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Abstract

In the field of multiple-access systems, multipacket reception (MPR) is defined as

the capability of the receiver to successfully receive/decode concurrent packets from

multiple transmitters. While physical-layer capabilities and limitations of MPR-

capable systems using technologies such as code-division multiple-access (CDMA)

and multiple-antenna communications are well studied in the literature, an impor-

tant question is how this capability affects the performance at the medium-access

control (MAC) layer.

Random access on the MPR channel is studied in this thesis. First, we study

throughput of Aloha random access with Poisson arrivals and highlight the through-

put advantage of the MPR channel compared to the conventional collision channel.

The analysis shows that Aloha performs more efficiently on the MPR channels

where the maximum number of concurrent transmissions that can be received by

the receiver is larger providing that the aggregate traffic on the medium is controlled

and maintained below a threshold. If the average number of transmissions exceeds

this threshold, however, the system throughput declines rapidly, which motivates

efficient control mechanisms on top of random access. Bounds on the throughput

performance of random access are examined and a closed-form approximation for

throughput of genie-aided random access with Poisson arrivals is derived. A method

of computing the optimal access probability is, then, presented for the cases where

only partial information about contention on the medium is available.

Next, we examine a finite-size multiple-access system where the incoming traffic

is the aggregate of interrupted on/off Markov sources. The resulting system is a
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Markov decision process for which the optimal access algorithm is provided and

compared to lower and upper bounds. A new rate/burstiness model of an on/off

Markov source is proposed, which is used to present where the throughput curves lay

compared to the computed bounds. Furthermore, it is shown that the gap between

the upper and lower bounds reduces as the maximum number of packets that can

be received increases. Queuing analysis is provided and closed-form equations for

queuing delay as a function of throughput are derived.

While the above algorithm requires prior knowledge of traffic parameters, we

also propose a framework for more practical random access systems where no prior

knowledge of traffic and node population is available. The proposed scheme uses the

theory of extended Kalman filters in order to track the contention on the medium

and select the near-optimal access probability. The proposed scheme is shown to

stabilize the operating point of the multiple-access system close to the point where

throughput of Aloha takes its maximum. This scheme is also examined for unideal

cases such as delayed acknowledgement channel and shown to be a robust access

scheme on the MPR channel.

Finally, we study two aspects of random access on the MPR channel that are re-

lated to satellite communications. First, a repetition random access scheme that em-

ploys transmission diversity and iterative collision resolution is analyzed for the case

of MPR channels. Asymptotic analysis for this generalized model is provided and

it is shown that larger loads can be supported in smaller frames. Next, throughput-

delay tradeoff of random access over delayed links is analyzed and scaling laws are

derived for the cases of the collision channel and the MPR channel as well as repe-

tition random access. It is shown that multiuser detection and repetition schemes

improve the multiple access performance in the sense that the inevitable compromise

between throughput and delay is mitigated by joint detection capabilities and/or

repetitions.
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Chapter 1

Introduction

1.1 Preliminaries

In data communications networks, medium-access control (MAC) is a mechanism

through which network devices (nodes) access a shared medium for transmission.

Since each transmission contributes interference to other transmissions and degrades

the quality of the received signal, MAC protocols are designed to limit the number

of simultaneous transmissions in order to meet the receivers’ requirement for signal

quality.

Design and analysis of MAC protocols in wireless networks date back to Abram-

son’s random access protocol called Aloha [1]. Aloha allows a node to send its

packet – as soon as it is ready for transmission – with no consideration of the present

interference and contention. This scheme is simple to implement and is suitable for

multiple-access systems where data traffic is light and, therefore, simultaneous trans-

missions by more than one node are rare. If a transmitted packet is not received

successfully, the node is informed immediately as it does not receive an acknowl-

edgement (ACK) packet from its intended receiver. In this case, the node backlogs

the packet and attempts a retransmission at a later time. Since the cause of the re-

ception failure is possibly a collision with other simultaneously transmitted packets

and since those packets are also possibly backlogged and will be retransmitted, each

node attempts a retransmission after a random period of time called the backoff

period in order to reduce the chance of further collisions with the other backlogged

packets. For example, in slotted Aloha, the retransmission probability pr at each

slot is set to a value smaller than 1.
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The above variation of Aloha was later called “immediate first transmission”

(IFT) as the first transmission of a packet always occurs immediately after it is

generated at the upper layers. The alternative variation is called “delayed first

transmission” (DFT) [2] where the first transmission attempt also occurs with some

probability p < 1 to reduce the chance of collisions in the presence of heavier traffic.

In this thesis, we use the generic terms “random access” and “probabilistic access”

interchangeably for any MAC scheme where nodes access the medium probabilisti-

cally, i.e., without deterministic coordinations with other nodes. In this sense, IFT

Aloha and DFT Aloha are two special cases of a large family of protocols that

will be of interest in this thesis.

In his analysis of the average throughput of Aloha [3], Abramson assumed

that concurrent transmissions fail to be received due to the signal quality being

corrupted by interference. This model of channel/receiver, called the collision model,

became the most commonly used model for design and analysis of MAC protocols.

It was shown in [3] that, with Poisson-distributed incoming traffic, the throughput

of Aloha is obtained by

R = λe−2λ , (1.1)

where λ (packets/Tpkt) is the average offered traffic, R (packets/Tpkt) is the average

system throughput, and Tpkt denotes the duration of each packet. Figure 1.1 shows

that Aloha can utilize at most ∼ 18% of the capacity of the collision channel where

100% corresponds to an ideal time-division multiple-access (TDMA) scheme.

In a slotted setup where packet transmissions are constrained to time slots, we

have

R = λe−λ , (1.2)

where the maximum throughput can be improved two-fold. But the resulting ef-

ficiency of ∼ 37% is not yet impressive and, indeed, one can conclude that the

simplicity of random access is obtained at the cost of low system throughput. Fur-

thermore, one of the main challenges with random access schemes is to mitigate the

likelihood of system instability; this subject attracted considerable attention since

the advent of random access (e.g., see [4, 5, 6]).

Shortcomings of Aloha led to other proposals for medium access such as the

carrier-sense multiple-access (CSMA) [7] family of protocols, followed by proposals

2
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Figure 1.1: Average throughput of pure and slotted Aloha with Poisson arrivals.
Both axes are shown in units of packets/slot where a slot is defined as the duration
of a packet Tpkt.

for collision detection and collision avoidance mechanisms. These protocols have

served as the basis for the MAC protocol of several worldwide standards including

the original IEEE 802.3 (Ethernet) and IEEE 802.11 (WiFi) family of standards.

In CSMA protocols, nodes sense the medium and transmit only if they detect

no ongoing transmissions. The carrier sensing mechanism reduces the probability

of collisions. In IEEE 802.11, for example, a mechanism called binary exponential

backoff (BEB) is used where each node has to find the medium idle for a random

period before any (re)transmission attempt. The random period is uniformly drawn

from a window called the backoff window W . Any node with a new packet to

transmit sets the window to the minimum W ← Wmin, which is a fixed value

deteremined by the standard. Each time the (re)transmission of a packet fails,

the node doubles its backoff window W ← 2W unless it has reached the maximum

value Wmax. Upon successful transmission, the node resets its window size to the

minimum W ← Wmin.

Despite their differences, slotted Aloha and IEEE 802.11 follow the same pro-

cedure for collision resolution: They reduce their access rate according to some

predefined rule without learning about the overall traffic and the current number

of nodes contending to access the medium. Although simple to implement, both of
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these schemes suffer from a major drawback: The maximum load and/or the maxi-

mum number of nodes that can be supported are limited by the backoff parameters

such as pr, Wmin and Wmax. For example, in slotted Aloha, selecting a large value

of pr limits the maximum number of nodes contending at any moment while a small

pr limits the maximum load when only a few nodes are contending.

MAC efficiency, defined as the ratio of the system throughput to the shared

bandwidth, is generally low in random access protocols. As mentioned, unslotted

Aloha (a.k.a. pure Aloha) is known to reach a theoretical peak of 18% efficiency

[3] when the aggregate of the new and backlogged traffic is adjusted to the optimal

point at all times, a condition that is not generally easy to satisfy. Slotted Aloha

doubles this maximum at the cost of implementing packet synchronization. Practical

values of MAC efficiency in IEEE 802.11 are below 15% [8]. Furthermore, legacy

carrier-sense protocols suffer from fairness issues over conventional collision and

capture channels, especially in ad hoc wireless networks (e.g., [9, 10, 11]).

One of the main reasons for the generally low throughput of random access is

that the bandwidth cost of collisions is high while packets collide frequently. There-

fore, in order to improve the MAC efficiency, we have to i) design MAC protocols

that lower the probability of collisions, and ii) implement receivers that lower the

probability of packet loss due to simultaneous transmissions. Conventionally, the

former is the main focus of designing more efficient random access protocols, which

has been shown to work only within inherent limits on the maximum achievable ef-

ficiency. The latter, which is the subject of signal processing for multiuser detection

[12], is referred to as multipacket reception (MPR) in the context of MAC. MPR

is the channel model used to capture the packet-level behavior of multiple-access

systems where the receiver is capable of processing signals from multiple transmit-

ters simultaneously. MPR channels have been shown to improve the MAC efficiency

significantly while maintaining the desirably low complexity of random access [13].

In other words, the multiple-access bandwidth can be utilized more efficiently by

moving a fraction of the MAC-layer complexity of the transmitters to the physical

layer of the receiver(s).
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1.2 Literature Review

1.2.1 MPR Models

There are several abstract models of multiple-access channels in the literature that

deviate from the collision model. A popular example is the capture channel [9, 11]

where, in the presence of multiple concurrent transmissions, one transmission has

a nonzero chance of being received while the others will be corrupted and subject

to retransmissions. Other models include probabilistic models that determine the

probability of receiving a packet when a certain number of other packets are trans-

mitted simultaneously. In the following, we will review some of the most well-known

abstract models with emphasis on the MPR channel.

In [14, 15], the authors proposed a model for a symmetric MPR channel where

a matrix of probabilities determine the chance of receiving a packet (in a slotted

random access setup) where a certain number of concurrent packets are transmitted.

Let εnk denote the probability of receiving k packets out of n packets transmitted

simultaneously. Then, the following matrix uniquely defines a generic MPR channel:

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε10 ε11 0 0 · · ·
ε20 ε21 ε22 0 · · ·
...

...
...

...
...

εn0 εn1 · · · εnn · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.3)

Obviously, we should have
∑

k εnk = 1 for all n, i.e., rows of E should add up to

1. This model is generic and includes special cases of interest. For example, the

collision channel corresponds to

Ecol =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (1.4)

Another example is the capture channel that takes the form of

Ecap =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 · · ·
1− x2 x2 0 0 · · ·
1− x3 x3 0 0 · · ·
1− x4 x4 0 0 · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ , (1.5)
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where xn denotes the probability of capture in the presence of n transmissions.

In the above model, E represents an MPR channel if at least for one n ≥ k > 1,

we have εnk > 0. However generic and flexible, this model requires an analytical

or experimental method to determine a potentially large number of parameters,

namely εnk, for several values of n, k. Therefore, analytical usage of the model is

mainly limited to more abstract parameters such as the “ergodic capacity” of the

MPR channel Cerg := limn→∞
∑

k kεnk.

The model of (1.3) is symmetric as it does not distinguish between different

nodes. If the system is not symmetric and the probability of successful reception of

a node’s packet is different from other nodes’, a more general model will be required

where εS,R takes all the possible subsets S, R of the set of nodes instead of only

their cardinalities n = |S|, k = |R|. Such a model was proposed in [16]. The model

requires an exponentially growing number of parameters and has had limited use in

the literature.

Multiuser detection (MUD) in code-division multiple-access (CDMA) systems

[17, 12] is one of the most important examples of MPR-enabling technologies at the

physical (PHY) layer. MUD techniques range from linear detection schemes, such

as decorrelation and linear minimum mean-square error detection, to more practical

schemes, such as nonlinear decision-driven and iterative interference cancelation

methods. Multiuser multiple-antenna communications may also provide MAC-level

MPR opportunities.

Since the emphasis in this thesis is on CDMA MUD systems for which, thanks to

the exponentially growing advancements of the silicon technology, implementation

of iterative receivers is practical, we use a simplified MPR model throughout this

thesis that closely represents the behavior of these systems. Let N tx and N rx de-

note, respectively, the number of packets concurrently transmitted and successfully

received. Then, the MPR channel used in this thesis is described as

N rx =

{
N tx if N tx ≤ K
0 otherwise

, (1.6)

where K is called the MPR capability. That is, simultaneous transmissions will be

received successfully as long as the number of transmissions does not exceed the

maximum allowed K. The first line of (1.6) represents the success of the transmis-
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sions while the second line represents a failure or outage. This model is easy to use

as it depends only on the single integer parameter K that is mainly a function of

system parameters such as the spreading gain as well as the physical channels. Note

that this model is a special case of (1.3); for example, K = 4 corresponds to

EMPR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.7)

Also, note that K = 1 reduces the model to the collision channel.

Finally, aside from the signal processing approach to MPR in CDMA and mul-

tiuser multiple-antenna systems, a class of error control codes were specifically con-

structed in [18] for MPR on a noise-free additive multiple-access channel. This class

of codes, known as T -out-of-N codes, allows a receiver to decode multiple superposed

transmissions from (at most) T users out ofN potential users with uniquely-assigned

codebooks. Constraints apply to T and N ; for example, N must be a prime number

satisfying N = m · T + 1 for some positive integer m. To the best of the author’s

knowledge, these codes are not used in any notable practical system, but they set

an example of how coding theory rigorously supports the concept of MPR channels.

1.2.2 MAC Protocols over MPR Channels

MPR provides an opportunity to make significant improvements over random access

systems. Nagaraj et al. [13] studied pure Aloha on the MPR channel of (1.6) and

showed through an approximate analysis that MPR potentially results in significant

throughput gains when pure Aloha is employed. Indeed, the authors showed that

an MPR system could achieve the optimal throughput asymptotically as K → ∞
providing that the offered traffic load does not exceed a threshold of order K. This

is an important result as it shows that the throughput performance of MPR systems

can surpass the inherent constraints imposed by the collision channel. What is also

shown by that study is the significance of access control mechanisms to leverage the

potential gains provided by MPR.
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Centralized control of medium access on the MPR channel has been studied in

the literature, e.g., [19, 20, 21, 22]. The protocol proposed in [19] uses bitmap-type

explicit reservations before the transmission of data packets. In this scheme, time

is divided into slots, each composed of two sub-slots: reservation and data trans-

mission. Nodes with packets to transmit enter the reservation phase that specifies

the winners deterministically. Hence, the proposed protocol should be categorized

as a centralized access scheme. The performance of the protocol is compared to

Aloha-type protocols and is shown to outperform Aloha for relatively light traffic

loads. This performance gain tightly depends on the traffic load – the system is

prone to instability for high traffic loads unless the reservation phase is expanded

that will have a negative impact on the effective bandwidth efficiency.

Similarly, protocols proposed in [20] and [21] require central controllers. Ref-

erence [20] proposed a protocol where the central controller determines an access

set based on quality-of-service requirements of data packets. The performance of

this protocol seemingly depends on the ability of the users to saturate the medium,

and the system efficiency supposedly declines with sporadic traffic, which can be

addressed by random access schemes. A similar protocol was proposed in [21] where

the optimal access set is determined by the central controller and broadcasted to

the users prior to the data transmissions. Therefore, despite achieving near-optimal

throughput performance in data transmission slots, the comparisons made in these

papers to the throughput of Aloha-type protocols are not fair in our view.

In [22], a multi-group priority queuing MAC protocol for cellular wireless net-

works was proposed. The protocol performs a user classification based on the activ-

ity history and applies a deterministic control policy over users’ transmissions. The

requirement of a central controlling entity, such as a base station or access point,

puts the above protocols in a different category compared to random access methods

that are of our interest in this thesis.

