

University of Alberta

Empirically Driven Investigation of Dependability and Security Issues in
Internet-Centric Systems

by

Huynh, Toan Nguyen Duc

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

© Huynh, Toan Nguyen Duc
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. James Miller, Department of Electrical and Computer Engineering

Dr. Yu (Bryan) Hu, Department of Electrical and Computer Engineering

Dr. Vincent Gaudet, Department of Electrical and Computer Engineering

Dr. H. James Hoover, Department of Computing Science

Dr. John Aycock, Department of Computer Science, University of Calgary

Dedicated to my parents Long Huỳnh and Nữ Nguyễn.

You give everything and expect nothing in return.
I am eternally grateful for all you have done.

Công Cha như núi Thái Sơn,

Nghĩa Mẹ như nước trong nguồn chảy ra.

Abstract

The Web, being the most popular component of the Internet, has been

transformed from a static information-serving medium into a fully interactive

platform. This platform has been used by developers to create web applications

rivaling traditional desktop systems. Designing, developing and evaluating these

applications require new or modified methodologies, techniques and tools because

of the different characteristics they exhibit. This dissertation discusses two

important areas for developing and evaluating these applications: security and

data mining.

In the security area, a survey using a process similar to the Goal Question Metric

approach examines the properties of web application vulnerabilities. Using results

from the survey, a white-box approach to identify web applications’

vulnerabilities is proposed. Although the approach eliminates vulnerabilities

during the development process, it does not protect existing web applications that

have not utilized the approach. Hence, an Anomaly-based Network Intrusion

Detection System, called AIWAS, is introduced. AIWAS protects web

applications through the analysis of interactions between the users and the web

applications. These interactions are classified as either benign or malicious;

malicious interactions are prevented from reaching the web applications under

protection.

In the data mining area, the method of reliability estimation from server logs is

examined in detail. This examination reveals the fact that the session workload is

currently obtained using a constant Session Timeout Threshold (STT) value.

However, each website is unique and should have its own STT value. Hence, an

initial model for estimating the STT is introduced to encourage future research on

sessions to use a customized STT value per website. This research on the STT

leads to a deeper investigation of the actual session workload unit. More

specifically, the distributional properties of the session workload are re-examined

to determine whether the session workload can be described as a heavy-tailed

distribution.

Acknowledgement

Time with James

Q
ua

lit
y

of
 D

is
se

rta
tio

n

As you can see from the graph, without my supervisor Dr. James Miller, this
dissertation simply does not exist. I am grateful for his valuable guidance and
criticism; his extreme patience should also be commended. Dr James Miller is not
only an excellent mentor for my research; he’s also a friend. I will always be
thankful for all the assistance he has provided. Thank you James.

Special thanks to John Bringas, P.Eng., for his constant support and
encouragement. His out-of-the-box questions have always kept me on my feet.
Even before I finished my undergraduate degree, he has encouraged me to pursue
higher education. His encouragement is one of the reasons why I am here today.
Not only that, he started getting me involved with running which helped keep me
in shape despite the hours I toiled away in front of the computer. For all his
support – thank you John.

I would also like to thank my family who always tried to make sure I am well
nourished and healthy. To my friends who are a constant source of entertainment,
and to my colleagues who had to cover for me whenever I mysteriously disappear
for a few hours.

Funding for this research was provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and CASTI.

Table of Contents

Chapter 1- Introduction .. 1

1.1 Web Application Security.. 1
1.2 Data Mining Web Server Logs .. 2
1.3 Contributions and Dissertation Outline ... 3

Chapter 2 – An Investigation into Web Applications’ Vulnerabilities... 5
2.1 Terminology .. 5
2.2 Survey.. 8

2.2.1 Vulnerability Databases ... 8
2.2.2 Survey Procedure... 9
2.2.3 Chosen Applications .. 10
2.2.4 Tracing the Source Code.. 11

2.3 Results ... 14
2.3.1 Question 1.. 14
2.3.2 Question 2.. 15
2.3.3 Question 3.. 21
2.3.4 Question 4.. 23

2.4 Background.. 25
Chapter 3 – Practical Elimination of External Interaction Vulnerabilities in Web Applications ... 27

3.1 Definition... 27
3.2 Research Problem.. 28
3.3 External Interaction Vulnerability Analysis .. 30

3.3.1 Creating the Sitemap.. 30
3.3.2 Inputs ... 31

3.3.3 Contamination Data Graphs ... 34
3.3.4 Test Data Coverage, Selection, and Execution .. 37

3.4 Case Study ... 39
3.4.1 Drawing the Application’s Sitemap... 40
3.4.2 Identifying the Application’s Inputs .. 41
3.4.3 Creating the CDGs and Choosing Test Data.. 42
3.4.4 Test Execution, Results, and Analysis ... 44

3.5 Related Work... 46
Chapter 4 – Automatic Identification of Web Attacks ... 51

4.1 AIWAS.. 52
4.1.1 Instance Model... 53
4.1.2 ML Algorithms .. 57
4.1.3 Data Set.. 57

4.2 Case Study ... 58
4.2.1 Results – 10-fold cross validation.. 59
4.2.2 Results – Real Vulnerabilities.. 67
4.2.3 Discussion of the Results ... 76

Chapter 5 – Estimating Reliability from the Server Logs .. 79
5.1 Research Methodology .. 81

5.1.1 Removal of Automated Requests... 82
5.1.2 Analysis of Error Code Information .. 82

5.2 Overview of the Websites.. 87
5.2.1 Overview of the Websites in This Chapter .. 87

5.3 Results and Discussions... 89
5.3.1 Results from the Original Study... 89
5.3.2 Results from this Study.. 90
5.3.3 Workload Analysis and Discussions.. 97
5.3.4 Reliability Analysis and Discussions... 101
5.3.5 Limitation of Log Files .. 103

Chapter 6 – Empirical Observations on the Session Timeout Threshold 105
6.2 Related Works ... 106
6.3 Observations of the STT and the Proposed Model .. 107
6.4 Description of the Websites under Investigation ... 109
6.5 STT Results and Discussions... 112

6.5.1 Removing Automated Requests... 113
6.5.2 Day Resolution Investigation... 114
6.5.3 Week Resolution Investigation .. 117
6.5.4 Month Resolution Investigation... 119

Chapter 7 – Investigating the Distributional Property of the Session Workload.......................... 123
7.1 Investigation of the Distributional Characteristics of Session Length............................... 125

7.1.1 Discussion of the STT.. 125
7.1.2 Estimating the Tail Index α with LLCD Plot .. 125
7.1.3 Discussions of the Hill Estimator Results.. 138

7.2 Results Discussion... 139
Chapter 8 – Conclusions and Future Works... 141

8.1 Web Application Security.. 141
8.2 Data Mining Web Server Logs .. 142

Bibliography... 147
Appendix 1 – Introduction to Heavy-Tailed and Pareto Distributions ... 157
Appendix 2 – Independence of Data Test for Chapter 7 .. 161

List of Tables

Table 2.1 Number of vulnerabilities in the OSVDB .. 9
Table 2.2 Applications examined ... 10
Table 2.3 Vulnerability category distribution... 15
Table 2.4 Implementation vulnerability types .. 16
Table 2.5 Proprietary systems .. 17
Table 2.6 Proprietary versus open source... 19
Table 2.7. Statement usage... 20
Table 2.8 Vulnerable LOC versus Total LOC.. 23
Table 2.9 Code blocks .. 24
Table 2.10 Variable being assigned from different sources ... 25
Table 3.1 Escape sequences for MySQL.. 39
Table 3.2 Number of inputs and their sources.. 42
Table 3.3 Input types .. 42
Table 3.4 Number of paths and test cases .. 44
Table 3.5 Test results showing the number of failed/passed paths and test cases 45
Table 3.6 EIVs found ... 45
Table 3.7 Effort .. 46
Table 4.1 Accuracy metrics.. 66
Table 8.2 Accuracy metrics with SMOTE ... 67
Table 4.3 Accuracy metrics.. 74
Table 4.4 Degree of agreement .. 75
Table 4.5 Accuracy metrics with SMOTE ... 76
Table 5.1 Sites examined.. 88
Table 5.2 Comparison of data sets ... 89
Table 5.3 Recorded errors .. 90
Table 5.4 Recorded errors (cont.)... 91
Table 5.5 Recorded errors (cont.)... 91
Table 5.6 Failure sources for the error codes ... 93
Table 5.7 Possible error codes for reliability analysis .. 95
Table 5.8 Possible error codes for reliability analysis (cont.) .. 95
Table 5.9 Error codes to be used for reliability analysis .. 96
Table 5.10 Error codes to be used for reliability analysis (cont.) ... 96
Table 5.11 Workloads .. 98
Table 5.12 Correlation matrix .. 98
Table 5.13 Reliability analysis ... 101
Table 5.14 Reliability analysis using the other workloads ... 102
Table 5.15 MWBF.. 102
Table 6.1 Properties of log files used in previous studies .. 111
Table 6.2 STT for day resolution ... 115
Table 6.3 F-Test ... 116
Table 6.4 Shapiro-Wilk test.. 117
Table 6.5 STT for week resolution... 118
Table 6.6 Shapiro-Wilk test for the week resolution.. 119
Table 6.7 STT for month resolution ... 120
Table 6.8 Shapiro-Wilk Test for the month resolution... 120
Table 7.1 Statistics for α... 133
Table 7.2 t-Test to compare the lognormal distribution versus the Pareto distribution................ 138

List of Figures

Figure 2.1 Example program.. 6
Figure 2.2 CG for sBlog ... 14
Figure 2.3 Histogram of nodes showing many CDGs have less than 5 nodes 22
Figure 2.4 Histogram of contaminated variables showing many CGs have less than 4 contaminated
variables ... 22
Figure. 3.1 A search sequence.. 32
Figure 3.2 A CDG for search_keyword.. 37
Figure 3.3 A CDG for results ... 37
Figure 4.2 An example of the request data... 55
Figure 4.3 An example of the request data... 56
Figure 4.4 10-Fold Cross Validation ROC Curve for WA1 with Naïve Bayes.............................. 60
Figure 4.5 10-Fold Cross Validation ROC Curve for WA1 with Random Forest.......................... 60
Figure 4.6 10-Fold Cross Validation ROC Curve for WA1 with Rotation Forest 61
Figure 4.7 10-Fold Cross Validation ROC Curve for WA1 with Simple Logistic......................... 61
Figure 4.8 10-Fold Cross Validation ROC Curve for Phd Help Desk with Naïve Bayes 62
Figure 4.9 10-Fold Cross Validation ROC Curve for Phd Help Desk with Random Forest 62
Figure 4.10 10-Fold Cross Validation ROC Curve for Phd Help Desk with Rotation Forest 63
Figure 4.11 10-Fold Cross Validation ROC Curve for Phd Help Desk with Simple Logistic 63
Figure 4.12 10-Fold Cross Validation ROC Curve for OpenDocMan with Naïve Bayes.............. 64
Figure 4.13 10-Fold Cross Validation ROC Curve for OpenDocMan with Random Forest.......... 64
Figure 4.14 10-Fold Cross Validation ROC Curve for OpenDocMan with Rotation Forest 65
Figure 4.15 10-Fold Cross Validation ROC Curve for OpenDocMan with Simple Logistic......... 65
Figure 4.16 Real Attacks ROC Curve for Phd Help Desk with Naïve Bayes 68
Figure 4.17 Real Attacks ROC Curve for Phd Help Desk with Random Forest 68
Figure 4.18 Real Attacks ROC Curve for Phd Help Desk with Rotation Forest 69
Figure 4.19 Real Attacks ROC Curve for Phd Help Desk with Simple Logistic 69
Figure 4.20 Real Attacks ROC Curve for Phd Help Desk with Aggregate Malicious 70
Figure 4.21 Real Attacks ROC Curve for Phd Help Desk with Aggregate Benign........................ 70
Figure 4.22 Real Attacks ROC Curve for OpenDocMan with Naïve Bayes.................................. 71
Figure 4.23 Real Attacks ROC Curve for OpenDocMan with Random Forest.............................. 71
Figure 4.24 Real Attacks ROC Curve for OpenDocMan with Rotation Forest 72
Figure 4.25 Real Attacks ROC Curve for OpenDocMan with Simple Logistic............................. 72
Figure 4.26 Real Attacks ROC Curve for OpenDocMan with Aggregate Malicious..................... 73
Figure 4.27 Real Attacks ROC Curve for OpenDocMan with Aggregate Benign 73
Figure 5.1. A sample entry in an access log ... 83
Figure 5.2 Scree plot .. 99
Figure 5.3 File size histogram for Site A.. 100
Figure 6.1 Number of sessions versus STT before removal of monitoring systems 113
Figure 6.2 A random Site A day... 114
Figure 6.3 A random ECE day ... 114
Figure 6.4 STT Histogram for Site A at Weekdays Resolution ... 115
Figure 6.5 STT Histogram for Site A at Weekends Resolution ... 115
Figure 6.6 STT Histogram for ECE at Weekdays Resolution.. 115
Figure 6.7 STT Histogram for ECE – Weekends Resolution... 115
Figure 6.8 Normal Distribution Q-Q plot for ECE... 117
Figure 6.9 Gamma Distribution Q-Q plot for Site A.. 117
Figure 6.10 A random week for Site A .. 118
Figure 6.11 A random week for ECE... 118
Figure 6.12 STT Histogram for Site A at the Week Resolution... 118
Figure 6.13 STT Histogram for ECE at the Week Resolution ... 118
Figure 6.14 A random month for Site A... 119
Figure 6.15 A random month for ECE ... 119

Figure 6.16 STT Histogram for Site A at the Month Resolution ... 120
Figure 6.17 STT Histogram for ECE at the Month Resolution .. 120
Figure 7.1 LLCD Plot for ECE with 11mins STT.. 127
Figure 7.2 Numerical Differential Estimation of α for ECE with 11mins STT............................ 127
Figure 7.3 Box plot of α for ECE with 11mins STT Showing Numerous Outliers 128
Figure 7.4 LLCD Plot for Site A with 5mins STT ... 128
Figure 7.5 Numerical Differential Estimation of α for Site A with 5mins STT 129
Figure 7.6 Box plot of α for Site A with 5mins STT Showing Numerous Outliers 129
Figure 7.7 LLCD Plot for ECE with 30mins STT.. 130
Figure 7.8 Numerical Differential Estimation of α for ECE with 30mins STT............................ 130
Figure 7.9 Box plot of α for ECE with 30mins STT Showing Numerous Outliers 131
Figure 7.10 LLCD Plot for Site A with 30mins STT ... 131
Figure 7.11 Numerical Differential Estimation of α for Site A with 30mins STT 132
Figure 7.12 Box plot of α for Site A with 30mins STT Showing Numerous Outliers 132
Figure 7.13 “Wobbles” seen in LLCD plots for ECE .. 134
Figure 7.14 “Wobbles” seen in LLCD plots for Site A.. 135
Figure 7.15 Pareto Q-Q Plot for ECE showing the observed values are not near the expected
values.. 136
Figure 3.16 Pareto Q-Q Plot for Site A showing the observed values are not near the expected
values.. 136
Figure 7.17 Detrended Pareto for ECE showing extreme deviations from the line in the Q-Q plot
.. 136
Figure 7.18 Detrended Pareto for Site A showing the observed values are not near the expected
values.. 136
Figure 3.19 Lognormal Q-Q for ECE showing the observed values are not near the expected
values.. 137
Figure 3.20 Lognormal Q-Q for Site A showing the observed values are not near the expected
values.. 137
Figure 7.21 Detrended lognormal for ECE showing extreme deviations from the line in the Q-Q
plot ... 137
Figure 7.22 Detrended lognormal for Site A showing extreme deviations from the line in the Q-Q
plot ... 137
Figure 3.25. Hill estimator for ECE at a smaller range for the y-axis .. 138
Figure 3.26. Hill estimator for Site A at a smaller range for the y-axis.. 138
Figure A2.1a ACF for ECE.. 161
Figure A2.1b ACF for Site A ... 161
Figure A2.2a Heavy-Tailed ACF for ECE ... 163
Figure A2.2b Heavy-Tailed ACF for Site A .. 163
Figure A2.3 Permutation test for ECE ... 164
Figure A2.4 Permutation test for Site A... 164

List of Acronyms

A

ACF: Autocorrelation Function

A-NIDS: Anomaly-based Network Intrusion Detection System

AJAX: Asynchronous JavaScript and XML

API: Application Programming Interface

C

CERIAS: Center for Education and Research in Information Assurance and
Security

CDG: Contamination Data Graph

CG: Contamination Graph

CLF: Common Log Format

CMS: Content Management System

COM: Component

COTS: Commercial off the Shelf

CVS: Concurrent Versions System

D

DBMS: Database Management System

E

EGPCS: Environment, GET, POST, Cookie, Server

EIV: External Interaction Vulnerability

EOP: End of Program

ES: External Sources

F

FPR: False Positive Rate

FTP: File Transfer Protocol

G

GB: Gigabyte

H

HTTP: Hypertext Transfer Protocol

I

IDS: Intrusion Detection System

IE: Internet Explorer

IIS: Internet Information Services

IP: Internet Protocol

IM: Instance Model

IMME: Instance Model Mapping Engine

K

KLOC: Thousands of Lines of Code

L

LLCD: Log Log Complementary Distribution

loc: location

LOC: Lines of Code

M

MCC: Matthew’s Correlation Coefficient

ML: Machine Learning

MTBF: Mean Time between Failure

MWBF: Mean Workload between Failure

N

NIDS: Network Intrusion Detection System

NXD: Native XML Database

O

OS: Operating System

OSVDB: Open Source Vulnerability Database

Q

Q-Q Plot: Quantile Quantile Plot

R

RFC: Request for Comment

ROC: Receiver Operating Characteristics

S

SCF: Source Content Failure

SDG: System Dependency Graph

SPSS: Statistical Package for the Social Sciences

SQL: Structured Query Language

STT: Session Timeout Threshold

T

TPR: True Positive Rate

U

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

US-CERT: United States Computer Emergency Readiness Team

V

VDB: Vulnerability Database

W

WAIC: Web Application Input Collection

WAGG: Web Application Graph Generation

X

XPATH: XML Path Language

XRF: Cross-site Request Forgery

XSS: Cross-site Scripting

1

Chapter 1- Introduction
The Web was introduced to the Internet in 1991. Within 19 years, it has
transformed from a medium used to present information statically to a modern
medium capable of e-commerce, entertainment, surveys, and many other
activities. In fact, web applications are now a crucial component for many
companies. These applications are now one of the most important parts of the
software industry. Yet, they have different characteristics that make them
different from traditional software and information systems. For example, web
applications have short release cycles and development time (Baskerville and
Pries-Heje 2004). Many new features, enhancements and bug fixes are
continually added during these cycles. Furthermore, developers often build web
applications by integrating many existing parts together. For example, a legacy
system can be combined with several Commercial off the Shelf (COTS) packages
by custom in-house code to create a complete web application. The source code
for the COTS packages is often unavailable to the developers or these COTS
packages may exist on remote servers as web services. When coupled with web
applications’ ability to transfer data among completely different types of
components, web applications must now ensure data is persistent through user
sessions, across sessions, and shared among sessions. As a result, web
engineering is a recent field that focuses on the methodologies, techniques and
tools to design, develop, and evaluate web applications. This dissertation
contributes to this field in two areas: security and data mining.

1.1 Web Application Security
The Laws of Vulnerabilities 2.01 states that “80 percent of vulnerability exploits
are now available within single digit days after the vulnerability’s public release”.
The 2008 Internet Security Threat Report2 from Symantec notes that web
applications contain 63 percent of all documented vulnerabilities. Insecure
applications can be extremely costly. For example, ChoicePoint, after exposing
145,000 customer accounts, reported $11.4 million in charges directly related to
the incident (Rapid7 2005). Immediately after the incident was disclosed,
ChoicePoint’s total market capitalization dropped by $720 million. Meanwhile,
CardSystems is barred from accepting Visa and American Express cards after
compromising 40 million accounts due to a SQL Injection vulnerability. Hence,
security is a prominent non-functional requirement for modern web applications.

Chapters 2-4 explore this prominent non-functional requirement in detail. To
begin, Chapter 2 performs a survey on the vulnerabilities using a method similar
to the Goal Question Metric (GQM) approach. Four questions are raised.

1. What proportion of security vulnerabilities in web applications can be
considered as implementation vulnerabilities?

1 http://www.qualys.com/research/rnd/vulnlaws/, last accessed August 16, 2009
2 http://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802, last accessed January
29, 2010

2

2. Are these vulnerabilities the result of interactions between web
applications and external systems?

3. What is the proportion of vulnerable LOC within a web application?
4. Are implementation vulnerabilities caused by implicit or explicit data

flows?
The results obtained show that the majority of web application vulnerabilities are
of the implementation type which is caused by insecure coding practices.

Based on the information from Chapter 2, Chapter 3 introduces a practical
approach to eliminate web vulnerabilities. Through effective use of computer-
support software to automate the “straightforward” components, the approach
enables the security tester to concentrate on the “creative” component in
vulnerability detection. Furthermore, this approach integrates into the software
development process. This integration allows software development organizations
to identify and eliminate the vulnerabilities before the product is shipped or
launched.

Although the approach presented in Chapter 3 allows vulnerabilities to be
removed, it does not allow web administrators to protect their pre-existing
platforms against attacks. Hence, Chapter 4 presents an Anomaly-based Network
Intrusion Detection System (A-NIDS), called AIWAS, to guard web applications
from malicious users. Instead of removing vulnerabilities from web applications,
AIWAS classifies behaviours from users as either benign or malicious. It does
this by learning from the input which is the primary way for users to interact with
web applications. Essentially, AIWIAS studies the input specification associated
with “normal” usage of the system and validates any given inputs against this
specification. This technique allows AIWAS to filter out malicious inputs before
they reach the web application.

1.2 Data Mining Web Server Logs
The World Wide Web is now the most popular component of the Internet (Arlitt
and Williamson 1997). The Web can be utilized for many purposes ranging from
information retrieval to fully interactive e-commerce stores. Companies
increasingly use the Web to reach their customers. With the explosion in web
traffic and numerous companies being highly dependent on the web for their
operations, data mining of web related information (web mining) is becoming
increasingly important. Web mining (Cooley et al. 1997, Cooley et al. 1999)
allows companies to further understand their users’ behaviour and demographic
information, which in turn allows the organization to maximize sales (Eirinaki
and Vazirgiannis 2003, Spiliopoulou 2000). It can also provide critical workload
information, such as hits per user or session, enabling system administrators to
improve usability, availability and reliability of their websites (Arlitt and
Williamson 1997, Squillante et al. 1999).

The exploration in this area starts with Chapter 5. This chapter evaluates a
technique for estimating reliability from server logs. The technique extracts

3

workload measures and error codes from these logs; reliability is then estimated
based on the extracted information. Essentially, Chapter 5 is a “partial
replication” of the original technique presented by Tian et al. (2004).

Through the study in Chapter 5, it is discovered that the session workload, which
is the most popular unit, is often obtained using a static Session Timeout
Threshold (STT) value ranging from 15 minutes to 2 hours. The values used do
not consider the fact that many websites have different user profiles which means
the STT will vary. Chapter 6 introduces a dynamic model that generates the STT
for specific websites which allows the session workload to be estimated more
accurately. This is important because having accurate data means better
information can be mined. This allows organizations to improve quality attributes
such as usability and functionality of their websites.

The research in Chapter 6 reveals that the distributional properties of the session
workload unit are poorly understood. Whether the session workload can be
described as a short-tailed or heavy-tailed distribution is a fundamental question
for the investigation of the session workload unit. Hence, Chapter 7 empirically
explores claims that the session workload can be described using a heavy-tailed
distribution using many tests.

1.3 Contributions and Dissertation Outline
The outline of this dissertation, which includes discussions the contribution of
each chapter, is as follows.

Chapter 2: Common properties contained in web application vulnerabilities are
explored using a process similar to the GQM approach. The results show that web
application vulnerabilities are primarily implementation vulnerabilities. They are
caused through interactions between web applications and external systems.
Furthermore, these vulnerabilities only contain explicit data flows, and are limited
to relatively small sections of the source code.

Chapter 3: A white box approach is introduced to help eliminate web
applications’ vulnerabilities. This strategy allows investigators to accurately
identify all inputs entering the web application and model the inputs as they reach
external systems acting as data sinks. A case study using a commercial, currently
deployed, mission-critical web application is presented to demonstrate the validity
of the approach.

Chapter 4: An A-NIDS specifically for web applications called AIWAS is
presented. The system attempts to learn the input specification associated with
“normal” usage of the system, and validates any given input against this
specification. A case study based on three web applications is performed to show
the effectiveness of the system.

4

Chapter 5: The method of reliability estimation from server logs (Tian et al. 2004)
is examined in detail. Two new websites are used with one having an extensive
long data collection period. The error codes contained in the server logs are
carefully explored to allow system administrators to focus on high value error
codes. The workload models are re-examined to provide alternative methods for
system administrators to analyze and interpret reliability information.

Chapter 6: A model, based on empirical observations, for estimating the Session
Timeout Threshold (STT) is presented. Although the model has limitations, it
provides an initial step that will allow future studies to expand upon.
Furthermore, this model is proven to be applicable at many different resolutions
and to two uniquely different websites. The concept that STT varies for each
website is empirically proven. This encourages future research on web server
logs to be performed using a customized STT value per website rather than a
constant that’s applied to all websites.

Chapter 7: The distributional properties of the session workload are re-examined.
Additional tests such as Q-Q Plots and “wobble analysis” of the LLCD plots are
performed to determine if session length can really be modeled by a heavy-tailed
distribution. The results show that, for the samples used in the chapter, a method
to accurately determine whether the session workload is drawn from a heavy-
tailed distribution does not exist. Hence, the conclusion that they are drawn from
such a distribution cannot be made.

Chapter 8: The conclusions and future works are presented in this chapter.

5

Chapter 2 – An Investigation into Web Applications’
Vulnerabilities
Web applications have short release cycles and development time (Baskerville
and Pries-Heje 2004). Many new features, enhancements and bug fixes are
continually added during these cycles. Every change made to the system can
introduce new security vulnerabilities. Using an approach similar to the Goal
Question Metric approach (Basili et al. 1994), this chapter’s goal is to help
researchers improve the security posture of web applications by performing an
empirical analysis of discovered vulnerabilities in 20 web applications to uncover
any similarities in this sample.

Given the relative newness of the topic on web application vulnerabilities, limited
factual or empirical information exists; hence, this chapter principally relies upon
the researcher’s previous experience with, and observations of, web applications.
This has led to some tentative questions with regard to the vulnerabilities that
exist within a wide cross-section of web applications; these questions are used to
achieve the stated goal:

1. What proportion of security vulnerabilities in web applications can be
considered as implementation vulnerabilities? The metric used to answer
this question is the percentage of implementation vulnerabilities versus
other types for the 20 applications under examination.

2. Are these vulnerabilities the result of interactions between web
applications and external systems? The metric used to answer this question
is the percentage of function calls to external systems that exist in the
vulnerabilities.

3. What is the proportion of vulnerable LOC within a web application? That
is, what is the vulnerability density? The metric used to answer this
question is the number of vulnerable LOC versus the systems’ total LOC.

4. Are implementation vulnerabilities caused by implicit or explicit data
flows? The metric used to answer this question is the number of
vulnerable code blocks (which are defined in Section 2.3.4) with implicit
data flow and the number of variables assigned from an input.

Given the lack of solid causal theory utilized to derive the questions, it is believed
that these questions should be viewed as an initial attempt in hypothesis
formulation rather than an exercise in hypothesis confirmation or refutation. The
remaining sections of this chapter are organized as follows. Section 2.1 introduces
the terminology used in this chapter. Section 2.2 explains the survey and its
procedure. Section 2.3 contains the metrics obtained for the four questions.
Section 2.4 provides an overview of current techniques for detecting and
eliminating web vulnerabilities.

2.1 Terminology
Several terms are defined in this chapter for the reader’s convenience:

6

• External Systems – These are systems that the web application depends
upon for its operation. For example, a shopping cart web application
retrieves its product information from a Database Management System
(DBMS), the external system.

