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Abstract 
 
The Web, being the most popular component of the Internet, has been 

transformed from a static information-serving medium into a fully interactive 

platform. This platform has been used by developers to create web applications 

rivaling traditional desktop systems. Designing, developing and evaluating these 

applications require new or modified methodologies, techniques and tools because 

of the different characteristics they exhibit.  This dissertation discusses two 

important areas for developing and evaluating these applications: security and 

data mining. 

 

In the security area, a survey using a process similar to the Goal Question Metric 

approach examines the properties of web application vulnerabilities. Using results 

from the survey, a white-box approach to identify web applications’ 

vulnerabilities is proposed. Although the approach eliminates vulnerabilities 

during the development process, it does not protect existing web applications that 

have not utilized the approach. Hence, an Anomaly-based Network Intrusion 

Detection System, called AIWAS, is introduced.  AIWAS protects web 

applications through the analysis of interactions between the users and the web 

applications. These interactions are classified as either benign or malicious; 

malicious interactions are prevented from reaching the web applications under 

protection.  

 



 

In the data mining area, the method of reliability estimation from server logs is 

examined in detail.  This examination reveals the fact that the session workload is 

currently obtained using a constant Session Timeout Threshold (STT) value.  

However, each website is unique and should have its own STT value. Hence, an 

initial model for estimating the STT is introduced to encourage future research on 

sessions to use a customized STT value per website.  This research on the STT 

leads to a deeper investigation of the actual session workload unit.  More 

specifically, the distributional properties of the session workload are re-examined 

to determine whether the session workload can be described as a heavy-tailed 

distribution. 
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Chapter 1- Introduction 
The Web was introduced to the Internet in 1991.  Within 19 years, it has 
transformed from a medium used to present information statically to a modern 
medium capable of e-commerce, entertainment, surveys, and many other 
activities.  In fact, web applications are now a crucial component for many 
companies.  These applications are now one of the most important parts of the 
software industry.  Yet, they have different characteristics that make them 
different from traditional software and information systems.  For example, web 
applications have short release cycles and development time (Baskerville and 
Pries-Heje 2004).  Many new features, enhancements and bug fixes are 
continually added during these cycles.  Furthermore, developers often build web 
applications by integrating many existing parts together.  For example, a legacy 
system can be combined with several Commercial off the Shelf (COTS) packages 
by custom in-house code to create a complete web application.  The source code 
for the COTS packages is often unavailable to the developers or these COTS 
packages may exist on remote servers as web services.  When coupled with web 
applications’ ability to transfer data among completely different types of 
components, web applications must now ensure data is persistent through user 
sessions, across sessions, and shared among sessions.  As a result, web 
engineering is a recent field that focuses on the methodologies, techniques and 
tools to design, develop, and evaluate web applications. This dissertation 
contributes to this field in two areas: security and data mining.  

1.1 Web Application Security 
The Laws of Vulnerabilities 2.01 states that “80 percent of vulnerability exploits 
are now available within single digit days after the vulnerability’s public release”. 
The 2008 Internet Security Threat Report2 from Symantec notes that web 
applications contain 63 percent of all documented vulnerabilities.  Insecure 
applications can be extremely costly. For example, ChoicePoint, after exposing 
145,000 customer accounts, reported $11.4 million in charges directly related to 
the incident (Rapid7 2005). Immediately after the incident was disclosed, 
ChoicePoint’s total market capitalization dropped by $720 million.  Meanwhile, 
CardSystems is barred from accepting Visa and American Express cards after 
compromising 40 million accounts due to a SQL Injection vulnerability.  Hence, 
security is a prominent non-functional requirement for modern web applications. 
 
Chapters 2-4 explore this prominent non-functional requirement in detail. To 
begin, Chapter 2 performs a survey on the vulnerabilities using a method similar 
to the Goal Question Metric (GQM) approach. Four questions are raised. 

1. What proportion of security vulnerabilities in web applications can be 
considered as implementation vulnerabilities?  

                                                 
1 http://www.qualys.com/research/rnd/vulnlaws/, last accessed August 16, 2009 
2 http://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802, last accessed January 
29, 2010 
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2. Are these vulnerabilities the result of interactions between web 
applications and external systems?  

3. What is the proportion of vulnerable LOC within a web application?  
4. Are implementation vulnerabilities caused by implicit or explicit data 

flows?   
The results obtained show that the majority of web application vulnerabilities are 
of the implementation type which is caused by insecure coding practices.  
 
Based on the information from Chapter 2, Chapter 3 introduces a practical 
approach to eliminate web vulnerabilities.  Through effective use of computer-
support software to automate the “straightforward” components, the approach 
enables the security tester to concentrate on the “creative” component in 
vulnerability detection.  Furthermore, this approach integrates into the software 
development process. This integration allows software development organizations 
to identify and eliminate the vulnerabilities before the product is shipped or 
launched.     
 
Although the approach presented in Chapter 3 allows vulnerabilities to be 
removed, it does not allow web administrators to protect their pre-existing 
platforms against attacks.  Hence, Chapter 4 presents an Anomaly-based Network 
Intrusion Detection System (A-NIDS), called AIWAS, to guard web applications 
from malicious users.  Instead of removing vulnerabilities from web applications, 
AIWAS classifies behaviours from users as either benign or malicious.  It does 
this by learning from the input which is the primary way for users to interact with 
web applications.  Essentially, AIWIAS studies the input specification associated 
with “normal” usage of the system and validates any given inputs against this 
specification. This technique allows AIWAS to filter out malicious inputs before 
they reach the web application. 

1.2 Data Mining Web Server Logs 
The World Wide Web is now the most popular component of the Internet (Arlitt 
and Williamson 1997).  The Web can be utilized for many purposes ranging from 
information retrieval to fully interactive e-commerce stores.  Companies 
increasingly use the Web to reach their customers.  With the explosion in web 
traffic and numerous companies being highly dependent on the web for their 
operations, data mining of web related information (web mining) is becoming 
increasingly important.  Web mining (Cooley et al. 1997, Cooley et al. 1999) 
allows companies to further understand their users’ behaviour and demographic 
information, which in turn allows the organization to maximize sales (Eirinaki 
and Vazirgiannis 2003, Spiliopoulou 2000).  It can also provide critical workload 
information, such as hits per user or session, enabling system administrators to 
improve usability, availability and reliability of their websites (Arlitt and 
Williamson 1997, Squillante et al. 1999).   
 
The exploration in this area starts with Chapter 5. This chapter evaluates a 
technique for estimating reliability from server logs.  The technique extracts 
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workload measures and error codes from these logs; reliability is then estimated 
based on the extracted information.  Essentially, Chapter 5 is a “partial 
replication” of the original technique presented by Tian et al. (2004).   
 
Through the study in Chapter 5, it is discovered that the session workload, which 
is the most popular unit, is often obtained using a static Session Timeout 
Threshold (STT) value ranging from 15 minutes to 2 hours.  The values used do 
not consider the fact that many websites have different user profiles which means 
the STT will vary.  Chapter 6 introduces a dynamic model that generates the STT 
for specific websites which allows the session workload to be estimated more 
accurately.  This is important because having accurate data means better 
information can be mined.  This allows organizations to improve quality attributes 
such as usability and functionality of their websites. 
 
The research in Chapter 6 reveals that the distributional properties of the session 
workload unit are poorly understood. Whether the session workload can be 
described as a short-tailed or heavy-tailed distribution is a fundamental question 
for the investigation of the session workload unit. Hence, Chapter 7 empirically 
explores claims that the session workload can be described using a heavy-tailed 
distribution using many tests.  
 

1.3 Contributions and Dissertation Outline 
The outline of this dissertation, which includes discussions the contribution of 
each chapter, is as follows. 
 
Chapter 2: Common properties contained in web application vulnerabilities are 
explored using a process similar to the GQM approach. The results show that web 
application vulnerabilities are primarily implementation vulnerabilities. They are 
caused through interactions between web applications and external systems. 
Furthermore, these vulnerabilities only contain explicit data flows, and are limited 
to relatively small sections of the source code. 
 
Chapter 3: A white box approach is introduced to help eliminate web 
applications’ vulnerabilities. This strategy allows investigators to accurately 
identify all inputs entering the web application and model the inputs as they reach 
external systems acting as data sinks. A case study using a commercial, currently 
deployed, mission-critical web application is presented to demonstrate the validity 
of the approach. 
 
Chapter 4: An A-NIDS specifically for web applications called AIWAS is 
presented. The system attempts to learn the input specification associated with 
“normal” usage of the system, and validates any given input against this 
specification.  A case study based on three web applications is performed to show 
the effectiveness of the system. 
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Chapter 5: The method of reliability estimation from server logs (Tian et al. 2004) 
is examined in detail. Two new websites are used with one having an extensive 
long data collection period. The error codes contained in the server logs are 
carefully explored to allow system administrators to focus on high value error 
codes. The workload models are re-examined to provide alternative methods for 
system administrators to analyze and interpret reliability information. 
 
Chapter 6: A model, based on empirical observations, for estimating the Session 
Timeout Threshold (STT) is presented. Although the model has limitations, it 
provides an initial step that will allow future studies to expand upon.  
Furthermore, this model is proven to be applicable at many different resolutions 
and to two uniquely different websites.  The concept that STT varies for each 
website is empirically proven.  This encourages future research on web server 
logs to be performed using a customized STT value per website rather than a 
constant that’s applied to all websites. 
 
Chapter 7: The distributional properties of the session workload are re-examined. 
Additional tests such as Q-Q Plots and “wobble analysis” of the LLCD plots are 
performed to determine if session length can really be modeled by a heavy-tailed 
distribution.  The results show that, for the samples used in the chapter, a method 
to accurately determine whether the session workload is drawn from a heavy-
tailed distribution does not exist.  Hence, the conclusion that they are drawn from 
such a distribution cannot be made.  
 
Chapter 8: The conclusions and future works are presented in this chapter. 
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Chapter 2 – An Investigation into Web Applications’ 
Vulnerabilities 
Web applications have short release cycles and development time (Baskerville 
and Pries-Heje 2004).  Many new features, enhancements and bug fixes are 
continually added during these cycles.  Every change made to the system can 
introduce new security vulnerabilities.  Using an approach similar to the Goal 
Question Metric approach (Basili et al. 1994), this chapter’s goal is to help 
researchers improve the security posture of web applications by performing an 
empirical analysis of discovered vulnerabilities in 20 web applications to uncover 
any similarities in this sample. 
 
Given the relative newness of the topic on web application vulnerabilities, limited 
factual or empirical information exists; hence, this chapter principally relies upon 
the researcher’s previous experience with, and observations of, web applications.  
This has led to some tentative questions with regard to the vulnerabilities that 
exist within a wide cross-section of web applications; these questions are used to 
achieve the stated goal: 

1. What proportion of security vulnerabilities in web applications can be 
considered as implementation vulnerabilities?  The metric used to answer 
this question is the percentage of implementation vulnerabilities versus 
other types for the 20 applications under examination. 

2. Are these vulnerabilities the result of interactions between web 
applications and external systems? The metric used to answer this question 
is the percentage of function calls to external systems that exist in the 
vulnerabilities. 

3. What is the proportion of vulnerable LOC within a web application? That 
is, what is the vulnerability density? The metric used to answer this 
question is the number of vulnerable LOC versus the systems’ total LOC. 

4. Are implementation vulnerabilities caused by implicit or explicit data 
flows?  The metric used to answer this question is the number of 
vulnerable code blocks (which are defined in Section 2.3.4) with implicit 
data flow and the number of variables assigned from an input. 

Given the lack of solid causal theory utilized to derive the questions, it is believed 
that these questions should be viewed as an initial attempt in hypothesis 
formulation rather than an exercise in hypothesis confirmation or refutation.  The 
remaining sections of this chapter are organized as follows. Section 2.1 introduces 
the terminology used in this chapter.  Section 2.2 explains the survey and its 
procedure.  Section 2.3 contains the metrics obtained for the four questions.  
Section 2.4 provides an overview of current techniques for detecting and 
eliminating web vulnerabilities.  

2.1 Terminology 
Several terms are defined in this chapter for the reader’s convenience: 
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• External Systems – These are systems that the web application depends 
upon for its operation.  For example, a shopping cart web application 
retrieves its product information from a Database Management System 
(DBMS), the external system. 

• EIV – External Interaction Vulnerabilities. These vulnerabilities allow 
attackers to use vulnerable web applications as a vessel to transmit 
malicious code to an external system that can interact with the web 
application.  The malicious code will modify the syntactic content of the 
information sent to the external application.  In other words, EIVs allow 
attackers to target external systems that interact with the web application, 
rather than the actual web application itself 
Popular EIVs include SQL injections and cross-site scripting 
vulnerabilities.  Any vulnerability is classified as an EIV if it has the 
following properties: 

o A malicious input is required to initiate the attack. 
o The malicious input is transmitted from the web application to an 

external system. 
o The malicious input does not exploit the web application directly.  

For example, buffer overflow vulnerabilities causing web 
applications to crash are not be classified as an EIV because they 
attack the applications’ input buffers directly without interacting 
with an external system. 

• SQL Injection Vulnerabilities (Scambray et al. 2006) – These 
vulnerabilities allow attackers to inject and execute SQL statements 
through the web application.  For example, Figure 2.1 displays the 
pseudocode for a web application that asks the user for an email address 
stored in a database and displays the phone number associated with that 
email to the browser. 

 
 
1. $email = get_input(); 
2. if ($email != RFC2822) { 
3.   print “invalid email address”; 
4.   exit; 
5. } 
6. $sql = “SELECT phone FROM users WHERE email  
                                     =’”+$email+”’”; 
7. $phone = query($sql); 
8. print $phone; 
 

Figure 2.1 Example program 
 
Statement 1 retrieves the email input address from the input.  Statements 
2-5 parses the input for a valid email address based on the RFC 28223, 

                                                 
3 http://www.ietf.org/rfc/rfc2822.txt, last accessed July 25, 2009 
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which defines the standard format of an email address.  Statement 6 builds 
a dynamic SQL statement based on the input retrieved.  Statement 7 then 
instructs the DBMS to execute the SQL statement.  Statement 8 prints the 
phone number retrieved from the email address entered.  RFC 2822 allows 
many characters to be part of an email address which allow names with 
single quotes such as “O’Reilly” to be used in an email.  Hence the user 
using a specially crafted address, which meets the specification, such as: 
 

hi"' OR 1=1 --"@example.com 
 
can embed a SQL statement.  Using this email address, the expanded SQL 
statement becomes: 
 
SELECT phone FROM users WHERE email =’hi”’ OR 1=1 --

“@example.com’ 
 
Hence, this modified SQL statement is successfully injected. 
 

• Cross-site Scripting (XSS) Vulnerabilities (Scambray et al. 2006) - 
These vulnerabilities allow an attacker to inject JavaScript/HTML code 
that other visitors to the website will execute. For example, an attacker can 
create a link to a  vulnerable web application, such as 

 
http://www.site.com/?<script src=http://hacker.com/getcookie.js></script> 

 
which allows the attacker to become an administrator for that application. 
 

• Command Execution (Injection) Vulnerabilities (Scambray et al. 2006) 
- These vulnerabilities allow an attacker to run various system commands 
(“cd”, “ls”, “dir”, “cat”, etc.) through the vulnerable system. An 
attacker, for example, exploiting this vulnerability can perform DoS 
(Denial of Service) attacks on the system by removing files essential to the 
application.  Other system commands can be used to retrieve information 
or even alter the application’s configuration settings. 

• Privilege Escalation Vulnerabilities (Scambray et al. 2006) - These 
vulnerabilities allow an attacker to bypass the authentication system or 
escalate their privileges without using an injection attack.  A typical 
vulnerable application would allow an attacker to access restricted 
sections without being identified as a valid user. For example, a web 
application can use a flag to identify administrators from normal users. 
This flag is stored in a hidden form field. The attacker, with knowledge of 
this flag, can manipulate it and escalate their account to gain additional 
(administrative) functions. 

• Information Disclosure (Leakage) Vulnerabilities (Scambray et al. 
2006) - These vulnerabilities allow an attacker, without using an injection 
attack, to access information not available to a normal user. Information 
disclosure differs from authentication bypass because authentication 
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bypass allows an attacker to perform tasks and retrieve information not 
available to them; whereas, information disclosure only allows the attacker 
to retrieve restricted information. For example, instead of displaying a 
generic error message when encountering an error, the web application 
can display the entire call stack which contains detailed information on the 
internal structure of the web application. 

2.2 Survey 
For this survey, 20 different applications implemented using six popular 
languages (PHP, ASP-VBscript, ASP.NET – C#, Java-JSP, Perl, and Python) 
were examined.  The survey is explicitly limited to web applications; and hence 
several common languages (such as C) and vulnerability types (such as buffer 
overflows) are relatively uncommon within this domain. 

2.2.1 Vulnerability Databases 
Two popular vulnerability databases (VDB), the Open Source Vulnerability 
Database4 (OSVDB) and the Bugtraq mailing list5 were used to identify the 
vulnerabilities for these applications.  These two databases provide information 
on known vulnerabilities for open source and proprietary products.  
Unfortunately, the survey requires detailed analysis of the source code, which is 
unavailable for proprietary systems; and hence the investigation is limited to open 
source systems.  Although the complete survey for proprietary systems cannot be 
performed, the vulnerability types of 20 proprietary systems were briefly 
examined to determine whether they are similar to the vulnerability types found in 
open source systems.  The results show that these proprietary systems have a 
similar distribution of vulnerability types. 
 
Although the two databases have different maintainers, they are far from 
independent; in fact, Bugtraq can be viewed as a subset of OSVDB.  OSVDB 
effectively collates information from all of the other major open-source 
vulnerability databases including: The National (U.S.) Vulnerability Database6, 
US-CERT Vulnerability Notes7; Internet Security Systems - X-Force Database8; 
CERIAS Vulnerability Database9, and the LWN security vulnerabilities 
database10. Hence, OSVDB can be considered as being a meta-source of 
information on this topic; and therefore, it is utilized as the basis of the selection 
procedure. Having said this, Bugtraq (due to its message board format) tends to 
include a more extended description of vulnerabilities than OSVDB, and hence 
this information source was always used, when it was available, to increase the 
understanding of the vulnerabilities. 

                                                 
4 http://www.osvdb.org/, last accessed July 22, 2009 
5 http://www.securityfocus.com/archive/1, last accessed July 22, 2009 
6 http://nvd.nist.gov/statistics.cfm, last accessed July 31, 2009 
7 http://www.kb.cert.org/vuls/, last accessed July 31, 2009 
8 http://xforce.iss.net/, last accessed July 31, 2009 
9http://www.cerias.purdue.edu/about/history/coast/projects/vdb.html,last accessed July 31, 2009 
10 http://lwn.net/Vulnerabilities/, last accessed July 31, 2009 
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2.2.2 Survey Procedure 
The survey, for purposes of sampling, extracted vulnerability information 
covering the period between January 1, 2002 to May 31, 2007 from the OSVDB 
resulting in the records shown in Table 2.1. 
 

Table 2.1 Number of vulnerabilities in the OSVDB 
Total vulnerabilities 19,173 
Products 5,175 
Total web related vulnerabilities 7,290 
Total web applications 2,695 

 
OSVDB requires that all vulnerabilities be inspected to increase accuracy; 
unfortunately, Bugtraq has no such screening process. The survey worked with 
the vulnerabilities from OSVDB; the reliability of Bugtraq’s vulnerability 
information was validated by comparing it with the corresponding entry from 
OSVDB.  In addition, both databases encourage a product’s developers to refute 
any vulnerabilities that they believe are incorrect, providing a further crosscheck 
of validity.  None of the systems in this survey contained any disputed 
vulnerability.   
 
The sampling procedure was to select randomly 20 open source web applications 
from the OSVDB database.  However, these 20 web applications were required to 
meet certain criteria: 

• They must have more than one update released. 
• They must be larger than three KLOC. 
• They must have vulnerabilities that are exploitable. 
• They can be commercial systems, but the source code has to be available. 

Table 2.1 shows that the selected web applications represent only a small fraction 
of the total number of web applications listed within the database. The results of 
the sampling process are shown in Table 2.2.  Once the products were selected, 
the following steps were performed, on each product, to gather the necessary data 
for the analysis: 

1. The source code for all applications was downloaded.  This includes 
downloading older source code that contained the vulnerabilities of 
interest.  This analysis requires the paths through the source code to be 
traced in detail.  Hence, a requirement exists that effectively limits this 
type of survey to open-source type projects. 

2. A source code counting tool (Practiline Source Code Line Counter11) was 
used to count the LOC for each application. Only files containing program 
statements were counted.  The reported LOC does not include empty lines 
and comments. 

3. Vulnerabilities for the applications were retrieved from the VDBs. 

                                                 
11 http://sourcecount.com/, last accessed July 29, 2009 
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4. For each vulnerability, the source code was traced to the statements 
causing the actual vulnerability.  Nested function calls are traced and 
stopped at calls to standard library functions. 

Due to the different programming languages involved, different designs 
associated with each application and over 330 KLOC to examine, the entire 
process required about 1 year of effort.  One week was required to study the 
OSVDB’s relational diagram and to import OSVDB’s data into a local database 
for faster access.  One week was used to create a tool to query the database.  
Twelve weeks were used to study the programming languages.  One week was 
used to install, configure, and deploy the web applications in a test environment.  
Ten weeks were used to study the web applications and the associated source 
code; four weeks were used to examine all the vulnerabilities associated with each 
application.  Twenty six weeks were used to independently repeat the manual 
operations.  This “verification” task was believed to be important as any manual 
task of this “length” is clearly error-prone and this approach is believed to have 
resolved any inconsistencies in the process. 

2.2.3 Chosen Applications 
Table 2.2 displays the examined applications and the number of vulnerabilities 
identified. 
 

Table 2.2 Applications examined 
Application Description Vulnerabilities Language 

A-CART 
A commercial fully-featured 
shopping cart developed on the 
ASP platform using VBScript 

8 ASP (VB) 

AWStats 
A popular open source log file 
analyzer for 
web/streaming/ftp/mail servers 

5 Perl 

Bonsai 
An open source web-based 
querying front-end for CVS from 
the Mozilla Foundation 

8 Perl 

BugZilla12 
An open source bug tracking 
system  from the Mozilla 
Foundation 

25 Perl 

BugTracker.NET  
A web-based bug tracker system 
that is currently used by 
thousands of development teams. 

4 ASP.NET 
(C#) 

Calcium A commercial web calendar 
system by Brown Bear Software. 1 Perl 

Daffodil CRM 

A commercial open source 
customer relationship 
management system by Daffodil 
Software Ltd. 

1 Java (JSP) 

                                                 
12 Due to the numerous vulnerabilities reports available for BugZilla, the versions of the 
vulnerable systems are limited to 2.16.0 or higher.  
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DEV web 
management 
system 

A content management system 
for web portals. 5 PHP 

FileLister A file system indexing tool 2 Java (JSP) 

JSPWiki An open source JSP-based 
WikiWiki engine 1 Java (JSP) 

Mantis13 An open source tracking system 12 PHP 

Neomail 
A web-based email system; 
thousands of servers utilize the 
system. 

1 Perl 

PDF Directory 
An open source software that 
generates a printable directory 
listing for any organization. 

12 PHP 

phpBB14 

An open source popular message 
board system written in PHP 
that’s being used on millions of 
websites.  

23 PHP 

ProjectApp 

A commercial web-based project 
and task management system 
used for team communication by 
Iatek Corporation. 

5 ASP (VB) 

osCommerce 

An open source e-commerce 
system, by osCommerce, 
currently being installed and 
utilized by 10,942 online stores.  

15 PHP 

Roundup A full featured bug tracking 
system. 4 Python 

sBlog An open source blog system. 2 PHP 

SkunkWeb A robust, open source web 
application server. 2 Python 

ViewVC A browser interface for CVS and 
Subversion control repository. 2 Python 

Total  138  

2.2.4 Tracing the Source Code 
To determine the number of vulnerable LOC and how deep these statements are 
within the call stack, the source code for each known vulnerability was traced.  
Program slicing was first introduced by Weiser (1984) as a method of 
automatically decomposing applications.  A slice of a program is a reduced, 
executable segment of the original program.  A slice can be produced dynamically 
or statically.  Static slicing techniques do not require input values whereas 
dynamic slicing techniques rely on some specific input to produce a slice (Tip 

                                                 
13 Due to the numerous vulnerabilities reports available for Mantis, the versions of the vulnerable 
systems are limited to 1.0.0a1 or higher. 
14 Due to the numerous vulnerabilities reports available for phpBB, the versions of the vulnerable 
systems are limited to 2.0.7 or higher.  
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1995).  Due to the lack of slicing tools for the languages examined, in this survey, 
a technique similar to dynamic slicing (Agrawal and Horgan 1990; Tip 1995) was 
used to produce contamination graphs (CGs) of the systems examined.  The CG is 
not a SDG (system dependency graph), but rather a def-use graph that follows the 
malicious input from the entry point to the exit point of the system.  While the 
technique used is similar to slicing, it does not produce complete slices of the 
system (hence, cannot be considered a slicing technique) and the graphs produced 
by the algorithm do not take into account object-oriented programming features 
such as inheritance and polymorphism; however, they contain sufficient 
information for this survey.  More formally, a CG is a directed graph 
G=<N,Ec,Ed>, where N is a set of vertices corresponding to statements and 
control predicates, and Ec and Ed are the set of edges corresponding to the def-use 
data dependencies.  The slicing criterion is C=(v, i, X*), where v is a variable in 
the system, i is an input value for v and X is a set of statements in the program.  
For this survey, v and i consist of variables and values that exploit the known 
vulnerabilities, while X* (⊆ X) consists of program statements where it is 
possible to export the vulnerability to an external system; and X is the entire set of 
statements in the program.  The following algorithm is used to produce a CG for 
each v and i of interest. 
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1. DEF(w) is a definition of the variable w 
2. USE(w) is a use of the variable w 
3. Let V be a set of v 
4. Let F be a set of statements; F ⊆ X; fj be the statement at location j. 
5. Let curloc be the program’s current statement's location 
6. Initialize V := {}; F := {}; prevloc := 0; prevDEFloc := 0; 
7. Locate the first DEF(v) where v := malicious input 
8. G := G + <curloc,{},{}> 
9. prevloc := curloc 
10. prevDEFloc := curloc 
11. V := v ∪ V 
12. Execute program until ∃ v∈V• USE(v) 
13. If DEF(w) := USE(v) then 

a. G:= G + <curloc, prevloc→curloc, prevDEFloc→curloc> 
b. V := w ∪ V 
c. prevDEFloc := curloc 

Else 
a. G := G + <curloc, prevloc→curloc,{}> 

14. prevloc := curloc 
15. If fcurloc ∈ X* then F := fcurloc ∪ F 
16. Go to 12 unless F – X* = {} ∨ curloc = EOF ∨ program encounters an 

error due to a successful exploit. 
 
An example of a CG using C = (keyword, 
“<script>alert(‘hello’)</script>”,{query, echo, print}) 
for an application examined, sBlog, is shown in Figure 2.2.  The source code for 
this example is approximately 7,800 lines of PHP.  Dotted directed edges on this 
graph represent DEF dependences (definition of a contaminated variable), while 
the solid edges represent USE dependences (usage of a contaminated variable).  
Each node is labeled with the source code’s filename and the line where the 
statement can be found (in parenthesis).  If a node represents a function call then 
it is labeled as “call ‘function name’”.  System calls are also placed within the 
parenthesis.  The graph above shows that the malicious input entered the system 
at line 36 of the search.php file.  The solid edges show the transition between each 
USE statement.  Nine lines of code use the malicious input (number of nodes) 
with five variables defined based on the malicious input (the number of dotted 
edges). 
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Figure 2.2 CG for sBlog 

2.3 Results 
This section contains the results from the survey. These results answer the four 
questions raised in the introduction and can be used to help the goal which is to 
improve the security posture of web applications by uncovering similarities 
between vulnerabilities. 

2.3.1 Question 1 
Question: What proportion of security vulnerabilities in web applications can be 
considered as implementation vulnerabilities? 
 
Metric: The percentage of implementation vulnerabilities versus other types for 
the 20 applications under examination. 
 
To answer Question 1, the known vulnerabilities are characterized into three 
categories based on Swidersky and Snyder’s categorization (Swiderski and 
Snyder 2004): 

• Architecture vulnerability: A vulnerability that is caused by a design flaw.  
For example, if the session ID generated by an application is easily 
guessable because the specification for a secure session management 
system does not have requirements on how IDs will be generated, such as 
a specific cryptographically hash routine, then the issue is considered 
architectural in nature. 

• Implementation vulnerability: A vulnerability that is the result of an 
insecure coding practice.  Using the same example as above, if the session 
ID is easily guessable because the cryptographically secure hash routine 
used to generate session IDs is written incorrectly then the issue is 
considered implementation in nature. 
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• Configuration vulnerability: A vulnerability that is caused by an incorrect 
configuration of the application; hence, if the vulnerability ceases to exist 
after an application is reconfigured, the vulnerability is classified as a 
configuration vulnerability.  For example, the “register_globals” issue 
with PHP is considered a configuration vulnerability.  This is a setting in 
the configuration file to instruct PHP to create global variables from the 
EGPCS (Environment, GET, POST, Cookie, Server) variables.  When 
enabled, attackers can use the feature to define many global variables. 

 
Table 2.3 shows the vulnerabilities and their distribution within the three 
categories defined.  The standard error in the table is used to show the uncertainty 
of the value for each category.  The equation for the standard error is:  

standard error = 
n

pp )1( −   (1) 

where p is the probability of the sample belonging in a certain category and n is 
the sample size.  This assumes that: n is small relative to the population size, the 
samples are selected from a simple random sampling process, and the sampling 
distribution of p is the binomial distribution15. Each category is treated 
independently from each other. For example, the first row of the table examines 
the implementation vulnerability. Hence, p is the probability of a vulnerability 
being an implementation vulnerability, and 1-p is the probability of it not being an 
implementation vulnerability. 
 
This table answers Question 1 by showing that implementation vulnerabilities 
dominate; hence, addressing vulnerabilities within this category would allow a 
significant reduction in the number of vulnerabilities. 
 

Table 2.3 Vulnerability category distribution 
 number of 

vulnerabilities 
% of vulnerabilities 
found in sample 

standard error16 
(%) 

Implementation 101 73.2 3.77 
Architecture 30 21.7 3.51 
Configuration 7 5.1 1.87 

2.3.2 Question 2 
Question: Are these vulnerabilities the result of interactions between web 
applications and external systems? 
 
Metric: The percentage of function calls to external systems that exist in the 
vulnerabilities. 

                                                 
15 Clearly, this is a simplification of the situation. However, the study has insufficient data to allow 
the evaluation of more complex models. 
16 In this context, the margin of error in the survey is approximately twice the standard error. 
Specifically, assuming a 95% confidence level, it is 1.96*the standard error. 
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Usually, these implementation vulnerabilities can be traced through a dynamic 
string, constructed from an input, being used in a function or method that allows 
the string to be passed to another system.  The answer to Question 2 begins 
through the examination of the types of vulnerabilities within the implementation 
category. This examination reveals six different types of vulnerabilities are 
commonly discovered within web applications: SQL Injection, SQL Injection, 
XSS, Code Injection, Command Execution, Privilege Escalation, and Information 
Disclosure. 
 
Table 2.4 displays the vulnerability types discovered during the survey.  Close 
examination reveals that the majority of these types occur due to an interaction 
with an external system.  These types of implementation vulnerabilities, bolded in 
Table 2.4, account for 95 of the 101 implementation vulnerabilities.  While 
information disclosure may also be caused due to an interaction between the web 
application and the file system, this interaction is not obvious from Table 2.4, and 
the actual statements causing the vulnerability have to be examined to determine 
the exact cause. 
 

Table 2.4 Implementation vulnerability types 
 number of 

vulnerabilities 
% 

vulnerabilities 
standard 
error (%) 

XSS 56 55.4 4.23 
SQL Injection 30 29.7 3.89 
Code Injection 6 5.9 2.01 
Command Execution 3 3.0 1.86 
Information Disclosure 5 5.0 1.45 
Privilege Escalation 1 1.0 0.85 

2.3.2.1 Vulnerability Types for Proprietary Systems 
Since the vulnerability databases used also include proprietary systems, 20 of 
these systems were selected and examined to provide some level of comparison 
with the results found in the survey.  Like their open source counterparts, these 20 
applications were also randomly selected from the OSVDB.  Table 2.5 shows the 
20 applications examined. 
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Table 2.5 Proprietary systems 

Application Description Vulnerabilities Language 

Active Auction 
House  

A web based auction 
software designed for 
online auctions (ex. 
ubid.com, ebay.com). 

