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Abstract

This thesis is concerned with identification of switched linear systems (SLSs),

which is an important part in model-based control. There are a large number

of physical systems that can be represented or approximated by SLSs. There-

fore, the study of SLSs has attracted much attention over the past decades. As

input/output data points of SLSs are sampled from a couple of linear modes

(or subsystems), conventional methods are not applicable. For this reason,

many research results on identification of SLSs have emerged in recent years.

For offline identification of SLSs, many of the existing methods are designed

with the assumption that the number of modes is known. This information

is, however, not always available in practice. In this thesis, a set membership

identification approach is employed to remove this restriction. In its imple-

mentation, a major challenge is how to find a maximum feasible subsystem in

an efficient way. To achieve this goal, a relaxed heuristic (RH) solution is pro-

posed. Moreover, for SLSs with multiple unknown noise levels, an extended

version of the RH solution is subsequently developed.

For online identification, a good mode detection or online data classifica-

tion procedure is critical to estimation performance. One simple and effective

way is to directly run a mode detection function before parameter estima-

tion. However, this creates a problem that there may involve a lot of mode

mismatches in the mode detection, which has negative impacts on estimation

results. In the thesis, two effective algorithms are developed to overcome this



problem from different perspectives.

In addition to the above aspects, identification of periodically switched

linear systems has also been considered in the thesis.
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Chapter 1

Introduction

1.1 Motivation

In control engineering, system identification is used to build mathematical

models for physical systems, which helps researchers to understand and con-

trol dynamic behavior of processes systems. The development of system iden-

tification began approximately at the middle of 1960’s. During the past fifty

years, the research on the identification of linear systems has evolved into a

relatively mature area. There are a number of well established approaches

in the literature. In comparison, the research on the identification of nonlin-

ear systems is still at the developing stage, since most nonlinear systems are

complex in nature and a variety of nonlinearities exist. It is nearly impossible

to design a general identification method that can be applied to all nonlinear

systems. Usually, the research of nonlinear system identification is focused on

specific categories of systems.

Switched Linear Systems (SLSs), as a special class of nonlinear systems,

typically consist of a group of linear modes (or subsystems) and a switch-

ing rule that decides the switching among them. SLSs widely exist in many

fields of engineering, such as air traffic systems [30, 54], automotive systems,

biological systems [21], robotic systems [16, 60], chemical processes [41] and

communication networks [29, 40].

The motivation of studying SLSs comes from both theoretical and practical

needs. Firstly, a lot of nonlinear systems can be approximated with multiple

linear models and designing multi-model based controllers is relatively easier.

In the literature, many applications exist, e.g., [49, 55, 62]. Fig. 1.1 (a) depicts

a pH process that is taken from [50]. A piecewise linear function can be

1
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Figure 1.1: The steady state maps of two nonlinear processes

used to describe the relation between the pH value and the concentration of

constituent U. Fig. 1.1 (b) shows another example, which is a nonlinear CSTR

process. It is seen that state x2 is almost locally linear with the input u. This

process will be later studied in Chapter 2.

h2

Created by Trial Version

Created by Trial Version

Created by Trial Version

(a) A two-tank process

Ts





LH+

LH-

(b) Spring torque vs. throttle position

Figure 1.2: The examples of systems with switching processes

Secondly, a lot of processes such as a gear shifting in a car, night or day

effects on temperature control systems, and random switches in network band-

width values are intrinsically composed of several working modes. For exam-

ple, Fig. 1.2 (a) shows two cascaded tanks. The aim of the system is to control
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the outflow of tank 2. If we suppose that valves 1 and 2 are both open, then

the liquid inflow of tank 2 will experience an abrupt change when the liquid

level of tank 1 is equal to h1 or h2. Thus, it belongs to a three-mode SLS.

Fig. 1.2 (b) shows return spring characteristics of a throttle valve system [63],

where the return spring is used for pulling throttle plate into a limp-home re-

gion, that is, [θLH-, θLH+]. When the throttle plate rotates from a fully closed

position to a fully open position, the spring torque (Ts) is a piecewise linear

function of its angle (θ). Identification of this system was discussed in [65].

Thirdly, from theoretical point of view, multi-controllers are often used to

improve the control performance, see, e.g., [38, 42, 43]. This is another reason

that makes a system to be a SLS.

Due to these reasons, there has been increasing interest in the study of

SLSs over the past a few decades. To apply model-based control methods,

building a faithful model is particularly important. The main difficulty lies

in the classification of the observed input/output (I/O) data into different

modes. For linear system identification, the I/O data are collected from one

dynamic system; however, for the identification of SLSs, the obtained data

are actually a mixture of data with respect to (w.r.t.) different modes. If the

switching time is known, then the data classification is straightforward—we

can identify each mode independently, using the identification approaches for

linear systems. However, in most cases, switching time is not available. In

such situations, the identification of SLSs becomes a nontrivial task.

1.2 Identification of SLSs

The aim of the PhD thesis is centered around the development of new identi-

fication approaches for SLSs. In this section, we present the problem details

about the identification of SLSs.

In our research, we focus on the parametric identification approaches,

which are based on structural models. The following shows a family of commonly-

used model structures in discrete-time transfer function formats:

• ARX (AutoRegresive with eXogenous inputs) model:

A(z)yk = B(z)uk + vk

A(z) , 1 + a1z
−1 + · · ·+ anaz

−na

B(z) , b1z
−1 + · · ·+ bnbz

−nb

3



where uk, yk and vk are the input, output and measurement noise at

time k, respectively; z−1 denotes the unit delay operator. The model

orders of A(z) and B(z) are na and nb, respectively.

• OE (Output Error) model:

yk =
B(z)

A(z)
uk + vk

• ARMAX (AutoRegressive-Moving-Average with eXogenous inputs)

model:

A(z)yk = B(z)uk + C(z)vk

C(z) , c1z
−1 + · · ·+ cncz

−nc

• BJ (Box-Jenkins) model:

yk =
B(z)

A(z)
uk +

C(z)

D(z)
vk

D(z) , 1 + d1z
−1 + · · ·+ dndz

−nd

The complexity of the model structures increases with the above order. As

the model structure does not change the difficulty of data classification, for

simplicity, we choose the ARX model for our research. (Actually, most existing

work in this area was also concerned with the ARX model.)

Now, let us discuss two popular kinds of ARX models that are usually

used to model the single-input and single-output (SISO) SLSs: the Switched

ARX (SARX) model and the Piecewise ARX (PWARX) model. They can be

described in the following forms:

• SARX model:

yk = φTk θ
σk
0 + vk, σk ∈ {1, 2, . . . , s},

φk , [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

θσk0 , [aσk1 · · · aσkna bσk1 · · · bσknb ]
T ∈ Rn.

where σk is the switching signal or mode number; s denotes the number

of modes; φk denotes the regression vector and θσk0 the parameter vector;

n = na + nb.

4



• PWARX model:

yk = φTk θ
σk
0 + vk, σk ∈ {1, 2, . . . , s},

σk = i, iff φk ∈ Ri, i = 1, . . . , s,

where {Ri}si=1 is a complete partition of the regressor domain R ⊆ Rn.

Ri is assumed to be a convex polyhedron.

The difference of the two models is on the switching rule. For the SARX

model, it allows arbitrary switching among modes and the switching may be

time- or event-triggered. For the PWARX model, we assume that the mode

switching is dependent on a polyhedral partition of the regressor domain. To

some extent, we may treat the PWARX model as a special class of the SARX

model. Fig. 1.3 shows the data planes of a three-mode PWARX model. In

−6
−4

−2
0

2
4
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−4
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4

−10
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0

5

10

uk−1

yk−1

y k

Figure 1.3: The data planes of a three-mode SLS

noise-free case, the input and output data pairs are exactly distributed on the

three planes.

Then, regarding to the SARX model, the identification problem can be

addressed as follows:

Given a collection of N input and output data pairs {(φk, yk)}Nk=1, how

to estimate the number of modes s, the model parameters {θi0}si=1, the

switching signal σk, and the model orders na and nb?

5



For the PWARX model, we need to additionally estimate a complete partition

of the regressor domain except the above tasks.

This identification problem is highly difficult to solve, because there are too

many uncertainties. For example, model orders may be known or unknown.

In this thesis, for the sake of simplicity, we assume that model orders are

given. In fact, when model orders are unavailable, we are still able to solve

the identification problem using methods developed in this thesis by setting

an upper bound for the model orders. In reference [67], there is a detailed

discussion.

Note that, even without the uncertainty on model orders, the complexity

of the identification problem is still high. They are closely related to two ingre-

dients: the number of modes and the switching signal. From the perspective

of minimizing prediction errors, here we discuss three different scenarios.

• When s is given and σk is known, the parameters of the SARX model

can be easily inferred from a series of optimization problems like below:

min
θi

∑
`(yk − φTk θi)

s.t. σk = i

where `(·) is a penalty function, e.g., ‖ · ‖2.

• When s is given and σk is unknown, the identification problem can be

posted as a mixed integer program:

min
θi,wik

N∑
k=n̄

s∑
i=1

`(yk − φTk θi)wik

s.t.
s∑
i=1

wik = 1 ∀k

wik ∈ {0, 1} ∀k, i
where n̄ = max{na, nb}+ 1. wik is a binary signal that is used to classify

data. Compared with the problem in the first scenario, the mixed integer

problem is more difficult to solve and it is computationally intractable

if N is large.

• When both s and σk are unknown, the identification problem is in a more

complicated form. We have to trade off the number of modes as well

as the sum of prediction errors. Without a constraint on s, an over-fit

problem may occur [13]. This thesis will mainly discuss this scenario.

6



In the next section, a brief review of the existing research work will be

given.

1.3 Literature review

With reference to the early work on the identification of SLSs, we have seen

that a large amount of research appeared in recent years, see, e.g., [6, 12, 13,

24–26, 36, 37, 48, 51, 52, 57, 66–68, 73]. The existing work can be broadly

divided into offline approaches and online approaches.

1.3.1 Offline identification

The tutorial paper [52] gives us an excellent survey of the offline approaches

published before the year 2007. The main approaches are the clustering-based

approach [26], the bounded-error approach [12, 13], the Bayesian approach [36]

and the algebraic approach [46, 68]. The technical details are briefly provided

as below.

The idea behind the clustering-based approach [26] is based on the fact

that the data in {(φk, yk)}Nk=1 are likely to belong to the same mode if they lie

close to each other. The implementation is composed of four steps. Firstly,

it creates a local data set Ck for each data (φk, yk). Then, a feature vector is

constructed based on Ck and (φk, yk). Next, cluster the feature vectors in s

clusters {Di}si=1 using a K-means like algorithm. With the obtained data set

Di, the parameters of each mode are subsequently computed. This approach

requires the knowledge on model orders, the number of modes and the size of

clusters.

The bounded-error approach [12, 13] is based on the assumption that |vk|
is upper bounded by v̄. With this assumption, the I/O data can be classified

by Partitioning the set of N inequalities |yk − φTk θ| < v̄, k = 1, . . . , N , into

a MINimum number of Feasible Subsystems/Subsets (MIN PFS). Since the

MIN FS problem is NP-hard and difficult to solve directly, in [13], the au-

thors solved it in iterative steps. Firstly, one obtains the MAXimum Feasible

Subsystem/Subset (MAX FS) by applying a thermal relaxation based greedy

algorithm. Then, remove this part of data from the whole data set and repeat

these steps until no data is left. This approach requires the knowledge on

model orders, v̄ and a few tuning parameters.

7



The Bayesian approach [36] was developed from the statistic perspective.

The idea is to treat {θ̂i0}si=1 as random variables and pose the data classifica-

tion as the problem of finding the classification with the highest probability.

The procedure is as follows: firstly, compute the most probable mode σk of

(yk, φk), using the available PDFs (probability density function) of the pa-

rameter vectors from step k − 1; then, attribute data to mode σk and update

a posteriori PDF of θ̂σk . The required knowledge includes the model orders,

number of modes, PDFs of initial parameter vectors.

In the algebraic approach [46, 68], the authors constructed a high-dimensional

lifted dynamical model to bypass the data classification problem. It was

inspired from the following observation:

s∏
i=1

(bTi zk) =
∑

hs1,...,sKz
s1
1 · · · zsKK = hTvs(zk) = 0 (when vk = 0),

where bi =
[
1 −(θi0)T

]T
, zk =

[
−yk φTk

]T
, hs1,...,sK is the coefficient of the

monomial zs11 · · · zsKK , K = na +nb + 1 and
∑K

i=1 si = s. h is a vector with the

dimension

(
s+K − 1

s

)
, which contains the parameters of the lifted dynamic

model. The approach is implemented in three steps: firstly, it creates the vec-

tors {vs(zk)}Nk=1 using the above equation; then, it computes the parameters

in h; finally, it reconstructs {bi}si=1 from h. The required knowledge is on the

number of modes and model orders.

A detailed comparison of the four approaches was conducted in [35], which

pointed out the advantages and disadvantages of them. In more recent years,

a number of new results have emerged.

In [34], a EM (Expectation-Maximization) algorithm-based approach was

developed from the work in [48]. It adopts the contaminated Gaussian dis-

tribution to construct the objective function of the maximization step. The

advantage is to provide a robust estimation that is less sensitive to outliers or

mis-classified data.

In [5, 51], the authors proposed a sparse optimization-based approach,

which is similar as the bounded-error approach. The difference lies in the way

to solve the MAX FS problem. The idea of this approach is obtained from

8



the observation on the following vector:

Φ(θ) ,

y1 −φT1
...

...
yN −φTN

[1
θ

]
∈ RN ,

which is a sparse vector when vk = 0. The zero entries of Φ(θ) correspond to

the data generated by mode i. Then, the MAX FS can be formulated as an

`0 minimization problem: min
θ
‖Φ(θ)‖0, where ‖ · ‖0 indicates the number of

non-zero entries of “·”.

Other research approaches about the offline identification are mostly like

an extension or combination of the above approaches. For example, [24] shows

a robust version of the algebraic approach and [39] gives a mixed approach in

the algebraic and the bounded-error frameworks. They are omitted here for

brevity.

1.3.2 Online identification

Online identification refers to the run of identification approaches in real time,

which is very important in adaptive control systems. Compared with the

offline identification, data classification in the online manner is more difficult,

as the I/O data are collected sequentially and some useful data manipulations,

e.g., swap of data order, iterative processing of data, are not applicable. As a

result, the approaches of online identification are relatively limited.

In the literature, only a few papers have been found. In [67], the authors

proposed a recursive algebraic approach and studied the exponential conver-

gence in difference situations. The approach is well suited for the cases when

the measurement noise is low and the physical system can be accurately rep-

resented as a SLS. In [6], a forgetting factor based recursive least squares algo-

rithm was employed, where data classification was performed with a distance

based mode decision function. This method is effective for the cases where

the initial parameters can be well generated with a priori system knowledge.

Other recent methods are optimization oriented. In [37], a gradient descent

algorithm was described, which aimed at minimizing the sum of squared resid-

uals. In [73], a kernel based weighted least squares estimator was proposed

from a nonlinear identification perspective.

Note that our research is focused on SISO systems. For the approaches on

MIMO systems, they are not reported here. The interested reader is referred
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to [7–10, 14, 15, 53, 66] for more information.

1.4 Outline of the thesis

The remaining of the thesis is organized as follows:

• In Chapter 2, we propose a relaxed heuristic (RH) solution to the set

membership identification problem of SLSs. By using the new solution,

identification procedures become highly efficient and easy-to-implement.

Moreover, to guard against data misclassification, we integrate a fast

least trimmed squares (LTS) estimator to improve the accuracy of esti-

mation. The performance of the proposed solution is evaluated based on

both randomly generated systems and a continuous stirred tank reactor.

• In Chapter 3, we study identification of SLSs when the measurement

noise has multiple unknown noise levels. In such situation, the noise

level of each mode or subsystem is difficult to be captured by the ex-

isting identification methods. Therefore, the performance of parameter

estimation may be degraded significantly. To offset this effect, we de-

velop a new set membership identification method by integrating the

RH solution with a forward search (FS) approach. Using the RH-FS

method, the model parameters can be more accurately estimated.

• In Chapter 4, we discuss the clustering-based online identification ap-

proach. In this kind of approaches, a real time mode detection procedure

is usually employed to estimate σk. During this process, mis-classified

data points are inevitably involved. To reduce the negative effects of

mis-classified data, we propose a recursive least squares algorithm with

a resetting strategy, which is developed from a compensation point of

view.

• In Chapter 5, we study the well-known Hough transform (HT) technique

and discusses its applicability in the online identification of SLSs. By

integrating the HT technique with an online clustering based estimator,

we make the proposed algorithm applicable for the cases with unknown

number of modes. Moreover, it can also be applied to the identification

of time-varying SLSs or some nonlinear systems.
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• Chapter 6 is concerned with parameter estimation of a special class of

SLSs, namely, periodically switched linear systems (PSLSs). General

identification methods that do not explore switching sequence patterns

may perform poorly in estimation accuracy and implementation effi-

ciency. In this chapter, we first analyze I/O data sequences and then

establish the connection between the periodicity and I/O data sequence.

This allows us to obtain an accurate estimation of the switching se-

quence period. We prove that the correctness of data classification is

almost surely guaranteed. In implementation, we propose two efficient

strategies, namely, the reverse order search and finite data selection, to

improve the computational efficiency. Moreover, we provide both offline

and online methods to estimate the period and the parameters.

• Chapter 7 gives a conclusion of the PhD work and presents a number of

important research issues for future study.
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Chapter 2

Set Membership Identification
of SLSs: An RH Solution

Starting from this chapter, we aim at developing new identification methods

for SLSs with the number of modes and switching signal being both unknown.

In this chapter, we propose a new solution, namely, the relaxed heuristic

(RH) solution, to the set membership identification of SLSs. The RH solution

has several advantages: (1) it does not require repeated manipulations of the

I/O data; (2) it admits a simple and fast implementation, which makes the

computational complexity significantly low; (3) it has a high level of robustness

with the help of a fast least trimmed squares (LTS) estimator. All these make

the proposed identification method efficient and effective.

The remaining of this chapter is organized as follows. Section 2.1 provides

an introduction of the set membership identification and its usage for SLSs.