Random access protocols are generally prone to instability when the load is

high or when the number of backlogged packets has become large. For example,

it is known that Aloha with Poisson arrivals on the collision channel is unstable

when the number of transmissions per packet is not limited, because the number

of backlogged packets cannot be bounded in the long run. An important question
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is whether Aloha is stable on the MPR channel. Stability of slotted Aloha with

unbounded user population was studied in [14, 15] for the probabilistic MPR model

of (1.3). The first paper assumes a centralized control of the access probability in

order to determine the stability region of a random access system with MPR. The

second paper, then, proposes a probabilistic decentralized scheme that stabilizes the

system within the derived stability region. What the papers ultimately conclude

is that slotted Aloha is stable for some nonzero system load (from an unbounded

user population) if the probability of decoding a packet in the presence of infinitely

many interferers is nonzero, a condition that does not seem realistic in practice.

Stability of finite-user slotted Aloha was addressed in [16]. It was shown that

slotted Aloha can be more stable, in terms of the region of supportable loads,

depending on the probability of decoding each packet in the presence of interference.

That is, as one implements stronger MPR receivers, the resulting system can show

more stability (and equivalently, support higher loads [23]) than ideal TDMA with

the collision channel.

The majority of the papers reviewed so far use abstract multiple-parameter

probabilistic MPR models. Spatial models of MPR based on received signal to

interference-plus-noise ratio (SINR) were employed in [24, 25] to study the through-

put performance of ad hoc wireless networks. A heuristic distributed backoff mech-

anism based on the history of decoding successes and failures was proposed in [24].

Each transmitting node maintains a status based on feedbacks from its intended

receiver and selects the transmission probabilities accordingly. The paper studies

the protocol under a spatially-distributed network and shows that it can address the

problem of unfairness in multiple-access systems without power control. Reference

[25] offers a computational analysis of the local and multihop throughput of slotted

Aloha. Multihop networks are out of the scope of this thesis.

Exponential backoff (EB) in slotted random access systems was analyzed in [26]

and backoff parameters were optimized as a function of MPR channel parameters.

The same authors also propose a cross-layer algorithm in [27] where the access

point recognizes the identity of collided users and request retransmissions. Having

obtained information about the number of contending nodes in the next slot, the

nodes select the optimal access probability for retransmission of their packets. An
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interesting observation in this paper is that the proposed scheme performs almost

equally well for IFT and DFT transmissions because the number of concurrent

retransmissions is softly controlled by the access point.

Reference [28] proposed a heuristic scheme to estimate the number of active

nodes in a single-hop multiple-access system. The estimate was then used to select

an access probability in a slotted random access setup. The estimation process

proposed in that paper requires that the number of active nodes remains constant

for a sufficiently long period of time. An interesting result presented in the paper

is that the difference between the performance of Aloha-type and CSMA-type

random access is reduced by MPR. Nevertheless, we consider carrier sensing in

MPR systems [28, 29] only hypothetical as it becomes increasingly difficult for a

receiver to perform energy-based carrier sensing in multidimensional signal spaces

that are essential to multiuser detection.

In this thesis, we are interested in slotted-Aloha-type random access schemes as

detailed in the next section. Particularly, we will propose schemes in Chapters 3 and

4 that estimate the number of active nodes efficiently, which, unlike the estimation

scheme of [28], do not necessarily require the number of active nodes to remain

constant. Due to the importance of EB mechanisms in practice, we will compare

our proposed protocol in Chapter 4 to a number of commonly used random access

protocols including EB where it will be shown that our proposed near-optimal access

scheme outperforms an EB scheme with preset parameters for a large range of the

number of users. Furthermore, we will show in Chapter 3 that, even if practical,

implementation of receivers that are capable of recognizing collided receivers is not

crucial for designing efficient random access schemes on the MPR channel.

1.3 Thesis Contributions and Organization

Basic concepts of medium access control, and random access in particular, were

presented in this chapter. Throughput performance of random access over a shared

collision channel was reviewed and was shown to be low compared to the capacity

of the channel corresponding to a TDMA scheme. We also presented concepts and

models of the MPR channel and briefly introduced the MPR model we will use

in the rest of this thesis. The content of this chapter was mainly taken from the
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existing literature.

In the next chapters, we will study the MPR channel and its potentials to support

higher MAC efficiencies with random access, which is of significant importance and

interest due to the inherently low complexity of random access schemes. We will

aim at proposing a framework for very efficient random access schemes, mainly by

employing the following elements:

• We focus on slotted random access. Slotted schemes are more efficient and

more convenient to analyze. Furthermore, if time-division duplexing (TDD)

is employed, a slotted setup is required for an MPR multiple-access system in

order to ensure that nodes avoid transmissions to a receiver at the time it is

busy transmitting ACK packets to other nodes.

• Since the focus of this thesis is on random access over MPR channels imple-

mented through multiple-access techniques such as CDMA where energy-based

carrier sensing is infeasible or impractical, we assume that nodes are informed

about the traffic load only through ACK packets and not by carrier sensing

or overhearing other transmitters. This makes the proposed framework highly

advantageous for scenarios such as machine-to-machine (M2M) traffic [30] on

the uplink of cellular and satellite communications systems where random ac-

cess is practical due to the sporadic nature of the traffic while carrier sensing

is infeasible.

• The backoff mechanism is implemented by selecting an access probability for

each slot, which results in a geometric distribution of the backoff period that is

different from the window-based uniform backoff distribution in IEEE 802.11.

Nevertheless, similar results are applicable to IEEE 802.11 and similar proto-

cols since uniformly distributed and geometrically distributed backoffs behave

similarly at the large scale as long as the number of active nodes is not too

small [31].

Chapter 2 presents analyses of the throughput efficiency of random access on

the MPR channel. We will show that random access schemes tend to achieve larger

throughput performance as the MPR capability of the channel improves. In particu-

lar, the average number of packets per time unit approaches the optimal throughput
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that can be achieved through a perfect TDMA strategy with larger MPR capability

K. This throughput can be obtained providing that contending nodes get timely

updates of the contention level over the medium. We will introduce basic scenarios

and derive equations and bounds on the throughput of random access on the MPR

channel.

In Chapter 3, a theoretical model for the offered traffic is presented and bounds

on the throughput are computed. In that chapter, the traffic is assumed to follow

a decision Markov model. Two bounds are then computed based on the amount

of nodes’ instantaneous knowledge of the contention. Particularly, the upper and

lower bounds correspond, respectively, to the two scenarios where i) the nodes are

aware of the immediate number of contending nodes (the genie-aided scenario) and

ii) the nodes are only aware of the long-term traffic parameters and transmit with

a constant access probability. The modeled scenarios are simulated and shown to

achieve throughput figures that are limited by the above bounds. We will show that

measures related to burstiness of the traffic affect the actual throughput relative to

these two bounds. Queuing analysis is also provided to compute the corresponding

delay figures.

Chapter 4 presents a practical MAC framework for controlling the access prob-

ability for a generic traffic model. To this end, the system state, defined as the

number of contending nodes, is modeled as a stationary process that, at each time

instant, is the summation of the previous system state and a random component.

Then, a state tracking mechanism based on the theory of extended Kalman filters

is derived, which is shown through simulations to stabilize the operational point

close to the optimum point. Since the scheme proposed in that chapter takes near-

optimal action as a function of the information it receives from the feedback channel,

it outperforms the random access schemes reviewed in the previous section such as

exponential backoff.

The majority of the literature on random access schemes on the MPR channel,

such as the papers reviewed in the previous section, are suitable only for terres-

trial applications since they generally assume immediate feedback from the receiver

and/or carrier sensing mechanisms, none of which are available in satellite multiple-

access systems. Meanwhile, there is a recent research trend on a family of repetition
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random access (RRA) schemes that aim at reducing packet error rate on the for-

ward channel (rather than relying mainly on immediate ACK packets for collision

resolution) through voluntary retransmissions by the users and iterative collision

resolution at the receiver [32, 33, 34]. These papers consider single-user detection

for design and analysis of their proposed protocols. In Chapter 5, we first present an

analysis of an RRA scheme on the MPR channel and address the effect of multiuser

detection on MAC parameters such as the required frame length for minimum prob-

ability of frame failure. Later in that chapter, we address the problem of selecting

the delay-optimal access probability in the presence of non-negligible propagation

delay. We will derive scaling laws on the ratio between throughput-optimal and

delay-optimal access probabilities. We will conclude that MPR implementations

allow us to smooth the essential compromise between throughput and delay in the

presence of large propagation delays.

Finally, Chapter 6 summarizes the main contributions of the thesis and points

out future research directions on the subject.
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Chapter 2

Random Access with
Multipacket Reception

Studying a multiple access system with the conventional Poisson traffic provides

insight on behaviors and limits of the system. In this chapter, we will review fun-

damentals of random access over the MPR channel modeled in Chapter 1 with

emphasis on binomial and Poisson arrivals. First, we describe the model and in-

troduce bounds on the throughput of random access over the MPR channel. Then,

we introduce a method of maintaining belief vectors that assist us in tracking the

system state. More practical scenarios will, then, be examined in the next chapters.1

2.1 System Model

We focus on slotted random access in the rest of this thesis; that is, time is divided

into time slots of identical duration. Packets have identical length at the medium

access level, each taking one time slot to be transmitted. Unless stated otherwise, we

neglect the propagation time and assume the nodes to be slot-synchronized. These

assumptions allow us to use a discrete time index t ∈ N ∪ {0}.
We study a single-hop multiple access system consisting of a receiver andM ≤ ∞

transmitters. M may represent either the total number of nodes in the vicinity or the

number of currently admitted nodes if connections follow a call-admission control

(CAC) mechanism.2

1The content of this chapter was partially included in [35, 36, 37].
2The latter case offers a better representation of the system model in Chapter 3 as we will

assume that the traffic rate and “burstiness” of the nodes are known. This assumption is well
accommodated in a network with CAC.
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Receivers are capable of multipacket reception with the model described by

N rx =

{
N tx if N tx ≤ K
0 otherwise

, (2.1)

where K ≥ 1 is called the MPR capability, and N tx and N rx denote the number of

concurrently transmitted and successfully received packets, respectively. The first

line represents the success of the receiver while the second line represents a failure

or outage.

Note that the MPR model of (2.1) is a special case of the following more general

model briefly introduced in [38]: When n packets are transmitted simultaneously,

the probability of reception failure per packet is 0 if n ≤ K and it is 1 otherwise. This

“shifted” step function may be replaced by other nondecreasing functions that, for

example, can be calculated based on received signal to interference-plus-noise ratio

(SINR) and other system parameters. Let θn denote the probability of reception

failure per packet in the presence of n− 1 interferers. Then, this generalized MPR

model can be represented by

E =

⎡
⎢⎢⎢⎣

θ1 1− θ1 0 0 0 · · ·
θ22

(
2
1

)
θ2(1− θ2) (1− θ2)

2 0 0 · · ·
θ33

(
3
1

)
θ23(1− θ3)

(
3
2

)
θ3(1− θ3)

2 (1− θ3)
3 0 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎦ . (2.2)

This model can be simply described by the vector (θ1, θ2, θ3, · · · ) rather than a

matrix.

In the following, we briefly review three specific multiple-access scenarios and

how they relate to the MPR models we have described.

Gaussian Multiple-Access Channel Here, we examine the case that any num-

ber of transmissions are received successfully as long as the total rate trans-

mitted by all the users does not exceed the capacity of the Gaussian multiple-

access channel (GMAC). Suppose all users share a common channel of band-

width W . Then, if n nodes transmit with the common rate R, the receiver

successfully decodes all the packets if

nR ≤ W log(1 + nSNR) , (2.3)

where SNR is the signal-to-noise ratio (SNR) per packet. In this model, K is

the maximum number n of transmissions such that the above inequality holds.
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CDMA with Matched-Filtering Consider a random-sequence CDMA system

with power control at the transmitters and matched filtering (MF) at the re-

ceiver. When n nodes transmit simultaneously, the received signal to interference-

plus-noise ratio (SINR) of the ith signal follows

SINRi =
Pi

σ2 + 1
L

∑
j �=i Pj

, (2.4)

where Pj is the post-MF received power of the jth user, σ2 is the Gaussian

noise power, and L is the spreading gain. Since we assumed power control at

the users, we have

P1 = P2 = · · · = Pn := P .

Hence, the received SINR of any of the users follows

SINR =
P

σ2 + n−1
L P

. (2.5)

If the receiver has a threshold γth on the SINR for successful detection/decoding,

then K is the maximum number of concurrent transmissions n such that the

following inequality still holds

P

σ2 + n−1
L P

≥ γth . (2.6)

Therefore,

K :=

⌊
L

(
1

γth
− 1

γu

)⌋
+ 1 , (2.7)

where γu := P/σ2 is the post-MF received SNR of each of the users. More

complex receivers may demand more complex calculations of the effective in-

terference to obtain K (e.g., see [39]).

Generalized Modulation on Satellite Uplink Generalized modulation (GM)

[40, 41] enables multiuser detection with relatively low complexity and high

spectral efficiency theoretically approaching the GMAC capacity (2.3). We are

interested to examine the MPR performance of GM in a subscriber-to-satellite

(uplink) multiple-access system.

Here, we examine a satellite multiple-access system where a number of users

transmit at the same time on the same frequency band. The users employ GM
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with antipodal modulation,M = 4 repetitions per symbol and a spreading gain

of L = 4 (see [41] for details). Three different environments (rural, suburban,

urban) are considered and the corresponding channel parameters, i.e., the

mean and the variance of the log-normal path-loss, are obtained from [42,

Table VII]. Iterative demodulation is employed at the receiver. We use the

following equation to compute SINR evolutions in the iterative demodulator

[41]:

σ2
k,i =

∑
k′ �=k

Pk′

L
g

(
M − 1

M

Pk

σ2
k,i−1

)
+ σ2 . (2.8)

Here, σ2
k,i denotes the power of the residual interference-plus-noise on the kth

signal at the ith iteration, Pk is the received power of the kth signal, σ2 is the

power of the Gaussian noise, and g(·) is defined as [41]

g(x) �
(
E
[
1− tanh(x+

√
xξ)

])2
,

where E [·] denotes the expected value, and ξ ∼ N (0, 1). The signal from

user k is assumed detected if the corresponding SINR grows above a certain

threshold.

We simulated each scenario several times for different number of users n and

computed the SINR evolutions for each case from which the probability of

success per user 1−θn was obtained. The result is shown in Figure 2.1. It can

be seen that for rural environments where channel variations are very limited,

the MPR model of (2.1) closely approximates the behavior of the multiuser

detection with GM. For suburban and urban areas, let

K :=

⌊ ∞∑
n=1

(1− θn)

⌉
, (2.9)

where �·
 denotes the rounding function. Note that this definition of K is

consistent with the special case of (2.1) where 1− θn equals 1 for 1 ≤ n ≤ K

and equals 0 for n > K. We will briefly show in Section 2.4 that the MPR

model of (2.1) where K is obtained by (2.9) is a good model for practical cases

such as the examples examined here.

A key point in employing joint detection techniques is that when a detector is

focussing only on a subset of the concurrent transmissions, the receiver may still need
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Figure 2.1: Success probability per packet as a function of the number of transmis-
sions.

to decode all transmissions for the purpose of canceling interference. This means that

assumptions about which receiver is decoding which packets are generally irrelevant

at the medium access level. Therefore, in the rest of this thesis, we assume that the

system has one receiver willing to decode all packets.

2.1.1 MAC Efficiency versus Spectral Efficiency

In this thesis, we mainly focus on system throughput and average packet delay as

the main performance measures. The system throughput is defined as the average

number of packets successfully received and decoded at the receiver per time unit.

Since the focus is on slotted random access, the duration of a time slot is considered

the time unit for simplicity. A time slot equals the transmission time of a packet

plus guard intervals. In this framework, a question is how the MAC-level system

throughput is related to the spectral efficiency, maximizing which is one of the main

goals of designing more efficient multiple-access systems.

