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Abstract

This thesis has four main chapters in which we discuss four different change point
problems. In Chapter 2, we developed non-parametric weighted Least Squares
tests for a possible change in the slope of a simple regression model. We also
proposed Least Squares tests for the epidemic -type alternative and for the at
most two change points alternative in the slope of linear model. In Chapter 3, we
used Bayesian approach to develop a test to detect an epidemic—typé change in
the parameters of the general linear models. Chapter 4, focuses on introducing
simple rank tests to detect a distributional change in samples with random size.
Finally, in Chapter 5 we obtained non-parametric tests for the multiple change

points under ordered alternatives.
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Chapter 1

Introduction

In many practical and experimental situations some statistical properties of an

in many scientific fields. Examples can be found in speech signals rec@gnitian,
epidemiology (incidence of a disease) and quality control studies. In.statistical
literature such problems are called “change point” problems. In the past three
decades an extensive amount of research has been done in this area using different
approaches to treat the problem in both parametric and nonparametric contexts.
For review we refer to Shaban (1980), Basseville and Benveniste (1986) and
Lombard (1989) as a classical treatment, to Broemeling and Tsurumi (1987) as
Bayesian treatment and to Zacks (1983) for Bayesian and non-Bayesian survey.

To introduce the change point problem, let us consider the following simple
case of “at most one change” (AMOC) in the distribution function (DF) of a
sequence of random variables (rv’s) . Given a time-ordered sequence of indepen-
dent observations X = (Xi,...,X,) with corresponding DF’s Fj,...,F,. Ina
conventional statistical analysis we generally assume that F; = F, = ... = F,

which means that X is a random sample from a common DF, F (say). However,



=
=
!
!
=
I
=

(F is usually unknown)
against, 7 ' (1.1)
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where [y] := the integer part of y. In practice, more complicated situations than
the one described above can arise. For example, there are often grounds for
suspecting that more than one change point may be present. In this case we are

testing H, against the multiple change in distribution alternative hypothesis;

H, : Junknown0<n <7 <...<7 <1, r<n such that

F; =G, 1<i<[nn), -
F; = G, [an) < i < [n7al,

F, =G,, [nr] <1< n. (1.2)

The “at most two change paihts” (AMTC), i.e. r = 2 is the most commonly
treated case in the literature since the generalization for r > 2 often follows from

r = 2. A well known, special case of the AMTC problem is the epidemic (square)



change point problem. The ¢pidemic type alternative of change in DF’s takes

the form:

H; : Junknown 0 <71 < 72 <1 and G; # G; such that
F; =Gy, i < [nm)ori> [n7),

and,

F; =G, [TZTI] <1< [Tng] (1-3)

After this brief description of the change point problem, (if a change occurs in
the DF), it is appropriate to describe the problems considered in this dissertation.
This thesis has four parts (problems). The first two problems deal with making
inference about changes which occur in the parameters of linear models and the
last two, deal with making inference about changes in a sequence of DF’s.
Problem 1

In this part we discuss the problem of detecting a possible change in the
slope of a simple regression model. A sequence of independent rv’s Y3,...,Ys,
generaled over successive time points z; < z; < ... < z,, is given. Under the

null hypothesis, the Y’s follow the model

Yi=a+ fz;+e¢ ,i=1,...,n, (1.4)

€1,...,¢n are iid with mean zero and finite variance 0. Here we are interested in
testing whether or not there is a change in the regression slope f at an unknown

3



time point m ;m = 1,...,n — 1. This problem is equivalent to testing if the

regression model has changed to :

L= Bzi+ € fori.=1,'...,m
},—a+{’)’xi+ei fori=m+1,...,n, (1.5)

where 8 # v and m are unknown. The above testing problem can also be

represented by the hypotheses
H,:B=4 vs Hy:B#~. (1.6)

Classical (non-Bayesian) tests for shifts in regression models can be divided
into two main streams. The first group of tests are those which assume that
the regression errors are normally distributed. Most of these tests are based
on the likelihood ratio (LR) statistic. On the other hand nonparametric tests
which assume no specific distribution are based either on the least squares (LS)
residuals or on ranks. First, we mention here some of the related work done
under the normality assumption. Quandt (1958, 1960) used the maximum like-
lihood (ML) technique to estimate the change point and to test for a change in
both parameters of a simple linear model. Hinkley (1969, 1971) discussed the
problem of estimating and making inference about the intersection of two simple
regression lines through the ML technique. Farley and Hinich (1970) derived
the LR test for a shift in the slope of a simple regression model when the size
of the shift is relatively small with respect to the ¢ or variance. Brown el al.

(1975) in a famous paper introduced a recursive rc...iual procedure to test for



a change in multiple regression parameters. Maronna and Yohai (1978) derived
the MLR test for a change in the intercept term and obtained through simula-
tion empirical quantiles for their test statistic. Hawkins (1980) pointed out that
the LR test for a change in the slope of a simple linear model does not converge
in the case of a discontinuous change point model. Worsley (1983) gave good
approximate upper bounds for the null distribution of the LR test in the multiple
regression model. Kim and Siegmund (1989) introduced LR tests for change in
the parameters of a simple regression model and obtained approximations for

the asymptotic distributions of their test statistics which worked well in large

multiple regression model and proved the consistency of the proposed test. Now
we mention some of the related nonparametric work. Sen (1980) introduced tests
for a possible change in the slope of the simple regression model based on the LS
estimators and derived their asymptotic distributions under the null hypothesis
as well as under contiguous alternatives. Huskova and Sen (1984) proposed rank
tests for a change in the multiple regression parameters. Gombay and Horvath
(1994) proved limit theorems for tests based on LS residuals in multiple regres-
sion models. Finally, Miao (1988) proposed a very simple test based on the
difference of cumulative sums of the dependent variable Y, to test for a change
in the slope of the simple regression model and derived its limiting distribution

under both normal and non-normal errors.



Problem 2
Here we are interested in making inference about a possible epidemic-type
change in the parameters of the general linear model (GLM). Let ¥5,...,Y; be

a sequence of independent observations taken in a successive manner (e.g. over

time) and obey the regression model,
Y =Xpg +e¢, (1.7)

where Y = (Y4,...,Yn), e = (e1,...,6n) ~N(0,0%), B = (Bo,...,Pm) is the
parameter vector and X is the design matrix. The epidemic (square) type change
in f can be represented by the hypotheses

H, : The Y’s follow the regression model in (1.7),
against

H; : For some § , represents the amount of c:hange the model is

Y =XB+6 ix e, (1.8)

where 0 < k < <n —1 are unknown and
XL,; = (0, e 303 Trp1,533L05s D, seay D)’a (1.9)
The above hypotheses are equivalent to

H,:6=0 vs Hy:6#0. (1.10)



These type of alternatives (i.e. the epidemic-type) were first introduced by Levin
and Kline (1985) in their study of spontaneous abortions. Lombard (1987), Aly
and Bouzar (1992) and Gombay (1994) proposed rank and LR tests for the
square-type change that may occur in a sequence of DF’s. Since our intention
is to solve the above problem using a Bayesian technique we will focus our
attention here only on the related Bayesian work done in this area. In Bayesian
analysis there are two main approaches used to make inference about change in
linear models. Assume that a parameter change has taken place at some time
point. The first approach utilizes the marginal posterior distributions to estimate
the change point in linear models. Holbert (1973) was the first to complete a
through analysis for making inferences about the paranj;eters of a changing linear
model. He derived the posterior distribution, jointly, for all the parameters and
marginally for the switch point and intersection point, using vague-type priors.
With Uniform prior assigned to the shift point, Holbert and Broemeling (1977)
derived the posterior, jointly for all the parameters and marginally for the shift
point in simple regression. Choy and Broemeling (1980), derived the posterior
probability mass function for the change point and used it to determine the most
probable value of the shift point in general linear models. Wang and Lee (1993),
employed a non-informative prior to the change point and used its corresponding
posterior distribution to determine the most probable change point position when
the change occurs in the intercept of a simple linear regression. For more details
about this approach we refer to Broemeling and Tsurumi (1987).

7



The second approach constructs Bayesian change point test statistics using
the so called Bayesian likelihood ratio (BLR) method. This method was ﬁr‘st in-
troduced by Chernoff and Zacks (1964), to derive test statistics for the one-sided
detection of parameter changes at unknown time in the mean of a sequence of
independent normal variables. Their methodology, is based on assuming suitable
prior distributions for the nuisance parameters under the null as well as the al-
ternative hypotheses. Then the unconditional likelihood functions are obtained
by integrating out the nuisance parameters. Finally from the LR, the BLR-type
test statistic is obtained. This technique was used by Gardner (1969) to detcct; -
two-sided parameter change in a sequence of normal variables. MacNeill (1974) |
derived two-sided BLR test statistics to test for a change in the paramétc;sf _of j
a sequence of random variables from the exponential family. Jandhvyvz‘ila' and
MacNeill (1987), derived BLR test statistics to detect one-sided and tWo-sidcd‘ ”
changes in the parameters of the GLM. Their test statistics for the one-sided
and two-sided changes are linear and quadratic functions in the regressi.on resid-
uals, respectively. They also pointed out that the asymptotic theory, even of the
two-sided tests, is generally complicated and only tractable to some extent. ‘In
(1989) they were able to determine the asymptotic distribution quantiles for the
two-sided tests in the case of harmonic polynomial regression. Jandhyala and
MacNeill (1991) computed the asymptotic quantiles in the case of first order
polynomial regression and applied them in a numerical power study. Jandhyala

and Minogue (1993) introduced a numerical procedure to solve the integral equa-

8



tions involved in computing the asymptotic quantiles of the two-sided BLR-type

tests in polynomial regressions.

Problem 3
Inferences drawn from samples with random size are important in many fields

such as, biology, insurance and telephone engineering. Our objective in this part

are random. We will also develop tests for the change point problem, based on
samples with random size. These two problems, are described in the following

parts.

The two-sample problem when the sample sizes are random

Let X,,X>,..., and Y;,Ys,... be two independent SEqﬁences of independent
random variables. The random variables X and Y have distribution functions
F and G, respectively. Let {Mp,,m > 1} and {N,,n > 1} be two independent
sequences of nonnegative integer-valued random variables. based on the samples

{Xi,1 £i < M,} and {Y;,1 <j < N,} we wish to test the hypotheses;
H,:F=G Vs H :F#G. (1.11)

For this problem we extend the results of Aly et al. (1987) to the case when the
sample sizes are random. We studied here rank tests of Chernoff-Savage type
for the hypotheses in (1.11). The limiting distribution of the test statistic is

obtained.



The change point problem in a sample of random size

Let {X,,n = 1} be a sequence of independent random variables and {N,,n >
1} be a sequence of nonnegative integer-valued random variables. Now, suppose
that X, X2,...,Xn, is a sample of a random size N,,n > 1. We study here
the problem of testing the null hypothesis of no change against the at most onc

change point alternative,

-
i B
It

o

H : X;~F ,1<i<k & X;~G ,i>k, (1.1

where F # G and k are unknown. As in the two-sample problem we propose a

Chernoff-Savage type rank test statistic and derive its asymptotic distribution.

Problem 4

Change point analysis usually deals with what is called “general alternatives”.

can be divided into two (or more) unequal groups with respect to some parame-
ter. But in some situations the above unrestricted type of alternative is not suit-
able. For example (see Jonckheere (1954)), in testing the effect of stress on the

task of manual dexterity, the data is taken from groups of subjects working under
high, medium, low and minimal stress. Here the null hypothesis would be, stress
has no eflect on these subjects’ performance and the suitable alternative is that,

increasing stress will have increasing effect on their performance. These type of

situations are called “ordered alternatives” problems. In this part of our research

10



we are studying the change point problem under ordered alternatives which is de-
scribed as follows. For simplicity, we assume that we are testing against the alter-
native of exactly two ordered changes in the location parameters. Let Xi,..., Xﬂ
be a sequence of independent random variables with unknown location param-
eters fi1,...,n. The change point ordered alternative states that for unknown
O0<s<t<l,m =... = lfns) < PfnsJ41 = +-+ = Ppnt) < Lnt]41 = =+ = fn.
Jonckheere (1954) and Terpestra (1952) studied the k-sample version of this
problem which corresponds to the case when the change points [ns] and [ni]
are known. Based on the testing procedure of Jonckheere (1954) and Terpestra
(1952) we develop a test statistic to detect the ordered type change in the loca-
tion of a sequence of observations. We also generalize this situation to test for
the ordered alternative changes in the distribution function rather than in the

location parameter. The latter test is based on Puri (1965)’s multi-sample test.

This thesis is divided into four main Chapters. In each Chapter we investigate
one of the above four problems. In Chapter 2, we generalize the LS approach
of Sen (1980) by proving weighted approximations of certain LS change point
processes. These results are then used to develop Cramér-von Mises, Anderson-
Darling and Erdés-Darling type test statistics. The limiting distributions of the
last two test statistics are derived. We also propose test statistics for testing
against the two change points alternative and the epidemic-type alternative for

change in the slope of a simple regression model. Asymptotic distributions and

11



computing formulas for these tests are also provided. Finally in this chapter
and through simulation, we obtain empirical critical values and Monte Carlo
powers for Sen test (sup-type test), Cramér-von Mises, Anderson-Darling and
Erdés-Darling type tests. We also estimate the critical values and powers of
the epidemic-type tests and the AMTC test. In Chapter 3 we examine Pfob-
lem 2 using a Bayesian approach. We derive here a Bayesian likelihood ratio
(BLR) test for the epidemic-type change in the parameters of the general lincar
model. Under assumptions on the design matrix, we determine the asymptotic
distribution of the test. As an application, three .examp]es are given and the lim- ,
iting distributions of the first two of them are theoretically determined. In the
third example and through simulations, we calculate empirical critical values for -
the test, approximation for the distribution quantiles and computé Monte Carlo:
powers under different change positions and sizes. In Chapter 4, which has two
parts, we consider Problem 3. In the first part we propose a rank tést for the two
sample problem when the sample sizes are random. We also derive the limiting
distribution of the proposed test statistic. In part two we extend the idea of
rank statistic to the change point problem when the sample size is randor‘n. We
introduced a rank test statistic to detect é possible change in the DF’s. The
asymptotic distribution of this test is derived. In Chapter 5, we develop non-
parametric tests for the ordered-type alternatives of problem 4. We first treat the
case where the change occurs in the location parameter of a distribution function

and then we discuss the general distributional change. Simulated critical values

12



for the proposed tests are obtained and compared with Monte Carlo asymptotic
quantiles of the corresponding limiting distributions. We also conduct Monte
Carlo power comparisons of the proposed tests with six other tests which may
also be used to test the same hypotheses. Finally, in Chapter 6 we give some

concluding remarks and suggest some related future research problems.
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Chapter 2

Weighted tests for a slope change in simple regression

2.1 Introduction

points 0 < z; < zy < ... < z, < co. Under the null hypothesis, the Y; ’s follow

the model

Yi=a+Bzi+¢ ,ii=1,...,n, (2.1)

where o and f are unknown real numbers, and ¢, ..., ¢, are iid rv’s with mecan
zero and finite variance o?. Without loss of generality we will assume that o2 = 1.
Suppose now we are interested in testing whether or not there is a change m the
regression slope # at an unknown point m, 1 £ m < n — 1. The problem then

is to test if the regression model has changed to

Yi=a+

Bzx;+ € fori=1,....m o oy
{')’I{+E,' fori=m+1,...,n, (2.2)

where m is unknown. The above change point problem is equivalent to testing:
H,:B=+~ Vs Hy:8%#+~. (2.3)
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All the test statistics developed in this chapter are independent of the un-
known true value of a. For this reason we will assume without loss of generality
that a = 0.

Assume that H, is true. The least squares (LS) estimator of 3 based on
Zi,...,Zk 15 given by

k
Br = Y (zi — T )Yi/ 0}, k=2,...,n, (2.4)

=1
where T, = S, zi/k, v2 = S5 (z; — Tx)? and f;, = 0. Now consider the

following differences

(2.5)

It
(]
b

Da(k) = fe—fry k=

and note that

k. , RS T ,

-

where e; = Y; = Y; z}’}—ﬁnzgii:’ 1,...,m.
Following Sen (1980), we assume that
Jim Ty = p(?) | (2.7)
and

lim u[gﬂg]/n = n(t)?, (2.8)

=00
where 0 <t £ 1, and both (.) and 7(.) exist and are continuous on [0,1]. Let

k.(.) be the nondecreasing right-continuous integer-valued function given by
kn(u) = sup ([ns] : fu(s) < u) ,0<u<l, (2.9)
0<s<1
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where fu(s) = vf,/vi. It is clear that fu(.) is a non-decreasing function in

s € (0,1). In addition we assume that
Ja(t)(@n/Tpny) £ 1 as 111 (2.10)

It is easy to see that (2.10) is satisfied when z; = i/n,1 £ i < n, forallt € (0,1).

Sen (1980) studied the process My(u), 0 < u < 1 given by
M (1) = M(ka(u)), O<u<l, | (2.11)

where M(1) = M(0) =0,

Bt

M(1) = (v} /) Da(1), 2<i<n-1 - (212)

and v and D,(!),! = 2,...,n — 1 are defined by (2.4) and (2.5), respectively.

He proposed the Kolmogorov-Smirnov-type statistic

Ta = max M(l)

for testing H, . Sen (1980) proved the weak convergence of M,(.) to a Brownian
bridge and used this result to obtain the limiting distribution of 7, .

In this Chapter we propose and study Anderson-Darling and Erdds-Darling
type statistics for testing H,. To obtain the limiting distributions of the proposed
Brownian bridge in the sup-norm metric. Finally we introduce test statistics for
the problem of testing against the epidemic and the at most two change points

alternatives.

I
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In section 2 the (in probability) convergence results of the process M,(.)
and the asymptotic distribution theory of an Anderson-Darling type test are
given. In section 3 we discuss the limiting distribution of an Erdés-Darling type
test. Tests for the epidemic and the at most two change points alternatives are
introduced in section 4. Finally in section 5 we report the results of a Magte
Carlo simulation study for the critical values and powers of the above change

point tests.

2.2 Convergence results

Define the process {S,(s),0 < s <1}, as S,(0) = 0 and

[ns] ,
Sn(s) = D (zi — Tpny)) Y, 0<s<1l,nz=z1. (2.13)

=]

Note that the process M(.) of (2.12) can be expressed in terms of Sn(.) as follows

M () = { (5a(8) = Jul)Sa(1))/on A, e

Let S, =0and §; =¥I_, Y, j=1,...,n, then we have;

[ns] [ns]

PIED B WD
=1

i=1

Sa(s)

= ZII(SI = Sic1) = E[ﬁsls[ﬂsl

i=1
[na]—-1

= i[ns]S[ﬁs] = Z ($§+1 - I,)S, - E[ﬂx]lf‘v[m]
i=1

[na]-1

= (Zfno] = Fins))Spna) = 3, (Tiga — 2:)Si. (2.15)
i=1
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In our proofs we will need the following result of Majér (1979).

Theorem (2.0)
Let a distribution F'(y) be given with [ydF(y) = 0 and [y*dF(y) = 1.

Define

V2
ak—/ vdr(y) - ([ CydF(y)?, P <k<2™a> L
v
A sequence of iid rv’s ¥3,Y%,... with distribution F(.) and a sequence of in-
dependent normal rv’s Z7,Z;,... with E(Z;) = 0 and E(Z}?) = o} can be
constructed in such a way that the partial sums S, = ¥; + Y, +... + Y, and
Tr=27+2Z;+...+2Z;,n=1,2,... satisly the relation
| Sp — T |22 o(n}/?),

Note that Theorem (2.0) implies that

| Su =T | v/ 2 o(1). | (2 m)

Csorgd and Révész (1981), p.112, showed that if we define a Wiener process

Tm = X2, Z;, where Z; = Z; [0, i 2 1 and the Z’s are as in Theorem (2.0),
then
Di‘up I Il[n.;] jiﬂﬂ] l /\/? = D(l) (217)

From (2.16) and (2.17) we obtain

|Sa~Tul/Vn £ | Sa=T;| Vot | T =Ta|[Vn

[FA

0p(1) + 0,(1)

o(1). (2.18)

lie
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Corollary (2.0)

The result of (2.18) implies

sup | Sm =T | /vVm £ 0(1) as n — co. - (2.19)
1<mgn
sup | Sm — T | /4/m £ 0(1) as n — oo. ' (2.20)

Define the Gaussian processes {W,(s), 0 < s < 1} and {B,(s), 0<s<1}

by
[ns]—1 7 o : 7
Wn(s) = (x[ns] - E[ﬂa’])z}ﬂ-sﬂ - Z ($i+1 - -‘1-';)T; ao <s=< 1: (221)
i=1 o .
and

Bn(s) = {(Wa(s) = fa(s)Wa())/oaH(2/n S s <1 —-1/n),  (2.22)

where I(A) is the indicator function of the sct A. In Appendix A, we proved

that
2T Wo(s) £ Wi(fu(s)), O0<s<1 (2.23)

and
Bo(s) 2 By(fu(s)) ,0<s<1, (2.24)

where v, and f,(.) are as in (2.4), W;(.) is a standard Wiener process and

By(t) = Wi(t) — tWi(1), 0 < t < 1 is a standard Brownian bridge.
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(2.14).

Theorem (2.1)
Let =Il“'f() and B,(.) be as in (2.14) and (2.22), respectively. Then as -

n — o,
@n = sup | M(fmg) = Ba(t) |& o(1).
O<t<1 -

Proof

By (2.14) and (2.24) we have

a0 < sup | Su(t) = Walt) | Jon + sup fult) | Sa(1) = Wa(1) | fvns ~ (2.25)
0<tL1 0<t<1 - . : L

and since fa(t) < 1, V/i/ua = O(1) (by (2.8)), the required result will follow if

we show that

am = sup | 5(t) = Walt) | VA 2 o(0) - CED

Using the repiesentation of S,(.) in (2.15) with (2.21) we have

[ni]=1 -
am < n7M? Dggl{l i) = Fpug) |l St = Tty | + D2 | @ipa — i || Si = Ti |}
==t =1

< p-l2 o e L =
R T e, o = T

+ sup | Zpay — 21 |} (2.27)
0<£i<1 )
By (2.20) and the fact that both terms inside the bracket are bounded (sce
Appendix B), we obtain the required result.
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Let @ be the class of weight functions ¢(1), 0 < ¢ < 1 such that
(i) infs<ici-s g(t) > 0, 6 €(0,1/2)

(ii) limeo g(t)/"/? = limepy g(£)/(1 — 1)/2 = o0

(iii) ¢(.) is non-decreasing in a neighbourhood. of zero and non-increasing in a
neighbourhood of one.

Given ¢ € Q and f, : [0,1] — [0,1] deﬁnea by (29) we assume that there
exists q; € @ such that

d(fn(0)) = as(0), 0<t<l. o (228)

Assumption (2.28) above is satisfied for all regressofs zi's of thgf@nﬁ z; = (i/n)?,
1 <1< m, p>0. This is because for z; = (i/n)?, 1 <i < n, p > 0, we have
Ja(s) = Pl 0<cs<l,r= 2p + 1 and hence, for a weight fLin;tyiq:n
() = 1=/ 2 F O, 550,15 1, we get q(fu(s) ~ [s7(1 - )1/ 2+ O,
that is , q(fa(s)) € Q. ' | |
Theorem (2.2)

Let ¢ € @ be a weight function satisfying (2.28). Then, as n — oo

du = sup | M(pa) = Ba(t) | /al/n(t)) B o(1),

where M(.) and B,(.) are as in Theorem (2.1).
Proof |

Let,

Ga(t) = {M (1) = Ba()} a(fu(t)), 0<t<l.



"~ Then,
dn = sup | Ga(?)] ..

o<1

Now, for a fixed § € (0,3) and n such that § > £, we have a.s.

dn < sup |Ga(t) |+ sup |Ga(2) |+ sup | G.()|

o<i<2 2<ecs 5<tL1-6
+ sup | Ga(t) |+ sup |Ga(t)|
1-6<t<1-4 1-Lcct _
= ay(n)+ az(n) + az(n) + as(n) + as(n). (2.29)

The first and last terms of (2.29) above are equal to zero by the definition of
the processes in (2.14) and (2.22). Since ¢(.) is bounded away from zero inside

(6,1 — 6), (see condition (i) of @), then by Theorem (2.1), the third term is
as(n) £ o(1). o o (2.30)
Since, v/nv;! = O(1) we have

az(n) SO(){ n™7  sup | Sa(t) — Wa(t) | /g(fa(2))

ici<s : :
£ sup | Sy(1) = Wa(1) | L@/aUn()}- (231)

Using Corollary(2.0) for the first term of (2.31) and the proof of Theorem (2.1)

for the second term we obtain as n — oo

asn) <O (nt)}  sup | Sult) = Walt) | sup £3/qu(1)

2<ics 2<ecé
+ TS = W) ] sup L(0)/alful(0)}
=0M{ 05(1)  sup th/ar(t)+op(1) sup fu(t)/g(fn(t))}-(2:32)
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Taking 6 > 0 arbitrarily small we get by condition (ii) of @,

ax(n) = o(1). (2.33)

Next, we show that the fourth term of (2.29) converges to zero in probability.

aq(n) =

= O(1){1(n)

First, we observe that

Li(n)

Zi | /‘J(fn(i))

(ST

—J+1l/\/n—[nl—t} up [0 O)):

sup  {| Sa(t) — Wa(?) — fu(t)(Sn(1)

3
1—6(151—;

~Wa(1)) | /a(fa(t))}
sup {| Z(mx Ziag)Yi i (m;—':z":[,,,]))’i-

1-b<ig1-1 i i1
(3 (o3 = T - [z}( ~ %))
Ja(8)(5a(1) = Wa(1)) | /q(fa())}

1_62131_% I i=§+l(m — Tpg)Yi — ,-_[%H(xi i)
+n P, | g;( = Do) Yi = ;(mx Tna) Z
Ja(®)(Sa(1) = Wa(1)) | /a(fa(2))}

Ir(n)}. o (2.34)

n

S (@ -Te)Vim S (- Tea)Z | Ja(falt))

i=[nt]+1 i=[nt]+1
, Z (-Tz‘ - -f(n(x—t)l)Y;' - Z (.’c,- - E[n(l-t)])Zf |
a<tLé  i=[n(1-1)]+1 - i=[n(1-¢))+1

n—[n(1-t)]

(Tnjt1 = Fpg-m) Yamisr — D (Tu-jt1 — Tpaaoy)
i=1

icics nig(l—t)
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m

= { max, | Z(In=1+l = T(nem) Yn—jt1 = Z(inéj+1 = Bipmy) Zn-jir | /.

i=1
1 - il I,,L

Vi { sup &

~1)
Leegs a(l=t)

,)%

m .
= { max I Z(Iﬂ=1+l '_"%,nsﬁ))yﬂ—jﬂ - Z(‘tﬂéjﬁﬂ Ef{ﬂsm)')gﬁéﬁ?l I /

i{m{ﬁ =1 j31
¢ 3
Jiy-{ sup Lt el

Letgh 91(1 - t)

[

m m

LA

=1 i=1

Vit sup LEOEy

1cigs 91(1 - t)

{lg‘lﬁ‘}gﬂ l Z(Iﬁ =41 = T(nem) ) Ynmjt1 — Z(lfn——jﬂ = Fpem)Znmjir | [

[ A

(2.35)

For the first factor of (2.35) we use the same argument used in ay(.) to obtain

l

'2

(n) = Oy(1). sup ——7=

Letgs fh(l )

Hence for arbitrarily small 6 > 0 we have as n — oo
Il(n) £ G(l).

By Abel’s summation we have

Z(-Tr = Tpng)Yi — fa(t) Z(f: —Zn

'(2,35)', .

= (=75, —:f(zm—z)s f(en =750 = T = 25
= (1~ fu(t))-{znSn -g(;z,ﬂfz)S} - SaTpa(1 — fu(1) i]) (2.38)
and 7
g(z‘ — o) Zi — full) é
= (1= ful)){zaTh - Z(z:,=H z;) T} - Tn:c[ﬂ.l(léfﬁ(t)f" ,» (2.39)
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where, §; = Yi_, Yi and T; = $I_, Z;, 1 < j < n. By substituting (2.38) and

(2.39) in Ip(.) of (2.34) we get

B <7t swp |zl = ()8 = Tn) | fa(a(t)

n-1

+ n 3] sup (1 - fa(2)) E;(fvm—z)(s —T3) | /9(fa(®))
)(5 —T) | /9(£x(2))

+ n~% SUP ll‘lml(l"fn(t)
Zine

1-

= h(n)+da(n) +Js(m). (2.40)

By (2.20) we have |

o - s nin g S
= 0o, (1) sup LSl) e

1-6<t<1 ‘I(fn(t))

and
W) < x| Si= T | VaYan - ) sup E)
_, 0= f)
= o(1)0(1) S TD) (2.42)
By (2.10) and (2.20) we have
| (1= FB)E)
Js(n) < {|Sn—Tu|/v/n} \59P Tpaa{ (fn(t))[m] h
= 0,(1)0(1) s s (lq( f,,Jt(’;()t)))‘ (2.43)
Taking é > 0 arbitrarily small, we obtain
Ji(n) = Jo(n) = Js3(n) £ o(1). (2.44)
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By (2.34), (2.37), (2.40) and (2.44) we have
as(n) 2 o(1). O (o45)

Thus by (2.29), (2.30), (2.33), (2.45) and the fact that the first and last terms
of (2.29) are zeros, the proof of the Theorem is complete.
Next we obtain the limiting distribution of the Anderson-Darling type test

I = [0 - RO Maf <o, (240

for arbitrarily large n.