7 ASP (VB) 

AliveSites Forum  

A component (COM) 
object tool that allow 
collaboration among 
members and users of 
a company or 
organization though 
the internet or intranet. 

4 ASP17 

ampleShop  A complete e-
commerce system. 4 ColdFusion

AspDotNetStorefront  
An ASP.NET 
shopping cart used by 
over 5,000 customers. 

3 
ASP.NET 
(C# and 
VB.NET) 

ASPRunner  

A web-based database 
management tool that 
provides 
administration for 
many popular 
databases. 

7 ASP 

Baseline CMS  A web-based content 
management system. 2 ASP 

Bugzero  

A web-based bug 
tracking, defect 
tracking, issue 
tracking, and change 
management system. 

5 Java 

Cisco CallManager 
Web Interface  

The web-based 
interface for the Cisco 
Unified CallManager 
system. 

3 ASP 

couponZONE  
A web-based system 
that provides online e-
coupons. 

2 ColdFusion

DUPortal Pro  An ASP-based Web 
Portal application. 11 ASP 

E-School 
Management System  

A web-based School 
Management Software 1 ASP.NET 

                                                 
17 ASP and ASP.NET applications can be created using many programming languages.  Due to the 
proprietary nature of the applications, the exact programming language used is unknown. 
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designed to allow easy 
communication 
between students, 
teachers, parents & 
management. 

iCMS  A content management 
system. 2 ASP 

Mall23 eCommerce  

An e-commerce 
solution for Web 
Development and 
Hosting companies. 

3 ASP 

NetAuctionHelp  An ASP-based online 
auctioning system. 1 ASP 

OneWorldStore  

An e-commerce 
system that can be 
integrated to existing 
websites. 

10 ASP 

Revize CMS  A content management 
system. 5 Java 

SCOOP!  

Another web content 
management system 
for users without 
HTML knowledge. 

7 ASP 

SmarterMail  
An advanced email 
and collaboration 
server. 

5 ASP.NET 

uStore  
A dynamic storefront 
application for e-
commerce websites. 

3 ASP 

Web Quiz  

An easy application 
that for online test 
creations and 
assessments. 

2 ASP 

 
These 20 applications are commercial applications that either do not have their 
source code available or they require a developer’s license to be purchased before 
the source code can be obtained.  This table shows that ASP and ASP.NET is 
used for sixteen of the 20 web applications.  Two out of 20 applications are 
powered by ColdFusion, which is the only scripting language that supports source 
code encryption without additional plug-ins or extensions.  The remaining 
applications are created using Java technology. 
 
Table 2.6 displays the vulnerabilities encountered for these 20 applications versus 
the vulnerabilities encountered for the 20 open source systems.  This table shows 
that the top two vulnerabilities encountered on both types of system are XSS and 
SQL Injection, respectively.  Code injection is less frequently encountered in 
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proprietary systems, which can be attributed to the fact that PHP remote file 
inclusion does not occur in these systems because these 20 systems do not use 
PHP.  “Other” contains vulnerabilities that cannot be classified due to limited 
information provided for these vulnerabilities. 
 

Table 2.6 Proprietary versus open source 
 Proprietary Open Source 
 % 

vulnerabilities
Standard 
Error (%) 

% 
vulnerabilities

Standard 
Error (%) 

XSS 48.8 4.26 55.4 4.23 
SQL 
Injection 

36.0 4.09 29.7 3.89 

Code 
Injection 

2.3 1.28 5.9 2.01 

Command 
Execution 

1.2 2.17 3.0 1.85 

Information 
Disclosure 

7.0 0.93 5.0 1.45 

Privilege 
Escalation 

1.2 0.93 1.0 0.85 

Other 3.5 1.56 0 0 
 
This table reveals that: 

• The two types of systems agree that XSS and SQL injection (in that order) 
are the most numerous types of vulnerabilities experienced by web 
applications.  Furthermore, the injection type vulnerabilities (SQL, XSS, 
code, command execution) combined to be the most popular vulnerability 
for web applications.  This suggests that researchers interested in security 
problems associated with web applications should concentrate their efforts 
on these types of vulnerabilities.  Clearly, this suggestion assumes that all 
vulnerabilities have a similar (negative) economic value. 

• The two types of systems experience code injection problems at differing 
percentages.  However, care needs to be exercised when considering this 
conclusion given the relatively low volume of these types of defects. 

2.3.2.2 Mapping Vulnerabilities Down to Code Statements 
Table 2.7 displays the statement types that cause the 95 EIVs.  Several functions 
sharing the same properties are grouped into one family.  For example, output 
statements such as print, echo, and write all send data to the browser, and 
hence they are grouped in the “print” family.  Statements querying the DBMS 
such as executeQuery, mysql_query, db.execute are grouped in the 
“query” family. 
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Table 2.7. Statement usage 
Statement 
Type 

Number of 
Occurrences 

Occurrence 
Percent (%) 

“copy” file 1 1 
dir 1 1 
eval 11 12 
file 1 1 
open 2 2 
preg_replace 2 2 
“print” 
family 

47 49 

“query” 
family 

27 29 

require 1 1 
system 1 1 
wrong 
operator 

1 1 

Total 95 100 
 
For every vulnerability, a CG was created using the technique discussed in 
Section 2.2.4.  Statements resulting in the vulnerabilities can be located from 
these graphs.  Table 2.7 highlights the statements used to call standard library 
functions which are the majority of the statements (99%).  The statements listed in 
the table have the following behaviour: 

• “copy” file - a function that allows programmers to copy an existing file. 
• dir – a function that lists all files within a directory. 
• eval – a function that accepts a string parameter and executes that string 

as a programming statement. 
• file – a function that opens and reads a file based on a provided 

filename. 
• open – a function that opens a file, pipe, or file descriptor. 
• preg_replace – a function that will evaluate a provided string as a 

program statement if a special character is used (PHP only). 
• “print” family – a group of functions that allows the application to send 

output to a browser. 
• “query” family – a group of functions accepts a string containing one or 

more valid SQL statements and sends it to the underlying DBMS. 
• require (PHP only) – a function that accepts a string parameter 

containing a filename (which contains programming statements), reads the 
file, then evaluates all the programming statements within that file.  
Similar functions include include and include_once (PHP only). 

• system – a function that accepts a string parameter containing a system’s 
command, then creates a new process and executes the command. 
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• typographical error – this is a statement where the programmer used the 
wrong operator for a conditional branch.  For example, instead of using 
the < operator in an if statement the programmer used the <= operator. 
This operator does not enable an interaction and is the exception to the 
general rule. 

Based on Table 2.7, the implementation vulnerabilities can be divided into two 
categories: 

1. Interaction with external systems (EIV – External Interaction 
Vulnerability). 

2. Wrong statement usage. 
Table 2.7 shows that 99 percent of the implementation vulnerabilities are EIVs; 
this answers Q2.  This answer means developers should concentrate on the data 
flow between the web application and other systems because this is where most of 
the vulnerabilities occur. 

2.3.3 Question 3 
Question: What is the proportion of vulnerable LOC within a web application? 
That is, what is the vulnerability density? 
 
Metric: The number of vulnerable LOC versus the systems’ total LOC. 
 
Alhazmi et al. (2007) have explored the vulnerability density for Operating 
Systems and discovered that the density is very low.  In this study, the 
vulnerability density for web applications is explored.  It is believed 
implementation vulnerabilities are also limited to relatively small portions of the 
entire web application.  That is, the number of vulnerable LOC is significantly 
smaller than the total LOC of a web application. 
 
To answer Question 3, each implementation vulnerability was traced using the 
method outlined in Section 2.2.4.  A total of 101 graphs for the 20 applications 
were generated.  To determine the complexity of the vulnerable code, the number 
of nodes per graph and contaminated variables per graph were examined.  Figures 
2.3 and 2.4 show that the majority of the graphs have less than five nodes and four 
contaminated variables.  In fact, 70% of the CGs contain less than five nodes and 
93% of the CGs contain three or less contaminated variables.  Hence, the majority 
of the vulnerabilities can be viewed as “small and manageable”.  In fact, even the 
largest number of statements and contaminated variables associated with a 
vulnerability (15 and 12 respectively) is quite small when compared to the overall 
size of the system. 
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Figure 2.3 Histogram of nodes showing many CDGs have less than 5 nodes 
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Figure 2.4 Histogram of contaminated variables showing many CGs have less 

than 4 contaminated variables 
 
Once the CGs are obtained, the vulnerable LOC contained within each CG was 
counted. Table 2.8 further demonstrates that the number of vulnerable LOC for 
the known vulnerabilities is significantly smaller than the overall LOC.  The 
results from Figures 2.3-2.4 and Table 2.4 provide the answer to Question 3 
which is that vulnerability density is small.  Since Figures 2.3 and 2.4 and Table 
2.8 show that the number of vulnerable LOC is small compared to the overall size 
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of the system, it can be beneficial to introduce a solution to solve implementation 
vulnerabilities by concentrating on the CGs with vulnerable LOC. 
 

Table 2.8 Vulnerable LOC versus Total LOC 
Application Total LOC Vulnerabilities Vulnerable 

LOC 
A-CART 4,067 8 8 
AWStats 26,688 5 9 
Bonsai 6,980 8 42 
BugTracker.NET 18,101 4 4 
BugZilla 9,306 4 39 
Calcium 39,348 1 2 
Daffodil CRM 25,221 1 4 
DEV web management system 11,434 5 5 
FileLister 9,139 2 12 
JSPWiki 21,231 1 4 
Mantis 25,295 12 50 
Neomail 1,438 1 5 
osCommerce 38,833 15 34 
PDF Directory 9,451 12 38 
phpBB 29,812 23 100 
ProjectApp 11,444 5 11 
Roundup 27,061 4 8 
sBlog 7,844 2 12 
SkunkWeb 6,554 2 4 
ViewVC 7,549 2 2 

2.3.4 Question 4 
Question: Are implementation vulnerabilities caused by implicit or explicit data 
flows? 
 
Metric: The number of vulnerable code blocks with implicit data flow and the 
number of variables assigned from an input. 
 
Implicit data flows are information flows via the control structure of the program 
(Denning and Denning 1977).  For example, the statement “if (y == true) 
then x:=’a’; else x:=’b’” shows that variable y implicitly defines the 
value of variable x.  Hence, there is an implicit data flow from variable y to 
variable x. To obtain implicit flow information, conditional branching statements 
for all the nodes from the CGs generated in Section 2.3.3 were manually 
examined.  The examination revealed 56 statements with conditional branching 
from the 101 CGs.  The code blocks for each of these statements were inspected 
for any implicit data flows.  A code block is defined as a block of code that is part 
of the conditional branch.  For example, the following conditional statement 
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would contain two code blocks with the first code block containing an implicit 
data flow: 
 

if (x=1) 
  y := 2; 
  print y; 
else 
  call func(x); 
end 
 

The above example shows that if a CG has statements like those in the first code 
block, the CG would contain an implicit data flow.  Table 2.9 shows the results of 
the code block investigation. The 56 statements with conditional branching lead to 
83 code blocks. Twenty-nine of these code blocks do have implicit data flow. 
However, none of these code blocks with implicit data flows are part of the CGs 
obtained in Section 2.3.3. 
 

Table 2.9 Code blocks 
Number of CGs containing conditional statements 56 
Number of code blocks inspected 83 
Number of code blocks with implicit data flows 29 
Number of CGs containing code blocks with implicit data flows 0 

 
Table 2.9 shows that the CGs do not contain any implicit data flow statements.  
To determine if the code blocks containing implicit data flows can lead to 
potential vulnerabilities, a further investigation on the 29 code blocks was 
performed.  Thirty-six variable assignments were discovered in these code blocks.  
The variable assignments are either from constants or pre-existing variables.  The 
two example code blocks below shows two possible methods for the variables to 
be assigned.  The first code block shows that the variable is assigned from a 
constant.  The second code block shows the variable being assigned from an 
existing variable. 
 
if (isset($_GET[‘admin’]) 
  $admin_mode = 1; 
end 

if (strlen($_POST[‘msg’]) < 20) 
  $error = $too_short; 
  $print($error); 
end 

 
Although it is clear that constants are generally safe from implementation 
vulnerabilities, the pre-existing variables need to be examined to determine the 
original source of the data.  A back-trace for each variable assigned from an 
existing variable was performed; if the variable can be traced to an input, then the 
potential for vulnerabilities exists. The results can be seen in Table 2.10. 
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Table 2.10 Variable being assigned from different sources 
Number of variables being assigned from a constant 9 
Number of variables being assigned from an existing variable 27 
    Number of existing variables initialized from a constant 27 
    Number of existing variables initialized from an input 0 

 
The results from Tables 2.9 and 2.10 provide an answer to Question 4. That is, 
implicit data flows do not lead to any vulnerabilities in the systems examined.  
Hence, without further evidence, efforts on eliminating implementation 
vulnerabilities can focus on explicit data flows. 

2.4 Background 
Although studies on web application vulnerabilities properties currently do not 
exist, many techniques and approaches to detect, or mitigate against, web 
vulnerabilities have been proposed.  In this section, these techniques are briefly 
presented and discussed. 
 
SQLrand (Boyd and Keromytis 2004), AMNESIA (Halfond and Orso 2005), 
SQL-Guard (Buehrer et al. 2005), SQLCheck (Su and Wassermann 2006), CSSE 
(Pietraszek and Berghe 2005), WASP (Halfond et al. 2006, 2008), SQLProb (Liu 
et al. 2009) are all approaches aimed at addressing SQL injection vulnerabilities.  
SQLRand inserts random tokens into SQL statements and uses a proxy server to 
translate these tokens.  An incorrect query can be detected if the SQL query does 
not contain the correct tokens.  AMNESIA, SQLGuard and SQLCheck are all 
model-based approaches.  AMNESIA uses static analysis and runtime monitoring 
to detect for SQL injection vulnerabilities.  Static analysis is used to build models 
of the SQL statements, while the runtime engine detects whether the query strings 
matches the models.  SQLGuard requires the developers to call special functions 
to build a model of the SQL query to be used.  SQLCheck uses a formal definition 
of a SQL injection vulnerability; and identifies SQL injection attacks based on the 
formal definition.  CSSE and WASP are dynamic approaches designed to address 
SQL injection vulnerabilities using taint analysis.  These approaches attempt to 
mark negative tainting (CSSE) or positive tainting (WASP) to identify malicious 
query statements, before they are passed onto the DBMS.  Both approaches 
involve modification to either the runtime engine or usage of a specialized API.  
SQLProb uses a proxy to identify SQL injection attacks before they reach the web 
application. 
 
Other approaches to applications’ security have also been proposed which address 
all types of web application vulnerabilities.  Security Gateway proposed by Scott 
and Sharp (2002) is an application firewall that filters out all malicious inputs 
before they reach the web application.  Nguyen-Tuong et al. (2005) proposed a 
dynamic approach to detect attacks through taint analysis.  Martin et al. (2005) 
proposes PQL (Program Query Language) that enables programmers to specify a 
sequence of events between objects.  Balzarotti et al. (2007) presents a static 
analysis approach capable of detecting both workflow attacks and data-flow 
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attacks.  WebSSARI (2004) combines static analysis with a runtime component to 
check on the static model.  Pixy (2006) is currently one of the more advanced 
static taint analysis tools available for PHP.  Shankar et al. (2001) proposed a 
static approach that can detect format-string vulnerabilities commonly found in C-
based applications.  The method defines two extended data types, tainted and 
untainted, which help reduce the amount of false positives generally associated 
with static analysis methods.  Zhang et al. (2002) and Johnson and Wagner (2004) 
further extend the approach by using it to assess security issues with the Linux 
Security Modules framework and user/kernel pointers successfully.  These 
approaches are designed to detect vulnerabilities in C-based applications, and 
hence, their effectiveness with scripting languages used to develop web 
applications such as PHP, Ruby, and Python remain unknown. 
 
Scanning tools also exist to help developers and system administrators identify 
vulnerabilities.  QED (Martin and Lam 2008) and Ardilla (Kiezun et al. 2009) 
attempt to generate SQL Injection and XSS attacks automatically.  Secubat (Kals 
et al. 2006) and other commercial web scanners, such as Acunetix Web 
Vulnerability18 Scanner, extend bypass testing by creating tools that provide 
automatic penetration testing for web applications without using the web 
applications’ target clients.  Lin and Chen (2006) extend traditional black-box 
testing techniques with elements of static analysis by including a tool to 
automatically inject guards at input points found through the crawling component. 
 
 

                                                 
18 http://www.acunetix.com/, last accessed February 7, 2010 



 

27 

Chapter 3 – Practical Elimination of External 
Interaction Vulnerabilities in Web Applications 
Many approaches designed to address External Interaction Vulnerabilities (EIVs) 
have been proposed – these approaches are discussed in Section 3.5 – further 
confirming that EIVs are an extremely important class of vulnerabilities for web 
applications.  Current approaches are either: application security (McGraw 2004) 
oriented, static analysis methods or black-box techniques.  White-box approaches 
to detecting all EIVs are not common in the research literature nor in industrial 
settings.  In this chapter, a practical white-box software development process that 
can help detect and eliminate web applications’ EIVs is introduced.  The approach 
builds a model based on the data flow of the application. The approach is 
significantly enhanced by computer-support software which automates much of 
the “straightforward” components in the approach, allowing the security team to 
concentrate of the “creative” components in vulnerability detection. This partial 
automation strategy also makes the approach highly effective in terms of effort 
and maximizing the quantity of vulnerabilities discovered. The partial automation 
strategy utilizes two pre-existing tools (a crawler and a capture replay tool) and 
two purpose-built proof-of-concept tools, Web Application Input Collection 
(WAIC) and Web Application Graph Generation (WAGG), to automate portions 
of the process for the web application in the case study. The strategy can be 
combined with previous approaches to further harden web applications against 
EIV related attacks. 
 
The remaining sections of this chapter are organized as follows: Section 3.1 
defines EIVs.  Section 3.2 provides an overview of the research problem.  Section 
3.3 introduces EIV analysis.  Section 3.4 presents an industrial case study for the 
presented strategy.  Section 3.5 provides an overview of current approaches aimed 
at addressing EIVs. 

3.1 Definition 
External Interaction Vulnerabilities (EIVs) are vulnerabilities that allow attackers 
to use vulnerable web applications as a vessel to transmit malicious code to an 
external system that can interact with the web application.  The malicious code 
will modify the syntactic content of the information sent to the external 
application.  In other words, EIVs allow attackers to send systems commands that 
interact with a web application, rather than the actual web application itself.  
Currently, four interaction categories are defined: 

• DBMS interaction – this is the interaction between the web application 
and external DBMS.  An example of a DBMS interaction would be a web 
application calling a “query” function to send a SQL statement to a 
DBMS. 

• Browser interaction – interactions in this category are between web 
applications and clients (typically a browser).  An example of a browser 



 

28 

interaction would be a web application sending an HTML encoded 
webpage to a web browser. 

• OS/Filesystem interaction – this is the interaction between the web 
application and the filesytem or operating system.  An example of this 
interaction type would be a web application reading a configuration file 
from the hard drive. 

• Interpreter interaction – interactions in this category are between the web 
application and a programming language interpreter (usually the same 
language as the web application).  An example of an interpreter interaction 
would be a web application calling “eval” to execute a programming 
statement. 

Popular EIVs include SQL injections and cross site scripting vulnerabilities.  A 
vulnerability is classified as an EIV if it has the following properties: 

• A malicious input is required to initiate the attack. 
• The malicious input is transmitted from the web application to an external 

system. 
• The malicious input does not exploit the web application directly.  For 

example, a buffer overflow vulnerability cannot be classified as an EIV 
because it attacks the application’s input buffer directly without 
interacting with an external system. 

3.2 Research Problem 
As with many research problems, a precise specification of the problem of interest 
is difficult to comprehensively frame, and is only likely to be available after the 
problem has been completely solved.  However, this research does not seek to 
address all aspects of vulnerabilities; rather it is a specific problem which is 
framed with the following constraints or objectives. 

• The work is only interested in web applications and EIVs.  However, any 
solution should be applicable to all types of web applications and seek to 
eliminate all types of EIVs.  As web applications become increasingly 
reliant on other external systems, such as other web services (Curbers et 
al. 2002, Alonso et al. 2003) or NXDs (Chaudhri et al. 2003), new types of 
EIVs will emerge.  For example, XPATH19 is becoming increasingly 
popular technique for querying XML documents.  A web application that 
uses XPATH can be vulnerable to XPATH injection, which is a type of 
EIV.  Although the number of exploits based on XPATH injection 
vulnerabilities is currently small compared to XSS and SQL injection, this 
number will only increase as more and more web applications take 
advantage of XPATH as a method of retrieving data from XML 
documents.  A solution that cannot support future or, currently obscure, 
EIV types will quickly become obsolete.  Web application technology 
moves at an incredible pace.  Within a few years, web applications have 
evolved from simple guestbooks and web counters which relied on flat-
text files for data support to fully interactive office productivity suites that 

                                                 
19 http://www.w3.org/TR/xpath, last accessed February 9, 2010 
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interact with enterprise third party systems such as Oracle DB.  A solution 
that cannot keep pace with the evolving web applications would not be 
practical for industrial use. 

• Any solution must support a wide range, including multiple versions, of 
external systems.  This can be viewed as a large configuration problem –
see Eaton and Memon (2007) for work in this area.  Web applications can 
interact with many different external systems.  For example, one 
application may interact with Internet Explorer 6.5 and MySQL 3.23; 
another application may interact with Internet Explorer 5.5, Mozilla 
FireFox 1.5, SQLite 3.4.2 and Google Maps API 2.1.  While similar, 
different versions of external systems will have different interfaces.  These 
differences often cause highly vulnerable situations as systems commonly 
fail to correctly adapt to these evolving interfaces.  For example, only 
Internet Explorer 6 SP1 and later support HTTP-Only cookies20.  This is 
an extension to the Set-Cookie header that mitigates XSS attacks targeting 
information stored within cookies.  However, not all IE versions support 
this extension, and hence, some IE versions have a much higher risk of 
being vulnerable to XSS attacks targeting cookies than other IE versions.  
Furthermore, Mozilla FireFox 2.0.0.4 and lower only support HTTP-Only 
through an extension.  Hence, the same version of FireFox (for example, 
2.0.0.4) can have different risk levels, with regard to XSS attacks targeting 
cookies, depending on whether the HTTP-only cookie extension is 
enabled. 

• Any solution must be language-independent. This is important as web 
applications utilize a wide range of scripting/programming languages 
(Java, Visual Basic, PHP, Perl, C#, Python, JavaScript, Ruby, Cold 
Fusion, etc.), which support a variety of different programming paradigms 
and styles.  Furthermore, many web applications, such as AJAX enabled 
applications, utilize more than one scripting/programming language.  
Hence, any solution that can only support a single scripting/programming 
language would not be usable against these multi-language applications.  
This objective becomes more important as AJAX enabled web 
applications, such as Google Docs & Spreadsheets, and Mashups21, which 
combines multiple web APIs in one hybrid web application, become more 
popular. 

• Any solution must be applicable to current industrial strength web 
applications. Apart from the constraints stated above, this constraint is not 
too demanding. Current web applications are relatively small in scale (the 
previous chapter shows that a large number of these systems, range in size 
from 4 to 40 KLOC); and hence, many of the restrictions placed by ultra-
large scale systems are not of great concern here. 

• Any solution must be “practical” in an industrial sense. Industrialists often 
express their frustration that many exciting pieces of software research are 

                                                 
20 http://msdn2.microsoft.com/en-us/library/ms533046.aspx, last accessed February 9, 2010 
21 http://www.ibm.com/developerworks/xml/library/x-mashups.html, last accessed February 9, 
2010 
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not applicable in their context. Research which requires large-scale 
retraining or complete redefinitions of their life-cycles are often 
considered by industrialists as “impractical”. Hence, this research only 
seeks solutions which can be viewed as an incremental development of 
most life-cycles, and solutions which can be utilized by many practitioners 
with minimal additional training or with on the job training. 

In summary, the research problem can be viewed as a two-level problem.  The 
lower-level problem is to find all EIVs that exist within a web application.  The 
higher-level component, which generalizes the lower-level problem to cover all 
web applications, can be viewed as a large configuration space (CS): L × ET × 
NE, where L is the set of scripting/programming languages used to build web 
applications, ET is the set of EIV Types, and NE is the set of EIVs.  Furthermore, 
NE is defined as ES × VES where ES is the set of different external systems and 
VES is the set of versions of these external systems. 

3.3 External Interaction Vulnerability Analysis 
The proposed strategy can be thought of as a white-box technique (Myers 1979); 
EIV analysis is performed using the following steps; these steps are further 
discussed in Sections 3.3.1 – 3.3.4: 

1. Create a sitemap for the web application. 
2. Identify all input sources. 
3. Create contamination data graphs (CDG). 
4. Test the contamination flow graphs until a coverage criterion is met. 

Although the CDG generation step of EIV analysis is similar to static analysis, the 
two approaches are not the same.  CDG generation is just one of the four steps 
required for EIV analysis.  With EIV analysis, CDGs are a resource that security 
practitioners can utilize to uncover EIVs, whereas static analysis would simply 
present the CDGs without any further instructions on how these results should be 
handled.  Section 3.3.3 discusses the difference between CDGs and DEF/USE 
approaches used in traditional data flow analysis approaches.  Hence, EIV 
analysis is most appropriately classified as specialized data flow testing that 
concentrates on tainted data flows.  However, this approach is not a dynamic taint 
analysis approach as proposed by other researchers (Halfond et al. 2006, 
Pietraszek and Berghe 2005, Xe et al. 2005).  It does not contain a runtime 
component that monitors the application’s memory for tainted values.  In fact, 
dynamic taint analysis approaches often require modifications to the runtime 
platform or extra software which can complicate configuration and reduce 
performance. 

3.3.1 Creating the Sitemap 
The sitemap is a critical part of EIV analysis because it allows the security 
practitioner to identify path executions for EIV analysis.  A sitemap is a set of 
directed graphs that represents a model of all accessible web pages from a web 
application.  Each of these graphs contains a set of edges and nodes.  More 
formally the sitemap is defined as S = {G} where: 
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• G = <N, E> where 
o N is a set of nodes representing the web pages.  Each n∈N 

represents a web page accessible by the client. 
o E is a set of directed edges.  Each e∈E from node n1 to n2 shows 

that n2 is reachable from n1. 
Although the sitemap can be generated manually, the process is labour intensive 
and not very practical; hence a web crawler (Heydon and Najork 1999, Moody 
and Palomino 2003) is used to speed up the process.  Specialized crawlers that 
can handle dynamic contents (Raghavan and Garcia-Molina 2001), or site specific 
pages (Miller and Bharat 1998) also exist.  A practitioner can use a crawler that 
can handle dynamic content to help create the site map for the web application 
under investigation; however, because crawlers can only follow web pages 
through links or forms, the practitioner’s intervention is required in order to 
generate a complete sitemap.  However, crawlers can only access web pages that 
are referenced from other pages; hence, if a web page is “hidden”, no other web 
pages link or refer to it, then it cannot be accessed by the crawler.  In order to 
create complete sitemaps, the number of web pages crawled needs to equal the 
total number of web pages for the web application.  For example, consider a web 
application that has eight web pages: index, normal2…normal5, indexadmin, 
admin2 and admin3. These eight web pages comprise two distinct sections: 

• One section is accessible to normal users.  This section contains five web 
pages called index, normal2…normal5. 

• Administrators can only access another section.  This section contains 3 
web pages called indexadmin, admin2, and admin3. 

These two sections are separated and do not cross-reference each other; hence, the 
crawler needs to be executed twice. 
 
The crawler must be configured to exclude pages not belonging to the web 
application, usually by restricting the crawling operation to a single domain or a 
directory of a web site.  The crawling operation should not be limited to a single 
IP if the web application is hosted on multiple servers because the IP addresses 
for these servers are different.  Although the IP addresses for these servers are 
different, the domain remains the same.  For example, Amazon.com uses several 
servers to power its e-commerce application, but all the servers are under the 
Amazon.com domain. 

3.3.2 Inputs 
Inputs for web applications come from many sources (Wheeler 2003) including 
clients (browsers).  Black-box techniques for web applications primarily 
concentrate on this source of input (Offut et al. 2004, Tappenden et al. 2005); 
however, investigating this source alone is insufficient.  Many web applications 
communicate with external applications to perform required tasks.  Inputs from 
these external applications cannot be trusted and need to be examined to reveal all 
possible security faults.  For example, Figure 3.1 shows a sequence diagram of a 
simplified interaction between a client and a search engine.  The client sends a 
request to the search engine web application; the search engine then parses this 
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request, creates an SQL statement and sends it to a DBMS.  Once the results are 
retrieved from the DBMS, the search engine builds an HTML page and returns 
this page to the client.  This interaction sequence has two input sources, one from 
the client (the search query that the user sends) and the other from the DBMS (the 
results that the DBMS returns).  Code segments using these inputs have potential 
vulnerabilities associated with them.  If the search engine does not parse the input 
from the DBMS then an attacker may compromise the DBMS and insert a 
JavaScript payload, which the search engine will return to the client after a search 
request.  In this scenario, the search engine is vulnerable to a stored XSS22 attack.  
Hence, if the security practitioner only examines the input from the client, the 
stored XSS vulnerability from the second input source will not be revealed until 
the product is released. 

 
Figure. 3.1 A search sequence 

3.3.2.1 Input Classification 
Ideally, all inputs should be examined; however, software development 
companies have time and budget constraints limiting the amount of testing.  To 
aid with the selection of inputs to be investigated, inputs are classified into two 
types: 

• Inter-organization inputs – these are input values from unknown sources. 
• Intra-organization inputs – These are input values entered by known and 

believed to be trusted sources (administrators, webmasters, employees, 
etc.). For example, a news article entered into a CMS (Content 
Management System) by an editor is considered as an Intra-organization 
input; whereas a comment posted by an anonymous user to a news item is 
considered an inter-organization input. 

Inter-organization inputs should have a higher priority because, on average, they 
represent greater risks to the system.  Intra-organizational inputs should still be 
examined because attacks can still happen under specific circumstances.  For 
example, a spiteful employee can intentionally attack the system, or an attacker 
                                                 
22 http://www.owasp.org/index.php/Cross_Site_Scripting, last accessed January 20, 2008 
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can access an employee’s username and password through phishing (Dhamija and 
Tygar 2006, Ollman 2004) or other social engineering techniques (Granger 2003), 
and use the account as a mechanism to inject payloads. 
 
Multiple inputs from the same source do not imply that they are of the same type.  
For example, consider a simple e-commerce system that can display a product’s 
name, price, and user reviews.  All three data are retrieved from three columns 
within a DBMS.  However, an employee enters the product’s name and price, 
while web visitors, who claim to have used the product, enter the user reviews.  In 
this scenario, although the inputs are from the same source (DBMS), the two 
columns containing the values entered by the employee (product’s name and 
price) are considered as intra-organization inputs while the other column 
containing the user reviews are considered as inter-organization inputs.  Under 
constraints, a security practitioner can prioritize and examine the e-commerce 
system’s ability to verify and validate the inter-organization inputs (reviews 
submitted by users) first, before investigating the intra-organization inputs 
(product’s name and price). 

3.3.2.2 Input Identification 
To identify all inputs, the security practitioner will need to have access to the 
source code.  Each input that enters the system can be stored in multiple variables; 
these variables are the starting nodes for the contamination graph.  To allow 
automation, a formal model for the inputs is created. 
 
Each source code file can have zero or more inputs.  An input unit (IU) = (S, T, 
N) is used to describe inputs where: 

1. S = The source of the input.  This specifies which external system supplies 
the input value. 

2. T = The type of the input.   T∈{Inter-organization, Intra-organization}. 
3. N = an ordered pair (v, l) where v is a variable that stores the input value 

and l is the location where the variable is defined.  In other words, (v,l) = 
N iff (DEF(v) := input value ∧ LOC(v) = l) where DEF(v) is the statement 
that defines v and LOC(v) is the location where v can be located which is 
the line number and the filename. 

