
1

Aura Texture

Xuejie Qin Yee-Hong Yang

{xuq, yang}@cs.ualberta.ca
Department of Computing Science

University of Alberta

Figure 1: The basic idea of the approach of aura texture synthesis. The input example (a) is first characterized by a set of Asymmetric Gray
Level Aura Matrices (AGLAMs) (b), and then the AGLAMs are used to generate an output texture (c).

Abstract
This paper presents a new technique, called aura texture, for
generating synthetic textures from input examples. The basic idea
of the new approach is to model textures using Asymmetric Gray
Level Aura Matrices (AGLAMs), which give (the proof is in a
recently submitted paper to the IEEE CVPR 2005 by the authors,
and a copy of the paper is included in the supplemental material
that accompanies the paper) the necessary and sufficient
information of a given texture. For an input texture, the aura
texture approach first calculates a set of characteristic AGLAMs to
represent the texture. Then, without requiring any further
information from the input, it synthesizes an output texture
(initialized as white noise) with similar characteristic AGLAMs as
those of the input. The experimental results have shown that the
new technique can successfully synthesize a wide range of
textures and the results are comparable to those of the existing
techniques. In addition, based on a metric distance measure, the
new technique is able to automatically evaluate the results and
determine whether or not the output is a successful synthesis of the
input. None of the existing techniques has the ability to evaluate
their synthesis results.

1 Introduction
In computer graphics, texture synthesis from examples has been
widely recognized as an important tool in generating realistic
textures for rendering complex graphics scenes. One major
problem of existing example-based texture synthesis techniques is
that the output textures are often generated by using some
characteristics of input examples, which may not represent the

input texture appropriately. For instance, in existing feature-
matching approaches [3, 8, 16, 29, 35], a set of filter responses at
multiple scales and orientations are used to characterize an
example texture. However, as suggested by Zhu et al. in their
FRAME (Filters, Random Fields and Maximum Entropy) model
[39], it requires an infinite number of filters (each filter is as big as
the given texture image) to model a given texture with the
necessary and sufficient information. In addition, it is not an easy
task to select the filters or to determine the number of filters to
model a typical texture [39]. Because of using ambiguous
definitions of textures, existing synthesis techniques cannot
determine whether or not the synthesis result is acceptable. Visual
inspection is the only way to evaluate the synthesis results.

To address the above problems, this paper presents a new
technique, called aura texture, which synthesizes textures using
Asymmetric Gray Level Aura Matrices (AGLAMs). The work is
based on a new mathematical framework of AGLAMs [1], which
is recently proposed by the authors for texture modeling. We prove
that [1] the AGLAMs of a given texture image have the necessary
and sufficient information to represent the texture, which, to our
best knowledge, has not been addressed by any of the existing
texture models.

The main idea of our approach (see Figure 1) is first to
characterize a given example texture by a set of characteristic
AGLAMs (for the definition, see Section 3), called characteristic
AGLAMs. Then, by sampling from the characteristic AGLAMs
only, our method generates an output texture similar to the input
with similar characteristic AGLAMs. This is done by iteratively
modifying the gray level of each pixel in the output image, which
is initialized as a random noise image, until the distance between
the corresponding characteristic AGLAMs of the output and those
of the input is small enough or until the quality of the output

(a) (b) (c)

A set of
Asymmetric Gray

Level Aura
Matrices

characterizing sampling

2

texture cannot be improved any further.
 A new distance measure (Section 4.2) defined between the
characteristic AGLAMs of the input and those of the output
texture is used to evaluate the synthesis result. It is proved in
another paper by the authors [1] that the new measure is a one-to-
one metric in the sense that a zero distance between two images of
the same size will guarantee that they are identical. For texture
synthesis, however, the property of similarity between two
textures is more interesting than the identicalness between them.
Based on the one-to-one metric property, we demonstrate that the
new measure can be used to evaluate the synthesis results to
determine whether or not the output is similar to the input texture.
In fact, if the distance value is below a threshold value (for the
discussion on the threshold value, see Section 5.2), then the result
is considered as a success. Otherwise, it is a failure. Note that this
one-to-one metric property is crucial for measuring the similarity
between textures. Without this property, which is the case in
existing techniques (e.g. [8, 29, 35, 39]), a less similar texture
image might be given a higher degree of similarity to the input.
Hence, existing techniques only show some synthesized results
without evaluating them.

