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Abstract

Megavoltage electron beams are commonly used for radiotherapy treatment due in
part o their advaniageous dose deposition characteristics. Because electrons interact heavily
with the clectromagnetic field of the medium traversed, electron beams have a characteristic
maximum penctration into the material, which is quite shallow compared to megavoltage

photon heams.

This thesis deals mainly with the experimental verification and further development
of the electron dose calculation algorithms implemented in the Alberta Treatment Planning
(ATP) system (Battista ef al 1984). The stationary beam algorithm is based on the pencil
beam algorithm developed at the M.D. Anderson Hospital (MDAH) by Hogstrom et al
(1981). The theory on which the algorithm is based is reviewed, and the necessary

approximations in the theory and its computer implementation are discussed.

Chapter III presents of a series of three studies investigating the performance of the
stationary beam algorithm. Experimental data is presenied which shows that the MDAH
algorithm performs reasonably well, but has deficiencies in certain circumstances. The
progression of phantoms from 2D to 3D geometry is also discussed, with implications for

3D treatment planning.

The MDAH arc electron pencil beam algorithm (Flogstrom er al 1989) is validated in
chapter V. The results show some systematic discrepancics compared to measuremer:_. A
gualitative argument is presented to show that the discrepancies occur as a result of the
algorithm’s failure to model both large angle scattering and range straggling of the

electrons.

The final component of the thesis presents an empirical solution to the problem of
range straggling in the MDAH algorithms. The solution is similar to methods proposed by

Werner er al (1982) and Lax er al (1983), but is derived from measured data. Incorporating



Abstract

the empirical modification into the stationary beam and are electron algorithms gives better
agreement with measurement tor homogeneous phantoms. Monte Carlo experiments show
that this method is valid for heterogeneous slab media, which implies that the empirical

modification should apply to heterogencous phantoms.
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page 1

I, Intr ion

Megavoltage clectron beams are commonly used for radiotherapy treatment,
because of their advantageous dose deposition characteristics. Microscopically, both
photons and electrons deposit energy in the same way, by setting electrons in motion.
Macroscopically, the energy deposition occurs very differently. Because they are
uncharged, high energy photons can penetrate a large amount of material before interacting
and depositing energy. Electrons, on the other hand, interact heavily with the
electromagnetic field of the medium traversed, and have a characteristic maximum

penetration into the material.

Figure I.1 shows a percentage depth dose {pdd) for a 16 MeV electron beam
incident on a water phantom. The horizontal axis is the depth in the water phantom, and the

vertical axis is the dose deposited (energy per unit mass) in the water, normalized 10 a

maximum of 100%. The surface dose (D) is generally between 70-95% for clinical
electron beams. The dose rapidly reaches a maximum (at Rq) Within a few centimeters,
and then falls off quickly to an approximately constant bremsstrahlung ‘tail’ (D,). The

bremsstrahlung tail consists of photons generated by electron interactions in the head of the

treatment machine, and in the water.
The 80% depth (Rgyy) is the maximum depth that can be treated with a dose of

90% * 10%. and is sometimes referred to as the therapeutic depth. Some radiotherapists
prefer better homogeneity of the dose distribution, and therefore prefer the 90% depth
(Ryy). The 50% depth (Rgy) is approximately proportional to the average energy of the
electron beam at the surface of the water phantom (Brahme and Svensson 1976). The
practical range (Rp) is indicative of the most probable energy at the surface, and is obtained

by finding the depth at which the tangents of the depth dose curve at Rsq and D, intersect.
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Figure I.1. Percentage depth dose for 16 MeV beam showing parameters characterizing
the depth dose. A 9 MeV depth dose is shown for comparison.
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Figure 1.1 also shows a depth dose curve for a9 MeV beam as a dashed curve. For
a given treatment machine, the surface dose generally increases with increasing initial
energy of the beam. The therapeutic depth, 50% depth, and practical range also increase
with increasing energy. The higher energy electrons also produce more bremsstrahlung,
which implies that D, also increases with increasing beam energy. The relationship
between the incident energy and the parameters D¢, D, Ry, and Rg, is very much

dependent on the exact details of the electron beam subsystem, shown in figure 1.2.

A narrow beam of megavoltage electrons is produced in an accelerating waveguide
(not shown)t, and is delivered to the electron beam subsystem using an electromagnetic
optical system. The narrow beam is dispersed by one or two thin scattering foils*. As an
alternative, some manufacturers use magnets to scan a defocussed narrow beam over a
broad area. This implies less bremsstrahlung contamination in the beam. The broadened
beam then passes through the monitor ion chamber that is used, among other funcuons, to
control the beam’s ‘on’ time. The secondary collimator provides the initial collimaticn for
the electron beam”. The electron applicator attaches to the accessory mount of the LINAC,
and provides the final collimation for the beam. The applicator is usually in contact with or
very close to the patient. Without the electron applicator, the electron scattering in the air
space between the secondary collimation and the patient surface would give a very diffuse
beam ed

ve, which is usually nint desirable.

&

The exact configuration and composition of the abnve coitiponents affects the final

beam quality. This causes variations of Dy, D, R o and Ry from machine to machine,

for a given initial beam energy from the accelerating waveguide. For example, if the

Some electron treatment machines use a betatron as a source of high energy electrons.

t To produce a photon beam, the scattering foil is removed from the narrow beam’s path,
and a thick, high atomic number target is introduced into the beam path..

In some accelerators, the scatiering foil is upstream of the primary colliraator, as well.
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Figure 1.2. Schematic diagram of the clectron beam subsystem (Varian Clinac 2100C) for
stationary electron beams.
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scattering foil is chosen 1o give a more isotropic fluence, then more bremsstrahlung is
usually produced. If the scattering foil is thinner, there is less bremsstrahlung
contamination, but the fluence is not uniform. The applicator must then be used to scatter
electrons into the field, to flatten the dose profile, rather than just collimating the beam. The
choice of monitor chamber composition also affects the properties of the electron beam

(El Khatib ez al 1991).

Most modern medical linear accelerators are isocentric machines, and a typical
treatment machine geomeiry is shown in figure 1.3. Note that the treatment couch and
gantry both rotate about a single point in space, called the isocenter. By positioning a
treatment volume at the isocenter, the treatment couch and gantry can be rotated to any
position and still maintain the beam axis through the treatment volume. This resulis in
casier multiple ficld treatments for photon beams. For electrons, however, the penetration
of the electron beam is usually insufficient to allow for multiple field treatments. There is
also the added complication of the electron applicator that usually comes very close to

isocenter, and could interfere with the safe movement from one gantry position to another.

In order to successfully treat a patient, the treatment volume must first be identified,
using clinical examination, computed tomography (CT), or a simulator. A simulator is a
diagnostic X-ray machine that mimics the gantry and treatment couch movements of the
wreatment machine. After identifying the treatment volume, the energy and size of the
needed electron field are chosen. The energy is chosen by matching the therapeutic depth of
the electron beam to the maximum depth of the treatment volume. Simiiarly, the size of the
clectron field is chosen to cover the projection of the treatment volume onto a plane
perpendicular to the beam axis. If the irradiated tissue is homogeneous and water-like, then
treatment can continue. If heterogeneities (e.g., lung, bone) are within the treatment field,
or the patient surface is not flat, a calculation of the effect of the heterogeneities and/or

surface irregularitics should be made. This is usually done on a treatment planning
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computer, and may lead to moditication of the treatment geomelry to produce the desired
dose distribution. The final stage is verification of the dose delivered, which can be
measured on the surface of the patient using thermoluminescent crystats {TLD) or small

semiconductor detectors.

This thesis deals mainly with the experimental verification and further development
of the electron dose calculation algorithms implemented in the Alberta Treatment Planning
(ATP) systcm (Batista ez al 1984). The stationary beam algorithm is based on the pencil
beam algoritam developed at the M.D. Anderson Hospital (MDAH) by Hogstrom ez al
(1981).The nicxt chapter reviews the theory upon which the MDAH algorithm is based. The
necessary apprroximations in the theory and its computer implementation are discussed.
Thapter III consists of a series of three studies investigating the performance of the
stationary beam algorithm. Experimental data is presented which shows that the MDAH
algorithm performs reasonably well, but has deficiencies in certain circumstances. The
progression of phantoms tfrom 2D to 3D geometry is also discussed, with implications for

3D treatment planning.

The MDAH arc clectron pencil beam algorithm (Hogstrom et al 1989) is validated in
chapter I'V. The results show some systematic discrepancies compared to measurement. A
qualitative argument is presented to show that the discrepancies occur as a result of the
algorithm’s failure to model both large angle scattering and range straggling of the

electrons.

An empirical solution to the above problem has been found and is presented in
chapter V. The solution is similar to methods proposed by Wemer et al (1982) and Lax er al
(1983), but is derived from measured data. Incorporating the empirical modification into
the stationary beam and arc electron algorithms gives better agreement with measurement

for homogeneous phantoms. Monte Carlo experiments show that this method is valid for
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heterogencous slab media, which implies that the empirical modification should be valid for

heterogencous phantoms.
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I1. Theory

Electron transport is a very complicated process. Because of the small mass of the
electron, there is a large amount of scattering and energy loss associated with the transport.
The energy losses can be collisional, imparting energy t0 ‘free’ electrons in the medium,
and radiative, creating bremsstrahlung photons. This chapter will not cover the topic of
electron transport in great detail, but will give some of the fundamental aspects governing
the scattering and energy deposition. The calculation algorithms used by the Alberta
Treatment Planning system (Battista et al 1984) to calculate dose deposition due to electron
beams, will be described along with the underlying approximations in the transport theory
and the implementation. This will be used as a base for the following chapters, where the

algorithms will be tested experimentally.
A, Scattering Power

The most important interaction mechanism for electrons is with the electromagnetic
ficld of the material through which the electron is travelling. Multiple Coulomb scattering
refers 10 the scattering of electrons due to the electromagnetic field of the nucleus. Because
of the mass of the nucleus, this is mostly an elastic process. If we let §(@)d€2dx be the
prohability that an electron scatters into the solid angle d€ at angle O, when traversing 2

thickness of material dx (g/cm?), then (Mott 1929)

E(©@)ddx ——( T (1 ﬁ‘sm7(9/a)) d<2dx (1L.1)

sin*(9)

where N is Avogadro’s number, Z is the atomic weight and A is the atomic number of the

material. The relativistic momentum and velocity of the electron are p and 3, and r, and 2,

are the classical electron radius and mass of the electron, respectively. The finite size of the

nucleus restricts scattering events to angles smaller than some angle 9, .- Screening

effects due to the atomic electrons also restrict scattering events to angles larger than O, ;.

Recommended values of these angles are (ICRU 1984a)
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where ais the fine structure constant (}/437) and tis the ratio of the kinetic energy of the

electron to its rest mass.

Because of the long range of the electromagnetic interaction, the clectron has a high
probability of undergoing a detlection in the thickness dx. This implies that the nuclear
scattering is a statistical process. Therefore the change in mean square scattering angle is a

meaningful quantity, and is given by (Rossi and Greissen 1941)

emax
(Vp) = fi-@ = [&©) 27040 (1L4)
e

min

where (T7/,) is the mass scattering power. Evaluating equation (IL4) gives (ICRU 1984a)

2r 1
_T:_ EN( L’ZzJZ {ln 1 + _(:)ﬂ‘.ﬂ -1 +11 + —6-’—"—0—5 } (IL5)
. P (7+1)B O pin Opin

as the mass scattering power of the clement. For compounds and mixtures, the scatiering
_power is a weighted average (percentage mass) of the scattering powers of the clements.

Equation (IL.5) only considers the scattering of the electrons from the nucleuvs. Tic

accepted method of accounting for additional electron-clectron scattering is to increase the

scattering power by replacing Z2 by Z(Z+1) in equation (IL.5).
B. Stopping Power

Unlike scattering from the nucleus, electron-electron scattering is not an elastic
process for the incident electron, because the masses of the scatterer and target are equal.
Because Uie incident and target particles are not distinguishable, the cnergy transferred in an
electron-clectron collision is less than half the incident energy. Most of the time, the encrgy

transferred is very small and leads to atomic excitation. Occasionally, the incident electron
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will transfer enough energy to ionize the atom, and the electron with the lower energy after

the collision, is a delta ray.

As with multiple Coulomb scattering, the distance between interactions is small,
leading to coniinuous energy loss of the electron on a macroscopic scale. The energy loss is
characterized by the collisional mass stopping power, (S/p) copr Which is the cnergy lost by
the incident electron per unit length of material traversed. For therapeutic energies
(1-30 MeV) and tissue-like atomic numbers (Z = 6), the collisional mass stopping power

. . 2 -
is relatively constant at =2 MeV cm~ g L

The electron can also lose energy to bremsstrahlung radiation in the electromagnetic
ficld of the nucleus, and is characterized by the radiative mass stopping power, (5/p) rad
The probability of bremsstrahlung radiation increases with the atomic number, Z, of the
material traversed and the energy of the electron. For therapeutic energies and tissue-like
atomic numbers, the radiative stopping power is small compared to the collisional stopping
POWLT.

C. Dose Calculation

1.  General equation

The ultimate goal of treatment planning is to calculate the dose deposited in the
patient. For all types of ionizing radiation, the final dose deposition is due to electrons,
cither directly from the radiation beam, or set in motion by the radiation beam. If we define
the fluence W E.Qr)dEJS as the number of zlectrons at point 7 with energy in the interval
JE sround E which cross a unit area with normal €2, within dQ of £2, then it can be shown
that the dosce at point 7 is given by (ICRU 1984a)

dD(EL2.r)

o0 i 1
D =- | Oj e dE.Qur) + E }dEdQ (IL6)

4

where s is the mass traversed per unit surface area along the direction £ The first term is
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simply the collisicnal loss of the electrons as they cross the small volume around 7, while
the second term is the energy deposited by electrons stopping in the volume.

To solve equation (I1.6), we need to obtain dX(E,£2r) by solviag a transport
equation, which is very difficult for the general case. It is a coupled equation even for pure
electron beams, because primary electrons produce bremsstrahlung photons. which in turn
can set more electrons in motion. The Monte Carlo method is a practical method for
obtaining accurate solutions to equation (IL6) for simple geometries.

2. _Monte Carlo merthods

The difficulty of solving equation (I1.6) analytically, for “realistic” gecometrics, has
led to Monte Carlo computer simulations of the radiation transport. The Monte Carlo
method tries to reproduce the fluence, X E,S£2r), by repeated simulations oi the wansport
of single particles. By transporting enough particles, the calculated fluence should approach
the actual fluence. The amount of computing time necessary to do the simulation depends
on many factors such as transport geometry, energy of the particles, and the resolution
required. At the present ime, the Monte Carlo method is the most accurate general method
of calculating dose and fluence distributions in radiotherapy beams, but computing time for
realistic geometries is prohibitive for any sort of routine use. itis however, a useful tool for
understanding aspects of radiation transport and calculating dose or fluence in cases where
measurements would be impractical or impossible. The EGS4T code system (Nelson er al
1985) is described below, although the general principles hold for many other Monte Carlo

codes.

The general principle of Monte Carlo simulations is quite simple. The user starts by

defining the geometry of the phantom materials, including scatiering properties, particle

T Electron Gamma Shower, version 4.
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creation probabilities, and so on. This step also includes describing the quantities of interc st
(eg. fluence, dose) and the regions where these quantities should be ‘scored’. The next step
is to create a particle to transport through the specified geometry. The initial conditions of
the particle (position and velocity) may be randomly chosen from a distribution to more
accurately simulate a ‘real’ beam. This particle is then transported through the phantom
geometry and if the particle passes through a region of interest, we accumulate (or score)
the data. Any particles created by the original incident particle are transported through the
geometry as well. The “history’ is complete when the primary particle and all of its progeny
complete their transport, by leaving the phantom geometry or falling below a user-defined
cutoff energy. A complete simulation usually consists of several hundred thousand or
several million histories, and can take several hours or days of computing time. Provided
that the Monte Carlo code is performing properly, the Monte Carlo solution will approach
the ‘true’ solution with the variance of the difference between the two solutions
approaching zero as Y, where n is the number of incident electrons in the simulation. To
reduce the uncerta. y of the Monte Carlo solution by a factor of two, four times as many
histories are needed, since the uncertainty of the Monie Carlo results is proportional to the
square root of the variance. To provide an estimate of the standard error of the Monte Carlo
results, a Monte Carlo run is divided into ‘batches’, and the results of the batches are

compared using standard statistical techniques.