Section 2.2 presents the formulation of the concerned problem. Section 2.3

describes the development of the RH solution. Section 2.4 analyzes the con-

vergence and consistency. Some post-processing procedures are provided in

Section 2.5 and the performance of the proposed solution is evaluated and

demonstrated in Section 2.6. A summary is given in Section 2.7.
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2.1 Introduction

Set membership identification is a well established approach, which has been

extensively studied in the work on linear systems identification. It was often

used to provide an uncertainty model set for robust control design and it is

particularly suitable for the cases when one needs to fit the measured noisy

data into an approximate model structure. However, for identification of SLSs,

the motivation of applying set membership identification is different. We use

it for the purpose of differentiating the data from different modes. The data

points in the same membership set are viewed as the data w.r.t. the same

mode, while the data points in different membership sets are believed from

different modes. The size of the membership set is dependent on the noise

level of each mode.

In Chapter 1, we have mentioned that the bounded error (BE) approach

in [13] belongs to the set membership identification framework and it requires

no a priori knowledge on the statistical property of noise except a noise bound.

Compared with other offline approaches, it is well suited for identification of

SLSs in the presence of noise. The key idea of the approach is to partition

the system into a MIN PFS [2] and reformulate it as a sequence of MAX FS

problems. To our best knowledge, there are two kinds of successful solutions

in the literature. One is an improved Agmon-Motzkin-Schoenberg relaxation

solution [12], where a thermal variant implementation was employed to solve

the MAX FS problem iteratively. Some refined procedures were later intro-

duced in [13]. The other is a sparse optimization solution based on sparse

signal recovery, see [5, 51], which was initially developed in the community of

compressive sensing. According to a comparison test of these two solutions in

[51], each solution has both advantages and disadvantages: the BE solution

is superior in the estimation efficiency; while the sparse optimization solution

outperforms the other in the estimation accuracy. Since both solutions rely

on a data clustering procedure, one common issue that we should notice is the

robustness of estimation. Regarding the robust identification of SLSs, there

are a few results available previously, see, e.g., [24, 34].

In the following sections, we develop an efficient and effective solution to

the set membership identification of SLSs.
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2.2 Problem description

We consider a discrete-time SLS described by the SARX model:

Aσk(z)yk = Bσk(z)uk + vk,

Aσk(z) = 1 + aσk1 z
−1 + · · ·+ aσknaz

−na ,

Bσk(z) = bσk1 z
−1 + bσk2 z

−2 + · · ·+ bσknbz
−nb ,

(2.1)

where uk, yk are respectively the sampled input and output at time k; vk

represents the measurement noise and/or modeling error. Its magnitude is

assumed to be bounded by v̄ ∈ R+; σk is the switching signal or mode number

that takes value from an index set {1, 2, . . . , s}.
With the defined regression vector and the parameter vector,

φk , [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

θσk0 , [aσk1 · · · aσkna bσk1 · · · bσknb ]
T ∈ Rn,

equation (2.1) can be rewritten in a compact form as below,

yk = φTk θ
σk
0 + vk. (2.2)

In the following context of this chapter, σk may simply refer to the mode

number without relation to time k. Thus, we will use σ instead of σk from

now on.

It is seen that the collected I/O data in the whole data setD , {(φk, yk)}Nk=1

are sampled from different modes. To classify these data, we denote Dσ as

the data set that contains all I/O data points of mode σ, i.e.,

Dσ , {(φk, yk) : yk − φTk θσ0 = vk}.

For a given data set Dσ, we can define a membership set Sσ of estimated

parameter vectors that satisfy the constraints on the magnitude of residuals:

Sσ ,
⋂

(φk, yk)∈Dσ
{θ ∈ Rn : |yk − φTk θ| ≤ v̄}. (2.3)

where
⋂

denotes the intersection of a collection of sets. We note that θσ0
belongs to the above membership set and it can be estimated by using any

appropriate estimator, e.g., `p−projection estimator with p = 1, 2 or ∞ [47].

14



However, the challenge here is how to obtain Sσ for each mode. In most

practical applications, for SLSs, Dσ is not available and the membership set

of D is typically empty, i.e.,⋂
(φk, yk)∈D

{θ ∈ Rn : |yk − φTk θ| ≤ v̄} = ∅.

Therefore, there does not exist a θ, satisfying

|y − Φθ| ≤ v̄,

where

y =


y1

y2
...
yN

 ∈ RN , Φ =


φT1
φT2
...
φTN

 ∈ RN×n, v̄ =


v̄
v̄
...
v̄

 ∈ RN .

In other words, the following linear system is infeasible,

Σ :

[
Φ
−Φ

]
︸ ︷︷ ︸

A

θ ≤
[

y + v̄
−y + v̄

]
︸ ︷︷ ︸

b

.

To find Sσ, we need an approximation of Dσ that gives a nonempty mem-

bership set. A solution is to partition the infeasible system, Σ : {Aθ ≤ b}
with A ∈ R2N×n and b ∈ R2N , into a minimum number of feasible subsys-

tems. This is termed as the MIN PFS problem in [2], where the authors also

suggested to partition the problem into a sequence of MAX FS problems that

deal with one mode at a time and are easier to handle. The MAX FS problem

can be stated as follows [19]:

Given an infeasible system, Σ : {Aθ ≤ b} with A ∈ R2N×n and b ∈ R2N ,

find the feasible subsystem with a maximum cardinality.

When a MAX FS problem is solved, the data set of the feasible subsystem

returns an estimation of Sσ. Then, we delete this part of data from the entire

data set and repeat this procedure to obtain the remaining membership sets.

This is a typical way to solve the MIN PFS problem. Fig. 2.1 shows a sketch

of this implementation, where the X̂ denotes an estimate of X.

However, the MAX FS problem has been proven to be NP-hard and an

exact solution is only possible for small size instances [20]. Therefore, in the

present work we shall pursue an approximation-based approach to solve the

MAX FS problem.
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D

D̂1(⇒ Ŝ1)

D \ D̂1 D \ (D̂1 ∪ D̂2)

bc

· · ·

D̂2(⇒ Ŝ2) · · ·MAX FS1 MAX FS2 · · ·

Figure 2.1: A typical way to solve a MIN PFS problem

2.3 The RH solution

Regarding the MAX FS problem, a variety of methods have been studied in

the mathematical research community. A detailed description and discussion

can be found in a recent book by Chinneck [20]. For this NP-hard problem, a

heuristic method proposed in [19] is particularly effective, although it seems

intractable for large size systems. Inspired by this method, we develop, in this

section, the RH solution to solve the MAX FS problem.

2.3.1 Heuristics

Recalling that our objective is to find a feasible subsystem, so we first convert

the infeasible system Σ into a feasible system Σ′ by inserting 2N nonnegative

elastic variables, si ≥ 0 (i = 1, 2, . . . , 2N), into Σ, shown as below:

Σ : {Aθ ≤ b} −→ Σ′ : {Aθ − s ≤ b}. (2.4)

where s =
[
s1 s2 · · · s2N

]T ∈ R2N . To achieve the “maximum” cardinality

of D̂σ, the sum of the elastic variables are desired to be as small as possible.

Therefore, this gives rise to the following constrained linear programming (LP)

problem:

min
θ, s

J =
2N∑
i=1

si

s.t. Aθ − s ≤ b,

s ≥ 0,

(2.5)

Notice that the inequalities in Σ′ are contained in Σ only when all elastic

variables are equal to zero. However, J is initially not zero and so we have to

delete a number of inequalities to decrease the value of J . An efficient way,

observed in [19], is to remove the inequality from Σ′ that yields the largest

drop in the objective function J , i.e.,

Heuristic 1 : A← [A], s← [s], b← [b],
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where [·] is an operator that deletes the row of “·” corresponding to the largest

value in s. After that, we resolve the above LP problem in (2.5) and apply

the removal step again. The iteration stops when J is equal to zero. Fig. 2.2

describes the basic procedure of the Heuristic 1.

Start

Solving the LP 

problem in (2.5)
J=0 ?

Yes

End

A, b

No

A←[A]

b←[b]

s←[s]

Figure 2.2: Solving the MAX FS problem using Heuristic 1

Remark 2.1. From Fig. 2.2, we observe that the structure of the implemen-

tation is very simple; only two steps are involved. Moreover, this heuristic

methods requires no other parameters to be tuned except the noise bound.

However, a drawback of this implementation lies in the deficiency on compu-

tational speed, which can be inspected from the dimension of the constraints

in (2.5).

To make it obvious, we substitute A and b. Then, the constraints can be

written as [ Φ
−Φ

]
−I2N×2N

02N×n −I2N×2N

[θ
s

]
≤

 y + v̄
−y + v̄
02N×1

 , (2.6)

where 0 and I are respectively the zero and identity matrices with compatible

dimensions. We see that the number of constraints is four times as large as

the number of I/O data. Hence, it would be very expensive to compute the

constrained LP problem at each iteration.

In fact, constraints in (2.6) also reflect that every data point introduces

two complementary inequalities, namely, |yk−φTk θ| ≤ v̄, w.r.t. the noise bound

and two additional inequalities w.r.t. elastic variables. If one data point is

deleted, we should delete not only the inequality associated with the largest

value in s, but also the complementary inequality and their elastic variables
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(say, sm and sn). Thus, we have

Heuristic 2 : if φTk θ − sm ≤ yk + v̄ & sm ≥ 0 are deleted,

then − φTk θ − sn ≤ −yk + v̄ & sn ≥ 0 should also be deleted.

Taking this into account, we are now able to reduce the problem size of (2.5).

Let’s start from an equivalent form of the concerned problem, that is

min
θ, s

J =
2N∑
i=1

si

s.t. si =

{
aiθ − bi, aiθ > bi;
0, aiθ ≤ bi;

(2.7)

where ai and bi are the ith row of A and b respectively. Compared with

the problem in (2.5), (2.7) has a different form, but it has the same optimal

solution.

Property 2.1. The problems in (2.5) and (2.7) have the same solution.

Proof. For a given θ in problem (2.5), the elastic variable si can be directly

determined by checking the inequality, aiθ−si ≤ bi, since si is independent on

other elastic variables in both J and constraints. More precisely, if aiθ ≤ bi,

si belongs to [0, bi − aiθ], for aiθ − si ≤ bi to be valid; if aiθ > bi, si belongs

to [aiθ − bi,+∞).

To achieve the minimum sum of si, si must be set to the representation

form in (2.7). Therefore, the LP problems in (2.5) and (2.7) are equivalent

and thereby have the same solution. �

Examining the elastic variables in (2.7), we can obtain the following prop-

erty.

Property 2.2. For a given θ and the pair of complementary inequalities in

Heuristic 2, the sum of the corresponding elastic variables sm and sn is 0 if

|yk − φTk θ| ≤ v̄, and is |yk − φTk θ| − v̄ otherwise.

Proof. Scenario 1: when |yk − φTk θ| ≤ v̄, we have φTk θ ≤ yk + v̄ and −φTk θ ≤
−yk + v̄. From (2.7), we see that sm, sn are both 0 and hence the sum of them

is 0.

Scenario 2: when |yk−φTk θ| > v̄, we may have yk−φTk θ > v̄ or yk−φTk θ <
−v̄. When yk − φTk θ > v̄, it implies that φTk θ < yk − v̄ < yk + v̄ and −φTk θ >
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−yk+v̄. Again, from (2.7), we obtain that sm = 0 and sn = |yk−φTk θ|−v̄, hence

the sum is |yk − φTk θ| − v̄. When yk − φTk θ < −v̄, it implies that φTk θ > yk + v̄

and −φTk θ < −yk − v̄ < −yk + v̄. Similarly, we get sm = |yk − φTk θ| − v̄ and

sn = 0, hence the sum is also |yk − φTk θ| − v̄. �

Based on Property 2.2, we may reduce the number of elastic variables by

using one elastic variable for each pair of complementary inequalities; see the

adapted problem form below:

min
θ, s

J =
N∑
i=1

si

s.t. si =

{
|yi − φTi θ| − v̄, |yi − φTi θ| > v̄;
0, |yi − φTi θ| ≤ v̄.

(2.8)

Here, since the complementary inequalities are connected, they can be erased

simultaneously.

Remark 2.2. In the above problem, the number of constraints is largely

reduced and related constraints can be removed at a time. Therefore, (2.8)

can be solved more efficiently than the other LP problems that we posed

before. However, if a large data set is in use, the performance on speed may

be still unsatisfactory.

2.3.2 Relaxation strategy

To further reduce the computational load, we consider a relaxation strategy

that converts the problem in (2.8) into an unconstrained quadratic program-

ming (QP) problem. It can be realized in two steps.

Firstly, we make the problem unconstrained. In (2.8), we separate the

differences of |yi−φTi θ|− v̄ into a positive part (|yi−φTi θ| > v̄) and a negative

part (|yi−φTi θ| ≤ v̄); we add up all the positive differences and make the sum

of them to be zero. This is a natural idea to retrieve a feasible subsystem.

In fact, it can also be implemented in another way without involving any

constraints: we consider the positive differences together with the negative

ones and focus on the maximum value of |yi− φTi θ|; once it is less than v̄, the

obtained system becomes a feasible system. In this implementation, all elastic

variables can be ignored; hence, no constraint is needed.

Secondly, we choose the least squares estimator, namely, `2-projection es-

timator, to compute parameters, because it provides analytic solutions.
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After the relaxation, we can change problem (2.8) into

min
θ

J =
N∑
i=1

(yi − φTi θ)2 = ‖y − Φθ‖2
2. (2.9)

The analytic solution is simply the least square fit, namely, (ΦTΦ)−1ΦTy.

The proposed RH solution is summarized in Algorithm 1. With a bit abuse

of notation, we denote by [·] an operator that deletes the row of “ · ” that

corresponds to ‖y − Φθ̂σ‖∞.

Algorithm 1 The RH solution

procedure RelaxedHeuristic(y, Φ)
θ̂σ ← (ΦTΦ)−1ΦTy
while ‖y − Φθ̂σ‖∞ > v̄ do

y← [y]
Φ← [Φ]
θ̂σ ← (ΦTΦ)−1ΦTy

end while
D̂σ ← {(Φ, y)}
return D̂σ, θ̂σ

end procedure

Example 2.1.

To compare the effectiveness of the above discussed heuristic solutions, the

following SARX model is considered.

Mode1 : A1(z) = 1 + 0.1z−1 + 0.3z−2, B1(z) = 4z−1 + 1.5z−2;

Mode2 : A2(z) = 1− 0.2z−1 + 0.5z−2, B2(z) = 2z−1 + 5z−2;

where Mode 1 and Mode 2 have 30 and 68 data points, respectively. The

signal to noise ratio (SNR) is about 20dB and v̄ is set to be 0.95. Table 2.1

shows the estimation results by the following heuristic solutions:

• H1: using Heuristic 1 only, based on problem (2.5);

• H1&2: using Heuristics 1 & 2, based on problem (2.8);

• RH: using the relaxed heuristic solution in Algorithm 1.

Table 2.1 indicates that the introduction of Heuristic 2 can both reduce the

computational time and improve the estimation accuracy. It reflects that the
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Table 2.1: Performance of estimation using different heuristic solutions

H1 H1&2 RH

NormErra(%) 2.46 0.33 0.33
Time (second) 4.9688 2.5156 ≈ 0

a NormErr , ‖θ̂σ − θσ0 ‖2/‖θσ0 ‖2 × 100%, where σ = 2.

elimination of complementary inequalities is of great importance. Moreover,

owing to the use of analytic solutions, we see that RH solution can further

improve the computational efficiency to a large extent while keeps the same

accuracy as H1&2.

2.3.3 Discussion: steepest descent in ‖y − Φθ̂σ‖∞
In Algorithm 1, the RH solution is iteratively implemented until the largest

magnitude of residual (LMR), i.e., ‖y − Φθ̂σ‖∞, reaches a noise bound. As

the number of iterations directly decides the size of MAX FS, we desire a fast

decrease in LMR to reduce the number of data being removed. Deleting the

data w.r.t. the LMR, as seen in Algorithm 1 (option I), is one option to do

this.

An alternative option is to delete the data that makes the steepest descent

in ‖y−Φθ̂σ‖∞ at each iteration (option II). Let (φi, yi) indicates the candidate

of data to be deleted; Φ(i), y(i) and θ̂σ(i) indicate the updated terms after

deleting (φi, yi). Then, the index of the data to be deleted can be decided by

isd = arg min
i
‖y(i) − Φ(i)θ̂

σ
(i)‖∞

= arg min
i
‖
[
I− Φ(i)(Φ

T
(i)Φ(i))

−1ΦT
(i)

]
y(i)‖∞ ,

where (ΦT
(i)Φ(i))

−1 = (ΦTΦ− φiφTi )−1 and can be computed using the matrix

inversion lemma in [32]. More precisely, we have

(ΦT
(i)Φ(i))

−1 = (ΦTΦ)−1 +
(ΦTΦ)−1φiφ

T
i (ΦTΦ)−1

1− φTi (ΦTΦ)−1φi
.

Using this way to delete data, we may keep Algorithm 1 unchanged, but need

to redefine [·] as the operator that deletes the ithsd row of “ · ”.

Remark 2.3. Compared with option I, the second option offers more LMR

reduction at each iteration and may give better estimation. However, with
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consideration of the computational complexity, it is not recommended when

the number of I/O data is large.

2.4 Convergence and consistency

In this section, the convergence and consistency of the proposed RH solution

will be analyzed based on option I. For the data set D̂σ, we define the mean

energy of all residuals as below:

Emean ,
1

|D̂σ|
∑

(φi, yi)∈D̂σ
(yi − φTi θ̂σ)2, (2.10)

where | · | indicates the cardinality of “ · ”. According to the above definition,

the optimization problem in (2.9) can be viewed as the minimization of mean

energy.

Property 2.3. During the iteration steps in the RH solution, Emean is mono-

tonically decreasing.

Proof. Let D̂σ(k), Emean(k) and θ̂σ(k) denote the estimated data set, mean

energy and least squares fit at iteration k, respectively. emax(k) is the largest

squared residual at iteration k, or the energy corresponding to the data being

deleted at iteration k. Firstly, we consider the sum of energy at iteration k+1.

From the knowledge of least squares, we have∑
(φi, yi)∈D̂σ(k+1)

[yi − φTi θ̂σ(k)]2 ≥
∑

(φi, yi)∈D̂σ(k+1)

[yi − φTi θ̂σ(k + 1)]2.

It implies that,

|D̂σ(k)|Emean(k)− emax(k) ≥ |D̂σ(k + 1)|Emean(k + 1).