• EIV – External Interaction Vulnerabilities. These vulnerabilities allow
attackers to use vulnerable web applications as a vessel to transmit
malicious code to an external system that can interact with the web
application. The malicious code will modify the syntactic content of the
information sent to the external application. In other words, EIVs allow
attackers to target external systems that interact with the web application,
rather than the actual web application itself
Popular EIVs include SQL injections and cross-site scripting
vulnerabilities. Any vulnerability is classified as an EIV if it has the
following properties:

o A malicious input is required to initiate the attack.
o The malicious input is transmitted from the web application to an

external system.
o The malicious input does not exploit the web application directly.

For example, buffer overflow vulnerabilities causing web
applications to crash are not be classified as an EIV because they
attack the applications’ input buffers directly without interacting
with an external system.

• SQL Injection Vulnerabilities (Scambray et al. 2006) – These
vulnerabilities allow attackers to inject and execute SQL statements
through the web application. For example, Figure 2.1 displays the
pseudocode for a web application that asks the user for an email address
stored in a database and displays the phone number associated with that
email to the browser.

1. $email = get_input();
2. if ($email != RFC2822) {
3. print “invalid email address”;
4. exit;
5. }
6. $sql = “SELECT phone FROM users WHERE email
 =’”+$email+”’”;
7. $phone = query($sql);
8. print $phone;

Figure 2.1 Example program

Statement 1 retrieves the email input address from the input. Statements
2-5 parses the input for a valid email address based on the RFC 28223,

3 http://www.ietf.org/rfc/rfc2822.txt, last accessed July 25, 2009

7

which defines the standard format of an email address. Statement 6 builds
a dynamic SQL statement based on the input retrieved. Statement 7 then
instructs the DBMS to execute the SQL statement. Statement 8 prints the
phone number retrieved from the email address entered. RFC 2822 allows
many characters to be part of an email address which allow names with
single quotes such as “O’Reilly” to be used in an email. Hence the user
using a specially crafted address, which meets the specification, such as:

hi"' OR 1=1 --"@example.com

can embed a SQL statement. Using this email address, the expanded SQL
statement becomes:

SELECT phone FROM users WHERE email =’hi”’ OR 1=1 --

“@example.com’

Hence, this modified SQL statement is successfully injected.

• Cross-site Scripting (XSS) Vulnerabilities (Scambray et al. 2006) -
These vulnerabilities allow an attacker to inject JavaScript/HTML code
that other visitors to the website will execute. For example, an attacker can
create a link to a vulnerable web application, such as

http://www.site.com/?<script src=http://hacker.com/getcookie.js></script>

which allows the attacker to become an administrator for that application.

• Command Execution (Injection) Vulnerabilities (Scambray et al. 2006)
- These vulnerabilities allow an attacker to run various system commands
(“cd”, “ls”, “dir”, “cat”, etc.) through the vulnerable system. An
attacker, for example, exploiting this vulnerability can perform DoS
(Denial of Service) attacks on the system by removing files essential to the
application. Other system commands can be used to retrieve information
or even alter the application’s configuration settings.

• Privilege Escalation Vulnerabilities (Scambray et al. 2006) - These
vulnerabilities allow an attacker to bypass the authentication system or
escalate their privileges without using an injection attack. A typical
vulnerable application would allow an attacker to access restricted
sections without being identified as a valid user. For example, a web
application can use a flag to identify administrators from normal users.
This flag is stored in a hidden form field. The attacker, with knowledge of
this flag, can manipulate it and escalate their account to gain additional
(administrative) functions.

• Information Disclosure (Leakage) Vulnerabilities (Scambray et al.
2006) - These vulnerabilities allow an attacker, without using an injection
attack, to access information not available to a normal user. Information
disclosure differs from authentication bypass because authentication

8

bypass allows an attacker to perform tasks and retrieve information not
available to them; whereas, information disclosure only allows the attacker
to retrieve restricted information. For example, instead of displaying a
generic error message when encountering an error, the web application
can display the entire call stack which contains detailed information on the
internal structure of the web application.

2.2 Survey
For this survey, 20 different applications implemented using six popular
languages (PHP, ASP-VBscript, ASP.NET – C#, Java-JSP, Perl, and Python)
were examined. The survey is explicitly limited to web applications; and hence
several common languages (such as C) and vulnerability types (such as buffer
overflows) are relatively uncommon within this domain.

2.2.1 Vulnerability Databases
Two popular vulnerability databases (VDB), the Open Source Vulnerability
Database4 (OSVDB) and the Bugtraq mailing list5 were used to identify the
vulnerabilities for these applications. These two databases provide information
on known vulnerabilities for open source and proprietary products.
Unfortunately, the survey requires detailed analysis of the source code, which is
unavailable for proprietary systems; and hence the investigation is limited to open
source systems. Although the complete survey for proprietary systems cannot be
performed, the vulnerability types of 20 proprietary systems were briefly
examined to determine whether they are similar to the vulnerability types found in
open source systems. The results show that these proprietary systems have a
similar distribution of vulnerability types.

Although the two databases have different maintainers, they are far from
independent; in fact, Bugtraq can be viewed as a subset of OSVDB. OSVDB
effectively collates information from all of the other major open-source
vulnerability databases including: The National (U.S.) Vulnerability Database6,
US-CERT Vulnerability Notes7; Internet Security Systems - X-Force Database8;
CERIAS Vulnerability Database9, and the LWN security vulnerabilities
database10. Hence, OSVDB can be considered as being a meta-source of
information on this topic; and therefore, it is utilized as the basis of the selection
procedure. Having said this, Bugtraq (due to its message board format) tends to
include a more extended description of vulnerabilities than OSVDB, and hence
this information source was always used, when it was available, to increase the
understanding of the vulnerabilities.

4 http://www.osvdb.org/, last accessed July 22, 2009
5 http://www.securityfocus.com/archive/1, last accessed July 22, 2009
6 http://nvd.nist.gov/statistics.cfm, last accessed July 31, 2009
7 http://www.kb.cert.org/vuls/, last accessed July 31, 2009
8 http://xforce.iss.net/, last accessed July 31, 2009
9http://www.cerias.purdue.edu/about/history/coast/projects/vdb.html,last accessed July 31, 2009
10 http://lwn.net/Vulnerabilities/, last accessed July 31, 2009

9

2.2.2 Survey Procedure
The survey, for purposes of sampling, extracted vulnerability information
covering the period between January 1, 2002 to May 31, 2007 from the OSVDB
resulting in the records shown in Table 2.1.

Table 2.1 Number of vulnerabilities in the OSVDB
Total vulnerabilities 19,173
Products 5,175
Total web related vulnerabilities 7,290
Total web applications 2,695

OSVDB requires that all vulnerabilities be inspected to increase accuracy;
unfortunately, Bugtraq has no such screening process. The survey worked with
the vulnerabilities from OSVDB; the reliability of Bugtraq’s vulnerability
information was validated by comparing it with the corresponding entry from
OSVDB. In addition, both databases encourage a product’s developers to refute
any vulnerabilities that they believe are incorrect, providing a further crosscheck
of validity. None of the systems in this survey contained any disputed
vulnerability.

The sampling procedure was to select randomly 20 open source web applications
from the OSVDB database. However, these 20 web applications were required to
meet certain criteria:

• They must have more than one update released.
• They must be larger than three KLOC.
• They must have vulnerabilities that are exploitable.
• They can be commercial systems, but the source code has to be available.

Table 2.1 shows that the selected web applications represent only a small fraction
of the total number of web applications listed within the database. The results of
the sampling process are shown in Table 2.2. Once the products were selected,
the following steps were performed, on each product, to gather the necessary data
for the analysis:

1. The source code for all applications was downloaded. This includes
downloading older source code that contained the vulnerabilities of
interest. This analysis requires the paths through the source code to be
traced in detail. Hence, a requirement exists that effectively limits this
type of survey to open-source type projects.

2. A source code counting tool (Practiline Source Code Line Counter11) was
used to count the LOC for each application. Only files containing program
statements were counted. The reported LOC does not include empty lines
and comments.

3. Vulnerabilities for the applications were retrieved from the VDBs.

11 http://sourcecount.com/, last accessed July 29, 2009

10

4. For each vulnerability, the source code was traced to the statements
causing the actual vulnerability. Nested function calls are traced and
stopped at calls to standard library functions.

Due to the different programming languages involved, different designs
associated with each application and over 330 KLOC to examine, the entire
process required about 1 year of effort. One week was required to study the
OSVDB’s relational diagram and to import OSVDB’s data into a local database
for faster access. One week was used to create a tool to query the database.
Twelve weeks were used to study the programming languages. One week was
used to install, configure, and deploy the web applications in a test environment.
Ten weeks were used to study the web applications and the associated source
code; four weeks were used to examine all the vulnerabilities associated with each
application. Twenty six weeks were used to independently repeat the manual
operations. This “verification” task was believed to be important as any manual
task of this “length” is clearly error-prone and this approach is believed to have
resolved any inconsistencies in the process.

2.2.3 Chosen Applications
Table 2.2 displays the examined applications and the number of vulnerabilities
identified.

Table 2.2 Applications examined
Application Description Vulnerabilities Language

A-CART
A commercial fully-featured
shopping cart developed on the
ASP platform using VBScript

8 ASP (VB)

AWStats
A popular open source log file
analyzer for
web/streaming/ftp/mail servers

5 Perl

Bonsai
An open source web-based
querying front-end for CVS from
the Mozilla Foundation

8 Perl

BugZilla12
An open source bug tracking
system from the Mozilla
Foundation

25 Perl

BugTracker.NET
A web-based bug tracker system
that is currently used by
thousands of development teams.

4 ASP.NET
(C#)

Calcium A commercial web calendar
system by Brown Bear Software. 1 Perl

Daffodil CRM

A commercial open source
customer relationship
management system by Daffodil
Software Ltd.

1 Java (JSP)

12 Due to the numerous vulnerabilities reports available for BugZilla, the versions of the
vulnerable systems are limited to 2.16.0 or higher.

11

DEV web
management
system

A content management system
for web portals. 5 PHP

FileLister A file system indexing tool 2 Java (JSP)

JSPWiki An open source JSP-based
WikiWiki engine 1 Java (JSP)

Mantis13 An open source tracking system 12 PHP

Neomail
A web-based email system;
thousands of servers utilize the
system.

1 Perl

PDF Directory
An open source software that
generates a printable directory
listing for any organization.

12 PHP

phpBB14

An open source popular message
board system written in PHP
that’s being used on millions of
websites.

23 PHP

ProjectApp

A commercial web-based project
and task management system
used for team communication by
Iatek Corporation.

5 ASP (VB)

osCommerce

An open source e-commerce
system, by osCommerce,
currently being installed and
utilized by 10,942 online stores.

15 PHP

Roundup A full featured bug tracking
system. 4 Python

sBlog An open source blog system. 2 PHP

SkunkWeb A robust, open source web
application server. 2 Python

ViewVC A browser interface for CVS and
Subversion control repository. 2 Python

Total 138

2.2.4 Tracing the Source Code
To determine the number of vulnerable LOC and how deep these statements are
within the call stack, the source code for each known vulnerability was traced.
Program slicing was first introduced by Weiser (1984) as a method of
automatically decomposing applications. A slice of a program is a reduced,
executable segment of the original program. A slice can be produced dynamically
or statically. Static slicing techniques do not require input values whereas
dynamic slicing techniques rely on some specific input to produce a slice (Tip

13 Due to the numerous vulnerabilities reports available for Mantis, the versions of the vulnerable
systems are limited to 1.0.0a1 or higher.
14 Due to the numerous vulnerabilities reports available for phpBB, the versions of the vulnerable
systems are limited to 2.0.7 or higher.

12

1995). Due to the lack of slicing tools for the languages examined, in this survey,
a technique similar to dynamic slicing (Agrawal and Horgan 1990; Tip 1995) was
used to produce contamination graphs (CGs) of the systems examined. The CG is
not a SDG (system dependency graph), but rather a def-use graph that follows the
malicious input from the entry point to the exit point of the system. While the
technique used is similar to slicing, it does not produce complete slices of the
system (hence, cannot be considered a slicing technique) and the graphs produced
by the algorithm do not take into account object-oriented programming features
such as inheritance and polymorphism; however, they contain sufficient
information for this survey. More formally, a CG is a directed graph
G=<N,Ec,Ed>, where N is a set of vertices corresponding to statements and
control predicates, and Ec and Ed are the set of edges corresponding to the def-use
data dependencies. The slicing criterion is C=(v, i, X*), where v is a variable in
the system, i is an input value for v and X is a set of statements in the program.
For this survey, v and i consist of variables and values that exploit the known
vulnerabilities, while X* (⊆ X) consists of program statements where it is
possible to export the vulnerability to an external system; and X is the entire set of
statements in the program. The following algorithm is used to produce a CG for
each v and i of interest.

13

1. DEF(w) is a definition of the variable w
2. USE(w) is a use of the variable w
3. Let V be a set of v
4. Let F be a set of statements; F ⊆ X; fj be the statement at location j.
5. Let curloc be the program’s current statement's location
6. Initialize V := {}; F := {}; prevloc := 0; prevDEFloc := 0;
7. Locate the first DEF(v) where v := malicious input
8. G := G + <curloc,{},{}>
9. prevloc := curloc
10. prevDEFloc := curloc
11. V := v ∪ V
12. Execute program until ∃ v∈V• USE(v)
13. If DEF(w) := USE(v) then

a. G:= G + <curloc, prevloc→curloc, prevDEFloc→curloc>
b. V := w ∪ V
c. prevDEFloc := curloc

Else
a. G := G + <curloc, prevloc→curloc,{}>

14. prevloc := curloc
15. If fcurloc ∈ X* then F := fcurloc ∪ F
16. Go to 12 unless F – X* = {} ∨ curloc = EOF ∨ program encounters an

error due to a successful exploit.

An example of a CG using C = (keyword,
“<script>alert(‘hello’)</script>”,{query, echo, print})
for an application examined, sBlog, is shown in Figure 2.2. The source code for
this example is approximately 7,800 lines of PHP. Dotted directed edges on this
graph represent DEF dependences (definition of a contaminated variable), while
the solid edges represent USE dependences (usage of a contaminated variable).
Each node is labeled with the source code’s filename and the line where the
statement can be found (in parenthesis). If a node represents a function call then
it is labeled as “call ‘function name’”. System calls are also placed within the
parenthesis. The graph above shows that the malicious input entered the system
at line 36 of the search.php file. The solid edges show the transition between each
USE statement. Nine lines of code use the malicious input (number of nodes)
with five variables defined based on the malicious input (the number of dotted
edges).

14

Enter
search.php (36)

Call
sStripSlashes() Search.php (40) Search.php (42,

query called)
Search.php (67,

echo called)

sStripSlashes.php (7)

sStripSlashes()

sStripSlashes.php (10) sStripSlashes.php (13)

search.php (37)

Figure 2.2 CG for sBlog

2.3 Results
This section contains the results from the survey. These results answer the four
questions raised in the introduction and can be used to help the goal which is to
improve the security posture of web applications by uncovering similarities
between vulnerabilities.

2.3.1 Question 1
Question: What proportion of security vulnerabilities in web applications can be
considered as implementation vulnerabilities?

Metric: The percentage of implementation vulnerabilities versus other types for
the 20 applications under examination.

To answer Question 1, the known vulnerabilities are characterized into three
categories based on Swidersky and Snyder’s categorization (Swiderski and
Snyder 2004):

• Architecture vulnerability: A vulnerability that is caused by a design flaw.
For example, if the session ID generated by an application is easily
guessable because the specification for a secure session management
system does not have requirements on how IDs will be generated, such as
a specific cryptographically hash routine, then the issue is considered
architectural in nature.

• Implementation vulnerability: A vulnerability that is the result of an
insecure coding practice. Using the same example as above, if the session
ID is easily guessable because the cryptographically secure hash routine
used to generate session IDs is written incorrectly then the issue is
considered implementation in nature.

15

• Configuration vulnerability: A vulnerability that is caused by an incorrect
configuration of the application; hence, if the vulnerability ceases to exist
after an application is reconfigured, the vulnerability is classified as a
configuration vulnerability. For example, the “register_globals” issue
with PHP is considered a configuration vulnerability. This is a setting in
the configuration file to instruct PHP to create global variables from the
EGPCS (Environment, GET, POST, Cookie, Server) variables. When
enabled, attackers can use the feature to define many global variables.

Table 2.3 shows the vulnerabilities and their distribution within the three
categories defined. The standard error in the table is used to show the uncertainty
of the value for each category. The equation for the standard error is:

standard error =
n

pp)1(− (1)

where p is the probability of the sample belonging in a certain category and n is
the sample size. This assumes that: n is small relative to the population size, the
samples are selected from a simple random sampling process, and the sampling
distribution of p is the binomial distribution15. Each category is treated
independently from each other. For example, the first row of the table examines
the implementation vulnerability. Hence, p is the probability of a vulnerability
being an implementation vulnerability, and 1-p is the probability of it not being an
implementation vulnerability.

This table answers Question 1 by showing that implementation vulnerabilities
dominate; hence, addressing vulnerabilities within this category would allow a
significant reduction in the number of vulnerabilities.

Table 2.3 Vulnerability category distribution
 number of

vulnerabilities
% of vulnerabilities
found in sample

standard error16
(%)

Implementation 101 73.2 3.77
Architecture 30 21.7 3.51
Configuration 7 5.1 1.87

2.3.2 Question 2
Question: Are these vulnerabilities the result of interactions between web
applications and external systems?

Metric: The percentage of function calls to external systems that exist in the
vulnerabilities.

15 Clearly, this is a simplification of the situation. However, the study has insufficient data to allow
the evaluation of more complex models.
16 In this context, the margin of error in the survey is approximately twice the standard error.
Specifically, assuming a 95% confidence level, it is 1.96*the standard error.

16

Usually, these implementation vulnerabilities can be traced through a dynamic
string, constructed from an input, being used in a function or method that allows
the string to be passed to another system. The answer to Question 2 begins
through the examination of the types of vulnerabilities within the implementation
category. This examination reveals six different types of vulnerabilities are
commonly discovered within web applications: SQL Injection, SQL Injection,
XSS, Code Injection, Command Execution, Privilege Escalation, and Information
Disclosure.

Table 2.4 displays the vulnerability types discovered during the survey. Close
examination reveals that the majority of these types occur due to an interaction
with an external system. These types of implementation vulnerabilities, bolded in
Table 2.4, account for 95 of the 101 implementation vulnerabilities. While
information disclosure may also be caused due to an interaction between the web
application and the file system, this interaction is not obvious from Table 2.4, and
the actual statements causing the vulnerability have to be examined to determine
the exact cause.

Table 2.4 Implementation vulnerability types
 number of

vulnerabilities
%

vulnerabilities
standard
error (%)

XSS 56 55.4 4.23
SQL Injection 30 29.7 3.89
Code Injection 6 5.9 2.01
Command Execution 3 3.0 1.86
Information Disclosure 5 5.0 1.45
Privilege Escalation 1 1.0 0.85

2.3.2.1 Vulnerability Types for Proprietary Systems
Since the vulnerability databases used also include proprietary systems, 20 of
these systems were selected and examined to provide some level of comparison
with the results found in the survey. Like their open source counterparts, these 20
applications were also randomly selected from the OSVDB. Table 2.5 shows the
20 applications examined.

17

Table 2.5 Proprietary systems

Application Description Vulnerabilities Language

Active Auction
House

A web based auction
software designed for
online auctions (ex.
ubid.com, ebay.com).

7 ASP (VB)

AliveSites Forum

A component (COM)
object tool that allow
collaboration among
members and users of
a company or
organization though
the internet or intranet.

4 ASP17

ampleShop A complete e-
commerce system. 4 ColdFusion

AspDotNetStorefront
An ASP.NET
shopping cart used by
over 5,000 customers.

3
ASP.NET
(C# and
VB.NET)

ASPRunner

A web-based database
management tool that
provides
administration for
many popular
databases.

7 ASP

Baseline CMS A web-based content
management system. 2 ASP

Bugzero

A web-based bug
tracking, defect
tracking, issue
tracking, and change
management system.

5 Java

Cisco CallManager
Web Interface

The web-based
interface for the Cisco
Unified CallManager
system.

3 ASP

couponZONE
A web-based system
that provides online e-
coupons.

2 ColdFusion

DUPortal Pro An ASP-based Web
Portal application. 11 ASP

E-School
Management System

A web-based School
Management Software 1 ASP.NET

17 ASP and ASP.NET applications can be created using many programming languages. Due to the
proprietary nature of the applications, the exact programming language used is unknown.

18

designed to allow easy
communication
between students,
teachers, parents &
management.

iCMS A content management
system. 2 ASP

Mall23 eCommerce

An e-commerce
solution for Web
Development and
Hosting companies.

3 ASP

NetAuctionHelp An ASP-based online
auctioning system. 1 ASP

OneWorldStore

An e-commerce
system that can be
integrated to existing
websites.

10 ASP

Revize CMS A content management
system. 5 Java

SCOOP!

Another web content
management system
for users without
HTML knowledge.

7 ASP

SmarterMail
An advanced email
and collaboration
server.

5 ASP.NET

uStore
A dynamic storefront
application for e-
commerce websites.

3 ASP

Web Quiz

An easy application
that for online test
creations and
assessments.

2 ASP

These 20 applications are commercial applications that either do not have their
source code available or they require a developer’s license to be purchased before
the source code can be obtained. This table shows that ASP and ASP.NET is
used for sixteen of the 20 web applications. Two out of 20 applications are
powered by ColdFusion, which is the only scripting language that supports source
code encryption without additional plug-ins or extensions. The remaining
applications are created using Java technology.

Table 2.6 displays the vulnerabilities encountered for these 20 applications versus
the vulnerabilities encountered for the 20 open source systems. This table shows
that the top two vulnerabilities encountered on both types of system are XSS and
SQL Injection, respectively. Code injection is less frequently encountered in

19

proprietary systems, which can be attributed to the fact that PHP remote file
inclusion does not occur in these systems because these 20 systems do not use
PHP. “Other” contains vulnerabilities that cannot be classified due to limited
information provided for these vulnerabilities.

Table 2.6 Proprietary versus open source
 Proprietary Open Source
 %

vulnerabilities
Standard
Error (%)

%
vulnerabilities

Standard
Error (%)

XSS 48.8 4.26 55.4 4.23
SQL
Injection

36.0 4.09 29.7 3.89

Code
Injection

2.3 1.28 5.9 2.01

Command
Execution

1.2 2.17 3.0 1.85

Information
Disclosure

7.0 0.93 5.0 1.45

Privilege
Escalation

1.2 0.93 1.0 0.85

Other 3.5 1.56 0 0

This table reveals that:

• The two types of systems agree that XSS and SQL injection (in that order)
are the most numerous types of vulnerabilities experienced by web
applications. Furthermore, the injection type vulnerabilities (SQL, XSS,
code, command execution) combined to be the most popular vulnerability
for web applications. This suggests that researchers interested in security
problems associated with web applications should concentrate their efforts
on these types of vulnerabilities. Clearly, this suggestion assumes that all
vulnerabilities have a similar (negative) economic value.

• The two types of systems experience code injection problems at differing
percentages. However, care needs to be exercised when considering this
conclusion given the relatively low volume of these types of defects.

2.3.2.2 Mapping Vulnerabilities Down to Code Statements
Table 2.7 displays the statement types that cause the 95 EIVs. Several functions
sharing the same properties are grouped into one family. For example, output
statements such as print, echo, and write all send data to the browser, and
hence they are grouped in the “print” family. Statements querying the DBMS
such as executeQuery, mysql_query, db.execute are grouped in the
“query” family.

20

Table 2.7. Statement usage
Statement
Type

Number of
Occurrences

Occurrence
Percent (%)

“copy” file 1 1
dir 1 1
eval 11 12
file 1 1
open 2 2
preg_replace 2 2
“print”
family

47 49

“query”
family

27 29

require 1 1
system 1 1
wrong
operator

1 1

Total 95 100

For every vulnerability, a CG was created using the technique discussed in
Section 2.2.4. Statements resulting in the vulnerabilities can be located from
these graphs. Table 2.7 highlights the statements used to call standard library
functions which are the majority of the statements (99%). The statements listed in
the table have the following behaviour:

• “copy” file - a function that allows programmers to copy an existing file.
• dir – a function that lists all files within a directory.
• eval – a function that accepts a string parameter and executes that string

as a programming statement.
• file – a function that opens and reads a file based on a provided

filename.
• open – a function that opens a file, pipe, or file descriptor.
• preg_replace – a function that will evaluate a provided string as a

program statement if a special character is used (PHP only).
• “print” family – a group of functions that allows the application to send

output to a browser.
• “query” family – a group of functions accepts a string containing one or

more valid SQL statements and sends it to the underlying DBMS.
• require (PHP only) – a function that accepts a string parameter

containing a filename (which contains programming statements), reads the
file, then evaluates all the programming statements within that file.
Similar functions include include and include_once (PHP only).

• system – a function that accepts a string parameter containing a system’s
command, then creates a new process and executes the command.

21

• typographical error – this is a statement where the programmer used the
wrong operator for a conditional branch. For example, instead of using
the < operator in an if statement the programmer used the <= operator.
This operator does not enable an interaction and is the exception to the
general rule.

Based on Table 2.7, the implementation vulnerabilities can be divided into two
categories:

1. Interaction with external systems (EIV – External Interaction
Vulnerability).

2. Wrong statement usage.
Table 2.7 shows that 99 percent of the implementation vulnerabilities are EIVs;
this answers Q2. This answer means developers should concentrate on the data
flow between the web application and other systems because this is where most of
the vulnerabilities occur.

2.3.3 Question 3
Question: What is the proportion of vulnerable LOC within a web application?
That is, what is the vulnerability density?

Metric: The number of vulnerable LOC versus the systems’ total LOC.

Alhazmi et al. (2007) have explored the vulnerability density for Operating
Systems and discovered that the density is very low. In this study, the
vulnerability density for web applications is explored. It is believed
implementation vulnerabilities are also limited to relatively small portions of the
entire web application. That is, the number of vulnerable LOC is significantly
smaller than the total LOC of a web application.

To answer Question 3, each implementation vulnerability was traced using the
method outlined in Section 2.2.4. A total of 101 graphs for the 20 applications
were generated. To determine the complexity of the vulnerable code, the number
of nodes per graph and contaminated variables per graph were examined. Figures
2.3 and 2.4 show that the majority of the graphs have less than five nodes and four
contaminated variables. In fact, 70% of the CGs contain less than five nodes and
93% of the CGs contain three or less contaminated variables. Hence, the majority
of the vulnerabilities can be viewed as “small and manageable”. In fact, even the
largest number of statements and contaminated variables associated with a
vulnerability (15 and 12 respectively) is quite small when compared to the overall
size of the system.

22

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Nodes

Fr
eq

ue
nc

y

Figure 2.3 Histogram of nodes showing many CDGs have less than 5 nodes

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Number of contaminated variables

Fr
eq

ue
nc

y

Figure 2.4 Histogram of contaminated variables showing many CGs have less

than 4 contaminated variables

Once the CGs are obtained, the vulnerable LOC contained within each CG was
counted. Table 2.8 further demonstrates that the number of vulnerable LOC for
the known vulnerabilities is significantly smaller than the overall LOC. The
results from Figures 2.3-2.4 and Table 2.4 provide the answer to Question 3
which is that vulnerability density is small. Since Figures 2.3 and 2.4 and Table
2.8 show that the number of vulnerable LOC is small compared to the overall size

23

of the system, it can be beneficial to introduce a solution to solve implementation
vulnerabilities by concentrating on the CGs with vulnerable LOC.