The EGS4 code system is a Monte Carlo code originally intended for use in very
high cnergy electromagnetic cascades of electrons and photons. The code has been
extended for use in the therapeutic ensrgy range and is now used extensively by medical
physicists. The user must supply two subroutines, one to describe the geometry of the
simulation. and another to accumulate the calculated data. The basic method for
transporting photons and electrons in the code is different. High energy photons do not

interact very much with the electromagnetic field of the material traversed, which gives
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them a macroscopic mean free path. Itis therefore computationally practical to simulate
every single interaction for photons. However, the distance between interactions for
electrons is on a microscopic scale, so it is not computationally feasible to simulate every
interaction discretely. The electrons are transported in macroscopic steps, and multiple
scattering theory is used to calculate the resultant electron parameters. The quality of the
results depends on the choice of electron ransport parameters, particularly step size. In
order to remove this dependence, the PRESTA? algorithm (Biclajew and Rogers 1986) was
developed and incorporated as an option within the EGS4 code system. The PRESTA

algorithm has been shown to be independent of step size.
D, Fermij-Evges Theory

In principle, solving the Boltzmann equation for electron transport is not difficult,
but adapting the problem to clinical electron beams causes several problems. Even for
monoenergetic, monodirectional beams, the computing time needed is unrealistic from a
clinical perspective. For routine treatment planning, beam calculation times of more than a
few minutes are unrealistic. Even though computing speed is quickly increasing with
advances in computer hardware, full calculations typically take many hours or days of CPU
time. As a compromise between accuracy of results and computing time, most modern
electron beam calculation algorithms use an approximaton to the Boltzmann transport

equation known as Fermi-Eyges theory.

Fermi-Eyges theory describes the probability distribution for an clectron entering a
semi-infinite medium. For simplicity, we will start the electron at x,y,z=0), with an initial
direction along the positive z axis. We will also assume that the medium is homogencous.

At a depth z, the electron is described by its spatial coordinates (x,y), and its direction

1 Parameter Reduced Electron-Step Transport Algorithm.
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projected onto orthogonal planes (6, 6y). The probability of an electron having coordinates

(x,y,0x.8y) is given by f(z,%,y,6x,0y)dxdyd 6xd 6y.

Since we have azimuthal symmetry about the z axis, the x and y scattering
probabilities are independent. This implies that

f(z,x,y,6x.6y) = f(z.x,6x) X f(z,y,6y) (I11.7)
where the probability distributions on the right hand side of equation (I1.7) are identical

except for the x and y variables. Therefore, obtaining a solution for fiz,x,6y) gives the

complete probability distribution through equation aLr7.

1. Fermi’s derivationt

If we let p(6y)dBydz be the probability that a particle traversing a thickness of

material dz scatters into an angle d6y, then

P(B) = p(—6y) , (IL.8)
[p(60d6; = 1 , (IL.9)
fowptondo =0 (I1.10)

and

d6%

-
<

j 9.?{1)(9.:)11 6y = dg,% = dz (d1.11)

define the constraints on p(8y). Equations (11.9) through (11.11) assume that the scattering
angles are small, and p(6y) is sharply peaked about 6,=0. Therefore, we can extend the

iniegrals from —oo 10 +oo, rather than from -7 to +7.

A differential equation for the distribution function can be formulated by

considering the change in the distribution function from the coordinate z to z+Az. The

* Rossi and Greissen 1941, page 265.
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lateral (x) distribution changes because of existing angular deviations at depth z, and
because of scatter in the layer Az. The scatter is generally a much smaller eftect and can be
ignored. Therefore,

f(z+Az,x,9x)x = flz x—0yAz,0)) = f(z,x,0y) — ByAz (gﬁ) (11.12)

describes the change in the x distribution. We can then use p(8y) as a Green's function to

describe the change in the 6, distribution. This implics that

fe+Bzx.00)q = [f(z.5.60) p(6-6;) d6; (I1.13)

and since p(6,—6&) is sharply pcaked about 8,=6, we expand the integral into a Taylor

series in (O 6). Keeping the first non-constant term,

f(Z+AZ,X,3_\:)9x = flz,x.6y) + %% (‘3@) dz (1.1

which imphies that the fuil differential equation tor the distribution function is given by

v,
of __of 1 If
32__8.x+w296§ (11.15)
where
1 _1d6% (11.16)
2 2d:z ’

is proportional to the linear angular scattering power of the medium traversed by the
electron. As long as the electron does not lose very much momentum, @? is a corstant for a

given medium. The solution of equation (II.15) is

.2
Az,x,0y) = \[_30)22 exp [-wz (925 - 3x0s + 3x ﬂ , (11.17)

27z z 22 23

which can be verified by substitution. The marginal distributions of f{z.x,0,) arc Gaussian,

A2,60 = [fz.x.6y) dx = 5 \/w?z_exp ['C‘i@z‘] , (IL.18)
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flzx) = _f:f(z,x.ex) dOy =

. 2
V3w xp[ 3“’2"‘] , (I1.19)

nz 423

which is why Fermi-Eyges theory is often referred to as the Gaussian approximation?. As z
approaches zero, the Gat ssian marginal distributions approach Dirac d functions as
required by our initial conditions. Equations (IL. 18) and (I1.19) also imply that the mean

square lateral displacement is proportional to the mean square angular deviation,
23 -
222 1, (é)_l-zg_g (11.20)

which imr plies that we only need to culculate the mean square angular deviation of the

electron distribution to find the spatial distribution at a depth z.

2. Evges'extension to Fermi scartering

Eyges (1948) extended Fermi's theory by assuming that a? in equation (IL.15) is
not constant, but a function of z. This is the ‘siab’ approximation. Another assumption
implicit in Fermi-Eyges theory, is that momentum of the electrons is constant for a given
depth. To first order, this is true. However, electrons near the edges of the spatial
distribution will, on average, have travelled a larger distance through the medium and
therefore lost more energy. If we assume that ¢ is a slowly varying function of electron
momentum, then equation (I1.15) should still be valid if @? is a function of z.

If we Fourier transform equation (IL.15) with respect to x and 6y, we get
% _ % &

_— e (I1.21)
%= %o @)
where
gzl = %r [ux J'dex flz.x,8y) exp|-i (ax+{60)] . (I1.22)
If we change variabies to
§=z+§/a . z'=z (I1.23)

t The Gaussian distributions can also be derived using the central limit theorem, as a
natural result of many, small detlections.
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which implies that
z 2
(&-m~
(o) =h(&exp| -a? | =="—d (11.25)
g o) S p @207 n
k
where k(&) is a constant of integration and k£ must be determined by the boundary
condition,
f(0,x,68y) = 8(x) & 6x) (11.26)
which transforms 1o
g(0.0.0) = 5- . (11.27)
The boundary condition in equation (I1.27) is satistied by
k=0, andh(&)=5- (I1.2%)

which can be verified by substituting into equation (I1.25). If we define functions Agp, Ay,

and As such that

fdn

AO(Z) = a)z(n) (11.29)
O.J \
s
Ai() = (:‘)2—(—7177—))(111 (11.30)
OJ
z 2
Ax(z) = (:22;) dn (11.31)
OJ
then
1 2 2
gz.al) =5-exp [-(A408% + 241 (o + Azcx )] . (11.32)

The functions Ag, A1, and A are the zero, first and second order scattering moments.
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To solve for the distribution function in real space, we reverse the Fourier

transform to obtain

] 62A, — 2x6,A1 + x2Ag
fz,x,8y) = m exp (‘“ : 4A03(2.') (11.33)
where
B(z) = AA, - AT . (11.34)

If a? is constant, then equation (11.33) reduces to equation (11.17). We can also obtain the

marginal distributions,

. , 1 ~62

Az2,8y) = jj(z,x,&_t) dx = e exp [4A':):\ , (I1.35)
—x2

flzx) = J[f(z,.\',B,,;) dOy = 2V—:Z_A_i exp [4;: (11.36)

where the scattering moments are usually integrated numerically.

The above eanations form the basis for most current pencil beam algorithms. The
main restriction is the slab approximation, and the implications of this are discussed in a
later section. Recent developments have given solutions to the electron transport equation
that are accurate to second order in angle (Jette and Bielajew 1989) and have relaxed the
slab approximation by reformulating equation (II.15) in three dimensions and allowing @?
to be an arbitrary function of x, v, and z (Jette 1991), but they have yet to be adapted for

clinical use.

E. MDAH Algorithm

[ jonygry ‘tron b

Fermi-Eyges theory has been a useful approximation for electron transport in
radiotherapy. An electron dose calculation algorithm developed at M.D. Anderson Hospital
(Hogstrom et al 1981) is implemented in the Alberta Treatment Planning system (Battista et
al 1984). 1t is a pencil beam algorithm that uses X-ray computed tomography (CT)

information to account for heterogeneities in the path of the beam. The correlation between
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the CT information and electron scattering and stopping powers is incorporated into the
algorithm (Hogstrom ez al 1984). This algorithm, implemented in 2D, is also available in a

commercial treatment planning system (Hogstrom et al 1984).

We can start by writing down the spatial probability distribution for an electron

incident at the origin, with a direction along the z axis as

2 s ]
1 g

S, y,2) = ——=—exp| - XY ;H (1.37)
2nopycs 20pcs

i - . . . .
where Oy~ is the variance of the pencil beam fluence due to multiple Coulomb scattering.
Comparing with equation (II 36), we see that

2
e = 2A, =2 ! (z ”’ dn=ij (==m2 T(n) dn (11.38)
MCS 2 ar(n) 20

where T(n) = af'?'(n) is the linear scattering power at depth n.

Equation (11.37) also describes the planar fluence for a “pencil” beam incident at the
origin. To calculate the planar fluence for a broad beam, we need to integrate the pencil

beam fluence over the extent of the broad beam. This gives
A

PP (x,y.z J dy’ J dx’ S(x',y") flx=x",y-v'.2) (11.39)
-A

where @P(x,y,z) is the number of particles crossing the x-y plane at coordinates (x,y,2).
S(x’,y" is the incident planar fluence at (x',y") and the field has halt-widths A and B in the
x and y directions respectively. If we assume that the source has a constant unit strength,

S(xy9 = 1, then we can imeoratc t.quation (11.39) using error functions® giving

A+ x
P (x,v,2) ——l:(,rt +erf{ 25 }x
V2 GMCSJ L\'— Omcs

y B +y
e + erf{———— (11.40)
[ V2 "Mcs) (‘/5 O'MCS)]

T oerf(x) = j e du

i
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for the planar fluence at any point. Of course, this assumes that Gy, Only varies with
depth (i.c., the phantom has slab geometry). If the incident planar fluence is not constarnt,

then equation (11.39) can be integrated numerically by summing equation (I1.40) over small

intervals.

Equation (11.40) is valid as long as the electrons are initially directed along the z
axis. In practice, the broad beam incident on a patient has been scattered by the air gap
between the electron source (e.g., scattering foil) and the patient. This implies that the
electrons at any point on the surface of the patient are not monodirectional but have some
distribution in angle. Fermi-Eyges theory predicts that this distribution is Gaussian, and
can be characterized by some parameter 6 which is the standard deviation of the angular
distribution of the electrons with respect to the source. This changes the boundary

condition for the pencil beam to have a Gaussian distribution of angles at z=0, instead of a

& function. It can be shown that the resulting distribution as a function of depth is still

Gaussian with a variance given by

o‘rzned = oﬁir*‘ o)%ICS (IL.41)
where
C,ir =1X Oy . (11.42)

The clinical beam is also diverging from the source, so the MDAH algorithm corrects the
fluence and width of the ‘pencil beam® using a simple geometric divergence term. At this
point, an empirical multiple Coulomb scattering factor, FMCS, is introduced, which
increases the pencil beam variance due to multiple scattering (Hogstrom 1987). Equation
(I1.41) is modified such that

Oy = Ohiy + FMCS X G}y s (I1.43)

is the total pencil beam variance. The FMCS parameter is needed because low energy
contamination in ‘clinical’ beams and large angle scattering (which is not modeled) lead to

larger measured pencil beam widths than calculated using equation (I1.38).
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To calculate dose, we need to multiply the total fluence by the mean collisional mass
stopping power. To convert from the planar fluence in equation (11.37) to total fluence, we
can multiply by the inverse of the average cosine of the polar angle with respect to the ¢

axis, which gives the approximate expression
-1
d(x,y.2) = flx,y.,2) X ( cos O ) X ( S/p )w, (11.44)

where d(x,y,z) is the dose deposited by the pencil beam. If we use the pencil beam flucice
as given by equation (I1.37), then equation (I11.44) ignores delta ray production,
bremsstrahlung losses, and energy and range straggling. Rather than explicitly taking other
processes into account, the MDAH algorithm calculates the electron pencil beam dose

deposition using

d(x,y.z) = flx,y,2) X g(2) (11.45)
where
D, ,40,0,z)
8= reé (11.46)
If(‘-f,—y,z)(i,ttiy
ref

is the fluence to dose conversion factor. The numerator of equation (I1.46) is a measured
central axis depth dose for a reference field in a water phantom, the denominator is the
integral of the pencil beam fluence over the extent of the reterence field. Solving eqaution
(11.46) gives the fluence to dose conversion factor as

D_,A0,0,z
2@ = 7 ref0:0-) (11.47)

erff =2\ x erf(—2—
(‘/—i GMCS) (‘5 6MCS)

for a rectangular field of dimension 24 x 2B. It is casy to show that g(z) is the depth dose

for an infinite field size for the same quality beam as the reference beam. The total dose

distribution is given by

B A
D(x,y,z) = j dy’ J' dx' S(x",y") dx—x"y-v'z) ., (11.48)
-B -A

where the integral is over the applied clectron field. Since g(z) is derived from data

measured in water, equation (I1.48) calculates the dose to a smail volume of water at the
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same point in the material. If we want the actual dose to the material, then we have to
multiply by the ratio of mass stopping power of the material to the mass stopping power of

watcr.

As mentioned above, equation (11.39) could be solved for non-uniform source
strength by dividing the broad beam into smaller ‘pencil’ beams where the source strength
would be approximately constant, and then summed to give the final fluence distibution.
The same approach is used to solve equation (IL.48) in cases where the phantom is not
homogeneous. Since Fermi-Eyges theory is only valid where the scattering properties are a
function of depth in the medium (slab approximation), the MDAH algorithm calculates the
fluence distribution assuming that the pencil beam is transported in a slab geometry defined
by the composition of the phantom along the pencil’s central axis. The ‘central axis

approximation’ implies that each pencil ‘sees’ only what is along its central axis.

When applying the MDAH algorithm to heterogeneous phantoms, some
modifications must be made to some of the parameters. The fluence to dose conversion

factor for the pencil beam is now given by

Emed D) = 8Hy0 ey (11.49)
where
L(Scol)med '
Zo(2) = J(Swl)ﬂzo dz (11.50)

0
defines an effective depth for the pencil beam. Assuming a linear relationship between
energy and etfective depth (Harder 1965), the mean energy at depth z is approximately
Z:E—O(l ‘ZR,,) (IL51)
where E;, is the energy at the surface and Ry, is the practical range of the broad beam

determined from a measured depth dose curve. The mean energy at depth is needed to

evaluate equation (11.38).
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As presented, the MDAH algorithm does not explicitly deal with bremsstrahlung
losses and delta ray production. It can be argued that the fluence to dose conversion factor,
£(2), includes the effects of delta ray production, since it converts the ‘primary’ fluence into
the total dose deposition due to electrons. Bremsstrahlung production is a minor component
at clinically relevant energies and atomic numbers, so the MDAH algorithm assumes that
the electron beam has a constant photon background (geometrically diverging from the
source), obtained from the bremsstrahlung tail of the reference central axis depth dose.
When calculating the fluence to dose conversion factor, the constant bremsstrahlung

background is subtracted from the central axis depth dose, so that Drej(0,0.z) includes only

the electron component of the reference beam dose deposition. Of course, there are
geometric divergence corrections in all of the above equations since the beam originates at
the scattering foil of the accelerator. We will not present the corrected formulae since they

would not enhance the understanding of the MDAH electron calculation algorithms.

Because of computing time constraints, a 2D version of the above algorithm was
first implemented (Hogstrom er al 1984). The 2D implementation needs only a single CT
slice, and assumes that the patient geometry is invariant, in and out of the plane of the CT
slice. This allows us to do the y integration in equation (I1.39) explicitly, decomposing the
broad beam into ‘strip beams’. The 2D implementation of the MDAH algorithm cannot sce
heterogeneities outside the CT slice used by the calculation. A 3D version of the code has
been implemented (Mah er al 1989, Starkschall er al 1991), and is now practical for routine
use in a clinical setting. As will be seen below, the 3D algorithm shows better agreement

with measurement in some cases.
2. _Ar lectr
The MDAH algorith.a for eleciron beam dose calculation has also been applied to

the calculation of dose deposition resulting from arced electron beams. In an arc electron

treatment, the patient is usually positioned at the isocenter of the treatment unit. The gantry
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of the treatment unit is rotated while the electron beam is on. This allows, for example, the
treatment of large chest wall lesions, without the complications due to overlapping fields. A
simple way to calculate the dose distribution due to an arced beam is to sum the dose
contributions of many stationary beams at discrete angles. If, for example, we wanted to
calculate the dose distribution for a 90° arc from ¢°-90° using 1° intervals, then we would
have 1o calculate the dose distributions for 90 stationary beams and then sum the results.
Computing time constraints imply that such an approach is only practical if no
heterogeneity corrections are made, allowing for table lookup methods of calculating the
dose distributions. However, lung tissue is a major heterogeneity in chest wall treatment

and must be accounted for.

