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Abstract 

 Single crystal rutile titania nanowires grown by solvothermal synthesis are actively being 

researched for use as electron transporting scaffolds in perovskite solar cells, in low detection limit 

ultraviolet photodetectors, in photoelectrochemical water-splitting, and in chemiresistive and 

electrochemical sensing. The electron drift mobility (μn) in solution-grown TiO2 nanowires is very low 

due to a high density of deep traps, and reduces performance in optoelectronic devices. In this study, 

the effects of molecular passivation of the nanowire surface by octadecylphosphonic acid (ODPA), on 

carrier transport in TiO2 nanowire ensembles, were investigated using transient space charge limited 

current measurements. Infrared spectroscopy indicated the formation of a highly ordered phosphonate 

monolayer with a high likelihood of bidentate binding of ODPA to the rutile surface. We report the 
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hole drift mobility (μp) for the first time in unpassivated solvothermal rutile nanowires to be 8.2 × 10-5 

cm2 V-1 s-1 and the use of ODPA passivation resulted in μp improving by nearly two orders of 

magnitude to 7.1 × 10-3 cm2 V-1 s-1. Likewise, ODPA passivation produced between a 2-3 order of 

magnitude improvement in μn from ~10-5-10-6 cm2V-1s-1 to ~10-3 cm2V-1s-1. The bias dependence of the 

post-transit photocurrent decays in ODPA-passivated nanowires indicated that minority carriers were 

lost to trapping and/or monomolecular recombination for small values of bias (< 5 V).  Bimolecular 

recombination was indicated to be the dominant recombination mechanism at higher bias values.  

KEYWORDS: self-assembled monolayer, nanorods, bottom-up nanofabrication, electrochemical 

anodization, nanostructured titania, photoconductivity, solar cells, photoelectrochemical, carrier 

dynamics. 

†  Electronic Supplementary Information (ESI) available.  see DOI:  
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1. Introduction  

TiO2 nanowire arrays grown by solvothermal synthesis are n-type, vertically oriented, 

monocrystalline wide-bandgap semiconductor nanostructures made of the rutile phase of titania which 

also exhibit a high photonic strength [1-4]. The absence of grain boundaries, presence of vectorial 

charge transport pathways and the formation of ohmic contacts with transparent conducting oxide 

(TCO) growth substrates make rutile NW arrays (Rut-NWAs) an interesting platform for optoelectronic 

applications. The strong Mie scattering in the submicrometer high index Rut-NWAs, the comparability 

of the nanowire and inter-nanowire dimensions to carrier diffusion lengths, and the inherent 

orthogonalization of charge separation and charge generation/collection processes in high aspect ratio 

nanorod arrays make Rut-NWAs particularly attractive for light harvesting applications [5-7]. For 

instance, high performance has been achieved through the use of Rut-NWAs as electron transporting 

scaffolds in dye-sensitized solar cells, halide perovskite photovoltaics and quantum dot-based depleted 

heterojunction solar cells [8-13]. Rut-NWA photoelectrodes have shown high activity for sunlight-

driven water-splitting and the photocatalytic degradation of organic compounds [14-21]. High gain 

ultraviolet photodetectors [22, 23], self-powered low response time photodetectors [24, 25] and 

chemiresistive gas sensors [26] have also been demonstrated using Rut-NWAs. The facile and low-cost 

solution-based growth process is a further positive attribute from the point of view of mass production 

and commercialization of Rut-NWA-based devices.  

In spite of the technological importance of Rut-NWAs indicated above, fundamental studies of 

carrier dynamics in Rut-NWAs are severely lacking, which in turn, prevents optimal design and usage 

of Rut-NWAs in various optoelectronic device applications. For instance, the hole mobility in Rut-

NWAs is unknown and the nature of electron-hole recombination processes in Rut-NWAs are a matter 

of conjecture. Only a handful of reports have attempted to directly quantify electronically relevant 
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parameters in Rut-NWAs.  We have previously shown that as-synthesized Rut-NWAs suffer from a 

high density of deep electron traps, which result in a diminished electron mobility of ~10-5-10-6 cm2V-