Conventionally, the MAC efficiency of a protocol is considered a value in [0, 1]

where 1 corresponds to the TDMA-equivalent system; that is, the goal of a MAC

protocol is usually to achieve as bigger portion as possible from the TDMA through-

put. This roots in the use of the collision model where concurrent transmissions can

only be destructive and, therefore, the ∼ log n capacity gain of the GMAC capac-
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ity with respect to the number of concurrent transmissions n is usually ignored.

As mentioned before, modern MUD schemes such as GM [40, 41] are capable of

approaching the GMAC capacity, hence using simultaneous transmissions to their

advantage in terms of the achievable total rate. In this thesis, we normalize the

system throughput by K to take into consideration the extra bandwidth resources

that are used to implement the MPR channel. In this sense, the MAC efficiency is

equivalent to the multiple-access spectral efficiency for any multiuser detector that

is capable of achieving a linearly-growing capability K as a function of bandwidth

(or any other resources that provide extra signal dimensions). Therefore, the afore-

mentioned ∼ log n advantage of capacity-achieving techniques such as GM is not

reflected in our throughput diagrams.

2.1.2 Notations

We let PX (x) := Pr {X = x} denote the probability distribution function (PDF)

of random variable X. Accordingly, we let PX,Y (x, y) := Pr {X = x, Y = y} and

PX|Y (x|y) := Pr {X = x | Y = y}. Expected value and variance of random vari-

able X are denoted by E [X] and Var (X), respectively. We use X ∼ B (N, p) and

Y ∼ P (λ) to state that X and Y follow the binomial distribution and Poisson

distribution, respectively; that is,

PX (x) = fbin (x;N, p) �
(
N

x

)
px(1− p)N−x ,

PY (y) = fpois (y;λ) � exp(−λ)
λy

y!
,

where fbin (x;N, p) and fpois (y;λ) denote probability mass functions (PMF) of

binomial and Poisson distribution, respectively. Similarly, cumulative distribution

functions (CDF) of these distributions are denoted by Fbin (x;N, p) and Fpois (y;λ),

i.e.,

Fbin (x;N, p) �
x∑

i=0

fbin (x;N, p) , Fpois (y;λ) �
y∑

i=0

fpois (y;λ) .

These notations will be consistently used throughout the thesis.
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2.2 Lower Bound: No State Information

In this section, we examine a system with the conventional Poisson arrival model.

In this model, the aggregate offered traffic in terms of the number of packets Nt at

any time slot t follows a Poisson distribution with mean λ; that is, Nt ∼ P (λ) for

all t independent of the history of the system. Note that this system is equivalent

to M → ∞ where each of the M nodes offers a traffic of λ/M packets per slot in

average. We sometimes omit the time index for simplicity and call N the system

state. This is illustrated in Figure 2.2.

U1 UN...U3U2

Data
Data

Receiver

N Active Users
State = N

(M-N) Inactive Users

Figure 2.2: A snapshot of a system of M users and a single receiver.

In the case where no state information is available to the N transmitters, we

may assume that all the N packets will be transmitted simultaneously;3 that is,

N tx := N . The resulting system throughput follows:

SK(λ) = EN [N rx] (2.10)

=

K∑
n=1

nPr
{
N tx = n

}
(2.11)

=
K∑

n=1

n exp(λ)
λn

n!
packets/slot . (2.12)

The above throughput can also be written in terms of the packet loss probability

(PLR). A packet fails to be received successfully if more than K − 1 other packets

are transmitted simultaneously at the same slot. This probability follows:

PLR(λ) = Pr {fail | transmission} =

∞∑
n=K

exp(λ)
λn

n!
= P (K,λ) , (2.13)

3This is assumed with no loss of generality; if, for example, each packet is transmitted with a
preset probability p < 1, the outcome will be similar to a system with N ∼ P (pλ).
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where P (·, ·) denotes the regularized lower incomplete gamma function defined as

P (s, x) =
1

Γ(s)

∫ x

0
ts−1 e−t dt .

Then, the throughput can be obtained by:

SK(λ) = λ
(
1− PLR(λ)

)
= λQ(K,λ) packets/slot , (2.14)

where Q(x, y) = 1− P (x, y) is the regularized upper incomplete gamma function.

Figure 2.3 shows the PLR as a function of the average offered traffic. The average

packet arrival λ is normalized by K for ease of illustration. Similarly, both packet

arrival rate and expected throughput are normalized by K in Figure 2.4. We use

this convention in the rest of this thesis. 4
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Figure 2.3: Packet loss rate vs. average load for different values of K.

Figure 2.5 shows the maximum throughput of Aloha5 for different values of

K. The average load at which the maximum throughput occurs is also shown. This

figure suggests that λ∗
K/K → 1 and S∗

K/K → 1 as K → ∞. This is indeed the case

since we have

lim
K→∞

Q(K, 1) = 1 . (2.15)

This means that Aloha-type random access is asymptotically optimal on the MPR

channel as long as λ < K (see the dashed curve in Figure 2.4).

4We assume that the resources allocated for guard intervals, transmitting ACK packets, etc. are
also proportional to K so that the comparisons between normalized measures are fair.

5Slotted Aloha is simply called Aloha for brevity in the rest of this thesis.
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Figure 2.4: Normalized system throughput vs. average load for different values of
K. The dashed curve correspond to the asymptotic case K → ∞.
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Figure 2.5: Maximum throughput of Aloha S∗
K for different values of K as well as

the corresponding average load: S∗
K = SK(λ∗

K).

2.3 Upper Bound: Perfect State Information

In this part, we examine “genie-aided” random access, i.e., when each node attempts

to access the shared medium with a probability p based on perfect state information

available to all the nodes. We assume the symmetric scenario where all the traffic

has the same priority and, therefore, all nodes select the same probability p.

When N nodes attempt to access the medium, each with probability p, the
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expected throughput follows

RK(N, p) � E [N rx | N, p ]

=

K∑
n=0

n

(
N

n

)
pn(1− p)N−n. (2.16)

We define the throughput-optimal transmission probability by

p∗K(N) � argmax
0<p≤1

RK(N, p) . (2.17)

We have p∗K(N) = 1 for N ≤ K. For N ≥ K, however, this probability is a strictly

decreasing function of N and p∗K(N) ∝ 1/N for large N in order to yield a bounded

nonzero expected number of transmissions E [n] = Np∗K(N).

Figure 2.6 compares the throughput of genie-aided probabilistic access (perfect

state information) to Aloha (no state information). It can be observed that, for

each value of K, the genie-aided scheme ensures an asymptotic throughput that is

at least as large as the peak of Aloha throughput.

Normalized Load (pkt/slot)

0              0.5             1.0              1.5             2.0             2.5             3.0

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

pk
t/

sl
ot

)

ALOHA

Genie-Aided

K=10

× K

× K

Figure 2.6: Throughput of genie-aided random access compared to Aloha. Curves
are obtained by both simulations and numerical calculations.

2.3.1 An Approximation to the Genie-Aided Rate

First, we show that p∗K(N) decreases at a rate of approximately λ∗
K/N for large N .

Proposition 1. For a finite constant K, we have

lim
N→∞

Np∗K(N) = λ∗
K . (2.18)
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Proof As N → ∞, we should have p∗K(N) → 0 in order to yield a bounded

expected number of transmissions E [n] = Np∗K(N). Denoting p∗K = p∗K(N) for

brevity, we have

lim
N→∞

Pr
{
N tx = n

}
= lim

N→∞

(
N

n

)
p∗K

n(1− p∗K
)N−n

= lim
N→∞

(Np∗K)n

n!

(
1− p∗K

)N
, (2.19)

for any finite n. We have Np∗K(N) = N for N ≤ K. But the subsequence[
Np∗K(N)

]∞
N=K

is decreasing and lower-bounded and, therefore, it has a limit LK

(see Figure 2.7). Replacing p∗K by LK/N in the above equation, we conclude that

the asymptotic distribution of N tx is Poisson with mean LK . Therefore, LK = λ∗
K

as it would otherwise imply a contradiction with the optimality of p∗K(N).

0
0

K 2K

K

LK

Number of Packets (N)

N
 p

  (
N

)
K*

Figure 2.7: Convergence of the sequence Np∗K(N).

Then, we approximate the genie-aided throughput with Poisson traffic as follows.

We haveN tx ≤ K when either the number of active nodes isN = N tx and all of them

transmit with probability 1, or N > K active nodes transmit with some probability
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p∗K(N) < 1. It then follows that

Pr
{
N tx = n

}
=

∞∑
N=n

exp(−λ)
λN

N !

(
N

n

)
p∗K

n(1− p∗K
)N−n

= exp(−λ)
λn

n!
+

∞∑
N=K+1

e−λλ
N

N !

(
N

n

)
p∗K

n(1− p∗K
)N−n

� exp(−λ)
λn

n!
+

∞∑
N=K+1

e−λλ
N

N !

(
N

n

)(
λ∗
K

N

)n(
1− λ∗

K

N

)N−n

(2.20)

� exp(−λ)
λn

n!
+

∞∑
N=K+1

exp(−λ)
λN

N !
exp(−λ∗

K)
λ∗
K

n

n!
(2.21)

= exp(−λ)
λn

n!
+ exp(−λ∗

K)
λ∗
K

n

n!
P (K + 1, λ) , (2.22)

where (2.20) is by Proposition 1 for all N > K, (2.21) is the Poisson approximation

to the binomial distribution, and (2.22) holds due to the Poisson-gamma relation.

Finally, the expected throughput of genie-aided probabilistic access is approximated

by

R∗
K(λ) � EN

[
RK

(
N, p∗K(N)

)]
�

K∑
n=0

n

(
e−λλ

n

n!
+ e−λ∗

K
λ∗
K

n

n!
P (K + 1, λ)

)

= λQ(K,λ) + λ∗
KQ(K,λ∗

K)P (K + 1, λ), (2.23)

where P (·, ·) and Q(·, ·) are incomplete gamma functions, and N ∼ P (λ).

Note that the approximation obtained from Proposition 1 gives a strictly sub-

optimal transmission probability while errors due the Poisson approximation are

essentially negligible. Therefore, the approximation of (2.23) behaves as a lower

bound for most values of interest as depicted in Figure 2.8.

2.4 An Alternative MPR Model

We showed through an example in Section 2.1 that the actual behavior of the mul-

tiuser detectors may be slightly different from the MPR model we use in this thesis.

Here, we examine Aloha and genie-aided random access for the case of urban en-

vironment in Figure 2.1 and compare the results with the MPR model suggested by

(2.1) and (2.9).

25



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized Offered Load (packets/slot)

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

pa
ck

et
s/

sl
ot

)

Approximation
Actual Throughput

K=2

K=5

K=10

K=20

× K

× K

Figure 2.8: Throughput of genie-aided random access compared to the derived ap-
proximation.

For the example of urban environment in Figure 2.1, we have

K :=

⌊ ∞∑
n=1

(1− θn)

⌉
= �11.4
 = 11 .

Figure 2.9 shows the results of simulations comparing the actual system with the

equivalent model K = 11. For the case of genie-aided random access, the optimal

access probability is computed for K = 11. It can be seen that the suggested

approximate MPR model closely models the behavior of the system. Note that for

larger K, the gap between the lower and upper bounds shrinks, which results in

increasing accuracy of the approximate model.

2.5 Random Access by Using Belief Vectors

In this section, we continue to use the slotted MAC model and MPR model from

the previous section. An active node is defined as a node that has a packet ready

to be transmitted in the next time slot. It is assumed that an active node acquires

an estimate of the number of active nodes N in the vicinity of its intended receiver.

The estimation mechanism, in general, may include PHY/MAC cross-layering, e.g.

monitoring and tracking the medium traffic by overhearing other connections and

transmissions, and may be aided by explicit announcements.
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Figure 2.9: Throughput of the actual MPR model obtained in Section 2.1 compared
to the suggested approximate model.

Based on the acquired statistics of the current traffic, an active node creates a

belief vector of the form

b = (b1, b2, . . . , bM ) ,

where M ≤ ∞ is the total number of nodes and bi is the node’s belief that there are

currently N = i active nodes, including itself, in the vicinity. The belief distribution

is essentially a function of the estimation process, network parameters, and the

instantaneous offered traffic.

2.5.1 Analysis of the Uniform Belief Distribution

Since all active nodes observe almost the same environment, in the following analysis

we consider the case that an active node assumes that all the other active nodes

select the same transmission probability as the one it selects. Hence, the expected

throughput (according to the node’s current belief) and the corresponding optimal

transmission probability respectively follow as

R∗
K(b) � max

p

M∑
i=1

biRK(i, p) , (2.24a)

p∗K(b) � argmax
p

M∑
i=1

biRK(i, p) , (2.24b)

where RK(i, p) is defined by (2.16).
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The following example discusses the above formulation for a simple scenario.

Suppose that an active node has estimates of the minimum and maximum number

of currently active nodes, and assumes a belief vector b of the following form

bi =

{
(N2 −N1)

−1 N1 < i ≤ N2

0 otherwise
,

where 0 < N1 < N2 < ∞ are given integer constants. We use the following approx-

imations in order to calculate p∗K(b):

• N1 andN2 are large enough so that RK(N, p) � SK(Np), where SK(λ) denotes

the throughput of Aloha for average traffic λ (see Figure 2.6); in other words,

the binomial distribution can be approximated by the Poisson distribution.

• K is large enough so that we can approximate SK(λ) by a piecewise linear

function T (λ) of the form

T (λ) =

⎧⎨
⎩

λ 0 ≤ λ ≤ λ1
−α1λ+ α2 λ1 < λ ≤ λ2

0 λ2 < λ
, (2.25)

as illustrated in Figure 2.10.

• We ignore the edge effects of rounding large non-integer quantities, and ap-

proximate sums with integrals.

0

ΘK
*

T(λ)

λK 
* K

p N2 *p N1 *

λ2 

λ1 

λ1

Figure 2.10: Illustration of the uniform belief scenario. SK(λ) is approximated by
the piecewise linear function T (λ).

Let p∗K(b) denote the optimal transmission probability given K and b. From

Figure 2.10, it is clear that p∗ := p∗K(b) satisfies p∗N1 ≤ λ1 ≤ p∗N2. Therefore, it
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follows

p∗ � argmax
p

1

N2 −N1

N2∑
i=N1

T (pi)

� argmax
p

1

p(N2 −N1)

∫ pN2

pN1

T (λ)dλ

=

√
α2λ1

N1
2 + α1N2

2

=
1

μb

√
α2λ1

(3db
2 + 1)(α1 + 1) + 2

√
3db(α1 − 1)

,

where μb and db = σb/μb are the mean and relative standard deviation of b,

respectively.

From (2.25), we obtain

λ∗
K � λ1 =

α2

α1 + 1
.

We observe that p∗ � λ∗
K/μb when db = 0. However, as the node becomes uncertain,

i.e. db > 0, its selection of p∗ decreases by the following factor

p∗K(b)

p∗K(b0)
=

√
α1 + 1

(3db
2 + 1)(α1 + 1) + 2

√
3db(α1 − 1)

, (2.26)

where b0 := (b00, b
0
1, · · · ) with

b0i =

{
1 i = �μb

0 other

,

where �·
 denotes the rounding function.

Figure 2.11 shows the ratio (2.26) as well as the resulting normalized expected

throughput R∗
K(b)/K for different uncertainty levels db. The above analysis shows

how a node becomes conservative (dashed lines in Figure 2.11), when its certainty

about the offered traffic decreases, in order to optimize the expected throughput.

It can be seen that although uncertainty has an adverse effect on the expected

throughput, increasing K results in good performance even for larger uncertainty

levels. For example, an uncertainty of db = 10% with K = 20 results in almost the

same expected throughput as db = 25% with K = 100.

Finally, as K → ∞ we have α1 → ∞ and therefore

lim
K→∞

R∗
K(b)

S∗
K

= lim
K→∞

p∗K(b)

p∗K(b0)
=

1√
3 db + 1

,
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Figure 2.11: Transmission probability and normalized throughput with a uni-
form belief distribution. Results of the approximate analysis are shown for K ∈
{20, 100,∞}. Results obtained through numerical optimizations are also presented
for K = 20 (asterisks).

which is marked in Figure 2.11 by K = ∞.

