
University of Alberta

Skeletonization and Segmentation Algorithms for Object Representation
and Analysis

by

Tao Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

©Tao Wang
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Anup Basu, Computing Science

Irene Cheng, Computing Science

Walter Bischof, Computing Science

Pierre Boulanger, Computing Science

Carlos Flores-Mir, Dentistry

Ghassan Hamarneh, Computer Science, Simon Fraser University

To my wife, Xuefen Chen, and our families.

Abstract

Skeletonization and segmentation are two important techniques for object

representation and analysis. Skeletonization algorithm extracts the “centre-lines”

of an object and uses them to efficiently represent the object. It has many

applications in various areas, such as computer-aided design, computer-aided

engineering, and virtual reality. Segmentation algorithm locates the target object

or Region Of Interest (ROI) from images. It has been widely applied to medical

image analysis and many other areas. This thesis presents two studies in

skeletonization and two studies in segmentation that advanced the state-of-the-art

research. The first skeletonization study suggests an improvement of an existing

algorithm for connectivity preservation, which is one of the fundamental

requirements for skeletonization algorithms. The second skeletonization study

proposes a method to generate curve skeletons with unit-width, which is required

by many applications. The first segmentation study presents a new approach

named Flexible Vector Flow (FVF) to address a few problems of other active

contour models such as insufficient capture range and poor convergence for

concavities. This approach was applied to brain tumor segmentation in two

dimensional (2D) space. The second segmentation study extends the 2D FVF

algorithm to three-dimension (3D) and utilizes it to automatically segment brain

tumors in 3D.

ACKNOWLEDGMENT

I would like to thank my wife Xuefen Chen and my son Sky Wang for their great

endurances during my PhD studies. I would thank my father Dexun Wang and

mother Sanyu You for their nurturance and long time support. I also thank my

father-in-law Songan Chen and mother-in-law Liandi Xu for their support.

 I would like to thank my supervisor Dr. Anup Basu and co-supervisor Dr. Irene

Cheng for their attentive guidance and kind help during my PhD studies. They

always encouraged me to explore my potentials and try new approaches to

advance the state-of-the-art research.

I would also like to thank my committee members (in no particular order), Drs.

Ghassan Hamarneh, Walter Bischof, Pierre Boulanger and Carlos Flores Mir for

their careful examination and valuable suggestions on my thesis.

I also thank all my teachers, colleagues and friends, especially Tianhao Qiu, Dr.

Lihang Ying, Dr. Meghna Singh, Rui Shen, Feng Chen, Dr. Zhipeng Cai, Jiyang

Chen, George Qiaohao Zhu, Dr. Gang Wu, Nicholas Boers, Dr. Soudong Zou, Dr.

Baochun Bai, Dr. Cheng Lei, Dr. Jun Zhou, Dr. Sa Li, Yongjie Liu, Yang Zhao,

Benjamin Chu, Monika Owczarek, Steve Jaswal, Alexey Badalov, Hossein Azari,

Ivan Filippov, Matthew Wearmouth, Nathaniel Rossol, Parisa Naeimi, Saul

Rodriguez, Tao Xu, Victor Jesus Lopez, Dr. Steven Miller, Dr. Shoo Lee, Dr.

Paul Major, Dr. Manuel O Lagravere, Catherine Descheneau, Edith Drummond

and Dr. Russell Greiner, for their help.

Last but not the least, I would like to thank AHFMR-HBI, iCORE, the

Department of Computing Science, the University of Alberta, for financial

support and providing me the excellent environment for PhD studies.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATIONS AND CONTRIBUTIONS ...1
1.2 THESIS ORGANIZATION..6
BIBLIOGRAPHY..7

CHAPTER 2 CONNECTIVITY PRESERVATION IN 3D

SKELETONIZATION ... 9

2.1 INTRODUCTION ..9
2.2 THINNING BASED 3D SKELETONIZATION ALGORITHMS..11

2.2.1 Basic concepts...11
2.2.2 Fully parallel thinning algorithms..13
2.2.3 Sub-iteration parallel thinning algorithms ...18
2.2.4 Sub-field parallel thinning algorithms..23

2.3 GENERAL FIELD BASED 3D SKELETONIZATION ALGORITHMS...25
2.4 VORONOI DIAGRAM BASED 3D SKELETONIZATION ALGORITHMS...32
2.5 SHOCK GRAPH BASED 3D SKELETONIZATION ALGORITHMS ...36
2.6 IMPORTANT PROPERTIES OF SKELETON OR SKELETONIZATION...41
2.7 THE PROBLEM OF MA AND SONKA’S ALGORITHM AND A SOLUTION ..42
2.8 EXPERIMENTAL RESULTS...47
2.9 DISCUSSIONS AND CONCLUSIONS ..48
BIBLIOGRAPHY..50

CHAPTER 3 UNIT-WIDTH CURVE SKELETONS ... 57

3.1 INTRODUCTION ..57
3.2 RELATED WORKS ...58
3.3 THE PROPOSED ALGORITHM...61

3.3.1 Definitions...61
3.3.2 Valence computation...62
3.3.3 Crowded regions and exits..63
3.3.4 Valence Normalized Spatial Median (VNSM) algorithm..63
3.3.5 Unit-width curve skeleton ...64

3.4 EXPERIMENTAL RESULTS...66
3.5 CONCLUSIONS AND DISCUSSIONS ..69

BIBLIOGRAPHY..70

CHAPTER 4 FLEXIBLE VECTOR FLOW AND APPLICATIONS IN 2D

BRAIN TUMOR SEGMENTATION ... 72

4.1 INTRODUCTION ..72
4.2 BACKGROUND ...75

4.2.1 Traditional snake ..75
4.2.2 GVF snake...76
4.2.3 BVF snake ...76
4.2.4 Magnetostatic Active Contour (MAC) Model ...77

4.3 PROPOSED FLEXIBLE VECTOR FLOW (FVF) METHOD ...77
4.3.1 Binary Boundary Map Generation ...79
4.3.2 Vector Flow Initialization ...80
4.3.3 Flexible Vector Flow Computation...83

4.4 EXPERIMENTAL RESULTS...85
4.4.1 Synthetic Images ...86
4.4.2 Head MR images...88
4.4.3 IBSR Brain Tumor MR images and Quantitative Analysis ...89
4.4.5 Implementation ...94
4.4.6 Conclusions...94

BIBLIOGRAPHY..95

CHAPTER 5 FULLY AUTOMATIC BRAIN TUMOR SEGMENTATION

USING A NORMALIZED GAUSSIAN BAYESIAN CLASSIFIER AND 3D

FLEXIBLE VECTOR FLOW ... 96

5.1 INTRODUCTION ..96
5.2 PROPOSED METHOD...102

5.2.1 Pre-processing ..102
5.2.2 Normalized Gaussian Mixture Model and Gaussian Bayes Brain Map102
5.2.3 Candidate Tumor Region..107
5.2.4 3D Flexible Vector Flow...109

5.3 EXPERIMENTS ..114
5.3.1 Test Dataset ..114
5.3.2 Brain Atlases...114
5.3.3 Pre-processing ..115

5.3.4 The Setting of Parameters...116
5.3.5 Experimental Results ..117

5.4 CONCLUSIONS..129
BIBLIOGRAPHY..130

CHAPTER 6 CONCLUSION.. 134

6.1 SKELETONIZATION...134
6.2 SEGMENTATION ...137
6.3 PUBLICATIONS...139

In Preparation ...139
Refereed Journal Papers..139
Refereed Conference Papers..140
Refereed Poster Presentation ..140

BIBLIOGRAPHY..141

List of Tables

Table 3.1: Thinness comparison of the models in Figure 3.16. Smaller values

indicate better thinness.. 68

Table 4.1: Quantitative analysis of GVF, BVF, MAC and FVF based on IBSR

brain tumor MR images. ... 91

Table 4.2: ANOVA Table for RBF Design. s = {inside, outside, overlap}, a =

{GVF, BVF, MAC, and FVF}, b = {test image #1, …, test image #10}, a * b

represents the combination of a and b. ... 93

Table 4.3: Comparison between FVF and GVF, BVF, and MAC........................ 93

Table 5.1: Comparison of related methods. .. 97

Table 5.2: Results of the proposed method... 117

List of Figures

Figure 1.1: Models with disconnected skeletons (images adapted from [17]) 1
Figure 1.2: (Left) a horse model with non-unit-width skeleton. (Right) the horse

model with unit-width curve skeleton... 2
Figure 1.3: The limited capture range of (a) a traditional parametric snake and (b)

a GVF parametric snake. If the initialization (outer circle in (c)) is outside
the capture range, convergence does not occur.. 3

Figure 1.4: (a) An acute concave shape. (b) GVF and (c) BVF are not able to
capture the acute concave shape. A saddle point in GVF is shown in (d) and
a stationary point in BVF is shown in (e). ... 4

Figure 1.5: A demonstration of 3D brain tumor segmentation. 1st column: brain
MR image, 2nd column: ground truth, 3rd column: brain tumor extracted by
the proposed method. 1st row: axial view, 2nd row: sagittal view, 3rd row:
coronal view, 4th row: volume rendering. .. 5

Figure 2.1: (a) A rectangle and its skeleton in 2D (consisting of 5 line segments),
shown with representative maximal circles and contact points; (b) 3D box
and its skeleton with 2D surfaces and 1D line segments. (c) 3D box and its
skeleton with 1D line segments only. (Images courtesy of Cornea [61].)...... 10

Figure 2.2: The adjacencies in a 3D binary image. Points in)(6 pN are marked u,
n, e, s, w, and d. Points in)(18 pN but not in)(6 pN are marked nu, nd, ne,
nw, su, sd, se, sw, wu, wd, eu, and ed. The unmarked points are in)(26 pN
but not in)(18 pN .. 12

Figure 2.3: Three deleting templates in [24]. ... 14
Figure 2.4: Some thinning results in [24]. ... 14
Figure 2.5: Four template cores (Class A, B, C and D) of the fully parallel

thinning algorithm. For (d), there is an additional restriction that p must be a
simple point. ... 15

Figure 2.6: 6 deleting templates in Class A. ... 15
Figure 2.7: 12 deleting templates in Class B. ... 15
Figure 2.8: 8 deleting templates in Class C. ... 16
Figure 2.9: 12 deleting templates in Class D, where at least one point marked □ is

an object point.. 16
Figure 2.10: Two objects and their skeletons extracted by Ma and Sonka’s

algorithm [9]... 17
Figure 2.11: Base masks (M1-M6) in direction U [4]. 1: object point, 0:

background point, •: object or background point, at least one point marked
‘‘x’’ is an object point. .. 19

Figure 2.12: Some thinning results of Palagyi’s 3D 6-subiteration thinning
algorithm [4]... 20

Figure 2.13: The three symmetry planes for reflecting templates in Palagyi and
Kuba [27]. Points belonging to the reflecting planes are marked *. 22

Figure 2.14: Simultaneous deletion of two simple points, p and q, disconnect the
3D image. Image courtesy of Ma [12]. ... 23

Figure 2.15: Cerebral sulci and the medial surfaces (turquoise) in [39]. 27
Figure 2.16: Potential field (a) and normal diffusion field (b) of a 3D cow model,

images courtesy of Cornea [47]. ... 30
Figure 2.17: (a) A 3D cow model (b) Level 0 skeleton (c) Level 1 skeleton (d)

Level 2 skeleton, images courtesy of Cornea [47]. ... 32
Figure 2.18: Models with disconnected skeletons, images adapted from [47]....... 32
Figure 2.19: (a) Point set P. (b) Voronoi diagram................................... 33
Figure 2.20: Computing Voronoi diagram by construction of perpendicular

bisectors [67]. ... 33
Figure 2.21: Voronoi diagram converges to the skeleton in [67]. 34
Figure 2.22: (a) two 1-point contacts (b) a 2-point contact (c) a 3-point contact

(d) a 4-point contact. Images adapted from [68].. 37
Figure 2.23: (a) 3D shapes and their shock scaffolds (b). Images courtesy of

Leymarie [71]... 40
Figure 2.24: First row: some 3D objects (box, ventricles of brain, and the outer

surface of a brain). Second row: the corresponding skeletons. Images
courtesy of Siddiqi [78]... 41

Figure 2.25: A connected object a-b-c-d-e-f-g in 3D space. A “• ” is an object
point. A “o ” is a background point. All other points in 3D space are
background points. In Ma and Sonka’s algorithm, point c will be deleted by
template a5 in Class A, point d will be deleted by template d7 in Class D and
point e will be deleted by template a6 in Class A. Hence, the object will be
disconnected. .. 43

Figure 2.26: Template core of Class D. Figure 2.27: Template d7-1 to d7-3. 44
Figure 2.28: The modified deleting templates in Class D. Each template in Class

D is changed to three templates, in which (p1, p2) are (0, 0), (0, 1) or (1, 0)
respectively. At least one point marked □ is an object point.............................. 45

Figure 2.29: A “• ” is an object point. A “ o ” is a background point. All other
points in 3D space are background points. (a) The original 3D object a-b-c-d-
e-f-g. (b) The thinning result of Ma and Sonka’s algorithm. Point c, d and e
are deleted by some templates in Class A and Class D. Thus, the object gets
disconnected. (c) The thinning result of the modified algorithm. Points c and
e are deleted by some templates in Class A, but point d is not deleted, thus
the object is still connected. ... 46

Figure 2.30: (a) Original 3D object; (b) Result of Ma and Sonka’s algorithm; (c)
Result of modified algorithm... 47

Figure 2.31: Some real models and their skeletons. ... 48
Figure 2.32: Examples of non-unit width skeletons... 49
Figure 3.1: Mesh segmentation using unit-width curve skeletons [24]. 57
Figure 3.2: Matching and retrieval using unit-width curve skeletons [2]. 57
Cornea proposed a potential field based algorithm to generate curve skeletons [2].

The idea is to extract some critical points in a force field to generate the
skeleton. This algorithm has three steps. First is to compute the vector field
on a 3D model. Second is to locate the critical points in the vector field, and

finally the algorithm extracts the curve skeleton following a force directed
approach. However, connectivity of the critical points is not guaranteed (see
Figure 3.3)... 58

Figure 3.4: The left graph shows the junction knots in the curve skeleton. In the
right graph, these junction knots are merged to a single junction knot to
create a unit-width curve skeleton [16]. ... 59

Figure 3.5: Sundar et al. [19], threshold and clustering. ... 60
Figure 3.6: Wang and Lee [28], shrinking and thinning. .. 60
Figure 3.7: Skeleton deviates from the center of the model [28]. 60
Figure 3.8: Svenssona et al. [26], simplifying. .. 61
Figure 3.9: The red (gray in B&W) point denotes the “center” of a crowded

region. From left to right, the locations of center defined by arithmetic mean,
spatial median and VNSM are shown respectively... 64

Figure 3.10: (a) Non-unit-width curve skeleton (b) a crowded region (c) two exits
of the crowded region and (d) the constructed shortest path.............................. 66

Figure 3.11: Examples of crowded regions... 66
Figure 3.12: Examples of unit-width curve skeletons generated with our VNSM

algorithm.. 66
Figure 3.13: Comparing results of our algorithm (left column) with skeletons

generated by Ma and Sonka [3, 15] (right column). Note that the skeletons
generated by our algorithm are unit-width, while the skeletons on the right
contain crowded regions. .. 68

Figure 4.1: The limited capture range of (a) a traditional parametric snake and (b)
a GVF parametric snake. If the initialization (outer circle in (c)) is outside
the capture range, convergence does not occur.. 73

Figure 4.2: (a) An acute concave shape. (b) GVF and (c) BVF are not able to
capture the acute concave shape. A saddle point in GVF is shown in (d) and
a stationary point in BVF is shown in (e). ... 73

Figure 4.3: (a) A “U-shape” object in noisy environment (b) false objects (i.e.,
small enclosed contours) can be extracted by a level set snake. 74

Figure 4.4: The process of FVF.. 78
Figure 4.5: (a) A head MRI image, (b) its gradient map and (c) its extracted

boundary map using a default threshold of 0.1. ... 79
Figure 4.6: The initial contour (circle) is (a) inside (b) outside and (c) overlapping

the target object.(d) the initial contour is automatically enlarged to enclose
the object so that “overlapping” can be handled as “outside.” 80

Figure 4.7: (a) Initial contour C is inside bR , (b) contour C is outside bR , and (c)
contour C overlaps bR . FVF is able to evolve in each of these initialization
cases. ... 80

Figure 4.8: An example of FVF contour evolution: (a) The target object and (b)
the initial contour and vector flow initialization, (c)-(k) a sequence of
flexible vector flow processes and (l) the convergence result. 82

Figure 4.9: Illustration of FVF process: (a) the target object (brain ventricle) with
initial contour (small circle in the ventricle) added, (b) the binary boundary
map, (c) the final contour of FVF in the image, and (d) a zoomed-in view of

the binary boundary map which restricts the final contour inside an envelop.
.. 85

Figure 4.10: (a) An acute concave object with an initial contour at the outside, and
the results of: (b) GVF, (c) BVF, (d) MAC (e) FVF; (f) an object with a
small initial contour at the inside, and the results of: (g) GVF, (h) BVF, (i)
MAC (j) FVF; (k) an object with an overlapping initial contour, and the
results of (l) GVF, (m) BVF, (n) MAC (o) FVF; (p) an object with the image
border as the initial contour, and the results of (q) GVF, (r) BVF, (s) MAC
(t) FVF.. 87

Figure 4.11: (a) An image with an initial contour on the outside of the high
intensity region (intra-ventricular hemorrhage), and the results (zoomed-in)
of: (b) GVF, (c) BVF, (d) MAC (e) FVF; (f) an image with a small initial
contour at the inside of the brain ventricle, and the results (zoomed-in) of: (g)
GVF, (h) BVF, (i) MAC (j) FVF; (k) an image with an initial contour
overlapping the eye, and the results (zoomed-in) of (l) GVF, (m) BVF, (n)
MAC (o) FVF... 88

Figure 4.12: A visual inspection of the FVF generated contour: The images in (a)
and (b) show the FVF detected contour (blue) overlaid with the ground truth
(red)... 89

Figure 4.13: (a) Ground-truth and (b) the segmented region of ground-truth of
Image #4 in Table 4.1, and the results of (c) GVF, (d) BVF, (e) MAC, (f)
FVF, and the segmented regions of (g) GVF, (h) BVF, (i) MAC, (j) FVF,
when the initial contour (not shown) is inside the brain tumor; and the results
of (k) GVF, (l) BVF, (m) MAC, (n) FVF, and the segmented regions of (o)
GVF, (p) BVF, (q) MAC, (r) FVF, when the initial contour (not shown) is
inside the brain tumor. ... 92

Figure 5.1: (Left) histogram of ICBM452 brain atlas. (Right) histogram of the MR
images of patient #1. .. 103

Figure 5.2: (Left) Gaussian Bayesian Brain Map of the brain. (Right) The
candidate tumor region after dilation. ... 108

Figure 5.3: (Left) Original image (Middle) ground-truth (Right) candidate tumor
region after the reverse transformation... 108

Figure 5.4: (Left) initial rectangle contour and four objects (Right) four objects
are segmented by level set snakes.. 111

Figure 5.5: The red surface is the level set surface, the blue plane is the tangent
plane to that surface, the blue arrow is the surface normal, the black dot is the
center of the candidate tumor region, and the green arrow represents the
directional component of the external energy. (Image adapted from
Wikipedia.).. 113

Figure 5.6: (Left) Original image (Middle) extracted brain (Right) 3D volume
rendering of the extracted brain. ... 116

Figure 5.7: (Left) ICBM452 atlas (Middle) registered brain (Right) 3D volume
rendering of the registered brain... 116

Figure 5.8: Result of Patient #1. 1st column: brain MR image, 2nd column: ground
truth, 3rd column: brain tumor extracted by the proposed method. 1st row:
axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume
rendering.. 119

Figure 5.9: Result of Patient #2. 1st column: brain MR image, 2nd column: ground
truth, 3rd column: brain tumor extracted by the proposed method. 1st row:
axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume
rendering.. 120

Figure 5.10: Result of Patient #3. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 121

Figure 5.11: Result of Patient #4. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 122

Figure 5.12: Result of Patient #5. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. The tumor region is very small and the intensity is
inhomogeneous so that the segmentation accuracy (0.22) is very low. 123

Figure 5.13: Result of Patient #6. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 124

Figure 5.14: Result of Patient #7. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 125

Figure 5.15: Result of Patient #8. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 126

Figure 5.16: Result of Patient #9. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. The tumor region is spongy and largely inhomogeneous
so that the segmentation accuracy (0.30) is low. ... 127

Figure 5.17: Result of Patient #10. 1st column: brain MR image, 2nd column:
ground truth, 3rd column: brain tumor extracted by the proposed method. 1st
row: axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row:
volume rendering. ... 128

Figure 6.1: Centeredness of an isolated point in 2D. (a) a point perfectly centered
within a symmetric figure is at equal distance from the boundary of the
figure in all directions. b) a point cannot be perfectly centered within a non-
symmetric figure. (Images courtesy of Cornea [10].)... 136

Figure 6.2: Centeredness vs. robustness and smoothness. A curve-skeleton (in red)
as a subset of the medial axis/surface is perfectly centered within the figure
(a). A smoother curve skeleton, which is not perfectly centered in the

“elbow” region (b). A perfectly centered skeleton cannot remain smooth in
the presence of noise (c). (Images courtesy of Cornea [10].)........................... 136

Figure 6.3: Example of brain segmentation. Different ROIs are colour-coded [14].
.. 138

Figure 6.4: Skeletons of human brains... 139

 1

Chapter 1 Introduction
1.1 Motivations and Contributions

This thesis presents two studies in skeletonization and two studies in segmentation

that advanced the state-of-the-art research. The motivations behind the thesis and

the contributions of the thesis are introduced in this section. This thesis is based

on two refereed journal papers [14, 19], four refereed conference papers [18, 21-

22, 24], one refereed conference poster [23], and one submitted paper [20].

 Three-dimensional (3D) models are extensively used in many areas, including

medical image processing and visualization, computer-aided design, computer-

aided engineering, and virtual reality. In some real-world applications, the input

data is very dense and may require extensive computational resources. Efficient

representation of a 3D model is therefore crucial for many applications to achieve

satisfactory quality of service. An effective approach to address this issue is to

consider skeletonization. The 3D skeleton extracted by a skeletonization

algorithm is a compact representation of a 3D model. 3D skeletons can be used in

many applications [1-2] such as 3D pattern matching, 3D recognition and 3D

database retrieval. Connectivity preservation is one of the most desired properties

for a skeletonization algorithm. It requires that the skeletons must be connected

for connected object. Unfortunately, many skeletonization algorithms [10, 17]

generate disconnected skeletons. Figure 1.1 displays some examples of

disconnected skeletons.

Figure 1.1: Models with disconnected skeletons (images adapted from [17])

 In the first skeletonization study, a correction [14] of a 3D skeletonization

algorithm [10] is presented. The algorithm [10] was one of the first, if not the

 2

only, fully parallel 3D skeletonization algorithms in the literature and has been

applied in many fields such as medical image processing [11] and 3D

reconstruction [12]. However, this algorithm fails to preserve connectivity. Lohou

discovered this problem and gave a counter example in [13]. Some other

researchers, such as Chaturvedi [11] who applied this algorithm and found it

disconnected small segments, but did not suggest how to fix this problem. Our

study reveals the reason for the problem and gives a solution to it. This study

solves a long-time pending problem for the skeletonization research community.

We had applied the new algorithm to generate skeletons for automatic estimation

of 3D transformation for object alignment [21-22].

 In addition to connectivity preservation, many applications, e.g., 3D object

similarity match and retrieval [17] require unit-width curve skeletons (i.e., the

skeleton is only one-voxel thick and has no crowded regions). However, many 3D

skeletonization algorithms [10, 14-16] fail to generate unit-width curve skeletons.

The second skeletonization study [18] presents a so-called Valence Normalized

Spatial Median (VNSM) algorithm, which eliminates crowded regions and

ensures that the output skeleton is unit-width. Figure 1.2 (Left) shows an example

of non-unit-width skeleton with crowded regions with crowded points and Figure

1.2 (Right) shows the unit-width curve skeleton generated by the proposed

method. The proposed method can serve as a “post-processer” for other

skeletonization algorithms to obtain unit-width curve skeleton, which can be used

in a variety of applications mentioned above. Recently, we encoded unit-width

curve skeletons to generate chain expressions for measuring 3D shape

dissimilarity [23, 24].

Figure 1.2: (Left) a horse model with non-unit-width skeleton. (Right) the horse

model with unit-width curve skeleton.

 3

 This thesis addresses another important and interesting problem: segmentation.

The goal of segmentation is to locate the target object, i.e., the Region Of Interest

(ROI) in 2D or the Volume Of Interest (VOI) in 3D. Active contour models or

snakes [3-7] have been widely adopted as effective tools for segmentation [8-9].

Active contour based segmentation algorithms have many applications such as

medical image processing and analysis. Our application is brain tumor

segmentation in Magnetic Resonance (MR) images.

 There are two limitations with the existing active contour models: limited

capture range and inability to handle acute concave shapes. Capture range is the

region that the external forces of the active contour are strong enough to drive

contour evolution. The external forces of the traditional [3] and Gradient Vector

Flow (GVF) [4] snakes are represented as small arrows in Figure 1.3 (a) and (b).

The length of an arrow represents the magnitude of an external force at that

location. In Figure 1.3, the capture range is the region with dense arrows (external

forces) that are strong enough to drive the contour evolution. We can see that the

capture range of the traditional snake is a very limited region around the object

boundary. GVF diffuses the external forces from the object boundary to its

surroundings to obtain a larger capture range. However, the capture range of GVF

is still not the entire image. If the initialization is out of the capture range, the

active contour will not evolve (Figure 1.3 (c)).

 (a) (b) (c)

Figure 1.3: The limited capture range of (a) a traditional parametric snake and (b)

a GVF parametric snake. If the initialization (outer circle in (c)) is outside the

capture range, convergence does not occur.

 4

 Second, some active contour models, e.g. GVF and Boundary Vector Flow

(BVF) [5], are unable to extract acute concave shapes (Figure 1.4 (b) and (c)). We

observe that a number of active contour models (traditional, GVF and BVF) [3-5]

are unable to extract acute concavities because their external force fields are

static. There could be saddle points or stationary points [6] where the composition

of external forces is zero (Figure 1.4 (d) and (e)) in static force fields. Therefore,

the contours will get stuck at those locations and equilibrium will be achieved too

early [6].

 (a) (b) (c) (d) (e)

Figure 1.4: (a) An acute concave shape. (b) GVF and (c) BVF are not able to

capture the acute concave shape. A saddle point in GVF is shown in (d) and a

stationary point in BVF is shown in (e).

 The first segmentation study [19] presents a semi-automatic approach called

Flexible Vector Flow (FVF) active contour model to address problems of

insufficient capture range and poor convergence for concavities. FVF was

validated on a few datasets and applied to segment brain tumor in 2D.

One drawback of our 2D FVF algorithm [19] was that an initial contour must

be given to start the vector flow evolution. In the second segmentation study [20],

the FVF algorithm was extended to 3D and a Gaussian Bayesian Classifier was

used to provide an initial position of a brain tumor to the 3D FVF algorithm to

make the brain tumor segmentation process fully automatic. We compared our

segmentation results with ground-truth segmentations (segmented by human

experts) and found satisfactory accuracy in some test cases. However, in other test

cases, poor accuracy has been observed. Therefore, this method must be further

improved and validated before being applied to clinical trials. Figure 1.5 shows

 5

one of the test brain MR images (1st column), the ground truth segmentations (2nd

column) and the brain tumor extracted by the proposed method (3rd column).

Figure 1.5: A demonstration of 3D brain tumor segmentation. 1st column: brain

MR image, 2nd column: ground truth, 3rd column: brain tumor extracted by the

proposed method. 1st row: axial view, 2nd row: sagittal view, 3rd row: coronal

view, 4th row: volume rendering.

 6

1.2 Thesis Organization

The remainder of this thesis is organized as follows. In the next chapter, the first

skeletonization study on connectivity preservation is introduced. Then the second

skeletonization study on unit-width curve skeleton is presented in Chapter 3. In

Chapter 4, the first segmentation study based on Flexible Vector Flow is

introduced, followed by the second segmentation study in Chapter 5. Discussions

and conclusions are presented in Chapter 6.

 7

Bibliography

[1] P. J. Besl and R. C. Jain. Three-dimensional object recognition. ACM Computing Surveys, 17

(1): pp 75-145, 1985.

[2] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin and D. Jacobs. A

Search Engine for 3D Models, ACM Trans. on Graphics, 22(1): pp 83-105, 2003.

