify meteorological drought 

frequency and intensity between 1950-2016, trend and change-point were also considered based 

on Pettit’s test and Mann kernel test. SPI computation was made based on the method proposed 

by McKee et al. (1993) and Edwards and McKee (1997).  This computation was made to drive SPI 

at different scale from 1-month SPI, 3-month SPI, 6-month SPI and 12-month SPI. Information’s 



205 
 

obtained from SPI is widely used for real time monitoring or retrospective analysis of droughts in 

different studies and is considered as direct effect of climate change in our world (Sheffield et al., 

2006). For instance, the 1-month SPI reflects short-term drought and is closely related to soil 

moisture; the 3-month SPI provide conditions of seasonal drought due to variability in 

precipitation; 6- 9-month SPI reflects medium to long term trends in precipitation. Table 7.1 shows 

the category of drought severity according to the U.S. Drought Monitor (USDM), with their 

corresponding SPI values.  

Table 7.1 SPI drought severity categories 

SPI Category 

2 or more Extremely wet  

1.5 to 1.99 Severely wet  

1 to 1.49 Moderately wet  

0.99 to 0 Mild wet 

0 to -0.99 Mild drought 

-1 to -1.49 Moderate drought 

-1.5 to -1.99 Severe drought 

-2 or less Extreme drought 

 

7.2.5 Agricultural droughts assessment 

To identify droughts at seasonal/shorter time scales, which is the case in agricultural drought. 

We applied vegetation detection technique based on NDVI over the NRB, variability was 

measured based on the change detection to measure the response of precipitation variability and 

warming in vegetation cover. Varies agricultural drought studies in the literature are NDVI base 

(Rojas et al., 2011; Rhee et al., 2010). In this study, NDVI data for the year 2002 to 2016 was 

extracted from the U.S. Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) Center "eMODIS" products. These products are acquired by the National Aeronautics and 

Space Administration’s (NASA) Earth Observing System (EOS) at 250-meter spatial resolution. 
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The theory behind the popularity of NDVI in agricultural drought studies comes from its 

dependency on the near infrared reflectance (NIR) from vegetation cover and the visible-red 

reflectance (RED). These two reflectance components measure the density of chlorophyll 

contained in vegetative cover. Where, high density of chlorophyll represents enough soil moisture 

and suitable weather conditions to grow healthy vegetation cover “green” and therefore the leaf 

pigments reflect nearer-more infrared and that give high NDVI values. On the other hand, 

absence/poor vegetation cover due to less soil moisture or extreme change on suitable weather 

conditions reflects less near-infrared and led to a low NDVI values. Calculation procedures is as 

follow: NDVI = (NIR - RED) / (NIR + RED). Detection model was developed in ArcGIS model 

builder to capture the change in NDVI through time and identify areas with agricultural droughts. 

Results were later related to temperature and precipitation at the same period.  

7.2.6 Hydrological droughts severity and drivers   

The 1912-2012 Nile flow data of three gaging stations (upstream-downstream) was analyzed 

to estimate the variability of flow anomaly and departure from the long-term mean, the trend and 

change points over the past 100 years. To further understand the implications of flow variability 

and the hydrological response to meteorological drought in the NRB, we considered the Palmer 

hydrological drought index (PDSI), soil moisture content and groundwater storage. The Nile River 

flow and the main drivers for recurrent drought events in the NRB vary from one country to 

another, so we divided the NRB into sub-basins based on the riparian countries and investigated 

hydrological droughts severity and intensity in each sub-basin. The Self-calibrated PDSI with 

Penman-Monteith evapotranspiration for the year of 1951–2013 was obtained from Climate 

Analysis Section of the National Center for Atmospheric Research and was used for trend and 

change point analysis.  The self-calibrated PDSI (scPDSI) is recommended over the original PDSI 
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(Dai, 2011) based on historical data. PDSI is widely used to characterize drought severity in varies 

studeis and to assess soil moisture status (Alley, 1984; Briffa et al., 1994).  

The computation of PDSI is based on temperature and precipitation timeseries to calculate 

water supply and demand, correlated with observed soil moisture, water storage variations, and is 

able to successfully reflects long-term drought status. Pettitt test was applied in each sub-basin to 

find the departure and change points in precipitation timeseries and temperature and the response 

in hydrological drought in form of PDSI index, soil moisture and groundwater storage. Mann–

Kendall test was also used to find long term trend in hydrological droughts and warming effect on 

surface aridity and changes on seasonal to longer time scales in each sub-basin to confirm the 

obtained results from the main basin (NRB) and find drought drivers in the region. As each sub-

basin represents different climate conditions and have different characteristics, with Ethiopia being 

the richest in water budget despite recurrent drought in most of its land. Egypt in the other hand is 

the worst case where most of its water comes from the Nile River which is completely dependent 

on the what is released from Ethiopia, so precipitation variability in Ethiopia affect all the riparian 

countries in the NRB.  That mean harmful effects of climate change in our world does not affect a 

single region but spread to surroundings and so on. So, drought drivers and weather pattern in one 

sub-basin become the drivers in other sub-basins.  

7.2.7 Wavelet Analysis and wavelet coherence  

The Morlet wavelet analysis was used to investigate the temporal variability, periodicities, 

and the cyclic behavior of precipitation, temperature, relative humidity, geopotential height, 

specific humidity, wind stresses, AET , SMC, GWS, El Niño, IOD, SPI, NDVI, sc-PDSI, Blue 

Nile flow, Dongola station flow, and Aswan station flow of the NRB. To evaluate the possible 

impacts of El Niño and IOD on droughts of NRB, wavelet coherence was used to estimate the 
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spatio-temporal correlation field between climate variables, drought indexes, Niño3.4, IOD, and 

the effect of wind stresses on the actual evapotranspiration. 

7.2.8 Composite Analysis and Future climate change  

Composite analysis of the NRB’s hydroclimate data between 1948 and 2017 and sc-PDSI, 

monthly temperature, temperature anomaly, monthly precipitation and precipitation anomaly were 

analyzed for each riparian country of NRB, to relate climate warming to trend and change points 

in hydrologic droughts of these countries. Furthermore, composite analysis on geopotential height, 

stream function and wind speed were done to investigate changes in regional atmospheric 

circulation under El Niño and La Niña episodes.  Lastly, based on RCP scenarios of 34 GCMs of 

CMIP528, future changes to the annual precipitation, temperature, PET, SMC, relative humidity, 

El Niño 3.4 index, and IOD of NRB until 2100, and their impact to hydrological droughts of NRB 

were projected.  

For the March–April–May (MAM), June–July–August (JJA), September–October– 

November (SON) and December–January–February (DJF) seasons of 1950–2017, geopotential 

height and wind speed composites were computed as the ratio of mean seasonal geopotential 

height and wind speed in anomalous (El Niño) years relative to the long term mean seasonal 

geopotential height and wind speed. To emphasize the effect of El Niño on seasonal 

geopotential height and wind speed, years with strong El Niño activity (1958, 1982, 1983, 1987, 

1992 and 1997, 2005) were only considered in the composite analysis. Finally, we aimed to 

predict future warming trend, precipitation, potential evapotranspiration, soil moisture content, 

relative humidity, sc-PDSI and El Niño 3.4 indix under three climate change scenarios in 

addition to their effect on hydrological droughts of the basin.  

Information obtained from such projection will be very helpful for drought analysis in the 

NRB as future climate change in the NRB will shape the life of millions of people and could 
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lead to war and conflicts for resources. Finally, change detection techniques were applied in 

predicted warming trend, precipitation, potential evapotranspiration, soil moisture content, 

relative humidity, sc-PDSI and El Niño 3.4 indix, to find future severity of hydrological drought 

in the NRB. For instance, difference between current annual precipitation and predicted annual 

precipitation in 2050 and 2070 could provide strong indication of continuous variability in 

precipitation. 

7.2.9 Teleconnections to Indian Ocean dipole (IOD) and ENSO 

The observed ENSO and Indian Ocean dipole (IOD) amplitude, and zonal and meridional 

winds stresses over the NRB were derived and analyzed. ENSO and IOD amplitude were estimated 

as the standard deviation (SD) of the Niño3.4 and IOD index over 20-, 30-, 40- and 50-year 

windows from 1950 to 2017 using the ERSST data sets. Zonal and meridional wind stresses 

amplitude (10−1 N m−2) were calculated as the SD of zonal and meridional winds stresses over 20-

, 30-, 40- and 50-year windows from 1950 to 2017, using NCEP/NCAR data sets from 1950–2017. 

Then, composite analysis, cross and spatial correlation and wavelet coherence analysis were used 

to investigate the role of ENSO and IOD on the NRB’s hydroclimate variability and drought 

severity over inter-decadal and longer timescales. Field correlations between IOD and El Niño 3.4 

amplitudes and NRB surface temperature, GPH, precipitation anomaly, relative humidity, SPI, and 

sc-PDSI, were used to analyze the ENSO and IOD Teleconnections on NRB hydroclimate and 

droughts. NRB’s hydroclimate and droughts indexes data were computed over 30-year running 

periods from 1920 to 2017, El Niño 3.4 and IOD amplitude are the SD of El Niño 3.4 and IOD 

indexes over 30-year windows from 1920 to 2017 using the ERSST data sets.  

To better understand hydrologic droughts of NRB, we also investigated the Nile river flow 

variability and the teleconnection of ENSO and the dipole mode to Nile flow over 1912-2012. 

The NRB flow are computed over 30-year running periods from 1913 to 2010 for the Blue Nile 
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station, and from 1913 to 1984 for Dongala station. El Niño 3.4, IOD, SEIO, WTIO amplitudes 

are computed as the SD of the El Niño 3.4, IOD, SEIO, WTIO indexes over 30-year windows 

from 1913 to 2017, using the ERSST data sets. We have also analyzed the projected WTIO and 

IOD using climate projections of 34 global climate models (GCMs) of CMIP5. Future projection 

of WTIO and IOD were analyzed based on climate projections of 34 global climate models 

(GCMs) of CMIP5. First, WTIO was estimated as areally weighted SST simulated by each GCM 

over the Arabian sea (50°E to 70°E and 10°S to 10°N). Then, the multi-model ensemble (MME) 

of the WTIO computed from the simulations of 34 GCMs was computed over 30-year periods 

from 1913 to 2100. WTIO estimated from the GCM that best agrees with the observed WTIO 

will be selected. Furthermore, projections  of IOD between 2019 and 2100 were computed as the 

difference between Western (50°E to 70°E and 10°S to 10°N) and Eastern (90°E to 110°E and 

10°S to 0°N) SST of the Indian ocean simulated by the 34 GCMS. 

7.3 Results and discussion  

As discussed earlier, the NRB has experienced significant climate change impact since 1970, 

as shown in chapter 6. Furthermore, an analysis of Niño3.4 data shows a statistically significant 

change point in 1978, with a mean Niño3.4 of -0.2 oC over 1910-1978 to 0.52 oC over 1978-2017 

(Figure 7.1), an overall statistically significant increasing trend of 0.17 oC/decade. This finding 

shows that droughts of NRB had been affected by both climate warming and stronger El Niño 

occurring more frequently after 1970s. From the SD (standard deviation) of the Nino 3.4 index 

estimated over 20-, 30-, 40- and 50-year windows in Figure 7.2(a), it is clear that the amplitude of 

ENSO variability has increased in NRB over the 1980–2017 period with increasing intensity in 

ENSO activities, signified by several extreme El Niño events occurring over this period. In Figure 

7.2(b), the Indian Ocean dipole (IOD), also known as the Indian “Niño”, defined by a zonal SST 
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gradient, also exhibited increasing variability similar to ENSO, where the SD of IOD over 1970-

2017 was characterized by strong and frequent occurrences of positive events associated with El 

Niño events.  Figure 7.2(c) shows a statistically significant change point in 1993, where the mean 

IOD of 0.03 oC over 1950-1993 increased to 0.24 oC over 1993-2017, which means an overall 

statistically significant increasing trend of about 0.1 oC/decade, or IOD had been in a positive 

phase since 1993. Figures 7.2(a) and 7.2(d) show that higher zonal wind stresses are associated 

with stronger El Niño, with the zonal wind anomalies abruptly shifted westward when El Niño 

events typically reach their peak amplitude (see subsequent discussions on U-wind associated with 

El Niño). On the other hand, as the meridional wind anomalies shifted south, its amplitude in terms 

of wind speed and discharging effect increased with increasing El Niño amplitude (Figures 7.2(a) 

and 7.2(e)). A large meridional wind amplitude, which is associated with a prominent anticyclonic 

circulation in southern NRB, could have contributed to the observed increasing intensity of recent 

El Niño events. The enhanced zonal and meridional wind stresses attributed to stronger 

atmospheric heating after 1980s could have also contributed to more severe aridity in NRB, such 

as statistically significant increasing trends in the warm spell duration (WSD) and maximum daily 

temperature over NRB at about 3.1 day/decade and 0.35 oC/decade since 1975, respectively 

(Figure 7.2(f)).   
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Figure 7.1 El Niño 3.4 index time series, where Mb is the long-term average before the change 

point, and Ma the long-term average after the change point 

Past studies have also teleconnected droughts of NRB (Gissila et al., 2004; Segele et al., 

2009) and sub-Saharan Africa (Gizaw and Gan, 2016) to ENSO. Based on IOD’s power spectrum 

and significant coherence with ENSO, our results demonstrate a strong coupling between them, 

for both exhibited similar change patterns, e.g., positive IOD becomes more intensive as the 

amplitude of El Niño increases (supplementary Figure D1). A WTC analysis shows that the 

hydroclimate of NRB is strongly correlated with El Niño (based on Niño3.4) and IOD 

(supplementary Figures D4 and J1). The wavelet coherence spectrum plot between El Niño and 

IOD and precipitation (surface temperature) shows an anti-phase (in phase) relationships with 

statistically significant coherent spatial patterns at 2-4year band in the 1970s (supplementary 

Figures D4(a-b) and J1(a-b)). This strong anti-phase relationship between El Niño and IOD and 

precipitation after 1970s shows that El Niño and IOD had contributed to lower precipitation 

(drying) over NRB, and their significant in-phase relationship with surface temperature shows that 

stronger El Niño and IOD after 1970s was related to climate warming (Kim et al., 2014).  This is 

also evident in a strong wavelet coherence (anti-phase) between El Niño and IOD and relative and 

specific humidity at 1–2-year band in the 1980s and the 1990s (see supplementary Figures D4(d) 

and J1), and a stronger 4–8 year wavelet coherence after the 2000s. The wavelet coherence 

between El Niño and IOD and geopotential height (supplementary Figures D4(c) and J1(b)) was 

also consistently strong at 4–8-year band between 1975 and 2012.  
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Figure 7.2 Observed ENSO and Indian Ocean dipole (IOD) amplitude, and zonal and meridional 

winds stresses over the NRB: ENSO and IOD amplitude (oC), defined as the standard deviation 

(s.d.) of the Niño3.4 and IOD index over 20-, 30-, 40- and 50-year windows from 1950 to 2017 
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(a,b), and IOD characteristics over the NRB (c) using the ERSST data sets. Zonal and meridional 

wind stresses amplitude (10−1 N m−2) are defined as the s.d. of zonal and meridional winds stresses 

over 20-, 30-, 40- and 50-year windows from 1950 to 2017, using NCEP/NCAR data sets from 

1950–2017 (d, e). An increasing meridional wind amplitude (e) associated with a prominent 

anticyclonic circulation in southern NRB have contributed to the observed increasing intensity of 

recent El Niño events (a). There is also a statistically significant in-phase, inter-annual relationship 

between meridional wind stress and El Niño over 1960-2017, and an in-phase, inter-annual 

relationship between zonal wind stress and El Niño over 1988-2017, while IOD, meridional and 

zonal wind stresses showed in-phase coherence after 2000s (supplementary Figure D3(a-b)). 

Warm spell duration (WSD), defined as the annual number of days contributing to events where 6 

or more consecutive days experience a daily maximum temperature TX > 90th percentile, averaged 

over the NRB using the HadEX2 observational data set given in Figure 7.2(f) shows a linear 

increasing trend that is significant at 0.001 significant level (p-value).  

A detailed cross correlation (ρ) analysis shows that the hydroclimate of NRB is strongly 

teleconnected to El Niño and IOD. In addition, the strong negative correlation between IOD and 

SPI (ρ = -0.87) suggest that besides El Niño, IOD has also contributed to lower precipitation and 

more severe droughts of NRB (supplementary Figure D5(a-f)). The influence of El Niño over 

NRB’s hydroclimate extends across the entire basin, but the degree of influence (ρ) varies over a 

wide range spatially (supplementary Figure H2). For example, relative humidity is negative 

correlated with El Niño in Sudan, Uganda and low lands of Ethiopia (supplementary Figure H2(e)), 

but surface temperature is positively correlated with El Niño in most NRB (supplementary Figure 

H2(f)), which is expected given recent stronger El Niño episodes have been linked to greenhouse 

warming (Cai et al., 2015; Kim et al., 2014). To investigate changes in the severity and frequency 

of meteorological drought of NRB, the Standardized Precipitation Index (SPI) at 1, 3, 6, 12 and 
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48-month timescales for NRB over 1950-2016 was computed (see supplementary information). 