Figure 2.11 also shows the actual optimal transmission probabilities as well as

the corresponding expected throughput values when only the first approximation

RK(N, p) � SK(Np) is applied. It can be seen that the above analysis is acceptable

for a wide range of uncertainty levels for K = 20. Note that the analysis becomes

more accurate for larger K as T (λ) represents SK(λ) more precisely (see Figure 2.4).

The closed-form result (2.26) is significant especially from the viewpoint of im-

plementation complexity. First, it reduces the optimization (2.24) of a double sum-

mation to one of a single summation, followed by a multiplicative factor that solely

depends on db. Second, p
∗
K(b0) depends only on an integer value, �μb
, and can be

tabulated.

2.5.2 Simulation Results

We simulate a system where at each time slot a random number of nodes uniformly

drawn from the integer interval [N1, N2] become active and send their packets with

p∗ calculated in the previous section. The simulations are run for different values of

N1 and N2, but the numbers are fixed in each run and, therefore, a fixed p∗ is used

at all the nodes in each run. Obviously, a real-world scenario following the above
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uniform statistics would have the complexity advantage that nodes are not required

to calculate transmission probabilities continuously for all time slots.

Figure 2.12 compares the simulation and analytical results for K = 20.
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Figure 2.12: Simulation results of a uniform distribution scenario for K = 20 and
μb = 40.

2.6 Summary

In this chapter, we studied random access on the MPR channel with the conventional

Poisson traffic. The study provided insight on benefits and limits of employing MUD

at the PHY layer in order to gain throughput at the MAC layer. We introduced

two bounds on the throughput of random access: i) the genie-aided scenario where

nodes are informed about the number of contenders before transmission, and ii) the

scenario in which no information about the system state is available to the nodes.

It was shown that, in the genie-aided scenario, the asymptotic throughput is guar-

anteed to be at least as large as the peak of the Aloha curve for the corresponding

value of the MPR capability K.

Then, a method of maintaining belief vectors was introduced through which

nodes can select the best access probability given imperfect information about the

system state. We will make further use of this method in the next chapter where a

practical algorithm is proposed for a Markovian class of offered traffic.
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Chapter 3

Controlled Random Access with
Markovian Traffic

We briefly reviewed in Chapter 2 how a node can select the access probability when

perfect state information is not available. In this chapter, we use a Markovian traffic

model resulting from aggregation of interrupted on/off packet sources as detailed in

the following section. We will examine lower and upper bounds and how effectively

nodes can optimize the system throughput by tracking the system state through the

inherent feedback of acknowledgement packets.1

3.1 System Model

In the system modeled in this chapter, packets are generated by on/off Markov

sources [45] as depicted in Figure 3.1. An on/off Markov source S is in the active

state when it generates a new packet, and is in the idle state otherwise. The

probabilities α and δ together with the slot duration determine/model the packet

generation rate of the source as well as its level of “burstiness” – when α and δ are

small, the source shows more inertia to remain in a given state. Smaller transition

probabilities increase the predictability of the source and, as we will see, can be

utilized in estimating the offered traffic. This will be explained in more details in

Section 3.4.

We then propose a model for the traffic offered by each user. The model is

illustrated in Figure 3.2. Each transmitting node has an on/off Markov source

1This study was published in [43, 44].
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idle active

 α
 α−1

 δ

 δ−1

Figure 3.1: On/off Markov source used to model packet generation in this chapter.

with parameters α and δ generating packets that enter a queue and wait to be

serviced. At each time slot, if the queue is occupied, TX transmits a queued packet

with probability p, and immediately receives feedback informing the node if the

transmission was successful. In case of success, the packet is removed from the

queue. Otherwise, the packet is backlogged. Similarly to the definitions of active

and idle for a source, we call a node (transmitter) active if its queue is occupied,

and we call it idle otherwise.

On/Off Markov
Source

Queue is empty?

TX

Decision p

succ/fail?

Figure 3.2: Abstract model of a transmitter.

For simplicity of analysis, we suppose that the source’s transitions between the

idle and active states are synchronized with the time slots. To avoid the problem of

unbounded queuing delay, the source pauses when it is in the idle state and the queue

is occupied. This, in part, guarantees that the source does not start a new burst

of packets before the previously queued burst is completely serviced. Moreover, it

transfers the Markovian behavior of the source to the output of TX for the sake of

analytical tractability. We will address this in more details later.
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3.2 System Analysis

3.2.1 A Decision-Theoretic Description

Let us look at the stochastic process of the traffic generated by the M nodes. If

M ≤ K, the MPR capability is sufficient to receive packets no matter how many

nodes are active. That is to say, the persistent-transmission strategy (p = 1) is

optimal. In this case, the number of active nodes N forms a stationary Markov

chain with the state space {0, 1, · · · ,M}.
IfM > K, however, the probability ofN exceedingK is nonzero, packets become

backlogged eventually, and the optimal decision is some 0 < p ≤ 1 in general. As

a result, the system state follows a Markov process with the transition probability

matrix

T = T
(
α, δ,M,K, p

)
� [τij ]ij

described by

τij = τ succij + τ failij , (3.1)

τ succij =

⎧⎪⎪⎨
⎪⎪⎩

1 i ≤ K∑
(m,n,k)∈Zij

fbin (m; i, p) fbin (n;m, δ) fbin (k;M − i, α) 0 < i−K ≤ j

0 otherwise

,

(3.2a)

τ failij =

⎧⎪⎨
⎪⎩

fbin (j − i;M − i, α)
i∑

m=K+1

fbin (m; i, p) K < i ≤ j

0 otherwise

, (3.2b)

Zij �
{
(m,n, k) | max(0, i− j) ≤ m ≤ min(i,K),

max(0,m+ j −M) ≤ n ≤ min(m,m+ j − i),

k = m− n+ j − i

}
.

where τ succij and τ failij are the transition probabilities following the success or failure

of the receiver, respectively. This process is obviously non-stationary since it is a

function of the nodes’ decision on p.

The resulting model is called a partially-observable Markov decision process [46],

i.e., a Markov decision process with hidden states. State transitions of an individual

34



transmitter in this system are illustrated in Figure 3.3. Note that Ps is, in general,

a function of the system state (i.e., the states of all the nodes) as well as p.

idle active

 α
 α−1

 δsuccpP

 δsucc1 pP−

Figure 3.3: State transitions of an arbitrary individual transmitter.

Similarly to the argument for the genie-aided case in Chapter 2, we focus on opti-

mization of the expected throughput of the current time slot obtained by (2.24b) due

to complexity considerations, and neglect the slight improvement that a long-term-

optimal decision on p may achieve through a computationally complex dynamic-

programming procedure [47].

3.3 Belief Update and Access Control

In this section, we assume that CAC mechanisms are devised that allow users to

know the number of admitted users and the traffic they offer; that is, M , α and δ

are known to the users. In the proposed MAC scheme, nodes receive feedback Ft

at the end of every time slot t informing them of the outcome of the transmissions

in that slot.2 A typical example is the binary success/failure feedback through

ACK/NACK messages from the receiver as depicted in Figure 3.4. The type of

feedback depends, in general, on the application, signal processing capability of the

receiver, bandwidth of the feedback channel, etc. Examples of feedback types are

introduced and studied later. Having received Ft, nodes compute the updated belief

vector bt.

Given a hidden Markov process and a sequence of observations (i.e., limited

feedback), what is the probability of the process being in a given state at a given

time instant? The forward-backward algorithm [48] solves this problem. The al-

gorithm consists of two stages: the forward pass which is executed in the forward

time direction and is used to update posterior marginal beliefs based on previous

observations, and the backward pass to smooth the past beliefs. In our application,

2Generalization of the algorithm to cases of less frequent feedback is straight-forward.
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U1 UN...U3U2

Data
Data

ACK

Receiver

N Active Users
State = N

(M-N) Inactive Users

Figure 3.4: A snapshot of a system of M users and a single receiver. Each of
the N active users transmit with a common access probability p and, then, receive
ACK/NACK messages. All the M nodes receive this feedback and update their
estimates of the system state N .

we only implement the forward pass, a.k.a. the forward algorithm, since smoothing

beliefs of the past time slots does not affect a node’s current decision.

Forward Algorithm (FA) Suppose that the hidden Markov process is stationary,

and let state space S and event space E denote, respectively, the set of all possible

hidden states and the set of all possible events observed from the underlying process.

Let T = [τij ]ij be the | S | × | S | transition probability matrix given by (3.1) and

(3.2). Also, let the entry εij of the | S | × | E | event matrix E be the posterior

probability of observing event j when the process is in state i. We use the discrete

time index t to distinguish quantities in different time slots. For a stationary process,

the belief-update output of the FA can be summarized as

bt = κ−1
t bt−1T diag (εFt) , (3.3)

where diag (x) denotes the diagonal matrix taking vector x on its diagonal, and εFt

is the column of E indexed by the observation Ft ∈ E at time t. The normalization

factor κ−1
t is to ensure

∑
i bt,i = 1.

We use the FA and adapt it to accommodate the non-stationarity of the un-

derlying decision process. Suppose a node is active at the beginning of time slot t.

The node’s currently computed belief vector is bt−1, which was last updated after

receiving Ft−1 and is, therefore, one time slot old. To take into account possible

changes of the system state from t − 1 to t (before transmissions at slot t occur),
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the node adjusts its belief by using the constant matrix A defined by

A � T
(
α, δ,M,K, 0

)
, (3.4)

that is, the transition probability matrix with no transmission (p = 0). The optimal

decision is therefore obtained as

pt := p∗K(bt−1A) . (3.5)

After transmissions, nodes receive Ft from which (εt)Ft is computed as a function

of pt. Note that in order to reduce computational effort, it is sufficient to compute

only the Ftth column of Et since the matrix changes over time. Finally, beliefs are

updated as

bt = κ−1
t bt−1Tt diag ((εt)Ft) , (3.6)

where Tt = T (α, δ,M,K, pt). Nodes may initialize b0, for example, by the uniform

probability vector or the steady state probability vector corresponding to

T = T
(
α, δ,M,K, p∗K

(
Mα

α+ δ

))
.

3.4 Performance Analysis and Results

3.4.1 Rate/Burstiness Description of a Source

We examine the throughput performance of the MAC scheme proposed in the pre-

vious section. The goal is to study the performance of the proposed controlled

probabilistic access with limited feedback when nodes have a known degree of pre-

dictability in generation of the traffic. In the following, we translate the transition

probabilities α and δ into parameters that distinguish packet generation rate and

burstiness level. We define the packet generation rate of a source S as the steady

state probability of S being active, i.e.,

λS =
α

α+ δ
. (3.7)

It is sensible to assume that α ≤ 1− δ, which gives λS ≥ α.

We need a second parameter, in addition to λS , in order to describe an on/off

Markov source. Here, we introduce a quantity called the burstiness overhead γ of

the source S defined as

γ � log(α+ δ)

logα
, (3.8)
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which gives λS = α1−γ .

Note that the pair (λS , γ) uniquely describes an on/off Markov source. For γ = 0

we have λS = α, which corresponds to the case where the generation of packets are

i.i.d. Bernoulli experiments with parameter α = 1− δ. Note that the Poisson traffic

is the special case where M → ∞ and α = 1− δ = λ/M .

3.4.2 Limited Feedback

Let fbin (·; ·, ·) and Fbin (·; ·, ·) denote the probability mass function and cumulative

distribution function of the binomial distribution. We simulate systems with the

following types of feedback.

• With binary feedback E = {fail, succ} from the receiver informing the nodes

of decoding failure or success, we have{
Pr {Ft = fail | Nt = i} = 1− Fbin (K; i, pt)
Pr {Ft = succ | Nt = i} = Fbin (K; i, pt)

.

• When, in the case of successful decoding, the receiver informs the users of the

number of received packets, i.e. E = {0, 1, · · · ,K, fail}, we have{
Pr {Ft = n | Nt = i} = fbin (n; i, pt)
Pr {Ft = fail | Nt = i} = 1− Fbin (K; i, pt)

.

• Finally, if it is feasible to devise a feedback mechanism that reports the

number of transmitted packets even in the case of decoding failure, we have

E = {0, 1, · · · ,M}, which gives

Pr {Ft = n | Nt = i} = fbin (n; i, pt) .

The conditional probabilities above are the entries of (εt)Ft computed upon receiving

Ft.

3.4.3 Simulation and Numerical Results

We simulate a system with K = 5 and M = 10. The average rate of the aggregate

traffic offered to the medium λ = MλS is fixed at λ∗ = 4.4 for the best achievable

throughput (see Figure 3.6). We examine this system for γ ∈ [0, 0.9]. The resulting

traffic is characterized by the average burst and idle durations obtained by

E [Tburst] = 1/δ, E [Tidle] = 1/α .
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Table 3.1 summarizes these averages for some of the values in the simulated interval.

Table 3.1: Average Burst and Idle Durations for λS = 1/16.
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E [Tburst] 1.79 1.96 2.19 2.54 3.09 4.06 6.12 12.13 47.64 2889

E [Tidle] 2.27 2.49 2.79 3.23 3.93 5.17 7.79 15.43 60.64 3677

Figure 3.5 shows the throughput performance of the proposed scheme with the

three aforementioned types of feedback. Two additional cases are examined as

comparison baselines:

• The genie-aided case that can hypothetically achieve the best throughput

among probabilistic access schemes.

• The case of constant transmission probability (CTP) where no feedback is

available and nodes use only the a priori information to optimize the steady-

state throughput. The optimal constant probability is obtained by

p∗ctp � argmax
0<p≤1

M∑
i=0

πi(p) RK(i, p),

where π(p) =
(
π0(p), π1(p), · · · , πM (p)

)
denotes the probability distribution

of the steady-state of the stationary Markov process T (α, δ,M,K, p) when p

is fixed.

It can be seen that for the system with the given parameters: i) different feed-

back types result in almost the same performance, and ii) increasing γ improves the

throughput performance, starting from the CTP performance for γ = 0 and increas-

ing to the genie-aided performance. These values, which turn out to remain almost

constant for fixed λS and variable γ, can be used as approximate3 bounds for the

throughput of probabilistic access with limited feedback. The above results make

sense because, with non-bursty traffic, the information conveyed by feedback about

the system state in the subsequent time slots is low and the resulting performance

is approximately equal to the case where no instantaneous information about the

state Nt is available, while this information increases as γ approaches 1. Indeed, for

3The reason why these values do not act as exact bounds is the slight difference between short-
term-optimal and long-term-optimal selections of p explained earlier.
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Figure 3.5: Throughput of FA with different types of feedback versus the throughput
by the state-aware genie and constant transmission probability.

γ very close to 1, nodes rarely change their states and, hence, Nt remains almost

constant from slot to slot, leaving sufficient time for the nodes to learn N .

Consider the extreme case of γ = 1, which corresponds to δ = 0. Suppose each

node chooses to become active or idle randomly and remains at the same state for

all time. That is, Nt equals a constant N for all t. Let us consider the case of

E = {0, 1, · · · ,M}. Suppose that as the observation history H = {F1,F2, · · · ,Ft}
grows, a maximum likelihood (ML) estimator is being used, for example, to estimate

N . Then, since the ML estimator is asymptotically consistent and efficient, the

estimation error tends to zero as t → ∞. The FA does perform as well as any

estimator, in the sense of the expected error, and therefore the belief vector tends to

put asymptotically all the probability mass on N ; that is, limt→∞(bi)t is 1 for i = N

and 0 otherwise. This argument applies to any feedback type – what is possibly

affected by the type of feedback is only the rate of convergence.

It is observed that the bounds remain almost constant as γ varies. Let us fix γ

to an arbitrary value to evaluate the bounds for different values of λS . The result

is illustrated in Figure 3.6. It can be seen that the lower bound monotonically

increases while the upper bound increases up to a maximum and then converges

with the lower bound. The two bounds meet at λS = 0 and λS = 1, i.e., where the

traffic behavior of the nodes are perfectly known a priori.
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Figure 3.6: Behavior of the system throughput bounds (evaluated for K = 4, M =
10, γ = 0.2 in this figure).