In oider (o allow for heterogeneity corrections, the simplest approach is to use the
available pencil beam theories, as applied above. However, calculating a dose distribution
at cach angle of the arc is inefficient. To speed up the calculation, the MDAH arc electron
algorithm (Hogstrom er al 1989) divides the arc electron transport into two stages. In the
first stage, for cach gantry position, the resultant electson fluence at the patient surface is
calculated and summed into “pencils’ at the patient surface. Each ‘pencil’ can then be
transported in the same fashion as for the stationary beam al gorithm described above. At
this time, the algorithm has only been implemented in two dimensions, but a 3D
implementation for multi-slice treatment planning should be easy to accomplish. The main
advantage of the MDAH arc electron algorithm over other algorithms (Leavitt et al 1986,
Pla er ul 1988, Pla er al 1989) is that patient heterogeneities are taken account of in a manner
similar to the stationary beam algorithm which has been tested and works reasonably well
(Hogstrom and Almond 1983, Hogstrom er al 1984, Cygler er al 1987, Mah ¢z al 1989).
This should give better estimates of the dose to lung tissue, which is a sensitive structure in

chest wall reatments.
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F. Other Algorithms

The main disadvantage: of most dose calculation algorithms based Fermi-Eyges
theory is the cent 1l axis approximation. The lateral spread of a pencil beam of electrons
incident on a water phantom can be much larger than the anatomical resolution as the
electrons approach the end of their range. However, the dose distribution for the pencil
beam depends only on the material along the central axis of the pencil beam. This means
that a pencil can ‘miss’ a heterogeneity when, in fact, the lateral spread at depth is such that
some electrons pass through the heterogeneity. This becomes more of a problem at large

depths, compared to the practical range.

There are at least three ways to overcome this limitation. One way is to relax Eyges’
requirement that the scatiering power be a tuncuon of depth alone (the slab approximauon),
and allow the scattering properties to vary in all three dimensions. An analytical solution
has been found (Jette 1991), but it remains to be seen whether the solution ¢an be

implemented in a practical manner.

Another approach is to use the results of Fermi-Eyges theory, but vary the
implementation of the algorithm. This has been done by Shiu and Hogswrom (1987, 1991),
but calculation times are still prohibitive for routine use. Their approach has been 1o
transport the pencil beams a small distance in the phantom (=0.5 cm), and then redistnbute
the electrons into new pencil beams at depth. This means that the lateral extent of the pencil
beam is small at all stages of the calculation, implying that the central axis approximation is
still appropriate. Their ‘redetinition” algorithm also allows the pencil beams to have a
distribution in energy, implying that range straggling can occur naturally. A similar
algorithm has been developed by Storchi and Huizenga (1985), but their algorithm does not

allow for variations in the energy spectrum of the electrons with depth.
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A third approach is the so-called OMEGA? project (Mackie et al 1990). This group
hopes to accelerate the Monte Carlo (EGS4) calculation of the radiation transport using a
combination of networked supercomputers, software optimization, and variance reduction
techniques. This project is in its infancy, and it remains to be seen whether or nota

practical calculation method results from this research.

t Quiawa Madison Electron Gamma Algornithm.
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ITl. Stationary Beams

In the previous chapter, we have seen the theoretical basis for the MDAH clectron
calculation algorithm and some of the details important in its impicmentation. Several
approximations have been identified in the Fermi-Eyges electron transport theory, and the
computer implementation. Experimental data is therefore needed to test the accuracy and
limitations of the current algorithm so that we can be aware of situations that will cause
inaccurate dose predictions and the approximate magnitude of the inaccuracics. Some
comparisons between calculaticn and measurement have been reported (Hogstrom er af
1984, Lax 1989), but the number of geometries tested has been small. Generally, a single
configuration has been measured and compared with pencil beam calculations. The
following sections will report on a study that systematically tested some of the effects of
phantom geometry on the discrepancies between calculation and measurement, for two-

dimensional and three-dimensional versions of the MDAH pencil beam calculation code.
A, Wax Phantoms
1. Experi 0

The first measurements in this study (Cygler ez al 1987) were performed as an
initial verification of the MDAH algorithm as implemented in the Alberta Treatment
Planning system (Battista et al 1984). The electron beam was produced by a medical lincar
accelerator (Siemens Mevatron XX) whicn uses the scattering foil method to give a broad
beam. A thin phantom, consisting of one or more aluminum (or air) inclusions embedded
in wax, was attached to the end of the 10 x 10 ¢cm?2 electron applicator in a horizontal
position, as shown in figure II1.1. The detector was a small p-type diode manufactured
commercially (Therados) after the design of Rikner and Grusell (Rikner and Grusell 1983,
Rikner 1985, Rikner and Grusell 1987). The directional dependence of the diode was

determined experimentally at 5 cm depth in water for 18 McV incident electrons, and is
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Figure I11.1. Schematic diagram of the setup used for measuring dose profiles behind
wax phantoms with high and/or low density inclusions.
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shown in figure II1.2. The response was deemed to be constant enough that corrections for
detector angular response (Brahme 1985) would be small compared to other dose

uncertainties and could therefore be ignored.

The beam entered the side of a large water tank (50 x 50 x 40 ¢m3) through a thin
(0.01 cm) mylar window. The source to surface distance (SSD) was 100 cm The diode
was scanned iaterally (in the x direction in figure I11.1) using a one dimensional scanning
dosimetry system (Therados LSC-2), which has a positioning accuracy of (.05 c¢m and a
reproducibility of 0.02 cm. The LSC-2 scanner also has electrometer circuitry designed for
use with two diode dosimeters. An extra diode (reference) was placed in the radiation ficld
outside of the region of interest, and the dose output of the unit was the ratio of the
scanning (field) diode’s output to the reference output. This allowed us to compensate for
temporal fluctuations in the output of the linear accelerator. The position and dose output
signals were captured by a digital X-Y recorder (Hewlett Packard HP7090A) and stored in
its internal buffers. After the scan was complete, the voltages were manually recorded for
further analysis. Repeated measurements showed that day to day stability of the system
was better than 1%, which indicated that there was no significant radiation damage to the p-

type diode (Rikner and Grusell 1983).

The phantoms were irradiated with clectron beams with nominal energies of
10 MeV and 18 MeV. The beam parameters needed for the calculation (Hogstrom er af
1984) were measured and input into the treatment planning system. Comparison of
measured and calculated isodose lines, shown for 10 MeV in figure 113, was used to
confirm correct entry of the required parameters. The beam energy was obtained from the
linear energy-range relationship used by the MDAH algorithm (Markus 1961).

The phantoms were constructed to resemble heterogeneities found in chest wall and
neck irradiation, and consisted of air and aluminum embedded in wax, which simplificd

mounting on the electron applicator. The wax was composed of equal weights paraffin and
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Figure 111.2. Diode angular response, normalized to the response at 0°. The response

was measured near the depth of maximum dose on the central axis of a 10 < 10 cm?
beam of 18 MeV celectrons incident on a water phantom.
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Figure ITL.3. Comparison of measured and calculated isodoses fora 10 < 10 cm? beam of
10 MeV electrons incident on a water phantom.
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beeswax ‘doped’ with powdered resin. The electron density of the wax was 0.91 (relative
to water), and was taken into consideration for the calculations. The aluminum was
intentionally chosen to “stress test” tic algorithm (Brahme 1983). The phantom geometries

are summarized in table Il 1.

For each phantom configuration, four profiles were measured. One profile was
measured with the diode at the mylar window, and the second profile at a depth of 1 cm.
The sensitive volume of the detector is approximately 0.1 cm from the front of the
detector, which gave profile depths of 0.1 and 1.1 cm behind the wax phantom. The
profiles were measured for electron energies of both 10 MeV and 18 MeV. To compare
with the caiculations, the diode signal was normalized to the signal at a depth of maximum

dose in the water phantom without the wax phantom present.

The MDAH algorithm also requires measured CT (X-ray Computed Tomography)
numbers for the phantom materials to calculate stopping and scattering powers for the
medium. These were measured using a commercially available scanner (General Electric
8800), yielding CT numbers of —94 and 2227 Houndsfield units for the wax and

aluminum, respectively. The algorihm’s stopping and scattering power tables were also

Table 111.1. Experimental wax phantoms.

Figure Phantom

111.4 Single ‘long rib’—aluminum rod, 0.96 cm diameter, 10 cm length,
embedded in wax, 1.0 cm thick.

1115 Pair of ‘long ribs’ as in I1".4, with . dges separated by 1.0 cm.

1.6 *Short rib’ phantom as in [1[.5, but with ‘rib’ shortened to 1.0 cm.

1117 *Vertebral body’—aluminum coin, 2.50 cm diameter, 1.0 cm thick
embedded in wax, 1.15 cm thick.

I11.8 ‘Spine’—triplet of aluminum coins as in II1.7 with edges separated by
0.50 cm.

HLY “Trachea and spine’—phantom similar to IT1.8 except the aluminum coins are

embedded in wax, 1.40 cm thick, and overlayed by an air rod, 2.6 cm
diameter, 10 cm wide, and an additional thin layer of wax, 0.26 cm thick.
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updated to be consistent with more recent data (ICRU 1984a,b), and to allow proper

extrapolation for aluminum.

2. Rest 1 discussi

The experimental results are presented in figures HL4-ITLY. Each figure tollows
the same format where the left hand side (a) shows results tor a 10 MeV beam, while the
right hand side (b) shows results for an 18 MeV beam. The top of each side (A) shows the
profile at the mylar window of the water tank (or 0.1 cm behind the wax phantom), and
the bottom (B) shows the profile at 1.1 cm behind the wax phantom. The data were
normalized to maximum dose in a homogeneous water phantom for a 10 x 10 ¢cm? field
size. The horizontal dotted line shows the calculated dose taking into account the wax, but

without any of the aluminum or air inclusions.

For the purposes of discussion, ‘hot spot’ refers to a region of local dose
maximum, and likewise ‘cold spot’ refers to a region of local dose minimum. The term
‘underpradicted hot spot’ means that the calculated “hot spot’ has lower dose than the
measured ‘hot spot’. The term ‘underpredicted cold spot’ indicates that the calculated “cold
spot’ has a higher dose than (or is not as cold as) the measured ‘cold spot’. All dose
differences are quoted as the difference in percentage values, and not the percentage

difference in local dose.

In figure I11.4, we compare the results of measurements and calculations for a
single long aluminum ‘rib’, 10 cm in length. Since the ficld size is 10 < 10 c¢m2, the rod
satisties the 2D assumption of the original MDAH algorithm, and is similar to a standard
geometry (Brahme 1983). The agreement between calculation and measarement is very
good. The only region significant disagreement is at the shallower depth for the 10 MeV

electron beam. The cold spot in the shadow of the rod is underpredicted by 9%.
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Figure IIL4. Lateral dose profiles beyond a single “long rib’ in water irradisted with
10 MeV (a) and 18 MeV (b) electrons. The diamonds are experimental data; the solid
line is calculated; the dashed line is the dose in a homogeneous water phantom at the
same depth. The profiles were at depths of 0.1 cm (A) and 1.1 ¢cm (B) beyond the
phantom, or 1.1 cm and 2.1 cm from the surface.
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Figure II1.5 shows a similar phantom, but with two rods, separated by 1.0 cm. As
expected, the calculated and measured profiles are superpositions of the profiles {from
figure I11.4, and the magnitudes of the hot and cold spots are very similar. For the
shallower depth at 10 MeV, the cold spot is underpredicted by 8%. There is also a
discrepancy of approximately 9% in the region between the rods. In figure 114 we see that
the hot spots at the edges of the ribs are slightly underpredicted, which implies that after
superposition, there will be an even larger discrepancy, which is consistent with the data in

figure IILS.

For both figure I11.4 and IILS5, the agreement between measurement and calcutation
is better for 18 MeV than for 10 MeV. Qualitatively, this is explained by the small angle
approximation of Fermi-Eyges theory. The 10 MeV clectrons are more likely to be
scattered into large angles, so the fluence distribution is not modeled as accurately as for
18 MeV electrons, which, for the same depth of penetration, undergo less large angle

scattering.

Another interesting feature of figure IILS is the inability of the calculation to mimic
the slight dip in the measured dose at x=0. This highlights another shortcoming of
Fermi-Eyges theory. The process of Fermi-Eyges electron transport can be compared to
applying a filter to the anatomical information. At cach depth of the calculation, we take
anatomical information along the ray paths emanating from the radiation source, and
essentially filter this data. The filter has a smoothing eftect over a distance comparable to
the width of the pencil beam at that dep'" . In other words, the width of the pencil beam
specifies the resolving power of the calculation algorithm as a function of depth in the
phantom. The pencil beam width at a depth of 2 ¢m is approximately 0.3 c¢cm, as opposed
t0 0.1 cm at a depth of 1 cm. Since the separation of the dose peaks between the rods in
figure IIL5 is only 0.6 cm, we cannot expect the calculation to resolve this ‘dip’ when the

pencil beam standard deviation is of the order of 0.3 cm.
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Figure I11.5. Lateral dose profiles beyond two ‘long ribs’ separated by 1 cm and
irradiated with 10 MeV (a) and 18 MeV (b) electrons. The diamonds are experimental
data; the solid line is caiculated; the dashed line is the dose in a homogeneous water
phantem at the same depth. The profiles were at depths of 0.1 ¢cm (A) and 1.1 cm (B)
beyond the phantom, or 1.1 cm and 2.1 cm from the surface.
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Figure II1.6 shows the results for the same phantom as figure 1113, except that the rods
have been shortened to 1.0 ¢m in length. This is similar to a standard 3D phantom
(Brahme 1983), and was measured to test the magnitude of the effect of the 2D assumption
in the original MDAH algorithm. The calculated dose is identical to figure 11LS, because the
2D assumption does not ‘know’ the length of the rod and assumes that it extends across the
entire field. The measured dose, however, changes significantly. At shallower depths, the
magnitudes of the hot spots are predicted quite accurately. In fact, for 10 McV, there is
actually better agreement than for figure IIL.5. This is a result of the lack of scatter from the
‘missing’ ends of the aluminum rods. However, this is just fortuitous. The missing scatter
also leads to less measured dose in the shadow of the rods, where the cold spots are

underpredicted by 21% and 7% for 10 MeV and 18 MeV respectively.

In centrast with figure II1.5, the agreement between measurement and calculation
fails to improve with depth, and the measured dose is systematically lower than the
measured dose. This is a result of the 2D assumption in the original implementation of the

MDAH algorithm, which results in excess scatter from a 10 ¢cm rod rather than a I cm

rod.

Figure II1.7 shows the results for our ‘vertebral body’, consisting of a single
2.5 cm diameter ‘coin’ embedded in a wax phantom 1.15 ¢m thick. The resuits are
qualitatively similar to figure I11.6, which was also a 3D phantom. At the shallower depth,
the hot spots at the edge of the coin are accurately predicted. However, the dose in the
shadow of the coin is overestimated for 10 MeV and predicted accurately for 18 MeV.
This means that for 10 MeV, 2.5 cm (the lateral dimension of the coin) is still not large
enough to be considered a 2D phantom, at least for the shallower depth. For 18 MeV, the
contribution to the dose in the shadow of the coin by electrons originating more than

1.25 cm away is insignificant, and the coin is a 2D heterogencity at the shallower depth. At

’ 3 A
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Figure 11L6. Latcral dose profiles beyond two “shortribs’ separated by 1 cm and
irradiated with 10 MeV (a) and 18 MeV (b) electrons. The diamonds are experimental
data: the solid line is calculated; the dashed line is the dose in a homogeneous wacer
phantom at the same depth. The profiles were at depths of 0.1 cm (A) and 1.1 cm (B)
beyond the phantom, or 1.1 ¢m and 2.1 ¢m trom the surface.
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Figure II1.7. L.eral dose profiles beyond a single “vertebral body” irradiated with
10 72V (a) and 18 MeV (b) electrons. The diamonds are experimental data; the sohid
line is calculated; the dashed line is the dose in a homogencous water phantom at the
same depth. The profiles were at depths of 0.1 ¢cm (A) and 1.1 ¢cm (B) beyond the
phantom, or 1.25 ¢cm and 2.25 ¢m from the surface.
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the deeper depth, the electrons have scattered much furtber laterally, and a 2D description

for the phantom is inadequate for both energies.

Figure 111.8 shows the results for our ‘spine’ phantom, consisting of three of the
coins from figure 111.7, with a separation of 0.5 cm. Qualitatively, the results are almost
identical to figure I1L.7. The measured and calculated profiles are again superpositions of
the dose profiles from figure 111.7, and the magnitudes of the dose overestimations is about

the same.

Figure II1.9 presents the data for the most complex phantom, simulating neck
geometry. It consists of an air rod, 2.6 cm in diameter, simulating the trachea, which
overlies the spine from figure I11.8. The discrepancies between calculation and
measurement are very large (40% for 10 MeV) and very graphically show the limitations
of the 2D assumption in the MDAH algorithm. From the calculation’s point of view, the
phantom consists of a thin slab of wax, followed by a thick slab of air, followed by the
spine phantom. In reality, there is wax at#1.3 cm in the y direction. This leads to
preferential scattering of the electrons into the air space near y=0.. which is where the
detector is tocated. Because of the extra fluence in the plane of the detector, the measured

dose is much higher than the calculated dose between the vertebral bodies (coins).