Corollary (2.1)

s [y M@)o npg2 [ Ba(t)
AL = | {7 ——}'dfu(t) = Ln = | {——o—=r
" ffi{ﬁn(t)(l—fn(t))} ' fﬂ{\/fn(t)(l = fa(1))

where M(.) and By(.) are defined by (2.14) and (2.22) respectively.

}idfﬁ(i)i

Proof

Let ¢(t) = {t(1 - £)}4. It is clear that ¢ € Q and by (2.46) and Theorems

(2.1) and (2.2) we have

| M2 nd) = BEO) | o,
fj F21 = Fal8)) 45al)
' oue | M2() = BA(H) |
pE R TAO)

Iy { sup | M) — Bnl) |

o<t g(ful(t))
Bn(t) | +2 | Ba(t) 1)}

|AZ-L2| <

1N

1M

Hsue ( M([nt)) -
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< O(1) o, (1){op(1) + O,(1)}

o(1). (2.47)

e

By (2.24) we have

‘I \H [N

_ El(fn(i))i _ 'Edf*n 4 N 2.48
/{\[f“(i)(i—fn(t))} “ o

Now in (2.48), let t = f:(u) = supgezc1{Z : fu(z) < u} , then

_ Bl(fﬂfn l(u)) 7 Qd r f—1
2 =}*dfnfr (u
/ (ff Yu)(1 = faf, ;‘(u))} “
T Bilun) g, (2.49)

il
i~

where u, = fof7'(v) € u and u, — u as n — oo . Using the princi?le
component, decomposition (see Shorack and Wellner (1986)), we have

- CY
un(1 — un)
4 i VAIN;$5(un)

27 +1

_ o _ N 1 T Plow —
- zgmﬂ) GGV el ) B2 = 1), (2:50)

where A; 1(;+1)= N;,j=1,...areiid N(0,1) rv’'sand for 0 <9 £ 1,

R(u,) =

U, — u as n — oo we have Jy ¢3(un)du, = 1 and I3 bi(un)di(un)dun = 0,i # j

33



as n — oo. Hence by (2.49) and (2.50) the series decomposition of L2 converges
to the series decomposition of A? ( the Anderson-Darling limiting rv ) given by
.3 1 B e a
A = {——====}"du

i=1
This implies that

24 A @51)

By Corollary (2.1), (2.48) and (2.51) we have, A2 % A2, as n — co.

2.3 On the Erdés-Darling type test

Let M(.) be as defined in (2.14). In this section we will discuss the limiting

distribution of the following test statistic,

E, = sup
Ltm(t)1-1
= (2.52)

where Mx(u) = M([nf(u)]). To investigate such limiting theory we need first
to prove some additional results. We will assume throughout the rest of this
section that, under H,, therv's ¥;,...,Y, of (2.1) are iid mean zero, variance one
and that E(e®™) Exiéts in a neighbourhood of § = 0. Under these assumptions,

Komlés, Major and Tusnddy (1976)’s strong approximation result implies that
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there exists a Wiener process W(.) such that

max | S, — W(k) [ O(log n), (2.53)

1<k<
where Sy =Y, +...+ Y and S, = 0. Define the Gaussian process {Gr(s),0 <

s < 1} by G,(0) = 0 and:

[na]—1

Ga(8) = (2fno) = Tpna) )W (Insl) — 3 ($,+1—i,)W(z), (2.54)

i=1
where W(.) is the Wiener process of (2.53). By the definition of G(.) above we

see that
D NOENATAO (2.55)
where v? and f,(.) are as in (2.4), and W;(.) is a standard Wiener process. Ne;;tt
we define the Gaussian process {B,(s),0 < s < 1} by
By(s) = vy {Gn(s) — fﬂ(s)gﬂ(l)}; (é-55),

Clearly B,(s) = B;(f,,(s)), where By(s) = Wi(s)—sW;(1) is a Brownian bridge. -

We now introduce a strong app:oximation result for the process M(.) of

(2.14).
Theorem (2.3)
Assume that the conditions of (2.53) hold, then

sup | M(ins}) — Ba(s) |22 O(n~% logn) (2.57)

0<s<1
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Proof

We have a.s.
sup | M([n) — Bu(s) | < sup |v;}(Sn(s) — Gu(s)) |
0<s<1 0<s<l
+ sup fu(s) | v71(Sa(1) — Gu(1)) | .
O<acgl .

Since, supgc,c; fn(s) = 1 and by (2.8), lima_.oo % O(1) , then the required

result will follow if we show that
Ca= sup | Sa(s) — Gn(s) |2 O(log n). (2.58)
0<s<1

Using the expression of S,(.) and the definition of G,(.) it is easy to see that

[na)—1

Co S 53D {| 2o = Tina | | 5o = W) | + X (misa =) | S = W(i) )

i=1

< - 3 Iinsl — Tinsl | + SU a—z |}
2 1 5= W T 2, |t = Fton [+ 28, L2 =50 [}

Hence by (2.53) we get

14

C. 2 O(logn){O(1) + O(1)}

[J
"]

O(log n).
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Lemma (2.1)

Let W(.) be the Wiener process in (2.53), then

sup | Sa(t) — Ga(t) | /()37 2 0(1)

ALnt<n

fora]lO$r<%ahd0<)\<oo.

This Lemma is analogous to the Lemma of Cs6rgé and Horvath (1986) and
it follows immediately from (2.58).
Let @, be the class of weight functions ¢(2),0 <t < 1, suéh that

(i) infscec1-59(t) >0, b€ (0,_15).

(ii) limego 257" /q(t) = limpa (1 — )3~ /q(t) = 0(1),  0<r < (k-

T ot
ey et

), 9>2
(iii) ¢(.) is non-decreasing in the neighbourhood of zero and non-increasing in
the neighbourhood of one.

Given ¢ € @1 and f, : [0,1] — [0,1], assume that there exists ¢ € Q1 such

that
d(fal)) = als), O<s<l, C (259)
where f,(.) is defined by (2.10). In the following Theorem we consider
1_ 11 o
gt)={t1-)}", 0<t<l, 0<r< (5 - 5), (2.60)

for some g > 2. It is easy to see that ¢(.) € Q.
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Theorem (2.4)

Theorem (2.3) we have, as n — oo

n" sup | M(in0) ~ Ba(t) | a(fa(t)) £ O(1),

14241
where 0 < r < (3 — 1), for some g > 2.
Proof

The required result follows by making minor changes in the proof of Theorem '7
(2.2) (e.g., replacing terms like SUP2 ¢ycs t3 /g1 (t) = o(1), by SUPZ ¢1¢5 2= [qi(t) =
O(1), as 6 | 0 and n — o).

Let a(z) = (2log 2)%, b(z) = 2log z + 3 loglog z — 1log 7, a, = a(log n)
and b, = b(log n). The distribution function of the extreme value distribution is
given by E(s) = exp{—exp(—s)}, —00 < 5 < c0.

Theorem (2.5)

For any —oco < z < o0, as n — oo we have

P{anE, — b, < z} = E¥(z),

where E, is defined by (2.52).

To prove this Theorem we need to state and prove some intermediate results.
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Lemma (2.A): (Csorgé et al. (1986))

Let €, = (log n)?/n. For any —o0 < z < 00 and as n — oo, we have

Pla, sup | B(1)| /(41 =)} = b S 2} = EX(z),

n<t<1—

where B(.) is a Brownijan bridge.

Lemma (2.2)

For any —co < z < oo and as n — oo, we have

en<fn(t)<1-£n

Plan  sup | Bult) | /(a(t)(1 = fu(®)} = bw < 2} = B(2),
where B,(.) is defined by (2.56).
Proof:

By (2.56) and Lemma (2.A) we have as n — oo

Plan  sup | Ba(t) | /(fa(t)(1 = fa(t)))F — ba < <}

£a<fn(t)<1=¢n

= Plan sup | Bi(fa(t) | /(fa()(1 = fa(¥)))? = b < 2}

en<fn(t)<1-2n

= Pla, sup | Bi(u)|/(u(l~-u))

enSull~epn

LC

Lemma (2.3)

For any —oo < = < 0o, and as n — oo, we have

Plan  sup | F([nd)) | /(Ja()(1 = fu(t)))? = ba < &} = E%(a),

en<fn(t)<1-tn -
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where M(.) is defined by (2.14).
Proof:

Choose any 0 < r < 1. By Theorem (2.4) we have as n — oo

an _sup | F([nd)) = Balt) | /(a1 = fu(0) )2
< { jsup | FE( [nt)) = Ba(t) | /(falt)(1 = fu(t)))2 "
Gn sup {fa(®)(1 - fﬂ(t))}ér}
enZfn(t)S1—e,
< {sup | M) = Balt) | /(Ja(0)(1 ~ fu(0)))2 ~7
* G2, L
< aﬁ(l G;n)rusup | #T(0) = Balt) | /()1 = Su(0)))3 ™
= lng n):g(l)

Hence the proof of the Lemma follows from Lemma (2.2) and the above conver-

gence.

Lemma (2.B): (Csorgé et al. (1986))

Let {6,} be any sequence of positive numbers such that 1 € §, < n, 6, — oo
and (6,/n) — 0, as n — oco. Let B*(t) = B(t)/(t(1 —1)),0 < t < 1. Then
for any Brownian bridge B(.), every 0 < ¢ < oo and —o0 < & < 00 we have as

n — oo,

\I\ o

P{a(log é. ) sup | B*(t) | —b(log 5,7, ) € z} — E¥z)
t <h

3
‘M

and



Pla(log 6,) sup | B*(t)| —b(log 62) < 2} — E¥().

1-4ngic1-£
n = = n

Lemma (2.4)

For any é, and ¢ as in Lemma (2.B), we have as n — oo

| Ba(t) | P N 2y

P{a(log 6, u — + — b(log 62) <z} — FE*(z)

{a(log )ﬁs S(S o o) = (O (log 62) < =z} (=)
~and

P{a(log &) sup lBﬂ(i? l — — b(log 62) < z} = E*(z),

1-tacps1-2 {F(E)(1 = fa(t))}2
where —oo < z < oo and B,(.) is defined by (2.56).

The proof of this Lemma is exactly the same as in the proof of Lemma (2.2).

Lemma (2.5)
Let {6,} be any sequence of positive numbers such that 1 < 6, < n, §, — oo

and (é./n) — 0, as n — 0o0.Then as n — oo we have

mi= sup —— | M) | —p1 (2.61)
-<f,.(t><—n {fn(i)(l — fa(t)Ha(log 6,) '
and
- ) IM(["f]) l BN | | 2692
™ s U0 = fuOPateg gy P 8
Proof:

1=
jus



As in Csorgd et al. (1986) we need only to prove (2.61) and (2.62) is proved

similarly. By Theorem (2.4) we have as n — oo
- [Bult)]
—{fn(t){=ﬂ {fn(i)(l = fﬁ(t)}la ]Dg 5 )
u I*Ag(—[mlé— Bu(t) | (a(log 6,))71
o<t (1~ Ja(oppir o &)
Op((a(log 6,))7")

o(1). (2.63)

| ™~

n’

] 14

]

The first statement of Lemma (2.4) with ¢ = 1 implies that as n — oo,

sup 1B .Y (2.64)
E{f“(g){_n {fﬂ(t)(l - fn(t))}z a(lug 5 ) : el
Hence (2.63) and (2.64) imply (2.61).
Proof of Theorem (2.5):
Consider the following rv’s,
T,:=a, sup - | M([nt]) , - = by,
tenm<i- Ualt)(1 = fu()}H
TTEI) '=a, sup . l M([’“]) I — by,
) igj’ﬂ(i)~z-i‘zn {fn(t)(l - fﬂ(t))}i‘
T® .= q,  sup | M) | .,
' ensin()S1-en { fa(t)(1 = fn(i))}?
and
TE) = a, sup ) I M([’“]) I : o
' l-en<fu(t)<1-4 {fn(t)(l ~ fa(t))}?
Then,
T, = max{T"), T T3, (2.65)
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By (2.65) and Lemma (2.3) we see that Thcorem (2.5) will follow if we show

that:

TM 2 —co, asn — oo |  (2.766)>
and
T B _ oo, asn oo, .o (2.67)
Consider (2.66) and note that by Lemmav(2.‘5) we have as n — oo,
TV = 4,0, (a(log 6,)) — b, — —oo.

A similar result holds for T3

2.4 Testing against the epidemic and the two change points alterna-

tives

In this section we propose test statistics for two different change point problems.
The first is the problem of testing against the epidemic (square) alternativein the
slope of a simple regression model. This type of alternative was first introdﬁced
and studied by Levin and Kline (1985) in the context of testing for an epidenﬁic‘ '
change in a Binomial parameter. The second is the problem of testing againét
the at-most two change points alternative (AMTC) in the slope of a simple

regression model.
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2.4.1 Testing against the epidemic alternative

Consider the model (2.1) representing the null hypothesis of no change in the re-

by the model:

- Bz + € fori=1,....,k1+1,...,n o s
K_Q+{7Ii+éi fori=k+1,...,1 ! (2.68)

where the regression parameters a, 8 and v and the change points & and [ are
assumed to be unknown. The above testing problem is equivalent to:

Hy:B=7v vs H :B<vy or H;:B44. (2.69)
Define the process {M,(u,v),0 < u < v < 1} by:

My (u,v) = My(v) — Ma(u), O<u<v<l, - (2.70)
where M,(.) is as defined by (2.11). Observe that the process in (2.70) can be
written also as follows: .

M, (u,v) = M(k.(u),k.(v))

= M(k,(v)) = M(ka(u)), 1< kn(u) < ka(v) < 1, (2.71)

der H, of (2.69) (using the LS estimator properties), however the same expected

value under the alternative H, € (H;, H,) is,

EMEOE) = TP S dtei—3) - A -z} (272)

n i=k41
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where A = (v} — v})/v? and T, and v? are defined by (2.4).We can see that,

; zi{(zi = %) ~ A(zi = Za)} > 0, (2.73)

this is because A < 1 and (z; = %) = (2 —Tn) for all 1 < ¢ <n ,(since
% < Fn,1 < n). Thus by (2.72) and under H, the process in (2.71) on average
does not equal to zero and oscillates between the two parameters [ and ~. Hence,
a test for H, can be based on the process M,(.,.) of (2.71) .

Motivated by the above discussion we suggest the use of the fﬂllawing statis-

tics:

T = sup M,(u,v), (2.74)

B 0<u<u<l

for testing against H, in (2.69) and,

Ty = sup Iﬂdﬂ(uav)ln 7(2'75)

O<ugul
or,
o 1 fu B : v R
Tws = / / M?(u,v)dudv, (2.76)
Jo Jo "
for testing against H; in (2.69). For the test T,,3 we have by (2.70),

Tps = /: L"(Mn(u)aMn(u))gdudv

[ M2u)du = ( ' M, (u)du)?. (2.77)

We also recall that,

My(u) = M(k,) = v} v, D, (k.), 0<u<l, (2.78)



where D,,(1) = Dy(n) = 0, Dp(m) = f,, —

Ba, ..§ m<n-1and

k. = kn(u) = max{k : (v}/v?) < u}, 0<u< 1, which implies that;

ko(u) =7 whenever v? <1

_/:Mﬂ(u)du = Z/ M (j)du

j=2

n=1

j=2

Similarly,

> M(j)(v},y — v})/v2.

/ M: (u)du = Z f\fg(])(uj_’_l - v?)/‘uﬂ

By (2.77), (2.80) and (2.81) we have,

Tp3 = i M2(5)(v2,) — v?) /0l ~ {Z M(5)(v3,, — v}) [0}

Corollary (2.2)

For the statistics in (2.74)-(2.76) we have,

T S sup (B(v) -
Ogugvsl

B(u)) :=T,

T S sup | B(v) — B(u) |:= Ty,

O0gugugl

s [ [0

— B(u) )gdudu 1= T3,

where B(.) is a standard Brownian bridge.

46

- (2.80)

(281)

(2.82)



Proof

Using Theorem (3.2) of Sen (1980) and the continuous mapping Theorem we

obtain,
M, (u,v) S (B(v) — B(u)), O<u<v<l,

and hence the proof is complete by applying the suitable continuous functional

for each statistic.
Note that T, is the limiting rv of Kuiper (1960)’s stat_ist.ic and T3 is the
limiting rv of Watson (1961)’s statistic. The distributions of T, and T are

tabulated in Shorack and Wellner (1986). Some asympfotic quénfiles of Ty will

be simulated in section 5.

2.4.2 A test for the two change points alternative

Here we consider the problem of testing the null hypothesis of no change in the

regression model (2.1) against the alternative hypothesis described by the model,

Brz; + € fori<:<k
Yi=a+{ Boz;+¢ fork+1<:<1l , (2.83)
Baz; + € forl4+1<:<n

where the parameters a, i, f2, fs and the change points k& and [ are unknown.

This is equivalent to testing:

Ho . ﬂ] = ﬂz = ﬁ3 against H1 N ﬂl # ﬂz # ﬂg. (284)
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In a similar fashion as in the epidemic alternative case, we define here the

main process {AZ(u,v):0<u < v <1} by:
A2(u,v) = M2(u) + (Mo(v) = My(u))? + M2(v), O<u<uv<l, (2.85)
where M, (.) is defined by (2.11).
To test the hypothesis in (2.84) we propose the following statistic;
1 v . B ’
2= [ [ ARu,v)dudv. | (2.86)
o Jo
Corollary (2.3)
24 1 [Yin2 'y W2 L R2(0\ ]
T2 3, /D /D {B*(u) + (B(v) - B(u))* + B*(v)}dudv,

where B(.) is a standard Brownian bridge.
The proof of this Corollary is exactly as in Carcllafy (2.2). Note that, quan-
tiles for the distribution of the above limiting rv are given in Lombard (1987).

It 1s also easy to see that

T? = 2/1M2(u)du—(/lﬂ'fn(u)du2

= 23 i), - Z M () (02, — v?)/02 )2,

j=2

2.5 Estimated critical values and power comparisons

for the test statistics of this chapter. First we simulate the critical values and
the powers of four LS, AMOC test statistics. These tests are; Sen’s sup-type
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test, Cramér-von Mises (C-V), Anderson-Darling (A-D) and Erdés-Darling (E-
D) type tests. We recall that these statistics are designed to test for a possible
(one) change in the slope of a simple regression model. Their Monte Carlo results
Carlo critical values of our proposed weighted-type tests are very close to their
respective limiting values. The second is that, the power results showed that
these tests are sensitive to changes which occur close to the tails of the data
set. Second we estimated the critical values of the epidemic statistics in (2.74)-
(2.76) and the critical values of the AMTC test in (2.86). We also approximated
the quantiles of the statistic in (2.74). In all the cases the estimated critical
values seem to converge to the corresponding asymptotic quantiles. Finally we

estimated some power values for the epidemic and the AMTC test statistics.

Estimated critical values

We first conducted a Monte Carlo simulation study to esfimate the critical
values of the four test statistics; Sen’s test, and the proposed Cramér-von Mises,
Anderson-Darling and Erdés-Darling type tests. In this study we used 5,000
realizations of the simple regression model Y; = (i/n) + &, i =1,...,n. Tﬁese
simulations were done for different sample sizes and three distributions for the
regression error term, namely Norinal, Exponential and Double-Exponential. In
each simulation, sample size and distribution , the four test statistics were calcﬁs

lated. We ordered the 5,000 values of each test and obtained the 95% percentiles
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of these values. The resulting critical values are give in Table 1. The estimated

were obtained for three different regression error distributions, namely Normal,
Exponential and Double exponential and for sample sizes n = 10,20, ..., 100.
The results of these estimated critical values are shown in Tables 8-11. Further-

more, since the quantiles of the asymptotic distribution of Ty; are not available,

Z = (Z,...,Zp) of multivariate Normal variates, with mean zero and covari-
ance function equal to t;(1 —¢;),1 <i < j < M, where {; = '1\?1'4:_1’ i=1,....,M.
This vector is a discrete trajectory “in distribution™ version of the Brownian -
bridge process B(t) at t = ¢;, i =1,..., M. We took M = 800 and usedrljﬂOD'
realizations. In each realization we calculated the quantity max;<icj<m(Z; — Z;)
as an estimate of supgcyc,<i(B(v) — B(u)). We then ordered the 1,000 values
and obtain their (1 — a)® percentiles for a = 0.1,0.05 and 0.01. These approx-
imated quantiles together with the quantiles of the asymptotic distributions of
T2, Tnz and T? that we found in the literature are presented in the last row of
Tables 8-11. The values of Tables 8-11 show that the overall agreement between
the estimated critical values and the corresponding asymptotic quantiles is sat-
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isfactory. If anything, use of the approximated quantiles in small samples seem
to give slightly conservative (liberal) tests in Tn; and Ty (in Ty3 and T?), but

as the sample size increases this problem disappears.

Monte Carlo power comparisons

To study the performance of the one change point tests we estimated their
powers as follows. We considered two sample sizes n = 30 and n = 50 and
several alternatives to H, : § = 0 (i.e., there is no change in the slope of the
regression model) of the form (k, &) , where k is the change position and 6 is
the size of the change. For the distribution of the regression error we used the

Normal, the Exponential and the Double-Exponential distributions. For each

of these distributions we employed k = 2,...,29 when n = 30 and selected

values of k£ when n = 50. The amount of change § corresponding to each value

of k£ was obtained by solving the equation P(Yiy; > Yi) = 0.95. For each
power calculation, 3,000 samples of size n were generated under the alternative
segmented model. We calculated .the four tests in each of the 3,000 samples and
computed the fraction of times that each test value exceeded the corresponding
empirical critical value. The resulting powers are shown in Tables 2-7. These
results show that the Weighted tests (that is, the Anderson-Darling and Erd6s-
Darling type tests) have higher powers compared to Sen’s test and the Cramér-
von Mises type test when the change occur near the tails of the data set. The

powers of Sen’s test and the Cramér-von Mises type test are higher than those
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of the weighted tests when the change occurs near the middle. We notice that
what we call the middle of the data is shifted to almost 3/4 of the data. This
shifting of the middle is exactly what Jandhyla and MacNeill (1991) referred
to as a result of the discontinuity of the used model. We also notice that the
power values under the Double-Exponential distribution are higher than under
the other distributions which may be the result of its long tail that produces
amount of change larger than the other two distributions at the same probability.
To compare the epidemic test statistics, we conducted a simple Monte Carlo
power study. In this study we set the sample size n to 40. We considered different
change positions (k,!) and two change sizes § = 0.5 and § = 2.0. For each
(k,1) and 6§ we calculated the epidemic tests 3,000 times. We then obtained for
each test the percentage of times that the test value exceeded the corresponding
estimated critical value at @ = 0.05. The estimated powers were calculated
for three different regression error distributions, namely Normal, Exponential
and Double-Exponential. The resulting power estimates are shown in Tables
12-14. From these tables we can see that for the same change size, the powers
increase when the change positions are close to the middle of the data set. This
is because in these cases tﬁere is sufficient number of data with different models,
which make the change detection easier. We also notice that generally T,,; which
is one-sided test has the highest powers and T3 is performing at least as T,.
Finally, we estimated some power values for the AMTC test of (2.86). We
obtained these powers for sample sizes n = 40,60,80 and 100. We considered
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different change positions (k,!) and different slope parameters. For each change

position and set of parameters, we calculated the AMTC test 3,000 times under

error distributions. The estimated power percentages are shown in Tables 15-
26. From these tables we can see that the powers increase (decrease) when the
changes occur near the middle (ends) of the data set. We also notice that the
powers are generally low when the sample size is small (e.g., n = 40). As the

sample size increases the estimated powers increase and the difference between
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Table 1

Estimated critical values for the AMOC tests

at a=0.05

Dist.

of e

Test

n

10

20

30

40

50

100

200

1000

@7 o

Nor.

Sen

Cc-V
A-D
E-D

1.147
0.567
2.818
2.517

1.155
0.463
2.468
2.534

1.229
0.486
2.585
2.680

1.230
0.474
2.560

2.668

1.269
0.479
2.520
2.683

1.280
0.479
2.574
2.867

0.457
2.439
2.944

1.315 1.361 1.360

0.461
2.511
3.113

0.461
2.492
3.663

Ezp.

Sen

C-V
A-D
E-D

1.240
0.609
3.178
3.099

1.271
0.531
2.846
3.426

1.283
0.509
2.743
3.576

1.309
0.523
2.795
3.583

1.309
0.513
2.774
3.696

1.303

0.474
2.537
3.751

1.311
0.457
2.486
3.684

1.359
0.481
2.549
3.941

- 1.360 |
0.461
2.492
3.663

Sen

Cc-v
A-D
E-D

1.181
0.568
2.952
2.812

1.222
0.528
2.813
3.092

1.251
0.499

2.681

3.221

1.252
0.482
2.602
3.221

1.248
0.448
2.598
3.278

1.274
0.471
2.526

3.362

1.302
0.462
2.482
3.386

1.348
0.472
2.558
13.553

1.360
0.461

2.492
3.663
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Table 2

Estimated power percentages for the AMOC tests
at e = 0.05, n=30

(Normal error distribution)
k Test

Sen | C-V| A-D| E-D
38 |86 |97 {32
49 114|129 | 3.7
58 113.71153 |4.1

6.8 |15.2|16.5 | 4.6

7.2 ]15.8 |16.7 | 5.1

. 15.4 | 15.8 | 6.1

6.6 |14.1 14578

5.6 |12.3|12.8 | 10.2
4.7 [10.1]11.2 | 13.6
3.6 |86 |11.3|18.0
7.5 {139 | 24.0
1347 [9.8 |20.5]30.3
14 | 12.0 { 15.0 | 30.8 | 36.3
15 | 26.1 | 25.0 | 42.7 | 43.2
16 | 43.8 | 39.7 | 56.7 | 50.1
17 | 89.1 | 56.7 | 68.5 | 56.0
18 | 71.9 | 70.9 | 76.7 | 61.5
19 | 80.5 | 81.5 | 83.9 | 65.7
20 | 86.2 | 88.2 | 88.2 | 68.2
21 189.2 191.8 911 | 71.2
221915 | 93.8 [92.6 { 71.1
23920 | 94.6 { 93.1 | 71.1
24 1 91.7 | 94.7 |1 93.2 | 69.4
25189.2 193.3191.9 | 65.5
26 | 82.9 | 89.9 | 88.0 | 57.2
27169.1 | 79.8 { 79.9 | 44.9
28 | 38.8 | 56.2 | 60.5 | 27.1
29|86 20927393

[l =R v BN o I N L
~]
]

pa—
B o
o]
[ ]
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Table 3

Estimated power percentages for-the AMOC tests
at o = 0.05, n=30

(Exponential error distribution)

& Test

Sen | C-V | A-D | E-D
2 159 {96 |10.5]10.6
3 |71 11.9 | 13.2 | 10.7
4 |84 13.7 | 15.4 | 10.5
5 19.2 |15.1]16.5] 10.5
6

7

8

9.1 |[15.01158 9.4
9.0 |156]15.919.2
8.5 |14.1]14.2 9.3
9 (74 1241126 |9.9
10 6.3 |10.9]11.9 {117
1151 9.5 [11.9]15.0
12142 [9.0 |14.6 |{19.2
13|49 {10.1 (185|262
14 {88 |[14.3]26.5|32.3
151 20.3 | 22.2 | 39.0 | 39.8
16 | 36.9 | 37.0 | 51.4 | 474
17 | 54.1 | 53.1 | 63.7 | 53.6
18 | 68.7 | 67.7 | 73.2 | 58.7
19| 78.8 | 78.8 | 84.1 | 63.8
20 | 85.6 | 86.7 | 86.5 | 67.4
21 |89.4 |90.9 |89.4 | 69.8
22 191.2 {93.7|91.6 | 71.3
1231923 194.9{93.070.3
24 | 92.6 | 94.9 1 93.1 | 68.1
2590.6 | 93.8 | 92.1 | 63.1
26 | 84.2 | 90.0 | 87.7 | 54.0
27 1 66.2 | 77.8 | 76.7 | 40.1
28 | 34.4 | 51.4 | 55.1 | 25.5
2919.6 |19.6(24.2 1131
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Table 4

at o = 0.05, n=30

(Double-Exporential error distribution)
k ~ Test -
[Sen TCV [AD[ED.
5.6 |12.7 |149(9.1
8.5 179 | 21.2 | 114
10.7 1223 | 259 13.2
12.3 [ 25.8 {29.2 | 14.0
13.1 |26.9 |29.9 | 16.1
12,7 | 26.2 |27.5|18.7
11.4 1232 |24.2 239
9.6 19.1 | 21.0 | 32.0
0177 156 | 18.7 | 41.8
111 6.2 12.0 |19.7 | 53.0
12 ] 8.8 10.4 | 27.2 | 64.0
131222 [14.5 | 421|739
14 | 46.8 | 28.2 | 61.3 | 81.8
15| 71.9 |50.5 |77.2|87.6
16 { 87.4 | 72.6 | 88.3|91.3
17195.0 [951 | 94.8|94.6
18 (97.7 | 954 |97.6 964
19199.2 [986 |99.2 974
20199.6 |99.5 |99.6 98.0
21199.8 {99.8 |99.6 |98.4
22199.9 1999 [99.9 |98.6
23 1 100.0 | 100.0 | 99.9 | 98.6
24 199.9 |100.0|99.9 | 98.4
25199.7 |99.8 |99.7 973
26 {99.1 |99.5 199.3|94.9
27196.2 |98.0 |97.8|89.5
28 178.9 |86.8 |90.171.6
29 [ 16.4 | 36.9 |50.0 | 28.0

gl = B RN < S, RS O Y

a7



Table 5

Estimated power percentages
(Normal error distribution)

a = 0.05, n=50

k Test
Sen | C-V | A-D| E-D

3.7 |81 [9.0 |34
5.1 102122149
6.7 |(13.0 | 15.7 | 6.5
8.6 |15.8 |18.6 |8.1

[ LR

10 1 13.3 | 23.4 | 25.0 | 14.5
15/9.6 |17.0|18.0|29.8
20170 9.8 [23.8]56.5
25| 61.4 | 42.6 | 69.6 | 79.5
30 | 95.5 | 92.0 [ 94.9 | 91.7
351994 |99.2|99.1 | 95.7
40 { 99.6 | 99.4 | 99.3 | 95.2
451929 | 94.7 { 94.5 80.8
46 | 83.5 | 88.1 | 89.4 | 70.0
47 1 62.0 | 70.8 | 77.0 | 53.9

