
1 
 
 

Aura Texture

 
Xuejie Qin          Yee-Hong Yang 

{xuq, yang}@cs.ualberta.ca 
Department of Computing Science 

University of Alberta 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 1: The basic idea of the approach of aura texture synthesis. The input example (a) is first characterized by a set of Asymmetric Gray 
Level Aura Matrices (AGLAMs) (b), and then the AGLAMs are used to generate an output texture (c). 
 
 
Abstract 
This paper presents a new technique, called aura texture, for 
generating synthetic textures from input examples. The basic idea 
of the new approach is to model textures using Asymmetric Gray 
Level Aura Matrices (AGLAMs), which give (the proof is in a 
recently submitted paper to the IEEE CVPR 2005 by the authors, 
and a copy of the paper is included in the supplemental material 
that accompanies the paper) the necessary and sufficient 
information of a given texture. For an input texture, the aura 
texture approach first calculates a set of characteristic AGLAMs to 
represent the texture. Then, without requiring any further 
information from the input, it synthesizes an output texture 
(initialized as white noise) with similar characteristic AGLAMs as 
those of the input. The experimental results have shown that the 
new technique can successfully synthesize a wide range of 
textures and the results are comparable to those of the existing 
techniques. In addition, based on a metric distance measure, the 
new technique is able to automatically evaluate the results and 
determine whether or not the output is a successful synthesis of the 
input. None of the existing techniques has the ability to evaluate 
their synthesis results. 
 
 
1 Introduction 
In computer graphics, texture synthesis from examples has been 
widely recognized as an important tool in generating realistic 
textures for rendering complex graphics scenes. One major 
problem of existing example-based texture synthesis techniques is 
that the output textures are often generated by using some 
characteristics of input examples, which may not represent the 

input texture appropriately. For instance, in existing feature-
matching approaches [3, 8, 16, 29, 35], a set of filter responses at 
multiple scales and orientations are used to characterize an 
example texture. However, as suggested by Zhu et al. in their 
FRAME (Filters, Random Fields and Maximum Entropy) model 
[39], it requires an infinite number of filters (each filter is as big as 
the given texture image) to model a given texture with the 
necessary and sufficient information. In addition, it is not an easy 
task to select the filters or to determine the number of filters to 
model a typical texture [39]. Because of using ambiguous 
definitions of textures, existing synthesis techniques cannot 
determine whether or not the synthesis result is acceptable. Visual 
inspection is the only way to evaluate the synthesis results.  

To address the above problems, this paper presents a new 
technique, called aura texture, which synthesizes textures using 
Asymmetric Gray Level Aura Matrices (AGLAMs). The work is 
based on a new mathematical framework of AGLAMs [1], which 
is recently proposed by the authors for texture modeling. We prove 
that [1] the AGLAMs of a given texture image have the necessary 
and sufficient information to represent the texture, which, to our 
best knowledge, has not been addressed by any of the existing 
texture models. 

The main idea of our approach (see Figure 1) is first to 
characterize a given example texture by a set of characteristic 
AGLAMs (for the definition, see Section 3), called characteristic 
AGLAMs. Then, by sampling from the characteristic AGLAMs 
only, our method generates an output texture similar to the input 
with similar characteristic AGLAMs. This is done by iteratively 
modifying the gray level of each pixel in the output image, which 
is initialized as a random noise image, until the distance between 
the corresponding characteristic AGLAMs of the output and those 
of the input is small enough or until the quality of the output 
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texture cannot be improved any further. 
   A new distance measure (Section 4.2) defined between the 
characteristic AGLAMs of the input and those of the output 
texture is used to evaluate the synthesis result. It is proved in 
another paper by the authors [1] that the new measure is a one-to-
one metric in the sense that a zero distance between two images of 
the same size will guarantee that they are identical. For texture 
synthesis, however, the property of similarity between two 
textures is more interesting than the identicalness between them. 
Based on the one-to-one metric property, we demonstrate that the 
new measure can be used to evaluate the synthesis results to 
determine whether or not the output is similar to the input texture. 
In fact, if the distance value is below a threshold value (for the 
discussion on the threshold value, see Section 5.2), then the result 
is considered as a success. Otherwise, it is a failure. Note that this 
one-to-one metric property is crucial for measuring the similarity 
between textures. Without this property, which is the case in 
existing techniques (e.g. [8, 29, 35, 39]), a less similar texture 
image might be given a higher degree of similarity to the input. 
Hence, existing techniques only show some synthesized results 
without evaluating them.  