The reason for the 2D assumption in the original implementation of the MDAH
algorithm was computing time constraints. Since that time, computing speeds have
increased by orders of magnitude. The calculation algorithm has been recently upgraded to
get rid of the 2D assumption (Mah er al 1989, Starkschall et al 1991). Figure 111.9 also
shows the results of a 3D calculation for the trachea-spine geometry, and the agreement
with measurement is much better than for the 2D calculation. The 3D calculation still fails to
predict the magnitude of the difference between the measured hot and cold spots, but the

sencral dose levels predicted are much closer to the measured values. As mentoned above,
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Figure IIL8. Lateral dose profiles beyond the spine’ irradiated with 10 MeV (a) and
18 MeV (b) electrons. The diamonds are experimental data; the solid line 1s
calculated; the dashed line is the dose in @ homogencous water phantom at the same
depth. The profiles were at depths of 0.1 cm (A) and 1.1 cm (B) beyond the phantom,
or 1.24 cm and 2.24 cm from the surface.
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Figure 111.9. Lateral dose profiles beyond the ‘trachea’ and ‘spine’ irradiated with
10 McV (a) and 18 MeV (b) electrons. The diamonds are experimental data; the solid
line is 2D calcuiated: the dashed curve is 3D calculated; the dashed straight line is the
dose in a homogencous water phantom at the same depth. The profiles were at depths
of 0.1 cm (A) and 1.1 cm (B) beyond the phantom, or 4.36 cm and 5.36 cm from the
surface.



Starionary Beams puge 44

the pencil beam width is not very narrow at depth, and qualitatively has the same effect on

the dose profile ‘waveform” as a low pass filter on the calculated profile.
B. Polystyrene Phantoms

1. __Experi [ merhod

Following the experiment above, it was felt that a more systematic evaluation of
some parameters affecting the electron calculation was needed. To simplify the analysis. a
single phantom configuration was chosen. The phantom consisted of a rectangular block of
polystyrene (12 % 12 x 1.3 cm3) into which a 1 cm diameter hole had been drilled. The
hole was drilled off-center to more closely conform to standard geometry (Brahme 1983).
Rods of 1 cm diameter were machined {rom three different materials, aluminum, hard bone
analog, and soft bone analog, whose properties are listed in table II1.2. The lengths of the
rods varied from 1-10 cm. Using combinations of high density rods and polystyrene rods,
a high density inclusion, from 1-10 cm long, could be positioned in the middle of the

phantom.

The irradiation geometry, shown in figure HI.10, was similar to the previous
experimental setup, shown in figure II1.2. However, instead of atlaching the polystyrene
phantom to the applicator, a combination of double sided tape and plastic angle brackets
was used to position the phantom reproducibly with respect to the water phantom. The
measurement technique was also improved (Antolak er af 1988) so that the radiation ficld
could be completely mapped in a single plane. As before, the dose output was the ratio of
the field and reference signals, and was normalized to the maximum signal in a
homogeneous water phantom at 100 cm SSD.

The improvement is in the positional information available. A three-dimensional
scanning dosimetry system (Therados RFA-3) was used to position the dewctor. The water

tank is very similar to the LSC-2 system. One of the scanning modes of the RFA-3 system
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is a two-dimensional raster scanning mode. Referring to figure 1111, the diode is {irst
scanned across the phantom in the x direction. At the end of the scan, the depth in the :
direction is incremented and the diode scans across in the —y direction. The width of the
scan (in x), the scan increment (in z), and the number of scans are all adjustable from the
RFA-3 controller. Analog voltages representing the v, v, 2 coordinates (calibrated to

50mV/cm) and dose were available trom the controller.

The HP7090A digital X-Y recorder has three analog inputs available, so the
scanning coordinate was input into channel 1, increment coordinate into channel 2, and
dose output into channel 3. The HP7090A was interfaced tir a microcomputer (PC/XT
clone) using an IEEE-488 interface (National Instruments GPIB PC2A), and a schematic of
the measurement setup is shown in figure I11.11. A computer program was writien in a
high level language (Borlard Turbo Pascal) which allowed the user to set various
measurement parameters. Once the parameters were set, the measurement was initiated by
starting the raster scanning from the RFA-3 controller. The computer gives the X-Y
recorder instructions concerning the region of interest, and the recorder waits tor the
voltage on channel 1 (scanning coordinate) to fail within the region of interest, and starts
filling its measurement butffers. the buffers are then downloaded to the microcomputer and

the recorder given instructions for the nextscan.

Using the known positional calibration (50mV/cm) and normalizing the dose output
to the maximum dose output for a homogencous water phantom, allowed us to recreate a
series of dose profiles for a complete two-dimensional description of the radiation field.
The data was interpolated onto a regular Cartesian grid for comparison with pencil beam

calculations.
A further complication for these measurements was that a complete two-
dimensional scan required 20-30 minutes. Over the period of time required for the

complete series of measurements for a single energy (varying rod length and material), the
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Firure 11L.11. The data acquisition and analysis system used for measuring dose
Jistributions with the polystyrene phantoms. Most of the components can be
substituted (e.g., treatment planning compulter).
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response of the diodes changed due to radiation dumage from the large doses given to the
diodes (Rikner and Grusell 1983). To compensate for this effect, a measurement was made
ata fixed point (near the depth of maximum dose), without the polystyrene phantom
present, after each two-dimensional scan was complete. The increase in relative response of
the field-reference diode pair was approximately 12% over 31 measurements?, so the
change from one measurement 1o the next was much less than 1%. Theretore, cach two-
dimensional scan was adjusted for diode response, but individual profiles in the two-

dimensional scan were not adjusted relative to cach other.

Once all normalizations and corrections had been performed, the data was
transferred to the Alberta Treatment Planning system (Battista et al 1984) over a normal
serial line using a file transfer program. A calculation module was written for the treatment
planning system that allowed us to read the measured dose array from a text file and
interpolate it onto the calculation grid. Pencil beam calculations were performed using the
same grid, and the measured and calculated doses were subtracted from vne another to give
what we refer to as a dose ditference map. A dose difference map consists of four dose
maps, two of which are the dose arrays to be compared. The other two dose maps show

where each dose matrix is greater than the other dose matrix.

2.  Results and discussion

Some of the results are presented in figures HEL 12-11123. All of these figures are
presented in a similar format. The caleulated and measured dose distributions, normalized
1o 100% at dgpay in a 10 x 1) ¢m? field in a water phantom, are shown in the upper dose
map. Since all of the phantoms in figures II1.12-111.23 have mirror symmetry, only half of
the dose distribution is shown, with the measured distribution on the left () and the

calculated distribution on the right (b). The lower left map (¢) shows where the measured

t Approximately 200,000 monitor units was given tor the 31 measurements,
corresponding to 2000 Gray maximum dose in a water phantom at 100 ¢cm SSD.
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dose is greater than the calculated dose, and the lower right map (d) shows where the
calculated dose is greater. The values shown in (¢) and () are obtained by subtracting the

calculated and measured dose matrices.

Although measurements and calculations were performed for many different rod
lengths, the main reason for this study was to highlight any differences between the 2D and
3D implementations of the MDAH algorithm. For this reason, it was decided to present the
results of the calculations and measurements for 1 cm length rods, where the difference

between the 2D and 3D implementations was greatest.

Figures II1. 12-111.17 show comparisons between calculated ard measured
distributions for a 10 x 10 cm2, 10 MeV beam incident on the polystyrene phantom with a
1 ¢m long rod perpendicular to the page. Figures II1.12 and I11.13 show the comparison
between measured and calculated dose distributions for an aluminum rod. The calculation
was performed using the 2D and 3D implementations of the MDAH algorithm,
respectively. Similarly, figures 11.14-111.17 show the results for hard bone and soft bone

analogs. The phantoms and some results are summarized in table ITL2.

Figure I11.12 compares the measured and calculated (2D) dose distributions for a
I ¢m long aluminum rod. The 2D calculation cannot distinguish that the rod has a finite
length (relative to the field), therefore the algorithm scatters electrons from a 10 cm
aluminum rod. This leads to an excess of dose deposited in the immediate shadow of the
rod, because of more scatter from the ‘extra’ aluminum in the calculation. Ignoring the
penumbral region (see below), the maximum discrepancy is approximately 25%. The 3D
calculation, whose results are shown in figure 111.13, improves on the 2D algorithm
because it is given off-axis information about the phantom composition. The maximum
discrepancy is reduced by a factor of two to approximately 12%. This improvement in 3D
versus 2D is maintained as the rod material changes to hard bone (figures I1I1.14 and I11.15)

and soft bone (figures 111,16 and I1L.17). The magnitude of the error also decreases as the
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Figure I11.12. Dose distribution behind a 1 ¢cm long aluminum rod irradiated by a 10 ¢cm

uare field of 10 MeV electrons. The rod is located 0.2 cm from the top surface of &

1.3 cm thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(2D); (c) measured greater than calculated; {d) calculated greater than measured.
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Figure 111.13. Dose distribution behind a 1 ¢cm long aluminum rod irradiated by a 10 cm
square field of 10 MeV electrons. The rod is located 0.2 cm from the top surface of a
1.3 ¢m thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(3D); (¢) measured greater than calculated; (d) calculated greater than measured.
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(c) (d)

Figure 1i1.14. Dose distribution behind a 1 cm long hard bone rod irradiated by a 10 ¢cm
square field of 10 MeV electrons. The rod is located 0.2 cm from the top surface of a
1.3 cm thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
{2D); {c) measured greater than calculated; (d) calculated greater than measured.
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Figure 111.15. Dose Jistribution behind a T ¢m long hard bone rod irradiated by a 1t: cm
square ficld of 10 MeV clectrons. The rod is located 0.2 ¢cm from the top surface of a
1.3 ¢m thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(3D); (¢) measured greater than calculated; (d) calculated greater than measured.
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Figure I11.16. Dose distribution behind a 1 ¢cm long soft hone rod irradiated by a 10¢cm
square field of 10 MeV electrons. The rod 1s located 0.2 ¢cm from the top surface ot a
1.3 ¢m thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(2D): (¢) measured greater than calculated: (d) calculated greater than measured.
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Figure [11.17. Dos¢ distribution behind a 1 cm long soft bone rod irradiated by a 10 cm
square field of 10 MeV eclectrons. The rod is located 0.2 ¢m from the tOp surface of a
1.3 cm thick polystyrene slab. (a) Measured distribution; (b) calculawd distribution
(3D): (¢) measured greater than calculated: (d) calculated greater than measured.
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Figure 111.18. Dose distribution behind a 1 cm long aluminum rod irradiated by a 10 ¢m
square field of 18 MeV elecuons. The rod is located 0.2 cm from the top surface of a
1.3 cm thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(2D); (c) measured greater than calculated; (d) calculated greater than measured.
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Figure 111.19. Dose distribution behind a 1 cm long aluminum rod irradiated by a 10 ¢cm
square field of 18 MeV electrons. The rod is located 0.2 cm from the top surface of a
1.3 cm thick polystyrene siab. (a) Measured distribution; (b) calculated distribution
(3D); (¢) measured greater than calculated; (d) calculated greater than measured.
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Figure I11.20. Dose distribution behind a 1 cm long hard bone rod irradiated by a 10 ¢m
square field of 18 MeV electrons. The rod is located 0.2 cm from the top surface ol a
1.3 cm thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(2D); (c) measured greater than calculated; (d) calculated greater than measured.
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Figure 111.21. Dos+ distribution behind a 1 ¢m long hard bone rod irradiated by a 10 cm
square field of is MeV electrons. The rod is located 0.2 cm from the top surface of a
1.3 cm thick polystyrene slab. {(a) Measured distribution; (b) calculated distribution
(3D): (¢) measured greater than calculated; (d) calculated greater than measured.
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Figure I11.22. Dose distribution behind a 1 ¢cm long soft bone rod irradiated by 4 10 cm
square field of 18 MeV electrons. The rod is located 0.2 ¢cm from the top surface of a
1.3 cm thick polystyrene stab. (a) Measured distribution; (b) calculated distribution
(2D); (c) measured greater than calculated; (d) calculated greater than measured.
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Figure [11.23. Dosc distribution behind a 1 cm long soft bone rod irradiated by a 10 cm
square field of 18 MeV electrons. The rod is located 0.2 cm from the top surface of a
1.3 ¢m thick polystyrene slab. (a) Measured distribution; (b) calculated distribution
(3D): (¢) measured greag r than calculated; (d) calculated greater than measured.
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density of the heterogeneity approaches unit density, which is expected. The maximum
difference between the measured distribution behind the soft bone rod and the 2D
calculation (figure II1.16) is approximately 6% and it could be argued that the 2D

calculation is adequate in this case.

Figures I11.18-111.23 show the results tor the same phantoms as figures ML 12-
I11.17, but for an 18 MceV beam of electrons. Qualitatively, the results are very similar to
the 10 MeV beam in figures H1.12-111. 17, and again the 3D calculation improves upon the
2D calculation by approximately a factor of two. Table 111.2 summarizes the maximum

discrepancies found in figures 11.12-111.23.

In all of the figures I11.12-111.23, there appears to be a large discrepancy in the
penumbral region at the beam edge, where the calculated dose is much greater, as seen in

part () of the figures. This is because the algorithm (both 2D and 3D) has some difficulty

Table II1.2. The maximum discrepancics between measurement and calculation for a
1 ¢cm rod in polystyrene for 10 MeV and 18 McV electrons, and some
of the results from figures 11.12-111.23, ignoring the penumbral region.
The maximum error is given with two numbers—positive tor calculation
greater than measurement and negative tor calculaton less than

measurement.
Rod ~ Electron Energy  Calculation  Maximum

Fioure material CT" density+ (MceV) Method Error
111,12 aluminum 2225 2.12 10 2D +25% -10%
I11.13  aluminum 2225 2.12 10 iD +12% 3%
1I1.14  hard bone 1080 1.57 10 2D + 4% -6'%.
[11.15  hard bone  10N) 1.57 10 D +7%%. -5%
I11.16 soft bone 495 1.29 10 2D +6'%. -3
111.17 soft bone 495 1.29 10 D +3% 3%
[11.18  aluminum 2225 2.12 18 2D +18% 7%
[11.19  aluminum 2225 2.12 18 D +10% -6%
[11.20  hard bone 1080 1.57 18 2D +10% -6
I11.21 hard hone  1080) 1.57 18 3D +6%: 3%
[11.22 soft bone 495 1.29 18 2D +4% -3
ILL2% soft bone 495 1.29 18 3D +2% 2%

* CT number in Houndsficld units.
ES . .
*+ Electron density relative to water.
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modeling the penumbral region and the exact width of the beam. Since there is a high
gradient in this dosc region, small errors in position can lead to large errors in dose.
However, the positional errors of the isodose lines are of primary importance and are
actually quite small. For that reason, the penumbral region was ignored in the discussion

above.

The measured and calculated data for the polystyrene phantoms was also used to
illustrate the progression between 2D and 3D phantoms. To simplify the analysis, the mean
of the squares of the differences between two given dose distributions was used as a
numerical measure of the “total” discrepancy between the dose distributions. If the dose
matrices are represented by dy and dp, then the mean square difference is given by

1 .. .
=ﬁ2 py { 1) —d:w)}2 (L1.1)
i
where i and j are row and column indices and N is the total number of puints compared.

Figure 111.24 plots the mean square difference between the measured dose
distributions for different length rods in a 10 MeV beamn, and the measurcd dose
distribution for the 10 cm rod. The horizontal axis is the length of the rod, whose dose
distribution is compared to the measured dose distribution for the 10 cm rod. For
aluminum and hard bone, the mean square difference for the 1 cm measured dose
distribution versus the 10 cm measured dose distribution is significantly higher than for the
% cm measured dose distribution. The mean square difterence is quite small and changes
little as the rod gets longer than 3 ¢cm. This means that for high density inclusions near the
surface. the 3 cm (or longer) rod is a 2D heterogeneity, since there is little difference
compared to the 10 ¢m rod, which extends the entire length of the electron tield. For the
soft bone analog, however, there is little difference between the dose distributions for any

length rod.
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Figure II1.24. Mean of the squares of the differences between the measured 10 em
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Figure II1.25. Mean of the squares of the difterences between the calculated 10 ¢cm
rod dose distribution tor 10 MeV, and the calculated dose distributions for other
lengths.
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Figure 111.25 is similar to figure 111.24, except that calculated 3D dose distributions are
being compared. Qualitatively, the results are similar to the previous figure, which means
that the calculated dose distributions are behaving similarly to the measured dose
distributions, in their progression from 2D to 3D phantoms. This implies that unless the
rod length is 3 cm or less, there is very little to be gained with the 3D version of the

MDAH pencil beam algorithm, compared to the 2D version.