48 [ 28.8 | 42.1 | 53.2 | 31.9
49 |12.8 | 23.2 [ 31.2 | 14.9
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Table 6

Estimated power percentages
(Exponential error distribution)

a = 0.05, n=50
K Test
Sen | C-V[ A-D] E-D
2 |57 |79 |88 |128
3 {67 |97 |11.014.9
4 [81 |[11.8]14.1 |15.9
5 [9.6 |[14.0]17.4 | 16.1

10 (13.9 | 214 §23.2 | 15.1
1519.8 |15.1 [16.9 | 26.7
20 | 6.4 | 10.0 [ 23.3 | 55.1
25 | 63.2 | 43.0 | 68.7 | 82.5
301|954 | 91.8|94.9 [ 93.1
35199.2 {99.0 | 98.9 | 96.4
40 | 99.6 | 99.7 | 99.5 | 95.7
45 | 94.7 | 96.1 | 95.9 | 80.9
46 | 85.6 | 89.3 | 90.6 70.1
47 | 59.2 | 70.5 | 76.3 | 50.4

48 | 27.5 | 41.0 | 49.5 | 31.1
4989 |15.7]21.5 152
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Table 7

Estimated power percentages
(Double-Exporential error distribution)

~a=0.05 n=50
k Test

Sen OV [AD [ED
43 (100 [11.8 |11.8
6.3 149 [17.9 |15.8
9.8 19.6 |24.8 |18.9
14.0 |25.1 |31.2 |23.1

Qv > W N

10 [ 24.2 | 38.3 |42.6 |38.8
15| 16.5 |27.0 | 322 | 73.2
201364 |37.1 |[56.5 |94.9
251 97.8 | 829 |96.7 }|994
30 | 100.0 | 99.9 | 100.0 | 99.9
35 | 100.0 | 100.0 | 100.0 | 100.0
40 | 100.0 | 100.0 | 100.0 | 100.0
45199.9 1999 |99.9 |99.8
46 | 99.6 |99.7 |99.7 | 98.9
47196.0 | 96.6 |[98.4 |95.3

48| 66.1 | 759 |87.8 |819
49 | 119 [25.7 |39.3 | 303
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Table §

Estimated critical values for the epidemic-type tests

(Normal error distribution)

T

Tﬂ?

o

0.1 0.05 0.01

0.1

P
0.05

0.1

(a3

0.05

0.01

10
20
30
40
50
60
70
80
90
100

1.47
1.58
1.62
1.65
1.74
1.71
1.74
1.78
1.75
1.78
1.89

1.04 1.18
1.17 1.30
1.24 1.38
1.27 1.41
1.2 1.44
1.34 147
1.33 1.46
1.35 1.48
1.35 1.48
1.38 1.52
1.48 1.63

1.16
1.28
1.35
1.39
1.41
1.43
1.43
1.46
1.45
1.47
1.61

128 1.57
1.42
1.47
1.53
1.53
1.57 1.81
1.57
1.60
1.57
1.60
1.74

0.159
0.154
0.151
0.156
0.156
0.151
0.152
0.151
0.152
0.153
0.152

0.200
0.189
0.188
0.190
0.189
0.187
0.185
0.186
0.187
0.188
0.187

T 0.294

0.265
0.284
0.278
0.278
0.271
0.272
0.273
0.273
0.277
0.269

Table 9

Estimated critical values for the epidemic-type tests

~ (Exponential error distribution)

7Tﬂ 1

771‘712

fa

0.1 0.05 0.0

o

0.05 0.01

10
20
30
40
50
60
70
80
90
100

.36 1.92
1.48 1.89
1.46 1.86
1.52 1.92
1.49 1.84
1.53 1.88
1.54 1.85
1.56 1.87
1.57 1.88
1.57 1.89
1.63 1.89

1.14
1.26
1.31
1.34
1.34
1.37
1.39
1.39
1.41
1.41
1.48

1.99
1.99
1.95
2.01
1.93
2.01
1.95
1.94
1.94
1.96

1.50
1.61
1.58
1.63
1.59
1.63
1.62
1.66
1.65
1.65




Table 10

Estimated critical values for the epidemic-type tests

(Double-Exponential error distribution)

Tnl

Tn2

Tn3

0.1

o
0.05

0.01

0.1

a

0.05

0.01 0.1

0.05

0.01

10 | 1.03
20 | 1.20
30 | 1.26
40 | 1.28
50 | 1.30
60 | 1.31
70 | 1.35
80 | 1.33
90 | 1.35
100 | 1.36
oo | 1.48

1.23
1.38
1.41
1.43
1.46
1.46
1.47
1.48
1.48
1.50
1.63

1.65
1.73
1.72
1.75
1.75
1.76
1.76
1.80
1.75
1.76
1.89

1.19
1.33
1.37
1.39
1.41
1.43
1.44
1.44
1.46
- 1.46
1.61

1.36
1.49
1.53
1.53
1.55
1.56
1.56
1.59
1.58
1.60
1.74

1.81 1 0.172
1.82 { 0.170
1.82 ] 0.165
1.88 | 0.157
1.86 | 0.159
1.83 | 0.156
1.81 | 0.157
1.89 | 0.157
1.87 | 0.156
1.85 | 0.154
2.00 | 0.152

0.236
0.217
0.209
0.201
0.198
0.197
0.194
0.201
0.197
0.195
0.187

0.405
0.326
0.319
0.299
0.301
0.288
0.296
0.304
0.294
0.287
0.269

Table 11

Estimated critical values for the AMTC test T2

e ~Normal

€ ~Ezponential

€ ~D-Fzrponential

0.1

o
0.05

0.01

0.1

(44

0.05

0.01

0.1

(2 4

0.05

0.01

10

20

30

40

50

60

70

80

90
100

0.542
0.505
0.495
0.492
0.489
0.501
0.490
0.482
0.482
0.496
0.481

0.685
0.661
0.636
0.636
0.640
0.636
0.629
0.628
0.615
0.639
0.628

1.035
0.998
0.994
1.004
0.989
0.980
1.002
0.971
0.924
1.005
0.956

0.617
0.573
0.523
0.538
0.504
0.505
0.512
0.509
0.505
0.518
0.481

0.889
0.791
0.685
0.704
0.663
0.672
0.663
0.676
0.662
0.674
0.628

1.559
1.331
1.183
1.151
1.102
1.061
1.059
1.035
1.089
1.024
0.956

0.582
0.554
0.514
0.514
0.513
0.513
0.492
0.492
0.491
0.487
0.481

0.791
0.743
0.713
0.673
0.654
0.664
0.653
0.661
0.631
0.625
0.628

1.415
1.183
1.132
1.102
1.072
1.052
0.971
1.010
0.954
0.968
0.956
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Table 12

Estimated power percentages for the epidemic tests
at o = 0.05 and n = 40.

( Normal regression errors)

T 6=05 §=20
k [ Tﬁiiijﬁni—i_’ Tﬂ3 Tﬁi;iﬁTnE Tﬁ3

214151 50 52 |53 50 6.8
10{50 50 50 |58 56 8.1
2051 52 56 |68 189 224
30|88 7.8 80 |928 90.4 90.7
351124 79 81 {944 904 90.5
371103 64 6.5 [8l4 T71.8 719

4 [10}52 48 50 |50 562 175

20 (50 49 50 (82 207 23.7
30(9.1 7.8 79 (940 921 925
35(12.2 7.5 83 |[944 904 90.6
37199 6.6 6.7 |80.9 712 728

10{20 (50 51 53 |13.3 220 257
301109 87 9.1 |9.8 942 946
35134 86 89 (965 929 934
371105 64 6.6 |84.8 77.1 781

20130]11.6 83 9.0 [958 92.8 94.2
35158 105 11.1|97.9 96.6 97.2
37(12.8 86 87 |949 915 93.7

30135(10.2 6.8 7.2 |869 803 8438
37115 84 9.7 | 956 91.8 94.9

35(37(64 6.0 61 |341 289 321
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Table 13

Estimated power percentages for the epidemic tests
at a = 0.05 and n = 40.

( Exponential regression errors)

" §=05 |  §=20_
k I Tﬂ/iTﬁg Tﬂs ;1;1 ] Tﬁ? T f}é

21451 49 5049 48 6.
10150 5.1 5.0|50 50 5.5
20152 54 53|78 142 155
3079 6.7 7.1 887 869 87.1
3568 54 6.5 881 83.7 850
3768 5.6 58665 54.9 59.6

4 /10149 5.0 49|50 51 6.1

2051 49 50|76 149 17.0
3082 7.1 73894 884 885
3584 6.8 73 895 86.5 87.6
37168 52 55 |66.6 555 59.4

10[20}50 56 53 |11.6 17.8 17.7
30 (77 7.0 72942 933 926
35182 6.3 68922 89.2 90.1
37174 51 56739 653 69.3

20130(87 7.0 7.1 921 89.2 89.9
3591 68 79975 957 96.9
3784 58 69 905 857 889

3013566 51 6.3 |826 731 719
37180 6.5 7.8193.9 90.7 920

35[87 (51 51 52240 200 25.0
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Table 14

Estimated power percentages for the epidemic tests
at o = 0.05 and n = 40.

( Double-Exponential regression errors)
5=05 | §=70
k l Tnl Tﬂé 72}{3 i 72}417 —?112' VTV;S
24|54 58 64 [59 6.0 65
10{6.0 6.0 6.2 |63 69 6.9
2050 69 7.0 (89 214 213
30{9.1 87 89 [93.7 924 93.1
35121 94 9.6 [944 916 93.2
371103 7.8 7.9 |80.3 725 74.2

4 110(54 6.6 65 |56 6.7 7.1

20158 72 74 |104 218 219
301101 9.3 8& (939 928 93.1
35(11.3 89 9.1 |94.6 922 93.2
37198 73 73 |809 725 T74.2

10{20(52 68 6.8 |14.6 23.7 23.6
30 {116 10.3 106|968 955 95.7
351126 10.0 10.6|96.4 94.5 95.1
37111.2 84 89 862 79.0 82.1

20 130 11.5 103 10.4 952 93.1 94.1
35| 15.7 11.7 12.2]98.6 97.7 979
371138 9.9 10.1 956 93.0 94.1

30135102 85 8.6 |[87.5 825 83.1
371100 88 10.1)97.2 95.1 96.3

353768 7.1 71 |326 204 310
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Table 15

Estimated power percentages for the AMTC test

at o = 0.05 and n = 40.

( Normal regression errors)

V 7,7,,(512 521 ﬁS)

(0.0,05,1.0)

(0.0, 0.5, 1.5)

(0.0,1.0,2.0)

[ 2]

10

30

10
20
30
35
37

10
20
30
35
37

20
30
35
37

30
35
37

35
37

|37

55
5.5
5.0
10.6
9.6
7.5

5.5
5.0
9.4
9.6
7.6

5.7
10.5
10.2
7.4

11.1
10.6
9.9

27.3
19.6

21.5

5.5
5.1
5.7
27.8
27.7
17.3

5.7
26.4
26.2
17.9

5.7
25.9
26.0
15.9

31.2
28.7
17.1

51.0
37.4

_ 398

5.5
5.5
5.9
28.4
27.9
17.9

6.0
6.1
27.0
26.6
184

58
2.8
26.9
16.1

34.9
30.9
19.0

73.1
60.4

66



Table 16

Estimated power percentages for the AMTC test
at o = 0.05 and n = 40.

( Exponential regression errors)

1 (B, B2, Bs)

(0.0,0.5,1.0) [ (0.0,0.5,1.5)[ (0.0, 1.0, 2.0)

10

20

30

35

‘g: E‘ W

35
37

10
20
30
35
37

20
30
35
37

30
35
37

35
37

37

5.0
4.8
4.9
9.3
9.3
7.0

5.3
4.9
8.1
7.1

4.8
8.2
8.3
7.2
10.0
10.5
7.8

21.4
16.4

18.4

5.5
4.9
6.2
23.0
23.0
13.7

5.2
5.6
21.0
21.8
13.5

e |
N

[y
e
e o bo WO

23.6
14.7

45.1
30.2

35.6

67




Table 17

Estimated power percentages for the AMTC test

at ¢ = 0.05 and n = 40.

( Double-Exponential regression errors)

(B1, B, Bs)

00,05, 1.0)

{0.0,05, 1.5)

(0.0, 1.0, 2.0)

10

20

30

35

10
20
30
35
37

10
20
30
35
37

20
30
35
37
30
35
37

35
37

37

5.7
5.8
5.2
10.6
10.5
7.8

5.8
5.0
9.2
9.4
7.7

5.6
10.4
10.3
7.4

11.5
11.4
10.6

28.0
20.2

5.1
5.9
5.7
28.7
29.0
19.3

6.1
6.6
26.9
26.5
19.5
5.6
26.1
26.4
16.3

31.5
29.3
20.3

51.
38

41.4

5.1 )
6.1
5.6
29.6
30.2
20.3

6.4
6.7
27.9
27.5
20.1

5.8
27.0
27.2
18.2
35.6
31.7
22.6

74.0
61.9

70.9

68




Table 18

Estimated power percentages for the AMTC test
at a = 0.05 and n = 60.

( Normal regression errors)

_ (ﬁl ,g,gif :@3)

! [(0.0,05,1.0)](0.0,0.5,1.5)[(0.0, 1.0, 2.0)

15

21

33

45

51

5.4
5.5
6.5
11.4
12.0
8.2

5.2
5.6
11.3
13.0
8.6

6.3
11.8
12.8
7.8

19.4

- 19.0

12.1

371

26.0

5.8
6.0
8.7
35.4
42.2
18.4

6.1
8.8
39.9
20.5

8.4
34.5
40.8
19.7

48.3
49.4
25.0

5.7
5.9
12.5
70.0
74.3
42.8

5.9
13.6
65.0
72.4
40.0

14.4
67.6
73.3
41.0

86.8
85.6
54.7

98.8
89.4

94.2

69




Table 19

Estimated power percentages for the AMTC test

at @ = 0.05 and n = 6D

( Exponential regression errors)

(BI? 523 53)

(0.0,05,1.0)

00,05, 15)

(0.0,1.0,20)

21

33

45

51

45
o1
57

51
57

11.5

5.0
5.0
5.2
11.4
11.6
7.6

5.1
5.6
11.0
11.6
8.5

5.3
9.9

7.8
17.3
16.1
10.6

34.6
22.6

©26.6

52
5.7
8.1
35.9
39.9
19.3

5.6
8.5
34.2
39.5
18.9

8.6
35.4
38.1
19.4

48.9
47.6
23.5

72.0
44.4

518

5.4
6.2
11.8
64.3
72.5
36.7

5.9
12.2
61.9
68.2
34.8

13.2
62.8
68.7
35.8
84.9
85.2
50.9

98.7
88.8

94.6

70




Table 20

Estimated power percentages for the AMTC test

at o = 0.05 and n = 60.

( Double-Exponential regression errors)

'('515 1521 EB)

(0.0,05,1.0)

(0.0,0.5,1.5) |

(0.0,1.0,20)

21

33

45

51

15
21
33
45
a1
57

21
45
51
57

33
45
a1
57
45

51
57

51
5.9
11.3
11.5
7.5

5.1
5.5
11.5
11.7
8.4

5.7
10.6
12.2
7.6

17.0
16.9
10.9

35.8
23.4

52
6.1
7.9
34.9
39.1
18.4

5.6
8.6
34.9
38.9
189

8.3
35.4
38.1
19.5
48.1

47.9
24.1

72.1
44.5

51.8

5.4
5.5
12.4
66.3
73.0
40.8

6.0
12.3
66.0
70.5
36.4

13.9
63.7
69.8
37.8
85.4
84.3
53.9

98.8
89.7

94,0




Table 21

Estimated power percéntages for the AMTC test

at @ = 0.05 and n = 80.

( Normal regression errors)

(B1, B2, Bs)
k| 1[(0.0,05,1.0)](0.0,05,15)](0.0,1.0,20)
12 {20 5.1 5.5 162
28 5.4 5.8 6.1
44 5.6 10.5 17.6
60 15.0 46.0 81.3
68 16.1 50.3 84.9
76 9.2 24.1 50.1
20 | 28 5.3 6.2 6.9
44 5.4 10.0 14.7
60 13.2 46.7 78.8
68 14.3 50.6 83.1
76 7.4 23.0 46.9
28 | 44 6.7 9.6 177
60 14.5 45.4 79.5
68 15.3 51.1 83.5
76 8.3 23.5 47.1
44 | 60 23.5 60.2 93.6
68 23.4 61.4 93.9
76 12.4 30.5 64.8
60 | 68 49.0 83.9 99.8
76 32.2 56.1 96.1
68 | 76 37.2 63.2 98.0

12




Table 22

Estimated power percentages for the AMTC test

at @ = 0.05 and n = 80.

( Exponential regression errors)

(B1, B2, Ba)
k| 1|(00,05,1.0)](00,05,1.5)] (00,10, 2.0)
12 [ 20 5.2 5.7 5.6
28 5.0 5.1 6.3
44 5.1 9.4 16.3
60 13.0 42.6 78.2
68 13.8 45.3 79.9
76 7.5 21.6 48.2
20 | 28 5.1 5.1 5.8
44 6.3 9.0 13.3
60 12.0 41.7 77.4
68 13.2 45.6 79.8
76 7.1 18.9 42.1
28 | 44 5.0 9.3 17.1
60 12.8 40.6 78.0
68 13.5 44.8 80.3
76 8.2 19.5 44.2
44 | 60 20.0 53.9 89.9
68 20.4 57.9 90.5
76 11.2 26.1 60.8
60 | 68 44.5 82.1 98.9
76 27.1 49.5 94.2
68 | 76 33.2 58.7 95.6

73




Table 23

Estimated power percentages for the AMTC test

at o = 0.05 and n = 80.

(Br, a, o)

(0.0, 0.5, 1.0)

0.0,05, 1.5)

(0.0, 1.0, 2.0)

20

44

60

20

28
44
60
68
76

28
44
60
68
76

44
60
68
76
60
68
76

68
76

76

5.1
5.2
5.4
13.0
14.4
7.8

5.4
5.5
12.5
13.9
8.0

5.3
11.6
15.2
8.2

22.3
20.5
11.8

45.9
27.1

31.7

5.3
9.0
44.7
47.9
21.3

5.3
8.9
41.0
47.1
20.6

9.0
42.8
47.3
20.4

58.1
59.3
27.8

82.5
52.1

60.7

5.7 -
6.3
16.4
78.9
83.4
45.5

6.5
15.8
76.1

- 83.6
44.0

17.0
79.1
83.9
44.8

93.7
93.5
61.8

99.8
94.7

97.9




Table 24

Estimated power percentages for the AMTC test

at o = 0.05 and n = 100.

(0.0,05,10)

(0.0,1.0,2.0)

25

35

55

5.0
5.8
15.0
18.8
8.6

5.1
5.6
15.4
17.8
7.8

6.2
16.8
17.5
9.2

27.0
27.9
14.0

55.9
37.9

12.0

6.0
6.2
20.3
88.0
92.2
97.1

6.7
18.0
86.7
90.8
53.8

22.5
87.1
90.6
52.2

97.4
97.5
72.8

100.0
98.1

99.6

75



Table 25

Estimated power percentages for the AMTC test

at o = 0.05 and n = 100.

( Exponential regression errors)

(Br, B2, Bs)
k| 1 [(00,05,1.0)](0.0,05,1.5)](0.0,1.0,2.0)
15|25 5.1 5.0 5.9
35 5.0 5.2 5.8
55 5.5 9.4 18.6
75 14.5 51.1 86.1
85 15.7 55.1 90.5
95 8.1 22.9 51.3
25 | 35 5.0 5.0 6.3
55 5.1 9.1 18.0
75 16.1 48.6 84.0
85 15.2 534 89.0
95 8.0 23.5 48.1
35| 55 5.9 9.9 19.1
75 14.3 49.7 85.5
85 14.8 55.5 90.0
95 7.5 21.8 47.5
55 | 75 25.5 65.6 97.4
85 24.1 67.1 97.0
95 11.8 31.9 69.3
75 | 85 52.2 88.8 99.9
95 34.2 58.8 98.0
85195 37.8 68.1 99.4
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Table 26

Estimated power percentages for the AMTC test

at a = 0.05 and n = 100.

( Double-Exponential regression errors)

(B, Bz, Ba)
k| ! [(00,05,1.0)](0.0,05,1.5)][(0.0,1.0,2.0)
15125 6.0 5.9 6.0
35 5.2 5.3 6.3
55 5.7 10.1 20.3
75 15.2 53.3 87.9
85 18.6 60.1 92.4
95 8.7 26.9 58.0
25 | 35 5.0 5.5 6.9
55 5.4 11.1 17.9
75 15.2 53.8 86.6
85 18.0 59.5 91.0
95 7.9 25.1 53.6
35| 55 6.0 11.3 22.2
75 16.5 53.4 86.9
85 17.5 58.9 90.5
95 8.9 25.3 51.9
55| 75 27.9 68.8 97.2
85 28.0 71.0 97.1
95 14.9 35.2 72.9
75 | 85 55.5 90.8 100.0
95 36.6 61.9 98.1
85| 95 41.2 - 70.5 99.4




2.6 Appendix

A: Let W(.) be a standard Wiener process and W,(.) be as in (2.21), then

Wa(s) £ W(vd,),

where v; is defined by (2.4).

Proof: Let k = [ns] < I = [nt], ], = (Tm — Fm), dm = (Tmy1 — Tm) and

Then,

C = Con(Wa(s), Wal). e

k-1 -1 -
E{ziW (k) - 3 W) HziW(l) ~ S W (i)di}

=1 i=1

E{ziz]W (k)W (l) - z} Z W) d;W (k) — z} Z W (i) d;W(I)

1=1 i=1
-1 k-1
+WE) S WY
1=1 i=1 . -
-1 k=11-1 ’
x;x}'k—mkz:zd—km,‘ch.—z{sz,-{—ZdeE{W ()}
i=1 1=k =1 j=11i=1
k-1 J k=1 1-1
zizik — (zp + 27) Y idi — kaj(z] ~ z}) +Zsz.dJ+E Y jd;d;
=1 7j=1i=1 J=1li=j7+1

k=1 k-
.'L‘k.’l‘l ($k+$l)22d kxk(zl —-Zk +Zld,z’11

=1 i=t

+ Zjdj(zl ~ Tj41)

j=1
k-1 k=1
zizrk — (z} + 27) Y idi — kap(a] — zp) + 3 idi(zk — 7))
=1 i=1
k-1
+3_ jdi(z1 — zj41)
i=1
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k-1 k=1

= zhark — (zf + 7)Y id; — kap(z] — z}) + (z% +21) Y idi

i=1 i=1
k-1
- Z i("c?-f-l -
i=1
k=1 k=1 ) e
= k(ze —Ze)(zk = T) + (Tn +T0) D idi — 3 i(xdy, — 27). - (2.88)
i=1 i=1 . [
Using Abel’s summation we obtain,
k-1 k-1
Z zd, = k(.'ZIL - .’11'1) — Z(Ii+1 - ;151)
1=1 =1 - 7
= k(zx — Tx), . (2.89).
and
k-1 k -
izl — ) = kz} - )z}, (2.90)
=1 =1 - '

Substituting (2.89) and (2.90) into (2.88) we get,

C = A,(.'L‘k - xk)(zk - :L‘l) -+ (.'L‘k + :L‘z)k((:rk = .'131:) — L:I'Zk + Z:’lﬁ2

i=1
k
= Y ! — k7l =0}l (2.91)
=1
Since, v} is increasing in k we also have,
Cov(W (vE), W(v})) = vi, k<l (2.92)

By (2.91) and (2.92) we completed the required proof.

B : Let the time interval z,, — z; < oo, then

Dax | 2k — T |< 00
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Proof :

1ghen | K TERD = élkag%i{ng(iiéxk) [}

1k ,
]géﬁ{ig l T — Ik |}

I

ok 7
g ool

i
E)
!
-~
A
8

80



Bibliography

[2] Anderson, T.W. and Darling, D.A. (1952): Asymptotic theory of certain

"goodness of fit” criteria based on stochastic processes. Ann. Math. Stat.

23,193-212.

[3] Csorgs, M., Csorgé, S., Horvath, L. and Mason, D. (1986): Weighted em-

pirical and quantile processes. Ann. Probab. 14, 31-85.

[4) Csorgs, M. and Horvath, L. (1986): Approximations of weighted empirical

and quantile processes. Stal. Probab. letters 4, 275-280.

[5] Csorgé, M. and Révész, P. (1981): Strong Approzimations in Probability

and Statistics. Academic Press, New York.

[6] Jandhyala, V.K. and MacNeill, I. (1991) : Tests for parameter changes at

unknown times in linear regression models. J. Statist. Plan. Inference. 27,

291-316.

[7] Komlés, J., Major, P. and Tusnady, G. (1975): An approximation of par-
tial sums of independent R.V.’s and the sample D.F. I. Z. Wahrsch. Verw

Gebiete. 32, 111-131.

81



[8] Komlés, J., Major, P. and Tusnady, G. (1976): An approximation of par-
tial sums of independent R.V.’s and the sample D.F. 1. Z. Wahrsch. Verw

Gebiete. 34, 33-58.
[9] Kuiper, N.H. (1960): Tests concerning random points on a circle. Proc.
Kon. Akad. Welensch. A 63, 38-47.

[10] Levin, B. and Kline, J. (1985): The Cusum test of homogeneity with an
application in spontaneous abortion epidemiology. Statist. in Medicine 4,

469-488.

[11] Lombard, F. (1987): Rank tests for changepoint problems. Biometrika 74,
615-624.

[12] Major, P. (1979): An improvement of Strassen’s invariance principle. Ann. .
Probab. 7, 55-61.

(13] Sen, P. K. (1980) : Asymptotic theory of some tests for a possible change
in the regression slope occurring at unknown time point. Z. Wahrsch. Verw
Gebiete 52, 203-218.

[14] Shorack, G.R. and Wellner, J.A. (1986): Empirical Processes with A pplica-

tions to Statistics. Wiley, New York.

82



Chapter 3

Bayesian tests for epidemic alternatives in regression models

3.1 Introduction

Bayes-type stat-istics were first introduced by Chernoff and Zacks (1964) to de-
tect a change in the mean of a sequence of independent rv’s taken from the
Normal distribution. This method was adopted by Gardner (1969), Sen and
Srivastava (1973) to derive tests of a change in the parameters of Normal and
multivariate Normal observations. MacNeill (1974) obtained Bayes-type tests
for a change in the mean of a sequence of Exponential rv’s. Sen and Srivastava
(1975) made a comparison study between Bayes-type and Likelihood ratio statis-
tics for a change in the mean of a sequence of Normal rv’s. They fr::unclr that the
Bayes-type statistics provide powerful tests when small changes occur. MacNeill

(1978) proposed a test statistic for testing against a change in regression param-

and MacNeill (1987) obtained various one-sided and two-sided VBayés-type tests
for changes in regression parameters. They pointed out that the complete distri-
bution theory for the one-sided tests is available but even the asymptotic theary
for the two-sided case is very complicated. Jandhyala and MacNeill (1989) ob-
tained the asymptotic theory for some Bayes-type two-sided tests in the case of
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harmonic regression. Jandhyala and MacNeill (1991) computed the a‘sy’mptmic

quantiles of Bayes-type tests for a change in 8, and f; in the case of polynomial

solving the stochastic integrals involved in computing the asymptotic quantiles
of the above Bayes-type statistics.

In this Chapter we will consider the problem of testing against two-sided

epidemic (square) alternatives. In section 2 we give some notations, assump-
tions and formulate the problem. In section 3 we derive a test statistic for the
epidemic-type problem. The convergence results and asymptotic distributions

are given in section 4. In section 5 we give some applications of the proposed

test and present the results of several Monte Carlo studies.