Table 2.8 Vulnerable LOC versus Total LOC
Application Total LOC Vulnerabilities Vulnerable

LOC
A-CART 4,067 8 8
AWStats 26,688 5 9
Bonsai 6,980 8 42
BugTracker.NET 18,101 4 4
BugZilla 9,306 4 39
Calcium 39,348 1 2
Daffodil CRM 25,221 1 4
DEV web management system 11,434 5 5
FileLister 9,139 2 12
JSPWiki 21,231 1 4
Mantis 25,295 12 50
Neomail 1,438 1 5
osCommerce 38,833 15 34
PDF Directory 9,451 12 38
phpBB 29,812 23 100
ProjectApp 11,444 5 11
Roundup 27,061 4 8
sBlog 7,844 2 12
SkunkWeb 6,554 2 4
ViewVC 7,549 2 2

2.3.4 Question 4
Question: Are implementation vulnerabilities caused by implicit or explicit data
flows?

Metric: The number of vulnerable code blocks with implicit data flow and the
number of variables assigned from an input.

Implicit data flows are information flows via the control structure of the program
(Denning and Denning 1977). For example, the statement “if (y == true)
then x:=’a’; else x:=’b’” shows that variable y implicitly defines the
value of variable x. Hence, there is an implicit data flow from variable y to
variable x. To obtain implicit flow information, conditional branching statements
for all the nodes from the CGs generated in Section 2.3.3 were manually
examined. The examination revealed 56 statements with conditional branching
from the 101 CGs. The code blocks for each of these statements were inspected
for any implicit data flows. A code block is defined as a block of code that is part
of the conditional branch. For example, the following conditional statement

24

would contain two code blocks with the first code block containing an implicit
data flow:

if (x=1)
 y := 2;
 print y;
else
 call func(x);
end

The above example shows that if a CG has statements like those in the first code
block, the CG would contain an implicit data flow. Table 2.9 shows the results of
the code block investigation. The 56 statements with conditional branching lead to
83 code blocks. Twenty-nine of these code blocks do have implicit data flow.
However, none of these code blocks with implicit data flows are part of the CGs
obtained in Section 2.3.3.

Table 2.9 Code blocks
Number of CGs containing conditional statements 56
Number of code blocks inspected 83
Number of code blocks with implicit data flows 29
Number of CGs containing code blocks with implicit data flows 0

Table 2.9 shows that the CGs do not contain any implicit data flow statements.
To determine if the code blocks containing implicit data flows can lead to
potential vulnerabilities, a further investigation on the 29 code blocks was
performed. Thirty-six variable assignments were discovered in these code blocks.
The variable assignments are either from constants or pre-existing variables. The
two example code blocks below shows two possible methods for the variables to
be assigned. The first code block shows that the variable is assigned from a
constant. The second code block shows the variable being assigned from an
existing variable.

if (isset($_GET[‘admin’])
 $admin_mode = 1;
end

if (strlen($_POST[‘msg’]) < 20)
 $error = $too_short;
 $print($error);
end

Although it is clear that constants are generally safe from implementation
vulnerabilities, the pre-existing variables need to be examined to determine the
original source of the data. A back-trace for each variable assigned from an
existing variable was performed; if the variable can be traced to an input, then the
potential for vulnerabilities exists. The results can be seen in Table 2.10.

25

Table 2.10 Variable being assigned from different sources
Number of variables being assigned from a constant 9
Number of variables being assigned from an existing variable 27
 Number of existing variables initialized from a constant 27
 Number of existing variables initialized from an input 0

The results from Tables 2.9 and 2.10 provide an answer to Question 4. That is,
implicit data flows do not lead to any vulnerabilities in the systems examined.
Hence, without further evidence, efforts on eliminating implementation
vulnerabilities can focus on explicit data flows.

2.4 Background
Although studies on web application vulnerabilities properties currently do not
exist, many techniques and approaches to detect, or mitigate against, web
vulnerabilities have been proposed. In this section, these techniques are briefly
presented and discussed.

SQLrand (Boyd and Keromytis 2004), AMNESIA (Halfond and Orso 2005),
SQL-Guard (Buehrer et al. 2005), SQLCheck (Su and Wassermann 2006), CSSE
(Pietraszek and Berghe 2005), WASP (Halfond et al. 2006, 2008), SQLProb (Liu
et al. 2009) are all approaches aimed at addressing SQL injection vulnerabilities.
SQLRand inserts random tokens into SQL statements and uses a proxy server to
translate these tokens. An incorrect query can be detected if the SQL query does
not contain the correct tokens. AMNESIA, SQLGuard and SQLCheck are all
model-based approaches. AMNESIA uses static analysis and runtime monitoring
to detect for SQL injection vulnerabilities. Static analysis is used to build models
of the SQL statements, while the runtime engine detects whether the query strings
matches the models. SQLGuard requires the developers to call special functions
to build a model of the SQL query to be used. SQLCheck uses a formal definition
of a SQL injection vulnerability; and identifies SQL injection attacks based on the
formal definition. CSSE and WASP are dynamic approaches designed to address
SQL injection vulnerabilities using taint analysis. These approaches attempt to
mark negative tainting (CSSE) or positive tainting (WASP) to identify malicious
query statements, before they are passed onto the DBMS. Both approaches
involve modification to either the runtime engine or usage of a specialized API.
SQLProb uses a proxy to identify SQL injection attacks before they reach the web
application.

Other approaches to applications’ security have also been proposed which address
all types of web application vulnerabilities. Security Gateway proposed by Scott
and Sharp (2002) is an application firewall that filters out all malicious inputs
before they reach the web application. Nguyen-Tuong et al. (2005) proposed a
dynamic approach to detect attacks through taint analysis. Martin et al. (2005)
proposes PQL (Program Query Language) that enables programmers to specify a
sequence of events between objects. Balzarotti et al. (2007) presents a static
analysis approach capable of detecting both workflow attacks and data-flow

26

attacks. WebSSARI (2004) combines static analysis with a runtime component to
check on the static model. Pixy (2006) is currently one of the more advanced
static taint analysis tools available for PHP. Shankar et al. (2001) proposed a
static approach that can detect format-string vulnerabilities commonly found in C-
based applications. The method defines two extended data types, tainted and
untainted, which help reduce the amount of false positives generally associated
with static analysis methods. Zhang et al. (2002) and Johnson and Wagner (2004)
further extend the approach by using it to assess security issues with the Linux
Security Modules framework and user/kernel pointers successfully. These
approaches are designed to detect vulnerabilities in C-based applications, and
hence, their effectiveness with scripting languages used to develop web
applications such as PHP, Ruby, and Python remain unknown.

Scanning tools also exist to help developers and system administrators identify
vulnerabilities. QED (Martin and Lam 2008) and Ardilla (Kiezun et al. 2009)
attempt to generate SQL Injection and XSS attacks automatically. Secubat (Kals
et al. 2006) and other commercial web scanners, such as Acunetix Web
Vulnerability18 Scanner, extend bypass testing by creating tools that provide
automatic penetration testing for web applications without using the web
applications’ target clients. Lin and Chen (2006) extend traditional black-box
testing techniques with elements of static analysis by including a tool to
automatically inject guards at input points found through the crawling component.

18 http://www.acunetix.com/, last accessed February 7, 2010

27

Chapter 3 – Practical Elimination of External
Interaction Vulnerabilities in Web Applications
Many approaches designed to address External Interaction Vulnerabilities (EIVs)
have been proposed – these approaches are discussed in Section 3.5 – further
confirming that EIVs are an extremely important class of vulnerabilities for web
applications. Current approaches are either: application security (McGraw 2004)
oriented, static analysis methods or black-box techniques. White-box approaches
to detecting all EIVs are not common in the research literature nor in industrial
settings. In this chapter, a practical white-box software development process that
can help detect and eliminate web applications’ EIVs is introduced. The approach
builds a model based on the data flow of the application. The approach is
significantly enhanced by computer-support software which automates much of
the “straightforward” components in the approach, allowing the security team to
concentrate of the “creative” components in vulnerability detection. This partial
automation strategy also makes the approach highly effective in terms of effort
and maximizing the quantity of vulnerabilities discovered. The partial automation
strategy utilizes two pre-existing tools (a crawler and a capture replay tool) and
two purpose-built proof-of-concept tools, Web Application Input Collection
(WAIC) and Web Application Graph Generation (WAGG), to automate portions
of the process for the web application in the case study. The strategy can be
combined with previous approaches to further harden web applications against
EIV related attacks.

The remaining sections of this chapter are organized as follows: Section 3.1
defines EIVs. Section 3.2 provides an overview of the research problem. Section
3.3 introduces EIV analysis. Section 3.4 presents an industrial case study for the
presented strategy. Section 3.5 provides an overview of current approaches aimed
at addressing EIVs.

3.1 Definition
External Interaction Vulnerabilities (EIVs) are vulnerabilities that allow attackers
to use vulnerable web applications as a vessel to transmit malicious code to an
external system that can interact with the web application. The malicious code
will modify the syntactic content of the information sent to the external
application. In other words, EIVs allow attackers to send systems commands that
interact with a web application, rather than the actual web application itself.
Currently, four interaction categories are defined:

• DBMS interaction – this is the interaction between the web application
and external DBMS. An example of a DBMS interaction would be a web
application calling a “query” function to send a SQL statement to a
DBMS.

• Browser interaction – interactions in this category are between web
applications and clients (typically a browser). An example of a browser

28

interaction would be a web application sending an HTML encoded
webpage to a web browser.

• OS/Filesystem interaction – this is the interaction between the web
application and the filesytem or operating system. An example of this
interaction type would be a web application reading a configuration file
from the hard drive.

• Interpreter interaction – interactions in this category are between the web
application and a programming language interpreter (usually the same
language as the web application). An example of an interpreter interaction
would be a web application calling “eval” to execute a programming
statement.

Popular EIVs include SQL injections and cross site scripting vulnerabilities. A
vulnerability is classified as an EIV if it has the following properties:

• A malicious input is required to initiate the attack.
• The malicious input is transmitted from the web application to an external

system.
• The malicious input does not exploit the web application directly. For

example, a buffer overflow vulnerability cannot be classified as an EIV
because it attacks the application’s input buffer directly without
interacting with an external system.

3.2 Research Problem
As with many research problems, a precise specification of the problem of interest
is difficult to comprehensively frame, and is only likely to be available after the
problem has been completely solved. However, this research does not seek to
address all aspects of vulnerabilities; rather it is a specific problem which is
framed with the following constraints or objectives.

• The work is only interested in web applications and EIVs. However, any
solution should be applicable to all types of web applications and seek to
eliminate all types of EIVs. As web applications become increasingly
reliant on other external systems, such as other web services (Curbers et
al. 2002, Alonso et al. 2003) or NXDs (Chaudhri et al. 2003), new types of
EIVs will emerge. For example, XPATH19 is becoming increasingly
popular technique for querying XML documents. A web application that
uses XPATH can be vulnerable to XPATH injection, which is a type of
EIV. Although the number of exploits based on XPATH injection
vulnerabilities is currently small compared to XSS and SQL injection, this
number will only increase as more and more web applications take
advantage of XPATH as a method of retrieving data from XML
documents. A solution that cannot support future or, currently obscure,
EIV types will quickly become obsolete. Web application technology
moves at an incredible pace. Within a few years, web applications have
evolved from simple guestbooks and web counters which relied on flat-
text files for data support to fully interactive office productivity suites that

19 http://www.w3.org/TR/xpath, last accessed February 9, 2010

29

interact with enterprise third party systems such as Oracle DB. A solution
that cannot keep pace with the evolving web applications would not be
practical for industrial use.

• Any solution must support a wide range, including multiple versions, of
external systems. This can be viewed as a large configuration problem –
see Eaton and Memon (2007) for work in this area. Web applications can
interact with many different external systems. For example, one
application may interact with Internet Explorer 6.5 and MySQL 3.23;
another application may interact with Internet Explorer 5.5, Mozilla
FireFox 1.5, SQLite 3.4.2 and Google Maps API 2.1. While similar,
different versions of external systems will have different interfaces. These
differences often cause highly vulnerable situations as systems commonly
fail to correctly adapt to these evolving interfaces. For example, only
Internet Explorer 6 SP1 and later support HTTP-Only cookies20. This is
an extension to the Set-Cookie header that mitigates XSS attacks targeting
information stored within cookies. However, not all IE versions support
this extension, and hence, some IE versions have a much higher risk of
being vulnerable to XSS attacks targeting cookies than other IE versions.
Furthermore, Mozilla FireFox 2.0.0.4 and lower only support HTTP-Only
through an extension. Hence, the same version of FireFox (for example,
2.0.0.4) can have different risk levels, with regard to XSS attacks targeting
cookies, depending on whether the HTTP-only cookie extension is
enabled.

• Any solution must be language-independent. This is important as web
applications utilize a wide range of scripting/programming languages
(Java, Visual Basic, PHP, Perl, C#, Python, JavaScript, Ruby, Cold
Fusion, etc.), which support a variety of different programming paradigms
and styles. Furthermore, many web applications, such as AJAX enabled
applications, utilize more than one scripting/programming language.
Hence, any solution that can only support a single scripting/programming
language would not be usable against these multi-language applications.
This objective becomes more important as AJAX enabled web
applications, such as Google Docs & Spreadsheets, and Mashups21, which
combines multiple web APIs in one hybrid web application, become more
popular.

• Any solution must be applicable to current industrial strength web
applications. Apart from the constraints stated above, this constraint is not
too demanding. Current web applications are relatively small in scale (the
previous chapter shows that a large number of these systems, range in size
from 4 to 40 KLOC); and hence, many of the restrictions placed by ultra-
large scale systems are not of great concern here.

• Any solution must be “practical” in an industrial sense. Industrialists often
express their frustration that many exciting pieces of software research are

20 http://msdn2.microsoft.com/en-us/library/ms533046.aspx, last accessed February 9, 2010
21 http://www.ibm.com/developerworks/xml/library/x-mashups.html, last accessed February 9,
2010

30

not applicable in their context. Research which requires large-scale
retraining or complete redefinitions of their life-cycles are often
considered by industrialists as “impractical”. Hence, this research only
seeks solutions which can be viewed as an incremental development of
most life-cycles, and solutions which can be utilized by many practitioners
with minimal additional training or with on the job training.

In summary, the research problem can be viewed as a two-level problem. The
lower-level problem is to find all EIVs that exist within a web application. The
higher-level component, which generalizes the lower-level problem to cover all
web applications, can be viewed as a large configuration space (CS): L × ET ×
NE, where L is the set of scripting/programming languages used to build web
applications, ET is the set of EIV Types, and NE is the set of EIVs. Furthermore,
NE is defined as ES × VES where ES is the set of different external systems and
VES is the set of versions of these external systems.

3.3 External Interaction Vulnerability Analysis
The proposed strategy can be thought of as a white-box technique (Myers 1979);
EIV analysis is performed using the following steps; these steps are further
discussed in Sections 3.3.1 – 3.3.4:

1. Create a sitemap for the web application.
2. Identify all input sources.
3. Create contamination data graphs (CDG).
4. Test the contamination flow graphs until a coverage criterion is met.

Although the CDG generation step of EIV analysis is similar to static analysis, the
two approaches are not the same. CDG generation is just one of the four steps
required for EIV analysis. With EIV analysis, CDGs are a resource that security
practitioners can utilize to uncover EIVs, whereas static analysis would simply
present the CDGs without any further instructions on how these results should be
handled. Section 3.3.3 discusses the difference between CDGs and DEF/USE
approaches used in traditional data flow analysis approaches. Hence, EIV
analysis is most appropriately classified as specialized data flow testing that
concentrates on tainted data flows. However, this approach is not a dynamic taint
analysis approach as proposed by other researchers (Halfond et al. 2006,
Pietraszek and Berghe 2005, Xe et al. 2005). It does not contain a runtime
component that monitors the application’s memory for tainted values. In fact,
dynamic taint analysis approaches often require modifications to the runtime
platform or extra software which can complicate configuration and reduce
performance.

3.3.1 Creating the Sitemap
The sitemap is a critical part of EIV analysis because it allows the security
practitioner to identify path executions for EIV analysis. A sitemap is a set of
directed graphs that represents a model of all accessible web pages from a web
application. Each of these graphs contains a set of edges and nodes. More
formally the sitemap is defined as S = {G} where:

31

• G = <N, E> where
o N is a set of nodes representing the web pages. Each n∈N

represents a web page accessible by the client.
o E is a set of directed edges. Each e∈E from node n1 to n2 shows

that n2 is reachable from n1.
Although the sitemap can be generated manually, the process is labour intensive
and not very practical; hence a web crawler (Heydon and Najork 1999, Moody
and Palomino 2003) is used to speed up the process. Specialized crawlers that
can handle dynamic contents (Raghavan and Garcia-Molina 2001), or site specific
pages (Miller and Bharat 1998) also exist. A practitioner can use a crawler that
can handle dynamic content to help create the site map for the web application
under investigation; however, because crawlers can only follow web pages
through links or forms, the practitioner’s intervention is required in order to
generate a complete sitemap. However, crawlers can only access web pages that
are referenced from other pages; hence, if a web page is “hidden”, no other web
pages link or refer to it, then it cannot be accessed by the crawler. In order to
create complete sitemaps, the number of web pages crawled needs to equal the
total number of web pages for the web application. For example, consider a web
application that has eight web pages: index, normal2…normal5, indexadmin,
admin2 and admin3. These eight web pages comprise two distinct sections:

• One section is accessible to normal users. This section contains five web
pages called index, normal2…normal5.

• Administrators can only access another section. This section contains 3
web pages called indexadmin, admin2, and admin3.

These two sections are separated and do not cross-reference each other; hence, the
crawler needs to be executed twice.

The crawler must be configured to exclude pages not belonging to the web
application, usually by restricting the crawling operation to a single domain or a
directory of a web site. The crawling operation should not be limited to a single
IP if the web application is hosted on multiple servers because the IP addresses
for these servers are different. Although the IP addresses for these servers are
different, the domain remains the same. For example, Amazon.com uses several
servers to power its e-commerce application, but all the servers are under the
Amazon.com domain.

3.3.2 Inputs
Inputs for web applications come from many sources (Wheeler 2003) including
clients (browsers). Black-box techniques for web applications primarily
concentrate on this source of input (Offut et al. 2004, Tappenden et al. 2005);
however, investigating this source alone is insufficient. Many web applications
communicate with external applications to perform required tasks. Inputs from
these external applications cannot be trusted and need to be examined to reveal all
possible security faults. For example, Figure 3.1 shows a sequence diagram of a
simplified interaction between a client and a search engine. The client sends a
request to the search engine web application; the search engine then parses this

32

request, creates an SQL statement and sends it to a DBMS. Once the results are
retrieved from the DBMS, the search engine builds an HTML page and returns
this page to the client. This interaction sequence has two input sources, one from
the client (the search query that the user sends) and the other from the DBMS (the
results that the DBMS returns). Code segments using these inputs have potential
vulnerabilities associated with them. If the search engine does not parse the input
from the DBMS then an attacker may compromise the DBMS and insert a
JavaScript payload, which the search engine will return to the client after a search
request. In this scenario, the search engine is vulnerable to a stored XSS22 attack.
Hence, if the security practitioner only examines the input from the client, the
stored XSS vulnerability from the second input source will not be revealed until
the product is released.

Figure. 3.1 A search sequence

3.3.2.1 Input Classification
Ideally, all inputs should be examined; however, software development
companies have time and budget constraints limiting the amount of testing. To
aid with the selection of inputs to be investigated, inputs are classified into two
types:

• Inter-organization inputs – these are input values from unknown sources.
• Intra-organization inputs – These are input values entered by known and

believed to be trusted sources (administrators, webmasters, employees,
etc.). For example, a news article entered into a CMS (Content
Management System) by an editor is considered as an Intra-organization
input; whereas a comment posted by an anonymous user to a news item is
considered an inter-organization input.

Inter-organization inputs should have a higher priority because, on average, they
represent greater risks to the system. Intra-organizational inputs should still be
examined because attacks can still happen under specific circumstances. For
example, a spiteful employee can intentionally attack the system, or an attacker

22 http://www.owasp.org/index.php/Cross_Site_Scripting, last accessed January 20, 2008

33

can access an employee’s username and password through phishing (Dhamija and
Tygar 2006, Ollman 2004) or other social engineering techniques (Granger 2003),
and use the account as a mechanism to inject payloads.

Multiple inputs from the same source do not imply that they are of the same type.
For example, consider a simple e-commerce system that can display a product’s
name, price, and user reviews. All three data are retrieved from three columns
within a DBMS. However, an employee enters the product’s name and price,
while web visitors, who claim to have used the product, enter the user reviews. In
this scenario, although the inputs are from the same source (DBMS), the two
columns containing the values entered by the employee (product’s name and
price) are considered as intra-organization inputs while the other column
containing the user reviews are considered as inter-organization inputs. Under
constraints, a security practitioner can prioritize and examine the e-commerce
system’s ability to verify and validate the inter-organization inputs (reviews
submitted by users) first, before investigating the intra-organization inputs
(product’s name and price).

3.3.2.2 Input Identification
To identify all inputs, the security practitioner will need to have access to the
source code. Each input that enters the system can be stored in multiple variables;
these variables are the starting nodes for the contamination graph. To allow
automation, a formal model for the inputs is created.

Each source code file can have zero or more inputs. An input unit (IU) = (S, T,
N) is used to describe inputs where:

1. S = The source of the input. This specifies which external system supplies
the input value.

2. T = The type of the input. T∈{Inter-organization, Intra-organization}.
3. N = an ordered pair (v, l) where v is a variable that stores the input value

and l is the location where the variable is defined. In other words, (v,l) =
N iff (DEF(v) := input value ∧ LOC(v) = l) where DEF(v) is the statement
that defines v and LOC(v) is the location where v can be located which is
the line number and the filename.

To introduce the algorithm used to identify the inputs, several variables and
functions need to be defined:

• Let I be a set of IUs.
• Let F be a set of source code files.
• Readlines(f) is a function that returns a set of statements in file f.
• Source(v) is a function that returns the source of variable v. That is, it

returns the external system that sends a value to the application under test.
• Type(v) is a function that returns the type of variable v.

The following algorithm derives all inputs for a web application. The algorithm
requires the set of source code files to be known. The inputs generated from the
algorithm are stored in I:

34

1. I = {};
2. ∀(f ∈ F) {
3. ST := Readlines(f);
4. ∀ (st ∈ ST) {
5. if (st = (DEF(a) := input)) {
6. I := I ∪ (Source(input),Type(input),(a, LOC(a)));
7. }
8. }
9. }

The algorithm parses all source code files to search for statements where variables
are initialized from an input.

3.3.3 Contamination Data Graphs
Contamination data graphs (CDGs) are a critical component of the EIV analysis
process. These graphs will allow the tester to design test cases that can reveal
potential EIVs for the web application under investigation. CDGs are a variation
on DEF/USE graphs used in data flow testing (Frankl and Weyuker 1998, Harrold
and Rothemel 1994, Laski and Korel 1983, Rapps and Weyuker 1985). Liu et al.
(2000) has extended the technique for web applications; however, the approach
concentrates on inter-procesure and intra-procedure data flows and not
intersystem data flows which are critical to the EIV analysis process. Hence, this
study introduces an intersystem contamination graph (CDG), which describes the
path an input value travels upon entering the system under investigation to reach
various external systems. The graph is similar to the taint variable concept (Hurst
2004).

A CDG differs from a traditional DEF/USE graph because it does not contain all
statements within a program. Its nodes only contain DEF/USE statements related
to the input that initializes the graph. The CDG’s purpose is to trace the path of
an input value from its entry point to its various exit points (i.e. statements that
send the input value to external systems). A CDG graph is formally defined as
CDG = < N, E, Ne> where:

• N is a set of nodes representing all statements containing either a DEF or
USE instruction.

• E is a set of directed edges representing the data flow between statements.
Each e ∈ E, from nodes n1 to n2, shows that the flow of the tainted data
moves from n1 to n2.

• Ne ⊆ N is a set of exit nodes where the input values exit the system and
are transmitted to external systems.

The security practitioner needs to create a CDG graph for each input identified in
Section 3.3.2. Before the algorithm used to create the CDG is introduced, several
variables and functions need to be defined:

• V is a set of variable names.

35

• getLoc(x) returns the location (loc) of the variable defined in the input unit
x. loc is comprised of a line number and a filename. Section 4.B
discussed the model for the input.

• getVariable(x) returns the variable name (v) of the variable defined in the
input x.

• getStatement(loc) returns the statement at location loc.
• getNextUse(V,loc) returns the location of the next statement that contains

a USE instruction for one of the variables in the set V starting from the
location loc. If a statement cannot be found before the end of the program
is reached, then getNextUse(V,loc) returns EOP (End of Program) stating
that no additional statements can be found.

• getPrevUse(V,loc) returns the location of the previous statement
containing a USE instruction for one of the variables in the set V from the
location loc. If the current location is the first USE within a branch, then
it returns the last encountered USE instruction before the branch.

• EXITPOINT is the statement that sends the value of the variable stored in
the input unit to an external system. For example, a system call to the
print function is an exit point if the value of the variable stored in the input
unit is passed into the print function.

The following algorithm can be used to produce a CDG for each input unit:

1. create_CDG(inputUnit) {
2. N := {};
3. E := {};
4. Ne := {};
5. V := {}
6. loc := getLoc(inputUnit);
7. var := getVariable(inputUnit);
8. V := var ∪ V;
9. N := loc ∪ N;
10. loc := getNextUse(V,loc);
11. if (loc != EOP) {
12. N := loc ∪ N;
13. E := (getPrevUse(V,loc)→loc) ∪ E;
14. st := getStatement(loc);
15. if (st = DEF(w) {
16. V := w ∪ V;
17. }
18. if (st = EXITPOINT) {
19. Ne := loc ∪ Ne;
20. }
21. } else {
22. Go to Step 6;
23. }
24. return <N,E,Ne>;
25. }

36

The algorithm starts at the location where the input enters the system. It then
searches for all statements utilizing the value and all variables assigned with the
value. Finally, all exit points are then identified and flagged accordingly. Hence,
using the above algorithm, a complete data flow path, from the entrance to the
exit points, for the input is created.

The algorithm has a well-known limitation – it is unable to follow information
through implicit flows (Denning and Denning 1977) if constants are used to
initialize the variable in the flow. For example, if (INPUT == 1) then x:=’a’; else
x:=’y’. However, an approach which adequately resolves this limitation is
unsolvable. Further, while implicit flows can exist in any program, their
frequency of occurrence is not well known. In addition, the previous chapter
found that none of the paths through the compromised systems which lead to
vulnerabilities contained implicit flows. Hence, while this theoretical limitation
exists in this testing process, there exists no compelling empirical argument that
the limitation causes the process to be inadequate on a regular basis when applied
to realistic systems.

An Example of the CDG
In this section, an example program is used to demonstrate the creation of a CDG.
The following is a highly simplified search application:

1. var search_keyword = gets();
2. var sql_query = “SELECT text FROM contents WHERE text like

‘%“+search_keyword+”’”;
3. var results = execute_query(sql_query);
4. if (results != EMPTY) {
5. print “Your keyword: “+search_keyword+” returned the following

results:”;
6. print results;
7. } else {
8. print “Your keyword: “+search_keyword+” returned no results.”;
9. }

This application contains two input sources, one from the user (line 1) and one
from a DBMS (line 3); hence two CDGs are required to be generated. Figures 3.2
and 3.3 show the CDGs created for these two inputs.

37

1

2

3, (exit, DBMS)

5, (exit, browser) 8, (exit, browser)

def (search_keyword)

def (sql_query)
use (search_keyword)

use (sql_query)

use (search_keyword)use (search_keyword)
Figure 3.2 A CDG for search_keyword

Figure 3.3 A CDG for results

These four exit points show that four possible EIVs exist in the system; however,
the amount of testing needed to determine whether the EIVs exist is not known.
In the next section, a coverage criterion will be defined. This criterion will help
security practitioners determine how much testing on these graphs is considered
sufficient.