C. Anthropomorphic Phantom’

[, Statement of problem

Electron beams have been in use at this institute for many years. The general
practice has been to prescribe field size and shape based on the target volume and energy
based on the penetration required. This is sufficient in simple cases, but is less than
optimum for tumor sites involving irregular patient contours and heterogeneities. To
complicate matters, bolus is often used. resulting in even more irregular patient contours.
In the case of head and neck tumors, such as esophagus, larynx, thyroid, and tonsils,
treatment can consist of a single anterior electron field, perhaps in combination with two or
maore photon beams, or other form of treatment. The photon fields are generally quite
simple (e.g. parallel opposed (AP/PA) fields), and the dose distributions are fairly well
understood. For the purpose of this study, we therefore concentrated on the electron fields

and the problem of bolus design.
2. Merthod and results

A patient with thyroid cancer was chosen for this study. An immobilization shell
was constructed and the patient was simulated to define the extent of the photon fields. The
patient proceeded to reatment and a CT study in treatment position was obtained for

clectron treatment planning purposes. The patient contour and 80% target volume for the

+ A version of this section has been accepted for publication (Antolak er al 1992).



Strionary Beams puge 66

electron field are shown in figurc ITL.26. The spinal cord was specified as a criitcal region
10 receive no more than 60% of the given doscs. The treatment plan in figure 11L26 shows
the dose distribution trom an anterior electron tield in which the spinal cord receives

approximately 80% dose, so bolus was needed for shielding purposes.

Two methods were 1sed to design the bolust. The thickness of the wax for the first
method was equal to the difference beiween the radiological depth of the anterior edge of
the vertebral bodies and Rgg for 16 MeV electrons. The width of the wax bolus was
approximately the same as the width of the vertebral bodies since the target volume includes
areas lateral to the spinal cord. The dose was calculated using a 3D implementation (Mah er
al 1989) of the MDAH pencil beam algorithm (Hogstrom ¢¢ af 1981), developed at this
institute. Figure II1.27 shows the bolus in place, and resulting dose distribution,
normalized to the maximum dose in a water phantom at an SSD equal to the source to
immobilization shell distance. Notice that a fairly large section of the wrget volume does not
receive 80% dose as prescribed. Dose homogeneity is also poor because ot the high dosc

regions lateral to the bolus.

A second bolus was designed by manually changing the bolus outline on the
treatment plan and recalculating the dose distribution. After many iterations, we arrived at
the bolus design shown in figure 1T11.28. This bolus is much smaller and the sides have
been flared out. The calculated isodoses show good coverage of the target volume by the

8(% isodose line, and the spinal cord receives no more than 60%, as prescribed.

As mentioned above, a 3D pencil beam algorithm was used to perform the dose

calculations. This required adjustment of the bolus in all of the CT slices betore

t The given dose is the maximum dose in a flat water phantom at the same SSD as the
central ray of the applied electron beam. This is also the default normalization used by
the treatment planning system for electron beams.

t A summary of different techniques for electron bolus design is given by Low er al 1992.
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Figure E11.26. Treutment plan tor thyroid cancer. :n the central plane with no bolus.
Isodoses for an incident 16 MeV beam of elecrons were calculated using the 35
HSDAH pencil beam code.
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Figure 111.27. Treatment plan for thyroid cancer, in the central plane with “old” bolus.
Isodoses for an incident 16 MeV beam of electrons were calculated using the 3D
MDAH pencil beam code. The dashed line is the 80% isodose for a 2D calculation
with no scatter correction (ray tracing model;
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Figure 111.28. Treatmeat plar for thyroid cancer, in the central plane with ‘optimized’
bolus. Is-Jdosss for an incident 16 MeV beam of electrons were calculated using the
D MDAH pencil tocia code.
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recalculating the beam. As a first step, the bolus was optimized in the central slice and two
off-axis slices using a 2D implementation of the algonithm. The resulting bolus heights
were plotted on a sagittal view of the patient. A good approximation of the final bolus could
then be drawn on the sagiital view, and the bolus keights transferred to the corresponding
CT slices. The 3-D calculation gave slightly different results, so small modifications of the
bolus heights led to the final design shown in figure 1129, The height of the old bolus is

shown for comparison.

To experimentally verify the new bolus design, a wax phantom was construcied
using a duplicate of the patient immobilization shell. The trachea was modeled by a
hollowed-out wax block, made according to trachea contours obtained trom CT
information of the patient. Thermoluminescent chips (LiF TLD-100) were placed at a depth
of 5.7 cm below the bolus. Mewsurements were aormalized to TLD micasurements at dypan
in a polystyrene phantom at the same SSD as the phantom without the bolus. Several CT
slices of the wax phantom were obtained and calculations normalized 1O dpyx 0 a water
phantom at the same SSD as the phantom without the bolus. The results are shown in
igure 111.30. The measured data reveals a hot spot behind the trachea (on the central axis),
wlich the calculation does net predict. In clinical situations where spinal cord tolerance s
being approached, we should be aware that the current pencil beam algorithm may

underpredict the dose to the spinal cord.

The failure of the calculation to predict the hot spot behind the trachea is due Lo the
central axis approximaton of the pencil beam algorithm, which assumes that cach pencil
beam is transported in a slab medium detined by the central axis of the pencil beam. At
depth, the pencil beam has spread out appreciably, so the central axis approximation is not
very good for the pencil beams near the lateral boundaries of the trachea. The dashed dine in
figure I11.30 shows the ceffect on the calculated dose of filling in the trachca with wax, and

we get essentially the same curve, except for the magnitude of the predicted dose along the
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Figure 111.29. Sagiutal view of the oplimized bolus contour. The old bolus contour is
shown for comparison.
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Figure 111.30. Comparison ot calculated dose profile at a depth of 5.7 ¢m under the bolus
of figure I11.28 (in a wax phantom), {0 point measurements (TLD-1 00 LiF chips) at
the same depth. The dashed line is the calculated profile if the trachea s filled with
wax,
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central axis, which is reduced. The similarity in the two curves, ndicate that at the depth of

the calculation, the predicted dose profile is mainly a function of the patient contour.

3. Results and discuss 1

The main reason for the poor performance of the first bolus design is due to the ray
model that was used to calculate the dose distribution, prior to the availability of the pencil
heam algorithm. Since it is a ray model, the dose to a point depends only on what is
directly between the source and the dose point. This completely ignores the fact that, at the
Guzptis o the vertebral body, most of the dose 10 that point actually comes trom scattere

elecirons (Low er al 1992).

To illustrate this point, a Monte Carlo calculation was performed using the EGS4
code system (Nelson et al 1985) with the PRESTA step size algorithm (Bielajew and
Rogers 1986) enabled. The staindard DOSRZ user code’ was used to simulate &
semi-intinite water phantom. Dose was scored in cylindrical regions of 0.2 cm thickness
and 0.1 ¢m radius, which is approximately the same volume as a dose voxel in the MDAH
pencil beam algorithm. The water phantom was irradiated with a 5 cm radius beam of
monodirectional, monenesgetic 16 MeV ele  ons. The “total dose” in figure HL.21 &
similar to the percentage depth dose for a clinical broad beam. The phantom was also
irradiated with a 0.1 cm radius pe. vil beam, and this is the “primary’ dose 1
figure 111317, As the depth increases, the dose due to clectrons in the ‘pencii beam’™ “drops
very rapidly compared to the “toal dose™. At the broad beam dinax, most of the dose is due
to electrons scattered from outside the 0.1 ¢m radius “pencil beam” entry point. This

explains why the first bolus design technigue performs so poorly. A one dimensional

* A cylindrical geometry allows the user to take advantage of symmetry and reciprocity to
ercadly reduce the CPU time needed for a given statistical accuracy.

* . , . . —~ry v et

Reciprocity was used to do both simulations at once, t sa /e CPU tume.
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Figure IT1.31. Monte Carlo simnilation of a central axis percentage depth dose tor
16 MeV electrons, incident on a water phaniom. The “total” dose is from a 5 cm radius
beam. The *primary’ dose is for a 0.1 cm radius beam. The ratio of primary to total
dose is also shown.
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Feterogeneity correction does not consider scattered radiaticn and therefore predicts 100%

primary dose.

The second approach to bolus design provides improvement since the calculation
atgorithm takes into account the scattered dose contribution to the dose voxel. However,
Jesigning the bolus is not so straightforward in this case. Iteratively reshaping the bolus
and recalculating the dose distribution can be very time consuming. The most important
thing to remember is that since almost all of the energy is deposited in the patient or bolus
for electron treatments, the dose distribution must approximately conserve integral dose.
This means that any change in the surtace contour meant to increase dose in one arca will

decrease dose in an adjacent area (and vice-versa).

When designing bolus, it is also important to avoid vertical boundaries, such as in
figure M1.27, as they tend to produce small, very high dose regions. Notice that the hot
spot below the edge of the bolus is reduced from 120% 0 110%. from figure H1.27 10
figure 111.28. This is a result of the laeral scatter non-equilibrium introduced by the vertica
boundary. Fermi-Eyges based algorithms tend to underestimate the magnitude of these hoi

spots (Hogstrom and Almond 1983, Mah er al 1989).

In conclusion, bolus design based on rather limited assumptions about the: pawre o
clectron transport is not always reliable. The dose distributions that result from these
assumptions may not fulfill th» goals of reatment. Because of the large amount of scattered
radiation in clectron beams, it is very important that bolus design techniques take advantage

of available pencil beam based algorithms.

D, Conclusion

This chapter has experimentally examined many aspects of electron pencil-beam
dose ¢alculation accuracy. Under many circum<tances, the MDAH algorithm performs

reasonably well. In some cases, the apparent discrepancy between calculation and
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measurement may scem large, but the area (or volume) of the region affected is usually
quite small. For clinical purposcs, the algorithm is very usetul, and is a good ool to use
when planning electron beam treatments. In most casces, a simple ray tracing algorithm (no
scatter correction) is inadequate for calculating the dose distribution. Since the MDAH and
other pencil-beam algorithms calculate quickly using modern computer hardware, there is
really no excuse for not regularly using a jencil-beam calculation algorithm for electron

bcam treatment planning.

With the ever increasing speed and reduced cost of computer hardwa, .
version of the algorthm is also quite suitable in many clinical situations. There i finite
gain in calcuiationai accuracy in some cases, which comes with only a slight speed penaity.
The experiments presented above, show that the 2D algorithm is appropriate if the lateral
extent of the heterogeneities is less than about 3-4 ¢cm near the surface of the patient (or
phantom). This also implies that to get the full benetit of the 3D pencil beam calculation, the
anatomical information must be finer than 3-4 ¢m, so that the 3D algorithm gives ditferent
results than the 2D algorithm. A more practical upper limit would be perhaps 2 cm for the
maximum CT slice separation, so that the 3D algorithm would give different results than
the 2D version of the algorithm. Of course, to do ‘true’ 3D treatment planning, the shice
separation should be approximately the same as the anatomical resolution in the plane of the

CT slice, so that the anatomical resolution is the simitar in all directions.

One sh-w dlof the MDAH algorithms is that they cannot accurately calculate smadl
heterogeneities at large depths (compared to the practical ange). This is because the pencil
beams have spread out appreciably at depth. The redefinition algorithm (Shiu and
Hogstrom 1987, 1991) overcomes this limitation, but with a large incCrease in computing
time. For cases such as the thyroid treatment presented in this chapter, 4 2D algorithm is

probably quite sufficient. This implies that a 2D version of the redefinition algorithm could
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be very clinically useful, if the 2D implementation had a lw ¢ speed advantage over the 3D

version of the code.
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IV, Arc Electron Beams

A. Introduction

Because of increased capabilities in modern medical linear accelerators, there has
been a renewed interest in the use of moving, or arced, electron beams, particularly tor
treating large lesions in the chest wall. The dosimetry of electron arcs is not as
straightforward as for stationary electron beams. Some empirical methods of calculating the
dosc have been proposed (Leavitt er al 1985, Pla er al 1988, Pla er al 1989), but until
recently, there has been no satisfactory method to incorporate heterogeneity corrections into
the dose calculation. “iwc pencil bearn arc electron algorithm developed at M.D. Anderson
Hospital (Hogsuwom er af 1989) uses CT information for heterogeneity corrections in the
same manner as the MDAH stationary beam algorithm (Hogstrom er af 1981), which
performs reasonably well (Hogstrom et al 1984, Cygler er al 1987, Mah er al 1989). The
pencil beam arc electron algorithm was therefore implemented into the Alberta Treatment

:nring (ATP) system (Battista er al 1984).

b. Experimental Methoa

The pencil beam arc electron algorithm requires a relatively small amount of input
data. This data was measured using a water tank scanning dosimetry system (Therados
RFA-7) and transferred to the treatment planning system. A p-type diode was used as the
dosimeter because of its good spatial resolution and the equivalence of ionization to dose
(Rikner 1985). The reference field size was nominally 5 x 15 ¢m? at isocenter and the beam
was produced by a computer controlled linear accelerator (Varian 2100C). The source to
collimator distance (SCD) was approximately 45 cm and the source to isocenter distance
(for electrons) was 90 cm. The water tank was placed au a source to surface distance (SSD)
of 72.5 ¢m for the reference data measurements. The reference setup is shown

schematically in figure IV.1. Accurate data entry was verified by calculating the dose
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Figure I'V.1. Schemeii dingram of the reference beam setue for are «lectron beams. Note
that the hori-ontst and vertic - scales ar: no: © fenticil.
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distribution for a 0° arc (stationary beam with arc electron collimator) on a flat water

phantom under reference conditions.

Two types of phantom were used for the arc measurements. The first phantom,
shown in figure IV.2, consisted ot cylindrical polystyrene slabs, with a radius of 17.5 cm.
Bare Kodak XV film wa< - 'wiched between the slabs and clectrical tape was used to
protect the film from ar~ . . ;ht. The phantom was placed in the beam with the phantom
axis along the axis o1 »ant fotation. Data was obtained for arcs of 0°, 90°, and 145° for
nominal beam ener;.ie- .. 12 and 20 MeV. For the purposes of this study the ficld size
was not varied, and *:i; the same as the reference field size. The films were scanned using
an automated film densitometer system (Therados RFA-7). The data was converted to dose

using a measurcd optical density to dose conversion curve.

Measurements were alse performed in a water phantom, tigure 1V.3, for the same
arc angles as for the film measurements. The phantom was constructed “y vacuum forming
0.3 cm thermoplastic sheet (Vivak™) over a semicircular mould, so that the outside radius
of the phantom was 17.5 cm as for the polystyrcne phantom. The final wall thickness was
0.15 cm. This was bolted to a plexigiass water phantom with a large opening at the top tor
filling with water and dosimeter access. A diode was mounted on a one dimensional
scanner (Therados LSC-2) which in tum was mounted onto the water tank. An integrating
electrometer (Therados DPD-5) was used to measure the arc electron dose. The
measurement procedure consisted of positioning the diode at the point of interest, resetting
the electrometer, and initiazing the arced electron beam. Reproducibility of the electrometer
measurement was excellent (< 0.5%) partly because of the stability of the lincar aceelerator.
There is also a small uncertainty in position, which can be converted 10 an uncertainty in

dose using the gradient of the dose distribution at that point.

For both film and diode measurements, the data was normalized to the maximum

dose ajung the central a~is for the reference field (0° arcj on a tlat water or polystyrenc
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Figure IV.2. Schematic diagram of the polystyrene phantom used for film measurements
in arc electron beams. The slabs are approximately 2 ¢m thick.
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Figure I'V.3. Schematic diagram of the water phantom used for measurements in arc
clectron beams.
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phantom at a source (o surface distance of 72.5 ¢m, takin g into account any difference in
the number of monitor units (MU) needed to obtain sufficient dosimeter response. This
gives the dose per monitor unit as a percentage of the dose per monitor unit for b
reference field. This is consistent with the normalization used by the arc electron calculation

algorithm, so the data can be compared directly.

C. Homogeneous Phaniom

Figure IV.4 shows calculated and measured depth doses for 0° arcs on the
cylindrical phantoms of tigures IV.2 and I'V.3. Because the radius of curvature of the
phantoms is large and the source 1o surface distance (SSD) was the same as the reference
setup in figure IV.1, we expect that the calculation and measurement should more or less
reproduce the reference data measured with the flat water phantom. Therefore, the
calculated and measured maximum depth doses should all be close o 100%, which is seen
in figure I'V.4. The only general observation is that the calculated range is slightly greater

than the measured range, but the difference is small cnough to be clinically insigniticant.

The percent depth dose for a 6 MeV, 90° arc is shown in rigure IV.S. The depth
dose was measured along the symmetry axis of the arc, as in all subsequent depth dose
figures. The depth doses match reasonably well, with the calculated maximum dose
approximately 1% lower than the measured dose’. We feel that this is a result of the relative
coarseness of the calculational grid compared to the sharpness of the dose peak in the

measured depth dose data.