[3] M. Kass, A. Witkin, and D. Terzopoulus, “Snakes: Active contour model”, Intl. J. of

Computer Vision, vol. 1(4), pp. 321-331, 1988.

[4] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow”, IEEE Trans. on Image

Processing, pp. 359-369, 1998.

[5] K.W. Sum and P. Y. S. Cheung, “Boundary vector field for parametric active contours”,

Pattern Recognition, pp. 1635-1645, 2007.

[6] X. Xie and M. Mirmehdi, “MAC: Magnetostatic Active Contour Model”, IEEE Trans. PAMI,

vol. 30(4), pp. 632-645, 2008.

[7] O. Juan, R. Keriven, and G. Postelnicu, “Stochastic motion and the level set method in

computer vision: Stochastic active contours”, Intl. J. of Computer Vision, vol. 69(1), pp. 7–

25, 2006.

[8] I. Dagher and K. E. Tom, Water, “Balloons: A hybrid watershed Balloon Snake

segmentation”, Image and Vision Computing, vol. 26 (7), pp. 905-912, 2008.

[9] S. W. Yoon, C. Lee, J. K. Kim and M. Lee, “Wavelet-based multi-resolution deformation for

medical endoscopic image segmentation”, J. of Medical Systems, vol. 32 (3), pp. 207-214,

2008.

[10] C. M. Ma, M. Sonka, A fully parallel 3D thinning algorithm and its applications, Computer

Vision and Image Understanding, 64 (3), November 1996, pp. 420-433.

[11] A. Chaturvedi, Z. Lee, Three-dimensional segmentation and skeletonization to build an

airway tree data structure for small animals, 50 (7), April 2005, Physics in Medicine and

Biology, pp. 1405-1419.

[12] M.S. Talukdar, O. Torsaeter, M.A. Ioannidis, J.J. Howard, Stochastic reconstruction, 3D

characterization and network modeling of chalk, Journal of Petroleum Science and

Engineering, 35 (1-2), July 2002, pp. 1-21.

[13] C. Lohou, Contribution à l’analyse topologique des images (Ph.D. thesis), UNIVERSITÉ DE

MARNE-LA-VALLÉE, 2001.

[14] T. Wang and A. Basu. A note on “A fully parallel 3D thinning algorithm and its

applications”, Pattern Recognition Letters, 28(4): 501-506, 2007.

 8

[15] K. Palagyi and A. Kuba. A 3D 6-subiteration thinning algorithm for extracting medial lines,

Pattern Recognition Letters, 19 (7): pp 613-627, 1998.

[16] C. Lohoua and G. Bertrand. A 3D 6-subiteration curve thinning algorithm based on P-simple

points, Discrete Applied Mathematics, Vol. 151, pp 198–228, 2005.

[17] N. D. Cornea. Curve-Skeletons: Properties, Computation And Applications, Ph.D. Thesis,

The State University of New Jersey, May 2007.

[18] T. Wang and I. Cheng, Generation of Unit-width curve skeletons based on Valence Driven

Spatial Median (VDSM), International Symposium on Visual Computing, LNCS 5358, pages

1061-1070, 2008.

[19] T. Wang, I. Cheng and A. Basu, Fluid Vector Flow and Applications in Brain Tumor

Segmentation, IEEE Transactions on Biomedical Engineering, Vol.56(3), pages 781-789,

2009.

[20] T. Wang, I. Cheng and A. Basu, Automatic Brain Tumor Segmentation with Normalized

Gaussian Bayesian Classifier and Fluid Vector Flow, submitted for publication.

[21] T. Wang and A. Basu, Iterative Estimation of 3D Transformations for Object Alignment,

International Symposium on Visual Computing, LNCS 4291, pages 212-221, 2006.

[22] T. Wang and A. Basu, Automatic Estimation of 3D Transformations using Skeletons for

Object Alignment, IAPR/IEEE International Conference on Pattern Recognition, pages 51-54,

2006.

[23] V. Lopez, I. Cheng, E. Bribiesca, T. Wang and A. Basu, Twist-and-Stretch: A Shape

Dissimilarity Measure based on 3D Chain Codes, ACM SIGGRAPH Asia Research Poster,

2008.

[24] T. Wang, I. Cheng, V. Lopez, E. Bribiesca and A. Basu, Valence Normalized Spatial Median

for Skeletonization and Matching, Search in 3D and Video workshop (S3DV), in conjunction

with IEEE International Conference on Computer Vision (ICCV) 2009.

 9

Chapter 2 Connectivity Preservation in 3D

Skeletonization

2.1 Introduction

We live in a three-dimensional (3D) world. In many application areas, such as

medical image processing and visualization, computer-aided design, computer-

aided engineering, and virtual reality, we need to build and use 3D models.

However, in many real-world applications, the input data is very dense. For

instance, the Visible Man Bone triangle mesh model with 4,715,110 faces at

Georgia Tech is 190MB in Open Inventor format. The volumetric models may

have even larger size. For example, the size of a 1,024×1,024×1,024 binary 3D

image is 1GB. Moreover, there is no reason to believe that the sizes of 3D models

will stop increasing in the near future. Therefore, without efficient representation

of a 3D model, some applications are considered to be impossible or very

difficult.

 The 3D skeleton extracted by a skeletonization algorithm is a compact

representation of a 3D model. 3D skeletons can be used in many applications [1-

2] such as 3D pattern matching, 3D recognition and 3D database retrieval.

Skeletonization is also known as skeletonizing or topological skeleton generation.

 The skeleton can be defined via the Medial Axis Transformation (MAT) [3].

The MAT can be computed by “prairie fire” propagation. Consider an object as a

prairie of uniform and dry grass. Suppose that a fire is lit along its border. All fire

fronts advance into the object at the same speed. The MAT of the region is the set

of points reached by more than one fire front at the same time.

 Definition 2.1 The medial axis (or skeleton) of an n dimension manifold is the

closure of the centers of all inscribed maximal hyper-spheres tangent to the

manifold in at least two distinct locations.

 In 2D space, a medial axis consists of the loci of the centers of all inscribed

maximal circles of the 2D model - in other words, where these circles share at

 10

least two points with the boundary of the model. Figure 2.1 (a) shows a rectangle

and its skeleton.

 In 3D space, a medial axis consists of the loci of the centers of all inscribed

maximal spheres of the 3D model, where these spheres share at least two points

with the boundary of the model. A skeleton in 3D consists of a set of 2D surfaces

and/or 1D line segments. In many applications, a skeleton with only 1D line

segments is more desirable. Figure 2.1 (b) shows a 3D box and its skeleton with

2D surfaces and 1D line segments. Figure 2.1 (c) shows the same 3D box and its

skeleton with 1D line segments only.

(a) (b) (c)

Figure 2.1: (a) A rectangle and its skeleton in 2D (consisting of 5 line segments),

shown with representative maximal circles and contact points; (b) 3D box and its

skeleton with 2D surfaces and 1D line segments. (c) 3D box and its skeleton with

1D line segments only. (Images courtesy of Cornea [61].)

3D skeletons can be used in many applications such as 3D pattern matching,

3D recognition, 3D database retrieval, and dimensional reduction of complicated

3D models. There are four kinds of skeletonization techniques in the literature:

thinning based algorithms [4-13, 15, 24-27, 29, 30], general field based

algorithms [31, 36-47], Voronoi diagram based algorithm [48-52], and shock

graph based algorithm [69-74, 76-78, 81].

 The remainder of this chapter is organized as follows. In Section 2.2, the

thinning based 3D skeletonization algorithms are introduced. Then the general

field based 3D skeletonization algorithms are discussed in Section 2.3. In Section

2.4, the Voronoi diagram based 3D skeletonization algorithms are introduced,

followed by the shock graph based 3D skeletonization algorithms in Section 2.5.

In Section 2.6, the Ma and Sonka’s algorithm [9] is briefly introduced, its

problematic part is analyzed and the modification is presented, before the work is

 11

concluded in Section 2.7. The modified algorithm was published in [109]. We had

used the skeletons generated by the modified algorithm for automatic estimation

of 3D transformation for object alignment [110-111].

2.2 Thinning based 3D skeletonization algorithms

A 3D thinning algorithm applies in a local neighborhood of an object point and

iteratively removes object points that satisfy some pre-defined masks to generate

skeletons in a 3D binary image. A 3D binary image is a mapping that assigns the

value of 0 or 1 to each point in the discrete 3D space. Points having the value of 1

are called black (object) points, while 0’s are called white (background) ones.

Black points form objects of the binary image. The thinning operation iteratively

deletes or removes some object points (that is, changes some black points to

white) until some restrictions prevent further operation. Note that the white points

will never be changed to black ones. Most of the existing thinning algorithms are

parallel, since the medial axis transform (MAT) can be defined as fire front

propagation, which is by nature parallel [3]. There are three categories of parallel

thinning algorithms in the literature: fully parallel thinning algorithms [9, 24, 25],

sub-iteration parallel thinning algorithms [4-6, 10-12, 26, 27, 29, 30], and sub-

field parallel thinning algorithms [7, 8, 13, 15].

2.2.1 Basic concepts

Some terms and notations are introduced here:

Let p and q be two different points with coordinates (px, py, pz) and (qx , qy, qz),

respectively, in a 3D binary image P. The Euclidean distance between p and q is

defined as:

222)()()(zzyyxx qpqpqpdis −+−+−=

Then p and q are:

6-adjacent if 1≤dis . 18-adjacent if 2≤dis . 26-adjacent if 3≤dis . Let

us denote the set of points k-adjacent to point p by)(pNk , where k = 6, 18, 26,

(see Figure 2.2).)(pNk is also called p’s k-neighborhood. Let p be a point in a

3D binary image. Then, e(p), w(p), n(p), s(p), u(p), and d(p) are 6-neighbors of p,

 12

which represent 6 directions of east, west, north, south, up, and down,

respectively. The 18-neighbors of p (but not in p’s 6-neighborhood) are nu(p),

nd(p), ne(p), nw(p), su(p), sd(p), se(p), sw(p), wu(p), wd(p), eu(p), and ed(p),

which represent 12 directions of north-up, north-down, north-east, north-west,

south-up, south-down, south-east, south-west, west-up, west-down, east-up, and

east-down, respectively.

Figure 2.2: The adjacencies in a 3D binary image. Points in)(6 pN are marked u,

n, e, s, w, and d. Points in)(18 pN but not in)(6 pN are marked nu, nd, ne, nw, su,

sd, se, sw, wu, wd, eu, and ed. The unmarked points are in)(26 pN but not in

)(18 pN .

 Let S be a set of points of a 3D binary image P. A k-path in S is a sequence of

distinct points with coordinates (x0, y0, z0), (x1, y1, z1), …, (xn, yn, zn), where every

two subsequent points (xi, yi, zi) and (x i+1, y i+1, zi+1) are k-adjacent. Two object

points are said to be 26-connected if there exists a 26-path between them

consisting entirely of object points in S. An object component in S is a maximal

26-connected subset of object points of S. A background component in S is a

maximal 6-connected subset of background points of S.

 A unit edge is a pair of two adjacent points. A unit square is a set of four points

of a 1×1 square. A unit cube is a set of eight points of a 1×1×1 cube.

 A boundary point is an object point that has at least one background point in its

6-neighborhood. Thinning algorithms are designed to delete all the boundary

points that satisfy certain pre-defined conditions.

Some thinning algorithms generate surface skeletons (shown in Figure 2.1 (b))

and some algorithms generate curve skeleton (shown in Figure 2.1 (c)). For

surface skeleton thinning algorithms, surface-end points must be kept. A

 13

boundary point p is a surface-end point if it is 6-adjacent to at least one opposite

(U and D, or N and S, or E and W) pair of background points. For curve skeleton

thinning algorithms, curve-end points must be kept. A boundary point p is a

curve-end point if it is 6-adjacent to exactly at least one object point.

 A 3D thinning algorithm should preserve the topology of a 3D image. To

preserve topology, the number of connected components, the number of cavities

and the number of holes should be preserved. However, it is very difficult to

calculate these three numbers. Malandain and Bertrand suggested [62] and then

proved [63] that to preserve topology only simple points can be deleted. This

result is stated as the Theorem 2.1.

 Definition 2.2 An object point is simple if it is 26-adjacent to only one object

component in its 26-neighborhood and 6-adjacent to only one background

component in its 18-neighborhood.

 Theorem 2.1 Deletion of a simple point preserves topology.

 Theorem 2.1 is sufficient to test the deletion of a single point preserve topology

or not. Ma [14] proposed the theorem to test if a 3D thinning algorithm can

preserve the connectivity or not based on Theorem 2.1. It is stated as Theorem

2.2.

 Definition 2.3 Denote X as a set of object points in a 3D image P. If X can be

ordered as a sequence in which every point is simple after all previous points in

the sequence are deleted, then the set X is simple.

 Theorem 2.2 A 3D thinning algorithm preserves connectivity of a 3D image P

if the following conditions are satisfied:

• Any subset of P that is contained in a unit square and deleted by the

algorithm is simple.

• No object component contained in a unit cube can be deleted completely.

2.2.2 Fully parallel thinning algorithms

A fully parallel thinning algorithm applies simultaneously to all object points on

the boundary. It processes all input points in a loop with the same set of deleting

masks. Ma et al. proposed two fully parallel thinning algorithms [9, 24] for

 14

extracting medial surfaces and medial lines. Manzanera et al. [25] presented an

algorithm for extracting medial surfaces.

Ma [24] defined three deleting templates (shown in Figure 2.3). In Figure 2.3

and Figure 2.5 (see below), a “• ” is used to denote an object point while a “o ” is

used to denote a background point. An unmarked point is a “don’t care” point,

which can represent either an object point or a background point. In Figure 2.3(a),

at least one point marked as □ is an object point. In Figure 2.3(b) at least one point

in {a1, b1} and at least one point in {a2, b2} are background points. The algorithm

simultaneously deletes every object point that satisfies any of the three deleting

templates or any rotations/reflections of the deleting templates. Some results are

shown in Figure 2.4. This algorithm is able to extract medial surfaces from 3D

images. Theorem 2.2 was used to prove that this algorithm preserve connectivity.

 (a) (b) (c)

Figure 2.3: Three deleting templates in [24].

Figure 2.4: Some thinning results in [24].

 Ma et al. [9] modified the previous algorithm [24] to generate medial lines. In

[9], the algorithm is based on some pre-defined templates (Class A, B, C and D).

 15

If the neighborhood of an object point matches one of the templates, it will be

removed. Figure 2.5 shows the four basic template cores.

Figure 2.5: Four template cores (Class A, B, C and D) of the fully parallel

thinning algorithm. For (d), there is an additional restriction that p must be a

simple point.

 The template cores themselves are not the deleting templates. Some translations

[9] must be applied to the template cores to obtain the deleting templates. There

are 6 templates in Class A, 12 templates in Class B and 8 templates in Class C and

12 templates in Class D. Templates in Class A-D are shown in Figures 2.6-2.9, In

Figure 2.9, at least one point marked □ is an object point.

Figure 2.6: 6 deleting templates in Class A.

Figure 2.7: 12 deleting templates in Class B.

 16

Figure 2.8: 8 deleting templates in Class C.

Figure 2.9: 12 deleting templates in Class D, where at least one point marked □ is

an object point.

 Ma and Sonka defined the preserving conditions as follows:

“Rule 2.2. Let p be an object point of a 3D image. Then:

1. p is called a line-end point if p is 26-adjacent to exactly one object point;

2. p is called a near-line-end point if p is 26-adjacent to exactly two object points

which are:

(a) either s(p) and e(p), or s(p) and u(p) but not both;

(b) either n(p) and w(p), or u(p) and w(p) but not both; or

(c) either n(p) and d(p), or e(p) and d(p) but not both;

3. p is called a tail point if it is either a line-end point near-line-end point;

otherwise it is called a nontail point.” Where e(p), w(p), n(p), s(p), u(p) and d(p)

are the east, west, north, south, up, and down neighbors of p, respectively.

 17

 In each iteration, all non tail-points satisfying at least one of the deleting

templates in Class A, B, C or D are deleted in the fully parallel thinning algorithm

as follows:

Algorithm

Repeat

1) Mark every object point which is 26-adjacent to a background point;

2) Repeat

Simultaneously delete every non tail-point which satisfies at least one

deleting template in Class A, B, C, or D;

Until no point can be deleted;

3) Release all marked but not deleted points;

Until no marked point can be deleted;

 Figure 2.10 shows some results of this algorithm. Theorem 2.2 was used to

prove this algorithm can preserve connectivity.

Figure 2.10: Two objects and their skeletons extracted by Ma and Sonka’s

algorithm [9].

 Manzanera et al. [25] used morphological operators to extract medial surfaces

in a fully parallel way. The algorithm is defined by five patterns (α1, α3, α3, β1, β2).

(α1, α3, α3) are deleting patterns. (β1, β2) are non-deleting patterns which are used

to preserve connectivity. Theorem 2.2 was used to prove this algorithm can

preserve connectivity.

 18

 The advantage of a fully parallel thinning algorithm is that it requires the least

number of iterations to extract a skeleton from a 3D image, as all the boundary

points that satisfy the deleting conditions are deleted in a single iteration. In

general, fewer iterations imply a faster thinning speed because a boundary point is

tested only once. For the sub-iteration algorithms in the next section, a boundary

point can be tested multiple times.

2.2.3 Sub-iteration parallel thinning algorithms

A sub-iteration parallel thinning algorithm examines a neighborhood (3×3×3, for

most of the algorithms of this kind) for each border point. There are n sub-

iterations in each iteration where only border points of a certain type can be

deleted in each sub-iteration. Each sub-iteration uses a different deletion rule and

is executed in a parallel fashion. All border points satisfying the deletion

condition of the sub-iteration are deleted simultaneously.

 There are four kinds of sub-iteration parallel thinning algorithms: 3-subiteration

[26], 6-subiteration [4-6, 10-12], 8-subiteration [27], and 12-subiteration [29, 30],

in the literature. The pseudo code for n sub-iteration parallel thinning algorithm

can be sketched as follows:

Repeat

For i=1 to n do

Delete the border points that satisfy the condition assigned to the i-th direction

End for

Until no points can be deleted

 As mentioned in Section 2.2.1, there are 6 major directions in 3D images; thus

6-subiteration parallel thinning algorithms were generally proposed.

 Gong and Bertrand [6] developed a 6-subiteration thinning algorithm in 1990.

This algorithm has two operations: a topological thinning operation T1 and a

geometrical operation T2. The fist operation is designed to thin a 3D image while

preserving topology and the second one is designed to thin a 3D image while

preserving geometry. In each iteration, T1 and T2 are applied to one type of

boundary points in a fixed sequence of directions: U, N, E, B, S and W. This

 19

algorithm was published before [62]. They claimed that this algorithm preserves

topology. However, they only proved that the algorithm does not disconnect or

connect 3D object components, and it does not create holes or cavities. They did

not prove that this algorithm does not remove holes or cavities.

 Mukherjee et al. presented a 3D 6-subiteration thinning algorithm named

ESPTA [10] (Extended Safe Point Thinning Algorithm). However, ESPTA

disconnects a connected object. They improved it and proposed a new algorithm

named MESPTA [11] (Modified Extended Safe Point Thinning Algorithm) in

1990. They used safe point instead of simple point to test if topology is preserved

of not. The authors proved that the new algorithm preserves topology.

 Palagyi et al. presented a 3D 6-subiteration thinning algorithm [4] in 1998. This

algorithm is able to preserve geometry and topology of 3D models. However, it is

sensitive to image rotation and noise. The deletion condition of this algorithm is

described by some masks. An object point is to be deleted if – and only if – its

neighborhood matches at least one of the given masks. The masks are constructed

according to the six directions U, D, N, E, S, and W. Direction U masks consist of

six base masks (M1-M6, shown in Figure 2.11) and rotations around the vertical

axis (rotation angles are 90°, 180°, and 270°). Other masks for directions D, N, E,

S, and W can be derived from the rotations and reflections of the masks for

direction U.

Figure 2.11: Base masks (M1-M6) in direction U [4]. 1: object point, 0:

background point, •: object or background point, at least one point marked ‘‘x’’ is

an object point.

 20

 In this algorithm, P = (26, 6, B) is a 3D image. P = (26, 6, B) is a notation

which means that the background points are under 26-connectivity and the object

points are under 6-connectivity. Point set B is stored in an array X. Thinning X in

direction D results in an image T(X, D). The pseudo code of this algorithm is:

Input: binary array X representing the image P

Output: binary array Y representing the thinned image

 Y=X;

 Repeat

 Y=T(Y, U); Y=T(Y, D); Y=T(Y, N);

 Y=T(Y, S); Y=T(Y, E); Y=T(Y, W);

 Until no points can be deleted

 The deletion order is fixed in this algorithm. Another order of deletion leads to

a different result. That explains why this algorithm is very sensitive to rotation

and noise. Some thinning results of this algorithm are displayed in Figure 2.12.

Figure 2.12: Some thinning results of Palagyi’s 3D 6-subiteration thinning

algorithm [4].

 21

 A recent 6-subiteration thinning algorithm [5] was proposed by Lohoua and

Bertrand in 2005. They proposed a new methodology to build thinning algorithms

based on the deletion of P-simple points instead of simple points. This

methodology enables people to derive a thinning algorithm A from an existent

thinning algorithm B, such that A deletes at least all the points removed by B

while preserving the same end points. They applied this methodology and

proposed a new 6-subiteration curve thinning algorithm which deletes at least all

the points removed by two 6-subiteration curve thinning algorithms [4, 6]. They

proved that any algorithm removing only subsets composed solely of P-simple

points is guaranteed to preserve topology. Thereby, no proof is required in

contrast to most of the existing thinning algorithms [24, 25, 9] that use simple

points. Similar to the test of a simple point, a P-simple point can be tested by the

examination of only its 26-neighborhood.

 Ma and Wan [12] proposed a 6-subiteration thinning algorithm to extract

medial surfaces and medial curves. While most other algorithms consider the

object component as 26-connected, the object component is considered as 18-

connected.

Palagyi [26] presented a 3-subiteration thinning algorithm for extracting medial

surfaces. The three deletion directions are UD, NS and EW, corresponding to the

three kinds of opposite pairs of points. The first sub-iteration deletes the U or D

edge points that satisfy any deleting templates in direction UD. The second sub-

iteration deletes the N or S edge points that satisfy any deleting templates in

direction NS. The third sub-iteration deletes the E or W edge points that satisfy

any deleting templates in direction EW. This work is non-trivial because it

demonstrates a possible way for constructing non-conventional sub-iteration

parallel thinning algorithms. Furthermore, less sub-iterations means less number

of iteration are required to extract a skeleton from a 3D image.

An 8-subiteration thinning algorithm was proposed by Palagyi and Kuba [27]

for extracting medial surfaces and medial curves. The eight deletion directions are

USW, UWN, UNE, UES, DSW, DWN, DNE, and DES. For each deletion

direction, some template cores are defined. Surface skeleton thinning algorithm

 22

and curve skeleton thinning algorithm have different template cores. Template

cores themselves are not the deleting templates. Deleting templates are defined as

the reflections of the template cores. The three symmetry planes for reflecting

templates are shown in Figure 2.13. For the surface skeleton thinning algorithm,

surface-end points are kept. For curve skeleton thinning algorithms, curve-end

points must be kept. Theorem 2.2 was used to prove this algorithm can preserve

connectivity. Results show that the curve thinning algorithm is robust under noise.

However, the surface thinning algorithm is sensitive to boundary noise because a

noisy boundary may contain a number of surface-end points which must be kept.

Figure 2.13: The three symmetry planes for reflecting templates in Palagyi and

Kuba [27]. Points belonging to the reflecting planes are marked *.

A 12-subiteration thinning algorithm was proposed by Palagyi and Kuba [29]

for extracting curve skeletons or surface skeletons. The twelve deletion directions

are UN, UE, US,UW, NE,NW, ND, ES, ED, SW, SD, and WD. They are non-

opposite and unordered. The order of the deletion directions is <US, NE, WD; ES,

UW, ND; SW, UN, ED; NW, UE, SD>. Another order of the deletion directions

leads to another algorithm. A number of deleting templates are defined for each

direction. A drawback of this algorithm is that an object point may be checked for

too many times before it is deleted.

Lohoua and Bertrand [30] presented a 12-subiteration thinning algorithm based

on P-simple points. It takes advantage of the P-simple points and can delete at

least all the points removed by [29].

 23

2.2.4 Sub-field parallel thinning algorithms

Sub-field parallel thinning algorithms divide input points into different sub-fields

and apply different deleting masks to points in different sub-field. For a parallel

thinning algorithm, simultaneous deletion of two or more points (even if they are

simple) may disconnect a 3D image. For instance, in Figure 2.14, object points p

and q are simple points. Deletion of p or q will not disconnect the 3D image.

However, simultaneous deletion of p and q breaks the 3D image into 2 pieces.

The simple test is done in the 26-neighborhood of an object point. If the object

points of a 3D image are partitioned into several subfields so that two object

points are non 26-adjacent in the same subfield, deletion of one point will not

bring the problem of connectivity violation. This is the motivation of sub-field

parallel thinning algorithm.

Figure 2.14: Simultaneous deletion of two simple points, p and q, disconnect the

3D image. Image courtesy of Ma [12].

 A sub-field parallel thinning algorithm divides the 3D model into some

disjointed subsets. At a given iteration, only the border points of the active

subfield can be deleted. The pseudo code of subfield parallel thinning algorithm

consisting of n subfields is as follows:

Repeat

For i=1 to n do

Delete the border points in the i-th subfield that satisfy the global

condition (assigned to the i-th subfield)

End For

Until no points can be deleted

 24

 Saha et al. [7] proposed an 8 sub-fields parallel thinning algorithm extracting

surface skeletons and curve skeletons. A 3D image is divided into eight disjointed

sub-fields so that no two object points in the same sub-field are 26-adjacent.

Hence, the members of each sub-field can be used for parallel thinning without

the risk of connectivity violation described in Figure 2.14. They showed that the

shape distortion increases linearly with the percentage of noise. The authors also

found that the maximum shape distortion appeared when the rotation is 45°,

which is expected due to the discrete nature of a 3D image.

 Ma and his colleagues introduced three sub-field parallel thinning algorithms

[8, 13, 15] during 2001 and 2002. In [8], a 2-subfield thinning algorithm was

proposed to extract medial surfaces. The object points in a 3D image are divided

into two subfields where two 18-adjacent object points are in the same subfield,

and two 6-adjacent object points are in different subfields. The authors argued that

the division of two subfields can prevent the risk of connectivity violation when

deleting two 6-adjacent object points because 6-adjacent object points are in

different subfields. However, as discussed in the beginning of Section 2.2.4, only

when two object points are non 26-adjacent in the same subfield, deletion of one

point will not bring the problem of connectivity violation. Theorem 2.2 was used

to prove this algorithm can preserve connectivity. A 2-subfield thinning algorithm

[13] was proposed to extract medial lines with similar technology. A 4-subfield

thinning algorithm [15] was developed to extract medial lines and medial

surfaces. The object points in a 3D image are divided into four subfields where

two 26-adjacent object points are in the same subfield, and two 18-adjacent (and

6-adjacent) object points are in different subfields. A subfield based thinning

algorithm starts thinning from the first subfield and then the other subfield(s)

sequentially. Therefore, a 2-subfield thinning algorithm has only 2 sequential

thinning steps in each iteration and thus a removable object point can only be

tested up to 2 times before it is deleted. However, it has to avoid the problem of

connectivity violation. An 8 subfield thinning algorithm has 8 sequential thinning

steps in each iteration. Thereby, a removable object point may be tested up to 8

times before it is deleted. The advantage is that an 8 subfield thinning algorithm

 25

has no risk of connectivity violation. A 4 subfield thinning algorithm is a tradeoff

in-between.

2.3 General field based 3D skeletonization algorithms

General field based methods have two steps:

1. A certain field is created for the 3D object.

2. The local extrema are detected as skeleton points.

Different general field based algorithms take advantage of different fields; the

skeleton depends on the chosen field. Over the past two decades, a number of

different fields – such as distance field [36-44], potential field [45-47] and

electrostatic field [31] – have been used by 3D skeletonization algorithms.

Unfortunately, no matter what kind of field is used, an algorithm has to take some

extra steps to connect skeletal points due to the threshold issue for extrema

detection.

Among all kinds of fields, distance field based algorithms have been studied

most extensively. First, a distance map is generated where each element gives the

distance from an object point to the nearest boundary point. Then, the local

maxima are detected as skeleton points. This is a direct implementation of “prairie

fire” propagation. One of the advantages of distance transform is that it is very

efficient. The computation complexity of distance transform can be linear (O(n))

time in arbitrary dimensions, where n is the number of the points in the image.

The most serious disadvantage of distance transform is that it may not preserve

topology; it needs some thresholds to detect the maxima and thereby the skeleton

may be disconnected.