The 1-month SPI time series (Figure 7.3(a)) shows statistically significant change point in 1979 

with a decreasing trend of 0.15/decade (supplementary Table B1). By defining droughts as SPI < 

-1, recurrent droughts were detected in 1952, 1959, 1965, 1972, 1973, 1978, 1983, 1984, 1987, 

1991, 1994, 1999, 2002, and 2011, respectively, with increasing severity after late 1970s. The 48-

month SPI (Figure 7.3(b)) also exhibits overall decreasing trends since 1970s, but of higher 

amplitude than 1-month SPI, in contrast to the increasing trend of the El Nino 3.4 index.  The sc-

PDSI time series for NRB shows a significant change point in 1983, an overall decreasing trend 

of 0.58/decade, and hydrologic droughts in 1973, 1987, and recurrent droughts between 2002 and 

2011 (Figure 7.3(d)), which means more frequent hydrologic droughts occurring in NRB than the 

global average since early 2000s (Sheffield et al., 2012). The wavelet coherence between El Niño, 

SPI and sc-PDSI are statistically significant at 2–4year band.  Before 1970s, the wavelet coherence 

plots show that El Niño and IOD were in phase with both sc-PDSI and SPI, but after 1970s their 

relationships became predominantly anti-phase. These post 1970s results suggest that stronger El 

Niño and IOD episodes usually correspond to lower SPI and sc-PDSI, which means El Niño and 

IOD contributed to more severe droughts in NRB after 1970s ( Figure 7.3(c-e) and supplementary 

Figure D4(e-f)), as is also evident from the strong negative correlation between El Niño and IOD 

and SPI (ρ = -0.86), and sc-PDSI (ρ = -0.75) (supplementary Figure D5(d-f)).  
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Figure 7.3 The influence of El Niño and La Niña on drought conditions of NRB: (a) 1-month SPI, 

(b) 48-month SPI vs El Niño 3.4, (c) wavelet coherence between El Niño 3.4 and SPI, (d) self-

-1.5
-1

-0.5
0

0.5
1

1.5
2

1950 1961 1972 1983 1994 2005 2016

1 
m

on
th

 S
PI

Year

a 1 month SPI
5 yrs.Mov.Avg

-1.5

-0.5

0.5

1.5

-1

-0.5

0

0.5

1

1950 1960 1970 1980 1990 2000 2010

El
 N

iñ
o 

3.
4

SP
I-

48
 m

on
th

 

Year

b SPI-48 month El Niño 3.4

-1.5

-0.5

0.5

1.5

-3

-2

-1

0

1

2

3

1950 1959 1968 1977 1986 1995 2004 2013

El
 N

iñ
o 

3.
4

PD
SI

Year

d PDSI El Niño 3.4

1.42

1.44

1.46

1.48

1.5

1.52

0

5

10

15

20

25

30

1950 1960 1970 1980 1990 2000 2010
Year

A
ET

 (m
m

/d
)

W
in

d 
st

re
ss

 (m
2 /s

2 )

f Wind stress
Actual evapotranspiration (mm/d)

c 

e 

g 



217 
 

calibrated PDSI (sc-PDSI) vs. El Niño 3.4, (e) wavelet coherence between the El Niño 3.4 and sc-

PDSI, (f) wind stress vs. actual evapotranspiration, and (g) wavelet coherence between wind stress 

and actual evapotranspiration. The 1-month SPI values ranged from -1.5 to 1.62 with a standard 

deviation of 0.514.  The sc-PDSI shows a statistically significant change point in 1988, where the 

long-term average PDSI decreased from 0.125 between 1960 and 1988 to -0.185 between 1988 

and 2014 with a statistically significant declining trend of 0.58/decade and a strong correlation 

with El Niño events. Solid contours in the wavelet coherence plot and the phase difference 

between El Niño 3.4 and SPI, PDSI enclose periods of statistically significant coherence at 5% 

level against the red noise process. Right-pointing arrows represent in-phase signals, while left-

pointing arrows represent anti-phase signals. After 1970s, the WTC between El Niño, IOD, sc-

PDSI and SPI shows significant anti-phase relationships, which demonstrates that more frequent 

and severe El Niño, IOD and SST gradient over the Arabian Sea (WTIO) in recent years, has led 

to more severe droughts in NRB. From WTC and strong negative correlations between SPI, sc-

PDSI and WTIO, NRB’s hydroclimate is shown to be more strongly influenced by WTIO than by 

IOD.  

To further investigate the role of IOD on the hydroclimate of NRB, detrended cross 

correlation and WTC analysis using the two halves of IOD, i.e. the western pole (WTIO) over the 

Arabian Sea (50°E - 70°E, 10°S - 10°N) and the southeast Indian Ocean (SEIO) (90°E to 110°E, 

10°S to 0°N) shows that SST of the WTIO plays a primary role on NRB’s precipitation over inter-

decadal or perhaps longer timescales. The wavelet coherence plot shows a more prominent anti-

phase relationship between NRB’s precipitation, SPI and scPDSI and WTIO, than with SEIO, after 

1970s (supplementary Fig.D6(a-f)). This dominant anti-phase relationship between WTIO and 

NRB’s precipitation, SPI and scPDSI at interdecadal timescales (> 32-year) show that NRB’s 

hydroclimate is more strongly linked to the SST gradient over the Arabian Sea than to IOD and 
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SEIO, as evident in the WTC and the significant negative correlation between WTIO and the NRB 

precipitation variability (ρ =-0.82).  Apparently, more frequent occurrences of droughts in NRB 

are related to increased warming in the WTIO (supplementary Figure D7(a)) and other factors, as 

is also evident from the strong negative correlation between SPI and SST in the western Arabian 

sea (ρ =-0.71 for SPI and -0.8 for PDSI) (supplementary Figure D7(b-c)).  

A statistically significant change point was detected in monthly soil moisture content (SMC) 

and groundwater storage (GWS) in 1979, and after the change point, SMC and GWS data exhibit 

significant negative trends of 0.84 mm/decade and 1.44 mm/decade, respectively (supplementary 

Figures F1(c) and F2(c)). These negative trends in SMC and GWS are attributed to significantly 

lower precipitation and higher AET attributed to more intensive ENSO, stronger and more frequent 

WTIO events over NRB after 1979. There are strong anti-phase relationships at 16-32 (32-64) year 

bands between WTIO (SEIO) and SMC (GWS) (supplementary Figure F3(a-d)), with significant 

negative correlations between NRB’s SMC and SEIO (ρ =-0.92), and WTIO (ρ =-0.83) 

(supplementary Figure F3(e)), e.g., NRB’s SMC decreased under stronger SEIO and WTIO 

amplitudes. The strong negative correlation between GWS and SEIO (ρ =-0.95) and WTIO (ρ =-

0.91) implies that increased Indian Ocean SST gradient over the Arabian Sea (WTIO) and 

southeastern Indian Ocean (SEIO) resulted in lower GWS in NRB (supplementary Figure F3(f)). 

Apparently, WTIO and SEIO explain the variability of NRB’s SMC and GWS more than IOD (see 

supplementary Figures F1 and F2). 

From the 1950-2017 reference and actual evapotranspiration (AET) estimated for NRB using 

a surface energy balance algorithm, the AET of NRB has increased significantly, which is also 

shown by other studies, that higher AET is related to higher wind speed and wind stress, warming 

and lower RH (Fischer and Knutti, 2013; Zaroug et al., 2014; Eslamian et al., 2011) As expected, 

higher AET is found in irrigated land and water bodies in the Ethiopian highlands and in countries 



219 
 

of southern NRB such as Uganda, Egypt, Sudan, Burundi, Congo, Kenya, Rwanda, and Tanzania, 

where water losses from high AET can be quite substantial (supplementary Figures A1 and A2). 

The higher AET after 1970s can be partly attributed to the westward propagation of zonal winds 

and southward propagation of meridional winds associated with stronger El Niño amplitudes, as 

shown by strong wavelet coherence between zonal and meridional wind stresses and AET at 1-2 

year bands (Figure 7.3(f), supplementary Figures  D2 and D3). Their recurrent in-phase and anti-

phase relationships at 1-2year bands demonstrate the effect of positive (negative) wind stress 

anomalies when El Niño was active. There is a significant positive correlation between AET and 

El Niño 3.4 (ρ =0.93), and meridional wind stresses (ρ =0.62). There is also a statistically 

significant in-phase, inter-annual relationship between meridional wind stress and El Niño over 

1960-2017, and an in-phase, inter-annual relationship between zonal wind stress and El Niño over 

1988-2017 (supplementary Figure D3(a, b)), while IOD, meridional and zonal wind stresses 

showed in-phase coherence after 2000s (supplementary Figure D3(c, d)). It seems both increasing 

meridional wind stress anomalies and stronger El Niño episodes have contributed to the warming 

and increased aridity in NRB.  

The effects of meteorological droughts to agricultural droughts of NRB, based on the 

Normalized Difference Vegetation Index (NDVI) (supplementary information) shows that 

moderate metrological droughts could lead to severe agricultural droughts (supplementary Figure 

C1) in irrigated areas of Tanzania, Uganda, Rwanda, Burundi, Congo, Ethiopia, and Sudan. The 

Ethiopian highlands, Ethiopia, Eritrea, Kenya, Tanzania, Congo and Uganda had suffered severe 

agriculture droughts in 2004, 2005, 2007, 2009, and 2011. Again, results based on NDVI show 

that NRB has suffered moderate to severe meteorological, agricultural and hydrologic droughts 

since the 1970s. To further investigate drought conditions of NRB, the time series of sc-PDSI, 

monthly temperature, temperature anomaly, monthly precipitation, and precipitation anomaly of 
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each riparian country of the Nile River are analyzed individually (supplementary information). 

Even though the level of climate warming in the Nile basin varies from one riparian country to 

another (supplementary Table G1), overall impacts to meteorological, agricultural and 

hydrological droughts of most riparian countries of NRB have been severe, where regional 

warming trends have exceeded the mean global warming trend of about 0.15 °C per decade.  

Detailed drought investigations for each riparian country of the Nile are given in supplementary 

Figures D4-F1, and supplementary Table G1.  Lastly, given the interannual variability of the Nile 

flow is also projected to increase significantly from the 20th to the 21st century22, it could lead to 

even more severe droughts in NRB in future.  

As discussed in Chapter 6, the composite analysis of NRB’s hydroclimate data between 1948 

and 2017 also shows significant changes across the entire NRB. For instance, surface temperature 

has increased at 0.16-0.4 Co/decade over the NRB, with the highest increase in Ethiopia, Uganda, 

Sudan and Egypt. Because of climate warming, relative humidity has decreased by 1-5%/decade 

after 1985, with the largest decrease in Ethiopia, Uganda, and Sudan where warming has also been 

the worst. The surface soil moisture shows high spatial variabilities in NRB but a decreasing trend 

of 16-45 mm/decade between 1985 and 2017.  At an increase trend of 0.2-0.8 m2/sec2 between 

1985 and 2017, the increase in scalar wind was maximum in Uganda, Sudan, and northwestern 

regions of Ethiopia, where both meridional and Zonal wind also show similar increase. The 

aforementioned changes related to warming had resulted in decreased daily precipitation in NRB, 

lower specific humidity in Sudan, northwestern regions of Ethiopia (in lowland), lower annual 

surface runoff over Ethiopia, Uganda, and Sudan, and higher potential evapotranspiration over 

Ethiopia, Uganda, and Sudan. The lower atmosphere stream function of supplementary Figure H1 

at 0.8458 sigma level, which depicts the rotational part of the flow (the flow is along the contours), 

indicates that main waves emanating from northern towards southern parts of NRB, have shifted 
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further south over the two periods, from 1948-1984 to 1985-2017.  This long-term southward shift 

in the stream function over NRB would have also contributed towards the long-term drying of 

NRB, as part of the multiple changes due to climate warming, e.g., changes in air temperature, 

GPH, RH, soil moisture, surface runoff, PET and ENSO. 

To better understand hydrologic droughts of NRB, we also investigated the Nile flow 

variability and the teleconnection of ENSO and the dipole mode to Nile flow over 1912-2012 

(supplementary information). Observed annual flow records for 1912-2012 from the Blue Nile 

77station at Khartoum, where the White Nile and Blue Nile merge (Figure 7.4(a)) show a 

statistically significant change point in 1964, with the mean annual flow decreased from 1645 

CBM/s over 1912-1964 to 1478 CBM/s over 1964-2010, a decreasing trend of about 13.7 

CBM/decade after 1964. Between 1965 and 1987, the Blue Nile flow decreased so much that the 

mean annual flow after 1965 was below the long-term mean annual flow by 716 CBM 

(supplementary Figure E1) partly due to high evaporation losses in water bodies of Sudan. The 

annual flow of the Dongola station also showed a significant decline in 1900-1982 (Figure 7.4(c)), 

while the annual flow of the Aswan station in 1900-1987 exhibited high temporal variability, e.g., 

the August-November wet season over 1900-1950 shows high flow records (supplementary Figure 

E2(a)), a statistically significant change point in 1965, and a statistically significant negative trend 

of 114.1 CBM after 1965 (Figure 7.4(e) and supplementary Fig.E3(b)).   

Wavelet analysis shows that the Nile River flow exhibited both statistically significant 

interannual and interdecadal oscillations that appeared and disappeared over 1912–2012, and the 

wavelet coherence spectrum between El Niño and the Blue Nile flow shows a statistically 

significant wavelet coherence at 2-4 year band in 1920s, 1930s, and 1960-1970 (Figure 7.4(b)) 

dominated by off-phase signals between both signals over 1912-2012, except in-phase signals that 

occurred briefly between 1982 and 1990. While the wavelet coherence plot between the Blue Nile 
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flow and IOD shows an anti-phase relationship at 32-year band over 1912-2012, and a stronger 

anti-phase relationship at 2-4- and 4-8-year bands over 2000-2012 (supplementary Figure F4(a-

c)). The wavelet coherence between El Niño and IOD and the flow data at the Dongola station of 

Khartoum-Sudan and the Aswan station of Egypt (downstream) shows anti-phase relationships at 

inter-annual and inter-decadal time scales with El Niño and IOD, respectively (Figure 7.4(d-f), 

supplementary Figure F4(b-c)). In comparison, the anti-phase relationship was much stronger 

between WTIO and SEIO and Nile flow at 32-64-year band (supplementary Figure F5(a-d)). 

Therefore, the impact of El Niño and both halves of IOD on the Nile River flow extends across 

the upstream-downstream reaches of Nile River. 
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Figure 7.4 Observed annual flows and wavelet coherence with El Niño 3.4: (a) Blue Nile flow, 

(b) wavelet coherence between El Niño 3.4 and Blue Nile flow, (c) Dongola station flow, (d) 

wavelet coherence between the El Niño 3.4 and Dongola flow, (e) Aswan station flow, and (f) 

wavelet coherence between El Niño 3.4 and Aswan station flow. In Figure 7.4, the annual flow of 
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the Blue Nile river decreased from 1645 CBM/s over 1912-1964 to 1478 CBM/s over 1964-2010, 

with a decreasing trend of about 13.7 CBM/decade after 1964 due to higher AET losses, warmer 

WTIO and IOD, and more intensive El Niño events. 

Figure 7.5 shows a significant negative correlation between the Nile flow and IOD (ρ =-0.71 

for the Blue Nile, and -0.57 for the Nile at Dongala station) (Figure 7.5(a)), compared to a less 

significant negative (positive) correlation between El Niño and the Nile flow at the Blue Nile (ρ 

=-0.31) and Dongala stations (ρ =0.25), respectively (Figure 7.5(b)).  Therefore, IOD exerts a 

stronger influence on the Nile flow than El Niño at inter-annual to inter-decadal time scales. The 

peak correlation between IOD and the Nile flow occurred a year earlier than that between El 

Niño and the Blue Nile flow, which agrees with the wavelet coherence between IOD and El 

Niño (i.e. one lead the other as shown in supplementary Figure D1(a, b)). The increasing intensity 

in El Niño after 1978 (represented by the change point (yellow color) in Figure 7.5(a)) shows that 

El Niño occurred more frequently with positive IODs than La Niña events with negative IODs. 

Our results show a strong teleconnection between the Nile flow and the Indian Ocean SST gradient 

over the western and the southeastern poles (Figure 7.5(c, d)). There are significant negative 

correlations between the Nile flow (Dongala station) and WTIO and SEIO (ρ =-0.72 and -0.58). 

However, the negative correlations are stronger between Blue Nile flow and WTIO and SEIO (ρ 

=-0.92 and -0.88), which means that the Nile River flow is strongly linked to WTIO and SEIO, 

with their warm (cold) phase associated with decreased (increased) Nile flow (shown by arrows in 

Figure 7.5(c)). These results demonstrate the strong teleconnection between the Nile flow, SST of 

southern and eastern parts of the Indian Ocean, and El Niño at inter-annual to multi-decadal time 

scales.  
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Figure 7.5 Responses of NRB flow variability to El Niño events, IOD amplitude and the IOD two 

pole amplitudes i.e. western pole amplitude (WTIO) over the Arabian Sea and eastern pole 

amplitude (SEIO) based on the correlation between NRB flow at Blue Nile and Dongala stations 

and El Niño 3.4, IOD amplitudes (a, b), SEIO, and WTIO amplitudes (c, d), respectively. The 

NRB flow are computed over 30-year running periods from 1913 to 2012 for the Blue Nile station, 

and from 1913 to 1984 for Dongala station. El Niño 3.4, IOD, SEIO, WTIO amplitudes are 

computed as the s.d. of the El Niño 3.4, IOD, SEIO, WTIO over 30-year windows from 1913 to 

2017, using the ERSST data sets. The peak correlation between IOD and the Nile flow occurred 

one year earlier than that between El Niño and the Blue Nile flow, which agrees with the WTC 

between IOD and El Niño (i.e. one lead the other as shown in supplementary Figure D1(a, b)). 

From the WTC and strong negative correlations between Nile flow, SEIO, WTIO and IOD, the 
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Nile flow is more strongly teleconnected to IOD, SEIO and WTIO than to El Niño at inter-annual 

and inter-decadal time scales. 

To better understand changes to the atmospheric circulation over NRB, we analyzed the 

responses of stream function fields, geopotential height, and U-wind to climate warming and 

ENSO.  Associated with El Niño (La Niña) episodes, the 750-mb stream function show positive 

(negative) stream function anomalies which correspond to high (low) geopotential height 

anomalies. The anomalous stream function pattern during Niño episodes shows anticyclonic flow 

associated with the ENSO warming (Figure 7.6(a)). The positive northern stream function 

anomalies induced by El Niño warming is part of the general circulation over the African continent. 