The experimental results have shown that the aura texture can 
generate acceptable results on a broad range of textures. 
Compared with existing example-based synthesis techniques, the 
advantages of the aura texture are: (1) provides accurate 
representations of example textures, (2) is able to evaluate the 
results, (3) requires no filters. 

The paper is organized as follows. The related work is 
described in the next section, and then followed by the background 
knowledge in Section 3. In Section 4, we present the approach of 
aura texture synthesis. The experimental results and their 
evaluation are presented in Section 5. Limitations of the aura 
texture and future work are described in Section 6. Finally, 
conclusions are given in Section 7. 
 
 
2 Related Works 
Since Julesz’s pioneering work in texture analysis [18], various 
approaches have been proposed for texture analysis and synthesis. 
One of the most influential approaches is the MRF models [6, 13]. 
Only a limited range of textures can be modeled with earlier MRF 
techniques because of the limited size of the cliques and of the 
low-order statistics used in modeling. To address these problems, 
Zhu et al. propose the FRAME model, which incorporates filtering 
theory into the MRF models to synthesize a wider range of 
textures [39]. The conventional MRF texture models are also 
generalized by Popat and Picard to the cluster-based probability 
model [28] and by Paget to the strong MRF model [25] for 
modeling textures with high order statistics. Different from Zhu et 
al.’s FRAME model, both approaches are nonparametric. In 
general, MRF models are slow because of the expensive local 
probability construction (normally based on exponential functions) 
at each pixel location during the sampling. To speed up, 
nonprobabilistic pixel-based sampling techniques [2, 10, 16, 35] 
are proposed by a number of researchers, which are further 
improved by the patch-based sampling techniques [11, 20, 21, 34].  
   Techniques are also developed to synthesize textures by 
matching features in multiple scales and orientations, pioneered by 
Heeger and Bergen’s work [16] using a global histogram-matching 
strategy. Later, in the work of Simoncelli and Portilla [29], it is 
shown that new textures can be synthesized by matching the 
corresponding joint statistics of complex wavelet coefficients 
between the input and output image pyramids. Rather than using 

global joint statistics, DeBonet and Viola use joint occurrence of 
local features in multiresolutions to model texture images [9]. 
Their approach has been generalized by Bar-Joseph et al. to 
texture mixture and video texture using statistical learning [3]. 
   Another influential approach called Gray Level Cooccurrence 
Matrices (GLCMs) [7, 14] can be used as a powerful tool for 
texture analysis, segmentation, classification, and synthesis. The 
disadvantage of the GLCMs is that they contain cooccurrence 
information between two pixels only, and thus cannot capture the 
spatial relationship between three or more pixels in the image. 
This problem can be addressed by using Gray Level Aura Matrices 
(GLAMs) [12], which incorporate neighborhood systems to model 
the relationship between the target pixel and its neighboring pixels, 
and thus can capture the relationship between any number of 
pixels. However, the neighborhood systems in Elfadel and Picard’s 
aura framework [12] are assumed to be symmetric, and hence 
cannot model anisotropic textures. 

To address the above problem, in [1], the authors propose a 
mathematical framework based on Asymmetric Gray Level Aura 
Matrices (AGLAMs), which allows neighborhood systems of 
arbitrary shapes to model general textures. It is demonstrated that 
the AGLAMs of a given image have the necessary and sufficient 
information to represent a given texture. Using AGLAMs, a new 
distance measure [1] can be defined to measure the similarity 
between two texture images. It is proved that the AGLAM-based 
similarity measure is a one-to-one metric. None of the existing 
proposed measures guarantees this one-to-one condition.  