The experimental results have shown that the aura texture can
generate acceptable results on a broad range of textures.
Compared with existing example-based synthesis techniques, the
advantages of the aura texture are: (1) provides accurate
representations of example textures, (2) is able to evaluate the
results, (3) requires no filters.

The paper is organized as follows. The related work is
described in the next section, and then followed by the background
knowledge in Section 3. In Section 4, we present the approach of
aura texture synthesis. The experimental results and their
evaluation are presented in Section 5. Limitations of the aura
texture and future work are described in Section 6. Finally,
conclusions are given in Section 7.

2 Related Works
Since Julesz’s pioneering work in texture analysis [18], various
approaches have been proposed for texture analysis and synthesis.
One of the most influential approaches is the MRF models [6, 13].
Only a limited range of textures can be modeled with earlier MRF
techniques because of the limited size of the cliques and of the
low-order statistics used in modeling. To address these problems,
Zhu et al. propose the FRAME model, which incorporates filtering
theory into the MRF models to synthesize a wider range of
textures [39]. The conventional MRF texture models are also
generalized by Popat and Picard to the cluster-based probability
model [28] and by Paget to the strong MRF model [25] for
modeling textures with high order statistics. Different from Zhu et
al.’s FRAME model, both approaches are nonparametric. In
general, MRF models are slow because of the expensive local
probability construction (normally based on exponential functions)
at each pixel location during the sampling. To speed up,
nonprobabilistic pixel-based sampling techniques [2, 10, 16, 35]
are proposed by a number of researchers, which are further
improved by the patch-based sampling techniques [11, 20, 21, 34].
 Techniques are also developed to synthesize textures by
matching features in multiple scales and orientations, pioneered by
Heeger and Bergen’s work [16] using a global histogram-matching
strategy. Later, in the work of Simoncelli and Portilla [29], it is
shown that new textures can be synthesized by matching the
corresponding joint statistics of complex wavelet coefficients
between the input and output image pyramids. Rather than using

global joint statistics, DeBonet and Viola use joint occurrence of
local features in multiresolutions to model texture images [9].
Their approach has been generalized by Bar-Joseph et al. to
texture mixture and video texture using statistical learning [3].
 Another influential approach called Gray Level Cooccurrence
Matrices (GLCMs) [7, 14] can be used as a powerful tool for
texture analysis, segmentation, classification, and synthesis. The
disadvantage of the GLCMs is that they contain cooccurrence
information between two pixels only, and thus cannot capture the
spatial relationship between three or more pixels in the image.
This problem can be addressed by using Gray Level Aura Matrices
(GLAMs) [12], which incorporate neighborhood systems to model
the relationship between the target pixel and its neighboring pixels,
and thus can capture the relationship between any number of
pixels. However, the neighborhood systems in Elfadel and Picard’s
aura framework [12] are assumed to be symmetric, and hence
cannot model anisotropic textures.

To address the above problem, in [1], the authors propose a
mathematical framework based on Asymmetric Gray Level Aura
Matrices (AGLAMs), which allows neighborhood systems of
arbitrary shapes to model general textures. It is demonstrated that
the AGLAMs of a given image have the necessary and sufficient
information to represent a given texture. Using AGLAMs, a new
distance measure [1] can be defined to measure the similarity
between two texture images. It is proved that the AGLAM-based
similarity measure is a one-to-one metric. None of the existing
proposed measures guarantees this one-to-one condition.

The work in this paper is based on the newly proposed
AGLAM-based mathematical framework [1]. We demonstrate that
given a texture sample, a synthesized texture can be generated by
sampling from a compact set of AGLAMs calculated from the
input directly without requiring any filters. Compared with
existing pixel-based sampling techniques, the proposed approach
is able to synthesize a wider range of textures. Another advantage
of the new approach is that it is able to evaluate the results based
on the AGLAM-based similarity measure (Section 4.2).
 There are also techniques for synthesizing 3D textures, for
example, texture mapping [15, 19, 23, 32, 37], procedural
texturing [27], and example-based 3D texturing [5, 17, 16, 22, 33,
36, 38]. In this paper, we focus our attention to 2D texture
synthesis only.