3.2 Notation and Assumptions

manner (e.g., over time). The null hypothesis considered here is given by :
H, : the Y's obey theregressionmodel Y = XS + ¢, (3.1)

where Y = (1},...,Y0), e = (a1,...,&) ~N(0,0%1), B = (Bo,...,Pm) is the

parameter vector and X is the design matrix given by:

1 T11 Ti2 v s =« Tim
1 L1 T22 e sx =2 Loy

<
i

] Iﬂl -Iﬁ_g e e xs Lpm



Suppose now that we are interested in testing H, of (3.1) against the al-
ternative that an epidemic-type change in the regression parameter vector § =
(Boy - -+ Pm) has taken place. The epidemic alternative mcans a change in the
value of the parameter vector occurs at unknown point &, (the onset time) and
continues to hold up to and including an unknown point { (> k) after which the
let & be the amount of change in each component of the parameter Qcctar and
recall that under the hypothesis of no change, the regression model is as given
in (3.1). Thus the problem now is to test whether or not the model has changed
to

k7]

Y =XB+63 Xk, +¢, ' (3.2)

j=0
for some unknown & and [ such that 0 < k <! < n ~ 1; where Xf,” is the
column vector of the design matrix X, keeping only Y'Lhcrcomp‘crzxnems starting
from the (k+1)* row up to the I* row and replacing the rest of the components
by zero, i.e.,

Xi;=(0,..,0,Zpp1yy. .., 305,0,...,0). (3.3)

‘The above problem can be equivalently expressed in terms of the following hy-

potheses:

H,:6=0 Vs Hy:6#0. (3.4)
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3.3 A ’Bayes-type’ test statistic

The Bayesian method introduced by Chernoff and Zacks (1964) requires that we
specify a prior distribution for each of the unknown parameters 3, § and for the
change points & and {. We assume here that the unknown parameters 3,6 and
(k, 1) have the prior distributions A(0, 7%I) , N(0,6?) and P(k,!), respectively.
We also assume that §,6 and ¢ are independent. The derived test statistic is

obtained by letting 72 — oo and 6% — 0.

Theorem (3.1)
A ’Bayes-type’ Likelihood ratio statistic for the hypotheses in (3.4) is givén

by :

L= S  PEDYR(CX,)(SXL,)RY,

0<k<i<n—1 i=0 j=0

where R =T — X(X'X)"!'X’ and X} ; is as in (3.3).
Proof:

Since under H, of (3.4) we have (Y|8) ~ N(Xf,0%I) and the prior of 8 is
N(0,72I), then by Lemma (2.1) of Jandhyala and MacNeill (1989), we have Y ~
N(0,%,), where &, = 0% + 73(X'X). Thus the Bayesian Likelihood function

under H, is given by

Lo(Y)=(27)"% | S, |2 exp(—-;-Y'E;'IY). (3.5)

Under H, of (3.4) we have (Y[8,6,k,1) ~ N(XB + 6Sii,m,0°1), where Sy m =
"oX} ;. Asabove using the prior of 3 we conclude that (Y|6, k,{) ~ N(S7y, Zo).
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Letc = (27)"% | £, |77, then under H; .he Likelihood function (after integrating

out §) is;

Ly(Y |k, 1)

o 52
ﬂ/, 1(or) ?exp{——(Y 6Sk.m) T3 (Y = 8Suim) ~ 577148

L, Y)/ 1(27?) H e}cp{—g 52 + 529251:1"1%3 Siim — 2§0° Y')}dé

Lo(Y) / aﬂl(zf)”%exp{—@(gg(z +0%S)y 5 Sim) — 260°Y")}d6

Lo(Y)d™ [~ 407 (2m) ) exp{-:(6 - Y+ ((yyyas

Lo(Y)d™! EXTJ{ (5 )( “Y")}, (3.6)

where d? = (1 + 0?8, ,,5;'Sym) and Y* = S“m 1Y By 3 6) the uncondi-

tional Likelihood function under H, is;
oo o — c 1,0 P
L(Y)=L(Y) 3 P(kD)d ep{s(DHY'Y) (37)
0<k<ign=-1 2°d :

Hence, the Bayesian Likelihood ratio is given by:

LI(Y) - ex 'y
oY) D{QZ%_;PH 1) d™? p{z(d) (YY)}
= 5 PlkDdMl+5 ( )(Y"Y’)+c(93)}. (3.8)
0<kzlEn-1

Note that, d — 1 as § — 0 and as in Theorem (2.2) of Jandhyala and MacNeill
(1991), Woodbury’s formula with 7 — oo implies that £;1 = o7?R. Ignoring
terms of order o(6°) we have;

L(Y) _ ) o e .
oo 23 9 ng{%‘l Pk, 1)(YY?). (3.9)

Therefore, a statistic to test for the hypotheses in (3.4) can be based on the

second term of the R.H.S of (3.9).
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3.4 Distribution theory

Jandhyala and MacNeill (1989) pointed out that the asymptotic theory of statis-
tics like T, of Theorem (3.1) above, which are quadratic forms in the regression
residuals, is complicated and only tractable to some extent. As in their work we
will discuss the asymptotic distribution of 7, when the regressor functions fi(.),

:=0,1,...,m, are defined on [0,1] and the observations are equ%spacgdl
Consider the regression model;
Y =Pf +e, | (3.10)
where the design matrix P is given by:

fa( ) fl( ) fg(%)
fa( ) fl fi(%)

P=
L(3) AR f(R)
with regressor functions f;(.), 7 = 0,1,...,m, defined on [0,1 I‘he above

formulation of the model and (3.5) enables us to obtain

Sklim‘(o 0 (Lzl) (Ai_l:”z): T(é)?c}?""D)” (311)

where r(.) = ¥, f;(.), which is also defined on [0,1]. Hence the statistic T, of

Theorem (3.1) can be written as :

Y. PkDYRSumSy.RY
0<k<i<n-1
Z F(k,l) e' Skl,m S;Z,m e, (312}

0<k<i<n~1

T,

I
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where e’ = (e, .. =(y, = 71,. — §n) is the regressmn residual vector,

By (3.11) and (3.12) we can see that:

jL'ﬂ = Tﬂ/(njz)
= > Pk {Z 1*( ) -—ﬁ;)}g/(vzagi
0<k<l<n—1 x=L+1 n
k
= {k; F L l {z ‘Eg z (ZJ: "‘ln)} /("Er

(3.13)

Define the sequence of stochastic processes {y{"(¢),t € [0,1]}, n =1,2,..., by:

i | el :
VW) = () et (it = s P (AT

i=1 L T
where the ¢; s are as in (3.12) and r(.)isasin (3 11) ‘Observe that; Z’ T (;‘;)c, = i

o /my(L -). Let {W(t),t €[0,1]} be a standard Wiener process . Let
€)= (ol Aty Sn (). (3.15)

Define F and gn(s,t) by : |
BRWE L B AOM0d
B | o i
BIn0Od . . . fEad

and, for 0 € 5,1 < 1,
gm(s,1) = £'(s)F~'£(1). (3.16)

In our results we need the following lemma of Jandhyala and MacNeill (1989).
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Lemma (3.A):

Let the regressor functions fi(t), t € [0,1], ¢ = 0,1,...,m and r(.) be
continuously differentiable on [0,1]. Then the sequence of stochastic processes -
{+)(0).+ € [0,1]} n = 1,2,..., converges weakly to the Gaussian process

{WS(1),t € [0,1]} defined by

WO = [ @)W (@)~ [ @[ n(z,n)dW)dz,  (317)

with mean zero and covariance function given by

K (s,t) = Cou(WU)(s), WD)
aAt) st : : : o
= /D( r(z)%dz ~ .[D /é T(@)r(y)gn(z,y)dady.  (3.18)

Let %(.,.) be a non-negative continuous weighf fuﬁctiéi;,’ such that:

Pl =" [7 ¥(z,p)dedy, (3.19)

and

11 1 k4l

" /_ " (e, y)dedy < oo. (3.20)

B ;)

n

1

I=1 k=0

Lemma (3.1)

Let D, and D, be defined by;

{1 t = , I k
AN AR CO O REIICH T

0w 7%

. n=1
D, = Z
=1

1k

and;
1 ry ) .
D= [ [" (e, 9){r () ~ 2 (2)Fdady.
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Then,

where 4{")(.) is defined by (3.14) and w(.,.) satisfies (3.19) and (3.20)
Proof

By Markov inequality we obtain for any 7 > 0

P(| Dy = Do |>0) < E|Dy— Dy | /n.

(3.21)
cii,,(n)f{m&"(é) ‘*’( )}2 O<sk<lsn—1 (3.22)
2,(m) = {1(y) - m(z)} Co0<z<ysl, (3m)
and;farﬂﬁkilgnslandﬂ-‘i:‘tz{y‘{l | |
o) = & (m) = 2y(m)]. @2y
Using (3.22)-(3.24) we have
n=1{=1 }%g k_'-Ll-_l_ .
E|D,~D,|< EY.Y f ™ p(2,y)0(n)dady
=1 20 n n
" [ (e, ) aw) — 47 (2) Fdady
11—1 Lﬂ
+E z (r)
; / IR OB

) (z)}2dzdy. (3. 25)
Consider the first term of (3.25). For k<z< i and L <y < 4L we obtain

BO(r) = E | (dei(n) = doy(n))(dui(n) + doy(n)) |

< {E(Ai(n) ~ Ag(n))*E(Dg(n) — Ag(n))P}E,  (3.26)
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where, Ai(n) = 10(5) = 7i7(y), Ba(n) = A (E) = 1 (=), Ba(n) = ¥ (5) +
(y), and Aq(n) = 77 (£) + 4{7(z). By the definition of the process 4{"(.) in

(3.14) and when £ <y < Y41 je I < ny < (I+1) we have,

A(n) = - f(l—ny)f‘(l)&m,

and hence,

EA}(n) =

Now for th: residual vector e = (ey,...,€,) we have:
Var(e) = R Var(Y) R = ¢? R, - (3.28)

where; R = I — P(P'P)~1P’ and P is the design matrix of the model (3.10).
Note that by the definition of the matrix P and the matrix F in (3.16), the

components of the matrix P(P'P)"'P’ = (a;; )1<i,j<n are such that:
’ aij |= Q(g), Vi, j. (329)

Thus by (3.28) and (3.29) we have for any 1 < 4,7 < n,

| E(eie;) I:{ o g(é)a(%)) ifz:ij ? (3.30)

The result of (3.30) above requires the regression residuals to behave like the
regression errors (at least approximately) as n increase. Using (3.27) and (3.30)
we obtain by the boundedness of r(.) and as n — oo,

a9 1 7

' 2 _ 2

B@aim) s o mar' Q) max B()

0(2). (3.31)

n
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Similarly, for Az(n) of (3.26), when £ <y < &1, Le. k < nz < (k+1),we have

as n — oo,
E(A%(n)) < L max 7 ( ) max E(e?)
2 — g?n 1<i<n igi<n
1
= - T 99
O(=) (3.32).

For the cross-product term A;(n)Az(n) in (3.26), when L < y < &t and L

n —

y < 1 we have by (3.30) and as n — oo,

BAMAL) = Bl =m) (e Mk = na) (o)
s -2 (’“flf ) 1] Eewsrens) 1}
< ;%z-{]rg‘ag |7(5) LB e Il ex }
< o {max | 7(2) P By, By,
< o-{max 1) 1Y ppax B! |
- 0(;11-). (3.33)

We note, by the boundedness of 7(.) and (3.30), that as n — co,
]
Bl = E(Z (

l
2_:2 r(2) (L) Bleey)
l
22

=
< ORI ) ] Beey) |

< {max I ) l}@zlﬂs i€;) |

< {max In( )|}2{ZE<£)+ZIEEEJ) 1}

#]
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< = 2 o e o2 S oe.Y |}
< {max |r(; )l} {n max B(e;) +n(n —1) max | E(eie;) |}

< a*0(n). (3.34)

For the square term AZ(n), (or A2(n)) in (3.26), we have by (3.30) and (3.34) ,

whcn—iy{; (nr iiy{;';)andasnﬁm

{
ainE{ﬂ‘Zr( DetU=m) ] (]

=1

) El+1}2

EAj(n)

{4 E{ + (1= ny)g 7'2( '*’) EEI-H

+ 4 (l—ny) r(f——— ;7‘ =s ) E(eierr1)}

[

2 2
{4 El + max r ( ) {oax E(e?)

+ 4 {;’gg{x | r( ) I}E n max | E(eie;) l}

M

As in (3.34) we can easily see that when n — oo,

Bu = B(O 3or( ;)r( ) cie;) = O(n). (3.36)

1=1 j=1

e~

Hence for the cross-product term Aa(n)A4(n) of (3.26), when £ <y < 41, and
£ <y < 21 we have as n — oo,

1 ' 1, , [+1

E(Aas(n)A4(n)) = f:r';'nE{ 2. T(;) e; + (I — ny) r(fn) €1}
{zzr(é) e+ (1= ) r(ED) era),
< o). (3.37)
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Now, for the second teri.. of (3.25) we get by the definition of 1(.,.) and as

n -—+ 0o,

b= B[ [ 9t - e sy

, n ,

< sup ,d)(Isy)E‘/ _/ {— Y r )Ei - 77‘( )c;} dxdy

Ogr<y<l ag
< sup Y(z,y) ‘é )/ / (y — z)*dxdy Ec?

Dii:{y{]

1

< g{-;up W(z, y) -7° ( 12 4) EEI
< Q(;;)- ‘ ! (3.38)

Also, for the third term of (3.25) we have as n — oo,

EZ/ / ¥(z,y){7 "’,,) v,ﬁf’(i)}gdirdy

ig =
l+ 1 nz 1+
< Iz, dady
= o<yt & )EI+1 gﬁ r(— )H+1} wdy
< % sup  ¥(z,y){ max r? );{ max Ee?} Z/ f (y — z)*dzdy
T° 0<z<y<l 1<€izn y

= 1 ¥ LiTah

< O(=). - (3.39)

Using (3.31)-(3.33), (3.35) and (3.37)-(3.39) in (3.25) we get for any 7 > 0, as

n — oo,

P (| Du=Dn|>n)

< Elﬁ’ﬁ_l—jﬁlﬁh
1 n—1[-1

< (;)C)(})ZZ/ /i’ W2,y d;zcly+C?(—)+C)( ,,,)

=1 k=0""n

< ( 717 )@(f) 0, (3.40)
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. N )
and hence, | D, — Dy |- 0 as n — oo.

Lemma (3.2)

Let ¥(z,y) be centinuous on 0 < z < y < 1 and r(¢) be a continuously
differentiable function on 0 < ¢ < 1. Then,
Jim P{Zy(+{") < a} = P{Zy(W) < a},
uniformly in @, where 4{")(.) and W{')(.) are defined by (3.14) and (3.17) respec-
tively and;

/ _/ z,9){f(y) - f(z)} dzdy.

The proof of this Lemma is an immediate result of Theorem (5.2) of Billingsley

(1968) and Lemma (2.1) of Jandhyala and MacNeill (1989).

3.5 Applications

In this section we will study the asymptotic distribution of the test 7}, of (3.13)
assuming that the weight function of (3.20); #(z,y) = C > 0 (a constant),
0 <z <y < 1. This assumption will simplify the asymptotic distribution of Tﬂ,

since in this case T}, 4, T, where
1 v )
= W ) = W (2)12dzc
r=c [ [{wiy) - w(z)Pdedy,
1y ey o .
=¢ { [ [wOwydedy+ [ [(WE(z)Pdedy
1 py
- WO YWY )z
2 [ [P WO )W (@)dzdy},
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-

./(31 y{ﬁfg)(y)}gdy + ,[31(1 - z){lifg)(:t)}zdx _ (/;{H:"g:')(:t)dr)g}’
/;{Wg)(y)}Qdy - (./LIII{LVTE-)(I)}‘:‘I)E},

LI(GE’(I))HI}, | R (3.41)

=C
C

o

=C

-

- 3 ¥ s+ 71 f V
G0 (z) = W(z) —/ Wi(z)dz
Jo T

and W{() is as in (3.17).
Next we give some examples.

Example 1:

Consider the case uf fitting a mean to a sct of data, i.e.
Y=B1+c, (3.42)

where 1 = (1,...,1)". Under this model, we can tfestr for an epidemic-type change

in the intercept parameter f.. In this case T of (3.41) becomes;

1 ] ,
T = C [ (G()ds,

A o
> [ AW (z) - M du )2 2.
¢ [{wiia) - [ wi(y)dyyde,

where, by (3.17), W)(t) = W(t) — tW(1), t € [0,1], is a standard Brownian

bridge. Watson (1961) showed that;

P(T°<Cv)=1- ?_’Z(El)j*lggiﬁﬁﬂgp!
j=1



Example 2

Suppose we are still investigating a possible epidemic-type change in the
intercept parameter f3,, but this time considering a simple linear regression model
given by;

Y =P +e, (3.43)

where 8’ = (B, B1), the i** row of the design matrix P is (1 f(,%;)), 1=1,...,n
and f(z) = z. Testing for an epidemic-type change in 3, of the model in (3.43),
we note that the limiting distribution in (3.41), reduces to;
' = ¢ [(6{)(=)de,
Jo © .
o (1) 1), o R
= C [ {(wih(z) - / WO (u)duy?dz, (3.44)
(R Jo 7 o

where W' is defined by (3.17) with r(z) = 1,

a(z,y) = £(z) F(y),

= (1 =2)F'(1 ), |

i
—
Bt
o1
_H_
8
il
—
]
M
w3
M
—
w—
[l
o
LS4
o

and the matrix F is given by

Fo 1 ffde
T\ foedt fledde )

Substituting (3.45) in (3.18) we find that the covariance function of Wl(i)(;)
is given by
(1) , ant 9 . s ol
K0 = [T rede - [ [ r@)r(y)e(e,y)dzdy
! JO 40

= (sAt)—1s(4—3t—-3s+3st), O0<s,t<l. (3.46)
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Let W{(z), 0 < z < 1 be defined by (3.17) with covariance function KMz, y),
0 < z,y <1 as in (3.18), then the covariance function of G{)(z), 0 <z < 1 of

1]

, 1 1
Qs,t) = KQ(s,0) = [ KDy, )y - [ K (z,5)dz
0 , Jo R

1 r1 A

g Qs PR P a4

-%/D -/u KT (;z:,y)d:z:dy,r (3.47)

where 0 < 5,2 < 1. From (3.46) and (3.47), the covariance function of G\"(.) of

(3.44) is;
Qs t) = K{(s,1)

= (sAt)—ts(4 -3t~ 3s+3st), 0<s,t<]l. (348)

To specify the distribution of the stochastic integral involved in T of (‘344),

we will use Anderson and Darling (1952) method. They applied this method to

1978) adopted it to find the distributions of functionals of a Brownian motion
and a Brownian bridge (for more details we refer to Shorack and Wellner (1986)). -
This technique requires the expansion of the process ng)(;) as a weighted sum

of uncorrelated, zero mean Normal random variables {Z,}22; satisfying,

E{GP(2) =5 Ziki(@)} =0, O<z<l.

i=1

where, Var(Z;) = X, i = 1,... and {hi(.)}&, is a set of functions satisfying

[ @ (s 0hi(s)ds = Nhi(t),  i=1,2,... (3.49)

99



and,

1 1 for i = j,
[) hi(@)hi(z)de = { 0 fori#j ° (3.50)

Hence, by (3.48) and (3.49) we have forn =1,2,...

Mhalt) = (s A L) — 15(4 — 3t — Bs + 3st) Hha(s)ds,
/Ot s ha(s)ds + _[ t ha(s)ds — 4t /; s hn(s)ds

2 ! s [ 2 (vae a2 [ 2 i
+31* [ s ha(s)ds+3t | s°ha(s)ds — 3t §°hnp(s)ds.
0 : Jo '

JO

]

(3.51) -
Differentiating (3.51) three times w.r.t., t, we get;

Mbia(t) = [ ha(s)ds + (66— 4) [ ' ha(s)ds + (3 — 61 / ' s?zi;(.s)ds, (3.52)

Anh:(t) = —hn(t) + 6‘/: 5 hﬂ(.s)dg —_ 6-/: Sghn(S)dS, . (353)
Mha (1) = =ha(0). (354)

MacNeill (1978), solved the differential equation in (3.54) under the boundary

He also gave a table of selected quantiles for the corresponding distribution when
C=1.

Example 3:

Consider the problem of testing for a possible epidemic-type change in the
slope parameter of the model described in Example 2. For simplicity,we assume
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here that there is no intercept term in the modél, ie. fo ;:D; With the above

formulation in mind, and by (3.11), (3.16), (8.18) and (3.47) it is casy to see

that;
r(z) =z,
1
g1(u,v) = u(/ t2dt) v = 3uw,
0
(z) _ sA12 _ s t i “i 3ﬂ-773
Ki%(s,t) —/0 u’du /(; /0 uv(3uv)dudv = 3{(5/\1) (ts)‘ },
and,

& (s, 1) = -;—{(s/\t)s—— (ts)%} — ?(ll—’t).f"-§>(lv=5)+, . (3.55)

Using Anderson-Darling technique as in Example 2 to defermiﬁe the distribution

corresponding to (3.55) we need to solve the following i;;:lﬁaﬁicn;-_ :

Maba(t) = [ ' 0 (s, )ha(s)ds

= /01{%(3 At)? — .;.(st):‘ - %(1 —t)— %(1 —-35)+ %}hn(s)dg,

(3.56)
Differentiating (3.56) four times w.r.t., t, we get;
A (1) + 2RO (1) + 6th1(2) + 6ha(t) = 0. (3.57)

The above differential equation is very hard to solve even when we try to assume
an infinite series as a solution for h,(.). Alternatively, we calculate next empiric

and approximate critical values for the test in this case.
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Choosing ¥(z,y) = 2, in (3.13), the BLR test for the model here reduces to;

b2 e se D) REED@EAY &
hh=gmal 2 mon - ey e

m=1

mean zero and variance o ,(taken to be =1). Based on Monte Carlo simulations
we estimated the critical values of the test T}, for sample sizes n = 10,20, ...,100.
For each sample size n we calculated the above test 5, 000 times. Then we ordered
the 5,000 values and cbtained the (1 — a)®* percentiles for o = Dil,G‘.DS,OQOL
Table 1 gives the estimated critical values of T,,. We can see from the values
of Table 1, that the test 7, converges to a limit. To study the applicai:ility
of the estimated critical values in finite samples we conducted a Monte Carlo
simulation to estimate the critical values of the distribution of (3.41) of Example
3. We generated a vector Z = (z,. .., 2p) of multivariate Normal variates, with
mean zero and covariance function ng)(‘, .) of (3.55). This vector is a discrete
trajectory “in distribution” version of the process Ggi)(i), 0<t<1of (3.41) at

t = 1,...,M. We took M = 800 and used 1,000 realizations. For each

Ll Y Ew LR

of these realizations we calculated the quantity C * ©M, (2;)2/M, as an estimate
of the required integral. We then ordered the resulting 1,000 values and obtained
their (1 —a)™ percentiles for & = 0.1,0.05 and 0.01. These approximated (App.)
quantiles are given in the last row of Table 1. The results of this Table show
the closeness of the estimated critical values of the test statistic in small samples

and the approximations of the limiting quantiles.
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To study the power of the test under the alternative hypothesis of possible
epidemic-type change, 2 Monte Carlo power study was performed. In this study,
we set the sample size n to 100. Several combinations of k and [ were considered

with two different change sizes § = 0.5 and § = 1.0. For each (k,I) and §, we
the alternative hypothesis, i.e., under the changed model. Then we obtained the
percentages of times that the test value exceeded the cstimated critical value.

The resulting power estimates are shown in Tables 2 and 3. We can sece from

the power Tables that the larger the change the larger the powers get. Also, the
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Table 1

Estimated critical values of the Bayesian test for an epidemic

change in the slope of a simple regression model

n a=01 |a=0.05|a=0.01
10 0.0959 0.1294 0.2137
20 0.0913 0.1186 0.1767
30 0.0896 0.1164 0.1854
40 0.0897 0.1149 0.1754
50 0.0864 0.1098 0.1668
60 0.0862 0.1086 0.1691
70 0.0895 0.1138 0.1671
80 0.0899 0.1139 0.1695
90 0.0866 0.1106 0.1662
100 | 0.0884 0.1107 0.1667
App. | 0.0831 0.1056 0.1523
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Estimated power percentages for the Bayesian-type
test for an epidemic change in the slope of
a simple linear regression model

at o =0.05,n =100,6 =0.5
k1 T Est. power [k |1 [ Est. power
5 |15 71 35|45 17.4
25 9.5 55| 254
35| 127 65| 33.6
45|  19.0 75| 414
55| 272 85| 424
65| 33.6 95| 315
75|  43.6
85| 49.2 45|55 | 25.9
95| 48.1 65| 356
75| 39.2
15 | 25 8.8 85| 389
35| 1.9 95| 26.8
45| 178
55| 256 |[55]65| 35.5
65| 83.1 75| 39.9
75| 429 85|  36.0
85| 44.6 95|  23.7
95| 426

65 | 75 41.0
25|35 12.1 85 35.5
45 18.5 95 16.1
55 24.6
65 34.8 75| 85 32.3
75 42.3 95 13.9
85 43.3
95 36.5 856[95| 11.8
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Table 3

Estimated power percentages for the Bayesian-type
test for an epidemic change in the slope of
a simple linear regression model

at a = 0.05, n =100,6 =1.0

I [ Est. power

|1 | Est. power || k

15 12.7 35|45 58.9
25 24.2 55 79.1
35 41.1 65 90.0
45 59.2 75 93.6
55 77.1 85 94.9
65 89.1 95 84.6
75 95.1
85 97.9 45 | 55 78.5
95 97.2 65 91.1
75 93.9
15| 25 22.9 85 93.1
35 38.6 95 7.7
45 59.8
55 76.8 55 | 65 91.1
65 87.4 75 93.4
75 94.9 85 90.6
85 96.6 95 65.7
95 96.0

65| 75| 93.9
25 85| 375 85| 89.4
45| 583 95| 54.2
55|  74.6
65| 889 ||75/85| 86.5
75| 94.5 95|  40.8
85| 94.8
95| 91.0 |[85/95| 314
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Chapter 4

Rank tests in samples with random size

4.1 Introduction

such as, biology, insurance and telephone engineering. Our objective in this
Chapter is to study simple rank tests for the two-sample problem when the samaz
ple sizes are random. We will also develop tests for the change point problem,
based on samples with random size. In fact the development of the two-sample
results, in additio‘n of being of interest in it’s own, is essential in the devclop-
ment of the change point tests. To explain the connection between the change
point problem and the general two-sample problem, let us consider both in the
case when the sample size is fixed. Given a sequence of independent observa-
tions Xi,...,X, , the null hypothesis in both problems is; H, : Xi,..., X, are
independent identically distributed random variables. The at-most one change
point alternative is ; H, : there exists k,1 < k < n such that X,,..., X, have
a common distribution function F(.), Xk41,...,X, have a common distribu-
tion function G(.), where F' # G are assumed unknown. If the change point
(position) k is known, then the testing problem becomes a typical two-sample
problem, based on the two independent samples X;,..., Xx and Xks1,..., X
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consequently a given test statistic for the two-sample problem for a given k can
be used to define a family of test statistics (indexed by k) which can be used
to define test statistics for the corresponding at-most one change point problem.
To explain this point, assume that; T x = Tn(X1,. .., Xk; Xkt1,. .., X0 ) is a test
statistic for a two-sample problem based on the independent samples X, ..., X;
and Xi41,...,Xn. For the corresponding change point prnblem (i.e. when £ is
unknown), we can define test statistics using appropriate functionals of the T, x
such as; maxXigkan Tnk (| T [) or 2 527 T2,. .

Let {X,,n > 1} be a sequence of independent identically distributed ran-
dom variables with continuous distribution function F(.) and {N,,n > 1} be
a sequence of nonnegative integer-valued random vnriables. In this part of the
thesis we study tests based on samples of the form Nni, Xl,"' .!.b,XN,,. Many re-
searchers have studied properties and tests based on the so called modified em-
pirical distribution function constructed from samples with random size. Allen’
and Beekman (1966) introduced a one sided Kac-type statistic similar to the
one sided Kolmogorov statistic, obtained its asymptotic distribution and showed
its consistency when N, is independent of the X;’s. Csorgd, S. (1981) obtained
strong approximations for the empirical Kac process when the sample size is
independent of the random variables X and follows the Poisson distribution.
Mirzakhmedov and Tursunov ( 1992), were first to study the rate of convergence
of the empirical process constructed from a sample of random size. The two-

sample results we introduce here generalize the results of Aly et al. (1987) to the

110



In section 5, we derive the asymptotic distribution of rank tests for the change

point problem.

4.2 Definitions

Let X;,X3,... and 11, Y2,. .. be two independent sequences of independent ran-
dom variables. The random variables X and Y have distribution functions
F and G, respectively. Let {M,,m > 1} and {N,,n > 1} be Lwa indepen-
dent sequences of nonnegative integer-valued random variables. VWE will assume

throughout this chapter that, there exist sequéﬂceé of real numbers a,, b,, a;,

and b7, such that a, — 0, b, = 0asn—o00,a, —0,b, — 0asm— oo,
N, M, o
P(] T [>a,)<b; and P(] —= T |>al) <, (4.1)

where 0 < 71,7 < 1 are constants. The random varia,b]es N, (or M,,) satislying
(4.1) can be taken to be Binomial, Poisson and the number of renewals, (scc
Mirzakhmedov and Tursunov (1992)).

Let {X;,1 < i< My} and {¥;,1 < ] < N,} be two independent random
size samples from the distributions F' and G respectively. De;ﬁﬂe Fp,.(.) and
Gn,(-) as the empirical distribution functions of the samples {X;,1 < i < M}
and {¥;,1 < j < N,} respectively. Let F5! and G} be the corresponding
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generalized inverses. For simplicity we will write N := N, and M := M,,. The

P-P plot process for X;i,..., Xa and Yi,...,Yn is given by:

W) —GF ' (y)} ,0<y<1 (4.2)

) = (o

We shall assume throughout, that 0 < A, S P-<1-A <1, A, <3

. \MI-—“

Consider the problem of testing the hypotheses;
H,:F=G Vs H :F+#£G, (4.3)

where F and G are unknown continuous distribution functions . Note that under

fl (y) — v}, 0<y <1, (4.4)

where L) := EDF based on G(Y;), j ,k and V; := EDF based on

F(X;),i=1,2,...,1 are the Uniform-(0,1) empirical distribution functions and
V,~!(.) is the empirical quantile function based on F'(X;),i=1,2,...,1

For 0 < y < 1 we have from (4.4)

bun(y) = (=) "M EnVir' (v) ~ v}
= (ﬁ)llz{(ENVM (v) = V' (v) — (v = Var' ()}
= (TR ) - M), (9

where for & > 2 the uniform empirical and quantile processes I'y(.) and Tx(.)
are defined by:
Tk(t) = kY2 {Ex(t) — 1}, 0<t<1 (4.6)
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and

Ti(t) = (4.7)

{ EV2(t — V(1)) for ¢ € (g, 125]

0 for t € [0, 25) Uity 1]

Next we prove some convergence results for the P-P plot processes of (4.4).