3.3.4 Test Data Coverage, Selection, and Execution

3.3.4.1 Coverage Criterion
A number of detailed path coverage criteria for data flow testing have been
proposed (Howden 1975, Laski and Korel 1983, Ntafos 1984, Woodward et al.
1980). All proposed criteria aid the tester in selecting the most effective paths in
a DEF/USE graph; however, because EIV analysis only concentrates on revealing
one class of fault, a more specialized criterion is required. A path is a set of edges
of the CDG that demonstrates how node B can be reached from node A.
Formally, the coverage criterion for EIV analysis is defined as:

• Let P be a set of paths to be tested for a CDG.
• Let E and Ne be a set of edges and exit nodes for the CDG respectively.
• P satisfies the coverage criterion for EIV analysis if

o ∀n∈Ne, ∃p∈P such that n is the last node in p.
o ∀e∈E, ∃p∈P such that e is included in p.

38

Although HTTP23 is a stateless protocol, web applications are not usually
stateless; they can be stateful by using session management mechanisms such as
cookies (Kristol and Montulli 2000). Attempting to access a web page while not
in the right state commonly results in an error. Therefore, to reach the first node
of a path to begin testing, the security practitioner needs to examine the sitemap
and determine the path to reach the web page that allows the first node to be
accessed.

3.3.4.2 Test Data Selection
Test data have to be carefully selected to cater to each specific exit point because
each external system interprets the information differently. Input data, when
passed to external systems, are categorized into two types by these external
systems:

• Reserved words/characters – These are words and characters that have
special meanings; they are interpreted and executed by the external
systems.

• Data – The data can be classified into various data types such as String,
Integer, etc.

Only reserved words/characters can modify the syntactic information passed from
a web application to an external system. Hence, the security practitioner needs to
select data that can satisfy one requirement:

• The data has to cause the external system to interpret the data as reserved
words/characters rather than data.

Therefore the security practitioner has to examine the external system’s
documentations to determine how to force data to become reserved
words/characters. For example, let’s assume that the DBMS in Figure 3.2 is
MySQL (Vaswani 2004). Upon reviewing the MySQL’s documentation, the
practitioner may decide that if the data is not enclosed in single quotes (such as
‘data’) and it matches one of the reserved words/characters then MySQL will treat
the data as reserved words/characters. Hence, the practitioner can simply use
three test cases to test for the path leading to the MySQL exit point:

1. The data is not enclosed in single quotes, it can simply be any reserved
word/character such as SELECT.

2. Escape the enclosure before injecting a reserved word or character, is ’
SELECT. The single quote before SELECT forces the data, enclosed in
single quotes, to become ‘’ SELECT ’which means that SELECT is now
treated as a reserved word/character.

3. To specify special characters in the data, the MySQL manual (Widenius
and Axmark 2002) states that MySQL recognizes several escape
sequences; these sequences start with the backslash character \. Table
4.D.1 displays these escape characters. The table shows that a single
quote character can be escaped using \’; if the web application inserts the
escape character before the single quote character then the character loses

23 http://www.ietf.org/rfc/rfc2068, last accessed February 8, 2010

39

its special meaning. Hence, the third test case needs to escape the escape
character (Table 3.1).

Table 3.1 Escape sequences for MySQL

Escape Sequence Character Interpreted
\0 An ASCII 0 (NUL) character
\’ A single quote (‘) character.
\” A double quote (“) character.
\b A backspace character.
\n A newline (linefeed) character.
\r A carriage return character.
\t A tab character.
\Z ASCII 26 (Control-Z).
\\ A backslash (\) character.
\% A percent (%) character.
_ An underscore (_) character.

The above data is only applicable for paths that do not contain any nodes within a
branch, or if there are nodes within a branch, then the branching condition is not
dependent upon the input under test. If the path contains nodes that are within a
branch and the branching condition is dependent upon the test input, the
practitioner needs to modify the test data for this input to satisfy the coverage
criteria.

3.4 Case Study
A case study on a web application was performed in order to determine the fault
detection capability and efficiency of the proposed approach. The application
used for this case study is a commercial application, which was initially released
on April 4th, 2004. The application is a powerful search engine that allows users
to search for the latest product specification data from thousands of international
standards. The web application has many users around the world; the users come
from a wide variety of organizations from defense departments to automobile
manufacturers. The application is a typical 3-tier web application, specifically
using Internet Explorer, Apache+PHP and MySQL (Williams and Lane 2002) on
each tier. The web application contains ~25 KLOC. It has received eight
revisions; these revisions added new features and corrected many bugs and
vulnerabilities. The first six revisions were corrective maintenance and were
released in the application’s first 18 months of service. Revision six involved a
detailed security review (Howard and LeBlanc 2003, Lipner 2000); the security
review involved the following steps:

1. All web pages of the web application were visited and parsed for inputs.
2. These inputs were then used in a penetration test.
3. The source code containing vulnerable inputs were reviewed and guards

were either added or modified.
4. Steps 2 and 3 were repeated until the inputs were considered to be safe

from EIV attacks.

40

The organization revealed that the security review took 24 person-hours to
complete. The bug-tracking database used by the development team (Doar 2005)
reveals 68 EIVs were found and corrected for revision six. The remaining two
revisions were adaptive and perfective maintenance with minor corrective
maintenance (with no new EIVs were discovered) which suggests that the
application is now stable; this status was confirmed by the developers of the
application. For the case study, the source code for revision five was retrieved
and investigated using the testing approach proposed. In order to provide a clear
reference, all EIVs reported in the bug-tracking database were verified against
revision five. Any EIVs that could not be replicated for revision five were
discarded because they were introduced in later revisions with the addition of new
features. Because no new EIVs have been discovered after the sixth revision, the
total of confirmed EIVs for revision five is 68. One security practitioner was
selected to perform the case study using the steps described above.

3.4.1 Drawing the Application’s Sitemap
To create the sitemap, the practitioner first examined the source files. Then a
crawler (REL Link Checker)24 was used to identify the majority of the web pages.
The crawler used was not able to identify web pages linked using JavaScript code;
hence, the practitioner manually generated sections of the sitemap that were
inaccessible to the crawler. The completed sitemap for the application took 1
hour to create, and is shown in Figure 3.4.

24 http://www.relsoftware.com/rlc/, last accessed February 9, 2010

41

Figure 3.4 The sitemap of the application

3.4.2 Identifying the Application’s Inputs
Inputs for the web application originate from two sources: the client (browser)
and the MySQL database. The application is configured with register_globals =
off (Shiflett 2004); hence, inputs originating from the client can be detected
through the usage of super global arrays25 within programming statements. Data
from the MySQL database was retrieved using two function calls:
mysql_fetch_array or mysql_insert_id.

Using the algorithm provided in Section 3.3.2, the Web Application Input
Collection (WAIC) tool was created to aid security practitioners with this step.
The tool automatically parses the source files of the web application and outputs
all inter-organization and intra-organization inputs. WAIC’s output contains the
input type, the file, location and the input name of each identified input. The tool

25 http://www.php.net/manual/en/, last accessed February 10, 2010

42

required 30 minutes to parse all the source files for inputs using an Athlon X2
3800 CPU with 2GB of RAM.

Table 3.2 Number of inputs and their sources
Input source Number of inputs
Client/Browser 96
MySQL 545
Total 641

WAIC identified 641 inputs for the application. Table 3.2 displays the total
number of inputs found and their sources. Personnel from the organization enter
all of the database items. Hence, these items were initially considered as intra-
organization type. To further verify this, each input was carefully examined using
the available design and SRS documents. Table 3.3 shows the results from the
examination.

Table 3.3 Input types
Input source Input type Number of inputs

Inter-organization 96 Client/Browser
Intra-organization 0
Inter-organization 1 MySQL
Intra-organization 544

The examination identified one inter-organization input within the database, a
field that allows the customer to customize one of the display features.

3.4.3 Creating the CDGs and Choosing Test Data

3.4.3.1 Creating the CDGs
To create the CDGs, the Web Application Graph Generation (WAGG) tool was
created based on the algorithm provided above. WAGG accepts the output of
WAIC as its inputs. WAGG allows security practitioners to automatically
generate all CDGs associated with each input identified by WAIC for the web
application under test. The majority of the CDGs (99%) are very simple and
contain just one exit point per graph; the graphs also do not span across more than
three source files. Each line represents a node and contains a node id, previous
node id, source file, line number, any DEF/USE information, and the external
system if it’s an exit node.

Graphs for intra-organization inputs were extremely simple, involving only one
source file; hence, only three hours were required to generate all of the graphs for
the intra-organization inputs. Four hours were used to create the graphs for inter-
organization inputs because they were slightly more “complex”. Figure 3.5
displays the most “complex” CDG that WAGG produced. Each node is labeled
with the source filename, followed by the line number in brackets. Once again,
filenames are obscured to ensure confidentiality. Nodes containing exit points are

43

labeled with the source filename, followed by the line number and the name of the
external system.

Page1 (15)

Page1 (21)

def ($login)

use ($login)

def ($username)

Page1 (92) use ($login)
def ($_SESSION[‘username’])

Functions (231) use ($login)

Functions (241)
use ($username)
def ($query)

Functions (242,
exit, MySQL)

use ($query)

Page1 (23) use ($login)

Functions (209) def ($username)
use ($login)

Functions (220)
use ($username)
def ($query)

Functions (221,
exit, MySQL)

use ($query)

Functions (223)
use ($username)
def ($query)

Functions (224,
exit, MySQL)

use ($query)

Page1 (24) use ($login)

Functions (283) def ($username)
use ($login)

Functions (292)
use ($username)
def ($query)

Functions (293,
exit, MySQL)

use ($query)

Page14 (45)
use ($_SESSION[‘username’])
def ($query)

Page14 (46,
exit, MySQL)

use ($query)

Page17 (12)
use ($_SESSION[‘username’])
def ($query)

Page17 (23,
exit, MySQL)

use ($query)

Page17 (122,
exit, MySQL)

use ($_SESSION[‘username’])

Page17 (160,
exit, MySQL)

use ($_SESSION[‘username’])

Figure 3.5 A sample CDG for the application under test

3.4.3.2 Selecting Test Data for the CDGs
For paths leading to the MySQL exit point, the practitioner used the three test
cases discussed in Section 3.3.4. In terms of web browsers, this application only
supports Internet Explorer. Upon reviewing all available documentation for IE
6.5, which is the lowest version supported by the application under investigation,
the practitioner selected the following test data to be used for IE exit points:

44

• <script>alert(‘hello’)</script> - This input value attempts to insert a
payload directly without any obfuscation. If the browser pops up a
message box when a path is executed with this value, then the web
application has an EIV.

• <b onmouseover="alert('hello')">A - This input value will hide the
JavaScript code in a harmless formatting tag. If the browser pops up a
message box, after a path is executed with this value, when the mouse is
moved over to the letter A, then the web application has an EIV.

• "> <script>alert(‘hello’)</script> - This input value attempts to escape the
enclosure of a parameter within a tag, then closes the tag and inserts a
malicious payload. For example, a benign tag like <font
color=”INPUTVALUE”> Hello! when expanded with the input
value become <script>alert(‘hello’)</script>Hello!
which means that the JavaScript code is successfully embedded. If the
browser pops up a message when a path is executed with this value, then
the web application has an EIV.

• " style="background:url(javascript:alert('hello'))"> - This input value also
attempts to escape the enclosure of a parameter within a tag; it also
obfuscates the payload code by embedding it within a style parameter.
This input value will only work with IE because IE accepts JavaScript
code from many uncommon tags and parameters. If the browser pops up a
message when a path is executed with this value, then the web application
has an EIV.

3.4.4 Test Execution, Results, and Analysis
To prioritize the test cases, the practitioner grouped the test cases according to the
input type. Table 3.4 displays the test cases required for each input type.

Table 3.4 Number of paths and test cases
Input type External system

at exit point
Number of
paths

Number of test
cases

Browser 1 4 Inter-organization
MySQL 103 309
Browser 544 2176 Intra-organization
MySQL 0 0

This table shows that 648 paths should be tested; a maximum of 2489 test cases (3
test cases per path with MySQL as the exit point, and 4 test cases per path with
the browser as the exit point) were executed in order for all the paths to be
covered. To speed up the testing process, if one test case for a path fails
(demonstrating that a EIV exists), then the practitioner simply ignored the rest of
the test cases for the path.

Because the web application under investigation implements client side protection
for inputs originating from the browser, a technique similar to bypass testing
(Offutt et al. 2004) was used to test inputs from the browser. To test for inputs

45

from the DBMS, the practitioner used the MySQL command line client to insert
the test values into the tables used to store data.

A capture and playback tool (AutoIt)26 was used to aid the execution of the test
cases. Only one test case per path was executed (to record the necessary key
strokes and mouse clicks). The recorded scripts were then modified to change the
test data to accommodate the remaining test cases. The execution process took 3
hours to complete for inter-organization test cases and 32 hours for intra-
organization test cases. Table 3.5 displays the results of the tests.

Table 3.5 Test results showing the number of failed/passed paths and test
cases

Paths tested Test cases Data type External
System Passed Failed Passed Failed
Browser 0 1 0 1 Inter-organization
MySQL 29 74 87 102
Browser 453 90 1816 90 Intra-organization
MySQL 0 0 0 0

This table reveals that the web application does not perform any input verification
and validation for intra-organization inputs. As more and more web applications
increase their reliance on intra-organization inputs from external systems, the
number of EIVs will only increase unless developers begin to validate inputs from
these external data sources.

The test results show that 165 EIVs exist (Table 3.5 shows that 165 paths failed)
for revision five of the test application. However, the security review only
identified 68 EIVs. The 165 potential EIVs were tested in revision six; (Table
3.6).

Table 3.6 EIVs found
Revision 5 Revision 6 Revision 7 Revision 8 Data type

EIV
analysis

Review EIV
analysis

Review EIV
analysis

Review EIV
analysis

Review

Inter-
organization

75 68 7 0 7 0 7 0

Intra-
organization

90 0 90 0 90 0 90 0

Upon discussions with the developers, the application was found to be highly
susceptible to intra-organization inputs because it assumes all intra-organization
inputs are inherently safe. While intra-organization inputs were not examined
during the security review process and hence they were not detected by the
security review, the remaining 7 inter-organization EIVs should have been
identified and addressed. When presented with the results, the organization

26 http://www.autoitscript.com/autoit3/, last accessed February 9, 2010

46

revealed that the approach they used was not able to identify the 6 inter-
organization inputs originating from JavaScript rather than the common form
fields. The 7th EIV detected resulted in a stored XSS vulnerability. This
vulnerable inter-organization input was code reviewed; however, because the
input is transmitted to a MySQL server to be stored rather than being printed to
the browser, the code review process examined the guard for the MySQL exit
point rather than the guard for the browser exit point. Therefore, the EIV was not
detected during the security review. The developers have confirmed that the
additional EIVs discovered using this approach are valid; they have addressed all
the EIVs found in a recently released revision of the web application. When the
test cases were re-applied to this new revision, no EIVs were detected.

Table 3.7 Effort
Technique Security Review EIV Analysis
Input
Space

Inter-organization
inputs only

Inter-organization
inputs

Intra-organization
inputs

Time
required

24 hours 7.5 hours 37.5 hours

Table 3.7 shows the effort required for the security review and EIV analysis. The
total effort required for EIV analysis is not a sum of the intra and inter
organization effort because the effort for the sitemap creation and input
identification are shared. Although the security review took only 24 hours to
complete, it did not consider intra-organization inputs. If EIV analysis did not
examine intra-organization inputs, then the testing process would only require 7.5
hours to complete; and it identified 7 additional EIVs than the security review
process. This means, for this case study, EIV analysis can reduce the required
time to perform a security review by 69%. Finally, the security review process
was penetration testing with a patching component. Penetration testing uses a
“librarian testing” approach which simply attempts to exploit known EIVs on a
new application (Thompson 2003). Unlike penetration testing, EIV analysis is a
testing strategy designed to discover EIVs; it is a technique belonging in the
“unanticipated user input” class of techniques (Whittaker and Thompson 2003).

3.5 Related Work
Many techniques and approaches to detect, or mitigate against, vulnerabilities
have been proposed. In this section, these techniques are briefly presented and
discussed.

Many techniques address an individual class of web application vulnerability.
These techniques often concentrate on one popular vulnerability type: SQL
injection. SQLrand (Boyd 2004), AMNESIA (Halfond and Orso 2005), SQL-
Guard (Buehrer et al. 2005), SQLCheck (Su and Wassermann 2006), CSSE
(Pietraszek and Berghe 2005), WASP (Halfond et al. 2006) are all approaches
aimed at addressing SQL injection vulnerabilities. SQLRand inserts random
tokens into SQL statements and uses a proxy server to translate these tokens. An

47

incorrect query can be detected if the SQL query does not contain the correct
tokens. This approach, while effective, can be defeated if the randomized tokens
can be guessed; it is also complex to setup with the addition of the proxy server.
AMNESIA, SQLGuard and SQLCheck are all model-based approaches.
AMNESIA uses static analysis and runtime monitoring to detect for SQL
injection vulnerabilities. Static analysis is used to build models of the SQL
statements, while the runtime engine detects whether the query strings matches
the models. This approach is prone to false negatives and positives if the static
analysis used to build the model is not effective. SQLGuard requires the
developers to call special functions to build a model of the SQL query to be used.
SQLCheck uses a formal definition of an SQL injection vulnerability and
identifies SQL injection attacks based on the formal definition. Both approaches
require developers to learn and gain experience with complex models (in case of
SQLCheck) or APIs (if SQLGuard is utilized). CSSE and WASP are dynamic
approaches designed to address SQL injection vulnerabilities using taint analysis.
These approaches attempt to mark negative tainting (CSSE) or positive tainting
(WASP) to identify malicious query statements before they are passed onto the
DBMS. Both approaches involve modification to either the runtime engine or
usage of a specialized API; hence, deployment can be expensive or programmers
need to learn yet another API respectively. While some of the approaches listed
claim to support other types of EIVs (SQLCheck, CSSE), their supplied tool only
concentrates on detecting one type of EIV (SQL injection) which leaves the
system vulnerable to other types of EIVs. EIV analysis does not have this
limitation because the strategy is designed to address all types of EIVs.

General approaches to applications’ security have also been proposed which
address all types of EIVs. Security Gateway proposed by Scott and Sharp (2002)
is an application firewall that filters out all malicious inputs before they reach the
web application. The effectiveness of this approach is dependent on an
administrator’s ability to produce complex and effective rule sets. Nguyen-Tuong
et al. (2005) proposed a dynamic approach to detect EIVs through taint analysis.
This approach requires the runtime engine to be modified which causes complex
deployment and increased overhead.

All approaches discussed are application security techniques. That is, they protect
the software after it has been built (McGraw 2004). EIV analysis is a software
security strategy; the approach increases the security of web applications during
the development process and before they are deployed on live servers. Several
software security approaches related to EIV analysis currently exist. They can be
classified into two categories: static analysis approaches and black-box testing
(Beizer 1995) techniques.

Static approaches have been used to detect vulnerabilities with some success.
Shankar et al. (2001) proposed a static approach that can detect format-string
vulnerabilities commonly found in C-based applications. The method defines two
extended data types, tainted and untainted, which help reduce the number of false

48

positives generally associated with static analysis methods. Zhang et al. (2002)
and Johnson and Wagner (2004) further extend the approach by using it to assess
security issues with the Linux Security Modules framework and user/kernel
pointers successfully. These approaches are designed to detect vulnerabilities in
C-based applications, and hence their effectiveness with scripting languages such
as PHP, Ruby, and Python remain unknown.

Although static analysis is a well known technique, approaches that specifically
target web applications’ EIVs are not common. Proposed approaches such as
those by Livshits and Lam (2005), Martin et al. (2005), Balzarotti et al. (2007),
WebSSARI (2004) and Pixy (2006) have limitations. Techniques proposed
Livshits and Lam (2005), Martin et al. (2005) are designed specifically for SQL
injection vulnerabilities, and hence it cannot be used to detect other EIVs.
Balzarotti et al. (2007) presents a static analysis approach capable of detecting
both workflow attacks and data-flow attacks. However, the approach cannot
detect all EIVs. For example, many websites now have multiple web applications
sharing the same database. An attacker can utilize a vulnerability in one web
application (A) to inject a payload into the database which will then be used by
the other web application (B). If the approach is used to analyze (B), this
vulnerability would be undetected. WebSSARI does not model conditional
branches that result in many false positives. Furthermore, the WebSSARI tool is
not available and hence, no comparison with it can be made. Pixy is an advanced
static taint analysis tool available for PHP. However, attempts to use the tool for
comparison with EIV analysis reveal several issues:

• Pixy cannot detect stored XSS, and other types of EIVs (OS/Filesystem
and Interpreter interactions).

• Six of the 7 XSS vulnerabilities it detected, when used on the case study’s
application, are false positives.

• It ignores path information and tainted data inside objects, and hence, its
reports contain false positives and negatives.

• It requires a very large amount of memory to model SQL injections. In
fact, on the test machine which has 2GB of RAM, it crashed repeatedly
when used on the case study’s application.

Offutt et al. (2004) proposed a black-box testing approach that requires a
customized client to test web applications. The customized client allows the
tester to bypass all client side protection mechanisms; and hence, if a web
application is dependent on client side verification of inputs, it will fail the test
cases. QED (2008) and Ardilla (2008) attempt to generate SQL Injection and
XSS attacks automatically. However, QED cannot target second order XSS
attacks and requires users to learn a custom specification language. Ardilla
suffers from low code coverage and a 42% false positive rate. Secubat (2006) and
other commercial web scanners such as Acunetix Web Vulnerability Scanner27
extend bypass testing by creating tools that provide automatic penetration testing

27 http://www.acunetix.com, last accessed February 7, 2010

49

for web applications without using the web applications’ target clients.
Commercial applications are proprietary and closed source; hence they cannot be
examined in detail. Secubat currently has no plug in to detect all types of XSS;
for example, stored XSS. Lin and Chen (2006) extend traditional black-box
testing techniques with elements of static analysis by including a tool to
automatically inject guards at input points found through the crawling component.
This approach does not guarantee correctness of the modified program and hence,
the modified program may not meet the original requirements. All black-box
testing approaches for web applications have a limitation that not all inputs can be
detected through web page parsing (Offutt et al. 2004); hence, only an
approximation of the inputs is possible.

While many black-box approaches to web application security testing have been
proposed, no white-box strategies have been presented. EIV analysis is a white-
box approach that utilizes data flow graphs to test for EIVs. Just as other software
security approaches, EIV analysis allows a company to test its web applications
before they are launched. EIV analysis can also coexist with all of the approaches
presented. That is, an organization can use static analysis approaches to
automatically identify some EIVs, then use EIV analysis and black-box
approaches to locate additional vulnerabilities. Finally, application security
approaches can be applied to monitor the web application when it is deployed.

50

This page is intentionally left blank.

51

Chapter 4 – Automatic Identification of Web Attacks
Network intrusion detection systems (NIDS) are often classified as either misuse
or anomaly based systems (A-NIDS). Misuse based systems contain rules
designed to filter out known attacks. One popular misuse based system is
SNORT28 which is used by over 270,000 users. Misuse systems cannot detect and
prevent attacks that are not contained in the rule set because these attacks are too
recent (zero day attacks); hence, most new NIDS approaches are anomaly based.
A-NIDS do not rely on any rule set; therefore they can potentially detect these
new attacks (Forrest et al. 1996, Anderson 1972, Heberlein et al. 1990). With A-
NIDS, empirical information on system usage is first collected. Using collected
information, the A-NIDS creates a model of normal behaviour. Observations that
deviate from the model are classified as anomalous.

A-NIDS often utilize machine learning (ML29) techniques. Lazarevic et al. (2005)
and Tsai et al. (2009) provide a review of existing ML based A-NIDS. Traditional
A-NIDS concentrate on low-level packet information implying that application
specific information is lost (Krugel 2002). As a result, A-NIDS often have low
detection rates for attacks targeting the web application layer. A new generation
of A-NIDS has been proposed to specifically target the web application layer; a
brief overview of these A-NIDS follows.

Kruegel et al. (2003, 2005) presented one of the first A-NIDS designed
specifically for web applications. The system contains six anomaly models and
six techniques for estimating the probability of an attack based upon these
models. Valeur et al. (2005) presents an approach that profiles normal database
access performed by web applications to detect SQL injection attacks on a
DBMS. Swaddler (Cova et al. 2007a) extends Kruegel et al. (2003, 2005) by also
examining the state of the web application.

Ingham et al. (2006) introduces Deterministic Finite Automata induction as a
method to detect malicious web requests. However, their results show that the
approach currently suffers from low detection and high false positive rates. Cheng
et al. (2008) proposes an Embedded Markov Model to detect attacks and monitor
users’ behaviour. Estevez-Tapiador et al. (2005) uses a hybrid approach that is
both learning and specification-based. The approach builds a Markov model
using the specification of the HTTP protocol and the actual payload from the
training data. Sphinx (Bolzoni and Etalle 2008) detects attacks on web application
data flows using “positive signatures” which are rules that match normal inputs
rather than malicious inputs. Park and Park (2008) uses an extended Needleman-
Wunsch (1970) algorithm to build a profile of normal web requests. Future web
requests that do not match this profile are classified as anomalous.

28 http://www.snort.org/, last accessed January 8, 2010.
29 ML in this dissertation is an acronym for Machine Learning.

52

All A-NIDS, often using ML algorithms, classify data as either malicious or
benign (Tsai et al. 2009). Current A-NIDS for web applications attempt to create
custom anomaly models for this classification step. However, no existing A-
NIDS for web applications leverage the available knowledge from various ML
techniques; and traditional ML-enabled NIDS suffer from low detection rates
because they have no domain knowledge of the application layer. This chapter
presents a novel A-NIDS for web applications called The Automatic
Identification of Web Attacks System (AIWAS). This approach differs from the
available techniques because it does not create an anomaly model. It creates a
model of the HTTP input; this application-level model in conjunction with
captured traffic allows AIWAS to learn “normal” HTTP traffic patterns for
individual applications.

The remaining sections of this chapter are organized as follows: Section 4.1
introduces AIWAS in detail. Section 4.2 presents a case study to evaluate the
effectiveness of AIWAS.

4.1 AIWAS
AIWAS is an intrusion detection system specifically for the web application layer.
AIWAS is an A-NIDS that classifies future system usage into benign or malicious
categories without relying on signatures. This learning-based approach has an
advantage that it is trained on a per-website basis, providing effective localization.
That is, each website will contain different usage profiles, which learning-based
approaches can recognize.

AIWAS is a learning-based system comprising of two distinct components: the
Sentinel and the Oracle. AIWAS can be operated in detection (alerting system
administrators to potential attacks) or prevention mode (blocking requests
identified as malicious). Figure 4.1 shows the modified architecture of a web
application to include AIWAS.

53

Figure 4.1 AIWAS Architecture

The Sentinel examines the dataflow between the web application and the browser.
When a request is received from the browser, the Sentinel will map this request
onto an instance model (IM). This IM is used as an input to the Oracle. The
Oracle classifies whether the IM is malicious or benign. If the IM is malicious, the
Sentinel will either reject the request or notify the system administrator.

4.1.1 Instance Model
OWASP (2010) and Cova et al. (2007b) state that the most common web
application security weakness is the failure to properly validate input from the
client or environment. Chapter 2 provides empirical evidence that many attacks
are based upon the failure to validate inputs. Additionally, statistics on web
vulnerabilities30&31 indicate that the majority of vulnerabilities contained in web
applications, such as Cross-Site Scripting (XSS) and SQL Injections, are
exploited through the manipulation of input values. In fact, this is also the
primary approach that commercial32&33&34, open source35&36, and research-based

30 http://www.sans.org/top-cyber-security-risks/, last accessed February 3, 2010
31http://projects.webappsec.org/Web-Application-Security-Statistics, last accessed February 3,
2010
32 http://www.acunetix.com/, last accessed February 7, 2010
33 https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-201-
200^9570_4000_100__, last accessed February 2, 2010
34 http://portswigger.net/scanner/, last accessed February 2, 2010
35 http://www.cirt.net/nikto2, last accessed February 3, 2010

54

(McAllister et al. 2008, Kals et al. 2006, Antunes and Vieira 2009) vulnerability
scanners use to detect web application vulnerabilities. Hence, the IM for AIWAS
specifically models input values in order to allow ML algorithms to classify them
effectively.