This intense anticyclonic flow propagates from the northwestern parts towards southern and 

eastern parts of NRB, controlling the circulation of air mass, heat, and moisture in the NRB. During 

La Niña episodes, north eastern anticyclone wave originates over the Arabian Peninsula and 

travelling west over the red sea and part of the Indian ocean towards Egypt, Libya and part of 

Sudan (Figure 7.6(b)), with negative stream function anomalies only over the BNB, Tanzania, and 

Uganda. More El Niño events and fewer La Niña events have occurred after 1970s. Figure 7.6(c-

f) shows the composite 300-mbar geopotential height (GPH) and wind anomaly patterns associated 

with El Niño and La Niña episodes, respectively.   

The composite-anomaly map of 300-mb GPH during El Niño episodes is dominated by 

spatially broad positive anomalies (higher than normal), indicating warmer conditions. In 

particular, the highest positive GPH fields occurred over the Roseires-Ethiopian highlands, the 

Sudd region in South Sudan, Eritrea, Uganda, and Aswan (Figure 7.6(c)). In contrast, except in 

the Arabian Peninsula, the composite-anomaly map of 300-mb GPH show predominantly negative 

anomalies during La Niña episodes (Figure 7.6(d)). The figures show that positive GPH anomalies 

associated with El Niño episodes (warm phase) are more consistent spatially than negative 
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anomalies associated with La Niña episodes, partly due to the thermal inertia associated with 

warm-phase events, i.e. anomalies persist longer during El Niño events. The GPH-ENSO signal in 

the troposphere demonstrates the teleconnection between El Niño and the climate of NRB.  

Differences in U-wind patterns between Figures 7.6(e) and 7.6(f) show a more enhanced zonal U-

wind flow (positive anomalies) during El Niño episodes, which tends to be the strongest over the 

Roseires- Ethiopian highlands, the Sudd region in South Sudan, Eritrea, Uganda, and Aswan.  In 

contrast, the U-wind anomaly tends to be negative over these regions during La Niña episodes. 

These differences between GPH and U-wind anomalies associated with ENSO suggest changes in 

regional atmospheric circulation will result in drier conditions over the NRB during more 

persistent and stronger El Niño, than during weaker La Niña episodes.   
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Figure 7.6 The effect of ENSO to the atmospheric circulation over NRB shown by the 750-mb 

stream function anomaly associated with El Nino (a) and La Nina (b) episodes, 300-mb 

geopotential height anomaly associated with El Nino (c) and La Nina (d) episodes, zonal and 

meridional wind anomaly patterns associated with El Nino (e, g) and La Nina (f, h) episodes, 

El Nino geopotential height (m) 

La Nina geopotential height (m) El Nino U-wind (m/s) La Nina U-wind (m/s) 
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respectively. The signals between ENSO and GPH, stream functions, and meridional/zonal wind 

in the troposphere demonstrates the teleconnection between El Niño and the atmospheric 

circulation over of NRB. The warming over the Arabian sea and stronger El Niño, the southward 

shift of the lower atmospheric stream functions and meridional winds, and the westward shift of 

zonal winds have together contributed to worsening droughts observed in NRB in recent years. 

 

   

Figure 7.6 (continued) 

Based on the analysis of 34 global climate models (GCMs) of CMIP5 (IPCC, 2014), future 

annual precipitation is projected to decrease at about 16.5 mm/decade over the NRB between 2020 

and 2050 under Representative Concentration Pathways RCP 2.6 scenarios. Because of the high 

spatial variability of precipitation, in countries such as Egypt and Sudan, the annual precipitation 

could decline by 15.5 mm/decade, while for the White Nile region, the annual precipitation could 

La Nina meridional -wind (m/s) El Nino meridional-wind (m/s) 

g h 
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increase by 28.9 mm/decade over 2020-2050 (supplementary Figure K3(a)). On the other hand, 

under RCP4.5 and RCP8.5 scenarios, the annual precipitation of NRB is projected to increase by 

5 mm/decade between 2050 and 2100 (supplementary Figure K3(b)). Over 2020-2050, warming 

in the NRB is projected to be 0.24 oC/decade, 0.36 oC/decade, 0.48 oC/decade based on RCP 2.6, 

RCP4.5, and RCP8.5, respectively. Under RCP4.5 and RCP8.5, the warming trend is projected at 

0.12-0.72 oC/decade between 2050 and 2100, while under RCP 2.6, the warming trend is only 

projected at 0.1 oC/decade (supplementary Figure K2(a) and supplementary Figure K3(a)). Under 

RCP 2.6, 4.5, and 8.5 scenarios, the relative humidity trend is projected to decline at 0.87% 

/decade, 1.04 % /decade, and 1.47% /decade between 2020 and 2050, respectively. However, over 

2050-2100, the corresponding declining trend for relative humidity is projected to be more modest, 

at about 0.23% /decade, 0.34 % / decade, and 0.53 % /decade, respectively (supplementary Figure 

K3(c)).  

Under RCP 2.6, 4.5, and 8.5 scenarios, between 2020 and 2050, the potential 

evapotranspiration (PET) is projected to increase at 11.4 mm/decade, 18.4 mm/decade and 24.1 

mm/decade respectively (supplementary Figure K3(e)), which is consistent with projected rising 

air temperature and declining relative humidity. As warming continues from 2050 to 2100, PET is 

projected to increase at about 10 mm/decade, 14.8 mm/decade, and 35.2 mm/decade under RCP 

2.6, 4.5, and 8.5, respectively. Corresponding to increasing trends in PET, SMC is projected to 

decrease at 0.12 kg/m2/decade, 0.72 kg/m2/decade, and 0.96 kg/m2/decade between 2020 and 2050; 

and by about 0.65 kg/m2/decade, 2.5 kg/m2/decade, and 4.3 kg/m2/decade between 2050 and 2100, 

under RCP2.6, RCP4.5, and RCP8.5, respectively (supplementary Figure K3(d)). It seems that 

agricultural drought in the NRB will get worse over the 21st Century. Climate models also project 

more frequent and stronger El Niño episodes between 2020 and 2100 (Kim et al., 2014; Cai et al., 

2014) (supplementary Figure K3(f)), leading to worsening droughts and severe surface drying in 
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NRB by the end of the 21st century.  Furthermore, large parts of Egypt and Sudan are projected to 

suffer mild to moderate hydrologic droughts over the 21st Century (supplementary Figure K4), and 

countries such as Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo are projected to suffer 

incipient droughts.  

Our analysis indicates that IOD, SEIO and WTIO are likely better predictors of the Nile flow 

than El Niño. Therefore, we have also derived projected WTIO, SEIO and IOD from climate 

projections of 34 GCMs of CMIP5 over 1900-2100 (see supplementary Figures K5 and K6). The 

correlation between the multi-model ensemble (MME) of WTIO obtained from GCMs’ projections 

and WTIO estimated from ERSST data range between ρ =0.61 and ρ =0.88 (supplementary Figure 

K5(a)). The results show that the variability (s.d.) of WTIO has increased since the 1970s in both 

the observed dataset and the MME of 34 GCMs’ simulations for the historical run, which means 

that the western Indian Ocean (WTIO) has become warmer in recent decades, and it is projected 

to become much warmer, at a warming trend of 0.01 to 0.023 0C/decade between 2019 and 2100 

(supplementary Figure K5(b–d)). The warming over the Western Indian Ocean and the more 

intensive El Niño in recent years are expected to play a major role modulating the future climatic 

conditions of NRB, likely resulting in less precipitation, relative humidity, soil moisture and the 

Nile flow as warming continues in NRB over the 21st Century. Under the projected increase in 

WTIO over the Arabian sea, future drought conditions of NRB is expected to worsen.  
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Chapter 8 Conclusion and recommendations 

In this thesis, the first five Chapters are devoted to analyzing and characterizing the impact 

of climate change, human activities and urbanization in arid regions of Africa, while Chapters 6 

and 7 are devoted to better understanding of the Nile River basin hydroclimate and possible 

teleconnection to large-scale climate patterns. The following summaries will be beneficial to 

planners and governments, water policymakers and engineers involving in water resources 

management and planning to future land use planning, mitigate potential impact of climate change, 

urbanization, anthropogenic climate changes and large-scale climate patterns. 

1) Urbanization and climate change implications in flood risk management 

The effects of urbanization and climate change to the flood risk of  arid regions of Africa such 

as Beheira and Alexandria governorates of Egypt were investigated, and a flood susceptibility 

model was developed, changes to annual precipitation and temperature, and effects of urbanization 

to flood risk by using the runoff curve number method to estimate surface runoff time series for 

the two governorates over 1948-2014. Anomalies in surface runoff were computed to examine the 

effect of urbanization on the surface runoff time series generated. Finally, a GIS decision support 

system was developed to delineate flood susceptibility zones in the two governorates of Egypt.  

Likely related climate change impact, the annual rainfall of the two governorates had declined 

since 1994 at about 8.96 mm/decade, while rainfall anomalies had declined at about 15.3 

mm/decade which is statistically significant.  Since 1976, the climate has been warming at about 

0.16 oC/decade partly due to effects of rising concentrations of greenhouse gases and partly due to 

rapid urbanization with a noticeable increase in impervious surfaces in Alexandria and El-Beheira 

in recent decades. Because of urbanization, the flood risk of both arid regions has increased, despite 
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of a decline in the annual rainfall, for the annual surface runoff show a significant increasing trend 

of 12.7 mm/decade after 1970 because of rapid urbanization in both two governorates. With 

reference to the long-term annual surface runoff, the surface runoff anomalies of both governorates 

show upward trend of 14.39 mm/decade after 1970. 

The flood susceptibility model delineated flood susceptibility zones in the Beheira Governorate 

to 9.2% (930.1 Km2), 17.9% (1815.2 Km2), 32.3% (3269.7 Km2), 28.3% (2869.2 Km2) and 12.3% 

(1245.8 Km2) of its area as very high, high moderate, low and very low susceptibility to flooding, 

respectively. In contrast, for Alexandria Governorate, the flood susceptibility model delineated 

15.9% (400.1 Km2), 33.5% (841.9 Km2), 41% (1028.3 Km2), 8.8% (220.6 Km2) and 0.8% (19.7 

Km2) of its area as very high, high, moderate, low and very low susceptibility to flooding, 

respectively. The very high and high susceptible zones were located in the northern, northwestern 

and northeastern parts of the Beheira governorates, which include Edko, El Mahmoudiyah, Aboul 

Matamir, Abu Hummus, Rosetta, Shubrakhit, Damanhur, Rahmaniya, Kafr el-Dawwar, and Wadi 

El Natrun, where for the past decade flooding had occurred every winter, causing heavy damages 

to roads, agricultural lands and cities. Floods had also occurred in some high to moderate 

susceptible zones such as El Delengat, Etay El Barud, Hosh Issa, Kom Hamada, Nubariyah, and 

Badr. For the Alexandria governorates, areas classified as high and very high susceptible zones 

are Montazah, El-Raml, Sidi Gaber, Bab Sharq, Al Attareen, Moharrem Beik, El-Dekheila, El-

Agamy, Borg El Arab, and El-Ameriah areas where many flood events had occurred. From 

checking historical flood events against flood susceptibility zones of these maps, the results show 

that they are in good agreement, which demonstrates the accuracy of these maps. Similar surface 

runoff data developed for Beheira and Alexandria governorates can be replicated for other 

governorates of Egypt. Such data and flood susceptibility maps developed will be beneficial to 

planners and governments for choosing suitable locations for future developments to minimize 
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potential flood damages in Beheira and Alexandria governorates.  To develop representative flood 

susceptibility maps, as many flood contributing factors as possible should be considered unless 

appropriate data are not available. 

2) Multi-criteria Approach to develop flood susceptibility maps in arid regions of Middle East 

The spatial distribution of flood susceptibility zones of the Riyadh province and the Riyadh 

City of Saudi Arabia were mapped using the Analytic Hierarchy Process (AHP) method. 

According to our findings, very high and high flood susceptibility zones are mainly identified in 

the northern, northeastern, and northwestern parts of the Riyadh Province typically in areas with 

slopes < 5 %, dense flow accumulation, high annual rainfall, extensive built-up areas, and high 

runoff depth, where according to historical records, a large number of flood events had occurred 

in recent years.  According to the flood susceptibility map, Riyadh City and its surrounding areas 

are prone to flooding. In contrast, western parts of Riyadh province are classified in zones of very 

low to low flood susceptibility. Using historical flood records, the methodology chosen is shown 

to develop reliable flood susceptibility maps which should be used to assist flood mitigation and 

in future land use planning in both the province and the city of Riyadh. Further, reliable results 

obtained for both the Province and the City of Riyadh show that this methodology is useful for 

planning and flood assessment purposes, and its reliability is independent of the scale of the study 

site.   

The proposed methodology in developing flood susceptibility maps should be more 

extensively tested in other regions of different climate regimes and basin characteristics. The 

importance of each contributing factor to floods and the optimal number factors to include in the 

model should also be further tested against historical flood records of the region. This study shows 

that key contributing factors in developing flood susceptibility maps are: surface runoff, flow 

accumulation, soil type, elevation, distance to drainage network, drainage density, land use, slope, 
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and geology.  The optimized weights obtained for the factors are sensitive to the number of factors 

included in the model. Typically, if less than six factors or if key important factors are not included, 

it could produce unrepresentative weights dominated by a single weight which increase the 

possibility of over-rating some contributing factors. It is generally advisable to include more than 

six factors, from which based on AHP larger weights tend to be for factors related to flow such as 

surface runoff and flow accumulation, followed by factors related to soil type, elevation and 

distance to drainage density.  Sensitivity analysis is useful to examine the influence of each 

susceptibility factor in developing mapping flood susceptibility maps. 

3) Long-term Impact of rapid urbanization on Urban Climate and Human thermal comfort in Hot-

Arid Environment 

The long-term impact of rapid urbanization on air temperature, relative humidity, vapor 

pressure and human thermal comfort in Egypt was analyzed. Three thermal comfort indices; 

temperature humidity index (THI), effective temperature index (ETI) and relative strain index 

(RSI) were estimated from climate time series collected between 1950 and 2017. Over this study 

period, LUC in Cairo was dominated by the growth of new cities, with urban expansion at 75.2 

km2/decade, extending into low-lying areas of Cairo and along the direction of roads to lower the 

cost of development. This trend contributed to shifting most of the urban growth toward New Cairo 

and Shrouk City after 1990. The significant increase in urban and built-up areas between 1990 and 

2017 resulted in rising air temperature after 1995 at 0.19 oC /decade, relative humidity decreasing 

at 0.55 % /decade, and vapour pressure increasing at 0.24 hPa /decade.  These observed changes 

in the urban climate of Cairo are likely associated with significant LUC, such as growing 

impervious areas due to rapid urbanization since the 1990s. Heat stress problems and thermal 

discomfort began to emerge and persisted every July-September after 1994. The THI series 

computed between 1950 and 2017 showed a statistically significant change point at 1994 and 
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thereafter a rising trend of 0.33 0C /decade. After 1994, the THI index exceeded the upper limits 

of the comfort zones because of rapid urbanization. Similarly, the ETI index computed for the 

1950-2017 data also show a statistically significant change point at 1994, and thereafter a rising 

trend of 0.29 0C /decade.  The RSI index also show a rising trend of 0.06 /decade.  

In conclusion, the rising level of thermal discomfort based on the positive trends of the three 

indices is primarily attributed to the significant LUC or rapid urbanization in Cairo and the new 

cities. The relative humidity is negatively correlated with both air temperature and vapor pressure, 

and negatively correlated with human comfort indices. This shows that as relative humidity 

decreases, hot distress will increase. Findings from this study demonstrate the significant impact 

of urban growth on the microclimate, heat stress or human thermal discomfort in Cairo. Findings 

of this study will benefit urban planners in the urban planning and development of Cairo and other 

regions of arid environments.  

4) Impact of anthropogenic climate change and human activities on environment and ecosystem 

services in arid regions 

The impact of anthropogenic climate change and human activities such as LUC on the 

environment and ecosystem services in the Jizzan Province, Arabia was analyzed. First, earth 

observation data of the Landsat satellite was used to derive historical, 1970-2014, land use maps 

of Jizzan.  Next, a Markov-CA model was used to project the dynamics of its LUC pattern over 

2014-2100 in response to human activities and their impacts on the study area’s climate, 

environment, and water resources. Pettit’s and Mann-Kendall tests were applied to detect change 

points and to estimate trends of temperature data of 1900-2010 and precipitation data of 1948-

2014 and their anomalies, respectively. Change points and trends of CO2 and several rare gases 

emitted between 1960 and 2015 was estimated. Climate scenarios (RCP4.5, RCP6.0 and RCP8.5) 
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of the study area projected by climate models of CMIP5 were used to project future warming in 

the study area between 2014-2100.   

Urbanization and LUC has significant impact the ecosystems, biodiversity and natural 

habitats of the Jizzan province. In 1970s, human impacts were minimal. However, following the 

construction of rain-harvesting dams which capture most surface runoff, and with urban expansion 

at about 53.4 km2 yr−1 which extended into coastal regions, areas of forest, shrubland, sparse 

vegetative cover, bare soil and water bodies declined markedly over 1990–2014. Likely due to 

climate change impact and urbanization, a statistically significant change point was detected in the 

monthly temperature data of Jizzan in 1968 and a warming trend of 0.24 oC per decade after 1970. 

The precipitation data also had a statistically significant change point in 1967, but a negative trend 

of 12.2 mm/decade.  Observed changes in the hydro-climatology of Jizzan are likely associated 

with significant LUC, such as urbanization and agricultural development (irrigated croplands) at 

the expense of vegetative cover, forest, shrubland, and sparse vegetative cover since 1970s. A 

statistically significant change point was detected in CO2 emissions data in 1985 and statistically 

significant positive trend of 94,340 Kt/decade. Other anthropogenic greenhouse gases mainly due 

to industrial processes also have a statistically significant positive trend of 488.5 Kt/decade. On a 

whole, total greenhouse gas emissions including all anthropogenic sources have been increasing 

at a statistically significant trend of 78,090 Kt/decade after 1991. Therefore, it is very likely that 

long-term increasing emission of greenhouse gases, and aforementioned human activities have 

resulted in warming trends observed in the study area and globally. Future projection of 

temperature anomaly between 1900-2100 showed a statistically significant future warming trend 

of 0.19 0C/decade after 1999. 