 
To introduce the algorithm used to identify the inputs, several variables and 
functions need to be defined: 

• Let I be a set of IUs. 
• Let F be a set of source code files. 
• Readlines(f) is a function that returns a set of statements in file f. 
• Source(v) is a function that returns the source of variable v.  That is, it 

returns the external system that sends a value to the application under test. 
• Type(v) is a function that returns the type of variable v. 

The following algorithm derives all inputs for a web application.  The algorithm 
requires the set of source code files to be known.  The inputs generated from the 
algorithm are stored in I: 
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1. I = {}; 
2.  ∀(f ∈ F) { 
3.     ST := Readlines(f); 
4.     ∀ (st ∈ ST) { 
5.         if (st = (DEF(a) := input)) { 
6.             I := I ∪ (Source(input),Type(input),(a, LOC(a))); 
7.         } 
8.     } 
9. } 

 
The algorithm parses all source code files to search for statements where variables 
are initialized from an input. 

3.3.3 Contamination Data Graphs 
Contamination data graphs (CDGs) are a critical component of the EIV analysis 
process.  These graphs will allow the tester to design test cases that can reveal 
potential EIVs for the web application under investigation.  CDGs are a variation 
on DEF/USE graphs used in data flow testing (Frankl and Weyuker 1998, Harrold 
and Rothemel 1994, Laski and Korel 1983, Rapps and Weyuker 1985).  Liu et al. 
(2000) has extended the technique for web applications; however, the approach 
concentrates on inter-procesure and intra-procedure data flows and not 
intersystem data flows which are critical to the EIV analysis process.  Hence, this 
study introduces an intersystem contamination graph (CDG), which describes the 
path an input value travels upon entering the system under investigation to reach 
various external systems.  The graph is similar to the taint variable concept (Hurst 
2004). 
 
A CDG differs from a traditional DEF/USE graph because it does not contain all 
statements within a program.  Its nodes only contain DEF/USE statements related 
to the input that initializes the graph.  The CDG’s purpose is to trace the path of 
an input value from its entry point to its various exit points (i.e. statements that 
send the input value to external systems).  A CDG graph is formally defined as 
CDG = < N, E, Ne> where: 

• N is a set of nodes representing all statements containing either a DEF or 
USE instruction. 

• E is a set of directed edges representing the data flow between statements. 
Each e ∈ E, from nodes n1 to n2, shows that the flow of the tainted data 
moves from n1 to n2. 

• Ne ⊆ N is a set of exit nodes where the input values exit the system and 
are transmitted to external systems. 

 
The security practitioner needs to create a CDG graph for each input identified in 
Section 3.3.2.  Before the algorithm used to create the CDG is introduced, several 
variables and functions need to be defined: 

• V is a set of variable names. 
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• getLoc(x) returns the location (loc) of the variable defined in the input unit 
x.  loc is comprised of a line number and a filename.  Section 4.B 
discussed the model for the input. 

• getVariable(x) returns the variable name (v) of the variable defined in the 
input x. 

• getStatement(loc) returns the statement at location loc. 
• getNextUse(V,loc) returns the location of the next statement that contains 

a USE instruction for one of the variables in the set V starting from the 
location loc.  If a statement cannot be found before the end of the program 
is reached, then getNextUse(V,loc) returns EOP (End of Program) stating 
that no additional statements can be found. 

• getPrevUse(V,loc) returns the location of the previous statement 
containing a USE instruction for one of the variables in the set V from the 
location loc.  If the current location is the first USE within a branch, then 
it returns the last encountered USE instruction before the branch. 

• EXITPOINT is the statement that sends the value of the variable stored in 
the input unit to an external system.  For example, a system call to the 
print function is an exit point if the value of the variable stored in the input 
unit is passed into the print function. 

The following algorithm can be used to produce a CDG for each input unit: 
 

1. create_CDG(inputUnit) {     
2.     N := {}; 
3.     E := {}; 
4.     Ne := {}; 
5.     V := {} 
6.     loc := getLoc(inputUnit); 
7.     var := getVariable(inputUnit); 
8.     V := var ∪ V; 
9.     N := loc ∪ N; 
10.     loc := getNextUse(V,loc); 
11.     if (loc != EOP) { 
12.         N := loc ∪ N; 
13.         E := (getPrevUse(V,loc)→loc) ∪ E; 
14.         st := getStatement(loc); 
15.         if (st = DEF(w) { 
16.             V := w ∪ V; 
17.         } 
18.         if (st = EXITPOINT) { 
19.             Ne := loc ∪ Ne; 
20.         } 
21.     } else { 
22.         Go to Step 6; 
23.     } 
24.     return <N,E,Ne>; 
25. } 
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The algorithm starts at the location where the input enters the system.  It then 
searches for all statements utilizing the value and all variables assigned with the 
value.  Finally, all exit points are then identified and flagged accordingly.  Hence, 
using the above algorithm, a complete data flow path, from the entrance to the 
exit points, for the input is created. 
 
The algorithm has a well-known limitation – it is unable to follow information 
through implicit flows (Denning and Denning 1977) if constants are used to 
initialize the variable in the flow.  For example, if (INPUT == 1) then x:=’a’; else 
x:=’y’.  However, an approach which adequately resolves this limitation is 
unsolvable.  Further, while implicit flows can exist in any program, their 
frequency of occurrence is not well known.  In addition, the previous chapter 
found that none of the paths through the compromised systems which lead to 
vulnerabilities contained implicit flows.  Hence, while this theoretical limitation 
exists in this testing process, there exists no compelling empirical argument that 
the limitation causes the process to be inadequate on a regular basis when applied 
to realistic systems. 
 
An Example of the CDG 
In this section, an example program is used to demonstrate the creation of a CDG.  
The following is a highly simplified search application: 
 

1. var search_keyword = gets(); 
2. var sql_query = “SELECT text FROM contents WHERE text like 

‘%“+search_keyword+”’”; 
3. var results = execute_query(sql_query); 
4. if (results != EMPTY) { 
5.     print “Your keyword: “+search_keyword+” returned the following 

results:”; 
6.     print results; 
7. } else { 
8.     print “Your keyword: “+search_keyword+” returned no results.”; 
9. } 

 
This application contains two input sources, one from the user (line 1) and one 
from a DBMS (line 3); hence two CDGs are required to be generated.  Figures 3.2 
and 3.3 show the CDGs created for these two inputs. 
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1

2

3, (exit, DBMS)

5, (exit, browser) 8, (exit, browser)

def (search_keyword)

def (sql_query)
use (search_keyword)

use (sql_query)

use (search_keyword)use (search_keyword)  
Figure 3.2 A CDG for search_keyword 

 

 
Figure 3.3 A CDG for results 

 
These four exit points show that four possible EIVs exist in the system; however, 
the amount of testing needed to determine whether the EIVs exist is not known.  
In the next section, a coverage criterion will be defined.  This criterion will help 
security practitioners determine how much testing on these graphs is considered 
sufficient. 

3.3.4 Test Data Coverage, Selection, and Execution 

3.3.4.1 Coverage Criterion 
A number of detailed path coverage criteria for data flow testing have been 
proposed (Howden 1975, Laski and Korel 1983, Ntafos 1984, Woodward et al. 
1980).  All proposed criteria aid the tester in selecting the most effective paths in 
a DEF/USE graph; however, because EIV analysis only concentrates on revealing 
one class of fault, a more specialized criterion is required.  A path is a set of edges 
of the CDG that demonstrates how node B can be reached from node A.  
Formally, the coverage criterion for EIV analysis is defined as: 

• Let P be a set of paths to be tested for a CDG.  
• Let E and Ne be a set of edges and exit nodes for the CDG respectively. 
• P satisfies the coverage criterion for EIV analysis if  

o ∀n∈Ne, ∃p∈P such that n is the last node in p. 
o ∀e∈E, ∃p∈P such that e is included in p. 
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Although HTTP23 is a stateless protocol, web applications are not usually 
stateless; they can be stateful by using session management mechanisms such as 
cookies (Kristol and Montulli 2000).  Attempting to access a web page while not 
in the right state commonly results in an error.  Therefore, to reach the first node 
of a path to begin testing, the security practitioner needs to examine the sitemap 
and determine the path to reach the web page that allows the first node to be 
accessed. 

3.3.4.2 Test Data Selection 
Test data have to be carefully selected to cater to each specific exit point because 
each external system interprets the information differently.  Input data, when 
passed to external systems, are categorized into two types by these external 
systems: 

• Reserved words/characters – These are words and characters that have 
special meanings; they are interpreted and executed by the external 
systems. 

• Data – The data can be classified into various data types such as String, 
Integer, etc. 

Only reserved words/characters can modify the syntactic information passed from 
a web application to an external system.  Hence, the security practitioner needs to 
select data that can satisfy one requirement: 

• The data has to cause the external system to interpret the data as reserved 
words/characters rather than data.  

Therefore the security practitioner has to examine the external system’s 
documentations to determine how to force data to become reserved 
words/characters.  For example, let’s assume that the DBMS in Figure 3.2 is 
MySQL (Vaswani 2004).  Upon reviewing the MySQL’s documentation, the 
practitioner may decide that if the data is not enclosed in single quotes (such as 
‘data’) and it matches one of the reserved words/characters then MySQL will treat 
the data as reserved words/characters.  Hence, the practitioner can simply use 
three test cases to test for the path leading to the MySQL exit point: 
 

1. The data is not enclosed in single quotes, it can simply be any reserved 
word/character such as SELECT.   

2. Escape the enclosure before injecting a reserved word or character, is ’ 
SELECT.  The single quote before SELECT forces the data, enclosed in 
single quotes, to become ‘’ SELECT ’which means that SELECT is now 
treated as a reserved word/character. 

3. To specify special characters in the data, the MySQL manual (Widenius 
and Axmark 2002) states that MySQL recognizes several escape 
sequences; these sequences start with the backslash character \.  Table 
4.D.1 displays these escape characters.  The table shows that a single 
quote character can be escaped using \’; if the web application inserts the 
escape character before the single quote character then the character loses 

                                                 
23 http://www.ietf.org/rfc/rfc2068, last accessed February 8, 2010 



 

39 

its special meaning. Hence, the third test case needs to escape the escape 
character (Table 3.1).  

 
Table 3.1 Escape sequences for MySQL 

Escape Sequence Character Interpreted 
\0 An ASCII 0 (NUL) character 
\’ A single quote (‘) character. 
\” A double quote (“) character. 
\b A backspace character. 
\n A newline (linefeed) character. 
\r A carriage return character. 
\t A tab character. 
\Z ASCII 26 (Control-Z). 
\\ A backslash (\) character. 
\% A percent (%) character. 
\_ An underscore (_) character. 

 
The above data is only applicable for paths that do not contain any nodes within a 
branch, or if there are nodes within a branch, then the branching condition is not 
dependent upon the input under test.  If the path contains nodes that are within a 
branch and the branching condition is dependent upon the test input, the 
practitioner needs to modify the test data for this input to satisfy the coverage 
criteria. 

3.4 Case Study 
A case study on a web application was performed in order to determine the fault 
detection capability and efficiency of the proposed approach.  The application 
used for this case study is a commercial application, which was initially released 
on April 4th, 2004.  The application is a powerful search engine that allows users 
to search for the latest product specification data from thousands of international 
standards.  The web application has many users around the world; the users come 
from a wide variety of organizations from defense departments to automobile 
manufacturers.  The application is a typical 3-tier web application, specifically 
using Internet Explorer, Apache+PHP and MySQL (Williams and Lane 2002) on 
each tier. The web application contains ~25 KLOC.  It has received eight 
revisions; these revisions added new features and corrected many bugs and 
vulnerabilities.  The first six revisions were corrective maintenance and were 
released in the application’s first 18 months of service.  Revision six involved a 
detailed security review (Howard and LeBlanc 2003, Lipner 2000); the security 
review involved the following steps: 

1. All web pages of the web application were visited and parsed for inputs. 
2. These inputs were then used in a penetration test. 
3. The source code containing vulnerable inputs were reviewed and guards 

were either added or modified. 
4. Steps 2 and 3 were repeated until the inputs were considered to be safe 

from EIV attacks. 
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The organization revealed that the security review took 24 person-hours to 
complete.  The bug-tracking database used by the development team (Doar 2005) 
reveals 68 EIVs were found and corrected for revision six.  The remaining two 
revisions were adaptive and perfective maintenance with minor corrective 
maintenance (with no new EIVs were discovered) which suggests that the 
application is now stable; this status was confirmed by the developers of the 
application.  For the case study, the source code for revision five was retrieved 
and investigated using the testing approach proposed.  In order to provide a clear 
reference, all EIVs reported in the bug-tracking database were verified against 
revision five.  Any EIVs that could not be replicated for revision five were 
discarded because they were introduced in later revisions with the addition of new 
features.  Because no new EIVs have been discovered after the sixth revision, the 
total of confirmed EIVs for revision five is 68.  One security practitioner was 
selected to perform the case study using the steps described above. 

3.4.1 Drawing the Application’s Sitemap 
To create the sitemap, the practitioner first examined the source files.  Then a 
crawler (REL Link Checker)24 was used to identify the majority of the web pages.  
The crawler used was not able to identify web pages linked using JavaScript code; 
hence, the practitioner manually generated sections of the sitemap that were 
inaccessible to the crawler.  The completed sitemap for the application took 1 
hour to create, and is shown in Figure 3.4. 

                                                 
24 http://www.relsoftware.com/rlc/, last accessed February 9, 2010 
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Figure 3.4 The sitemap of the application 

3.4.2 Identifying the Application’s Inputs 
Inputs for the web application originate from two sources: the client (browser) 
and the MySQL database.  The application is configured with register_globals = 
off (Shiflett 2004); hence, inputs originating from the client can be detected 
through the usage of super global arrays25 within programming statements.  Data 
from the MySQL database was retrieved using two function calls: 
mysql_fetch_array or mysql_insert_id. 
 
Using the algorithm provided in Section 3.3.2, the Web Application Input 
Collection (WAIC) tool was created to aid security practitioners with this step.  
The tool automatically parses the source files of the web application and outputs 
all inter-organization and intra-organization inputs.  WAIC’s output contains the 
input type, the file, location and the input name of each identified input.  The tool 

                                                 
25 http://www.php.net/manual/en/, last accessed February 10, 2010 
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required 30 minutes to parse all the source files for inputs using an Athlon X2 
3800 CPU with 2GB of RAM. 
 

Table 3.2 Number of inputs and their sources 
Input source Number of inputs 
Client/Browser 96 
MySQL 545 
Total 641 

 
WAIC identified 641 inputs for the application.  Table 3.2 displays the total 
number of inputs found and their sources.  Personnel from the organization enter 
all of the database items. Hence, these items were initially considered as intra-
organization type.  To further verify this, each input was carefully examined using 
the available design and SRS documents.  Table 3.3 shows the results from the 
examination. 
 

Table 3.3 Input types 
Input source Input type Number of inputs 

Inter-organization 96 Client/Browser 
Intra-organization 0 
Inter-organization 1 MySQL 
Intra-organization 544 

 
The examination identified one inter-organization input within the database, a 
field that allows the customer to customize one of the display features. 

3.4.3 Creating the CDGs and Choosing Test Data 

3.4.3.1 Creating the CDGs 
To create the CDGs, the Web Application Graph Generation (WAGG) tool was 
created based on the algorithm provided above.  WAGG accepts the output of 
WAIC as its inputs.  WAGG allows security practitioners to automatically 
generate all CDGs associated with each input identified by WAIC for the web 
application under test.  The majority of the CDGs (99%) are very simple and 
contain just one exit point per graph; the graphs also do not span across more than 
three source files.  Each line represents a node and contains a node id, previous 
node id, source file, line number, any DEF/USE information, and the external 
system if it’s an exit node. 
 
Graphs for intra-organization inputs were extremely simple, involving only one 
source file; hence, only three hours were required to generate all of the graphs for 
the intra-organization inputs.  Four hours were used to create the graphs for inter-
organization inputs because they were slightly more “complex”.  Figure 3.5 
displays the most “complex” CDG that WAGG produced.  Each node is labeled 
with the source filename, followed by the line number in brackets.  Once again, 
filenames are obscured to ensure confidentiality.  Nodes containing exit points are 
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labeled with the source filename, followed by the line number and the name of the 
external system. 
 

Page1 (15)

Page1 (21)

def ($login)

use ($login)

def ($username)

Page1 (92) use ($login)
def ($_SESSION[‘username’])

Functions (231) use ($login)

Functions (241)
use ($username)
def ($query)

Functions (242, 
exit, MySQL)

use ($query)

Page1 (23) use ($login)

Functions (209) def ($username)
use ($login)

Functions (220)
use ($username)
def ($query)

Functions (221, 
exit, MySQL)

use ($query)

Functions (223)
use ($username)
def ($query)

Functions (224, 
exit, MySQL)

use ($query)

Page1 (24) use ($login)

Functions (283) def ($username)
use ($login)

Functions (292)
use ($username)
def ($query)

Functions (293, 
exit, MySQL)

use ($query)

Page14 (45)
use ($_SESSION[‘username’])
def ($query)

Page14 (46, 
exit, MySQL)

use ($query)

Page17 (12)
use ($_SESSION[‘username’])
def ($query)

Page17 (23, 
exit, MySQL)

use ($query)

Page17 (122, 
exit, MySQL)

use ($_SESSION[‘username’])

Page17 (160, 
exit, MySQL)

use ($_SESSION[‘username’])

Figure 3.5 A sample CDG for the application under test 

3.4.3.2 Selecting Test Data for the CDGs 
For paths leading to the MySQL exit point, the practitioner used the three test 
cases discussed in Section 3.3.4.  In terms of web browsers, this application only 
supports Internet Explorer.  Upon reviewing all available documentation for IE 
6.5, which is the lowest version supported by the application under investigation, 
the practitioner selected the following test data to be used for IE exit points: 
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• <script>alert(‘hello’)</script> - This input value attempts to insert a 
payload directly without any obfuscation.  If the browser pops up a 
message box when a path is executed with this value, then the web 
application has an EIV. 

• <b onmouseover="alert('hello')">A</b> - This input value will hide the 
JavaScript code in a harmless formatting tag.  If the browser pops up a 
message box, after a path is executed with this value, when the mouse is 
moved over to the letter A, then the web application has an EIV. 

• "> <script>alert(‘hello’)</script> - This input value attempts to escape the 
enclosure of a parameter within a tag, then closes the tag and inserts a 
malicious payload.  For example, a benign tag like <font 
color=”INPUTVALUE”> Hello!</font> when expanded with the input 
value become <font color=””><script>alert(‘hello’)</script>Hello!</font> 
which means that the JavaScript code is successfully embedded.  If the 
browser pops up a message when a path is executed with this value, then 
the web application has an EIV. 

• " style="background:url(javascript:alert('hello'))"> - This input value also 
attempts to escape the enclosure of a parameter within a tag; it also 
obfuscates the payload code by embedding it within a style parameter.  
This input value will only work with IE because IE accepts JavaScript 
code from many uncommon tags and parameters.  If the browser pops up a 
message when a path is executed with this value, then the web application 
has an EIV. 

3.4.4 Test Execution, Results, and Analysis 
To prioritize the test cases, the practitioner grouped the test cases according to the 
input type.  Table 3.4 displays the test cases required for each input type. 
 

Table 3.4 Number of paths and test cases 
Input type External system 

at exit point 
Number of 
paths 

Number of test 
cases 

Browser 1 4 Inter-organization 
MySQL 103 309 
Browser 544 2176 Intra-organization 
MySQL 0 0 

 
This table shows that 648 paths should be tested; a maximum of 2489 test cases (3 
test cases per path with MySQL as the exit point, and 4 test cases per path with 
the browser as the exit point) were executed in order for all the paths to be 
covered.  To speed up the testing process, if one test case for a path fails 
(demonstrating that a EIV exists), then the practitioner simply ignored the rest of 
the test cases for the path. 
 
Because the web application under investigation implements client side protection 
for inputs originating from the browser, a technique similar to bypass testing 
(Offutt et al. 2004) was used to test inputs from the browser.  To test for inputs 
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from the DBMS, the practitioner used the MySQL command line client to insert 
the test values into the tables used to store data. 
 
A capture and playback tool (AutoIt)26 was used to aid the execution of the test 
cases.  Only one test case per path was executed (to record the necessary key 
strokes and mouse clicks).  The recorded scripts were then modified to change the 
test data to accommodate the remaining test cases.  The execution process took 3 
hours to complete for inter-organization test cases and 32 hours for intra-
organization test cases.  Table 3.5 displays the results of the tests. 
 

Table 3.5 Test results showing the number of failed/passed paths and test 
cases 

Paths tested Test cases Data type External 
System Passed Failed Passed Failed 
Browser 0 1 0 1 Inter-organization 
MySQL 29 74 87 102 
Browser 453 90 1816 90 Intra-organization 
MySQL 0 0 0 0 

 
This table reveals that the web application does not perform any input verification 
and validation for intra-organization inputs.  As more and more web applications 
increase their reliance on intra-organization inputs from external systems, the 
number of EIVs will only increase unless developers begin to validate inputs from 
these external data sources. 
 
The test results show that 165 EIVs exist (Table 3.5 shows that 165 paths failed) 
for revision five of the test application.  However, the security review only 
identified 68 EIVs.  The 165 potential EIVs were tested in revision six; (Table 
3.6). 
 

Table 3.6 EIVs found 
Revision 5 Revision 6 Revision 7 Revision 8 Data type 

EIV 
analysis 

Review EIV 
analysis 

Review EIV 
analysis 

Review EIV 
analysis 

Review 

Inter-
organization 

75 68 7 0 7 0 7 0 

Intra-
organization 

90 0 90 0 90 0 90 0 

 
Upon discussions with the developers, the application was found to be highly 
susceptible to intra-organization inputs because it assumes all intra-organization 
inputs are inherently safe. While intra-organization inputs were not examined 
during the security review process and hence they were not detected by the 
security review, the remaining 7 inter-organization EIVs should have been 
identified and addressed.  When presented with the results, the organization 

                                                 
26 http://www.autoitscript.com/autoit3/, last accessed February 9, 2010 
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revealed that the approach they used was not able to identify the 6 inter-
organization inputs originating from JavaScript rather than the common form 
fields.  The 7th EIV detected resulted in a stored XSS vulnerability.  This 
vulnerable inter-organization input was code reviewed; however, because the 
input is transmitted to a MySQL server to be stored rather than being printed to 
the browser, the code review process examined the guard for the MySQL exit 
point rather than the guard for the browser exit point.  Therefore, the EIV was not 
detected during the security review.  The developers have confirmed that the 
additional EIVs discovered using this approach are valid; they have addressed all 
the EIVs found in a recently released revision of the web application.  When the 
test cases were re-applied to this new revision, no EIVs were detected. 
 

Table 3.7 Effort 
Technique Security Review EIV Analysis 
Input 
Space 

Inter-organization 
inputs only 

Inter-organization 
inputs  

Intra-organization 
inputs  

Time 
required 

24 hours 7.5 hours  37.5 hours  

 
Table 3.7 shows the effort required for the security review and EIV analysis.  The 
total effort required for EIV analysis is not a sum of the intra and inter 
organization effort because the effort for the sitemap creation and input 
identification are shared.  Although the security review took only 24 hours to 
complete, it did not consider intra-organization inputs.  If EIV analysis did not 
examine intra-organization inputs, then the testing process would only require 7.5 
hours to complete; and it identified 7 additional EIVs than the security review 
process.  This means, for this case study, EIV analysis can reduce the required 
time to perform a security review by 69%.  Finally, the security review process 
was penetration testing with a patching component.  Penetration testing uses a 
“librarian testing” approach which simply attempts to exploit known EIVs on a 
new application (Thompson 2003).  Unlike penetration testing, EIV analysis is a 
testing strategy designed to discover EIVs; it is a technique belonging in the 
“unanticipated user input” class of techniques (Whittaker and Thompson 2003). 

3.5 Related Work 
Many techniques and approaches to detect, or mitigate against, vulnerabilities 
have been proposed.  In this section, these techniques are briefly presented and 
discussed. 
 
Many techniques address an individual class of web application vulnerability.  
These techniques often concentrate on one popular vulnerability type: SQL 
injection.  SQLrand (Boyd 2004), AMNESIA (Halfond and Orso 2005), SQL-
Guard (Buehrer et al. 2005), SQLCheck (Su and Wassermann 2006), CSSE 
(Pietraszek and Berghe 2005), WASP (Halfond et al. 2006) are all approaches 
aimed at addressing SQL injection vulnerabilities.  SQLRand inserts random 
tokens into SQL statements and uses a proxy server to translate these tokens.  An 
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incorrect query can be detected if the SQL query does not contain the correct 
tokens.  This approach, while effective, can be defeated if the randomized tokens 
can be guessed; it is also complex to setup with the addition of the proxy server.  
AMNESIA, SQLGuard and SQLCheck are all model-based approaches.  
AMNESIA uses static analysis and runtime monitoring to detect for SQL 
injection vulnerabilities.  Static analysis is used to build models of the SQL 
statements, while the runtime engine detects whether the query strings matches 
the models.  This approach is prone to false negatives and positives if the static 
analysis used to build the model is not effective.  SQLGuard requires the 
developers to call special functions to build a model of the SQL query to be used.  
SQLCheck uses a formal definition of an SQL injection vulnerability and 
identifies SQL injection attacks based on the formal definition.  Both approaches 
require developers to learn and gain experience with complex models (in case of 
SQLCheck) or APIs (if SQLGuard is utilized).  CSSE and WASP are dynamic 
approaches designed to address SQL injection vulnerabilities using taint analysis.  
These approaches attempt to mark negative tainting (CSSE) or positive tainting 
(WASP) to identify malicious query statements before they are passed onto the 
DBMS.  Both approaches involve modification to either the runtime engine or 
usage of a specialized API; hence, deployment can be expensive or programmers 
need to learn yet another API respectively.  While some of the approaches listed 
claim to support other types of EIVs (SQLCheck, CSSE), their supplied tool only 
concentrates on detecting one type of EIV (SQL injection) which leaves the 
system vulnerable to other types of EIVs.  EIV analysis does not have this 
limitation because the strategy is designed to address all types of EIVs. 
 
General approaches to applications’ security have also been proposed which 
address all types of EIVs.  Security Gateway proposed by Scott and Sharp (2002) 
is an application firewall that filters out all malicious inputs before they reach the 
web application.  The effectiveness of this approach is dependent on an 
administrator’s ability to produce complex and effective rule sets.  Nguyen-Tuong 
et al. (2005) proposed a dynamic approach to detect EIVs through taint analysis.  
This approach requires the runtime engine to be modified which causes complex 
deployment and increased overhead. 
 
All approaches discussed are application security techniques.  That is, they protect 
the software after it has been built (McGraw 2004).  EIV analysis is a software 
security strategy; the approach increases the security of web applications during 
the development process and before they are deployed on live servers.  Several 
software security approaches related to EIV analysis currently exist.  They can be 
classified into two categories: static analysis approaches and black-box testing 
(Beizer 1995) techniques. 
 
Static approaches have been used to detect vulnerabilities with some success.  
Shankar et al. (2001) proposed a static approach that can detect format-string 
vulnerabilities commonly found in C-based applications.  The method defines two 
extended data types, tainted and untainted, which help reduce the number of false 
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positives generally associated with static analysis methods.  Zhang et al. (2002) 
and Johnson and Wagner (2004) further extend the approach by using it to assess 
security issues with the Linux Security Modules framework and user/kernel 
pointers successfully.  These approaches are designed to detect vulnerabilities in 
C-based applications, and hence their effectiveness with scripting languages such 
as PHP, Ruby, and Python remain unknown. 
 
Although static analysis is a well known technique, approaches that specifically 
target web applications’ EIVs are not common.  Proposed approaches such as 
those by Livshits and Lam (2005), Martin et al. (2005), Balzarotti et al. (2007), 
WebSSARI (2004) and Pixy (2006) have limitations.  Techniques proposed 
Livshits and Lam (2005), Martin et al. (2005) are designed specifically for SQL 
injection vulnerabilities, and hence it cannot be used to detect other EIVs.  
Balzarotti et al. (2007) presents a static analysis approach capable of detecting 
both workflow attacks and data-flow attacks.  However, the approach cannot 
detect all EIVs.  For example, many websites now have multiple web applications 
sharing the same database.  An attacker can utilize a vulnerability in one web 
application (A) to inject a payload into the database which will then be used by 
the other web application (B).  If the approach is used to analyze (B), this 
vulnerability would be undetected.  WebSSARI does not model conditional 
branches that result in many false positives.  Furthermore, the WebSSARI tool is 
not available and hence, no comparison with it can be made.  Pixy is an advanced 
static taint analysis tool available for PHP.  However, attempts to use the tool for 
comparison with EIV analysis reveal several issues: 

• Pixy cannot detect stored XSS, and other types of EIVs (OS/Filesystem 
and Interpreter interactions). 

• Six of the 7 XSS vulnerabilities it detected, when used on the case study’s 
application, are false positives. 

• It ignores path information and tainted data inside objects, and hence, its 
reports contain false positives and negatives. 

• It requires a very large amount of memory to model SQL injections.  In 
fact, on the test machine which has 2GB of RAM, it crashed repeatedly 
when used on the case study’s application. 

 
Offutt et al. (2004) proposed a black-box testing approach that requires a 
customized client to test web applications.  The customized client allows the 
tester to bypass all client side protection mechanisms; and hence, if a web 
application is dependent on client side verification of inputs, it will fail the test 
cases.  QED (2008) and Ardilla (2008) attempt to generate SQL Injection and 
XSS attacks automatically.  However, QED cannot target second order XSS 
attacks and requires users to learn a custom specification language.  Ardilla 
suffers from low code coverage and a 42% false positive rate.  Secubat (2006) and 
other commercial web scanners such as Acunetix Web Vulnerability Scanner27 
extend bypass testing by creating tools that provide automatic penetration testing 

                                                 
27 http://www.acunetix.com, last accessed February 7, 2010 
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for web applications without using the web applications’ target clients.  
Commercial applications are proprietary and closed source; hence they cannot be 
examined in detail.  Secubat currently has no plug in to detect all types of XSS; 
for example, stored XSS.  Lin and Chen (2006) extend traditional black-box 
testing techniques with elements of static analysis by including a tool to 
automatically inject guards at input points found through the crawling component.  
This approach does not guarantee correctness of the modified program and hence, 
the modified program may not meet the original requirements.  All black-box 
testing approaches for web applications have a limitation that not all inputs can be 
detected through web page parsing (Offutt et al. 2004); hence, only an 
approximation of the inputs is possible. 
 
While many black-box approaches to web application security testing have been 
proposed, no white-box strategies have been presented.  EIV analysis is a white-
box approach that utilizes data flow graphs to test for EIVs.  Just as other software 
security approaches, EIV analysis allows a company to test its web applications 
before they are launched.  EIV analysis can also coexist with all of the approaches 
presented.  That is, an organization can use static analysis approaches to 
automatically identify some EIVs, then use EIV analysis and black-box 
approaches to locate additional vulnerabilities.  Finally, application security 
approaches can be applied to monitor the web application when it is deployed. 
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Chapter 4 – Automatic Identification of Web Attacks 
Network intrusion detection systems (NIDS) are often classified as either misuse 
or anomaly based systems (A-NIDS). Misuse based systems contain rules 
designed to filter out known attacks. One popular misuse based system is 
SNORT28 which is used by over 270,000 users. Misuse systems cannot detect and 
prevent attacks that are not contained in the rule set because these attacks are too 
recent (zero day attacks); hence, most new NIDS approaches are anomaly based. 
A-NIDS do not rely on any rule set; therefore they can potentially detect these 
new attacks (Forrest et al. 1996, Anderson 1972, Heberlein et al. 1990). With A-
NIDS, empirical information on system usage is first collected. Using collected 
information, the A-NIDS creates a model of normal behaviour.  Observations that 
deviate from the model are classified as anomalous. 
 
A-NIDS often utilize machine learning (ML29) techniques. Lazarevic et al. (2005) 
and Tsai et al. (2009) provide a review of existing ML based A-NIDS. Traditional 
A-NIDS concentrate on low-level packet information implying that application 
specific information is lost (Krugel 2002). As a result, A-NIDS often have low 
detection rates for attacks targeting the web application layer. A new generation 
of A-NIDS has been proposed to specifically target the web application layer; a 
brief overview of these A-NIDS follows. 
 