3 Background Knowledge
The aura texture is based on the aura concepts [12] and the
AGALM theory [1], which are briefly described below for ease of
reference. For the details, the interested reader is referred to the
original papers [1, 12].

Aura: [12] Given an image X defined on a finite rectangular
lattice S with a neighborhood system },{ SsΝ s ∈=Ν , where sN
is the neighborhood at site s. Given two subsets SBA ⊆, , the
aura of A with respect to B for neighborhood system N, denoted
as),(NABϑ (or simply)(ABϑ), is given by:

)(),()(BNAA sAsBB ∩∪==
∈

Nϑϑ . (1)

Aura Measure: [12] The aura measure of A with respect to
B, denoted as),,(NBAm (or simply),(BAm), is given by:

∑ ∩==
∈As

s BNBAmBAm ||),,(),(N , (2)

where for a given subset SA ⊆ , || A is the total number of
elements in A.

Gray Level Aura Matrix (GLAM): [12] Let N be a

3

neighborhood system over S with an arbitrary shape, and
}10,{ −≤≤ GiSi be the gray level sets of an image over S,

then the gray level aura matrix of the image over N, denoted by
)(NA (or simply A), is given by:

)],([)],([)(ji SSmjia === NAA , (3)
where G is the total number of gray levels in the image,

}|{ ixSsS si =∈= is the gray level set corresponding to the thi
level, and),(ji SSm is the aura measure between iS and jS

given by Eq. 2, and 1,0 −≤≤ Gji .
When the neighborhood system N in a GLAM is symmetric,

anisotropic textures cannot be well modeled using GLAMs. For
general texture modeling, GLAMs must be used with asymmetric
neighborhood systems [1].
 AGLAM & characteristic AGLAM: [1] An AGLAM on S is a
GLAM computed from an asymmetric neighborhood system N. A
characteristic AGLAM is an AGLAM computed from a single site
neighborhood system.
 The main theory on AGLAMs is presented in the following
theorem. For the proof, the reader is referred to the authors’ paper
[1].

Theorem Two images of the same size are identical if and only
if their corresponding characteristic AGLAMs on all possible
single site neighborhood systems are identical.

Intuitively, the aura)(ABϑ gives an interpretation of how set
B is present in the neighborhood of set A. The aura measure

),(BAm evaluates the amount of mixing between set A and B. A
large value of),(BAm implies that set A and B are mixed
together. A small value implies that A and B are separate from each
other.

The GLAM, a generalization of the gray level cooccurrence
matrix, indicates how much of each gray level is present in the
neighborhood of each other gray level. Using asymmetric
neighborhood systems, AGLAMs are able to model textures with
sufficient and necessary information [1]. For a given texture
example, in this paper, we demonstrate that a small set of
characteristic AGLAMs can be used to characterize and to
synthesize the texture faithfully. In the next section, we describe
the approach of aura texture synthesis.

Figure 2: An overview of the approach of aura texture synthesis.

4 Aura Texture Synthesis

Figure 2 gives an overview of the aura texture synthesis approach.
Given an input texture X, its characteristic AGLAMs)(XA are
computed using an algorithm described later. The output texture Y
is initialized as a white noise image, and its characteristic
AGLAMs)(YA are computed. Then, an AGLAM-based sampling
procedure is employed to iteratively update the output until the
distance between the corresponding characteristic AGLAMs of the
output and those of the input is small enough or until there is no
further change in pixel’s gray level values in the output. During an
iteration of the sampling process, the gray level of a pixel in the
output Y is modified such that the newly assigned gray level to the
pixel will decrease (at least not increase) the distance between the
characteristic AGLAMs of the output and of the input.

4.1 Characteristic AGLAMs
For texture synthesis, we only want the output to look similar to
(rather than exactly the same as) the input. According to the
theorem in Section 3, it is reasonable to have the following
assumption: two texture images (not necessarily the same size) are
similar if and only if their corresponding characteristic AGLAMs
computed from a large enough neighborhood system are close
enough.