4.3 Convergence results for the two-sample problem

A Kiefer process K(s,1) is a mean zero Gaussian process with covariance function
EK(s1,11)K(s2,12) = (t1 Ata)(s1 A 53 — s182). For the existence and properties
of the Kiefer process we refer to Csorgé and Révész (1981). The next result is
due to Kolmés, Major and Tusnady (1975). This Theorem will be used in tlus

Chapter to obtain the convergence of the empirical processes involved in (4.9).

Theorem A Kolméds, Major and Tusnady (1975)
We can define a Kiefer process {K(,z),0 <t <1,z 2 0} such that

P{max sup | k2Th(t) — K(2, k) |> (Cylogn + z)logn} < Crexp (~Cax),

12k5n 0511
for all z > 0, where C;, C; and Cjy are positive constants and T'x(.) is the uniform-
empirical process.

We also need the following result for the uniform empirical quantile process
Yx(.), which is Theorem (3.2.4) in Csorgd and Horvath (1993).
Theorem B

We can define a Kiefer process {K(t,z),0 <t <1, z > 0} such that

Tim sup | n3Ta(t) — K(t,n) | /{nt(logn)(log,n)*} =27 aus.,

" gLl
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where log,(.) = loglog(.).
Lemma (4.1)
Let T and T be defined by (4.6) and (4.7). Then, there exist two independent

Kiefer processes K,(.,.) and Ky(.,.) such that as n — oo and m — co we have;

(i) sup | N5Tw(t) — Ki(t, N) |2 O(log? n).

) sup | M3Tar(t) = Kolt, M) | [/ 2 o(1),

Proof of (i): Let n; = n(m — a,), na = n(n + a,) and p, = log®n, where a,

and 7 are as in (4.1). Then by (4.1) we have as n — oo,

(SUP | N3Dn(t) = Ka(t, N) | /Pn > ,\)

Di‘:t
< ni‘:l’i | MATN(E) = (6, N) | [ > A, | 5 =1 | 00)
FPO S = [> an)
< (nilllp | N5Ty(t) = Ki(t,N) | /o > Ay N < mg) + b,
< P( sup sup [ yTy(t) = Ki(t,y) [>Apa) +8,,  A>0. (4.8)

0<y<ny 011

Choosing z = (A — C1)logn, in Theorem A we get

P( sup sup | /yLy(t) — Ki(t,y) |> Apa) < Carexp{~(A— C))Cslogn}

O<ysn; 0<t<1
= Cin %% L0 (49)

for any A > C;. -
By (4.8) and (4.9) we finish the proof of (i).

114



Proof of (ii):

Let my = m(mz — a;,), my = m(m2 + a},) and a}, as in (4.1). Then by (4.1)

we have for any ¢ > 0

P( sup | M3Tp(y) = Ka(y, M) | [v/m > ¢)

P

I

0<y<1

o . M
13 | M3 Taly) — Ka(y, M) | [/ > €=|‘ﬁ7‘572 |< a,)

IM "W

M , ,
+P(| — = |>a})

1A

P

< P(sup | MEYp(y) ~ Kaly, M) | JV/m > €, my € M < my) 4 b7,

0<y<1

sup  sup | k% Yi(y) th(y,k)l/f}be‘ (4.10)

mySk<mg 0€y%£l

By Theorem B, we have as m — oo

[FAY FA P

sup  sup | k% Ti(y) ~ Ki:(y,k)I/\/—

mysk<my 05y<1

sup sup | kA Tu(y) = Kaly, k) | /VE. sup (= Eyin

mysk<m; 05yl my<k<ma
sup sup | K3 Tu(y) = Ka(y, B) | /VE fra + i,
mi Ve
T sup | k4 Ye(y) ~ Koy, k) | /VE
=0 0Zy<l
o(1) a.s.. (4.11)

In the following Theorem we obtain appmximaﬁaﬁs for the P-P plot process.

Theorem (4.1)

Under H, of (4.3), there exist two independent Kiefer processes K;(.,.) and
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K.(.,.) such that as (n Am) — oo,

. lnE% lli %mé%
Bpn = uiip | I () — {( )z T{Ei(ya nm) — (m T n) : *,2*
EZ y,mfg)} I
2 o),
where [, »(.) is defined by (4.4).
Proof :
By (4.5) we have
Bmﬂ E Gmnl + e’iﬂﬂga 4.8, ‘ B ‘ (412)
where,
s = (=T sup | ()N (Vi (y)) L ki) | N‘ (4.13)
m -I- n' o0<y< :
and
Omma2 = ( )i S‘JP | (”’)M:’*TM( )~ ;ziz(yamﬁ) | /Vm.  (4.14)

For 0,, 1 of (4.13) we have

Ommg < 000+ 08, 08, 6% 1, as., (4.15)
where,
1 iN_ R S DA 1N AN S
Omna = ()7 sup | VAT (Vi' () = K (Vg ), ) L1/,
0D = (T y (‘N) s | (Vi ), N) = Kaw, M) | 1
m,n,l m+n n M AP AV KR | ?
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09, = (——)i(= )‘sup | Ka(y, N) ~ Ka(y,nmi) | /vn

!

and

)2 9up I( )Kfl(ysnﬁ)_’ Ky (J,nTlJ l /f

Bana =
ml (m+n 0<y<

From (4.12) and (4.15) we have for any € > 0,

PBnn>€) < Plmn1 > €/2)+ P(0mnz > €/2)

I

P(05),, > ¢/8) + P(8D, . > ¢/8) + P(05), | > ¢/8)

+P(O | > ¢/8) + P(Onnz > €/2). O (4.16)

Next we will handle each of the probabilities in (4.16) separately.

By Lemma (4.1) we get as (m An) — oo

P08 > ¢/8) < P(CS)™ sup | NATw(z) - fcl(x MV > ofs)
= o(l). | | (417)

Using (4.1) we obtain as (m An) — oo

m,n,1

P, >¢/8) < PO, >¢/8,| % -7 |£ an) + b

< P2 sup. | Ki(y,nmi) | {] (;;') Y= Y > /8,

0< y
I""‘Tl Ii:ﬂn)%‘bn
< P(n~? K (%) 8,
< P(n OSUPl 1(yaﬂT1)|{|=?ﬁ|}>€/
I‘]_T:,"afl Igﬂﬂ)+bﬂ
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< P(n™? sup | Ka(y,nm) | {=——2} > ¢/8) + b
0<y<l ) as ’

Tl(Ti = ay

o(1). (4.18)

By (6) of Mirzakhmedov and Tursunov (1992) and (4.1) we have as

(mAn)— oo

P

AN T

A

A

02, > ¢/8)

m,n,l

PO, > /8, | 2 = 11 |< an) + by
- n

n-

P(-——— sup sup sup | lcl(y,z: +2) — Ki(y,z) |> €/8) + by,
(Tl - ﬂn) 0<z<nay, 0<z<nT; 0<y<1

. 2 W(y,z+2) W(y,z) "

P———— 1 sUp  sup —_— 2l = /5 bn
(= an) ocohun o2 ol | v Va8t

2
P(;———= sup sup sup |W(y,z+2)—W*(y,z)|>¢/8) +bu

(71 — @n) 0<z<an 0<z<1 0<y<1

o(1), : : (4.19)

where W(z,y) and W*(z,y), (z,y) € [0,1] x [0,1] are standard Wiener fields.

Let » > 0 and k., = 7. (l—‘:'fnﬂ)‘/ 2 then by the convergence of the empirical

as (mAn)— oo

P (051 > ¢/8)

N

N 1
P((L;) " gniup | Ki(Vag' (), N) = Kq(y, N) |> ": I E_Tl I{ @n) + bn
— <ys
=1
H; N T
P(——— sup sup |Ki(Viz'(y),k) = Ka(y, k) [> ) + b
(11 = @n) 0<k<ng 0<y<i

- 112

L

sup sup | Ki(Vis' (), k) — Ka(y, k) ll}—

7 (Tl = ﬂﬁ) 0<k<n; 0<y<1

sup M3 | Vig'(y) -y |< (lﬂgm)%HP(Dsilg | Tr(y) |> (logm)*) + b,
Zysl

0<y<l
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\I*-‘“

= —_ — E el l/2

< ((T1 —an)ggsépngu?:ﬁ !kl'l(Vu (), k) = Ki(y, k) |> ( )
et s ng
sup | Vir'(y) =y I< - )+P( JSup 1 Tw(v) > (logm)*) +
=V=

. n°E

< P( sup sup sup |Ky(y+z, k)= Ki(y, k) |> - )+b‘

'(’Tl -!ﬂn) g:_: £€hm 0<k<n; 02yl

+P(sup | Tar(y) |> (logm)?) + by
0<y<1

o(1). | @@)

From (4.16)-(4.20) we get for any € > 0,
POy > )— o(1), o Cas (m/\rz)—k co. - (4.21) -

As to 0., n2 of (4.14) we have a.s.

B ie‘”ﬂﬁ-a‘g’ g+e$§’n;; 42

where,

o, , = (——) (i) 7 sup, | METp (1) = Kalt, M) | [/,

mﬂ m+n

(g _ 1 .1‘1 _

Gmnz (m+n) ( ) S‘ég IEZ(I" M) K:g(t ng)I/ 7"“)
and

0= (=2 sup | Ka(tymms) | /] ()™ =7 .

Tt m+n’ ogicr ' m ‘
Hence,

P@mg>§ngmg})+Pwmz;)+me2>) (4.23)



Replacing n by m in (4.18) and (4.19) we get as (m An) — oo
P03, > < ) =o(1)
and
P02 > 2) = o(1).

Using (ii) of Lemma (4.1) and (4.1) we have as (m An) — oo

POD.> %) < PO, > 5, |l-T2 < az) + B,

m,n,2 = m,n,2
1

0<t<

(4.24)

(4.25)

< P((-T-Z-mj—(’;—) sup. | METas(t) = Ka(t, M) |> )+b‘

= o(1).
From (4.23)-(4.26) we get for any € > 0,
POz > 5) = o(1), as (m A n) = co.
By (4.16), (4.21) and (4.27) we finish the proof ofrT:heorem (4{1).
Define; for 0 <y <1 |

GN(EI),

. M N

St ,n( ) ,n(FM (y)) y}

(4.26)

(4.27)

(4.28)

(4.29)

where S}, (.), are called the “Quantile Rank” process (cf. Parzen (1983) and

Aly et al. (1987)).
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We note that under H, of (4.3) and as in (4.4), the process Smn(-), of (4.29)

become

mn(VA;l(y)) -}

(m+n) G W @)+ 7 B (Vi @) - 1)
(g By ) =) + 5o (e (Vi) = )}

M]-\:N min(y) + (m n n)%MAjN( Vi (Var' (¥)) —9), (4.30)

Smn(y) =

where 0 < y <1 and I 0(.), is defined by (4.5).
Now for the second term of Sy n(.) in (4.30) we have by (4.1) and as A — oo,
(mAn)— oo

nm 1., M
P{(m+n)2(M+N

P{(—2—)

m-+n

P{m sup | Vas(Vi7'(¥)) —y |> A}
0<y<1

)ym3 up | VM(Var' () — v |> A}

e

IA

M —~1 .
Grya)m e, Vi @)~y > Ab

INA

Pir >} = PIE < 1)

IN

= o(1),

and hence

G (G 0) ~ 4} 2 O}, (4.31)

nm

(

m+4n

From (4.30) and (4.31) we have

Sun(®) = (G me@ +Ox(m™3),  0Sysi (43
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Under H, of (4.3), we define
Dl = (Hma Vi) (), 0<y<1 | (4.33)
and
Rpn(y) = (* —)/{D () -y} 0<y<l | (4.34)

where Hp,.(.) as in (4.30). The process Rpa(.), is called “Empirical Rank”
process (cf. Parzen (1983) and Aly et al. (1987)).
Using the definitions of the processes in (4.30) and (4.34), we obtain the

following relationship.

Roaly) = (- "j,’_"‘n)”g{(ﬂmml) ()-yh 0<y<I
= (o) H{(Ho - Honn Vi (V") 7 (0)}
+(;njl_*n )'*{HpnViz" (HmnVar') ™ (¥) = 9}
= ~Snn((HnnViz") " (¥) + Inn(v)s (4.35)
where,

Imn(y) = ('f"*)”g{ﬂ Vir (HanVig') ') =9}, 0<y <1, (4.36)
which we will show later that it vanishes in probability.

Theorem (4.2)

Let K1(.,.), K2(.,.), be the Kiefer processes of Theorem (4.1). Then under

H, of (4.3) we have
Conn 1= SUP | Sman(y) — ﬂ(y) IH' o(1)

i

122



where Sy q(.), is defined by (4.29),(under H, of (4.3)) and -

AL L(y) = (mf +TlTi){(m;|s£ ;K:l’(:l\,/n_ﬁ) (Hji n)lkgij:/’;'rz)}

(4.37)
Proof
Using Theorem (4.1) and (4.32) we obtain as (m An) — oo
Crn < SUD | o lun() = Anun(y) | +0y(m~H)
0<y<1 AI + N |
< S, @) — () ) |
+sup | Am(y)ﬂMfomT:fm -1 40, mH)
= onl1) + sup | A5G )™ = 1 o). (4.38)
By the definition of A}, (.) in (4.37) we have for any ¢ > 0
P (s | MmN T_1} > ¢)
M “+ N mTs + nn
< P @mﬁn}“uﬁNm;ijﬁgy
R )ﬁwl&mmmuleN—mJLml—)

(4.39)

Hence to show that (4.38) is o,(1) as (m A n) — oo, it is enough to show that;

T 1K) | g7y - e 1 5) = o)

n"li
1 )
(4.40)

[and
[ ]
ot



Conditional on the events {| £ — 7 |< a,} and {| & — 1, |< a,} we have

N | < |- mnN —nnnM
M+N ngaFm:l ) (M+N)(mﬁ+nn)
mnmnts
P o A —_—_—
ﬂd
< (r —1l|+]|—-1
< () )){I | lm,@ }
< (m)” (m)%ﬂ as (mAn)— co.
(4.41)
We also notice that, for alln > 1 and 1, > 0,
up | Kxly,nm)/Vi 2 sup [B)|rf 20(1),  (442)

0gy=<1

where B(.) is a standard Brownian bridge. By (4.1), (454,1) and (4.42) we can
prove (4.40).
Hence the proof of Theorem (4.2) is complete.
Corollary (4.1)
Let Aj, .(.), be defined by (4.37). Then, under H, of (4.3) we have as (m A

SUp | Smn((Hma Vs )™ (¥)) = Bnn(y) 1% 0(1),

0<y<1

[
g
W



Proof

By Theorem (4.2) we have as (m A1) — oo

Shp l S, ,,((H,ﬁ n M )El (y)) - é:n‘ﬁ(y) l

< Dg;p | Sma((HmaVig' )7 () = Aoy al(Hmn Vig ) 7 () |
#3008 ((H¥5')0)) = A3l |

< o2, | Smn(2) — A% (@) |
+ 500 | A5 ((Ha Vi) () = An(y) |

= op(1)+ 0 | Afa((HonnV57') (1)) — A A (a)

By Horvith (1984)’s Lemma and the convergence of the process Sm a(.), we have

Sup I(HﬁlﬁVM) l(y gyl 5 sup |Hm,nv,\_}l(y)—y]

0Zys ozysl
nm | _; Lo
= ———)7% sup Sﬂlﬂ 1
= ()7 e [ Sma(y) |
£ O((mA n.)'%). . (4.44)
Let § = (HmaVi') " (y), 0 < y <1 then by thed definition af the process A%, (.),

in (4.37) we have ;
sup | Ana() = AnL) | < sup [ Ku(nm) ~ Ki(y,nm) | /(nivi)
0<y<l 0<y<l1

+ Sup | Kj?(ﬁang) - Kjg(y,ffl’fg) l /(Tg' Tﬂ')*

0<y=l

(4.45)

¢ > 0, then for any € > 0 we have by (4.44) and

Ml""

Now let hm,n = ;:( DE(mi\n!)

(mAn)

(1.4.1) of Csérgd and Révész (1981),
P( sup | Ki(g,nn) ~ Ki(y,nmi) | /(miv/n) > €)
0<y<i
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P(sup | B1(#) - Bi(y) | [(vn) > €)

0Zy=
s P( sup. | Bi(3) = Bi(y) | /(V7) > €, Sup ly Y| A
+P(sup |§ =y |> hmpn)
0Zy=1
o B B o 1 1
< P( sup su iy +2) - l(y) [. sup (zlogz™')7 >¢)
0<z<hm,n 0<y<1 (z log z-1 ) z 0<z<hmn )
+P((m An)s. sup | g~y > c(log(m An))f)
0<y<
= o(l), as (m An) — oo, ' (4.46)

where By(.) is a standard Brownian bridge.
Combining (4.43), (4.45) and (4.46) we complete the proof of the Corollary.
We now return to the reminder term in (4.35), i.e. to (4.36) and show that

it is 0,(1).

Lemma (4.2)

Let I, »(.) be defined by (4.36), then we have as (m An) — oo

I = sup | I n(y) lé o(1),
0<y=l1

Proof

Let € > 0, then by (4.1) and (4.28) of Aly et al. (1987) , we get

P (Tan>e)
E P(Im,n }Ea I i‘*"f’g Iéa;al%"iﬁ Iéﬂﬂ)‘*-bﬂgisb:n
m ' n o
_ , nm 1 1 1
€ P( sup  sup  sup (=———)7 | HnoVi (HunVi ) (y) =y |> €)

ny<k<ng my<i<m, 0<y<1 M+ 1N

[
(]
L=



+b,, + by,

< P( sup sup sup sup | §m'n(y +z) - Smm(y) |> €)

n1Sk<ng miSlSm2 0<y<1- g 0<z< g

where Hy»(.) and S, q(.) are the processes defined in (4.30) when M = [ and

N = k. Hence by Theorem (4.2) and (4.45)-(4.47) we have for any € > 0,

P(Zpp > €) =o(1), as (m A n) — oo.

Theorem (4.3)

Let Rmn(.), be defined by (4.34). Then, under H, of (43) we have as (m/\

n) — 0o

SUp | Ronn(¥) = Ama(y) 1B 0(1), 4

where A n(.) = —A}, 1(.), as in (4.37).

The proof of this Theorem follows from (435), Cbrallary (4.1) and Lemma

(4.2).

In the following we will show that the :esult of Theorem (4.3) holds true in

the weighted sup-norm with a square integrable weight function ¢(t), 0 <t < 1.

Let @ be the class of positive functions ¢ on (0,1), i.e. infygi<i-g ¢(t) > 0 for
all 0 < @ < 3, non-decreasing in a neighbourhood of 0 and non-increasing in a
neighbourhood of 1 and for which fj ¢~?(¢)dt < oo, holds.
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Theorem (4.4)
Let g € @, then we have as (m An) — oo
sup | Rmn(y) = Bma(y) | /9(y) = o(1),
0<y<1
where Ry () and A, u(.), are as in Theorem (4.3) above.
Proof
For any 0 < 6 < 1, infpci<1-6¢(t) > 0 and hence, by Theorem (4.3) as
(mAn)— oo
sup | Run(y) = Bma() | /a(y) & o(1). - (448)
6<y<1-0 | | -
By (4.48) and the symmetry over the iﬂtervalsi(j <y<bandl-0<y<l,it

is sufficient to show that for any ¢ > 0;

éll’!‘l limsup P( SLIP l Ay ﬂ(y) | /q(y) >€) =0, (4.49)
(mAn)=oo = 0<y< R
and
lim limsup P(sup | Amn(y)| /() >€)=0.  (4.50)
—0 (?ﬁ!\ﬂ)—-mr 0<y< |

statement of (4.49) will be verified if we show ‘that for any € > 0,

mu)-“

lim P( sup n”% | K(y,n7) | /q(y) > €) =0, (4.51)

6=0  ‘gey<o

for any Kiefer process, K(.,.), and all n > 1. But this is true since for every

n2l,

P(sup n™¥ | K(y,n7) | /q(y) > €) = P(sup 1K) | /a(v) > €)

O<y=d

_ LB, o (4
= Pf\/,_aiﬁe ) (48)
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where K°(.,.) is a Kiefer process and B°(.) is a Brownian bridge. Hence by

(4.51), (4.52) and (2.5) of Aly et al. (1987) we get

lim limsup P( sup | Amn() | /a(y) > €) = 0. (4.83)

(mAn)—eco

Now, to verify (4.50), we use Aly et al. (1987)’s representation for the process

4 lim sup P( sup | Py (f HZWw) | /a(y) > €) =0, (4.54)

6=0 (mAn)—sco  0<y<e
holds for any € > 0. -
To prove (4.54) (and hence (4.50)) we proceed as follows. Let Hon() Ec’ the
process Hy, ,(.) of (4.30) when M = k and N = [. ‘Then by (4;1:) we have for

any € > 0;

P (Gggg | Tar(HZ L () | [a(y) > €)

i-H?@lFMﬁﬁywﬂ/ﬂm}al;Eﬁﬂzmg+Pu%uq3§gﬁ
0<y<d m »
M N
= F( sup, | Tr(Hon () | /9(y) > | =7 IS ap, | — =1 |< an)
+P(| *;*—"Ti |> ﬂn)+P(|%ﬁ=;=—sTg |> al)
S P(sup |Pm(HZL(y)) | /9(y) > € m(rz —ay) S M < m(ny + a},),
O=y=#d
n(m —ay,) < N <n(n +‘an)) +rbﬁ=+ b,
< P(sup | FM(H;,]n(y)) |/a(y) > €, my <M <mg,ny <N < n3)
O0<y=d

+b, + b},
) o AN
< P(mglka{xmg WO, Sup, | Te(Hla(W)) | /a(y) > €) + bo + 5,

= fJimn + gzmm + bﬁ =+ bm: (455)
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where,

Gimn = P(_max max sup |Tu(H;L(9)]/a(y) > ¢/2), (4.56)

<k<
m3 <k<m2 n1<i<nz 0<y< k+:+1

= -1 g 12). (4.57
Gomm = P(m,’?:?gxm”fé‘%’ﬁ., sugysell‘k(Hm,n(y))l/g(y)}E/E)i (4.57)

1
k4i+1

Let enn = Ous((m + n)"2(loglog(m + n))%) = 0,,(1) as (m A n) — 0o.

Then for g3 mn of (4.57) we have by the LIL of the quantile process (see Shorack

and Wellner (1986)),

92,mn
Tk(A70 () | a(Hah()) _ e
< PLBE W2 2 ) T e 2
1= M 2k+‘+1<y<0 ( m,n(y)) q y
F mln
< P{ max max ( sup —k(z—)| ;ﬁy_})) }
my Sk<mz n1<I<n2 0<2<0(14em,n) q(z) 5T Sv<o q(y) 2
< P{ max ( sup Li(z) . sup (I( mlﬂ@)*) > - }
miSkSma 0cogo(itema)  9(Z) T mSiSm g0 q(y) 2

(4.58)

By Remark 1 of Wellner (1978) we have for some large o > 1 and all k’+? =1,
Hm’,,(y) < ay uniformly in y € [kﬁw,l] with probability arbitrarily near 1.
Thus, since ¢ is assumed to be non-decreasing in a neighbourhood ‘of zero, on

taking 6 small enough we get that for some large enough oo > 1 and all k41> 1,

sup 2(____{3/_)) < su gloy) < (4.59)
e ) T e 9(9) ’ 7

with probability arbitrarily close to 1.

Combining (4.68) and ( .69) we get;

LG  C NI

92mn < P{ max su
" {m15k5m2 0<z$€(1+1<)>...{(1)) g(z) 2y<8 q(y)

1
m+ntl =

(4.60)

130



where,

dmn = P( ,sup R
k+H=l T Svse y

will be arbitrarily small for all large enough a > 1 and small enough 8

By the definition of the process T (.) in (4.7) we also see that (4.56) becomes

[ Te(y) | | €
= P £
Gimn (2, OB o luim @) >3)
I Te(y) | _ € A
< P( max sup ——=— > -). : (4.61
( (@ 2 o )

my <k<m; Difyig
From (4.55)-(4.61), we can see that (4.54) (and heﬁce (4.50)) will be true if -
we show that for any € > 0, o , o

r (. | N
llm limsup P( max sup I k(y) I E);E 0, (4.62) -
—0 (1’1/\7‘1)—'00 m]<k€mg D§y§9 q(y) B . L

m(T2 — ay) and my, = m(7, + a,,) are as in (4.1).

where m; =
Now, by inequality (3) of Sen in Shorack and Wellner (1986), p.139, we have

' Ti(z) | ' #m (0) \ .

= LA < i A>0, .6:
P(llsx}c:gn ‘/m o<lige ) > M) < 3 VA >0, (4.63)

where, ¢ > 0 and
| T'm(z) | "
um(6) = E{ sup 2() 1. (4.64)

O<r<d

Also, by inequality (1) of Pyke and Shorack in Shorack and Wellner (1986),

p.134, we have for Xy (0) = supgc.<o{| I'm(2) | /¢()} and any € >0

P(Xn(0) > ") < [ (g0 av/e* <

131



by choosing 0 small enough.
By (4.64), (4.65) and Exercise 2, p.43 of Chung (1974), we have for any
¢ >0,

Tk ITu@)] _ .
(o2 oS98, oy )

ki XmedP—/ X,.(6)dP
A/ O+ [ o Xn(0)dP}
E,'

o

K

Xm(8)><'?}

as § — 0 and m — oco. (4.66) -

1

ol }

Thus (4.50) is true and hence combining (4.48), (4.49) and (4.50) we finish the

proof of Theorem (4.4).

4.4 'Test statistics for the two-sample problem and their limiting dis-

tributions

Define the statistic
rj

1 M
- Jm—ﬂrf,' et
AJ; (MEFN)

Tmn

il

where Jiuu(.), is score function and r; is the rank of the j** observation of the
first sample among the observations of the combined sample.

Using Parzen (1983)’s representation we obtain

T

rl
| ma)dDZhw),  p=12, (4.67)

where D71 (.), are defined by (4.33).

To study the asymptotic theory of the statistic Ty, ,, we assume that:
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(1) There exists a real function J on (0,1) for which J’ exists almost everywhere

with respect to Lebesgue measure on (0,1) such that,
1 S
Tmn = VR [ (Jmn(y) = J())AD5L(y) 2 (1), as (m An) = co.
(2) For some g € @) we have

(1) limyo g(y)J(y) = limyn ¢(y)J (y) = O(1),

(i) Jo 9(¥) | J'(¥) | dy < oo.
Theorem (4.5)
Let Amu(-), be as in Theorem (4.3). Then under H, of ('4’.3),' we have as
) o g o _
Amn =l tmn — /01 J@)dBmn(y) (B o(1)

where

im.n = m {Tm,n - /ol J(y)dy}a . | (468)

m+n

and Ty, , is defined by (4.67).

Proof

Using condition (1) of the score function above we have ;

tmn = \/ {mn_‘/ y)dy:t/ J(y)dD 0 (y)}
='\/m+n{/ () mn()—y)}ﬂ/—m—’i—;nmm

[ I@)ARmav) + 05(1), (4.69)
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where R, .(.) is defined by (4.34).
Let A (.) = ~Apn(.) be as déﬁﬁed in (437) and define the process

{—nm.ﬁ(y)» 0< Y < 1} be
Mnn(¥) = Ron(¥) = Ama(),  0Sy <L (4.70)

Using integration by parts, condition (2) of the score function, Theorem (4.4),

(4.69) and (4.70) we obtain

A <1 [ TG Rna@) = [ I@)dBmaly) |+ 05 (1)
< | [ TN Tmala) |+ 05 (1)
< IO nalE — [ M) @)y} |+ 05 (1)
< 1@z 4| [ 228 ety |+ o (1)
< s I—HZ‘%))I {ITim J(v)a(y) | + | hmJ(y)q(y) |
+ [1196) Law)dv} + o5(1)
2 o), as (m A n) — .

Now, consider

To = (=——=) " {tma/7}, (4.71)
where t,, ,, is defined by (4.68) and

2 3 1oy 7! 7t |
o = 2/ _/ z(1 —y)J'(z)J'(y)dzdy,
0 J0
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Let A7, () = —Apn(.), be as in (4.37) , then by‘ Theorem (4.5) we have as

(mAn)— oo

| T~ (=) [ T@)ABmaly)/ 10} 150, (4.72)

where T, 'and Y(J), are defined by (4.71).

To simplify the limiting distribution in (4.72) we argue as follows. Let K, (-r-)s

Brmaly) = ~(=— ) )”C;(j}*”—fmin) ‘ L) (1

mte +n7 m+4+n

It is easy to see that;

Cov{Amalu): Analy)} = () )(ff)(yl A¥3) = 133)

Hence for all m,n > 1 we have

Amnly) £ {(——)( G )}”EB(y) ATy

m+n mMra +n-r

where B(.) is a standard Brownian bridge.