Figure 3.7 shows the bounds on the throughput for different values of K. It is

clear from this figure that devising a larger MPR capability increases the maximum

achievable system throughput.
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Figure 3.7: Bounds on the MAC efficiency (R/K) for K = 1, 2, 5, 10, M = 3K,
γ = 0.2. The total offered rate λ = MλS is normalized by a factor of 1/K. Some
lower bounds are omitted for clarity.

Figure 3.8 illustrates the effect of M on the maximum achievable throughput. It

can be seen that smaller numbers of admitted nodes are generally better in terms of
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the total system throughput providing that this number can offer sufficient amount

of traffic load to avoid bandwidth under-utilization. The figure illustrates how a

cross-layer admission/access control strategy may play a positive role in maximizing

the MAC efficiency. Furthermore, it is evident that the transport layer can also

shape the offered traffic to induce more burstiness and approach the upper bound.
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Figure 3.8: Upper bound on the throughput for K = 5 and different values of
M . Smaller M allows to achieve higher throughput providing that each transmitter
offers sufficient traffic.

3.4.4 Discussion

Figure 3.7 illustrates the performance improvement afforded by larger K. Indeed,

as was also shown in Figure 2.4 for the case of Poisson traffic, one can theoretically

approach 100% MAC efficiency with a sufficiently large K. It also shows how flow

control allows to achieve higher system throughput. By adjusting the offered packet

rate and burstiness, nodes can boost the system throughput by a factor of approx-

imately 25% in the examined scenarios. Note, however, that the need for strict

flow control to achieve the best possible MAC efficiency is gradually mitigated as

K grows larger.

It can be observed from Figure 3.8 that controlling the number of admitted

nodes through CAC mechanisms can further improve performance – smaller M

allows larger achievable throughput as long as the aggregate offered packet rate of

the admitted nodes saturates the medium. The maximum throughput promised by
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the upper bound, however, is not achieved unless the traffic is sufficiently bursty.

As an illustrative example, let K = 5 and suppose there are no delay constraints.

As a result, nodes can shape their traffic arbitrarily resulting in a desired value of

γ. From Figure 3.8, the optimal choice for the number of admitted nodes is M = 5

if λS > 0.82. For a smaller value of λS , however, this number results in bandwidth

under-utilization and a larger number of nodes should be admitted.

In the case there are delay constraints, throughput bounds should be considered

as functions of both λS and γ.

3.4.5 Queuing Delay

Let Psrv = pPs denote the service probability of a packet in a time slot, i.e., the

probability that a packet is transmitted and successfully received in a time slot

when the queue is occupied. We approximate this quantity by its average obtained

by

(1− Pe)Psrv =
R

M
, (3.9)

where Pe is the probability of the queue being empty, and R/M is a node’s share of

the total system throughput R. The average service time of TX is 1/Psrv. In order

to calculate Pe, note that

E [Tq] =
1

δPsrv
, E [Te] =

1

α
, (3.10)

where Tq (resp. Te) denotes the average time that a queue is occupied (resp. empty);

note that the second equality is ensured by the flow control mechanism. Using a

renewal theory argument, we have

Pe =
Te

Te + Tq
=

δPsrv

δPsrv + α
. (3.11)

From (3.9) and (3.11), we obtain

Psrv =
Rα

Mα−Rδ
. (3.12)

Let PB(m) be the probability that a generated packet is the mth in the current

burst, which is equal to the probability that the “reverse” chain of an on/off Markov

source (Figure 3.1), starting at the active state, generates a burst of exactly m

packets. Since the on/off Markov chain is equivalent to its reverse, we have

PB(m) = (1− δ)m−1δ .
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Also, define PQ(n) as the probability that a packet is the nth in the queue upon its

entrance to the queue. For this to occur, if the packet is the mth one generated in

the current burst, TX must have already serviced exactly m− n packets out of the

previous m − 1 packets, and must have delayed the queue for exactly n − 1 slots.

Therefore,

PQ(n) =

∞∑
m=n

PB(m)

(
m− 1

m− n

)
Pm−n
srv (1− Psrv)

n−1

=
(1− δ)n−1δ(1− Psrv)

n−1

(1− Psrv + Psrvδ)n
.

It can be easily verified that
∑

n PQ(n) = 1. Finally, the average queuing delay (in

units of slots) is obtained by

D̄ =

∞∑
n=1

n

(
1

Psrv

)
PQ(n) =

1− Psrv

Psrvδ
+ 1 =

Mα−R(α+ δ)

Rαδ
+ 1 , (3.13)

where (3.12) is used in the last step. Note that we have D̄ = 1 with Psrv = 1.

Figure 3.9 shows the average queuing delay that a packet experiences. It is

observed that the delay increases dramatically as γ approaches one.
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Figure 3.9: Average queuing delay versus burstiness. The results are obtained for
K = 5, M = 10, λS = 0.44, and E = {0, 1, · · · ,K, fail}.
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3.5 Summary

Throughput performance of probabilistic medium access in MPR-capable systems

was examined in this chapter. It was shown that an increased MPR capability K

results, in general, in better system throughput. In a system of nodes offering Marko-

vian traffic, burstiness of the packetized data traffic improves the predictability of the

system state and increases the throughput when only limited feedback is available.

A Markov decision model was described for the system and a throughput-optimal

MAC scheme was examined, which updates the nodes’ belief about the system state

and optimizes the access probability. Approximate lower and upper bounds on the

throughput were introduced that correspond, respectively, to no information and

perfect information about the instantaneous system state. It was observed that

the throughput with fixed traffic load may vary between the introduced bounds as

burstiness varies, starting from the lower bound for γ = 0 and approaching the up-

per bound with γ → 1. This may mean a 25% improvement of the MAC efficiency,

depending on K and the number of nodes, by controlling the traffic burstiness. For

M � K, however, the gap between the two bounds vanishes and the feedback be-

comes unnecessary as long as the average traffic parameters are known. Finally, a

closed-form equation for the average delay of the system was derived as a function

of the throughput.
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Chapter 4

Controlled Random Access
Using Adaptive Filtering

In the previous chapter, we computed bounds on the throughput performance for

cases where some information about the offered traffic was available. In this chap-

ter, we assume no prior information about the traffic and the number of potential

transmitters.

In this chapter, we use adaptive filtering to design a MAC protocol that tracks

the number of active nodes and, in essence, keeps the nodes “conscious” about the

contention level on the medium. This contrasts with most protocols used in practice

such as slotted Aloha and IEEE 802.11 where nodes blindly change their backoff

parameters according to simple predefined rules. The design of the EKF is inspired

by the work in [49] where adaptive filtering was used to adjust the backoff window

of the IEEE 802.11 MAC according to feedback from the medium.1

4.1 Related Work

Early after the advent of random access schemes in 1970s, researchers showed that

random access is prone to instability depending on the number of nodes and backoff

parameters. For example, it was shown in [51] that Aloha may show a bistability

behavior – a bistable system switches between two stable “equilibrium points” where

one operating point corresponds to high throughput and low delay while nodes

experience frequent collision and long delays at the other point. Whether the system

1This study was partially published in [50].
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is bistable depends on the number of nodes in the system and the retransmission

probability pr. Jenq analyzed the bistability behavior of slotted Aloha through

drift analysis [4] and provided a method for optimizing pr when the number of nodes

and the offered traffic per node is known a priori [52].

Dynamic adjustment of backoff parameters in random access protocols over the

collision channel has been an active field of research for years. In an early effort,

Kleinrock and Lam analyzed the dynamics of slotted Aloha systems with Marko-

vian traffic [6] and proposed a Markov-decision method for dynamic adjustment of

the retransmission probability. Note that the resulting throughput of employing the

above schemes is still limited by the theoretical peaks of 18% and 37% for unslotted

and slotted protocols.

Several papers have proposed improvements over the simplistic BEB employed

by IEEE 802.11. Haas and Deng [8] proposed to employ a backoff adjustment

algorithm similar to the multiplicative-increase / linear-decrease (MILD) algorithm

[53] as an alternative to BEB, which increased the MAC efficiency from ∼ 13% to

about ∼ 19%. In [49], it was shown that employing adaptive filtering to estimate

the number of contending nodes achieves similar results.

As mentioned before, MPR channels increase the maximum efficiency that is

achievable through random access. Nagaraj et al. [13] showed that Aloha-type

protocols can in principle achieve 100% efficiency asymptotically as K → ∞, where

K denotes the number of packets that the receiver can process jointly. For example,

with slotted Aloha, devising K = 100 can theoretically result in up to 80% MAC

efficiency compared to a mere maximum of 37% with the collision channel [3]. How-

ever, it was also shown that the penalty of overloading the system is more severe

for larger values of K.

We studied in Chapter 3 how (prior and learned) knowledge of the parameters

of the offered traffic can be utilized to optimize the access probability. In this

chapter, we address the more general problem where the prior knowledge of traffic

parameters may not be available to the nodes. This is a valid assumption in dynamic

mobile wireless networks with sporadic communications where CAC mechanisms are

inefficient or infeasible and adaptive control mechanisms are favorable.
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4.2 Extended-Kalman-Filter Estimation of N

Similarly to the previous chapters, a slotted MAC protocol is considered where all

packets are of the same transmission duration. M nodes generate packets to be

transmitted to a common receiver. Let λn ≤ 1 (packets/slot) denote the average

traffic offered by node n. Then, the aggregate load of the system is obtained by

λ =
∑M

n=1 λn packets/slot. Packets generated at each node enter the queue of that

node and wait to be transmitted. The number of nodes with nonempty queues,

called the active nodes, is denoted by N and is called the system state in that slot.

In the following, we propose a random access scheme by using the theory of extended

Kalman filters (EKF) where nodes track the system state based on statistics of the

ACK messages received by the nodes.

Suppose the system state N follows

Nt = Nt−1 + wt−1 , (4.1)

where t = 1, 2, 3, · · · is the slot number. Here, wt = Nt+1−Nt models the dynamics

of the generated traffic. In the context of adaptive filters, wt is called the process

noise and is assumed to follow a Gaussian distribution. We make a similar assump-

tion as follows. Suppose that the MAC protocol is stable. Then, the average of wt

must be zero as t → ∞ in order to yield a finite, nonzero average number of active

nodes. For simplicity, let us assume that wt is stationary and therefore E [wt] = 0.

Let us consider the symmetric scenario where each of theN active nodes transmit

with probability p. Then, the probability of success in that slot follows the binomial

CDF at N tx = K, i.e.,

ps = Pr
{
N tx ≤ K

}
= Fbin (K;N, p) . (4.2)

If a node measures ps, it can calculate an estimate of N given K and p using the

inverse function of the binomial CDF. To this end, each node monitors and stores

the number of ACK messages in a window of B time slots and calculates the success

rate

ξ �
(

t−1∑
τ=t−B

aτ

)
/B , (4.3)

where

at :=

{
1 if ACK received in slot t
0 otherwise

. (4.4)
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Assuming ps is almost constant for the duration of B slots, the numerator of (4.3)

is binomially distributed with parameters B and ps. Hence,

E [ξ] = ps ,

Var (ξ) =
ps(1− ps)

B
.

Let h(N) := ps = Fbin (K;N, p) given K and p. We can rewrite the observation

process as

ξt = h(Nt) + vt , (4.5)

where vt is a zero-mean binomial random variable with variance h(N) (1− h(N)) /B.

Equations (4.1) and (4.5) resemble continuous-time formulations of the system

state and observation process used in the context of extended Kalman filters. We

can now use the following to track the system state Nt [54, Ch. 8]:

Prediction:

N̂t|t−1 = N̂t−1 ,

Vt|t−1 = F 2
t−1Vt−1 + V

(w)
t−1 ,

Update:

yt = ξt − h(N̂t|t−1) ,

V
(y)
t = H2

t Vt|t−1 + V
(v)
t ,

κt =
Vt|t−1Ht

V
(y)
t

,

N̂t = N̂t|t−1 + �κtyt
 ,

Vt = (1− κtHt)Vt|t−1 ,

where �·
 denotes the round function and:

• Vt is the variance of the estimate N̂t,

• V
(x)
t denotes the variance of the random variable x,

• yt is the innovation residual,

• κt is the near-optimal Kalman gain, and
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• Ft and Ht are the following derivatives:

Ft =
∂N̂t|t−1

∂N̂t−1

= 1 , Ht =
∂h

∂N
|N=N̂t|t−1

.

We relax the constraint of N being an integer in order to be able to derive Ht. We

have

h(N) = Fbin (K;N, p) = I1−p((N −K)+,K + 1) , (4.6)

where Ix(·, ·) denotes the regularized incomplete beta function, and x+ � max(x, 0).

Assuming N is sufficiently large so that the binomial distribution approaches the

Poisson distribution, we can simplify h(N) to

h(N) � Fpois (K;Np) =
Γ(K + 1, Np)

K!
, (4.7)

where Γ(K+1, Np) denotes the upper incomplete gamma function. Equations (4.6)

and (4.7) are compared in Figure 4.1. It can be seen that the approximation holds

when N � K. When N is close to K, however, this approximation may introduce

inaccuracies in the calculation of the Kalman coefficient. Nevertheless, we use this

approximation for simplicity of the equations derived in the following.
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Figure 4.1: h(N) calculated based on Poisson approximation to binomial distribu-
tion. It can be seen that the approximation holds when N � K.

It follows that

Ht �
−p e−N̂t−1p(N̂t−1p)

K

K!
, (4.8)
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for large N . Also, following up on the earlier discussion, we choose

V
(v)
t =

h(N̂t−1)
(
1− h(N̂t−1)

)
B

.

Finally, the EKF can be summarized as

N̂t = N̂t−1 + �κtyt
 , (4.9)

where

yt = ξt − h(N̂t−1) ,

κt =
BHt

(
Vt−1 + V

(w)
t−1

)
BH2

t

(
Vt−1 + V

(w)
t−1

)
+ h(N̂t−1)

(
1− h(N̂t−1)

) .

Vt is updated as

Vt = (1− κtHt)
(
Vt−1 + V

(w)
t−1

)
,

and Ht is given by (4.8).

Once a node updates its estimate N̂t, it sets its access probability to p := p∗(N).

Since there is no known closed form for computation of p∗(N) other than approxi-

mations of the form p∗(N) � λ∗/N + c/N2, a lookup table can be precomputed and

stored for implementation purposes.

4.2.1 An Alternative Observation Statistics

Instead of averaging over a window of the last B time slots, one may use the following

alternative observation statistics:

ζt = γζt−1 + (1− γ)at−1 , (4.10)

where at is the last received binary feedback. Similar to the previously defined

sliding window statistics, the probability distribution of this statistics tends to a

Gaussian distribution. The relation between the length of the sliding window B

and the forgetting factor γ can be obtained by equalizing the variances of the two

statistics. Assuming a constant success rate ps and, hence, stationary ξt and ζt, we

have

Var (ζ) = γ2Var (ζ) + (1− γ)2ps(1− ps) . (4.11)
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Therefore,

Var (ζ) =
(1− γ)2

(1− γ2)
ps(1− ps)

=
1− γ

1 + γ
ps(1− ps) . (4.12)

Equalizing this variance with Var (ξ) = ps(1− ps)/B, we obtain B = (1+ γ)/(1− γ)

and γ = (B − 1)/(B + 1). The equations derived in the previous section can then

be used by replacing B := (1 + γ)/(1− γ).

4.2.2 Other Parameters

To complete the design of the proposed random access scheme, two parameters

remain to be set:

Variance of the process noise V
(w)
t This quantity may be preset if prior knowl-

edge of the traffic is available. Dynamic solutions may also be possible. Figure 4.2

compares the tracking ability of the EKF simulated with two preset values of the

process noise. In both scenarios, K = 10 and γ = 0.5. The artificially preset system

state Nt is 50 from slot 0 to slot 100 when it suddenly doubles. It can be seen that

the EKF with preset V
(w)
t = 10 is faster in tracking Nt compared to the EKF with

preset V
(w)
t = 1, but the estimate is noisier. We preset this parameter to V

(w)
t = λ∗

in our simulations.