Since |D̂σ(k + 1)| = |D̂σ(k)| − 1, the following inequality holds,

Emean(k)− Emean(k + 1) ≥ emax(k)− Emean(k + 1)

|D̂σ(k)|
.

Then, from the fact below,

emax(k) ≥ 1

|D̂σ(k + 1)|
∑

(φi, yi)∈D̂σ(k+1)

[yi − φTi θ̂σ(k)]2 ≥ Emean(k + 1),

we conclude that Emean(k + 1) ≤ Emean(k). �
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Remark 2.4. As the data points associated with the LMR are deleted it-

eratively, a smaller LMR usually comes up with a smaller mean energy. In

consequence, the RH solution stops in a finite iteration steps and thus the

convergence is established.

Next, one should check the consistency of parameter estimation, or whether

the obtained θ̂σ is close to θσ0 . Before that, let’s consider the geometric meaning

of the membership set, Sσ. From the definition in (2.3), we can see that it

is actually a convex polytope in the space, which is the intersection of all

hyperstrips, represented by

{θ ∈ Rn : |yk − φTk θ| ≤ v̄, (φk, yk) ∈ Dσ}.

Using the proposed RH solution, the estimated parameter vector is possibly

located in two kinds of polytopes. One is the polytope w.r.t. Sσ, in which

‖θ̂σ − θσ0‖2 is small. The other is the polytope intersected by the hyperstrips

with the data from different modes, which results in consistency failure.

To distinguish these two scenarios, we can examine the number of data in

D̂σ. For consistency failure, |D̂σ| is considerably less than the one in the first

scenario. The reason is: when v̄ is sufficiently small or the distance of modes,

namely, ‖θi0 − θj0‖2, is sufficiently large, the possibility of a hyperstrip that

passes through an existing polytope (not the one w.r.t. Sσ) is nearly zero. We

refer the reader to [70] for details.

In case of the consistency failure, we may temporarily remove D̂σ from the

D and repeat Algorithm 1. From our simulation study, we observe that it

rarely occurs.

2.5 Post-processing

2.5.1 Removal of mis-classified data

Using set membership identification may introduce some mis-classified data,

which can be equivalently viewed as outliers for a specific mode. To protect the

estimation from corruption of the “outliers”, we employ a robust estimator,

namely, the least trimmed squares (LTS) estimator, to refine the RH solution.

In what follows, we present a fast implementation, similar to [59].
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In general, LTS optimizes the following problem,

min
θ

Q =
1

h

h∑
i=1

(r2)i:|D̂σ | , (2.11)

where h is a positive integer and |D̂σ|/2 ≤ h < |D̂σ|; r is the residual belonging

to R = {r : r = yi − φTi θ, (φi, yi) ∈ D̂σ}; (r2)i:|D̂σ | is the ordered squared

residual, satisfying

(r2)1:|D̂σ | ≤ (r2)2:|D̂σ | ≤ · · · ≤ (r2)h:|D̂σ | ≤ · · · ≤ (r2)|D̂σ |:|D̂σ |. (2.12)

To efficiently solve this problem, one may start from a pre-determined

parameter vector, θ̂LTS
j with j = 0, and then do the following steps iteratively:

2-A1 Use θ̂LTS
j to obtain and sort the squared residuals as (2.12);

2-A2 Compute a least squares fit, θ̂LTS
j+1 , of the data w.r.t.

(r2)i:|D̂σ |, i = 1, 2, . . . , h.

As suggested in [59], the local optimum can be reached within a few iter-

ations of 2-A1 and 2-A2. However, in order to achieve the global optimum,

θ̂LTS
0 has to be close to the true parameter vector, which may not be true if

the data to produce θ̂LTS
0 are not associated with the same mode.

Taking this into account, we need to repeat the preceding procedures a

large number of times using different θ̂LTS
0 ’s and then decide the optimal so-

lution. For the initial data subsets to generate θ̂LTS
0 ’s, they are made up by

randomly picking a small amount of data and the data right after them. For

example, if the data at positions 1, 5, 12, 28 are selected, then the data at

positions 2, 6, 13, 29 are also included. Here, the position order is the same

as the sampling order. The reason of doing so is based on the fact that con-

secutively sampled data points are highly possible to be associated with the

same mode.

By adopting the LTS estimation, we can obtain a robust estimation, which

is denoted by θ̂LTS. Then, we apply the following step to remove the portion

of mis-classified data.

2-A3 Use θ̂LTS to remove any data point that has its residual magnitude

greater than v̄; set θ̂σ ← θ̂LTS,
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2.5.2 Recovery of mis-deleted data

During iterations in the RH solution, some data points associated with the

estimated MAX FS are likely to be mis-deleted. To achieve the “maximum”

of the feasible subsystem, we need to bring back this portion of data. The

following steps can be taken iteratively:

2-B1 From the remaining data set, namely, D \ ⋃ D̂σ, find any data point

(y′, φ′) that has its residual magnitude less than v̄;

2-B2 Put the data point(s) (y′, φ′) into D̂σ, then update θ̂σ.

Note that the post-processing procedures in this section should be imple-

mented in alphabetic order and follow after the RH solution and the consis-

tency checking.

2.6 Simulation results

This section gives two examples to show the effectiveness of the proposed

solution.

Example 2.2.

We now consider a second-order SLS with three modes:

Aσ(z) = 1 + aσ1z
−1 + aσ2z

−2, σ ∈ {1, 2, 3},
Bσ(z) = bσ1z

−1 + bσ2z
−2,

where Aσ(z) and Bσ(z) are randomly generated and Aσ(z) is a monic poly-

nomial with all zeros located inside the unit circle. uk and vk are zero-mean

white Gaussian noise signals with variance equal to 1 and υ2
0, respectively.

In the simulation, we collect 900 I/O data for each trial. Modes 1, 2 and

3 have respectively 200, 300, and 400 data. Switching signal is randomly

selected from {1, 2, 3} at time k; v̄ = 3υ0 and h = |D̂σ|/2. The simulation

is carried out on a computer with the following specifications: 2.00 GHz Intel

Core 2 Duo processor and 1.00 GB 778 MHz RAM.

Firstly, let us see a typical run of the RH solution in Algorithm 1, where υ2
0

is set to 2 (SNR≈20dB) and correspondingly v̄ is equal to 4.243. Fig. 2.3 (a)

shows the mode sequence of deleted data. It is seen that most data of modes

1 and 2 were removed from the data set. There are only a few data of mode
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Figure 2.3: A typical run of the RH solution

3 that were mis-deleted. While looking at the LMR of each iteration, in

Fig. 2.3 (b), we find that it decreases steadily and stops when the value is less

than v̄. Using the obtained data set, NormErr is computed, which is as low

as 1.98%.

To illustrate the overall performance of estimation accuracy and efficiency,

we then test the RH solution over 100 Monte Carlo simulations. That is, for

different trials, uk, vk, A
σ(z) and Bσ(z) are independently generated. For

each trial, the estimation accuracy is measured by “AveNormErr”, defined as

AveNormErr , 1
ŝ

∑ŝ
σ=1 ‖θ̂σ − θσ0‖2/‖θσ0‖2 × 100%.

Table 2.2: Estimation accuracy and efficiency of the RH solution

AveNormErr (%) Time (second)

υ2
0 = 0.02 (≈ 40dB) 0.18± 0.11 0.1552± 0.0182
υ2

0 = 0.2 (≈ 30dB) 0.73± 0.63 0.1448± 0.0193
υ2

0 = 2 (≈ 20dB) 2.70± 2.64 0.1230± 0.0203

The simulation results, including the mean and standard deviation of

AveNormErr and computation time, are given in Table 2.2. It is seen that

the RH solution performs very well in both accuracy and efficiency. Moreover,

the consistency failure was not observed in all these simulations.
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Figure 2.4: Histogram of ŝ for the 100 Monte Carlo simulations

Finally, we check the number of estimated modes, ŝ. Fig. 2.4 shows the

histogram of ŝ for the 100 Monte Carlo simulations. In most cases, it matches

exactly with its true value and only two trials get failed. It is because that the

noise level in these cases (where υ2
0=2) are large enough to make two modes

indistinguishable. In such situations, there exists a nonempty membership

set to cover all the data from both modes; therefore these two modes can be

combined. However, to some extent, it simplifies the modeling complexity.

Example 2.3.

We consider the identification of a non-isothermal continuous stirred tank

reactor (CSTR), which has an exothermic and irreversible reaction: A → B.

Fig. 2.5 (a) depicts a schematic of the CSTR. In this process, reactant A is

continuously fed into the reactor at concentration CAf ; the reaction takes place

inside the vessel at temperature T ; the product B and residual A are contin-

uously taken away from the reactor, where the concentration of A reduces to

CA. To remove excess heat from the reaction, cooling water with temperature

Tc is flowing through the jacket at the same time. The dynamic model of

the system, given in [64], can also be expressed in the following dimensionless

form: {
ẋ1 = −x1 +Da(1− x1)e

x2
1+x2/γ ,

ẋ2 = −x2 +BDa(1− x1)e
x2

1+x2/γ + β(u− x2),
(2.13)

where x1 =
CAf−CA
CAf

, x2 =
20(T−Tf )

Tf
, Da = 0.072, γ = 20, B = 8 and β = 0.3.
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Figure 2.5: (a) a schematic of the CSTR (b) the steady state map

As known in [64], this nonlinear system exhibits the output multiplicity,

which is illustrated in the steady state map, see Fig. 2.5 (b). Visually, the

system can be roughly approximated by a SARX model with three linear

modes (Modes 1-3). Since Mode 2 is unstable and further requires a close-

loop approach for identification, we ignore this mode for simplicity and here

we only consider the identification of Modes 1 and 3.

To identify the discrete time SARX model, we sample the input and output

data from the system in (2.13) with sampling time equal to 20 seconds. The

input u is a random signal that is uniformly sampled from [−1, 1]; the output

y takes value of x2 and is stacked in y. Measurement “noise” is not added,

but model mismatch (using linear model to approximate nonlinear system)

gives rise to modeling errors, which can be viewed as additional noises. This

system is simulated for 900 I/O data points; the first 600 data are used to

estimate parameters and the rest are for model validation. When doing the

validation test, the following measure is often applied to get the output fit,

see, e.g., [5, 13],

FIT , (1− ‖ŷ − y601:900‖2/‖y601:900 −mean(y601:900)‖2)× 100%,

where ŷ and y601:900 indicate the predicted and true outputs, respectively;

mean(·) is the mean value vector of “ · ”. Here, the mode number of the data

for validation are estimated by: σk = arg min
σ∈{1,2,...,ŝ}

‖y(k) − Φ(k)θ̂
σ‖∞.

In the simulation, as v̄ is unknown, we run the RH solution with different

values. Fig. 2.6 shows the output fit and the number of estimated modes
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Figure 2.6: FIT and ŝ for different v̄’s
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w.r.t. different v̄’s. We see the output fit is quite poor when v̄ > 2.3 or when

ŝ is one; but there is a significant increase in FIT as ŝ grows up from 1 to 2.

This is because the nonlinear system has two stable equilibrium points as we

mentioned. If we further reduce v̄, both FIT and ŝ will go up. To make a

trade-off between the model accuracy and model complexity, we may select v̄

at the place where the curvature of the curve in Fig. 2.6 (b) is relatively large.
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This noise bound estimation approach was suggested in [13]. In this example,

v̄ can be chosen to be 0.5, where ŝ = 4 and FIT = 91.7%. Fig. 2.7 shows the

results of model validation. As we expected, the output fit is good and the

residuals for the validation data are mostly located in the range of [-v̄, v̄].

2.7 Summary

In this Chapter, we developed an efficient and effective solution to the set

membership identification of SLSs by using heuristics and relaxation tech-

niques. The heuristics can help in solving the MAX FS problem with simply

two-step iterations, which require few parameters to be tuned. In addition to

being simple, we explored the problem structure and applied the relaxation

strategy to reduce the computation complexity of the solution. As for mis-

classified data, they are treated as outliers and removed by applying the LTS

estimator with a fast implementation.

We close by mentioning that the state of the art in set membership

identification still stays in the pursuit of the optimal estimation for a spe-

cific mode. How to guarantee global optimality in consideration of all data

and modes will be an interesting topic to be studied.
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Chapter 3

Identification of SLSs with
Multiple Unknown Noise
Levels∗

In Chapter 2, we have studied the set membership identification of SLSs and

proposed the RH solution to the MAX FS problem. It was assumed that all

linear modes have a common noise level. With this assumption, the noise

bound can be readily estimated.

In this chapter, we try to remove this assumption and develop an identifi-

cation method for SLSs with multiple unknown noise levels. The new method

consists of the RH solution and a forward search (FS) method. The RH

solution is mainly used for providing an approximate noise bound and an

approximate data set for the MAX FS. It exhibits some appealing features

and allows us to explore data characteristics more efficiently. The FS method

plays the role of robust estimation as well as the selection of a proper noise

bound. With the proposed RH-FS method, we can achieve a better estimation

performance than the method in [13].

The remaining of this chapter is organized as follows: Section 3.1 provides

the motivation of the study. Section 3.2 describes the problem to be solved.

Section 3.3 revisits the RH solution and show the importance of a noise bound.

Section 3.4 presents the proposed RH-FS method for robust estimation and

gives the detailed implementation. The effectiveness of the proposed method

is demonstrated in Section 3.5 and a summary is given in Section 3.6.

∗A version of Chapter 3 has been submitted for publication in [71].
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3.1 Motivation

As shown in Chapter 2, the set membership identification performs quite well

for the identification of SLSs with noisy data. The proposed RH solution is a

very good option to solve the MAX FS problem, although some practical issues

may exist. One major issue that we can think of is on the noise bound, which

was assumed to be given in Chapter 2. If the noise bound is not available, the

RH solution stops working immediately. Therefore, it is of great importance to

study the RH solution when the noise bound is unknown. In Example 2.3, we

have provided an approach to estimate the noise bound, but it works well only

when all modes of SLSs have the same noise level. In many real applications,

different modes of SLSs may have different noise levels. A simple example

is the modeling mismatch, where the true model of a mode is different from

the user-defined model. Modeling errors will, therefore, be added up to the

measurement errors, giving rise to different noise levels for different modes.

How to estimate noise bounds in such systems was seldom investigated in the

literature, despite its importance. This chapter is dedicated to solving this

problem.

3.2 Problem description

Let us consider a compact form of the discrete-time SARX model:

yk = φTk θ
σ
0 + vσk , σ ∈ {1, 2, . . . , s},

φk , [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

θσ0 , [aσ1 · · · aσna bσ1 · · · bσnb ]
T ∈ Rn,

(3.1)

where φk and θσ0 represent the regression vector and the parameter vector,

respectively; σ is the mode number (or switching signal) and it changes with

time k; vσk is assumed to be white Gaussian noise. For mode σ, the magnitude

of vσk is bounded by v̄σ ∈ R+.

Same as in Chapter 2, we denote the whole data set by D , {(φk, yk)}Nk=1

and Dσ the data set for mode σ, i.e.,

Dσ , {(φk, yk) : yk − φTk θσ0 = vσk}. (3.2)

Then, the corresponding membership set can be written as

Sσ =
⋂

(yk,φk)∈Dσ
{θ ∈ Rn : |yk − φTk θ| ≤ v̄σ}. (3.3)
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Clearly, it is seen that θσ0 belongs to the membership set and can be readily

estimated if Dσ is available. However, we have no information on the switching

signal and even v̄σ, which makes it very difficult to estimate Dσ.

Recall that, in Chapter 2, we estimate Dσ by solving the MAX FS problem

using the RH solution with the noise bound. Here, although v̄σ is not known,

we may replace it with its estimate ˆ̄vσ and then solve the MAX FS problem.

For convenience, we repeat the MAX FS problem as follows: given an infeasible

system,

Σ :

[
Φ
−Φ

]
θ ≤

[
Y + V̄
−Y + V̄

]
(3.4)

with

Y =


y1

y2
...
yN

 ∈ RN , Φ =


φT1
φT2
...
φTN

 ∈ RN×n, V̄ =


ˆ̄vσ

ˆ̄vσ

...
ˆ̄vσ

 ∈ RN ,

find the feasible subsystem with a maximum cardinality.

Now, the key is how to get an appropriate ˆ̄vσ for each mode. In the

following sections, we will show that v̄σ is closely related to the quality of

estimation and it can be well estimated by evaluating the residuals with the

RH solution.

3.3 Revisit the RH solution

To estimate v̄σ, it is necessary to revisit the RH solution, which tells us im-

portant effects of the noise bound. From the previous chapter, we know that

the RH solution consists of the following steps:

3-A1 Obtain θ̂σt = arg min
θ
‖Yt−Φtθ‖2

2. (Initially, set t = 1, Yt ← Y, Φt ← Φ.)

3-A2 Check ‖Yt − Φtθ̂
σ
t ‖∞ > v̄σ? If yes, go to step 3-A3; otherwise, stop and

return θ̂σt and D̂σ!

3-A3 Set Yt ← [Yt]
†, Φt ← [Φt] and t← t+ 1; then go to step 3-A1.

† [·] is an operator that deletes the row of “·” w.r.t. the largest magnitude of residual (LMR),

i.e., ‖Yt − Φtθ̂
σ
t ‖∞.
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In the above RH solution, v̄σ plays a very important role in eliminating the

unnecessary data from the whole data set. When v̄σ is not properly selected,

the estimated data set may be significantly affected.
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Figure 3.1: The impact of a noise bound: (a) tight bound (b) loose bound

Fig. 3.1 shows the data distribution of a 3-dimension SLS with two modes

(M1 and M2), where P1 and P2 are the hyperplanes specified by y = φT θ1
0±v̄1;

similarly, P1’ and P2’ are specified by y = φT θ1
0 ± v̄′1. We have v̄1 < v̄′1. The

width of the hyperstrip between P1 and P2 is proportional to the value of

v̄1. All data in the hyperstrip are included in D̂1. In Fig. 3.1 (a), as v̄1 is

over tight, some data points from M1 are excluded from the hyperstrip. That

means the number of data in D̂1 (denoted by |D̂1|) is less than the true number

of data from M1 and thus the data information of M1 is not fully used. On the

contrary, in Fig. 3.1 (b), v̄′1 is over loose and it causes a lot of mis-classified

data (from M2) involved in D̂1, which may render the estimated parameters

to be rather far from the true values.