Combining (4.72)and (4.74) we have

| T~ ()N [ I0B) v 15 0. (4.75)
Hence,
T 1= {1+ T )PT  [ S)aBw) 0, (4.76)

where by Remark 5.2 of Aly et al. (1987), the limiting variable of (4.76) is
N(0,1).
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4.5 Change point tests when the sample si random

The main contribution of this section is the development of tests for a change
point when the sample size is random. We start by introducing the test processes,

representing them in terms of empirical and quantile processes and then derive

Let {X,,n = 1} be a sequence of independent random variables with contin-
uous distribution function F(.) and {N,,n = 1} be a sequence of nonnegative
integer-valued random variables. Now, suppose that Xy, X5,..., Xy, is a sam-
ple of a random size N,,,n = 1. We study here the prablem of testing the null
hypothesis of no change against the at most one change péintrallternative,

H : Xi~mF , 1<i<k & Xi~n G ,i>k, (4.77)

where F' # G and k are unknown.

Let J*(.) be an arbitrary score function. For 0 <t < 1, define

: Va1 [,N t] S LR
T:(t) = —) === - (4.78) .
(= 55 X TG~ emh (4.78)
where 7; is the rank of the i** observation in the sample, u = f; J*(y)dy, and

1 fy o PR

oty = 2 / j z(1 = y)J"(z)J*(y)dedy. (4.79)

o Jo
As in the two-sample problem we will assume that the random variables Ny,
n = 1 have the following property. There exist sequences a,, and b, of real
numbers such that a, — 0 and b, — 0 as n — oo and

F(| % = 7[> an) < by, (4.80)
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where 0 < 7 < 1 is a constant.

From now on we will always write N instead of N,, to simplify the equations.
Let Fi,(.) be the empirical distribution function based on the first m of the ob-
servations F(X,), F(X2),...and ﬁ',.’;l(.) be the corresponding empirical quantile
function. Define the process

Ri(y,t) = ni{FingF5'(y) -y}, 0<y<1,0<t<1. (4.81)

Using (4.81) and Parzen (1983) we represent (4.78) as;

coTi() = f J*(y)d R (y, 1), 0<t<l. (1.82)

By the definition of the process fi;(ii .)in (4.81_)j we have for 0 < y < 1 and

0<t<1;

vy (Vi)

7 Falyt) = \/_{F[Nt]F (v) — v}

f{Nt] o) - )iy )

_([N]

)3(Tw(y) = Tn(¥))}, - (4.83)
where I (.) and Y (.) are defined by (4.6) and (4.7) respectively.
Next, we shall show that the third term of the R.H.S. of (4.83) is of a small

order in probability.

Lemma (4.3)

Let ' (.) and T.(.) be defined by (4.6) and (4.7), respectively. Then, under
H, we have as n — oo

[N 3]

sup sup l( ) )(Tn(y) — Twly)) | o(l

0<s<1 0<y<1
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Proof

By (4.80) we get for any ¢ > 0

P{sup (MR sup 1 T() ~ vt > o
< Lo D@ sup 1)) 15 1~ <@} 40,
< P{(r—an)” ¥ max sup | T (y) — Tm(y)) |> €} + bny ) ‘(4.84‘)

ny<m<nz 0<y<
where n; = n(r — a,) and ny = n(7 + a,).

Using Theorem (3.3.1) of Csorgd and Horvéth (1993), we have as n — oo

may sup | Ym(y) ~Tm(®))| < max sup | Tm(y) - Tm(y))]
n1SMIn2 g<y<] m2Zn 0<y<1
< T, sup | Ton(y) = Tn(y)) |
0<y<
= o(1). - (4.85)

Combining (4.84) and (4.85) we finish the proof of the Lemma.

Next we approximate the first two terms of (4.84), by Gaussian processes.

Lemma (4.4)
Under H,, there exists a Kiefer process X{(.,.) such that , as n — oo

v SJ)

din = sup sup | (S ) (5 TN(y) = sK(y, nr)/(1v/m) |2 o(1).

0<s<1 0<y<t

Proof

We can see that

ALy s | (RINVITaG) = 2K nr) | /15
N
+ sup l[——sl-sl. sup | K(y,nr) | /(rv/R)
0<y<1
< df) +d + 4, (4.86)
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i 5 1.
& = sup (52 sup | NATW() - K(ynr) | ()1

0<s<1 0<y<1

d?) = sup (é) oSup, IK‘?(y,ﬂT) |/ﬁ{1—=— I}
0<s<]

and
[N 5 ,

a9 = sup |2 _o1 . sup | Kwnr) | J(rvR).

ogs<1 N 0<y<t '

Form (4.17), (4.18) and (4.19) we can see that
dmi,(,), : - asm — o0

and

4 2 o(1), as n = oo.

(1.89)

(4.90)

(4.91).

By the scale transformation of the Kiefer process we have for every n = 1;

sup | K(y,n7) | /v/aT < sup | Bi(y) |2 0(1),
0<y=1 : 0Zyz1 , "
where B}(.) is a standard Brownian bridge.
Using (4.80) and (4.92) we have for any € > 0

P{dm >e} <. P{d? > ¢ -‘IX —7T|< a,}+ b,
(rym)™"

< P{sip |[Ns]-Ns]|- =

0<s21 n(r — as) nf:yszzi
< Pl Dsup | Ky,nr) | /(rv/m) > ¢} + by
= o(1), asn — oo.

(1.92) |

sup | K(y,n7) |> ¢} + b,

(4.93)

Combining (4.86), (4.87), (4.88) and (4. 93) we get the proof of the Lemma.
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Lemma (4.5)

Let T'.(.) be defined by (4.6), then under H, we have as n — oo

1,1 2 1. s n‘%, ) ]
den = sup sup | (S5 (7) Tiwa (P (1) = ——K(y, ns7) |2 o(1),
0<s<1 0<y<1 N N r

where K(.,.) is the Kiefer process of Lemma (4.4).

Proof

First we notice that

dm < sup sup | (5 =)[NsF T (£ (y))——E(y,[ﬂST])l/ﬁ

0<s<10<y<

+ sup sup | K(y,nst) ~ K(y, [ns7]) | /(v/n)

0<s<10<y<1

< sup sup I(%)[NS]%F[Nal(Fﬁl(y))E%K(y,[NS])I/\/ﬁ

0<s<10<y<1

+ sup sup | K(y,[ns7]) ~ K(y,[Ns)) | /(7¢/n)

0<s<1 0<y<1

+ sup sup | K(y, [nst]) ~ K(y,ns7) | /(7V/n)

0<s<1 0<y<1

< d) 4+ dP) + dD + d) + dS), (4.94)

where,

W

4 = sup sup (2)7 | [NsP Ty (B (v)) — K(E(9), [Ns]) | n4,

0<s<10<y<1 N

(4.95)

& = sup sup (X)1 | Ky, [Ns)) ~ K(F (w), [Ns]) | /v/m, (4.96)

0<s<10<y<1 N

diy) = sup sup (= Nyt Ky, InsT)) - K@, [Vs) | VR (497)

0<s<10<y<1

dis) = sup sup | K(y,[ns7]) - K(y,ns7) | /(v/) (4.98)

0<s<10<y<1
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and

0<s<1 0<y<1 (N/ )

& = sup sup | K(gnsr) | /v {l =T (a0

Let € > 0, then by (4.80) we have

PP >¢) <

IN

IN

IN

P(d§?>e,lr—%|§an)+bn

P{n"% sup sup | K(y,ns7) | (| ===— ) > c} +b.
0<s<1 0<y<1 7(T — ay)
ns7T a,
P Ke b,
{oiggl Sup, | K°(y, ~ —) 1 T(T I) >ct+ b
P K°(y, _ Y+ b,
{Oiggl Oit;g | K°(y,z) | (] Yy an),l),> ¢} +b
o(1), as n — 0o, : (4.100)

where K°(.,.) is a standard Kiefer process.

By Theorem A and (4.80) we get for any € > 0

P> < P> e |2 —r<a}+,

IN

1

P{z—"— sup sup |[Ns|iTjny(z) ~ K(z,[Ns]) |> €} + b

(7' - an) 0<5<1 0<x<1

< P o, It Kl
= o(l), as n — oo. (1.101)

Now, since 7 > 0, then from (4.80), we see that, n; = n(r — a,),n; =

n(r + a,) — 00 as n — oo. Hence by the LIL of the quantile process (sce

Shorack and Wellner (1986)), we have as n — co

'v—l
m
WDEX, P p ly—F'(y)]

141



M\I’“‘

3. max sup |y—E7(y) | (o)}

max
ny<i<ng l n1<l<ns o<yt log lag l

IA

Jmax (=) max X P, Vioglog!
(loglo DT sup L1
1>n, I—-ooo gg;y{i \/lag log!

= O(n %(loglogn)?) a.s.. (4.102)

IN

Let h, = C(XERen)y3 C > 0, then using Lemma (1.11.3) of Csérgé and

Révész (1981), (4.80) and (4.102) we obtain for any € > 0

P = P{d? > ¢

< PP >, "n]!” < an} + by
_1
< P{ = sup sup |K(y,[Ns]) = K(F§'(y),[Ns]) |> €} + ba
(1~ an) 0<s<1 0<y<1
1
n-z
S Pl oy B S, o | Ky m) = K(y +2,m) [> e} + 20,
< P{(r—a,)"! max sup sup |K*(y ==) - K*(y + =, -;) |> €} + 2b,

0<% <1 0<a<hy 02yl

= of1), as n — 00, - (4.103)

where K*(.,.) is a standard Kiefer process.

For (4.97), we first note that if | %— —7|<a,thenforall 0 <s<1,
| [ns7] = [Ns]| < |[nst]—nsr |+ |nst— Ns|+ | Ns—[Ns]|
< 14na,+1:=86. (4.104)

Let K**(.,.) be a standard Kiefer process. Using (4.80), (4.104) and Mirza-

khmedov and Tursunov (1992), we get for any € > 0

P{d® > ¢}



P{d¥ > é—;l E —7 S an} 45

<
< p{t _ I +b,
< P{(T Tan) 0SB, [HEX, Sup | Ky, k) — K(y, k +2) |> €} + b

1
< P{——— K™(y,2) — K™(y, 2 b,
< {(TEa )Dju{pﬁﬂiggmiggll (¥,2) (y,2+ )| >} +
= of1), as n — oo. : © (4.105)

a2 o(1), as n — oo. - (4.100)
Substituting from (4.100), (4.101), (4.103), (4.105) and (4.106) in (4.94) we finish _
the proof of the Lemma. -
Theorem (4.6)

Under H, of (4.77), there exists a Kiefer process K(.,.) such that as,;n = oo

sup sup | ()R (y,8) = 2 (K (yrmsr) - sK(y,n)} 2 o(1),

0<s<10<y<1

where R;(.,.) is defined by (4.81). The proof of this theorem is an immediate

Now, assume that Q" is the class of positive functions ¢ on (0, 1), that are
non-decreasing in a neighbourhood of 0 and non-increasing in a neighbourhood

of 1 and H=0)" o  vi € (0,1), » < 3. We also assume that for

9(t)
(i) limq(y)J*(y) = limq(y)J*(y) = 0, (4,‘1cj7)
(i) [ aw) 1 77(w) | dy < oo, (4.108)
i) [ ) 1 9"w) 1dy = [ a) 174 [dy =0, as 0\,0. (4.109)
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where ¢ € Q°, and J*(.}, is the score function of (4.82).

Lemma (4.6)

Let R;(.,.) be defined by (4.81), then as n — oo

en,=essg§1([ )| TR w,5) 2 )
and

e = sup (G0 | [, TR (0,9) 12 (1),
Proof

Here we prove only the result of e,;, since the result for e,, can be done

similarly.

By the representation of the process RV,‘I('., .) in (4.83) we have

eny < €M 4 ) (4.110)
where,
nINs i )
W= sup | [ et e (4.111)
0gs<1 (o, 735) N
and
Ns ) )
= sup | [ | I [ e, (4.112)

0<s<1 [0,"+|)

Using integration by parts we have by (4.7), (4.107) and (4.108);

& = sup (PR gty Sl D) g
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Divg (R @) urgy v
o T q@) Y (¥)q(v)dy |}

F] . =1
< Crsup (BN [ Ta(FR' W) |
0<s<1 N eyt a(y)

a4l

< Oy sup, (7 il ) |

. c A DER W) |
< G max B{ilép (7 ) (= ) EBEORE
n+1

where, {2 | limy;0 J*(¥)q(v) | + f5 | J*'(¥) | g(¥)dy} < C) < co.

, (4.113)

Let § = —= in (4.63)-(4.66), then by (4.80) we get for any ¢ > 0,
P(el) > e < P(e“’ > ¢, | =7 |{ an) + by
: 1 Tuy) | "
< P = 1 VL b
< PO s, () S e
= o(l);  asn— oo [ (4.114)

For e of (4. 110) we have by the deﬂmtn:m of T (:)in (4.7),
P(el) > ¢) =0, Ve> 0. | 'v(4,11’5)
By (4.110), (4.114) and (4.115) we finish the required proof.
Lemma (4.7)

Let X(.,.) be a Kiefer process. Then as 6 \, 0

T = sup L[ I )2 ’fc(J, n.ﬁ)_/ﬁz(y,m)} 12 o(1)
0<s<1  J[0,8)
and
Tz = sup | J*(y) d{sifc (y,nst) — = r"itu,m)} 12 o(1),

0<s<1 (i=4,1}
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where J*(.) satisfies (4.107)-(4.109).

Proof

As in Lemma (4.6), we prove here only the result of 5,;. We note first that

e < 28 + 782, (4.116)
where,
-1
. n z e
7y = sup | [ J*(y)d{—K(y,ns7)} |
<s<1 [0,8) T
and
%
73 = sup | J'(y)d{ K(y,n7t)}| .

Using integration by parts and (4.107)-(4.109) we get as 6§\, 0

(ny __ SU K(y)nST) K:(yvﬁST) "
Tni = Sup I[J (¥)aly)-— V) =5 - /[0 o TVl T (y)g(y)dy |
< LD o i s et 1+ [ 10°@) [ atw)an)

sup su
0<agl o<y£1 7v/nq(y) [0,8)

1 I :o(y’ 'S) I : 7 wfr o
— —l 1 J* q < J 1 d;
VT oil:gx 0221 Q(y) {2 l ;fg v) (y) I -/[ﬂﬂ) | (y) | Q(y) y}

= 0p(1){0+0(1)} 2 o(1), (4.117)

IN

where K°(.,.) is a Kiefer process. Similarly, as 8 \, 0 we get
Ty £ o(1). (4.118)
Substituting (4.117) and (4.118) in (4.116) we get
T = o(1) as 6\, 0,

which complete the required proof.
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Next we introduce the main Theorem of this section in which we apprmmmte

the process T,;(.) of (4.78) by Gaussian processes.
Theorem (4.7)
Let T;7(.) be defined by (4.78). Then there exists a Kiefer process K(
that

s K(.,.) such

T = sup | To(s) - /ﬂl J‘(y)d{”*@(ﬁ(ymﬁ) — sK(y,n7))}/Vn |_r; o(1)

where o(J) is defined by (4.78).

Proof
Note that :
II,; = sup I/ J*(y)dA, (y,s)l ', (4119)
where,

An(y,s) = ;( [Ns]

o) N )-Ra(yy9) — —

y,ns7) — sK(y, m’,} (4.120)
It is easy to see that
O, <09+ 08 + 0% + 1t + 1, (4.121)
where,
n% = sup | / I (9)dAn(y, ) |, i=1,2...,5 (4.122)
0<acl  Jy€lni '
and I, ¢ =

1,2,...,5 are the intervals I; = |

= [Da ;%)ibjng = a1
0,1 - —

ﬁ+l] E.I'ld I ns = (1 Eﬁj,l];

(0,1 =0), Iy = (1 -
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Using integration by parts, Theorem (4.6), (4.107)-(4.109) and the fact that

infgcy<i— q(y) > 0, for any 8 € (0, 3], we get as n — oo

An(y, S)
9(y)

n(ya 'S) y=1 E

(3) = S‘Ll V
ng = sup | @) = B2m - [ =

J*(v)q(y)dy |

< sup sup LRG0y 40 -0)g(1-0)|

T 0<a<10<y<1-48 q(y)

+ / 10 @) | a(v)dy)

< sup sup |An(y,s)]. ,SUP g (y).Cy(6) £ o(1),
0<s<1 0<y<1 <y<1-8

where C3(0) < oo, for any 0 € (0, %]

From Lemmas (4.6) and (4.7) we obtain, asn — oo
H(ﬁjl) ’ii €ni EF’,T]iii % '3(1)

and

\H 1|\"=

o(1).

H()Eéﬂg'l'ﬂn

For I1%%) of (4.121) we have by Lemma (4. 7)

% < sup | f.y ) B, 41

0<a<l

< sup | S {4

D{a{l ) yéfng

[Vs]

)-Ry(y,9)} | + 0p (1).
We also note that by (4.83)

sup I/yE! J*(y )d{([ ])R (¥,8)} |= vn1 + Vo,

0<a1

where,

wm=sp | [T () Ty )} |
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and

Vn2 = sup | /y s J‘(y)d{(ﬁ[gsl

0<s<1 N

)Tn(y)} - (4.129)
Using integration by parts and the steps leading to (4.54) we obtain as 8 \, 0
and n — o0

V1 = o(1). R (4.130) -

Again using integration by parts and (4.107)-(4.109), we can easily see that

Vna of (4.129) will vanish in probability if we show that

| Tn(y) | P

sup ———— =o(1), asn — oo, (4.131): -

r<wcs 9(Y)
for arbitrarily small 8.
To verify (4.131), let p, = ’—°&L—°Eﬂ and define the difference process {§2,(y), 0 <

y <1} by

where I (.) and T.(.) are defined by (4.6) and (4.7) respectively.

By (4.80) and (4.132) we have for any ¢ > 0

P ( sup I—TM& €)

7;"_7511«9 q(y)
< P( sup |—T—N(y—)| y ]| ——=7|<an) + by
i <v<d q(y)
< P( max sup I—Tk(—y)-l- >e€)+ by

ny <k<ny n_l_l_sy<o q(y)

< P( max su
- (nlsksnz :%SI;“’ q(y)



T
P( max sup lTk(y) I > )+P( max sup I k(y) I > E) + bn
nlSkSnz 1—175!/<9Pk ( ) mngnz 9px<y<b q(y)

IN

| Te(y) | (loglogk)/VE > £

IA

P( max su
(D3, 1_<yfz5,,k (loglogk)/VE  4(¥) 2

| ()| (@1-9)" _ e
+P(g;%‘! 9m<y<o (y(1 —y))z™" q(y) g 4)

| Tr(y) | €
P( max su )+ ba
+ (n,gksnz 9p*5311)<0 (I(y) 4)

| Ti(y) | (yloglogl) ¢
P max su ——————— e SU —_—
b - <yasn, (loglog k)/V/Ek oxyes  q(v) 2

Pt sy 12O =)
k>ny 9 <y<o (y(] — y))2 v’ 0<y<éd Q(y)

k| Tk(y) | €
P = . > =) + by, 4.133
+P(max sup (LR ) > D4 (4.133)

where ny = n(r — a,) and ny = n(7 + @,) as in (3.80) and 0 < v < 1.

FaN

€
>Z)

Now, using (3.10) of Cs6rgé and Révész (1978) and the properties of g(.)
for the first term in (4.133), (15.1.20) of Shorack and Wellner (1986) and the
properties of ¢(.) for the second term of (4.133) and (4.114) for the third term =

of (4.133) we obtain for arbitrarily small # and any ¢ > 0

su n() | €)=o as n — 0o 7 |
P(__..<I;<a o) > €) (1), . (4.134)

n+l

Hence by (4.129) and (4.134) we get as 8 \, 0,
Vn2 = o(1), as n — oo. (4.135)
Thus by (4.126), (4.127), (4.130) and (4.135) we have for arbitrarily small 4,

Hf,zl) = o(1), as n — oo. (4.136)
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We also have by the same steps leading to (4;136) and for arbitrarily small

o £ o(1), as n — oo, (4.137)

where T1¢Y is defined by (4.122).

Combining (4.123)-(4.125), (4.136) and (4.137) we finish the proof of the

Theorem.

Let K(.,.) be a Kiefer process. It is easy to see that for every n > 1 and

0<s<l,
[ 7 @it nsn) - sk an} oo £Bs) (4138)

where B(.) is a standard Brownian b;idgé.

Hence by Theorem (4.7) and (4.138) we have

tAQ:Cgﬁﬂ@yiB@L 0<s<l1. (4.139)

{ta(5),0 < s < 1}.
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Chapter 5

Tests for the change point problem under ordered alternatives

5.1 Introduetion

Let Xi,...,Xn be a sequence of independent rv’s with unknown distribution
functions (DF’s), F,..., Fn. The null hypothesis considered in this Chapter is
given by

H,:Fy=...=F, = F,where F is unknown.

Lombard (1987) and Aly and BuHamra (1996) considered the prérBlerm of
testing H, against the unrestricted multiple change points alternati%ré;': This
type of alternatives corresponds to the two-sided case in the at most Dné t:rhiannge
point problem. In some situations it might be of interest to test Ho again;;.t
ordered multiple change points alternatives which are generalizations of the one-

up are proposed and studied by Terpestra (1952), Jonckheere (1954), Chacko
(1963) , Puri (1965) and Tryon and Hettmansperger (1973) among others. Real

applications and tests of this kind of hypotheses can be found in Barlow et al.
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(1972) and Robertson et al. (1988). The object of this Chapter is to proposc
and study testing procedures for testing against multiple change points when

the changes are ordered. The alternative hypothesis considered here is given by
H] H Fl = ... = ﬂng] - .F[ng].*.] = ... = .F[n,] = .F[yu].i.] =...= Fn, (51)

where [y] is the integer part of y, < is a partial ordering on the family of DI'’s
under consideration, 0 < ¢ < s < 1 and ¢, s are unknown. This type of alternative
hypotheses will be called ordered-type multiple change points alternative. We
assume here that under the alternative hypothesis, the sequence has exactly two
change points, but the tests we develop next can easily be extended to the case
of r > 2 change points.

We will start first by discussing the case where the hypothesis in (5.1) involves
only changes in the location parameter x and the alternative hypothesié is given

by
Hy:ip = oo = fiag < Pnga1 = - = fns] < Plnshet = - = finy - (5.2)

where0 <t < s < 1,1,sareunknown and py,..., i, are the Iocatio‘n parameters
of the sequence Xi,...,X,.

In Section 2, we formulate the testing procedure for the hypothesis in (5.2)
and give some notations and assumptions. In Section 3 we derive the asymp-
totic theory of the test statistic proposed in Section 2. The formulation and
convergence results of the test statistic for testing against I/; of (5.1) are given

in Section 4. In Section 5, we present the results of several Monte Carlo studies.
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5.2 On testing H, against H, of (5.2)

The testing procedure proposed here is obtained by extending the test of Jon-
ckheere (1954) and Terpestra (1952) to the change point set-up. We start by
introducing the main processes needed to formulate the proposed test.

Define the two parameter processes {Rin(1,$),0 <t <s<1},n>1,

:=1,2,3 by; R,(0,.) = Rn(,1)=0 and

[nt]  [ns) ' ;
Ria(t,s) = E Z I(X; < X3), T (83)
J=li=[nt]+1 _ ,
[nt} n :
Ryn(t,s) = Z Z I(X; < Xi), : ' (5.4)
=1 i=[ns]+1
[ns) n : 7
Raltes) = 3 3 IXG<X), (55)

J=[nt}+1 i=[nsj+1
where /(X <Y)=1if X —Y <0 and zero otherwise.

The proposed Jonckheere-Terpestra-type test statistic is given by

| o

), (5.6)

S|~

Tin = max \/1_2V,,(-~,

1<k<i<n~1

=S

where the process {V,(t,s);0 <t < s < 1}, is defined by, V;(0,.) = V5(,,1) =0,

and

Valts5) = "3 {3 Rin(5) = 5([ndl([ns] = [nt]) + [ns)(n = [ns))}.

i=1

For0<k<i<n,let

Fiy(z) = L ZI: I(X; < z) (5.7)



be the empirical DF based on Xy4; ,---, X; and

i—1 T
Fkl(y) Xist—k, 1_k<y51_k,z=1,...,1—k (5.8)

be the corresponding quantile furnction, where X, is the i** order statistic in a

sample of size m. In the sequel we will use the convention that

[=]
o Jab)

By (5.3), (5.7) and (5.8) we have

[nt]  [ng]
Rln(t’s) = Z Z I i< X:),
J=1li=[nt}+1
= 2, [nt]Fopmg(Xi)
i=[nt]+1
sl
= [nt] Y. Fopg(Xifns-[ng)
i=[nt]+1 D
[ns]—[nt] i—1 ; _' o
— —_— L )
[nt Z FO [nt](F‘[nt] [ns]( ))I ([718] _ [nt] <y s [113] — [77,t]>
[ns]~=[nt} oo D v
= =) S [T P )
i=1 Tne]=[ni]
1, .
= [nt]([ns]—[nt])/o Fofng Fiag ) (¥))dy- (5.9)
Similarly, for (5.4) and (5.5) we get
1, .
R2n(t,s) = [nt](n——[ns])'/(; FO.[nt](I?[n,],n(y))dy'; (5]0)

1, A
Roa(t,) = (fns] = [n)(n = fns]) [ Fruagua(Fihaloddy. (511
By (5.9), (5.10) and (5.11) we can write the process V,(.,.) of (5.6) as follows;
3 1 V
Valtss) = 3 [ Zinlt,s,p)dy, (5.12)
i=1 Y0
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where ) <t < s <1, V(0,.) = V,(,,1) = 0 and the processes {Z;,(¢,s,y), 0 <

t<s<1,0Ly<1},71=1,2,3 are defined by
Zln(tasay)

nt]{[{ns]—[nt ) -1 .
_ [ PR o (R g @) — ¥} 1 0<yS10<t<s<] (5.13)
0 ,y=0,t=0,s =1,

Z2n(t$svy)
_ [ S (P -9 0<ySLO0<t<s<D oy
0 ,y=0,t=0’5=1’ 7 7
and
ZBn(t,S’ y)

,y=0,t =0, =1.

_ { el g g (Fha @) =y} 0 <y SLO<E<s <1
0 = 4

Let F(.) be the common unknown DF of H, of {5.1). We will assume through
out the rest of this Chapter that F is continuous. Let U; = F(X;), i=1,...,n,

then under H, of (5.1), Uy,..., U, are iid Uniform [0,1] rv’s. For 0 < k <[ < n,

let Eyi(.) and Qg (.) be the uniform empirical distribution and quantile functions

defined by
1 !
Ep(u) = —— Y I({Ui<u), (5.16)
I~k i=k+1
1—1 T . .
= Sk < =1,...,{— .
Qxi(y) Uik, TTE SYS T L...,0—k, (517)
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where Uy, is the i** order statistic in a sample of size m. Using (5.16) and (5.17)

we define the following general uniform empirical and quantile processes I'x(.)

and Y (.) by;

Tra(y) = (1= k) (Brly) - ), 0<y<1,
Tii(y) = (=B Quy) - v), 0<y<I,

where 0 < &k < I < n. Under H, of (5.1), we can express the processes in

(5.13)-(5.15) using (5.16)-(5.19) as follows;

Zinltys,y) = illnel = (nd)

% ){Eﬂcinﬂ@[m]i[m](y) - y}
(fns) - [ni])([ne)

Lo g (Qna) ne) (%))

na/?
([ns])!/? [n))*2
B %F ofns)(¥) + ([nta/z Lomy(v)
ATl — [rg1\1/2
b s i) + T}
Zon(t,8,y) = W{([nz])-llgrc,,[m](c;)[ﬂ,,],,.\(y))

+ (n- [nS])FI/Z(T[m’Lﬁ(y) + P[ﬂa].n(y))
B (g
Fon )+ G ]

(TL _ [TZS]) TD,[mj](y)}:

and
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ns] — [nt])(n — [ns]) . ([ns])*/? , :
Zan(tasay) = ([ S] [n_nti)g [ S]){([Tgi]i)[nt])r‘ﬂ.[na](@tnal,ﬂ(y))

+ (n— [ns])"lﬁ(T[an(y) + Lingn (%))
n'/? ([7’%5])1/2

"—(n — [ns])I‘o,n(y) + G—:@rgi[m](y)
n 1/2 7 .
(bt FO.["‘](Q["-’]@(ZJ))}; (5%22) .

([ns] - [nt])

where 0 <y <l,and 0 <t<s <]l

5.3 The null asymptotic theory of T;, of (5.6)

The main result of this Section is Theorem 5.1. The proof of this Theorem

depends on a number of intermediate results which will be stated and proved

first.

Bahadur (1966) and Kiefer (1970), (see also Shorack and Wellner (1986)),

established that as n — co,

sup | You(y) + Lon(y) % O(n~'/*(log n)'/(loglog n)'/*), (5.23)

0<y<!

where T _(.) and I' (.) are defined by (5.18) and (5.19), respectively.