4.1.1.1 Modeled Data
A web application receives its inputs through HTTP requests. Hence, the IM
should contain all the information of the HTTP request structure necessary to
perform the classification. One element of the HTTP request that should be
modeled is the resource requested along with its parameters; cookies are also
treated as parameters. The values of these parameters are validated against several
properties: data syntax, length of the data based on the specification, and character
sets (OWASP 2010).

Modeling these properties is sound because these properties have been examined
in the past to test systems for faults. Boundary value analysis, equivalent
partitioning and fuzz testing are popular methods for selecting input values; these
can be seen as value manipulation methods used to reveal software faults.
Similarly, web application attackers can manipulate these properties of parameter
values to reveal security vulnerabilities. In fact, this technique for attacking web
applications has been discussed in the past (Offutt et al. 2004, Tappenden et al.
2006, Scambray et al. 2006, Sutton et al. 2007).

The IM should not include unnecessary information that decreases the efficiency
of the ML algorithms. That is, information contained in the structure of HTTP
requests, which is not indicative of an attack can make the volume and variety of
information too complex for ML algorithms to analyze. For example, an HTTP
request will always contain an HTTP method such as GET, POST, HEAD, PUT,
etc. The IM can ignore this data because it does not change between malicious
and benign inputs.

Based on the above discussion, the (generic) IM is:

IM = {R,<P1 length, P1 has_non_alpha, P1 has_reserved_words>…<Pn length, Pn

has_non_alpha, Pn has_reserved_words>}

where the attributes are:

• R: resource requested
• P: parameter (including cookies) associated with the resource requested
• n: number of parameters
• length: the length of the parameter

36 http://wapiti.sourceforge.net/, last accessed February 3, 2010

55

• has non-alpha: whether the parameter value contains any non-
alphanumeric characters (encoded alphanumeric characters are also treated
as non-alphanumeric characters).

• has reserved words: whether the value for the parameter contains any
reserved words used in the web application, such as words that are part of
the programming language used to create the application, or SQL
statements. For this research, because the applications used in the case
study are PHP based which utilize a MySQL back-end for data storage,
reserved words are defined as HTML tags and reserved words in SQL and
PHP.

System administrators with considerable knowledge of their web applications can
further improve the model by adding or modifying the model to be more specific.
For example, instead of a generic list of reserved words for the “has reserved
words” attribute, if the system administrator knows that certain words are 100
percent safe for use in the system, those words can be removed from the generic
list. This allows the model to be more specific which can lead to a higher
detection rate without increasing the false positive rate.

The next two sections provide an example of a mapping for normal usage and an
example of a mapping for an attack.

4.1.1.2 Example of the Mapping
When the Sentinel receives a request from the browser, it transforms the IMME to
the request into an IM. The following figure is an example of the raw data for a
login form that the Sentinel receives.

[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): 37 bytes
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): POST /folder/ login.php? HTTP/1.1\r\n
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): 46 bytes
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP):
login=username&password=password&Submit=Login

Figure 4.2 An example of the request data

This is a POST request for the resource login.php with three additional
parameters: login, password, Submit. The lengths of the values for the parameters
are eight, eight, and five characters respectively. The values of the attributes do
not have any non-alphanumeric characters or reserved words.

The IMME would transform this request into the following IM: {login.php,
<8,false,false>,<8,false,false>,<5,false,false>}

This section showed the mapping of a normal HTTP request to an IM. The next
section provides an example of a malicious IM.

56

4.1.1.3 Example of an Attack
Many web applications have specifications for their input fields. For example, the
Canadian Imperial Bank of Commerce’s online banking system specifies that
passwords must be 6 to 12 alphanumeric characters37. However, when attackers
attempt to gain access to the system, these requirements are not followed. Figure
4.2 shows an example of an HTTP request data for a login form. If an attacker
attempts SQL injection attacks on this login form, the data would be different
from what is shown. Figure 4.3 shows a possible SQL injection attempt to launch
a stored XSS attack.

Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): 37 bytes
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): POST /folder/login.php? HTTP/1.1\r\n
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): 1299 bytes
[Thu Aug 14 09:55:36 2008]: dumpio_in (data-HEAP): login=username&password=a
;DECLARE%20@S%20CHAR(4000);SET%20@S=CAST(0x4445434C41524520405420766172
6368617228323535292C40432076617263686172283430303029204445434C415245205461626C
655F437572736F7220435552534F5220464F522073656C65637420612E6E616D652C622E6E61
6D652066726F6D207379736F626A6563747320612C737973636F6C756D6E7320622077686572
6520612E69643D622E696420616E6420612E7874…;&Submit=Login

Figure 4.3 An example of the request data

This example shows an advanced form of an SQL injection attack. The actual
payload has been shortened. The attack involves using SQL reserved words and
encoded characters to dynamically construct an INSERT SQL statement. The
INSERT SQL statement is used to store a XSS payload. The IM for this request
is: {login.php, <8,false,false>,<1261,true,true>,<5,false,false>}

The IM for this attack differs from the benign IM seen in the previous example.
The value for the password parameter is used to inject a malicious payload, and
the IM shows this. The length attribute for this parameter is 1261 characters,
which is significantly longer than the common length for a password.
Furthermore, the value contains both non alphanumeric characters, such as ;,
%, @, and reserved words for SQL like SET and DECLARE.

In essence, AIWAS attempts to learn the input specification associated with
“normal” usage of the system, and validates any given input against this
specification. Via the IM model, AIWAS only attempts to learn the part of the
specification that can be compromised. It should be noted that AIWAS will only
validate inputs to this “normal” usage specification and not the exact specification
as defined in the Specification documentation. Effectively, AIWAS attempts to
automate the “validation of the input from the client or environment” removing
programmer errors and effort from the process. Hence, any limitation of AIWAS
to completely learn the can-be-compromised component of the input specification

37
http://cibc.intelliresponse.com/public/en/index.jsp?requestType=NormalRequest&interfaceID=8&
id=-1&source=1&question=%20what%20do%20i%20do%20if%20i%20can%27t%20sign%20on,
last accessed January 12, 2010

57

can be viewed as being analogous to limitations by programmers to completely
validate the input from the client or environment. Clearly, both AIWAS and
programming attempts can be deployed together to provide a security in depth
approach.

4.1.2 ML Algorithms
AIWAS requires the algorithms to classify the requests as either benign or
malicious. Hence, only supervised learning algorithms can be used. The case
study in this chapter will demonstrate whether usage of different ML algorithms
will have significant impact on the performance of AIWAS. Four different ML
algorithms are selected for this empirical investigation.

Selection of the first two algorithms, Naïve Bayes (John and Langley 1995) and
Random Forests (Breiman 2001), is based on general acceptance of the efficacy
of these algorithms. The last two, Rotation Forrest (Rodriguez et al. 2006) and
Simple Logistic (Summer et al. 2005), can produce better results than Naïve
Bayes and Random Forests (Kuncheva and Rodriguez 2007, Landwehr et al.
2005) although the number of samples which illustrate this conjecture is still
limited.

4.1.3 Data Set
The DARPA 1999 data set is commonly used to evaluate IDS (Lippmann et al.
2000). However, the DARPA 1999 data set suffers from several flaws and
artifacts (Mahoney and Chan 2004, McHugh 2000a, McHugh 2000b).
Furthermore, the data set is not representative of current attacks on web
applications. For these reasons, the DARPA 1999 data set is not used to evaluate
the proposed system. Instead, three web applications are selected, with two
having known vulnerabilities. Once trained using generated training data sets,
AIWAS was evaluated on its ability to detect attacks created from the known
vulnerabilities.

As with other learning based approaches, AIWAS requires a training data set
before it can begin classifying live requests. Obtaining a representative training
data set is a challenge system administrators will face when using AIWAS. This
section discusses the various sources that system administrators can use to obtain
the necessary training data.

4.1.3.1 Set AIWAS to Learning Mode on Live Server
One method of obtaining a training data set is to set AIWAS to learning mode.
While in this mode, AIWAS will collect all requests and store the IM equivalent.
This method allows system administrators to obtain actual usage data from the
web application and use them as the training data set. Hence, the training data set
is the most representative of the live requests that AIWAS will encounter.
However, this method is time consuming because there is a waiting period while
AIWAS collects the data. Furthermore, system administrators will need to be
experts at classifying the IMs.

58

4.1.3.2 Using Existing Server Logs
System administrators can also use existing server logs as a source to create the
training data set. However, most server logs do not contain POST request data by
default. Hence, system administrators need to ensure that the server logs chosen
do contain all the necessary data. Additionally, just like 4.1.3.1, the IMs obtained
from this approach also need to be classified.

4.1.3.3 Simulate Normal and Malicious Usage with a Small Subset
of Users
This approach is used in this study to generate the training data set. The approach
involves the following steps:

1. Set up the web application and AIWAS in a closed environment with the
same settings as the production system.

2. Set AIWAS to learning mode.
3. Allow test users to use the system normally.
4. Classify all IMs obtained from Step 3 as “benign”.
5. Ask test users to use well known attack techniques to attack the system.
6. Classify all IMs obtained from Step 4 as “malicious”.
7. Combine IMs from Steps 4 and 6 into one training set.

This approach requires users with knowledge vulnerability attack techniques to
generate the malicious data. Furthermore, the training data set may not be a
perfect representative of actual usage data. However, the approach does not
require manual classification of IMs.

4.2 Case Study
In order to determine the effectiveness of AIWAS, a case study was performed on
three web applications:

1. A proprietary commercial web application currently being deployed
(WA1). This web application has no known/published vulnerabilities.

2. Phd Help Desk38, an open source ticket support system. This application
has 11 known vulnerabilities as posted on the OSVDB.org website.

3. OpenDocMan39, an open source document management system. This
application has 13 known vulnerabilities as posted on the OSVDB.org
website.

The first application is selected to evaluate the effectiveness of AIWAS on a
commercial system versus commonly used open source applications. Due to the
proprietary nature of the application, no vulnerabilities are known for a test data
set; hence, the evaluation is performed using the standard stratified 10-fold cross-
validation approach (Witten and Frank 2005).

The selection of the two open source systems for testing was based on the
following two criteria:

38 http://www.p-hd.com.ar/, last accessed January 19, 2010
39 http://www.opendocman.com/, last accessed January 19, 2010

59

1. They should not be popular and well known web applications. In other
words, the personnel responsible for generating the training data set
should not be familiar with the existing vulnerabilities for these
applications. Additionally, vulnerability scanners should not have these
existing vulnerabilities in their database. If either condition exists, the
training data set will be bias towards detection of these vulnerabilities.

2. They must have known and published vulnerabilities. Once the training
data set is generated and AIWAS has been trained, the web applications
will be attacked with these known vulnerabilities. This approach allows
AIWAS’ effectiveness against real attacks to be evaluated.

The training data sets for all three applications were obtained using the approach
discussed in Section 4.1.3.3. To evaluate AIWIAS, receiver operating
characteristics (ROC) graphs are used. Provost and Fawcett (2001) introduced
ROC graphs to machine learning as a method of visualizing classifiers’ results;
the ROC curve can be seen as a bi-dimensional representation of the classifiers’
performance (Fawcett 2003).

In order to determine whether class imbalance, which is often associated with
intrusion detection systems (Chawla et al. 2004), will affect AIWAS, the training
data sets were used as is, and with the Synthetic Minority Over-sampling
TEchnique (SMOTE) (Chawla et al. 2002). SMOTE has been demonstrated to
provide better performance on unbalanced data sets when tested using C4.5,
Ripper, and Naïve Bayes (Batista et al. 2004). Although Weiss and Provost
(2003) observed that naturally occurring distributions are not always the optimal
distribution, there are no standards as to what the ratio should be for web systems.
Hence, the commonly accepted ratio of 1 to 1 ratio between malicious and benign
IMs is used for the SMOTE balanced training data sets.

4.2.1 Results – 10-fold cross validation
Figures 4.4 to 4.15 show the ROC curves for all four algorithms with the training
data set without SMOTE. These ROC curves allow visual analysis of costs
(penalties) associated with false-negative errors versus false-positive errors.
Analysis of the curves shows that the “corners” of the curves are close to the
upper left corner indicating the effectiveness of the algorithms.

60

Figure 4.4 10-Fold Cross Validation ROC Curve for WA1 with Naïve Bayes

Figure 4.5 10-Fold Cross Validation ROC Curve for WA1 with Random

Forest

61

Figure 4.6 10-Fold Cross Validation ROC Curve for WA1 with Rotation

Forest

Figure 4.7 10-Fold Cross Validation ROC Curve for WA1 with Simple

Logistic

62

Figure 4.8 10-Fold Cross Validation ROC Curve for Phd Help Desk with

Naïve Bayes

Figure 4.9 10-Fold Cross Validation ROC Curve for Phd Help Desk with

Random Forest

63

Figure 4.10 10-Fold Cross Validation ROC Curve for Phd Help Desk with

Rotation Forest

Figure 4.11 10-Fold Cross Validation ROC Curve for Phd Help Desk with

Simple Logistic

64

Figure 4.12 10-Fold Cross Validation ROC Curve for OpenDocMan with

Naïve Bayes

Figure 4.13 10-Fold Cross Validation ROC Curve for OpenDocMan with

Random Forest

65

Figure 4.14 10-Fold Cross Validation ROC Curve for OpenDocMan with

Rotation Forest

Figure 4.15 10-Fold Cross Validation ROC Curve for OpenDocMan with

Simple Logistic

Table 4.1 presents the comparison of the “corner” of the ROC curves. No unique
method exists for comparing ROC curves, hence five metrics for this comparison
are used:

• Precision which measures the exactness of the system;
• Recall which measures the completeness of the system;
• F-measure which is derived from the Precision and Recall;

66

• Kappa - Cohen’s Kappa statistic (Rourke et al. 2001) which measures the
chance-corrected agreement between the actual and predicted
classification), and

• Matthew’s Correlation Coefficient (MCC) (Baldi 2000) which is
equivalent to Pearson’s correlation coefficient for dichotomous data.

The figures in this table show that AIWAS’ accuracy rate varies depending on
which algorithm is used. However, the results also show that the IM, presented in
Section 4.1, allows all four algorithms to classify the HTTP requests effectively.

Table 4.1 Accuracy metrics
 WA1 Phd Help Desk OpenDocMan

Precision 0.923 0.938 0.889
Recall 0.915 0.932 0.873
F-measure 0.907 0.928 0.854
Kappa 0.710 0.805 0.543

Naïve Bayes

MCC 0.741 0.821 0.611
Precision 0.920 0.923 0.891
Recall 0.911 0.914 0.873
F-measure 0.903 0.907 0.853
Kappa 0.694 0.746 0.546

Random Forest

MCC 0.728 0.772 0.609
Precision 0.948 0.970 0.971
Recall 0.948 0.970 0.972
F-measure 0.946 0.970 0.972
Kappa 0.838 0.921 0.918

Rotation Forest

MCC 0.842 0.920 0.918
Precision 0.913 0.939 0.917
Recall 0.904 0.933 0.914
F-measure 0.894 0.930 0.907
Kappa 0.666 0.810 0.720

Simple
Logistic

MCC 0.704 0.825 0.740

The four ML algorithms were tested again, this time using the SMOTE balanced
training data sets. The results from the comparison of the “corners” of the ROC
curves can be seen in Table 4.2. The results show that the SMOTE balanced
training data sets do offer improvements over the original unbalanced training
data sets. However, whether this also holds when AIWAS is used to detect actual
attacks will be examined in the next section.

67

Table 8.2 Accuracy metrics with SMOTE

 WA1 Phd Help Desk OpenDocMan
Precision 0.976 0.942 0.902
Recall 0.976 0.940 0.896
F-measure 0.976 0.940 0.896
Kappa 0.952 0.880 0.793

Naïve Bayes

MCC 0.952 0.882 0.798
Precision 0.952 0.956 0.966
Recall 0.948 0.955 0.965
F-measure 0.947 0.955 0.965
Kappa 0.895 0.911 0.929

Random Forest

MCC 0.899 0.911 0.931
Precision 0.969 0.968 0.979
Recall 0.969 0.968 0.979
F-measure 0.969 0.968 0.979
Kappa 0.938 0.936 0.959

Rotation Forest

MCC 0.938 0.936 0.958
Precision 0.945 0.944 0.905
Recall 0.939 0.942 0.905
F-measure 0.939 0.942 0.905
Kappa 0.878 0.884 0.810

Simple
Logistic

MCC 0.883 0.886 0.810

4.2.2 Results – Real Vulnerabilities
For this evaluation, test sets based on attacks from published vulnerabilities were
used for evaluation. Based on the 11 and 13 published vulnerabilities for Phd
Help Desk and OpenDocMan, 22 and 25 attacks were generated respectively. To
generate extra attacks from a limited number of vulnerabilities, an approach
similar to mutation testing (Offutt 1994) was used.

With dedicated test sets, two additional methods of classifying the IMs were used.
Both of these methods are based on the Principal of Aggregation (Rushton et al.
1983) which states that the result from a set of multiple measurements is more
stable and representative than any single measurement. The first method,
Aggregate Malicious, classifies an IM as malicious when two or more ML
algorithms classify it as malicious. The second method, Aggregate Benign, only
classifies an IM as benign when two or more ML algorithms classify it as benign.
Both of these methods will be considered as “algorithms” for the remainder of
this chapter.

The ROC curves for the six algorithms are shown in Figures 4.15-4.27. Similar to
Section 4.2.1, the “corners” for these curves are very close to the upper left corner
implying that all approaches have a high True Positive Rate (TPR) and a low
False Positive Rate (FPR). The “corners” from Figures 4.23 and 4.24 show that

68

the Random Forest and Rotation Forest are not as effective at detecting
vulnerabilities for OpenDocMan as the other two algorithms; however, they are
still close to the upper left corner. The results from Table 4.3 confirm this
observation.

Figure 4.16 Real Attacks ROC Curve for Phd Help Desk with Naïve Bayes

Figure 4.17 Real Attacks ROC Curve for Phd Help Desk with Random

Forest

69

Figure 4.18 Real Attacks ROC Curve for Phd Help Desk with Rotation

Forest

Figure 4.19 Real Attacks ROC Curve for Phd Help Desk with Simple

Logistic

70

Figure 4.20 Real Attacks ROC Curve for Phd Help Desk with Aggregate

Malicious

Figure 4.21 Real Attacks ROC Curve for Phd Help Desk with Aggregate

Benign

71

Figure 4.22 Real Attacks ROC Curve for OpenDocMan with Naïve Bayes

Figure 4.23 Real Attacks ROC Curve for OpenDocMan with Random Forest

72

Figure 4.24 Real Attacks ROC Curve for OpenDocMan with Rotation Forest

Figure 4.25 Real Attacks ROC Curve for OpenDocMan with Simple Logistic

73

Figure 4.26 Real Attacks ROC Curve for OpenDocMan with Aggregate

Malicious

Figure 4.27 Real Attacks ROC Curve for OpenDocMan with Aggregate

Benign

The results from the metrics for the “corner” of the curves are detailed in Table
4.3. This table shows that, similar to Section 4.2.1, the proposed IM is effective
with all the ML algorithms. Furthermore, the aggregate algorithms can be seen to
having no false positives and false negatives for both Phd Help Desk and
OpenDocMan.

74

Table 4.3 Accuracy metrics

 Phd Help Desk OpenDocMan
Precision 1 0.903
Recall 1 0.880
F-measure 1 0.878
Kappa 1 0.760

Naïve Bayes

MCC 1 0.783
Precision 0.906 0.931
Recall 0.884 0.920
F-measure 0.882 0.919
Kappa 0.769 0.840

Random Forest

MCC 0.790 0.851
Precision 1 0.996
Recall 1 0.996
F-measure 1 0.996
Kappa 1 0.920

Rotation Forest

MCC 1 0.923
Precision 1 1
Recall 1 1
F-measure 1 1
Kappa 1 1

Simple Logistic

MCC 1 1
Precision 1 1
Recall 1 1
F-measure 1 1
Kappa 1 1

Aggregate
Malicious

MCC 1 1
Precision 1 1
Recall 1 1
F-measure 1 1
Kappa 1 1

Aggregate
Benign

MCC 1 1

Because the results from Table 4.3 show that the algorithms are quite effective, a
degree of agreement test was performed for information about error. If the degree
of agreement is low, either

1. the IM does not allow the ML algorithms to function properly; or
2. AIWAIS is highly dependent on a specific IM.

For this test, the Cohen index is used because it is defensible as both chance-
corrected measures and intraclass correlation coefficients (Fleiss 1975). The three
“most” effective algorithms (Simple Logistic, Aggregate Malicious, and
Aggregate Benign) are tested against all other algorithms. The results are shown
in Table 4.4. This table shows that the algorithms are highly agree-able with each

75

other; hence, the IM is effective, and AIWAIS is not highly dependent on a
specific algorithm.

Table 4.4 Degree of agreement
 Phd Help Desk OpenDocMan
 Simple

Logistic
Aggregate
Malicious

Aggregate
Benign

Simple
Logistic

Aggregate
Malicious

Aggregate
Benign

Naïve
Bayes

1 1 1 0.76 0.76 0.76

Random
Forest

0.77 0.77 0.77 0.84 0.84 0.84

Rotation
Forest

1 1 1 0.92 0.92 0.92

Simple
Logistic

1 1 1 1 1 1

Aggregate
Malicious

1 1 1 1 1 1

Aggregate
Benign

1 1 1 1 1 1

Table 4.5 shows the metrics for the “corners” of the ROC curves for the six
algorithms after being trained with SMOTE balanced training data sets.
Surprisingly, some of the algorithms cannot detect the attacks as well as when
they are trained with the unbalanced data set. However, the two aggregate
algorithms can be seen to have little to no decrease in performance; furthermore,
they perform better than the other four.

76

Table 4.5 Accuracy metrics with SMOTE

 Phd Help Desk OpenDocMan
Precision 1 0.838
Recall 1 0.760
F-measure 1 0.745
Kappa 1 0.520

Naïve Bayes

MCC 1 0.593
Precision 0.853 0.946
Recall 0.791 0.940
F-measure 0.782 0.940
Kappa 0.585 0.880

Random Forest

MCC 0.643 0.886
Precision 1 0.941
Recall 1 0.940
F-measure 1 0.940
Kappa 1 0.880

Rotation Forest

MCC 1 0.881
Precision 1 0.838
Recall 1 0.760
F-measure 1 0.745
Kappa 1 0.520

Simple Logistic

MCC 1 0.593
Precision 1 1
Recall 1 0.960
F-measure 1 0.980
Kappa 1 0.960

Aggregate
Malicious

MCC 1 0.961
Precision 1 1
Recall 1 1
F-measure 1 1
Kappa 1 1

Aggregate
Benign

MCC 1 1

4.2.3 Discussion of the Results
The figures and ROC curves from Sections 4.2.1 and 4.2.2 show some important
results. AIWAS is shown to be effective at identifying malicious IMs. Although
WA1 cannot be evaluated with real attacks, the well accepted 10 fold-cross
validation approach demonstrates that the IM allows the ML algorithms to
classify the HTTP requests with a high degree of accuracy. Attacks based on real
vulnerabilities are also shown to be identified effectively (Section 4.2.2) by
AIWAS.

The results show that AIWAS can be effective regardless of which ML algorithm
is used. However, the detection rate does vary somewhat depending on which

77

algorithm is used. Whether certain algorithms are better cannot be concluded in
this case study. However, because of the Principal of Aggregation (Rushton et al.
1983) and the results from Table 4.5, system administrators should use either
aggregate algorithm with AIWAS. The question on which form of aggregate
should be used would depend upon the relative costs of misclassifying for any
particular application.

78

This page is intentionally left blank.

79

Chapter 5 – Estimating Reliability from the Server
Logs
Reliability is becoming increasingly important to web systems due to the
popularity of web applications. The need for highly reliable systems will only
grow as companies continue to move their operations online. In order to increase
reliability, a method to measure current systems’ reliability is required. However,
existing methods to measure reliability (Lyu 1995, Musa et al. 1987, Trivedi
2001) cannot be applied directly to web systems due to their specific nature
(Alagar and Ormandjieva 2002, Offutt 2002). Thus, these existing methods will
need to be modified to include new workload characteristics to estimate the
reliability of web systems (Tian et al. 2004). More specifically, they defined two
special characteristics:

• Massiveness and diversity: Web systems can interact with many different
external systems. For example, one application may interact with Internet
Explorer 6.5 and MySQL 3.23; another application may interact with
Internet Explorer 5.5, Mozilla FireFox 1.5, SQLite 3.4.2 and Google Maps
API 2.1. Not only that, every user with an Internet connection is
considered to be a potential user of the web system. The workload
characteristics selected need to reflect this diverse software configuration
and massive and ill-defined user population.

• Document and information focus: Traditional workload concentrates on
the computational focus whereas web systems principally have a
document and information focus. Newer web systems have increased
computation; however, search and retrieval remains the dominant usage
for web users. The workload types for computational focus are
fundamentally different than the workload types for document and
information focus.

To measure web workloads to ensure accurate reliability estimation, generic
workloads suitable for traditional computation-intensive cannot be used. Hence,
Tian et al. (2004) defined four different web workload characteristics for
reliability calculations:

• The number of hits: This workload is popular because each hit
corresponds to a specific request to a web server, and each entry in the
access log is a hit which allows for easy extraction of the data. However,
this workload is misleading if it shows high variability with the individual
hits (Tian et al. 2004).

• The number of bytes transferred may be used as a workload of finer
granularity than the hit count; the number of bytes of transferred for each
hit is recorded in the server logs and can be extracted with relative ease.

• The number of users: This alternative workload can be used by
organizations that support various web systems and want to examine
reliability at the user level. To count the number of users per day, the total
number of unique IP addresses for that day is counted, and each unique IP
address is assumed to correspond to a unique user. In other words, all hits

80

originating from the same IP address (which may be associated with one
computer or multiple computers sharing the same IP address) are
considered to be requests from a single user. A disadvantage of the user
workload is its coarse granularity. This problem can be remedied by
counting the number of user sessions.

• The number of sessions can be calculated from the IP address and the
access time. If the time between each hit from one IP is within a time
period, then all of these hits are considered to be one session. The session
workload is better than the user workload because each session is typically
associated with a change in user activity or a change in user. The same
user may have several different usage patterns for each session; this can be
revealed by the session workload characteristic.

Given the issues related to these workload estimates, this study will also examine
simply using “days” as a workload characteristic. A “day” is defined as a 24 hour
period within a log file. Clearly this alternative has a substantially coarser
granularity than the alternatives discussed above. While the most obvious
temptation is to utilize a fine-grain workload metric, since issues exists in their
estimation, the question of are they actually a superior choice of normalizing term
needs to be considered.

Although web traffic characteristics have been explored in detail – such as the
characterization of the workloads (Alagar and Ormandjieva 2002), traffic trends
and patterns (Crovella and Bestavros 1997), response times (Cremonesi and
Serazzi 2002), etc. – only a few studies have investigated web error behavior and
the measurement of web reliability. Although several hypothetical approaches
exist; they lack empirical validations (Alagar and Ormandjieva 2002, Wang and
Tang 2003). One practical approach to measuring the reliability of web systems
is to use the information contained in server logs (Huynh and Miller 2005,
Kallepalli and Tian 2001, Tian et al. 2004), such as system usage and failure
codes. This information can be extracted and used to evaluate the system’s
reliability and identify “areas” for reliability improvement.

In this chapter, the approach of measuring reliability from server logs, as
presented by Tian et al. (2004), will be evaluated and analyzed to determine the
viability and effectiveness of this approach. Results from the original study and
from this study will be used in the analysis. Two websites were examined in the
original study; and two additional websites will be investigated in this study.
Initially, these two websites are analyzed using the same methodology as
proposed in the original study (Tian et al. 2004). That is, the server logs from
these two websites were parsed for all errors that occurred while the websites
were serving content to their visitors. A reliability estimate is then calculated
from the extracted errors. This chapter extends the original study (Tian et al.
2004) by:

• Applying the technique to two new websites. One of which is a
commercial website; in fact, the site can be considered as being mission
critical to the commercial organization. The logs investigated for this

81

commercial website cover a 15 month period, which is an extensive time
period. It is believed that this log represents the longest period of capture,
and the only truly “mission critical” log reported within the research
literature.