The work in this paper is based on the newly proposed 
AGLAM-based mathematical framework [1]. We demonstrate that 
given a texture sample, a synthesized texture can be generated by 
sampling from a compact set of AGLAMs calculated from the 
input directly without requiring any filters. Compared with 
existing pixel-based sampling techniques, the proposed approach 
is able to synthesize a wider range of textures. Another advantage 
of the new approach is that it is able to evaluate the results based 
on the AGLAM-based similarity measure (Section 4.2). 
   There are also techniques for synthesizing 3D textures, for 
example, texture mapping [15, 19, 23, 32, 37], procedural 
texturing [27], and example-based 3D texturing [5, 17, 16, 22, 33, 
36, 38]. In this paper, we focus our attention to 2D texture 
synthesis only. 
 
 
3 Background Knowledge 
The aura texture is based on the aura concepts [12] and the 
AGALM theory [1], which are briefly described below for ease of 
reference. For the details, the interested reader is referred to the 
original papers [1, 12]. 

Aura: [12] Given an image X defined on a finite rectangular 
lattice S with a neighborhood system },{ SsΝ s ∈=Ν , where sN  
is the neighborhood at site s. Given two subsets SBA ⊆, , the 
aura of A with respect to B for neighborhood system N, denoted 
as ),( NABϑ (or simply )(ABϑ ), is given by: 

)(),()( BNAA sAsBB ∩∪==
∈

Nϑϑ .     (1) 

Aura Measure: [12] The aura measure of A with respect to 
B, denoted as ),,( NBAm (or simply ),( BAm ), is given by: 

∑ ∩==
∈As

s BNBAmBAm ||),,(),( N ,   (2) 

where for a given subset SA ⊆ , || A  is the total number of 
elements in A. 

Gray Level Aura Matrix (GLAM): [12] Let N be a 
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neighborhood system over S with an arbitrary shape, and 
}10,{ −≤≤ GiSi  be the gray level sets of an image over S, 

then the gray level aura matrix of the image over N, denoted by 
)(NA  (or simply A), is given by: 

)],([)],([)( ji SSmjia === NAA ,  (3) 
where G is the total number of gray levels in the image, 

}|{ ixSsS si =∈=  is the gray level set corresponding to the thi  
level, and ),( ji SSm is the aura measure between iS  and jS  

given by Eq. 2, and 1,0 −≤≤ Gji . 
When the neighborhood system N in a GLAM is symmetric, 

anisotropic textures cannot be well modeled using GLAMs. For 
general texture modeling, GLAMs must be used with asymmetric 
neighborhood systems [1]. 
   AGLAM & characteristic AGLAM: [1] An AGLAM on S is a 
GLAM computed from an asymmetric neighborhood system N. A 
characteristic AGLAM is an AGLAM computed from a single site 
neighborhood system. 
   The main theory on AGLAMs is presented in the following 
theorem. For the proof, the reader is referred to the authors’ paper 
[1].    

Theorem Two images of the same size are identical if and only 
if their corresponding characteristic AGLAMs on all possible 
single site neighborhood systems are identical. 

Intuitively, the aura )(ABϑ  gives an interpretation of how set 
B is present in the neighborhood of set A. The aura measure 

),( BAm  evaluates the amount of mixing between set A and B. A 
large value of ),( BAm  implies that set A and B are mixed 
together. A small value implies that A and B are separate from each 
other.  

The GLAM, a generalization of  the gray level cooccurrence 
matrix, indicates how much of each gray level is present in the 
neighborhood of each other gray level. Using asymmetric 
neighborhood systems, AGLAMs are able to model textures with 
sufficient and necessary information [1]. For a given texture 
example, in this paper, we demonstrate that a small set of 
characteristic AGLAMs can be used to characterize and to 
synthesize the texture faithfully. In the next section, we describe 
the approach of aura texture synthesis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: An overview of the approach of aura texture synthesis. 
 