The spatial distribution of the projected annual temperature in 2050 and 2075, also shows 

that the highest increase in temperature is within urban areas and the mountains regions. The 
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increase in the warming trend in the mountains areas which were previously occupied by shrubland 

and forest reflects the impacts of deforestation in the warming trend.  The warming trend in 

mountains regions is estimated at 0.55 -0.83 °C/decade between 2014 and 2050, and at 0.55 

°C/decade in south and eastern parts of Jizzan Province.  Precipitation is projected to continue 

declining while LUC such as urbanization and irrigated cropland are projected to continue towards 

the end of the 21st Century. In conclusion, to reduce the impacts of climate change and LUC, 

conservation plans for the Jizzan Province are essential to mitigate the significant impact human 

activities and global warming on the environment and ecosystem services of the study area in the 

21st Century. 

5) Irrigation Water Management in arid regions of Middle East 

This study was designed to estimate average reference and AET over Al-Riyadh, Al-Qassim 

and Hail Province in the central region of Saudi Arabia during 1950–2013 using soil water balance 

model on daily, monthly and annual basis.  Firstly, the FAO Penman-Monteith method was used 

to model the spatial distribution of ETo on a grid-by-grid basis using data collected from 

meteorological stations and GIS techniques. Then, crop coefficients (Kc) were modeled as a 

function of 16-day time-series MODIS normalized difference vegetation index (NDVI). Next, 

using Kc maps and ETo as input, daily AET was simulated by the soil water balance (SWB) model 

and aggregated to monthly and annual AET. ETo is found to be the highest and of the most concern 

in Al-Qassim Province, Hail Province, and in the northern portion of Al-Riyadh Province. From 

January to March and from November - December there is a shift of maximum ETo towards 

southeastern parts of Al-Qassim Province, Hail Province and Al-Riyadh Province except in its 

northern portion. The annual ETo shows very high values in the entire study area as it ranged from 

2127 to 2460 mm/year. From empirical NDVI-Kc relationships developed and applicable at pixel 
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level, Kc derived from the NDVI-Kc relationships agree well with Kc recommended by FAO over 

various crop growth stages in the field.  

The monthly AET maps for 1950-2013 show a gradual increase in AET during the crop-

growing season in January to May but a subsequent decline as the season progresses from June to 

December. The AET estimated for January to June are arranged in descending order, which are 

May (3.67-44.7 mm/day), April (5.99-36.8 mm/day), March (2.96-32.7 mm/day), February (0.68-

20 mm/day), June (2.42-17.7 mm/day) and January (1-11 mm/day), respectively. Statistical 

analysis shows that statistically significant change point in daily AET generally occurred in 1990, 

such that the long-term average daily AET of 1950-1990 at 3.6 mm/day increased to about 5.3 

mm/day between 1990 and 2016 with a positive trend of 1.5 mm/decade. The annual AET 

estimated for irrigated cropland in northern and central regions of Riyadh, Al-Qassim province 

and Hail province range from 1200 to 2900 mm/year.  In these regions, low AET values are found 

in shrubland, grassland, and other natural vegetation. The annual AET estimated by the SWB 

model are about 9-11% higher than modeled AET in the study area, where the long-term average 

daily AET estimated for 1950-2013 range from 2 mm/day to 30 mm/day.  The lowest long-term 

average daily AET is observed from the start of August to the end of September. The measured 

daily AET for alfalfa crop used to test and validate the SWB model. good agreement between 

SWB-based daily AET and the measured daily AET for alfalfa. Overall, there was very good 

agreements between model estimated and observed daily AET for alfalfa, even though the model 

estimated daily AET are about 4-5% higher than the observed AET for January to April, the period 

with the best agreement between both datasets. Between the end of April and the middle of June, 

estimated AET is about 2% lower than the observed AET, and even lower from July to August 

because of lower atmospheric demand of evaporation loss. Representative AET maps derived from 
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applying the NDVI-Kc relationships to the SWB model will be useful to achieve the planning and 

management of sustainable water use in arid regions of Middle East.  

6) Multidecadal variability in the Nile River Basin hydroclimate controlled by ENSO and Indian 

Ocean Dipole 

To improve our understanding of the hydrological cycle and variability in hydroclimate 

variables of the Nile River basin, change point detection, trend analysis, wavelet coherence and 

detrended cross-correlation function were used to analyze the variability in the Nile River basin 

hydroclimate at a wide range of time scales and possible linkages to the large-scale climate 

patterns. First, the spatio-temporal variability, frequency, intensity, change point and trend of 

monthly precipitation, precipitation anomaly, temperature, temperature anomaly, geopotential 

height, relative humidity, specific humidity, actual evapotranspiration (AET), and wind stress data 

were analyzed at the basin level. Next, we also investigated the IOD and El Niño role on NRB’s 

hydroclimate variability over inter-decadal and longer timescales. Our analysis shows that the 

NRB has experienced significant climate change impact in recent decades, as shown in the detected 

change point of 1976, and a statistically significant warming trend of 0.19 °C/decade over 1910-

2017. A statistically significant change point was detected in 1970 in the monthly precipitation 

anomaly data with an overall decreasing trend of 16.2 mm/decade. Moreover, a statistically 

significant change point was detected in wind speed in 1975, with a statistically significant 

increasing trend of 0.02 m/decade. This is critical as high wind speed tends to replace the saturated 

air from earth surface with dry air. For the 1948-2017 relative humidity data, there was a 

statistically significant change point in 1977, and a significant decreasing trend of 0.35% /decade 

after 1977. Similarly, monthly 1000-mb geopotential height (GPH) data had a statistically 

significant change point in 1976, with an overall statistically significant increasing trend of 3.1 

m/decade, which, as a measure of the atmospheric pressure level, means the lower atmosphere had 
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become warmer. The monthly specific humidity data of 1948-2016 had a statistically significant 

change point in 1966, and an overall statistically significant decreasing trend of 0.15 gm/kg per 

decade. The AET anomaly of the NRB has increased significantly, with a statistically significant 

change point in 1995 with an upward trend of 1.2 mm/decade. This can be attributed to a higher 

wind speed and wind stress, warming and lower RH.  

Composite analysis of NRB’s hydroclimate data between 1948 and 2017 also shows 

significant changes across the entire NRB. Beside ENSO, our results also show that IOD plays a 

crucial role on NRB’s hydroclimate variability over inter-decadal and longer timescales. The 

wavelet coherence spectrum plots between AET and El Niño and IOD show in-phase, statistically 

significant coherent relationship at 2-4 and 8-14-years band after 1970s (Figs 6g, 7g), which 

peaked at the 14–16-year time scale after 2000s. On the other hand, the wavelet coherence between 

IOD and AET show that IOD mainly lead AET after 2000s. The higher AET after 1970s can be 

partly attributed to stronger El Niño amplitudes, as shown by strong wavelet coherence between 

zonal and meridional wind stresses and AET at 1-2 years bands. Their recurrent in-phase and anti-

phase relationships at 1-2 years bands demonstrate the effect of positive (negative) wind stress 

anomalies when El Niño was active. while IOD, meridional and zonal wind stresses showed in-

phase coherence after 2000s. It seems both increasing meridional wind stress anomalies and 

stronger El Niño episodes have contributed to changes in the heat content of NRB. A detailed cross 

correlation (ρ) analysis shows that the hydroclimate of NRB is strongly teleconnected to El Niño 

and IOD, especially to El Niño, with positive or negative correlations between El Niño 3.4, surface 

temperature (Ts) (ρ =  0.97), GPH (ρ =  0.81), relative humidity (ρ = -0.97) and precipitation (ρ = 

-0.7). The correlation of these climate variables with IOD are generally lower than with El Niño. 

However, IOD still plays an important role on the hydroclimate variability in the NRB, such as its 

effect on NRB’s surface temperature and precipitation anomalies under neutral ENSO conditions, 
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The results from this study would help us to better develop mitigation strategies for these riparian 

countries against the potential impact of climate change. 

 

7) Worsening Drought of Nile Basin by Atmospheric Circulation Shift, Stronger ENSO and Indian 

Niño 

Analysis of hydroclimate data demonstrated following changes that contributed to recent 

increasing aridity of the Nile river basin. However, besides climate warming, statistical and 

wavelet transform coherence (WTC) analysis also shows that the influence of stronger ENSO and 

Indian Ocean dipole (IOD) in NRB has increased after 1980s, particularly the influence of IOD on 

NRB’s hydroclimate over inter-decadal timescales. A shift in zonal winds (westward) and 

meridional winds (southward) associated with stronger El Niño episodes has contributed to the 

increased aridity of NRB after 1970s, given stream function, GPH and U-wind anomalies 

associated with El Niño shows that changes in regional atmospheric circulations during more 

persistent and stronger El Niño episodes has resulted in drier NRB. The decrease in RH, SMC, and 

GWS had been the most significant in Uganda, Sudan, and northwestern Ethiopia where the 

increase in temperature, GPH, AET and wind stresses had also been the highest. After 1970s, WTC 

between El Niño, IOD, sc-PDSI (self-calibrating Palmer Drought Severity Index) and SPI 

(Standard Precipitation Index) shows significant anti-phase relationships, which again 

demonstrates that more frequent and severe El Niño, IOD and SST gradient over the Arabian Sea 

(WTIO) in recent years has led to more severe droughts in NRB. 

 Furthermore, from WTC and strong negative correlations between SPI, sc-PDSI and WTIO, 

NRB’s hydroclimate is shown to be more strongly influenced by WTIO than by IOD, and the Nile 

flow is more strongly teleconnected to IOD and WTIO than El Niño at inter-annual and inter-

decadal time scales. Contrary to past findings, results show that IOD and WTIO are better 
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predictors of the Nile flow than El Niño. In summary, the warming over the Arabian sea and 

stronger El Niño, attributed to warming, and the southward shift of the lower atmospheric stream 

functions have contributed to worsening droughts observed in NRB in recent years, where its flow 

at upstream and downstream stations have decreased from 13.7 to 114.1 CBM/decade, 

respectively. Climate projections suggest that under the combined impact of warming and stronger 

WTIO and El Niño episodes, future droughts of the NRB will worsen.   
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Appendices 

This section covers the supplementary discussions for Chapter 7 

Appendix A: Spatiotemporal variability of reference and actual evapotranspiration 

Reference evapotranspiration was calculated for the NRB based on penman Montieth formula; 

the highest monthly evapotranspiration rates were observed within the months of June to October. 

The average annual ETo ranged from 746 to 2340 mm/yr, with the lowest annual ETo values 

observed in Rwanda and Burundi with mean annual Eto ranges from 746-1100 mm/yr, and 1150-

1450 mm/yr respectively. While the highest values of annual ETo rates were observed mainly over 

Sudan and some parts of Egypt with Sudan portions of the NRB almost dominated the areas with 

high very high reference Eto with an annual value range from 2020-2340 mm/yr-very high 

evapotranspiration rate from the surface water where most the Nile water is lost due to 

evapotranspiration. Temperature also plays a very important role in increasing evapotranspiration 

as mentioned earlier, as Sudan and Egypt also occupied the highest mean monthly temperature 

among the riparian countries. Therefore, conservation measurement should be taken to reduce 

these losses (supplementary Figure A1(a)). In the other hand Eritrea “1810 mm/yr”, Kenya “1740 

mm/yr”, Ethiopia “1620 mm/yr”, Uganda “1500 mm/yr”, Tanzania “1400 mm/yr”, Congo ‘Zaire’ 

have reference annual Eto of 1150 mm/yr. 

To measure the influence of increasing trend in relative humidity and wind speed we calculated 

reference and actual evapotranspiration in the NRB based on the methodology adopted in 

supplementary information. Actual evapotranspiration follows the rainy seasonal pattern. From 

the land cover map (supplementary Figure A1(b)), it’s clear that very high AET is observed in 

irrigated land and from water bodies in these regions with the highest AET rates being in the 
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Ethiopian highlands and the southern portion of the NRB in countries such as Uganda, Egypt, 

Sudan, Burundi, Congo, Kenya, Rwanda, and Tanzania, which lead to very high losses due to 

increased rate of AET. Supplementary Figure A1 also shows spatiotemporal distribution of annual 

AET from 2003 to 2015. The magnitude of AET also increased, to determine the change rate AET 

anomaly was calculated between 2003 and 2015.  In 2003, results showed significant increase in 

AET values in the White Nile region in Sudan, Eritrea and Ethiopia, with the highest rate of 

increase observed over the White Nile in Sudan, this can be attributed to the increase in 

temperature anomalies, decrease in relative humidity decreased, and the increase in zonal wind, 

which caused more water to evaporate. This finding is in agreement with previous studies, which 

attributed the increase in ET rate to the increases in wind speed and decreases in relative humidity 

(Eslamian et al., 2011). In 2005, AET increased by 50% in Sudan, and the Aswan high dam in 

Egypt compared to its value in 2003, this led to a significant amount of water losses. Very high 

spots also observed in the Roseires Dam and the Ethiopian highlands (supplementary Fig A2). By 

2008, increasing trend in AET anomalies continued and affected a larger area in Sudan including 

Sudd region – a vast swamp in South Sudan-, Ethiopia, Eritrea and Uganda. This trend became 

more dominant and clearer in 2010 in the White Nile Basin, which witnessed significant increase 

in AET anomalies (supplementary Figure A2). However, AET anomaly in 2012 showed 

significant increase in the entire NRB in countries such as Egypt, Sudan, Ethiopia, Eritrea and 

Congo. This increasing trend reached its peak in 2012 and continued to increase in 2015, leading 

to more drought in these regions. 
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Supplementary Figure A1. Spatial distribution of annual reference evapotranspiration (a), land cover (b), and actual evapotranspiration (2003-2015) 
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     Supplementary Figure A2: Actual evapotranspiration anomalies -calculated from the long-term average actual evapotranspiration between 2003 and 2015 
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Appendix B: NRB’s metrological drought under climate warming 

Implications of the decrease in precipitation anomaly by 16.2 mm/decade, increase in 

warming trend after 1976, and decreasing trend in relative humidity with increased AET caused 

severe effects on the agricultural sector and reduced availability of water. For instance, rainfed 

agriculture in Ethiopia and Sudan, where most of the farmers depend on the rainy season to 

irrigate their crops, reduced precipitation and increased warming made the life of those farmers 

worse and led to the documented historical drought in the region in 1978, 1983, 1984, 1987, 1991, 

1994, 1999, 2002,2004,2005 which were captured in 1-month SPI trend analysis. The 3-months 

SPI (supplementary Fig B1 (a)) ranged from -1.616 to 1.44 with standard deviation of 0.554.  At 

the 3-month SPI statistics showed significant change point at 1979 where average SPI decreased 

from 0.321 between 1950-1979 to -0.31 between 1979-2016 with significant downward trend in 

SPI value with 0.2/decade (supplementary Table B1).  These periods also identified more clearly 

by increasing the timestep. It’s also logical to capture sign of severe droughts at shorter timestep 

as the variability between monthly precipitation is very high and some are very dry. This result 

also reflects the accuracy of SPI in reconstructing historical occurrences of drought. At the 6-

month time scale, the highest value was 1.466 and the lowest observed value was -1.439 with 

standard deviation of 0.56, the 6 and 12-month SPI showed similar trend with significant change 

point in 1979 (supplementary Fig B1(b,c)), but the amplitude is higher, where the decline trend 

in SPI was 0.23/decade and 0.27/decade respectively which amplify the existence of extreme 

clime change in the NRB and dry conditions during ENSO events. 
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Supplementary Figure B1: Metrological drought trend-SPI: 3-month (a), 6-month (b), 12-month (c) 
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Supplementary Table B1: Change point and trend analysis of metrological drought in the NRB 

  
Pettitt test Mann–Kendall test   

Nile river basin  Years  K t P trend Tau Sen's slope P trend Mb Ma 

1-month SPI 1950-2016 79564 1979 < 0.0001 Ha 0.362 -0.015 < 0.0001 - 0.223 -0.225 

3-month SPI 1950-2016 101530 1979 < 0.0001 Ha 0.464 -0.02 < 0.0001 - 0.321 -0.31 

6-month SPI 1950-2016 117354 1979 < 0.0001 Ha 0.548 -0.023 < 0.0001 - 0.387 -0.381 

12-month SPI 1950-2016 132794 1979 < 0.0001 Ha 0.638 -0.027 < 0.0001 - 0.451 -0.852 
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Appendix C: NRB’s agricultural drought assessment 

Agriculture drought might occur in two situations if water availability/ precipitation 

decreased which lead to decreased soil moisture or increased warming trend which increase 

evaporation rate. Supplementary Fig C1 shows results of the change detection for the period 2002-

2016.  Results showed a large variation of droughts in various regions in the NRB. Difference 

between NDVI values in 2002-2003 revealed decrease in NDVI values up to 0.3 which indicate 

large decrease in vegetation cover, regions that dominated the highest decrease in vegetation cover 

were Tanzania, Uganda, Rwanda, Burundi, Congo, Ethiopia, and Sudan. By investigating the type 

of land cover that witnessed decrease in NDVI values, agriculture fields were the most affected, 

reflecting agricultural drought. It’s also noted that the same countries witnessed an increase in 

AET during the same period. The difference between 2004-2003 also showed continuous drought 

in more areas than the observed drought in 2003, the entire regions of Ethiopia, Eritrea, Kenya, 

Tanzania, Congo and Uganda faced severe agriculture droughts in 2004. These results agree with 

the observed trend in SPI between 2003 and 2004, it seems like what might be moderate 

metrological drought can have severe consequences in agricultural drought.  