The window size B or γ We will see in Section 4.3 that the value of B or γ that

minimizes |Var
(
N̂t

)
− E [Vt] | for a fixed Nt is an appropriate value and provides

good stability behavior.

4.3 Simulation Results

In this section, we present results of simulating the multiple access system described

earlier where nodes use the derivations of Section 4.2 at the end of each slot in order

to calculate the access probability, common among all the transmitting nodes, for the

next slot. In an actual system, each node performs the calculations independently

of other nodes, but since all the nodes observe the same environment, they are

expected to reach essentially similar results.
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Figure 4.2: Comparison of the tracking ability with different values of the process

noise V
(w)
t .

As mentioned before, a parameter to set at the design phase is the window

size B or, equivalently, the forgetting factor γ. This parameter may be obtained by

attempting to minimize |Var
(
N̂t

)
−E [Vt] | for different values of (fixed) system state

N as mentioned in Section 4.2. Extensive simulations show that γ = 1/3 is close

to the optimal value for different values of K and N . The equivalent B = 2 is also

shown by simulations to be the optimal window size for the observation statistics.

Table 4.1 lists the best values of γ obtained for a few values of K while N ≤ 100.

We preset γ = 1/3 for the simulations in this section.

Table 4.1: Optimal γ for different K.
K 1 2 5 10 20

γ 0.34 0.35 0.37 0.30 0.36

First, we examine the throughput performance of the proposed scheme and com-

pare it to the following baselines:

GA In the genie-aided scenario, nodes are informed of the exact value of the system

state N and select the optimal access probability p∗(N).

SA With slotted Aloha, each node in the transmission mode transmits a packet

with probability 1. If the transmission is not successful, the node switches

to the backlog mode and retransmits the same packet with probability pr =
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0.1 until the packet is received successfully. Then, it switches back to the

transmission mode.

BEB Nodes start transmitting new packets with probability pmax = 1/16. Upon

failure, the node halves its access probability unless it has reached the mini-

mum value pmin = 1/1024. Nodes switch to pmax = 1/16 upon success.

MILD Nodes start from pmax = 1/16. Upon failure, the node multiplies its access

probability by 2/3 unless it has reached the minimum pmin. Upon success, the

node reduces its average backoff 1/p by one slot unless the access probability

p has reached the maximum pmax.

Figures 4.3 and 4.4 compare the throughput of the proposed EKF-based scheme

to the above baselines for K = 4 and K = 8, respectively. It can be seen that,

compared to SA, BEB and MILD algorithms, our proposed scheme achieves the

closest throughput to the GA bound for a large range of the number of nodes M .
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Figure 4.3: Throughput performance of the proposed EKF-based scheme compared
to other schemes for K = 4.

In order to examine the throughput performance, we simulated a system of 100

users and a receiver with different values of K. Figure 4.5 shows the throughput,

normalized by the value of K, compared to the peak of Aloha and the ideal genie-

aided case. It can be seen that the proposed method succeeds in achieving the peak

of Aloha, which was shown to increase asymptotically as K → ∞. Results of
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Figure 4.4: Throughput performance of the proposed EKF-based scheme compared
to other schemes for K = 8.

simulating similar systems, where nodes are informed of the system state through a

genie, are also shown for comparison.
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Figure 4.5: Comparison of the proposed scheme to peak of Aloha and the ideal
genie-aided scenario.

Delay performance of the proposed scheme is shown in Figure 4.6. We know

that the delay increases unboundedly as λ approaches λ∗. Nevertheless, comparing

λ/K (x-axis) in Figure 4.6 with λ∗/K (y-axis) in Figure 4.5, one can see that delay

figures are below 50 slots when the normalized offered packet rate λ/K is about
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10% below the maximum supportable load λ∗/K. The corresponding genie-aided

packet delays are also plotted for comparison.
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Figure 4.6: Average packet delay of the proposed scheme as a function of the offered
packet rate. Dotted lines show the packet delay in the corresponding genie-aided
scenarios.

4.4 Alternative Channel Models

4.4.1 Imperfect ACK Channel

Thus far, we have assumed that the ACK channel is “perfect” in the sense that

nodes receive all the ACK packets. This assumption is not far from reality because

short control packets such as ACK packets are normally transmitted with lower

rates and, furthermore, ACK packets are transmitted on a broadcast channel where

signals are less susceptible to interference. Nevertheless, no physical channel is

perfect in practice and it should be instructive to examine scenarios with imperfect

ACK channels.

In this section, we simply model ACK channel errors by a missing probability

Pmiss per packet. Since we assume that missing an ACK packet by a node is inde-

pendent of other nodes, an imperfect ACK channel results in an asymmetry – nodes

receive different pieces of information and, therefore, compute different estimates of

the system state.

Another effect of missing ACK packets is that nodes may transmit duplicates of
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successfully received packets, which reduces the effective throughput as the receiver

recognizes and discards those duplicates. Indeed, the effective throughput equals

R(1− Pmiss) where R is the “raw” throughput of the system defined as the average

number of successfully received packets including all the duplicates. In other words,

missing ACK packets not only affects the raw throughput R through affecting the

state estimate N̂ , but also reduces the effective throughput by a factor of 1− Pmiss.

Suppose that nodes simply skip computing a new estimate when an ACK packet

is missed.2 We simulated such a system with M = 30 nodes and different values of

K and Pmiss. Figure 4.7 shows the results. It can be seen that the decline of the

effective system throughput is mostly due to the factor 1− Pmiss.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

Pmiss

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

pa
ck

et
s/

sl
ot

)

K=1
K=2
K=4
K=8

Figure 4.7: Throughput effect of missing ACK packets.

4.4.2 Delayed ACK Channel

In most terrestrial systems such as IEEE 802.11, when a node transmits a packet

successfully, it receives an acknowledgement (ACK) packet almost immediately due

to negligible propagation delays. This is the assumption we have used thus far in

this chapter. In satellite systems or underwater acoustic networks, however, nodes

have to wait for a non-negligible amount of time to receive the ACK packets. For

example, the propagation delay from a ground station to a geosynchronous satellite

2Kalman filtering with intermittently missing observations is studied in the literature; e.g., see
[55].
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to another ground station is about 253 milliseconds. The round-trip time is twice

this value, more than half a second, which is orders of magnitudes larger than slots

of a few tens of microseconds.

If not taken into account, long round-trip times may cause instability in random

access systems where nodes respond to the feedback they receive through reception

acknowledgements and other control packets. It is instructive in this chapter, also,

to examine the effect of large delays on the performance of our proposed scheme.

The problem of adaptive filtering with delayed measurements have been ad-

dressed in the literature; e.g., see [56] and references therein. However, the additional

complexity imposed on the estimation system is justified and, more importantly, rel-

evant only when the delay is relatively small. This is not the case in geosynchronous

satellite systems.

We simulate the proposed random access system as follows. Nodes maintain two

queues, a contention queue and a waiting queue. New packets enter the contention

queue until they are transmitted. When a node transmits a packet, it may be willing

to contend to transmit other packets. Therefore, it sends the current packet to the

waiting queue for a duration of the round-trip time of the system. Then, if an ACK

is received for the packet, it will be removed from the waiting queue; otherwise,

the packet is moved back to the contention queue to contend for a retransmission.

This process will continue until the reception of the packet is acknowledged. In

this scenario, the system state N , by definition, is the number of nodes that are

contending for transmission, i.e., have packets in their contention queues. In order

to track the system state, we allow the nodes to use the information from delayed

ACK packets and proceed with computation of the equations presented in Section 4.2

without considering the propagation delay.

Figures 4.8 and 4.9 show the throughput performance of the proposed MAC

scheme in the presence of ACK delay. It can be seen that larger values of K give the

random access system robustness against ACK delays. For example, it can be seen

that a round-trip time of only 2 slots result in a significant drop in the throughput

for the collision channel (Figure 4.8), while a similar decline of the throughput

occurs, for the case of K = 2, at round-trip times that are orders of magnitude

larger (Figure 4.9). These results suggest that using multiuser detection receivers
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in satellite systems is a promising way to handle sporadic packet communications

through random access methods.
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Figure 4.8: Throughput of the proposed scheme with delayed ACK packets.

4.5 Summary

In this chapter, we proposed a random access scheme that uses the theory of ex-

tended Kalman filters to track the system state. It was shown that the proposed

scheme achieves the maximum of Aloha without explicit knowledge of the traf-
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Figure 4.9: Throughput of the proposed scheme with delayed ACK packets.
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fic load. This is accomplished through utilization of the limited feedback acquired

through ACK messages from the receiver.

Average packet delay was shown to be reasonable as long as the offered packet

rate maintains a safety margin to the maximum supportable packet rate. Particu-

larly, delay figures remain below 50 slots when the normalized offered packet rate

λ/K is about 10% below the maximum normalized supportable load λ∗/K.

Then, we examined two non-ideal cases: i) in the case that there is a nonzero

probability that ACK packets are missed by nodes, it was shown that the domi-

nant effect in decreasing the throughput is the extra replicas that nodes transmit

while the proposed EKF-based state tracking system works properly; ii) when ACK

packets are received with a delay, for example in the case of satellite systems, larger

values of K results in more robustness against ACK delays, which suggests the use

of random access systems and multiuser detectors for sporadic traffic in satellite

communications.
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Chapter 5

MPR Random Access on
Satellite Links

The problem of controlling the access probability according to the partial state in-

formation received through ACK packets was addressed in the previous sections. In

this section, we deviate from the models used thus far by adding a nonzero prop-

agation delay to the round-trip time of the medium-access system. This model

is particularly useful for satellite communication systems where long propagation

delays introduce challenges at both PHY and MAC layers. In particular, random

access traffic can obtain state information only with a delay that may have a signif-

icant impact on the system performance.

A recent trend in the field of random access on satellite links attempts to address

the problem of long propagation delays by decreasing the dependence of medium

access mechanisms on the ACK packets. In particular, it is suggested to transmit

multiple replicas of the same packet in order to increase the link reliability in the

forward path before delayed ACK packets are received. The main ideas of these

random access schemes are i) providing diversity through repetitions and ii) im-

proving the success probability further by allowing collision resolution aided by the

successfully received replicas. While these papers focus on the collision model, we

will examine repetition random access on the MPR channel in Section 5.1.1

Then, in Section 5.2, we will study the effect of propagation delay on the optimal

access probability. Scaling laws for the throughput-optimal access versus delay-

optimal access will be derived and will be compared to numerical results.

1This study was published in [57].
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5.1 Repetition Aloha with MPR

As mentioned before, a recent research trend (e.g., [32, 33, 34]) has focused on im-

proving the bandwidth efficiency through collision resolution by introducing trans-

mission diversity and iterative interference cancelation. In the scheme proposed in

[32], dubbed collision-resolution diversity slotted Aloha (CRDSA), each packet is

transmitted in two different randomly selected time slots. This, in part, increases

the physical system load on the channel, but it provides diversity through the trans-

mission of a redundant copy of each packet. Furthermore, this extra copy assists

the receiver to resolve collisions through interference cancelation in the other slot.

For example, suppose the packet of user 1 is collided with the packet of user 2 in

a slot s, but another copy of the same packet is received without collision in another

slot s′. In this case, the receiver first decodes packet 1 received in s′ and marks

the user as “cleared.” The received packet contains a pointer to s where the other

copy of the same packet is transmitted. The receiver now reconstructs and subtracts

the packet from the superposition of the two packets received at s and decodes the

packet of user 2. This is illustrated in Figure 5.1. Here, retransmission of packet

1 not only provides diversity, but also helps resolving the collision with packet 2.

With more users involved, more iterations may be needed to decode more packets.

CRDSA is one of the random access schemes currently being adopted in the reverse

(i.e., user-to-hub) link of two-way satellite communications standards [58].

User 1User 1
User 2

Time

Pointer

Iteration 1
User 1 decoded

User 1User 1
User 2

Time

Iteration 2User 2 decoded

Figure 5.1: Illustration of CRDSA for two users.

The above scheme was generalized in [33] to allow users to have multiple trans-

missions of one packet. The number of retransmissions is drawn from a probability

distribution that is optimized for best supportable load on the shared medium. Fi-

nally, [34] employs packet-level coding on graphs as follows: each packet is coded and
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transmitted over multiple sub-packets, each sub-packet in one time slot, so that the

receiver will be able to correct the “erased” (i.e., undecoded) sub-packets by using

doubly-generalized low-density parity-check (DG-LDPC) decoding. The underlying

idea of all these schemes is more or less similar: diversity through multiple trans-

missions per packets, followed by iterative collision resolution through cancelation

of the interference contributed by packets that are decoded at previous iterations.

In the following, we examine the effect of MPR on irregular repetition slotted

Aloha (IRSA) introduced in [33].

5.1.1 System Model and Notations

Similarly to [33], m users each with one packet to transmit in a frame of n slots

want to transmit their packets to a receiver. The transmission time of each packet

is equal to the duration of one slot TS = TF /n, where TF denotes frame duration.

The goal is to maximize the logical system load G = m/n through retransmission

of packets.

Liva [33] studied the supportable system load of the above system on the collision

channel. We extend the analysis and run simulations for the case of MPR channel.

This system can be modeled by a bipartite graph as illustrated in Figure 5.2; one

part of the graph consists of m nodes U = {u1, u2, · · · , um} corresponding to the

m users and the other part consists of n nodes S = {s1, s2, · · · , sn} corresponding

to the n slots in a frame. A node ui is connected to sj if user i transmits a copy

of its packet in slot j. This graphical representation reveals the similarity of this

collision resolution scheme to decoding low-density parity-check (LDPC) codes on

the erasure channel.
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Figure 5.2: Bipartite graph representation of multiple access in a frame with m = 3
and n = 6. The resulting system load is G = 3/6.

In each frame, each user transmits its packet a random number of times r inde-
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pendent of other users. r is drawn from a probability distribution that is common

among users. We denote the probability of a user transmitting its packet r ≤ n

times by Λr, so we have
∑

r Λr = 1. Once a user draws r from the distribution (at

the beginning of the frame), it chooses r slots randomly uniformly to transmit its

packet. Λ = (Λ1,Λ2, · · · ) is, therefore, the degree distribution of the user nodes U :

Λr is the probability of any node ui having r edges.

Obviously, Λr is under full control of the system designer, which then determines

the degree distribution Ψ = (Ψ1,Ψ2, · · · ) of slot nodes. In the asymptotic regime

where m,n → ∞ and G = m/n is fixed, Ψ follows a Poisson distribution with mean

G times the average degree of a user node r̄ =
∑

r rΛr. That is,

Ψl = e−Gr̄ (Gr̄)l

l!
. (5.1)

Define the “edge-perspective” degree distribution λ = (λ1, λ2, · · · ) as the prob-

ability distribution of an edge connected to a user node of degree r. We have

λr =
rΛr∑
k kΛk

. (5.2)

Similarly, we have

ρl =
lΨl∑
k kΨk

, (5.3)

for the edge-perspective degree distribution corresponding to slot nodes.

Furthermore, the following polynomials defined in [33] are used to facilitate

mathematical representations:

Λ(x) �
∑
r

Λrx
r , (5.4)

Ψ(x) �
∑
l

Ψlx
l , (5.5)

λ(x) �
∑
r

λrx
r−1 , (5.6)

ρ(x) �
∑
l

ρlx
l−1 . (5.7)

It follows that r̄ =
∑

r rΛr = Λ′(1) and Ψ′(1) = GΛ′(1), where g′(x) denotes the

derivative of g(x).