In this paper, we relax the neighborhood size as a tunable
parameter. In general, the larger the texture structures in an image,
the bigger the neighborhood size is. For a given texture image, the
AGLAMs computed from a given neighborhood system are called
the characteristic AGLAMs of the texture. If the neighborhood
size is n, then the number of AGLAMs used to characterize the
texture is)1(−× nn .

In our work, a fast algorithm similar to the one in Qin and
Yang’s work [31] is used to efficiently compute an AGLAM by
going through each pixel of the image in one pass. In particular, it
works as follows. Initialize each entry of the AGLAM

)],([ji SSm=A to zero, i.e. 0),(=ji SSm for 1,0 −≤≤ Gji .
For each site s, let g be its gray level, we check each site r in the
neighborhood sN , and let 'g be its gray level. Then we
increment the value of),('gg SSm by 1. The algorithm stops
when all the sites in the image have been processed. Once the
characteristic AGLAMs are computed for the input texture, they
are stored and used as the only representation of the input to
generate the output during synthesis. In other words, the input
texture itself will not be needed any more once its characteristic
AGLAMs are computed.

4.2 Similarity Measure
During synthesis, it is important to have an accurate measure to
determine how close the output texture matches the input. In our
work, the similarity between two texture images is measured by
the sum of the distances between their corresponding
characteristic AGLAMs, where the distance of two matrices is the
Manhattan distance of the two matrix vectors. Precisely, given two
texture images X and Y defined on S. Let }0|{)(miX i ≤≤= AA
and }0|{)(miY i ≤≤= BA be their corresponding characteristic
AGLAMs, then the similarity measure between X and Y is given
by:

∑ −==
=

m

i
iim

YXdYXd
0

||||1))(),((),(BAAA , (4)

Input X

Initialized output Y
(white noise image)

AGLAMs of X AGLAMs of Y

AGLAM-based
sampling

)(XA)(YA

Updated output Y
after sampling

Yes

No

Output Y

?))(),((ε<YXd AA

4

where for a given matrix njijia ≤≤= ,0)],([A , ∑=
=

n

ji
jia

0,
|),(||||| A .

 For two images of the same size, it is proved [1] that if the
neighborhood system used to calculate the AGLAMs is large
enough, then the distance measure defined in Eq. 4 is one-to-one
in the sense that a distance measure of zero guarantees that the two
images are identical. If two images are of different sizes, Eq. 4 can
also be used to measure the distance between them provided that
their characteristic AGLAMs are normalized. An AGLAM

)],([ji SSa=A is normalized if ∑ =
=

m

ji
ji SSa

0,
1),(. In the rest of the

paper, we assume that all AGLAMs are normalized. This one-to-
one property of the AGLAM-based measure enables our algorithm
to evaluate the synthesis results automatically. As far as we know,
none of the existing techniques has this feature.

4.3 AGLAM-Based Sampling
The AGLAM-based sampling procedure iteratively modifies the
output such that its characteristic AGLAMs match those of the
input. In the beginning, the output texture is initialized as a white
noise image (see Figure 2). During each iteration of the sampling,
each pixel of the output is visited randomly once, and its gray
level is modified so that the characteristic AGLAMs of the output
get closer to those of the input. More precisely, when visiting a
pixel, the algorithm first finds the candidate set of all gray levels
(different from the current pixel value) that decrease or at least do
not increase the AGLAM-based distance (defined in Eq. 4)
between the output and the input. Then it randomly chooses a gray
level from the candidate set and sets the pixel value to the newly
selected gray level. Note that even when a gray level does not
decrease the distance, the algorithm also includes it into the
candidate set in order to increase the randomness in the output. It
is possible that the candidate set is empty at the end of search,
which implies that any gray level different from the current pixel
value will increase the distance, in which case, the pixel retains its
current gray level, and the algorithm goes to the next target pixel.
When the AGLAM-based distance between the output and the
input is below a threshold or there is no change in gray level
values in any pixel of the output, the sampling process returns the
output texture as the final result.
 The major computation cost of the aura texture synthesis is
spent on recalculating the characteristic AGLAMs of the output
and the AGLAM-based distance during the AGLAM-based
sampling. A brute force method would perform a fresh
recalculation each time with a cost of))(*(22 GnpmO + ,
where m is the size of the neighborhood system, np is the number
of pixels in the output, and G is number of gray levels in the image.
A more efficient way is to perform an iterative update based on
existing information, which can be done with a computation cost
of)*(pmO because when a pixel changes its gray level value,
only its neighboring pixels will be affected (for the proof of it, see
[1]). To achieve this, however, the algorithm must store the
characteristic AGLAMs of the input and of the output as well as
the distance between each pair of the corresponding AGLAMs of
the input and of the output.