Kruegel et al. (2003, 2005) presented one of the first A-NIDS designed 
specifically for web applications. The system contains six anomaly models and 
six techniques for estimating the probability of an attack based upon these 
models. Valeur et al. (2005) presents an approach that profiles normal database 
access performed by web applications to detect SQL injection attacks on a 
DBMS. Swaddler (Cova et al. 2007a) extends Kruegel et al. (2003, 2005) by also 
examining the state of the web application. 
 
Ingham et al. (2006) introduces Deterministic Finite Automata induction as a 
method to detect malicious web requests. However, their results show that the 
approach currently suffers from low detection and high false positive rates. Cheng 
et al. (2008) proposes an Embedded Markov Model to detect attacks and monitor 
users’ behaviour. Estevez-Tapiador et al. (2005) uses a hybrid approach that is 
both learning and specification-based.  The approach builds a Markov model 
using the specification of the HTTP protocol and the actual payload from the 
training data. Sphinx (Bolzoni and Etalle 2008) detects attacks on web application 
data flows using “positive signatures” which are rules that match normal inputs 
rather than malicious inputs.  Park and Park (2008) uses an extended Needleman-
Wunsch (1970) algorithm to build a profile of normal web requests. Future web 
requests that do not match this profile are classified as anomalous. 
 

                                                 
28 http://www.snort.org/, last accessed January 8, 2010. 
29 ML in this dissertation is an acronym for Machine Learning. 
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All A-NIDS, often using ML algorithms, classify data as either malicious or 
benign (Tsai et al. 2009). Current A-NIDS for web applications attempt to create 
custom anomaly models for this classification step.   However, no existing A-
NIDS for web applications leverage the available knowledge from various ML 
techniques; and traditional ML-enabled NIDS suffer from low detection rates 
because they have no domain knowledge of the application layer.  This chapter 
presents a novel A-NIDS for web applications called The Automatic 
Identification of Web Attacks System (AIWAS). This approach differs from the 
available techniques because it does not create an anomaly model.  It creates a 
model of the HTTP input; this application-level model in conjunction with 
captured traffic allows AIWAS to learn “normal” HTTP traffic patterns for 
individual applications. 
 
The remaining sections of this chapter are organized as follows: Section 4.1 
introduces AIWAS in detail.  Section 4.2 presents a case study to evaluate the 
effectiveness of AIWAS. 

4.1 AIWAS 
AIWAS is an intrusion detection system specifically for the web application layer.  
AIWAS is an A-NIDS that classifies future system usage into benign or malicious 
categories without relying on signatures. This learning-based approach has an 
advantage that it is trained on a per-website basis, providing effective localization.  
That is, each website will contain different usage profiles, which learning-based 
approaches can recognize. 
 
AIWAS is a learning-based system comprising of two distinct components: the 
Sentinel and the Oracle. AIWAS can be operated in detection (alerting system 
administrators to potential attacks) or prevention mode (blocking requests 
identified as malicious). Figure 4.1 shows the modified architecture of a web 
application to include AIWAS. 
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Figure 4.1 AIWAS Architecture 
 
The Sentinel examines the dataflow between the web application and the browser.  
When a request is received from the browser, the Sentinel will map this request 
onto an instance model (IM). This IM is used as an input to the Oracle. The 
Oracle classifies whether the IM is malicious or benign. If the IM is malicious, the 
Sentinel will either reject the request or notify the system administrator. 

4.1.1 Instance Model 
OWASP (2010) and Cova et al. (2007b) state that the most common web 
application security weakness is the failure to properly validate input from the 
client or environment. Chapter 2 provides empirical evidence that many attacks 
are based upon the failure to validate inputs. Additionally, statistics on web 
vulnerabilities30&31 indicate that the majority of vulnerabilities contained in web 
applications, such as Cross-Site Scripting (XSS) and SQL Injections, are 
exploited through the manipulation of input values.  In fact, this is also the 
primary approach that commercial32&33&34, open source35&36, and research-based 
                                                 
30 http://www.sans.org/top-cyber-security-risks/, last accessed February 3, 2010 
31http://projects.webappsec.org/Web-Application-Security-Statistics, last accessed February 3, 
2010 
32 http://www.acunetix.com/, last accessed February 7, 2010 
33 https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-
200^9570_4000_100__, last accessed February 2, 2010 
34 http://portswigger.net/scanner/, last accessed February 2, 2010 
35 http://www.cirt.net/nikto2, last accessed February 3, 2010 
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(McAllister et al. 2008, Kals et al. 2006, Antunes and Vieira 2009) vulnerability 
scanners use to detect web application vulnerabilities. Hence, the IM for AIWAS 
specifically models input values in order to allow ML algorithms to classify them 
effectively. 

4.1.1.1 Modeled Data 
A web application receives its inputs through HTTP requests. Hence, the IM 
should contain all the information of the HTTP request structure necessary to 
perform the classification. One element of the HTTP request that should be 
modeled is the resource requested along with its parameters; cookies are also 
treated as parameters. The values of these parameters are validated against several 
properties: data syntax, length of the data based on the specification, and character 
sets (OWASP 2010). 
 
Modeling these properties is sound because these properties have been examined 
in the past to test systems for faults.  Boundary value analysis, equivalent 
partitioning and fuzz testing are popular methods for selecting input values; these 
can be seen as value manipulation methods used to reveal software faults.  
Similarly, web application attackers can manipulate these properties of parameter 
values to reveal security vulnerabilities.  In fact, this technique for attacking web 
applications has been discussed in the past (Offutt et al. 2004, Tappenden et al. 
2006, Scambray et al. 2006, Sutton et al. 2007). 
 
The IM should not include unnecessary information that decreases the efficiency 
of the ML algorithms. That is, information contained in the structure of HTTP 
requests, which is not indicative of an attack can make the volume and variety of 
information too complex for ML algorithms to analyze. For example, an HTTP 
request will always contain an HTTP method such as GET, POST, HEAD, PUT, 
etc. The IM can ignore this data because it does not change between malicious 
and benign inputs. 
 
Based on the above discussion, the (generic) IM is: 
 
IM = {R,<P1 length, P1 has_non_alpha, P1 has_reserved_words>…<Pn length, Pn 

has_non_alpha, Pn has_reserved_words>}  
 
where the attributes are: 
 

• R: resource requested 
• P: parameter (including cookies) associated with the resource requested 
• n: number of parameters 
• length: the length of the parameter 

                                                                                                                                     
36 http://wapiti.sourceforge.net/, last accessed February 3, 2010 
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• has non-alpha: whether the parameter value contains any non-
alphanumeric characters (encoded alphanumeric characters are also treated 
as non-alphanumeric characters). 

• has reserved words: whether the value for the parameter contains any 
reserved words used in the web application, such as words that are part of 
the programming language used to create the application, or SQL 
statements. For this research, because the applications used in the case 
study are PHP based which utilize a MySQL back-end for data storage, 
reserved words are defined as HTML tags and reserved words in SQL and 
PHP. 

 
System administrators with considerable knowledge of their web applications can 
further improve the model by adding or modifying the model to be more specific.  
For example, instead of a generic list of reserved words for the “has reserved 
words” attribute, if the system administrator knows that certain words are 100 
percent safe for use in the system, those words can be removed from the generic 
list. This allows the model to be more specific which can lead to a higher 
detection rate without increasing the false positive rate. 
 
The next two sections provide an example of a mapping for normal usage and an 
example of a mapping for an attack. 

4.1.1.2 Example of the Mapping 
When the Sentinel receives a request from the browser, it transforms the IMME to 
the request into an IM. The following figure is an example of the raw data for a 
login form that the Sentinel receives. 
 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): 37 bytes 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): POST /folder/ login.php? HTTP/1.1\r\n 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): 46 bytes 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): 
login=username&password=password&Submit=Login 

Figure 4.2 An example of the request data 
 
This is a POST request for the resource login.php with three additional 
parameters: login, password, Submit. The lengths of the values for the parameters 
are eight, eight, and five characters respectively. The values of the attributes do 
not have any non-alphanumeric characters or reserved words. 
 
The IMME would transform this request into the following IM: {login.php, 
<8,false,false>,<8,false,false>,<5,false,false>} 
 
This section showed the mapping of a normal HTTP request to an IM. The next 
section provides an example of a malicious IM. 
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4.1.1.3 Example of an Attack 
Many web applications have specifications for their input fields.  For example, the 
Canadian Imperial Bank of Commerce’s online banking system specifies that 
passwords must be 6 to 12 alphanumeric characters37.  However, when attackers 
attempt to gain access to the system, these requirements are not followed. Figure 
4.2 shows an example of an HTTP request data for a login form. If an attacker 
attempts SQL injection attacks on this login form, the data would be different 
from what is shown. Figure 4.3 shows a possible SQL injection attempt to launch 
a stored XSS attack. 
 
Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): 37 bytes 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): POST /folder/login.php? HTTP/1.1\r\n 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): 1299 bytes 
[Thu Aug 14 09:55:36 2008]:  dumpio_in (data-HEAP): login=username&password=a 
;DECLARE%20@S%20CHAR(4000);SET%20@S=CAST(0x4445434C41524520405420766172
6368617228323535292C40432076617263686172283430303029204445434C415245205461626C
655F437572736F7220435552534F5220464F522073656C65637420612E6E616D652C622E6E61
6D652066726F6D207379736F626A6563747320612C737973636F6C756D6E7320622077686572
6520612E69643D622E696420616E6420612E7874…;&Submit=Login 

Figure 4.3 An example of the request data 
 
This example shows an advanced form of an SQL injection attack. The actual 
payload has been shortened. The attack involves using SQL reserved words and 
encoded characters to dynamically construct an INSERT SQL statement. The 
INSERT SQL statement is used to store a XSS payload. The IM for this request 
is: {login.php, <8,false,false>,<1261,true,true>,<5,false,false>} 
 
The IM for this attack differs from the benign IM seen in the previous example. 
The value for the password parameter is used to inject a malicious payload, and 
the IM shows this. The length attribute for this parameter is 1261 characters, 
which is significantly longer than the common length for a password. 
Furthermore, the value contains both non alphanumeric characters, such as ;, 
%, @, and reserved words for SQL like SET and DECLARE. 
 
In essence, AIWAS attempts to learn the input specification associated with 
“normal” usage of the system, and validates any given input against this 
specification. Via the IM model, AIWAS only attempts to learn the part of the 
specification that can be compromised. It should be noted that AIWAS will only 
validate inputs to this “normal” usage specification and not the exact specification 
as defined in the Specification documentation. Effectively, AIWAS attempts to 
automate the “validation of the input from the client or environment” removing 
programmer errors and effort from the process. Hence, any limitation of AIWAS 
to completely learn the can-be-compromised component of the input specification 

                                                 
37 
http://cibc.intelliresponse.com/public/en/index.jsp?requestType=NormalRequest&interfaceID=8&
id=-1&source=1&question=%20what%20do%20i%20do%20if%20i%20can%27t%20sign%20on, 
last accessed January 12, 2010 
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can be viewed as being analogous to limitations by programmers to completely 
validate the input from the client or environment. Clearly, both AIWAS and 
programming attempts can be deployed together to provide a security in depth 
approach. 

4.1.2 ML Algorithms 
AIWAS requires the algorithms to classify the requests as either benign or 
malicious. Hence, only supervised learning algorithms can be used. The case 
study in this chapter will demonstrate whether usage of different ML algorithms 
will have significant impact on the performance of AIWAS. Four different ML 
algorithms are selected for this empirical investigation. 
 
Selection of the first two algorithms, Naïve Bayes (John and Langley 1995) and 
Random Forests (Breiman 2001), is based on general acceptance of the efficacy 
of these algorithms. The last two, Rotation Forrest (Rodriguez et al. 2006) and 
Simple Logistic (Summer et al. 2005), can produce better results than Naïve 
Bayes and Random Forests (Kuncheva and Rodriguez 2007, Landwehr et al. 
2005) although the number of samples which illustrate this conjecture is still 
limited. 

4.1.3 Data Set 
The DARPA 1999 data set is commonly used to evaluate IDS (Lippmann et al. 
2000). However, the DARPA 1999 data set suffers from several flaws and 
artifacts (Mahoney and Chan 2004, McHugh 2000a, McHugh 2000b). 
Furthermore, the data set is not representative of current attacks on web 
applications. For these reasons, the DARPA 1999 data set is not used to evaluate 
the proposed system.  Instead, three web applications are selected, with two 
having known vulnerabilities. Once trained using generated training data sets, 
AIWAS was evaluated on its ability to detect attacks created from the known 
vulnerabilities. 
 
As with other learning based approaches, AIWAS requires a training data set 
before it can begin classifying live requests. Obtaining a representative training 
data set is a challenge system administrators will face when using AIWAS. This 
section discusses the various sources that system administrators can use to obtain 
the necessary training data. 

4.1.3.1 Set AIWAS to Learning Mode on Live Server 
One method of obtaining a training data set is to set AIWAS to learning mode. 
While in this mode, AIWAS will collect all requests and store the IM equivalent. 
This method allows system administrators to obtain actual usage data from the 
web application and use them as the training data set. Hence, the training data set 
is the most representative of the live requests that AIWAS will encounter. 
However, this method is time consuming because there is a waiting period while 
AIWAS collects the data. Furthermore, system administrators will need to be 
experts at classifying the IMs. 
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4.1.3.2 Using Existing Server Logs 
System administrators can also use existing server logs as a source to create the 
training data set. However, most server logs do not contain POST request data by 
default. Hence, system administrators need to ensure that the server logs chosen 
do contain all the necessary data. Additionally, just like 4.1.3.1, the IMs obtained 
from this approach also need to be classified. 

4.1.3.3 Simulate Normal and Malicious Usage with a Small Subset 
of Users 
This approach is used in this study to generate the training data set. The approach 
involves the following steps: 

1. Set up the web application and AIWAS in a closed environment with the 
same settings as the production system. 

2. Set AIWAS to learning mode. 
3. Allow test users to use the system normally. 
4. Classify all IMs obtained from Step 3 as “benign”. 
5. Ask test users to use well known attack techniques to attack the system.  
6. Classify all IMs obtained from Step 4 as “malicious”. 
7. Combine IMs from Steps 4 and 6 into one training set. 

This approach requires users with knowledge vulnerability attack techniques to 
generate the malicious data.  Furthermore, the training data set may not be a 
perfect representative of actual usage data. However, the approach does not 
require manual classification of IMs. 

4.2 Case Study 
In order to determine the effectiveness of AIWAS, a case study was performed on 
three web applications: 

1. A proprietary commercial web application currently being deployed 
(WA1). This web application has no known/published vulnerabilities. 

2. Phd Help Desk38, an open source ticket support system. This application 
has 11 known vulnerabilities as posted on the OSVDB.org website. 

3. OpenDocMan39, an open source document management system. This 
application has 13 known vulnerabilities as posted on the OSVDB.org 
website. 

The first application is selected to evaluate the effectiveness of AIWAS on a 
commercial system versus commonly used open source applications. Due to the 
proprietary nature of the application, no vulnerabilities are known for a test data 
set; hence, the evaluation is performed using the standard stratified 10-fold cross-
validation approach (Witten and Frank 2005). 
 
The selection of the two open source systems for testing was based on the 
following two criteria: 

                                                 
38 http://www.p-hd.com.ar/, last accessed January 19, 2010 
39 http://www.opendocman.com/, last accessed January 19, 2010 
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1. They should not be popular and well known web applications. In other 
words, the personnel responsible for generating the training data set 
should not be familiar with the existing vulnerabilities for these 
applications. Additionally, vulnerability scanners should not have these 
existing vulnerabilities in their database. If either condition exists, the 
training data set will be bias towards detection of these vulnerabilities. 

2. They must have known and published vulnerabilities. Once the training 
data set is generated and AIWAS has been trained, the web applications 
will be attacked with these known vulnerabilities. This approach allows 
AIWAS’ effectiveness against real attacks to be evaluated. 

The training data sets for all three applications were obtained using the approach 
discussed in Section 4.1.3.3. To evaluate AIWIAS, receiver operating 
characteristics (ROC) graphs are used. Provost and Fawcett (2001) introduced 
ROC graphs to machine learning as a method of visualizing classifiers’ results; 
the ROC curve can be seen as a bi-dimensional representation of the classifiers’ 
performance (Fawcett 2003). 
 
In order to determine whether class imbalance, which is often associated with 
intrusion detection systems (Chawla et al. 2004), will affect AIWAS, the training 
data sets were used as is, and with the Synthetic Minority Over-sampling 
TEchnique (SMOTE) (Chawla et al. 2002). SMOTE has been demonstrated to 
provide better performance on unbalanced data sets when tested using C4.5, 
Ripper, and Naïve Bayes (Batista et al. 2004).  Although Weiss and Provost 
(2003) observed that naturally occurring distributions are not always the optimal 
distribution, there are no standards as to what the ratio should be for web systems. 
Hence, the commonly accepted ratio of 1 to 1 ratio between malicious and benign 
IMs is used for the SMOTE balanced training data sets. 

4.2.1 Results – 10-fold cross validation 
Figures 4.4 to 4.15 show the ROC curves for all four algorithms with the training 
data set without SMOTE. These ROC curves allow visual analysis of costs 
(penalties) associated with false-negative errors versus false-positive errors. 
Analysis of the curves shows that the “corners” of the curves are close to the 
upper left corner indicating the effectiveness of the algorithms. 
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Figure 4.4 10-Fold Cross Validation ROC Curve for WA1 with Naïve Bayes 

 

 
Figure 4.5 10-Fold Cross Validation ROC Curve for WA1 with Random 

Forest 
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Figure 4.6 10-Fold Cross Validation ROC Curve for WA1 with Rotation 

Forest 
 

 
Figure 4.7 10-Fold Cross Validation ROC Curve for WA1 with Simple 

Logistic 
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Figure 4.8 10-Fold Cross Validation ROC Curve for Phd Help Desk with 

Naïve Bayes 
 

 
Figure 4.9 10-Fold Cross Validation ROC Curve for Phd Help Desk with 

Random Forest 
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Figure 4.10 10-Fold Cross Validation ROC Curve for Phd Help Desk with 

Rotation Forest 
 

 
Figure 4.11 10-Fold Cross Validation ROC Curve for Phd Help Desk with 

Simple Logistic 
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Figure 4.12 10-Fold Cross Validation ROC Curve for OpenDocMan with 

Naïve Bayes 
 

 
Figure 4.13 10-Fold Cross Validation ROC Curve for OpenDocMan with 

Random Forest 
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Figure 4.14 10-Fold Cross Validation ROC Curve for OpenDocMan with 

Rotation Forest 
 

 
Figure 4.15 10-Fold Cross Validation ROC Curve for OpenDocMan with 

Simple Logistic 
 
Table 4.1 presents the comparison of the “corner” of the ROC curves. No unique 
method exists for comparing ROC curves, hence five metrics for this comparison 
are used:   

• Precision which measures the exactness of the system; 
• Recall which measures the completeness of the system; 
• F-measure which is derived from the Precision and Recall;  



 

66 

• Kappa - Cohen’s Kappa statistic (Rourke et al. 2001) which measures the 
chance-corrected agreement between the actual and predicted 
classification), and 

• Matthew’s Correlation Coefficient (MCC) (Baldi 2000) which is 
equivalent to Pearson’s correlation coefficient for dichotomous data. 

 
The figures in this table show that AIWAS’ accuracy rate varies depending on 
which algorithm is used. However, the results also show that the IM, presented in 
Section 4.1, allows all four algorithms to classify the HTTP requests effectively. 
 

Table 4.1 Accuracy metrics 
  WA1 Phd Help Desk OpenDocMan 

Precision 0.923 0.938 0.889 
Recall 0.915 0.932 0.873 
F-measure 0.907 0.928 0.854 
Kappa 0.710 0.805 0.543 

Naïve Bayes 

MCC 0.741 0.821 0.611 
Precision 0.920 0.923 0.891 
Recall 0.911 0.914 0.873 
F-measure 0.903 0.907 0.853 
Kappa 0.694 0.746 0.546 

Random Forest 

MCC 0.728 0.772 0.609 
Precision 0.948 0.970 0.971 
Recall 0.948 0.970 0.972 
F-measure 0.946 0.970 0.972 
Kappa 0.838 0.921 0.918 

Rotation Forest 

MCC 0.842 0.920 0.918 
Precision 0.913 0.939 0.917 
Recall 0.904 0.933 0.914 
F-measure 0.894 0.930 0.907 
Kappa 0.666 0.810 0.720 

Simple 
Logistic 

MCC 0.704 0.825 0.740 
 
The four ML algorithms were tested again, this time using the SMOTE balanced 
training data sets. The results from the comparison of the “corners” of the ROC 
curves can be seen in Table 4.2. The results show that the SMOTE balanced 
training data sets do offer improvements over the original unbalanced training 
data sets. However, whether this also holds when AIWAS is used to detect actual 
attacks will be examined in the next section. 
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Table 8.2 Accuracy metrics with SMOTE 

  WA1 Phd Help Desk OpenDocMan 
Precision 0.976 0.942 0.902 
Recall 0.976 0.940 0.896 
F-measure 0.976 0.940 0.896 
Kappa 0.952 0.880 0.793 

Naïve Bayes 

MCC 0.952 0.882 0.798 
Precision 0.952 0.956 0.966 
Recall 0.948 0.955 0.965 
F-measure 0.947 0.955 0.965 
Kappa 0.895 0.911 0.929 

Random Forest 

MCC 0.899 0.911 0.931 
Precision 0.969 0.968 0.979 
Recall 0.969 0.968 0.979 
F-measure 0.969 0.968 0.979 
Kappa 0.938 0.936 0.959 

Rotation Forest 

MCC 0.938 0.936 0.958 
Precision 0.945 0.944 0.905 
Recall 0.939 0.942 0.905 
F-measure 0.939 0.942 0.905 
Kappa 0.878 0.884 0.810 

Simple 
Logistic 

MCC 0.883 0.886 0.810 

4.2.2 Results – Real Vulnerabilities 
For this evaluation, test sets based on attacks from published vulnerabilities were 
used for evaluation. Based on the 11 and 13 published vulnerabilities for Phd 
Help Desk and OpenDocMan, 22 and 25 attacks were generated respectively. To 
generate extra attacks from a limited number of vulnerabilities, an approach 
similar to mutation testing (Offutt 1994) was used. 
 
With dedicated test sets, two additional methods of classifying the IMs were used. 
Both of these methods are based on the Principal of Aggregation (Rushton et al. 
1983) which states that the result from a set of multiple measurements is more 
stable and representative than any single measurement. The first method, 
Aggregate Malicious, classifies an IM as malicious when two or more ML 
algorithms classify it as malicious. The second method, Aggregate Benign, only 
classifies an IM as benign when two or more ML algorithms classify it as benign. 
Both of these methods will be considered as “algorithms” for the remainder of 
this chapter. 
 
The ROC curves for the six algorithms are shown in Figures 4.15-4.27. Similar to 
Section 4.2.1, the “corners” for these curves are very close to the upper left corner 
implying that all approaches have a high True Positive Rate (TPR) and a low 
False Positive Rate (FPR). The “corners” from Figures 4.23 and 4.24 show that 
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the Random Forest and Rotation Forest are not as effective at detecting 
vulnerabilities for OpenDocMan as the other two algorithms; however, they are 
still close to the upper left corner.  The results from Table 4.3 confirm this 
observation. 
 

 
Figure 4.16 Real Attacks ROC Curve for Phd Help Desk with Naïve Bayes 

 

 
Figure 4.17 Real Attacks ROC Curve for Phd Help Desk with Random 

Forest 
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Figure 4.18 Real Attacks ROC Curve for Phd Help Desk with Rotation 

Forest 
 

 
Figure 4.19 Real Attacks ROC Curve for Phd Help Desk with Simple 

Logistic  
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Figure 4.20 Real Attacks ROC Curve for Phd Help Desk with Aggregate 

Malicious 
 

 
Figure 4.21 Real Attacks ROC Curve for Phd Help Desk with Aggregate 

Benign 
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Figure 4.22 Real Attacks ROC Curve for OpenDocMan with Naïve Bayes 

 

 
Figure 4.23 Real Attacks ROC Curve for OpenDocMan with Random Forest 
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Figure 4.24 Real Attacks ROC Curve for OpenDocMan with Rotation Forest 
 

 
Figure 4.25 Real Attacks ROC Curve for OpenDocMan with Simple Logistic 
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Figure 4.26 Real Attacks ROC Curve for OpenDocMan with Aggregate 

Malicious 
 

 
Figure 4.27 Real Attacks ROC Curve for OpenDocMan with Aggregate 

Benign 
 
The results from the metrics for the “corner” of the curves are detailed in Table 
4.3. This table shows that, similar to Section 4.2.1, the proposed IM is effective 
with all the ML algorithms. Furthermore, the aggregate algorithms can be seen to 
having no false positives and false negatives for both Phd Help Desk and 
OpenDocMan. 



 

74 

 
Table 4.3 Accuracy metrics 

  Phd Help Desk OpenDocMan 
Precision 1 0.903 
Recall 1 0.880 
F-measure 1 0.878 
Kappa 1 0.760 

Naïve Bayes 

MCC 1 0.783 
Precision 0.906 0.931 
Recall 0.884 0.920 
F-measure 0.882 0.919 
Kappa 0.769 0.840 

Random Forest 

MCC 0.790 0.851 
Precision 1 0.996 
Recall 1 0.996 
F-measure 1 0.996 
Kappa 1 0.920 

Rotation Forest 

MCC 1 0.923 
Precision 1 1 
Recall 1 1 
F-measure 1 1 
Kappa 1 1 

Simple Logistic 

MCC 1 1 
Precision 1 1 
Recall 1 1 
F-measure 1 1 
Kappa 1 1 

Aggregate 
Malicious 

MCC 1 1 
Precision 1 1 
Recall 1 1 
F-measure 1 1 
Kappa 1 1 

Aggregate 
Benign 

MCC 1 1 
 
Because the results from Table 4.3 show that the algorithms are quite effective, a 
degree of agreement test was performed for information about error. If the degree 
of agreement is low, either 

1. the IM does not allow the ML algorithms to function properly; or  
2. AIWAIS is highly dependent on a specific IM.  

 
For this test, the Cohen index is used because it is defensible as both chance-
corrected measures and intraclass correlation coefficients (Fleiss 1975). The three 
“most” effective algorithms (Simple Logistic, Aggregate Malicious, and 
Aggregate Benign) are tested against all other algorithms. The results are shown 
in Table 4.4. This table shows that the algorithms are highly agree-able with each 
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other; hence, the IM is effective, and AIWAIS is not highly dependent on a 
specific algorithm. 
 

Table 4.4 Degree of agreement 
 Phd Help Desk OpenDocMan 
 Simple 

Logistic 
Aggregate 
Malicious 

Aggregate 
Benign 

Simple 
Logistic 

Aggregate 
Malicious 

Aggregate 
Benign 

Naïve 
Bayes 

1 1 1 0.76 0.76 0.76 

Random 
Forest 

0.77 0.77 0.77 0.84 0.84 0.84 

Rotation 
Forest 

1 1 1 0.92 0.92 0.92 

Simple 
Logistic 

1 1 1 1 1 1 

Aggregate 
Malicious 

1 1 1 1 1 1 

Aggregate 
Benign 

1 1 1 1 1 1 

 
Table 4.5 shows the metrics for the “corners” of the ROC curves for the six 
algorithms after being trained with SMOTE balanced training data sets. 
Surprisingly, some of the algorithms cannot detect the attacks as well as when 
they are trained with the unbalanced data set. However, the two aggregate 
algorithms can be seen to have little to no decrease in performance; furthermore, 
they perform better than the other four. 



 

76 

 
Table 4.5 Accuracy metrics with SMOTE 

  Phd Help Desk OpenDocMan 
Precision 1 0.838 
Recall 1 0.760 
F-measure 1 0.745 
Kappa 1 0.520 

Naïve Bayes 

MCC 1 0.593 
Precision 0.853 0.946 
Recall 0.791 0.940 
F-measure 0.782 0.940 
Kappa 0.585 0.880 

Random Forest 

MCC 0.643 0.886 
Precision 1 0.941 
Recall 1 0.940 
F-measure 1 0.940 
Kappa 1 0.880 

Rotation Forest 

MCC 1 0.881 
Precision 1 0.838 
Recall 1 0.760 
F-measure 1 0.745 
Kappa 1 0.520 

Simple Logistic 

MCC 1 0.593 
Precision 1 1 
Recall 1 0.960 
F-measure 1 0.980 
Kappa 1 0.960 

Aggregate 
Malicious 

MCC 1 0.961 
Precision 1 1 
Recall 1 1 
F-measure 1 1 
Kappa 1 1 

Aggregate 
Benign 

MCC 1 1 

4.2.3 Discussion of the Results 
The figures and ROC curves from Sections 4.2.1 and 4.2.2 show some important 
results. AIWAS is shown to be effective at identifying malicious IMs. Although 
WA1 cannot be evaluated with real attacks, the well accepted 10 fold-cross 
validation approach demonstrates that the IM allows the ML algorithms to 
classify the HTTP requests with a high degree of accuracy. Attacks based on real 
vulnerabilities are also shown to be identified effectively (Section 4.2.2) by 
AIWAS. 
 
The results show that AIWAS can be effective regardless of which ML algorithm 
is used. However, the detection rate does vary somewhat depending on which 
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algorithm is used. Whether certain algorithms are better cannot be concluded in 
this case study. However, because of the Principal of Aggregation (Rushton et al. 
1983) and the results from Table 4.5, system administrators should use either 
aggregate algorithm with AIWAS. The question on which form of aggregate 
should be used would depend upon the relative costs of misclassifying for any 
particular application.  
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Chapter 5 – Estimating Reliability from the Server 
Logs 
Reliability is becoming increasingly important to web systems due to the 
popularity of web applications.  The need for highly reliable systems will only 
grow as companies continue to move their operations online.  In order to increase 
reliability, a method to measure current systems’ reliability is required.  However, 
existing methods to measure reliability (Lyu 1995, Musa et al. 1987, Trivedi 
2001) cannot be applied directly to web systems due to their specific nature 
(Alagar and Ormandjieva 2002, Offutt 2002).  Thus, these existing methods will 
need to be modified to include new workload characteristics to estimate the 
reliability of web systems (Tian et al. 2004).  More specifically, they defined two 
special characteristics: 

• Massiveness and diversity: Web systems can interact with many different 
external systems.  For example, one application may interact with Internet 
Explorer 6.5 and MySQL 3.23; another application may interact with 
Internet Explorer 5.5, Mozilla FireFox 1.5, SQLite 3.4.2 and Google Maps 
API 2.1.  Not only that, every user with an Internet connection is 
considered to be a potential user of the web system.  The workload 
characteristics selected need to reflect this diverse software configuration 
and massive and ill-defined user population. 

• Document and information focus: Traditional workload concentrates on 
the computational focus whereas web systems principally have a 
document and information focus.  Newer web systems have increased 
computation; however, search and retrieval remains the dominant usage 
for web users.  The workload types for computational focus are 
fundamentally different than the workload types for document and 
information focus.   

To measure web workloads to ensure accurate reliability estimation, generic 
workloads suitable for traditional computation-intensive cannot be used.  Hence, 
Tian et al. (2004) defined four different web workload characteristics for 
reliability calculations:   

• The number of hits: This workload is popular because each hit 
corresponds to a specific request to a web server, and each entry in the 
access log is a hit which allows for easy extraction of the data.  However, 
this workload is misleading if it shows high variability with the individual 
hits (Tian et al. 2004).    

• The number of bytes transferred may be used as a workload of finer 
granularity than the hit count; the number of bytes of transferred for each 
hit is recorded in the server logs and can be extracted with relative ease.   

• The number of users: This alternative workload can be used by 
organizations that support various web systems and want to examine 
reliability at the user level.  To count the number of users per day, the total 
number of unique IP addresses for that day is counted, and each unique IP 
address is assumed to correspond to a unique user.  In other words, all hits 
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originating from the same IP address (which may be associated with one 
computer or multiple computers sharing the same IP address) are 
considered to be requests from a single user.  A disadvantage of the user 
workload is its coarse granularity.  This problem can be remedied by 
counting the number of user sessions.   