In the next section, we introduce and analyze the convergence of an iterative

contention resolution scheme.
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5.1.2 Convergence Analysis

The scheme proposed in [33] works as follows: The receiver starts by decoding

packets that are not collided with any other packets. Once these packets are decoded,

the receiver reconstructs and cancels those packets from the received signal of other

slots where other replicas of the same packets have collided with other packets.2

This possibly allows the receiver to resolve collisions between decoded packets and

undecoded packets in other slots. Performing multiple iterations of these decoding

and cancelation phases may allow the receiver to decode all the packets. Here, we

generalize the model to the case where any combination of K or fewer colliding

packets may be decoded jointly.

We are interested in analyzing the conditions under which the receiver is able

to decode most packets successfully. We extend the analysis in [33] to obtain the

probability that a random user is not yet decoded after some i iterations.

Let pi and qi denote, respectively, the probability that a randomly selected edge is

not yet revealed (i.e., the corresponding user is still undecoded) after the decoding

phase and subtracting phase of iteration i. An unrevealed edge connected to a

degree-l slot node is revealed with probability 1 − p, after the first phase of an

iteration, if the total number of unrevealed edges is less than or equal to K each

with probability q. Hence,

1− p =

min(K,l)−1∑
k=0

(
l − 1

k

)
qk(1− q)l−k−1 .

Averaging over the edge-perspective degree distribution of slot nodes ρ, we obtain

pi =
∑
l

ρl

⎛
⎝1−

min(K,l)−1∑
k=0

(
l − 1

k

)
qki−1(1− qi−1)

l−k−1

⎞
⎠ .

It is then easy to show that

pi = 1−
K−1∑
k=0

qk−1
i−1 ρ

(k)(qi−1)

k!
, (5.8)

where ρ(·) is defined by (5.7), and ρ(n)(x) denotes the nth derivative of ρ(x). It was

shown in [33] that

ρ(x) =
Ψ′(x)
Ψ′(1)

= e−GΛ′(1)(1−x) . (5.9)

2In order for the receiver to know which packets are transmitted in which slots, each user may
use a psuedo-random number generator whose initial seed is known to the receiver as well.
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Hence, ρ(n)(x) = (GΛ′(1))nρ(x). Therefore,

pi = 1− e−qi−1GΛ′(1)
K−1∑
k=0

(qi−1GΛ′(1))k

k!

= P (K, qi−1GΛ′(1)) , (5.10)

where P (·, ·) denotes the regularized lower incomplete gamma function.

In a second phase, an edge connected to a degree-r user node remains unknown

with probability q only if none of the edges connected to that node are revealed with

probability p; therefore, q = pr−1. It then follows that

qi =
∑
r

λrp
r−1
i = λ(pi) , (5.11)

where λ(·) is defined by (5.6). Combining (5.10) and (5.11), we obtain

qi = λ
(
P (K, qi−1GΛ′(1))

)
. (5.12)

Since qi must be decreasing sequence, i.e. qi−1 > qi for all i, we have the following

convergence condition:

q > λ
(
P (K, qGΛ′(1))

)
for q > 0 , (5.13)

where the iteration index is omitted for convenience.

For a given Λ, the expression λ(P (K, qGΛ′(1))) is increasing in G, and therefore

the above condition yields a load threshold G∗ for which G < G∗ ensures conver-

gence. Indeed, G∗ is the supremum of network loads under which users’ queues

remain stable asymptotically as m,n → ∞ (providing that sufficient time is given

to the receiver to finish decoding all the users). Figure 5.3 illustrates the evolution

of qi for different values of G. Staircase curves are obtained by simulations with

n = 1000, while the corresponding smooth curves show f(q) � λ(P (K, qGΛ′(1)))

that correspond to the boundaries of the staircase curves as n → ∞. It can be ob-

served that although the staircase curves do not perfectly follow what is predicted

by f(q), the function well predicts the qualitative behavior of qi.

Since f(q) is continuous and f(0) = λ1, it is immediately concluded from the

stability condition (5.13) that Λ1 must be 0; that is, any distribution Λ that allows a

nonzero probability of transmitting only one copy of packets is essentially unstable

66



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K = 4 , G* = 3.25

q i−1

q
i

G=2.0

G=3.0
G=3.4

Figure 5.3: Evolution of the ratio of undecoded packets for a system with K = 4 and
an arbitrary distribution Λ = (0, 0.7, 0.3). For this system, G∗ = 3.25. Therefore,
G = 2, 3 result in stable systems while G = 3.4 is unstable. Staircase curves are
obtained by simulations with n = 1000.

for any network load G > 0.3 A trivial special case is Aloha, which is equivalent

to Λ1 = 1 and Λr = 0 for all r > 1.

Numerical calculations suggest that the stability threshold G∗ is obtained by{
q − f(q) = 0
∂
∂q (q − f(q)) = 0

. (5.14)

For K = 1, this reduces to the closed form [33, Eqn. (7)] since the above equations

occur at q = 0. For K > 1, the above conditions are met at some q > 0, which can

be obtained by numerical methods.

5.1.3 Numerical Results

In order to study the effect of K, we optimize G∗ over Λ = (Λ1,Λ2, · · · ,Λrmax) for

an arbitrary, fixed maximum number of transmissions per packet rmax. We assume

that the MPR channel requires a K-fold increase in the bandwidth usage, hence the

normalized load G∗/K is considered.

3All conclusions in this section, unless stated otherwise, are meant to address the asymptotic
regime m,n → ∞ and nontrivial cases where m > K.
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Figure 5.4 shows the maximum normalized system load for different values of

rmax. It can be seen that fixing the maximum number of retransmissions favors

systems with lower K in most cases. Indeed, in the examined scenarios, employing

multiuser detection is beneficial only when the maximum number of transmissions is

limited to rmax = 2. In this particular case, the MPR capability as low as K = 2, 3

increases the normalized load by about 70%.

Nevertheless, results of Figure 5.4 hold for the asymptotic setting n → ∞. For

smaller values of n, largerK increases the probability of convergence and the number

of decoded packets per frame. This is illustrated in Figure 5.5 for rmax = 8 and fixed

normalized load G∗/K = 0.7. Note that this load is within the range of supported

loads for all the examined values of K. It is evident that larger K allows more

users to be decoded per frame although the asymptotic analysis suggested larger

supported normalized load by smaller K. For a frame of n = 10 slots, for example,

a single-user detector can only decode an average of 60% of the users in a load of

G = 0.7 although it was obtained by asymptotic analysis that G∗ = 0.94. This ratio

increases to 87% under the same normalized load G∗/K = 0.7 for K = 5.
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Figure 5.4: Maximum supportable system load for n → ∞.

Next, we study the average number of transmissions per packet, which is a

measure of transmission power. In the asymptotic regime, the average number of

transmissions per packet is r̄ = Λ′(1) shown in Figure 5.6. It can be seen that larger

K allows smaller number of transmissions. Furthermore, for finite frame size n, it
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Figure 5.5: Ratio of decoded users per frame for finite n.

was observed that there is a nonzero probability that some packets will fail to be

decoded. Suppose unsuccessful users attempt a retransmission in the next frame.

This will increase the average number of transmissions per packet to Λ′(1)/(1− ε),

where ε denotes the probability of decoding failure per packet. This quantity is

plotted in Figure 5.7 for different K. It is observed that for an implementation of

10 slots per frame, the number of transmissions per packet may be halved with K

as low as 4.
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Figure 5.6: Average number of transmissions per packet for n → ∞.
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5.2 Throughput-Delay Tradeoff over Satellite Links

We have, thus far, focused mainly on the throughput performance of random access

systems. However, what is also of great importance is the “link delay,” which is

the delay a packet experiences from the moment it arrives at the MAC layer until

it is delivered to the receiver. The link delay generally constitutes the waiting time

in the MAC queue, the contention delays of transmissions and retransmissions, and

the propagation time.

Similarly to the previous chapters, consider a random access system where each

active node transmits a packet with some access probability (AP). Contending

devices calculate the AP based on a measure of the current contention on the medium

in order to maximize the throughput, minimize the link delay, and/or satisfy other

quality-of-service requirements for the traffic. For example, in IEEE 802.11, the AP

is the inverse of the “backoff window,” which is adjusted according to the number of

collisions that a packet has experienced as a measure of contention on the medium.

In most terrestrial systems such as IEEE 802.11 and the random access protocols

we have studied thus far, when a node transmits a packet successfully, it receives

an ACK packet almost immediately due to negligible propagation delays. The ACK

packet informs the node that it can proceed to transmitting other packets in its

queue. If the packet is not received, however, the node is notified immediately (due
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to lack of an ACK packet) and continues to contend for retransmission of the same

packet. In this system, maximizing the throughput is equivalent to minimizing

the link delay because when a packet is received, it is removed from the queue

immediately.

In satellite systems or underwater acoustic networks, however, nodes have to

wait for a non-negligible amount of time to receive the ACK packets. For example,

the propagation delay from a ground station to a geosynchronous satellite to another

ground station is about 253 milliseconds. The round-trip time is twice this value,

more than half a second, which is orders of magnitudes larger than slots of a few

tens of microseconds. If nodes do not attempt retransmission of the same packet

during this period, throughput-optimal and delay-optimal access probabilities are

not necessarily equal; indeed, we will see that, as the ACK delay increases, the

delay-optimal AP decreases compared to the throughput optimal AP because at

each moment, the delay penalty of a reception failure becomes more and more

significant compared to delaying the transmission at the transmitter. Decreasing

the AP from the throughput-optimal value, however, results in underutilization of

the shared channel. In this section, we study this throughput-delay tradeoff and

how significant it becomes in scenarios of relatively large delay.

5.2.1 System Model

Consider a slotted random access system where N active nodes are contending to

send packets to a common receiver. The propagation time in each direction is d slots

resulting in a round-trip time of 2d slots as depicted in Figure 5.8.4 Nodes may be

of any type including mobile devices and very-small-aperture terminals (VSATs).

For simplicity of analysis, we assume a symmetric scenario where all active nodes

transmit with the same access probability p.

In the following sections, we study the expected system throughput R (pack-

ets per slot) and the expected delay per packet D (slots). We do not include the

queuing delay in the definition of D, but only calculate the expected waiting time

of a packet from the moment it starts contending for transmission until it is suc-

cessfully received. This is equivalent to MAC queues of maximum length 1, a model

4The processing time and guard intervals are neglected in this model.
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widely used in the literature that is applicable for remote-terminal applications and

machine-to-machine types of traffic [30] where messages are too short (and delay-

sensitive in some applications) to be fragmented and queued.

Notations We use the following notations for brevity:

• Since we study the access probability for the two cases of maximizing the

expected throughput and minimizing the link delay, we use the superscripts

·∗ and ·† to distinguish between throughput-optimal and delay-optimal quan-

tities, respectively. For example, the access probability that maximizes the

expected throughput is denoted by p∗, and the resulted expected throughput

and link delay are denoted by R∗ and D∗, respectively.

• To simplify the analysis, we often assume that the node population N is large

and, hence, the number of transmissions per slot follows approximately a Pois-

son distribution. We use ·̃ to denote quantities corresponding to this assump-

tion.

• We use the asymptotic order notation g(x) = Θ(f(x)) to state that g(x) (or

g(x)−1, resp.) grows asymptotically as fast as f(x) (or f(x)−1, resp.). The

asymptotic orders derived in this section are tight.

U1 UN...U3U2

Data
Data

ACK

Receiver

d (slots)
d (slots)

Figure 5.8: The medium access model used in this section.
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5.2.2 Collision Channel

First, we study the collision channel. With N nodes contending to access the

medium, each with probability p, the expected throughput is obtained by R = Npq,

where the conditional success probability q is the probability that none of the con-

tending nodes transmits simultaneously when a node transmits. Using Poisson ap-

proximation for large N , we have [3]

R̃ = λ exp(−λ) packets/slot , (5.15)

where λ := Np is the average load offered to the medium. The expected throughput

R̃ is maximized at λ = 1, i.e. p∗ = 1/N , and we have R̃∗ = e−1 packets per slot [3].

Although the probability distribution of the packet delay takes a tedious form,

the expected packet delay can be written in a short closed form. Recall that each

packet is transmitted and retransmitted upon collision until received successfully.

Since each node (re)transmits with probability p in each slot, there is a backoff period

before each (re)transmission. Therefore, the expected duration of each backoff plus

(re)transmission attempt is geometrically distributed with mean 1/p. Then, it takes

the signal d slots to travel through the link. If there is no collision, the packet will be

received successfully and the transmitter will be notified d slots later; otherwise, the

node attempts a retransmission of that packet after another backoff period. Note

that the node does not need to remain idle during the 2d slots of round-trip time

and is assumed to be contending for transmitting other packets in its queue. Since

the success probability of each (re)transmission is q, the expected delay until the

node receives ACK is (1/p + 2d)/q. Since the packet is received d slots before the

ACK is received, the expected delay per packet follows

D =
1/p+ 2d

q
− d � 1/p+ 2d

exp(−Np)
− d = D̃ slots . (5.16)

Figure 5.9 illustrates the timeline of transmitting a packet with one retransmission

attempt.

To obtain the delay-optimal transmission probability p†, one should solve

∂D̃

∂p
= 0 ,

which gives

2Ndp†2 +Np† − 1 = 0 . (5.17)
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Figure 5.9: Timeline of transmitting a packet with one retransmission attempt.

If d = 0, we obtain p† = 1/N = p∗, which confirms that throughput-optimal and

delay-optimal transmission probabilities are equal when ACK delay is zero. If d > 0,

we obtain

p† =
2

√
N
(√

8d+N +
√
N
) . (5.18)

If d � N , we have p† � 1/N . If d � N , we obtain

p† � 1√
2Nd

, λ† = Np† �
√

N

2d
.

If d � N , the throughput loss ratio due to optimizing packet delay is

R̃†

R̃∗ �
√

N

2d
exp

(
1−

√
N

2d

)
→

√
N

2d
. (5.19)

On the other hand, if throughput is optimized, packet delay will increase by the

following ratio:

D̃∗

D̃† � (N + 2d)e− d

(
√
2Nd+ 2d) exp

(√
N/(2d)

)
− d

→ 2e− 1 . (5.20)

That is, the expected delay per packet may increase more than four folds in some

scenarios. Similar closed-form equations can be derived also when d/N is finite and

nonzero.

Figure 5.10 shows R and D versus λ = Np for N = 10 and d = 1000 slots. It

can be seen that the delay-optimal load is 0.072 of the throughput-optimal load,

which is closely approximated by
√

N/(2d) = 0.071. For these parameter values,

we obtain
R†

R∗ = 0.17 ,
D∗

D† = 3.27 .
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Figure 5.10: R (solid curve) and D (dashed curve) versus λ = Np for N = 10 and
d = 1000 slots.

5.2.3 Multipacket Reception Channel

For the MPR channel, we can obtain the success probability by

q �
K−1∑
k=0

e−Np (Np)k

k!
= Q(K,Np) , (5.21)

for large N , where Q(s, t) := Γ(s, t)/Γ(s) is the regularized upper incomplete gamma

function. Therefore,

D =
1/p+ 2d

q
− d � 1/p+ 2d

Q(K,Np)
− d = D̃ slots . (5.22)

Let us first consider the special case of K = 2. We have

q � exp(−Np)(1 +Np) = Q(2, Np) ,

and, hence,

D̃ =
1/p+ 2d

exp(−Np)(1 +Np)
− d slots . (5.23)

If d = 0, we obtain
∂D̃

∂p
= 0 ⇒ p† =

√
5 + 1

2N
, (5.24)

which, as expected, coincides with the throughput-optimal access probability p∗

obtained by maximizing

R̃ = Np exp(−Np)(1 +Np) .
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If d �= 0, however, it follows that

p† =
3
√

A(N, d)

6dN2
+

6dN3 +N4

6dN2 3
√
A(N, d)

− 1

6d
, (5.25)

where

A(N, d) � 54d2N4 − 9dN5 −N6

+3
√
3
√

108d4N8 − 44d3N9 − 5d2N10 .

We are interested in the large-delay case d � N , where we have A(N, d) =

Θ(d2N4) and, hence,

p† = Θ

(
1

3
√
dN2

)
.