Between 2006 and 2007, agricultural land decreased dramatically in Ethiopian highlands, 

Eritrea, Uganda, Rwanda, Burundi, Congo and Sudan-which also depend on rainfed agriculture in 

the White Nile region. Between 2008 and 2009, there was a little improvement in Uganda as NDVI 

values increased by 0.1. However, extensive drought spread all over the agricultural land due to 

altered precipitation pattern and warming trend as captured by the SPI trend analysis in 2008 and 

2009. This indicate that irrigated crops in arid regions are so sensitive to shortage of moisture due 

to the high rate of evapotranspiration. In 2012, the NRB showed sings of vegetation recovery and 



280 
 

an increase in agricultural areas (supplementary Fig C1), this year also showed an increase in 

annual precipitation compared to 2011. In 2016, agricultural drought continued with more severe 

drought in Ethiopian highlands, Kenya, Eritrea, Uganda, Rwanda, Burundi, Congo and Sudan. We 

can conclude that increasing warming trend along with altered precipitation patterns, leads to 

severe agriculture drought in the NRB.  
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Supplementary Figure C1: Agricultural drought change detection 2002-2016 
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Appendix D: Influence of Indian Ocean dipole (IOD) and ENSO on NRB’s hydroclimate 

Beside ENSO, our results also show that IOD plays a crucial role on NRB’s hydroclimate 

variability and drought severity over inter-decadal and longer timescales. Based on IOD’s power 

spectrum and significant coherence with ENSO at 1-2, 2-4, 4-8, 14-16, and 32-64 year time scales, our 

results demonstrate a strong coupling between IOD and ENSO, for both exhibited similar change 

patterns, e.g., positive IOD becomes more intensive as the amplitude of El Niño increases 

(supplementary Fig D1 (a)). In 1-2- and 2-4-year bands, ENSO and IOD are almost in phase, but are 

out of phase by about a year in other periodicities.  This ENSO–IOD teleconnection has strengthened 

since the 1970s partly because of the recent enhancement of the Walker circulation (Cai et al., 2015), 

resulting in significant positive correlation between El Niño and IOD amplitudes (r = 0.32) 

(supplementary Fig D1 (b)).  

a

   
Supplementary Figure D1. IOD-ENSO relationship over the NRB basin: (a) wavelet coherence between El Nino 

3.4 and IOD index, and (b) correlation between El Niño 3.4 and IOD amplitudes. El Niño 3.4 and IOD amplitude 

computed as the SD of El Niño 3.4 and IOD over 30-year window from 1913 to 2017. In b, there is a significant 

positive correlation between El Niño and IOD amplitudes (r = 0.32). This positive correlation indicates that positive 

IOD occur simultaneously with El Niño. In b, IOD seems to have an independent mode of variability from El Niño. 

For instance, a strong positive IOD event (shown by a yellow mark in b) occurred in 1961 under a neutral ENSO 

conditions (blue colour in b).  
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          The wavelet coherence spectrum plots between AET and El Niño and IOD show in-phase, 

statistically significant coherent relationship at 2-4 and 8-14-years band after 1970s 

(supplementary Fig D2 (a, b)), which peaked at the 14–16-year time scale after 2000s. On the other 

hand, the wavelet coherence between IOD and AET show that IOD mainly lead AET after 2000s. 

The higher AET after 1970s can be partly attributed to the westward propagation of zonal winds 

and southward propagation of meridional winds associated with stronger El Niño amplitudes, as 

shown by strong wavelet coherence between zonal and meridional wind stresses and AET at 1-2 

years bands (supplementary Fig D2 (c, d)). Their recurrent in-phase and anti-phase relationships 

at 1-2 years bands demonstrate the effect of positive (negative) wind stress anomalies when El 

Niño was active. There is a significant positive correlation between AET and El Niño 3.4 (r =0.93) 

and meridional wind stresses (r = 0.62) in contrast to negative correlation between AET and IOD 

(r = -0.47) and zonal wind stresses (r = -0.37) (supplementary Fig D2 (e, f)), which shows that El 

Niño and meridional wind affect the AET of NRB. A statistically significant in-phase relationship 

between meridional wind stress and El Niño at 2-4 and 4-8 year band was detected over 1960-

2017, and in-phase relationship between zonal wind stress and El Niño at the 4-8-year band 1988 

and 2017 (supplementary Fig D3(a, b)), while IOD, meridional and zonal wind stresses showed 

in-phase coherence after 2000s (supplementary Fig D3 (c, d)). It seems both increasing meridional 

wind stress anomalies and stronger El Niño episodes have contributed to changes in the heat 

content of NRB.  
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Supplementary Figure D2. Wavelet coherence between NRB actual evapotranspiration (AET) and El Niño 3.4 

(a), AET and IOD (b), AET and zonal and meridional wind stresses (c, d). Field correlations between NRB AET 

and El Niño 3.4 and IOD amplitudes (e), and wind stresses (f). AET, meridional and zonal wind stresses computed 

over 20-year running periods from 1950 to 2017, El Niño 3.4 and IOD amplitude are the SD of El Niño 3.4 and 

IOD indexes over 20-year windows from 1950 to 2017 using the ERSST data sets. The numbers in the top right 

are the cross-correlation coefficient at the 5% level.    
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Supplementary Figure D3. Wavelet coherence between El Nino 3.4, IOD and wind stresses: Wavelet coherence 

between El Niño 3.4 Nino and meridional and zonal wind stresses (a, b), IOD and meridional and zonal wind stresses (c, 

d). 

 

The wavelet coherence plot between IOD and surface temperature (Ts) shows statistically 

significant, interannual (1-4yr) in-phase and anti-phase relationships over 1905 and 2018, 

revealing the interannual response of Ts and GPH to the variability of IOD in the last 100 years. 

At inter-decadal time scale, IOD and Ts show only significant, in-phase coherence at 8–16, 16-32, 

32-64-year bands over 1975-2018 (supplementary Fig D4(a)).  On the other hand, IOD and GPH 

were continuously in phase with significant coherent spatial pattern at 2-4- and 4-8-years band 

after 1970s (supplementary Figure D4 (b)). The wavelet coherence spectrum plot between 

precipitation and IOD shows in phase relationship with significant coherent spatial pattern at 2-4- 

a b 

c 
d 



286 
 

and 4-8-year band after 1990, and an anti-phase relationship at 32-year band between 1948 and 

2018 (supplementary Fig D4(c)). This strong anti-phase relationship shows that IOD primarily 

influenced NRB’s precipitation at inter-decadal timescales. There is a strong in-phase relationship 

between IOD and relative humidity at 2-4 yr band over 1998-2008, and at 4-8 and 8-16-year bands 

over 1960-1980, and an anti-phase relationship in the 32-64 -year band (supplementary Fig D4 

(d)). The wavelet coherence between IOD and SPI and sc-PDSI are statistically significant at 2–4, 

4-8, and 32-64-year bands, respectively.  Before 1970s, IOD was in-phase with both sc-PDSI and 

SPI, but after 1970s their relationships became predominantly anti-phase, which means that 

stronger positive IOD episodes after 1970s has led to lower SPI and sc-PDSI, resulting in more 

severe droughts in NRB after 1970s (supplementary Fig D4 (e-f)).   

 

 

a b 

c d 



287 
 

 

Supplementary Figure D4. Wavelet coherence between IOD and (a) surface temperature, (b) GPH, (c) 

precipitation, (d) relative humidity, (e) SPI, and (f) PDSI.  
 

Supplementary Figure D5 shows strong negative correlation between IOD and SPI (ρ= -0.87) 

which suggest that besides El Niño, IOD has also impacted the metrological drought of NRB 

similar to the mechanism that teleconnects East African precipitation to ENSO and IOD.  

 

  
Supplementary Figure D5. ENSO and IOD Teleconnections on NRB SPI (a) and PDSI (b). El Niño 3.4 and 

IOD amplitude are the SD of El Niño 3.4 and IOD indexes over 30-year windows from 1920 to 2017 using 

the ERSST data sets. The numbers in the top right are the cross-correlation coefficient between hydrologic 

variables and IOD amplitude (brown colour) and El Niño 3.4 amplitude (red colour) at the 5% level.  

 

To further investigate the role of IOD on the hydroclimate of NRB, cross correlation and wavelet 

coherence analysis using the two halves of IOD, i.e. the western pole (WTIO) over the Arabian Sea 
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(50°E - 70°E, 10°S - 10°N) and the southeast Indian Ocean (SEIO) (90°E to 110°E, 10°S to 0°N) 

suggest that the western part of the Indian Ocean SSTs plays a primary role on NRB’s precipitation 

over inter-decadal or perhaps longer timescales. The wavelet coherence plot shows a more 

prominent anti-phase relationship between WTIO and NRB’s precipitation anomalies at 2-4, 4-8, 

and 8-16-year bands after 1970s than the relationship between SEIO and NRB’s precipitation 

(supplementary Figure D6(a-b)). A stronger anti-phase relationship was also detected between 

WTIO and SPI and scPDSI throughout most of the period between 1905 and 2018, except between 

1950 and 1965 (supplementary Figure D6 (d-f)). This dominant anti-phase relationship between 

WTIO and NRB’s precipitation at interdecadal timescale (> 32-year) show that NRB’s 

hydroclimate is more strongly linked to the SST gradient over the Arabian Sea than by IOD and 

SEIO, such that WTIO exerted a significant negative influence on the NRB precipitation 

variability (ρ = -0.82).  The result implies that the more frequent occurrences of droughts in NRB 

are related to increased warming in the western Indian Ocean (supplementary Figure D7(a)), as is 

also evident from the strong negative correlation between SPI and SST in the western Arabian sea 

(ρ = -0.71 for SPI and -0.8 for PDSI) (supplementary Fig D7(b-c)).  Apparently, the variability in 

WTIO has contributed to severe droughts in NRB.  
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Supplementary Figure D6. Impact of SEIO and WTIO on NRB precipitation and drought. Wavelet 

coherence between SEIO and WTIO and precipitation (a, b), Wavelet coherence between SEIO and 

WTIO and PDSI (c, d), Wavelet coherence between SEIO and WTIO and SPI (e, f).  
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Supplementary Figure D7. WTIO and SEIO Teleconnections on NRB precipitation and droughts. Field 

correlation between SEIO and WTIO and NRB precipitation (a), correlation between SEIO and WTIO and 

NRB SPI (b), and (c) correlation between SEIO and WTIO and NRB PDSI.  There is a strong negative 

correlation between WTIO and NRB precipitation (r = -0.82), this result indicates that increasing frequency of 

extreme dry events in the NRB are attributed to increased warming in the western parts of the Indian Ocean. 

This is also evident from the strong negative correlation between SPI and SST amplitudes in the western 

Arabian sea. The variability in WTIO seems to be one of the main causes of severe droughts. In other word, 

the WTIO variations play a significant role in NRB droughts.  
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Appendix E: Flow variability and response of hydrological droughts to climate change 

Supplementary Fig E1 illustrates the departure in flow anomaly from the long-term average observed flow in 

Blue Nile. Generally, there is a decline in observed flow in Blue Nile, since 1964 average flow Is below 

normal. Average observed flow anomaly declined from 77.78 CBM/s between 1912-1964 to -89.5 CBM/s 

between 1964-2010. This is a statistically significant decline at the rate of 13.7 CBM/decade according to MK 

test. Nonparametric test also revealed statistically significant change point at 1964 as illustrated in 

supplementary Fig E1. 

 
     Supplementary Figure E1. Time series analysis of flow anomaly at Blue Nile station Khartoum  

 

The observed monthly flow records at Dongola showed high variability. Statistical analysis of the 

observed monthly flow data showed a statistically significant decline after 1945 (supplementary Fig 

E2(a)). There is a significant decline in flow anomaly at Dongola with a higher decline rate than 

the observed trend in Blue Nile station (supplementary Fig E2(b)) with a statistically significant 

change point in flow anomaly at 1965, just one year after the observed change in Blue Nile 

station. Hence, long term flow anomaly declined from 132 CBM/s between 1910-1965 to -375 

CBM/s between 1965-1984. This is a statistically significant decline trend at the rate of 77.4 
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CBM/decade. If compared with the trend in flow anomaly at Blue Nile station, this trend is more 

significant, and might be attributed to increased actual evapotranspiration in Blue Nile regions 

in Sudan in addition to warming trend and decreased precipitation. This agrees with reported 

information in the literature, where increase in warming trend and actual evapotranspiration can 

cause reduced river flow.  

 

 
Supplementary Figure E2. Time series analysis of monthly flow (a), and flow anomaly (b) at Dongola 

station-Sudan  

Furthermore, Pettit’s change point test showed a statistically significant change point in the monthly 

Nile River flow at Aswan in 1965, where mean monthly flow declined from 2637 CBM/s between 1900-

1965 to 2016 CBM/s between 1965 and 1987 (supplementary Fig E3 (a)). This is a statistically significant 
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decline in monthly flow records at Aswan station, with a decline trend of 39.6 CBM/decade since 1965 

(supplementary Table E1).  Supplementary Fig E3(b) shows the observed flow anomaly at Aswan 

station, as expected the decline trend is greater and more significant. Where climate change and 

change in hydroclimate variables led to a significant change in the observed flow. According to 

Non-parametric tests, there is a statistically significant change point in observed flow at 1965, 

where long term average flow anomaly dropped from 249 CBM/s between 1910-1965 to -716 

CBM/s between 1965-1984. This is a statistically significant decline trend of 114.1 CBM/decade. 

This indicate the severe implications of climate change in the observed flow in the Nile river basin, 

leading to severe droughts in most of the riparian of the Nile. 
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Supplementary Figure E3. Time series analysis of monthly flow (a), and flow anomaly (b) at Aswan 

Dam station-Egypt  

Supplementary Table E1: Nile river flow trend change detection and trend analysis  

 

  
Pettitt test Mann–Kendall test   

Nile river basin  Years  K t P trend Tau Sen's slope P trend Mb Ma 

Monthly flow “Aswan dam” 1900-1987 40862 1965 0.001 Ha 0.134 3.966 <0.0001 - 2637 2016 

Annual flow “Aswan dam” 1900-1987 1446 1965 <0.0001 Ha 0.2063 11.41 0.027 - 2754 2247 

Flow anomaly “Aswan dam” 1900-1987 1446 1965 <0.0001 Ha 0.2063 11.41 0.027 - 249.7 -716.5 

Monthly flow “Dongola” Sudan 1910-1984 15669 1945 0.02 Ha 0.010 2.008 0.05 - 2687 2567 

Annual flow “Dongola” Sudan 1910-1984 658 1965 0.001 Ha 0.278 7.74 0.008 - 2754 2247 

Flow anomaly “Dongola” Sudan 1910-1984 658 1965 0.001 Ha 0.241 7.74 0.003 - 132.05 -375.3 

Monthly flow “Blue Nile” Sudan 1912-2010 17702 N 0.6 Ha 0.04 0.61 0.044 - 1575 

Annual flow “Blue Nile” Sudan 1912-2010 854 1964 0.015 Ha 0.08 1.37 0.15 - 1645 1478 

Flow anomaly “Blue Nile” Sudan 1912-2010 854 1964 0.015 Ha 0.054 1.37 0.14 - 77.68 -89.5 

 

Hydrological drought investigation based on self-calibrated PDSI for the NRB showed 

significant change point at 1983 with increasing trend in hydrological droughts, significant change 

in hydrological drought was observed after 1983 with decreasing trend in PDSI of 0.58/decade 

causing severe hydrological droughts in 1973, 1987, 2002, 2003, 2004, 2005, 2006, 2008, 2009, 

2010, and 2011 (supplementary Fig E4 (a)). Using ArcGIS 10.1, the self-calibrated PDSI was 

analyzed for the period between 1950-2020 (supplementary Fig E4 (b, c)). The spatiotemporal 

distribution of PDSI shows similar pattern in all the NRB with incipient drought to moderate 

drought all over the entire basin with increase in areas occupied by moderate drought with time. 

To further investigate the hydrological drought in the NRB, we created time series of the self-

calibrated PDSI, monthly temperature timeseries, temperature anomaly and monthly precipitation 

timeseries and temperature anomaly for each riparian of the Nile individually, to capture the trend 

and change points in PDSI compared to the change points and trends in monthly and anomaly of 

temperature and precipitation.  
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Supplementary Figure E4 (a) Palmer drought severity index anomaly 1960-2015 
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                                            Supplementary Figure E4 (b) Palmer drought severity index 1950-1980  
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                                            Supplementary Figure E4 (c) Palmer drought severity index 1990-2020  
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Appendix F: Response of NRB’s streamflow, soil moisture content and groundwater storage 

to El Niño 3.4 and IOD  

The wavelet coherence between El Niño 3.4, the soil moisture content (SMC) and 

groundwater storage (GWS) of NRB shows an anti-phase relationship with statistically significant 

coherence at 1-2, 2-4-year bands over 1960-1998, 2-4-year band over 2000-2017, and an 

interdecadal, 16-32-year band (supplementary Fig F1(a), Fig F2(a)).  The wavelet coherence 

between IOD and SMC and GWS shows in-phase, interannual relationships over 1948-2017, but 

anti-phase relationships at larger timescales (supplementary Fig F1(b), Fig F2(b)). A statistically 

significant change point of 1979 was detected in SMC and GWS which show significant negative 

trends of 0.84 mm/decade and 1.44 mm/decade over 1979-2017, respectively (supplementary Fig 

F1(c), Fig F2(c)). These negative trends in SMC and GWS are attributed to significantly lower 

amount of precipitation and higher AET associated with intensive ENSO and WTIO activities over 

NRB in the same period, as shown by the significant negative (positive) correlation between El 

Niño 3.4 (IOD) amplitude and SMC (ρ = - 0.61 for Niño 3.4 and 0.52 for IOD) (supplementary 

Fig F1(d)).  Similarly, GWS is negatively correlated with El Niño 3.4 (ρ= -0.72), but positively 

correlated to IOD (ρ = 0.43).    

 

a b 
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Supplementary Figure F1. Influence of El Niño 3.4 and IOD on NRB soil moisture content (SMC). 