4.4 Color Image
For color input texture images, one cannot simply apply the above
basic algorithm to each of the RGB channels separately since the

RGB components of a color image are dependent on each other.
Before applying the basic aura texture synthesis algorithm, a
color-space transformation T based on the singular value
decomposition technique (SVD) [30] is used to transform the R, G,
and B components of an color image into three independent
components 'R , 'G , and 'B in another color space. After this
RGB-color-decorrelation step, the basic synthesis algorithm is
applied to each of the independent color components 'R , 'G , and

'B to generate three output textures in the transformed color
space, which are then transformed back (using the inverse
transformation of T) into the RGB color space to produce the final
synthesized color texture image. A detailed algorithm of the RGB
color decorrelation can be found in Heeger and Bergen’s paper
[16].

5 Experiments
5.1 Results
Figure 6 gives some comparison results of texture synthesis,
where images in column (a) are the input texture samples, and
images in the last four columns (b) – (e) are the synthesized results
of: our algorithm, the Heeger and Bergen algorithm [16], the Wei
and Levoy algorithm [35], and the Liang et al. algorithm [21]. We
implement both Heeger’s and Wei’s algorithms, in which Heeger’s
algorithm is based on the steerable pyramid [16] and Wei’s
algorithm is based on the Gaussian pyramid [35]. The results of
our algorithm are generated using 48 characteristic AGLAMs
calculated from a square window of size 7x7 around a target pixel.
The results of the Heeger’s and Wei’s algorithms are generated
with three levels of image pyramids. The results for the Liang et
al.’s algorithm are taken from Paget’s website [26].

As shown in Figure 6, Heeger’s algorithm is able to capture
the overall appearance of a given texture sample, but fails to
capture the local structures in the texture because of the global
histogram-matching scheme used in the algorithm. Wei’s
algorithm is able to capture the details of a given texture using a
pixel-based sampling scheme, but has a smoothing effect in the
output because of the inaccurate SSD measure (sum of squares
differences) used to measure the similarity between the output and
the input and the Gaussian pyramid used to represent a texture
image. Although, Liang’s algorithm can generate good results, our
algorithm generates better results for the input textures in the 1st,
2nd, and 5th rows. For other input textures in the figure, the results
for our algorithm are comparable to those of the Liang’s algorithm.
More results of the aura texture synthesis can be found in Figure 7
and in the supplemental material that accompanies the paper.
 In our approach, the neighborhood size is an important
parameter that affects the synthesis results. In general, an image
containing large structural textures (see textures in the 1st column
in Figure 7) requires a relatively large neighborhood size. For a
given input texture, different synthesis results can be generated
with different neighborhoods sizes. Figure 3 below gives an
example texture and its synthesized textures generated with
different neighborhood sizes. It is an interesting future research
topic to systematically determine the optimal neighborhood size
(e.g. 11x11 for the input texture shown in Figure 3) for a given
input texture image to obtain the best run-time performance.

5

Figure 3: An example of the synthesis results using the
neighborhoods of different sizes given under each output.

5.2 Evaluating Synthesis Results
One significant advantage of the aura texture approach over
existing approaches is that the AGLAM-based distance measure
defined in Eq. 4 can be used to evaluate the synthesis result to
determine whether or not the output looks similar to the input. By
our experimental results, we found that if two texture images have
a distance value greater than 1.0, then they are dissimilar. If the
value is below 0.1, then the output is assured similar to the input.
However, if the distance value is between 0.1 and 1.0, then the
similarity between the two textures is difficult to determine, in this
case we consider the output with a distance value below 0.5 a
success and a failure otherwise. This observation is made by our
extensive experiments. Figure 4 gives an example to demonstrate
this point. Note that in Figure 6, each output texture has a number
beside it to show its AGLAM-distance to the input.