• The number of sessions can be calculated from the IP address and the 
access time.  If the time between each hit from one IP is within a time 
period, then all of these hits are considered to be one session.  The session 
workload is better than the user workload because each session is typically 
associated with a change in user activity or a change in user.  The same 
user may have several different usage patterns for each session; this can be 
revealed by the session workload characteristic. 

Given the issues related to these workload estimates, this study will also examine 
simply using “days” as a workload characteristic. A “day” is defined as a 24 hour 
period within a log file.  Clearly this alternative has a substantially coarser 
granularity than the alternatives discussed above.  While the most obvious 
temptation is to utilize a fine-grain workload metric, since issues exists in their 
estimation, the question of are they actually a superior choice of normalizing term 
needs to be considered. 
 
Although web traffic characteristics have been explored in detail – such as the 
characterization of the workloads (Alagar and Ormandjieva 2002), traffic trends 
and patterns (Crovella and Bestavros 1997), response times (Cremonesi and 
Serazzi 2002), etc. – only a few studies have investigated web error behavior and 
the measurement of web reliability.  Although several hypothetical approaches 
exist; they lack empirical validations (Alagar and Ormandjieva 2002, Wang and 
Tang 2003).  One practical approach to measuring the reliability of web systems 
is to use the information contained in server logs (Huynh and Miller 2005, 
Kallepalli and Tian 2001, Tian et al. 2004), such as system usage and failure 
codes.  This information can be extracted and used to evaluate the system’s 
reliability and identify “areas” for reliability improvement.   
 
In this chapter, the approach of measuring reliability from server logs, as 
presented by Tian et al. (2004), will be evaluated and analyzed to determine the 
viability and effectiveness of this approach.  Results from the original study and 
from this study will be used in the analysis.  Two websites were examined in the 
original study; and two additional websites will be investigated in this study.  
Initially, these two websites are analyzed using the same methodology as 
proposed in the original study (Tian et al. 2004).  That is, the server logs from 
these two websites were parsed for all errors that occurred while the websites 
were serving content to their visitors.  A reliability estimate is then calculated 
from the extracted errors.  This chapter extends the original study (Tian et al. 
2004) by: 

• Applying the technique to two new websites.  One of which is a 
commercial website; in fact, the site can be considered as being mission 
critical to the commercial organization.  The logs investigated for this 
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commercial website cover a 15 month period, which is an extensive time 
period. It is believed that this log represents the longest period of capture, 
and the only truly “mission critical” log reported within the research 
literature. 

• Examining the error codes more rigorously; this will allow web 
administrators to focus on high value error codes. 

• Re-examining the workload models to provide alternative methods for 
web administrators to analyze and interpret reliability information. 

The remaining sections of this chapter are organized as follows: Section 5.1 
describes the research methodology.  Section 5.2 provides a brief overview of the 
characteristics of the websites used in the previous and the current study.  Section 
5.3 examines the workloads, the limitations of the workloads proposed, and the 
results from the two websites. 

5.1 Research Methodology 
Tian et al. (2004) demonstrated by performing an experiment on two websites that 
the operational reliability of websites could be estimated from server logs.  They 
identified three failure sources: 

• Host, network, or browser failures that prevent the delivery of requested 
information to web users.  These errors can be analyzed and assured by 
existing techniques (Lyu 1995, Musa et al. 1987, Trivedi 2001) because 
they are similar to failures in regular computer systems, network or 
software (Tian et al. 2004). 

• Source content failures that prevent the acquisition of the requested 
information by web users because of problems such as missing or 
inaccessible files, trouble with starting JavaScript, etc.  These failures 
have unique characteristics to web systems (Crovella and Bestavros 1997, 
Montgomery and Faloutsos 2001, Offutt 2002); hence, special workload 
characteristics need to be defined before their reliability can be estimated. 

• User errors, such as improper usage, mistyped URLs, etc.  These errors 
also include any external factors that are beyond the control of web service 
or content providers. 

They noted that host, network, browser failures and user errors can either be 
addressed by existing approaches or are outside of the responsibility and control 
of the content provider.  However, source content failures represent a significant 
part of the problem and the content providers can address these issues.  Hence, 
Tian et al. (2004) focused on web source content failures contained in error and 
access log files in their study.  These files are created by all commercial HTTP 
Daemons. 
 
The Nelson model (Nelson 1978), a widely used input domain reliability model, 
was used by Tian et al. (2004) to calculate reliability after the necessary 
information was extracted from the server logs.  The formula for the Nelson 
model is: 

r
n
f

n
fnR −=−=

−
= 11    (1) 



 

82 

where f is the total number of failures, n is the number of workload units and r is 
the failure rate.  The mean time between failures (MTBF) was then calculated as:  

∑=
i

itf
MTBF 1    (2) 

where ti is the usage time for each workload unit i.  If the usage time is not 
available, the number of workload units is then used as an approximation of the 
time period.  Thus, the MTBF can be calculated as: 

f
nMTBF =     (3) 

5.1.1 Removal of Automated Requests 
The log files contain requests from robots and other automated systems that 
should be removed as they are not actual requests from web users.  Automated 
systems are classified as systems that repeatedly request a resource from the 
website after a set period of time.  For example, upon investigation of Site A’s 
server log, requests from two monitoring services are identified.  The first service 
requests a resource from Site A every 30 minutes while the second service 
requests a resource from Site A every 66 minutes.  The resources these services 
request are unique and not publicly available. Hence, removing them simply 
involves identifying these resources in the log files.  Robots that automatically 
request the “robots.txt” resource are also removed from both Site A and ECE log 
files. 
 
Although it is infeasible to remove all automated requests from the server logs, 
web administrators need to remove all identifiable requests.  Several techniques to 
identify them can be used by web administrators to remove automated requests.  
Most well known robots have a signature line that is included with every request 
as part of the USER AGENT field of the log file.  For example, “Googlebot-
Image/1.0” can be used to identify a robot from Google that is indexing the 
website’s images.  For web monitoring services, web administrators can simply 
dedicate a special resource that only these services can access.  This resource can 
then be easily identified within the log files. 

5.1.2 Analysis of Error Code Information 
Error response codes can be extracted from either access or error logs.  Due to the 
lack of error log files for the KDE website and Site A, only the access log files 
were used to extract the error information (Tian et al. 2004).  Error response codes 
are embedded in the access logs, and these codes can be mapped to the error 
entries in the error log, for example, a “file not found” error in the error log 
usually corresponds to a 404 error code in the access log.  Hence as stated in Tian 
et al. (2004), using just the access logs is a reasonable method to gather error 
information unless detailed information about the errors is required.  Figure 5.1 
provides a sample entry that can be found within the access logs. 
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129.194.12.3 - - [03/Nov/2005:15:44:34 -0500] "POST /data/search.php 
HTTP/1.0" 200 50482 "http://www.sitea.com/data/form.php " "Mozilla/4.0 
(compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" 

Figure 5.1. A sample entry in an access log 
 
This figure shows that on November 3, 2005, a remote user with an IP address of 
129.194.12.3 used the POST protocol to access a file called search.php.  The 
server responded with a 200 code and returned 50482 bytes of data.  The previous 
URL that the user visited is http://www.sitea.com/database/form.php.  The user 
used Microsoft Internet Explorer version 6.0 to access the web page.  
 
The Nelson model and MTBF calculation require that the server logs capture the 
entire workload for the period under investigation.  To ensure that the logs are 
complete, the parser used was customized to report suspicious gaps, which can be 
defined as long periods of inactivity between two recorded hits.  These gaps were 
manually examined and discussed with the web administrators to ensure that the 
gaps are naturally occurring and not due to external factors such as the hard drive 
being full. 
 
The error response codes in Tables 5.3 – 5.5 are the standard HTTP error response 
codes as defined by the Request For Comment (RFC) 261640 as part of the HTTP 
protocol.  The following is a list of the codes encountered, their descriptions, and 
what the implications are when they are used for reliability analysis: 

• 400 (Bad request) – the request could not be understood by the server due 
to its malformed syntax.  This code should not be used for reliability 
analysis because the code is caused by a client that is not following the 
HTTP standard.  Since this is a client-side issue, it does not make sense to 
estimate a website’s reliability based on this code. 

• 401 (Unauthorized) – the server does not accept the client’s authorization 
credentials (or they were not supplied).  This error occurs when a user 
requests a resource that the user does not have permission to retrieve.  If 
the referrer for this resource is external to the website then this error can 
be ignored because the web administrators cannot control these external 
referrers.  However, if the referrer is internal to the website and it is not 
the expected behavior of the server, then this error needs to be included in 
the reliability analysis.  This situation of an error response code 
encompassing error types which are source content failure and external 
sources (human and system errors) occurs repeatedly; hence, the situation 
needs to be resolved to provide accurate reliability information.  This issue 
is resolved later in the paper. 

• 403 (Forbidden) – the server is refusing to fulfill the client’s request.  The 
cause for this error is similar to the 401 error code.  Depending on the 
configuration of the HTTP daemon, this error may be returned instead of 

                                                 
40 http://www.w3.org/Protocols/rfc2616/rfc2616.html, last accessed February 6, 2010 
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the 401 error code.  Hence, it has the same issue as the 401 error response 
code, and will be discussed later.   

• 404 (Not found) – the server cannot find anything matching the Request-
URI.  This error is currently the dominating error code and represented the 
focus of result of Tian et al.’s paper (2004).  However, again, this error 
response code covers a multitude of different error types some of which 
are source content failure but others lie outside the system or what seem to 
be source content failures are actually not source content failures.  For 
example, an attacker utilizing a scanner can (Spitzner 2001) spoof the 
referrer field of the log file when scanning for a system’s vulnerability; the 
spoofed referrer field appears to be an internal link when it is actually 
from an external source.  Links to old versions of the website can also 
create 404 error codes that appear to be internal bad links because the old 
version of the website is hosted on the same server as the current website.  
However, these internal bad links should be discarded because the user is 
using an incorrect version of the website.  With the availability of 
powerful link checkers (NetMechanic HTML Toolbox41, W3C Link 
Checker42), it is highly likely that actual source content failures are on the 
decline.   

• 405 (Method not allowed) – the method specified in the Request-Line is 
not allowed for the resource identified by the Request-URI.  The client 
performs a request that is not allowed by the server.  For example, the 
client tries to perform a PUT request, but the server is configured to not 
accept PUT requests; hence, a 405 error code is generated.  Since this 
error code only occurs due to a configuration issue, it should be discarded. 

• 406 (Not acceptable) – this error is returned if the web server detects that 
the client cannot accept the data it wants to return.  This error code should 
be discarded because the server’s content does not support the client used 
to access it. 

• 407 (Proxy authentication required) – if the client does not authenticate 
itself with the proxy then this error is returned.  This error code can be 
discarded because the client did not authenticate with the server before 
attempting to access restricted content. 

• 408 (Request timeout) – the client did not produce a request within the 
time that the server was prepared to wait.  This is a network failure rather 
than a source content failure, and hence, it should be discarded. 

• 409 (Conflict) – the client is attempting to perform a request that conflicts 
with the server’s established rule.  For example, the client is attempting to 
upload a file that is older than the file currently available on the server, 
this results in a version control conflict.  This error can be discarded 
because it is a browser failure, not a server failure. 

• 410 (Gone) – the server cannot find the requested resource and no 
alternative location can be found.  This error code is related to the 404 

                                                 
41 http://www.netmechanic.com/products/maintain.shtml, last accessed February 6, 2010 
42 http://validator.w3.org/checklink, last accessed February 6, 2010 
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response code, and hence it should follow the same rules as the 404 
response code. 

• 411 (Length required) – the server is denying the data the client is 
uploading because the client is not specifying the size of the data.  
Because this error is a browser failure and not a server failure, it can be 
discarded. 

• 412 (Precondition failed) – the resource requested failed to match the 
established preconditions.  This error should be included because the 
server failed to satisfy the preconditions; this implies that this error 
response code is a server failure.  

• 413 (Request entity too large) – the server is rejecting the data being 
uploaded from the client because the data size is too large.  The size limit 
can be adjusted within the server configuration.  Since this error code only 
occurs due to a configuration issue, it should be discarded. 

• 414 (Request-URI Too Long) – the server returns this error code in the 
following situations: 

o The client (usually a browser) has converted values from a POST 
request to a GET request.  The POST request can handle larger 
values than the GET request; thus, the error occurs when an 
extremely large POST request is converted to a GET request. 

o The client is attempting to exploit some type of vulnerability in the 
server.  Usually, these exploits involve a large amount of malicious 
code being injected into the Request-URI.  Some of these 
vulnerabilities include: buffer overflows (Cowan et al. 1998, Evans 
and Larochelle 2002, Wagner et al. 2000), SQL injections (Boyd 
and Keromytis 2004, Huang et al. 2003), cross-site scripting43, etc. 

Generally, the first situation is rare, and hence it is usually safe to assume 
that a majority of 414 errors will correspond to attacks on the server or 
other users who are accessing the vulnerable website.  Thus, by 
identifying these 414 errors, system administrators can identify attacks on 
their server system and take appropriate actions against the attackers.  
Although the 414 error code is useful to system administrators, it is not a 
source content failure and, hence, will be excluded from reliability 
analysis. 

• 415 (Unsupported media type) – the server is refusing the request because 
the resource is in a different format from the requested format.  For 
example, the browser requests a resource and specifies it as a text 
document; however, the server recognizes the requested resource as a 
binary file and not a text document.  A 415 response code would be 
generated in this scenario.  Since this error code is a browser failure and 
not a source content failure, it should be discarded.   

• 416 (Requested range not satisfiable) – the client is requesting a file size’s 
range that is invalid.  This error occurs when the client, usually a 
download manager such as Getright (http://www.getright.com) or Wget 

                                                 
43 http://www.cgisecurity.com/articles/xss-faq.shtml, last accessed May 15, 2008 
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(http://www.gnu.org/software/wget/wget.html), erred in its resume point 
calculation.  Hence, this error code should not be used in reliability 
analysis. 

• 500 (Internal error) – the server encountered an unexpected condition 
which prevented it from fulfilling the request.  Bugs within various 
dynamic scripts running on the server cause this error code.  Therefore, it 
must be included in any reliability calculation. 

• 501 (Not implemented) – the server does not support the request type that 
the client is sending.  For example, the browser tries to retrieve the header 
information of an ASP enabled web page, so it sends a HEAD request to 
the server.  However, the server does not understand this request for ASP 
enabled web pages, so it returns 501 error response code.  This error code 
should be included in reliability analysis. 

• 502 (Bad gateway) – This error has two definitions depending on the 
HTTP daemon used.  For Apache, this error occurs when the server, while 
acting as a gateway or proxy, received an invalid response from the 
upstream server it accessed in attempting to fulfill the request. Because 
this error response code only occurs when the Apache HTTP Daemon is 
acting in a different mode rather than actively serving web pages, this 
error should be discarded for servers using the Apache HTTP daemon.   
For IIS, Microsoft IIS’ support page44 describes this error as “You receive 
this error message when you try to run a CGI script that does not return a 
valid set of HTTP headers.” In other words, this error code can be 
triggered by an error in the web application’s output code.  Thus, this error 
should be included in reliability analysis if the web software is running on 
the IIS platform.    

• 503 (Service unavailable) – The server is overloaded and cannot serve 
further requests.  For example, due to a popular marketing campaign for a 
website, many users decide to visit this site.  The unexpected load caused 
by this sudden increase in traffic causes a major strain in the server’s 
resources, which then leads to extremely slow response time or a server 
crash.  For example, Toys R Us’ website received a surge in traffic after it 
released its Big Book catalog.  This surge in traffic overloaded the 
system’s resources, which lead to an extremely slow response time.  
Numerous potential purchasers were turned away because of this slow 
response time45. 

 
This failure response code is a host failure that can lead to extended 
availability issue if not resolved properly.  Tian et al. (2004) stated that 
availability problems are generally perceived by web users as less serious 
than web software problems.  They argued that users are more likely to be 
successful in accessing required information after temporary unavailability 
whereas software problems would persist unless the underlying causes are 

                                                 
44 http://support.microsoft.com/default.aspx?scid=kb;en-us;318380, last accessed February 7, 
2010. 
45 http://money.cnn.com/1999/11/19/technology/etail_tech/, last accessed May 15, 2008 
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identified and fixed.  This argument is questionable because web users are 
much more impatient and less forgiving than traditional users, as 
discussed by many studies (Galletta et al. 2004, Masterson 1999, Nah 
2002, Rose et al. 2001, Williams 2001).  They typically move on to the 
next site if they encounter issues with the current site that they are 
browsing.  From their perspective, if they cannot access the information 
they want then it is an error.  Hence, although the 503 error response code 
corresponds to a host failure and not a source content failure, it must be 
included in reliability analysis. 

• 504 (Gateway timeout) – this error only occurs when the server is acting 
as a gateway or proxy server, hence it should be discarded. 

• 505 (HTTP version not supported) – the server does not support the HTTP 
protocol version used by the client.  This error can be discarded because 
the client is not using the proper HTTP protocol version. 

It should be noted that web systems can be configured to catch error codes and 
respond with a 200 OK code instead.  While this strategy hides technical 
information from users, it does not allow the error codes to be logged properly if 
configured incorrectly.  Hence, web administrators should ensure that error codes 
are still logged if this strategy is to be used. 

5.2 Overview of the Websites 
Tian et al. (2004) applied the proposed approach to two websites.  The first 
website analyzed was www.seas.smu.edu, the official web site for the School of 
Engineering and Applied Science at Southern Methodist University (SME/SEAS).  
The log files contained data covering 26 consecutive days in 1999.  The second 
website analyzed was www.kde.org (KDE).  This is the official website for the 
KDE project.  The overall traffic and user population for this website is 
significantly larger than the SMU/SEAS website.  The logs contained 31 days of 
traffic data.  During these 31 days, over 13 million hits were recorded.  Both of 
these websites used the popular Apache HTTP Daemon (http://httpd.apache.org) 
to serve their web pages. 

5.2.1 Overview of the Websites in This Chapter 
This chapter re-analyzes the approach presented in the original study (Tian et al. 
2004).  It initially applies this approach to two new websites, and based on these 
results postulates an alternative approach.  The first website is 
www.ece.ualberta.ca, the website for the Department of Electrical and Computer 
Engineering at the University of Alberta.  This site – similar to SME/SEAS and 
KDE – although important to the organization, it is non-commercial and not 
mission critical.  This website is a dynamic website that utilizes the ColdFusion 
(http://www.macromedia.com/software/coldfusion) scripting language, and the 
Apache HTTP Daemon (http://httpd.apache.org).  To investigate the stability of 
the data, the log files were chosen to cover approximately 30 consecutive days in 
January 2005 (ECE1) and 30 consecutive days in March 2006 (ECE2).  For the 
month of January, the ECE website received approximately 500,000 hits, 53,100 
“unique” visitors and transferred a total amount of 4.8 Gbytes of data.  During 
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March 2006, the ECE website handled 470,000 hits, 61,000 “unique” visitors and 
transferred a total amount of 6.2 Gbytes of data.   
 
The second website is the website for a publishing company that specializes in 
online databases (Site A).  This website differs from the previous websites in that 
it is very critical to Company A’s operation and hence it needs to be extremely 
reliable.  The website utilizes the PHP (http://www.php.net) scripting language, 
MySQL (http://www.mysql.com) for the backend database and is hosted on an 
Apache HTTP Daemon.  In order to observe potential trends and patterns for this 
mission critical website, the log files chosen cover 15 months of operation from 
January 2005 to March 2006.  This website’s traffic is lower than the ECE 
website.  However, it represents a typical business website.  That is, the site is a 
dynamic website with a mixed amount of static and dynamic pages – these are 
pages generated dynamically depending on the customers’ inputs; its users are 
customers who are either looking to purchase a product or to register for a training 
course.  For the 15 months covered, Site A received approximately 1.9 million 
hits and 92,000 “unique” visitors.  The site transferred 34 Gbytes of data.  Table 
5.1 displays the technologies used by, and reliability requirements for, the two 
websites under investigation. Unfortunately, the ECE site administrator only has 
an approximate reliability target for their installation.  These two websites were 
selected for this investigation because they utilize similar web development 
technologies while having different reliability requirements.  The two websites 
use a scripting language in addition to an HTTP daemon; with one of the sites (A) 
also using a DBMS for data management.  Although the technologies used are 
similar, their reliability objectives are quite different.  ECE – due to its non-
mission critical nature – is expected to experience a few failures per month.  Site 
A requires high reliability because the loss of customers and sales will occur if the 
site’s failure occurs.  In other words, Site A is expected to experience no more 
than one failure per month.   
 

Table 5.1 Sites examined 
Site Technologies Reliability Requirement 
ECE CodeFusion, Apache A few failures per month  
Site A PHP, Apache, MySQL No more than 1 failure per month 

 
Table 5.2 provides a summary of the properties of the logs used in previous 
studies and this study.  Websites with an asterisk are commercial websites. 
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Table 5.2 Comparison of data sets 

  Log duration Requests Bytes 
Transferred 

NASA-Pvt1 20 week 23 thousand 0.5 GB 
NASA-Pvt2 20 week 92 thousand 0.2 GB 
NASA-Pvt3 20 week 489 thousand 2.2 GB 
NASA-Pub1 20 week 93 thousand 9 GB 
NASA-Pub2 20 week 732 thousand 6.7 GB 
NASA-Pub3 20 week 108 thousand 4.6 GB 
CSEE 6 week 5.8 million 80.9 GB 
WVU 3 week 37.9 million 97 GB 
ClarkNet* 2 week 3.3 million 27.6 GB 
NASA-KSC 2 month 3.5 million 62.5 GB 

Goševa-
Popstojanova 
et al. (2006a) 

Saskatchewan 7 month 2.4 million 12.3 GB 
WVU 1 week 15.8 million 34.5 GB 
ClarkNet* 1 week 1.7 million 13.8 GB 
CSEE 1 week 397 thousand 10.1 GB 

Goševa-
Popstojanova 
et al. (2006b)

NASA-Pub2 1 week 39 thousand 0.3 GB 
SMU/SEAS 26 day 763 thousand 7.8 GB Tian et al. 

(2004) KDE 31 day 14 million 110 GB 
Site A* 15 month 1.9 million 34 GB 
ECE1 1 month 500 thousand 4.8 GB 

This study 

ECE2 1 month 470 thousand 6.2 GB 
 
This table shows that the longest period that previous studies have collected data 
is over a 7 month period, compared to 15 months in this study.  Furthermore, 
studies that use logs from commercial websites cover extremely short periods (1 
to 2 weeks).  This study investigates the log file from a commercial website for a 
much longer period (15 months). Hence, it is believed that this study presents the 
first long-term analysis of a (mission-critical) commercial website. 

5.3 Results and Discussions 
This section presents the results for the four websites, and discusses various issues 
encountered during this experiment and explains the similarity and differences 
between the original study and this study.  

5.3.1 Results from the Original Study 
Tian et al. (2004) discovered many issues associated with the extraction of 
workload data for reliability estimation.  However, the log files provide 
information that allows available data for the hit count, byte count and user count 
to be extracted with ease.  The session count can be derived based on a timeout 
value which can provide more granularity than the user count. 
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They found that the four proposed workload characteristics allow reliability 
assessments from different perspectives.  Hence, systems administrators can 
choose the best workload characteristic depending on the situation.  For example, 
administrators concerned with data traffic measurement can examine the byte 
count whereas the hit count can provide more useful information regarding web 
users.  The next section will present results found in this study and whether they 
confirm findings from Tian et al. (2004) study. 

5.3.2 Results from this Study 
Tables 5.3 – 5.5 provide a summary of the error response codes for all four 
websites.  These tables contain the actual number of error counts and their 
corresponding percentages; these tables follow the analysis performed by Tian et 
al. (2004).  That is, the access logs are parsed, and the errors are grouped together 
according to the error code without explicit considering of their cause.  The 
original study provided only limited information for the KDE website; hence all 
the cells containing “n/a” are missing information that cannot be derived.  
Furthermore, the total percentage of errors recorded does not equal to 100 percent 
for this website.  While Goseva-Popstojanova et al. (2006a, 2006b) also 
performed analysis on the error codes, the results are combined into groups such 
as 4xx (all 400 level error codes) and 5xx (all 500 level error codes).  Hence, 
results from Goseva-Popstojanova et al. (2006a, 2006b) cannot be included in 
these tables. 

Table 5.3 Recorded errors 
Error code Sites 400 401 403 404 

SMU/SEAS 2 (0.02%) 14 (0.046%) 2,085 (6.78%) 28,659 (93.17%) 
KDE n/a n/a n/a 785,211 (98.90%) 
ECE1 202 (0.15%) 6 (0.00%) 44 (0.03%) 136,143 (99.81%) 
ECE2 52 (0.05%) 4 (0.00%) 211 (0.19%) 112,751 (99.74%) 
Site A (Jan05) 1 (0.06%) 3 (0.17%) 188 (10.90%)) 1,500 (86.96%) 
Site A (Feb05) 0 10 (0.53%) 162 (8.50%) 1,722 (90.44%) 
Site A (Mar05) 1 (0.05%) 28 (1.29%) 194 (8.90%) 1,938 (88.94%) 
Site A (Apr05) 2 (0.09%) 17 (0.72%) 190 (8.07%) 2,121 (90.06%) 
Site A (May05) 4 (0.20%) 27 (1.33%) 130 (6.39%) 1,849 (90.86%) 
Site A (Jun05) 1 (0.05%) 36 (1.65%) 213 (9.78%) 1,920 (88.11%) 
Site A (Jul05) 0 36 (1.53%) 146 (6.19%) 2,158 (91.44%) 
Site A (Aug05) 0 28 (1.04%) 194 (7.20%) 2,448 (90.87%) 
Site A (Sep05) 0 13 (0.59%) 167 (7.54%) 2,018 (91.15%) 
Site A (Oct05) 0 12 (0.46%) 159 (6.03%) 2,434 (92.30%) 
Site A (Nov05) 0 19 (0.68%) 214 (7.69%) 2,525 (90.76%) 
Site A (Dec05) 1 (0.04%) 13 (0.54%) 156 (6.43%) 2,223 (91.56%) 
Site A (Jan06) 0 19 (0.58%) 231 (7.04%) 2,758 (84.11%) 
Site A (Feb06) 0 19 (6.66%) 164 (5.66%) 2,602 (89.82%) 
Site A (Mar06) 0 22 (0.61%) 259 (7.12%) 3,321 (91.31%) 
Site A (Total) 10 (0.03%) 302 (0.81%) 2767 (7.40%) 33,537 (89.69%) 
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Table 5.4 Recorded errors (cont.) 
Error code Sites 405 408 414 415 416 

SMU/SEAS 0 0 0 0 0 
KDE n/a 6,225 (0.78%) n/a n/a n/a 
ECE1 0 0 0 0 6 (0.00%) 
ECE2 2 (0.00%) 1 (0.00%) 0 0 14 (0.01%) 
Site A (Jan05) 1 (0.06%) 0 0 30 (1.74%) 2 (0.12%) 
Site A (Feb05) 0 0 0 10 (0.53%) 0 
Site A (Mar05) 0 0 0 17 (0.78%) 1 (0.05%) 
Site A (Apr05) 0 0 0 25 (1.06%) 0 
Site A (May05) 2 (0.10%) 0 0 17 (0.84%) 0 
Site A (Jun05) 0 0 0 9 (0.41%) 0 
Site A (Jul05) 0 0 0 20 (0.85%) 0 
Site A (Aug05) 0 0 0 24 (0.89%) 0 
Site A (Sep05) 0 0 0 16 (0.72%) 0 
Site A (Oct05) 0 0 0 32 (1.21%) 0 
Site A (Nov05) 0 0 0 24 (0.86%) 0 
Site A (Dec05) 98 (4.04%) 0 0 26 (1.07%) 0 
Site A (Jan06) 254 (7.75%) 0 0 17 (0.52%) 0 
Site A (Feb06) 83 (2.87%) 0 0 29 (1.00%) 0 
Site A (Mar06) 5 (0.14%) 0 0 30 (0.83%) 0 
Site A (Total) 443 (1.19%) 0 0 326 (0.87%) 0 
 

Table 5.5 Recorded errors (cont.) 
Error code Sites 

500 501 502 503 
SMU/SEAS 0 0 0 0 
KDE n/a n/a n/a n/a 
ECE1 7 (0.01%) 0 0 0 
ECE2 10 (0.01%) 0 0 0 
Site A (Jan05) 0 0 0 0 
Site A (Feb05) 0 0 0 0 
Site A (Mar05) 0 0 0 0 
Site A (Apr05) 0 0 0 0 
Site A (May05) 0 0 0 6 (0.30%) 
Site A (Jun05) 0 0 0 0 
Site A (Jul05) 0 0 0 0 
Site A (Aug05) 0 0 0 0 
Site A (Sep05) 0 0 0 0 
Site A (Oct05) 0 0 0 0 
Site A (Nov05) 0 0 0 0 
Site A (Dec05) 0 0 0 0 
Site A (Jan06) 0 0 0 0 
Site A (Feb06) 0 0 0 0 
Site A (Mar06) 0 0 0 0 
Site A (Total) 0 0 0 6 (0.02%) 
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These tables show that the 404 error type dominates, as noted by Tian et al. 
(2004).  They discovered that, for SMU/SEAS, 99.9 percent of the errors 
encountered were of types 403 and 404 with 404 errors accounting for 93.1 
percent of the recorded errors.  For KDE, 98.9 percent of the recorded errors were 
of type 404.  According to the survey results from 1994 to 1998 by the Graphics, 
Visualization, and Usability Center of Georgia Institute of Technology 
(http://www.gvu.gatech.edu/user_surveys/), 404 errors are the most common 
errors that users encounter while browsing the web.  Ma and Tian (2003) found 
that a majority of these 404 errors are caused by internal bad links (IBL) while 
only a small percentage are caused by external factors such as the user mistyping 
the URL, robots from search engines, external links (links from other websites), 
old bookmarks, etc.  Tian et al. (2004) discovered that only 8.7% of the 404 errors 
encountered were caused by external factors for SMU/SEAS.  Despite this 
conclusion, they did not provide convincing evidence that the majority of the 
recorded errors are in fact from source content failures.  Furthermore, these tables 
shows that, although the 404 error type dominates, other error response codes also 
exist; and while the 404 error type may dominate numerically, no analysis exists 
as to the “value” (of the information) encoded within the various error types for 
web site administrators.  Therefore, all of the error codes encountered will be 
examined to determine which errors are truly source content failures (have value) 
and which are attributed to other uncontrollable factors (no value).  For example, 
the 404 response errors have no value for Site A because all of the 404 recorded 
errors are caused by factors outside of the site administrator’s control whereas the 
503 error response code is high in value – the site administrator is expected to 
respond and correct the 503 errors immediately due to the potential loss in sales 
and customers that this error code can cause.   
 
One common argument is that if information is available, external failures can 
also be resolved.  This argument is not valid for several reasons.  A site 
administrator can only be reactive to external failures rather than being proactive.  
That is, until an external failure occurs, a site administrator will not have enough 
information to resolve that failure.  Furthermore, depending on circumstances, the 
failure may not be resolvable.  For example, an external website has a link to a 
web page on the web system under examination.  However, due to recent changes, 
that web page is no longer valid.  The site administrator will not be aware of this 
issue until a user follows the link from the external website.  Once the failure 
occurs, the site administrator can attempt to resolve it by attempting to contact the 
external website’s Webmaster to get the link updated.  However, this process 
requires cooperation from the external website’s Webmaster.  Furthermore, the 
process becomes tedious when there are thousands of websites linking to this 
invalid web page.  The site administrator can also attempt to redirect the user to 
the correct page.  However, this requires the site administrator to have a complete 
mapping of all invalid pages to valid pages which is clearly infeasible.  Because 
of these potential issues, the site administrator cannot resolve external failures 
adequately. 
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Based on the information above, the error response codes can be associated to one 
or more failure sources.  Table 5.6 displays this association for the error codes 
discussed.  Error codes that do not have an association with a source content 
failure or host failure will not be investigated because they are beyond content 
providers’, or website administrators’, control. 
 