Therefore, we need to be very careful on the selection of v̄σ when it is

unknown. In the literature, the authors in [13] provided a feasible method to

estimate v̄σ as we did in Example 2.3. The basic idea is to make a trade-off

between the number of modes and fitting errors. However, it is restricted to

the cases that all modes have a same noise level. If noise levels are different,

it may lead to an over loose noise bound for some modes.
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3.4 The RH-FS method

In Chapter 2, the RH solution was applied for the identification use. In fact,

it can also be used for the estimation of v̄σ with the help of the forward search

(FS) method.

3.4.1 The RH solution without v̄σ

Since v̄σ is to be estimated, here we only focus on the RH solution with

steps 3-A1 and 3-A3. Before we proceed, it is worthwhile to point out some

appealing features of using the RH solution (3-A1 and 3-A3) to estimate v̄σ.

From the above discussion, we have seen that the noise bound is tightly related

to the LMR; so we don’t need to continuously scale v̄σ and construct a large

candidate set. Another advantage is that the LMR is decreasing steadily, so

we can find an approximated v̄σ with one-time-through of all data.

These appealing features benefit us to find v̄σ’s more efficiently. When

iteratively running steps 3-A1 and 3-A3, we could stop at “somewhere” and

see whether the LMR is suitable to be a proper noise bound (neither tight

nor loose). During this process, there are two key points which need to be

clarified. One is the way to check the tightness of a noise bound candidate;

the other is the right time to stop and check. For the purpose of finding a

good noise bound, we first need to explore the characteristics of the data w.r.t.

a single mode.

Definition 3.1. Given an estimated data set D̂σ, we call the data (yi, φi) ∈ D̂σ

are consistent, if there exists an estimated parameter vector θ̂σ such that the

null hypothesis “H0: the residual ri = yi − φTi θ̂σ is normally distributed” can

be accepted.

Theorem 3.1. Data consistency is a necessary condition to guarantee that

all data (yi, φi) ∈ D̂σ are w.r.t. a single mode.

Proof. It follows from the fact that yi = φTi θ
σ
0 + vi and vi is normally dis-

tributed. �

Strictly speaking, data consistency is insufficient to conclude that data points,

belonging to D̂σ, are all corresponding to a single mode. However, data con-

sistency becomes a sufficient condition under some mild assumptions.
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Theorem 3.2. If the inputs in φk are persistently exciting (PE) of order n

and max{v̄σ′ , v̄σ}/‖θσ0 − θσ
′

0 ‖2 is sufficiently small, ∀ σ 6= σ′ ∈ {1, 2, . . . , s},
then the consistent data in D̂σ are almost surely w.r.t. a single mode.

Proof. We prove it by contradiction and we suppose that the data in D̂σ are

sampled from ≥ 2 modes. Without loss of generality, we consider a 2-mode

case, assuming that one data pair, (y′, φ′), is with mode σ′ and the rest are

with mode σ. As for mode σ, the equivalent noise term of (y′, φ′) can be

written as

veq = φ′T (θσ
′

0 − θσ0 ) + v′, (3.5)

where v′ = y′ − φ′T θσ′0 and |v′| < v̄σ
′
. As we know, if |veq| is apparently larger

than v̄σ (e.g., if |veq| − v̄σ ≥ ε), then it destroys the data consistency. Notice

that ε is positively correlated with v̄σ, thus (2max{v̄σ′ , v̄σ} + ε)/‖θσ0 − θσ
′

0 ‖2

can be sufficiently small with the assumption in Theorem 3.2. Together with

the PE condition, we have

Pr{|φ
′T (θσ

′
0 − θσ0 )|

‖θσ0 − θσ
′

0 ‖2

<
2max{v̄σ′ , v̄σ}+ ε

‖θσ0 − θσ
′

0 ‖2

} ≈ 0, (3.6)

where Pr{X} denotes the probability of event X; φ′T (θσ
′

0 − θσ0 )/‖θσ0 − θσ
′

0 ‖2 is

the projection of φ′ onto θσ
′

0 − θσ0 . Equation (3.6) implies that

Pr{|φ′T (θσ
′

0 − θσ0 )| − |v′| < v̄σ + ε} ≈ 0. (3.7)

As |veq| is no less than |φ′T (θσ
′

0 − θσ0 )| − |v′|, we get Pr{|veq| < v̄σ + ε} ≈ 0. It

means the data consistency is violated with probability 1. Hence, Theorem 3.2

holds. �

Remark 3.1. In practical applications, the PE condition can be guaranteed

by selecting a proper input sequence and max{v̄σ′ , v̄σ}/‖θσ0 − θσ
′

0 ‖2 is usually

small enough for Theorem 3.2 being valid.

Based on the data consistency, we next find a well-selected noise bound

that is defined as follows:

Definition 3.2. If the data of D̂σ are consistent and adding any one data will

destroy the consistency, then

v̄σws = max
(yi, φi)∈D̂σ

|yi − φTi (
∑

φiφ
T
i )−1

∑
φiyi| (3.8)

is called the well-selected noise bound.
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Note that, for a given mode, the proper noise bound has infinitely many

different values, whereas the well-selected noise bound is unique. All proper

noise bounds, including the well-selected noise bound, should give the same

estimate of Dσ. To obtain v̄σws, the FS method can be applied, which will be

discussed in the subsequent section.

We’re now interested in when to stop and check the consistency of data in

D̂σ. Suggested by Theorems 3.1 and 3.2, the data consistency can be judged

by checking whether the remaining data are w.r.t. a single mode. If the latter

holds, then the changing rate of θ̂ would become slow. It can be seen from

the following result.

Theorem 3.3. [3] If θ̂σt and θ̂σt+1 represents, respectively, the least squares fits

of the data in D̂σ and D̂σ\(yi, φi), then,

‖θ̂σt+1 − θ̂σt ‖2
2 = [

ri
1− φTi (ΦT

t Φt)−1φi
]2φTi (ΦT

t Φt)
−2φi.

Proof. It can be found in [3]. But, for clarity, we show it again with the

notation used here:

θ̂σt+1 = (ΦT
t+1Φt+1)−1(ΦT

t Yt − φiyi)
= (ΦT

t Φt − φiφTi )−1(ΦT
t Yt − φiyi)

= {(ΦT
t Φt)

−1 +
(ΦT

t Φt)
−1φiφ

T
i (ΦT

t Φt)
−1

1− φTi (ΦT
t Φt)−1φi

}(ΦT
t Yt − φiyi)

= θ̂σt + (ΦT
t Φt)

−1φi
ŷi − [1− φTi (ΦT

t Φt)
−1φi]yi − φTi (ΦT

t Φt)
−1φiyi

1− φTi (ΦT
t Φt)−1φi

= θ̂σt + (ΦT
t Φt)

−1φi
ŷi − yi

1− φTi (ΦT
t Φt)−1φi

= θ̂σt − (ΦT
t Φt)

−1φi
ri

1− φTi (ΦT
t Φt)−1φi

⇒ ‖θ̂σt+1 − θ̂σt ‖2
2 = [

ri
1− φTi (ΦT

t Φt)−1φi
]2φTi (ΦT

t Φt)
−2φi

This completes the proof. �

Remark 3.2. Theorem 3.3 reveals that the difference between θ̂σt+1 and θ̂σt
is related to the value of ri. When D̂σ contains data collected from different

modes, ‖θ̂σt+1− θ̂σt ‖2 is likely to be large because LMR would be large, see (3.5).
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Figure 3.2: The relationship between ‖θ̂σt ‖2 and the removed data

Fig. 3.2 shows a typical way of change in ‖θ̂σt ‖2 and the removed data

from D̂σ. In this case, the remaining data are mostly w.r.t. mode 2 as ‖θ̂σt ‖2

exhibits the trend of slowing varying. Therefore, the idea here is to activate

the consistency checking when the increment in ‖θ̂σt ‖2 sustains a small value

for a period of time.

3.4.2 The FS method

During the search of v̄σws, there are two tasks that need to be done by the FS

method. The first task is to obtain a θ̂σ for checking the data consistency (see

Definition 3.1); the second one is to bring back any data without destroying

the data consistency and calculate the well-selected noise bound.

The FS method employed in this chapter was originally developed in the

statistical society for regression and multivariate data analysis [3, 4]. It can

be used to reject outliers or mis-classified data in our case by carrying out a

hypothesis test on some statistic of a size-increasing subset (D̂σ in our case).

Regarding the first task, θ̂σ is desired to be close to θσ0 , because a precise

estimation can help to identify the data w.r.t. mode σ more accurately. We

can give a robust estimate of θσ0 using the least median of squares (LMS)

estimator [58] or least trimmed squares (LTS) estimator [59].

For the second task, it can be solved by testing the normality of the resid-

uals. In this chapter, we calculate the following test statistic of the data not
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belonging to D̂σ [3]:

r∗j =
rj√

s2
0[1 + φTj (ΦTΦ)−1φj]

, ∀(yj, φj) /∈ D̂σ,

where s2
0 =

∑
(yi,φi)∈D̂σ

r2i
|D̂σ |−n . The data consistency or the normality of resid-

uals imposes an envelop on the test statistic, which is specified in terms of

order statistics with different quantiles (e.g., 99.99%). We refer the reader

to [56] for details. If the minimum value of |r∗j | is contained in the envelop,

then we should add the associated data back to D̂σ; otherwise we claim that

all the data (yj, φj) /∈ D̂σ are outliers for mode σ, and calculate v̄σws in (3.8).

3.4.3 The implementation

To summarize all the above discussion, the implementation of the proposed

RH-FS method consists of the following steps:

3-B1 Run step 3-A1 and 3-A3 iteratively and record θ̂σt ; if it is changing slowly,

go to step 3-B2.

3-B2 Obtain a robust estimate of θσ0 using LMS or LTS and calculate all

residuals.

3-B3 Add back all data in the ascending order of r∗j , such that the data con-

sistency is always satisfied.

3-B4 Calculate v̄σws and re-estimate θ̂σ.

Here, we would like to further discuss step 3-B1, where a slow-varying θ̂σt
must be declared. In some situations, we may have some prior knowledge

on the range of parameters. If so, we could compute the maximum standard

deviation (MSD) of parameters instead of checking ‖θ̂σt ‖2, which is defined as

below.

MSD(θ̂σt ) , max
i=1,2,...,n

√√√√ 1

z0 − 1

z0∑
j=1

[θ̂σt−j(i)− θ̄σt (i)]2,

where (i) represents the ith entry of the associated vector, θ̄σt is the mean

vector of {θ̂σt−z0 , θ̂σt−z0+1, ..., θ̂
σ
t−1}, and z0 ∈ Z+ is a finite time horizon. By this

means, we can gain more insight from this measure.
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Remark 3.3. The summarized implementation procedures provide parameter

estimation of one mode. By repeatedly applying the procedures, we can obtain

parameter estimation for all modes, including noise bounds of different levels.

3.5 Simulation results

To demonstrate the effectiveness of the proposed method, we test it using

a randomly generated SARX model and compare it with the v̄σ estimation

method mentioned in [13].

Example 3.1.

In this example, we consider the following second-order SARX model:

yk = −aσ1yk−1 − aσ2yk−2 + bσ1uk−1 + bσ2uk−2 + vk,

where σ ∈ {1, 2, 3} and aσ1 , a
σ
2 , b

σ
1 , b

σ
2 are randomly generated such that

each mode is stable. uk is a white Gaussian noise signal with variance equal

to 1. For different modes, the measurement noise, vk, is also normally dis-

tributed but with different noise levels, see Fig. 3.3 (a), the corresponding

signal-to-noise ratio (SNR) being approximately equal to 15dB, 20dB and

30dB, respectively. In each simulation trial, 1000 data points are collected for

identification and the switching signal is randomly selected from {1, 2, 3} at

time k.

Fig. 3.3 (b)‡ shows the evolution of the test statistic in one trial. It gives

the idea how r∗j goes beyond the 99.99% envelope: when it stays outside of

the envelope for 3 consecutive data points, we stop adding more data to D̂σ.

In the case of Fig. 3.3 (b), the first identified mode has about 440 data, which

corresponds to Mode 3; see Fig. 3.3 (a).

Below, we define two measures to check the tightness of the estimated noise

bound,

Cmp ,
|D̂σ ∩Dσ|
|Dσ| × 100%,

NormErr ,
‖θ̂σ − θσ0‖2

‖θσ0‖2

× 100%.

“Cmp” gives the percentage of data in Dσ that has been successfully identified

in D̂σ. A higher percentage means a more complete Dσ obtained. “NormErr”

‡ It was generated by using the FSDA toolbox (http://www.riani.it/MATLAB.htm)
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Figure 3.3: Simulation results of Example 3.1

is short for normalized error and it measures the accuracy of the parameter

estimation. Ideally, we desire a high value in Cmp (to prevent an over tight

v̄σ), and a low value in NormErr (to prevent a over loose v̄σ).

Fig. 3.3 (c) and (d) are two plots of these measures for 100 trials. We

observe that the completeness is sustained at a high level, around 96%, ex-

cept a few cases. At the same time, the normalized error is mostly less than

3%. Therefore, the estimated noise bounds can characterize the measurement

noises very well.

Example 3.2.

The second example is used to compare the proposed method with the

work in [13]. As we discussed in Section 3.2, the v̄σ estimation in [13] is

based on a trade-off between the number of modes and fitting errors. For

convenience, let’s call it the “trade-off” method. No matter how many noise

levels there exist, the trade-off method estimates a common noise bound for
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all modes. Here, we let

a1
1 = 0.1, a1

2 = 0.3, b1
1 = 4, b1

2 = 1.5;

a2
1 = −0.2, a2

2 = 0.5, b2
1 = 2, b2

2 = 5;

a3
1 = −0.7, a3

2 = 0.4, b3
1 = 1.5, b3

2 = −3;

SNR of Mode 2 and Mode 3 are both set to be 30dB; other settings are kept

the same as Example 3.1.

Table 3.1: Comparison on the estimation accuracy of v̄σ

Trade-off RH-FS True value of v̄σ

Mode 1 1.8 2.43 2.76
Mode 2 1.8 0.55 0.54
Mode 3 1.8 0.51 0.51

Table 3.2: Comparison on the estimation accuracy of parameters

NormErr Trade-off RH-FS

Mode 1 1.99% 1.41%
Mode 2 0.46% 0.15%
Mode 3 2.18% 0.39%

For the above system, the estimation results are shown in Tables 3.1 and 3.2.

It is seen that the noise bounds, obtained by the proposed method, are very

close to their true values. Therefore, the estimated parameters using RH-FS

are more accurate than those by the trade-off method; see Table 3.2. When

there is a large gap in noise bounds for different modes, the advantage of using

RH-FS will become more obvious.

3.6 Summary

In this chapter, we have studied the general case of identification of SLSs

in the presence of measurement noise. Set membership identification, as a

powerful tool, is able to identify the noisy systems by solving a series of MAX

FS problems; but it relies on the true noise bound of each mode. With the

help of the proposed RH-FS method, we can estimate the noise bounds and
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parameters simultaneously for one mode at a time, which enables us to handle

SLSs with multiple unknown levels. This is especially important when a few

modes of SLSs are highly noisy and others are not.
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Chapter 4

The RLS Algorithm with A
Resetting Strategy∗

In Chapters 2 and 3, offline identification of SLSs has been investigated. The

proposed methods are applicable only for a batch of I/O data and cannot be

applied for online update of model parameters. For this reason, it is necessary

to develop online identification approaches.

In this chapter, we will propose an online identification algorithm, which

can handle the SLSs with switching sequences in an arbitrary form. The main

results of the work include the following aspects: (i) the mode detection ap-

proach suggested in [6] is analyzed and two different types of mode mismatches

are explained by examples; (ii) from the compensation point of view, a reset-

ting strategy is proposed based on the analysis on the mode mismatch and

characteristics of the recursive least squares (RLS) algorithm.

The remaining of this chapter is organized as follows. Section 4.1 intro-

duces the current research on online identification of SLSs. Section 4.2 de-

scribes the concerned system model structure and the identification problem

to be solved. Section 4.3 presents the mode detection method and explains

the reason of mode mismatches. Section 4.4 analyzes the RLS algorithm and

proposes a resetting strategy for online identification. Finally, the simulation

results are shown in Section 4.5 and a summary is given in Section 4.6.

∗A version of Chapter 4 has been published in [69].
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4.1 Introduction

Currently, the research on online identification of SLSs is still limited. There

are only a few papers found in the literature. It is not because of the lack of

significance, but rather because of the difficulty of the problem itself. Recall

that, in offline identification, the main difficulty is on the classification of I/O

data. For most (if not all) of existing offline approaches, the success of data

classification cannot be 100% guaranteed. In online cases, data classification

problem becomes even harder, since data points are sequentially acquired and

some useful data manipulations, e.g., swap of data order, iterative processing

of data, are not applicable. This has largely prevented the development of

online identification methods.

Among the existing online methods, see, e.g., [6, 37, 67, 73], the clustering-

based method [6] is relatively easy to implement and also effective for data

classification. It consists of two stages: mode detection and parameter estima-

tion. At the mode detection stage, a detection function is usually employed

to find the running mode, which can directly affect the estimation results.

However, designing a perfect detection function is very difficult; there often

exist some mode mismatches, leading to assigning a wrong mode number to

a data point. In particular, when initial parameters are not appropriately

created, there is a large possibility of mode mismatch, which may lead to poor

performance of parameter estimation.

In this chapter, we deal with this issue from the compensation point of

view. By introducing a resetting strategy to the RLS algorithm, the negative

effects of mode mismatches will be separated into a few resetting intervals,

which effectively prevent them from being accumulated.

4.2 Problem description

We consider a single-input and single-output SLS described by the following

SARX model:

yk = φTk θ
σ
0 + vk,

φk , [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

θσ0 , [aσ1 · · · aσna bσ1 · · · bσnb ]
T ∈ Rn,

(4.1)

where φk and θσ0 represent the regression vector and parameter vector, re-

spectively; na ∈ Z+ and nb ∈ Z+ are the model orders; σ ∈ {1, 2, . . . , s} is
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the switching signal or mode number that changes with time k; vk is a white

Gaussian noise.

Then, the online identification problem can be stated as follows:

Given the sequentially acquired I/O data pairs {(φk, yk)}Nk=1, generated

by the switched linear system in (4.1), assuming that the order na, nb are

known a priori, we are interested in estimating the parameters of each mode

in real time.