Figure 4: An example using AGLAM-based distance measure to
evaluate the synthesized results against the input.

5.3 Acceleration
For acceleration, we extend our algorithm so that it can perform
texture synthesis in multiresolutions, similar to the pyramid
method used in the Heeger and Bergen’s work [16]. However, by
our experience, we find that the filtering process only complicates
our algorithm. Thus we have used a non-filter-based method,
called local decimation [24] to build the multiresolution
representation of a given image. For an input color texture sample
of size 64x64 with 120 characteristic AGLAMs and an output
color texture of size 128x128, the average running time in single
resolution is about 2 hours on a 1.4GHz Penntium 4 PC running
Windows XP Professional. With a multiresolution scheme of 4
levels and 24 AGLAMs used for each level, the running time is
reduced to about 10 minutes. For color images, our algorithm can
be extended to synthesize the three independent color channels in
parallel after the step of color-space transformation as described in
Section 4.4. In this case, the above running time can be further
reduced to about 3 minutes.

6 Limitations and Future Work
One limitation of the current implementation of the aura texture
synthesis algorithm is the gray level update scheme during the
sampling as described in Section 4.3. It is quite possible that after
a few iterations, the number of candidates of possible gray levels
for a target pixel is less than 3, which may sometimes cause the
gray level values for pixels in the output texture to quickly

converge to local minima, and thus generate visible seams in the
output textures as shown in Figure 5.

In this case, fortunately, the AGLAM-based distance measure
between the output and the input cannot decrease any further, and
a large distance value (normally above 0.5) is returned to indicate
a failure (see Figure 5). However, future research should be
carried out to address this problem. One possible solution is to
extend the current single-pixel search scheme to a multiple-pixel
search scheme during the sampling so that the convergence to the
local minima can be avoided as much as possible. Although a
direct search in multiple-pixel directions is not practical, Boykov
et al. have developed an efficient algorithm to do this based on
graph cuts [4]. We are currently considering their method to
address this local minima problem in our algorithm.

Another interesting future work is to extend our approach to
generate 3D textures. One possible way to do this is to generalize
the AGLAM theory [1] to 3D space by defining the concept of 3D
neighborhood systems. Given an input texture sample (or multiple
samples), one can synthesize a 3D volume texture by coercing a
white noise volume to have the same characteristic AGLAMs as
those of the inputs by noting the fact that AGLAMs in both 2D
and 3D space have the same dimensions.

Figure 5: Example of visible seams in the synthesized textures.
The number beside each output texture is its distance measure
calculated using Eq. 4. Since those values are greater than 0.5, the
output textures are considered as failures based on the evaluation
criterion described in Section 5.2.

7 Conclusions
In this paper, a new texture synthesis approach, called aura texture,
is proposed. Given an input texture, our algorithm first calculates a
set of characteristic AGLAMs to represent the texture, and then
generates the synthesized texture by sampling only the AGLAMs
of the input without requiring any further information. The
experimental results show that the new technique can successfully
synthesize a wide range of textures and is comparable to the
existing techniques. In addition, based on a new distance measure,
the new technique is able to automatically evaluate the results and
determine whether the output is a successful synthesis of the input.
None of the existing techniques has the ability to evaluate their
synthesis results.

References

Input 3x3 5x5 7x7 9x9 11x11

input 1.90 1.04 0.46 0.08

0.59

0.85

0.75

0.67

6

1. Anonymous, Representing Texture Images using Asymmetric
Gray Level Aura Matrices. Submitted to IEEE CVPR 2005.

2. Ashikhmin, M., Synthesizing Natural Textures. The ACM
Symposium on Interactive 3D Graphics, 2001: p. 217-226.

3. Bar-Joseph, Z., et al., Texture Mixing and Texture Movie
Synthesis Using Statistical Learning. IEEE TVCG, 2001. 7(2): p.
120-135.