1s-1 [27]. The high surface area of Rut-NWAs automatically engenders a large number of surface 

defects which act as trapping states (NT  ≥ 1016 cm-3) [27]. Therefore, a suboptimal compromise is often 

accepted by choosing a large nanowire width (so as to reduce the number of surface traps/ per unit 

volume) but thereby also incurring the penalty of greater recombination due to higher retrieval lengths 

for photogenerated charge carriers.  Even after achieving such a compromise, the insidious effects of 

high trap densities and concomitant low carrier mobilities persist in the form of hysteresis and space-

charge limited current effects in the electrical characteristics of solar cells, long response and recovery 

times in photodetectors and chemiresistive sensors, accelerated recombination in photoelectrochemical 

cells, etc [28-31]. A proven superior approach is to passivate the surface in order to avoid the 

aforementioned trade-off and improve optoelectronic device performance [32]. Two generic 

passivation methods have been reported thus far - (i) the formation by atomic layer deposition of a thin 

shell of high quality TiO2 or ZnO coating the Rut-NWAs [14, 19, 33] and (ii) the use of a chemical 

and/or annealing treatment [34]. To the best of our knowledge, the results of ALD passivation of Rut-

NWAs have not been quantitatively measured, and have merely been inferred through performance 

improvements during empirical testing of the ALD-passivated Rut NWA-based solar cells or 

photoanodes for water-splitting.  On the other hand, chemical/annealing treatments have been 

demonstrated to reduce the surface state density in Rut-NWAs. The Feng group employed immersion 

in ammoniacal peroxide followed by annealing at 723 K to achieve a 20 fold improvement in the 

electron diffusion coefficient [34].  In this report, we utilize a third passivation method, namely the use 

of a phosphonate self-assembled monolayer (SAM), and demonstrate 2 orders of magnitude 

improvements in both the electron and hole drift mobilities in Rut-NWAs.  
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2. Experimental Details 

2.1 Fabrication 

Fluorine-doped tin oxide (FTO)-coated glass (TEC-15, 15 ohm/square) substrates were first cleaned 

with detergent followed by thorough rinsing in water, then cleaned in acetone, methanol in an 

ultrasonic bath and subsequently dried in a nitrogen jet.  The substrates were loaded into a 23 mL 

capacity, sealed Teflon reactor in a PARR acid digestion vessel containing 5 mL of H2O, 2.5 mL 

glacial acetic acid and 2.5 mL concentrated HCl.  0.2 mL titanium butoxide was then added drop-by-

drop and stirred until a clear solution was obtained. The hydrothermal synthesis was performed at 

180°C for 6 hours. The ODPA monolayer was formed by overnight immersion of the nanowire array in 

1 mM solution of ODPA in a 4:1 mixture of isopropanol and water. 

2.2 Characterization 

Morphological and structural characterization were performed using a Hitachi S4800 cold field 

emission scanning electron microscope and a Hitachi HF3300 transmission electron microscope 

respectively.   

2.3 Time-of-flight and Dark injection studies  

Metal electrodes were deposited onto the nanowires through a shadow mask in an electron beam 

evaporation system.  The samples were mounted such that deposition occurred at an oblique angle, in 

order to minimize the depth of penetration of the deposited metal between the nanowires.  Voltage bias 

was applied between the FTO:glass substrate and the metallic top electrode using a DC power supply. 

Charge carriers were optically injected into the sample from a nanosecond pulsed N2 laser 

(VSL337ND-S, Spectra-Physics) through the FTO:glass substrate which served as the transparent, 

blocking electrode. Transients were observed at room temperature and ambient air using an Agilent 

DSO1034B sampling oscilloscope using a terminal resistance of 50 Ω. To enhance our measurements' 
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signal to noise ratio (SNR), 256 single measurements were averaged, which increased the SNR by a 

factor of 16.  The current-voltage characteristics and capacitance of the samples was measured using a 

Keithley 4200 semiconductor parameter analyzer equipped with a CVU module. For dark injection 

measurements, application of the voltage step and recording of the dark injection transients were 

performed using a Keithley 4200 semiconductor parameter analyzer equipped with a Model 4225 ultra-

fast pulse measurement unit (PMU).  The rise time of the voltage step used was as small as 70 ns.  

3. Results and Discussion 

3.1   Carrier drift mobilities in unpassivated monocrystalline rutile-phase TiO2 nanowires 

We used time-of-flight (TOF) measurements in the space charge limited current (SCLC) regime, to 

probe carrier transport in bare (unpassivated) and SAM-coated Rut-NWAs. Such large signal TOF 

measurements typically yield clear transit times even for dispersive and highly insulating materials [35-

37], while such a determination is more ambiguous and often impossible using small signal TOF data. 