• Examining the error codes more rigorously; this will allow web
administrators to focus on high value error codes.

• Re-examining the workload models to provide alternative methods for
web administrators to analyze and interpret reliability information.

The remaining sections of this chapter are organized as follows: Section 5.1
describes the research methodology. Section 5.2 provides a brief overview of the
characteristics of the websites used in the previous and the current study. Section
5.3 examines the workloads, the limitations of the workloads proposed, and the
results from the two websites.

5.1 Research Methodology
Tian et al. (2004) demonstrated by performing an experiment on two websites that
the operational reliability of websites could be estimated from server logs. They
identified three failure sources:

• Host, network, or browser failures that prevent the delivery of requested
information to web users. These errors can be analyzed and assured by
existing techniques (Lyu 1995, Musa et al. 1987, Trivedi 2001) because
they are similar to failures in regular computer systems, network or
software (Tian et al. 2004).

• Source content failures that prevent the acquisition of the requested
information by web users because of problems such as missing or
inaccessible files, trouble with starting JavaScript, etc. These failures
have unique characteristics to web systems (Crovella and Bestavros 1997,
Montgomery and Faloutsos 2001, Offutt 2002); hence, special workload
characteristics need to be defined before their reliability can be estimated.

• User errors, such as improper usage, mistyped URLs, etc. These errors
also include any external factors that are beyond the control of web service
or content providers.

They noted that host, network, browser failures and user errors can either be
addressed by existing approaches or are outside of the responsibility and control
of the content provider. However, source content failures represent a significant
part of the problem and the content providers can address these issues. Hence,
Tian et al. (2004) focused on web source content failures contained in error and
access log files in their study. These files are created by all commercial HTTP
Daemons.

The Nelson model (Nelson 1978), a widely used input domain reliability model,
was used by Tian et al. (2004) to calculate reliability after the necessary
information was extracted from the server logs. The formula for the Nelson
model is:

r
n
f

n
fnR −=−=

−
= 11 (1)

82

where f is the total number of failures, n is the number of workload units and r is
the failure rate. The mean time between failures (MTBF) was then calculated as:

∑=
i

itf
MTBF 1 (2)

where ti is the usage time for each workload unit i. If the usage time is not
available, the number of workload units is then used as an approximation of the
time period. Thus, the MTBF can be calculated as:

f
nMTBF = (3)

5.1.1 Removal of Automated Requests
The log files contain requests from robots and other automated systems that
should be removed as they are not actual requests from web users. Automated
systems are classified as systems that repeatedly request a resource from the
website after a set period of time. For example, upon investigation of Site A’s
server log, requests from two monitoring services are identified. The first service
requests a resource from Site A every 30 minutes while the second service
requests a resource from Site A every 66 minutes. The resources these services
request are unique and not publicly available. Hence, removing them simply
involves identifying these resources in the log files. Robots that automatically
request the “robots.txt” resource are also removed from both Site A and ECE log
files.

Although it is infeasible to remove all automated requests from the server logs,
web administrators need to remove all identifiable requests. Several techniques to
identify them can be used by web administrators to remove automated requests.
Most well known robots have a signature line that is included with every request
as part of the USER AGENT field of the log file. For example, “Googlebot-
Image/1.0” can be used to identify a robot from Google that is indexing the
website’s images. For web monitoring services, web administrators can simply
dedicate a special resource that only these services can access. This resource can
then be easily identified within the log files.

5.1.2 Analysis of Error Code Information
Error response codes can be extracted from either access or error logs. Due to the
lack of error log files for the KDE website and Site A, only the access log files
were used to extract the error information (Tian et al. 2004). Error response codes
are embedded in the access logs, and these codes can be mapped to the error
entries in the error log, for example, a “file not found” error in the error log
usually corresponds to a 404 error code in the access log. Hence as stated in Tian
et al. (2004), using just the access logs is a reasonable method to gather error
information unless detailed information about the errors is required. Figure 5.1
provides a sample entry that can be found within the access logs.

83

129.194.12.3 - - [03/Nov/2005:15:44:34 -0500] "POST /data/search.php
HTTP/1.0" 200 50482 "http://www.sitea.com/data/form.php " "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)"

Figure 5.1. A sample entry in an access log

This figure shows that on November 3, 2005, a remote user with an IP address of
129.194.12.3 used the POST protocol to access a file called search.php. The
server responded with a 200 code and returned 50482 bytes of data. The previous
URL that the user visited is http://www.sitea.com/database/form.php. The user
used Microsoft Internet Explorer version 6.0 to access the web page.

The Nelson model and MTBF calculation require that the server logs capture the
entire workload for the period under investigation. To ensure that the logs are
complete, the parser used was customized to report suspicious gaps, which can be
defined as long periods of inactivity between two recorded hits. These gaps were
manually examined and discussed with the web administrators to ensure that the
gaps are naturally occurring and not due to external factors such as the hard drive
being full.

The error response codes in Tables 5.3 – 5.5 are the standard HTTP error response
codes as defined by the Request For Comment (RFC) 261640 as part of the HTTP
protocol. The following is a list of the codes encountered, their descriptions, and
what the implications are when they are used for reliability analysis:

• 400 (Bad request) – the request could not be understood by the server due
to its malformed syntax. This code should not be used for reliability
analysis because the code is caused by a client that is not following the
HTTP standard. Since this is a client-side issue, it does not make sense to
estimate a website’s reliability based on this code.

• 401 (Unauthorized) – the server does not accept the client’s authorization
credentials (or they were not supplied). This error occurs when a user
requests a resource that the user does not have permission to retrieve. If
the referrer for this resource is external to the website then this error can
be ignored because the web administrators cannot control these external
referrers. However, if the referrer is internal to the website and it is not
the expected behavior of the server, then this error needs to be included in
the reliability analysis. This situation of an error response code
encompassing error types which are source content failure and external
sources (human and system errors) occurs repeatedly; hence, the situation
needs to be resolved to provide accurate reliability information. This issue
is resolved later in the paper.

• 403 (Forbidden) – the server is refusing to fulfill the client’s request. The
cause for this error is similar to the 401 error code. Depending on the
configuration of the HTTP daemon, this error may be returned instead of

40 http://www.w3.org/Protocols/rfc2616/rfc2616.html, last accessed February 6, 2010

84

the 401 error code. Hence, it has the same issue as the 401 error response
code, and will be discussed later.

• 404 (Not found) – the server cannot find anything matching the Request-
URI. This error is currently the dominating error code and represented the
focus of result of Tian et al.’s paper (2004). However, again, this error
response code covers a multitude of different error types some of which
are source content failure but others lie outside the system or what seem to
be source content failures are actually not source content failures. For
example, an attacker utilizing a scanner can (Spitzner 2001) spoof the
referrer field of the log file when scanning for a system’s vulnerability; the
spoofed referrer field appears to be an internal link when it is actually
from an external source. Links to old versions of the website can also
create 404 error codes that appear to be internal bad links because the old
version of the website is hosted on the same server as the current website.
However, these internal bad links should be discarded because the user is
using an incorrect version of the website. With the availability of
powerful link checkers (NetMechanic HTML Toolbox41, W3C Link
Checker42), it is highly likely that actual source content failures are on the
decline.

• 405 (Method not allowed) – the method specified in the Request-Line is
not allowed for the resource identified by the Request-URI. The client
performs a request that is not allowed by the server. For example, the
client tries to perform a PUT request, but the server is configured to not
accept PUT requests; hence, a 405 error code is generated. Since this
error code only occurs due to a configuration issue, it should be discarded.

• 406 (Not acceptable) – this error is returned if the web server detects that
the client cannot accept the data it wants to return. This error code should
be discarded because the server’s content does not support the client used
to access it.

• 407 (Proxy authentication required) – if the client does not authenticate
itself with the proxy then this error is returned. This error code can be
discarded because the client did not authenticate with the server before
attempting to access restricted content.

• 408 (Request timeout) – the client did not produce a request within the
time that the server was prepared to wait. This is a network failure rather
than a source content failure, and hence, it should be discarded.

• 409 (Conflict) – the client is attempting to perform a request that conflicts
with the server’s established rule. For example, the client is attempting to
upload a file that is older than the file currently available on the server,
this results in a version control conflict. This error can be discarded
because it is a browser failure, not a server failure.

• 410 (Gone) – the server cannot find the requested resource and no
alternative location can be found. This error code is related to the 404

41 http://www.netmechanic.com/products/maintain.shtml, last accessed February 6, 2010
42 http://validator.w3.org/checklink, last accessed February 6, 2010

85

response code, and hence it should follow the same rules as the 404
response code.

• 411 (Length required) – the server is denying the data the client is
uploading because the client is not specifying the size of the data.
Because this error is a browser failure and not a server failure, it can be
discarded.

• 412 (Precondition failed) – the resource requested failed to match the
established preconditions. This error should be included because the
server failed to satisfy the preconditions; this implies that this error
response code is a server failure.

• 413 (Request entity too large) – the server is rejecting the data being
uploaded from the client because the data size is too large. The size limit
can be adjusted within the server configuration. Since this error code only
occurs due to a configuration issue, it should be discarded.

• 414 (Request-URI Too Long) – the server returns this error code in the
following situations:

o The client (usually a browser) has converted values from a POST
request to a GET request. The POST request can handle larger
values than the GET request; thus, the error occurs when an
extremely large POST request is converted to a GET request.

o The client is attempting to exploit some type of vulnerability in the
server. Usually, these exploits involve a large amount of malicious
code being injected into the Request-URI. Some of these
vulnerabilities include: buffer overflows (Cowan et al. 1998, Evans
and Larochelle 2002, Wagner et al. 2000), SQL injections (Boyd
and Keromytis 2004, Huang et al. 2003), cross-site scripting43, etc.

Generally, the first situation is rare, and hence it is usually safe to assume
that a majority of 414 errors will correspond to attacks on the server or
other users who are accessing the vulnerable website. Thus, by
identifying these 414 errors, system administrators can identify attacks on
their server system and take appropriate actions against the attackers.
Although the 414 error code is useful to system administrators, it is not a
source content failure and, hence, will be excluded from reliability
analysis.

• 415 (Unsupported media type) – the server is refusing the request because
the resource is in a different format from the requested format. For
example, the browser requests a resource and specifies it as a text
document; however, the server recognizes the requested resource as a
binary file and not a text document. A 415 response code would be
generated in this scenario. Since this error code is a browser failure and
not a source content failure, it should be discarded.

• 416 (Requested range not satisfiable) – the client is requesting a file size’s
range that is invalid. This error occurs when the client, usually a
download manager such as Getright (http://www.getright.com) or Wget

43 http://www.cgisecurity.com/articles/xss-faq.shtml, last accessed May 15, 2008

86

(http://www.gnu.org/software/wget/wget.html), erred in its resume point
calculation. Hence, this error code should not be used in reliability
analysis.

• 500 (Internal error) – the server encountered an unexpected condition
which prevented it from fulfilling the request. Bugs within various
dynamic scripts running on the server cause this error code. Therefore, it
must be included in any reliability calculation.

• 501 (Not implemented) – the server does not support the request type that
the client is sending. For example, the browser tries to retrieve the header
information of an ASP enabled web page, so it sends a HEAD request to
the server. However, the server does not understand this request for ASP
enabled web pages, so it returns 501 error response code. This error code
should be included in reliability analysis.

• 502 (Bad gateway) – This error has two definitions depending on the
HTTP daemon used. For Apache, this error occurs when the server, while
acting as a gateway or proxy, received an invalid response from the
upstream server it accessed in attempting to fulfill the request. Because
this error response code only occurs when the Apache HTTP Daemon is
acting in a different mode rather than actively serving web pages, this
error should be discarded for servers using the Apache HTTP daemon.
For IIS, Microsoft IIS’ support page44 describes this error as “You receive
this error message when you try to run a CGI script that does not return a
valid set of HTTP headers.” In other words, this error code can be
triggered by an error in the web application’s output code. Thus, this error
should be included in reliability analysis if the web software is running on
the IIS platform.

• 503 (Service unavailable) – The server is overloaded and cannot serve
further requests. For example, due to a popular marketing campaign for a
website, many users decide to visit this site. The unexpected load caused
by this sudden increase in traffic causes a major strain in the server’s
resources, which then leads to extremely slow response time or a server
crash. For example, Toys R Us’ website received a surge in traffic after it
released its Big Book catalog. This surge in traffic overloaded the
system’s resources, which lead to an extremely slow response time.
Numerous potential purchasers were turned away because of this slow
response time45.

This failure response code is a host failure that can lead to extended
availability issue if not resolved properly. Tian et al. (2004) stated that
availability problems are generally perceived by web users as less serious
than web software problems. They argued that users are more likely to be
successful in accessing required information after temporary unavailability
whereas software problems would persist unless the underlying causes are

44 http://support.microsoft.com/default.aspx?scid=kb;en-us;318380, last accessed February 7,
2010.
45 http://money.cnn.com/1999/11/19/technology/etail_tech/, last accessed May 15, 2008

87

identified and fixed. This argument is questionable because web users are
much more impatient and less forgiving than traditional users, as
discussed by many studies (Galletta et al. 2004, Masterson 1999, Nah
2002, Rose et al. 2001, Williams 2001). They typically move on to the
next site if they encounter issues with the current site that they are
browsing. From their perspective, if they cannot access the information
they want then it is an error. Hence, although the 503 error response code
corresponds to a host failure and not a source content failure, it must be
included in reliability analysis.

• 504 (Gateway timeout) – this error only occurs when the server is acting
as a gateway or proxy server, hence it should be discarded.

• 505 (HTTP version not supported) – the server does not support the HTTP
protocol version used by the client. This error can be discarded because
the client is not using the proper HTTP protocol version.

It should be noted that web systems can be configured to catch error codes and
respond with a 200 OK code instead. While this strategy hides technical
information from users, it does not allow the error codes to be logged properly if
configured incorrectly. Hence, web administrators should ensure that error codes
are still logged if this strategy is to be used.

5.2 Overview of the Websites
Tian et al. (2004) applied the proposed approach to two websites. The first
website analyzed was www.seas.smu.edu, the official web site for the School of
Engineering and Applied Science at Southern Methodist University (SME/SEAS).
The log files contained data covering 26 consecutive days in 1999. The second
website analyzed was www.kde.org (KDE). This is the official website for the
KDE project. The overall traffic and user population for this website is
significantly larger than the SMU/SEAS website. The logs contained 31 days of
traffic data. During these 31 days, over 13 million hits were recorded. Both of
these websites used the popular Apache HTTP Daemon (http://httpd.apache.org)
to serve their web pages.

5.2.1 Overview of the Websites in This Chapter
This chapter re-analyzes the approach presented in the original study (Tian et al.
2004). It initially applies this approach to two new websites, and based on these
results postulates an alternative approach. The first website is
www.ece.ualberta.ca, the website for the Department of Electrical and Computer
Engineering at the University of Alberta. This site – similar to SME/SEAS and
KDE – although important to the organization, it is non-commercial and not
mission critical. This website is a dynamic website that utilizes the ColdFusion
(http://www.macromedia.com/software/coldfusion) scripting language, and the
Apache HTTP Daemon (http://httpd.apache.org). To investigate the stability of
the data, the log files were chosen to cover approximately 30 consecutive days in
January 2005 (ECE1) and 30 consecutive days in March 2006 (ECE2). For the
month of January, the ECE website received approximately 500,000 hits, 53,100
“unique” visitors and transferred a total amount of 4.8 Gbytes of data. During

88

March 2006, the ECE website handled 470,000 hits, 61,000 “unique” visitors and
transferred a total amount of 6.2 Gbytes of data.

The second website is the website for a publishing company that specializes in
online databases (Site A). This website differs from the previous websites in that
it is very critical to Company A’s operation and hence it needs to be extremely
reliable. The website utilizes the PHP (http://www.php.net) scripting language,
MySQL (http://www.mysql.com) for the backend database and is hosted on an
Apache HTTP Daemon. In order to observe potential trends and patterns for this
mission critical website, the log files chosen cover 15 months of operation from
January 2005 to March 2006. This website’s traffic is lower than the ECE
website. However, it represents a typical business website. That is, the site is a
dynamic website with a mixed amount of static and dynamic pages – these are
pages generated dynamically depending on the customers’ inputs; its users are
customers who are either looking to purchase a product or to register for a training
course. For the 15 months covered, Site A received approximately 1.9 million
hits and 92,000 “unique” visitors. The site transferred 34 Gbytes of data. Table
5.1 displays the technologies used by, and reliability requirements for, the two
websites under investigation. Unfortunately, the ECE site administrator only has
an approximate reliability target for their installation. These two websites were
selected for this investigation because they utilize similar web development
technologies while having different reliability requirements. The two websites
use a scripting language in addition to an HTTP daemon; with one of the sites (A)
also using a DBMS for data management. Although the technologies used are
similar, their reliability objectives are quite different. ECE – due to its non-
mission critical nature – is expected to experience a few failures per month. Site
A requires high reliability because the loss of customers and sales will occur if the
site’s failure occurs. In other words, Site A is expected to experience no more
than one failure per month.

Table 5.1 Sites examined
Site Technologies Reliability Requirement
ECE CodeFusion, Apache A few failures per month
Site A PHP, Apache, MySQL No more than 1 failure per month

Table 5.2 provides a summary of the properties of the logs used in previous
studies and this study. Websites with an asterisk are commercial websites.

89

Table 5.2 Comparison of data sets

 Log duration Requests Bytes
Transferred

NASA-Pvt1 20 week 23 thousand 0.5 GB
NASA-Pvt2 20 week 92 thousand 0.2 GB
NASA-Pvt3 20 week 489 thousand 2.2 GB
NASA-Pub1 20 week 93 thousand 9 GB
NASA-Pub2 20 week 732 thousand 6.7 GB
NASA-Pub3 20 week 108 thousand 4.6 GB
CSEE 6 week 5.8 million 80.9 GB
WVU 3 week 37.9 million 97 GB
ClarkNet* 2 week 3.3 million 27.6 GB
NASA-KSC 2 month 3.5 million 62.5 GB

Goševa-
Popstojanova
et al. (2006a)

Saskatchewan 7 month 2.4 million 12.3 GB
WVU 1 week 15.8 million 34.5 GB
ClarkNet* 1 week 1.7 million 13.8 GB
CSEE 1 week 397 thousand 10.1 GB

Goševa-
Popstojanova
et al. (2006b)

NASA-Pub2 1 week 39 thousand 0.3 GB
SMU/SEAS 26 day 763 thousand 7.8 GB Tian et al.

(2004) KDE 31 day 14 million 110 GB
Site A* 15 month 1.9 million 34 GB
ECE1 1 month 500 thousand 4.8 GB

This study

ECE2 1 month 470 thousand 6.2 GB

This table shows that the longest period that previous studies have collected data
is over a 7 month period, compared to 15 months in this study. Furthermore,
studies that use logs from commercial websites cover extremely short periods (1
to 2 weeks). This study investigates the log file from a commercial website for a
much longer period (15 months). Hence, it is believed that this study presents the
first long-term analysis of a (mission-critical) commercial website.

5.3 Results and Discussions
This section presents the results for the four websites, and discusses various issues
encountered during this experiment and explains the similarity and differences
between the original study and this study.

5.3.1 Results from the Original Study
Tian et al. (2004) discovered many issues associated with the extraction of
workload data for reliability estimation. However, the log files provide
information that allows available data for the hit count, byte count and user count
to be extracted with ease. The session count can be derived based on a timeout
value which can provide more granularity than the user count.

90

They found that the four proposed workload characteristics allow reliability
assessments from different perspectives. Hence, systems administrators can
choose the best workload characteristic depending on the situation. For example,
administrators concerned with data traffic measurement can examine the byte
count whereas the hit count can provide more useful information regarding web
users. The next section will present results found in this study and whether they
confirm findings from Tian et al. (2004) study.

5.3.2 Results from this Study
Tables 5.3 – 5.5 provide a summary of the error response codes for all four
websites. These tables contain the actual number of error counts and their
corresponding percentages; these tables follow the analysis performed by Tian et
al. (2004). That is, the access logs are parsed, and the errors are grouped together
according to the error code without explicit considering of their cause. The
original study provided only limited information for the KDE website; hence all
the cells containing “n/a” are missing information that cannot be derived.
Furthermore, the total percentage of errors recorded does not equal to 100 percent
for this website. While Goseva-Popstojanova et al. (2006a, 2006b) also
performed analysis on the error codes, the results are combined into groups such
as 4xx (all 400 level error codes) and 5xx (all 500 level error codes). Hence,
results from Goseva-Popstojanova et al. (2006a, 2006b) cannot be included in
these tables.

Table 5.3 Recorded errors
Error code Sites 400 401 403 404

SMU/SEAS 2 (0.02%) 14 (0.046%) 2,085 (6.78%) 28,659 (93.17%)
KDE n/a n/a n/a 785,211 (98.90%)
ECE1 202 (0.15%) 6 (0.00%) 44 (0.03%) 136,143 (99.81%)
ECE2 52 (0.05%) 4 (0.00%) 211 (0.19%) 112,751 (99.74%)
Site A (Jan05) 1 (0.06%) 3 (0.17%) 188 (10.90%)) 1,500 (86.96%)
Site A (Feb05) 0 10 (0.53%) 162 (8.50%) 1,722 (90.44%)
Site A (Mar05) 1 (0.05%) 28 (1.29%) 194 (8.90%) 1,938 (88.94%)
Site A (Apr05) 2 (0.09%) 17 (0.72%) 190 (8.07%) 2,121 (90.06%)
Site A (May05) 4 (0.20%) 27 (1.33%) 130 (6.39%) 1,849 (90.86%)
Site A (Jun05) 1 (0.05%) 36 (1.65%) 213 (9.78%) 1,920 (88.11%)
Site A (Jul05) 0 36 (1.53%) 146 (6.19%) 2,158 (91.44%)
Site A (Aug05) 0 28 (1.04%) 194 (7.20%) 2,448 (90.87%)
Site A (Sep05) 0 13 (0.59%) 167 (7.54%) 2,018 (91.15%)
Site A (Oct05) 0 12 (0.46%) 159 (6.03%) 2,434 (92.30%)
Site A (Nov05) 0 19 (0.68%) 214 (7.69%) 2,525 (90.76%)
Site A (Dec05) 1 (0.04%) 13 (0.54%) 156 (6.43%) 2,223 (91.56%)
Site A (Jan06) 0 19 (0.58%) 231 (7.04%) 2,758 (84.11%)
Site A (Feb06) 0 19 (6.66%) 164 (5.66%) 2,602 (89.82%)
Site A (Mar06) 0 22 (0.61%) 259 (7.12%) 3,321 (91.31%)
Site A (Total) 10 (0.03%) 302 (0.81%) 2767 (7.40%) 33,537 (89.69%)

91

Table 5.4 Recorded errors (cont.)
Error code Sites 405 408 414 415 416

SMU/SEAS 0 0 0 0 0
KDE n/a 6,225 (0.78%) n/a n/a n/a
ECE1 0 0 0 0 6 (0.00%)
ECE2 2 (0.00%) 1 (0.00%) 0 0 14 (0.01%)
Site A (Jan05) 1 (0.06%) 0 0 30 (1.74%) 2 (0.12%)
Site A (Feb05) 0 0 0 10 (0.53%) 0
Site A (Mar05) 0 0 0 17 (0.78%) 1 (0.05%)
Site A (Apr05) 0 0 0 25 (1.06%) 0
Site A (May05) 2 (0.10%) 0 0 17 (0.84%) 0
Site A (Jun05) 0 0 0 9 (0.41%) 0
Site A (Jul05) 0 0 0 20 (0.85%) 0
Site A (Aug05) 0 0 0 24 (0.89%) 0
Site A (Sep05) 0 0 0 16 (0.72%) 0
Site A (Oct05) 0 0 0 32 (1.21%) 0
Site A (Nov05) 0 0 0 24 (0.86%) 0
Site A (Dec05) 98 (4.04%) 0 0 26 (1.07%) 0
Site A (Jan06) 254 (7.75%) 0 0 17 (0.52%) 0
Site A (Feb06) 83 (2.87%) 0 0 29 (1.00%) 0
Site A (Mar06) 5 (0.14%) 0 0 30 (0.83%) 0
Site A (Total) 443 (1.19%) 0 0 326 (0.87%) 0

Table 5.5 Recorded errors (cont.)
Error code Sites

500 501 502 503
SMU/SEAS 0 0 0 0
KDE n/a n/a n/a n/a
ECE1 7 (0.01%) 0 0 0
ECE2 10 (0.01%) 0 0 0
Site A (Jan05) 0 0 0 0
Site A (Feb05) 0 0 0 0
Site A (Mar05) 0 0 0 0
Site A (Apr05) 0 0 0 0
Site A (May05) 0 0 0 6 (0.30%)
Site A (Jun05) 0 0 0 0
Site A (Jul05) 0 0 0 0
Site A (Aug05) 0 0 0 0
Site A (Sep05) 0 0 0 0
Site A (Oct05) 0 0 0 0
Site A (Nov05) 0 0 0 0
Site A (Dec05) 0 0 0 0
Site A (Jan06) 0 0 0 0
Site A (Feb06) 0 0 0 0
Site A (Mar06) 0 0 0 0
Site A (Total) 0 0 0 6 (0.02%)

92

These tables show that the 404 error type dominates, as noted by Tian et al.
(2004). They discovered that, for SMU/SEAS, 99.9 percent of the errors
encountered were of types 403 and 404 with 404 errors accounting for 93.1
percent of the recorded errors. For KDE, 98.9 percent of the recorded errors were
of type 404. According to the survey results from 1994 to 1998 by the Graphics,
Visualization, and Usability Center of Georgia Institute of Technology
(http://www.gvu.gatech.edu/user_surveys/), 404 errors are the most common
errors that users encounter while browsing the web. Ma and Tian (2003) found
that a majority of these 404 errors are caused by internal bad links (IBL) while
only a small percentage are caused by external factors such as the user mistyping
the URL, robots from search engines, external links (links from other websites),
old bookmarks, etc. Tian et al. (2004) discovered that only 8.7% of the 404 errors
encountered were caused by external factors for SMU/SEAS. Despite this
conclusion, they did not provide convincing evidence that the majority of the
recorded errors are in fact from source content failures. Furthermore, these tables
shows that, although the 404 error type dominates, other error response codes also
exist; and while the 404 error type may dominate numerically, no analysis exists
as to the “value” (of the information) encoded within the various error types for
web site administrators. Therefore, all of the error codes encountered will be
examined to determine which errors are truly source content failures (have value)
and which are attributed to other uncontrollable factors (no value). For example,
the 404 response errors have no value for Site A because all of the 404 recorded
errors are caused by factors outside of the site administrator’s control whereas the
503 error response code is high in value – the site administrator is expected to
respond and correct the 503 errors immediately due to the potential loss in sales
and customers that this error code can cause.

One common argument is that if information is available, external failures can
also be resolved. This argument is not valid for several reasons. A site
administrator can only be reactive to external failures rather than being proactive.
That is, until an external failure occurs, a site administrator will not have enough
information to resolve that failure. Furthermore, depending on circumstances, the
failure may not be resolvable. For example, an external website has a link to a
web page on the web system under examination. However, due to recent changes,
that web page is no longer valid. The site administrator will not be aware of this
issue until a user follows the link from the external website. Once the failure
occurs, the site administrator can attempt to resolve it by attempting to contact the
external website’s Webmaster to get the link updated. However, this process
requires cooperation from the external website’s Webmaster. Furthermore, the
process becomes tedious when there are thousands of websites linking to this
invalid web page. The site administrator can also attempt to redirect the user to
the correct page. However, this requires the site administrator to have a complete
mapping of all invalid pages to valid pages which is clearly infeasible. Because
of these potential issues, the site administrator cannot resolve external failures
adequately.

93

Based on the information above, the error response codes can be associated to one
or more failure sources. Table 5.6 displays this association for the error codes
discussed. Error codes that do not have an association with a source content
failure or host failure will not be investigated because they are beyond content
providers’, or website administrators’, control.