 
4 Aura Texture Synthesis 

Figure 2 gives an overview of the aura texture synthesis approach. 
Given an input texture X, its characteristic AGLAMs )(XA  are 
computed using an algorithm described later. The output texture Y 
is initialized as a white noise image, and its characteristic 
AGLAMs )(YA are computed. Then, an AGLAM-based sampling 
procedure is employed to iteratively update the output until the 
distance between the corresponding characteristic AGLAMs of the 
output and those of the input is small enough or until there is no 
further change in pixel’s gray level values in the output. During an 
iteration of the sampling process, the gray level of a pixel in the 
output Y is modified such that the newly assigned gray level to the 
pixel will decrease (at least not increase) the distance between the 
characteristic AGLAMs of the output and of the input. 
 
 
4.1 Characteristic AGLAMs 
For texture synthesis, we only want the output to look similar to 
(rather than exactly the same as) the input. According to the 
theorem in Section 3, it is reasonable to have the following 
assumption: two texture images (not necessarily the same size) are 
similar if and only if their corresponding characteristic AGLAMs 
computed from a large enough neighborhood system are close 
enough. 

In this paper, we relax the neighborhood size as a tunable 
parameter. In general, the larger the texture structures in an image, 
the bigger the neighborhood size is. For a given texture image, the 
AGLAMs computed from a given neighborhood system are called 
the characteristic AGLAMs of the texture. If the neighborhood 
size is n, then the number of AGLAMs used to characterize the 
texture is )1( −× nn .  

In our work, a fast algorithm similar to the one in Qin and 
Yang’s work [31] is used to efficiently compute an AGLAM by 
going through each pixel of the image in one pass. In particular, it 
works as follows. Initialize each entry of the AGLAM 

)],([ ji SSm=A  to zero, i.e. 0),( =ji SSm  for 1,0 −≤≤ Gji . 
For each site s, let g be its gray level, we check each site r in the 
neighborhood sN , and let 'g  be its gray level. Then we 
increment the value of ),( 'gg SSm  by 1. The algorithm stops 
when all the sites in the image have been processed. Once the 
characteristic AGLAMs are computed for the input texture, they 
are stored and used as the only representation of the input to 
generate the output during synthesis. In other words, the input 
texture itself will not be needed any more once its characteristic 
AGLAMs are computed. 
 
 
4.2 Similarity Measure 
During synthesis, it is important to have an accurate measure to 
determine how close the output texture matches the input. In our 
work, the similarity between two texture images is measured by 
the sum of the distances between their corresponding 
characteristic AGLAMs, where the distance of two matrices is the 
Manhattan distance of the two matrix vectors. Precisely, given two 
texture images X and Y defined on S. Let }0|{)( miX i ≤≤= AA  
and }0|{)( miY i ≤≤= BA  be their corresponding characteristic 
AGLAMs, then the similarity measure between X and Y is given 
by: 

∑ −==
=

m

i
iim

YXdYXd
0

||||1))(),((),( BAAA ,  (4) 

Input X 

Initialized output Y 
(white noise image)  

AGLAMs of X AGLAMs of Y

AGLAM-based 
sampling 

)(XA )(YA

Updated output Y
after sampling 

Yes 

No 

Output Y 

?))(),(( ε<YXd AA
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where for a given matrix njijia ≤≤= ,0)],([A , ∑=
=

n

ji
jia

0,
|),(||||| A . 

 For two images of the same size, it is proved [1] that if the 
neighborhood system used to calculate the AGLAMs is large 
enough, then the distance measure defined in Eq. 4 is one-to-one 
in the sense that a distance measure of zero guarantees that the two 
images are identical. If two images are of different sizes, Eq. 4 can 
also be used to measure the distance between them provided that 
their characteristic AGLAMs are normalized. An AGLAM 

)],([ ji SSa=A  is normalized if ∑ =
=

m

ji
ji SSa

0,
1),( . In the rest of the 

paper, we assume that all AGLAMs are normalized. This one-to-
one property of the AGLAM-based measure enables our algorithm 
to evaluate the synthesis results automatically. As far as we know, 
none of the existing techniques has this feature. 
 