Let, din(t,s) = ([ns] — [nt]), then by (5.23) we have as dy,(1,5) — oo

nl/2 0<

(din(t, 5))'/2 ,
win 0 | Todin(w)(¥) + Todingear(y) |

2 O((din(t, 8))"/*(log dualt, s))*/*(log log din(t, 5))'/*/n'/?), (5.24)

ns] — [nt])/? ) '
((ns] = [nt]) sx;gl | Ting)ins)(¥) + Tinelins) (3) |
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and since (5.24) is an increasing function in the difference d,(t,s), we have as

([ns] = [nt))/? | v
ool T i 2 | Tinaina(¥) + Ting i (9) |
(din(2,5))'/?
 sup < s [ Tou e () + Togyue
S 0P 0 | Yo () + Toana(v) |
B O( sup  (din(t, ) /(log din(t, s))/*(loglog dyu(t, s))/* /n'/?)
0<dyn(t,3)<n
< O(n**(log n)/?(log log n)"/4 /n}/?)
= O(n"*(logn)!/?(loglog n)!/4). (5.25)

By Komlés, Major and Tusnady (KMT) (1975), (see also Csérgd and Révész

max sup | mY, W (y) — K(y,m) |2 O(log? n), (5.26)
1=mzZnogy<y i : ' ’ '

where I'gm(.) is the uniform empirical process of (5.18), based on a sample of m
observations. Next we prove an approximation for the Kiefer processes, which

we will use later. But first we should notice that, since0 <t < s < 1,

if [nt] = oc then [ns] — oo,

din(t,8) =[ns]—[nt] > (ns—1)=(nt+1)=n(s =1) =2 = co asn — oo,
dyp(s) =n—[us]2n(l—s)—1— 00 asn — oo
and

ra(t,s) = ([nt}/[ns]) = (t/s) =r,0<r <1 asn — oco.
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For the convenience of the reader, from now on we will suppress t and s from
the notations whenever it makes no confusion. For example, we will write d;, for

din(t, s) = ([ns] = [nt]), dan for dya(s) = (n—[ns]) and da, for d3,(t) = (n = [nt]).

Corollary (5.1)
For any Kiefer process K(.,.) we have as n — oo,

-1/2

sup  sup | K(Qpyns(¥), [nt]) — K(y, [nt]) |2 Q("?(ﬂ))

O<t<a<] D<y<l

n
where p{u) = v~/ (log u)/*(log log u)'/4 and Q. .(.) is the uniform quantile func-
tion defined by (5.17). |

Proof

First, we have foreachn 2 1,0 <t <s < 1,

sup | K(Qo.a,,(y), [nt]) — K(y, [ﬂt]) |

0<y<t

< supsup | K(Qodn(7) [nt]) - K@, [nt]) |
I.E;fni—:dl" %‘-’{y‘i E; 1

< sup sup | K(Qoa(g): Int]) = K(u [nt]) £ K= ()|
1€m<Edin %{y{ o in

< sup | K(Qoan(50): Int) = K(= Int) |
1€m<din in in

+ sup sup | K(g [ntl) ~ Kl [nt]) | (5.27)

1€medyy M=l = e m
- T din <y dip

By Theorem (5.1.1) of Csorgé and Révész (1981), we have, as [nt] — oo,

ag, = [ns]'? sup lUmﬁm*i|/2{1Dglﬂg[ﬂ5]}”2
1<m<din din
log log dy,, [n3]
< {7 sup |Un 2(log log din )1/ }{ 228 %n [B34172
s 1{?1?5%“, | Unitin = din l/ (log log din) }{laglag[ne] dlﬂ}

-
=
(3]



< 2"1/2@;/2, a.s.

® C, (5.28)
where Ui = Qo, k(i) t < k is defined by (5.17) and C, C‘ are positive constants.

Let log log(.) := logy(.), then with by, = sup;cinca,, | Uiy, — 7= |, we have by

(5.28), a.s. for all but finite number of [nt],

sup  sup | K’Z(—m— + 8, [nt]) = K(=—, [nt]) |
1<m<dyp 0€s5by,, llﬁ

< sup sup |l\.(-=+5 nt]) = K(=— - Jnt]) | (5.29)
1<mgdy, 0<s<b” dln dlﬂ

where b* = (C + o(1))((log,[ns])/[rs])/2. By Theorem (1.15.2) of Csérgd and

Révész (1981), we have for any Kiefer process X(.,.) and a sequence of ]mmhw .

3P | K(y + hy, [nt]) = K(y, [nt]) | /{2[nt]hnlog h7'}'/?
< sup sup | K(y+s,[atl) = K(y, ) | /420t log by P72
0Zy<1-hp 0<s<hn
< 1, a.s., as [nt] — oo, (5.30)
Taking h, = b*, we obtain from (5.28), (5.29) and (5.30), as [nl] — oo,
nax | K(Qoa(77), [nt]) = K (= [nt]) |
< mar | KUy ) = K3 0]
2 O([nt]"*{(logj nsl)/fns]}*/*(logns]) /)
< O([nt)"*{log,[ns]}*/*(log[ns])!/?). (5.31)

163



If2=l <y < & then |y — & |< d;, and hence applying (5.30) with k, = di,

we get, as [nt] — oo,

max _sw | K(G o) - Koot 12 O oglns)} ). (5.32)

1<m<dyy m-1
B el A ey

By (5.27), (5.31) and (5.32) we get, as [nt] — oo,

sup | K(Qoarn(y)s [nt]) = K(y, [n]) %2 O({[nt] logy[ns]} (loglns])?). (5.33)

ﬂ{y'ﬁfl

Finally, since the R.H.S. of (5.33) is increasing in [nt] and [ns], we have as n — oo

“2 sup  sup | K(Qoda(¥): [nt]) = K(y, [nt]) |

0<t<s<1 0<y<1

2 O(n™? sup ([nt]logglns])/*(loglns])*/?)

D<ia<]

O({nlog; n}/*(1og n)/*(n™1%))

n

T4

O(n~"4(log, n)"/*(log n)"/?). S (5.34)
Lemma (5.1)
Let K(.,.) be the Kiefer process in (5.26), then we have as n — oo,

sup  sup | Zin( t,s y) = n‘=3/2{[n_5]};'(y, [nt]) - [nt]]C(y, [TZS])} I

0<t<s<1 0<y<]

T
e

+ 0(n""(log, n)'*(log n)"/2),

where Z1,(.,.,.) is defined by (5.20).
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Proof

Using the definition of Z,,(.,.,.) in (5.20) we have a.s.;

sup sup | Zan(t,8,9) — 0V {[ns]K (e, [n)) — [nt)K(y, [ns])} |

0<t<s<1 0<y<1
dyn

< — tl/?l“ ) (@i s} (¥)) — Ky, [* t]
0<stl<1?{i oiggi { n3/? | [nt] 0,[nt)(@fnel.fns} (¥)) (9, [n1]) |
[r

+n%|[ns]mru[n,](y) - K(y, [ns)) |
ni]

+[3/2 | [n2]/*Togng (v) = K(y, [nt]) |

[l (din)'/?

nd/?

- | Ting [ns](J) + Clag, ﬂs](J) |} (5.35)
For the first term of (5.35) we have by (5.26) and Corollary (5.1), as n — oo,

dy,, - o
- t] F [nt]\ & [nt],[na —Effri z
1975 S 7 ns,g | [nt}'/*To e ( Qe ina)(¥)) — KAy, [n]) |

< sup sup 2 2| [nt]*Topuy(Qmama(y) ~ E(le][n,](y ]y |
0<t<s<1 0<y<1
+ sup sup 72| K(Qpama(¥), [n1]) = K (3, [nt]) |
0<t<s<1 O<y=l .
< lgnfg-gﬂnigglnllzlm”gr (z) = K(z,m) |
+0as.(n"*(log, n)"/*(logn)'/?)

O(n~"?log? n) + O(n="4(log, n)/4(log n)"/?). (5.36)

Consequently, using (5.25), (5.26) and (5.36) in (5.35), we finish the proof.
Following the steps leading to the proof of the above lemma, we can prove

the following two lemmas.
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Lemma (5.2)

Let K(.,.) be the Kiefer process in (5.26), then we have as n — oo,

sup sup I Z2n(ta S, y) - K2n(t1 S, y) a_é* Q(nijﬁ(l‘i’gz n)l'/g(lﬂg n)j/?)’
0<t<s<1 0<y<1

where Z3,(.,.,.) is defined by (5.21) and,

Kan(ty $,y) = n=/*{d2uK (y, [n1]) ~ [nt]K(y, n) + [nt]K(y, [ns])}.

Lemma (5.3)

Let K(.,.) be the Kiefer process in (5.26), then we have as n — 0o,

sup sup l ZSn(t, S, y) - }CSn(t, S, y.) lé"‘g C)(n_yé(l‘jgz n)I/d(’ng n)ilz)v
0<t<3<1 0<y<1 ) B

where Z3,(.,.,.) is defined by (5.22) and,
Kan(ty5,y) = n™**{d3.K(y, [n5]) — d2nK(y, [n]) ~ drnK(y,n)}.

Before we proceed to the main Theorem of this Section, we prove the following

result.

Corollary (5.2)

Let K(.,.) be any Kiefer process, then as n — oo,

n=3/2 oS 0’:‘21;}21_{ | {[ns]KLy, [nt]) + (n — [nt])K(y, [ns]) — [ns]K(y, n)}
— {nsK(y,nt) + n(1 ~ )K(y, ns) ~ nsK(y,n)} | }
£ 0(71"1/2(log n)"’z)
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Proof
It is enough to prove that, as n — oo,

Pi(n) = sup sup n¥%|(n— [nt])K(y, [ns]) = (n — nt)K(y,,ns) |

0<t<s<1 0<y<1

£ O(n ?(logn)'/?). , (5:37)
For a Kiefer process K£°(.,.), we have by Lemma (1.11.2) of Csérgé and Révész
(1981),
D . o m=1/2 N 1) NPT — e
)= sup sup 0 { | (1~ LA)K(y, ns) - (1 = Ky, n9) | )
0<t<s<1 0<y<l
i ; nt ns , \ 1m0 oo
£ e sp {0= e, B o e, )
0<t<s<1 0<y<]
, nt], .., [ns NP X 2
< sup sup { [(I- [ ])/'C [ ])=( - 1)K ('y,g}l,
0<t<s<1 0<y<1 n
6 o, 7S]
F10 =00, - £, 20 | )
o : , nl
< sup sup { [ K°(s2) | } sup lt—-[-=]=|
0<z<1 0<y<1 0<t<1
tsup(1-1) { sup sup |K¥y,9)- Ko, 20)) y
0<t<1 0<s<10<y<1 .
< O,(1) . 1 + sup sup sup |K°(y,z)—K°(y,z+ h)|
. n 0<y<1 0€x<1~ hq}«;h{’

[to

O(n~"*(log n)/?).

Theorem (5.1)
Let V4(.,.) and K(.,.) be the processes defined in (5.12) and (5.26), respec-
tively . Then as n = oo, |

sup | Vil(t,s) - ”1/3/{st(y,ni)+(l=t))C(J,115) sK(y,n)}dy |

<<l
£ o(1).
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Proof

Forn 21 let,
Ka(t,s,y) = sK(y,nt) + (1 = t)K(y,ns) —sK(y,n), 0<t<s<l.
Using the definition of V,(.,.) of (5.12), it is easy to see that,

Mo = sup | Va(t,s)=n""2 [{K3(t,s,0)}dy |
T otgagl o
3

< sup sup IZ Zin(t,8,y) —n~ I/E{E (t,8,9)}

T 0<t<s<10<y<l (o

and hence by Lemmas (5.1)-(5.3) and Corollary (5.2) we have,

M, £ sup sup | Zin(t,s,y) — n~**{[ns]K(y, [nt]) — [nt]K(y, [ns])} |

0<t<a<1 0gy<l

+ sup  sup | Zu(tys,y) = Kan(t,8,y) |
0<i<s<1 0<ys]

+ sup sup | Zaa(t,5,y) — Kaa(t,5,9) |

O<i<s<1 O<y<l

+,sup | sup {|n “32{[ns)K(y, [nt]) - [nt]KC(y, [ns])} + K’-éﬁ(?_;é;?) -

+Kan(t, 8,y) — 02 {sK (y,nt) + (1 = t)K(y, ns) — sK(y,m)} |}

L o(1).

Let K(.,.) be a Kiefer process, W(.) be a Brownian motion and B(.) be a

Brownian bridge. For 0 < s <t < 1, we have

] {tK(y,5) + (1 = $)K(y,1) ~ 1K (y, 1)}y

Hiew

\/—_{tﬂf’(s) + (1= s)W(1) - tW(1)}

f{tB

e

(s)+ (1 =s)B(t)} := ;/IéA(S ,1). {5.38)
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Corollary (5.3)
For0 <t < s <1, wehave as n — oo

V12V, (L, 8) S AW, s), (5.39)

and
Tin:= max \/ﬁV(ﬁl)é sup A(s,1) (5.40)
T agkgldn-r Y M 0 T iy T D '

where V,.(.,.) and T}, are as in (5.6) and A(.,.) is as in (5.38).
The proof of this Corollary is an immediate consequence of Theorem 5.1 and

(5.38).

5.4 A Score test for H; of (5.1)

In this section we develop a test statistic for testing H, agéinst H, of (5.1). Recall
again that we are using din for dy, (1, s) = ([ns] — [nt]), d2, for da,(s) = (n—[ns])
and da, for ds,(t) = (n—[nt]). Assuming that the change points [nt] and [ns] are

known, Puri (1965) suggested that we reject H, for large values of the statistic
An(ty8) = 07 {guia(t, 8) + gnas(t, ) + guia(ty 8)}, (5.41)
where; for an arbitrary score function J(.) and ﬁ'() as in (5.7);

gma(tys) = [nt)(dyn) /;J(y)d{ﬁa,[m]wrf,?(y))—ﬁnq,[m,ud;’(y))},

gults3) = (d)(en) | T H P (HEW)) = Fronal B W)Y,

gualtss) = [0t)(dan) [ I Eogua ) = Frrial LD,
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and HO)(.), () and H¥(.) are the empirical quantile functions, defined
by (5.8) based on the rv's (Xi,..., X[ng, X4ty -« s X(na])i (X[ngga1y - -« s Xna)s

XingJ41s -+ -0 Xn) and (X150, Xy Xfnaj#1s - - - » Xn), respectively.

way to test the hypothesis in (5.1) is to develop test statistics based on the
process {An(l,8),0 £1 < s < 1}, given by A,(0,.) = An(.,1) = 0 and A,(t,s),
of (5.41) for 0 <t < s < 1. Tt is easy to see that, under H, the process An(.,.)

of (5.41) becomes;
3
An(i,s):[ (y)d{ Z, i(4,8,9)} 0<t<s<l, (5.43)
where, by £ (.) of (5.16) we deﬁne,

Dultysyy) = P g (Q00)) - By @RW))  (544)

n3/2

Dunltysyy) = nllda) g o QB04)) = Brga(@P@)}, (5.45)

nd/?

Dltisy) = P9 g QW) - Buan@UW)),  (546)

and Q(.),Q)(.) and QP(.) are the uniform empirical quantile functions de-

fined by (5.17) based on the transformed rv’s {F(X1),..., F(Xpy), F (X[ﬂi]+i),
 F(Xug)Fs {F (K)o F(Xu)s F Xy -, F(Xn)} and {F(X2), ..,

F(Xin)y F(Xinsja1)s- - - F(Xn)}, respectively. |
As in section 3 of this chapter, we can represent the processes in (5.44)-(5.46)

as follows

Dus(t, s, y) = {ntlIns] [HS]FD[M(Q(”( ) — ([]g,;,[ Ur, ma(@5()),  (547)

19 3/2
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Dra(t,s,y) = ([n,i];)/idﬂ Lo, [ns (Q(E) {([ni]‘y;i;.“
()} = T 2 e
Tom(@ N} = 57 Toa(@2G),  (5.48)

~ nt])? dy,
Dya(t,s,y) = ([J%Tc,[uq((?(a) +{—T'

Corna @20} ~ S (@), (349)

where T_,(.) is defined by (5.18) and Q')(.) arc as in (5.44)-(5.46).

Lemma (5.4)

Let K(.,.) be the Kiefer process of (5.26), then as n — oo we have,

hin) = sup sup | Du(t,s,y) —n"Y2{sK(y,nt) — LK(y,ns)} |
0<t<s<1 0<y<l : T

I}

o(1), S O (550)

l(n)

sup  sup | Dua(t, s J)=ﬂ (- K (y,ns) - (1 —5)
0<i<s<] O<y=1 . . B

K(ynt) - (s = 0l m)} 12 o(1), (5.51)
Is(n) = sup sup | Dusll,s,y) —n 21 = s)K(y,nt) + LK(y, ns)
0<t<a<] 0yl

~tK(y,m)} |2 o(1), (5.52)

where Dp,(.,.,.),i = 1,2,3 are defined by (5.47)-(5.49).
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Proof

We explain here only the proof of (5.50), since the proofs of (5.51) and (5.52)

can be done similarly.

By (5.26) and Corollaries (5.1), (5.2) we have as n — oo,

Li(n) =

I

(Y

and similarly;

l12(n)

i

[ns]([nt , _ ,
sup  sup IQ%‘%[m](@“’(y))—n’l’gsi(y,ﬁi)I
0<t<s<l 0<y<1 n3/

. [ns]([nt])}/? ,
sup sup {| #Fn[m](‘@ )(v))
0<t<a<1 0<y<1

Il Q). ) | 4280 | k(@) ) — Ky [nt) |

ni/? nd/?

1 2%k, fut) - no2skc ) 13

n3/2"

Oys.(n 1/g(lmg n) )+ Ouas.(n” l/“(lc:g ﬂ)ll"(lag n)1 /2

+0,(n~"2(logn)/2) 2 o(1), (5.53)

nt]([ns])1/? /2
sup sup | AL Cape (@) = lyns) |
O<t<a<] 0<y<1 n

o(1). O (5.54)

By the fact that ly(n) < l11(n) + l12(n), a.s., and the results of (5.53) and (5.54)

we finish the proof of (5.50).

Let the score function, J(.), be bounded continuous on (0, 1] and admits the

first derivative on (0,1]. Define the Gaussian process {G.(¢,$,4),0 <t <s <

1,0 €y £ 1} by; G(0,.,.) = Ga(,,1,.) = Gu(.,.,0) = 0 and

Gultys,y) = n72{(1 = OK(y,ns) + sK(y,nt) — sK(y,n)},  (5.55)
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where 0 <t < s <1 and K(.,.) is the Kiefer process. It is easy to see that

Gn(t,s,y) =n"1/? {sK(y,nt) = tK(y,ns)} + n~2{(1 - i)L(y,nq)
(1= 9Ky, nt) — (s — YK (y, )}

+ nM(1 = $)K(y, nt) + LK (y,ns) = tK(y, n)}(5.56)

where the above R.H.S. is the sum of the hmxtmg prm:es‘%c.s in (5 50) (5.52).

Theorem (5.2)
Let K(.,.) and An(.,.) be as in (5.26) and (5.43) respectively. Then we have

as n — oo,

sup | Au(tys) = [ J)dGu(t,,) |2 o(1),
O<t<agl lj : 3 .
where Gp(.,.,.) is defined by (5.56).

Proof

Using the definition of A,(.,.) and integration by parts, we get

sup | Ault,s) = [ J(4)dGu(t,5,9) |

0<i<a<l
L 3 o
< | [ I Dailtss,y) = Galt )}
O<iga<l 1
< sup IJ(y){ZDﬁ.(t %) = Galt,5,4)Hizh
O<t<a<l 1
1 i _ o
+ sup | [{X Duilty5,y) = Galtys, )} (v)dy |
o<i<s<l  JO i
3
< sup sup {| Y Duiltys,y) = Galtys,9) | (1 J) | + ') D} (5.57)
0<ia1 0y£l [y
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By the properties of the score function J(.), Lemma (5.4) and (5.57) wecamplété :
the proof of the Theoren.

Let 0% > 0, be defined by
1 gt P -
0% =2 fD /D s(1 —1)J'(s)J'(£)dsdt, (5.58)

where J'(.) is the derivative of the score function J(.). Then by calculating the
relevani covariance we have for 0 < < s < 1;

= [ I0)AGa(t,5,9) £ {sB(1) + (1 = )B(s)} = Alt,s),  (5:59)

oy
where B(.) is a standard Brownian bridge and \A(t, s) is as in (5.38). Now, for
testing against /; of (5.1), we propose the test statistic,

)

1 ,
T3, = — max A,
T gy 1gk<i€n-1 n(

S | o
B~

) (5.60)
Hence by Theorem 5.2 and (5.59) we have,

T S sup A(t,s). o 15.61)
O<t<s<] .

5.5 Moente Carlo results

The application of the Jonckheere-Terpestra-type test of (5.6) depends on the
availability of the critical points of the distribution of the rv on the R.H.S. of
(5.40). These critical points are not available in the literature. For this reason
we conducted a Monte Carlo study to approximate the critical values of the

rv on the R.H.S. of (5.40) and (5.61). We simulated 1,000 realizations of the
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Brownian bridge B(.) on a grid of 800 points on [0,1] by generating multivariate

Normal variates Z = (Zy, Z,,- - -, Zggo) with covariance function, Cov(Z;, Z;) =

ti(1 = ¢),0 < i < j < 800, where t; = /(800 +1),7 = 1,...,800. For each

realization we calculated max<icjcsoo {t:Z; + (1 — £;)Z;}, ordered these values
and obtained the (1 — a)* percentiles for o = 0.1,0.05 and 0.01. The obtained
asymptotic significance points (ASP), are shown in Table 1.

To study the applicability of the ASP calculated above we conducted another
Monte Carlo study to simulate the finite sample critical values of the Jonckheere-
Terpestra-type test Ty, of (5.6). For each sample size n = 10,20,...,100, we
generated 5,000 random permutations of the integers 1,2, ..., n using the IMSL
function RNPER. In each of these permutations we computed the test statistic,
Tyn, then ordered the 5,000 computed values and obtained the (1 — a)* per-

centiles for a = 0.1,0.05 and 0.01. Table 1 contains the resulting percentiles for

n = 10,20,...,100. The entries of this table show that the simulated‘critical :

values of the test converge to the corresponding ASP as the sample size increases.
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Table 1. Finite sample and limiting critical values for the

Jonckheere-Terpestra-type test
n a=0.10 | a=0.05 | a=0.01
10 [1.1502 | 1.2597 | 1.5883
20 1.1619 | 1.3361 | 1.6460
30 1.1700 | 1.3281 | 1.6338
40 1.2118 | 1.3761 | 1.6774
50 1.2100 | 1.3717 | 1.6656
60 1.2186 | 1.3975 | 1.7105
70 1.2332 | 1.4106 | 1.7182
80 1.2175 | 1.3628 | 1.6968
90 1.2192 | 1.3896 | 1.7466
100 | 1.2280 | 1.3700 | 1.7580
ASP [ 1.2448 | 1.4571 | 1.7457

i

pared its estimated powers with the corresponding powers of six other multiple

change points tests. Four of these tests were proposed by Aly and BuHamra

(1996) and two were introduced by Lombard (1987). These six tests were de-
signed to test

Hy 1y

S = fhn
against the unrestricted version of the hypothesis of (5.2} given by
Hyipo =00 = pn) # a1 = oo = Bing) # Blnslb1 =+ = finy

where 0 < ¢ < s < 1 are unknown. To introduce these tests, let, r; = rank of

k..
: — Ti , )
Rkéz, F, k‘; ,aei,n-
= n
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Now consider the following processes,

k1l R (FL‘; = R)? | (Rn— R)? n
An(zsg)— { =% + (n=1)' “Z’}a

and

A 1

A0 ) = k(= R = DA, ),

:Waw
;’|~

where 1 < k<1< n—1. Aly and BuHamra (1996)’s tests are given bg

I
tin = max A( -
1€k<lgn=1 71

k

) 1 ok
tgﬁ = 9 Z An(v
and,

nd

ian(‘S) =

where 6 was taken to be 0.1 and 0.05. Let R} = Ry — §,’ k=1,...,n, then

Lombard (1987)’s tests are given by

2 < Do & a%\2 - 7 * 32
Mon = — Y. R+ (R - R + (R, - R},

- 1gk<ig€n-1
and,

12 i
Jmax {R+ (R - R+ (R} - R))’}.

71 sk<lsn=—~

I
my, =

=7

Aly and BuHamra (1996) provided a Monte Carlo power comparison for the
above mentioned six tests. We obtained Monte Carlo powers for the Jonckheere-
Terpestra-type test and the above six statistics. The powers were obtained for
sample size n = 20 from Normal, Exponential, Double-Exponential and Cauchy
distributions. We considered the change points combinations (k,{), k < { = [ng],
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q € {0.05,0.10,0.25,0.50,0.75, 0.85, 0.90}. Six cases were considered for the siée
of the of the location shifts A; at k4 1 and A, at { + 1. The shift sizes were
computed as the solution of the equations P(Xi41 > X;) = p; and P(X14 >
X;) = p2 and p; < p; € {0.6,0.7,0.8}. We simulated the critical values of the
six tests for n = 20, by conducting a Monte Carlo study parallel to that used
Lo obtain the finite sample critical values of Table 1. To calculate the powers,
we simulated 3,000 realizations of samples of size n = 20 under the alternative
distribution and computed the seven tests in each realization. Then for each
test we obtained the fraction of the number of times that the null hypothesis is
rejected. The results of this power study are reported in Tables 2-5.

Four general conclusions can be drawn from this Monte Carlo power study.
First, in all the cases and all the four distributions, the estimated powers of
the Jonckheere- Terpestra-type test T}, were the largest. This is not surprising
since our test Ty, is the only test designed to test for the ordered alternative-
type hypothesis. Second, for any shift probabilities (p;, p2), in all ﬁhe considered
distributions and test statistics, the estimated powers were largest when the
second shift (or the first by symmetry) occurs in the middle (1,10), (2,10),
(5,10). This is because when one of the shifts occurs in middle it should be
much easier to detect the changes than if both occur near the‘taﬂs of fhe data
set. Third, as reported by Aly and BuHamra. (1996), the sup-type tests ¢, and
mj, have the lowest powers and t;, has higher powers than mj}, except when the
power reaches its maximum, they change places. Finally, the powers are higher
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for the Double-Exponential distribution, which may be due to its long tails, that -~

produces larger amounts of shifts compared to the other distributions.
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Table 2. Percentages of 3,000 samples declared significant

at n = 20, a = 0.05 for Normal rv’s

(k, l) (p1 , pz) tsn(o.l) t3n(005) tzn t]n Moy, m;n Tln
(1,2) {0.6,0.6 6.1 6.1 6.0 57 52 5.0 9.1
0.7,0.7 9.0 9.0 82 60 69 6.7 156

0.8,0.8 11.8 12.1 104 80 86 7.6 201

0.6,0.7 8.2 8.2 77 62 69 7.0 13.7

0.6,0.8 10.7 10.7 95 67 79 72 171

0.7,0.8 10.2 10.4 92 72 1.7 69 174

(1,5) |{0.6,0.6 8.8 8.8 86 72 75 7.7 14.2
0.7,0.7 21.0 21.1 20.3 16.7 17.1 15.0 30.8

0.8,0.8 44.4 44.4 423 359 37.1 28.2 56.6

0.6,0.7 20.0 20.1 19.5 15.8 16.9 143 30.1
10.6,0.8 38.5 38.6 38.0 33.0 33.6 26.7 50.8
0.7,0.8 43.4 43.5 42.0 34.0 364 28.2 54.3

(1,10) | 0.6,0.6 11.6 11.7 11.2 80 113 9.2 179
0.7,0.7 30.2 30.4 29.7 19.7 29.6 23.8 43.5

0.8,0.8 64.7 65.0 64.2 44.2 64.1 53.6 779

0.6,0.7 28.4 28.7 28.7 19.8 29.0 24.1 41.7

0.6,0.8 59.0 59.3 59.3 41.8 60.6 52.6 725

0.7,0.8 61.4 61.5 61.7 43.8 63.2 53.9 754

(1,15) | 0.6,0.6 | 8.9 91 90 7.7 84 6.8 14.6
0.7,0.7 20.7 20.8 20.2 148 174 11.9 33.2

0.8,0.8 43.5 44.0 42.3 324 373 21.7 60.7

0.6,0.7 17.3 17.6 17.1 13.6 15.5 11.8 28.7

0.6,0.8 36.7 37.0 36.3 30.2 32.1 236 514

0.7,0.8 40.7 41.1 39.4 31.0 349 228 574

(1,17) | 0.6,0.6 6.3 6.5 65 58 59 51 102
0.7,0.7 11.5 11.7 11.0 74 94 6.1 204

0.8,0.8 22.0 22.1 19.5 122 156 8.5 36.5

0.6,0.7 10.2 10.2 96 76 83 6.2 173

0.6,0.8 17.3 17.3 16.2 11.7 13.1 10.2 28.9

0.7,0.8 18.3 18.6 169 108 13.6 7.9 31.6

(1,18) | 0.6,0.6 5.9 6.1 58 6.1 53 5.0 101
0.7,0.7 8.0 8.0 7.3 6.0 6.2 4.9 14.8

0.8,0.8 13.0 134 113 5.7 9.0 4.1 24.2

0.6,0.7 7.6 7.7 69 63 62 57 14.0

0.6,0.8 10.5 10.5 94 6.6 82 6.2 19.1

0.7,0.8 12.3 124 10.7 76 9.0 6.2 21.2
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TABLE 2 (continued)

(&)1
@

]