4. Boykov, Y., O. Veksler, and R. Zabih, Fast Approximate Energy
Minimization via Graph Cuts. PAMI (also in ICCV 99), 2001. 23:
p. 1222-1239.

5. Chen, Y., et al., Shell Texture Functions. ACM SIGGRAPH,
2004. 23(3): p. 343-353.

6. Cross, G.C. and A.K. Jain, Markov Random Field Texture
Models. PAMI, 1983. 5(2): p. 25-39.

7. Davis, L.S., S.A. Johns, and J.K. Aggarwal, Texture Analysis
Using Generalized Cooccurence Matrices. PAMI, 1979. 1(3): p.
251-259.

8. DeBonet, J.S., Multiresolution Sampling Procedure for
Analysis and Synthesis of Texture Images. Siggraph, 1997: p.
361-368.

9. DeBonet, J.S. and P. Viola, Texture Recognition Using a Non-
parametric Multi-Scale Statistical Model. IEEE CVPR, 1998: p.
641-647.

10. Efros, A. and T. Leung, Texture Synthesis by Non-Parametric
Sampling. ICCV, 1999: p. 1033-1038.

11. Efros, A.A. and W.T. Freeman, Image Quilting for Texture
Synthesis and Transfer. Siggraph, 2001: p. 341-346.

12. Elfadel, I.M. and R.W. Picard, Gibbs Random Fields,
Cooccurrences, and Texture Modeling. PAMI, 1994: p. 24-37.

13. Geman, S. and D. Geman, Stochastic relaxation, Gibbs
distributions, and the Bayesian Restoration of Images. PAMI,
1984. 6: p. 721-741.

14. Haralick, R.M., K. Shanmugan, and I.H. Dinstein, Textural
Features for Image Classification. IEEE Trans. Syst. Man
Cybern., 1973: p. 610–621.

15. Heckbert, P.S., Fundamentals of Texture Mapping and Image
Warping. Master's Thesis, in Dept. of Elec. Eng. and Compt.
Sci. 1989, Univ. of California: Berkeley.

16. Heeger, D.J. and J.R. Bergen, Pyramid-Based Texture
Analysis/Synthesis. Siggraph, 1995: p. 229-238.

17. Jagnow, R., J. Dorsey, and H. Rushmeier, Stereological
Techniques for Solid Textures. ACM SIGGRAPH, 2004. 23(3):
p. 329-335.

18. Julesz, B., Visual Pattern Discrimination. IEEE Transactions on
Information Theory, 1962: p. 84-92.

19. Kraevoy, V., A. Sheffer, and C. Gotsman, Matchmaker:
Constructing Constrained Texture Maps. Siggraph, 2003. 22(3):
p. 326-333.

20. Kwatra, V., et al., Graphcut Textures: Image and Video
Synthesis using Graph Cuts. Siggraph, 2003. 22(3): p. 227-
286.

21. Liang, L., et al., Real-Time Texture Synthesis by Patch-Based
Sampling. TOG, 2001: p. 127-150.

22. Liu, X., et al., Synthesis and Rendering of Bidirectional Texture
Functions on Arbitrary Surfaces. IEEE Transactions on
Visualization and Computer Graphics, 2004. 10(3): p. 278-289.

23. Oliveira, M.M., G. Bishop, and D. McAllister, Relief texture
mapping. Siggraph, 2000: p. 356-368.

24. Paget, R. and I.D. Longstaff, Texture Synthesis via a
Noncausal Nonparametric Multiscale Markov Random Field.
IEEE TIP, 1998. 7(6): p. 925-931.

25. Paget, R., Strong Markov Random Field Model. PAMI, 2004.
26(3): p. 408-413.

26. Paget, R., Image Source for Liang et al.'s Texture Synthesis
Results. http://www.vision.ee.ethz.ch/~rpaget, 2004.

27. Perlin, K., An Image Synthesizer. Siggraph, 1985. 19(3): p.
287-296.

28. Popat, K. and R.W. Picard, Cluster-Based Probability Model
and its Application to Image and Texture Processing. IEEE TIP,
1997. 6(2): p. 268-284.