The skeleton depends on the chosen distance metric. City block distance metric

was used in [37] and chessboard distance metric was used in [38]. Among all the

different distance metrics, Euclidean distance is the “true” distance between

points.

The Euclidean distance between two points a (a1, a2, …, an) and b (b1, b2, …,

bn) in n-space is defined as:

 26

 Euclidean distance = ∑
=

−
n

i
ii ba

1

2||

 In 1D space, Euclidean distance = | a1- b1| = | ax- bx|

 In 2D space, Euclidean distance = 22 |||| yyxx baba −+−

 In 3D space, Euclidean distance = 222 |||||| zzyyxx bababa −+−+−

 The computation of the Euclidean distance is expensive because square root has

to be calculated. Some approaches have been proposed to estimate the Euclidean

distance. A fast estimation [65] of 2D Euclidean distance is:

⎪⎩

⎪
⎨
⎧

+

<+
≈

 otherwise |,b-a|941246 0. |b-a| 0.41

|b-a| |b-a| when |,b-a|941246 0. |b-a|0.41
 distanceEuclidean

xxyy

xxyyyyxx

 The difference between the estimated distance and the exact distance is

between -6% and +3%. A distance transform skeletonization algorithm compares

distances to detect the local maxima as part of the skeleton. We notice |A| > |B|

|A|2 > |B|2. Therefore, it is not necessary to calculate the square root at all. The

square of Euclidean distance is used for comparison instead of the exact

Euclidean distance. In 3D space, the chamfer distance [66] is widely used to as

the distance metric instead of Euclidean distance. The chamfer distance [64] from

an object point c to the nearest boundary point is defined as:

Dchamfer(c) = min {Dchamfer(d) + Dest(c, d) }, where d is an object point in c’s 26-

neighborhood and Dest(c, d) is an integer estimation to the Euclidean distance

between c and d. Dest(c, d) is defined as:

Dest(c, d) =
⎪
⎩

⎪
⎨

⎧

point a sharing neighbors are d and c if ,5
edgean sharing neighbors are d and c if ,4
areaan sharing neighbors are d and c if ,3

Borgefors [66] showed that this estimation minimized the upper bound on the

difference between the chamfer and Euclidean distances. Pudney [36] presented a

Distance Ordered Homotopic Thinning (DOHT) algorithm using the chamfer

distance instead of Euclidean distance to generate skeletons.

 27

Zhou [39-41] proposed a distance transform based 3D skeletonization

algorithm and applied it to generate medial surfaces of cerebral sulci. Figure 2.15

displays the cerebral sulci and the medial surfaces [39]. The medical CT or MRI

data in [39-41] are very large, so that precise calculation of Euclidean distances

for skeletons is expensive. Therefore, a simpler distance transform based on F-

neighbors [39] is used. The computation cost of this distance transform is low.

However, the accuracy of this method is less than Borgefors’s <3, 4, 5> chamfer

distance transform [66]. Then, a global method is used to detect saddle points.

The skeleton is extracted as a set of clusters with a set of local maximum paths

(LMpaths), which associated with saddle points.

Figure 2.15: Cerebral sulci and the medial surfaces (turquoise) in [39].

 Wan [42] presented a skeletonization algorithm for virtual navigation of flight

path planning. The accurate Euclidean distance transform was used to generate a

Distance From Boundary (DFB) field. The navigation path can be computed

along the skeletons (central paths).

Sundar [43] used Euclidean distance transform to generate skeletons, which

were utilized for 3D shape matching and retrieval. The approach has four steps. In

the first step, Euclidean distances were calculated. A Thinness Parameter (TP)

based algorithm was used to classify object points based on their importance for

boundary coverage. If the Euclidean distance of an object point to the nearest

boundary point is much greater than those of the object point’s 26-neighbors, the

 28

sphere centered at that object point is likely to include all of the spheres centered

at its neighboring points. The TP determines how large such a sphere should be.

In the second step, the skeletal points were connected by a clustering algorithm. In

the third step, an undirected acyclic shape graph was generated with the Minimum

Spanning Tree (MST) algorithm. A directed skeletal graph was then created by

directing edges from points with higher Euclidean distance to the one with lower

distance. In the last step, a shape matching approach based on directed acyclic

graph was used for matching and retrieval.

A recent work [44] utilized the discrete bisector function to analyze and filter

Euclidean distance based skeletons. The discrete bisector function was built with

the Voronoi diagram.

Potential field is used in some algorithms [45-47]. A potential field based

skeletonization approach [45] for extracting 2D and 3D medial lines was proposed

by Chuang et al. The boundary of a 3D object is assumed to be charged. The

magnitude of the potential field is infinity at the boundary points and decreases

with increasing distance from the boundary points. This definition is very similar

to distance transform. The points along potential valleys (potential minima) are

closely related to the medial lines. The algorithm generates skeletons as potential

valleys using a Newtonian potential model. The test results showed that the

skeletons obtained with this method are closely related to the corresponding MAT

skeletons.

Visible repulsive force field [46] was used to generate medial lines for 3D

objects. The algorithm has two steps. In the first step, all the boundary faces are

charged. Seed points were initiated with negative charges from the 3D model

vertices. These seed points are pushed by static force to converge to local minima.

The visible repulsive force is the sum of all repulsive forces derived from the

visible charged planes. Faces that are invisible from the seed point do not apply

force to the seed point. In the second step, the local minima were connected to

generate the skeletons.

Electrostatic field [31] can also be used as the field function. A skeleton is

defined as the union of electrostatic field lines passing through local extrema. This

 29

method has four steps. In this step, the space between the object and the non-

object boundary area is modeled as a conductor of certain electrostatic potential

and the interior region as a cavity in the conductor having a certain dielectric of

permittivity. The potential distribution of the model is computed by the Jacob

relaxation method. In the second step, the equipotential contour was calculated.

The output contour was expressed with Freeman chain code. In the third step, the

potential gradient along the contour was computed and then local extrema were

detected. In the last step, the skeleton is generated by connecting the local

extrema.

Cornea [47] proposed a hierarchical skeletonization algorithm to generate curve

skeleton. The basic idea of this algorithm is to trace some critical points in a force

field to generate skeleton.

This algorithm has three steps. First of all, it computes a vector field on a 3D

model. This 3D model can be volumetric or polygonal. If the model is polygonal

mesh, it must be converted into volumetric solid model by voxelization [75].

Secondly, some critical points are located in the vector field. And finally, the

algorithm extracts the hierarchical curve-skeleton with a force following

approach. In the last step, there are three options on seeds selection to initialize

the force following approach. If the critical points are selected as seeds, the

algorithm will extract the “core” skeleton (Level 0). If the lowest divergence

voxels are chosen as seeds, the algorithm will generate a Level 1 skeleton with

more branches and details. The algorithm can produce a Level 2 skeleton with

even more branches and details if other user-selected seeds are included as seeds.

In the first step, the vector field is generated. It can be potential field,

electrostatic field or repulsive force field. Two kinds of vector fields – Potential

Field (PF) and Normal Diffusion Field (NDF) – are implemented. The basic idea

of the PF based repulsive force approach is to generate a force field inside a 3D

model by charging the model’s contour. The repulsive force at a voxel by a

nearby charge voxel pushes the voxel away from the charge. The strength

(magnitude) of this force is inverse proportional to a power m of the distance

between the point and the charge. The power m (∈Z, 2≥) is called the order of

 30

the force function. It plays a crucial role in shaping the vector field and

determining the locations of critical points. The force is Newtonian force when it

is 2. However, Newtonian force field does not generate stable results.

Experiments showed that higher order power generated better and stable results.

The potential field based repulsive force approach is not efficient. Therefore, NDF

based approach was presented. In this approach, the repulsive force field is

initialized to be normal to the surface of the 3D model. Then, the force is

propagated into the model with an “onion pealing method”. The NDF based

approach is efficient. The computational complexity is O(n), where n is the

number of object voxels. However, NDF is more sensitive to noise than PF.

Figure 2.16 shows the PF and NDF of a 3D cow model. It is obvious that the NDF

is less dense than the PF. Therefore, the average effect of NDF is less that that of

PF.

(a) (b)

Figure 2.16: Potential field (a) and normal diffusion field (b) of a 3D cow model,

images courtesy of Cornea [47].

In the second step, critical points are detected. A critical point is defined as a

point where the force vector vanishes. There are three kinds of critical points:

attracting (sink) points, repelling (source) points, and saddle points. The force

vectors flow toward an attracting point and away from a repelling point, from all

directions. For a saddle point, some force vectors flow toward it and some flow

away from it. Critical points are difficult to detect in a discrete space (integer

voxel grid). The first reason is that they do not necessarily occur at any discrete

location of the voxel grid, but often occur in-between some grid cells. Another

reason is that fake critical point will be detected inside a grid cell when all

 31

components of the vector field become zero, but at different locations, inside the

grid cell. Newton’s method was used to detect critical points based on the

Jacobian matrix at a given position. It guarantees fast convergence when a critical

point exists in a cell and quickly moves to other possible cells when a critical

point does not exist in a cell. Critical points are classified according to the

eigenvalues of the Jacobian matrix. An attracting point has negative real parts for

all eigenvalues. A repelling point has positive real parts for all eigenvalues. A

saddle point has both negative and positive real parts for the eigenvalues.

Three levels of skeletons are defined in [47]. Level 0 skeleton is defined as the

skeleton generated by connecting critical points. Level 1 skeleton is defined as the

skeleton generated by connecting lowest divergence seeds. Level 2 skeleton is

defined as the skeleton generated by connecting user-selected seeds. However, as

shown in Figure 2.17, only the Level 1 skeleton is useful.

 Once the critical points are identified, a force-following algorithm is used to

generate skeleton by connecting critical points (Level 0 skeleton), lowest

divergence seeds (Level 1 skeleton), or user-selected seeds (Level 2 skeleton).

Divergence is defined as a scalar value that measures the rate of the vector flow

leaving a given point. To select seeds based on divergence, a local minimum

criterion or a threshold can be used. A user-selected point can also be used as a

seed. To maintain a strict hierarchical skeleton tree, a Level 2 skeleton must be a

subset of a Level 1 skeleton and a Level 1 skeleton must be a subset of a Level 0

skeleton. Therefore, a Level 2 skeleton must be based on a Level 1 skeleton and a

Level 1 skeleton must be based on of a Level 0 skeleton. The algorithm starts at a

given seed. It computes the value of the vector field at the seed using tri-linear

interpolation for x, y, and z directions. The algorithm stops when the value is zero

(reached a critical point or moved outside of the object). Otherwise, it moves to

the next position in the direction of the vector field. If the given seed is a critical

point the force-following algorithm cannot move to new location because the

value of the force vector is zero. In this special case, it moves out according to the

eigen-direction at the critical point. If the next position is not a critical point, the

force-following algorithm evaluate the value of the vector field to determine

 32

where to move on; otherwise, moves out according to the eigen-direction. If the

next position is a critical point and it has been visited, a backtracking method is

used to move on to another branch of the skeleton.

 Figure 2.17 shows a 3D cow model and its skeletons of different levels. This

algorithm is efficient. The computational complexity is O(n) when normal

diffusion field is used in the first step, where n is the number of object voxels.

However, like other general field algorithms, the connectivity is not guaranteed

because some critical points may not be connected to any of others. Figure 2.18

shows two models (ET and helicopter) with disconnected skeletons.

Figure 2.17: (a) A 3D cow model (b) Level 0 skeleton (c) Level 1 skeleton (d)

Level 2 skeleton, images courtesy of Cornea [47].

Figure 2.18: Models with disconnected skeletons, images adapted from [47].

2.4 Voronoi diagram based 3D skeletonization algorithms

The Voronoi diagram of a discrete point set (generating point set) is the partition

of the given space into cells, where:

• Each cell contains exactly one generating point;

• All the points in a cell are closer to this generating point than to any other

generating point.

Figure 2.19 (a) shows a point set P and Figure 2.19 (b) shows the Voronoi

diagram of P. Points a and b are two generating points. Cell Ra contains point a

only and cell Rb contains point b only.

 33

Figure 2.19: (a) Point set P. (b) Voronoi diagram.

 The Voronoi diagrams can be computed by an incremental construction [67] of

perpendicular bisectors between two generating points. Figure 2.20 shows this

process. All the points in a cell are closer to this generating point than to any other

generating point because the cell is enclosed by perpendicular bisectors.

Figure 2.20: Computing Voronoi diagram by construction of perpendicular

bisectors [67].

 If we take the boundary points as generating points, then the Voronoi diagram

converges to the skeleton, when the boundary points are dense enough. Figure

2.21 shows how to compute skeletons with Voronoi diagram. However, there are

three drawbacks for Voronoi diagram based skeletonization algorithms:

 34

• Problem 2.4.1 When the boundary points are not dense enough the Voronoi

diagram does not converge to the skeleton. Clustering methods must be used

to connect skeletal points.

• Problem 2.4.2 Computing the Voronoi diagram is computationally expensive.

• Problem 2.4.3 Voronoi diagram based methods are very sensitive to noise;

even the slightest disturbance of the boundary points can cause additional

branches on skeletons.

Figure 2.21: Voronoi diagram converges to the skeleton in [67].

 Problem 2.4.1 and Problem 2.4.3 were tackled by a number of previous works

[48-52]. However, Problem 2.4.2 is still an open problem.

 Ogniewicz [48-49] tackled the Problem 2.4.3 by introducing a regularization

method and the skeleton pyramid. The skeletons were represented by Voronoi

Medial Axis (VMA). The Doubly Connected Edge List (DCEL) was used as the

data structure of Voronoi Diagram (VD). The VMA consists of straight line

segments and parabola. However, due to the Problem 2.4.3, the resulting VMA

had many branches on skeletons. A regularization method was then used. It

introduced four residual functions, potential residual, circularity residual, bi-

circularity residual, and chord residual. The basic idea of the residual functions is

to remove small branches less than some thresholds. The skeleton pyramid is a

hierarchical tree of skeletons with different parameters. An adaptive skeleton

traversal algorithm was used to build up a residual table. Two parameters were

used to construct the skeletons with the residual table. The first parameter

represents a trigger level of the hierarchy. The second parameter denotes the

granularity of clustering of a residual table. With the regularization method and

 35

the skeleton pyramid, the resulting Voronoi skeletons (VSK) were largely

invariant to noise and geometric transformations. Some applications, such as

object recognition and interpretation of road maps, were discussed in the paper.

 Sheehy [51] proposed a Domain Delaunay Triangulation (DDT) based 3D

skeletonization method for calculating medial surfaces. The Delaunay

triangulation is the dual of the Voronoi diagram. The key idea is as follows. First

of all, a description of the medial surface was associated with topological

elements. As discussed in Section 2.1, a medial surface consists of the loci of the

centers of all inscribed maximal spheres of a 3D model, where these spheres share

at least two points with the boundary of the model. A sphere can be determined by

four parameters: the three coordinates of its center and its radius. Thereby, four

distinct non-coplanar points can form four equations to uniquely determine a

sphere. Less distinct points can form a sphere with a higher degree of freedom.

For instance, two distinct points can form a sphere with two degrees of freedom.

A medial face, which was associated with E_TYPE Delaunay tetrahedron [51],

was defined by the locus of the center of a sphere with two degrees of freedom.

Medial edge, medial vertex and end point were defined in a similar way and were

associated with different types of Delaunay tetrahedrons. In the second step, the

Problem 2.4.1 was resolved by an adaptive refinement approach. This approach is

guided by applying topological and geometric tests to the Delaunay simplexes.

Once topological misrepresentations of the medial surface are identified, the

invalid tetrahedrons are resolved by refining the boundary object point

distribution using a tracing technique. In this step, rogue tetrahedrons are removed

based on the application of the Newton and Singular Value Decomposition (SVD)

methods. Then, the skeletal points were assembled to generate the resulting

medial surfaces.

 Turkiyyah [52] described an algorithm using accelerated Delaunay

triangulation and local numerical optimization algorithms to generate 3D

skeletons. The algorithm alleviated the point density requirement for Voronoi

diagrams and accelerated the slow convergence of Voronoi diagrams to the

skeleton. The skeleton generation procedure had three steps. First of all, an

 36

approximation of the skeleton was generated by extracting a subset of the Voronoi

diagram. In the second step, the approximation of the skeleton was adjusted by a

local optimization procedure to generate the interior of the skeleton. In the last

step, skeletal edge points– which were defined as the points of maximum

principal surface curvature – were located with a specialized optimization method.

2.5 Shock graph based 3D skeletonization algorithms

Giblin and Kimia [69] classified 3D medial axis points into five types of points

(shocks), which were then organized into sheets, curves, and vertices. Leymarie

and Kimia [70-74] proposed the concept of shock scaffold and use it to

approximate medial axis. The name “shock scaffold” comes from the scaffoldings

used to erect buildings.

Definition 2.4: Two curves have a 1-point curve contact if they intersect at a

point but they are not tangent [68, 69]. See Figure 2.22 (a).

Definition 2.5: Two curves have a 2-point curve contact if they intersect at a

point and they are tangent [68, 69]. See Figure 2.22 (b).

Definition 2.6: Two curves have a 3-point curve contact if they intersect at a

point and curvatures of the curves are equal [68, 69]. See Figure 2.22 (c).

Definition 2.7: Two curves have an 4-point curve contact if they intersect at a

point and the derivatives of the curvature are equal [68, 69]. See Figure 2.22 (d).

 The types of contact [69] are classified into Ak series, where k = m–1 (A0: 1-

point contact, A1: 2-point contact, A2: 3-point contact, A3: 4-point contact). The

“A” means simple Lie groups [74] of type A. Figure 2.22 (a) shows two 1-point

contacts, (b) shows an example of 2-point contact, (c) shows an example of 3-

point contact, and (d) shows an example of 4-point contact.

 (a) (b) (c) (d)

 37

Figure 2.22: (a) two 1-point contacts (b) a 2-point contact (c) a 3-point contact

(d) a 4-point contact. Images adapted from [68].

Definition 2.1 (see Section 2.1) requires the hyper-spheres are inscribed in a

manifold, therefore, only 2-point contact (A1) and 4-point (A3) contact can

contribute to a skeleton.

There are five categories of 3D medial axis points [69]: 2
1A , 3

1A , A3, 4
1A , and A1

A3. n
kA denotes n distinct Ak contact points. A medial axis is composed of sheets,

curves, and vertices. A sheet (surface patch) consists of 2
1A contact points. There

are two kinds of curves: 3
1A curve and A3 curve. An 3

1A curve is the intersection

of three sheets. An A3 curve is the boundary of a sheet. There are two types of

vertices: 4
1A vertex and A1 A3 vertex. An 4

1A vertex is the intersection of four 3
1A

curves. An A1 A3 vertex is the intersection of an 3
1A curve and an A3 curve.

The shock scaffold [70] is a dynamic approximation of the medial axis. A

shock propagates from boundaries with associated direction and speed of flow, as

in Blum’s grassfire [3].

Let n
kA -m denotes mth order shock. There are 3 kinds of 1st order shocks (or

regular shocks): 2
1A -1 (along a sheet) shock, 3

1A -1 (along an 3
1A curve) shock,

and A3-1 (along an A3 curve) shock. Flow goes smoothly through a 1st order shock

point.

There are 5 kinds of 2nd order shocks (or shock source): 2
1A -2 (along a sheet)

shock, 3
1A -2 (along an 3

1A curve) shock, A3-2 (along an A3 curve) shock, A1 A3-2

(at an A1 A3 vertex) shock, and 4
1A -2 (at an 4

1A vertex) shock. Flow begins at a 2nd

order shock point.

There are 5 kinds of 3rd order shocks (or shock relay): 2
1A -3 (along a sheet)

shock, 3
1A -3 (along an 3

1A curve) shock, A3-3 (along an A3 curve) shock, 4
1A -3 (at

an 4
1A vertex) shock, and A1 A3-3 (at an A1 A3 vertex) shock. Flow begins and

ends at a 3rd order shock point.

 38

There are 5 kinds of 4th order shocks (or shock sink): 2
1A -4 (along a sheet)

shock, 3
1A -4 (along an 3

1A curve) shock, A3-4 (along an A3 curve) shock, 4
1A -4 (at

an 4
1A vertex) shock, and A1 A3-4 (at an A1 A3 vertex) shock. Flow ends at a 4th

order shock point.

Points on medial axis were therefore classified into 18 types of shock points.

The 1st order shock points need not be computed explicitly. The basic idea of

shock scaffold [70] based skeletonization algorithm is to trace the other 15 kinds

of shock points, link them to generate shock scaffold and then use it to

approximate the medial axis.

Definition 2.8 (Shock nodes, P) The set of shock nodes, denoted P, consists of

shock sources, relays, sinks, and all remaining types of vertices [70].

Definition 2.9 (Shock links, L) The set of shock links, denoted L, is an ordered

array (by the radius function) consisting of the curve segments (with geometry

and direction) each between two shock nodes [70].

Definition 2.10 (Shock hyperlinks, H) The set of shock hyperlinks, denoted H,

is an ordered, cyclic array of shock nodes of its boundary. A hyperlink is

attributed with geometry and orientation of the sheet [70].

Definition 2.11 (Shock scaffold, SC) The shock scaffold, denoted SC, is a

geometric directed graph with shock nodes P and shock links L [70].

The Voronoi graph was proved to be a sub-graph the shock scaffold in [72].

Therefore, shock scaffold can be used to approximate the medial axis. Shock

scaffold can be augmented (augmented shock scaffold, SC+) or reduced (reduced

shock scaffold, SC-), where SC+ ⊃ SC ⊃ SC-. They form a three-tier hierarchy

representing the medial axis.

Brute-force computing shock scaffold is very expensive. A Lagrangian method

of computing shock scaffold was proposed in [71]. The name Lagrangian comes

from the dynamical system of shock flow. This method propagates along the

scaffold from initial shock sources. Seven principles were presented to avoid the

computation of those pairs of shock points that will not lead to a shock flow. The

seven principals [71] are:

(1) One pair of shock points should be visible to each other,

 39

(2) The group of shock points,

(3) The visibility of a group from another,

(4) The convex hull of a group,

(5) The vertices of such convex hulls as virtual points,

(6) A coarse-to-fine framework,

(7) A search method organized in layers.

The proposed Lagrangian method [71] does not require a fixed (Eulerian) grid.

Instead, it depends on the shock scaffold itself as the fundamental grid. The basic

idea of this approach is that the full bisectors do not have to be explicitly

computed if a dynamical system of shock flow is adopted and shock sources,

shock relays and shock sinks of flow are completely identified. Then, only the

bisectors that initiate from valid shock sources need to be computed and all others

can be ignored completely. Therefore, it features the exactness of bisector

computations, but without the computational cost associated with them. This

algorithm works for any initial shape geometry. Figure 2.23 shows some 3D

shapes (unorganized point clouds) and their shock scaffolds. The applications,

such as 3D shape reconstruction [73] and registration [74], of shock scaffold were

investigated.

 Siddiqi [76-78] proposed a different way to detect and track shock. The basic

idea [78] is to detect locations (shocks) where a conservation of energy principle

is violated based on measurement of the net outward flux of a vector field. This

algorithm has two steps. In the first step, a Lagrangian method was introduced to

simulate the eikonal equation for curve evolution. The wave front of the curve

evolution was explicitly represented as a sequence of marker particles. The

motion of these particles was controlled by a Hamiltonian system. This system

was then interpreted by Hamiltonian and Lagrangian mechanics. In the second

step, an efficient algorithm was proposed to detect shock based on the net outward

flux per unit volume of the vector field in the Hamiltonian system. It is based on

the fact that a Hamiltonian system is conservative [79]; however, energy will be

absorbed on shock points so that the energy conservation will be violated.

Therefore, a shock point is detected at the location the energy conservation is

 40

violated. The authors reported that the efficiency of this algorithm is similar to the

fast marching [80] algorithm. Some results are shown in Figure 2.24. A recent

extension [81] of this work used a coarse-to-fine method to extract medial

surfaces from polyhedral meshes.

 It is difficult to apply the algorithm in continuous domain and two problems in

discrete space. First of all, the algorithm needs a continuous representation of a

model’s boundary to place a dense sequence of marker particles. However, most

2D or 3D objects are represented by surface meshes, point clouds, or solid grids.

The boundary of the input model must be detected and converted to a continuous

form to initialize this algorithm. Secondly, since a shock point (singularity) is not

differentiable, numerical computation will lead to errors near shocks. The authors

suggested ENO (essentially non-oscillatory) [76] interpolations for estimating

derivatives.

 (a) (b) (a) (b)

Figure 2.23: (a) 3D shapes and their shock scaffolds (b). Images courtesy of

Leymarie [71].

 41

Figure 2.24: First row: some 3D objects (box, ventricles of brain, and the outer

surface of a brain). Second row: the corresponding skeletons. Images courtesy of

Siddiqi [78].

2.6 Important properties of skeleton or skeletonization

A good skeleton should be a useful, compact and faithful representation of a 3D

object. In the literature [9, 47], a useful skeleton or skeletonization algorithm must

have two important properties: thin and connectivity preservation. Thinness is

important because the skeleton must be compact. Connectivity preservation is

important because the skeleton should represent the 3D object faithfully and

therefore should not break the skeleton of a connected 3D object into pieces.

There are some other desirable properties for skeleton or skeletonization

algorithm. They will be discussed in Section 6.1.

 A skeleton should be thin because it is expected to be a compact

representation of a 3D object. The extremely thin skeleton is called a unit-width

curve skeleton. A skeleton is unit-width if it is only one voxel thick. The formal

definition of unit-width curve skeleton is given in Section 3.3.1. We will focus on

unit-width curve skeleton in the next chapter.

 A connectivity-preserving skeleton must satisfy the following condition:

Condition 2.6.1 there is a one-to-one mapping between the connected

components of the object and the connected components of the skeleton, and vice-

versa;

 42

 Connectivity preservation is closely related to topology (or geometry)

preservation. A topology-preserving skeleton must satisfy condition (2.6.1) and

the following two more conditions:

Condition 2.6.2 there is a one-to-one mapping between the cavities of the object

and the cavities of the skeleton, and vice-versa;

Condition 2.6.3 there is a one-to-one mapping between the tunnels of the object

to the tunnels of the skeleton, and vice-versa.

However, since a skeleton should be a compact representation of a 3D object,

skeletonization algorithms often [9, 24-27, 47] remove cavities and tunnels to

make the skeletons more compact. Therefore, conditions (2.6.2) and (2.6.3) have

often, if not always, been ignored. Thus the remaining condition (2.6.1) becomes

very crucial to ensure that a skeleton represents a 3D object as faithfully as

possible. So, topology preservation is compromised and becomes to “connectivity

preservation”. If a 3D skeletonization algorithm preserves connectivity, it will

never generate disconnected skeletons for a connected 3D object. Therefore, the

skeleton it generated is considered [9, 47] to be a faithful representation of the 3D

object. In the rest of this chapter, we will focus on connectivity preservation.

2.7 The problem of Ma and Sonka’s algorithm and a solution

A 3D skeletonization algorithm should preserve connectivity. If a skeletonization

algorithm fails to preserve connectivity, the skeletons extracted from the object

will be disconnected, which is unacceptable in many applications. However, by

studying the configuration in Figure 2.25, we find that Ma and Sonka’s algorithm

[9] fails to do so. Figure 2.25, wherein a “• ” is an object point and all other points

are background points, shows a 26-connected 3D object a-b-c-d-e-f-g. In Ma and

Sonka’s thinning algorithm, points c, d and e will be deleted because c satisfies

template a5 in Class A, d satisfies template d7 in Class D and e satisfies template

a6 in Class A. However, the deletion of points c, d and e leads to disconnection of

the object. See Section 2.2.2 for more details of the deleting templates.

 43

Figure 2.25: A connected object a-b-c-d-e-f-g in 3D space. A “• ” is an object

point. A “o ” is a background point. All other points in 3D space are background

points. In Ma and Sonka’s algorithm, point c will be deleted by template a5 in

Class A, point d will be deleted by template d7 in Class D and point e will be

deleted by template a6 in Class A. Hence, the object will be disconnected.

 Lohou discovered this problem and gave a counter example of Ma and Sonka’s

algorithm in [18]. Some other researchers, such as Chaturvedi [16], applied this

algorithm and found it disconnected small segments but did not suggest how to fix

this problem. In this section, we will explain the cause of this problem and how to

modify the templates in Class D to solve this problem.

 Ma and Sonka proposed a general theorem [9] and used it to prove that the 3D

thinning algorithm preserves connectivity in the VERIFICATION section in that

paper. According to our observation, we note that LEMMA 3.5 in the

VERIFICATION section is problematic. “LEMMA 3.5: Let p, q be two 6-

adjacent object points in a 3D binary image where both p and q satisfy Ω . Then

either q∉Ω (p) or p∉Ω (q).”