A significant advantage of the TOF technique is its ability to potentially measure the transport 

characteristics of both majority and minority carriers by merely varying the sign of the bias applied 

during the drift of charge carriers generated by pulsed optical injection. This is in contrast to methods 

such as CELIV, steady-state SCLC, IMPS, etc. which describe the behavior of majority charge carriers 

alone [38, 39]. Finally, transient SCLC measurements are also able to provide significant insights into 

charge carrier recombination processes [40]. The experimental configuration used for transient SCLC 

measurements is shown in Figure S1. We supplemented SCLC-TOF measurements with time-resolved 

photoluminescence and dark injection to obtain a more complete picture of carrier dynamics in Rut-

NWAs.   
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Figure 1a shows the oscilloscope trace obtained from Rut-NWAs grown on fluorine-doped tin oxide 

(FTO)-coated glass substrates capped with a Ti top electrode. The Ti electrode was deposited on top of 

the nanowires by oblique angle evaporation to minimize penetration of the metal into the nanowire 

array. Field emission scanning electron microscope (FESEM) images in Figure S2 indicate oblique 

angle evaporation to be highly effective in generating intimate contacts to the nanowires while limiting 

penetration into the inter-nanowire spaces. Illumination of the Rut-NWA through the FTO:glass by a 

nitrogen laser (337 nm, 4 ns pulse width) generated a high concentration of electron-hole pairs (1.7 × 

1021 cm-3) close to the nanowire-FTO interface due to 337 nm photons heavily absorbed by rutile, 

whose absorption coefficient (α) equals ca. 2 × 105 cm-1 @337 nm [41]. Ti generated a blocking 

contact for electrons in this case. When a positive bias was applied to the Ti electrode, the 

photogenerated holes were collected almost immediately (at very short time-scales compared to the 

duration of the experiment) while the electrons drifted through the nanowires and were collected by the 

Ti electrode.  
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Figure  1. SCLC photocurrent transients for different values of bias following the irradiation of Rut-NWAs by a 4 ns optical 

pulse from a N2 laser (a) Electron transit measured using a sample with Ti top metal electrode at a positive potential of 2 V 

with the inset showing a cross-sectional FESEM image of the morphology of the Rut-NWAs and (b) Hole transit measured 

using a sample with Al top metal electrode at various negative potentials. In each case, illumination was through the FTO 

substrate, which was electrically grounded.   
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A characteristic local maximum or cusp in the transient response for electron transit was observed at 

438.5 μs (tcusp) as shown in Figure 1a from which the carrier mobility (μn in this case) might be 

obtained as    
2

n

cusp

Kd

t V
µ =     (1)  

where d is the distance over which the electrons drift, in turn given by the length of the nanowires 

minus the penetration depth of the absorbed radiation. V is the bias applied across the nanowires and K 

is a constant dependent on the ratio (L') of photoinjected charge to the capacitive charge. When L' is 

unity, K equals 0.786. For the illumination intensity used in our experiment, the value of K was 

determined to be 0.5 [42]. The electron mobility was found to be 4.6 × 10-6 cm2 V-1 s-1 from Equation 

(1).  This value, together with initial value (j0) and maximum value (jm) of  the transient photocurrent, 

enabled the setting of a range for μn in bare Rut-NWAs of (4.3 - 7.9) × 10-6 cm2 V-1 s-1 (see Section S1), 

in broad agreement with the values reported previously by us and others [27, 43]. In order to observe 

the transit of holes, an Al top electrode was formed by oblique angle evaporation to ensure a blocking 

contact for holes. The transient response for holes, shown in Figure 1b, showed transit times inversely 

proportional to applied bias as expected and the hole drift mobility was estimated to be 8.2 × 10-5 cm2 

V-1 s-1 in unpassivated Rut-NWAs. Increasing negative bias produces a greater steady-state electron 

density in the nanowires due to majority carriers injected from the contacts and promotes 

recombination as manifested through the jm values decreasing below their theoretical value (See 

Section S1). The principal reason for the low electron drift mobility and resulting extremely slow 

electron transport in Rut-NWA devices was found to be a high density of deep-level traps due to 

surface states [27, 34].    
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Figure  2. Plots of charge collected vs. time during SCLC-TOF measurements on a Rut-NWA sample with a Ti top 

electrode for different values of bias for (a) Electrons and (b) Holes.  In each case, illumination was through the FTO 

substrate, which was electrically grounded.   