Comparing the above with the results of the previous section, we can see that we

have obtained a scaling improvement of the access probability, i.e. Θ(1/
3
√
dN2)

compared to Θ(1/
√
dN) in (5.18), which is closer to the zero-delay scaling Θ(1/N).

We expect to observe similar scaling improvements with K > 2. This is stated by

the following proposition.

Proposition 2. In an MPR system of capability K, the delay-optimal access prob-

ability scales as

p† = Θ

(
1

K+1
√
dNK

)
. (5.26)

Proof. The average delay per packet is given by (5.22). We have

∂D̃

∂p
=

exp(−Np)(2dp+ 1)(Np)K − Γ(K,Np)

p2Γ(K,Np)Q(K,Np)
.

Setting the above derivative to zero, we obtain

exp(−Np)(2dp+ 1)(Np)K = Γ(K,Np) ,

or, equivalently,

(2dp+ 1)(Np)K = (K − 1)!
K−1∑
k=0

(Np)k

k!
.

Note in the above that, since d � N , we must have Np � 1 in order for the left-

hand side to remain bounded for bounded N . Therefore, for any K finite, the only

significant term on the right-hand side is the constant term (K − 1)!. That is, for

constant K,

Θ
(
dNKpK+1

)
= Θ(1) ,

which proves the proposition.
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It can be immediately concluded that the scaling of the delay-optimal access

probability is closer to the throughput-optimal scaling Θ(1/N) for larger K. As a

result, we have

R̃†

R̃∗ = Θ

(
p†

p∗

)
= Θ

(
K+1

√
N

d

)
, (5.27)

which means that, in the asymptotic sense, the throughput loss due to delay opti-

mization is mitigated more significantly on a “stronger” MPR channel. This advan-

tage is obtained at the cost of receiver complexity and channel bandwidth in order

to implement the multiuser detector.

5.2.4 Repetition Random Access

We formerly assumed that a node does not attempt a retransmission during the

round-trip time of 2d slots, which turns out to be the major source of long delays

when d � N . Here, we study the throughput-delay tradeoff with repetition random

access.

Let us consider the collision channel for simplicity. Suppose a node transmits

a packet r times after each backoff period. The r slots should be random and

nonconsecutive, obviously, to avoid repeated collisions with other nodes transmitting

r replicas of their own packets. The required period for transmitting the r replicas,

however, is assumed to be small compared to 1/p and d. This is a reasonable

assumption because the required number of slots for some “sufficient” randomization

of the slot selection depends on the number of contending nodes N , which is assumed

to be much smaller than d and the associated optimal backoff period 1/p. Therefore,

we may simply assume that the equations of the previous section still hold, except

that the new success probability that follows is

q = 1− (1− exp(−Nrp))r . (5.28)

We have assumed, in the above equation, that the slot selection for transmitting

r replicas is sufficiently randomized so that each of the r replicas may be received

successfully independently of the others. Furthermore, the intensity of the offered

traffic is assumed to be increased r times on average. Therefore, the expected packet

delay follows

D̃ � 1/p+ 2d

1− (1− exp(−Nrp))r
− d slots . (5.29)
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Let us examine delay-optimal access under the new model. For r = 2, by solving

∂

∂p

(
1/p+ 2d

1− (1− exp(−2Np))2
− d

)
= 0 ,

we obtain

Np†
(
dp† +

1

2

)
=

1− e−2Np†/8

1− e−2Np†
. (5.30)

The left-hand side is Θ(dNp2) while the right-hand side is Θ(1/(Np)) given that

Np � 1. Therefore, we have

p† = Θ

(
1

3
√
dN2

)
. (5.31)

The following proposition generalizes the above result.

Proposition 3. In a repetition random access system of r repetitions, the delay-

optimal access probability scales as

p† = Θ

(
1

r+1
√
dN r

)
. (5.32)

Proof. When the expected packet delay is given by (5.29), by solving ∂D̃/∂p = 0

we obtain

Nr2p(2dp+ 1)e−Nrp(1− e−Nrp)r−1 + (1− e−Nrp)r = 1 .

Therefore, assuming Np � 1, we have

Θ ((Np)rdp) + Θ ((Np)r) = Θ (1) ,

for constant r. Since we assume d � N , if Θ(dp) ≤ Θ(1), then p = Θ(1/N)

contradicting Np � 1. Hence, we must have Θ(dp) > Θ(1), which gives

Θ
(
dN rpr+1

)
= Θ(1) .

Comparing (5.32) to (5.26), we can conclude that repetition random access re-

sults in the same asymptotic scaling as using the MPR channel. Similarly,

R̃†

R̃∗ = Θ

(
r+1

√
N

d

)
. (5.33)
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This scaling improvement is obtained at the cost of higher energy spent per

(re)transmission attempt. Although this higher energy increases the success prob-

ability that reduces the number of attempts, the average energy spent per packet

may possibly be larger for larger r. Let E denote the transmission energy in one

slot. The average energy per packet is E/q when only one replica is transmitted at

each attempt. When transmitting r replicas, this quantity changes to

rE

1− (1− exp(−Nrp))r
=

rE

1− (Nrp)r +Θ((Nrp)r+1)
,

which is on the order of r times

E

1− exp(−Np)
=

E

1−Nrp+Θ((Nrp)2)
,

when Np � 1. In summary, it can be concluded that, since the success probabil-

ity q is generally not small when Np � 1, transmitting r replicas of a packet at

each attempt results in an r-fold increase in the transmission power as the cost of

improving the scaling of p†.

Repetition random access on MPR channel The scaling results of Proposi-

tions 2 and 3 can be shown to be special cases of the more general form

p† = Θ

(
1

rK+1
√
dN rK

)
, (5.34)

for r repetitions per attempt on a channel of MPR capability K, where r and K are

finite constants.

5.2.5 Results

Unless examined numerically, the scaling results obtained so far do not show the

effectiveness of the MPR channel in smoothing the throughput-delay compromise in

practical scenarios. First, we examine Proposition 2. Figure 5.11 shows p∗ (dashed

curves) and p† (solid curves) for N = 10 and different values of K when d =

1, · · · , 105 slots. It can be seen that, for large values of the link delay, the p† curves

follow the dotted lines that show the scalings suggested by Proposition 2.

Figures 5.12 and 5.13 show the corresponding throughput loss R†/R∗ and delay

increase D∗/D†, respectively. Values closer to 1 are favorable, which are clearly

shown to be achieved by larger values of K.
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Figure 5.11: Optimal access probabilities for N = 10 and different values of K when
d = 1, · · · , 105 slots.
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Figure 5.12: R†/R∗ for N = 10 and different values of K. Solid curves are plotted
by numerical computations while the markers show simulation results.

Next, we examine Proposition 3. Figure 5.14 shows p∗ (dashed curves) and p†

(solid curves) for N = 10 and different values of r when d = 102, · · · , 105 slots. It

can be seen that, for large values of the link delay, the p† curves follow the dotted

lines that show the scalings suggested by Proposition 3.

Figures 5.15 and 5.16 show the corresponding throughput loss R†/R∗ and delay

increase D∗/D†, respectively. Again, values closer to 1 are favorable, which are

shown to be achieved by larger values of r.
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Figure 5.13: D∗/D† for N = 10 and different values of K. Solid curves are plotted
by numerical computations while the markers show simulation results.
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Figure 5.14: Optimal access probabilities for N = 10 and different values of r when
d = 102, · · · , 105 slots.

5.3 Summary

In this chapter, we generalized the asymptotic analysis of irregular repetition slot-

ted Aloha [33] to the case of MPR channel, by which we could compute optimal

probability distribution of the number of transmissions per packet for K > 1. Re-

sults of simulations with finite population suggested that MPR allows larger loads

on the system with practically low number of slots per frame, hence reducing total
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Figure 5.15: R†/R∗ for N = 10 and different values of r. Solid curves are plotted
by numerical computations while the markers show simulation results.
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Figure 5.16: D∗/D† for N = 10 and different values of r. Solid curves are plotted
by numerical computations while the markers show simulation results.

transmission delay and power consumption. For example, for frames of 10 slots, it

was shown that an average of 3 transmissions per packet is required for successful

decoding when K = 4, while this average doubles on the collision channel. The ratio

of the decoded users is also larger on the MPR channel, as a 45% increase in the

ratio of decoded users can be obtained by using a multiuser detector of K = 5.

Next, throughput-delay tradeoff of random access over delayed links was ana-

lyzed and scaling laws were derived for the cases of collision channel and the MPR
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channel as well as repetition random access. It was shown that MPR receivers im-

prove the multiple access performance in the sense that the compromise between

throughput and delay is smoothed when the receiver has joint-detection capabilities.

In particular, we proved that if the receiver is capable of receiving K concurrent

transmissions, the throughput-optimal and delay-optimal access probabilities scale

as Θ(1/N) and Θ((dNK)
−1

K+1 ), respectively, which shows that the two scalings are

closer for larger values of K. Similarly, with repetition random access where r

replicas of a packet are transmitted, the delay-optimal access probability scales as

Θ((dN r)
−1
r+1 ). These improvements are obtained at the cost of larger bandwidth,

more complex signal processing and/or higher power consumption. This work moti-

vates the use of multiuser detection schemes and/or repetition schemes in large-delay

links such as user-to-hub random access in satellite communication systems.
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Chapter 6

Conclusions and Future Work

Random access on the MPR channel was studied in this thesis. It was shown that

random access, as a simple medium-access strategy, is potentially more efficient in

terms of system throughput and average packet delay. MAC schemes were proposed

for different scenarios and their performance was analyzed. The proposed schemes

were shown to be effective in achieving the potential advantages of the MPR channel

in the MAC layer. The contributions of this thesis are summarized in the following.

6.1 Summary of Contributions

6.1.1 Aloha Random Access on MPR Channel

We first studied the throughput performance of Aloha random access with Pois-

son arrivals. The main question to answer was how effectively multiuser detection

improves the throughput of Aloha. A closed-form equation was derived that con-

veniently compares the throughput of Aloha as a function of the MPR capability

K. The family of curves introduced through the variable parameter K highlights

the throughput advantage of the MPR channel compared to the conventional colli-

sion channel and, in particular, shows that Aloha is asymptotically optimal as K

goes to infinity providing that traffic control mechanisms are devised to maintain

the average arrival below a threshold. The peak of the Aloha curve corresponding

to a specific value of K provides a ballpark for the throughput that efficient random

access schemes should target. This maximum was targeted in the next chapters and

was used as the baseline for throughput comparisons. Bounds on the throughput

performance were introduced and a closed-form approximation for the upper bound
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corresponding to genie-aided random access with Poisson arrivals was proposed.

Next, a method of computing the optimal access probability was presented for the

cases where only partial information about the system state was available. This

method was then employed for a scenario of Markovian incoming traffic.

6.1.2 MPR Random Access with Markovian Traffic

Throughput performance of MPR random access with Markovian traffic was exam-

ined. It was shown that, in a system of nodes offering Markovian traffic, burstiness

of the packetized data traffic improves the predictability of the system state and

increases the achievable throughput when only limited feedback is available. A

Markov decision model was described for the system and the throughput-optimal

access strategy was derived. Lower and upper bounds on the throughput were in-

troduced that correspond, respectively, to no information and perfect information

about the system state. It was observed that the throughput with fixed traffic load

may vary between the introduced bounds as burstiness varies, starting from the lower

bound for zero burstiness (γ = 0) and approaching the upper bound with extreme

burstiness (γ → 1). This may mean a 25% improvement of the MAC efficiency,

depending on K and the number of nodes, by controlling the traffic burstiness. For

a large system size, however, the gap between the two bounds vanishes and the

feedback becomes unnecessary as long as the average traffic parameters are known.

Finally, a closed-form equation for the average delay of the system was derived as a

function of the throughput.

6.1.3 MPR Random Access with Adaptive Filtering

AMAC protocol using an extended Kalman filter was designed and shown to achieve

the maximum of Aloha without explicit knowledge of traffic parameters. This was

accomplished through utilization of the limited feedback acquired through ACK

packets from the receiver. Average packet delay was shown to be reasonable as long

as the offered packet rate maintains a safety margin to the maximum supportable

packet rate. Particularly, delay figures remained below 50 slots when the normalized

offered packet rate was about 10% below the maximum normalized supportable load.

Two unideal cases were then examined: i) in the case that there is a nonzero
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probability that ACK packets are missed by nodes, it was shown that the dominant

effect in decreasing the throughput is the extra replicas that nodes transmit while the

proposed EKF-based state tracking system works properly; ii) when ACK packets

are received with a delay, for example in the case of satellite systems, larger values of

K result in more robustness against ACK delays, which motivates the use of random

access systems and multiuser detectors for sporadic traffic over satellite links.

6.1.4 Repetition Random Access on MPR Channel

Irregular repetition slotted Aloha [33] was generalized to the cases where the

receiver was capable of decoding multiple colliding packets simultaneously. The

asymptotic analysis of infinite user population (or equivalently, infinite number of

slots per processed frame) was provided for this general case. Results of simula-

tions with finite population suggested that multiuser detection allows larger loads

on the system with practically low number of slots per frame, hence reducing total

transmission delay and power consumption. It was also shown that the ratio of the

decoded users was larger when multiuser detection was employed.

6.1.5 Throughput-Delay Tradeoff over Delayed Links

Throughput-delay tradeoff of random access over delayed links was analyzed and

scaling laws were derived for the cases of collision channel and the MPR channel as

well as repetition random access. It was shown that MPR receivers improve the mul-

tiple access performance in the sense that the compromise between throughput and

delay is smoothed when the receiver has joint-detection capabilities. The improve-

ments are obtained at the cost of larger bandwidth, more complex signal processing

and/or higher power consumption. This work motivates the use of multiuser de-

tection schemes and/or repetition schemes in large-delay links such as user-to-hub

random access in satellite communication systems.

6.2 Future Work

There are several interesting problems related to this thesis. First of all, the majority

of the body of research on multiuser detection has focused on coherent detection

where channel states are known to the receiver. This assumption poses a challenge
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in random access systems where we desire to require no coordination among users.

As a result, pilot signals transmitted with packets may be distorted by multiuser

interference. This subject is currently being studied for satellite uplink, e.g., see

[59]. Furthermore, discrepancies between our MPR channel model and real-world

wireless channels may result in effects not fully addressed in our study thus far.

For example, asymmetry in channel conditions among nodes can lead to estimation

errors and fairness issues where additional mechanisms will be required in order for

the system to satisfy quality-of-service requirements of the users. We will study

such effects in our future work.

We defined the rate/burstiness description of an on/off source, in Chapter 3,

and related the achievable system throughput to burstiness of the packet generating

sources. What that suggests, in essence, is that a larger entropy at the source

introduces inherent limitations on the amount of throughput in a multiple-access

system. This subject is related to Gallager’s concept of “protocol information” [60],

a type of information that is related to uncertainties about the packetized traffic and

uses a portion of the shared capacity, hence limiting the capacity for useful “data

information.” An interesting question is whether there are analytical bounds on the

multiple-access capacity as a function of the entropy of packet generating sources.

An interesting question on repetition random access regards scenarios where

users are not cooperative in selecting the number of replicas they transmit per packet

per frame. Selfish users define a game-theoretic framework for repetition random

access where each user attempts to maximize the chance of having its packet decoded

successfully by transmitting a larger number of replicas in one frame. What may

happen as a result is overloading the channel that can result in a large number of

decoding failures and, hence, low system throughput. The equilibrium point of a

system of selfish users may be different from the optimum operating point obtained

in Chapter 5 for cooperative users. It is an interesting problem to investigate how

the equilibrium point of repetition random access depends on the cost of decoding

failure as this is known about conventional random access [61].

Finally, we studied throughput-delay tradeoff in delayed-ACK random access

systems. What has not been considered in that study is the queuing delay and how

it affects the throughput-delay tradeoff. Also, it is useful to study how different
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types of delay-sensitive and delay-insensitive traffic may coexist and share resources

while they both benefit and meet the required quality-of-service demands.
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