 Ω is used to denote the set of deleting templates in Class A, B, C or D. An

object point satisfies Ω if it satisfies any one of the deleting templates in Ω .

“q∈Ω (p)” means that q must be an object point for p to satisfy Ω . ‘‘q∉Ω (p)”

means p still satisfies Ω after q is deleted.

 For the 3D object in Figure 2.25, c and d are two 6-adjacent points. According

to LEMMA 3.5, either c∉Ω (d) or d∉Ω (c). However, if c is deleted, d will not

satisfy any of the deleting templates. And, if d is deleted, c will not satisfy any of

the deleting templates. Therefore, although c and d are 6-adjacent, c∈Ω (d) and

d∈Ω (c). We can prove that for points d and e, d∈Ω (e) and e∈Ω (d), although d

and e are 6-adjacent, in the same way.

 44

LEMMA 3.5 requires that for two 6-adjacent points p and q, if both p and q

satisfyΩ , then either q∉Ω (p) or p∉Ω (q). Let p1 and p2 be the two “don’t care”

points in p’s 6-neighborhood, as showed in Figure 2.26. According to LEMMA

3.5, if p1 is 1, then p2 must be 0; if p2 is 1 then p1 must be 0. So (p1, p2) can be

(0, 0), (0, 1) or (1, 0), but not (1, 1). There is no template in Class A-C that has a

value of (1, 1) for (p1, p2), however, the deleting templates in Class D violate this

rule. For instance, in template d7, (p1, p2) is (1, 1), which fails LEMMA 3.5.

Based on this observation, we can change the deleting template d1-d12 to

satisfy LEMMA 3.5. For instance, we change template d7 to three new templates

as shown in Figure 2.27, according to different values of (p1, p2). In this way, we

change the 12 deleting templates of Class D to 36 deleting templates according to

different values of (p1, p2). So there are 36 templates in Class D, and 6 + 12 + 8 +

36 = 62 templates in total. Figure 2.28 shows the modified templates in Class D.

Each template in Class D is changed to three templates, in which (p1, p2) are (0,

0), (0, 1) or (1, 0) respectively. Since (p1, p2) is not (1, 1) in any template,

LEMMA 3.5 is satisfied for the new set of templates.

Since LEMMA 3.5 is corrected, the reasoning process in the original paper

becomes sound and complete. Therefore, a formal mathematical proof can be

presented to prove that the modified algorithm preserves connectivity by

replacing the old templates in LEMMA 3.5 with the new ones. And the other parts

of the proof are exactly the same with the reasoning process in the original paper.

Figure 2.26: Template core of Class D. Figure 2.27: Template d7-1 to d7-3.

 45

Figure 2.28: The modified deleting templates in Class D. Each template in Class

D is changed to three templates, in which (p1, p2) are (0, 0), (0, 1) or (1, 0)

respectively. At least one point marked □ is an object point.

 46

 (a) (b) (c)

Figure 2.29: A “• ” is an object point. A “ o ” is a background point. All other

points in 3D space are background points. (a) The original 3D object a-b-c-d-e-f-

g. (b) The thinning result of Ma and Sonka’s algorithm. Point c, d and e are

deleted by some templates in Class A and Class D. Thus, the object gets

disconnected. (c) The thinning result of the modified algorithm. Points c and e are

deleted by some templates in Class A, but point d is not deleted, thus the object is

still connected.

 47

 Figure 2.29 shows some different results of Ma and Sonka’s algorithm and the

modified one. Six 26-connected 3D objects are shown in (a). For Ma and Sonka’s

algorithm, point c, d and e are deleted, thus the connected object is disconnected

after thinning, as shown in (b). For the modified algorithm, point c and e are

deleted, but point d will not be deleted, thus connectivity is preserved after the

thinning operations, as shown in (c).

2.8 Experimental results

Figure 2.30 shows a different result between Ma and Sonka’s algorithm and the

modified algorithm [109]. Two connected “0”s are shown in Figure 2.30(a). For

Ma and Sonka’s algorithm, the connected object is disconnected after thinning, as

shown in Figure 2.30 (b). For the modified algorithm, the connected object is still

connected after the thinning operations, as shown in Figure 2.30 (c). Figure 2.31

shows some real models and their skeletons generated by the modified algorithm.

(a) (b) (c)

Figure 2.30: (a) Original 3D object; (b) Result of Ma and Sonka’s algorithm; (c)

Result of modified algorithm.

 48

Figure 2.31: Some real models and their skeletons.

2.9 Discussions and Conclusions

This chapter presents a 3D skeletonization study on connectivity preservation.

The motivation behind this work was that we found Ma and Sonka's algorithm [9]

failed to preserve connectivity for some configurations, which is very important

for 3D skeletonization algorithms. We then studied why Ma and Sonka’s

algorithm failed and proposed a solution to the problem. Experimental results

demonstrate the validity of our solution. However, we observe that the modified

algorithm cannot guarantee to extract unit-width skeleton, which is required by

many applications such as retrieval and matching. Some examples of non-unit

width skeletons are shown in Figure 2.32.

Note that the non-unit width skeletons are still useful in some applications [16].

We had used the non-unit width skeletons for automatic estimation of 3D

transformation for object alignment [110-111]. Skeletons of the 3D objects are

created using the modified algorithm [109] proposed in this chapter, feature point

pairs (land markers) are extracted from skeletons automatically, and a least

 49

squares method is applied to solve an over determined linear system to estimate

the 3D transformation matrix. Experiments show that this non-unit width skeleton

based method works quite well with high accuracy when the translations and

rotation angles are small. However, many other applications [47, 61] require unit-

width curve skeletons. In the next chapter, we will introduce a method to generate

unit-width skeletons.

Figure 2.32: Examples of non-unit width skeletons.

 50

Bibliography

[1] P. J. Besl and R. C. Jain. “Three-dimensional object recognition”. ACM Computing Surveys, 17

(1): pp 75-145, 1985.

[2] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin and D. Jacobs. “A

Search Engine for 3D Models”, ACM Trans. on Graphics, 22(1): pp 83-105, 2003.

[3] H. Blum. “A transformation for extracting new descriptors of shape”, Models for the

Perception of Speech and Visual Form, pp. 362–380, MIT Press, Cambridge, MA, USA,

1967.

[4] K. Palagyi and A. Kuba. “A 3D 6-subiteration thinning algorithm for extracting medial lines”,

Pattern Recognition Letters, 19 (7): pp 613-627, 1998.

[5] C. Lohoua and G. Bertrand. “A 3D 6-subiteration curve thinning algorithm based on P-simple

points”, Discrete Applied Mathematics, Vol. 151, pp 198–228, 2005.

[6] W. X. Gong and G. Bertrand. “A simple parallel 3D thinning algorithm”, In Proceedings of

ICPR 1990, pp 188-190.

[7] P. K. Saha, B. B. Chaudhury and D. D. Majumder. “A new shape-preserving parallel thinning

algorithm for 3D digital images”, Pattern Recognition, 30 (12): pp 1939–1955, 1997.

[8] C. M. Ma and S. Y. Wan. “A medial-surface oriented 3-d two-subfield thinning algorithm”,

Pattern Recognition Letters, Vol. 22, pp 1439-1446, 2001.

[9] C. M. Ma, M. Sonka. “A fully parallel 3D thinning algorithm and its applications”, Computer

Vision and Image Understanding, 64 (3): pp 420-433, 1996.

[10] J. Mukherjee, P. P. Das and B.N. Chatterji. “Thinning of 3-D images using the Safe Point

Thinning Algorithm”, Pattern Recognition Letters Vol. 10, pp 167-173, 1989.

[11] J. Mukherjee, P. P. Das and B. N. Chatterji. “On connectivity issues of ESPTA”, Pattern

Recognition Letter, Vol. 11, pp 643-648, 1990.

[12] C. M. Ma and S. Y. Wan. “Parallel Thinning Algorithms on 3D (18, 6) Binary Images”,

Computer Vision and Image Understanding, Vol. 80, pp 364–378, 2000.

[13] C. M. Ma, S. Y. Wan, H. K. Chang. “Extracting medial curves on 3D images”, Pattern

Recognition Letters 23, 895–904, 2002.

[14] C. M. Ma. “On topology preservation in 3D thinning”, CVGIP: Image Understanding, 59(3),

pp. 328–339, 1994.

[15] C. M. Ma, S. Y. Wan, J. D. Lee. “Three-Dimensional Topology Preserving Reduction on the

4-Subfields”, IEEE transactions on pattern analysis and machine intelligence, vol. 24, no. 12,

2002.

[16] A. Chaturvedi, Z. Lee. “Three-dimensional segmentation and skeletonization to build an

airway tree data structure for small animals”, Physics in Medicine and Biology, vol. 50 (7),

pp. 1405-1419, 2005.

 51

[17] M. S. Talukdar, O. Torsaeter, M. A. Ioannidis, J. J. Howard. “Stochastic reconstruction, 3D

characterization and network modeling of chalk”, Journal of Petroleum Science and

Engineering, vol. 35 (1-2), pp 1-21, 2002.

[18] C. Lohou. “Contribution à l’analyse topologique des images”, Ph.D. thesis, UNIVERSITÉ DE

MARNE-LA-VALLÉE, 2001.

[19] J. B. A. Maintz and M. A. Viergever. “A Survey of Medical Image Registration”, Medical

Image Analysis, vol.2, p.1-36, 1998.

[20] L. G. Brown. “A survey of image registration techniques”, ACM Computing Surveys (CSUR),

24(4), p.325-376, 1992.

[21] P. J. Besl and N. D. Mckay. “A method for registration of 3D shapes”, IEEE Trans. Pattern

Anal. Machine Intell. 14(2), p. 239-256, 1992.

[22] http://www.sph.sc.edu/comd/rorden/dicom.html

[23] http://www.amiravis.com

[24] C. M. Ma, “A 3D fully parallel thinning algorithm for generating medial faces”. Pattern

Recognition Letter, 16, pp83–87, 1995.

[25] A. Manzanera, T. M. Bernard, F. Preteux and B. Longuet. “Medial faces from a concise 3D

thinning algorithm”. ICCV, pp 337–343, 1999.

[26] K. Palagyi, “A 3-subiteration 3D thinning algorithm for extracting medial surfaces”, Pattern

Recognition Letters, 23, pp663–675, 2002.

[27] K. Palagyi, A. Kuba. “Directional 3D Thinning Using 8 Subiterations”, Lecture notes in

computer science 1568: 325-336 1999.

[28] D. Hearn and M. P. Barker. Computer Graphics (second edition), Pearson Education.

[29] K. Palagyi and A. Kuba, “A Parallel 3D 12-Subiteration Thinning Algorithm”, Graphical

Models and Image Processing, 61, 199–221, 1999.

[30] C. Lohou and G. Bertrand. “A 3D 12-subiteration thinning algorithm based on P-simple

points”, Discrete Applied Mathematics, 139, 171 – 195, 2004.

[31] G. H. Abdel-Hamid, Y.-H. Yang. “Multiresolution skeletonization: an electrostatic field

based approach”, ICIP, pp 949-953, 1994.

[32] J. J. Leader. Numerical analysis and scientific computation, Pearson Addison Wesley,

Boston, 2004.

[33] J. Maciel. “Global matching: optimal solution to correspondence problems”, PhD Thesis,

Universidade Técnica de Lisboa, 2002

[34] P. Torr. “Motion Segmentation and Outlier Detection”. PhD thesis, U. Oxford, 1995.

[35] J.Domke and Y.Aloimonos, “A Probabilistic Notion of Correspondence and the Epipolar

Constraint”, Third International Symposium on 3D Data Processing, Visualization and

Transmission, June 2006.

 52

[36] C. Pudney. “Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D

Digital Images”, Computer Vision and Image Understanding, 72(3):404-413, 1998.

[37] A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed., Vol. 2, Academic Press,

New York, 1982.

[38] C. Arcelli and G. S. di Baja, “A width independent fast thinning algorithm”, IEEE Trans.

Pattern Anal. Mach. Intell. 7, 1985, 463–474.

[39] Y. Zhou, A. Kaufman and A. W. Toga. “Three-dimensional Skeleton and Centerline

Generation Based on an Approximate Minimum Distance Field”, The Visual Computer, 14,

pp 303-314, 1998.

[40] Y. Zhou, P.M. Thompson, A.W.Toga. “Extracting and Representing the Cortical Sulci”, IEEE

computer graphics and applications, 19 (3): 49-55 may-jun 1999

[41] Y. Zhou and A.W.Toga. “Efficient skeletonization of volumetric objects”, IEEE transactions

on visualization and computer graphics, 5 (3): 196-209, 1999.

[42] M. Wan, F. Dachille and A. Kaufman. “Distance-Field Based Skeletons for Virtual

Navigation”, IEEE Visualization, 2001.

[43] H. Sundar, D. Silver, N. Gagvani and S. Dickinson. “Skeleton Based Shape Matching and

Retrieval”, Shape Modeling International, 2003.

[44] M. Couprie, D. Coeurjolly and R. Zrour. “Discrete bisector function and Euclidean skeleton

in 2D and 3D”, Image and Vision Computing, 25, 1543–1556, 2007.

[45] J. Chuang, C. Tsai and M.-C. Ko. “Skeletonization of three-dimensional object using

generalized potential field”, IEEE PAMI, 22(11):1241-1251, 2000.

[46] F. Wu, W.-C. Ma, P. Liou, R. Liang and M. Ouhyoung. “Skeleton extraction of 3d objects

with visible repulsive force”, Eurographics Symposium on Geometry Processing, 2003.

[47] N. D. Cornea. “Curve-Skeletons: Properties, Computation And Applications”, Ph.D. Thesis,

The State University of New Jersey, May 2007

[48] R. L. Ogniewicz and M. Ilg. “Voronoi Skeletons Theory and Applications”, CVPR, 1992.

[49] R. L. Ogniewicz and O. Kubler. “Hierarchic Voronoi Skeletons », Pattern Recognition, 28

(3): 343-359 Mar 1995.

[50] E. C. Sherbrooke, N. M. Patrikalakis and E. Brisson. “An algorithm for the medial axis

transform of 3d polyhedral solids”, IEEE Transactions on Visualization and Computer

Graphics, 2 (1): 44-61 Mar 1996.

[51] D. J. Sheehy, C. G. Armstrong and D. J. Robinson. “Shape description by medial surface

construction”, IEEE Transactions on Visualization and Computer Graphics, 2 (1): 62-72 Mar

1996.

[52] G. M. Turkiyyah, D. W. Storti and M.Ganter. “An accelerated triangulation method for

computing the skeletons of free form solid models”, Computer-Aided Design, 29 (1): 5-19

JAN 1997.

 53

[53] R. C. Veltkamp and M. Hagedoorn. “State-of-the-art in shape matching”. Technical Report

UU-CS-1999-27, Utrecht University, the Netherlands, 1999.

[54] T. B. Sebastian and B. B. Kimia. “Curves vs. skeletons in object recognition”. In Proceedings

of IEEE International Conference of Image Processing, 2001.

[55] P. E. Trahanias. “Binary Shape-Recognition Using The Morphological Skeleton Transform”,

Pattern Recognition, 25 (11): 1277-1288 Nov 1992.

[56] L. He, C. Y. Han, B. Everding, and W. G. Wee. “Graph matching for object recognition and

recovery”, Pattern Recognition, Vol. 37 Issue 7, 1557-1560, Jul 2004.

[57] M. Tanase and R. C. Veltkamp. “Polygon Decomposition based on the Straight Line

Skeleton, Geometry, Morphology and Computational Imaging”, Lecture Notes in Computer

Science, 2616: 247-267 2003.

[58] C. D. Ruberto. “Recognition of shapes by attributed skeletal graphs”, Pattern Recognition, 37

(1): 21-31 Jan 2004.

[59] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. “Skeleton based shape matching and

retrieval”. SMI, pp 130-139, 2003.

[60] D. P. Huttenlocher, G. A. Klanderman and W. J. Rucklidge. “Comparing Images Using The

Hausdorff Distance”, IEEE Transactions On Pattern Analysis And Machine Intelligence, 15

(9): 850-863, Sep 1993.

[61] N. D. Cornea, D. Silver and P. Min. “Curve-Skeleton Applications”, IEEE Visualization, pp

95-102, 2005.

[62] G. Malandain and G. Bertrand. “Fast characterization of 3D simple points”, In Proceedings of

IEEE International Conference on Pattern Recognition, 232–235, 1992.

[63] G. Bertrand and G. Malandain. “A new characterization of three-dimensional simple points”,

Pattern Recognition Letters, 15 (2): 169-175, Feb 1994.

[64] G. Borgefors. “On Digital Distance Transforms in Three Dimensions”, Computer Vision and

Image Understanding, 64(3):368-376, 1996.

[65] http://en.wikipedia.org/wiki/Euclidean_distance

[66] G. Borgefors. “Distance transformations in arbitrary dimensions”, Comput. Vision Graphics

Image Process, 27, 1984, 321–345.

[67] http://www.inf.u-szeged.hu/~palagyi/skel/skel.html

[68] http://en.wikipedia.org/wiki/Contact_%28mathematics%29

[69] P. Giblin and B. B. Kimia. “A formal classification of 3D medial axis points and their local

geometry”, CVPR, 2000.

[70] F. F. Leymarie and B. B. Kimia. “The Shock Scaffold for Representing 3D Shape”, LNCS

2059, pp 216-229, 2001.

[71] F. F. Leymarie and B. B. Kimia. “Computation of the Shock Scaffold for Unorganized Point

Clouds in 3D”, CVPR, 2003.

 54

[72] F. F. Leymarie. “Three-Dimensional Shape Representation via Shock Flows”, Ph.D. Thesis,

Brown University, Division of Engineering, May 2003.

[73] F. F. Leymarie, B. B. Kimia and P. J. Giblin. “Towards Surface Regularization via Medial

Axis Transitions”, ICPR, 2004.

[74] M.-C. Chang, F. F. Leymarie and B.B. Kimia. “3D Shape Registration using Regularized

Medial Scaffolds”, 3DPVT, 2004.

[74] http://en.wikipedia.org/wiki/Lie_group

[75] M. Sramek and A.E. Kaufman. “Alias-Free Voxelization of Geometric Objects”, IEEE

Transactions on Visualization and Computer Graphics, 5(3): 251 – 267, 1999.

[76] K. Siddiqi, B. B. Kimia and C. W. Shu. “Geometric Shock-Capturing ENO Schemes for

Subpixel Interpolation, Computation, and Curve Evolution”, In Proceedings of International

Symposium on Computer Vision, Coral Gables, USA, 437-442, 1995.

[77] K. Siddiqi and B. B. Kimia. “A Shock Grammar for Recognition”, In Proceedings of

Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 507-513,

1996.

[78] K. Siddiqi, S. Bouix, A. Tannenbaum and S. W. Zucker. “The Hamilton-Jacobi Skeleton”, In

Proceedings of International Conference on Computer Vision, Corfu, Greece, September,

1999.

[79] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, 1986.

[80] J. A. Sethian. ”A fast marching level set method for monotonically advancing fronts”. Proc.

Natl. Acad. Sci. USA, Vol. 93, pp 1591-1595, February 1996.

[81] S. Stolpner and K. Siddiqi. “Revealing Significant Medial Structure in Polyhedral Meshes”,

In Proceedings of 3rd International Symposium on 3D Data Processing, Visualization and

Transmission, 2006.

[82] H. Lester and S. R. Arridge. “A survey of hierarchical non-linear medical image registration”.

Pattern Recognition, 32:129–49, 1999.

[83] D. L. G. Hill, P. G. Batchelor, M. Holden and D. J. Hawkes. “Medical image registration”.

Phys Med Biol, 46: pp1–45, 2001.

[84] B. Zitova and J. Flusser. “Image registration methods: a survey”. Image Vision Comput., 21:

pp977–1000, 2003.

[85] W. R. Crum, T. Hartkens, and D. L. G. Hill. “Non-Rigid Image Registration: theory and

practice”, The British Journal of Radiology, 77, pp. 140–153, 2004.

[86] T. Makela, P. Clarysse, O. Sipila, N. Pauna, Q. C. Pham and T. Katila. “A review of cardiac

image registration methods”, IEEE Trans Med Imaging, 21:1011–21, 2002.

[87] B. F. Hutton, M. Braun, L. Thurfjell and D. Y. H. Lau. “Image registration: an essential tool

for nuclear medicine”. Eur. J. Nucl. Med. Mol. Imaging, 29: pp59–77, 2002.

 55

[88] J. G. Rosenman, E. P. Miller, G. Tracton and T. J. Cullip. “Image registration: an essential

part of radiation therapy treatment planning”. Int J Radiat Oncol Biol Phys, 40:197–205,

1998.

[89] E. H. W. Meijering, W. J. Niessen and M. A. Viergever. “Retrospective motion correction in

digital subtraction angiography: a review”. IEEE Trans Med Imaging, vol. 18, pp. 2–21, 1999.

[90] A. W. Toga and P. M. Thompson. “The role of image registration in brain mapping”, Image

Vision Comput., vol. 19, pp. 3–24 Special Issue, 2001.

[91] P. M. Thompson, R. P. Woods, M. S. Mega and A. W. Toga. “Mathematical/computational

challenges in creating deformable and probabilistic atlases of the human brain”, Human Brain

Mapping, 9: 81–92, 2000.

[92] P. A. van den Elsen, E. J. D. Pol, and M. A. Viergever. “Medical image matching – a review

with classification”, IEEE Engineering in medicine and biology, 12(1), pp 26–39, 1993.

[93] C. R. Maurer and J. M. Fitzpatrick. “A review of medical image registration”. In Maciunas,

R. J. (ed.), Interactive image guided neurosurgery, pp 17–44. American Association of

neurological surgeons, Park ridge, IL, 1993.

[94] T. Wang and A. Basu. “Automatic Estimation of 3D Transformations using Skeletons for

Object Alignment”, In Proceedings of IEEE International Conference on Pattern

Recognition, Hong Kong, pp 51-54, 2006.

[95] J. Thirion. “Non-rigid matching using demons”, Computer vision and pattern recognition, pp

245–251, 1996.

[96] C. Davatzikos. “Nonlinear registration of brain images using deformable models”.

Mathematical methods in biomedical image analysis, pp 94–103, 1996.

[97] J. Ashburner and K. J. Friston. “Nonlinear spatial normalization using basis functions”.

Human Brain Mapping, vol. 7, pp 254–66, 1999.

[98] T. Peters, B. Davey, P. Munger, R. Comeau, A. Evans and A. Olivier. “Three-dimensional

multimodal image-guidance for neurosurgery”, IEEE Transactions on medical imaging,

15(2), pp. 121–128.

[99] D. A. Simon, R. V. O’Toole, M. Blackwell, F. Morgan, A. M. DiGioia and T. Kanade.

“Accuracy validation in image-guided orthopaedic surgery”, Medical robotics and computer

assisted surgery, pp 185–192, 1995.

[100] M. Y. Wang, J. M. Fitzpatrick and C. R. Maurer, “Design of fiducials for accurate

registration of CT and MR volume images”, Medical imaging, Vol. 2434, pp 96–108, 1995.

[101] M. Soltys, D. V. Beard, V. Carrasco, S. Mukherji and J. Rosenman, “FUSION: a tool for

registration and visualization of multiple modality 3D medical data”, Medical imaging: image

processing, Vol. 2434, pp 74–80, 1995.

 56

[102] O. Peria, L. Chevalier, A. Francois-Joubert, J. Caravel, S. Dalsoglio, S. Lavallee and P.

Cinquin. “Using a 3D position sensor for registration of SPECT and US images of the

kidney”, Lecture notes in computer science, Vol. 905, pp23–29, 1995.

[103] T. Lehmann, C. Goerke, W. Schmitt, A. Kaupp and R. Repges. “A rotation-extended

cepstrum technique optimized by systematic analysis of various sets of X-ray images”,

Medical Imaging: Image processing, Vol. 2710, pp 390–401, 1996.

[104] L. Dong and A. L. Boyer. “A portal image alignment and patient setup verification

procedure using moments and correlation techniques”, Physics in medicine and biology, Vol

41, 697–723, 1996

[105] M. Singh, A. Basu and M. Mandal. “Event Dynamics based Temporal Registration”, IEEE

Trans. on Multimedia, vol.9(5), pp1004-1015, Aug. 2007.

[106] I. Cheng, S. Nilufar, A. Basu and R. Goebel, “Shape Tracking and Registration for 4D

Visualization of MRI”, LNCS 4291, pp 253-262 Springer-Verlag Berlin Heidelberg.

[107] M. Ferrant, A. Nabavi, B. Macq, P. M. Black, F. A. Jolesz and R. Kikinis R. “Serial

registration of intraoperative MR images of the brain”. Med Image Anal, 2002;6:337–359.

[108] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-Information-Based

Registration of Medical Images: A Survey”, IEEE transactions on medical imaging, VOL. 22,

NO. 8, AUGUST 2003.

[109] T. Wang and A. Basu, “A note on ‘A fully parallel 3D thinning algorithm and its

applications’ ”, Vol. 28(4), pages 501-506, Pattern Recognition Letters, 2007.

[110] T. Wang and A. Basu, “Iterative Estimation of 3D Transformations for Object Alignment”,

International Symposium on Visual Computing, LNCS 4291, pages 212-221, 2006.

[111] T. Wang and A. Basu, “Automatic Estimation of 3D Transformations using Skeletons for

Object Alignment”, IAPR/IEEE International Conference on Pattern Recognition, pages 51-

54, 2006.

 57

Chapter 3 Unit-width Curve Skeletons

3.1 Introduction

Unit-width curve skeletons (i.e., the skeletons are only one-voxel thick) are highly

desirable in many applications such as mesh segmentation [24] and 3D object

matching and retrieval [2].

 Li et al [24] proposed a mesh segmentation method based on edge contraction

and space sweeping. The sweeping path is a unit-width curve-skeleton. A

component of a 3D mesh is defined to be the result of the sweeping of a cross-

section along the sweeping path. Figure 3.1 shows the sweeping process.

Figure 3.1: Mesh segmentation using unit-width curve skeletons [24].

Figure 3.2: Matching and retrieval using unit-width curve skeletons [2].

 58

 Cornea presented a 3D object retrieval and matching system [2] using unit-

width curve skeletons. Figure 3.2 shows an example of matching between two

objects. In step 1, the unit-width curve skeleton for each object is computed while

in step 2, the many-to-many matching establishes the distance and the

correspondence between the two skeletal representations. The skeleton regions

that were matched to each other are shown in the same color in Figure 3.2.

 In addition to those applications mentioned above, there are many other

applications of unit-width curve skeleton including animation, virtual reality, etc.

However, as we have seen in Chapter 2, some skeletons generated by

skeletonization algorithms are not unit-width. This chapter presents a valence

normalized spatial median (VNSM) algorithm, which eliminates crowded regions

and generates unit-width curve skeletons. The proposed technique can also be

used to refine skeletons generated from other 3D skeletonization algorithms to

achieve unit-width. This work was published in [29].

 The remainder of this chapter is organized as follows. In Section 3.2, some

related algorithms are discussed. Then the proposed algorithm [29] is introduced

in Section 3.3. Experimental results are presented in Section 3.4, before the work

is concluded in Section 3.5.

3.2 Related works

Cornea proposed a potential field based algorithm to generate curve skeletons [2].

The idea is to extract some critical points in a force field to generate the skeleton.

This algorithm has three steps. First is to compute the vector field on a 3D model.

Second is to locate the critical points in the vector field, and finally the algorithm

extracts the curve skeleton following a force directed approach. However,

connectivity of the critical points is not guaranteed (see Figure 3.3).

Figure 3.3: models with disconnected skeletons (images courtesy of Cornea [2]).

 59

 Voronoi diagram based algorithms assign the surface points on a 3D object as

generating points and apply an incremental construction method to approximate

the skeleton using Voronoi diagram computation [9-10, 25]. When the surface

points are sufficiently dense, this technique can generate a satisfactory skeleton.

However, it may fail when the surface points are sparse. Moreover, computing the

Voronoi diagram is time-consuming.

 Brunner et al. [16] use an iterative algorithm to merge junction knots, which

generate the minimal cost, to create unit-width curve skeletons (Figure 3.4).

However, this algorithm only works in non-equilateral 3D grid but not in 3D

binary images (equilateral 3D grid) or 3D mesh (non-grid). Also, this algorithm is

expensive because it needs to compute the different merging options. For

example, if there are E junction knots and V edges between them, the complexity

of this algorithm is)(3VEO × .

Figure 3.4: The left graph shows the junction knots in the curve skeleton. In the

right graph, these junction knots are merged to a single junction knot to create a

unit-width curve skeleton [16].