Wavelet coherence between SMC and El Niño 3.4 (a), IOD and SMC (b), SMC time series, where Mb is 

the long-term average before change point, and Ma the long-term average after change point (c). SMC are 

computed over 20-years moving periods and then correlated with El Niño 3.4 and IOD amplitudes (d), using 

ERA-Interim, FLDAS and GLADS soil moisture datasets. The correlation coefficients (at 0.05 significant 

level) in the top right. The slope is the linear trend estimated and the p-value is the trend significance based 

on the Mann–Kendall test.  

 

In contrast to the in-phase relationship between IOD and SMC and GWS over 1948-2017, there 

are stronger anti-phase relationships at 16-32 and 32-64 year bands between WTIO (SEIO) and 

soil moisture (GWS) (supplementary Fig F3(a-d)), with significant negative correlation between 

NRB’s SMC and SEIO (ρ = -0.92) and WTIO (ρ = -0.83) (supplementary Fig F3(e), which means 

that NRB’s SMC decreased under increased SEIO and WTIO amplitudes. The strong negative 

correlation between GWS and SEIO (ρ = -0.95) and WTIO (ρ = -0.91) implies that increased 

Indian Ocean SST gradient over the Arabian Sea and southeastern Indian Ocean resulted in lower 

groundwater storage in NRB (supplementary Fig F3(f)). It seems that the Arabian Sea (western 

pole) and the eastern Indian Ocean SST (southeastern pole) explains more of the variability of 
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NRB’s SMC and GWS than IOD, for both SMC and GWS of NRB were positively correlated with 

IOD amplitude (see supplementary Fig F1 and F2) 

 

 

 
Supplementary Figure F2. Same as in supplementary Figure 37 but for groundwater storage (GWS). GWS 

are area averaged daily groundwater storage from GLADS-CLSM025 between 1948-2014 and the Gravity Recovery 

and Climate Experiment (GRACE) between 2003 and 2017. A negative trend of 1.44 mm/decade in monthly GWS 

was observed after 1979 (c). This trend could be attributed to a significantly lower amount of precipitation, higher 

AET and lower SMC after 1979. In d, a statistically significant negative correlation can be seen between El Niño 3.4 

amplitude and GWS (ρ = -0.72), however a moderate positive correlation with IOD amplitude was detected (ρ = 

0.43).   
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 Supplementary Figure F3: Influence of WTIO and SEIO on NRB soil moisture content and groundwater 

storage. Wavelet coherence between SMC and SEIO and WTIO (a, b), Wavelet coherence between GWS 

and SEIO and WTIO (c, d). SMC and GWS were computed same as in supplementary Figure 20 and then 

correlated with WTIO and SEIO amplitudes. There is significant negative correlation between NRB SMC 

with SEIO and WTIO amplitudes (ρ = -0.83 for WTIO and -0.92 for SEIO). This strong negative 

0.22

0.26

0.3

0.34

0.38

67

68

69

70

71

72

1968 1975 1982 1988 1995 2002 2009 2016

S.
d 

(o C
)

SM
C

  (
m

m
)

Year

-0.83
-0.92

SMC (20-yrs moving window)
WTIO amplitude (20-yrs s.d)
SEIO amplitude (20-yrs s.d)

e

0.22

0.26

0.3

0.34

0.38

678

682

686

690

694

698

1968 1973 1979 1984 1990 1995 2001 2006 2012
S.

d 
(o C

)

G
W

S 
 (m

m
)

Year

-0.91
-0.95

GWS (20-yrs moving window)
WTIO amplitude (20-yrs s.d)
SEIO amplitude (20-yrs s.d)

f

a b 

c d 



302 
 

correlation indicates that the reduction in the NRB SMC is strongly linked to increased SEIO and WTIO 

amplitudes. In f, the strong negative correlation between GWS and SEIO and WTIO (ρ = -0.91 for WTIO 

and -0.95 for SEIO) implies that the large deviations in the Indian ocean SST gradient over the Arabian 

Sea and southeastern parts of the Indian Ocean are the main controllers of the NRB groundwater storage. 

This result suggests that the Arabian Sea (western pole) and the eastern Indian Ocean SST (southeastern 

pole) amplitudes are more important than the difference between the two poles (IOD). This is due to the 

fact that IOD is not sufficient to explain SMC and GWS variability in the NRB as both were positively 

correlated with IOD amplitude (see supplementary Fig F1 and F2).  

The wavelet coherence between the Blue Nile streamflow and IOD shows a strong anti-

phase relationship at 32-year band over 1905-2012 and a stronger anti-phase relationship at 2-4- 

and 4-8-year bands over 2000-2012 (supplementary Fig F4(a)). The Nile flow at Dongala station 

and IOD also exhibited significant anti-phase relationship after 1970s at 2-4 and 4-8 year bands 

(supplementary Fig F4(b)) while the Nile river flow at the Aswan station (downstream) showed 

anti-phase relationships with IOD at 20-25 year band over 1930-1984 (supplementary Fig F4(c)).  

The wavelet coherence between WTIO and SEIO and Blue Nile flow show a significant, anti-

phase relationship at 2-4 year band over 1960-1980, in phase relationship at 4-8 year band over 

1982-2000, and both WTIO and SEIO lead Blue Nile streamflow at 32-64 year bands over 1912-

2012 (supplementary Fig F5(a, b)). The anti-phase relationship was much stronger between WTIO 

and Blue Nile flow after 2000s. Nile flow at Dongala station also exhibited anti-phase relationship 

at 4-8- and 8-16-year band between 1940 and 1984. A dominant anti-phase relationship at 32-64-

year band was observed between Nile flow at Dongala and Aswan with both indexes 

(supplementary Fig F5(c, d)). 
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Supplementary Figure F4. Wavelet coherence between observed monthly flows and IOD: (a) wavelet 

coherence between IOD and Blue Nile flow, (b) wavelet coherence between IOD and Dongola flow, and 

(c) wavelet coherence between IOD and Aswan station flow.  

a b

 

a b 

c 
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c d

 

e f

 
 Supplementary Figure F5. Wavelet coherence between observed monthly Nile flows and SEIO and 

WTIO.  Wavelet coherence between SEIO and WTIO and Blue Nile flow (a, b), wavelet coherence 

between SEIO and WTIO and Dongola flow (c, d), and wavelet coherence between SEIO and WTIO and 

Aswan station flow (e, f).  

Supplementary Figure F6 shows a significant negative correlation between the Nile 

streamflow and IOD (ρ = -0.71 for Blue Nile flow and -0.57 for Nile flow at Dongala station) 

(supplementary Fig F6(a)), compared to a less significant negative (positive) correlation between 

El Niño and the Nile streamflow at Blue Nile ( ρ = -0.31) and Dongala stations ( ρ = 0.25), 

respectively (supplementary Fig F6(b)), which demonstrate the influence of IOD on the Nile 

streamflow at inter-annual to inter-decadal time scales. The peak correlation between IOD and 

the Nile streamflow occurred a year earlier than that between El Niño and the Blue Nile 

streamflow, which agrees with the wavelet coherence between El Niño and IOD (i.e. one lead the 

other shown in supplementary Figure D1(a, b). The increasing intensity in El Niño after 1978 
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(represented by the change point (yellow color) in supplementary Fig F6(a) shows that El 

Niño occurred more frequently with positive IODs than La Niña events with negative IODs. Our 

results show a strong teleconnection between the Nile streamflow and the Indian Ocean SST 

gradient over the western and the southeastern poles (supplementary Fig F6(c, d)). There are 

significant negative correlations between the Nile flow (Dongala station) and the southern Indian 

Ocean SST gradient over the Arabian Sea (WTIO) and the southeastern Indian Ocean (SEIO) (ρ 

= -0.72 and -0.58). However, the negative correlations are stronger between Blue Nile flow and 

WTIO and SEIO (ρ = -0.92 and -0.88), which means that the Nile River streamflow is strongly 

linked to WTIO and SEIO, with their warm (cold) phase associated with decreased (increased) 

Nile streamflow (shown by arrows in Fig. F6(c)). These results demonstrate the teleconnection 

between the Nile streamflow, SST of southern and eastern parts of the Indian Ocean, and El Niño 

at inter-annual to multi-decadal time scale. These results indicate that the intensity of the Indian 

Ocean Dipole and western pole are a better predictor of the Nile river flow than El Niño. 

 

 

 

 

 

 

 

 



306 
 

 

 

Supplementary Figure F6. Response of NRB flow variability to El Niño 3.4, IOD amplitude and the IOD 

two pole amplitudes i.e. western pole amplitude (WTIO) over the Arabian Sea and eastern pole amplitude 

(SEIO) over south of Indonesia: Correlation between NRB flow at Blue Nile and Dongala stations with El 

Niño 3.4 and IOD amplitudes (a, b), and SEIO and WTIO amplitudes (c, d), respectively. The NRB flow 

are computed over 30-year running periods from 1913 to 2010 for the Blue Nile station, and from 1913 to 

1984 for Dongala station. El Niño 3.4, IOD, SEIO, WTIO amplitudes are computed as the SD of the El 

Niño 3.4, IOD, SEIO, WTIO indexes over 30-year windows from 1913 to 2017, using the ERSST data 

sets.  
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Appendix G: Countries ‘drought classification system based on drought severity indexes 

sc-PDSI, monthly temperature, temperature anomaly, monthly precipitation and 

precipitation anomaly and composite analysis of the NRB’s hydroclimate data were analyzed for 

each riparian country of NRB, to relate climate warming to trend and change points in hydrologic 

droughts of these countries. 

• Ethiopia 

Pettit’s test showed that there is a change point in monthly precipitation in 1968 and change point in 

precipitation anomaly in 1977. Monthly and anomaly of temperature have the same change point in 1994. 

Analysis of long-term precipitation and temperature data between 1960-2015 in Ethiopia revealed 

statistically significant warming trend of 0.23 °C per decade (Supplementary Fig G1(b)) and both monthly 

precipitation and precipitation anomaly showed statistically significant decreasing trend. With precipitation 

anomaly (supplementary Fig G1(c)) decreasing at much higher rate 18.01 mm/decade (supplementary Table 

G1). This result agrees with the main trend in the NRB and does not agree with result of Mengistu et al 

(2014), where they reported a warming trend of 0.1 and 0.15 °C per decade in Ethiopia, between 1981-2010, 

and according to their study, precipitation showed statistically non-significant increasing trends of 35 mm 

per decade at the annual timescale.  This is not true, as they used short time period 1981-2010 to conduct 

trend analysis and just 4 years before their data there is a change point and decline trend in precipitation and 

increase in warming that they did not include in their study. So, what they reported is a sub-trend for short 

time that we also captured for the same period but represent the overall trend over Ethiopia. There is also a 

statistically significant change point in PDSI in 1983 (supplementary Fig G1(a)), MK trend analysis revealed 

statistically significant decreasing trend in PDSI with 0.58/decade. This illustrate the change of the climate 

of Ethiopia and recurrent of drought events. Based on PDSI drought classification (supplementary Table 

G2), Ethiopia witnessed severe hydrological droughts in 1973, 1987, 2002, 2003, 2004, 2005, 2006, 2008, 

2009, 2010, and 2011.  While there was moderate hydrological drought during the following years 1965, 
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1969, 1971, 1972, 1975, 1984, 1985, 1986, 1988, 1990, 1991, 1992, 1994, 1995, 1997 and 2012. This is in 

good agreement with the observed agricultural drought trend in Ethiopia as 2011 there a huge decrease in 

irrigated land and significant increase in actual evapotranspiration due to very high warming trend.  This is 

also in agreement with the trend observed from SPI trend analysis.  

Supplementary Table G1. Change points and trend analysis of PDSI, temperature and 

precipitation in each riparian country  

  
Pettitt test Mann–Kendall test 

  
Ethiopia subbasin Years  K t P trend Tau Sen's slope P trend Mb Ma 

PDSI time series  1960-2013 60763 1983 < 0.0001 Ha 0.35 -0.058 < 0.0001 - 0.338 -1.36 

Temperature time series  1960-2014 29866 1994 < 0.0001 Ha 0.44 0.023 < 0.0001 + 20.934 21.6 

Temperature anomaly 1960-2015 601 1994 <0.0001 Ha 0.653 0.028 <0.0001 + -0.23 0.424 

Precipitation time series  1960-2015 3794 1968 0.007 Ha 0.01 -0.014 0.021 - 89.156 80.94 

Precipitation anomaly  1960-2015 200 1977 0.02 Ha 0.073 -1.801 0.04 - 40.15 -30.2 

Uganda subbasin  
           

PDSI time series  1960-2013 50079 1979 < 0.0001 Ha 0.321 -0.058 < 0.0001 - 0.379 -1.314 

Temperature time series  1960-2014 55944 1994 < 0.0001 Ha 0.485 0.033 < 0.0001 + 22.255 23.42 

Temperature anomaly 1960-2013 645 1994 <0.0001 Ha 0.694 0.033 0.03 + -0.41 0.756 

Precipitation time series  1960-2015 6800 N 0.687 Ho 0.03 -0.113 0.279 - 104.704 

Precipitation anomaly 1960-2013 197 1978 0.025 Ha 0.073 -0.864 0.003 - 29.69 -37.9 

Kenya subbasin  
           

PDSI time series  1960-2013 45349 1991 < 0.0001 Ha 0.28 -0.056 < 0.0001 - 0.126 -1.424 

Temperature time series  1960-2014 42974 1994 < 0.0001 Ha 0.444 0.026 < 0.0001 + 21.258 22.16 

Temperature anomaly 1960-2014 634 1994 <0.0001 Ha 0.611 0.028 0.002 + -0.317 0.584 

Precipitation time series  1960-2015 6032 N 0.419 Ho 0.023 -0.017 0.401 - 94.764 

Precipitation anomaly 1960-2014 171 1968 0.0.3 Ha 0.11 -1.801 0.05 - 110.07 -52.4 

Tanzania subbasin  
         

 
 

PDSI time series  1960-2013 50493 1991 < 0.0001 Ha 0.263 -0.045 < 0.0001 - 0.148 -1.314 

Temperature time series  1960-2014 33073 1986 < 0.0001 Ha 0.433 0.021 < 0.0001 + 22.295 22.96 

Temperature anomaly 1960-2014 659 1986 <0.0001 Ha 0.639 0.022 < 0.0001 + -0.325 0.325 

Precipitation time series  1960-2015 7144 N 0.872 Ho 0.064 -0.103 0.019 - 85.492 
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Precipitation anomaly 1960-2015 236 1991 0.049 Ha 0.215 -2.418 0.028 - -0.318 -80.58 

Sudan subbasin    
          

PDSI time series  1960-2013 35944 1968 < 0.0001 Ha 0.124 -0.017 < 0.0001 - 0.171 -1.49 

Temperature time series  1960-2014 23117 1979 < 0.0001 Ha 0.439 0.039 < 0.0001 + 27.198 28.33 

Temperature anomaly 1960-2014 603 1978 <0.0001 Ha 0.677 0.039 <0.0001 + -0.735 0.399 

Precipitation time series  1960-2015 4754 N 0.129 Ho 0.013 -0.01 0.647 - 30.154 

Precipitation anomaly 1960-2015 241 1968 0.01 Ha 0.124 -0.757 0.11 - 42.77 -13.03 

Congo ‘Zaire’ subbasin    
          

PDSI time series  1960-2013 15801 1963 0.001 Ha 0.04 -0.003 0.104 - 2.406 0.003 

Temperature time series  1960-2014 16342 1985 0.005 Ha 0.197 0.007 < 0.0001 + 24.429 24.78 

Temperature anomaly 1960-2014 501 1982 <0.0001 Ha 0.318 0.007 0.001 + -0.194 0.144 

Precipitation time series  1960-2015 5165 N 0.248 Ho 0.040 -0.141 0.147 - 131.425 

Precipitation anomaly 1960-2015 42.3 1970 0.049 Ha 0.163 -1.905 0.01 - 77.43 -20.93 

Burundi subbasin    
          

PDSI time series  1960-2013 18044 1990 < 0.0001 Ha 0.054 -0.004 0.049 - 0.122 -0.404 

Temperature time series  1960-2014 54455 1994 < 0.0001 Ha 0.39 0.02 < 0.0001 + 20.129 20.9 

Temperature anomaly  1960-2014 656 1989 <0.0001 Ha 0.564 0.021 0.02 + -0.31 0.388 

Precipitation time series  1960-2015 5518 N 0.278 Ho 0.009 -0.072 0.013 - 102.6 

Precipitation anomaly 1960-2014 280 1989 0.04 Ha 0.389 -1.917 0.008 - 27.53 -46.48 

Rwanda subbasin    
          

PDSI time series  1960-2013 18435 1969 < 0.0001 Ha 0.023 -0.04 0.039 - 0.836 -0.227 

Temperature time series  1960-2014 65428 1994 < 0.0001 Ha 0.399 0.021 < 0.0001 + 18.729 19.59 

Temperature anomaly 1960-2014 663 1990 <0.0001 Ha 0.543 0.022 < 0.0001 + -0.326 0.44 

Precipitation time series  1960-2015 5192 N 0.198 Ho 0.021 -0.013 0.440 - 99.614 

Precipitation anomaly 1960-2015 254 1983 0.123 Ha 0.126 -1.558 0.10 - 34.56 -35.56 

Eritrea subbasin    
          

PDSI time series  1960-2013 54130 2001 < 0.0001 Ha 0.207 -0.048 < 0.0001 - 0.201 -2.72 

Temperature time series  1960-2014 24322 1979 < 0.0001 Ha 0.431 0.03 < 0.0001 + 23.656 24.57 

Temperature anomaly 1960-2013 579 1987 <0.0001 Ha 0.649 0.03 <0.0001 + -0.573 0311 

Precipitation time series  1960-2015 6498 N 0.593 Ho 0.028 -0.004 0.305 - 28.05 

Precipitation anomaly 1960-2015 263 1988 0.10 Ha 0.175 -1.505 0.06 - 27.34 -37.02 
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*Mb, mean value before the change point, Ma mean after the change point ‘t’  
 

Supplementary Table G2: PDSI drought severity categories 
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PDSI Category 

3.00–3.99  Very wet  

2.00–2.99  Moderately wet  

1.00–1.99  Slightly wet  

0.50–0.99  Incipient wet spell 

-0.49 to 0.49  Near normal 

-0.5 to -0.99 Incipient drought 

-1 to -1.99 Mild drought 

-2 to -2.99 Moderate drought 

-3 to -3.99 Severe drought 
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Supplementary Figure G1: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), 

precipitation anomaly (c) over Ethiopia ‘Blue Nile’  

• Uganda 

There is no change point in monthly precipitation, but precipitation anomaly showed a 

statistically significant change point in 1978 (supplementary Fig G2(c)). Monthly and anomaly of 

temperature have the same change point in 1994 similar with Ethiopia. Analysis of long-term 

precipitation and temperature data between 1960-2015 in Uganda revealed statistically significant 

warming trend of 0.33 °C per decade (supplementary Fig G2(b)) much higher warming rate than 

Ethiopia. While, precipitation anomaly showed statistically significant decreasing trend with 8.3 

mm/decade (supplementary Table G1). There is also a statistically significant change point in 

PDSI in 1979 (supplementary Fig G2(a)), MK trend analysis revealed statistically significant 

decreasing trend in PDSI at the same rate as Ethiopia. This illustrate that warming trend in Uganda 

have more effect on hydrological drought than the decline in precipitation. Based on PDSI drought 

classification (supplementary Table G2), Uganda suffered from severe hydrological droughts in 

1965, 1971,1972, 1979, 1980, 1984, 1992, 1993, 1994, 1997, 2000, 2002, 2004, 2005, 2006, 2009, 

2010, 2011 and moderate hydrological drought during the following years 1967, 1974, 1975, 1981, 

1982, 1985, 1987, 1988, 1989, 1990, 1995, 2001, 2003, 2007, 2008, and 2012. Uganda faced more 
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hydrological drought than Ethiopia due to the very high warming rate, for instance out of the 55 

years of PDSI data Uganda is marked with severe drought and moderate drought in 35 years. This 

is in good agreement with the observed agricultural drought trend in Uganda in 2002, 2004, 2005, 

2006, 2009, 2010, 2011 and increased AET anomaly at the same years, which signify the effect of 

increased warming.  
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Supplementary Figure G2: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), precipitation 

anomaly (c) over Uganda 1960-2016 F  

• Kenya 

Precipitation anomaly showed a change point in 1968 (supplementary Fig G3(c)). Monthly and 

anomaly of temperature have the same change point in 1994 similar with Ethiopia and Uganda. 