      Figure 2 shows the charge collection transients for the Rut-NWAs as a function of bias for a 

duration of 330 μs following the laser pulse. The much larger number of collected holes (~0.25 C for 

−5 V bias) vs. collected electrons (~0.022 C for 5 V bias) at similar time-scales provides indirect 

confirmation of the hole drift mobilities extracted from the TOF measurements (Figure 1) being larger 

than the corresponding electron drift mobilities. The higher value of the hole drift mobility in 

comparison to the electron drift mobility implies weaker trapping of holes in comparison to electrons, 
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and is unusual compared to anatase nanoparticles and nanotubes that are characterized by faster and 

more efficient trapping of holes in comparison to electrons [44, 45]. 

3.2   Structure and composition of Rut-NWAs 

We performed high resolution transmission electron microscopy (HRTEM) to both verify the 

structure of the nanowires and determine the chemical composition. The lattice fringe spacing of 0.32 

nm in Figure 3a (see also Figure S3) corresponds to the (110) crystal plane of the rutile phase of TiO2. 

In addition to the expected presence of Ti and O in TEM line scans (see Figure S4),  chlorine and 

carbon were found to be significant impurities homogeneously distributed along the nanowire as shown 

in Figure 3b.  Cl− ions are adsorbed on to the [110] faces of rutile during the hydrothermal growth 

process, and the said adsorption process is also responsible for the formation of nanowires.  It is 

however noteworthy that the chlorine impurities survive the rinsing, drying and high vacuum 

evacuation (for HRTEM) processes the Rut-NWAs were subjected to, indicating chemisorption instead 

of physisorption. Carbon atoms in the precursors (titanium butoxide, acetic acid) may be incorporated 

into the rutile lattice in addition to surface adventitious carbon. Cl− ions and oxygen vacancies are also 

the likely source of surface states, which explains why the ammoniacal peroxide treatment reported by 

Sheng et al, was effective in reducing the surface states and improving the transport of majority charge 

carriers [34].    

Figure 4 displays the vibrational spectra for Rut-NWA samples immersed overnight in solutions of 

ODPA. The Fourier transform infrared (FTIR) spectroscopic data were collected in attenuated total 

reflectance (ATR) mode in Figure 4 and diffuse reflectance (DRIFTS) mode in the inset of Figure 4. In 

Figure 4, the symmetric [νs(CH2)] and antisymmetric methylene stretching [νa(CH2)]  frequencies for 

long chain alkyl groups are seen as reflectance troughs at ~2850 cm-1 and 2920 cm-1 respectively [46], 

Page 11 of 28 AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 
 

for ODPA-coated Rut-NWAs. The symmetric and antisymmetric stretching frequencies of the terminal 

CH3 groups [47] at ~2870 cm-1 and 2950 cm-1 respectively are faint but observable for ODPA-coated 

nanowires.  The above observations confirm the presence of the ODPA SAMs on the rutile nanowires 

and also indicate the monolayer to be highly ordered.  

 

Figure 3. (a) HRTEM image of a single TiO2 nanowire (b) EDX line scan of a single TiO2 nanowire showing (c) chlorine 

content and (d) carbon content along the cross-section of the nanowire.   
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Figure 4.  FTIR spectra of SAM-coated Rut-NWAs (a) Collected in ATR mode and (b) Collected in DRIFTS mode.  The 

Inset of (a) is a magnified view of the 2800-3000 cm-1 spectral region for NA-coated nanowires. 

     Hydrogen bonding interactions, differing degrees of metal binding and overlapping absorption 

peaks of TiO2 greatly complicate the analysis of the IR spectra of phosphonic acids adsorbed on TiO2 

[48, 49]. Significant dips in the reflectance are observed at the characteristic frequencies (1264 cm-1, 

1111 cm-1) for phosphonate binding to TiO2 [50]. The dips (peaks) corresponding to the P−OH and 

ν(PO3) vibrations of unbound ODPA at 1075 cm-1 and 950 cm-1 are absent in both the ATR spectrum 

and DRIFTS spectrum of ODPA-rutile TiO2 while dips corresponding to the ν(P=O) and group ν(PO3) 

vibrations of the free acid, albeit very weak in intensity, are still present at 1242 cm-1 (red-shifted from 

1226 cm-1) and 1012 cm-1 respectively [50-53]. These results taken together with the DRIFTS spectrum 

of ODPA in the inset of Figure 4 which exhibits a trough at 1119 cm-1, attributable to a P=O stretching 

mode, are strongly suggestive of bidentate bonding to the oxide surface [54]. Furthermore, theory 

suggests that tridentate binding of phosphonic acids is unstable on the rutile (110) surface in contrast to 

highly stable monodentate- and bidentate binding configurations [48].  The peaks at 1740 cm-1 and 
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1550 cm-1 in the ATR spectrum, close to the positions of C=O and C−O stretches of carboxylate groups 

may indicate the residual presence of acetate adsorbates from the hydrothermal growth process.  