 
4.3 AGLAM-Based Sampling 
The AGLAM-based sampling procedure iteratively modifies the 
output such that its characteristic AGLAMs match those of the 
input. In the beginning, the output texture is initialized as a white 
noise image (see Figure 2). During each iteration of the sampling, 
each pixel of the output is visited randomly once, and its gray 
level is modified so that the characteristic AGLAMs of the output 
get closer to those of the input. More precisely, when visiting a 
pixel, the algorithm first finds the candidate set of all gray levels 
(different from the current pixel value) that decrease or at least do 
not increase the AGLAM-based distance (defined in Eq. 4) 
between the output and the input. Then it randomly chooses a gray 
level from the candidate set and sets the pixel value to the newly 
selected gray level. Note that even when a gray level does not 
decrease the distance, the algorithm also includes it into the 
candidate set in order to increase the randomness in the output. It 
is possible that the candidate set is empty at the end of search, 
which implies that any gray level different from the current pixel 
value will increase the distance, in which case, the pixel retains its 
current gray level, and the algorithm goes to the next target pixel. 
When the AGLAM-based distance between the output and the 
input is below a threshold or there is no change in gray level 
values in any pixel of the output, the sampling process returns the 
output texture as the final result. 
   The major computation cost of the aura texture synthesis is 
spent on recalculating the characteristic AGLAMs of the output 
and the AGLAM-based distance during the AGLAM-based 
sampling. A brute force method would perform a fresh 
recalculation each time with a cost of ))(*( 22 GnpmO + , 
where m is the size of the neighborhood system, np is the number 
of pixels in the output, and G is number of gray levels in the image. 
A more efficient way is to perform an iterative update based on 
existing information, which can be done with a computation cost 
of )*( pmO because when a pixel changes its gray level value, 
only its neighboring pixels will be affected (for the proof of it, see 
[1]). To achieve this, however, the algorithm must store the 
characteristic AGLAMs of the input and of the output as well as 
the distance between each pair of the corresponding AGLAMs of 
the input and of the output. 
 
 
4.4 Color Image 
For color input texture images, one cannot simply apply the above 
basic algorithm to each of the RGB channels separately since the 

RGB components of a color image are dependent on each other. 
Before applying the basic aura texture synthesis algorithm, a 
color-space transformation T based on the singular value 
decomposition technique (SVD) [30] is used to transform the R, G, 
and B components of an color image into three independent 
components 'R , 'G , and 'B  in another color space. After this 
RGB-color-decorrelation step, the basic synthesis algorithm is 
applied to each of the independent color components 'R , 'G , and 

'B  to generate three output textures in the transformed color 
space, which are then transformed back (using the inverse 
transformation of T) into the RGB color space to produce the final 
synthesized color texture image. A detailed algorithm of the RGB 
color decorrelation can be found in Heeger and Bergen’s paper 
[16]. 
 
 
5 Experiments 
5.1 Results 
Figure 6 gives some comparison results of texture synthesis, 
where images in column (a) are the input texture samples, and 
images in the last four columns (b) – (e) are the synthesized results 
of: our algorithm, the Heeger and Bergen algorithm [16], the Wei 
and Levoy algorithm [35], and the Liang et al. algorithm [21]. We 
implement both Heeger’s and Wei’s algorithms, in which Heeger’s 
algorithm is based on the steerable pyramid [16] and Wei’s 
algorithm is based on the Gaussian pyramid [35]. The results of 
our algorithm are generated using 48 characteristic AGLAMs 
calculated from a square window of size 7x7 around a target pixel. 
The results of the Heeger’s and Wei’s algorithms are generated 
with three levels of image pyramids. The results for the Liang et 
al.’s algorithm are taken from Paget’s website [26].  