Table 5.6 Failure sources for the error codes 
Error code Host Source content Network or 

browser 
User and external 

400     
401     
403     
404     
405     
408     
415     
416     
500     
501     
502   (IIS)  (Apache)  
503     
 
Table 5.6 shows seven error codes, 401, 403, 404, 500, 501, 502 (IIS), and 503 
that have either source content failure (SCF) or host failure as a potential failure 
source; hence, these seven error codes will be examined in detailed in order to 
determine their exact failure sources.  Further, the 401, 403 and 404 error codes 
have both source content failure and external failures as failure modes or sources.  
After intensively investigating the log files for the two web sites under study (Site 
A and ECE), it is discovered that, for these web sites, the source content failures 
can be classified into two types: 

• SCF1 – these are errors on the website that should be identified and 
corrected by the site administrators or content providers.  These errors can 
be identified by close examination of the referrer field: 

 
If the referrer field of an error contains the website’s URL, then the 
error belongs to the SCF1 category. 

 
• SCF2 – these are usually links from external websites pointing to an old 

version of the website under investigation.  This old version still exists on 
the HTTP Daemon for archival purposes and has no connections to the 
current website.  Hence, it is not maintained and can contain many bad 
links.  When a user visits this old version – through search engines, old 
bookmarks, old emails, etc. – and clicks on one of these bad links, the log 
data will record that the error is caused by an internal source. Since, these 
errors are under the direct control of system administrators, they are 
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classified as source content rather than external failures. However, an 
argument can be made that they are of lower value than SCF1 type errors. 
For example, for the ECE site, these errors are considered by the site 
administrator as a “non-issue”; and a case can be made for either including 
them or excluding them from reliability calculations.  Errors belonging to 
the SCF2 type can be identified using the following method: 

 
For each error, the referrer URL should be noted and visited.  If the 
URL leads to an old version of the website, then the error is of SCF2 
type. 

 
External failure sources – which account for the majority of the failures – can also 
be classified into two categories: 

• ES1 – which are old links from external websites, search engines, old 
bookmarks, etc.  These external links can be detected based on the referrer 
information - each entry in the log files contains a referrer field which 
provides the web page that links to the content the user is requesting:   

 
All 401, 403 and 404 errors having URLs – not from the same domain 
as the website – or the character “-“ in the referrer field are of the ES1 
type.   

 
• ES2 – which are scanners being executed by attackers looking for known 

vulnerabilities contained in various web applications.  These scanners can 
send spoofed information to the web server.  The web server will generate 
internal 401 or 403 errors if the web administrators have set up security 
permissions for these applications, or internal 404 errors if the website 
does not use these web applications.  ES2 errors can be identified by close 
examination of the errors:  

 
If the requested resources belong to web applications not installed for 
the website, then the errors are of ES2 type. 

 
401, 403 and 404 errors belonging to the ES1 and ES2 types should be detected 
and discarded during the data analysis phase.  Tables 5.7 and 5.8 display the 
percentages of the different failure categories for the 401, 403 and 404 error 
codes, respectively.  Due to unavailable information, the errors from the original 
study cannot be classified into the types discussed.  These tables show that ECE 
(1 and 2) and Site A have extremely low (less than 0.5%) or no 401, 403, and 404 
error codes as source content failures.  All 500, 501, and 502 error codes were 
discovered to be source content failures, which is expected because of the 
associations shown in Table 5.6. 
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Table 5.7 Possible error codes for reliability analysis 
Sites Error code  
 401 403 
 SCF1 SCF2 ES1 ES2 SCF1 SCF2 ES1 ES2 
ECE1 0 0 6 (100%) 0 0 0 38 (86.36%) 6 (13.64%)
ECE2 0 0 4 (100%) 0 0 1 

(0.47%)
164 (77.73%) 46 

(21.80%) 
Site A (Jan05) 0 0 3 (100%) 0 0 0 186 (98.94%) 2 (1.06%) 
Site A (Feb05) 0 0 4 (40.00%) 6 (60.00%) 0 0 158 (97.53%) 4 (2.47%) 
Site A (Mar05) 0 0 28 (100%) 0 0 0 193 (99.48%) 1 (0.52%) 
Site A (Apr05) 0 0 17 (100%) 0 0 0 189 (99.47%) 1 (0.53%) 
Site A (May05) 0 0 27 (100%) 0 0 0 130 (100%) 0 
Site A (Jun05) 0 0 36 (100%) 0 0 0 213 (100%) 0 
Site A (Jul05) 0 0 33 (91.67%) 3 (8.33%) 0 0 146 (100%) 0 
Site A (Aug05) 0 0 25 (89.29%) 3 (10.71%) 0 0 193 (99.48%) 1 (0.52%) 
Site A (Sep05) 0 0 13 (100%) 0 0 0 167 (100%) 0 
Site A (Oct05) 0 0 12 (100%) 0 0 0 159 (100%) 0 
Site A (Nov05) 0 0 19 (100%) 0 0 0 214 (100%) 0 
Site A (Dec05) 0 0 13 (100%) 0 0 0 153 (98.08%) 3 (1.92%) 
Site A (Jan06) 0 0 19 (100%) 0 0 0 230 (99.57%) 1 (0.43%) 
Site A (Feb06) 0 0 19 (100%) 0 0 0 163 (99.39%) 1 (0.61%) 
Site A (Mar06) 0 0 22 (100%) 0 0 0 239 (92.28%) 20 (7.72%)
Site A (Total) 0 0 290 

(96.03%) 
12 (3.97%) 0 0 2733 (98.77%) 34 (1.23%)

 
Table 5.8 Possible error codes for reliability analysis (cont.) 

404 error code  Sites SCF1 SCF2 ES1 ES2 
ECE1 0 16 (0.01%) 135,950 (99.86%) 177 (0.13) 
ECE2 0 10 (0.01%) 112,643 (99.90%) 98 (0.09%) 
Site A (Jan05) 0 0 1,479 (98.60%) 21 (1.40%) 
Site A (Feb05) 0 0 1,683 (97.74%) 39 (2.26%) 
Site A (Mar05) 0 0 1,881 (97.06%) 39 (2.94%) 
Site A (Apr05) 0 0 2,075 (97.83%) 46 (2.17%) 
Site A (May05) 0 0 1,814 (98.11%) 35 (1.89%) 
Site A (Jun05) 0 0 1,877 (97.76%) 43 (2.24%) 
Site A (Jul05) 0 0 2,087 (96.71%) 71 (3.29%) 
Site A (Aug05) 0 0 2,377 (97.10%) 71 (2.90%) 
Site A (Sep05) 0 0 1,986 (98.41%) 32 (1.59%) 
Site A (Oct05) 0 0 2,391 (98.23%) 43 (1.77%) 
Site A (Nov05) 0 0 2,477 (98.10%) 48 (1.90%) 
Site A (Dec05) 0 0 2,139 (96.22%) 84 (3.78%) 
Site A (Jan06) 0 0 2,686 (97.39%) 72 (2.61%) 
Site A (Feb06) 0 0 2,344 (90.08%) 258 (9.92) 
Site A (Mar06) 0 0 2,983 (89.82%) 338 (10.18%) 
Site A (Total) 0 0 32,279 (96.25%) 1,258 (3.75%) 

 
Finally, Tables 5.9 and 5.10 display the error codes generated from source content 
and host failures that will be used for reliability analysis in this study.  This table 
contains the 500, 501, 502, and 503 error codes in addition to a subset of the error 
response codes from Tables 5.7 and 5.8.  The 401 error code is not included in 
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this table because they do not contain any source content failures as shown in 
Table 5.7.  Tables 5.9 and 5.10 effectively demonstrate the low number of 
“errors” of interest, or value, experienced by live web sites (ECE and Site A). 
These numbers have significant implications of reliability analysis and models for 
these types of systems. 

Table 5.9 Error codes to be used for reliability analysis 
Error codes Sites 403 404 500 

ECE1 0 16 (69.565%) 7 (30.435%) 
ECE2 1 (4.762%) 10 (47.619%) 10 (47.619%) 
Site A (Jan05) 0 0 0 
Site A (Feb05) 0 0 0 
Site A (Mar05) 0 0 0 
Site A (Apr05) 0 0 0 
Site A (May05) 0 0 0 
Site A (Jun05) 0 0 0 
Site A (Jul05) 0 0 0 
Site A (Aug05) 0 0 0 
Site A (Sep05) 0 0 0 
Site A (Oct05) 0 0 0 
Site A (Nov05) 0 0 0 
Site A (Dec05) 0 0 0 
Site A (Jan06) 0 0 0 
Site A (Feb06) 0 0 0 
Site A (Mar06) 0 0 0 
Site A (Total) 0 0 0 

 
Table 5.10 Error codes to be used for reliability analysis (cont.) 

Error codes Sites 501 502 503 
ECE1 0 0 0 
ECE2 0 0 0 
Site A (Jan05) 0 0 0 
Site A (Feb05) 0 0 0 
Site A (Mar05) 0 0 0 
Site A (Apr05) 0 0 0 
Site A (May05) 0 0 6 (100%) 
Site A (Jun05) 0 0 0 
Site A (Jul05) 0 0 0 
Site A (Aug05) 0 0 0 
Site A (Sep05) 0 0 0 
Site A (Oct05) 0 0 0 
Site A (Nov05) 0 0 0 
Site A (Dec05) 0 0 0 
Site A (Jan06) 0 0 0 
Site A (Feb06) 0 0 0 
Site A (Mar06) 0 0 0 
Site A (Total) 0 0 6 (100%) 
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This section discussed various different error codes and how they may or may not 
contribute to reliability analysis.  Care has to be taken when dealing with these 
error codes as they do contain limitations that may affect the accuracy of a 
reliability estimate.  The next section will discuss the workloads and any 
limitations they may have and how those limitations can further impact reliability 
analysis. 

5.3.3 Workload Analysis and Discussions 
Table 5.11 contains the workloads for the four workloads explored by Tian et al. 
(2004).  Session count uses the standard two hours of inactivity to mark an end of 
a session (Montgomery and Faloutsos 2001), while “session count 2” uses 30 
minute of inactivity period which was also used in many previous studies 
(Catledge and Pitkow 1995, Cooley et al. 1999, Fu et al. 1999, Goseva-
Popstojanova et al. 2004, Goseva-Popstojanova et al. 2006a-b, Menasce et al. 
2000a-b).  This 30 minute figure is based on a mean value of 25.5 minutes 
(rounded up) determined by Catledge and Pitkow (1995).  This figure is also 
believed to be commonly used in many commercial web applications (Huang et 
al. 2004).  For example, Google Inc. uses the 30 minute timeout value for their 
Analytics web application46.    
 
Table 5.11 shows that when the timeout period is decreased, the session count 
increases.  This behaviour is expected because a shorter timeout period means that 
some longer sessions will be split into multiple shorter sessions.  Because the 
number of errors remains constant, the increased session count means the 
reliability estimation will increase.  This effect can be seen in Tables 5.13 and 
5.14.  Hence, choosing the correct timeout period for the session count is 
important if an accurate estimation of reliability is to be obtained.  This table 
shows that during the months of January to March 2006, there seems to be a 
steady increase in traffic for Site A; this “increase in traffic” is expected because 
there was a marketing campaign launched during this period to attract more users.  
However, the three available data points are not sufficient to numerically prove 
this conjecture. 

                                                 
46http://www.google.com/support/googleanalytics/bin/answer.py?hl=en&answer=55463 last 
accessed May 18, 2008 
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Table 5.11 Workloads 

Workload Sites 
hit 
count 

byte 
count 

user 
count 

session 
count 

session 
count 2 

days 

ECE1 369617 4531 Mb 53208 60922 72502 30 
ECE2 347413 5874 Mb 59727 71141 82761 30 
Site A (Jan05) 120699 2191 Mb 5015 5336 6036 30 
Site A (Feb05) 108219 1953 Mb 4982 5353 6017 28 
Site A (Mar05) 135282 2474 Mb 6175 6633 7572 31 
Site A (Apr05) 117785 2229 Mb 5800 6144 6961 30 
Site A (May05) 113304 2110 Mb 5539 5926 6707 31 
Site A (Jun05) 120784 2309 Mb 5902 6220 6940 30 
Site A (Jul05) 105950 2060 Mb 5664 5980 6715 31 
Site A (Aug05) 112997 2068 Mb 5935 6321 7094 31 
Site A (Sep05) 111592 1980 Mb 5680 6055 6905 30 
Site A (Oct05) 117256 2167 Mb 6258 6749 7666 31 
Site A (Nov05) 122300 2178 Mb 6321 6784 7574 30 
Site A (Dec05) 107702 2042 Mb 5948 6303 7296 31 
Site A (Jan06) 148865 2726 Mb 7325 7792 8724 30 
Site A (Feb06) 134334 2653 Mb 6830 7255 8094 28 
Site A (Mar06) 161266 3147 Mb 8233 8771 10405 31 
Site A (Total) 1838335 34287 Mb 91607 97622 110415 453 

 
In order to determine if any correlation between the workload characteristics 
exists, Principal Component Analysis (Jolliffee 1986) was performed.  Table 5.12 
shows the results for Site A (Total), and Figure 5.2 shows the Scree plot.  The plot 
shows that only one component has an Eigen value over 1 and all other 
components after Component 1 appear to level off.  This suggests that only one 
component is of importance.  Results for the other websites (ECE1 and ECE2) are 
a similar, but are omitted for brevity.  These results show that all of the workload 
characteristics are highly correlated which suggests that any workload 
characteristic can be used for reliability estimation.  However, website 
administrators should select the workload characteristic most suitable for their 
requirements. 
 

Table 5.12 Correlation matrix 
 hit 

count 
byte 
count 

user 
count 

session 
count 

session 
count 2 

hit count 1 0.95 0.91 0.91 0.91 
byte count 0.95 1 0.92 0.92 0.91 
user count 0.91 0.92 1 0.998 0.98 
session 
count 

0.91 0.92 0.998 1 0.99 

session 
count 2 

0.91 0.91 0.98 0.99 1 
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Figure 5.2 Scree plot 

 
Tian et al. (2004) discussed the potential issues in using the byte count as a 
workload because a variety of entries, including error entries, in the access log 
that do not contain information on the number of bytes transferred.  Upon further 
investigation, they discovered that the missing entries are associated with binary 
files already stored in the user cache.  The byte count also treats large file size 
resources as more important than smaller sized resources.  For example, let’s 
assume that resources A and B exist on a web server, and resource A is much 
larger in size than resource B.  A user, who requires both resources A and B, 
attempts to retrieve these two resources.  Resource A failing will have a greater 
effect on the reliability estimation of the system, which is inappropriate because 
the reliability of the server is the same regardless of the size of the resource.  
Figure 5.3 shows the file size (in Kbytes) histogram for Site A which illustrates 
this issue.  The figure shows that the size of the resources on the furthest right is 
equivalent to the combined size of many resources on the left side. 
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Figure 5.3 File size histogram for Site A 

 
Other issues also exist with using the user count and session count as workloads 
(Alagar and Ormandjieva 2002, Arlitt and Jin 1999, Rosentein 2000).  In fact, 
since web workload characterization was extensively examined by Arlitt and 
Williamson (1997), many studies have been performed to further examine the 
individual workloads (Arlitt and Jin 1999, Cherkasova and Phaal 1998, Menasce 
et al. 1999, 2000).  Tian et al. (2004) suggested that each unique IP address can be 
counted as one user.  However, with the current explosion in the number of 
Internet users, the total amount of IP addresses available is shrinking rapidly.  
Thus, many methods now exist that allow one public IP address to be used for a 
group of machines; some of these methods include proxy servers, and personal 
routers.  Since the original study suggests counting one unique IP as a user, there 
is a strong possibility that this “user” is actually a group of users.  As personal 
routers and proxy servers become more dominant this issue is also becoming 
more prominent.  The session count also suffers this same problem because “one 
session” may actually be several sessions from several different users who are 
sharing the same public IP.  Thus, a methodology needs to be developed to 
distinguish different users before accurate reliability analysis can be performed.  
Websites can use cookies to track user and sessions more effectively by placing a 
unique identifier and time related information inside the cookie.  However, 
limitations still exist, such as two users sharing the same machine to access the 
website.  The effectiveness of using cookies as a method to track user and session 
workloads will be explored in the future. 
 
Results from this section confirm issues with the extraction of workload data from 
the server logs as discussed in the original study (Tian et al. 2004).  Issues not 
discussed in previous studies (Tian et al. 2004, Goseva-Popstojanova et al. 2006a-
b) such as file size bias and proxy servers, are also presented to ensure that web 
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administrators using this approach for reliability estimation are aware of these 
limitations. 

5.3.4 Reliability Analysis and Discussions 
The failures and workloads can be applied to the Nelson model to evaluate the 
overall operational reliability.  Using equation (1), R, based on the hits workload, 
was calculated for the websites under examination; the results can be seen in 
Table 5.13.  Not surprisingly, Site A, which has the highest reliability 
requirement, has a high reliability rate during the 15 month period (99.997% of 
the hits are successful).  The sudden drop in reliability during May 2005 was 
examined; upon closer investigation and discussion with the administrator, it is 
discovered that a configuration setting was not set up correctly; hence the website 
experienced several simultaneous server failures. 
 

Table 5.13 Reliability analysis 
Sites R 
ECE1 0.999938 
ECE2 0.999940 
Site A (Except May05) 1 
Site A (May05) 0.999947 
Site A (Total) 0.999997 

 
The hit reliability figures are consistent with previous studies (Tian et al. 2004, 
Goseva-Popstojanova et al. 2004, 2006a-b) in that they are very high.  However, 
other workloads can be used to obtain different resolution for the reliability 
figure.  As discussed by Tian et al. (2004) reliability based on other workloads 
(users, sessions, and bytes) can be calculated using: 

w

w

n
fR −=1   (4) 

where fw is the number of workloads with at least one failure recorded.  For 
example, fusers is the number of users who encountered at least one failure.  nw is 
the total number of workload units.  Goseva-Popstojanova et al. (2004, 2006a), 
using the Nelson model, discovered that reliability based on the session workload 
is lower than reliability based on the hit count.  However, there is no 
straightforward relationship between hit reliability and session reliability 
(Goseva-Popstojanova et al. 2006a); hence, web administrators should not use 
these two metrics interchangeably.  Table 5.14 displays reliability using the other 
workloads.  This table shows all workload units provide extremely high reliability 
number due to the low error count associated with the websites under 
investigation.  However, the “days” workload characteristic contains rates that are 
lower, especially for ECE (closer investigation revealed that the ECE website 
experienced a high failure rate per day which results in the low reliability figure).  
Hence, the advantage of the four workloads – being able to provide better 
granularity than the daily error rate – is lost.  In addition, significant issues still 
exist in accurately estimating the four proposed workloads.  Hence, any future 
work on “live” (as opposed to test) websites should simply utilize days as their 
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basis unless there are specific requirements that force web administrators to use 
other workload characteristics. 
 

Table 5.14 Reliability analysis using the other workloads 
Sites Rbytes Rusers Rsessions Rsessions2 Rdays 
ECE1 1 0.999565 0.999622 0.999683 0.233333 
ECE2 1 0.999648 0.999705 0.999746 0.300000 
Site A (Except May05) 1 1 1 1 1 
Site A (May05) 1 0.998917 0.998988 0.999105 0.806452 
Site A (Total) 1 0.999935 0.999939 0.999946 0.986755 

 
The mean workload between failures (MWBF) can also be calculated using the 
model discussed in Section 5.1.  This model may provide better estimation due to 
the fact that it does not have the same limitations that the Nelson model has.  
Furthermore, it allows web administrators to analyze failure based on time.  The 
original study calculated the MWBF by substituting the number of workloads 
units for time, effectively using formula (3) for analysis; hence, this study also 
uses this formula to calculate the MWBF for the websites under investigation.  
The resulting MWBFs for the two websites can be seen in Table 5.15.  Sites (or 
months) with “n/f” experience no failures during the time period measured.  The 
MWBF data in Table 5.15 states that an error will be encountered for each of the 
workload (bytes, hits, users and sessions) values specified.  This table shows that 
ECE1 has, on average, a failure for every 16,070 hits; Site A would experience 
one failure after every 306,389 hits.  Looking at the “days” column shows that 
Site A does meet its reliability requirement of having no more than one failure per 
month (except in May), whereas ECE experiences at least one failure every week 
which is also expected. 
 

Table 5.15 MWBF 
Sites hits bytes users sessions sessions2 days 
ECE1 16,070 1.97x1008 2,313 2,648 3,152 1.30 
ECE2 16,543 2.80x1008 2,844 3,387 3,941 1.43 
Site A (Except 
May05) 

n/f n/f n/f n/f n/f n/f 

Site A (May05) 18,884 3.52x1008 923 987 1,117 5.17 
Site A (Total) 306,389 5.71x1009 15,267 16,270 18,402 75.5 
 
The MWBF calculated using the second MTBF formula can only provide a rough 
estimate of the actual MTBF.  Although using the workload units as a substitute 
for time is a reasonable method in situations where the time is not available, for 
this analysis, the time can be calculated from the daily failure.  That is, MTBF (in 
hours) = 24×(daily failure rate). 
 
ECE is an academic website; hence it is not surprising to see its MTBF to be at 
31.2 hours (1.3 days) and 34.3 hours (1.43 days) as opposed to Site A which has a 
MTBF rate of 1,812 (75.5 days) hours for the entire 15 months.  Again, the low 
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MTBF (relatively) rate for Site A during May 2005 can be attributed to the web 
application upgrade issue.  
 
This section shows that reliability can be estimated from server logs and 
expressed in different metrics.  Different reliability metrics have been examined 
to provide system administrators with the flexibility of selecting the correct metric 
based upon the requirements.  For example, the requirements of Site A and ECE 
were expressed in terms of failures per month.  Hence, system administrators for 
these websites can choose the MTBF to express their estimated reliability. 

5.3.5 Limitation of Log Files 
Although log files can provide failure information, reliability can only be 
estimated from them.  The actual reliability cannot be computed solely from web 
servers’ log files due to several issues.  The workload information cannot be 
accurately computed as mentioned in Section 5.3.1.  However, with the help of 
web technology such as cookies, developers are beginning to be able to track the 
user session count and user count more accurately.  Techniques on identifying the 
correct timeout value for the session workload are also being discussed by various 
researchers (He and Goker 2000, Huntington et al. 2008).  As these technologies 
and new techniques are being utilized, more accurate workload data will be 
gathered which will increase the accuracy of reliability estimation. 
 
Furthermore, errors that are not recorded in the log files may lead to an inflated 
reliability figure.  For example, a website’s link may point to an incorrect web 
page rather than a missing one.  This type of error requires human intervention as 
the error is only defined by a deviation from the specification rather than an 
exception. That is, the error codes in the server logs can only identify resource 
availability issues such as missing resources, moved resources, etc., and not 
whether the resources contain incorrect content.  In this scenario, an error would 
not be recorded in the log files and the error would only be known when the 
customer reports the issue.  Reliability estimation based on log files alone would 
not include this error.  Because the link is available, automated web crawlers 
would not be able to detect this error.  In fact, this scenario requires manual user 
intervention to detect the error; hence the error would have to be added manually 
to the data to increase the accuracy of the proposed reliability estimation method.  
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Chapter 6 – Empirical Observations on the Session 
Timeout Threshold 
One of the most popular units used to analyze traffic, workload and user 
behaviour is the session.  For example, Chen et al. (2003) presented several 
algorithms that allow web miners to efficiently calculate the number of user 
sessions with some session timeout threshold (STT).  Pallis et al. (2005) proposed 
a technique to discover relationships between user sessions; the user sessions 
were identified using Chen et al. (2003)’s proposed technique.  The session 
measure has also been investigated by many researchers (Goševa-Popstojanova et 
al. 2004, 2006a, 2006b; Arlitt and Williamson 1997, etc.).  However, no model 
has been proposed to estimate the STT used to generate session length data. 
 
Many other studies have also concentrated on determining various session-related 
workloads based on a predefined constant value for STT.  For example, 
Montgomery and Faloutsos (2001) defined STT to be 2 hours long.  Tian et al. 
(2004) used 15 minutes and 2 hours as two different STTs; these two STTs were 
then applied to both websites investigated in that study.  Chen et al. (2003) and 
Goševa-Popstojanova et al. (2006a) assigned the STT value to be 30 minutes and 
use it for all websites in their studies.  This 30 minute value is also used by other 
researchers (Berendt et al. 2001, Spiliopoulou et al. 2003, Mahoui and 
Cunningham 2000, Mat-Hassan and Levene 2005).  Furthermore, this 30 minute 
figure is commonly used in many commercial web applications (Huang et al. 
2004).  For example, Google Inc. uses the 30 minute timeout value for their 
Analytics web application47.  This figure is based on a mean value of 25.5 minutes 
(rounded up) determined by Catledge and Pitkow (1995).  While this standard 
period is often used, it is far from obvious that it provides any meaningful 
guidance in estimating user session lengths.  In fact, a recent study shows that 
session lengths can be as long as 6 hours and 32 minutes, the average period spent 
on RuneScape.com.  Furthermore, with the advent of AJAX (Garrett 2005) and 
other interactive technologies, the session length values will be further impacted 
as websites’ interactivity features begin to rival that of desktop applications.  
Hence, using the same STT for all websites may not lead to accurate results. 
 
This chapter has the following contributions: 

• A model, based on empirical observations, for estimating the STT is 
presented. Although the model has limitations, it provides an initial step 
that will allow future studies to expand upon.  Furthermore, this model is 
proven to be applicable at many different resolutions and to two uniquely 
different websites. 

• The concept that STT varies for each website is empirically proven.  This 
encourages future research on web server logs to be performed using a 

                                                 
47http://www.google.com/support/googleanalytics/bin/answer.py?hl=en&answer=55463 last 
accessed August 21, 2008 
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customized STT value per website rather than a constant that’s applied to 
all websites. 

• Empirical investigation on data sets with very long collection periods.  
The benefits are discussed in Section 6.4. 

The remaining sections of this chapter are organized as follows:  Section 6.1 
discusses current approaches used to identify STT. The new session threshold 
timeout model is proposed in Section 6.2.  Section 6.4 provides a brief description 
of the websites under investigation, and the properties and characteristics of these 
websites.  The results for this model when applied to the websites under 
investigation are discussed in Section 6.4.   

6.2 Related Works 
Other approaches have been proposed to calculate STT.  For example, Catledge 
and Pitkow (1995) determined the STT to be 25.5 by claiming that the most 
statistically significant events occurred within 1.5 standard deviations (25.5 
minutes) from the mean between each user interface event which was 9.3 minutes.  
However, no definition of “significant events” was supplied; and why 1.5 
standard deviations is selected is never discussed.  More importantly, only four 
percent of the accessed web pages were dynamic pages.  Hence, the investigation 
was heavily based on static web content, which is increasingly rare in modern 
applications. 
 
He and Goker (2000) performed an empirical investigation of the session value by 
initially setting STT to a very large value, then slowly decreasing it until they 
achieved a stable point where the number of activities remains stable for both 
short sessions and long sessions.  However, the data used was very limited.  Not 
only that, they provided no formal definition of the stable point of the system and 
provided a range of values of “somewhere between 10 – 15 minutes” for STT.  
They also claimed that this range is suitable for all websites on the World Wide 
Web.  This finding is questionable because of niche specific websites that can 
attract different user demographic groups.  For example, users visiting 
www.youtube.com can spend a long period online watching various video clips; 
while visitors of www.onlineconversions.com would use the site to perform quick 
metric conversions and quickly finish their sessions.  Huang et al. (2004) 
proposed a dynamic approach to determining STT.  Basically, the approach tries 
to detect general behavioural patterns of web-site usage. The approach assumes 
that these patterns can be approximated by sequences of hypertext interactions. A 
session “ends” when a user deviates from a learned pattern. However, an 
approach to determine the parameters used and how session identification results 
can be measured are not discussed.  Not only that, the time for learning or 
discovering patterns is unknown and the site cannot be updated as the learning 
needs to be repeated whenever evolution takes place. 
 
Huntington et al. (2008) proposed a set of STTs based on the content retrieved by 
the user.  They demonstrated that the STT for each content type can be retrieved 
based on the estimated view time (the time between the logged request to 
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download the article and the next request) from the server log files.  However, the 
method used to estimate the view time has several limitations.  If the user requests 
a page, reads it, then closes the browser window without performing any 
additional action then the estimated view time would be inaccurate.  Furthermore, 
most web pages contain multiple content types.  For example, a web page can 
contain both a Menu content type and an Abstract content type; the authors do not 
discuss a method for classifying these pages and how the STT can be retrieved 
from these multiple content pages. 
 
While the previous papers successfully introduced the idea of a session timeout 
threshold, their treatment of the concept was either exceptionally brief, imprecise 
or contained many unsolved issues. Given, the relative importance of this metric, 
it is believed that this situation needs to be urgently resolved. However, no simple 
unique definition of this concept is likely to exist; and hence a protracted 
investigation is required. 

6.3 Observations of the STT and the Proposed Model 
A session is defined as a sequence of actions undertaken by a user within a period 
of time.  Sessions offer much finer grained information than the standard number 
of users metric.  However, because the Hyper Text Transfer Protocol (HTTP) is a 
stateless protocol, session information cannot be easily captured.  Hence, web 
applications often use session-based technology such as cookies (Kristol and 
Montulli 2000) to simulate a stateful connection to the user.  In order to determine 
when a session ends and the next one begins, a session timeout threshold (STT) is 
often used.  In other words, a STT is a pre-defined period of inactivity that allows 
web applications to determine when a new session occurs.  That is, let t equal the 
session timeout threshold and s is the set of sessions: 
 

∀s∈SessionsFor(user) • (session_time_start(si+1) – session_time_end(si)) ≥ t 
 
For web server logs, the STT is determined by the time between the current 
request and the previous request. 
 
The user session metric is particularly interesting to web mining researchers 
because they provide finer grain of information than the usual user count. 
(Menascé et al. 1999), Arlitt and Williamson (1997) and Pitkow (1999) have 
noted that the number of sessions is directly dependent on t.  Hence, it is 
important to select the correct t in order for the number of sessions to be estimated 
accurately. 
 
A STT is best viewed as a “design parameter”, a mechanism for website workload 
evaluation rather than a concept with an absolute definable theory. Hence, this 
discussion is best considered as an attempt to produce an initial model that will 
allow web administrators to estimate this design parameter for their websites.  
From a philosophical viewpoint, the definition of session timeout threshold has 
many of the characteristics of a “wicked problem” (Rittel and Webber, 1973).  
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That is, the problem has many complexities such as changing, incomplete or 
contradictory requirements.  Hence, any solution will experience significant 
limitations. In fact, sessions and session timeout threshold are clearly ideas more 
in line with Simon’s (1996) “sciences of the artificial” than “sciences of the 
natural”. In this situation, practitioners seek “good enough” solutions rather than 
optimal solutions; or satisficing to utilize Simon’s term from economics (Simon, 
1955). This research recognizes these limitations. 
 
Empirical observations of the number of sessions versus the STT show that the 
estimation of STT can be viewed as a partitioning problem.  The problem can be 
approached as a question of defining two regions or surfaces (S1 and S2), which 
represent the lengths before and after the threshold value (xi) respectively.  In 
addition, the number of sessions obviously monotonically declines as STT 
increases.  Within each region, the data points are “relatively stable and vary 
smoothly.”  S1 represents a potentially steeply declining curve, where the choice 
of session length has a significant impact upon the result.  S2 is in fact two 
segments (S2 and S3); S2 can be characterized as a linear segment with a “gentle 
gradient”; the choice in session length has limited impact in this region. Whereas 
S3 is a second linear segment with no gradient; and can effectively be modeled by 
the constant number of sessions that it represents which is equal to the number of 
users and is the lower bound of the system.  In terms of the model and its usage, 
the S3 curve is unimportant and hence is not actively considered.  The behavior 
across S1 and S2 can be modeled as a rate of change statement, or, more 
specifically, as a requirement to minimize the rate of change of the curvature 
across S1 and the rate of change of the gradient across S2. 
 
Hence, the problem can simply be recast as a question of finding the threshold 
value that minimizes the overall rate of change of the system given that the 
system consists of two separate regions. Although this study also uses the 
minimal change as the STT as proposed by He and Goker (2000), a mathematical 
model, which is lacking in the previous study, is now presented to describe this 
minimal change. 
 