3.3  Carrier dynamics in ODPA-coated Rut-NWAs 

 

Figure  5. Electrical behavior of ODPA-coated Rut-NWAs (a) SCLC photocurrent transients for electron transit with Pt top 

metal electrode at positive potentials (b) SCLC photocurrent transients for hole transit with Al top metal electrode at 

negative potentials (c) Current-voltage characteristics for Pt top metal electrode at positive (black) and negative (green) 

potentials vs. ground and (d) Post-transit hole extraction transients using ODPA-coated nanowires with Al top metal 

electrode at negative potentials. For (a), (b) and (c), illumination was through the FTO substrate, which was electrically 

grounded.   
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      The transient SCLC response plots of ODPA-coated rutile NWs for both positive and negative 

values of bias, are presented in Figure 5a and Figure 5b respectively. For ODPA-coated rutile NWS, 

clear cusps for electron transit were obtained with Pt top contacts (Figure 5c). However, clear cusps 

were not obtained for holes due to the hole transit times being smaller than the system response times 

(Figure S5). With Al top contacts, the resistance (R)-capacitance (C) products were small enough for 

the system RC time constants to be smaller than the minority carrier transit times, and clear cusps for 

holes transit were observed as shown in Figure 5d. The maximum transient space charge limited 

current Δjmax increased roughly parabolically with applied bias for positive values of bias (drift of 

electrons) in Figure 5a (see Section S2) [55]. However, Δjmax increased sub-parabolically with applied 

bias for negative bias values because of minority carrier recombination reducing the maximum current. 

The J-V characteristics of ODPA-coated Rut-NWAs are plotted on a log-log scale and found to be 

nearly symmetrical for positive and negative values of bias as seen in Figure 5c. ODPA-coated Rut-

NWAs exhibit a long ohmic region in their J-V characteristic for bias values smaller than 1 V in 

absolute magnitude which then transitions to a SCLC regime for higher bias values. From the SCLC fit 

to the J-V characteristic at positive bias (pink line in Figure 5c), a μn value of 2.7 × 10-4 cm2V-1s-1 was 

extracted using the Mott-Gurney expression while μn was extracted to be 4.3 × 10-4 cm2V-1s-1 using 

Equation (1) and the times corresponding to the current maxima in Figure 5a. Dark injection 

measurements (Section S2 and Figure S6) indicated a slightly higher μn value of 2.8 × 10-3 cm2V-1s-1 in 

ODPA-coated NWs. Thus the electron drift mobilities determined using three independent 

measurements are within roughly an order of magnitude of each other. The μp value in ODPA-coated 

NWs was determined to be 7.1 × 10-3 cm2V-1s-1 (Figure 5b). Both the electron- and hole drift mobility 

values in ODPA-coated Rut-NWAs are nearly two orders of magnitude larger than the corresponding 

values obtained for bare Rut-NWAs indicating the effective passivation of surface states by long chain 
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alkanephosphonate monolayers.  An equilibrium free carrier concentration (n0) value of 1.3 × 1016 cm-3 

was obtained from the ohmic region of Figure 5c.   

      The post-hole-transit photocurrents in Figure 5b and Figure S5, were found to be fit well by 

biexponential decays consisting of one time constant ≅ 2 × 10-6 s and another component ≅ 4 × 10-5 s, 

nearly independent of bias up to a bias of ~ −5 V. We attribute these time constants to characteristic 

capture times of deep traps and trap-mediated monomolecular recombination.  For bias values of ~ 5 V 

and higher, a noticeable change in character occurs with the appearance of a faster decay component ≅ 

4 × 10-7 s. Figure 5d shows the post-transit SCLC carrier extraction currents due to their value in 

providing insights into recombination processes [56, 57]. The change in character of the post-transit 

photocurrent decays is also observable in Figure 5d wherein two clear breaks in slope are seen for −5 V 

and much faster decays for bias values of −5 V and higher. Radiative bimolecular recombination is 

typically dominant for carrier densities of 1017-1021 cm-3 and is therefore expected in the photoinjected 

plasma close to the FTO electrode [57]. However, TRPL measurements of ODPA-coated Rut-NWAs at 

zero bias (not shown) showed a negligibly small PL emission, likely due to the dominance of non-

radiative trap-mediated monomolecular recombination and also due to the extremely small value of the 

bimolecular recombination coefficient (B ~ 10-14 cm3s-1) in single crystal rutile [58]. However, as the 

negative bias on the Al electrode is increased, a higher steady state concentration of electrons in the 