There is a statistically significant warming trend of 0.28 °C per decade (supplementary Fig G3(b)) 

slightly higher than Ethiopia but lower than Uganda. Precipitation anomaly showed statistically 

significant decreasing trend with 18.01 mm/decade (supplementary Table G1), this is an 

interesting point as Kenya shares borders with Ethiopia. There is also a statistically significant 

change point in PDSI in 1991 (supplementary Fig G3(a)), MK trend analysis revealed statistically 

significant decreasing trend in PDSI at 0.56/decade. Based on PDSI drought classification 

(supplementary Table G2), Kenya suffered from severe hydrological droughts in 1965, 1974, 

1975, 1976, 1981, 1984, 1992, 1993, 1994, 1997, 2000, 2004, 2005, 2006, 2008, 2009, 2010, 2011 

and moderate hydrological drought during the following years 1961, 1967, 1971, 1972, 1973, 

1980, 1986, 1987, 1988,1996, 1999, 2001, 2002, 2003. Severe and moderate drought in 32 years. 

This is in good agreement with the observed agricultural drought trend in Kenya in 2002, 2004, 

2005, 2006, 2009, 2010, 2011 and increased AET anomaly at the same years.   
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Supplementary Figure G3: Long term hydrological drought, PDSI trend (a), temperature 

anomaly (b), precipitation anomaly (c) over Kenya 1960-2016  
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• Tanzania 

Precipitation anomaly (supplementary Fig G4(c)) showed a change that there is a statistically 

change point in 1991. Monthly and anomaly of temperature have the same change point in 1986 

with warming trend of 0.22 °C per (supplementary Fig G4(b)) slightly lower than Ethiopia. 

Precipitation anomaly showed significant decreasing trend with 24.18 mm/decade. There is also a 

statistically significant change point in PDSI in 1991 (supplementary Fig G4(a)), trend analysis 

revealed significant decreasing trend in PDSI at 0.45/decade. Based on PDSI drought 

classification, Tanzania suffered from severe hydrological droughts in 1961, 1967, 1974, 1993, 

1997, 2000, 2003, 2004, 2005, 2006, 2009, 2010 and moderate hydrological drought during the 

following years 1960, 1965, 1967,1975, 1976,1982, 1992,1994,1996,2011, 2012. This is in good 

agreement with the observed agricultural drought trend in Tanzania in 2002, 2004, 2005, 2006, 

2009, 2010, 2011 and increased AET anomaly at the same years.   
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          Supplementary Figure G4: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), 

precipitation anomaly (c) over Tanzania 1960-2016  

• Sudan 

Precipitation anomaly showed a change point in 1968 (supplementary Fig G5(c)). Monthly and 

anomaly of temperature have two change points 1979 for monthly temperature timeseries and 1978 

for temperature anomaly. There is a statistically significant warming trend of 0.39 °C per decade 

(supplementary Fig G5(b)), the highest warming rate in the entire NRB. Precipitation anomaly 

showed statistically significant decreasing trend of 7.57 mm/decade, there is also a statistically 

significant change point in PDSI in 1968 (supplementary Fig G5(a)) in the same year of the change 

point in precipitation anomaly, trend analysis showed statistically significant decreasing trend in 

PDSI at 0.17/decade. According to PDSI drought classification, Sudan witnessed severe 

hydrological droughts in 1973, 1982, 1983, 1984, 1985, 1986, 1987, 1990, 1991, 2002, 2004, 2009, 

2010, 2011 and moderate hydrological drought during the following years 1960, 1969, 1970, 1971, 

1972, 1974, 1975, 1976, 1977, 1981, 1988, 2000, 2008, 2012. This is in good agreement with the 

observed agricultural drought trend in Sudan in 2002, 2004, 2005, 2006, 2009, 2010, 2011 and 

increased AET anomaly at the same years.   
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Supplementary Figure G5: Long term hydrological drought, PDSI trend (a), temperature 

anomaly (b), precipitation anomaly (c) over Sudan ‘White Nile’1960-2016  
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• Congo 

Precipitation anomaly showed a change point in 1970 (supplementary Fig G6(c)). Monthly and 

anomaly of temperature have two different change points in 1985 for monthly temperature 

timeseries and 1982 for the anomaly. Increasing warming trend of 0.07 °C per decade 

(supplementary Fig G6(b)), the lowest warming rate in the NRB. Precipitation anomaly showed 

statistically significant decreasing trend with 19.05 mm/decade , there is also a statistically 

significant change point in PDSI in 1963 (supplementary Fig G6(a)), despite the very high decline 

trend in precipitation anomaly, the decreasing trend in PDSI is only 0.03/decade and at a lower 

confidence level “90”. Based on PDSI drought classification, Congo faced severe hydrological 

droughts in 1982, 1990, 1991, 1997, 2003 and moderate hydrological drought during the following 

years 1966, 1971, 1977, 1983, 1986, 1993,2001,2004, 2009. This is in good agreement with the 

observed agricultural drought trend in Congo in 2003, 2004, 2009 and increased AET anomaly at 

the same years.   
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Supplementary Figure G6: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), 

precipitation anomaly (c) anomaly over Congo  

 

• Burundi 

precipitation anomaly showed a change point in 1989 (supplementary Fig G7(c)). Monthly 

and anomaly of temperature has two change points, the monthly temperature has a change point 

in 1994 while temperature anomaly has change point in 1989 (supplementary Fig G7(b)). There is 

a statistically significant warming trend of 0.21 °C per decade and precipitation anomaly showed 

statistically significant decreasing trend with 19.017 mm/decade (supplementary Table G1). There 

is also a statistically significant change point in PDSI in 1991 (supplementary Fig G7(a)), trend 

analysis also revealed significant decreasing trend in PDSI at 0.49/decade. Based on PDSI drought 

classification, Burundi witnessed severe hydrological droughts in 1960, 1967, 1970, 1975, 1992, 

-1

-0.5

0

0.5

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

T
-a

no
m

al
y

Year

b
T-anomaly
mu1 = -0.194
mu2 = 0.144
5 yrs.Mov.Avg

Congo

-300

-200

-100

0

100

200

300

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Pr
-a

no
m

al
y

Year

c
Pr-anomaly
mu1 = 77.436
mu2 = -20.939
5 yrs.Mov.Avg

Congo



320 
 

1993, 1994, 1999, 2000 and moderate hydrological drought during the following years 1961, 1969, 

1974, 1980, 1984, 1996, 1997, 1998,2002, 2003, 2004, 2005, 2006. This is in good agreement with 

the observed agricultural drought trend in Burundi in 2002, 2004, 2005, 2006 and increased AET 

anomaly at the same years.   

 

 

 
Supplementary Figure G7: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), precipitation 

anomaly (c) over Burundi 1960-2016   
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• Rwanda 

Precipitation anomaly showed a change point in 1983 (supplementary Fig G8(c)). Monthly 

temperature timeseries has a change point in 1994 while temperature anomaly has a change point 

in 1990. There is a statistically significant warming trend of 0.22 °C per decade (supplementary 

Fig G8(b)). Precipitation anomaly showed statistically significant decreasing trend with 15.58 

mm/decade (supplementary Table G1), there is also a statistically significant change point in PDSI 

in 1969 (supplementary Fig G8(a)). Trend analysis also revealed statistically significant decreasing 

trend in PDSI at 0.4/decade. Based on PDSI drought classification, Rwanda suffered from severe 

hydrological droughts in 1969, 1975, 1989, 1990, 1992, 1993, 1994, 2000, 2004 and moderate 

hydrological drought during the following years 1961, 1967, 1973, 1974, 1979, 1980,1984, 

1987,1988,1991, 1997, 1999, 2002, 2005, 2006, 2009, 2011, 2012. Rwanda is dominated by 

moderate hydrological drought. This is in good agreement with the observed agricultural drought 

trend in Rwanda in 2002, 2004, 2005, 2006, 2009, 2010, 2011 and increased AET anomaly at the 

same years.   
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Supplementary Figure G8: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), 

precipitation anomaly (c) over Rwanda  
 

• Eritrea 

Precipitation anomaly showed a change point in 1988 (supplementary Fig G9(c)). Monthly 

temperature timeseries has a change point in 1979 while temperature anomaly has a change point 

in 1987 (supplementary Fig G9(b)). There is a statistically significant warming trend of 0.3 °C per 

decade. Precipitation anomaly showed statistically significant decreasing trend with 15.05 

mm/decade (supplementary Table G1), there is also a statistically significant change point in PDSI 

in 2001 (supplementary Fig G9(a)). Trend analysis also revealed statistically significant decreasing 

trend in PDSI at 0.48/decade. Based on PDSI drought classification, Eritrea suffered from severe 

hydrological droughts in 1960, 1969, 1970, 1984, 1989, 1990, 1991, 2001, 2002, 2003, 2004, 2008, 
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2009, 2010, 2011, and 2012 and moderate hydrological drought during the following years 1966, 

1967, 1971, 1972, 1983, 1985, 1986, 1987, 1988, 2005, and 2006. This is in good agreement with 

the observed agricultural drought trend in Eritrea in 2002, 2004, 2005, 2006, 2009, 2010, 2011 and 

increased AET anomaly at the same years.   

 

 

  

Supplementary Figure G9: Long term hydrological drought, PDSI trend (a), temperature anomaly (b), precipitation 

anomaly (c) over Eritrea 1960-2016  
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Appendix H: Changes to driving variables and atmospheric circulation  

The lower atmosphere stream function of supplementary Fig H1 at 0.8458 sigma level, 

which depicts the rotational part of the flow (the flow is along the contours), indicates that main 

waves emanating from northern towards southern parts of NRB, have shifted further south over 

the two periods, from 1948-1984 to 1985-2017.  This long-term southward shift in the stream 

function over NRB would have also contributed towards the long-term drying of NRB, as part of 

the multiple changes due to climate warming, e.g., changes in air temperature, GPH, RH, soil 

moisture, surface runoff, PET and ENSO. 

 

 

Supplementary Figure H1: Composite maps 300-mb stream function derived from data of 1985-2017 minus 

data of 1948-1984. Between the two periods, 1948-1984 and 1985-2017, the 300-mb stream function had shifted 

southward during these two periods.  

Spatial correlation between El Nino 3.4 and geopotential height, precipitation, meridional 

wind, zonal wind, relative humidity, and surface temperature are presented in supplementary 

Stream function (m2/s) 
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Figure H2. There was a strong spatial correlation between El Nino 3.4 and geopotential height in 

the entire NRB with correlation coefficient ranging from 0.3-0.7 (supplementary Fig H2(a)). 

Negative weak to strong correlation was seen between precipitation and El Nino 3.4 in Uganda, 

this negative correlation can explain the increase in precipitation over Uganda. However, positive 

correlations indicate a decrease in precipitation as can be seen in the composite mean map of 

precipitation. For instance, precipitation composite mean map shows a decrease in the low land of 

Ethiopia and a slightly higher precipitation in its high land and therefore a weak correlation 

coefficient was seen in Ethiopia between El Nino 3.4 and precipitation (supplementary Fig H2(b)).  

Results also shows no correlations between El Nino 3.4 and precipitation over Egypt and 

northwestern regions of Sudan. Similarly, meridional, and zonal wind fluctuations associated with 

El Nino 3.4 occur mainly in Ethiopia, Sudan, Egypt and Uganda: However, meridional wind and 

zonal wind showed weak to strong negative correlations with El Nino 3.4 over Uganda, Ethiopia, 

and Sudan (decline in meridional and zonal wind). In addition to a positive weak correlation over 

Egypt (increase in meridional and zonal wind) (supplementary Fig H2(c, d)). Relative humidity 

also shows a negative correlation with El Nino 3.4 in Sudan, Uganda and lowlands of Ethiopia 

(supplementary Fig H2(e)). Moreover, surface temperature shows a strong positive correlation 

with El Nino 3.4 in most of the NRB. This imply that El Nino 3.4 drive the increase in surface air 

temperature in the Sudan, Ethiopia and Uganda (supplementary Fig H2(f)). These results agree 

well with the findings of the trend analysis and wavelet coherence between El Nino 3.4 and surface 

temperature.  

 



326 
 

 

 

a b 

c d 



327 
 

 

Supplementary Figure H2: Correlation of El Niño 3.4 index with (a) geopotential height, (b) 

precipitation, (c) meridional wind, (d) zonal wind, (e) relative humidity, and (f) surface temperature 

between 1948:2017 (p<5%) in the Nile River basin. Statistically, there is almost certainly a significant 

connection in the map (pfield < 0.1%). The fraction of the map with p< 5.00% is 85.13%. With an 

estimated decorrelation scale of 24.5° and (45. °) ² with data there are about 2 degrees of freedom in the 

map. This gives a field significance of 0.0% < pfield < 0.1%. The correlation coefficient between El Niño 

and GPH over NRB ranges from 0.3 to 0.7 (supplementary Fig 37a) but between precipitation and El Niño, 

the correlation varies from weak negative to strong positive in Uganda. Meridional and zonal wind in 

Ethiopia, Sudan, Egypt and Uganda are correlated with El Niño but the relation ranges from weak to strong 

negative correlations (supplementary Fig H2(c, d)). Relative humidity is negative correlated with El Niño 

in Sudan, Uganda and low lands of Ethiopia (supplementary Fig H2(e)), while surface temperature is 

positively correlated with El Niño in most NRB (supplementary Fig H2(f)), which is expected given recent 

stronger El Niño episodes have been linked to greenhouse warming.    
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Appendix I: Wavelet power spectrum of drought drivers   

Supplementary Figure I1 shows the wavelet power spectra of precipitation, temperature, 

relative humidity, geopotential height, specific humidity, wind stress, actual evapotranspiration, 

El Nino, SPI, self-calibrated PDSI, Blue Nile flow, Dongola station flow, and Aswan station flow 

of the NRB. The solid contours show statistically significant power at the 95% significance level 

against red noise, and the white sag line is the cone of influence, outside of which results may be 

affected by edge effects of zero paddings.  All the variables showed similar oscillation patterns in 

the NRB. For instance, the power spectrum plot of precipitation reveals three distinct bands at 1–

2-yr, 4–8-yr, and 2-4 yr periodicities from 1948 to 1958, 1958 to 1970 and the 1970 to 2010, 

respectively (supplementary Figure I1(a)). The power spectrum plot of surface temperature shows 

a dominate band of 1-2 yr (1910 to 2010), a band of 2-4 yr (1910 to 1930, 1940 to 1945 and 1980 

to 2000), and a band of 8-16 yr in 1920-1990 (supplementary Figure I1(b)). Similarly, the power 

spectrum plot of relative humidity shows a dominate band of 1-2 yr in 1950 to 2010, a dominate 

band of 16-32 yr in 1950 to 1995, and a band of 4 to 8 yr in 1960 to 1980 (Supplementary Figure 

I1(c)). For geopotential height and specific humidity (supplementary Figure I1(d, e)), two 

dominate bands of 1-2 yr and 16-32 yr were found in 1948 to 2010 and 1948-2008, respectively. 

In addition to a much smaller band of 4-8 yr in 1948 to 1970. Moreover, the power spectrum plot 

of El Niño 3.4 reveals a distinct band of 2–4-yr from 1948 to 2010, however the power spectrum 

is stronger after 1960. Wind stress and actual evapotranspiration wavelet spectra show a strong 2-

4 yr band between in 1950s and between 1995 to 2008, another 4-8 band was found in some years 

after the 1970s (supplementary Figure I1(g, f)).  