As mentioned in Section 4.1, the data classification is still the key to solve

the identification problem. In the clustering-based method [6], the mode de-

tection function is used for detecting the running mode. In the next section,

we would like to give a detailed discussion.

4.3 Mode detection

Regarding the mode detection, it is closely related to the mode switching

sequence. Typically, there are roughly three types of mode switching:

mode 1:

mode s:

k

k1

ks…

|    |    |    |    |    |    |    |    |    |    |    |    |   |    |    | …

|    |    |    |    |    |    |    |    |    |    |    |    |   |    |    | …

|    |    |    |    |    |    |    |    |    |    |    |    |   |    |    | …

1    2   3   4    5    6   7    8   9  10  11  12 13 14  15  16 …

1                          2                    3              4 5 …

1         2              3                          4         5 …

yk ▲ ▲ ▲ ▲ ▲ ▲

: From mode 1, ▲: From modes 2~s-1,     : From mode s

Figure 4.1: A mode switching sequence with arbitrary switching

• Switching periodically: In this case, the difficulties of the identification

problem are reduced to the estimation of the mode switching period,

which will be later discussed in Chapter 6.

• Switching aperiodically but slowly: If the switch appears aperiodically

but the switching frequency is low, that is, the dwell time is sufficiently

large, then the subspace methods could be used, see, e.g., [7–10, 14, 15,

53, 66].
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• Switching arbitrarily: Compared with the above two, this type is more

general. As it has no specific form, the running mode number needs to

be identified for each I/O data. See an example in Fig. 4.1.

4.3.1 The detection function

In this chapter, the detection function we used is applicable for all types of

mode switching sequence. It stems from the work in [6, 9]. At time k, the

running mode σ∗ is decided by checking a detection function, which is defined

as,

dk,σ ,
|yk − φTk θ̂σk−1|
‖[1 − (θ̂σk−1)T ]‖2

=
|[yk φTk ][1 − (θ̂σk−1)T ]T |√

1 + (θ̂σk−1)T θ̂σk−1

, σ ∈ {1, . . . , ŝ},
(4.2)

where θ̂σk−1 represents an estimated parameter vector at time k − 1; ŝ is the

number of modes at time k − 1. The minimum of dk,σ is denoted by

dk,σ∗ = min
σ

dk,σ, (4.3)

and σ∗ is calculated by,

σ∗ = arg min
σ

dk,σ. (4.4)

Here, dk,σ geometrically means the distance from the point with position vector

[yk φTk ]T to the hyperplane with normal vector [1 − (θ̂σk−1)T ]T . All the

hyperplanes pass through the origin of regressor domain.

This detection function can help to get a correct running mode for most

data. However, mode mismatches still exist in some situations.

4.3.2 Mode mismatch

In the following, two different types of mode mismatch are discussed.

Type I: mode mismatches from ill-initialization

We know that the running mode is detected by comparing the distances

between data points and hyperplanes. If there is an initial hyperplane that is

always further away from the data points than other hyperplanes, then this

hyperplane may not be used at all.
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Example 4.1. (a 2-dimensional case):

yk = bσuk−1, σ ∈ {1, 2}.

Here b1 = −0.25 and b2 = 0.25. Let the initial parameter vectors to be as,

θ̂1
0 = b̂1 = −0.5; θ̂2

0 = b̂2 = 4.

-2                    -1                  0                      1                     2

2

1

-1

-2

hyperplane 1

( )
hyperplane 2

( b
2 
= 0.25 )

hyperplane 1’

( ) hyperplane 2’

(   )2ˆ 4b 

1ˆ 0.5b  

1 0.25b  

ky

1ku 

Figure 4.2: An illustration of mode mismatch type I

Fig. 4.2 shows the hyperplane positions of both modes. Hyperplanes 1’

and 2’ are specified by θ̂1
0 and θ̂2

0, respectively. When the standard RLS algo-

rithm in [32] is used, we can see that the I/O data will always be assigned to

hyperplane 1’ due to a smaller distance.

Remark 4.1. we can detect this type of mode mismatch by checking the

existence of such stationary parameter vectors, like hyperplane 2’ in the above

example.

Type II: mode mismatches from hyperplane bisecting zone

Except the ill-initialization, mode mismatches can also be caused by the

data located in a bisecting zone of hyperplanes. Fig. 4.3, as an explanation

on this type, shows a three-dimension case with two different modes. Same as

Example 4.1, hyperplane 1 is associated with mode 1; hyperplanes 1’ and 2’

are specified by θ̂1
k and θ̂2

k, respectively. They meet at the origin O.
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hyperplane 1’

hyperplane 2’

B ED

Figure 4.3: An illustration of mode mismatch type II

Now, we draw a bisecting plane OCD that separates the dihedral angle

∠AOCB equally. Thus, the data located in the zone OCDB have closer

distance to hyperplane 2’ than to hyperplane 1’. Similarly, by drawing another

bisecting plane OCE, the data in the zone OCBE has the same property as

the data in OCDB. Therefore, according to equation (4.4), mode 2 will be

mismatched to the data of mode 1 in the bisecting zone OCDE.

Remark 4.2. Regarding the second type of mode mismatch in Fig. 4.3, we

observe that the potential mode mismatches only occur when the data of

mode 1 are located in the bisecting zone OCDE. However, the data in OCDE

is only a small portion of the data of mode 1 and we may find that the

chance of mode mismatch is smaller than the chance of correct mode detection.

Moreover, when hyperplane 1’ is getting closer to hyperplane 1, the chance of

mode mismatch would be even smaller.

Remark 4.3. These two types of mode mismatches appear in both noisy

and noise-free systems. In the presence of noise, mode detection is not only

dependent on the location of data but also dependent on the properties of

noise. A large noise will bring with more mode mismatches in the mode

detection stage.

4.4 The modified RLS algorithm

In this section, we first analyze the influence of mode mismatches on the

standard RLS algorithm and then present a modified recursive least squares
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(MRLS) algorithm in details.

To avoid mode mismatches, we may want to design a more powerful method

of mode detection. In fact, due to the lack of sufficient data features, it

is rather difficult to create a perfect detection function that can match the

correct mode with the I/O data, especially in the presence of measurement

noise. In this work, we try to achieve this goal by using a compensation-based

approach, which is based on the modification of RLS algorithm to reduce the

negative effects brought by mode mismatches.

4.4.1 Analysis on the RLS algorithm

To proceed further, it is necessary to check the commonly used RLS algorithm

from (4.5) to (4.7):

ek = yk − φTk θ̂σ
∗

k−1, (4.5)

(P σ∗

k )−1 = (P σ∗

k−1)−1 + φkφ
T
k , (4.6)

θ̂σ
∗

k = θ̂σ
∗

k−1 + P σ∗

k φkek. (4.7)

The estimated θ̂σ
∗

k is obtained by equivalently solving the optimization

problem shown as below [18],

min
θ

k∑
i=1

[yi − φTi θ]2 + (θ − θ̂σ∗0 )T (P σ∗

0 )−1(θ − θ̂σ∗0 ). (4.8)

To reduce the effect of the second term, P σ∗
0 is usually selected to be a large

identity matrix, P σ∗
0 = pI, with p � 1. The initial parameter vectors are

randomly generated or created by a priori knowledge on the processes. It has

been proved that the initial parameter vector θ̂σ
∗

0 can converge to θσ
∗

0 in many

references.

However, when the data are not all collected from the same mode, the

estimated parameters will be far away from their true values. Let’s go back

to check equation (4.8) and we may find that this optimization problem could

be equivalently written in the form of (4.9),

min
θ

k∑
i=t+1

[yi − φTi θ]2 + (θ − θ̂σ∗t )T (P σ∗

t )−1(θ − θ̂σ∗t ). (4.9)

For the second term, P σ∗
t is large only at the starting iterations. As k increases,

(P σ∗
t )−1 would increase steadily and dramatically [32]. It also can be seen from,

(P σ∗

k )−1 ≥ (P σ∗

k−1)−1 ≥ ... ≥ (P σ∗

t )−1 ≥ ... ≥ (P σ∗

0 )−1 > 0. (4.10)
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On the other hand, when mode mismatches exist before time t, it is reason-

able to say that θ̂σ
∗
t is not close to θσ

∗
0 . Therefore, if k is finite, then at some

starting time t, say t = k0, the second term in (4.9) would take significant

weight in this optimization problem and hence can not be ignored. In this

situation, even if the rest data (from k0 + 1 to k) are all exactly from mode

σ∗, the result θ̂σ
∗

k is still not a good estimate.

Remark 4.4. Recall that the detection function dk,σ∗ is dependent on the

estimated θ̂σ
∗

k−1. So poorly estimated parameter vectors may further result

in more mode mismatches in the following iterations and make the estimates

even worse.

4.4.2 Modification of RLS algorithm

From the previous analysis, it is seen that the commonly used RLS algorithm

may result in an unsatisfactory θ̂σ
∗

k when mode mismatches are involved. The

reason is ascribed to a small P σ∗

k matrix.

To fix this problem, we embed a resetting step in the RLS algorithm, i.e.,

forcing P σ∗

k = P σ∗
0 . For the sake of clarity, we denote the resetting time as tσ

∗
s

and call the time interval [tσ
∗
s , t

σ∗
s+1−1] as resetting interval. The main idea of

resetting is to prevent the negative effects of mode mismatches from spreading,

because for a new resetting interval, the only thing passed over is the estimated

parameters at time tσ
∗
s − 1. When P σ∗

tσ∗s
is reset to be P σ∗

0 , the estimate will be

obtained mainly on the first term of (4.9) again. Moreover, from Section 4.3,

we know the chance of mode mismatch is generally small. When θ̂σ
∗

k → θσ
∗

0 ,

the chance of incorrect mode detection would be even smaller. These reasons

explain why the estimation results get improved. We’re now interested in how

to activate the resetting step.

• Resetting condition

Since a small P σ∗

k usually lead to a small increment in θ̂σ
∗

k , see (4.7), we detect

a small covariance matrix by checking the maximum standard deviation of

parameters in θ̂σ
∗

k , like we did in Chapter 3. It is denoted by θσ
∗

MSD and obtained

in a finite time horizon z0 ∈ Z+,

θσ
∗

MSD = max
i

√√√√ 1

z0 − 1

z0∑
t=1

[θ̂σ
∗
k−t(i)− θ̄σ∗(i)]2, (4.11)
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where (i) represents the ith entry of the associated vector and θ̄σ
∗

is the mean

vector of {θ̂σ∗k−z0 , θ̂σ
∗

k−z0+1, ..., θ̂
σ∗

k−1}. Define an indicator function Iσ
∗
(θσ

∗
MSD) as

the resetting condition:

Iσ
∗
(θσ

∗

MSD) =

{
1, θσ

∗
MSD ≤ τ1

0, θσ
∗

MSD > τ1
(4.12)

where τ1 ∈ R+ is a prescribed tolerance. If Iσ
∗
(θσ

∗

k ) = 1, then it indicates

the convergence rate is already slow and we are ready to reset the covariance

matrix.

Remark 4.5. In fact, we only need to take the resetting step for the unsatis-

factory or poorly estimated θ̂σ
∗

k . For good estimates, as mentioned, the chance

of mode mismatch would be small and there is no need to reset P σ∗

k .

• Evaluation of θ̂ik

The following shows how we evaluate the quality of θ̂σ
∗

k . We say an estimate

is a good estimate when θ̂σ
∗

k ≈ θσ
∗

0 . For vk ∼ N (0, υ2
0), it can be proved that,

Pr{ |vk| > 6υ0 } ≈ 2× 10−9, (4.13)

where the notation Pr{X} denotes the probability of event X. It means almost

all data points are sufficiently close to their real hyperplanes. Therefore, when

the resetting condition holds, we can evaluate θ̂σ
∗

k by checking,

‖[1 − (θ̂σ
∗

k−1)T ]‖2dk,σ∗ > 6υ0. (4.14)

If conditions (4.12) and (4.14) hold simultaneously, we take a resetting step

to that mode.

Remark 4.6. The resetting strategy is an efficient way to avoid the second

type of mode mismatch, but it is not enough to get rid of the first type of

mode mismatch.

From Section 4.3, we know this problem can be fixed by replacing all

stationary parameter vectors with new θ̂0. However, some of them are not

necessary to be replaced, since they might be corresponding to the modes

that are not visited in a long time interval. Therefore, it is difficult to say

which stationary mode is associated with the first type of mode mismatch.
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For this reason, a new method is employed. We create the initial parameter

vectors one by one. A new parameter vector is created when any unsatisfac-

tory θ̂σ
∗

k demonstrates a low convergence rate. Meanwhile, we set the new

parameter vector to be the same as θ̂σ
∗

k . By doing so, the first class of mode

mismatch is not likely to happen.

4.4.3 The MRLS algorithm

Based on the above modifications, the modified recursive least squares algo-

rithm is summarized in Algorithm 2 (on the next page).

Algorithm 2 The RH solution

• Step 4-A: Initialization

4-A1 Randomly generate a θ̂1
0 s.t. the model in (4.1) is stable and let ŝ = 1.

4-A2 Set P 1
0 = pI with p� 1 and I1 = 0.

• Step 4-B: Iteration

for k = 1 : N do

4-B1 Obtain (φk, yk) and decide σ∗ by (4.2)-(4.4);

4-B2
if Iσ

∗
= 1 and dk,σ∗ > 6υ0/‖[1 − (θ̂σ

∗

k−1)T ]‖2 then
if ŝ < s then

ŝ = ŝ+ 1;
θ̂ŝk−1 = θ̂σ

∗

k−1;
P ŝ
k−1 = pI;
I ŝ = 0;

end if
P σ∗

k−1 = pI and Iσ
∗

= 0;
end if

4-B3 Update ek, P
σ∗

k and θ̂σ
∗

k by the following equations:

ek = yk − φTk θ̂σ
∗

k−1

P σ∗

k = P σ∗

k−1

[
I − φkφ

T
kP

σ∗

k−1

1 + φTkP
σ∗
k−1φk

]
θ̂σ
∗

k = θ̂σ
∗

k−1 + P σ∗

k φσ
∗

k ek

4-B4 Calculate θσ
∗

MSD and Iσ
∗

by (4.11) and (4.12);

end for
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4.4.4 Practical issues

• Selection of z0 and τ1

Intuitively, z0 is expected to be large so that it reflects high accuracy on

the variety of parameters; but it is not necessary for RLS based algorithms,

since the increment in θ̂σ
∗

k decreases at a fast rate, see (4.10). From practical

experience, this parameter can be easily tuned and the final estimates are not

very sensitive on its value. As for τ1, it affects the number of times to reset the

covariance matrix. A small τ1 is necessary to guarantee good performance of

the MRLS algorithm. However, a too small value would bring a great number

of resettings, which should be taken into account.

• Convergence

For the proposed MRLS algorithm, it is necessary to show whether the embed-

ded resetting step will lead to divergence and whether the parameters can still

converge to the true values when mode mismatch exists. The first problem can

be answered by checking the work in [23] and [61] with the assumption that

no mode mismatch is involved, while the second problem is more important

and its theoretical analysis is still under investigation.

4.5 Simulation results

In order to show the effectiveness of the proposed algorithm, the following

SARX model is used:

Aσ(z)yk = Bσ(z)uk + vk, σ ∈ {1, 2}

Mode 1 :

{
A1(z) = 1 + 0.1z−1 + 0.3z−2,
B1(z) = 4z−1 + 1.5z−2,

Mode 2 :

{
A2(z) = 1− 0.2z−1 + 0.5z−2,
B2(z) = 2z−1 + 5z−2.

In the simulations, the input uk and noise vk are zero-mean white Gaussian

noise signals with variance equal to 1 and 0.2, respectively. The signal to noise

ratio (SNR) is about 20 dB. Modes 1 and 2 are randomly switched with a

probability of 0.5 for each. The process models are simulated for 2000 I/O

data pairs. In addition, the initial covariance matrix P0 = 1000I.
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Figure 4.4: The parameters evolution for a single run

Fig. 4.4 illustrates the parameter evolution from a single run of the MRLS

algorithm, where the numbers in the legend are the true values of the corre-

sponding parameters. In this simulation, both modes take the resetting step

three times. Table 4.1 shows the associated resetting intervals and the num-

ber of mode mismatches. We observe that all parameter estimates are able to

converge to theirs true values and the chance of mode mismatches decreases

when a resetting step is taken.

Table 4.1: The number of mode mismatches for all resetting intervals

[t1s, t
1
s+1 − 1] No. (or %) [t2s, t

2
s+1 − 1] No. (or %)

1 [1, 25] 11 (44.00%) [1, 25] 13 (52.00%)
2 [26, 47] 7 (31.82%) [26, 46] 5 (23.81%)
3 [48, 990] 47 (4.98%) [47, 1008] 58 (6.03%)

Table 4.2 reports the estimation results by Monte Carlo simulation with

100 runs. The results are compared with the forgetting factor based RLS

method (shorthand for FRLS) by [6], where the detection function dk,σ and
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I/O data pairs are the same. The forgetting factor equals 0.9 as used in [6].

It shows that the MRLS algorithm has better performance.

Table 4.2: Comparison results in 100 Monte Carlo simulations

SNR=20dB MRLS FRLS

â1
1 (0.1000) 0.1026±0.0188 0.0781±0.1179
â1

2 (0.3000) 0.2937±0.0436 0.2843±0.1546

b̂1
1 (4.0000) 3.9853±0.1560 3.8779±0.6245

b̂1
2 (1.5000) 1.5241±0.2398 1.4630±0.3172
â2

1 (-0.2000) -0.2009±0.0383 -0.1883±0.0392
â2

2 (0.5000) 0.5015±0.0504 0.4915±0.0356

b̂2
1 (2.0000) 1.9756±0.2380 2.0020±0.3588

b̂2
2 (5.0000) 4.9722±0.3314 4.8998±0.5557

4.6 Summary

In this chapter, online identification of SLSs has been studied. We have an-

alyzed two types of mode mismatches and proposed a RLS algorithm with a

resetting strategy. This algorithm can effectively reduce the effect of mode

mismatch and significantly improve the estimation performance.
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Chapter 5

The Hough Transform Based
Online Identification

As mentioned in Chapter 4, the key of developing a good online identification

approach is to guarantee the success of data classification. To achieve this goal,

one may resort to a robust identification algorithm that is able to compensate

negative effects caused by mode mismatch, see, e.g., the MRLS algorithm.