Figures IV.6 and 1V.7 show the depth dose for 12 McV beams with arcs of 90°

and 145° respectively. In both figures, the calculated and measured maxima match quite

T All differences are given as a percentage of the dose per machine unit for the reference
field. This is simply the arithmetic diiference of the dose values with the default
normalization used by the MDAH algorithm.
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Figure 1V.4. Percentage depth doses tor 0° arcs on a 17.5 ¢cm radius water (or
polystyrene) phantom, for nominal energies of 6, 12, and 20 MeV. The source to
surface distance was 72.5 cm, the same as for the reference field. The solid lines are
calculated data; the dashed lines are measured with film in polystyrene; the discrete
points are diode measurements in a water phantom.
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Figure IV.5. Mid-arc percentage depth dose for a 6 MeV 90° arc on a 17.5 ¢m radius
phantom. The solid line is calculated using the MDAH arc electron pencil heam
algorithm and the discrete points are measured with a diode in a water phantom.
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Figure IV.6. Mid-arc percentage depth dose fora 12 MeV 90° arc on a 17.5 ¢m radius
phantom. The solid line is calculated using the MDAH arc electron pencil beam
algorithm, the dashed line is measured with film in a polystyrene phantom, and the
discrete points are measured with a diode in a water phantom.
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Figure IV.7. Mid-arc percentage depth dose fora 12 MeV 145° arc on a 17.5 ¢m radius
phantom. The solid linc is calculated using the MDAH arc electron pencil beam
algorithm, the dashed line is measured with film in ~ polystyrene phantom, and the
discrete points are measured with a diode in a wate. phantom.
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well, with the calculated depth of maximum dose being about 0.5 cm deeper than the
measured depth of maximum «lose. The ranges, however, are almost identical. Another
thing to notice about the two figures is that shape of the curves is almost identical. This is
because the extra 55° of electron arce from figure I'V.6 to figure IV.7 conuibutes negligible
dosc alony the symmetry axis. The only result is to lower the dose maximum relative to the
total number of monitor units given. At a greater depth, the situation is slightly different,
because the isocenter is in the electron beam at all times. Therefore the dose at isocesnter is

the same regardless of the angle of the arc and in this case, the isocenter dose is 0.5%.

The other feature to notice about figure IV.6 and IV.7 is that the film measurements
follow the diode measurements very closely. In order for this to occur, many precautions
had to be taken. Because the data is normalized to a tlat phantom, the data in figure requires
hree films. An unirradiated film is processed to give a 0% level, and another film is
irradiated under reference conditions to establish a 100% level. We can then measure the
arc dose data, accounting for film non-lincarity and the ditference in monitor units required
for adequate film blackening. The individual film measurements can be quite tricky
themselves, because misalignment of the film and air gaps can easily affect the results
(Dutreix and Dutreix 1969). In order to normalize the film data in the same manner as the
MDAH urc ¢lectron algorithm, two tilm measurements were needed. Obtaining good
results was therefore even more difficult. because small differences in processing
conditions can also affect the measured optical density (ICRU 1984a). There was some
hesitation in using the absolute dose given by the film measurements, so the water phantom
wits constructed to ensure confidence in the measured data.

Figures 1V.8 and 1V.9 show the results for 90° arcs of 16 MeV and 20 MeV
clectrons. The observations to be made are very similar to those at 12 MeV, with the
calculated depth of maximum dose slightly greater than the measured depth of maximum

dose. The ranges and bremsstrahlung components match very well. Overall, the agreement
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Figure IV.8. Mid-arc percentage depth dose tor a 16 MeV 90° arc on a 17.5 ¢cm radius
phantom. The solid line is calculated using the MDAH arc clectron pencil beam
algorithm and the discrete points are measured with a diode in a water phantom.
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Figure IV.9. Mid-arc percentage depth dose for a 20 MeV 90° arc on a 17.5 cm radius
phantom. The solid line is calculated using the MDAH arc electron pencil beam
algorithm and the discrete points are measured with a diode in a water phantom.
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between measurement and calculation for all of the cnergies is quite good. Figure (V.10
shows measured and calculated isodoses for the 12 MeV., 90° are., at the cedge of the are.
All of the above data contirms that the algorithm is working as it should, and is similar to

data measured elsewhere (Kurup er al 1992).

D. Lung Phantom

Electron arc therapy is frequently used for chest wall irradiation, so that a large arca
of the chest wall can be treated unitormly. For any chest wall treatment, the lung is a major
critical organ, and is particularly sensitive to radiation damage (Hall 1988). To test the
accuracy of algorithm for chest wall treatments, the lung phantom, shown in figure 1V. 11,
was constructed. The *lungs’ were constructed from semicircular segments of cork,
approximately 15 cm thick, and bolted into the water phantom. The cork was wrapped in
thin plastic ‘cling” wrap, to ensure that the cork did not soak up water and therefore change
density, during the experiments. The vertical distance from the axis of symmetry, or
isocenter, to the cork was 5.5 ¢m, and the ‘chest wall’ thickness was 2 cm. The phantom
was filled with water, and a diode was used to measure the dose, as before. The dose was
measured along along lines 5 cm above isocenter, and 2.5 ¢m above isocenter., for
energies of 12, 16, and 20 MeV. The beam was arced over an angle of 80° from a

horizontal position to 10° from vertical. as shown in fieure IV.11.
p 2

Figure IV.12 show the results for a 12 MeV arc. The continuous lines show the
calculated dose along the scan lines and the discrete points are measured values. The
position coordinate is measured from isocenter in this case. For the scan nearest the cork
(y=5), the calculation overpredicts the dose in the central part ot the curve by approximately
3%, or 10% of the maximum dose for the treatment plan, which was approximately 34% of
the stationary beam reference output. This overprediction is consistent with the generally
deeper penetration of the depth dose for the homogencous water phantom. For the deeper

scan line (y=2.5), the main discrepancy is between 7—10 ¢m from isocenter, where the
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Figure 1V.10. Calculated and measured (film) isodose lines for a 90° arc of 12 MeV
clectrons incident on a 17.5 cm radius polystyrene phantom.



Arc Electron Beams puage 9.3

Figure IV.11. Schematic representation of the lung phantom gcometry. The picces of
cork were fastened into the water phantom in figure 1V.3.
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Figure 1V.12. Calculated and measured doses profiles for a 12 MeV, 80° arc incident on
the lung phantom in figure I'V.11. Calculated isodoses are shown in (a). The solid and
dashed lines (b) are calculated profiles at y=5 and y=2.5, respectively. The solid and
open points are measured doses along the same profiles.
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calculated dose is approximately 9%, but the .+ =od d v or s already in the
bremsstrahlung region, less than 1%. This is greater thas e expennmental error, but
should not be clinically significant since the algorithm is overpredictng the dose. Of more
clinical significance is the dose to the chest wall, but from our water phantom

measurements, we can be confident that the given dose is accurate.

Figure 1V.12 show the data for the same phantom as figure IV.12, but with an
energy of 16 MeV. Qualitatively, the results are very similar, with slightly better accuracy
(=2%) for the scan line nearer the cork. Figure IV.14 show the results for ihe 20 MeV

beam, and again the calculated dose is fairly close to the measured dose.

Overall, figures IV.12 through V.14 show that the MDAH arc electron pencil beam
algorithm works reasonably well for our lung phantom. We can be confident that the tung
dose predicted by the algorithm will be close to (or greater than) that actually delivered.
Calculation of the dose to heterogeneities is a major advantage of this algorithm over other

algorithms (Leavitt eral 1985, Pla er o/ 198%) and should prove clintcally usetul.
E. Discussion

Even though the agreement between measurement and calcutation is quite good,
there are a few precautions that must be tiken in order to assure good calculatioral results.
If we consider, for the moment, a cylindrically symmetric irradiation geometry, as in

figures IV.2 and IV.3, then the dose distribution within the phantom can be writien as
2

D(r.0) = JS(a) dr.6—a)do (av.n
0

where D(r,0) is the dose distribution in polar coordinates, S(e) is a source function
describing the output of the linear accelerator as a function of angle, and d(r,6) is the dose
distribution for a stationary beam on the same phantom at ¢e— Equation (1V.1) gives the
total dose distribution as an integral of dose distributions from a moving beam.

Conversely, we can get the same result if we consider the beam as heing stationary and the
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Figure 1V.13. Calculated and measured doses profiles for a 16 MeV, 80° arc incident on
the lung phantom in figure 1V.11. Calculated isodoses are shown in (a). The solid and
dashed lines (b) are calculated profiles at y=5 and y=2.5, respectively. The solid and
open points are measured doses along the same profiles.
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Figure 1V.14. Calculated and measured doses protiles for a 20 MeV, 80° arc incident on
the lung phantom in figure IV.11. Calculated isodoses are shown in (a). The solid and
dashed lines (b) are calculated profiles at y=5 and y=2.5, respectively. The solid and
open points are measured doses along the same profiles.
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phantom heing rotated under the beam. For given radius in the phantom, the arc dose is

then equal to the integral under a radial profile of the stationary beam.

We can obtain some insight into the arc algorithm if we deform the cylindrical
phantom into a flat, semi-infinite phantom, with the arced beam replaced by a translating

beam. The dose distribution is then given by

D(x,y,2) = fS(.r') d(x-x',y,z)dx’ (IvV.2)

-0

where the beam is directed along the z axis and translated along the x axis. We will
consider the beam to have unit intensity from —oo to +<< in the x direction and the y extent

of the beam will also be infinite. Setting x=y=0 in equation (IV.2) gives the depth dose

D(©.0,2) = [ d(-x',0,2)dx’ (av.3)

where d(—x',0,z) is the dose distribution due to a stationary beam (not a pencil beam) at the
coordinate x°. .

It is easy to show that equation (IV.3) is equivalent to the depth dose for a
stationary beam with infinite extent in x and y. However, the MDAH algorithm defines the
fluence to dose conversion tactor g(z) as the infinite field percentage depth dose. Therefore,
D(0,0,z) = g(z) in equation (IV.3), and if we extend the analogy back to our cylindrical

phantom, the arc depth dose is then very dependent on the way we caiculate the fluence to

dose conversion factor. From chapter 1I,
Drg(O'O,Z)

erf A x erf B
(ﬁ GMCS) (‘ﬁ Smcs J

for a rectangular field of dimension 2A x 2B. For a given depth z, g(z) increases if Spmcs

&) = (IV.4)

is increased. The MDAH algorithm includes a multiple Coulomb scattering factor, FMCS,

. . . e . - o . -
which is a multiplicative factor for Opcs- For normal stationary beam treatment planning,
this parameter is not very important. Even if it is not adjusted to give the best agreement in

the penumbral region, the depth dose predicted by the algorithm is essentially unchanged.
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However, for the arc algorithm, the choice of FMCS affects the £(2) fluence to dose
conversion factor through equation (1V.4), and therefore the predicted depth dose for the
arced beam.

To show the effect of the choice of FMCS on the arc electron pencil beam algorithm
outpdt, figure IV.15 shows the depth dose for a 16 MeV 90° arc, as in figure V.8, In this
case, the input data to the algerithm has remained unchanged except for FMCS. Note the
large effect that changing the FMCS parameter has on the predicted maximum dose. The
predicted output ranges {rom 23.9% to 25.4% for a change in FMCS tfrom 1.0 o 1.4. In
our case, rather than matching penumbra for the stationary beam, we chose 1o adjust FMCS
such that the arc output was predicted correctiy.

Another feature common to all of the calculated arc depth doses is that the predicted
depth of maximum dose is greater than the measured depth of maximum dose. In this case,
it is the algorithm’s lack of a mechanism to account tor range straggling of the electrons. As
noted above, the Fermi-Eyges theory predicts that the width of a pencil beam increases
monotonicaily to the end of the range. However, electrons that have been laterally displaced
from the axis of the pencil beam, have travelled a larger distance and have therefore lost
more energy. This causes the pencil beam width to reach a maximum and then decrease
toward the end of the range?.

The MDAH arc algorithm recognizes that in order to predict the correct are output,
the integral under the profiles of the measured and calculated profiles must be cqual. To that
end, the width of the calculated beam is corrected by a small amount such that the integral
under a calculated profile matches the integral under a reference profile, at the depth of
maximum dose for a stationary reference beam. However, as observed previously

(El Khatib er al 1992, Kurup et al 1992), the depth of maximum dose for the are is greater

T More details will be given in the following chapter.
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Figure IV.15. The percentage depth dose tor a 90° arc of 16 MeV electrons incident on a
17.5 ¢m radius water phantom, as the multiple Coulomb scatiering factor, FMCS,
varies trom 1.0 to 1.4,
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than the depth of maximum dose for the stationary beam. At this greater depth, the integrals
under the profiles may not necessarily match. In fact, because Fermi-Eyges theory has a
monotonically increasing pencil beam width, the fluence to dose conversion factor, L£12),
and hence the arc output, is enhanced at depth. This is the reason why the calculated depth
of maximum dose is greater than the measured depth of maximum dose.

There are two ways to improve this situation. The first is to estimate (or measure)
the depth of maximum dose for the arced be:. . and then match integrals under calculated
and measured profiles at this depth. This would ensure that the dose output at the measured
depth of maximum dose would match, but the dose at slightly greater depths may be even
greater, because of the fluence to dose conversion factor enhancement mentioned above.
The other method would be to incorporate range strazgling effects on the pencil beam width
into the algorithm. The next chapter investigates somie methods for doing this, and shows

the effect on the calculated arc output.
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V. Ran tr ling Modifi ion
Latr [0 1

Even with the success of Fermi-Eyges based pencil beam algorithms for electron
transport, there remain some significant shortcomings to this approach. The main problem
1s the lack of a mechanism in the Fermi-Eyges formalism to model range straggling of the
clecrons as they penctrate the medivm. The present theory assumes that all of the electrons
in the pencil beam lose the same amount of energy per unit depth, regardless of the lateral
displacement occurring as a result of multiple Coulomb scattering (MCS). Electrons that
have been scattered away from the central axis of the pencil beam have travelled a longer
distance, and therefore have lost more energy than electrons along the central axis. The
laterally displaced clectrons would therefore not penetrate as far as the central axis

clectrons.

As the pencil beam nears the end of its range, the laterally displaced electrons run
out of energy. This implies that the spread of the pencil beam will not increase as quickly as

simple Fermi-Eyges theory would imply. The width of the pencil beam is given by

o';ilcs":) =% j(:—u)?’ T(u)du (V.1)
0

as we have seen above. Equation (V.1) implies that the pencil beam width increases
monotonically with depth. In reality, measurements and Monte Carlo calculations show that
the pencil beam width reaches a maximum and then decreases as the practical range is
approached (Werner eral 1982, Lax eral 1983, Sandison et al 1989). Figure V.1 illustrates
this phenomenon for a 12 MeV pencil beam in a semi-infinite water phantom. The solid
line shows the pencil beam width as calculated using equation (V. 1), using accepted
scattering powers (ICRU 1984a) adjusted for electron—electron scattering. The discrete
points show the pencil beam spread as calculated by the EGS4 (Nelson et al 1985) user

code DOSRZ, with the PRESTA (Bielajew and Rogers 1986) algorithm enabled. A
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Figure V.1. Pencil beam width for 12 MeV electrons incident on a water phantom. The
discrete points were calculated using a Monte Carlo code (see text for details), and the
solid line is calculated using Fermi-Eyges theory and ICRU scattering powers (ICRU
1984a).
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Continuous Slowing Down Approximation (CSDA) was used so that seccondary electrons
and bremsstrahlung were not produced. The user code was modified to calculate thc
variance of the lateral displacement of the electrons as they penetrated the semi-infinite
water pheatom in the simulation. Figure V.1 clearly shows that the pencil beam width does

reach a maximum and then decrease.

In the first half of the range, equation (V. 1) underestimates the amount of
scattering. This is because Fermi-Eyges theory assumes only small angle scattering. The
Monte Cario caleulation is based on Moliere’s more accurate description of the scattering
process (Nelson er al 1985). This, along with the polyenergetic nature of ‘real’ electron
hearzs, is the reason that the multiple Coulomb scattering factor, FMCS, is needed in the
MDAH algonihin. The MDAH algorithm calculates the pencil beam width using

Oypar = FMCS X 03¢ (V.2)

where Oy is given by equation (V.1) and FMCS is a constant which is usually in the
range 1.0-1.4 (Hogstrom 1987). The parameter FMCS is adjusted to give better agreement
between measured and calculated isodoses in the penumbral region of a reference beam,

usually 10 x 10 cm?.

Both the stationary beam and arc electron pencil beam algorithms would benefit
from a more accurate prediction of the pencil beam width. In the stationary beam algorithm,
the benelit would be more accurate dose predictions in the penumbral region. For treatment
echniques involving multiple electron and/or photon fields, this would give better beam

matching and thus more accurate results.

The benefit of more accurate pencil beam widths for the arc electron pencil beam
algorithm would be twofold. The first would be more precise dose predictions in the
penumbra. as for the stationary beam algorithm. The second, more important, is better
predictions of arc electron beam output. As seen above, the output of a moving electron

beam can be caleulated as the integral under a profile of a stationary beam, given certain
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symmetry constraints. The profile of the stationary beam is characterized by two

parameters; its amplitude an:' - -umbral width. In the MDAH algorithm, the amplitude is
given by a measured depth <. value and is therefore fixed. The penumbral width is

proportional to the pencil beam width Opscse and is therefore atfected by FAICS. In the
previous chapter, the FMCS parameter was adjusted to predict the beam output more
accurately, or to give the correct width of the stationary beam at the depth of maximure

dose of the arced beam.