As shown in Figure 6, Heeger’s algorithm is able to capture 
the overall appearance of a given texture sample, but fails to 
capture the local structures in the texture because of the global 
histogram-matching scheme used in the algorithm. Wei’s 
algorithm is able to capture the details of a given texture using a 
pixel-based sampling scheme, but has a smoothing effect in the 
output because of the inaccurate SSD measure (sum of squares 
differences) used to measure the similarity between the output and 
the input and the Gaussian pyramid used to represent a texture 
image. Although, Liang’s algorithm can generate good results, our 
algorithm generates better results for the input textures in the 1st, 
2nd, and 5th  rows. For other input textures in the figure, the results 
for our algorithm are comparable to those of the Liang’s algorithm. 
More results of the aura texture synthesis can be found in Figure 7 
and in the supplemental material that accompanies the paper. 
   In our approach, the neighborhood size is an important 
parameter that affects the synthesis results. In general, an image 
containing large structural textures (see textures in the 1st column 
in Figure 7) requires a relatively large neighborhood size. For a 
given input texture, different synthesis results can be generated 
with different neighborhoods sizes. Figure 3 below gives an 
example texture and its synthesized textures generated with 
different neighborhood sizes. It is an interesting future research 
topic to systematically determine the optimal neighborhood size 
(e.g. 11x11 for the input texture shown in Figure 3) for a given 
input texture image to obtain the best run-time performance. 
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Figure 3: An example of the synthesis results using the 
neighborhoods of different sizes given under each output. 
 
 
5.2 Evaluating Synthesis Results 
One significant advantage of the aura texture approach over 
existing approaches is that the AGLAM-based distance measure 
defined in Eq. 4 can be used to evaluate the synthesis result to 
determine whether or not the output looks similar to the input. By 
our experimental results, we found that if two texture images have 
a distance value greater than 1.0, then they are dissimilar. If the 
value is below 0.1, then the output is assured similar to the input. 
However, if the distance value is between 0.1 and 1.0, then the 
similarity between the two textures is difficult to determine, in this 
case we consider the output with a distance value below 0.5 a 
success and a failure otherwise. This observation is made by our 
extensive experiments. Figure 4 gives an example to demonstrate 
this point. Note that in Figure 6, each output texture has a number 
beside it to show its AGLAM-distance to the input. 
 
 
 
 
 
 
 
Figure 4: An example using AGLAM-based distance measure to 
evaluate the synthesized results against the input.  
 
 
5.3 Acceleration 
For acceleration, we extend our algorithm so that it can perform 
texture synthesis in multiresolutions, similar to the pyramid 
method used in the Heeger and Bergen’s work [16]. However, by 
our experience, we find that the filtering process only complicates 
our algorithm. Thus we have used a non-filter-based method, 
called local decimation [24] to build the multiresolution 
representation of a given image. For an input color texture sample 
of size 64x64 with 120 characteristic AGLAMs and an output 
color texture of size 128x128, the average running time in single 
resolution is about 2 hours on a 1.4GHz Penntium 4 PC running 
Windows XP Professional. With a multiresolution scheme of 4 
levels and 24 AGLAMs used for each level, the running time is 
reduced to about 10 minutes. For color images, our algorithm can 
be extended to synthesize the three independent color channels in 
parallel after the step of color-space transformation as described in 
Section 4.4. In this case, the above running time can be further 
reduced to about 3 minutes. 
 
 
6 Limitations and Future Work 
One limitation of the current implementation of the aura texture 
synthesis algorithm is the gray level update scheme during the 
sampling as described in Section 4.3. It is quite possible that after 
a few iterations, the number of candidates of possible gray levels 
for a target pixel is less than 3, which may sometimes cause the 
gray level values for pixels in the output texture to quickly 

converge to local minima, and thus generate visible seams in the 
output textures as shown in Figure 5.  