An alternative way is to make the initial parameters sufficiently close to true

values, which helps reducing the chance of mode mismatch.

This chapter studies the online identification of SLSs with the second ap-

proach. We firstly introduce the well-known Hough transform (HT) technique

and develop an online HT-based estimator. Then, we propose a new online

identification algorithm, namely, HT-clustering algorithm, by integrating the

online HT-based estimator with an online clustering estimator using a feed-

back mechanism. Compared with the MRLS algorithm in Chapter 4, the

HT-clustering algorithm does not need to know the number of modes, as it

has similarity to the set membership identification.

The remaining of this chapter is organized as follows: Section 5.1 gives a

background of developing the HT-clustering algorithm. Section 5.2 introduces

the HT technique and its usage for identification. Section 5.3 provides an

online implementation of the HT estimator. Section 5.4 presents the details

of the proposed HT-clustering algorithm. Section 5.5 shows some numerical

examples and Section 5.6 summarizes the work in this chapter.
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5.1 Introduction

In the previous chapter, we have developed the MRLS algorithm for online

identification of SLSs. Although it has shown some effectiveness through sim-

ulation results, we cannot deny that there exist a few limitations in the algo-

rithm: (i) it requires knowing the number of modes; (ii) data information is

not fully used due to the resetting procedure.

As discussed in Chapter 2, by solving a sequence of MAX FS problems,

we can estimate parameters without knowing the number of modes. It has

inspired us to find an online solution to the MAX FS problem. In [2], the

authors mentioned that the HT technique can be applied to solve the MAX

FS problem, but the discussion was made in offline cases. In comparison

with other offline solutions, e.g., the improved Agmon-Motzkin-Schoenberg

relaxation solution [12] and the sparse optimization solution [5, 51], the HT

technique is more suitable to be extended to an online version. Since the

HT-based estimator has a similarity to the set membership identification, we

consider the following SARX model:

yk = φTk θ
σ
0 + vk, σ ∈ {1, . . . , s}

φk , [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

θσ0 , [aσ1 · · · aσna bσ1 · · · bσnb ]
T ∈ Rn,

where |vk| is assumed to be bounded by v̄; s is assumed to be unknown; other

notation is the same as we defined in previous chapters.

The contribution of this chapter is two-fold. Firstly, it provides an online

HT-based identification framework to estimate parameters. Because of the

similarity to the set membership identification, the HT-based identification

is capable of dealing with noisy data and cases with an unknown number

of modes. Secondly, we propose the HT-clustering algorithm in this chap-

ter, which can be used for time-varying systems or some nonlinear systems.

With the help of a clustering estimator and a “feedback” mechanism, we can

guarantee a low memory use and a high model fit in the estimation process.
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5.2 HT-based identification

5.2.1 Main idea of the HT

The HT is a classical feature extraction technique that is typically used in

image processing for detecting arbitrary curves, such as line, circle and el-

lipse. In this chapter, we concentrate on the detection of high dimensional

hyperplanes, for which point-hyperplane duality is very important.

By Π we denote a n dimensional hyperplane in the data space,

Π = {(x, y) : y = c0 + cTx}, (5.1)

where y ∈ R, c0 ∈ R, c ∈ Rn−1 and x ∈ Rn−1. For any given point on Π,

[xTi , yi]
T , it can be transformed into the following hyperplane in the parametric

space,

Γi = {(c, c0) : c0 = yi − xTi c}. (5.2)

With a collection of n different points {[xT1 , y1]T , [xT2 , y2]T , · · · , [xTn , yn]T},
the parameters c0 and c can be obtained by solving the following equations,

c0 = y1 − xT1 c,
c0 = y2 − xT2 c,

...
c0 = yN − xTnc.

(5.3)

Geometrically, the solution of equations (5.3) is the crossing point of the hy-

perplanes, Γ1, Γ2, · · · , Γn. Since the crossing point corresponds to the

parameters, it is termed as parametric point.

Fig. 5.1 shows a two dimensional example of HT. Fig. 5.1 (a) displays some

data points on two different straight lines, Π1 : y = 2x and Π2 : y = 0.5x.

Each line in Fig. 5.1 (b) is transformed from a point in Fig. 5.1 (a) and the

lines of the same mode intersect at the parametric points. The slopes of Π1

and Π2 can be reflected by the parametric points, which are located in the

grids with a large number of line-hits.

Here, we note that the hyperplane described in (5.1) is parameterized in the

Cartesian coordinate, which is not suitable for the cases when the hyperplane

has an infinite slope or intercept. However, for the identification problem,

Cartesian parametrization is enough to characterize all SLSs, since the model

parameters to be identified are typically finite.
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Figure 5.1: An example of the HT

5.2.2 Standard HT estimator

We now introduce the standard HT estimator. Let us first define a hypercube,

H(θ), which is used to find the parametric points:

H(θ) , {(c′, c′0) : |c′ − c| � d

2
, |c′0 − c0| ≤

d

2
}, (5.4)

where θ = [cT , c0]T and d ∈ R+ is a constant; | · | returns the element-wise

absolute value of “·”; d is an all-d′s vector with a compatible dimension;

� denotes the element-wise inequality. Then, the parametric points can be

estimated with the following standard HT estimator, see [31],

θ̂ = arg max
θ∈Rn

1

N

N∑
i=1

1{H(θ) ∩ Γi 6= ∅}. (5.5)

where the indicator function 1{X} returns 1 if predicate X is true and 0

otherwise.

The standard HT estimator provides an intuitive way to capture the para-

metric points with several advantages: (1) it is relatively robust with outliers;

(2) it is applicable to the cases when the number of modes or subsystems is

unknown; (3) it is online implementable and does not need to initialize param-

eters; (4) the estimation convergence and consistency have been established;

see, e.g., [31].

With regards to the online implementation of HT, a typical way is to par-

tition the parametric space into small cells and find the cell with the largest
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number of hyperplane-hits. Clearly, with this implementation, as the number

of dimension increases, the number of cells grows exponentially and computa-

tion becomes an overburden.

5.3 Online implementation of HT

In this section, we provides a new online implementation of the HT estimator.

There are two tasks that should be done: one is to determine the value of d;

the other is to reduce the computational complexity for online implementation

of HT.

5.3.1 Relation to set membership identification

Before using the HT estimator in (5.5), we need to prescribe the value of d,

that is, the size of the hypercube, which directly affects the performance of

estimation. An oversized hypercube will cause many mis-classified data or

outliers to be involved, while an undersized hypercube may lead to over-fit.

The value of d can be determined according to the noise level. When

vk = 0, d may be set to an arbitrary small positive number, since hyperplanes

in the parametric space intersect at the parametric points. When vk 6= 0, it

is necessary to find out the connection of d and residuals. To this end, we

would like to show the analogy between the HT-based identification and the

set membership identification.

Using the set membership identification, see, e.g., [13], we may identify

a SARX model by solving a sequence of MAX FS problems, which can be

formulated in the following form,

θ̂ = arg max
θ∈Rn

1

N

N∑
k=1

1{|yk − φTk θ| ≤ v̄}, (5.6)

On the other hand, we may also apply the HT estimator to identify the

SARX model. To make it clear, we rewrite the data and parametric hyper-

planes as follows:

Π′ = {(φk, yk) : yk = (θσ0 )Tφk},
Γ′k = {θσ0 : 0 = yk − φTk θσ0}.

(5.7)
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Here, we consider the following line segment cell instead of the hypercube

in (5.4):

L(θ) = {θ′ : |θ′ − θ| = 0, |yk − φTk θ| ≤
d

2
}. (5.8)

In fact, L(θ) is identical with H(θ) when d = 0. Using the line segment cell to

find the parametric points, we can compute the parameters with the following

equation:

θ̂ = arg max
θ∈Rn

1

N

N∑
k=1

1{L(θ) ∩ Γ′k 6= ∅}. (5.9)

By prescribing d = 2v̄, we find that L(θ)∩Γ′i 6= ∅ if and only if |yk−φTk θ| ≤ v̄.

This means that the L(θ) is just in a right size. In this situation, the HT-based

identification is consistent with the set membership identification.

Remark 5.1. Although we have shown that the HT-based identification can

be converted into the set membership identification, so far we cannot find

any online solution to the MAX FS problem. By taking advantage of the

geometric property of HT, we believe that developing an HT-based online

implementation is a better option.

5.3.2 Online implementation procedure

In the preceding section, we mentioned that a standard online implementation

of HT can hardly meet our needs because of the complexity. This motivates

us to develop a new online implementation procedure.

Recall that in the classic implementation of HT, one needs to partition

the parametric space into a huge number of small cells and keep all of them

in storage. It is impractical for identification, as the parametric space is

usually with high dimension. To avoid large usage of memory, we may adopt

a clustering idea to classify the I/O data into clusters. The idea is based on

the fact that the parametric hyperplanes of the data w.r.t. the same mode

will intersect within a small region. First, let’s define the cluster we used in

the sequel.
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Definition 5.1. Suppose C is a non-empty subset of D, if the following con-

ditions are satisfied,

1) existing a θ such that max(φk,yk)∈C |yk − φTk θ| ≤ v̄;

2) including any data pair (φk, yk) that belongs D \ C into C, condition 1)

is violated;

then we define C as a cluster.

We note that the cluster defined above is based on the line segment cell.

For the noise free case, as v̄ = 0, the cell is turned into a point. If no data

fits two different modes, then the data in the same cluster are associated with

the same mode. For the noisy case, the data in the same cluster are possibly

w.r.t. different modes.

Next, we define some notations. We assume that we have a collection of

R clusters at time k, namely {C(r)}Rr=1, where C(r) denote the rth cluster.

θ̂rc is the `∞ projection estimate for cluster C(r), which is defined as θ̂rc ,

arg minθ max(φk,yk)∈C(r) |yk − φTk θ|.
Then, at time k + 1, the online implementation procedure of HT can be

given as below:

5-A1 Check whether there is a θ̂rc that makes |yk+1 − φTk+1θ̂
r
c | ≤ v̄. If the

answer is yes, go to step 5-A2; otherwise, go to step 5-A3.

5-A2 Put (φk+1, yk+1) into the corresponding cluster(s) and update the asso-

ciated `∞ projection estimate(s).

5-A3 Construct new clusters and obtain their `∞ projection estimates, using

(φk+1, yk+1) and any (n− 1)-combination of the existing data.

For the proposed online implementation of HT, we have the following re-

marks:

Remark 5.2. (On the computation) In the implementation, we can save

some extra computation by replacing the `∞ projection estimator by the least

squares estimator.

Remark 5.3. (On the memory use) The memory used here is not affected

by the number of parameters and the size of d. However, we notice that it is

dependent on the number of data and the number of clusters.
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Remark 5.4. (On the consistency) In the case of vk = 0, the online imple-

mentation procedure will provide us a consistent estimation. When vk 6= 0,

the clustering procedure may introduce some mis-classified data and then the

consistency is likely to be lost.

5.4 The HT-clustering algorithm

To further improve the performance of the online HT implementation, we

develop a new online identification algorithm in this section, namely the HT-

clustering algorithm. It integrates the online HT estimator with the clustering

estimator by [6] with a feedback mechanism. Fig. 5.2 describes the framework

of the HT-clustering online identification, which consists of three sections:

HT, clustering and feedback.

Start

ŝ = 0 ?

Online imple-
mentation of HT

5-A1—5-A3

min
σ
|yk − φTk θ̂σ | ≤ v̄?

max
r
|C(r)| ≥ C ?

ŝ ← ŝ + 1,
θ̂ŝ ← θ̂r

∗
c ,

Delete C(r∗) & θ̂r
∗

c .

Online cluster-
ing estimator
5-B1—5-B2

End

(φk, yk)

Yes No

No

Yes

Yes

No

HT Feedback

Clustering

Figure 5.2: A workflow of the HT-clustering algorithm (ŝ initially equals to 0)
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5.4.1 The “HT” section

The “HT” section plays the role of feeding new parameter vectors, {θ̂σ}ŝσ=1, to

the “clustering” section. It is invoked when the estimated number of modes

ŝ is zero or there is no θ̂σ that meets the following criterion on the residual:

|yk − φTk θ̂σ| ≤ v̄.

In the HT section, the online implementation procedure, 5-A1—5-A3, is

initially executed. It is then followed by checking the size of clusters. If there

exists any |C(r)| larger than a size upper bound, C, then we create a new

parameter vector,

ŝ← ŝ+ 1, θ̂ŝ ← θ̂r
∗

c , (5.10)

and delete the cluster C(r∗) with r∗ = arg max
r
|C(r)|. Note that C is used for

the purpose of restricting the number of data and clusters in storage.

We are now interested in how to select an appropriate C. It is actually a

tradeoff problem: C should be large enough to make the θ̂σ sufficiently close

to the true parameter vector of one mode and small enough to meet memory

requirement. As the memory requirement is specified by the used hardware

and uncontrollable, let’s focus on the lower bound of C.

It is known that we need at least na+nb data to decide a parameter vector

for a mode. If the number of mode is s, then it implies that C should be

greater than s(na + nb− 1) to ensure the existence of one cluster in {C(r)}Rr=1

that corresponds to a real mode.

5.4.2 The “clustering” section

The “clustering” section contains an online clustering estimator, which stems

from the work in [6]. Its main function is to further update the passed pa-

rameters from the HT section. The implementation of the online clustering

estimator consists of two steps: 5-B1 mode detection and 5-B2 parameter

update.

At the step of mode detection, the mode number of data (φk, yk) can be

detected in several ways, see [6]. In this chapter, we use the following formula

for mode detection:

σ∗ = arg min
σ=1,...,ŝ

|yk − φTk θ̂σ|. (5.11)

Notice that the detected mode is not guaranteed to be the same as the true

one. A number of mode mismatches may exist in this stage. However, it is
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apparently that if ‖θ̂σ− θσ0‖ is sufficiently small, then the mode mismatch will

rarely happen.

At the step of parameter update, we update θ̂σ
∗

with the following recursive

least squares procedure:

ek = yk − φTk θ̂σ
∗
,

P σ∗

k = w−1P σ∗

k−1

[
I − φkφ

T
kP

σ∗

k−1

w + φTkP
σ∗
k−1φk

]
,

θ̂σ
∗

= θ̂σ
∗

+ P σ∗

k φkek.

(5.12)

where w is the forgetting factor and P σ∗
0 = pI with p� 1.

5.4.3 The “feedback” section

The feedback section is a link between the online HT estimator and the online

clustering estimator, which helps to achieve a high level of model fit.

Recall that the consistency of estimation in the HT section is not always

guaranteed. Thus, it is necessary to activate the HT estimator from time to

time. From the results in [6] and our extensive simulations, we find a few num-

ber of activations are enough to make the estimated parameters convergent to

their true values.

Because the target of the identification problem is to find a group of pa-

rameter vectors {θ̂σ}ŝσ=1 such that the residuals of all sampled data are located

in the interval, [−v̄, v̄], we select the minimum magnitude of |yk − φTk θ̂
σ| as

the measure to check the necessity to activate the HT section.

5.5 Simulation results

Example 5.1.

Consider the following SARX model with three third-order modes:

Aσ(z)yk = Bσ(z)uk + vk, σ ∈ {1, 2, 3},

Mode 1 :

{
A1(z) = 1− 0.2z−1 − 0.05z−2 + 0.006z−3,
B1(z) = z−1 − 0.5z−2,

Mode 2 :

{
A2(z) = 1− 0.05z−1 − 0.25z−2 + 0.044z−3,
B2(z) = −0.2z−1 + 0.07z−2.

Mode 3 :

{
A3(z) = 1 + 1.8z−1 + 1.08z−2 + 0.216z−3,
B3(z) = 4z−1 + 3.2z−2.
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where input uk ∼ N (0, 1) and noise vk ∼ N (0, υ2
0). We generated 2000 I/O

data pairs; the first 1500 data are used to estimate parameters and the rest

data for cross validation. The switching signal is randomly generated with

an equal probability for each mode. We set the initial covariance matrix

P0 = 1000I, w = 0.95, C̄ = 40 and v̄ = 3υ0. The following measures, namely,

mean squared error (MSE) and FIT, are applied for self validation and cross

validation tests, respectively:

MSE(k) ,
1

k

k∑
i=1

min
σ=1,...,ŝ

(yi − φTi θ̂σ)2,

FIT , (1− ‖ŷ − y1501:2000‖/‖y1501:2000 −mean(y1501:2000)‖)× 100%,

where ŷ and y indicate the predicted and true outputs, respectively; the

subscript of y refers to the corresponding rows of y; mean(·) is the mean

value vector of “ · ”. Here, the mode number of the data for validation is

estimated by σk = arg min
σ=1,...,ŝ

‖yk − Φkθ̂
σ‖∞.
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Figure 5.3: The evolution of MSE

Fig. 5.3 displays the evolution of MSE. As time goes on, the value of MSE is

approaching zero very quickly. To further verify the accuracy of the estimated

model, Table 5.1 reports the output fit under different noise levels. For each

noise level, we run the simulation 100 times using different I/O data pairs.

The mean value and standard deviation error of FIT are recorded. As can be

seen from this table, the proposed algorithm is of high performance.
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Table 5.1: The cross validation with 100 Monte Carlo simulations

υ2
0 = 2 υ2

0 = 0.2 υ2
0 = 0.02

(SNR≈15dB) (SNR≈25dB) (SNR≈35dB)

FIT(%) 86.43% ± 3.3% 94.63% ± 1.9% 98.16% ± 0.62 %

Example 5.2.

The second example is concerned with nonlinear system identification

problem using the HT-clustering algorithm.
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Figure 5.4: The relationship of residual, v̄ and the estimated # of modes

We consider the following nonlinear system,

yk+1 =
yk

1 + y2
k

+ u3
k.

which is taken from [37]. Same as in Example 5.1, we let uk to be a white

Gaussian noise signal with variance equal to 1. As we aim at approximating

the nonlinear system using the SARX model, the model discrepancy can be

treated as the noise part. In this example, additional noise is not added. We
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generated 2000 data for estimation and 300 data for cross validation. Other

parameters, such as P0, w and C̄, are set as the same as in Example 5.1.

Fig. 5.4 shows the cross validation results w.r.t. different noise bounds. It

is seen the nonlinear system can be well represented by the obtained SARX

model. As v̄ decreases and the number of modes increases, the model fit is

getting improved.