 Sundar et al. [19] use a clustering method to reduce the number of points on a

curve skeleton. A representative point is selected to replace a cluster of points that

are within a distance of Dthreshold. This algorithm has two drawbacks. First,

different clusters need different Dthreshold values. How to determine different

Dthreshold values for different clusters is non-trivial. Second, a cluster is not fully

connected in most cases. Therefore, this algorithm may disconnect the skeleton by

choosing a point that is not connected with other points.

 60

Figure 3.5: Sundar et al. [19], threshold and clustering.

 Wang and Lee [28] presented a curve skeleton extraction algorithm. Their

technique consists of three steps. First, it uses iterative least square optimization

to shrink and simplify a 3D model. Then, it extracts the curve skeleton through a

thinning algorithm. In the last step, a pruning approach is used to remove

unnecessary branches based on shrinking ratios. However, this method requires

too many free parameters. In addition, it often generates skeletons which deviate

(shown in Figure 3.7) from the center of the model.

Figure 3.6: Wang and Lee [28], shrinking and thinning.

Figure 3.7: Skeleton deviates from the center of the model [28].

 Svenssona et al. [26] propose an algorithm to extract unit-width curve skeletons

from skeletons generated with 3D thinning. However, their method requires a

really thin skeleton (i.e., at most two-voxel thick) as input.

 61

Figure 3.8: Svenssona et al. [26], simplifying.

 Many 3D thinning techniques [3-5] can be used to generate curve skeletons.

However, the skeletons generated are not guaranteed to be unit-width. In the next

section, we will introduce our VNSM algorithm, which can generate a unit-width

curve skeleton without requiring nearly thin skeleton and any threshold.

3.3 The proposed algorithm

In this section, we describe our algorithm for extracting unit-width curve

skeletons. By comparison to other methods, our algorithm has five main

characteristics. 1) It works on 3D binary images, and 3D meshes by performing

voxelization as a pre-processing step. 2) It preserves connectivity. 3) The curve

skeletons are unit-width. 4) It does not need control parameters, e.g. thresholds. 5)

It is time efficient.

3.3.1 Definitions

Given an input 3D binary image (equilateral 3D grid)

B(x, y, z) = {),,(zyxδ }, where),,(zyxδ =
⎩
⎨
⎧

otherwise 0
pointobject an is),,(1 zyxif

,

we define a unit-width curve skeleton using the following definitions.

 Definition 1: The 26-neighborhood of an object point p is the 3x3x3 cube

centered at p.

 Definition 2: Let q be another object point. The Euclidean distance between p

and q is defined as || qpdis −= . Consider each edge in the cube be 1 unit. p and

q are 26-connected if 3≤dis .

 Definition 3: The valence of an object point p is denoted by)(pV , and is

defined as the number of object points in p’s 26-neighborhood, excluding p itself.

 62

1),,()(1)),,(()(
1

1

1

1

1

1

==−+++= ∑∑∑
−= −= −=

zyxBpBwhenkzjyixpV
i j k

δ (3.1)

Figure 2.5 in Chapter 2 is used to demonstrate the geometric meaning of valence.

The valence of point p in cube a is 1 because there is only one object (black) point

in p’s 26-neighborhood excluding p itself. The valence of p in cube b is 2 because

there are two object points in p’s 26-neighborhood excluding p itself. The valence

of p in cube c is 3, and that of p in cube d is 1.

 Definition 4: An object point p is called an end point if 1)(=pV or 0)(=pV .

 Definition 5: An object point p is called a middle point of p1 and p2 if

1) 2)(=pV (p1 and p2 are the two neighbors of p);

2) p1 and p2 are not 26-connected in p’s 26-neighborhood.

 Definition 6: An object point p is called a joint point of p1, p2, …, pn if

1)) ..., , , and ,2()(21 pofneighorsnthearepppnnpV n>= ;

2) p1, p2 , …, pn are not 26-connected in p’s 26-neighborhood;

3) p1, p2 , …, pn are either end points or middle points.

 Definition 7: An object point p is called a crowded point if it is neither an end

point, a middle point, nor a joint point.

 Definition 8: A crowded region is a set of 26-connected crowded points.

 Definition 9: An object point is called an exit if it is

1) an end point or middle point;

2) 26-connected to one object point of a crowded region.

 Definition 10: A skeleton is called a unit-width curve skeleton if it has no

crowded regions.

3.3.2 Valence computation

The VNSM algorithm first computes the valence of each object point in the curve

skeleton by counting the object points in the 26-connected neighborhood.

 63

3.3.3 Crowded regions and exits

The next step is to mark the end points, middle points, joint points, and crowded

points. Adjacent crowded points are consolidated into crowded regions. In each

crowded region, exits are located and marked.

3.3.4 Valence Normalized Spatial Median (VNSM) algorithm

In this step, the center of each crowded region is computed. Once the center is

obtained, we can connect it with all the exits in that region, and remove the object

points that are not on the path between an exit and the center. The mostly often

used definition of center is arithmetic mean. For a given crowded region R with n

object points {P1, P2, …, Pn}, the arithmetic mean is defined as:

 nP
n

i
i /

1
∑
=

 (3.2)

However, the center defined by arithmetic mean may be outside a given region.

Figure 3.8 (Left) shows the center is out of the given crowded region. In this

figure, white points are object points and black points form background. The red

points are the centers in different definitions.

In [27], some other frequently used definitions of center, such as Tukey median,

Liu median, Oja median, depth-based trimmed mean, coordinate median, and

spatial median, are discussed and compared. According to [27], spatial median

stands as the best overall. The spatial median is defined as:

)/||(minarg
1

nPp
n

i
ip ∑

=

− (3.3)

where | · | is the Euclidean distance. Spatial median works very well for convex

regions. However, in the context of this chapter, crowded regions may not be

convex therefore spatial median may fail. Figure 3.8 (Middle) demonstrates that

the center defined by spatial median is on the boundary of the crowded region.

We propose a Valence Normalized Spatial Median (VNSM) algorithm to

compute the center of a crowded region. The center is given by:

 64

)/||
)(

1(minarg
1

nPp
pV

n

i
ip ∑

=

− (3.4)

where V(p) is the valence of the point p.
)(

1
pV

 assigns penalties to boundary

points which have smaller valences than inside points. As a result, the derived

center is attracted towards the middle of the region.

In our implementation, we modify Equation (3.4) to Equation (3.5) to eliminate

the computational cost in performing the square root and division operations.

∑
=

−
n

i
ip

Pp
pV1

2)||
)(

1(minarg (3.5)

Figure 3.9: The red (gray in B&W) point denotes the “center” of a crowded

region. From left to right, the locations of center defined by arithmetic mean,

spatial median and VNSM are shown respectively.

Since n is a constant, removing n does not affect the value for which the

expression attains its minimum. Figure 3.9 (Right) shows the center obtained by

using VNSM.

3.3.5 Unit-width curve skeleton

In the last step, we apply the Dijkstra shortest path algorithm [17-18] to connect

the exits with the center computed in the previous step. We remove other object

points in the crowded region that are not in the paths connecting the exits and the

center. The outcome is a unit-width curve skeleton.

The pseudo code of our algorithm is as follows:

Input: non-unit-width skeleton I

Output: unit-width curve skeleton O

Algorithm Generating_Unit_Width_Curve_Skeleton (I)

 65

Initialization: Initialize output O and copy I to O.

Valence compution: Calculate the valence of each object point on the

skeleton O.

Points classification: Mark end points, middle points, joint points, and

crowded points. If there is no crowded point, output O and finish.

Crowded region location: Organize crowded points into crowded regions.

In each crowded region

Begin

Exit location: Find all exits.

Center determine: Determine the center point using the VNSM

algorithm.

Shortest path computation: Apply the Dijkstra shortest path algorithm to

find the shortest path between the center and each exit. Remove the object

points that are not on the shortest paths.

End

Output: Output the unit-width curve skeleton O.

End algorithm

If there are E crowded points and V edges between them, the complexity of our

method is O(E+V2) [17-18] based on the Dijkstra shortest path algorithm. Our

VNSM algorithm inherits the characteristics of the Dijkstra algorithm: unique,

connected and has no circle. Our technique also guarantees the generated skeleton

to be unit-width. Figure 3.10 shows an example of unit-width curve skeleton

generation.

 (a) (b) (c) (d)

 66

Figure 3.10: (a) Non-unit-width curve skeleton (b) a crowded region (c) two exits

of the crowded region and (d) the constructed shortest path.

3.4 Experimental results

The 3D models used in this work were downloaded from the Mesh Compendium

[20] and the Princeton Shape Benchmark [21], to validate the effectiveness of our

algorithm. Surface meshes were converted to 3D binary images with binvox [22-

23]. The input skeletons (non-unit-width) were extracted by a 3D thinning

algorithm [3, 15]. Some examples of non-unit width skeletons are shown in

Figure 3.11 and some examples of unit-width curve skeletons generated with our

algorithm are shown in Figure 3.12.

Figure 3.11: Examples of crowded regions

Figure 3.12: Examples of unit-width curve skeletons generated with our VNSM

algorithm.

A thinness comparison of our approach for computing skeletons relative to

another well known approach - Ma and Sonka’s approach [3, 15] that creates

connected skeletons is shown in Figure 3.13.

Until recently there have been few attempts to develop a metric to give a

measure of the thinness of curve-skeleton. Cornea [2] defined the thinness index

 67

of a skeleton as
NS
NTH = , where N is the number of curve segments with no

regular voxels [2] and have at least one junction voxel as one of their end-points,

and NS is the total number of segments of the curve-skeleton. This thinness index

can indicate the thinness of skeleton. However, the complexity of calculation of N

and NS is)(2
eVO , where eV is the number of end points. In this section, we

present a new Thinness Metric]1,0[∈=
SUM
NCTM , where NC is the number

of crowded points and SUM is the number of all points on the skeleton. Since our

approach classified all points on the skeleton into end points, middle point, joint

points and crowded points, the Thinness Metric can be obtained by only one

division operation. The Thinness Metric is a normalized metric with values

between zero and one. If TM is zero, the skeleton is unit-width thin; otherwise, it

is not thin. If TM is one, all the points on the skeleton are crowded points. Table

3.1 shows the comparison between our method and Ma and Sonka’s approach [19,

30]. Since the crowded points are removed from the skeletons, the score of our

method is always zero, which indicates the curve skeletons generated by our

method are always thin.

 68

Figure 3.13: Comparing results of our algorithm (left column) with skeletons

generated by Ma and Sonka [3, 15] (right column). Note that the skeletons

generated by our algorithm are unit-width, while the skeletons on the right contain

crowded regions.

Model Proposed method Ma and Sonka

Knot 0.00 0.54

Chair 0.00 0.53

Horse 0.00 0.73

Triceratops 0.00 0.43

Ant 0.00 0.42

Cow 0.00 0.64

Table 3.1: Thinness comparison of the models in Figure 3.16. Smaller values

indicate better thinness.

 69

3.5 Conclusions and Discussions

In this chapter, we present a Valence Normalized Spatial Median (VNSM)

algorithm to generate unit-width curve skeletons from non-unit-width skeletons.

Locating the center of a crowded region accurately is essential for generating a

compact skeleton representation of a 3D model. Although the spatial median

location estimator out-performs other frequently used locators, it does not work

well on non-convex regions. We propose the Valence Normalized Spatial Median

(VNSM) algorithm to compute the center of a crowded region, and apply the

Dijkstra shortest path algorithm to generate a unit-width curve to replace the

crowded region. This algorithm can be used in conjunction with another

skeletonization algorithm, to ensure that the output skeleton is unit-width. We

have already used this algorithm to generate unit-width curve skeletons, for

constructing topology graphs and chain codes [30], and for matching [31] of 3D

objects.

 70

Bibliography

[1] H. Blum. “A transformation for extracting new descriptors of shape”, Models for the

Perception of Speech and Visual Form, pp. 362–380, MIT Press, Cambridge, MA, USA, 1967.

[2] N. D. Cornea. “Curve-Skeletons: Properties, Computation And Applications”, Ph.D. Thesis,

The State University of New Jersey, May 2007.

[3] C. M. Ma, M. Sonka. “A fully parallel 3D thinning algorithm and its applications”, Computer

Vision and Image Understanding, 64 (3): pp 420-433, 1996.

[4] K. Palagyi and A. Kuba. “A 3D 6-subiteration thinning algorithm for extracting medial lines”,

Pattern Recognition Letters, vol. 19 (7): pp 613-627, 1998.

[5] C. Lohoua and G. Bertrand. “A 3D 6-subiteration curve thinning algorithm based on P-simple

points”, Discrete Applied Mathematics, Vol. 151, pp 198–228, 2005.

[6] C. Pudney. “Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D

Digital Images”, Computer Vision and Image Understanding, vol. 72(3):404-413, 1998.

[7] A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, New York, 1982.

[8] C. Arcelli and G. S. di Baja, “A width independent fast thinning algorithm”, IEEE Trans.

Pattern Anal. Mach. Intell. Vol. 7, pp. 463–474, 1985.

[9] R. L. Ogniewicz and M. Ilg. “Voronoi Skeletons Theory and Applications”, CVPR, 1992.

[10] R. L. Ogniewicz and O. Kubler. “Hierarchic Voronoi Skeletons”, Pat. Rec., p. 343-359, 1995.

[11] E. C. Sherbrooke, N. M. Patrikalakis and E. Brisson. “An algorithm for the medial axis

transform of 3d polyhedral solids”, IEEE T. VCG, vol. 2 (1), pp. 44-61, 1996.

[12] P. Giblin and B. B. Kimia. “A formal classification of 3D medial axis points and their local

geometry”, CVPR, 2000.

[13] F. F. Leymarie and B. B. Kimia. “The Shock Scaffold for Representing 3D Shape”, LNCS

2059, pp 216-229, 2001.

[14] F. F. Leymarie and B. B. Kimia. “Computation of the Shock Scaffold for Unorganized Point

Clouds in 3D”, CVPR, 2003.

[15] T. Wang and A. Basu. “A note on ‘A fully parallel 3D thinning algorithm and its

applications’ ”, Pattern Recognition Letters, vol. 28(4): 501-506, 2007.

[16] D. Brunner, G. Brunnett. “An extended concept of voxel neighborhoods for correct thinning

in mesh segmentation”, Spring Conference on Computer Graphics, pp.119-125, 2005.

[17] E. W. Dijkstra, “A note on two problems in connexion with graphs”. In Numerische

Mathematik, pp. 269–271, 1959.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second

Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 24.3: Dijkstra's

algorithm, pp.595–601.

 71

[19] H. Sundar, D. Silver, N. Gagvani, S. Dickinson, Skeleton “Based Shape Matching and

Retrieval”, Shape Modeling International, pp. 130-142, 2003.

[20] http://www.cs.caltech.edu/~njlitke/meshes/toc.html (retrieved in April 2008)

[21] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, The Princeton Shape Benchmark, Shape

Modeling International, Genova, Italy, June 2004.

[22] F. Nooruddin and G. Turk, “Simplification and Repair of Polygonal Models Using

Volumetric Techniques”, IEEE Trans. on VCG, vol. 9(2), pp. 191-205, 2003.

[23] http://www.cs.princeton.edu/~min/binvox/ (retrieved in April 2008)

[24] X. Li, T.W. Woon, T.S. Tan, Z. Huang. “Decomposing polygon meshes for interactive

applications”, ACM Symposium on Interactive 3D Graphics, 35-42, 2001.

[25] D. Attali and A. Montanvert, “Computing and Simplifying 2D and 3D Continuous

Skeletons”, Computer Vision And Image Understanding, Vol. 67, No. 3, pp. 261–273, 1997.

[26] S. Svenssona and G. S. di Bajab, “Simplifying curve skeletons in volume images”, Computer

Vision and Image Understanding, vol. 90, pp. 242–257, 2003.

[27] J. C. Masse and J. F Plante, “A Monte Carlo study of the accuracy and robustness of ten

bivariate location estimators”, Comput. Statistics & Data Analysis, vol. 42, pp. 1-26, 2003.

[28] Y. S. Wang and T. Y. Lee, “Curve-Skeleton Extraction Using Iterative Least Squares

Optimization”, IEEE T. VCG, VOL. 14, NO. 4, pp. 926-936, 2008.

[29] T. Wang and I. Cheng, “Generation of Unit-width curve skeletons based on Valence Driven

Spatial Median (VDSM)”, International Symposium on Visual Computing, LNCS 5358, pages

1061-1070, 2008.

[30] V. Lopez, I. Cheng, E. Bribiesca, T. Wang and A. Basu, “Twist-and-Stretch: A Shape

Dissimilarity Measure based on 3D Chain Codes”, ACM SIGGRAPH Asia Research Poster,

2008.

[31] T. Wang, I. Cheng, V. Lopez, E. Bribiesca and A. Basu, “Valence Normalized Spatial

Median for Skeletonization and Matching”, Search in 3D and Video workshop (S3DV), in

conjunction with IEEE International Conference on Computer Vision (ICCV), 2009.

[32] E. Bribiesca, “A method for representing 3D objects using chain coding”, J. Vis. Commun.,

2008.

 72

Chapter 4 Flexible Vector Flow and Applications in 2D

Brain Tumor Segmentation

4.1 Introduction

The segmentation study presented in this chapter is a semi-automatic approach

called Flexible Vector Flow (FVF) active contour model. This study was

published in [15].

 The goal of segmentation is to locate the target object, i.e., the Region Of

Interest (ROI) in 2D or the Volume Of Interest (VOI) in 3D. Active contour

models or snakes [1-5] have been adopted as effective tools for segmentation [6-

7]. Active contour based segmentation algorithms have many applications such as

medical image processing and analysis. Our application is brain tumor

segmentation in Magnetic Resonance (MR) images. Active contour models

discussed in the literature can be classified into two categories: parametric [1-3]

and level set [4-5].

 Parametric active contour models are represented explicitly as polynomials or

splines. Given an initial contour, the evolution of a parametric active contour

model is driven by external forces while the shape of the contour is maintained by

the internal forces [1]. Due to the availability of efficient numeric methods [1-2],

parametric active contour models are often faster than level set ones [4-5]. Given

a single initial contour as the input, parametric active contour models are able to

extract a single object. Despite the above strength, parametric snakes have two

weaknesses. First, the capture range is limited. Capture range is the region that the

external forces are strong enough to drive contour evolution. The external forces

of the traditional [1] and Gradient Vector Flow (GVF) [2] parametric snakes are

represented as small arrows in Figure 4.1 (a) and (b). The length of an arrow

represents the magnitude of an external force at that location. In Figure 4.1, the

capture range is the region with dense arrows (external forces) that are strong

enough to drive the contour evolution. We can see that the capture range of the

traditional snake is a very limited region around the object boundary. GVF

 73

diffuses the external forces from the object boundary to its surroundings to obtain

a larger capture range. However, the capture range of GVF is still not the entire

image. If the initialization is out of the capture range, the active contour will not

evolve (Figure 4.1 (c)). Second, some parametric snakes, e.g., traditional, GVF

and Boundary Vector Flow (BVF) [3], are unable to extract acute concave shapes

(Figure 4.2 (b) and (c)) because their external force fields are static. There could

be some saddle points or stationary points [4] where the composition of external

forces is zero (Figure 4.2 (d) and (e)) in static force fields. Therefore, the contours

will get stuck at those locations and equilibrium will be achieved too early [4].

 (a) (b) (c)

Figure 4.1: The limited capture range of (a) a traditional parametric snake and (b)

a GVF parametric snake. If the initialization (outer circle in (c)) is outside the

capture range, convergence does not occur.

 (a) (b) (c) (d) (e)

Figure 4.2: (a) An acute concave shape. (b) GVF and (c) BVF are not able to

capture the acute concave shape. A saddle point in GVF is shown in (d) and a

stationary point in BVF is shown in (e).

 Level set active contour models [4-5] are implicitly represented in the zero

level set. The evolution of a level set active contour model is achieved by

deforming the level set function. The advantages of level set include the abilities

 74

to capture multiple objects and complex geometries [4]. However, they are

usually slower than parametric methods because the deformation of a higher

dimensional function is required [4]. Morse et al. [12] proposed to implicitly

represent snakes using radial basis functions by placing them at some landmarks

[12]. This can avoid manipulating a higher dimensional function but it requires

insertion and deletion of landmarks dynamically. Moreover, “false” objects can be

extracted in the presence of noise which may cause multiple zero level sets

(Figure 4.3).

 (a) (b)

Figure 4.3: (a) A “U-shape” object in noisy environment (b) false objects (i.e.,

small enclosed contours) can be extracted by a level set snake.

 In this study, we focus on parametric snakes taking advantage of time

efficiency. To address the issues of capture range and acute concave shape, we

propose a parametric active contour model using a new concept, that we call

“Flexible Vector Flow” (FVF), which emphasizes that the external force fields are

flexible and dynamically updated to drive the contour evolution. FVF has the

largest capture range, i.e., the entire image. FVF is also able to extract acute

concave shapes due to its non-static external force fields. In this model, the

external force field changes dynamically with the contour evolution. Thus, the

FVF contour does not get stuck and acute concavities can be extracted.

 The limitations with previous models that FVF will overcome are as follows:

• Limited capture range

• Inability to handle acute concave shapes

 75

4.2 Background

4.2.1 Traditional snake

A traditional snake [1] is a parametric active contour:

]1,0[)),(),(()(∈= ssysxsc (4.1)

Given an initial contour, it evolves within an image),(yxI to minimize the

energy function:

∫ +=
1

0

))](())(([dsscEscEE eisnake (4.2)

where iE is the internal (spline) energy and eE is the external energy.

 The internal energy is given by:

2
|)(''|)(|)('|)(22 scsscsEi

βα +
= (4.3)

In many implementations, the coefficient of the first-order term in (4.3) is a

constant, α(s) = α; and β(s) is set to zero to allow the snake to be second-order

discontinuous and contain corners. Many parametric snakes share the same

internal energy. They differ mostly in the external energy. A snake should evolve

to minimize the energy functional snakeE . This problem can be formulated with the

Euler-Lagrange equation. In calculus of variations, the Euler-Lagrange equation

of:

∫=
1

0

))(''),('),(,()]([
s

s

dsscscscsFscJ (4.4)

is represented by:

0''2

2

' =+− ccc F
ds
dF

ds
dF (4.5)

 Therefore, the Euler-Lagrange equation of (4.2) is represented by:

0)('''')('' 4

4

2

2

=∇+−=∇+− ee E
ds

cd
ds

cdEscsc βαβα (4.6)

To find a numeric solution of (4.6), the snake is treated as a function of time t as

well as s:

 76

04

4

2

2

=∇+
∂
∂

∂
∂

−
∂
∂

∂
∂

eE
t
c

s
c

t
c

s
c βα (4.7)

When the contour stabilizes, the time term vanishes and a solution is obtained.

4.2.2 GVF snake

GVF snake [2] has a larger capture range than the traditional snake. It diffuses

the edge information from the object contour to its neighborhood. The external

force of GVF snake differs from the traditional snake in that it cannot be written

as the negative gradient of a potential function. In addition to this, the GVF snake

is formulated directly from a force balance condition rather than a variational

formulation. The gradient vector flow is defined as the vector field:

],[],[)),,(),,((),(1010 yyyandxxxyxvyxuyxGgvf ∈∈= (4.8)

that minimizes the energy function:

∫ ∫ ∇−∇++++=
1

0

1

0

))((
222222

y

y

x

x
gvfyxyxgvf dxdyfGfvvuukE (4.9)

where k is a blending parameter, ux, uy, vx, and vy are the derivatives of the vector

field, and ∇ f is the gradient of the edge map. The GVF snake is computed by

solving the following Euler-Lagrange equations:

0))((222 =+−−∇ yxx fffuuk (4.10)

0))((222 =+−−∇ yxy fffvvk (4.11)

4.2.3 BVF snake

BVF [3] extends the capture range further to the entire image based on

interpolation. It applies a threshold to generate a binary boundary map of the input

image. Then, four potential functions xΨ , yΨ , xyΨ and yxΨ are computed using

line-by-line interpolations in the horizontal, vertical and two diagonal directions.

The boundary vector flows are defined based on the gradients of the following

potential functions:),(1 yx Ψ∇Ψ∇=Φ (4.12)

))(
2
2),(

2
2(2 yxxyyxxy Ψ∇−Ψ∇Ψ∇+Ψ∇=Φ (4.13)

 77

Equation (4.12) represents the horizontal and vertical interpolations of the

gradient forces. Equation (4.13) represents the interpolations of the gradient

forces in two diagonal directions.

The external force is defined as:

),(),(yxyxEe Φ= (4.14)

Similar to GVF, BVF is unable to extract acute concavities.

4.2.4 Magnetostatic Active Contour (MAC) Model

The MAC snake [4] is a level set active contour model. The external force of

the MAC is based on magnetostatics and hypothesized magnetic interactions

between the active contours and object boundaries. It is able to capture complex

geometries and multiple objects with a single initial contour. However, as stated

in the introduction, it is slower than parametric methods and may detect multiple

false objects in the presence of noise, which may cause multiple zero level sets to

arise. MAC snake represents the active contour with an implicit model in which

the contour consists of all points in:

{ } RRxxc →== 2: where,0)(| φφ (4.15)

MAC relates the motion of that contour to a PDE (Partial Differential Equation)

on the contour:

)(tv
t

⋅−∇=
∂
∂ φφ (4.16)

where)(tv describes the velocity of the contour movement. For image

segmentation:

φαφ
φ
φαφ

∇⋅−−∇⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

⋅∇=
∂
∂)()1()(xFxs

t
 (4.17)

where α is a real constant,)(xs is the stopping function, and)(xF is the

magnetostatic force.

4.3 Proposed Flexible Vector Flow (FVF) Method

Given an input image I(x, y) and a closed parametric contour c(s) given in (4.1),

 78

the objective is to evolve the contour to extract a target object O(x, y), i.e., the

brain tumor. This method is executed in three stages: binary boundary map

generation, vector flow initialization and flexible vector flow computation. Figure

4.4 shows the flowchart of this method, which starts with initializing the contour,

then the binary boundary map is generated and vector flow is initiated, and

flexible vector flow is computed and dynamically updated until the object contour

is extracted.

Figure 4.4: The process of FVF.

In the first stage, we apply a smoothing filter to the input image and apply a

gradient operator to find edges in the image. A threshold (free parameter) T∈[0,

1] is then used to generate the binary boundary map. At the second stage, the

contour can be generated to initialize the external force field. The initial contour

can be inside, outside, or overlapping the target. Our algorithm automatically

detects the initialization and generates the external force field accordingly. The

computation of the internal energy follows (4.3). The initial forces will push the

active contour to the neighborhood of the target object. At the last stage, a control

point is automatically selected from the object boundary and it generates new

external force field to evolve the active contour. This point can flow flexibly

along the object boundary, dynamically updating the external force field to avoid

the problem of saddle points and stationary points [4], and therefore further

evolve the active contour until convergence is achieved. The details follow.

Binary
boundary

map
generation

Vector
flow

initialization
Image

Flexible
vector
flow

computation

Input

Output Extracted
Contour

 79

4.3.1 Binary Boundary Map Generation

The boundary map is defined as:

)),(),((),(yxIyxGyxM B ∗∇= σ (4.18)

where Gσ(x, y) is a Gaussian smoothing filter with standard deviation σ, ∗ is the

convolution operator and∇ is the gradient operator. We compute the normalized

boundary map:

)),(min()),(max(
)),(min(),(

),(
yxMyxM

yxMyxM
yxM

BB

BB
NB −

−
= (4.19)

Similar to BVF [3], we apply a threshold T∈ [0, 1] to generate the binary

boundary map:

⎩
⎨
⎧ >

=
otherwise

TyxMif
yxM NB

BB ,0
),(,1

),((4.20)

The choice of a suitable threshold value varies depending on the intensity

distribution and contrast associated with the set of images being analyzed. For the

brain MR images tested in our implementation, a default value of 0.1 works well.

Observe that the blurred contour of the brain ventricle (low intensity region) is

extracted successfully in the boundary map using T = 0.1 (Figure 4.5). We tested

with a higher T value and then decreased T progressively but object boundary

continuity was not obtained until 0.1 was reached. The extracted boundary

provides an envelope to ensure that the final convergence is not out of bound. The

threshold of 0.1 is consistent with the threshold of 0.13 commonly used by other

snake models as suggested by Sum and Cheung in [3].

 (a) (b) (c)

Figure 4.5: (a) A head MRI image, (b) its gradient map and (c) its extracted

boundary map using a default threshold of 0.1.