In this case, fortunately, the AGLAM-based distance measure 
between the output and the input cannot decrease any further, and 
a large distance value (normally above 0.5) is returned to indicate 
a failure (see Figure 5). However, future research should be 
carried out to address this problem. One possible solution is to 
extend the current single-pixel search scheme to a multiple-pixel 
search scheme during the sampling so that the convergence to the 
local minima can be avoided as much as possible. Although a 
direct search in multiple-pixel directions is not practical, Boykov 
et al. have developed an efficient algorithm to do this based on 
graph cuts [4]. We are currently considering their method to 
address this local minima problem in our algorithm. 

Another interesting future work is to extend our approach to 
generate 3D textures. One possible way to do this is to generalize 
the AGLAM theory [1] to 3D space by defining the concept of 3D 
neighborhood systems. Given an input texture sample (or multiple 
samples), one can synthesize a 3D volume texture by coercing a 
white noise volume to have the same characteristic AGLAMs as 
those of the inputs by noting the fact that AGLAMs in both 2D 
and 3D space have the same dimensions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Example of visible seams in the synthesized textures. 
The number beside each output texture is its distance measure 
calculated using Eq. 4. Since those values are greater than 0.5, the 
output textures are considered as failures based on the evaluation 
criterion described in Section 5.2.  
 
 
7 Conclusions 
In this paper, a new texture synthesis approach, called aura texture, 
is proposed. Given an input texture, our algorithm first calculates a 
set of characteristic AGLAMs to represent the texture, and then 
generates the synthesized texture by sampling only the AGLAMs 
of the input without requiring any further information. The 
experimental results show that the new technique can successfully 
synthesize a wide range of textures and is comparable to the 
existing techniques. In addition, based on a new distance measure, 
the new technique is able to automatically evaluate the results and 
determine whether the output is a successful synthesis of the input. 
None of the existing techniques has the ability to evaluate their 
synthesis results. 
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Figure 6: The comparison of results of our approach (column (b)) with Heeger and Bergen’s algorithm (column (c)), Wei and Levoy’s 
algorithm (column (d)), and Liang et al.’s algorithm (column (e)), where the input textures are in column (a). For our algorithm, 48 
characteristic AGLAMs calculated over a square window of size 7x7 around a target pixel are used to represent the input and to synthesize 
the output. The results for Heeger’s algorithm are generated using steerable pyramids with 3 levels and 4 orientations (i.e. 0, 45 90, and 135 
degrees). For Wei’s algorithm, a Gaussian pyramid of 3 levels is used to synthesize from a given input texture. The neighborhood sizes 
used for a Gaussian pyramid are {3x3,1}, {5x5,2}, {7x7,2} from the lowest resolution level to the highest resolution level, where {7x7,2} 
means a multiresolution neighborhood of 2 levels (with size 7x7 at the higher resolution level and 3x3 at the lower resolution level) is used 
to generate the highest resolution level. As shown in the figure, Heeger’s approach is able to capture the overall appearance of a given 
texture sample, but fails to capture the local structures in the texture. Wei’s algorithm is able to capture the details of a given texture, but 
has a smoothing effect in the output. Liang’s algorithm generates good results for all input textures in the figure. However, our algorithm 
generates better results for the input textures in the 1st, 2nd, and 5th rows. The number beside each output texture is the value of the 
AGLAM-based distance measure (see Eq. 4) of the output compared to the input, which shows that the synthesis results from our approach 
are better than those from Heeger’s and the Wei’s algorithm, and very comparable to those of the Liang’s algorithm. 
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Figure 7: Examples of aura texture synthesis. The smaller image in each pair is the input texture (size 64x64), and the larger image is the 
synthesized texture. The sizes of output texture in column 2, 4, and 6 are 100x100, 128x128, and 156x156, respectively. Since the textures 
in the first column contain large structures, 120 characteristic AGLAMs (calculated over a neighborhood system of size 11) are used to 
generate the output in the second column. The output textures in the 4th and 6th column are generated using 48 characteristic AGLAMs.
 