5.6 Summary

In this chapter, we have studied the online identification of SLSs with the HT

technique. We have shown that the proposed algorithm can identify the SLSs

or some nonlinear systems without dependence on initial parameters. Due

to similarity with the set membership identification, it can deal with noisy

I/O data and the cases with unknown number of modes. From the simulation

results, it was shown that the estimated parameters often give a high model

fit w.r.t. different noise levels.
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Chapter 6

Identification of Periodically
Switched Linear Systems∗

In previous chapters, we have discussed offline and online identification meth-

ods for SLSs without considering underlying data features in mode switching

sequences. However, there exist theoretical and practical needs for study of the

structure of switching sequences, as it may further improve the performance

of identification in terms of efficiency and accuracy.

In this chapter, we aim at parameter estimation of periodically switched

linear systems (PSLSs) by exploiting the structure of switching sequences. The

addition of estimation of the period p0 is not only critical to reduce the size of

identification problem, but also helpful to eliminate the data misclassification.

To fully utilize the feature in mode switching sequences, we develop a new

identification method by embedding a data classification step.

This chapter is organized as follows. Section 6.1 presents the main motiva-

tion of studying the PSLSs. Section 6.2 describes the concerned system model

structure and introduces the parameters estimation problem to be solved.

Section 6.3 analyzes I/O data and reveals the underlying relationship between

data sequences and the period p0 to be estimated. Section 6.4 proposes two

strategies to speed up the period estimation process. Section 6.5 presents

both offline and online implementation methods. Finally, simulation results

are given in Section 6.6 and a summary in Section 6.7.

∗A version of Chapter 6 has been published in [70].
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6.1 Introduction

In SLSs, when the evolution of system modes follows a specific rule, we can

categorize them as a special class of SLSs. For example, in Jump Markov Lin-

ear Systems (JMLSs), mode switching follows the process of a Markov chain.

An identification framework was already proposed in [22] and a nonparametric

identification method was introduced in [27]. Periodically switched linear sys-

tems (PSLSs) form another special class of SLSs, in which the mode switching

sequence is periodic. PSLSs have been employed in many applications; for

example, periodic controllers are usually involved in control loops, giving rise

to closed-loop PSLSs [28]. On the other hand, some controlled plants, such as

boost DC-DC converters [1] and switched reluctance motors [72], consist of es-

sentially a few periodically switching modes. PSLSs identification, to the best

of our knowledge, has not received much attention in prior work. Although it

can be solved by using some conventional methods as discussed in Chapter 1,

they may not provide satisfactory estimation with efficient implementation.

The main reasons can be explained from the perspective of efficiency and

accuracy. For efficiency, conventional methods require to handle all I/O data

as a whole. In fact, exploiting the periodicity of switching sequences creates

the possibility of estimating the period p0 by using a finite long data sequence

(to be discussed in Section 6.4). As a result, this can significantly reduce com-

putational effort. For accuracy, conventional methods (especially clustering

methods and bounded error methods) are basically not able to distinguish

“undecidable” data, see [13] for further information, which will lead to some

avoidable data misclassification and affect the accuracy of estimation. In con-

trast, data classification with a given period will be performed without such

problems. These facts motivate the development of a customized identification

method for PSLSs, which is the focus of this chapter.

6.2 PSLS

We consider PSLSs described by the following SARX model:

Aσk(z)yk = Bσk(z)uk + vk,

Aσk(z) = 1 + aσk1 z
−1 + · · ·+ aσknaz

−na ,

Bσk(z) = bσk1 z
−1 + bσk2 z

−2 + · · ·+ bσknbz
−nb ,

(6.1)

71



where uk, yk are respectively the input and output at time k; vk is a white

Gaussian noise, i.e., vk ∼ N (0, v2
0); σk ∈ {1, 2, . . . , s} is the switching signal

of this system and the mode switching sequence {σ1, σ2, . . .} is assumed to

be a periodic sequence with the period being p0, i.e.,

{σ1, σ2, . . . , σp0 , σ1, σ2, . . . , σp0 , . . .}; (6.2)

We denote θ̂σk (ϑ̂σk) as the (augmented) parameter vector to be estimated

and φk (ϕk) the (augmented) regression vector, which take the form,

θ̂σk = [âσk1 · · · âσkna b̂σk1 · · · b̂σknb ]
T ∈ Rn,

ϑ̂σk = [1 − (θ̂σk)T ]T ∈ Rn+1,

φk = [−yk−1 · · · − yk−na uk−1 · · · uk−nb ]T ∈ Rn,

ϕk = [yk φTk ]T ∈ Rn+1,

(6.3)

where n = na + nb. Same as in the previous chapters, θσk0 (or ϑσk0 ) is referred

to as the true parameter vector and p̂0 ∈ Z+ is a period candidate of p0 with

2 ≤ p̂0 ≤ p0. The prediction error is represented by

ek = yk − φTk θ̂σk ,
= ϕTk ϑ̂

σk .
(6.4)

Based on (6.4), prediction error methods can be directly applied for parameter

estimation, if the I/O data are associated with the same mode.

When p0 is known, it can be easily achieved by classifying the data into p0

groups. For example, we divide the output data sequence {y1, y2, . . . } into

the following subsequences:

{y1, yp̂0+1, . . .}, {y2, yp̂0+2, . . .}, . . . , {yp̂0 , y2p̂0 , . . .}. (6.5)

where we let p̂0 = p0. For r ∈ {1, 2, . . . , p̂0}, we define a new index sequence

{ti : i = 1, 2, . . .} as follows:

t1 = r, t2 = p̂0 + r, t3 = 2p̂0 + r, . . . (6.6)

With this notation, the subsequences in (6.5) can be generally represented by

{yt1 , yt2 , . . .} when r ranges over the set {1, 2, . . . , p̂0}. Similarly, we may

represent the subsequences of φk as {φt1 , φt2 , . . .}.

72



Then, for the rth group of data, the parameter vector θ̂r can be estimated

by the least squares estimator:

θ̂r = [
∞∑
i=1

φtiφ
T
ti

]−1

∞∑
i=1

φtiyti . (6.7)

However, when p0 is unknown, the parameter estimation problem is much

more difficult. Since no prior knowledge is available for the system modes,

we have to extract underlying information from the mixed I/O data. The

following sections will mainly focus on this issue.

Before we proceed, we want to mention that the superscripts of θ̂σk (θσk0 ,

ϑ̂σk or ϑσk0 ) will be omitted in the following context if it is not necessary.

6.3 Analysis of I/O data

In this section, we analyze the I/O data characteristics of the concerned system

in (6.1) and establish the potential connection with p0. To this end, the

regression vector ϕk, containing both input and output data, shall be studied.

Considering a PSLS in (6.1) without noise, i.e., vk = 0, we have,

ϕTk ϑ0 = 0. (6.8)

This property only corresponds to the data at time k. If a batch of data are

associated with the same mode, we must be able to find a ϑ̂ satisfying (6.8) for

all data. Again, we divide the data sequence {ϕk|k = 1, 2, . . .} into p̂0 groups

as shown in (6.9).  ϕT1
ϕTp̂0+1

...

 ,
 ϕT2
ϕTp̂0+2

...

 , . . . ,
ϕ

T
p̂0

ϕT2p̂0
...

 . (6.9)

By replacing the subscripts with the index sequence in (6.6), the above

data sequences are generally indicated by {ϕti | i = 1, 2, . . .}.
We now define a concept against to the data sequences in (6.9) and it helps

us to distinguish the data with different modes.

Definition 6.1 (Identity). For the PSLS in (6.1) with vk = 0, if there exists

one ϑ̂ such that ϕ
T
t1

ϕTt2
...

 ϑ̂ = 0, (6.10)
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then, we call the data sequence {ϕti | i = 1, 2, . . .} identical.

Remark 6.1. If we can not find a ϑ̂ satisfying (6.10), it means that the data

in {ϕti | i = 1, 2, . . .} are with at least two different modes and p0 6= p̂0.

Regarding the PSLS in (6.1) with vk 6= 0, even if all data in {ϕti | i =

1, 2, . . .} are collected from the same mode, condition (6.10) may not be satis-

fied, due to the impact of vk. Thus, we modify Definition 6.1 for noisy systems.

As in set membership identification, we assume that the magnitude of mea-

surement noise vk is bounded by v̄. Consequently, the definition of identity

for stochastic systems is addressed as follows:

Definition 6.2. For the PSLSs in (6.1) with |vk| ≤ v̄, if the following linear

inequalities are solvable,

−v̄ �

ϕ
T
t1

ϕTt2
...

 ϑ̂ � v̄, (6.11)

then, we call the data sequence {ϕti |i = 1, 2, . . .} identical.

Definitions 6.1 and 6.2 are basically the same; the only difference is that

Definition 6.1 is used for noise free systems and Definition 6.2 for noisy system-

s. In this chapter, we will pay more attention to noisy systems and analysis

is mostly based on Definition 6.2. Moreover, it is remarked that if inputs

uk, uk−1, . . . , uk−nb in ϕk are persistently exciting of order na +nb, that is, the

I/O data set is informative enough [44], then a solvable (6.10) implies that its

solution ϑ̂ is unique.

Geometrically, each inequality in (6.11) forms a narrow space (or called

’hyperstrip’, see [13]) between two hyperplanes, which is denoted by

Sti = {x ∈ Rn+1| − v̄ ≤ ϕTtix ≤ v̄}, i ∈ Z+. (6.12)

Thus, the set of solutions to (6.11) consists of a convex polytope as follows,

P = {x ∈ Rn+1| − v̄ ≤ ϕTtix ≤ v̄, i = 1, 2, ...} (6.13)

Clearly, we have P = St1 ∩ St2 ∩ · · · as shown in Fig. 6.1, where St1 , St2 and

St3 enclose ϑ0 inside of P .
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Figure 6.1: Geometric explanation (two dimensional cases)

Remark 6.2. From Fig. 6.1, we can claim that if {ϕti |i = 1, 2, . . .} is not

identical, that is, P = ∅, then there is at least one data point corresponding

to a different mode. However, the converse statement is not true. An identical

data sequence doesn’t mean that all data are collected from the same mode;

for instance, there could be two different ϑ0 in P .

We’re now interested in the question: under what conditions will the

converse be correct? This will be the key to connect identity with peri-

odicity. To this end, we pay attention to the possibility of a narrow space

that passes through more than one ϑ0. In Fig. 6.2, we still consider a two-

dimension case and assume that polytope P i is constructed by a data sequence

{ϕti|i = 1, 2, . . . , q− 1, q+ 1, . . .}, in which the data are associated with mode

i; while the data ϕtq comes from mode j and it forms a space Stq . The distance

between these two different modes is represented by D{i, j} = ‖ϑi0− ϑj0‖2. For

polytope P i, it has a minimal sphere containing P i, whose radius is Ri.

Fig. 6.2 shows that Stq may pass through P i if Stq is in the position of Stq′ .

The probability of this is dependent on two factors:

(F1) Ri/D{i, j};

(F2) the randomness of ϕk.

In fact, Ri further relies on (F2) and v̄. Then, we have the following result.
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Figure 6.2: The probability of Stq containing ϑi0 and ϑj0

Theorem 6.1. If inputs uk, uk−1, . . . , uk−nb in ϕk are persistently exciting

of order na + nb and v̄/D{i, j} is sufficiently small for all different i, j ∈
{1, 2, . . . , s}, then

(1) Pr{Stq ∩ Pi = ∅} ≈ 1;

(2) the data in {ϕti | i = 1, 2, . . .} are almost surely with a single mode if and

only if the data sequence is identical.

Proof. Firstly, let’s compute the probability (indicated by Pr) of ϑi0 belong

to Stq , which is equal to

Pr{|ϕTtqϑi0| ≤ v̄ ∩ |ϕTtqϑ
j
0| ≤ v̄}

=Pr{|ϕTtqϑi0| ≤ v̄ | |ϕTtqϑ
j
0| ≤ v̄}Pr{|ϕTtqϑ

j
0| ≤ v̄}.

(6.14)

We now calculate Pr{|ϕTtqϑi0| ≤ v̄ | |ϕTtqϑ
j
0| ≤ v̄} and start from a simple case

when v̄ = 0. In this case, the thickness of Stq is also 0, since it is proportional

to the value of v̄, see (6.12). Then, the hyperstrip Stq becomes a hyperplane

that passes through ϑj0 and its position is specified by ϕti , see Fig. 6.2. De-

fine sinα = d/D{i, j}, where d is the distance from ϑi0 to Stq . We see that

Stq passes through ϑi0 only when sinα = 0. On the other hand, we can eas-

ily understand that sinα is dependent on ϕti and the value of sinα is then

bounded in a finite interval [α, ᾱ] with ᾱ − α > 0. As uk, uk−1, . . . , uk−nb
in ϕk are persistently exciting of order na + nb, sinα will generally not be
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equal to zero. Thus, we clearly have Pr{sinα = 0} = 0, which implies

Pr{|ϕTtqϑi0| ≤ v̄ | |ϕTtqϑ
j
0| ≤ v̄} = 0 when v̄ = 0.

When v̄ 6= 0, we can get a similar derivation. In this situation, only if

sinα ∈ [α′, ᾱ′], ϑi0 and ϑj0 are both contained in Stq . Here, [α′, ᾱ′] belongs

to [α, ᾱ] and the length of [α′, ᾱ′] depends on the value of v̄/D{i, j}. When

v̄/D{i, j} is sufficiently small, we get (ᾱ′ − α′)/(ᾱ− α) ≈ 0 and this means

Pr{|ϕTtqϑi0| ≤ v̄ | |ϕTtqϑ
j
0| ≤ v̄} ≈ 0. (6.15)

From (6.14) and (6.15), we immediately have Pr{ϑi0 ∈ Stq} ≈ 0.

For Stq and ϑj0, polytope Pi can be considered as a point as long as v̄/D{i, j}

is sufficiently small. Any point x ∈ Pi has the same property as ϑi0, i.e.,

Pr{|ϕTtqx| > v̄} � Pr{|ϕTtqx| ≤ v̄}. (6.16)

Therefore, we have Pr{Stq ∩ Pi = ∅} ≈ 1.

Theorem 6.1 (2) follows easily from part 1). �

Remark 6.3. Theorem 6.1 suggests an approach to estimate p0. By checking

the identity of all data sequences in (6.9) for p̂0 = 2, 3, . . . , p0, then p0 is equal

to the minimum p̂0 such that all its data sequences are identical.

6.4 Implementation strategies

Following the idea mentioned in the preceding section, the calculation would

be heavy if the period upper bound is very large or the data sequence is

extremely long. Is there an efficient way to implement this? Or, can we avoid

checking p̂0 one by one? Another question is: for a long data sequence, is it

possible to evaluate some partial data instead of all? These questions will be

investigated in this section.

• Reverse order search

In most cases, due to the lack of prior system knowledge, we have to set up

a large upper bound for p̂0 to guarantee p0 ≤ p0, which means we need to

handle a large candidate set of p0, i.e., {p̂0| p̂0 = 2, 3, . . . , p0}.
For different candidates of p0, their data sequences are usually very differ-

ent and there is no evident relationship among them. However, if p̂0 ∈ Z+ is
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a period of a data sequence, then mp̂0, m ∈ Z+ will also be a period. Let

“mod” denote the modulus operation, i.e., a mod b is equal to the remainder

of a/b. Thus, the following result is obtained.

Theorem 6.2. For a period candidate p̂0 ∈ Z+, if one of its data sequences

{ϕti| i = 1, 2, . . .} is not identical, then p0 /∈ {x| p̂0 mod x = 0}.

Proof. Assuming p0 ∈ {x| p̂0 mod x = 0} and hence p̂0 = mp0, m ∈ Z+,

their data sequences can be respectively written as

{ϕr, ϕr+p0 , ϕr+2p0 , . . .}, (6.17)

{ϕr, ϕr+mp0 , ϕr+2mp0 , . . .}. (6.18)

Clearly, sequence in (6.18) is a subsequence of (6.17). If (6.18) is not

identical, then (6.17) is not identical as well. This contradicts the initial

assumption. Hence Theorem 6.2 holds. �

The following example is used to highlight this point.

Example 6.1.

p̂0 = 2 :


ϕT1
ϕT3
ϕT5
...

 ,

ϕT2
ϕT4
ϕT6
...

 ; p̂0 = 3 :


ϕT1
ϕT4
ϕT7
...

 ,

ϕT2
ϕT5
ϕT8
...

 ,

ϕT3
ϕT6
ϕT9
...

 ;

p̂0 = 6 :


ϕT1
ϕT7
ϕT13

...

 ,

ϕT2
ϕT8
ϕT14

...

 ,

ϕT3
ϕT9
ϕT15

...

 ,

ϕT4
ϕT10

ϕT16
...

 ,

ϕT5
ϕT11

ϕT17
...

 ,

ϕT6
ϕT12

ϕT18
...

 .
By inspecting {ϕti | i = 1, 2, . . .} in this example, we may find that each

data sequence in the case of p̂0 = 6 is a subsequence of one data sequence with

p̂0 = 2 and p̂0 = 3. Therefore, p0 6= 6 immediately implies p0 6= 2 and p0 6= 3.

Owing to Theorem 6.2, we shall check period candidate set {p̂0| p̂0 =

2, 3, . . . , p0} from p0 to 2, that is, in the reverse order. If data sequences of p̂0

are not all identical, then we can remove a few candidates from the candidate

set as it suggested; if they are, we shrink the search range to the divisors of

p̂0. Then p0 is the smallest divisor whose data sequences are still identical.
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• Finite data selection

The reverse order search strategy reduces the examination times on p̂0. How-

ever, for an individual p̂0, the computation could also be expensive because

of a long data sequence. As the identity is possible to be decided by a small

portion of data, we now investigate how much data is necessary to determine

the identity of a data sequence.

Firstly, we give an important result about the mode switching sequence of

{ϕti | i = 1, 2, . . .}.

Theorem 6.3. For any period candidate p̂0 ∈ Z+, the mode switching se-

quence of {ϕti | i = 1, 2, . . .} is also periodic with period p0.

Proof. As we know, for the whole data sequence {ϕk| k = 1, 2, . . .}, the mode

switching sequence in (6.2) is periodic with σk = σk+mp0 , m ∈ Z+.