Mathematically, let f be a function which maps STTs to the number of sessions;  
where wi are weighting term.  The objective becomes: 
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In addition, the above model can be viewed as combining two different sets of 
workload information: 

1. Users that briefly visit the website: These users visit the website for a very 
short period of time.  Some of these users include users who do not plan to 
utilize the website.  They are often directed to the website via a query 
entered into a search engine; however the site does not meet their 
requirements, but their decision cannot be made without them initially 
entering the site.   Hence, on average, the sessions of users who briefly 
visit the site are extremely short and it is debatable whether these “visits” 
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should be considered as genuine sessions. Commonly these users only 
have a single interaction with the web-site; these visits can be viewed as 
having zero duration. 

2. Users that explicitly want to interact with the website: These users 
actively interact with the website and often travel multiple web pages 
before finishing their session.  Some of these users include users who are 
purchasing a product through an online store.  These users will visit 
multiple web pages looking for product information before purchasing the 
item through an interactive shopping cart.    Here the websites meet the 
users’ requirements and provide information or services that actively 
engage the users.  On average, these sessions are more extended than 
sessions of the first workload information. 

It is far from obvious that this model should include data from both information 
sets; however, any partitioning is guaranteed to be less than perfect.  The model 
can be trivially extended to accommodate this possibility by replacing the 
constant lower bound of the first integration term. 
 
Finally a suitable basis for the weighting terms needs to be defined. 
Unfortunately, no obvious theoretical basis exists.  S2 should possess a significant 
length, and hence a weighting function as a function of the inverse of the length of 
this region seems appropriate. However, it is not clear that this concept yields any 
suitable formulation for S1. For this study’s estimations,  

1
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Hence, the reformulated model is: 
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While the model is now complete, it clearly has limitations in terms of numerical 
stability given the estimation of higher-order differentials. For elongated data 
collection periods, this should not present a problem because the aggregated data 
will, in general, experience an averaging or smoothing effect. However, for short-
term data, it is expected that the data will deviate from long-terms norms and can 
be viewed as more “noisy”. Hence, there exists a strong possibility that such 
short-term data may require a smoothing approximation before the data is 
presented to the model.  Based on the model discussed, a proposal is made to 
describe STT as the upper bound of the range denoted by the boundaries between 
S1 and S2, which is value at xi+1 in the presented model. 

6.4 Description of the Websites under Investigation 
This study will investigate server logs from two websites.  The first website is a 
website for a company that specializes in online databases (Site A).  This website 
is a commercial website that is very critical to Company A’s operation.  The 
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website utilizes the PHP (http://www.php.net) scripting language, MySQL48 for 
the backend database and is hosted on an Apache HTTP Daemon49.  In order to 
observe potential trends and patterns for this website, the log files chosen cover 
27 months of operation from December 2004 to February 2007.  This website 
represents a typical business website.  That is, the site is a dynamic website with a 
mixed amount of static and dynamic pages – these are pages generated 
dynamically depending on the customers’ inputs; its users are customers who are 
either looking to purchase a product or to register for a training course.  The 
website contains several online databases.  Users are charged for the time used to 
access these databases; these subscriptions are a main source of revenue for the 
company which is why the website is very critical to the organization.  For the 27 
months covered, Site A received approximately 3.6 million hits transferred 67 
Gbytes of data. 
 
The second website is www.ece.ualberta.ca, the website for the Department of 
Electrical and Computer Engineering at the University of Alberta.  This site, 
although important to the organization, is non-commercial and not mission 
critical.  This website is a dynamic website that utilizes the ColdFusion50 scripting 
language, and the Apache HTTP Daemon.  To investigate the data, the log files 
were chosen to cover 11 months of data.  For this period, the ECE website 
received approximately 2.42 million hits, 203,896 “unique” visitors and 
transferred a total amount of 22.6 Gbytes of data.  The data from this second 
website serves as a check to ensure that the trends observed with Site A are not 
unique to one particular website. 
 
The log files under investigation are stored in the Common Log Format (CLF)51 
for ECE and the Combined Log Format52 for Site A.  To provide maximum 
flexibility with the analysis, a custom log parser was created in Ruby.  All 
necessary information was extracted and imported into a DBMS.  The approach 
used can be seen as a deep log analysis technique (Nicholas et al. 2000, 2006a, 
2006b).  The session length estimation requires at least two requests: one to mark 
start time of the session and one to mark the end time of the session.  Hence, all 
users with only one request are removed from the log files.  That is, all IPs that 
only have one record in the data are removed.  A total of 10,938 users and 28,336 
users are removed for Site A and ECE respectively. 
 
Table 6.1 provides a summary of the properties of the logs used in previous 
studies and this study.  Websites with an asterisk are commercial websites. 
 

                                                 
48 http://www.mysql.com, last accessed February 7, 2010 
49 http://httpd.apache.org, last accessed February 7, 2010 
50 http://www.macromedia.com/software/coldfusion, last accessed February 7, 2010 
51 http://httpd.apache.org/docs/1.3/logs.html#common, last accessed February 7, 2010 
52 http://httpd.apache.org/docs/1.3/logs.html#combined, last accessed February 7, 2010 
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Table 6.1 Properties of log files used in previous studies 
  Log duration Requests Bytes Transferred 

Waterloo 8 months 159 thousands 1.7 GB 
Calgary 1 year 727 thousands 7.6 GB 
Saskatchewan 7 months 2.4 millions 12.3 GB 
NASA 2 months 3.5 millions 62.5 GB 
ClarkNet* 2 weeks 3.3 millions 27.6 GB 

Arlitt and 
Williamson 
(1997) 

NCSA 1 week 2.5 millions 28.3 GB 
Berendt et al. 
(2001) 

University 12 days 175 thousands n/a 

NASA-Pvt1 20 weeks 23 thousands 0.5 GB 
NASA-Pvt2 20 weeks 92 thousands 0.2 GB 
NASA-Pvt3 20 weeks 489 thousands 2.2 GB 
NASA-Pub1 20 weeks 93 thousands 9 GB 
NASA-Pub2 20 weeks 732 thousands 6.7 GB 
NASA-Pub3 20 weeks 108 thousands 4.6 GB 
CSEE 6 weeks 5.8 millions 80.9 GB 
WVU 3 weeks 37.9 millions 97 GB 
ClarkNet* 2 weeks 3.3 millions 27.6 GB 
NASA-KSC 2 months 3.5 millions 62.5 GB 

Goševa-
Popstojanova 
et al. (2006a) 

Saskatchewan 7 months 2.4 millions 12.3 GB 
WVU 1 week 15.8 millions 34.5 GB 
ClarkNet* 1 week 1.7 millions 13.8 GB 
CSEE 1 week 397 thousands 10.1 GB 

Goševa-
Popstojanova 
et al. (2006b) 

NASA-Pub2 1 week 39 thousands 0.3 GB 
Excite* 50 minutes 51 thousands n/a He and 

Goker 
(2000) 

Reuters* 9 days 9.5 thousands n/a 

Huntington 
et al. (2008) 

OhioLINK 12 months n/a n/a 

SMU/SEAS 26 days 763 thousands 7.8 GB Tian et al. 
(2004) KDE 31 days 14 millions 110 GB 

Site A* 27 months 1.9 millions 33.5 GB This study 
ECE 11 months 2.4 millions 22.6 GB 

 
This table shows that the longest period that previous studies have collected data 
is over a 12 month period, compared to 27 months in this study.  Furthermore, 
many of the previous studies are not performed on a commercial website.  For 
studies that use logs from commercial websites, the periods covered are extremely 
short (50 minutes to 2 weeks).  This study investigates the log file from a 
commercial website for a much longer period (27 months). Hence, it is believed 
that this study presents the first long-term analysis of a commercial website.  This 
long data period provides several benefits over short data periods. 

• A short data collection period cannot truly capture users’ behaviors 
because their behavior is by definition variable and only a single snapshot 
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of their behavior is likely to be captured with the short data collection 
period.  For example, a new user to a Wiki may simply read articles, once 
familiar with the website the user may choose to participate in other 
activities such as posting comments, providing feedback or even editing 
articles. 

• An organization’s behavior also affects its website traffic patterns.  
Advertising campaigns, various public announcements will often increase 
the amount of traffic.  For example, GoDaddy.com’s website experienced 
a 1500 percent increase in traffic following its Super Bowl ad campaign.  
Other websites advertised during Super Bowl Sunday also had their traffic 
increased.  Short term collection either overstates these actions if it is 
performed near a major activity or understates them if performed far from 
the activity. 

• Well known trends and periodic patterns such as the “weekend effect” will 
distort short term collection resulting in skewed data.  In fact, Arlitt and 
Jin (2000) have demonstrated that websites have very different workload 
intensities on weekdays versus weekends.  Hence, if the data period is 
short, the analysis will be skewed by such effects. 

• Major web events will also affect the data sets gathered within a short time 
frame.  For example, popular YouTube videos are known to result in 
millions of hits to YouTube’s website within a short period of time before 
the site’s traffic returns to normal.  A website being mentioned on another 
popular website such as Slashdot will also cause the website’s traffic to 
increase.  This is commonly known as the Slashdot effect. 

• Short collection periods can experience distortion due to either higher than 
normal or lower than normal activities from robots.  For example, many 
ticket scalpers use robots to automatically purchase event tickets from 
Ticketmaster when they first go on sale.  This is especially true for popular 
events where tickets can be sold within minutes of being available online.  
Short collection periods would result in skewed data from the activities of 
these robots. 

• Users have very low brand loyalty. If quality of service (such as response 
period) is poor, users leave quicker than normal (the inverse will be at 
some-level true) – this impacts session statistics and again short-collection 
periods can get skewed because of the quality of service differing from the 
long-term norm.  For example, a user many visit a website during 
maintenance which may cause the website to response much slower than 
usual.  The quality of service during this maintenance period cannot be 
considered as the normal QoS for the website. 

6.5 STT Results and Discussions 
In order to apply the model discussed, the effects that different threshold values 
have on the total number of sessions are calculated for the two websites under 
investigation.  The explored STT values are from 1 to 120 minutes in 1 minute 
intervals.  To search for repeating effects, four different resolutions are 
investigated: days, weeks and months. 
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6.5.1 Removing Automated Requests 
While applying the model, it was discovered that robots and other automated 
systems used to request resources need to be removed from the server logs in 
order for the model to be used effectively.  That is, systems that automatically 
request a resource from the website after a set period of time will cause the 
model’s description of the regions to be incorrect.  For example, Figure 6.1 shows 
the number of sessions versus STT before the removal of several site monitoring 
systems from the log files for Site A. 
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Figure 6.1 Number of sessions versus STT before removal of monitoring 

systems 
 
This figure shows many distinct regions.  Close examination of the server log 
reveals that two monitoring services are used to monitor the website’s status.  The 
first service requests a resource from Site A every 30 minutes while the second 
service requests a resource from Site A every 66 minutes.  Removal of these 
records from the server logs was simple because the resources these services 
request are unique and are not publicly available.  ECE’s log files were also 
parsed to remove robots that automatically request the “robots.txt” resource every 
60 minutes. 
 
Although, it is infeasible to remove all automated requests from the server logs, 
web administrators need to remove all identifiable requests.  Several techniques to 
identify them can be used by web administrators to remove automated requests.  
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Most well known robots have a signature line that is included with every request 
as part of the USER AGENT field of the log file.  For example, “Googlebot-
Image/1.0” can be used to identify a robot from Google that is indexing the 
website’s images.  For web monitoring services, web administrators can simply 
dedicate a special resource that only these services can access.  This resource can 
then be easily identified within the log files.  Armed with adequate information, 
web administrators can eliminate most automated requests from the server logs 
which will enable the STT to be estimated more accurately.  For the two websites 
under examination, 77,530 automated “users” are removed from ECE and 34,625 
automated “users” are removed from Site A. 

6.5.2 Day Resolution Investigation 
One hundred weekdays and fifty days on the weekends for each website were 
randomly chosen for this investigation.  Two sample day graphs for the websites 
can be seen in Figures 6.2-6.3. 
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Figure 6.2 A random Site A day 
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Figure 6.3 A random ECE day 
 
Informal observations show distinct surface regions in Figure 6.2 and 6.3 which 
suggests that the model is applicable at this resolution.  Hence, the model was 
applied and the xi+1 (STT) results for each website were obtained.  Unfortunately, 
nothing is known about the distributional characteristics of this value, and hence 
both parametric and non-parametric measures are utilized to explore this concept. 
The results, presented in Table 6.2 and Figures 6.4 to 6.7, show that the two 
websites have very different workload intensities and behaviors, which suggests 
that they are unlikely to share the same STT value. 
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Table 6.2 STT for day resolution 

 Site A - 
Weekdays 

Site A - 
Weekends 

ECE - 
Weekdays 

ECE - 
Weekends 

Mean 5.24 3.68 9.72 8.96 
Mean st.err 0.213 0.160 0.392 0.517 
Median 5 4 9 8 
Variance 4.528 1.283 15.396 13.386 
St.Dev 2.128 1.133 3.924 3.659 
Minimum 2 2 2 2 
Maximum 12 6 25 16 
Range 10 4 23 4 
Skewness 0.886 0.322 0.776 0.111 
Skewness st.err 0.241 0.337 0.241 0.337 
Kurtosis 0.379 -0.377 1.828 -0.580 
Kurtosis st.err 0.478 0.662 0.478 0.662 

 

 
Figure 6.4 STT Histogram for Site A 

at Weekdays Resolution 
 

 
Figure 6.5 STT Histogram for Site A 

at Weekends Resolution 

 
Figure 6.6 STT Histogram for ECE 

at Weekdays Resolution 

 
Figure 6.7 STT Histogram for ECE – 

Weekends Resolution 
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These results show that the values at xi+1 are not stable and vary depending on the 
day under observation. This is expected because web workloads (similar to other 
workloads) have day and weekly periodicity; hence different days in the week 
usually have different workload behaviors and intensities.  In order to determine 
differences between the weekdays versus weekends data sets, an F-test was 
performed using 50 random samples from the weekday and weekend data sets.  
Table 6.3 displays the results. 
 

Table 6.3 F-Test 
 F p-value d.f. 

Site A  3.8664 < 0.001 49 
ECE 0.9599 0.44 49 

 
The results show that the null hypothesis (the weekdays and weekends workloads 
are the same) can be rejected for Site A.  However, for the ECE data sets, the 
results are much less clear. 
 
The mean xi+1 value for Site A is less than ECE; furthermore, Site A, with a 
standard deviation of 2.13 for weekdays and 1.13 for weekends, has a tighter 
spread of values compared to ECE.  The STT is smaller on weekends for both 
websites which further confirms web traffic generalization as discussed by Arlitt 
and Jin (2000) and Pitkow (1999).  The differences in results may be attributed by 
the different user profiles the two websites experienced.  A hypothesis can be 
proposed based on the fact that users are charged for usage time for Site A, hence, 
the STTs are generally shorter.  Clearly, this hypothesis needs more exploration 
before it can be confirmed. 
 
The results seem to empirically demonstrate that the threshold does exist for this 
“fine resolution” data; while some variation exists the results by no means look 
random or unsystematic.  Using SPSS, several Q-Q (Quantile-Quantile) plots for 
the following distributions were examined: Chi-square, Exponential, Gamma, 
Half-normal, Laplace, Lognormal, Normal, Pareto, Student t, Weibull, and 
Uniform.  The estimated STT data shows a “reasonable” fit to several of the 
distributions; Figures 6.8 and 6.9 show the Q-Q plots for two “possible” 
distributions, Normal and Gamma respectively. 
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Figure 6.8 Normal Distribution Q-Q 

plot for ECE 

 
Figure 6.9 Gamma Distribution Q-Q 

plot for Site A 
 
This possibility is explored more formally, but only for a normal distribution. The 
Shapiro-Wilk test (Shapiro and Wilk 1972) was applied to the data sets.  This test 
was selected as it tends to be more powerful than other common normality tests, 
such as Anderson-Darling and Kolmogorov-Smirnov (Stevens and D’Agostino 
1986), and does not require that the mean or variance of the hypothesized normal 
distribution to be specified in advance.  Table 6.4 displays the results using the 
Shapiro-Wilk test function in SPSS.  The results show that three of the four p-
values for both websites are less than 0.05; hence, these three data sets are 
(probably) not normally distributed. 
 

Table 6.4 Shapiro-Wilk test 
 Coefficient p-value d.f. 

Site A - Weekdays 0.92 < 0.001 99 
Site A - Weekends 0.91 < 0.001 49 
ECE - Weekdays 0.95 < 0.001 99 
ECE - Weekends 0.97 0.149 49 

6.5.3 Week Resolution Investigation 
In order to examine the week resolution, 50 random weeks were chosen for Site A 
and 25 random weeks were chosen for ECE.  Figures 6.10 and 6.11 show the 
number of sessions versus STT for two of the weeks. 
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Figure 6.10 A random week for Site 

A 
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Figure 6.11 A random week for 
ECE 

 
As was expected, on average, the week resolution curves are smoother than the 
day resolution curves. However, Figures 6.10 and 6.11 still clearly display distinct 
surface regions which, again, suggest the applicability of the model.  The xi+1 
(STT) results from applying the model to these random weeks are shown in Table 
6.5 and Figures 6.12 – 6.13. 

Table 6.5 STT for week resolution 
 Site A  ECE 
Mean 4.571 8.002 
Mean st.err 0.157 0.361 
Median 7 5 
Variance 1.208 3.250 
St.Dev 1.099 1.803 
Minimum 3 6 
Maximum 8 12 
Range 14 6 
Skewness 0.111 1.067 
Skewness st.err 0.340 0.464 
Kurtosis 1.107 -0.162 
Kurtosis st.err 0.668 0.902 

 

 
Figure 6.12 STT Histogram for Site 

A at the Week Resolution 

 
Figure 6.13 STT Histogram for ECE 

at the Week Resolution 
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These results show that the STT for both websites have settled between the STT 
for weekdays and weekends.  This is expected because of the averaging effect.  
However, Site A and ECE still have different STT values, which mean that the 
STT should not be a single constant for all websites at this resolution.  Q-Q  plots 
for several distributions at this resolution have broadly the same results as the day 
resolution. 
 

Table 6.6 Shapiro-Wilk test for the week resolution 
 Coefficient p-value d.f. 

Site A 0.85 < 0.001 49 
ECE 0.80 < 0.001 24 

 
Table 6.6 shows results from the Shapiro-Wilk test which again implies that both 
data sets possess data which is probably non-normal. 

6.5.4 Month Resolution Investigation 
Figures 6.14 and 6.15 show two sample graphs for ECE and Site A at one month 
resolution. In total, all 27 months were investigated for Site A, and all 11 months 
were investigated for ECE. 
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Figure 6.14 A random month for Site 
A 
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Figure 6.15 A random month for 
ECE 

 
Initial observations show that Figure 6.14 displays a seemingly smooth curve due 
to the averaging effect.  However, Figure 6.15 displays visible distinct surfaces as 
described in the model.  Determining t by casually observing the figures is now 
difficult and error-prone.  Using the provided model, the xi+1 (STT) values can be 
calculated for all the graphs.  Table 6.7 and Figures 6.16-6.17 display the results 
from the calculations.  Q-Q plots for various distributions at this resolution again 
show broadly the same results as obtained in the week and day resolutions. 
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Table 6.7 STT for month resolution 

 Site A  ECE 
Mean 5.001 8.455 
Mean st.err 0.207 0.638 
Median 5 7 
Variance 1.154 4.473 
St.Dev 1.074 2.115 
Minimum 4 6 
Maximum 7 12 
Range 3 6 
Skewness 0.402 0.659 
Skewness st.err 0.448 0.661 
Kurtosis -1.414 -1.359 
Kurtosis st.err 0.872 1.279 

 

 
Figure 6.16 STT Histogram for Site 

A at the Month Resolution 

 
Figure 6.17 STT Histogram for ECE 

at the Month Resolution 
 

Table 6.8 Shapiro-Wilk Test for the month resolution 
 Coefficient p-value d.f. 

Site A 0.79 < 0.001 26 
ECE 0.83 0.023 10 

 
The results show that both the variation and the range are reduced with the 
increase in the collection period; and that the possibility exists that any estimation 
of t at this level of resolution might be considered as a “long-term” norm.  
However, this can only safely be performed if the administrator knows that there 
have been no major modifications to the website, which may affect its users’ 
behaviors or the usability of the website. That is, if the operational profile of the 
website remains stationary.  For example, an online store may add a “Users’ 
Review” section which causes users to spend more time at the store to read the 
reviews.  If an administrator uses a one month period before this feature is added, 
the t value calculated from xi+1 will be different than the one month period after 
this feature is added.  Table 6.8 shows the results from the Shapiro-Wilk test; and 
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at this resolution, data from both web sites needs to be considered as again 
(probably) non-normal.  An investigation of the behaviour of STT for the total 
period of investigation for both web sites repeats the previous patterns; the details 
are omitted for the sake of brevity. 
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Chapter 7 – Investigating the Distributional 
Property of the Session Workload 
Many researchers have investigated the session workload. However, the 
investigations into the distributional properties of the session workload lack 
rigorous analysis.  In fact, Goševa-Popstojanova et al. (2006a, 2006b) is the only 
known study to provide a detailed analysis of the measure’s characteristics. 
However, this study only considers “are session lengths sampled from a heavy-
tailed distribution” without convincing evidence that this characterization is 
definitive.  The implications of whether the session length is heavy-tailed can 
have a significant impact on the formulation of many website models.  For 
example, Tian et al. (2004) proposed a reliability model for websites based on a 
short-tailed distribution which would be invalid if the session length is heavy-
tailed.  Furthermore, let’s consider constructing a simple reliability model of a 
website. If we assume that the probability of any software failure per input or hit 
is constant, p, we have a simple binomial process. The number of failures fn after 
n inputs is given by the binomial distribution: 
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Therefore, the probability of the system failing after n hits occurs whenever fn  >0. 
Hence, 
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The system administrator might want to think about the defect rate of the system 
as a function of time rather than as a function of the number of inputs or hits.  
 

Atn pp )1(1)1(1 −−=−−  (3) 
 
where A is the average inputs per time unit (t). Further, considering the data 
presented in the previous sections, p is obviously small and n is obviously large 
allowing the binomial process to be approximated by an exponential distribution. 
 

Atpe−−=1  (4) 
 

If the distributional property is heavy-tailed, this model would be invalid because 
the average inputs per time unit A is infinite. These types of models are neither 
new nor unique to reliability. Many dynamic characteristics of websites may be 
approximated by such models.  However, if the workloads are heavy-tailed, many 
of these models will be invalid because either the mean or the variance is infinite.  
That is, they require an estimation of one of the moments of the workload 
variable; yet, the moments are infinite in heavy-tailed distributions. 
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The session workload unit has also been used to mine web usage for web 
personalization (Eirinaki and Vazirgiannis 2003, Mobasher et al. 2000).  This 
personalization process allows websites to customize themselves to match the 
users’ usage patterns.  For example, Amazon.com uses web mining data from user 
sessions to recommend books to their customers.  Jasen and Spink (2003)) 
examined user sessions to determine how web search engines are utilized and 
which search results are being viewed by the users.  Cherkasova and Phaal (2002) 
proposed a session-based load management for commercial websites to improve 
quality of service; they utilized a simulation to model the session workloads in 
their study.  All approaches mentioned are dependent on the session workload 
model.  Hence, the acceptance of the conjecture that workloads are sampled from 
heavy-tailed distribution has serious ramifications for future research and analysis 
of the “behavior” of websites. Therefore, this chapter re-evaluates the results 
presented by Goševa-Popstojanova et al. (2006a, 2006b) which conclude that 
session length data is sampled from a heavy-tailed distribution.  The conclusion 
was based on results from the analysis of the log-log complementary distribution 
plots (LLCD) and the Hill estimator.  However, a more rigorous empirical 
investigation into session length and its potential distributional properties can be 
performed. 
 
This chapter extends Goševa-Popstojanova et al. (2006a, 2006b) by applying the 
evaluation to two new websites.  One of which is a mission-critical commercial 
website.  The logs investigated for this commercial website cover a 27 month 
period, an extensive time period. Other investigations are “focused” on high 
throughput web sites for a short period. However, examining a website over a 
long calendar period is essential as many “external actions” which impact the 
characteristics of the site happen infrequently as hence a true sense of the 
historical norm of a website’s characteristics is only available over an extended 
period. A more detailed discussion of the two websites can be seen in Chapter 6, 
Section 6.3.  
 
Additional tests, such as the Heavy-tailed Autocorrelation Function (ACF) 
method, “wobble analysis” and Q-Q (Quantile-Quantile) plots, are performed to 
determine if session length can really be modeled by a heavy-tailed distribution.  
The results from this chapter show that, for the samples used in this study, a 
method to determine whether the session workload can be modeled by a heavy-
tailed distribution does not exist. 
 
The remaining sections of this chapter are organized as follows:  Section 7.1 re-
evaluates the heavy-tailed property of session lengths.  It investigates the validity 
of using log-log complementary distribution (LLCD) plots and the Pareto 
distribution to model the session length as presented by Goševa-Popstojanova et 
al. (2006a, 2006b).  Section 7.2 discusses the results from this study versus the 
previous study.   
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7.1 Investigation of the Distributional Characteristics of 
Session Length 
Goševa-Popstojanova et al. (2006a, 2006b) put forward the conjuncture that 
session length data is sampled from a heavy-tailed distribution. In this section this 
conjecture is empirically examined. 

7.1.1 Discussion of the STT 
This study uses a Session Timeout Threshold to determine the sessions.  A session 
is defined as a sequence of actions taken by a user within a period of time.  
Sessions offer much finer grained information than the standard number of users 
metric. Goševa-Popstojanova et al. (2006a, 2006b) assign STT to 30 minutes, 
because it is a common value used by other researchers (Berendt et al. 2001, 
Mahoui and Cunningham 2000, Mat-Hassan and Levene 2005, Spiliopoulou et al. 
2003).  This 30 minute figure is a value rounded up based on a mean value of 25.5 
minutes determined by Catledge and Pitkow (1995).  Catledge and Pitkow (1995) 
estimate STT to be 25.5 by claiming that the most statistically significant events 
occurred within 1.5 standard deviations (25.5 minutes) from the mean between 
each user interface event which was 9.3 minutes.  However, no definition of these 
“significant events” was given; and why 1.5 standard deviations is selected is 
never discussed.  Hence, this study uses a model proposed by Huynh and Miller 
(2009) to determine the STT.  By applying the model, the STT is found to be 5 
minutes for Site A and 11 minutes for ECE.  As a cross-check, the results 
presented in this study were replicated using STT = 30 minutes for both sites; and 
while the numerical values clearly changed the basic interpretation of the results 
remained constant. 

7.1.2 Estimating the Tail Index α with LLCD Plot 
Under the assumption that the data comes from a Pareto distribution, Goševa-
Popstojanova et al. (2006a, 2006b) estimate the tail index of the distribution using 
a log-log complementary distribution (LLCD) plot.  This approach has also been 
used in many studies which concentrate on other workload metrics for web 
servers (Arlitt and Jin 2000, Arlitt and Williamson 1997, Crovella and Bestavros 
1997).  LLCD plots produce an estimate of the tail index using the property 
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However, the approach does not utilize the entire distribution.  The estimation of 
the index is only over the range [xi, xi+j]; and the approach simply fits an ordinary 
least-squares linear regression model to estimate α from the small set of values 
([xi, xi+j]) which are assumed to represent the majority of the tail. 
 
Downey (2001a, 2005) has shown that the LLCD plot is an ineffective 
mechanism at discovering long-tailed distributions.  Basically, the technique 
cannot adequately distinguish between long-tailed distributions, such as the Pareto 
distribution, and “similar looking” short-tailed distributions such as lognormal 
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distributions.  Figueiredo et al. (2005) further support this viewpoint and provide 
an extensive analysis demonstrating the inadequacy of this approach; they 
demonstrate that the discovery of the appearance of a linear region in a LLCD 
plot is by itself insufficient evidence to conclude that long-range dependence 
exists within a data set.  Finally, Goldstein et al. (2004) empirically demonstrate 
that the LLCD plot and associated techniques are ineffective approaches to fitting 
power-law distributions to experimental data and conclude that the approach 
should be avoided. 

7.1.2.1 Discussions of the LLCD Plot Results 
This study uses three definitions of the tail as presented by Hernandez-Campos et 
al. (2004).  The extreme tail is the part of the tail that is beyond the last data point 
(xn), hence no information is available for this part.  The far tail is the part of the 
tail where some data is present, but the distributional properties cannot be 
understood because of the minimal information available (around xi+j).  The 
moderate tail is the part of the tail that contains “rich” (by comparison) 
distributional information ([xi,xi+j]).  Clearly, the definitions are heuristics because 
the boundary between the moderate tail and the far tail cannot be defined 
accurately.  However, the definitions are required for discussions of the results in 
this section. 
 
Goševa-Popstojanova et al.  (2006a, 2006b) have estimated α using LLCD plots. 
Figures 7.1, 7.4, 7.7 and 7.10 display the LLCD plots for ECE and Site A with 
each having two different STT values.  This study utilized Huynh and Miller 
(2009) dynamic STT estimation model and the commonly used 30 minute 
constant STT value approach used by Goševa-Popstojanova et al. (2006a, 2006b) 
to investigate if the value of STT was a covariant of the distributional 
characteristics of the session length.  Hence, LLCD plots were created for both 
the dynamic model’s STT values and the constant STT value.  These figures show 
that for values below –1 on the vertical axis the distribution is generally linear 
until the far tail is reached.  Although, linear least squares fitting can be applied to 
estimate α, this study uses a numerical differential equation to estimate α at all 
possible data points.  Figures 7.2, 7.5, 7.8 and 7.11 show results of this estimation.  
These figures show that α does not stabilize in the moderate tail in any of the 
LLCD plots. The variations are consistently too large to be explained by 
numerical differential estimation error.  To further confirm this observation, the 
box plot for α for all LLCD plots are shown in Figures 7.3, 7.6, 7.9, and 7.12, and 
the descriptive statistics for α are shown in Table 7.1.  Box plots are used in this 
study for their ability to visually display different types of populations without 
any dependency on the statistical distribution of the data.  These figures show that 
the range for the non-outliers varies considerably; furthermore, the outliers are 
numerous.  Figures 7.2 and 7.8 perhaps provide the clearest evidence of α failing 
to stabilize within the tail of the distribution. These figures can be approximated 
as: 

1. estimates for α are relatively “well-behaved” in the pre-tail; 
2. estimates for α vary wildly in the moderate tail; and 
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3. estimates for α seem to be almost random values in the far tail. 
 
Because the type of distribution for the data sets is unknown, Table 7.1 displays 
the statistics for both parametric and non-parametric distributions.  This table can 
be seen as an exploratory tool to aid the data examination process.  The table and 
box plots further confirm that α is not stable enough for the least-squares linear 
regression model 
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Figure 7.1 LLCD Plot for ECE with 11mins STT 
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Figure 7.2 Numerical Differential Estimation of α for ECE with 11mins STT 
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Figure 7.3 Box plot of α for ECE with 11mins STT Showing Numerous 

Outliers 
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Figure 7.4 LLCD Plot for Site A with 5mins STT 
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Figure 7.5 Numerical Differential Estimation of α for Site A with 5mins STT 
 

 
Figure 7.6 Box plot of α for Site A with 5mins STT Showing Numerous 

Outliers 
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Figure 7.7 LLCD Plot for ECE with 30mins STT 
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Figure 7.8 Numerical Differential Estimation of α for ECE with 30mins STT 
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Figure 7.9 Box plot of α for ECE with 30mins STT Showing Numerous 

Outliers 
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Figure 7.10 LLCD Plot for Site A with 30mins STT 
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Figure 7.11 Numerical Differential Estimation of α for Site A with 30mins 

STT 
 

 
Figure 7.12 Box plot of α for Site A with 30mins STT Showing Numerous 

Outliers 
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Table 7.1 Statistics for α 

 ECE 11m Site A 5m ECE 30m Site A 30m 
Mean 49.87 2.49 35.92 2.50 
Mean 95% Confidence 
(Lower bound) 

24.60 2.27 18.43 2.33 

Mean 95% Confidence 
(Upper bound) 

75.14 2.71 53.41 2.67 

Median 1.04 1.54 1.20 1.53 
Variance 867872 33.61 578953 31.95 
St.Dev 931.60 5.80 760.89 5.65 
Minimum 0.06 0.12 0.06 0.10 
Maximum 59851.53 159.08 59851.53 287.50 

 
The figures and table show that data obtained from the proposed dynamic STT 
model behave similarly to the data obtained from the commonly used 30 minute 
STT.  Hence, further data analysis methods in this study will only explicitly 
examine the data set generated from the dynamic STT model as it is believed to 
represent the state of the art in estimating STT. 