TiO2 nanowires is expected due to the injection of majority carriers in the SCLC regime. Consequently, 

the probability of direct Langevin-type bimolecular recombination of drifting photogenerated holes 

with steady-state electrons injected from the contact, is enhanced with increasing bias. At −5 V, 

monomolecular and bimolecular recombination coexist while bimolecular recombination dominates for 

higher values of bias.   
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4.  Conclusion 

The solution-based formation of self-assembled phosphonate monolayers on metal oxide surfaces at 

low temperatures provides an interesting alternative to ALD passivation.  Through the use of ODPA 

passivating SAMs, we demonstrated nearly 100-fold improvements in both the electron and hole drift 

mobilities of hydrothermally grown monocrystalline rutile-phase TiO2 nanowire arrays. The well-

known ambient and UV stability of alkanephosphonate monolayers means that phosphonate SAMs 

offer a route forward to reduce surface traps in TiO2 nanostructures and improve the performance of 

TiO2 nanowire-based photodetectors, photoelectrodes, photovoltaic electron transport layers and 

photocatalysts.  
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Figure S1.  Schematic of the experimental configuration used for SCLC-TOF studies 

 

(a) 
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Figure S2.  FESEM images of the results of (a) Ti and (b) Al metallization on Rut-NWA 

samples.  Due to the use of obliquely angle deposition to deposit the top metal electrodes, 

penetration of the metal in between the nanowires was avoided.   

Figure S3. Estimation of the spacing of lattice fringes in the HRTEM image of Fig. 3a 

(b) 
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Figure S4. Results of TEM EDX line-scans of the Rut-NWAs shown in Fig. 3b for all elements 

Section S1. Initial and final values of j(t) in SCLC-TOF measurements 

The initial value (j0) and maximum value (jm) of the transient space charge limited photocurrent 

density can be used to estimate the carrier mobility from the expressions
1
 

   
2

0 32

n
V

j
d

εµ
=      (1) 

and    
2

3
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V
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d
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=     (2) 
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Single crystal rutile is a highly anisotropic material. Since the nanowires are oriented along the 

[002] direction, the value of 159 for εr,||c-axis was used for the relative permittivity of Rut-

NWAs.
2
 While estimation of the mobility from Eqn (1) is most convenient, estimation of the 

mobility from Eqn (2) is most reliable; however the initial current j0 is not always observable in 

the oscilloscope's small signal AC mode unless the initial transient current peak due to screening 

and system response time delays has a very fast decay in comparison to the carrier transit time. 

While a maximum in the current is nearly always observed, the use of Eqn (3) is the least reliable 

method due to the trapping- and recombination-mediated decrease in the current maxima.  

However, the maximum current, when it exists and clearly attributable to carrier transit, can be 

used to place a lower bound on the mobility estimate. 

Section S2. Relationship of tcusp to transit time in dark injection 

In dark injection-type transient SCLC measurements, the maximum charge injected by the 

voltage pulse is limited to CV where C is the sample capacitance and V is the peak magnitude of 

the applied pulse. This is in contrast to SCLC-TOF measurements wherein the photoinjected 

charge can be orders of magnitude greater than CV. Only majority carrier transport may be 

probed in dark injection measurements. The transit time is given by 0.786 × tcusp, due to which 

the electron mobility is given by 

2

0.786
n

cusp

d

Vt
µ =     (3)  
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Figure S5.  SCLC photocurrent transients for different values of negative bias applied to Pt top 

electrode following the irradiation of ODPA-coated Rut-NWAs by a 4 ns optical pulse from a N2 

laser. For bias values of -0.5 V to -3 V, the post-transit transient photocurrents were fitted to 

biexponential decays, which are shown as solid black lines. For all the fitted decays, the range of 

the faster component was 1.9-5.2 × 10
-6

 s while the slower component had a range of 1.9-4.7 × 

10
-5

 s. 
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Figure S6.  Dark injection current transient for ODPA-coated nanowires with Al top metal 

electrode at negative potentials. 
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