29. Portilla, J. and E.P. Simoncelli, A Parametric Texture Model

Based on Joint Statistics of Complex Wavelet Coefficients.
IJCV, 2000. 40(1): p. 49-71.

30. Press, W.H., et al., Numerical Recipes in C++: The Art of
Scientific Computing (2nd ed). Cambridge University Press,
2002.

31. Qin, X. and Y.H. Yang, Similarity Measure and Learning with
Gray Level Aura Matrices (GLAM) for Texture Image Retrieval.
IEEE CVPR, 2004: p. 326-333.

32. Soler, C., M. Cani, and A. Angelidis, Hierarchical Pattern
Mapping. Siggraph, 2002. 21(3): p. 673-680.

33. Turk, G., Texture Synthesis on Surfaces. Siggraph, 2001: p.
347-354.

34. Wang, B., et al., Efficient Example-Based Painting and
Synthesis of 2D Directional Texture. IEEE Trans. Vis. Comput.
Graph., 2004. 10(3): p. 266-277.

35. Wei, L. and M. Levoy, Fast Texture Synthesis Using Tree-
Structured Vector Quantization. Siggraph, 2000: p. 479-488.

36. Wei, L.Y. and M. Levoy, Texture Synthesis over Arbitrary
Manifold Surfaces. Siggraph, 2001: p. 355-360.

37. Zelinka, S. and M. Garland, Interactive Texture Synthesis on
Surfaces Using Jump Maps. Eurographics Symposium on
Rendering, 2003: p. 90-96.

38. Zhang, J., et al., Synthesis of Progressively-Variant Textures
on Arbitrary Surfaces. Siggraph, 2003. 22(3): p. 295-302.

39. Zhu, S.C., Y. Wu, and D. Mumford, Filters, Random Fields and
Maximum Entropy - Towards a Unified Theory for Texture
Modeling. IJCV, 1998: p. 1-20.

7

Figure 6: The comparison of results of our approach (column (b)) with Heeger and Bergen’s algorithm (column (c)), Wei and Levoy’s
algorithm (column (d)), and Liang et al.’s algorithm (column (e)), where the input textures are in column (a). For our algorithm, 48
characteristic AGLAMs calculated over a square window of size 7x7 around a target pixel are used to represent the input and to synthesize
the output. The results for Heeger’s algorithm are generated using steerable pyramids with 3 levels and 4 orientations (i.e. 0, 45 90, and 135
degrees). For Wei’s algorithm, a Gaussian pyramid of 3 levels is used to synthesize from a given input texture. The neighborhood sizes
used for a Gaussian pyramid are {3x3,1}, {5x5,2}, {7x7,2} from the lowest resolution level to the highest resolution level, where {7x7,2}
means a multiresolution neighborhood of 2 levels (with size 7x7 at the higher resolution level and 3x3 at the lower resolution level) is used
to generate the highest resolution level. As shown in the figure, Heeger’s approach is able to capture the overall appearance of a given
texture sample, but fails to capture the local structures in the texture. Wei’s algorithm is able to capture the details of a given texture, but
has a smoothing effect in the output. Liang’s algorithm generates good results for all input textures in the figure. However, our algorithm
generates better results for the input textures in the 1st, 2nd, and 5th rows. The number beside each output texture is the value of the
AGLAM-based distance measure (see Eq. 4) of the output compared to the input, which shows that the synthesis results from our approach
are better than those from Heeger’s and the Wei’s algorithm, and very comparable to those of the Liang’s algorithm.

(b) (a) (c) (d)

0.08

0.09

0.49

0.39

0.03 0.02

0.02 0.04

0.08 0.07

0.23

0.79

0.51

0.75

0.54

0.39

0.81

0.41

0.63

0.77

(e)

8

Figure 7: Examples of aura texture synthesis. The smaller image in each pair is the input texture (size 64x64), and the larger image is the
synthesized texture. The sizes of output texture in column 2, 4, and 6 are 100x100, 128x128, and 156x156, respectively. Since the textures
in the first column contain large structures, 120 characteristic AGLAMs (calculated over a neighborhood system of size 11) are used to
generate the output in the second column. The output textures in the 4th and 6th column are generated using 48 characteristic AGLAMs.