B. Empirical Modification of the Pencil Beam Width

L. FMCS modification

Examining cquations (V.1) and (V.2) suggests two simple methods of improving
the prediction of the pencil beam width in the MDAH algorithms. The simplest method is to
allow the multiple Coulomb scattering factor, FMCS, to be a function of the eifective depth

in the phantom (patient). Equation (V.1) can be rewritien as

-

[ =02 Tw) du (V.3)
0

B {me

0%4(33(3) = E(2) x

where 52(:) is the depth dependent FMCS parameter. The parameter E(z) can be derived
from measured data and is the ratio of the measured pencil beam width to the pencil beam
width given by equation (V.1), using ICRU #35 (ICRU 1984a) scattering powers,
corrected for electron-clectron scattering.

It will be useful to change variables in equation (V.3) so that

2 T(u')
P

' : ] ' " '
0%4(35(2') = éz(z)x % J ) (2 —uw ) du’ (V.4
o,
0

where the primed variables have been density scaled, expressed i g em ™2, If we assume

that

E(u'):EO(l - %-) (V.5)
p
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where R is the practical range in g cm™2, then the mass scattering power in equation (V.4)
is independent of density. If we further assume that the medium is homogeneous, then

2 T(u')
p

z
(0")12\4(73(2') = E%(z') % % f (z'-u’) du' (V.6)
0
where o is also density scaled. If éz(z D=1, or at least independent of density, then o'(z) is

also independent of density.

Figures V.2 and V.3 show that the above assumptions are reasonable. Figure V.2
shows the Monte Carlo (EGS4) calculated percentage depth dose for a broad beam of
12 MeV clecurons incident on a semi-infinite water phantom, where the density of the
phantom has been speciiied to be 0.625, 1.0, and 2.0 g cm™3. The depth axis has been
density scaled and the three depth doses agree well within the statistical uncertainty of the
calculation, implying that equations (V.4) and (V.5) are reasonable approximations. Figure
V.3 shows a histogram of the lateral dose deposition at a depth of 3 g em ™2 for a pencil
beam of 12 MeV electrons. This graph implies that o'(z) is independent of density, so

éjz(:’) must be independent of density in order for equation (V.6) to be valid.

Some authors have previously attempted to modily Fermi-Eyges theory to include
the effects of range straggling. A simple solution has been found (Werner ez al 1982) that,
similarly to 52(:'). muitiplies the pencil beam width by a depth dependent function to

account for range straggling. It we let

o(z) = o) pp % &(2) V.7
then Werner's solution for £(27) gives
&y emer = erf —r (V.8)
4@0’9t(2’)
where
o3 () =1 f W) gy (V.9)
X - p

U
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1s the zero scatler:ng moment irom standard Fermi-Eyges theory. Equation (V.8) is
obtained by considering all electrons scattered to angles greater than 7% to be lost from the
pencil beam. Lax er al (1983 also give a functional form obtained by fitting to Monte Carlo
generared peneil beam width data. Their multiplicative factor is givea by

‘):(Z'}lux = exp [_Sl?_(l.S—S)] (V.10)
where

5 =095 (Tk,) (V.11)
and Rpis the practical range ot the incident electrons. The functions @ Vwerner and &(27,4
have been investigated for homogeneous phantoms using measured data and pencil beams
(Sandison er al 1989), but the agreement for the non-water materials is not very good. In
order to have better agreement, the authors generalized equation (V. 10), using three
parameters, which were then fitted for each phantom. The resultant parameters show no
apparent systematic vanation with the density of the phantom and it is doubtful whether this

approach will work for heterogeneous phantoms.

2 q('(;,“r(»y'fn o ooy mnddificntion

Another possible method for more accurately calculating pencil bea:n widths is to

derive a functional form of the scattering power, T)(z), such that evaluatir g equation
(V.1), using the derived scattering power, returns measured values of the pencil beam

width in 4 water phantom. The scattering power for non-water materials would be

caleulated in the same manner as the current MDA# algorithm, except that Ty,(z) would be
used instead of tabulated ICRU scattering powers (ICRU 1984a). The scattering power

method for correcting the pencil beam width is then

-
-~

Oyesz) =5 —1;(-:'—14"')2 (Z(—il) du’ (V.12)
- P Im
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where the primed variables are density scaled. or “effective’ depths, and the mass scattering
T(u' . s . .
power, (4——)) . 1s equal to Ty,(u), which is derived from water phantom data.
'A%

Deriving T, (z) from pencil beam width data is rcasonably simple. If we assume
some parameterized functional form for T,4(2). then equation (V. 1) or (V.12) can be
integrated, giving a parameterized functional form for the pencil beam variance. The
parameters can then be adjusted, using some form of least squares fitting procedure, to give
a good fit to the pencil beam width data. The parameters can then be used to calculate

TM(:).

It is alsc possible to derive Ty () from the pencil beam width data by solving

equation (V.1) for T3(2). The third derivative or equation (V.1) is
3
L Po=10 | (V.13)
a’-

which implies that T (z) can be obtained from the third derivative of measured (or

calculated) pencil beam width data.

In order to use equation (V.12) to calculate the pencil beam width, we need to

derive (T(u )) using equation (V.13). There are several ways of obtaining pencil beam
P /M

width information from broad beams (Sandison er al 1989), but the resulting data is usually
quite noisy. Differentiating the data three times only serves o amplify the noise. To
overcome this difficulty, we can use a smooth curve of known functional form to
approximate the measured data, and then differentiate the function. Having a smooth
function to represent the measured data will actually help with both the scattering power
modification and the FMCS modification. Because there is no stmple functional form for

the pencil beam spread, we chose to fit the data to a polynomial spline curve.
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If we define the function flz) on the interval z=0 to z=z, as

fl (z) Z()<Z<Zl
Jotz) Z)<2<Zy
fzy =1 - . (V.14)
n(2) Z,_1<2<z,

then f{z) is a spline curve (Spiith 1974). The tunctions f,(z) can be polynomials, and
therefore the coefficients of the polynomials and the coordinates z,...z,_; are parameters of
the spline. The parameters are defined by the constraints on the spline, such as the values
of the funciion at certain points, and the degree of continuity of the function at the
boundarics of the intervals. Because the scattering power is the third derivative of 0%, we
nced to use at least a third order polynomial spline to get a non-zero scattering power. A
fifth order polynomial spline with continuous fourth derivative would give a scattering
power with a continuous first derivative, so that the scattering power would be a ‘smooth’

function.

For an n interval fifth order polynomial spline fit, we have 6n parameters for the
individual polyiomials.Continuity conditions at n—1 interval boundaries eliminate 5(n-1) of
these parameters. If e allow the interval boundaries to be variable then we can add n-1
more parameters 2;...2, . The z coordinates of the endpoints of the curve are fixed. This
leaves (2n+4) parameters. In some cases, it may also be useful to specify the value of the
slope at the endpoints of the spline curve. The fifth order polynomial spline curve for the
pencil beam width is therefore

ol;(z) =a;+ 0:-3; ) + ci(:—zi_l)z + di(z—zi_l)S +

efz—z;_ ) + filz-z;))° (V.15)
where

dj = a_y + b (5 =3 0) + 6y (g2 ) + diy (32 0) +

4 5
e 1 1=300)” +fis1Gimzi)” (V.16)
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bi=bi_y + 26,1 1759) + 3dy (5 =3, )7 +
46,-_1(21-_;—2,-_2))3 + 5f,-_1(:,~_1—:i_a))4 . (V.17)
;= ¢i_y +3d_j(5i_1=5i0)) + 6e; (51200 + Wfi (=520 . (V.18)
di=d;_y +de;_y(z_1-z;_p)) + 10f,_{(z;_;-5;_o))* . and (V.19)
¢; = ey + 5[ 1(z_12,_5) (V.20)

specify the conditions for continuity of the zero through fourth derivatives, respectively. I

we insert zo=0 and equations (V.16) through (V.20) into equation (V.15), then we get the

general result for ;1 <z<g

0';?' =a,+ bIZ + Cll'.z + d123 + 8124 + z()j—)?_l)f:—zj_l )5 (V.21)
J=1
where f;=0. Differentiating three times with respect to z gives
{
n
I(z) = 6d1+ 24€lZ + 60 Z(fi—f}‘_l)(z—?.j__l) (V.22
=1

as the scattering power, or if p=1, the mass scatiering power. For the scattering power
modification, equation (V.22) can then be inserted into equation (V.12) to calculate the
pencil beam width. If the material is homogencous, then the solution of cquation (V. 12)

returns equation (V.21), except that the left hand side will be multiplied by p?*

The general solution of equation (V.12) given the mass scattering power of
equation (V.22) is slightly more complicated. If we define P; as the density of the i

region, then, for z;_; < z < z, the solution is

i
1 ’ ! 2
, , di d;_+de; (5 |-z 2)+|‘)f (=327 L
Omcsiz) = E {(;%— P )(:—“j-l) *
J -1
j=1

(_J_ e;_1+5f;_ 1(j 1 72))(, ) +(_J_ r_LJ( 5} (V.23)
P Pii Pl P

where the intervals include the 3 from the ogiginal spline fit, and the boundarics introduced

by discontinuitics in the phantom material.
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Comparing equations (V.21) and (V.22), we see that the parameters a,, by, and ¢,
are not involved in the scattering power. Their physical significance can be seen if we
compare equation (V.21) to the general solution for the width of a Gaussian beam (ICRU

1984a)
z
oA (z) = 6(2) + 2(9‘4\")04 + 0% z % j (z—1)® T(u) du (V.24)
0

where 0(2) is the initial varian o% is the initial angular variance and (?r_r)o is the initial

covariance of the Gaussian pencil beam. Therefore

ay =GR (V.25)
by =2(8,x) (V.26)
¢y =0g, (V.27)

are the additional parameters in equation (V.21). When we fit equation (V.21) to measured

or calculated pencil beam data, the parameters a,, b,, and ¢, are used to define the initial
-

parameters of the pencil beam.

C. Monte Carlo Results

To compare the various methods of modifying the pencil beam widths, we need
some data for o=(z") for homogeneous and heterogeneous slab phantoms. Measurements in
water are fairly easy, but heterogeneous phantoms present a problem. Another way to test
the modifications is to do a computer simulation. Using the EGS4 (Nelson er al 1985) user
code DOSRZ, a series of simulations were performed to calculate pencil beam widths in
semi-infinite water phantoms. Using the PEGS4 preprocessor, several different densities
of water were simulated, from 0.32 g em3t020g cm™3. The simulation geometry
consisted of a series of slabs of constant mass thickness (0.2 g cm™2), but with varying
densities. At every planar boundary, the electron’s position and its square were
accumulated so that the variance of the position could be computed at the end of the

simulation. All of the simulations used a zero-radius monoenergetic, monodirectional pencil
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beam of 12 MeV electrons. Most of the simulations consisted of 140,000 clectron
histories, and approximately 12 hours of CPU time (VAXstation 3520) was necded per
simulation. To simplify the simulation, a CSDA approximation was used, so that
secondary electrons and bremsstrahlung were not produced. The data were analyzed using

a spreadsheet program (Microsoft Excel, Redmond. WA) on a personal computer.

1. Homogeneous phantoms

The first phantom simulated was a unit density water phantom. The resultant pencil
beam widths were shown in figure V.1. The data was fit to ecquation (V.21) using three
intervals in z. The best fit criteria was to minimize the sum of the squares of the differences
between the Monte Carlo pencil beam standard deviation at 0.2 g ¢m ™2 intervals and the
standard deviation as calculated using equation (V.21). The parameters dy, by, and ¢y were
set equal to zero, since the simulated pencil beam had no initial variance. To ensure that the
scattering power was positive at z=0), the parameter d 1 was constrained to be greater than

Zero.

Figure V.4 shows &(z') derived for the FMCS correction, cquation (V.4), the
Werner correction, equation (V.8) and the Lax correction, equation (V.10). The Werner
and Lax corrections are similar in that they start at unity and then decrease as the depth
approaches the practical range, which is 5.75 ¢m in this case. The main difference is where
the two corrections start to decrease the pencil beam width (&(z)<1). The FMCS correction
does not necessarily start at unity, since it was derived from the ratio of Monte Carlo duta
and Fermi-Eyges predictions. For depths less than 4 g cm™2, the FMCS correction
enhances the scattering of the electrons, which is needed since the Monte Carlo data does
not exclude large angle scattering. Lax et al (1983) have shown that the rms radial spread
(standard deviation) of a pencil beam is significantly greater than the ¥, width of the pencil

beam at shallow depths, mainly due to the large angle scattering tail in the scatteri ng
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Figure V.4. Comparison of multiplicative pencil beam width correction factors calculated
tfor a 12 MeV monoenergetic clectron beam.
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Figure V.5. Comparison of pencil beam width corrections calculated for a 12 MeV
monoenergeuc electron beam incident on a water phantom. The discrete points are
Monte Carlo calculated results and the short dashed line is the pencil beam width
predicted by Fermi-Eyges theory using ICRU scattering powers (ICRU 1984a).



Range Straggling Modification page 115

distribution®. The Werner and Lax corrections are derived to predict the Y, width, ignoring
the large angle scattering tail at shallow depths. The parameter S, in the Lax correction
method was also fit to radial dose profiles, as opposed to radial flucnce profiles, which are
slightly different (Lax er al 1983). In all of the pencil beam width correction methods, the
pencil beam width is decreased at greater depths to account for electrons lost from the

pencil beam due to range straggling.

Figure V.5 shows the result of applying the &(z) corrections to the Fermi-Eyges
predictions for the pencil beam width. The Monte Carlo data is shown as discrete points
and the Fermi-Eyges prediction, solving equation (V.1) using accepted scattering powers
corrected for electron-electron scattering (ICRU 1984a), is labelled ICRU #35. As
expected, the result of applying the FMCS correction is to return the polynomial spline
curve used to fit the unit density water data. The Werner correction underpredicts the
maximum pencil beam width slightly, and the Lax correction overpredicts the maximum
pencil beam width. The position of the maximum is also deeper than the l\/;nntc Carlo data,
for both the Wemer and Lax corrections. The results of the Werner and Lax pencil beam
width corrections are qualitatively similar to previously published results (Sandison er af
1989). This is not really a fair test of the Wemner and Lax pencil beam width corrections
because, as noted above, they are trying to predict the Y, width of the pencil beam, as
opposed to the rms spatial spread, which is calculated in the Monte Carlo simulation. The
inclusion of large angle scattering in the Monte Carlo simulation leads to larger pencil beam
widths than predicted using simple Fermi-Eyges theory, which is scen in figure V.5 and
observed by Lax er al (1983). The generalised Gaussian model (Lax et af 1983, Lax 1986a)
was developed to include the effects of the large angle scattering tail, but will not he

discussed here.

* For a purely Gaussian distribution, the rms spatial width is equal to the 1, width.
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In apparent contradiction o tigure V.5, Sandison er al (1989) found that the Monte
Carlo pencil beam width was consistently less than that predicted by Fermi-Eyges theory.
Their data for pencil beam width was the Y, width of the absorbed dose in a Monte Carlo
simulation, and the Y, width is much smaller than the rms width at small depths, and the
width of the dose profile is actually slightly smaller than the width of the primary fluence
profile (Lax er al 1983). Fermi-Eyges theory gives the 1, width of the primary fluence

profile. This implies that our data is not inconsistent with Sandison ez al (1989).

The mass scattering power, to be used by the scattering power correction from
cquation (V.22), is shown in figure V.6, as a function of energy of the electrons, as given
by equation (V.5). The pencil beam width predicted for the homogeneous water phantom is
exactly the same as for the FMCS correction in figure V.5, as expected. Notice that the
scattering power used by the scattering power correction is less than zero in the region
where the pencil beam width is maximum. The negative scattering power can be interpreted

as stripping away electrons, slowing down the increase in pencil beam width.
2. terogeneous (8112}

The next step was to compare the above pencil beam width corrections to data for
heterogeneous phantoms to estimate their usefulness in clinical situations. The Monte Carlo
phantoms consisted of slabs of water of different densities, from 0.32-2.0 g cm™>. These
phantoms were consistent with Fermi-Eyges theory, so any discrepancies were due to

deficiencies in the scattering theory, and the pencil beam width corrections.

The first phantom consisted of a 1 cm slab of unit density water, followed by
7e cm™? of water with a density of 0.8 g ¢m™3. The pencil beam width data for this
phantom is shown in figure V.7. Because the density of the second slab of water is close to
unit density, maximum pencil beam width for the Monte Carlo data increases only slightly,

from about 1.0 ¢m in figure V.5 to about 1.25 ¢m in figure V.7. For both the Werner and
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Figure V.6. Comparison of scattering power used by the scattering power correction
(labeiled S.P. in the following figures) to ICRU scattering powers (ICRU 1984a).
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Figure V.7. Calculated pencil beam widths for 12 MeV electrons incident on a water
phantom composed of 1 cm of unit density water followed by water of density

08¢ cm™. See text for calculation details.
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Figure V.8. Calculated pencil beam widths for 12 MeV electrons incident on a water
phantom composed of 1 cm of unit density water followed by water of density

1.25 ¢ cm™3. See text for calculation details.
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Lax pencil beam width correction methods, the discrepancies between the caleulated pencil
beam width and the Monte Carlo pencil beam width are qualitatively the same as in figure
V.5, except that their magnitude is slightly greater. The FMCS method performs
reasonably well, with a maximum discrepancy of about 0.1 ¢cm. The scattering power
method (labelled S.P.) performs very poorly, predicting that the pencil beam width goes o

zero before the practical range.