 80

4.3.2 Vector Flow Initialization

At this stage, the contour should be generated to initialize the external force

field. The initial parametric contour c(s) can be initialized either inside, outside, or

overlapping (Figure 4.6 (a)-(c)) the target object O(x, y). The FVF method is

insensitive to the initialization by taking advantage of the binary boundary map

generated at the previous stage. Suppose C is the initial contour, cR is the region

enclosed by contour C, and bR is the region enclosed by the binary boundary map

(Figure 4.7), we define cbbc RRR ∩=: . The following criteria determine the

spatial relationships between the initial contour and the binary boundary map:

(a) C is inside the binary boundary map when cbc RR = ;

(b) C is outside the binary boundary map when φ=∩ bcRC ;

(c) Otherwise, C is overlapping the binary boundary map.

 (a) (b) (c) (d)

Figure 4.6: The initial contour (circle) is (a) inside (b) outside and (c) overlapping

the target object.(d) the initial contour is automatically enlarged to enclose the

object so that “overlapping” can be handled as “outside.”

 (a) (b) (c)

Figure 4.7: (a) Initial contour C is inside bR , (b) contour C is outside bR , and (c)

contour C overlaps bR . FVF is able to evolve in each of these initialization cases.

 81

When overlap is detected, contour C will be automatically enlarged guided by

the boundary map to enclose bR . Therefore, “overlapping” is eventually handled

as “outside” after enlargement (Figure 4.6 (d)). During enlargement, neighboring

objects in the binary boundary map that do not contain bcR remain outside the

contour and only the one connected component (the target) in the binary boundary

map that contains bcR is included in cR . A connected component is a region of 8-

connected object pixels (ones) in the binary boundary map.

We use the discrete form of (4.1) to represent the contour C:

(){ }]1,...,1,0[,,)(−∈= Piyxic ii (4.21)

where P is the number of points on the contour.

The center point of the bounded region is located at:

∑ ∑=
−

=

−

=

1

0

1

0
)/,/(),(

P

i

P

i
iicc PyPxyx (4.22)

An external energy function is defined as:

⎩
⎨
⎧ =++

=
otherwise

yxMwhenff
yxE BByx

e 0

0),()sin,cos(
),(

φδφδχ
 (4.23)

where χ is a normalization operator, 1±=δ (controls the inward or outward

direction, when the contour is “outside” or “inside”),)),((),(yxIff yx ∇= χ ,

and:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<=

>=

≠
−

−

=

cyyandcxxwhen

cyyandcxxwhen

cxxwhen
cxx
cyy

yx

2

3

2

)arctan(

),(

π

πφ (4.24)

where]2,0[),(πφ ∈yx .

The external energy eE has a gradient component and a directional component.

The gradient force is computed in a manner similar to the traditional snake [1] and

GVF snake [2]. The characteristic of FVF lies in the computation of the

 82

directional force, which is based on a polar transformation. When the contour is

far away from the object, the directional force dominates and attracts the contour

towards the object. When the contour is close to the object, the gradient force fits

the contour to the object.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

Figure 4.8: An example of FVF contour evolution: (a) The target object and (b)

the initial contour and vector flow initialization, (c)-(k) a sequence of flexible

vector flow processes and (l) the convergence result.

The capture range of FVF extends to the whole image because the vector flow

energy defined in (4.23) spreads around the entire image I(x, y). Even if the initial

contour is far from the object, the snake can still evolve towards the object. In

other words, the border of an image can be used as the initial contour when the

initial contour is not given. This feature makes FVF more effective than either the

traditional snake [1] or the GVF snake [2]. Although the capture range of BVF [3]

can also extend to the entire image, the performance of FVF is more efficient

 83

because interpolation is avoided. Furthermore, the BVF interpolation is executed

in only four directions, whereas FVF is direction invariant (]2,0[πφ∈). Note that

the capture range of MAC is also the entire image. Figure 4.10 (p) – (t) illustrates

the capture ranges of GVF, BVF, MAC and FVF. Figure 4.10 (p) shows an object

without a given initial contour. The image border is then used as the initial

contour. GVF failed to extract the object since the initial contour (image border)

is out of its capture range. BVF, MAC and FVF can extract the object since their

capture ranges cover the entire image domain.

Note that if concavities exist, convergence will not be achieved at the vector

flow initialization step. Figure 4.8 (b) shows the vector flow initialization. The

circle is the initial contour and the blue (dark gray in B&W print) small arrows

represent vector flows. Figure 4.8 (c) shows that the evolution stops at the center

of the image where the composition of external forces is zero. The contour will

evolve to the red (middle grey in B&W print) line and is not able to extract the

concave region. To extract the complete contour, the flexible vector flow

computation step is performed.

4.3.3 Flexible Vector Flow Computation

In this step, a trace method is applied to the binary boundary to get a list of

control points:

]1,...,1,0[)),,((),(−∈= QqyxMyxB BBqq ξ (4.25)

where ξ is a boundary trace operator and Q is the number of the control points.

In our implementation, we use the trace function in MATLAB.

The Flexible Vector Flow energy function is defined by:

⎩
⎨
⎧ ∈=−−+∇

=
otherwise

ByxyxMifyyxx
yxfvfE qqBBqq

 0

) ,(& 0),()), ,(y)) I(x, ((
),(

δχχχ

 (4.26)

The pseudo code of Flexible Vector Flow computation and active contour

evolution is as follows:

0 Get a list of control points B with (4.25). B contains Q points.
1 ind=0;
2 While convergence is not achieved

 84

3 q=ind+δ;
4 if q>=Q
5 break;
6 x=B[q].x; y=B[q].y;
7 Generate new force field at (x, y) with (4.26);
8 Evolve the active contour in the new force field;
9 End while
10 Output the result of contour evolution.
In the pseudo code, ind (line 1) is the index of control point, q (line 3) is the

new index of the control point, and (x, y) (line 6) is the new location of the control

point.

Our intention is to use the control points to generate the external force fields.

First, a list of control points B is computed with (4.25). Then, in each iteration of

the above while loop, one control point is sequentially selected in the list B.

Imagine that the control point is a moving point, this process looks like the point

moving flexibly along the object boundary and generating vector flow (external

force field) dynamically. This is the reason why we name the method Flexible

Vector Flow.

Using all the control points to generate force fields can be time-consuming. In

addition to that, adjacent control points may generate external force fields with

little differences. Therefore, a parameter δ is used to manage the selection of the

control point. δ can be imagined as the velocity of the movement of the point. The

method selects 1 out of δ control points to achieve better time efficiency. For

instance, in Figure 4.8, we assign δ =20 to select one out of 20 control points.

When δ=1, all points extracted by the trace operator are used one by one.

Once the control point moves to its new location (i.e., a new control point is

selected), it generates new external force field to avoid the problem incurred by

saddle points and stationary points, and therefore is able to further evolve the

contour until convergence is achieved.

The energy fvfE has a gradient term and a directional term. The directional

force attracts the evolving contour towards the control points even for control

points in a concave region. When the contour is close to the object, the gradient

force fits the contour onto the object. Convergence is achieved when the contour

stops evolving.

 85

In Figure 4.8, the target object is given in (a), and (b) shows the initial contour

and vector flow initialization. From (c) to (k), the flexible vector flows are shown

as blue (dark grey in B&W print) arrows, and the evolving contour is illustrated in

red (middle gray in B&W print). The control point involved in each convergence

step is marked as a green (light gray in B&W print) dot. Note that the control

points selected by the boundary trace operator are located along the binary

boundary map.

In Figure 4.9, we show the results of applying our technique on a head MRI

image to extract the low intensity brain ventricle region.

 (a) (b) (c) (d)

Figure 4.9: Illustration of FVF process: (a) the target object (brain ventricle) with

initial contour (small circle in the ventricle) added, (b) the binary boundary map,

(c) the final contour of FVF in the image, and (d) a zoomed-in view of the binary

boundary map which restricts the final contour inside an envelop.

 As we can see from Figure 4.9, the control point can appear at any location on

the boundary of the binary boundary map. It requires that initial contour must be

inside the target object, or outside the target object, or overlapping the target

object without overlapping other parts of the binary boundary map. Otherwise, the

control point may appear at an undesirable location and drag the active contour to

that location. In the next chapter, the initialization issue will be addressed.

4.4 Experimental results

We tested and compared FVF against GVF, BVF and MAC for three data sets:

synthetic images, head MR images, and IBSR brain tumor MR images [13]. The

head MR images were provided by the Department of Pediatrics at the University

of British Columbia. The IBSR brain tumor MR images [13] were provided by the

Center for Morphometric Analysis at Massachusetts General Hospital, and are

 86

available at http://www.cma.mgh.harvard.edu/ibsr/. These T1-weighted images

contain multiple scans of a patient with a tumor taken at roughly 6 month

intervals over three and a half years. The images are in 256x256. The resolutions

on these images are 0.9375x0.9375 mm in-plane by 3.1 mm slice thickness.

Segmentation ground-truth images come with the dataset. The ground-truth

segmentations were obtained from the manual segmentations of human experts.

We also set up parameters for those snake models to compare them as fairly as

possible. For GVF, we keep the default settings unchanged. For BVF, we test the

input images with 9 different values (0.1, 0.2, …, 0.9) of the threshold T and

report the best result. For MAC snakes, in addition to these 9 threshold values, we

also tested it with 2 much smaller values (0.01 and 0.05) according to the

suggestion of the authors [4]. Moreover, since dual snake contours (Contour 0 and

Contour 1) are implemented in MAC, we report the contour that has better result.

For FVF snakes, we use the threshold value determined by BVF.

For each test image, initial contour was placed inside, outside and overlapping

the target to test the robustness and sensitivity of the methods to initializations.

4.4.1 Synthetic Images

We first tested and compared FVF with GVF, BVF and MAC snakes for a set

of synthetic images. Some results are shown in Figure 4.10.

The 1st row (Figure 4.10 (a)-(e)) shows an acute concave object with an initial

contour at the outside, and the result of GVF, BVF, MAC (Contour 1) and FVF.

We can see that both MAC and FVF can extract the boundary of the object.

However, GVF and BVF failed to do so. This is because both GVF and BVF are

incapable of extracting acute concave shapes.

The 2nd row (Figure 4.10. (f)-(j)) shows an object with a small initial contour

inside, and the results of GVF, BVF, MAC (Contour 0) and FVF. We can see that

the GVF snake does not evolve at all because of the static equilibrium force field.

BVF, MAC, and FVF can extract the boundary of this object.

The 3rd row (Figure 4.10. (k)-(o)) shows an object with an overlapping initial

contour, and the result of GVF, BVF, MAC (Contour 0 and Contour 1) and FVF.

 87

We can see that the GVF and BVF snakes did not extract the boundary of the

object but instead evolved to a point. Each one of the dual contours of MAC

snake superimposes on each other and outlines both the internal and external

boundaries of the object. The FVF snake extracts the boundary of the object.

The 4th row (Figure 4.10. (p)-(t)) shows an object without a given initial contour

(the image border is then used as the initial contour), and the results of GVF,

BVF, MAC (Contour 1) and FVF. GVF failed to extract the object since the initial

contour (image border) is out of its capture range. BVF, MAC and FVF can

extract the object since their capture ranges cover the entire image domain.

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)

 (k) (l) (m) (n) (o)

 (p) (q) (r) (s) (t)

Figure 4.10: (a) An acute concave object with an initial contour at the outside, and
the results of: (b) GVF, (c) BVF, (d) MAC (e) FVF; (f) an object with a small
initial contour at the inside, and the results of: (g) GVF, (h) BVF, (i) MAC (j)
FVF; (k) an object with an overlapping initial contour, and the results of (l) GVF,
(m) BVF, (n) MAC (o) FVF; (p) an object with the image border as the initial
contour, and the results of (q) GVF, (r) BVF, (s) MAC (t) FVF.

 88

4.4.2 Head MR images

We then tested and compared FVF with GVF, BVF and MAC snakes for a set

of head MR images. Some results are shown in Figure 4.11.

 (a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)

 (k) (l) (m) (n) (o)

Figure 4.11: (a) An image with an initial contour on the outside of the high

intensity region (intra-ventricular hemorrhage), and the results (zoomed-in) of: (b)

GVF, (c) BVF, (d) MAC (e) FVF; (f) an image with a small initial contour at the

inside of the brain ventricle, and the results (zoomed-in) of: (g) GVF, (h) BVF, (i)

MAC (j) FVF; (k) an image with an initial contour overlapping the eye, and the

results (zoomed-in) of (l) GVF, (m) BVF, (n) MAC (o) FVF.

The first row (Figure 4.11 (a)-(e)) shows an image with an initial contour

outside the high intensity region (intra-ventricular hemorrhage), and the result of

GVF, BVF, MAC (Contour 1) and FVF. We can see that only BVF and FVF can

extract the boundary of the object.

The second row (Figure 4.11. (f)-(j)) shows an image with a small initial

contour inside the brain ventricle, and the result of GVF, BVF, MAC (Contour 1)

and FVF. We can see that the GVF and BVF snakes evolved to lines on the right

side of the brain ventricle but failed to extract the boundary of the ventricle. MAC

 89

and FVF can both extract the boundary of the brain ventricle. However, the result

of FVF is smoother.

The third row (Figure 4.11. (k)-(o)) shows an image with an initial contour

overlapping the eye, and the result of GVF, BVF, MAC (Contour 1) and FVF. We

can see that the GVF and BVF snakes degenerated to points on the top right and

top left of the eye. MAC and FVF can both extract the eye and the results are

similar.

Two examples of visual evaluation comparing the manually defined contour

and the FVF generated contour are shown in Figure 4.12. Quantitative evaluations

of GVF, BVF, MAC and FVF are reported in the next section.

 (a) (b)

Figure 4.12: A visual inspection of the FVF generated contour: The images in (a)

and (b) show the FVF detected contour (blue) overlaid with the ground truth (red).

4.4.3 IBSR Brain Tumor MR images and Quantitative Analysis

Brain tumor images (in which brain tumors are visible) from IBSR [13] are

tested in our experiment. The Tanimoto Metric [11] is used for quantitative

analysis.

Tanimoto Metric is defined as:

 10 , ≤≤
∪

∩
= TM

RR
RR

TM
GX

GX , where XR is the region enclosed by the contour

generated by the test method, GR is the region enclosed by the ground-truth

 90

contour, and ⋅ is set cardinality (number of elements). 0=TM would indicate

two completely distinct contours; while 1=TM would indicate completely

identical contours. Table 4.1 shows the test results.

Table 4.1 has 5 columns. The 1st column is the image ID (1 to 10). The 2nd

column lists the name of the 4 methods. The 3rd to 5th columns are the Tanimoto

Metric when the initial contour is inside, outside and overlapping the target object.

The best method for each image is bold. FVF outperforms GVF, BVF and MAC

in general.

It is important to note that the four methods apply different computational

models to generate the force fields which are governed by the underlying image

properties. Force fields are unevenly distributed in an image. In other words, a

method may perform well in one region but may not do well in another region of

the same image. An example is illustrated in Figure 4.13, which shows the results

of GVF, BVF, MAC and FVF on test image #4 when the initial contour (not

shown) is inside (2nd and 3rd rows) and outside (4th and 5th rows) the brain tumor

respectively. Observe that when the initial contour (not shown) is inside the tumor,

the Tanimoto Metric (TM) value of MAC is the best among the four methods

(0.876, see Table 4.1). In addition to that, MAC is 6 times out of 10 better than

FVF (only 4 out of 10). However, when the initial contour (not shown) is outside

the tumor, the TM value of MAC is the worst (0.080, see Table 4.1). Also note

that a perfect TM value of 1.0 is difficult to achieve especially when the target

object is small. For example, the TM value is only 0.876 even though the method

generated contour and the ground-truth are similar (see (b) and (i) in Figure 4.13).

This is because the brain tumors are small, composed of only 50 to 200 pixels in

the MR images; a few pixels of deviation from the ground-truth can result in a

less than perfect TM value.

 91

Table 4.1: Quantitative analysis of GVF, BVF, MAC and FVF based on IBSR

brain tumor MR images.

Image Method TM (inside) TM (outside) TM (overlap)
GVF 0.173 0.340 0.201
BVF 0.004 0.350 0.430
MAC 0.013 0.061 0.013

#1

FVF 0.515 0.519 0.521
GVF 0.005 0.217 0.005
BVF 0.014 0.468 0.664
MAC 0.015 0.048 0.022

#2

FVF 0.582 0.589 0.598
GVF 0.004 0.117 0.004
BVF 0.004 0.572 0.007
MAC 0.722 0.074 0.719

#3

FVF 0.709 0.716 0.710
GVF 0.410 0.418 0.414
BVF 0.640 0.574 0.649
MAC 0.876 0.080 0.842

#4

FVF 0.667 0.656 0.661
GVF 0.005 0.092 0.009
BVF 0.585 0.478 0.576
MAC 0.005 0.075 0.041

#5

FVF 0.653 0.653 0.658
GVF 0.005 0.189 0.010
BVF 0.250 0.372 0.275
MAC 0.791 0.056 0.060

#6

FVF 0.561 0.563 0.571
GVF 0.294 0.375 0.317
BVF 0.540 0.520 0.531
MAC 0.764 0.066 0.036

#7

FVF 0.565 0.571 0.588
GVF 0.415 0.370 0.398
BVF 0.591 0.526 0.572
MAC 0.012 0.072 0.056

#8

FVF 0.608 0.607 0.599
GVF 0.000 0.300 0.000
BVF 0.361 0.000 0.631
MAC 0.787 0.079 0.781

#9

FVF 0.599 0.597 0.598
GVF 0.004 0.106 0.011
BVF 0.000 0.626 0.386
MAC 0.813 0.162 0.041

#10

FVF 0.617 0.616 0.589

 92

 (a) (b)

 (c) (d) (e) (f)

 (g) (h) (i) (j)

 (k) (l) (m) (n)

 (o) (p) (q) (r)
Figure 4.13: (a) Ground-truth and (b) the segmented region of ground-truth of

Image #4 in Table 4.1, and the results of (c) GVF, (d) BVF, (e) MAC, (f) FVF,

and the segmented regions of (g) GVF, (h) BVF, (i) MAC, (j) FVF, when the

initial contour (not shown) is inside the brain tumor; and the results of (k) GVF,

(l) BVF, (m) MAC, (n) FVF, and the segmented regions of (o) GVF, (p) BVF, (q)

MAC, (r) FVF, when the initial contour (not shown) is inside the brain tumor.

 93

Table 4.2 shows the mean, median and standard deviation of the TM of GVF,

BVF, MAC, and FVF. FVF has the largest mean and median with smallest

standard deviation. Randomized Block Factorial (RBF) model [14] is used to

statistically analyze the experiment. Table 4.2 is the ANOVA table for RBF

design. In Table 4.2, b represents the set of three test conditions (inside, outside

and overlap), a represents the set of methods (GVF, BVF, MAC, and FVF), s

represents the set of test images (#1-#10), a * b represents the combination of a

and b. The ab interaction is significant according to this analysis. Table 4.3 shows

the comparison between FVF and GVF, BVF, and MAC. Since all the P-values

are smaller than 0.01, FVF is statistically better than the other models in this

experiment.

Table 4.2: ANOVA Table for RBF Design. b = {inside, outside, overlap}, a =

{GVF, BVF, MAC, and FVF}, s = {test image #1, …, test image #10}, a * b

represents the combination of a and b.

Source Partial ss Df MS F Prob > F

Model 5.18591618 20 0.259295809 6.60 0.0000

s 0.91861415 9 0.102068239 2.60 0.0098

a 3.18540322 3 1.06180107 27.05 0.0000

b 0.022600796 2 0.011300398 0.29 0.7505

a*b 1.05929801 6 0.176549668 4.50 0.0005

Residual 3.88652906 99 0.039257869

Total 9.07244524 119 0.076239036

Number of obs = 120, R-squared = 0.5716, Root MSE = 0.198136, Adj R-squared = 0.4851

Table 4.3: Comparison between FVF and GVF, BVF, and MAC.

Comparison Estimate P-value

FVF-GVF 0.4349 <0.0001

FVF-BVF 0.2020 0.0072

FVF-MAC 0.3358 <0.0001

 94

4.4.5 Implementation

The MATLAB source codes of GVF and BVF are obtained from the authors of

[2] and [3]. The executable java code of MAC is provided by the authors of [4].

FVF is implemented in MATLAB. In our implementation, the default value of T

is 0.1. The program also provides the binary boundary maps generated by 8 other

values (0.2, 0.3, …, 0.9) of T so that the software user can choose the best value to

define the edges of the target object, if the default value does not work. FVF is

implemented in MATLAB and not optimized for speed. In general, it takes FVF

about 1 to 5 seconds to process a 256x256 image on a Pentium 4 (3GHz CPU,

2GB RAM) desktop computer.

4.4.6 Conclusions

 We proposed a new parametric Flexible Vector Flow (FVF) active contour

model to address the issues of limited capture range and the inability to extract

complex contours with acute concavities. Experiments on synthetic images and

head MR images show that FVF produces better results compared to GVF, BVF

and MAC. Quantitative experiments on brain tumor images show that FVF has

the largest mean (0.61) and median (0.60) with smallest standard deviation (0.05)

using Tanimoto Metric. Mixed effects model with random data and test effects is

used to statistically compare the differences between FVF and other three

methods. Since all the P-values are smaller than 0.01, FVF is statistically better

than the other models in this experiment. In the next chapter, FVF will be

extended to 3D for brain tumor segmentation.

 95

Bibliography

[1] M. Kass, A. Witkin, and D. Terzopoulus, “Snakes: Active contour model”, Intl. J. of

Computer Vision, vol. 1(4), pp. 321-331, 1988.

[2] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow”, IEEE Trans. on Image

Processing, pp. 359-369, 1998.

[3] K.W. Sum and P. Y. S. Cheung, “Boundary vector field for parametric active contours”,

Pattern Recognition, pp. 1635-1645, 2007.

[4] X. Xie and M. Mirmehdi, “MAC: Magnetostatic Active Contour Model”, IEEE Trans. PAMI,

vol. 30(4), pp. 632-645, 2008.

[5] O. Juan, R. Keriven, and G. Postelnicu, “Stochastic motion and the level set method in

computer vision: Stochastic active contours”, Intl. J. of Computer Vision, vol. 69(1), pp. 7–25,

2006.

[6] I. Dagher and K. E. Tom, Water, “Balloons: A hybrid watershed Balloon Snake

segmentation”, Image and Vision Computing, vol. 26 (7), pp. 905-912, 2008.

[7] S. W. Yoon, C. Lee, J. K. Kim and M. Lee, “Wavelet-based multi-resolution deformation for

medical endoscopic image segmentation”, J. of Med. Systems, vol. 32 (3), pp. 207-214, 2008.

[8] B. H. Lee, I. Choi and G. J. Jeon, “Motion-based boundary tracking of moving object using

parametric active contour model”, IEICE Trans. on Info. and Sys., E90-D (1), pp. 355-363,

2007.

[9] M. Li and C. Kambhamettu, “Automatic Contour Tracking in Ultrasound Images”, Clinical

Ling. and Phon., vol. 19 (6-7), pp. 545-554, 2005.

[10] L. He, Z. Peng, B. Everding, X. Wang, C. Y. Han, K. L. Weiss, and W. G. Wee, “A

comparative study of deformable contour methods on medical image segmentation”, Image

and Vision Computing, vol. 26, pp.141-163, 2008.

[11] S. Theodoridis and K. Koutroumbas, Pattern Recognition, USA: Academic Press, 1999, p.

366.

[12] B. Morse, W. Liu, T. Yoo, and K. Subramanian, “Active contours using a constraint-based

implicit representation”, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

2005, pp. 285–292.

[13] http://www.cma.mgh.harvard.edu/ibsr/

[14] R. E. Kirk, Experimental design: procedures for the behavioral sciences, Pacific Grove,

Calif.: Brooks/Cole, 1995.

[15] T. Wang, I. Cheng and A. Basu, “Fluid Vector Flow and Applications in Brain Tumor

Segmentation”, IEEE Transactions on Biomedical Engineering, Vol. 56(3), pages 781-789,

2009.

 96

Chapter 5 Fully Automatic Brain Tumor Segmentation

using a Normalized Gaussian Bayesian Classifier and 3D

Flexible Vector Flow

5.1 Introduction

 Brain tumor segmentation from Magnetic Resonance Imaging (MRI) is an

important task for neurosurgeons, oncologists and radiologists to measure tumor

responses to treatments [1-2]. It can indicate drug efficacy in clinical trials of new

drugs, and also be used for planning of radiation therapy. Manual segmentation

takes up much time and is prone to error. Therefore, automatic brain tumor

segmentation methods have been highly desirable in recent decades. However,

automatic brain tumor segmentation is a very challenging task due to many

factors. First, different types of brain tumors have large variations in sizes, shapes,

locations and intensities. Second, similarities between brain tumors and normal

tissues are often observed. Last but not least, most brain tumor databases are not

publicly available due to proprietary and privacy reasons. Thus, it is very difficult

to compare and improve brain tumor segmentation techniques based on a

benchmark database.

Many brain tumor segmentation methods have been proposed in the last

decade. They can be classified into two major categories: training based methods

and non-training based methods. Note that the distinctions between these two

categories are sometimes blurry. In the literature, methods in both areas can also

be classified using other criteria, such as region-based or voxel-based. Table 5.1

compares the related methods. In Table 5.1, NA means not available or not

applicable. The 1st column shows the method names: Hopfield Neural Network

(HNN), Knowledge Based (KB), K Nearest Neighbour (KNN), Adaptive,

Template Moderated (ATM), Expectation Maximization (EM), Support Vector

Machine (SVM), Fuzzy Connectness (FC), Spiral Scanning (SS), Segmentation

by Weighted Aggregation (SWA), Graph Cuts (GC), Fuzzy C-means

Segmentation (FCM), Fuzzy Algorithms for Learning Vector Quantization

 97

(FALVQ), and Active Contour Model (ACM). The 2nd column lists the two

categories (CA) of the methods: training based (TB) or non-training based (NB).

The 3rd column reveals the availability of the database (DB): private (PR) or

public (PU). The 4th column indicates automatic (AU) status of the method: fully

(F) automatic, semi (S) automatic or unknown (NA). The 5th column displays the

dimensionality (DI) of the method: 2D or 3D. The 6th column demonstrates the

modality of the MRI: T1 weighted (T1), T2 weighted (T2), T1 with contrast

enhancement (T1c), or Proton Density weighted (PD). The 7th column shows the

tumor types: glioblastoma multiforme (GBM), astrocytoma (AA), low grade

glioma (GA), meningioma (MA). The 8th column shows the number of training

cases (TR #). The 9th column compares the number of test cases (TE #). The 10th

column displays the executing time. Note that the methods were implemented

with various programming languages on a variety of platforms. The executing

times may not be compared directly. The 11th column lists the accuracy.

Table 5.1: Comparison of related methods.
Method CA DB AU DI Modality Tumor TR

TE

Time Accuracy

HNN[3] TB PR F 2D NA NA NA 2 NA NA

KB[4] TB PR F 3D T1,T2,PD GBM 3 7 NA .70

KNN[7] TB PR NA 2D T1,T1c,T2,PD GA 1 9 1-2m NA

ATM[8,9] TB PR F 3D NA MA,GA NA 20 10m .99

EM[10,11] TB PR F 3D T1,T1c,T2 GBM,MA 1 5 1h4m .49-.94

SVM[12] TB PR NA 2D NA NA NA 11 6.85s .86-.94

FC[13] TB PR S 3D T1,T1c,FLAIR GBM NA 10 16m .99

SS [14] TB PR F 2D T1 NA NA 16 21s .66-.99

SWA[15,16] TB PR F 3D T1,T1c,T2,FLAIR GBM 10 10 7m .27-.88

GC[17] TB PR F 3D T1,T1c,T2 AA NA 6 5m .78±.17

FCM[18] NB PR S 3D T1,T2 GBM 0 1 NA NA

FALVQ[19] NB PR NA 2D T1,T2 MA 0 1 NA NA

ACM[20] NB PR F 3D T1,T1c GBM 0 3 NA .85-.93

Proposed TB PU F 3D T1 MA,GA,AA 1 10 7m .22-.88

 Training based methods often use some brain tumor images and/or healthy

brain images to train a segmentation model and use other brain tumor images to

 98

test the model. Zhu et al. [3] formulated brain tumor segmentation as an

optimization process that seeks the boundary points to minimize an energy-

functional based on snakes. A modified Hopfield Neural Network (HNN) was

constructed and trained to solve this optimization problem. The neural network

can ensure convergence of the energy minimization by strictly reducing the

energy in each iteration. However, this method was applied in 2D and the image

modality and tumor type are not given in the paper. A Knowledge Based (KB)

clustering method [4] with multi-spectral analysis (T1, T2, and PD) was proposed

and trained to segment Glioblastoma Multiforme (GBM) [5]. The KB system took

advantage of its coarse-to-fine operation to apply incremental refinement with

easily identifiable brain tissues that had already been located and labelled. GBM

is an almost non-treatable brain tumor with nearly zero five-year recurrence-free

survival rate [6]. It is not clear whether this method can segment other types of

brain tumor or not. Vinitski et al. [7] proposed a brain tumor segmentation

algorithm based on a 4D (T1, T1 with contrast enhancement, T2, and PD) feature

map. The k-nearest neighbour (KNN) algorithm was then modified by discarding

a few image points according to some heuristic rules to speed up segmentation. It

also demonstrated that utilizing multiple MRI protocols often provide better

segmentation. However, the accuracy of this algorithm was not given in the paper.