Table 5.6 Failure sources for the error codes
Error code Host Source content Network or

browser
User and external

400
401
403
404
405
408
415
416
500
501
502 (IIS) (Apache)
503

Table 5.6 shows seven error codes, 401, 403, 404, 500, 501, 502 (IIS), and 503
that have either source content failure (SCF) or host failure as a potential failure
source; hence, these seven error codes will be examined in detailed in order to
determine their exact failure sources. Further, the 401, 403 and 404 error codes
have both source content failure and external failures as failure modes or sources.
After intensively investigating the log files for the two web sites under study (Site
A and ECE), it is discovered that, for these web sites, the source content failures
can be classified into two types:

• SCF1 – these are errors on the website that should be identified and
corrected by the site administrators or content providers. These errors can
be identified by close examination of the referrer field:

If the referrer field of an error contains the website’s URL, then the
error belongs to the SCF1 category.

• SCF2 – these are usually links from external websites pointing to an old

version of the website under investigation. This old version still exists on
the HTTP Daemon for archival purposes and has no connections to the
current website. Hence, it is not maintained and can contain many bad
links. When a user visits this old version – through search engines, old
bookmarks, old emails, etc. – and clicks on one of these bad links, the log
data will record that the error is caused by an internal source. Since, these
errors are under the direct control of system administrators, they are

94

classified as source content rather than external failures. However, an
argument can be made that they are of lower value than SCF1 type errors.
For example, for the ECE site, these errors are considered by the site
administrator as a “non-issue”; and a case can be made for either including
them or excluding them from reliability calculations. Errors belonging to
the SCF2 type can be identified using the following method:

For each error, the referrer URL should be noted and visited. If the
URL leads to an old version of the website, then the error is of SCF2
type.

External failure sources – which account for the majority of the failures – can also
be classified into two categories:

• ES1 – which are old links from external websites, search engines, old
bookmarks, etc. These external links can be detected based on the referrer
information - each entry in the log files contains a referrer field which
provides the web page that links to the content the user is requesting:

All 401, 403 and 404 errors having URLs – not from the same domain
as the website – or the character “-“ in the referrer field are of the ES1
type.

• ES2 – which are scanners being executed by attackers looking for known

vulnerabilities contained in various web applications. These scanners can
send spoofed information to the web server. The web server will generate
internal 401 or 403 errors if the web administrators have set up security
permissions for these applications, or internal 404 errors if the website
does not use these web applications. ES2 errors can be identified by close
examination of the errors:

If the requested resources belong to web applications not installed for
the website, then the errors are of ES2 type.

401, 403 and 404 errors belonging to the ES1 and ES2 types should be detected
and discarded during the data analysis phase. Tables 5.7 and 5.8 display the
percentages of the different failure categories for the 401, 403 and 404 error
codes, respectively. Due to unavailable information, the errors from the original
study cannot be classified into the types discussed. These tables show that ECE
(1 and 2) and Site A have extremely low (less than 0.5%) or no 401, 403, and 404
error codes as source content failures. All 500, 501, and 502 error codes were
discovered to be source content failures, which is expected because of the
associations shown in Table 5.6.

95

Table 5.7 Possible error codes for reliability analysis
Sites Error code
 401 403
 SCF1 SCF2 ES1 ES2 SCF1 SCF2 ES1 ES2
ECE1 0 0 6 (100%) 0 0 0 38 (86.36%) 6 (13.64%)
ECE2 0 0 4 (100%) 0 0 1

(0.47%)
164 (77.73%) 46

(21.80%)
Site A (Jan05) 0 0 3 (100%) 0 0 0 186 (98.94%) 2 (1.06%)
Site A (Feb05) 0 0 4 (40.00%) 6 (60.00%) 0 0 158 (97.53%) 4 (2.47%)
Site A (Mar05) 0 0 28 (100%) 0 0 0 193 (99.48%) 1 (0.52%)
Site A (Apr05) 0 0 17 (100%) 0 0 0 189 (99.47%) 1 (0.53%)
Site A (May05) 0 0 27 (100%) 0 0 0 130 (100%) 0
Site A (Jun05) 0 0 36 (100%) 0 0 0 213 (100%) 0
Site A (Jul05) 0 0 33 (91.67%) 3 (8.33%) 0 0 146 (100%) 0
Site A (Aug05) 0 0 25 (89.29%) 3 (10.71%) 0 0 193 (99.48%) 1 (0.52%)
Site A (Sep05) 0 0 13 (100%) 0 0 0 167 (100%) 0
Site A (Oct05) 0 0 12 (100%) 0 0 0 159 (100%) 0
Site A (Nov05) 0 0 19 (100%) 0 0 0 214 (100%) 0
Site A (Dec05) 0 0 13 (100%) 0 0 0 153 (98.08%) 3 (1.92%)
Site A (Jan06) 0 0 19 (100%) 0 0 0 230 (99.57%) 1 (0.43%)
Site A (Feb06) 0 0 19 (100%) 0 0 0 163 (99.39%) 1 (0.61%)
Site A (Mar06) 0 0 22 (100%) 0 0 0 239 (92.28%) 20 (7.72%)
Site A (Total) 0 0 290

(96.03%)
12 (3.97%) 0 0 2733 (98.77%) 34 (1.23%)

Table 5.8 Possible error codes for reliability analysis (cont.)

404 error code Sites SCF1 SCF2 ES1 ES2
ECE1 0 16 (0.01%) 135,950 (99.86%) 177 (0.13)
ECE2 0 10 (0.01%) 112,643 (99.90%) 98 (0.09%)
Site A (Jan05) 0 0 1,479 (98.60%) 21 (1.40%)
Site A (Feb05) 0 0 1,683 (97.74%) 39 (2.26%)
Site A (Mar05) 0 0 1,881 (97.06%) 39 (2.94%)
Site A (Apr05) 0 0 2,075 (97.83%) 46 (2.17%)
Site A (May05) 0 0 1,814 (98.11%) 35 (1.89%)
Site A (Jun05) 0 0 1,877 (97.76%) 43 (2.24%)
Site A (Jul05) 0 0 2,087 (96.71%) 71 (3.29%)
Site A (Aug05) 0 0 2,377 (97.10%) 71 (2.90%)
Site A (Sep05) 0 0 1,986 (98.41%) 32 (1.59%)
Site A (Oct05) 0 0 2,391 (98.23%) 43 (1.77%)
Site A (Nov05) 0 0 2,477 (98.10%) 48 (1.90%)
Site A (Dec05) 0 0 2,139 (96.22%) 84 (3.78%)
Site A (Jan06) 0 0 2,686 (97.39%) 72 (2.61%)
Site A (Feb06) 0 0 2,344 (90.08%) 258 (9.92)
Site A (Mar06) 0 0 2,983 (89.82%) 338 (10.18%)
Site A (Total) 0 0 32,279 (96.25%) 1,258 (3.75%)

Finally, Tables 5.9 and 5.10 display the error codes generated from source content
and host failures that will be used for reliability analysis in this study. This table
contains the 500, 501, 502, and 503 error codes in addition to a subset of the error
response codes from Tables 5.7 and 5.8. The 401 error code is not included in

96

this table because they do not contain any source content failures as shown in
Table 5.7. Tables 5.9 and 5.10 effectively demonstrate the low number of
“errors” of interest, or value, experienced by live web sites (ECE and Site A).
These numbers have significant implications of reliability analysis and models for
these types of systems.

Table 5.9 Error codes to be used for reliability analysis
Error codes Sites 403 404 500

ECE1 0 16 (69.565%) 7 (30.435%)
ECE2 1 (4.762%) 10 (47.619%) 10 (47.619%)
Site A (Jan05) 0 0 0
Site A (Feb05) 0 0 0
Site A (Mar05) 0 0 0
Site A (Apr05) 0 0 0
Site A (May05) 0 0 0
Site A (Jun05) 0 0 0
Site A (Jul05) 0 0 0
Site A (Aug05) 0 0 0
Site A (Sep05) 0 0 0
Site A (Oct05) 0 0 0
Site A (Nov05) 0 0 0
Site A (Dec05) 0 0 0
Site A (Jan06) 0 0 0
Site A (Feb06) 0 0 0
Site A (Mar06) 0 0 0
Site A (Total) 0 0 0

Table 5.10 Error codes to be used for reliability analysis (cont.)

Error codes Sites 501 502 503
ECE1 0 0 0
ECE2 0 0 0
Site A (Jan05) 0 0 0
Site A (Feb05) 0 0 0
Site A (Mar05) 0 0 0
Site A (Apr05) 0 0 0
Site A (May05) 0 0 6 (100%)
Site A (Jun05) 0 0 0
Site A (Jul05) 0 0 0
Site A (Aug05) 0 0 0
Site A (Sep05) 0 0 0
Site A (Oct05) 0 0 0
Site A (Nov05) 0 0 0
Site A (Dec05) 0 0 0
Site A (Jan06) 0 0 0
Site A (Feb06) 0 0 0
Site A (Mar06) 0 0 0
Site A (Total) 0 0 6 (100%)

97

This section discussed various different error codes and how they may or may not
contribute to reliability analysis. Care has to be taken when dealing with these
error codes as they do contain limitations that may affect the accuracy of a
reliability estimate. The next section will discuss the workloads and any
limitations they may have and how those limitations can further impact reliability
analysis.

5.3.3 Workload Analysis and Discussions
Table 5.11 contains the workloads for the four workloads explored by Tian et al.
(2004). Session count uses the standard two hours of inactivity to mark an end of
a session (Montgomery and Faloutsos 2001), while “session count 2” uses 30
minute of inactivity period which was also used in many previous studies
(Catledge and Pitkow 1995, Cooley et al. 1999, Fu et al. 1999, Goseva-
Popstojanova et al. 2004, Goseva-Popstojanova et al. 2006a-b, Menasce et al.
2000a-b). This 30 minute figure is based on a mean value of 25.5 minutes
(rounded up) determined by Catledge and Pitkow (1995). This figure is also
believed to be commonly used in many commercial web applications (Huang et
al. 2004). For example, Google Inc. uses the 30 minute timeout value for their
Analytics web application46.

Table 5.11 shows that when the timeout period is decreased, the session count
increases. This behaviour is expected because a shorter timeout period means that
some longer sessions will be split into multiple shorter sessions. Because the
number of errors remains constant, the increased session count means the
reliability estimation will increase. This effect can be seen in Tables 5.13 and
5.14. Hence, choosing the correct timeout period for the session count is
important if an accurate estimation of reliability is to be obtained. This table
shows that during the months of January to March 2006, there seems to be a
steady increase in traffic for Site A; this “increase in traffic” is expected because
there was a marketing campaign launched during this period to attract more users.
However, the three available data points are not sufficient to numerically prove
this conjecture.

46http://www.google.com/support/googleanalytics/bin/answer.py?hl=en&answer=55463 last
accessed May 18, 2008

98

Table 5.11 Workloads

Workload Sites
hit
count

byte
count

user
count

session
count

session
count 2

days

ECE1 369617 4531 Mb 53208 60922 72502 30
ECE2 347413 5874 Mb 59727 71141 82761 30
Site A (Jan05) 120699 2191 Mb 5015 5336 6036 30
Site A (Feb05) 108219 1953 Mb 4982 5353 6017 28
Site A (Mar05) 135282 2474 Mb 6175 6633 7572 31
Site A (Apr05) 117785 2229 Mb 5800 6144 6961 30
Site A (May05) 113304 2110 Mb 5539 5926 6707 31
Site A (Jun05) 120784 2309 Mb 5902 6220 6940 30
Site A (Jul05) 105950 2060 Mb 5664 5980 6715 31
Site A (Aug05) 112997 2068 Mb 5935 6321 7094 31
Site A (Sep05) 111592 1980 Mb 5680 6055 6905 30
Site A (Oct05) 117256 2167 Mb 6258 6749 7666 31
Site A (Nov05) 122300 2178 Mb 6321 6784 7574 30
Site A (Dec05) 107702 2042 Mb 5948 6303 7296 31
Site A (Jan06) 148865 2726 Mb 7325 7792 8724 30
Site A (Feb06) 134334 2653 Mb 6830 7255 8094 28
Site A (Mar06) 161266 3147 Mb 8233 8771 10405 31
Site A (Total) 1838335 34287 Mb 91607 97622 110415 453

In order to determine if any correlation between the workload characteristics
exists, Principal Component Analysis (Jolliffee 1986) was performed. Table 5.12
shows the results for Site A (Total), and Figure 5.2 shows the Scree plot. The plot
shows that only one component has an Eigen value over 1 and all other
components after Component 1 appear to level off. This suggests that only one
component is of importance. Results for the other websites (ECE1 and ECE2) are
a similar, but are omitted for brevity. These results show that all of the workload
characteristics are highly correlated which suggests that any workload
characteristic can be used for reliability estimation. However, website
administrators should select the workload characteristic most suitable for their
requirements.

Table 5.12 Correlation matrix
 hit

count
byte
count

user
count

session
count

session
count 2

hit count 1 0.95 0.91 0.91 0.91
byte count 0.95 1 0.92 0.92 0.91
user count 0.91 0.92 1 0.998 0.98
session
count

0.91 0.92 0.998 1 0.99

session
count 2

0.91 0.91 0.98 0.99 1

99

Figure 5.2 Scree plot

Tian et al. (2004) discussed the potential issues in using the byte count as a
workload because a variety of entries, including error entries, in the access log
that do not contain information on the number of bytes transferred. Upon further
investigation, they discovered that the missing entries are associated with binary
files already stored in the user cache. The byte count also treats large file size
resources as more important than smaller sized resources. For example, let’s
assume that resources A and B exist on a web server, and resource A is much
larger in size than resource B. A user, who requires both resources A and B,
attempts to retrieve these two resources. Resource A failing will have a greater
effect on the reliability estimation of the system, which is inappropriate because
the reliability of the server is the same regardless of the size of the resource.
Figure 5.3 shows the file size (in Kbytes) histogram for Site A which illustrates
this issue. The figure shows that the size of the resources on the furthest right is
equivalent to the combined size of many resources on the left side.

100

Figure 5.3 File size histogram for Site A

Other issues also exist with using the user count and session count as workloads
(Alagar and Ormandjieva 2002, Arlitt and Jin 1999, Rosentein 2000). In fact,
since web workload characterization was extensively examined by Arlitt and
Williamson (1997), many studies have been performed to further examine the
individual workloads (Arlitt and Jin 1999, Cherkasova and Phaal 1998, Menasce
et al. 1999, 2000). Tian et al. (2004) suggested that each unique IP address can be
counted as one user. However, with the current explosion in the number of
Internet users, the total amount of IP addresses available is shrinking rapidly.
Thus, many methods now exist that allow one public IP address to be used for a
group of machines; some of these methods include proxy servers, and personal
routers. Since the original study suggests counting one unique IP as a user, there
is a strong possibility that this “user” is actually a group of users. As personal
routers and proxy servers become more dominant this issue is also becoming
more prominent. The session count also suffers this same problem because “one
session” may actually be several sessions from several different users who are
sharing the same public IP. Thus, a methodology needs to be developed to
distinguish different users before accurate reliability analysis can be performed.
Websites can use cookies to track user and sessions more effectively by placing a
unique identifier and time related information inside the cookie. However,
limitations still exist, such as two users sharing the same machine to access the
website. The effectiveness of using cookies as a method to track user and session
workloads will be explored in the future.

Results from this section confirm issues with the extraction of workload data from
the server logs as discussed in the original study (Tian et al. 2004). Issues not
discussed in previous studies (Tian et al. 2004, Goseva-Popstojanova et al. 2006a-
b) such as file size bias and proxy servers, are also presented to ensure that web

101

administrators using this approach for reliability estimation are aware of these
limitations.

5.3.4 Reliability Analysis and Discussions
The failures and workloads can be applied to the Nelson model to evaluate the
overall operational reliability. Using equation (1), R, based on the hits workload,
was calculated for the websites under examination; the results can be seen in
Table 5.13. Not surprisingly, Site A, which has the highest reliability
requirement, has a high reliability rate during the 15 month period (99.997% of
the hits are successful). The sudden drop in reliability during May 2005 was
examined; upon closer investigation and discussion with the administrator, it is
discovered that a configuration setting was not set up correctly; hence the website
experienced several simultaneous server failures.

Table 5.13 Reliability analysis
Sites R
ECE1 0.999938
ECE2 0.999940
Site A (Except May05) 1
Site A (May05) 0.999947
Site A (Total) 0.999997

The hit reliability figures are consistent with previous studies (Tian et al. 2004,
Goseva-Popstojanova et al. 2004, 2006a-b) in that they are very high. However,
other workloads can be used to obtain different resolution for the reliability
figure. As discussed by Tian et al. (2004) reliability based on other workloads
(users, sessions, and bytes) can be calculated using:

w

w

n
fR −=1 (4)

where fw is the number of workloads with at least one failure recorded. For
example, fusers is the number of users who encountered at least one failure. nw is
the total number of workload units. Goseva-Popstojanova et al. (2004, 2006a),
using the Nelson model, discovered that reliability based on the session workload
is lower than reliability based on the hit count. However, there is no
straightforward relationship between hit reliability and session reliability
(Goseva-Popstojanova et al. 2006a); hence, web administrators should not use
these two metrics interchangeably. Table 5.14 displays reliability using the other
workloads. This table shows all workload units provide extremely high reliability
number due to the low error count associated with the websites under
investigation. However, the “days” workload characteristic contains rates that are
lower, especially for ECE (closer investigation revealed that the ECE website
experienced a high failure rate per day which results in the low reliability figure).
Hence, the advantage of the four workloads – being able to provide better
granularity than the daily error rate – is lost. In addition, significant issues still
exist in accurately estimating the four proposed workloads. Hence, any future
work on “live” (as opposed to test) websites should simply utilize days as their

102

basis unless there are specific requirements that force web administrators to use
other workload characteristics.

Table 5.14 Reliability analysis using the other workloads
Sites Rbytes Rusers Rsessions Rsessions2 Rdays
ECE1 1 0.999565 0.999622 0.999683 0.233333
ECE2 1 0.999648 0.999705 0.999746 0.300000
Site A (Except May05) 1 1 1 1 1
Site A (May05) 1 0.998917 0.998988 0.999105 0.806452
Site A (Total) 1 0.999935 0.999939 0.999946 0.986755

The mean workload between failures (MWBF) can also be calculated using the
model discussed in Section 5.1. This model may provide better estimation due to
the fact that it does not have the same limitations that the Nelson model has.
Furthermore, it allows web administrators to analyze failure based on time. The
original study calculated the MWBF by substituting the number of workloads
units for time, effectively using formula (3) for analysis; hence, this study also
uses this formula to calculate the MWBF for the websites under investigation.
The resulting MWBFs for the two websites can be seen in Table 5.15. Sites (or
months) with “n/f” experience no failures during the time period measured. The
MWBF data in Table 5.15 states that an error will be encountered for each of the
workload (bytes, hits, users and sessions) values specified. This table shows that
ECE1 has, on average, a failure for every 16,070 hits; Site A would experience
one failure after every 306,389 hits. Looking at the “days” column shows that
Site A does meet its reliability requirement of having no more than one failure per
month (except in May), whereas ECE experiences at least one failure every week
which is also expected.

Table 5.15 MWBF
Sites hits bytes users sessions sessions2 days
ECE1 16,070 1.97x1008 2,313 2,648 3,152 1.30
ECE2 16,543 2.80x1008 2,844 3,387 3,941 1.43
Site A (Except
May05)

n/f n/f n/f n/f n/f n/f

Site A (May05) 18,884 3.52x1008 923 987 1,117 5.17
Site A (Total) 306,389 5.71x1009 15,267 16,270 18,402 75.5

The MWBF calculated using the second MTBF formula can only provide a rough
estimate of the actual MTBF. Although using the workload units as a substitute
for time is a reasonable method in situations where the time is not available, for
this analysis, the time can be calculated from the daily failure. That is, MTBF (in
hours) = 24×(daily failure rate).

ECE is an academic website; hence it is not surprising to see its MTBF to be at
31.2 hours (1.3 days) and 34.3 hours (1.43 days) as opposed to Site A which has a
MTBF rate of 1,812 (75.5 days) hours for the entire 15 months. Again, the low

103

MTBF (relatively) rate for Site A during May 2005 can be attributed to the web
application upgrade issue.

This section shows that reliability can be estimated from server logs and
expressed in different metrics. Different reliability metrics have been examined
to provide system administrators with the flexibility of selecting the correct metric
based upon the requirements. For example, the requirements of Site A and ECE
were expressed in terms of failures per month. Hence, system administrators for
these websites can choose the MTBF to express their estimated reliability.

5.3.5 Limitation of Log Files
Although log files can provide failure information, reliability can only be
estimated from them. The actual reliability cannot be computed solely from web
servers’ log files due to several issues. The workload information cannot be
accurately computed as mentioned in Section 5.3.1. However, with the help of
web technology such as cookies, developers are beginning to be able to track the
user session count and user count more accurately. Techniques on identifying the
correct timeout value for the session workload are also being discussed by various
researchers (He and Goker 2000, Huntington et al. 2008). As these technologies
and new techniques are being utilized, more accurate workload data will be
gathered which will increase the accuracy of reliability estimation.

Furthermore, errors that are not recorded in the log files may lead to an inflated
reliability figure. For example, a website’s link may point to an incorrect web
page rather than a missing one. This type of error requires human intervention as
the error is only defined by a deviation from the specification rather than an
exception. That is, the error codes in the server logs can only identify resource
availability issues such as missing resources, moved resources, etc., and not
whether the resources contain incorrect content. In this scenario, an error would
not be recorded in the log files and the error would only be known when the
customer reports the issue. Reliability estimation based on log files alone would
not include this error. Because the link is available, automated web crawlers
would not be able to detect this error. In fact, this scenario requires manual user
intervention to detect the error; hence the error would have to be added manually
to the data to increase the accuracy of the proposed reliability estimation method.

104

This page is intentionally left blank.

105

Chapter 6 – Empirical Observations on the Session
Timeout Threshold
One of the most popular units used to analyze traffic, workload and user
behaviour is the session. For example, Chen et al. (2003) presented several
algorithms that allow web miners to efficiently calculate the number of user
sessions with some session timeout threshold (STT). Pallis et al. (2005) proposed
a technique to discover relationships between user sessions; the user sessions
were identified using Chen et al. (2003)’s proposed technique. The session
measure has also been investigated by many researchers (Goševa-Popstojanova et
al. 2004, 2006a, 2006b; Arlitt and Williamson 1997, etc.). However, no model
has been proposed to estimate the STT used to generate session length data.

Many other studies have also concentrated on determining various session-related
workloads based on a predefined constant value for STT. For example,
Montgomery and Faloutsos (2001) defined STT to be 2 hours long. Tian et al.
(2004) used 15 minutes and 2 hours as two different STTs; these two STTs were
then applied to both websites investigated in that study. Chen et al. (2003) and
Goševa-Popstojanova et al. (2006a) assigned the STT value to be 30 minutes and
use it for all websites in their studies. This 30 minute value is also used by other
researchers (Berendt et al. 2001, Spiliopoulou et al. 2003, Mahoui and
Cunningham 2000, Mat-Hassan and Levene 2005). Furthermore, this 30 minute
figure is commonly used in many commercial web applications (Huang et al.
2004). For example, Google Inc. uses the 30 minute timeout value for their
Analytics web application47. This figure is based on a mean value of 25.5 minutes
(rounded up) determined by Catledge and Pitkow (1995). While this standard
period is often used, it is far from obvious that it provides any meaningful
guidance in estimating user session lengths. In fact, a recent study shows that
session lengths can be as long as 6 hours and 32 minutes, the average period spent
on RuneScape.com. Furthermore, with the advent of AJAX (Garrett 2005) and
other interactive technologies, the session length values will be further impacted
as websites’ interactivity features begin to rival that of desktop applications.
Hence, using the same STT for all websites may not lead to accurate results.

This chapter has the following contributions:

• A model, based on empirical observations, for estimating the STT is
presented. Although the model has limitations, it provides an initial step
that will allow future studies to expand upon. Furthermore, this model is
proven to be applicable at many different resolutions and to two uniquely
different websites.

• The concept that STT varies for each website is empirically proven. This
encourages future research on web server logs to be performed using a

47http://www.google.com/support/googleanalytics/bin/answer.py?hl=en&answer=55463 last
accessed August 21, 2008

106

customized STT value per website rather than a constant that’s applied to
all websites.

• Empirical investigation on data sets with very long collection periods.
The benefits are discussed in Section 6.4.

The remaining sections of this chapter are organized as follows: Section 6.1
discusses current approaches used to identify STT. The new session threshold
timeout model is proposed in Section 6.2. Section 6.4 provides a brief description
of the websites under investigation, and the properties and characteristics of these
websites. The results for this model when applied to the websites under
investigation are discussed in Section 6.4.

6.2 Related Works
Other approaches have been proposed to calculate STT. For example, Catledge
and Pitkow (1995) determined the STT to be 25.5 by claiming that the most
statistically significant events occurred within 1.5 standard deviations (25.5
minutes) from the mean between each user interface event which was 9.3 minutes.
However, no definition of “significant events” was supplied; and why 1.5
standard deviations is selected is never discussed. More importantly, only four
percent of the accessed web pages were dynamic pages. Hence, the investigation
was heavily based on static web content, which is increasingly rare in modern
applications.

He and Goker (2000) performed an empirical investigation of the session value by
initially setting STT to a very large value, then slowly decreasing it until they
achieved a stable point where the number of activities remains stable for both
short sessions and long sessions. However, the data used was very limited. Not
only that, they provided no formal definition of the stable point of the system and
provided a range of values of “somewhere between 10 – 15 minutes” for STT.
They also claimed that this range is suitable for all websites on the World Wide
Web. This finding is questionable because of niche specific websites that can
attract different user demographic groups. For example, users visiting
www.youtube.com can spend a long period online watching various video clips;
while visitors of www.onlineconversions.com would use the site to perform quick
metric conversions and quickly finish their sessions. Huang et al. (2004)
proposed a dynamic approach to determining STT. Basically, the approach tries
to detect general behavioural patterns of web-site usage. The approach assumes
that these patterns can be approximated by sequences of hypertext interactions. A
session “ends” when a user deviates from a learned pattern. However, an
approach to determine the parameters used and how session identification results
can be measured are not discussed. Not only that, the time for learning or
discovering patterns is unknown and the site cannot be updated as the learning
needs to be repeated whenever evolution takes place.

Huntington et al. (2008) proposed a set of STTs based on the content retrieved by
the user. They demonstrated that the STT for each content type can be retrieved
based on the estimated view time (the time between the logged request to

107

download the article and the next request) from the server log files. However, the
method used to estimate the view time has several limitations. If the user requests
a page, reads it, then closes the browser window without performing any
additional action then the estimated view time would be inaccurate. Furthermore,
most web pages contain multiple content types. For example, a web page can
contain both a Menu content type and an Abstract content type; the authors do not
discuss a method for classifying these pages and how the STT can be retrieved
from these multiple content pages.

While the previous papers successfully introduced the idea of a session timeout
threshold, their treatment of the concept was either exceptionally brief, imprecise
or contained many unsolved issues. Given, the relative importance of this metric,
it is believed that this situation needs to be urgently resolved. However, no simple
unique definition of this concept is likely to exist; and hence a protracted
investigation is required.

6.3 Observations of the STT and the Proposed Model
A session is defined as a sequence of actions undertaken by a user within a period
of time. Sessions offer much finer grained information than the standard number
of users metric. However, because the Hyper Text Transfer Protocol (HTTP) is a
stateless protocol, session information cannot be easily captured. Hence, web
applications often use session-based technology such as cookies (Kristol and
Montulli 2000) to simulate a stateful connection to the user. In order to determine
when a session ends and the next one begins, a session timeout threshold (STT) is
often used. In other words, a STT is a pre-defined period of inactivity that allows
web applications to determine when a new session occurs. That is, let t equal the
session timeout threshold and s is the set of sessions:

∀s∈SessionsFor(user) • (session_time_start(si+1) – session_time_end(si)) ≥ t

For web server logs, the STT is determined by the time between the current
request and the previous request.