Continuous wavelet transform was conducted to identify the relative power of drought 

indices “SPI and self-calibrated PDSI” in different period scales. Similar wavelet power spectra 

were found for both indexes. Four distinct bands at 1–2-yr, 2–4-yr, 4-8 yr, and 8-16 yr periodicities 
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were found in PSI and self-calibrated PDSI. The 1–2-yr and 2-4 yr bands show a significant 

variability in the drought indexes between the years 1920 to 1940, 1950 to 1970, 1980 to 2010. 

However, strong power existed for the 4 -8 yr band between 1920 to 1940, 1970 to 1980 and 1990s. 

This agrees with major drought observed in the NRB. On the other hand, the highest concentration 

of the power spectrum was noticed for the periods 16 to 32 yr between 1955 to 2012. Overall, 

periodicity of 8-16 and 16-32 yr bands were the most significant periods in both indexes after 1970 

(supplementary Figure I1(i, j)). Wavelet spectra are useful for summarizing a river's temporal 

variability, therefore the power spectrum plot of Blue Nile flow, Dongola station flow and Aswan 

station flow were computed.  Blue Nile flow power spectrum plot reveals three distinct bands at 

1–2-yr, 8–16-yr, and 4-16 yr periodicities from 1912 to 2012, 1912 to 1932 and the 1975 to 2012, 

respectively.  Where, the 1–2-yr band is the dominant feature in Blue Nile flow (supplementary 

Figure I1 (k)). Similar pattern was observed in the Dongola and Aswan stations flow. Overall, the 

Nile River flow showed a combination of significant interannual and decadal oscillations that 

appeared and disappeared over 1912–2012. 

 

a b 



330 
 

 

 

 

 

c d 

e f 

g h 

i j 



331 
 

 

 

Supplementary Figure I1: wavelet power spectra of (a) precipitation, (b) temperature, (c) relative humidity, (d) 

geopotential height, (e) specific humidity, (f) wind stress, (g) actual evapotranspiration, (h) El Nino, (i) SPI, (j) self-

calibrated PDSI, (k) Blue Nile flow, (l) Dongola station flow, and (m) Aswan station flow of the NRB.  
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Appendix J: Wavelet coherence between driving variables and El-Nino 3.4 

To evaluate the possible impacts of El Nino 3.4 on climate variables and droughts in the 

NRB, wavelet coherence, was used to detect the relationship between climate variables, drought 

indexes (SPI, self-calibrated PDSI) and El Nino 3.4. The wavelet coherence plots (WTC) between 

El Nino 3.4 and precipitation, temperature, relative humidity, geopotential height, specific 

humidity, SPI, self-calibrated PDSI, Blue Nile flow, Dongola station flow, and Aswan station flow 

of the NRB are shown in supplementary Fig J1. The arrows show the phase difference: right-

pointing arrows indicates that the two-time series are in phase signals, while left-pointing arrows 

represents anti-phase signals and mean that one time series leads (lags) the other by 90o.  

The influence of El Nino 3.4 on precipitation can be seen in wavelet coherence plot 

(supplementary Figure J1(a)). Precipitation exhibits coherent spatial patterns with respect to El 

Niño, as the wavelet coherence spectra revealed a statistically significant coherency at 2-4 yr band 

in 1960s and 1970s and indicates anti-phase relationships between precipitation and El Nino 3.4 

after 1970s.The coherence spectrum plots between El Nino 3.4 and surface temperature show 

statistically significant power at 2–4-yr bands in 1920 to 1940, 1950 to 1970, and 1975 to 2012 

over NRB (supplementary Figure J1(b)). After 1970s, there was a consistently strong coherence 

at 4–8-yr bands between El Nino 3.4 and surface temperature. This observed strong in-phase 

relationship between El Nino 3.4 and surface temperature after 1970 indicates that El Nino 3.4 

leads the warming trend in the NRB.  Similarly, the power of the wavelet coherence between El 

Nino 3.4 and geopotential height (supplementary Figure J1(c)) was consistently strong at 4–8-yr 

band between 1975 and 2012, which is expected because of the close relationship between 

geopotential height and air temperature. In addition, there was a strong 1–2-yr wavelet coherence 

in the 1980s and the 1990s between El Nino 3.4 and relative humidity (anti-phase) (supplementary 

Figure J1(d)), and a stronger 4–8yr wavelet coherence after the 2000s. Moreover, the wavelet 
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coherence plot between specific humidity and El Nino 3.4 shows a high 2–4-yr wavelet coherence 

from 1948 to 1958, 1970s and from 1990 to 2012, and a strong 8-16 yr wavelet coherence after 

the 1990s (supplementary Figure J1(e)).  

El Nino 3.4 had significant coherency with SPI after 1970s compared to drought conditions 

in the earlier years. Wavelet coherence between El Nino 3.4 revealed strong correlation and phase 

relationship between the two series. As it shows a statistically significant coherency at 2–4-yr 

bands in 1952, 1959, 1965, 1972, 1973, 1978, 1983, 1984, 1987, 1991, 1994, 1999, 2002, and 

2011 (supplementary Figure J1(f)).  Before 1970s, wavelet coherence indicates that El Nino 3.4 

and SPI were in phase relationships, however after 1970s there was a significant common power 

dominantly present anti-phase relationships between SPI and El Nino 3.4. These results suggest 

that a higher El Nino 3.4 index usually corresponds to a lower SPI value (more severe drought) 

and explains the more frequent droughts in the NRB after 1970. Similarly, the cross-power spectra 

between El Nino 3.4 and self-calibrated PDSI showed a significant common power at 2- 4-yr band 

during 1970–2015 (supplementary Figure J1(g)). In addition, there was a significant clear anti-

phase relationship between the self-calibrated PDSI and El Nino 3.4 in 1987, 2002, 2003, 2004, 

2005, 2006, 2008, 2009, 2010, and 2011. Overall, the wavelet analysis detected the correlations 

between climate variables, droughts, and El Niño 3.4 in the NRB. These statistically significant 

positive correlations directly indicate that the El Niño 3.4 events have strong impacts on inducing 

droughts in the NRB. Wavelet coherence spectrum plots between wind stress and actual 

evapotranspiration show statistically significant power at 1–2-yr band between 1945 and 2015, 

and 16-32 yr band between 1985 and 2015 (supplementary Figure J1(h)). However, between 1945 

and 1970 wind stress and actual evapotranspiration were in phase, and after 1975 the 1–2-yr band 

was dominated by anti-phase relationship. On the other hand, the entire 16-32 yr band coherence 

represent the anti-phase relationship between wind stress and actual evapotranspiration. These 



334 
 

results indicate that the increase in wind stress after 1970s drives the increase in actual 

evapotranspiration in the NRB.  

Wavelet coherence spectrum between El Nino 3.4 and the Blue Nile flow (supplementary 

Figure J1(i), discloses a statistically significant wavelet coherence at 2-4 yr bands in 1920s, 1930s, 

and 1960 to 1970. The anti-phase signals between El Nino 3.4 and the Blue Nile flow clearly 

dominate the entire period between 1912 and 2012 except for a small in phase signals between 

1982 and 1990. In addition to a strong 16-20 yr anti-phase bands between 1930 and 1965, implying 

that El Nino 3.4 has large influence on the Blue Nile flow. Similar El Nino 3.4 effects on Dongola 

flow station at Khartoum-Sudan can be seen in supplementary Figure J1(j). However, the wavelet 

coherence between El Nino 3.4 and Dongola flow reveals higher coherence at both short and 

relatively longer periods, as shown by more extensive statistically significant wavelet coherence 

between El Nino 3.4 and Dongola flow. Wavelet coherence analysis further show that the Nile 

River flow at Aswan station-Egypt (downstream) are strongly correlated with El Nino 3.4 

(supplementary Figure J1(k)). These results indicate that the Nile River flow exhibits coherent 

spatial patterns with respect to El Niño downstream and upstream. In other words, the decrease in 

the flow of the Nile River is associated with the frequent occurrence of El Nino in recent years, 

increase in AET, warming trend, and decrease in precipitation. 
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Supplementary Figure J1: Wavelet coherence between El Nino 3.4 and (a) precipitation, (b) 

temperature, (c) relative humidity, (d) geopotential height, (e) specific humidity, (f) SPI, (g) self-

calibrated PDSI, (h) AET and wind stress, (i) Blue Nile flow, (j) Dongola station flow, and (k) 

Aswan station flow  
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Appendix K: Projected climatic changes in the NRB 

Supplementary Figure K1(a) illustrate the future change in annual precipitation in the NRB.  

Between 2015-2050, the projection shows decrease of annual precipitation by with 1.55 mm/yr 

over Egypt and Sudan, except for the White Nile region which will witness an increase in annual 

precipitation with 2.89 mm/yr. Annual precipitation in Eritrea and Ethiopia is projected to increase 

by 9.6 mm/yr. Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo are projected to have the 

highest increase in annual precipitation with 31.3 mm/yr over the same period. By 2070, annual 

precipitation is expected to decrease by 2.25 mm/yr between 2050 and 2070 in Eritrea and 

Ethiopia.  Decline trend in precipitation in Sudan and Egypt is projected to 0.84 mm/yr, similar 

trend to historical trend between 1960-2015, where precipitation decline trend was 7.57 

mm/decade “0.76 mm/yr”. Increasing trend over Kenya, Tanzania, Rwanda, Burundi, Uganda, and 

Congo will continue but at a lower rate 5.7 mm/yr between 2050 and 2070 (supplementary Figure 

K1(b)). Future projection of warming trend over the NRB. Between 2015-2050 (supplementary 

Figure K2(a)), showed warming trend over Sudan and Egypt will increase and the projected 

increase in mean temperature in this period is 6.82 oC, while between 2050-2070 this warming 

trend will continue but at a lower rate than the previous period as the difference between mean 

temperature in 2050 and 2070 is 0.79 oC (supplementary Figure K2(b)). The increases of mean 

temperature in Ethiopia and Eritrea between 2015– 2050 and 2050–2070, is about 6.08 oC, and 

0.56-0.58 °C, respectively. While in Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo 

increase in mean temperature is 5.5 oC between 2015-2050 and 0.48 oC between 2050-2070.  
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Supplementary Figure K1. Future change of annual Precipitation (a) 2050, (b) 2070  

 
Supplementary Figure K2. Future projection of warming trend (a) 2050 and (b) 2070  

 

a b 

a b 
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Based on the analysis of three climate changes scenarios (RCP 2.6, 4.5, and 8.5) of 34 global 

climate models of CMIP5, future annual precipitation is projected to decrease at about 16.5 

mm/decade over the NRB between 2020 and 2050. The spatial distribution of this trend shows 

that in countries such as Egypt and Sudan annual precipitation will decline by 15.5 mm/decade, 

but for the White Nile region, the annual precipitation could increase at 28.9 mm/decade between 

2020-2050 (supplementary Figure K3(a)). In the other hand, under the lower scenarios (RCP4.5 

and RCP2.6), annual precipitation in the NRB will increase by 5 mm/decade between 2050 and 

2100 (supplementary Figure K3(b)). Over 2020-2050, warming in the NRB is projected to be 

0.24 oC/decade, 0.48 oC/decade, 0.36 oC/decade based on RCP 2.6, RCP4.5, and RCP8.5 

respectively. For both RCP4.5 and RCP8.5 scenarios, warming will continue but at 0.12-0.72 

oC/decade between 2050 and 2100, while under a lower scenario (RCP 2.6) warming trend is just 

0.1 oC/decade. (supplementary Figures K2(a) and K3(a)). Under the three climate changes 

scenarios (RCP 2.6, 4.5, and 8.5), relative humidity trend will continue to decline but at 1.04 % 

/decade, 1.47% /decade, and 0.87/decade between 2020 and 2050, respectively. However, over 

2050-2100, the decline trend in relative humidity is about 0.34 % / decade, 0.53 % /decade, and 

0.23% /decade (supplementary Figure K3(e)).  

Under RCP 2.6, 4.5, and 8.5 scenarios, between 2020 and 2050, the potential 

evapotranspiration (PET) is projected to increase at 11.4 mm/decade, 18.4 mm/decade and 24.1 

mm/decade respectively (supplementary Figure K3(c)), which is consistent with projected rising 

air temperature and declining relative humidity. As warming continues from 2050 to 2100, PET 

is projected to increase at about 10 mm/decade, 14.8 mm/decade, and 35.2 mm/decade under RCP 

2.6, 4.5, and 8.5, respectively. Corresponding to increasing trends in PET, the soil moisture 

content (SWC) is projected to decrease at 0.12 kg/m2/decade, 0.72 kg/m2/decade, and 0.96 

kg/m2/decade between 2020 and 2050; and by about 0.65 kg/m2/decade, 2.5 kg/m2/decade, and 
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4.3 kg/m2/decade between 2050 and 2100, under RCP2.6, RCP4.5, and RCP8.5, respectively 

(supplementary Figure K3(d)). It seems that agricultural drought in the NRB will get worse over 

the 21st Century. Climate models also project more frequent and stronger El Niño episodes 

between 2020 and 2100 (supplementary Fig K3(f)), leading to worsening droughts and severe 

surface drying in NRB by the end of the 21st century.   
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Supplementary Figure K3. Historical CMIP5 and future projection of warming trend (a), 

precipitation (b), potential evapotranspiration (c), soil moisture content (d), relative humidity 

under three climate change scenarios (e), and projected change in El Niño 3.4 indix (f)  

Furthermore, large parts of Egypt and Sudan are projected to suffer mild to moderate 

hydrologic droughts over the 21st Century (supplementary Figure K4), and countries such as 

Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo are projected to suffer incipient droughts. 

Future projection of hydrological drought in the NRB responded to the increased rate of warming 

and projected increase in precipitation. Major areas of Egypt and Sudan is projected to have mild 

to moderate drought, this can be explained by the very high increase in projected mean 

temperature. While the situation is different in White Nile region in Sudan which is projected to 

be Slightly wet to incipient wet spell which agrees with the increased precipitation in the portion 

of Sudan, which will have an increase in annual precipitation of 2.89 mm/yr between 2015-2050. 

Ethiopia is expected to have incipient wet spell while Eritrea climate is near normal according to 

PDSI classification. Kenya, Tanzania, Rwanda, Burundi, Uganda, and Congo climate are projected 

to be near normal to slightly wet which also explain the increase of precipitation at these countries 

at the same projection period (supplementary Figure K4).  Between 2050 and 2070 as the increase 

in mean temperature is lower than the previous period and precipitation increase is also lower, the 

entire region is covered by incipient drought (mainly Egypt and Sudan-except the White Nile 

region) and slightly wet to moderately wet in Kenya, Tanzania, Rwanda, Burundi, Uganda, and 

Congo and Ethiopia. This reflects the effect of warming rate in future drought conditions 

(supplementary Figure K4). 
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Supplementary Figure K4. Future projection of drought severity ‘PDSI’ 2050,2070  

 

Supplementary Figures K5 and K6 show the analyzed and projected WTIO and IOD using 

climate projections of 34 global climate models (GCMs) of CMIP5. First, WTIO was estimated as 

areally weighted SST simulated by each GCM over the Arabian sea (50°E to 70°E and 10°S to 10°N). 

Then, the multi-model ensemble (MME) of the WTIO computed from the simulations of 34 GCMs was 

computed over 30-year periods from 1913 to 2100. WTIO estimated from the GCM that best agrees 

with the observed WTIO were selected. Furthermore, projections of IOD between 2019 and 2100 were 

computed as the difference between Western (50°E to 70°E and 10°S to 10°N) and Eastern (90°E to 

110°E and 10°S to 0°N) SST of the Indian ocean simulated by the 34 GCMS.  
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Supplementary Figure K5. Time variation of simulated WTIO amplitude. a, the multi-model ensemble 

(MME) of the WTIO amplitude from 34 climate models computed over 30-year running periods from 1913 

to 2100. The WTIO from the MME was calculated as area weighted average of the Indian Ocean SST over 

the Arabian sea (50°E to 70°E and 10°S to 10°N) in each model simulations. The 30-year running WTIO 

amplitudes from ERSST over the period 1913–2017 are also shown (blue). Pearson correlation coefficients 

between the best models and observations (ERSST data), are displayed. The slope is the linear trend 

estimated at the 5% level based on the Mann–Kendall test.  

 

The correlation between the MME of WTIO obtained from GCMs and WTIO estimated from 

ERSST data range between ρ= 0.61 and ρ = 0.88 (supplementary Figure K5(a)). The variability 

(s.d.) of WTIO in the Arabian sea has increased since the 1970s in both the observed dataset and 

the MME of 34 GCMs’ simulations for the historical run, which means that the western Indian 
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Ocean has become warmer, and projected to be much warmer, at a warming trend of 0.01 to 0.023 

0C/decade between 2019 and 2100 (supplementary Figure K5(b–d)). The warming over the Western 

Indian Ocean and the more intensive El Niño in recent years are expected to play a major role 

modulating the future climatic conditions of NRB, likely resulting in less precipitation, relative 

humidity, soil moisture and the Nile streamflow as warming continues in NRB over the 21st 

Century. Under the projected increase in WTIO over the Arabian sea, future drought conditions of 

NRB is expected to worsen. There is significant correlation between the IOD calculated from the 

MME and ERSST observations (ρ = 0.61) (supplementary Figure K6(a-d)). Supplementary Figure 

K5(d) shows projected increasing trends of 0.01 to 0.02 oC/decade in IOD over 2019-2100, which 

will double the observed increasing trend in IOD between 1993 and 2018. As future positive IOD 

events are projected by GCMs to be more extreme in the future because of global warming, NRB 

could suffer from more severe droughts more frequently in the future. 
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Supplementary Figure K6. Time variation of simulated IOD amplitude. a, the multi-model 

ensemble (MME) of the IOD. The MME IOD was computed as the difference between West 

(50°E to 70°E and 10°S to 10°N) and Eastern (90°E to 110°E and 10°S to 0°N) SST of the Indian 

ocean from 34 climate models. The 30-year running IOD amplitudes from ERSST over the period 

1913–2017 are also shown (blue lines).  
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