Warfield et al. [8] presented an adaptive, template moderated (ATM), spatially

varying statistical classification (SVC) method for brain tumor segmentation.

Kaus et al. [9] extended this idea and proposed a classification algorithm to

segment brain MRIs into five different tissue classes (background, skin, brain,

ventricles, and tumor). The algorithm was validated in a dataset of 20 patients

with low-grade gliomas and meningiomas. Prastawa et al. [10, 11] proposed a

brain tumor segmentation framework based on an Expectation Maximization

(EM) algorithm and outlier detection. The EM algorithm was used to estimate a

Gaussian mixture model for the global intensity distribution, while tumors were

considered as outliers of the Gaussian model. This framework was validated in a

relatively small dataset containing only five patients and the algorithm took a very

long time (1 hour) to segment the brain tumor of one patient. Zhang et al. [12]

 99

proposed a brain tumor segmentation method based on an unsupervised one-class

support vector machine (SVM) algorithm, which had the ability of learning the

nonlinear brain tumor distribution without any prior knowledge. Morphological

filters such as dilation and erosion operations were applied as the post-processing

technique to merge tumor regions and remove isolated and small non-tumor parts.

This method was applied in 2D and the image modality and tumor type are not

given in the paper. Liu et al. [13] collected and learned information about

different aspects of the tumor and its neighbourhood areas from multiple MRI

protocols (FLAIR, T1, and T1 with contrast enhancement). A fuzzy logic

framework was then used for tumor segmentation. This method is semi-automatic

and operator interaction is required. Cobzas et al [56] proposed a variational brain

tumor segmentation algorithm using a high dimensional feature set trained from

MRI data and registered atlases. The paper focused on how to use a conditional

model to discriminate between normal tissues and brain tumors. Wang et al. [14]

transformed the 3D brain tumor MRIs into 2D with a “spiral scanning” technique.

Dynamic programming was used to delineate an optimal outline of the brain

tumor in the transformed 2D image. The optimal outline was transformed back

into 3D space to determine the volume of the tumor. This method was applied in

2D and it is not clear which types of tumor it can segment. Dube et al. [15]

integrated contextual filter responses into the multilevel segmentation by

weighted aggregation (SWA) algorithm to segment GBM. The SWA algorithm

used voxel intensities in a neighbourhood to compute an affinity between the

respective voxels. The affinity was recursively calculated for every voxel pair in

the brain MRIs to generate a series of “cuts” (segments) containing voxels with

similar intensities. A contextual filter response that was computed by texture filter

responses based on the gray level co-occurrence matrix (GLCM) method was then

integrated to label the cuts as tumor or non-tumor. Corso et al. [16] extended [15]

and integrated a Bayesian formulation into the SWA algorithm to segment GBM.

However, it is not clear whether this method can segment other types of brain

tumor or not. Wels et al. [17] presented a top-down segmentation algorithm based

on a Markov random field (MRF) and graph cuts (GC). Probabilistic boosting

 100

trees (PBT) were used for supervised learning of the model. However, the test

dataset (6 patients) was relatively small and contains only one type of brain

tumor.

 Non-training based methods, on the other hand, do not have any training or

learning process. Since the training or learning process can provide valuable

information for brain tumor segmentation, only a handful of non-training based

methods have been proposed in the literature. One of the first non-training based

methods of 3D brain tumor segmentation was presented by Phillips et al. [18] in

1995. A fuzzy C-means (FCM) clustering algorithm was used to segment brain

tumors from normal brain tissues. FCM is similar to the k-means algorithm for

unsupervised clustering but allows labels to be “fuzzy", which means a pixel can

be partly in one class and partly in others. Clustering is based on the concept of

separated distributions. One of the drawbacks of this method is that human

interaction is required to segment brain tumor. Karayiannis et al. [19] proposed a

fuzzy algorithm for learning vector quantization (FALVQ) to segment the

meningioma of an individual. Feature vectors were formed by the values of

different relaxation parameters. Brain tumor segmentation was formulated as an

unsupervised vector quantization process, which does not rely on a priori

information. This algorithm was applied in 2D and was tested in a dataset that

contains only one patient. Ho et al. [20] incorporated region competition into an

active contour model for brain tumor segmentation. The algorithm started with an

intensity-based fuzzy logic classification of voxels into tumor and background.

The active contour model was then used to segment a brain tumor until

convergence is achieved. The algorithm was validated in a relatively small dataset

that contains three patients and the time efficiency was not given in the paper.

 In clinical practice and research, good brain tumor segmentation methods are

highly desired. A useful brain tumor segmentation method should: 1) be fully

automatic 2) be able to perform in 3D 3) require only one MR modality because

multiple modalities may not always be available 4) be able to segment multiple

types of brain tumor 5) work in real-time (seconds) or near real-time (minutes).

As we have discussed in the previous two paragraphs (also see Table 5.1), the

 101

existing methods fail to meet one or more desired properties. Moreover, before

clinical practice, the method should be validated in a publicly available dataset

with reasonable size so that other methods could be meaningfully compared with

it to advance the state-of-the-art research.

 In this chapter, a brain tumor segmentation method is presented and validated

on a publicly available brain tumor segmentation repository [8, 9, 21] with ten

patients. This method: 1) is fully automatic 2) is able to perform in 3D 3) requires

only T1 MRIs 4) is able to segment three types of brain tumor 5) works near real-

time (about 7 minutes). In our method, brain MR images are pre-processed with

the software MIPAV [22, 23]. After this pre-processing procedure, there are three

stages. In the first stage, a “Normalized” Gaussian Mixture Model (NGMM) is

proposed and estimated by Expectation-Maximization (EM) based on the

ICBM452 brain atlas [24]. NGMM is then used to model healthy and normal

brain tissues. In the second stage, the ICBM Tissue Probabilistic Atlases [25] are

utilized to obtain the prior probabilities of different brain tissues. After that, a

Gaussian Bayesian Classifier based on the NGMM and the prior probabilities of

different brain tissues is exploited to acquire a Gaussian Bayesian Brain Map

(GBBM) from the test 3D brain MR images. GBBM is further processed to

highlight the brain tumor and initialize a Flexible Vector Flow (FVF) algorithm.

In the last stage, FVF is used to segment the brain tumor.

 There are two major contributions in this chapter. First, we introduce a new

NGMM algorithm to model healthy and normal brain. This model can be easily

modified for modeling other tasks in various application domains. Second, we

extend our 2D FVF algorithm [26] to 3D space and use it for automatic brain

tumor segmentation. One drawback of our previous 2D FVF algorithm was that

an initial contour was needed to start the vector flow evolution. In this chapter, we

take advantage of the GBBM to provide an initial position of a brain tumor to the

3D FVF algorithm to make this process fully automatic.

 The rest of this chapter is organized as follows. Section 5.2 introduces the

proposed brain tumor segmentation method. Experimental results are reported in

Section 5.3, before the work is concluded in Section 5.4.

 102

5.2 Proposed Method

5.2.1 Pre-processing

 MR images must be pre-processed before further processing and analysis. The

details of the pre-processing steps are described in Section 5.3 Experiments.

5.2.2 Normalized Gaussian Mixture Model and Gaussian Bayes Brain Map

 In this section a new Normalized Gaussian Mixture Model (NGMM) is

proposed. Gaussian Mixture Model (GMM) had been utilized to model the

distribution of brain tissues in the literature [10, 11]. The basic idea of GMM is to

use multiple Gaussian distributions to model multiple brain tissues such as gray

matter (GM), white matter (WM), and cerebrospinal fluid (CSF). To utilize

GMM, the Gaussian distributions of the brain atlas and the brain tumor dataset

must be aligned correctly. This means that the Gaussian distribution of the GM in

the brain atlas must be similar to the Gaussian distribution of the GM in the brain

tumor dataset, and the distributions of WM and CSF must match their peers too.

Unfortunately, this is not true in our dataset. For example, Fig. 5.1 shows the

histogram of the ICBM452 atlas and the histogram of the MRIs of Patient #1. The

intensity regions of CSF, GM, and WM are marked. The intensity range of the

atlas is [0, 712] while the intensity range of the MRIs of Patient #1 is [0, 567].

Note that the Gaussian distribution of the GM in the brain atlas does not match the

Gaussian distribution of the GM in the brain tumor dataset, and the distributions

of WM and CSF do not match their peers. Contrast stretching technique is usually

used to address the above situation. If the lower and the upper intensity limits are

a and b, while the corresponding values present in the current image are c and d

respectively, the intensity value of the current voxel Pin needs to be stretched

to outP which is defined as:

a
cd
abcPP inout +

−
−

−=))(((5.1)

 However, this approach does not work in our test dataset because of the “long

tail” problem that exists in all patients’ data. A “long tail” in the histogram of MR

images of Patient #1 can be clearly observed in Figure 5.1 (right). The “long tail”

 103

region contains a small number of voxels with high intensity values. These voxels

could represent image noise or brain abnormalities. Noise filters can reduce the

noise at the risk of eliminating potential brain abnormalities with high intensities,

and cannot remove the “long tail” entirely. Contrast stretching cannot align the

Gaussian distributions in case a “long tail” exists.

Figure 5.1: (Left) histogram of ICBM452 brain atlas. (Right) histogram of the MR

images of patient #1.

 To align the Gaussian distributions without eliminating potential brain

abnormalities, we define the normalized intensity value outP as:

m
P

P in
out = (5.2)

where m is the mean image intensity.

 With this definition, the mean image intensity is normalized to 1 and the

majority of image intensity is stretched to a range around the mean value. The

Gaussian distributions are also aligned so that GMM can be utilized.

 We present a Normalized Gaussian Mixture Model (NGMM) to model the

healthy or normal brain in the ICBM452 atlas. The basic idea of the NGMM is to

estimate a Gaussian Mixture Model based on the normalized image intensities.

The NGMM is defined as:

∑
=

=
K

k
ii kxpkpxp

1
)|()()((5.3)

where ix is a voxel in the image,)(kp is the prior probability, and)|(kxp i is

the conditional probability density, which is define as:

)
2

)(exp(
2

1),;()|(2

2

k

ki

k
kkii

xxNkxp
σ
μ

πσ
σμ −

−== (5.4)

 104

where kμ is the mean and kσ is the standard deviation of the Gaussian

),;(kkixN σμ for class k.

Expectation Maximization

 The Expectation Maximization (EM) algorithm [39, 40, 41] is often used to

estimate the parameters of a Gaussian Mixture Model. A Quasi-Newton Method

[42] had been proposed to accelerate the EM algorithm. The EM algorithm has

two stages: expectation and maximization.

Expectation

 With an initial guess for the parameters of the GMM, partial membership of

each image voxel in each distribution is estimated by computing expectation

values for the membership variables of each data voxel. For each data voxel xj and

distribution Yi, the membership value yi,j is:

)(
)(

,
jX

jYi
ji xf

xfa
y = (5.5)

Maximization

 Once the expectation values are computed for group membership, estimates are

re-calculated for the distribution parameters. The blending coefficients (ai’s)are

the means of the membership values over the N data voxels.

∑
=

=
N

j
jii y

N
a

1
,

1 (5.6)

 The mean values (iθ ’s) are also computed by expectation maximization using

image voxels xj that have been weighted using the membership values.

 105

∑
∑

=
j ji

j jji
i y

xy

,

,
θ (5.7)

 With new estimates for the blending coefficients (ai’s) and mean values (iθ ’s),

the process will be repeated again until the parameters of GMM converge.

K-means

 The initial guess for the parameters of the GMM is often given by K-means

algorithm [43, 44, 45]. Given a set of N data points),...,,(21 Nxxx , the K-means

algorithm divides the N observations into K sets (K < N) },...,,{ 21 KSSSS = to

minimize the within-set sum of squares.

∑ ∑
= ∈

−
K

i Sx
ij

S ij

x
1

2)(minarg θ (5.8)

where iθ is the mean value of set Si. In this chapter, K=3 because we aim to

model three types of brain tissues, i.e., CSF, GM, and WM. Note that there is not

a class for tumor because tumors have quite different intensities (some tumors are

black and some tumors are white) in the image. Using a class to represent tumor

will make this entire method become trivial and useless.

Prior probabilities

 The ICBM Tissue Probabilistic Atlases are utilized to obtain the prior

probabilities of different brain tissues. At a given voxel ix , the prior probability

),(ixkp is defined as:

∑
=

= K

k
i

i
i

xk

xk
xkp

1
),(

),(
),(

ξ

ξ
 (5.9)

where),(ixkξ is image intensity of different brain tissues in the three ICBM

Probabilistic Atlases (CSF, GM, or WM).

 106

Gaussian Bayesian Brain Map

 At a given 3D location (u, v, w) the conditional probability)|(ξkp can be

calculated by Bayes' Theorem:

∑
=

⋅

⋅
= K

k

kpkp

kpkpkp

1

)|()(

)|()()|(
ξ

ξξ (5.10)

The correlation coefficient]1,1[−∈CC at this voxel is then calculated:

),(),(
),(

ββαα
βα

CovCov
CovCC

⋅
=

where))|(),|(),|((ξξξα WMpGMpCSFp= ,))(),(),((WMpGMpCSFp=β ,

and Cov is covariance.

 The correlation coefficient CC can reveal the likelihood of finding a candidate

tumor voxel at a given 3D location. When CC is close to -1, it means the intensity

of this voxel disagrees with the NGMM and this voxel is probably abnormal or

likely to be a tumor voxel. When CC is close to 1, it means that the intensity of

this voxel agrees with the NGMM and this voxel is likely to be normal. The

correlation coefficient is then used to define the Gaussian Bayesian Brain Map

(GBBM):

⎩
⎨
⎧

−
>−

=
otherwiseCC

CCwhenCC
CM

uvw

uvwuvw
uvw 0.0

0.0 0.1
 (5.11)

uvwuvwonmuvw CMaaGBBM ⋅Ω== ×× e wher][(5.12)

CC is first mapped to CM in the region of [0, 1]. Then GBMM is calculated based

on CM and Ω . Ω is a scaling parameter that represents the intensity range of

GBMM. The resulting GBBM is a 3D matrix or image with dimension of

Noandnmonm ∈×× , , . GBBM can reveal the likelihood of finding a candidate

tumor in the entire image domain.

 107

5.2.3 Candidate Tumor Region

 GBMM is further processed to highlight a candidate tumor region. This region

will be used to automatically initialize the 3D Flexible Vector Flow algorithm,

which will finally segment the brain tumor. The post-processing stage has six

steps: removing boundary voxels, thresholding, morphological erosion, locating

the largest 3D region, morphological dilation, and reverse transformation.

 Brain tumor MR images are registered to a brain atlas in the pre-processing

stage using the non-rigid registration method in software MIPAV. The pre-

processing stage will be described in Section 5.3.3. However, the registered image

and the atlas are still different at a few voxels on the brain boundary. Therefore,

the boundary voxels in GBMM often have high intensity values. However, the

boundary voxels are not in the region of any brain tumor in our dataset. Therefore,

boundary voxels must be removed from GBMM. A boundary voxel is defined as a

voxel that has at least one neighbor with intensity 0 in a 333 ×× neighborhood.

 A threshold Ψ is then applied to GBMM to create a Binary Gaussian Bayesian

Brain Map (BGBBM):

⎩
⎨
⎧ Ψ>

=
otherwise

awhen
b uvw

uvw 0
 1

 (5.13)

onmuvwbBGBBM ××=][(5.14)

 Morphological filters, such as dilation and erosion, are often used as post-

processing techniques [12]. Erosion is applied to merge relatively large separated

regions. Then, the largest 3D region is automatically located. This region

represents the candidate tumor. Dilation is then used to restore the region to

approximately its original size and shape before the erosion. Figure 5.2 shows the

GBMM and the candidate tumor region after the dilation step for Patient #1.

 108

Figure 5.2: (Left) Gaussian Bayesian Brain Map of the brain. (Right) The

candidate tumor region after dilation.

 Finally, we apply 1−T to the dilated image to transform it back to the original

image space. T is the non-rigid registration matrix calculated in the pre-processing

stage. Figure 5.3 shows the original image, the segmentation ground-truth, and the

candidate tumor region after the reverse transformation. The ground-truth was

defined as the area of those brain tumor voxels in which at least three of four

expert evaluators agreed regarding their identification [9]. Although the difference

is still noticeable, the candidate tumor region is similar to the segmentation

ground-truth. This candidate tumor region will be used to initialize the 3D

Flexible Vector Flow algorithm, which will finally segment the brain tumor.

Figure 5.3: (Left) Original image (Middle) ground-truth (Right) candidate tumor

region after the reverse transformation.

 109

5.2.4 3D Flexible Vector Flow

 Flexible Vector Flow (FVF) [26] is an active contour model that addresses the

limitations of other active contour models, such as insufficient capture range and

poor convergence for concavities. It had been applied to semi-automatic brain

tumor segmentation in 2D space. One drawback of the previous 2D FVF

algorithm was that an initial contour was needed to start the vector flow evolution.

In this chapter, the FVF algorithm is extended to 3D space and the candidate

tumor region is used to initialize the 3D FVF algorithm to make this process fully

automatic.

 In our work, segmentation is expressed as the mathematical process of finding

the surface which can delineate the region of brain tumor given the candidate

tumor region in the 3D space of the MRIs. This is a non-linear optimization

problem, which is often addressed by using a variational approach. The basic idea

is to start with an initial candidate tumor model and deform this model to better

delineate the brain tumor until convergence is achieved. The deformable model is

usually called active contours or snakes [26, 46, 47]. Active contour models or

snakes have been adopted as effective tools for segmentation [20, 26] in the

literature.

 The traditional active contour model proposed by Kass et al. [46] is a 2D

parametric active contour:

]1,0[)),(),(()(∈= ssysxsc (5.15)

 Given an initial contour, it evolves within an image),(yxI to minimize the

energy function:

∫ +=
1

0

))](())(([dsscEscEE eisnake (5.16)

where iE is the internal (spline) energy and eE is the external energy.

The internal energy is given by:

2
|)(''|)(|)('|)(22 scsscsEi

βα +
= (5.17)

where α and β are first-order and second-order blending parameters.

 110

 Many snakes in the literature share the same internal energy and differ mostly

in the external energy. A snake should evolve to minimize the energy functional

snakeE . This problem can be formulated with the Euler-Lagrange equation.

0)('''')('' =∇+− eEscsc βα (5.18)

 To find a numeric solution of (16), the snake is treated as a function of time t as

well as s:

0),(''''),('' =∇+− eEtsctsc βα (5.19)

 A solution is obtained when the contour stabilizes and the time term vanishes

[46]. There are two problems with the traditional active contour model. The first

problem is its limited capture range, i.e., it is not able to deform far from its initial

contour. The second problem is its poor convergence for concavities. These two

problems were addressed in the previous chapter.

 While parametric active contour models mainly focus on the 2D domain, level

set snakes had been used for 3D segmentation and reconstruction [47]. A level set

[48, 49, 50] snake is an implicit model, which is not explicitly expressed as a

parametric model but is implicitly specified as a level set of a scalar function φ .

A 3D surface may be written as:

)),(),,(),,((),,(212121 sszssyssxzyxf = (5.20)

F = F(K) is the speed of the surface evolution

1)(2222 =++ zyx fffF (5.21)

where K is the mean curvature:

2/3222

222222

)(
222)()()(

xxx

yzyzzxxzyxxyxyzzzxyyzyxx

fff
ffffffffffffffffff

K
++

−−−+++++
=

 (5.22)

 The motion of the surface is formulated as a Partial Differential Equation

(PDE):

0||)(=∇−
∂
∂ φφ KF

t
 (5.23)

where),,,(tzyxφ is a scalar function such that at time t the zero level set of φ is

the surface.

 111

 Level set snakes have a few drawbacks. First, a significant amount of

computations is required to solve these equations over the entire domain.

Adalstein and Sethian [49] proposed a fast level set method for propagating

interfaces based on a narrow-band method, which used a finite band of 6–12 grid

voxels on either side of the level set to reduce the computations. Whitaker [47]

presented a sparse-field method, which took the narrow-band method to its

extreme by calculating updates on a band of grid voxels that is only one voxel

wide. The second drawback of level set is that the resulting snakes may segment

wrong objects when there are multiple similar objects near the expected object.

The third drawback is the absence of explicit and direct representation of the

surface during its evolution.

 3D Flexible Vector Flow (FVF) is used to segment brain tumors in this chapter.

It is an extension of our 2D FVF algorithm [26], which had been applied to semi-

automatic brain tumor segmentation in 2D space. 3D FVF takes the candidate

tumor region obtained in the previous section and automatically segments the

brain tumor. It uses a parametric representation of the initial surface and also

takes advantage of the level set method.

 We first address the second drawback of level set snakes − segmenting wrong

objects when there are multiple similar objects near the expected object. Figure

5.4 demonstrates this problem. There are four objects in the left figure. The upper

left one is the expected object and the rectangle is the initial contour specified by

the user. Level set snakes segment all four objects, which is not the desired result

because the real intent of the user is to segment only the upper left object.

Figure 5.4: (Left) initial rectangle contour and four objects (Right) four objects

are segmented by level set snakes.

 112

 To address this problem, we need to determine the spatial relationship between

the initial contour and the object. Note that we explain this concept in 2D only for

the purpose of illustration. The algorithm is implemented in 3D. Once we have

obtained the candidate tumor region, we can calculate its “center.” In this section,

the center is calculated by the Valence Normalized Spatial Median algorithm

presented in Chapter 3. Now we have the candidate tumor region and its center,

no matter the region is convex or concave. The initial active surface S is then

defined as:
22

0
2

0
2

0)()()(rzzyyxx =−+−+− (5.24)

where),,(000 zyx is the center of the candidate tumor region and radius r is a

constant. To make sure that the sphere is inside the candidate tumor region, we

require r to be smaller than the radius of the maximum inscribed sphere of the

candidate tumor region at point),,(000 zyx . Thus, Equation (23) becomes:

⎪⎩

⎪
⎨
⎧

∇=
∂
∂

=

||)(

),,,0(

φφ
φ

KF
t

Szyx
 (5.25)

 Chan and Vese [53] pointed out the evolution of level set should not always

rely on gradient (2D) or surface normal (3D). The basic idea of FVF is to add a

directional component to the external force and keep the normal component. At a

given point),,(111 zyxB = on the level set surface, there are two straight lines 1L

and 2L :

1

1

1

1

1

1
1 :

n
zz

m
yy

l
xx

L
−

=
−

=
− (5.26)

2

1

2

1

2

1
2 :

n
zz

m
yy

l
xx

L
−

=
−

=
− (5.27)

 Where 1L is the normal of the surface at point),,(111 zyx and 2L is the straight

line determined by vector
→

AB that start from center),,(000 zyxA = and points to

),,(111 zyxB = (Figure 5.5).

 113

 Next, we extend the external energy function in [26] to 3D:

),,(),,(zzyyxxe fffzyxE δγδγδγχ +++= (5.28)

where χ is a normalization operator, 1±=δ (controlling the inward or outward

direction, when the surface is “outside” or “inside” the candidate tumor region),

and γ is the angle between 1L and 2L , determined by:

2
2

2
2

2
2

2
1

2
1

2
1

212121cos
nmlnml

nnmmll

++++

++
=γ (5.29)

Figure 5.5: The red surface is the level set surface, the blue plane is the tangent

plane to that surface, the blue arrow is the surface normal, the black dot is the

center of the candidate tumor region, and the green arrow represents the

directional component of the external energy. (Image adapted from Wikipedia.)

 The external energy),,(zyxEe has two components: a normal component and

a directional component. The normal force is computed in a manner similar to the

traditional snake [46] and GVF snake [54]. The novelty of FVF lies in the

computation of the directional force. When the active surface is within the

candidate tumor region, the directional force can push the surface towards the

boundary of the tumor. When the surface is close to the boundary of the tumor,

the normal force fits the surface to the tumor.

 114

5.3 Experiments

5.3.1 Test Dataset

 We test the proposed method with the SPL Brain Tumors Image Dataset [8, 9,

21]. It is a freely available brain tumor segmentation repository. It contains brain

MR images (SPGR T1 POST GAD) of 10 patients with brain tumors (3

meningiomas, 3 low grade gliomas and 4 astrocytomas). Segmentation ground-

truth, which was defined as the area of those brain tumor voxels in which at least

three of four expert raters agreed regarding their identification [9], is also

available in this repository. The image format is no-header, unsigned short 16-bit

(byte order: MSB LSB). The resolution is 256x256x124, with pixel size of 0.9375

x 0.9375 mm, slice thickness of 1.5 mm, slice gap of 0.0 mm.

5.3.2 Brain Atlases

 Two groups of brain atlases, the Talairach–Tournoux (TT) brain atlas [27, 28]

and the ICBM atlases [24, 25] are often used to collect healthy or normal brain

information.

The print TT atlas was constructed from a single brain specimen sectioned and

photographed sagittally. Coronal and axial sections were subsequently

interpolated manually. The Cerefy database [29] contains an extended and

enhanced electronic version of the TT brain atlas. It can read or write DICOM 3

format. It is a free Java program including the atlas. However, the atlas itself is

not freely accessible.

In this chapter, we use two ICBM atlases, the ICBM452 atlas [24] and the

ICBM Tissue Probabilistic Atlases [25], which are freely accessible in the public

domain.

The ICBM452 atlas [24] is a freely available brain atlas. It is an average of

intensities and spatial positioning of T1-weighted MR images of normal adult

brains. This atlas is not based on any single subject but is constructed from the

average position, orientation and scale from a number of individual brains. The

ICBM452 atlas is used to estimate a Normalized Gaussian Mixture Model

(NGMM) by the Expectation-Maximization (EM) algorithm.

 115

The ICBM Tissue Probabilistic Atlases [25] classified the ICBM452 atlas into

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The GM,

WM, and CSF maps were separated into different components. Each component

was then averaged in atlas space across the subjects to create the probability fields

for each tissue type. These fields represent the likelihood of finding GM, WM, or

CSF at a specified position for a subject that has been registered to the atlas space.

The ICBM Tissue Probabilistic Atlases are used to obtain the prior probabilities

of GM, WM, and CSF.

5.3.3 Pre-processing

The Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)

[30] provide links to a variety of brain MR image processing software. We choose

to use MIPAV [22, 23] after careful investigation and comparison. MIPAV

(Medical Image Processing, Analysis, and Visualization) is a Java application

mainly for processing and analysis of brain MR images. It can run on Java-

enabled systems such as Windows, UNIX, or Macintosh OS X. We also identified

some other powerful tools, such as 3D Slicer [31], FSL [32], STAPLE [33],

BioImage Suite [34], ITK-SNAP [35], and software suites provided by Asclepios

[36] at INRIA, LONI [37]. They focus on different aspects of 3D neuro-imaging

and demonstrate excellence in different applications. We choose MIPAV because

it suits our application, the dataset, and computational resources.

In this chapter, the pre-processing stage has two steps: skull stripping and

registration. The registration is performed with the non-rigid registration method

in MIPAV. Our method is robust enough so that other pre-processing steps, such

as noise reduction and inter-scan intensity standardization described in [17],

become unnecessary.

SPL Brain Tumors Image Dataset [8, 9] contains the MR scans of patients’

heads and structures nearby. To get the Volume Of Interest (VOI), i.e., the brain,

we must strip the skull and other non-brain structures and tissues. We use MIPAV

to extract brain from MR images. Given the input MR images, MIPAV can

automatically extract brains without user intervention. Figure 5.6 shows the

 116

original MR image, the extracted brain, and the 3D volume rendering of the

extracted brain of Patient #1 in the dataset.

Figure 5.6: (Left) Original image (Middle) extracted brain (Right) 3D volume

rendering of the extracted brain.

The extracted brain is then registered [38] to the ICBM atlas space with

MIPAV. The basic idea of registration is to find a matrix T that transforms the

extracted brain image to the atlas so that the cost function, which represents the

quality of alignment between two images, is minimized. In this chapter, the

transformation matrix T is non-rigid because the brain is non-rigid. Figure 5.7

shows the ICBM452 atlas, the registered brain and the 3D volume rendering of

the registered brain of Patient #1.

Figure 5.7: (Left) ICBM452 atlas (Middle) registered brain (Right) 3D volume

rendering of the registered brain.