7.1.2.2 “Wobbles” in the Distribution 
During the investigation of the session length per month plots, two interesting 
observations can be seen. 

1. The distributions, at this level of granularity, appear to be stable.  Hence, 
the observable phenomenon seems to repeat in a deterministic fashion. 

2. The distributions are not smooth; they include several points of inflection 
or “wobbles”.  While it might initially seem reasonable to dismiss these 
“wobbles” as noise, the fact that they repeat across most of the monthly 
patterns argues that they are more likely to be signal than noise.  This 
“wobbling” effect has been noted by several other authors investigating 
related phenomenon (Downey 2001, Ljung and Box 1978, Reed and 
Jorgensen 2004). 

 
Figures 7.13 and 7.14 display the session length by month graphs for ECE and 
Site A.  For the ECE site, the points of inflection can be seen at approximately 
2.6, 3.4 and 3.3.  For Site A, two points of inflection happen in quick succession, 
as can be seen by the smaller graph in Figure 7.14.  This figure shows the points 
of inflection occur at approximately 2.16, 2.18 and 2.5. 
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Figure 7.13 “Wobbles” seen in LLCD plots for ECE 

 
This “wobbling” phenomenon argues simple distributions such as Pareto or 
lognormal distributions cannot be used to model the session workload.  Hence, 
attempting to fit the session length into the Pareto distribution will lead to the 
wrong conclusion.  Various researchers have investigated a range of more 
complex models to fit this phenomenon: 

1. Arlitt et al. (2000, 1998), Barford et al. (1998, 1999) and Downey (2001a, 
2001b) have all investigated hybrid models that combine a lognormal 
distribution with a Pareto tail; 

2. Mitzenmacher (2003) investigate, amongst others, a double Pareto 
distribution; 

3. Reed and Jorgensen (2004) investigate a double Pareto-lognormal 
distribution. 
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Figure 7.14 “Wobbles” seen in LLCD plots for Site A 

 
While all of these models can provide a superior fit to the “wobbling” 
phenomenon, there exists no real causal theory that they are an accurate model of 
the general phenomenon.  The alternative argument is that the superior fit is 
simply the consequence of the greater number of free variables they possess 
compared to the simpler distributions. 

7.1.2.3 Discussions of the Pareto Distribution 
Previous studies have demonstrated LLCD plots are not effective at discovering 
heavy-tailed distributions because of the similarity between the Pareto distribution 
and the lognormal distribution.  Hence, this study will perform an investigation to 
determine the Pareto distribution’s effectiveness at describing the data.  Downey 
(2001, 2005) and Goševa-Popstojanova et al. (2006b) applied the curvature test to 
explore Pareto and lognormal distribution with conclusions stating that the data 
can be either Pareto or lognormal.  Goševa-Popstojanova et al. (2006b) provides 
an explanation that the similarity is due to the lack of data at the far tail.  
However, as discussed, the far tail of a heavy-tailed distribution will never 
contain enough data points for any reasonable analysis.  Hence, this study will 
utilize the Q-Q plot (1983) to visually observe the Pareto and lognormal 
distributions.  This is the same approach used by Hernandez-Campos (2004) to 
investigate Pareto and lognormal distributions.  The Q-Q plot allows the quantiles 
of the data set to be graphically compared against the theoretical distribution 
(Pareto and lognormal for this investigation).  The horizontal axis of the Q-Q plot 
contains the theoretical quantiles while the vertical axis contains the sorted data 
values.  The natural log-log scale is used because of the possible large values.  
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The curve generated should follow the 45 degree line if the data quantiles are the 
same (or very similar) to the theoretical quantile. 
 
Figures 7.15 and 7.16 show the Pareto Q-Q plots for the ECE and Site A sites 
respectively.  Visual observation of these figures shows that the Pareto 
distribution does not fit extremely well to the data set as the curve does not 
accurately match the 45 degree line. Further confirmation of this observation can 
be seen with the detrended Pareto graphs as shown in Figures 7.17 – 7.18.  If the 
plot generated by the detrended graph is not near 0 on the x-axis, then the data set 
is unlikely to be a good match for the distribution.  Once again, these figures 
show that the observed values deviate from the Pareto distribution very quickly. 
 

 
Figure 7.15 Pareto Q-Q Plot for ECE 
showing the observed values are not 

near the expected values 

 
Figure 3.16 Pareto Q-Q Plot for Site 
A showing the observed values are 

not near the expected values 
 

 
 

 

 
Figure 7.17 Detrended Pareto for ECE 
showing extreme deviations from the 

line in the Q-Q plot 

 
Figure 7.18 Detrended Pareto for 

Site A showing the observed values 
are not near the expected values 
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The lognormal Q-Q plots and detrended plots for the ECE and Site A sites can be 
seen in Figures 7.19 - 7.22.  These figures show that the lognormal distribution 
also does not describe the distribution of the data accurately. 
 

 
Figure 3.19 Lognormal Q-Q for ECE 
showing the observed values are not 

near the expected values 
 

Figure 3.20 Lognormal Q-Q for 
Site A showing the observed values 

are not near the expected values 

 

 
Figure 7.21 Detrended lognormal for 

ECE showing extreme deviations from 
the line in the Q-Q plot 

 

 
Figure 7.22 Detrended lognormal 

for Site A showing extreme 
deviations from the line in the Q-Q 

plot 
 
To further examine the deviations in the detrended graphs between the lognormal 
and Pareto distributions, a statistical significance test (t-test) was conducted.  The 
results are presented in Table 7.2. Based on the results, the null hypothesis that 
the Pareto distribution has a smaller mean (closer to 0) can be rejected.  Hence, 
the alternative hypothesis, which is the mean for the lognormal distribution is 
“closer” to 0 than the Pareto distribution, can be accepted. 
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Table 7.2 t-Test to compare the lognormal distribution versus the Pareto 
distribution 

 Site A ECE 
 lognormal Pareto lognormal Pareto 
Mean 95795.9 -3.5x108 -4299959.0 -3.5x1020 
t Stat 9.3 9.9 
t Critical 2.0 2.0 
P(T ≤ t) 5.0x10-11 4.5x10-12 

 
However, one can argue that the Pareto distribution is only applied to the tail of 
the distribution, making a formal analysis difficult to generate due to the lack of 
definition of the range of the tail. Hence, using this approach, no evidence is 
found to validate that a Pareto distribution is superior to a lognormal distribution 
in terms of fitting the underlying data. This observation is consistent with the 
findings of Downey (2001, 2005) and Goševa-Popstojanova et al. (2006b). 

7.1.3 Discussions of the Hill Estimator Results 
Using the technique discussed, which is also utilized by Goševa-Popstojanova et 
al. (2006a, 2006b), the Hill plots for k was created for both sites.  Goševa-
Popstojanova et al. (2006a, 2006b) used 10% and 14% of the upper tail in their 
Hill plot because k appears to settle to a constant value after those points.  
However, the Hill plots in this study will be displayed across the entire tail to 
better display the stability of k.  The Hill estimator can only be performed on the 
tail of the distribution.  Hence, the tail was estimated using the method Goševa-
Popstojanova et al. (2006a, 2006b) proposed – even though Section 7.1.2 shows 
that this approach is not accurate.  In order to examine the Hill plot’s behavior , a 
smaller range (0-5) is used for the y-axis as shown in Figures 3.23 – 3.24.  These 
figures show that again α does not stabilize in any part of the graph.  In fact, it 
decreases as the k value is increased.  There does not appear to be a cut-off point 
as stated by Goševa-Popstojanova et al. (2006a, 2006b). The Hill plot results 
further confirms that the heavy-tailed property of the session length may not be an 
accurate model over the web sites under investigation. 
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Figure 3.25. Hill estimator for ECE 

at a smaller range for the y-axis 
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Figure 3.26. Hill estimator for Site 
A at a smaller range for the y-axis 
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7.2 Results Discussion 
The results from this study show that the session length data may not fit a heavy-
tailed distribution.  The findings do not confirm the results discovered by Goševa-
Popstojanova et al. (2006a, 2006b).  However, it should be noted that the websites 
used in this study have different properties than the websites used in the previous 
study. Chapter 6 shows that the durations of the log files used in Goševa-
Popstojanova et al. (2006a, 2006b) are short.  This study performs the 
investigation over a much longer period of time.  Furthermore, although Goševa-
Popstojanova et al. (2006a, 2006b) examined a commercial website, the duration 
is also very short (2 weeks and 1 week), whereas this study examined the 
commercial website for a 27 month period. 
 
Besides the difference in the duration of the log files, the traffic intensity between 
the websites in this study and Goševa-Popstojanova et al. (2006a, 2006b) are also 
vastly different.  The websites investigated by Goševa-Popstojanova et al. (2006a, 
2006b) have a much heavier traffic load than this study.  The busiest website for 
Goševa-Popstojanova et al. (2006a) received 37.9 millions hits and transferred 97 
GB of data during a 3 week period.  Goševa-Popstojanova et al. (2006b)’s busiest 
website received 15.8 million hits and transferred 34.5 GB of data.  This study’s 
busiest website, which is ECE, received approximately 2.4 million hits and 
transferred 22.6 GB of data.  The difference in traffic intensity is another possible 
cause for the different results obtained in this study. 
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Chapter 8 – Conclusions and Future Works 
This dissertation explores two areas of web engineering. The next two sections 
will present the conclusions and future works for these two areas.  

8.1 Web Application Security 
In Chapter 2, a research goal of determining whether web application 
vulnerabilities have any common properties was raised.  To reach this goal, four 
questions were examined. 

1. What proportion of security vulnerabilities in web applications can be 
considered as implementation vulnerabilities? Section 2.3.1 shows that the 
majority of the known vulnerabilities are of this type. This means 
researchers should continue to concentrate on implementation 
vulnerabilities as it will have the most impact on the security of web 
applications. 

2. Are these vulnerabilities the result of interactions between web applications 
and external systems? The results from Section 2.3.2 show that dynamically 
created strings passed to functions that allow interactions between the 
application and an external system cause nearly all of the vulnerabilities in 
this survey. Hence, developers should be careful when allowing data to flow 
between the web application and other systems. 

3. What is the proportion of vulnerable LOC within a web application? That is, 
what is the vulnerability density? The results show that the percentage of 
vulnerable LOC for a web application is extremely small; therefore it can be 
beneficial to introduce a solution to solve implementation vulnerabilities by 
concentrating on the CGs with vulnerable LOC. 

4. Are implementation vulnerabilities caused by implicit or explicit data 
flows? Tables 2.9 and 2.10, from Section 2.3.4, show that implementation 
vulnerabilities for web applications are not caused by implicit data flows. 
This means efforts on eliminating implementation vulnerabilities can focus 
on explicit data flows. 

 
Using the results from Chapter 2, Chapter 3 introduces a novel technique aimed at 
detecting EIVs. The technique contains 4 steps: 

1. Sitemap generation 
2. Input identification 
3. Contamination Data Graph generation 
4. Test case selection and execution. 

The steps are semi-automated using a web crawler, WAIC, WAGG and a capture 
playback tool.  This divide and conquer approach allocates the repetitive and time 
consuming steps to various tools, and hence, reduces a significant effort required 
by security practitioners.  Furthermore, security practitioners’ expertise and 
experience remain an essential part which allows the approach to have a high 
detection rate without any false positives.  This approach proposed satisfies the 
research problems identified in Section 3.2; because it is a software development 
process, it is applicable to all web applications, the large configuration space and 
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language dependent.  A case study was performed to determine the effectiveness 
of the approach; it demonstrates that the approach is practical and applicable to 
commercial strength applications. 
 
EIV analysis has been found to have a very high detection rate for EIVs.  The 
approach found all of the vulnerabilities found by the professionals during a 
security review; and in addition, found 7 new vulnerabilities missed by the review 
process.  These vulnerabilities were missed because the review process did not 
correctly identify all of the inputs and hence, several tainted paths were missed.  
Furthermore, EIV analysis reduced the time required for a security review by 
69%.   
 
Because EIV analysis does not allow web administrators to protect their existing 
platform, Chapter 4 presents an A-NIDS called AIWAS which specifically targets 
web applications. AIWAS automatically classifies user behaviours into benign or 
malicious and prevents malicious user behaviours from reaching the web 
applications under protection.  
 
AIWAS is a learning-based system comprised of two distinct components: the 
Sentinel and the Oracle. The Sentinel maps the HTTP requests into an IM while 
preserving important information that aids with the classification of the IM. The 
Oracle classifies whether the IM is malicious or benign through the use of any 
supervised ML algorithm.  
 
The results from the case study show that AIWAS is highly capable of classifying 
IMs in both a 10-fold cross validation test and against real attack test from known 
vulnerabilities. Additionally, the results demonstrate that the two aggregate 
algorithms are very consistent with their effectiveness at identifying malicious 
IMs; hence, they should be the default ML algorithms for AIWAS. 
 
Future works for AIWIAS include modifying AIWAS so it can monitor HTTP 
requests at a finer granularity. Currently, AIWAS is trained to examine HTTP 
requests at the web application level. However, each resource within the web 
application has its own specific usage patterns. For example, a “login” resource 
will have different usage patterns than a “post comment” resource because the 
user usually only login once per session while that same user can make multiple 
“post comments”. Furthermore, as stated 4.1.1 each resource is often associated 
with different parameters and parameter values. Therefore, by training AIWAS 
with usage patterns at the resource level, the accuracy of AIWAS can be increased 
further. 

8.2 Data Mining Web Server Logs 
Chapter 5 investigates the validity of evaluating web site reliability based on 
information extracted from existing web server logs.  The investigation is a partial 
follow up to a previously conducted study (Tian et al. 2004).  Two additional 
websites were examined using the methodology proposed in the original study.  
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The log data for ECE contain two months of data that are one year apart.  The log 
data for the second website (Site A) cover a continuous 15 months of operation.  
These two websites belong to two organizations that have different reliability 
requirements for their websites.  In this chapter, several findings were discovered: 

• Error codes such as 401, 403, and 404 error codes can be divided into 
different types.  Based on the classification of the error types, it is 
discovered that most errors are no longer source content failures, but are 
caused by external factors that cannot be controlled by website 
administrators and content providers.  These external factors can be 
divided into two distinct categories. 

• There are issues that exist with the workload information extraction 
process.  The original study explained the difficulties with extracting the 
byte count workload.  However, unique challenges also exist with the 
extraction of the user and session and hit count workloads.  For example 
each IP may be shared by many users, thus counting each unique IP 
address as a user will lead to the situation where the counted number of 
users is actually less than the number of actual users. 

• The number of high “value” errors is very low.  Hence, the other 
workloads examined cannot provide better granularity than the daily error 
rate. 

• The Nelson model, used for calculating reliability, is not applicable to 
some workloads without modifications.  The MTBF for a website can be 
estimated because the total service time can be calculated from the total 
number of sessions.  However, the MTBF will vary depending on the error 
codes used in the analysis.  Thus, the correct error codes need to be 
selected before reliability evaluation is performed. 

• Some of the error codes in response to requests are very similar to requests 
containing malicious payloads.  For example, the 414 error is returned 
when the URI is too long.  A benign client can generate a long URI due to 
some bug in its code; however the URI can also be too long when an 
attacker is trying to embed a large piece of JavaScript code to take 
advantage of a cross-site scripting vulnerability. 

Future works for this chapter consist of detailed examination of the user and 
session workloads.  In particular, the investigation will focus on the intra/inter-
session characteristics as defined by Goseva-Popstojanova (2006a) in order to 
examine the behaviors of new users (or sessions) versus repeat users (or sessions) 
and how these behaviors may affect the reliability of the web server.   
 
In Chapter 6, a new model for estimating the STT is proposed.  Having a more 
accurate STT will allow the session workload to be estimated more accurately 
which benefits the reliability estimation method explored in Chapter 5.  Through 
empirical observations, this chapter introduces a model that enables web 
administrators to obtain an accurate STT value for their website.  The chapter 
shows that using a single STT for all websites is not feasible due to the different 
user profiles associated with each website.  The model is then applied to two 
websites.  The first website is from a commercial website that is critical to the 



 

144 

company’s operation.  The second website is an academic website that serves as a 
cross reference of the results.   
 
The model, when applied at different resolutions, shows that the results are 
similar with the STT being shifted depending on the workload and intensity of the 
resolution. That is, the resulting graphs all have very similar shapes.  The results 
show that the model, while applicable, should only be used at the correct 
resolution due to different workload behaviours and intensities.  Web 
administrators looking to study the session workload unit should obtain all 
possible requirements for the study before deciding the correct resolution for 
applying the model.  For example, a study examining user behaviours per month 
should apply the model at the month resolution.  For a long term overall trend, the 
month resolution can also be used, however, the STT should be recalculated if 
there are any modifications that can affect the website’s usability 
 
Although an absolute correct value for the STT cannot be guaranteed, it is 
believed that the STT can be estimated more accurately with the proposed model.  
The model, while simple, allows researchers and web administrators a more 
dynamic method to obtain STTs that specifically target the websites that they are 
investigating. Having a more accurate STT is beneficial because it allows more 
accurate data to be mined while also improving the security and usability of a 
website.  For example, if an online banking website uses an extremely short STT 
then the user is constantly required to login which decreases the site’s usability.  
However, if it uses an extremely long STT then the risk of the user’s account 
being compromised is increased due to attacks such as XRF (Shiflett 2008), XSS, 
etc.  Furthermore, having an inaccurate STT can lead to session addition (division 
of a session into two new ones) and subtraction (combining two short sessions 
into a long one) errors as discussed by Huntington et al. (2008). 
 
The research in Chapter 6 reveals that the distributional properties of the session 
workload unit are poorly understood. Hence, Chapter 7 examines claims that 
session length data are sampled from a heavy-tailed distribution.  The dependency 
of the data, the LLCD plot of the data, a Q-Q plot comparison of the performance 
of the Pareto distribution against the lognormal distribution in fitting the data, and 
a Hill estimator approach to estimating the tail index of the distribution are all 
examined in detail.  The investigation shows that the data may be dependent; 
however, the results are disputable because the formulation cannot be extended to 
cover all possible cases.  Furthermore, this chapter confirms that LLCD plots may 
not be ideal for investigating the heavy-tailed property of session data.  The α 
obtained from the LLCD plot does not stabilize during any part of the tail.  
Additionally, the Pareto distribution itself is not sufficient for modeling heavy-
tailed data because of the “wobble” effect as demonstrated.  The Hill estimator 
was examined and was shown that it also does not provide a stable α value.  In 
fact, α does not stabilize for any k. Finally, the Q-Q plot suggests that the 
lognormal is a “better” description of the entire distribution, although it cannot be 
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ruled out that a heavy-tailed distribution may be an adequate distribution of the 
tail of the distribution due to the imprecise definition of the tail. 
 
Although the investigation in this chapter provides empirical evidence that the 
session data may not be heavy-tailed, the results can be disputed.  The methods 
utilized, while popular and well known are not entirely accurate.  However, no 
better alternatives exist; until accurate alternative approaches are presented, the 
heavy-tailed status of the session data is unknown.  Therefore future research 
should consider the matter as being unresolved and should still consider 
producing short-tailed models to describe this phenomenon. 
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Appendix 1 – Introduction to Heavy-Tailed and 
Pareto Distributions 
The majority of statistical work is based on short-tailed distributions such as the 
normal and lognormal distributions. These distributions decay “quickly” 
(commonly exponentially) in contrast with heavy-tailed distributions.  The rank 
size law53 (1949) can be used to informally describe heavy-tailed distributions.  
This law states that: the second largest entity is half the size of the largest; the 
third largest entity is one third the size of the largest, etc.  That is, if the entities 
are ranked from largest (rank 1) to smallest (rank n), and  their values are denoted 
as: 

nxx ≥≥K1  
the rank i for an entity of value xi is proportional to the proportion of entities 
greater than i.  Or: 

i
kxi ≈  (A1.1) 

for some constant k.  More formally, Resnick (1997) states that a random variable 
X has a Pareto tail with index α, α > 0, if for x > 1 

α−≈> xxXP ][  1, >x   (A1.2) 
Many authors provide a slightly more generic distribution of a Pareto distribution 
by incorporating an additional multiplicative term α

minx  (the location parameter, 

the actual term is L(x). For the Pareto distribution, L(x)= α
minx ), where α

minx  is a 

positive minimal value of X; i.e. ∀x•x> α
minx . 

 
Examination of the Pareto distribution (which is a commonly examined heavy-
tailed distribution) involves analysis of the tail index α.  Hence, α is examined 
with the common approach of setting α

minx =1 and the requirement for the 
additional inequality (Equation A1.2).  Technically, the above distribution is 
defined in a continuous domain; however, within this investigation’s domain, the 
estimation of values clearly has a defined resolution.  So strictly speaking X is a 
discrete random variable; and the discrete probability distribution analogue to the 
Pareto distribution applies.  Therefore, the zeta distribution, or the Zipf 
distribution, is the actual distribution under analysis.  However, the distributions 
only differ in their definition of the multiplicative term L(x) and hence the above 
definition resolves the issue of having a distribution defined in a continuous 
domain being applicable on a discrete random variable. 
 
The Pareto distribution is an example of a wider set of distributions, namely 
heavy tailed distributions.  X has a heavy tailed CDF F(x) if 

                                                 
53 The rank size law is a good approximation for entities of high rank, but not for the largest. 
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)(][)(1 xLxxXPxF α−=>=−   (A1.3) 
where L is slowly varying; i.e. 

1
)(
)(lim =

∞→ tL
txL

t
  (A1.4) 

The Pareto distribution is the “simplest” example of a heavy-tailed distribution 
and is used throughout this paper; and hence the more general definition can be 
considered solely for information purposes. 
 
The implications of deciding that X is from a heavy-tailed or Pareto distribution 
are severe as the definition of the standardized moments become problematic.  
For the Pareto distribution, the first two moments are defined as: 

1
)( min

−
=
α
αxXE   (A1.5), 2

2
min

)1)(2(
)(

−−
=

αα
αxXVar   (A1.6) 

This implies that, for α ≤ 1 the expected value is infinite; and for α ≤ 2 the 
variance infinite.  Clearly, this demonstrates serious limitations on the types of 
models which can be constructed using Pareto distributed variables.  In addition, 
these definitions are unrealistic in many situations because the distribution of X 
will be bounded by physical constraints.  Hence, a more rigorous and realistic 
definition requires the above to hold over a finite range [xi, xi+j] where the 
distribution applies. 
 
Although this might seem an unimportant technical point, it is actually a recurring 
theme in this domain.  Basically, all common methods of exploring potentially 
Pareto distributed variables follow this pattern where the investigation is only 
carried out within a finite range.  Hence, the approaches introduce a bias because 
they only investigate a small component of the distribution, namely the “tail”.  xi 
is often considered to be the start of the tail, although there is no method of 
evaluating i and no definition of the term tail. xi+j is commonly considered to be 
near xn; i.e. the highest ranked point within the data set. Clearly, the points, which 
in theory exist with ranks greater than n, cannot be inferred.  It is important to 
note that this range only corresponds to an extremely finite part of the 
distribution; it is not uncommon for the “tail component” or Pareto range to be 
defined for less than 1% of the sampled range nxx ≥≥K1 .  Hence, it is 
exceptionally difficult to make accurate estimations and infer reliable facts across 
such amounts of data. The amounts of data are very small both in absolute terms 
(the raw number of points) and relative terms (the percentage of the total sample).  
Hence, given the difficulty of accurately characterizing information as belonging 
to a heavy-tailed distribution and the significant consequences in terms of 
undefined standardized moments, one should be careful in inferring that a heavy-
tailed distribution exists. 
 
It should not be inferred from this discussion that the shape of the Pareto, or 
heavy-tailed, distributions are highly distinctive from short-tailed distributions.  In 
fact, many heavy-tailed and short-tailed distributions “look” highly similar.  For 
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example, Gong et al. (2001) plot the data from the Crovella and Bestavros (1997) 
paper, a time-series which contains file sizes transferred over a period of time.  
They compare the data at the 95% confidence intervals for both Pareto and 
lognormal models; and observe that the confidence intervals of both models grow 
with file size; and, at the tail, the two confidence intervals have a “large overlap 
which makes it difficult to distinguish them”.  Mathematically, Pareto and 
lognormal distributions also have a lot in common. 
 
Adapting from Gabaix (1999) and Gong et al. (2001), consider a time series of 
i.i.d. positive random variables Z1, …., Zt, ….Z∞. Let Zi be defined as: 

ttt AZZ 1−= , t = 1, ….  (A1.7) 
With Z0 = 1.  Taking logarithms yields 

∑=
=

t

i
it AZ

1
ln , t = 1,…..  (A1.8) 

which by the central limit theorem converges in distribution to a normally 
distributed random variable. Consequently, Zt converges in distribution to a 
lognormal distributed random variable.  Now, let’s add a condition that Zt must 
always exceed a threshold Δ. 

,....1},,max{ 1 =Δ= − tAZZ ttt   (A1.8) 
Gabaix (1999) shows that Zt now converges to a random variable with a Pareto 
distribution.  That is, if Δ = 0, it produces a lognormal distribution, otherwise a 
Pareto distribution.  Because of the similarity between the two distributions, this 
paper also examines the lognormal distribution for the session lengths recorded. 
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Appendix 2 – Independence of Data Test for 
Chapter 7 
Extreme value analysis methods are techniques that attempt to model rare events 
based on limited data.  Heavy-tail analysis requires a dataset of unobtainable size; 
and hence, the analysis performed in this paper can be classified as extreme.  
Many extreme value analysis methods assume that the data set is independent.  In 
fact, the Hill estimator is the only known estimator to perform accurately with 
dependent data (Rezaul and Grout 2006, Tsourti and Panaretos 2001).  Hence, if 
the data is considered as dependent, extreme value analysis methods need to be 
modified.  Therefore, in this appendix, this question is considered; however, in 
this situation, the definition and associated tests for independence is an extremely 
complex subject with no single clear answer.  Independence or randomness is one 
of the four assumptions that typically underlie all measurement processes.  The 
randomness assumption is critically important because most standard statistical 
tests depend on it; the validity of the test conclusions are directly linked to the 
validity of the randomness assumption. 
 
To illustrate this issue, the autocorrelation function (ACF) is used to test for 
randomness or dependence of the data set. While an autocorrelation approach to 
the question is used, other approaches exist (see Brockwell and Davis (1991) for a 
discussion of alternatives).  The session length data can be seen as a time-series 
because each session length is recorded according to the session start time.  If the 
time-series is completely random then the entire ACF should be zero or the null 
hypothesis is ACF(k) = 0; where k is the lag. Examining ACF values, and 
determining if they are within the 95% confidence bounds around this central 
value is commonly utilized as a mechanism to test this hypothesis.  If there are 
values exceeding this bound, then the data is considered dependent.  Figures 
A2.1a and A2.1b show the ACF plots for ECE and Site A. 
 

Figure A2.1a ACF for ECE Figure A2.1b ACF for Site A 
 
These plots also contain the 95% confidence bounds;  the plots show that 10% 
and 67% of the values exceed the upper bound for the ECE and Site A sites 
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respectively, implying that the data may be dependent.  However, the analysis 
uses Barlett’s formula (Pankratz 1983) to estimate the confidence interval.  This 
formula assumes that the data is normally distributed, and hence the confidence 
bounds are meaningless if the samples are drawn from a heavy-tailed distribution.  
Alternatively, the Ljung-Box test (Ljung and Box 1978) can be used to evaluate 
the null hypothesis.  The Ljung-Box test utilizes the following formula: 

∑
= −

+=
m

k

k

kn
acf

nnQ
1

)2(  (A2.1) 

where ACFk  is the ACF value for lag k, n is the number of samples and m is the 
maximum lag.  Q is distributed as χ2 with (m-p-q) degrees of freedom.  The 
assumption that  that p = q = 0 is made; i.e. that the data sets have no trend or 
periodic information. Clearly, this assumption is invalid as web-sites clearly have 
many different types of periods with differing resolutions; e.g. day/night; 
weekday/weekend; non-holiday-period/holiday-period etc.  However, the exact 
nature of the periodic information is not understood and approaches to estimating 
p and q can be error prone.  Hence this simplifying assumption is used.  This 
assumption effectively inflates the Type II error; which is considered an 
acceptable risk in this situation.  Using the above equation χ2 is calculated to be 
6582.68 and 586.88 for ECE and Site A respectively.  These χ2 values, with 100 
degrees of freedom, correspond to a p-value of p < 0.001 for both websites.  
Hence, the null hypothesis can again be rejected which means that the data set is 
dependent, but only if it is not sampled from a heavy-tailed distribution.  While 
this approach can be considered less distributionally restrictive than the previous 
approach, it is still, both theoretically (Jansen and de Vries 1991) and empirically 
(Chen 2002), not robust to heavy-tailed data. 
 
In addition, the standard ACF formula is invalid if the sample is from a heavy-
tailed distribution as the formula basically measures deviations from the sample 
mean, while the sample mean is mathematically undefined for many heavy-tailed 
distributions.  Fortunately, the construction of a non-centered autocorrelation 
function is straightforward (Davis and Resnick 1985): 
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Figures A2.2a and A2.2b shows the heavy-tailed ACF plots for ECE and Site A.  
These plots show that the ACF values do not exceed 0.17 and 0.13 for the ECE 
and Site A sites respectively.  However, confidence bounds estimations (or Q 
statistics) no longer exist; and unless specific information about the underlying 
distribution, including accurate values for its parameters, are known, a confidence 
interval cannot be defined (Feigen and Resnick 1999). 
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Figure A2.2a Heavy-Tailed ACF for 
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Figure A2.2b Heavy-Tailed ACF for Site 

A 
 
However, several alternative approaches still exist for evaluating the null 
hypothesis.  Feigin and Resnick (1999) show that if the series can be modeled as a 
moving average process of lag l then the coefficients of the heavy-tailed ACF 
should decay to approximately zero beyond l; and in the limiting case where 

∞→l , the coefficients should again all be approximately zero.  This question 
can be investigated by asking if the co-efficients are summable.  In addition, a 
more formal test can be constructed by forming a permutation distribution. The 
heavy-tailed ACF’s behavior, with respect to the null hypothesis, can be 
characterized by a summary statistic; e.g. the maximum absolute ACF 
coefficient54; this option is recommended by Feigen and Resnick (1999).   The p-
value of the observed summarizing statistic is estimated by generating 999 
permutations of the time-series; computing the statistic for each permutation and 
counting the number (C) of values greater than or equal to the actual observed 
statistics. The p-value is given approximately by ((1+C)/1000). Clearly, this 
approach avoids relying in the asymptotic theory or distribution for this particular 
summarizing statistic; and the test is distributionally robust for heavy-tailed 
situations.  Figures A2.3 and A2.4 display the results of the permutation test. 
 

                                                 
54 Other options include the partial or biserial autocorrelations. 
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Figure A2.3 Permutation test for ECE 
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Figure A2.4 Permutation test for Site A 
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Visual inspection show that the majority of the max(ACF) of the permutations are 
below the actual max(ACF) which is represented by the horizontal line.  In fact, 
for the ECE site, none of the permutations are greater than or equal to the actual 
max(ACF) which means the p-value <  0.001.  For Site A, two of the permutations 
are greater than or equal to the actual max(ACF); hence, the p-value < 0.003.  
Because the p-value for both websites are below the standard type I error cut-off 
values, the null hypothesis can be rejected which means that the data for both 
websites are dependent. 

 
While this approach is now a relatively robust examination of the null hypotheses 
several situations still exist where the validity of the approach and hence the 
associated results are at best questionable and at worst non-applicable. Feigin and 
Resnick (1999) empirically demonstrate that the heavy-tailed ACF tends to 
exhibit erratic results in the following situations: 

• the presence of any non-linearities, such as the process being a bilinear 
process; 

• when the process is a moving average(l) process; if l > m; 
• the series is contaminated by (additive) outliers. 

These situations clearly represent risks to the internal validity of the results 
presented in this appendix. 
 
 