For a subsequence {ϕti | i = 1, 2, . . . }, as the index sequence is defined

as t1 = r, t2 = r + p̂0, . . . , tp0 = r + (p0 − 1)p̂0, tp0+1 = r + p0p̂0, . . ., its

mode switching sequence should be in the following form:

{σr, σr+p̂0 , . . . , σr+(p0−1)p̂0 , σr+p0p̂0 , . . .}.

Therefore, in {ϕti | i = 1, 2, . . .}, the mode corresponding to (tk)
th data is the

same as that of (tk+mp0)
th data. This completes the proof. �

Remark 6.4. Given Theorem 6.1 and Theorem 6.3, we can state that if

{ϕti | i = 1, 2, . . .} is not identical, there must exist two data points in every

p0 data set that are associated with two different modes. Furthermore, since

the probability of Sti that contains more than two different ϑ0 is nearly zero,

the identity of an infinite data sequence {ϕti|i = 1, 2, . . .} is a.s. consistent

with that of its finite subsequence {ϕti| i = 1, 2, . . . , p̃} for p̃ ≥ p0.

In practice, despite the inputs are constrained within a limited range, the

consistency of identity can still be guaranteed by considering a few periods of

data. We can choose p̃ = 2p0 ∼ 5p0.

• Selection of p̄0

We now go back to discuss the selection of p̄0. As mentioned above, p0 is

difficult to be set precisely, if prior system knowledge is unavailable. However,
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we can actually find a possible range of p0. One lower bound is equal to the

number of mode s, since each mode should be visited at least once during

one switching period. The upper bound of p0 can be inferred by the potential

requirement on the data length for each mode. If the total number of I/O

data is N and input signals are persistently exciting of order na + nb, a mode

with model order na and nb requires at least na + nb I/O data to identify

its parameters. Hence, we have p0 ≤ N/dna+nb
z0
e, where z0 is the minimum

number of data that corresponds to the same mode in one switching period;

dxe is the ceiling function that gives the smallest integer larger than x.

6.5 Implementation methods

In this section, we introduce offline and online implementation methods to

examine identity and estimate parameters. For the offline case, we regard all

data as a whole and identity is determined based on all data, while in the

online case the identity is evaluated at each sample time instant.

For offline implementation, there are two kinds of methods: one is the

singular value decomposition (SVD) method and the other is an optimization-

based method. Both are in terms of the definitions on identity.

• Via SVD

In the noise free case, according to Definition 6.1, if the data {ϕti |i = 1, 2, . . .}
are in general positions, there is only one solution satisfies (6.10). In other

words,

nullity


ϕ

T
t1

ϕTt2
...


 = 1. (6.19)

We can easily get nullity by checking the rank of this matrix.

For stochastic systems, the nullity may be always equal to 0 due to the

impact of noise. Therefore, we apply SVD to the above matrix as suggested

in [68]. The singular values are denoted as: ς1 ≥ ς2 ≥ ...ςn−1 ≥ ςn.

When p̂0 = mp0, the smallest singular value (ςn) is attributed only by vk.

Therefore, the ratio of the last two singular values, i.e., ε = ςn−1/ςn, should

be much larger than that when p̂0 6= mp0.
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• Via optimization

For stochastic systems, as suggested by Definition 6.2, an alternative way

to judge identity is to check the solvability of (6.11) directly, which can be

achieved by solving a linear or quadratic programming problem with the con-

straints in (6.11). For example, we formulate the following quadratic program-

ming (QP) problem:

min
ϑ̂

f(ϑ̂) = ϑ̂T ϑ̂

s.t. − v̄ �

ϕ
T
t1

ϕTt2
...

 ϑ̂ � v̄
(6.20)

The dual active-set algorithm [11] is an efficient approach to solve this QP

problem.

Remark 6.5. Comparing the SVD method with an optimization-based method,

they both require some prescribed tolerance (ε or v̄) due to the uncertainty

caused by noise. In practice, we recommend to use optimization-based meth-

ods, since v̄ is related to yk and it is more straightforward to define.

For the offline implementation, given an estimate of p0, we can calculate

θ̂r (r = 1, 2, . . . , p̂0) by the formula in (6.7). Among the estimated θ̂r, some of

them might be very similar to each other and correspond to the same mode.

The measure of similarity, in this situation, is defined below, as suggested

in [52].

M{r, r′} =
‖θ̂r − θ̂r′‖2

min{θ̂r, θ̂r′}
(6.21)

For a given threshold γ1, ifM{r, r′} > γ1 holds for all r, r′ ∈ {1, 2, . . . , p̂0}, then

we have s = p̂0; otherwise, we merge data sequence r and r′ with M{r, r′} ≤ γ1

and re-estimate the parameters.

In what follows, the online implementation is considered. We present a re-

cursive vertex enumeration (VE) method, similar to [17], to examine identity.

• Via recursive VE

As discussed in Section 6.3, the solutions of (6.11) consist of a polytope

P , which has two representation forms: H (half-space)-representation and V
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(vertex)-representation. The problem that generates a V-representation from

a known H-representation is referred to as the vertex enumeration, while a

recursive VE method solves the vertex enumeration problem at each sample

time instant.

ϕtk+1
x = v̄

ϕtk+1
u < v̄

ϕtk+1
u > v̄

u1

u2

u3

u4

w1

w2

w3

Pk

Figure 6.3: An illustration of the recursive VE method

Let Pk denote the polytope at time k, given by an intersection of half spaces

−v̄ ≤ ϕTtix ≤ v̄, i = 1, 2, . . . , k, and V (Pk) the vertex set of Pk. adj(u) is the

adjacency list of vertex u and act(u) stores all indices of active constraints at

vertex u. In addition, the operator “| · |” returns the cardinality of a set. The

basic idea of this method is illustrated in Fig. 6.3.

Given a polytope at time tk, it is divided by a hyperplane specified by

ϕtk+1
x = v̄ into two parts. V −(Pk) is the vertex set that contains vertices such

that ϕtk+1
u ≤ v̄. Similarly, we define V +(Pk) for vertices such that ϕtk+1

u > v̄.

If |V −(Pk)| = 0, then the data sequence is not identical; if |V +(Pk)| = 0, then

the incoming constraint is redundant. In other cases, we create a new vertex

set W (W = {w1, w2, w3} in Fig. 6.3) and then update V (Pk), adj(u) as well

as act(u). The algorithm details are provided in Algorithm 3 (on the next

page).

Remark 6.6. Algorithm 3 has two steps. The first step is used to generate a

large polytope, which contains {ϑi0}si=1 inside. The second step is the imple-

mentation of vertex enumeration that is based on the polytope generated in

step 1.
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Algorithm 3 Recursive Vertex Enumeration

Step 1. Initialization step
Set up an initial polytope V (P0) with the following H-representation:

L �


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1

x � U ,

where L, U are the lower and upper bounds of parameters.
Step 2. Iteration step
for k = 1 : p̃ do

Determine V −(Pk) and V +(Pk)
if |V −(Pk)| = 0 then

the data sequence is not identical
return

else if |V +(Pk)| = 0 then
the new constraint is redundant

else
for u ∈ V −(Pk) do

for all v ∈ adj(u) ∩ V +(Pk) do
calculate new vertices w
W ← W ∪ w
adj(u)← adj(u) \ v ∪ w and adj(w)← u
act(w) = act(u) ∩ act(v) ∪ {k}

end for
end for

end if
for all u, v ∈ W do

if |act(u) ∩ act(v)| = n− 2 then
adj(u)← adj(u) ∪ v
adj(v)← adj(v) ∪ u

end if
end for
V (Pk)← V −(Pk) ∪W

end for
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In the online case, θ̂r can be obtained in the same manner as we did

for the offline case. However, if s < p̂0, we are unable to merge the data

sequences by comparing the similarity of θ̂r, since data in an online case are

not repeatedly available. In other words, we have to perform the merging task

prior to estimation of parameters.

By virtue of the recursive VE method, we have access to the vertices

of polytope V (Pk) and it should contain ϑr0 inside. Consequently, we can

distinguish data sequences by resorting to the similarity of vertices. For mode

r, V (P r
k ) is referred to as the corresponding vertex set. Then, the measure of

similarity in vertices is define by

M ′
{r, r′} =

‖A(P r
k )− A(P r′

k )‖2

min{A(P r
k ), A(P r′

k )} , (6.22)

where

A(P r
k ) =

1

|V (P r
k )|

∑
u∈V (P rk )

u (6.23)

denotes the average of the vertices in V (P r
k ) and r, r′ ∈ {1, 2, . . . , p̂0}. For

a given threshold γ2, if M ′
{r, r′} ≤ γ2, we then combine data sequence r with

r′. Parameters are subsequently estimated by the recursive least squares al-

gorithm. We refer readers to [45] for further details about this algorithm.

6.6 Simulation results

To show the effectiveness of the proposed approaches, the following second-

order system with three modes is used:

Aσk(z)yk = Bσk(z)uk + vk, σk ∈ {1, 2, 3}

Mode 1 :

{
A1(z) = 1 + 0.1z−1 + 0.3z−2,
B1(z) = 4z−1 + 1.5z−2,

Mode 2 :

{
A2(z) = 1− 0.2z−1 + 0.5z−2,
B2(z) = 2z−1 + 5z−2.

Mode 3 :

{
A3(z) = 1− 0.7z−1 + 0.4z−2,
B3(z) = 1.5z−1 − 3z−2.

In the simulations, the input uk is a zero-mean white Gaussian noise signal

with unity variance. The disturbance vk is also a white Gaussian noise with
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zero mean and the signal to noise ratio (SNR) being 35 dB. The mode switch-

ing sequence is {1, 2, 3, 1, 3, 2; 1, 2, 3, 1, 3, 2; . . .}. This system is simulated for

1500 I/O data pairs. The first 1000 data are used to estimate parameters and

the rest of them are for model validation. In addition, we let p = 10, p̃ = 2p

and v̄ = 0.5.

Before doing the simulation, we would like to give a pre-analysis of this

example. Let’s start period estimation from p̂0 = 10. The following displays

the data sequences and the corresponding mode switching sequences when

p̂0 = 10, 9, 8, 7, respectively. For brevity, only two data sequences of each

are listed here and it is enough for the analysis on this example though.

(p̂0 = 10) (p̂0 = 9) (p̂0 = 8) (p̂0 = 7)
ϕT1
ϕT11

ϕT21
...



ϕT2
ϕT12

ϕT22
...

 ,

ϕT1
ϕT10

ϕT19
...



ϕT2
ϕT11

ϕT20
...

 ,

ϕT1
ϕT9
ϕT17

...



ϕT2
ϕT10

ϕT18
...

 ,

ϕT1
ϕT8
ϕT15

...



ϕT2
ϕT9
ϕT16

...

 ,


1
3
3
...




2
2
1
...

 ,


1
1
1
...




2
3
2
...

 ,


1
3
3
...




2
1
2
...

 ,


1
2
3
...




2
3
1
...

 .
Focusing on the last row above, we observe that none of the data sequences,

except one with p̂0 = 9, is identical. Hence, we have p0 /∈ {7, 8, 9, 10} and it

further implies that p0 /∈ {2, 3, 4, 5} according to Theorem 6.2. Hence, the

only possibility is p0 = 6.

6.6.1 Period estimation

We now verify the above results using the simulation. Fig. 6.4 illustrates the

period estimation by the SVD method. Again, two data subsequences are

selected and the ratio ςn−1/ςn is calculated for each period candidate. Only

at p̂0 = 6, both data sequences are with high values in ςn−1/ςn, which in

turn means they are identical and it verifies the results we obtained in the

pre-analysis.

Fig. 6.5 shows the simulation results by using the dual active set method

and the recursive VE method. Since these methods only return a judgement

on the identity of data sequences, we need to define an indicator function as
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Figure 6.4: Period estimation via SVD
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I

 

 
Dual active set algorithm
Recursive VE algorithm

Dual active set algorithm Recursive VE algorithm

Figure 6.5: Period estimation via dual active-set algorithm & VE algorithom

below to quantify this:

I =

{
1, {ϕti |i = 1, 2, . . . , p̃} is identical,
−1, otherwise.

(6.24)

Comparing Fig. 6.5 with Fig. 6.4, they’re consistent on the identity of data
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sequences. Also, all these methods are able to generate correct estimation on

the period, i.e., p0 = 6.

6.6.2 Parameters estimation

Before proceeding to estimation of parameters, the similarity of θ̂r for offline

case and A(P r
k ) for online case are calculated. As illustrated in Fig. 6.6,

each node represents a θ̂r or A(P r
k ) (r = 1, 2, . . . , 6). The weights of the edges,

obtained by formula (6.21) or (6.22), give the quantified similarity. The smaller

the value, the larger the similarity.

56

1

2 3

4

0.0046

0.0050 0.00682.3453

1.51780.9475

56

1

2 3

4

0.0094

0.0139 0.06662.4150

1.54840.9633

Left: offline Right: online

Figure 6.6: Similarity of θ̂σr (offline) or A(P σr
k ) (online)

For similar nodes, we combine the associated data sequences and then per-

form offline or online recursive least squares parameter estimation. Table 6.1

reports the the normalized errors between the estimated parameters and the

true parameters.

Table 6.1: Parameters accuracy computed by (‖θ̂i − θi0‖2/‖θi0‖2)× 100%

Mode 1 Mode 2 Mode 3

offline estimation 0.05% 0.23% 0.33%
online estimation 0.07% 0.16% 0.32%

Using the estimated model, we finally carry out a validation test to com-

pare the predicted outputs with the true outputs. The output difference is

evaluated by
‖Ŷ − Y ‖2

‖Y ‖2

× 100%,

where Y ∈ R500 and Ŷ ∈ R500 are the output vectors generated by the true and

estimated models, respectively. For offline and online estimation, we obtain

that the output difference values are both as low as 1.93%.
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6.7 Summary

In this chapter, we focused on parameter estimation of a special class of

switched linear systems, in which the evolution of mode makes up a peri-

odic sequence. From the geometric point of view, the relationship between a

data sequence and the mode switching period p0 is investigated and it has been

proven that period p0 can be accurately estimated. Meanwhile, we proposed

two efficient implementation strategies to reduce the complexity of computa-

tion and introduced effective approaches to estimate the period and parame-

ters for both offline and online cases.

We close by mentioning that the exploration of the underlying properties

in the mode switching sequence is beneficial for increase accuracy of I/O data

classification, and similarly we can also apply this idea to other special class

of SLSs.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, identification of SLSs has been fully investigated and analysed.

We have developed a few robust identification methods for SLSs with an un-

known number of modes.

Firstly, in the offline identification framework, we developed an RH so-

lution in Chapter 2, which is very effective to solve the MAX FS problem.

For SLSs with multiple unknown noise levels, in Chapter 3, we proposed an

extended RH solution. It can be used to estimate parameters as well as noise

bounds. Secondly, in Chapters 4 and 5, we have presented two online identi-

fication algorithms, namely, MRLS and HT-clustering, which can be applied

in adaptive control or other circumstances that require parameter update in

real time. The newly developed online algorithms are based on a cluster-

ing approach [6], since it is simple and effective for online data classification.

Compared with the early work, the proposed MRLS algorithm has a better

performance, because it can significantly reduce the negative effects caused

by mode mismatches. By taking advantage of the HT technique, the HT-

clustering algorithm is not only applicable for SLSs with an unknown number

of modes, but also works well for some nonlinear systems that can be approx-

imated by SLSs. Lastly, in Chapter 6, we put efforts on the identification

of periodically switched linear systems, which exist in many applications. By

exploring the data feature of mode switching sequences, model parameters can

be estimated more efficiently and accurately than the existing methods.

To conclude, the proposed methods in the PhD thesis have made an im-

portant progress in the identification of SLSs. They have both theoretical
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and practical significance. The thesis work provides researchers and engineers

more powerful tools to build mathematical models for SLSs or some nonlinear

systems. Moreover, it lays groundwork for future improvements.

7.2 Future work

The research on the identification of SLSs is still at the developing stage and

there are many issues that have not fully explored. We would like to provide

a few interesting ones that are valuable to be further studied.

• Global optimization

In Chapter 1, it is mentioned that identification of SLSs becomes quite compli-

cated when the number of modes and the switching signal are both unknown.

In such a situation, we have to trade off the model quality and complexity in

terms of prediction errors and estimated number of modes. In [5, 13, 51] and

Chapter 2, the set membership identification approach was applied, where

we imposed a noise bound to limit the number of modes. It is actually a

suboptimal way to identify a model.

In fact, we may design a cost function to characterize the extent of model

accuracy and complexity at the same time. For example, the identification

problem can be set up in the following form:

min
θi,wik,s

N∑
k=n̄

s∑
i=1

`(yk − φTk θi)wik + γf(s)

s.t.
s∑
i=1

wik = 1 ∀k

wik ∈ {0, 1} ∀k, i

where f(s) is a function of s and γ is a weighting factor; other notation

is defined in the same way as in Chapter 1. Though the above problem

appears difficult to solve, it does help reducing data mis-classification and

hence improving the performance of estimation.

• Region partition in the regressor domain

The PWARX model, mentioned in Chapter 1, is another popular type of mod-

els being studied, which can describe SLSs with mode switches dependent
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on the position of the regressor. Identification of a PWARX model includes

parameter estimation as well as finding a complete partition of the regressor

domain. For this, there are two kinds of approaches. One is to find a boundary

between any two modes with a linear classifier. It can be efficiently implement-

ed, but the obtained partition is not a complete one—there may exist a black

hole in the regressor domain. The other approach is to apply a piecewise

linear classifier that discriminates all modes; this is able to make a complete

partition, but the computational complexity is much higher. Designing a more

advanced approach is highly desirable.

• Identification of JMLSs

In Chapter 6, we have discussed identification of periodically switched lin-

ear systems. The idea is to use underlying patterns of switching sequences

to estimate parameters. For some types of SLSs, such as, JMLSs, this idea

is still effective. In JMLSs, the switching signal is controlled by a transition

probability matrix; identification of the transition probabilities should be help-

ful to improve the estimation accuracy. One feasible approach is perhaps to

match the estimated probabilities with the one obtained by estimated switch-

ing signals. Related work can be found in a few references, see, e.g., [22, 33].

However, there still exist some issues that are not explored yet. For exam-

ple, estimating a transition probability matrix without knowing the number

of modes, and finding a transition probability matrix in the PWARX model.

More research effort is required to have a better understanding.
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