‘The next phantom was the same as in figure V.7, except that the second slab had a
density of 1.25 ¢ cm™3, and the data is shown in figure V.8. In this case, the maximum
pencil beam width is decreased to 0.8 cm, and the FMCS method slightly overpredicts this
value. The Wemer and Lax methods are still not as good as the FMCS method, and the
scattering power method again performs poorly, although similarly to the Lax method at the
end of the range. If we increase the density of the second slab to 2.0 g em ™3, then we get
the data shown in figure V.9. The maximum Monte Carlo pencil beam width is about
0.5 cm. In this case the Wemer method performs best up to a depth of about 5 g cm ™2,
but it fails to decrease the pencil beam width sufficiently at the end of the range. The FMCS
method overpredicts the maximum pencil beam width by 0.25 cm, and the Lax method
overpredicts by a slightly greater amount. The scattering power method again performs
very poorly, and predicts that the pencil beam width does not reach a maximum. In the rest
of the figures, the scattering power method will not be considered, since it is obviously an

incorrect model for range straggling of the clectrons.

Figure V.10 shows the pencil beam widths resulting from a 0.32 g ecm™ slab
following the 1 cm unit density slab. The maximum Monte Carlo pencil beam width is up
to about 3 cm, and both the FMCS and Werner pencil beam width correction methods
underpredict the pencil beam width by about 0.5 ¢m. The Lax method predicts the correct

maximum, but the depth of maximum is not correct. Because the FMCS method enhances
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Figure V.9. Calculated pencil beam widths for 12 MeV electrons incident on a water

phantom composed of 1 ¢cm of unit density water followed by water of density

20¢g cm™3. See text for calculation details.
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Figure V.10. Calculated pencil beam widths for 12 MeV electrons incident on a water

phantom composed of 1 cm of unit density water followed by water of density

032 ¢ em™3. See text for calculation details.
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the scattering at shallower depths and is quite close to the Monte Carlo data at the end of the

range, it performs the best of all the methods in this case.

If we consider figure V.5 and figures V.7 through V.10 together, the FMCS
method is the method of choice. In all cases, it gives the best predictions, and in some
ways this could be expected. Equation (V.12) was derived using theoretical considerations
and involved assumptions about small angle scaiterin g of the electrons. The inability of
simple Fermi-Eyges theory to reproduce the upward curve of the Monte Carlo data in figure
V.1 shows that small angle scattering is not sufficient to accurately model the beam.
Equation (V.14) was obtained by an empirical it to Monte Carlo data in a homogencous
phantom, however the Monte Carlo data was fit to the Y, width of the dose profile of the
pencil beam, so it cannot be expected to fit the rms width of the fluence profile of the pencil

beam.

D. Application to Clinical Beams

We decided that the effect, on clinical beam calculations, of correcting the pencil
beam width for range straggling should be tested using the algorithms currently available in
the Alberta Treatment Planning (ATP) system (Battista ez al 1984). Because of its good
performance, the FMCS pencil beam width correction was chosen. The first step is to
gather pencil beam width data for the clinical beams. Various methods have been described
for obtaining pencil beam spread information from broad beam measurements (Sandison er
al 1989), however the method chosen for this study is the straightforward, approximate
method used to obtain the o%x parameter in the MDAH pencil beam algorithm. If you
assume that the broad beam is a cunvolution of a constant source function, and a Gaussian
pencil beam kernel, then an approximate formula for the pencil beam spread is given by

WAan—Ww
c=2—°2ﬂx 0.595 (V.28)

where wy (wgg) is the width of a profile at 20% (80%) of the central value ( Hogstrom

1987). Equation (V.28) is valid as long as lateral scatter equilibrium has been established,
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which is true for a 10 x 10 ¢m? electron beam. Equation (V.21) should enable us to
oblain the variance of the pencil beam with sufficient accuracy for our needs.

sing a three dimensional scanning dosimetry sysiem (RFA-7, Scanditronix), dose

profiles were obtained at regular depth intervals for a 10 x 10 cm?

stationary electron
beam at an source-surface distance (SSD) of 90 cm. The beam was produced by a medical
linear accelerator (Varian Clinac 2100C), and a p-type diode was used as a dosimeter,
because of good spatial resolution and the equivalence of ionization to dose (Rikner 1985).
As noted above, the MDAH algorithm separates the electron beam into a primary electron
bcam and a bremsstrahlung component. This constant bremsstrahlung component was
subtracted from each dose profile, before calculating wgq and w,q for the dose profile.
Equation (V.21) was used to calculate the pencil beam spread of the clinical beam. It should
be noted that this procedure is not quite the same as for the Monte Carlo experiments, since
we are using dose profile as opposed to planar fluence profiles.

As in the MDAH algorithm, the beam was assumed to have an angular variance,
o;;_r, at the end of the electron applicator. The end of the applicator was located 5 cm away
from the water surface. It we assume that there is no scattering in this air space, as in the
MDAH algorithm, then the pencil beams (which form the broad beam) will also have an
initial spatial variance and spatial angular covariance at the surface of the water phantom.
The tnitial parameters of the pencil beam are therefore

ay=2505. by =10 0p. andc; = oy, (V.29)
as given by equations (V.25) through (V.27). Figure V.11 shows the resulting pencil beam
widths and the spline curve that was tit to the data for 12 MeV and 16 MeV beams. The
parameter o, which corresponds to the inidal scattering power of the beam, was tound to
be 0.01344 and 0.00748 for the 12 MeV and 16 MeV beams respectively. This implies

scattering powers of 0.0806 cm™! and 0.0449 ¢cm™!, which are greater than the accepted
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Figure V.11. Pencil beam widths for a clinical electron beam. The discrete points were
calculated from broad beam penumbra measurements, and the continuous lines are
spline curves fit to the data, as described in the text.
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Figure V.12. FMCS correction parameter, &(z"), for the range of electron energies
available from a Varian 2100C linear accelerator. The horizontal axis is the depth in
water compared to the practical range of the electron beam.
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values of 0.055 em™! and 0.033 cm™!, but must be, to include the large angle scattering

teil.

To calculate the FMCS correction parameter, the effect of the initial pencil beam
angular variance at the electron applicator was subtracted from the spline curve before
calculating £(z). This is done by subtracting the contributions of the parameters ay, by,
and ¢ from equation (V.21), which gives the equation of the spline curve fitted to the
pencil beam width data. Figure V.12 shows the &(z") for all of the electron energies
available on the lincar accelerator. All energies show the same general curve, with a
relatively constant portion at shallow depths, and then decreasing more towards the end of
the range. Except for 6 MeV, there is a systematic variation in the initial constant value,
which decreases with energy. Fo' ..) MeV, the initial portion of the curve is very close to
unity. For higher energies, there is less large angle scattering, so it would be expected that
Fermi-Eyges theory would be a good approximation. For the lower energies, large angle
scattering plays a larger role, which implies that &z") would have to be greater than unity.
The amount of pencil beam width decrease at the end of the range is also energy dependent.
The pencil beam width decrease is not as great for higher energies, which is to be expected.

In the MDAH algorithm, the pencil beam spread due to multiple scattering is given
by equation (V.2). To incorporate &(z') into the MDAH algorithm, the constant FMCS was
replaced by a function call, which returns 52(3'), as in equation (V.4). The results for a
homogencous water phantom are shown in figure V.13. The solid lines show measured
isodose lines in 10% increments. The dashed lines on the left hand side show the default
MDAH results, using a constant FMCS. The right hand side has been modified with &0,
and shows great improvement in matching the isodose lines at all depths.

We stated above that another benetit of improving the pencil beam width calculation
would also be more accurate prediction of arc electron dose output. Figures V.14 and V.15

show the depth dose for a 90° arc of 16 MeV and 20 MeV electrons, respectively. The
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Figure V.13. Isodose lines for a 10 x 10 cm? field of 16 MeV electrons incident on a
water phantom. The solid lines are measured data; the dashed line on the left hand is the
default MDAH calculation; and the dashed line on the right hand side is calculated using
&(z".
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Figure V.14. Mid-arc percentage depth dose for a 16 MeV 90° arc on a 17.5 cm radius
mmmmmTHeMwmwpMmsmemmwmuhmmadmmﬂnawmupMmmm;meaMd
line is calculated using the default MDAH arc electron pencil beam algorithm; and the
dashed line is calculated using &(z).
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Figure V.15. Mid-arc percentage depth dose for a 20 MeV 90° arc on a 17.5 ¢m radius
phantom. The discrete points are measured with a diode in a water phantom; the solid
line is calculated using the default MDAH arc electron pencil beam al gorithm; and the
dashed line is calculated using &(z").
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discrete points are measured water data, and the solid line show the results of the MDAH
arc electron pencil beam algorithm. It would also be expected that the scattering
enhancement or reduction duce to &(z) should be mainly a function of the ‘quality’ of the
beam, or its initial spectrum, and not very dependent on distance from the electron source.
For this reason, the same &(z) derived above for stationary beams, was used to modify the
arc electron algorithm. The results are shown as the dashed lines in figures V.14 and V.15.
The maximum output of the arced electron beam is slighdy reduced, but the depth of
maximum dose is alsc reduced, giving better agreement between calculation and
measurement in the falloff region of the depth dose curve. This has a real clinical benefit
since the depth at some level of the descending part of the depth dose curve (usually 80%
of maximum dose) is chosen to cover the treatment volume. Figure V.16 also shows an
improvement in the depth dose and isodose matching in the penumbral region for a 90° arc

of 12 MeV electrons.

in tigures V.13 through V.16, the amount of energy deposited by the MDAH
algorithm using &(z") is less than the amount of energy deposited by the detault MDAH
algorithm. This can be expected since we are decreasing the pencil beam width, and the
total integral dose in the MDAH depends on the magnitude of the pencil beam width. The

integral dose for a stationary beam incident on a semi-infinite phantom is

o0

D= [dx [dy [dz Dy | (V.30)
oo —oo 0

where Dis the total dose deposited in the phantom, and D(x,y,z) is the dose distribution
due to the broad beam. If we assume the assume a non-devergent beam with dimensions

2A and 2B in the x and y directions, and unit incident planar fluence, then

B A
D(x,v.2) = de' _fdx’ d(x-x',y-y',z) , (V.3D)
-B —-A

where d(x—x",y-y',2) is the pencil beam dose distribution. As we have seen above, the
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Figure V.16. Calculated and measured (film) isodose lines for a 90° arc of 12 MeV
electrons incident on a 17.5 cm radius polystyrene phantom. The short dashed line is

the default calculation, and the long dashed line is the new calculation, using &(z).
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MDAH algorithm assumes that

d(x—x"y-y'.2) = flx—x"y—y',2) X g(z) (V.32)
where flx—x',y-y'.z) is the Gaussian planar fluence of the pencil beam at (x’,y", and g(z)
is the fluence to dose conversion factor. If we insert equations {V.31) and (V.32) into

cquation (V.30), the integration over dx and dy is unity, which leaves
oo B A

D= [z gz) [ay' [dx' =4aB [dz g(2) . (V.33)
0 -B - 0

The fluence to dose conversion factor, g(z), depends on the reference depth dose, which is
measured, and the pencil beam width. The dependence of g{z) on the pencil beam width is
such that if the pencil beam width is decreased, as for the FMCS modification, then g(z)
also decreases. This implies that the integral dose, D, is smaller, which is consistent with

our observations.

The FMCS modification method is a practical and reasonable solution to the
problem of range straggling in electron beam treatment planning. Until other more accurate
algorithms (redefinition, Monte Carlo...) become clinically acceptable with respect to
computing time required, the added measured data needed to derive &(z') is a small price to
pay for the improved penumbral characteristics in stationary beams and easier output
prediction for arced electron beams. The results of the Monte Carlo simulations in figures
V.7-V.10 also indicate that the FMCS modification method should perform well for

heterogencous phantoms.
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VI ynclusion

This thesis has examined many aspects of electron beam dose measurements and
calculations under various conditions. The first scries of experiments with wax phantoms,
evaluated the performance of the MDAH 2D pencil beam algorithm (Hogstrom er al 1981)
for stationary beams. For aluminum and air heterogencities, the discrepancies between
measurement and calculation can be quite large in some cases. This is mainly due to the

limitations of the ‘central axis approximation® and the 2D nature of the algorithm.

For more reasonable high density heterogeneities, such as hard and soft bone
analogs, the deviations between calculation and measurement are considerably smaller. The
polystyrene phantom data also show the progression between 2D and 3D heterogeneities.
For both calculation and measurement, the average rms deviation between the dose
distributions for the 10 ¢cm rod (calculation or measurement) and the dose distributions for
the other length rods shows little variation after the rod length reaches approximately 4 cm
for aluminum and 2 ¢m for hard and soft bone analogs. This implics that high density
heterogeneities must be less than 2 ¢m in extent, for the 3D heterogeneity correction to
have a significant effect. The effect of the 3D heterogeneity correction also decreases as the
differences between the materials becomes smaller, as expected. For practical purposes, the
above data can be used as a guideline for deciding on the necessity of a 3D heterogeneity

correction in a given circumstance.

The last stationary beam investigation is a practical example of the use of the
MDAH algorithm for treatment planning. For the neck irradiation, the variation in a ymy
was not very great from one CT image to the next. The depth of the trachea and spinal cord
are slowly varying with respect to the surface contour. Thus the 3D heterogeneity
correction did not have a large effect in this case. However, the results do point out the
need for the pencil beam calculation, taking scattering of the electrons into account. The

shape and size of the beam modifier necessary to shield the spinal cord is vastly different if
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scattering is ignored. The results also highlight a shortfall of the central axis approximation
at depth. Because the pencil beams have spread out significantly at the depth of the trachea,
the algorithm can only account for the trachea to first order, effectively becoming a broad

beam ray tracing algorithm at depth.

The MDAH arc electron pencil beam algorithm shows great promise for treatment
planning of electron arcs because the algorithm includes a heterogeneity correction similar
to the stationary beam algorithm. Results show that the algorithm accurately predicts the
dose distribution for an arced electron beam, provided that the multiple Coulomb scattering
factor, FMCS, is adjusted properly. The calculated mid-arc depth doses show systematic
deviations with measured depth doses. These deviations can be explained by the lack of a
mechanism in Fermi-Eyges theory to allow for large angle scattering and range straggling

of the electrons.

Both the stationary beam and arc electron calculation algorithms benefit from a more
accurate description of the scattering process. Simple multiplicative corrections to the
Fermi-Eyges pencil beam variance have been suggested (Wemer ez al 1982, Lax et al
1983), and a similar approach (replacing FMCS) gives good predictions of the pencil beam
width in both homogeneous and heterogeneous phantoms, for Monte Carlo simulations.
For stationary beams, the new range straggling correction gives much better agreement
between calculation and measurement in the penumbral region. This implies that multiple
beam treatment planning should give more accurate results. For arc electron beams, the
FMCS replacement removes the ambiguity of the FMCS parameter and gives accurate
predictions of the arc electron output. It is very straightforward to implement and should
prove very useful for routine treatment planning.

Further work is needed to effectively unify the stationary beam and arc electron
algorithms. The electron transport within the patient is handled almost identically, so this

should be quite straightforward. The resulting algorithm should be able to handle most
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routine electron treatment planning problems. For cases where there is concern about
heterogeneities at depth, the redefinition algorithm (Shiu and Hogstrom 1987, 1989) could
be used to give more accurate results. The redefinition algorithm can more accurately
account for heterogeneities at greater depth than the normal MDAH algorithm. Because
calculation times are prohibitive for routine planning, a compromise which may be
sufficient in most cases, would be to modify the redefinition algorithm to allow for 2D

heterogeneity corrections, if a significant speed advantage could be achieved.

The MDAH pencil beam algorithms give good dose predictions under many
circumstances, and are very useful clinically. However, we need to be aware of
circumstances where the dose calculations can systematically vary from the actual dose
deposition. This allows for a better ‘educated guess’ as to the ‘real” accuracy of the
computed dose distribution. This thesis presents data showing some of the systematic
errors involved in the theory and implementation of the MDAH algorithms. The implication
for 3D treatment planning is that heterogeneities with an extent of greater than 2 ¢cm will
not show significantly different results with 2D and 3D heterogeneity corrections. This also
implies that to do effective 3D treatment planning, CT information is required on a scale of
less than 2 cm, and probably less than 1 ¢cm. A real limitation in most cases is the ability to
efficiently manipulate such large amounts of patient information, after it is obtained by the
CT scanner. Surface and internal contours usually need to be obtained and this process is
very time consuming, even with computer assistance. For this reason, better understanding
of the applicability of 2D and 3D heterogeneity corrections is necessary to ensure that

reatment planning time is used efticiently.
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