5.3.4 The Setting of Parameters

There are five parameters in our implementations: Ψ (in Equation 5.13), α (in

Equation 5.17), β (in Equation 5.17), the kernel of dilation and the kernel of

 117

erosion. Ψ is set to 127, α is set to 2.5, β is set to 0, the kernel of dilation is

3x3x3 - 6 connected, the kernel of erosion is 3x3x3 - 6 connected. The setting of

parameters follows the general practices of image segmentation with active

contour models [53-55].

5.3.5 Experimental Results

 The Tanimoto Metric (TM) [55] is used for quantitative analysis. It was defined
in the previous chapter. Similarly, the percentage of over-segmentation is defined

as
GX

GXX

RR
RRR

OS
∪

∩−
= , the percentage of under-segmentation is define as

GX

GXG

RR
RRR

US
∪

∩−
= , where XR is the region enclosed by the surface generated

by the proposed method, GR is the region of the ground-truth segmentation
provided in the SPL Brain Tumors Image Dataset, and |||| ⋅ is set cardinality
(number of elements). Table 5.2 shows the test results.

Table 5.2: Results of the proposed method
Case Tumor type GBMM time FVF time Total time TM OS US

1 meningioma 361 sec 51 sec 412 sec 0.88 0.10 0.02

2 meningioma 372 sec 51 sec 423 sec 0.83 0.07 0.10

3 meningioma 375 sec 52 sec 427 sec 0.57 0.23 0.20

4 low grade glioma 374 sec 50 sec 424 sec 0.66 0.21 0.13

5 astrocytoma 375 sec 51 sec 426 sec 0.22 0.78 0.01

6 low grade glioma 389 sec 52 sec 441 sec 0.53 0.43 0.03

7 astrocytoma 388 sec 51 sec 439 sec 0.67 0.01 0.33

8 astrocytoma 384 sec 53 sec 437 sec 0.57 0.30 0.13

9 astrocytoma 361 sec 56 sec 417 sec 0.30 0.64 0.06

10 low grade glioma 397 sec 52 sec 449 sec 0.70 0.18 0.12

 The proposed method was run on a Pentium 4 (3GHz CPU, 2GB RAM)

desktop computer with Windows XP (Version 2002, SP3) operating system. The

resolution is 256x256x124 for each test case. The algorithms were implemented

in MATLAB 7.5 (R2007b) and not optimized for speed. The current

implementation shows that this method is a near real-time (about seven minutes)

algorithm. This method can be implemented as a real-time (seconds) program

 118

with more efficient programming languages such as C or C++ (at least ten times

faster than MATLAB).

 In Table 5.2, the GBMM time represents the CPU time for calculating the

Gaussian Bayesian Brain Map (GBBM), the FVF time reveals the CPU time of

executing the proposed 3D Flexible Vector Flow (FVF) algorithm to segment

brain tumor. The total time is the sum of GBMM time and the FVF time, which

shows the total time used by the proposed method. The pre-processing stage

requires about 9 minutes, and the post-processing stage requires about 5 minutes.

Thus, the total overhead time is about 14 minutes for each test case. In the pre-

processing and post-processing stages, the default settings of MIPAV are applied

so that those two stages are fully automatic just as other parts of the proposed

method. Note that the Normalized Gaussian Mixture Model (NGMM) was trained

off-line. The training time was about 25 minutes. Once the training was finished,

the results were used repeatedly in each test case.

Figures 5.8-5.17 show the result of the patient #1-#10.

Utilizing multiple MRI protocols often provide easier and better segmentation

[7]. Other factors that can simplify segmentation and increase accuracy include

using 2D images, semi-automatic implementation, and testing fewer types of

tumor. Our technique implements a fully automatic 3D segmentation for three

types of brain tumors in T1 MRIs. As we have discussed in the introduction, a

number of existing algorithms do not work in 3D. Some algorithms work in 3D

but require multiple MRI protocols. Therefore, it is currently very difficult to

compare our method with the existing ones on the SPL dataset [8, 9] which has

only T1 MRIs. On the other hand, since other datasets that are used in the existing

methods are not available due to proprietary and privacy reasons, it is very

difficult to compare our method with the existing ones on those datasets.

Nevertheless, we notice that the accuracy (0.22-0.88) of our method matches a

recent work by Corso et al. [16], where the accuracy was in the range of 0.27-0.88

for segmentation of only one type of tumor glioblastoma multiforme (GBM).

 119

Figure 5.8: Result of Patient #1. 1st column: brain MR image, 2nd column: ground

truth, 3rd column: brain tumor extracted by the proposed method. 1st row: axial

view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume rendering.

 120

Figure 5.9: Result of Patient #2. 1st column: brain MR image, 2nd column: ground

truth, 3rd column: brain tumor extracted by the proposed method. 1st row: axial

view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume rendering.

 121

Figure 5.10: Result of Patient #3. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 122

Figure 5.11: Result of Patient #4. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 123

Figure 5.12: Result of Patient #5. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering. The tumor region is very small and the intensity is inhomogeneous so

that the segmentation accuracy (0.22) is very low.

 124

Figure 5.13: Result of Patient #6. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 125

Figure 5.14: Result of Patient #7. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 126

Figure 5.15: Result of Patient #8. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 127

Figure 5.16: Result of Patient #9. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering. The tumor region is spongy and largely inhomogeneous so that the

segmentation accuracy (0.30) is low.

 128

Figure 5.17: Result of Patient #10. 1st column: brain MR image, 2nd column:

ground truth, 3rd column: brain tumor extracted by the proposed method. 1st row:

axial view, 2nd row: sagittal view, 3rd row: coronal view, 4th row: volume

rendering.

 129

5.4 Conclusions

A new brain tumor segmentation method was presented and validated in this

paper. The method is able to segment brain tumors fully automatically by taking

advantages of the proposed Normalized Gaussian Mixture Model (NGMM) and

3D Flexible Vector Flow (FVF) algorithms. Our technique can be utilized to

generate segmented brain tumor images that display clinically important

neuroanatomic and neuropathologic information.

In some test cases (e.g., case #1 and #2), the accuracy of our method is

satisfactory. However, due to the complexity of automatic brain tumor

segmentation and other reasons (such as unavailability of T2 images), the

accuracy of our technique is not satisfactory in other test cases (e.g., case #5 and

#9). Therefore, without further improvement and validation, this method cannot

be directly applied to clinical cases because of the lack of precision.

This technique has five strengths: 1) fully automatic; 2) able to perform in 3D;

3) requires only one MR modality (T1); 4) able to segment multiple types of brain

tumor; 5) work in near real-time (minutes). This method can be implemented as a

real-time (seconds) program with more efficient programming languages such as

C or C++ (which are at least ten times faster than current implementation with

MATLAB).

The major limitation of this method is that the accuracy of segmentation of

astrocytoma is low. There are three reasons responsible for the low segmentation

accuracy. First, we use software MIPAV [22, 23] to register the atlas (average of

healthy brains) and brain tumor MR images. It is well known that registration of

MR images with and without tumor is generally very difficult. The registration

algorithm of MIPAV works well for meningioma and low grade glioma but not

for astrocytoma. Second, it is very challenging to segment brain tumors without

shape information and relative position to other structures. Last but not the least,

we do not distinguish brain tumor and surrounding edema. In future work, we

plan to investigate MR image registration algorithms, incorporate shape

information and relative position to other structures, and distinguish brain tumor

and surrounding edema, to improve the accuracy.

 130

Bibliography

[1] K. Brindle, “New approaches for imaging tumour responses to treatment”, Nature Reviews

Cancer vol 8(2), pp. 94-107, Feb. 2008.

[2] L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. R. Murtagh, “Automatic

segmentation of non-enhancing brain tumors in magnetic resonance images”, Artif. Intell.

Med., vol. 21, pp. 43–63, 2001.

[3] Y. Zhu and H. Yan, “Computerized tumor boundary detection using a hopfield neural

network”, IEEE Trans. Med. Imag., vol. 16(1), pp.55–67, Feb. 1997.

[4] M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, R. Murtagh, and M. S. Silbiger,

“Automatic tumor segmentation using knowledge-based techniques”, IEEE Trans. Med.

Imaging, vol. 17(2), pp. 187–201, Apr. 1998.

[5] J. G. Smirniotopoulos, “The new WHO classification of brain tumors”, Neuroimaging Clinics

North America, vol. 9, no. 4, pp. 595–613, Nov. 1999.

[6] M. R. Patel and V. Tse, “Diagnosis and staging of brain tumors”, Seminars Roentgenology,

vol. 39, no. 3, pp. 347–360, 2004.

[7] S. Vinitski, C. F. Gonzalez, R. Knobler, D. Andrews, T. Iwanaga, and M. Curtis, “Fast tissue

segmentation based on a 4D feature map in characterization of intracranial lesions”, J. Magn.

Reson. Imag., vol. 9, no. 6, pp. 768–776, 1999.

[8] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, Adaptive, “Template Moderated,

Spatially Varying Statistical Classification”, Med. Image Anal., Vol 4(1): 43-55, 2000.

[9] M. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz, and R. Kikinis. “Automated

Segmentation of MRI of Brain Tumors”, Radiology. 218(2):586-91, 2001.

[10] M. Prastawa, E. Bullitt, N. Bullitt, K. V. Leemput, and G. Gerig, “Automatic brain tumor

segmentation by subject specific modification of atlas priors”, Acad. Radiol., vol. 10, pp.

1341–1348, Dec. 2003.

[11] M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, “A brain tumor segmentation framework based

on outlier detection”, Med. Image Anal., vol. 8, no. 3, pp. 275–283, Sep. 2004.

[12] J. Zhang, K. Ma, M. H. Er, and V. Chong, “Tumor segmentation from magnetic resonance

imaging by learning via one-class support vector machine”, International Workshop on

Advanced Image Technology (IWAIT), 2004.

[13] J. Liu, J. K. Udupa, D. Odhner, D. Hackney, and G. Moonis, “A system for brain tumor

volume estimation via MR imaging and fuzzy connectedness”, Comput. Med. Imaging

Graphics, vol. 29, no. 1, pp. 21–34, 2005.

[14] J. Wang, Q. Li, T. Hirai, S. Katsuragawa, F. Li, and K. Doi, “An Accurate Segmentation

Method for Volumetry of Brain Tumor in 3D MRI”, Proc. of SPIE, Vol. 6914 69144D-1,

2008.

 131

[15] S. Dube, J. J. Corso, A. Yuille, T. F. Cloughesy, S. El-Saden, and U. Sinha, “Hierarchical

Segmentation of Malignant Gliomas via Integrated Contextual Filter Response”, SPIE

Medical Imaging Symposium, vol. 6914 (3), pp. 69143Y.1-69143Y.6, 2008.

[16] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille, “Efficient Multilevel

Brain Tumor Segmentation With Integrated Bayesian Model Classification”, IEEE

TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 5, MAY 2008.

[17] M. Wels, G. Carneiro, A. Aplas, M. Huber, J. Hornegger, and D. Comaniciu, “A

Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain

Tumor Segmentation in 3-D MRI”, MICCAI, Part I, LNCS 5241, pp. 67–75, 2008.

[18] W. E. Phillips, R. P. Velthuizen, S. Phupanich, L. O. Hall, L. P. Clarke, and M. L. Silbiger,

“Application of fuzzy c-means segmentation technique for tissue differentiation in MR images

of a hemorrhagic glioblastoma multiforme”, Magn. Reson. Imag., vol. 13, no. 2, pp. 277–290,

1995.

[19] N. B. Karayiannis and P. I. Pai, “Segmentation of magnetic resonance images using fuzzy

algorithms for learning vector quantization”, IEEE Trans. Med. Imaging, vol 18(2), pp. 172–

180, Feb. 1999.

[20] S. Ho, E. Bullitt, and G. Gerig, “Level set evolution with region competition: Automatic 3-D

segmentation of brain tumors”, in Proc. Int. Conf. Pattern Recognition, vol. I, pp. 532–535,

2002.

[21] http://www.spl.harvard.edu/publications/item/view/1180, retrieved in March 2009.

[22] P. L. Bazin, D. L. Pham, W. Gandler, and M. McAuliffe, “Free Software Tools for Atlas-

based Volumetric Neuroimage Analysis”, Progress in Biomedical Optics and Imaging -

Proceedings of SPIE 5747 (III), art. no. 212, pp. 1824-1833.

[23] http://mipav.cit.nih.gov/, retrieved in April 2009.

[24] http://www.loni.ucla.edu/ICBM/Downloads/Downloads_452T1.shtml, retrieved in March

2009.

[25] http://www.loni.ucla.edu/ICBM/Downloads/Downloads_ICBMprobabilistic.shtml, retrieved

in March 2009.

[26] T. Wang, I. Cheng and A. Basu, “Fluid Vector Flow and Applications in Brain Tumor

Segmentation”, IEEE Trans. on Biomedical Engineering, Vol. 56(3), pages 781-789, 2009.

[27] J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, Thieme,

1988.

[28] J. Lancaster, J. Summerlin, L. Rainey, C. Freitas, and P. Fox, “The talairach daemon, a

database server for talairach atlas labels”, Neuroimage 5(4), 1997.

[29] W. L. Nowinski and D. Belov, “The cerefy neuroradiology atlas: a talairach-tournoux atlas-

based tool for analysis of neuroimages available over the internet”, NeuroImage 20, pp. 50–

57, 2003.

 132

[30] http://www.nitrc.org/, retrieved in April 2009.

[31] http://www.slicer.org, retrieved in March 2009.

[32] http://www.fmrib.ox.ac.uk/fsl, retrieved in March 2009.

[33] http://crl.med.harvard.edu/software/STAPLE, retrieved in March 2009.

[34] http://bioimagesuite.org, retrieved in March 2009.

[35] www.itksnap.org, retrieved in March 2009.

[36] http://www-sop.inria.fr/asclepios, retrieved in March 2009.

[37] http://www.loni.ucla.edu, retrieved in March 2009.

[38] M. Chen, T. Kanade, D. Pomerleau, J. Schneider, “3-D Deformable Registration of Medical

Images Using a Statistical Atlas”, MICCAI, LNCS 1679, pp. 621-630, 1999.

[39] A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum Likelihood from Incomplete Data via

the EM Algorithm”, J. of the Royal Stat. Society. Series B (Methodological) 39 (1): 1–38,

1977.

[40] R. Neal, G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and

other variants”. Learning in Graphical Models (Cambridge, MA: MIT Press): 355–368. ISBN

0262600323, 1999.

[41] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning. New York:

Springer. pp. 236–243. ISBN 0-387-95284-5, 2001.

[42] M. Jamshidian, R. I. Jennrich, “Acceleration of the EM Algorithm by using Quasi-Newton

Methods”. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (2):

569–587, 1997.

[43] J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate

Observations”, in Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability. 1: 281–297, University of California Press, 1967.

[44] P. Brucker, “On the complexity of clustering problems”, Optimization and operations

research, pp. 45–54, Lecture Notes in Economics and Mathematical Systems 157, Berlin:

Springer, 1978.

[45] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, “Clustering large graphs via the

singular value decomposition”, Machine Learning 56 (1): 9–33, 2004.

[46] M. Kass, A. Witkin, and D. Terzopoulus, “Snakes: Active contour model”, Intl. J. of

Computer Vision, vol. 1(4), pp. 321-331, 1988.

[47] R. Whitaker. “A level-set approach to 3D reconstruction from range data”. Int. J. of Comp.

Vision, Vol. 29(3), pp. 203–231, 1998.

[48] S.Osher and J.Sethian, “Fronts propagating with curvature dependent speed: Algorithms

based on Hamilton-Jacobi formulations”. J. of Computational Physics, Vol 79(1), pp. 12–49,

1988.

 133

[49] D.Adalstein, and J.A.Sethian, “A fast level set method for propagating interfaces”. Journal of

Computational Physics, Vol 118(2), pp. 269–277, 1995.

[50] J.A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,

Computer Vision, and Material Sciences, Cambridge University Press, 1996.

[51] J. C. Masse and J. F Plante, “A Monte Carlo study of the accuracy and robustness of ten

bivariate location estimators”, Comput. Statistics & Data Analysis, vol. 42, pp. 1-26, 2003.

[52] T. Wang and I. Cheng, “Generation of Unit-width curve skeletons based on Valence Driven

Spatial Median (VDSM)”, Int. Sym. on Visual Comput., LNCS 5358, pp. 1061-1070, 2008.

[53] T. Chan and L. Vese. “Active contours without edges”. IEEE Transactions on Image

Processing, 10(2):266–277, February 2001.

[54] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow”, IEEE Trans. on Image

Processing, pp. 359-369, 1998.

[55] S. Theodoridis and K. Koutroumbas, Pattern Recognition, USA: Academic Press, p. 366,

1999.

[56] D. Cobzas, N. Birkbeck, M. Schmidt, M. Jagersand, and A. Murtha, “3D variational brain

tumor segmentation using a high dimensional feature set”, Mathematical Methods in

Biomedical Image Analysis (MMBIA 2007), in conjunction with ICCV.

 134

Chapter 6 Conclusion
 This thesis addresses two important and interesting research problems for

object representation and analysis: skeletonization and segmentation.

Skeletonization algorithm extracts the “centre-lines” of an object and uses them to

efficiently represent the object. It has many applications such as object matching

and retrieval. Segmentation algorithm locates the target object or Region Of

Interest (ROI) from images. It has many applications such as medical image

analysis.

These two research problems are not independent but related to each other. Our

3D skeletonization algorithm [5] takes a 3D binary image (equilateral 3D grid)

and generates unit-width curve skeletons. A 3D binary image can be converted

from a 3D mesh by voxelization. The key idea of the algorithm is volumetric

processing, which is also the key idea of the 3D segmentation algorithm [2].

Therefore, algorithms and methods developed for one problem may be utilized for

solving another. For instance, the Valence Normalized Spatial Median (VNSM)

algorithm [5] that initially proposed to generate unit-width curve skeleton was

used in the segmentation algorithm [1] to determine the centre of a region.

6.1 Skeletonization

 Skeletonization algorithms should have some desired properties such as

centeredness, connectivity preservation, robustness to noise, thinness, etc.

 The well-known Ma and Sonka’s 3D skeletonization algorithm [9], if not the

only, is one of the first fully parallel 3D thinning algorithms. It has higher

efficiency than most other skeletonization methods. However, we found it cannot

preserve connectivity. A solution [3] was given in first skeletonization study of

this thesis for connectivity preservation.

 However, neither the original algorithm [9] nor the modified version [3] can

guarantee to generate unit-width curve skeleton, which is highly desirable by

many applications such as the example of 3D matching and retrieval presented in

[4]. We modified the spatial median method by adding the valence constraint to

 135

obtain unit-width (thinness) curve skeleton with better visual centeredness than

the spatial median approach. Therefore, two important properties are addressed in

the second skeletonization study [5]: thinness and visual centeredness.

 For our application [4], i.e., 3D matching and retrieval, thinness is essential

because the chain code generation algorithm only works on unit-width lines

(curve skeletons). A new metric, Thinness Metric (TM) was proposed and used to

measure the improvement in thinness. TM is a normalized metric with values

between zero and one. If TM is zero, the skeleton is unit-width thin; otherwise, it

is not thin. If TM is one, all the points on the skeleton are crowded points. The

TM score of the proposed method is always zero, which indicates the curve

skeletons generated by our method are always thin.

Centeredness, on the other hand, has always been a controversial topic [10].

First of all, centeredness is only well-defined in symmetric models. Secondly,

centeredness is conflicting with robustness to noise and smoothness. Figures 6.1

and 6.2 illustrate these two concerns.

As shown in Figure 6.2, the curve skeleton is very sensitive to noise.

Centeredness constrains the curve skeletons to the medial lines, which are

extremely sensitive to boundary perturbations.

 In real world, given that few models are perfectly symmetric and noise always

exists, centeredness is not often required or desired.

However, skeletons are often defined as “center lines” or “medial axes”.

Therefore, visual centeredness, i.e., skeletons should not lie on the boundary of

the object, is often desirable. However, the centre point estimated by existing

centre estimators such as arithmetic mean or spatial median may lie outside or on

the boundary of a concave region. In the second skeletonization study, a so-called

Valence Normalized Spatial Median (VNSM) algorithm is proposed to locate the

centre point of a region. The key concept is to normalize the spatial median by the

valence of a point (vertex) so that the boundary points which have smaller

valences than interior points will not be chose as the centre of a region, no matter

the region is convex or concave.

 136

There are some other application specific properties, such as smoothness, for

skeletonization algorithm. Smoothness is sometimes required in the application of

virtual navigation, which uses the curve skeleton as a camera translation path.

This path should be as smooth as possible to avoid abrupt changes in the

displayed image. However, for our application, 3D matching and retrieval,

smoothness is not required or desired.

Figure 6.1: Centeredness of an isolated point in 2D. (a) a point perfectly centered

within a symmetric figure is at equal distance from the boundary of the figure in

all directions. b) a point cannot be perfectly centered within a non-symmetric

figure. (Images courtesy of Cornea [10].)

Figure 6.2: Centeredness vs. robustness and smoothness. A curve-skeleton (in red)

as a subset of the medial axis/surface is perfectly centered within the figure (a). A

smoother curve skeleton, which is not perfectly centered in the “elbow” region

(b). A perfectly centered skeleton cannot remain smooth in the presence of noise

(c). (Images courtesy of Cornea [10].)

The skeletonization research has gained significant momentum [3, 5, 9, 10] in

recent years. Many research works have emerged to apply skeletons in a number

of applications [4, 6-10]. However, in each specific application, the set of desired

 137

properties must be carefully defined to choose a proper skeletonization method.

Otherwise, the expected results may not be achieved.

Traditionally, skeletonization algorithms focus on extracting one skeleton

from one object. A new and innovative way to generate skeleton is to consider

“Groupwise” skeletonization [13]. However, a detailed discussion on that topic is

beyond the scope of this thesis.

6.2 Segmentation

 This thesis also presents two studies in segmentation that advanced the state-of-

the-art research. The first segmentation study [2] presents a new approach named

Flexible Vector Flow (FVF) to address a few problems of other active contour

models such as insufficient capture range and poor convergence for concavities.

This approach was applied to brain tumor segmentation in two dimensional (2D)

space. The second segmentation study [1] extends the 2D FVF algorithm to three-

dimension (3D) and utilizes it to automatically segment brain tumors in 3D.

Chan and Vese [11] pointed out the evolution of active contour (2D) or active

surface (3D) should not always rely on gradient (2D) or surface normal (3D). This

inspired us to explore new component to drive the evolution of active contours

and active surfaces, which leads to the new FVF algorithm. The basic idea of FVF

is to add a directional component to the external force while keep the gradient or

normal component. This idea is straightforward and the experiments show that it

is also efficient and reasonably accurate.

 The segmentation studies used human brains to explore new brain tumor

segmentation approaches. Another interesting and relevant research topic is

human brain segmentation. The purpose of human brain segmentation is to

segment human brains into a number of Regions Of Interests (ROIs). The ROIs

can be further processed for diagnosis support system or construction of brain

atlases. Gousias et al. [12] proposed an automatic brain segmentation method to

segment brain MRIs of 2-year-olds into 83 ROIs (shown in Figure 6.3). This work

may lead to the construction of brain atlases for infants and children. As we have

discussed in Chapter 5, brain atlases played an important role in our brain tumor

 138

segmentation method. However, only adult brain atlases are publicly available

currently. Once the infants and children brain atlases become available, our brain

tumor method [1] can be adopted and applied to detect brain abnormalities such as

Intra-Ventricular Hemorrhage (IVH), which is often found in pre-term babies.

As discussed in Chapter 3, unit-width curve skeletons have been utilized for 3D

segmentation. A possible future research is to perform human brain segmentation

by taking advantage of our skeletonization algorithm [3, 5]. Some unit-width

curve skeletons of human brains are shown in Figure 6.4.

Figure 6.3: Example of brain segmentation. Different ROIs are colour-coded [14].

 139

Figure 6.4: Skeletons of human brains.

Brain tumor segmentation has been investigated intensively in the last a few

decades. Unfortunately, no method has been clinically proved. Therefore, no

method can be directly applied to clinical cases. Further improvement and

validation must be performed for existed and emerging methods.

6.3 Publications

This thesis is mainly based on the following publications.

In Preparation

1. T. Wang, I. Cheng and A. Basu, Fully Automatic Brain Tumor Segmentation
using a Normalized Gaussian Bayesian Classifier and 3D Flexible Vector Flow,
submitted for publication.

Refereed Journal Papers

2. T. Wang, I. Cheng and A. Basu, Fluid Vector Flow and Applications in Brain
Tumor Segmentation, IEEE Transactions on Biomedical Engineering, Vol.
56(3), pages 781-789, 2009.

3. T. Wang and A. Basu, A note on “A fully parallel 3D thinning algorithm and
its applications”, Vol. 28(4), pages 501-506, Pattern Recognition Letters, 2007.

 140

Refereed Conference Papers

4. T. Wang, I. Cheng, V. Lopez, E. Bribiesca and A. Basu, Valence Normalized
Spatial Median for Skeletonization and Matching, Search in 3D and Video
workshop (S3DV), in conjunction with IEEE International Conference on
Computer Vision (ICCV) 2009.

5. T. Wang and I. Cheng, Generation of Unit-width curve skeletons based on
Valence Driven Spatial Median (VDSM), International Symposium on Visual
Computing (ISVC), LNCS 5358, pages 1061-1070, 2008.

6. T. Wang and A. Basu, Iterative Estimation of 3D Transformations for Object
Alignment, International Symposium on Visual Computing (ISVC), LNCS
4291, pages 212-221, 2006.

7. T. Wang and A. Basu, Automatic Estimation of 3D Transformations using
Skeletons for Object Alignment, IAPR/IEEE International Conference on
Pattern Recognition (ICPR), pages 51-54, 2006.

Refereed Poster Presentation

8. V. Lopez, I. Cheng, E. Bribiesca, T. Wang and A. Basu, Twist-and-Stretch: A
Shape Dissimilarity Measure based on 3D Chain Codes, ACM SIGGRAPH
Asia Research Poster, 2008.

 141

Bibliography

[1] T. Wang, I. Cheng and A. Basu, “Fully Automatic Brain Tumor Segmentation using a

Normalized Gaussian Bayesian Classifier and 3D Fluid Vector Flow”, submitted for

publication.

[2] T. Wang, I. Cheng and A. Basu, “Fluid Vector Flow and Applications in Brain Tumor

Segmentation”, IEEE Transactions on Biomedical Engineering, Vol. 56(3), pages 781-789,

2009.

[3] T. Wang and A. Basu, “A note on ‘A fully parallel 3D thinning algorithm and its

applications’ ”, Vol. 28(4), pages 501-506, Pattern Recognition Letters, 2007.

[4] T. Wang, I. Cheng, V. Lopez, E. Bribiesca and A. Basu, “Valence Normalized Spatial

Median for Skeletonization and Matching”, Search in 3D and Video workshop (S3DV), in

conjunction with IEEE International Conference on Computer Vision (ICCV), 2009.

[5] T. Wang and I. Cheng, “Generation of Unit-width curve skeletons based on Valence Driven

Spatial Median (VDSM)”, International Symposium on Visual Computing (ISVC), LNCS

5358, pages 1061-1070, 2008.

[6] T. Wang and A. Basu, “Iterative Estimation of 3D Transformations for Object Alignment”,

International Symposium on Visual Computing (ISVC), LNCS 4291, pages 212-221, 2006.

[7] T. Wang and A. Basu, “Automatic Estimation of 3D Transformations using Skeletons for

Object Alignment”, IAPR/IEEE International Conference on Pattern Recognition (ICPR),

pages 51-54, 2006.

[8] V. Lopez, I. Cheng, E. Bribiesca, T. Wang and A. Basu, “Twist-and-Stretch: A Shape

Dissimilarity Measure based on 3D Chain Codes”, ACM SIGGRAPH Asia Research Poster,

2008.

[9] C. M. Ma, M. Sonka, “A fully parallel 3D thinning algorithm and its applications”, Computer

Vision and Image Understanding, vol. 64 (3), pp. 420-433, 1996.

[10] N. D. Cornea. “Curve-Skeletons: Properties, Computation And Applications”, Ph.D. Thesis,

Rutgers University, 2007.

[11] T. Chan and L. Vese. “Active contours without edges”. IEEE Transactions on Image

Processing, vol. 10(2), pp. 266–277, 2001.

[12] I. S. Gousias, D. Rueckert, R. A. Heckemann,L. E. Dyet, J. P. Boardman, A. D. Edwards, and

A. Hammers, “Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of

interest”, NeuroImage, vol. 40 pp.672–684, 2008.

[13] A. Ward and G. Hamarneh. “GMAT: The Groupwise Medial Axis Transform for Fuzzy

Skeletonization and Intelligent Pruning”. IEEE TPAMI 2009.