(piipi)”iaﬁ(oil) ian(05) iéjj lin ﬁi?ﬁ 777;!;1” Tlﬂ
0.6,0.6 | 10.3 10, 102 9.0 93 7.9 17.5
0.7,0.7 | 28.6 28.6 274 21.8 23.2 18.3 38.9
0.8,0.8 | 57.3 57.4  55.1 45.4 46.1 37.3 65.6
0.6,0.7 | 23.0 23.1 226 185 19.2 155 328
0.6,0.8 | 41.1 410 403 34.8 357 284 543
0.7,0.8 | 50.5 50.3  49.5 41.4 425 33.2 61.1
(2,10) [ 0.6,0.6 | 13.7 13.7 134 92 133 10.6 227
0.7,0.7 | 38.6 39.2 375 223 37.2 28.0 53.6
0.8,0.8 | 75.4 75.9 754 52.8 74.7 60.9 86.2
0.6,0.7 | 31.6 321 320 205 31.8 254 44.7
0.6,0.8 | 61.6 62.0 620 44.0 62.8 53.4 76.0
0.7,08 | 684 687 68.7 49.1 68.4 57.8 80.6

et | o

(2,15) [ 0.6,0.6 | 9.1 92 88 72 80 68 164
0.7,0.7 | 24.1 245 228 146 203 11.7 39.9
0.8,0.8 | 53.9 543 522 356 45.6 253 727
0.6,0.7 | 20.4 207 204 154 185 13.3 318
0.6,0.8 | 39.1 39.5 387 203 33.6 23.0 555
0.7,08 | 468 474 455 34.0 39.6 24.9 65.1
(2,17)] 0606 [ 7.2 7.4 71 64 65 53 I3l
0.7,0.7 | 17.2 174 156 91 134 68 28.7
0.8,0.8 | 31.4 3.7 279 141 22.2 10.0 50.1
0.6,0.7 | 12.0 121 112 84 100 7.0 205
0.60.8 | 200 201 180 114 143 93 326
07,08 | 241 245 221 120 183 9.2 393
(2,18) [0.606 | 65 65 63 55 53 50 104
0.7,0.7 | 11.6 1.7 109 64 87 56 213
0.80.8 | 19.8 200 170 83 135 6.0 359
0.6,0.7 | 8.5 87 81 65 T1 52 156
0.6,0.8 | 12.0 122 108 67 88 6.1 214
| 0.7,0.8 | 16.2 164 149 7.8 120 6.1 279
(510) | 0.6,06 | 19.4  19.4 194 12.7 19.4 154 298
0.7,0.7 | 62.3 62.7  62.6 44.1 628 48.9 74.7
0.8,08 | 95.1 95.2 952 857 950 864 97.5
0.6,0.7 | 42.0 42.2  42.0 282 428 34.1 57.0
0.6,0.8 | 71.1 714 722 546 73.3 63.9 83
0.708 | 8.8 870 87.0 704 87.6 77.1 93.1
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TABLE 2 (continued)

D

(p1, P2 )

t3n(0.1) 13(0.05)

7tiﬂ

Man

e
Moy

T

In

(5,15)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

13.8
45.0
81.9
27.6
48.7
66.6

141
45.8
82.2
27.9
49.0
67.1

135 8.8 126

44.1
80.5
27.1
47.2
65.1

30.2
18.0
35.0
48.9

41.4
77.1
24.8
44.0
61.6

8.7

24.0
49.5
15.7
28.4
38.4

23.6
61.5
91.3
41.2
65.0
81.2

(5,17)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

107

32.9
65.1
17.2
26.7
45.6

10.8

33.1
65.7
17.6
27.3
46.1

10.1

31.8
62.3
16.6
24.9
43.2

1.6

19.5
40.9
10.0
14.8
25.0

9.7
27.3
56.6
14.5
21.5
37.7

7.2
15.4
28.5
8.5
12.6
19.5

18.9

49.7
82.7
28.6
42.4
64.2

(5. 19)

0.6,0.6

0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

9.1

25.7
53.7
12.9
17.3

44.3

9.1
26.1
54.0
12.9
17.4
44.4

9.0

24.7
51.0
12.0
16.1

7.1
16.0
35.5
8.8
9.8

28.2

8.2

21.6
45.7
10.8
13.7
38.3

6.8
11.8
23.0
7.3
8.3

283

15.3
41.0
72.1
22.6
29.4
63.4
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Table 3. Percentages of 3,000 samples declared significant

at n = 20, a = 0.05 for Exponential rv’s

(k, 1) (p1 s pg) tsn(o.l) t3n(0.05) tzn tln Man m;n T]n
(1,2) {0.6,0.6 6.4 6.4 58 45 52 5.0 84
0.7,0.7 9.3 9.5 81 6.1 66 53 144
0.8,0.8 13.6 13.5 11.3 72 88 7.1 198
0.6,0.7 9.1 9.1 80 65 6.1 58 14.6
0.6,0.8 12.8 12.7 113 76 91 74 185
0.7,0.8 12.4 12.6 108 73 81 6.5 189
(1,5) |0.6,0.6 10.7 11.0 10.1 80 9.1 7.0 16.5
0.7,0.7 23.4 23.5 22.8 182 19.8 149 32.1
0.8,0.8 45.2 45.1 43.6 38.0 38.1 32.0 55.1
0.6,0.7 21.8 22.1 209 17.7 18.7 154 31.5
0.6,0.8 40.1 40.2 38.6 348 34.5 28.6 49.8
0.7,0.8 44.2 42.5 36.7 374 31.1 54.1 60.7
(1,10) | 0.6,0.6 10.8 11.0 106 7.8 106 9.3 18.5
0.7,0.7 30.7 30.9 30.3 19.4 30.5 24.7 43.9
0.8,0.8 62.4 62.8 62.0 444 628 53.2 75.2
0.6,0.7 30.3 30.5 30.0 20.8 30.9 26.2 42.6
0.6,0.8 57.6 58.0 58.1 43.5 59.3 53.2 71.8
0.7,0.8 60.7 61.0 60.6 44.8 61.6 528 73.7
(1,15) | 0.6,0.6 7.3 7.3 72 61 64 52 130
0.7,0.7 18.9 19.2 183 134 16.0 11.4 324
0.8,0.8 40.0 39.9 38.1 285 32.0 20.5 58.1
0.6,0.7 15.4 15.6 15.0 13.2 14.1 10.9 264
0.6,0.8 33.5 34.1 33.2 274 29.1 224 49.1
0.7,0.8 36.4 36.5 353 285 30.8 21.7 53.5
(1,17) [0.6,0.6 | 6.1 6.1 59 52 53 48 10.6
0.7,0.7 11.2 11.2 102 74 86 64 19.6
0.8,0.8 20.8 20.8 19.0 108 15.1 81 354
0.6,0.7 10.0 10.1 95 78 80 7.0 169
0.6,0.8 16.6 16.8 159 11.6 13.0 10.1 27.8
0.7,0.8 18.7 18.8 172 106 13.5 82 309
(1,18) | 0.6,0.6 6.1 6.2 6.1 55 59 55 8.6
0.7,0.7 8.8 8.9 81 64 70 6.2 154
0.8,0.8 12.5 12.6 112 6.9 9.1 49 229
0.6,0.7 5.8 5.8 55 &7 49 5.0 108
0.6,0.8 9.7 9.9 89 66 75 56 17.0
0.7,0.8 11.5 11.5 106 74 9.0 63 206
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TABLE 3 (continued)

(k, I) (pl N pg) t3n(0.1) tsn(0.0S) tzn t]n Maon m;n T],,
(2,5) |0.6,06 | 123 124 117 9.0 104 84 18.7
0.7,0.7 30.1 30.2 28.5 242 245 19.7 39.2
0.8,0.8 53.4 53.5 50.9 45.9 45.1 37.7 ©63.8
0.6,0.7 23.7 23.7 225 18.6 19.7 15.6 329
0.6,0.8 424 42.5 40.9 36.6 36.1 31.0 53.0
0.7,0.8 47.5 474 455 39.3 40.3 324 56.6
(2,10) { 0.6,0.6 13.0 13.2 124 83 122 9.6 21.2
0.7,0.7 37.4 37.8 36.6 224 358 27.5 514
0.8,0.8 70.2 70.5 69.7 51.9 69.8 58.7 83.0
0.6,0.7 31.9 32.3 31.5 206 322 258 44.8
0.6,0.8 60.8 61.1 61.2 44.0 62.6 55.0 73.9
0.7,0.8 65.4 65.8 65.3 45.8 65.6 55.5 77.9
(2,15) [ 06,06 | 9.1 92 87 69 76 6.6 1638
0.7,0.7 25.1 25.6 24.2 152 20.7 125 405
0.8,0.8 52.5 53.0 49.7 33.6 434 24.1 713
0.6,0.7 18.8 19.0 184 14.6 16.7 122 31.2
0.6,0.8 38.6 38.8 37.5 28.3 329 23,0 54.1
0.7,0.8 44.4 44.6 42.8 30.8 37.8 23.7 62.0
(2,17) [ 06,06 | 6.8 70 6.5 56 52 4.8 122
0.7,0.7 15.3 15.5 144 86 124 7.2 279
0.8,0.8 31.3 31.6 27.0 126 206 84 523
0.6,0.7 10.5 10.6 101 7.6 86 6.8 20.1
0.6,0.8 174 17.5 16.0 9.9 129 86 299
0.7,0.8 23.0 23.3 21.0 109 16.7 9.2 38.8
(2,18) { 0.6,0.6 7.2 7.2 69 588 59 57 119
0.7,0.7 13.3 13.7 124 73 103 6.2 226
0.8,0.8 21.2 21.7 183 85 144 5.7 35.6
0.6,0.7 6.9 7.1 6.7 59 55 54 13.7
0.6,0.8 11.5 11.5 108 7.7 9.1 69 196
0.7,0.8 15.7 15.9 143 76 11.5 58 295
(5,10) { 0.6,0.6 18.7 18.9 18.5 12.2 18.0 14.5 28.6
0.7,0.7 55.6 56.0 55.2 40.8 553 46.1 69.3
0.8,0.8 85.7 85.8 85.8 73.3 863 774 933
0.6,0.7 39.8 39.9 39.7 27.8 403 33.0 54.1
0.6,0.8 66.1 66.3 66.3 50.6 67.6 61.2 782
0.7,0.8 75.8 76.2 75.9 60.3 76.8 68.8 85.9
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TABLE 3 (continued)

(ka l) (pl 1p2) tSn(Ol) t3n(005) t2n. tln Man m;n Tln
(5,15) | 0.6,0.6 13.1 13.4 129 9.5 123 9.7 229
0.7,0.7 42.5 42.9 41.2 28.8 39.0 24.1 61.0
0.8,0.8 77.2 77.5 76.1 60.1 72.6 47.5 89.1
0.6,0.7 25.9 26.0 24.8 176 229 15.1 40.8
0.6,0.8 45.9 46.4 44.8 334 41.1 283 61.6
0.7,0.8 62.5 63.2 61.2 450 57.3 36.6 77.8
(5,17) { 0.6,0.6 10.8 11.1 104 7.7 89 6.8 185
0.7,0.7 30.1 30.5 28.8 19.2 25.5 15.3 46.9
0.8,0.3 63.1 63.4 61.0 42.7 55.7 32.2 788
0.6,0.7 16.6 16.8 15.5 10.0 14.0 87 284
0.6,0.8 25.1 25.5 23.6 14.0 20.8 12.2 39.3
0.7,0.8 41.6 42.2 39.2 235 354 18.7 60.6
(5,18) | 0.6,0.6 9.8 9.9 94 74 89 63 176
0.7,0.7 26.1 26.3 25.0 17.8 21.9 12.7 40.0
0.8,0.8 52.1 52.6 49.1 354 428 26.8 69.7
0.6,0.7 12.2 124 11.5 85 104 7.2 22.6
0.6,0.8 16.8 17.0 15.6 10.0 13.8 85 283
0.7,0.8 31.6 32.0 29.8 19.3 26.5 14.7 48.9

185




Table 4. Percentages of 3,600samples declared significant

at n = 20, a = 0.05 for Double-Exponential rv’s

(kal) (phpZ) tSn(Ol) t3n(0-05) t2n tln Moy m;n In

(1,2) |0.6,0.6 | 14.6 148 122 8.0 95 7.6 22.2
0.7,0.7 | 14.7 145 129 81 95 7.5 223
0.8,08 | 15.6 156 13.6 8.9 103 82 228
0.6,0.7 | 14.9 148 126 9.0 101 8.0 234
0.6,0.8 | 14.7 14.8 120 7.8 94 7.1 23.2
0.7,0.8 | 15.4 155 133 85 107 8.2 24.0

(1,5) |0.6,0.6 69.2 69.1 66.9 59.8 59.6 48.8 76.9
0.7,0.7 67.6 67.5 65.5 89.1 57.2 48.0 75.1
0.8,0.8 68.5 68.6 66.0 57.9 57.2 47.2 759
0.6,0.7 69.6 69.7 68.1 61.2 60.2 50.0 77.6
0.6,0.8 71.4 71.4 69.6 63.3 60.6 50.7 79.3
0.7,0.8 66.8 66.6 64.6 57.5 55.0 46.6 74.3

(1,10) | 0.6,0.6 86.3 86.6 §6.2 70.3 86.7 789 93.8
0.7,0.7 86.7 86.8 86.7 69.4 87.2 788 94.1
0.8,0.8 85.8 86.1 85.3 68.9 855 1785 93.2
0.6,0.7 87.8 88.0 87.7 728 88.1 81.5 94.8
0.6,0.8 89.4 89.5 89.6 75.1 899 83.7 96.1
0.7,0.8 85.0 85.2 85.1 68.8 85.7 77.7 93.1

(1,15) | 0.6,0.6 65.6 65.7 63.2 52.4 55.8 35.7 80.9
0.7,0.7 65.7 66.1 63.4 51.8 552 354 81.4
0.8,0.8 64.6 64.9 62.5 50.7 554 33.8 81.0
0.6,0.7 67.9 68.2 65.9 56.9 58.8 39.1 83.5
0.6,0.8 68.7 69.0 67.1 56.7 59.7 39.1 83.6
0.7,0.8 63.4 63.6 61.1 51.1 53.7 35.0 80.0

(1,17) | 0.6,0.6 34.6 34.7 304 15.8 227 9.1 53.7
0.7,0.7 34.5 34.8 30.8 15.0 22.7 8.6 53.0
0.8,0.8 33.0 33.2 289 148 23.1 9.5 525
0.6,0.7 36.0 36.4 309 156 23.5 9.3 549
0.6,0.8 36.6 36.7 32.2 164 24.7 10.8 54.9
0.7,0.8 33.2 33.4 28.8 14.3 22.0 9.7 516

(1,18) | 0.6,0.6 18.8 19.0 16.1 7.8 125 5.6 32.0
0.7,0.7 18.1 18.4 149 6.6 119 44 325
0.8,0.8 16.8 17.0 140 73 109 46 316
0.6,0.7 19.6 19.8 16.6 7.7 125 5.1 334
0.6,0.8 19.7 20.0 16.9 81 13.2 64 34.0
0.7,0.8 18.0 18.0 154 73 123 5.2 323

186




TABLE 4 (continued)

(k7 l) (Ph P2) iSn(Ol) t3n(005) tgﬂ ilﬂ May mgﬂ Tl;; o

(2,5) | 0.6,06 | 79.0 79.1  76.8 68.9 67.9 56.6 84.4
0.7,0.7 | 79.2 79.0  77.2 69.8 67.7 56.4 83.8
0.8,08 | 79.7 79.5  77.0 68.6 67.0 56.2 84.2

0.6,0.7 | 81.1 81.0 788 72.1 69.8 59.1 85.0
0.6,08 | 81.6 81.4 795 73.5 70.4 60.1 86.2
0.7,0.8 | 78.9 789 768 67.7 66.7 546 83.6

(2,10) | 0.6,06 | 93.2 933 925 176.5 92.0 83.5 96.9
0.7,0.7 | 92.7 92.9 921 77.5 92.0 83.8 97.6
0.8,0.8 | 92.4 927  91.8 752 91.2 821 96.7
0.6,0.7 | 93.4 93.5 934 79.9 92.9 856 97.7
0.6,0.8 | 93.8 94.0  93.3 80.6 92.8 86.6 97.4
0.7,08 | 93.4 93.7 928 75.5 92.0 83.4 97.4

(2,15) | 0.6,0.6 7.2 .7 4.4 57.1 67.1 40.6 90.2
0.7,0.7 78.6 78.9 76.3 58.5 68.3 39.1 91.2
0.8,0.8 76.4 76.8 73.4 55.0 655 37.5 89.8
0.6,0.7 80.8 80.9 78.0 61.4 694 424 924
0.6,0.8 80.1 80.4 77.5 62.8 70.1 448 92.1
0.7,0.8 78.4 78.7 75.8 57.0 67.3 39.9 90.6

(2,17)]0.6,0.6 | 49.6 50.1 42.8 18.9 324 11.3 73.3
0.7,0.7 | 52.9 53.4 459 20.6 34.5 129 76.1
0.8,0.8 | 49.3 49.6  43.2 19.2 329 11.7 74.2
0.6,0.7 | 51.4 5271 45.7 21.0 36.0 124 75.6
0.6,0.8 | 52.1 52.5  44.8 18.3 34.6 11.0 74.7
0.7,0.8 | 50.6 51.1 44.4 18.6 33.8 11.0 74.6

(2,18) {0.6,06 | 31.6 31.9 26.2 10.8 200 7.5 50.9
0.7,0.7 | 32.3 328 268 10.8 19.6 6.6 52.8
0.8,0.8 | 32.7 33.1 282 12.0 209 7.9 52.7
0.6,0.8 | 32.7 331 275 109 20.1 7.2 53.0
0.6,08 | 31.2 31.7 259 109 19.4 6.5 529
0.7,0.8 | 325 330 273 103 19.6 7.0 51.9

(5,10) | 0.6,06 | 98.9 989 99.0 954 99.0 964 99.7
0.7,0.7 | 98.7 98.8  98.8 953 98.9 96.0 99.7
08,08 | 99.2 99.2  99.2 96.3 99.2 96.9 99.8
0.6,0.7 | 99.3 99.4  99.3 958 99.2 97.1 99.8
0.6,0.8 | 99.7 99.7  99.7 96.9 99.7 97.3 100.0
0.7,08 | 99.2 99.3  99.3 957 99.3 96.2 99.8
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TABLE 4 (continued)

1)

(P1yp2)

3n(0.1) 13,(0.05) tan

tin Mgy

ms,

Tln

(5,15)

0.6,0.6

0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

95.4
97.5
96.5
95.9
96.2
96.1

95.6
97.6
96.7
96.0
96.3
96.2

63.1
97.0
96.0
95.5
95.7
95.6

- 89.2 94.0

914 95.9
91.1 95.3
88.6 94.1
88.8 94.2
89.3 944

4.9
75.9
77.3
74.3
74.5
74.0

98.9
99.4
99.2
99.1
98.9
98.9

(5,17)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

86.7
90.5
89.9
88.0
88.1
89.6

86.9
90.9
90.2
88.1
88.4
89.8

85.1
88.8
88.4
85.7
85.8
87.3

66.6 79.0

73.4 83.6
72.2 83.1
67.1 79.2
66.4 79.5
70.7 81.4

47.4
54.7
52.6
48.7
46.6
51.6

95.2
96.8
96.6
96.1
96.2
96.4

(5,18)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

78.0
81.9
81.6
77.8
79.8
80.7

78.5
82.2
81.7
78.0
80.5
81.1

5.1
79 .4
79.1
75.2
77.3
85

57.6 67.2 385 91.0

64.0 72.0
64.6 71.3
575 67.3
60.2 68.8
63.3 70.8

44.3
45.0
40.0
41.5

44.6

92.7
92.4
90.6
92.1
92.1

188



Table 5:Percentages of 3,000 samples declared significant

at n = 20, o = 0.05 for Cauchy rv’s

(ksi)i (élth) tsn((jil)w iaﬂ(ﬂog)ﬁ?g;; tlnr Engﬂinzgg g}l,

(1,2) |0606| 61 64 59 53 58 55 0.6
0.7,07 | 8.9 89 85 65 6.7 65 13.6
0.8,0.8 | 122 121 105 7.2 84 7.1 183
0.6,0.7 | 6.6 66 62 55 52 59 110
0.6,0.8 | 11.1 1.2 96 75 82 71 178
0.7,08 | 10.6 108 94 6.8 7.5 6.0 18.8

(1,5) | 0.606 | 83 83 85 80 7.8 714 143
0.7,0.7 | 22.1 223  21.8 181 19.1 163 31.6
0.8,0.8 | 523 520  50.7 450 43.8 37.9 62.7
0.6,0.7 | 18.2 184 161 162 14.2 282 54.3
0.6,0.8 | 45.2 451 438 39.8 387 33.2 57.3
0.7,0.8 | 47.3 472 466 41.2 40.7 33.8 58.2

(1,10) [ 0.6,06 | 10.5 10.7 107 7.9 10.7 9.8 18.3
0.7,0.7 | 30.0 30.4 300 20.5 30.3 253 43.9
0.8,0.8 | 69.0 69.2  68.8 523 69.7 62.0 8.6
0.6,0.7 | 27.3 927.6  27.8 182 28.3 23.6 40.1
0.6,0.8 | 65.1 653 655 50.7 67.1 62.8 78.5
0.7,0.8 | 66.9 67.1 672 51.4 68.4 624 78.1

(1,15) [0.6,06 | 80 82 80 7.6 74 69 146
0.7,07 | 21.2 214 206 152 181 121 334
0.808 | 527 530 512 421 451 30.9 67.8
0.6,0.7 | 19.0 19.1 185 143 17.2 124 30.1
0.608 | 44.7 449 437 402 37.9 31.3 58.3
0.7,08 | 47.9 480 469 39.5 42.0 29.8 62.7

(1,17) 10.6,0.6 6.2 - 6.4 63 58 57 52 102
0.7,0.7 | 11.5 1.7 109 74 93 58 2Lu
0.808 | 274 276 244 131 189 89 425
0.6,0.7 | 104 105 100 80 83 7.0 179
0.6,0.8 | 225 228 209 128 169 104 357
07,08 | 236 239 212 138 17.3 104 36.5

(1,18) [ 0.6,0.6 | 5.0 5.1 48 47 4.7 44 88
0.7,0.7 | 8.1 84 17 54 62 4.8 150
0.8,0.8 | 16.9 170 148 73 115 52 29.0
0.6,0.7 | 7.9 79 71 56 59 53 131
0.6,0.7 | 12.1 123 109 7.3 89 6.8 209
0.7,08 | 129 129 112 69 95 57 233




(pl 3 P;)

13n(0.1) £30(0.05) tan

tin

Man Tl,n _

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

10.0
20.3
58.4
21.0
47.5
524

- 10.1
25.5
58.5
21.1
47.8
52.6

10.0 8.6

24.4 20.1
56.3 49.3
20.8 17.6
47.1 43.3
51.2 45.8

7.5 16.6
17.4  34.7
41.7 66.8
15.9 31.5
35.4 58.0
38.6 62.6

(2,10)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

144
36.6
76.2
30.3
69.1
70.4

- 145

36.8
76.6
30.4
69.4
70.5

- 14.1

9.9

36.0 21.9
76.1 56.8
30.6 21.1
62.5 83.7
70.5 54.8

T11.7 233

27.5 49.6
66.0 86.7
26.4 434
64.8 81.8
63.6 82.1

0.6,0.6 |

0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

8.9
26.1
61.3
20.9
48.4
51.6

8.9
26.7
61.6
21.2
48.5
52.1

8y 18

24.9 15.9
58.5 453
20.7 15.1
48.0 40.4
50.3 41.0

76 165
13.4 421
33.0 77.8
13.2 32.7
32.9 62.8
310 67.4

2,17)

0.6,0.6

0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

74

16.4
38.9
11.5
25.4
297

1.5

16.5
39.2
11.7
25.6

300

70 5.8
15.0 8.7
34.2 14.5
10.8 7.6
23.0 14.0
26.7 14.1

53 119
64 276
9.8 59.9
6.7 203
11.7 38.6
10.3 46.0

1 0.6,0.6

0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

6.6
12.0
25.8

8.4
13.2
17.0

6.7
12.3
26.2

8.7
13.3
17.3

6.5 5.4
10.6 6.9
21.7 10.0
7.9 6.2
11.5 7.4
151 8.8

54 11.0

22.1
42.8
14.5
23.8
30.7

6.7
5.4
6.2
6.0

(5,10)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

'18.6
53.4
86.9
39.1
72.1

78.2

'18.8
87.1
39.4
72.5
78.4

18.8
53.1 38.4
86.8 73.7
304 26.5
72.6 58.5
781 62.9

124 186

"15.0 28.7

42.8 65.8
77.5 93.2
32.9 53.0
67.2 83.2
71.7 87.2
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TABLE 5 (continued)

(k1)

(p1,72)

t30(0.1) 34(0.05) fon  t1n

TM2n

Tiﬁ

(5,15)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

14.8
41.5
80.8
27.2
54.5
64.3

15.0
42.1
81.2
27.5
54.6
64.7

14.5
41.0
79.2
26.5
83.7
63.2

10.2
29.1
65.5
18.8
45.0
50.0

13.6
38.1
76.7
24.4
50.0
59.0

24.2
58.0
90.8
39.8
68.1
77.6

ﬁ‘

-
\n—w\
-

o

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

- 10.1

30.6
68.9
16.6
31.8

10.0

31.1
69.6
16.8
32.0
46.4

9.7

29.4
66.2
15.6
29.4
43.6

7.1

18.3
47.4
10.1
16.5
24.3

92 6

26.3
61.0
13.8
25.3

37.7 ;

- 18.3
46.5
84.3
28.1
46.4
62.6

(5,18)

0.6,0.6
0.7,0.7
0.8,0.8
0.6,0.7
0.6,0.8
0.7,0.8

9.8
25.9
61.5
13.7
18.5

33.4

9.5

24.3
58.6
12.9
17.1

30.9

7.4
16.6
42.9
8.1
9.6
16.5

8.2

21.3
52.1
11.3
15.2
25.1

~ 16.5
40.6
7.3
23.6
31.8

4 49.9
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Chapter 6

General discussion and topics for further research

As we read throughout the main chapters of this thesis, we can see that the
change point problem arises in many statistical analysis fields. In this thesis 7
we only discussed the detection of a possible change in either, the parameters
of linear models or in the distribution function. Next, we discuss generally the
work done in each part of the thesis and also point out some of the related work,
that can be done in the future.

In Chapters 2 and 3, we proposed and studied test statistics whichr may bé, :
used to detect shifts in the parameters of the linear regression moaeli Firstr
in Chapter 2, we introduced weighted nonparametric tests which are sensitive
to changes in the slope that occur close to the end of the data set. We also
proposed test statistics to test against the epidemic-type change and the at
most two change points in the slope of a simple regression line. We can see that
in simple regression models. This raises the natural question; Can we extend
these statistics to the general linear model paramicters 7. The answer of this
question may start by extending the convergence results obtained in Chapter
2. Testing a change in the parameters of nonlinear models may be considered
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as another extension of these proposed testéi \f\fe.mi}f also be concerned of
how the usual regression assumptions (if violated) will affect the change point
tests. Lombard and Hart (1994), studied the change point problem in simple
location model, when the error series are (depéndent) weakly stationary. They

discussed the least squares estimator of the change point and the detection of

the errors. In their application, they show that ignoring the dependence in the
data may invert the decision. Tang and MacNeill (1993), studied the effect of
serial correlation on tests for parameters change in linear models. They show
that failure to account for the effects of serial correlation among the data will
invalidate the change point tests. Thus it is important to check for the validity
of the regression assumptions and account for any violation before we proceed
to the change point analysis.

In Chapter 3, we obtained a Bayesian likelihood ratio (BLR) test to detect
an epidemic-type change in the parameters of the general linear model. The
asymptotic distribution of the BLR test was obtained when the involved weight
function is assumed to be continuous. Since this does not cover all the possible
weight functions, more investigation for the asymptotic distribution is required.
We also note that the theoretical asymptotic quantiles were only tractable in
certain special cases. A few numerical methods have been developed to calcu-
late these asymptotic quantiles, but they are still difficult to apply. MacNeill
(1974), numerically calculated selected percentage points for some BLR tests.
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His method depends on solving a certain differential equation then inverting the
characteristic function numerically. Jandhyala and Minogue (1993) proposed a
numerical procedure to compute the quantiles of the asymptotic distributions
of the BLR tests in case of general polynomial regression. In our Monte Carlo
study we used a simple procedure to approximate the BLR test quantiles.ﬁ

In Chapter 4, we proposed linear rank statistics for the two-sample problem
when the sample sizes are random. We also proposed linear rank statistics for the
at most one change point when the sample size is random. As a generalization we
may study linear rank statistics in case of multiple change points and ordered-

type alternative when the sample size is random.

In Chapter 5, we proposed new test statistics for ordered multiple-change
point, problems. We first developed tests for a multiple-change in the location
parameter of a random sequence, based on Jonckheere-Terpstra test. We also ob-
tained tests for the general multiple-change in distribution functions. The latter
test is an e-}étensian of Puri (1965) k-sample test to the change point problem. To
examine the performance of these proposed tests, we conducted a Monte Carlo
study. This study supported our objective; that the proposed tests which are de-
signed specially for the ordered-alternative change point problem are superior to
the unrestricted counterparts. A similar problem which is not discussed in this
thesis, is testing against Umbrella ordering. In the literature, this up-then-down
response pattern has many real applications. For example, evaluating marginal
gain in efficiency as a function of training degree, treatment effectiveness as a
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function of time and reaction to increasing age on the performance of a certain

ordering change points based on the existing k-sample tests for the Umbrella
alternatives which are available in the literature. Because of the importance of
this type of inferences in applications, more investigalions are required in this
area.

Finally, applying the tests developed in this thesis on real data sets and ex-
amining its performance is required. We can also see that, although it is already
difficult to derive the asymptotic distributions of the proposed tests under the
null hypothesis, the question remains; what is the asymptotic distributions under

(a set of local) alternatives ?.
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