The user session metric is particularly interesting to web mining researchers
because they provide finer grain of information than the usual user count.
(Menascé et al. 1999), Arlitt and Williamson (1997) and Pitkow (1999) have
noted that the number of sessions is directly dependent on t. Hence, it is
important to select the correct t in order for the number of sessions to be estimated
accurately.

A STT is best viewed as a “design parameter”, a mechanism for website workload
evaluation rather than a concept with an absolute definable theory. Hence, this
discussion is best considered as an attempt to produce an initial model that will
allow web administrators to estimate this design parameter for their websites.
From a philosophical viewpoint, the definition of session timeout threshold has
many of the characteristics of a “wicked problem” (Rittel and Webber, 1973).

108

That is, the problem has many complexities such as changing, incomplete or
contradictory requirements. Hence, any solution will experience significant
limitations. In fact, sessions and session timeout threshold are clearly ideas more
in line with Simon’s (1996) “sciences of the artificial” than “sciences of the
natural”. In this situation, practitioners seek “good enough” solutions rather than
optimal solutions; or satisficing to utilize Simon’s term from economics (Simon,
1955). This research recognizes these limitations.

Empirical observations of the number of sessions versus the STT show that the
estimation of STT can be viewed as a partitioning problem. The problem can be
approached as a question of defining two regions or surfaces (S1 and S2), which
represent the lengths before and after the threshold value (xi) respectively. In
addition, the number of sessions obviously monotonically declines as STT
increases. Within each region, the data points are “relatively stable and vary
smoothly.” S1 represents a potentially steeply declining curve, where the choice
of session length has a significant impact upon the result. S2 is in fact two
segments (S2 and S3); S2 can be characterized as a linear segment with a “gentle
gradient”; the choice in session length has limited impact in this region. Whereas
S3 is a second linear segment with no gradient; and can effectively be modeled by
the constant number of sessions that it represents which is equal to the number of
users and is the lower bound of the system. In terms of the model and its usage,
the S3 curve is unimportant and hence is not actively considered. The behavior
across S1 and S2 can be modeled as a rate of change statement, or, more
specifically, as a requirement to minimize the rate of change of the curvature
across S1 and the rate of change of the gradient across S2.

Hence, the problem can simply be recast as a question of finding the threshold
value that minimizes the overall rate of change of the system given that the
system consists of two separate regions. Although this study also uses the
minimal change as the STT as proposed by He and Goker (2000), a mathematical
model, which is lacking in the previous study, is now presented to describe this
minimal change.

Mathematically, let f be a function which maps STTs to the number of sessions;
where wi are weighting term. The objective becomes:

})()({ 2''2

0

'''

1

2211min dxxfwdxxfw
i

i

i x
ss

x

ss
x

∫∫
∞

+

+ (1)

In addition, the above model can be viewed as combining two different sets of
workload information:

1. Users that briefly visit the website: These users visit the website for a very
short period of time. Some of these users include users who do not plan to
utilize the website. They are often directed to the website via a query
entered into a search engine; however the site does not meet their
requirements, but their decision cannot be made without them initially
entering the site. Hence, on average, the sessions of users who briefly
visit the site are extremely short and it is debatable whether these “visits”

109

should be considered as genuine sessions. Commonly these users only
have a single interaction with the web-site; these visits can be viewed as
having zero duration.

2. Users that explicitly want to interact with the website: These users
actively interact with the website and often travel multiple web pages
before finishing their session. Some of these users include users who are
purchasing a product through an online store. These users will visit
multiple web pages looking for product information before purchasing the
item through an interactive shopping cart. Here the websites meet the
users’ requirements and provide information or services that actively
engage the users. On average, these sessions are more extended than
sessions of the first workload information.

It is far from obvious that this model should include data from both information
sets; however, any partitioning is guaranteed to be less than perfect. The model
can be trivially extended to accommodate this possibility by replacing the
constant lower bound of the first integration term.

Finally a suitable basis for the weighting terms needs to be defined.
Unfortunately, no obvious theoretical basis exists. S2 should possess a significant
length, and hence a weighting function as a function of the inverse of the length of
this region seems appropriate. However, it is not clear that this concept yields any
suitable formulation for S1. For this study’s estimations,

1
21
== ss ww

Hence, the reformulated model is:

})()({ 2''2'''

1

21min dxxfdxxf
j

i

i

hi

x

x
s

x

x
s

x
∫∫
+

+ (2)

where ;;0 jih xxxh <<≥ and 0)(2''

1

3
=∫

∞

+

dxxf
jx

s

While the model is now complete, it clearly has limitations in terms of numerical
stability given the estimation of higher-order differentials. For elongated data
collection periods, this should not present a problem because the aggregated data
will, in general, experience an averaging or smoothing effect. However, for short-
term data, it is expected that the data will deviate from long-terms norms and can
be viewed as more “noisy”. Hence, there exists a strong possibility that such
short-term data may require a smoothing approximation before the data is
presented to the model. Based on the model discussed, a proposal is made to
describe STT as the upper bound of the range denoted by the boundaries between
S1 and S2, which is value at xi+1 in the presented model.

6.4 Description of the Websites under Investigation
This study will investigate server logs from two websites. The first website is a
website for a company that specializes in online databases (Site A). This website
is a commercial website that is very critical to Company A’s operation. The

110

website utilizes the PHP (http://www.php.net) scripting language, MySQL48 for
the backend database and is hosted on an Apache HTTP Daemon49. In order to
observe potential trends and patterns for this website, the log files chosen cover
27 months of operation from December 2004 to February 2007. This website
represents a typical business website. That is, the site is a dynamic website with a
mixed amount of static and dynamic pages – these are pages generated
dynamically depending on the customers’ inputs; its users are customers who are
either looking to purchase a product or to register for a training course. The
website contains several online databases. Users are charged for the time used to
access these databases; these subscriptions are a main source of revenue for the
company which is why the website is very critical to the organization. For the 27
months covered, Site A received approximately 3.6 million hits transferred 67
Gbytes of data.

The second website is www.ece.ualberta.ca, the website for the Department of
Electrical and Computer Engineering at the University of Alberta. This site,
although important to the organization, is non-commercial and not mission
critical. This website is a dynamic website that utilizes the ColdFusion50 scripting
language, and the Apache HTTP Daemon. To investigate the data, the log files
were chosen to cover 11 months of data. For this period, the ECE website
received approximately 2.42 million hits, 203,896 “unique” visitors and
transferred a total amount of 22.6 Gbytes of data. The data from this second
website serves as a check to ensure that the trends observed with Site A are not
unique to one particular website.

The log files under investigation are stored in the Common Log Format (CLF)51
for ECE and the Combined Log Format52 for Site A. To provide maximum
flexibility with the analysis, a custom log parser was created in Ruby. All
necessary information was extracted and imported into a DBMS. The approach
used can be seen as a deep log analysis technique (Nicholas et al. 2000, 2006a,
2006b). The session length estimation requires at least two requests: one to mark
start time of the session and one to mark the end time of the session. Hence, all
users with only one request are removed from the log files. That is, all IPs that
only have one record in the data are removed. A total of 10,938 users and 28,336
users are removed for Site A and ECE respectively.

Table 6.1 provides a summary of the properties of the logs used in previous
studies and this study. Websites with an asterisk are commercial websites.

48 http://www.mysql.com, last accessed February 7, 2010
49 http://httpd.apache.org, last accessed February 7, 2010
50 http://www.macromedia.com/software/coldfusion, last accessed February 7, 2010
51 http://httpd.apache.org/docs/1.3/logs.html#common, last accessed February 7, 2010
52 http://httpd.apache.org/docs/1.3/logs.html#combined, last accessed February 7, 2010

111

Table 6.1 Properties of log files used in previous studies
 Log duration Requests Bytes Transferred

Waterloo 8 months 159 thousands 1.7 GB
Calgary 1 year 727 thousands 7.6 GB
Saskatchewan 7 months 2.4 millions 12.3 GB
NASA 2 months 3.5 millions 62.5 GB
ClarkNet* 2 weeks 3.3 millions 27.6 GB

Arlitt and
Williamson
(1997)

NCSA 1 week 2.5 millions 28.3 GB
Berendt et al.
(2001)

University 12 days 175 thousands n/a

NASA-Pvt1 20 weeks 23 thousands 0.5 GB
NASA-Pvt2 20 weeks 92 thousands 0.2 GB
NASA-Pvt3 20 weeks 489 thousands 2.2 GB
NASA-Pub1 20 weeks 93 thousands 9 GB
NASA-Pub2 20 weeks 732 thousands 6.7 GB
NASA-Pub3 20 weeks 108 thousands 4.6 GB
CSEE 6 weeks 5.8 millions 80.9 GB
WVU 3 weeks 37.9 millions 97 GB
ClarkNet* 2 weeks 3.3 millions 27.6 GB
NASA-KSC 2 months 3.5 millions 62.5 GB

Goševa-
Popstojanova
et al. (2006a)

Saskatchewan 7 months 2.4 millions 12.3 GB
WVU 1 week 15.8 millions 34.5 GB
ClarkNet* 1 week 1.7 millions 13.8 GB
CSEE 1 week 397 thousands 10.1 GB

Goševa-
Popstojanova
et al. (2006b)

NASA-Pub2 1 week 39 thousands 0.3 GB
Excite* 50 minutes 51 thousands n/a He and

Goker
(2000)

Reuters* 9 days 9.5 thousands n/a

Huntington
et al. (2008)

OhioLINK 12 months n/a n/a

SMU/SEAS 26 days 763 thousands 7.8 GB Tian et al.
(2004) KDE 31 days 14 millions 110 GB

Site A* 27 months 1.9 millions 33.5 GB This study
ECE 11 months 2.4 millions 22.6 GB

This table shows that the longest period that previous studies have collected data
is over a 12 month period, compared to 27 months in this study. Furthermore,
many of the previous studies are not performed on a commercial website. For
studies that use logs from commercial websites, the periods covered are extremely
short (50 minutes to 2 weeks). This study investigates the log file from a
commercial website for a much longer period (27 months). Hence, it is believed
that this study presents the first long-term analysis of a commercial website. This
long data period provides several benefits over short data periods.

• A short data collection period cannot truly capture users’ behaviors
because their behavior is by definition variable and only a single snapshot

112

of their behavior is likely to be captured with the short data collection
period. For example, a new user to a Wiki may simply read articles, once
familiar with the website the user may choose to participate in other
activities such as posting comments, providing feedback or even editing
articles.

• An organization’s behavior also affects its website traffic patterns.
Advertising campaigns, various public announcements will often increase
the amount of traffic. For example, GoDaddy.com’s website experienced
a 1500 percent increase in traffic following its Super Bowl ad campaign.
Other websites advertised during Super Bowl Sunday also had their traffic
increased. Short term collection either overstates these actions if it is
performed near a major activity or understates them if performed far from
the activity.

• Well known trends and periodic patterns such as the “weekend effect” will
distort short term collection resulting in skewed data. In fact, Arlitt and
Jin (2000) have demonstrated that websites have very different workload
intensities on weekdays versus weekends. Hence, if the data period is
short, the analysis will be skewed by such effects.

• Major web events will also affect the data sets gathered within a short time
frame. For example, popular YouTube videos are known to result in
millions of hits to YouTube’s website within a short period of time before
the site’s traffic returns to normal. A website being mentioned on another
popular website such as Slashdot will also cause the website’s traffic to
increase. This is commonly known as the Slashdot effect.

• Short collection periods can experience distortion due to either higher than
normal or lower than normal activities from robots. For example, many
ticket scalpers use robots to automatically purchase event tickets from
Ticketmaster when they first go on sale. This is especially true for popular
events where tickets can be sold within minutes of being available online.
Short collection periods would result in skewed data from the activities of
these robots.

• Users have very low brand loyalty. If quality of service (such as response
period) is poor, users leave quicker than normal (the inverse will be at
some-level true) – this impacts session statistics and again short-collection
periods can get skewed because of the quality of service differing from the
long-term norm. For example, a user many visit a website during
maintenance which may cause the website to response much slower than
usual. The quality of service during this maintenance period cannot be
considered as the normal QoS for the website.

6.5 STT Results and Discussions
In order to apply the model discussed, the effects that different threshold values
have on the total number of sessions are calculated for the two websites under
investigation. The explored STT values are from 1 to 120 minutes in 1 minute
intervals. To search for repeating effects, four different resolutions are
investigated: days, weeks and months.

113

6.5.1 Removing Automated Requests
While applying the model, it was discovered that robots and other automated
systems used to request resources need to be removed from the server logs in
order for the model to be used effectively. That is, systems that automatically
request a resource from the website after a set period of time will cause the
model’s description of the regions to be incorrect. For example, Figure 6.1 shows
the number of sessions versus STT before the removal of several site monitoring
systems from the log files for Site A.

6000

7000

8000

9000

10000

11000

12000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

STT

Nu
m

be
r o

f S
es

si
on

s

Figure 6.1 Number of sessions versus STT before removal of monitoring

systems

This figure shows many distinct regions. Close examination of the server log
reveals that two monitoring services are used to monitor the website’s status. The
first service requests a resource from Site A every 30 minutes while the second
service requests a resource from Site A every 66 minutes. Removal of these
records from the server logs was simple because the resources these services
request are unique and are not publicly available. ECE’s log files were also
parsed to remove robots that automatically request the “robots.txt” resource every
60 minutes.

Although, it is infeasible to remove all automated requests from the server logs,
web administrators need to remove all identifiable requests. Several techniques to
identify them can be used by web administrators to remove automated requests.

114

Most well known robots have a signature line that is included with every request
as part of the USER AGENT field of the log file. For example, “Googlebot-
Image/1.0” can be used to identify a robot from Google that is indexing the
website’s images. For web monitoring services, web administrators can simply
dedicate a special resource that only these services can access. This resource can
then be easily identified within the log files. Armed with adequate information,
web administrators can eliminate most automated requests from the server logs
which will enable the STT to be estimated more accurately. For the two websites
under examination, 77,530 automated “users” are removed from ECE and 34,625
automated “users” are removed from Site A.

6.5.2 Day Resolution Investigation
One hundred weekdays and fifty days on the weekends for each website were
randomly chosen for this investigation. Two sample day graphs for the websites
can be seen in Figures 6.2-6.3.

150

170

190

210

230

250

270

290

310

330

350

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

N
um

be
r o

f S
es

si
on

s

Figure 6.2 A random Site A day

400

500

600

700

800

900

1000

1100

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

Nu
m

be
r o

f S
es

si
on

s

Figure 6.3 A random ECE day

Informal observations show distinct surface regions in Figure 6.2 and 6.3 which
suggests that the model is applicable at this resolution. Hence, the model was
applied and the xi+1 (STT) results for each website were obtained. Unfortunately,
nothing is known about the distributional characteristics of this value, and hence
both parametric and non-parametric measures are utilized to explore this concept.
The results, presented in Table 6.2 and Figures 6.4 to 6.7, show that the two
websites have very different workload intensities and behaviors, which suggests
that they are unlikely to share the same STT value.

115

Table 6.2 STT for day resolution

 Site A -
Weekdays

Site A -
Weekends

ECE -
Weekdays

ECE -
Weekends

Mean 5.24 3.68 9.72 8.96
Mean st.err 0.213 0.160 0.392 0.517
Median 5 4 9 8
Variance 4.528 1.283 15.396 13.386
St.Dev 2.128 1.133 3.924 3.659
Minimum 2 2 2 2
Maximum 12 6 25 16
Range 10 4 23 4
Skewness 0.886 0.322 0.776 0.111
Skewness st.err 0.241 0.337 0.241 0.337
Kurtosis 0.379 -0.377 1.828 -0.580
Kurtosis st.err 0.478 0.662 0.478 0.662

Figure 6.4 STT Histogram for Site A

at Weekdays Resolution

Figure 6.5 STT Histogram for Site A

at Weekends Resolution

Figure 6.6 STT Histogram for ECE

at Weekdays Resolution

Figure 6.7 STT Histogram for ECE –

Weekends Resolution

116

These results show that the values at xi+1 are not stable and vary depending on the
day under observation. This is expected because web workloads (similar to other
workloads) have day and weekly periodicity; hence different days in the week
usually have different workload behaviors and intensities. In order to determine
differences between the weekdays versus weekends data sets, an F-test was
performed using 50 random samples from the weekday and weekend data sets.
Table 6.3 displays the results.

Table 6.3 F-Test
 F p-value d.f.

Site A 3.8664 < 0.001 49
ECE 0.9599 0.44 49

The results show that the null hypothesis (the weekdays and weekends workloads
are the same) can be rejected for Site A. However, for the ECE data sets, the
results are much less clear.

The mean xi+1 value for Site A is less than ECE; furthermore, Site A, with a
standard deviation of 2.13 for weekdays and 1.13 for weekends, has a tighter
spread of values compared to ECE. The STT is smaller on weekends for both
websites which further confirms web traffic generalization as discussed by Arlitt
and Jin (2000) and Pitkow (1999). The differences in results may be attributed by
the different user profiles the two websites experienced. A hypothesis can be
proposed based on the fact that users are charged for usage time for Site A, hence,
the STTs are generally shorter. Clearly, this hypothesis needs more exploration
before it can be confirmed.

The results seem to empirically demonstrate that the threshold does exist for this
“fine resolution” data; while some variation exists the results by no means look
random or unsystematic. Using SPSS, several Q-Q (Quantile-Quantile) plots for
the following distributions were examined: Chi-square, Exponential, Gamma,
Half-normal, Laplace, Lognormal, Normal, Pareto, Student t, Weibull, and
Uniform. The estimated STT data shows a “reasonable” fit to several of the
distributions; Figures 6.8 and 6.9 show the Q-Q plots for two “possible”
distributions, Normal and Gamma respectively.

117

Figure 6.8 Normal Distribution Q-Q

plot for ECE

Figure 6.9 Gamma Distribution Q-Q

plot for Site A

This possibility is explored more formally, but only for a normal distribution. The
Shapiro-Wilk test (Shapiro and Wilk 1972) was applied to the data sets. This test
was selected as it tends to be more powerful than other common normality tests,
such as Anderson-Darling and Kolmogorov-Smirnov (Stevens and D’Agostino
1986), and does not require that the mean or variance of the hypothesized normal
distribution to be specified in advance. Table 6.4 displays the results using the
Shapiro-Wilk test function in SPSS. The results show that three of the four p-
values for both websites are less than 0.05; hence, these three data sets are
(probably) not normally distributed.

Table 6.4 Shapiro-Wilk test
 Coefficient p-value d.f.

Site A - Weekdays 0.92 < 0.001 99
Site A - Weekends 0.91 < 0.001 49
ECE - Weekdays 0.95 < 0.001 99
ECE - Weekends 0.97 0.149 49

6.5.3 Week Resolution Investigation
In order to examine the week resolution, 50 random weeks were chosen for Site A
and 25 random weeks were chosen for ECE. Figures 6.10 and 6.11 show the
number of sessions versus STT for two of the weeks.

118

2000

2200

2400

2600

2800

3000

3200

3400

3600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

N
um

be
r o

f S
es

si
on

s

Figure 6.10 A random week for Site

A

4000

5000

6000

7000

8000

9000

10000

11000

12000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

Nu
m

be
r

of
 S

es
si

on
s

Figure 6.11 A random week for
ECE

As was expected, on average, the week resolution curves are smoother than the
day resolution curves. However, Figures 6.10 and 6.11 still clearly display distinct
surface regions which, again, suggest the applicability of the model. The xi+1
(STT) results from applying the model to these random weeks are shown in Table
6.5 and Figures 6.12 – 6.13.

Table 6.5 STT for week resolution
 Site A ECE
Mean 4.571 8.002
Mean st.err 0.157 0.361
Median 7 5
Variance 1.208 3.250
St.Dev 1.099 1.803
Minimum 3 6
Maximum 8 12
Range 14 6
Skewness 0.111 1.067
Skewness st.err 0.340 0.464
Kurtosis 1.107 -0.162
Kurtosis st.err 0.668 0.902

Figure 6.12 STT Histogram for Site

A at the Week Resolution

Figure 6.13 STT Histogram for ECE

at the Week Resolution

119

These results show that the STT for both websites have settled between the STT
for weekdays and weekends. This is expected because of the averaging effect.
However, Site A and ECE still have different STT values, which mean that the
STT should not be a single constant for all websites at this resolution. Q-Q plots
for several distributions at this resolution have broadly the same results as the day
resolution.

Table 6.6 Shapiro-Wilk test for the week resolution
 Coefficient p-value d.f.

Site A 0.85 < 0.001 49
ECE 0.80 < 0.001 24

Table 6.6 shows results from the Shapiro-Wilk test which again implies that both
data sets possess data which is probably non-normal.

6.5.4 Month Resolution Investigation
Figures 6.14 and 6.15 show two sample graphs for ECE and Site A at one month
resolution. In total, all 27 months were investigated for Site A, and all 11 months
were investigated for ECE.

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

Nu
m

be
r

of
 S

es
si

on
s

Figure 6.14 A random month for Site
A

10000

20000

30000

40000

50000

60000

70000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

STT

Nu
m

be
r o

f S
es

si
on

s

Figure 6.15 A random month for
ECE

Initial observations show that Figure 6.14 displays a seemingly smooth curve due
to the averaging effect. However, Figure 6.15 displays visible distinct surfaces as
described in the model. Determining t by casually observing the figures is now
difficult and error-prone. Using the provided model, the xi+1 (STT) values can be
calculated for all the graphs. Table 6.7 and Figures 6.16-6.17 display the results
from the calculations. Q-Q plots for various distributions at this resolution again
show broadly the same results as obtained in the week and day resolutions.

120

Table 6.7 STT for month resolution

 Site A ECE
Mean 5.001 8.455
Mean st.err 0.207 0.638
Median 5 7
Variance 1.154 4.473
St.Dev 1.074 2.115
Minimum 4 6
Maximum 7 12
Range 3 6
Skewness 0.402 0.659
Skewness st.err 0.448 0.661
Kurtosis -1.414 -1.359
Kurtosis st.err 0.872 1.279

Figure 6.16 STT Histogram for Site

A at the Month Resolution

Figure 6.17 STT Histogram for ECE

at the Month Resolution

Table 6.8 Shapiro-Wilk Test for the month resolution
 Coefficient p-value d.f.

Site A 0.79 < 0.001 26
ECE 0.83 0.023 10

The results show that both the variation and the range are reduced with the
increase in the collection period; and that the possibility exists that any estimation
of t at this level of resolution might be considered as a “long-term” norm.
However, this can only safely be performed if the administrator knows that there
have been no major modifications to the website, which may affect its users’
behaviors or the usability of the website. That is, if the operational profile of the
website remains stationary. For example, an online store may add a “Users’
Review” section which causes users to spend more time at the store to read the
reviews. If an administrator uses a one month period before this feature is added,
the t value calculated from xi+1 will be different than the one month period after
this feature is added. Table 6.8 shows the results from the Shapiro-Wilk test; and

121

at this resolution, data from both web sites needs to be considered as again
(probably) non-normal. An investigation of the behaviour of STT for the total
period of investigation for both web sites repeats the previous patterns; the details
are omitted for the sake of brevity.

122

This page is intentionally left blank.

123

Chapter 7 – Investigating the Distributional
Property of the Session Workload
Many researchers have investigated the session workload. However, the
investigations into the distributional properties of the session workload lack
rigorous analysis. In fact, Goševa-Popstojanova et al. (2006a, 2006b) is the only
known study to provide a detailed analysis of the measure’s characteristics.
However, this study only considers “are session lengths sampled from a heavy-
tailed distribution” without convincing evidence that this characterization is
definitive. The implications of whether the session length is heavy-tailed can
have a significant impact on the formulation of many website models. For
example, Tian et al. (2004) proposed a reliability model for websites based on a
short-tailed distribution which would be invalid if the session length is heavy-
tailed. Furthermore, let’s consider constructing a simple reliability model of a
website. If we assume that the probability of any software failure per input or hit
is constant, p, we have a simple binomial process. The number of failures fn after
n inputs is given by the binomial distribution:

knk
n pp

k
n

kfP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==)1()((1)

Therefore, the probability of the system failing after n hits occurs whenever fn >0.
Hence,

n
nn

p

fPfP

)1(1

)0(1)0(

−−=

=−=>
 (2)

The system administrator might want to think about the defect rate of the system
as a function of time rather than as a function of the number of inputs or hits.

Atn pp)1(1)1(1 −−=−− (3)

where A is the average inputs per time unit (t). Further, considering the data
presented in the previous sections, p is obviously small and n is obviously large
allowing the binomial process to be approximated by an exponential distribution.

Atpe−−=1 (4)

If the distributional property is heavy-tailed, this model would be invalid because
the average inputs per time unit A is infinite. These types of models are neither
new nor unique to reliability. Many dynamic characteristics of websites may be
approximated by such models. However, if the workloads are heavy-tailed, many
of these models will be invalid because either the mean or the variance is infinite.
That is, they require an estimation of one of the moments of the workload
variable; yet, the moments are infinite in heavy-tailed distributions.

124

The session workload unit has also been used to mine web usage for web
personalization (Eirinaki and Vazirgiannis 2003, Mobasher et al. 2000). This
personalization process allows websites to customize themselves to match the
users’ usage patterns. For example, Amazon.com uses web mining data from user
sessions to recommend books to their customers. Jasen and Spink (2003))
examined user sessions to determine how web search engines are utilized and
which search results are being viewed by the users. Cherkasova and Phaal (2002)
proposed a session-based load management for commercial websites to improve
quality of service; they utilized a simulation to model the session workloads in
their study. All approaches mentioned are dependent on the session workload
model. Hence, the acceptance of the conjecture that workloads are sampled from
heavy-tailed distribution has serious ramifications for future research and analysis
of the “behavior” of websites. Therefore, this chapter re-evaluates the results
presented by Goševa-Popstojanova et al. (2006a, 2006b) which conclude that
session length data is sampled from a heavy-tailed distribution. The conclusion
was based on results from the analysis of the log-log complementary distribution
plots (LLCD) and the Hill estimator. However, a more rigorous empirical
investigation into session length and its potential distributional properties can be
performed.

This chapter extends Goševa-Popstojanova et al. (2006a, 2006b) by applying the
evaluation to two new websites. One of which is a mission-critical commercial
website. The logs investigated for this commercial website cover a 27 month
period, an extensive time period. Other investigations are “focused” on high
throughput web sites for a short period. However, examining a website over a
long calendar period is essential as many “external actions” which impact the
characteristics of the site happen infrequently as hence a true sense of the
historical norm of a website’s characteristics is only available over an extended
period. A more detailed discussion of the two websites can be seen in Chapter 6,
Section 6.3.

Additional tests, such as the Heavy-tailed Autocorrelation Function (ACF)
method, “wobble analysis” and Q-Q (Quantile-Quantile) plots, are performed to
determine if session length can really be modeled by a heavy-tailed distribution.
The results from this chapter show that, for the samples used in this study, a
method to determine whether the session workload can be modeled by a heavy-
tailed distribution does not exist.

The remaining sections of this chapter are organized as follows: Section 7.1 re-
evaluates the heavy-tailed property of session lengths. It investigates the validity
of using log-log complementary distribution (LLCD) plots and the Pareto
distribution to model the session length as presented by Goševa-Popstojanova et
al. (2006a, 2006b). Section 7.2 discusses the results from this study versus the
previous study.

125

7.1 Investigation of the Distributional Characteristics of
Session Length
Goševa-Popstojanova et al. (2006a, 2006b) put forward the conjuncture that
session length data is sampled from a heavy-tailed distribution. In this section this
conjecture is empirically examined.

7.1.1 Discussion of the STT
This study uses a Session Timeout Threshold to determine the sessions. A session
is defined as a sequence of actions taken by a user within a period of time.
Sessions offer much finer grained information than the standard number of users
metric. Goševa-Popstojanova et al. (2006a, 2006b) assign STT to 30 minutes,
because it is a common value used by other researchers (Berendt et al. 2001,
Mahoui and Cunningham 2000, Mat-Hassan and Levene 2005, Spiliopoulou et al.
2003). This 30 minute figure is a value rounded up based on a mean value of 25.5
minutes determined by Catledge and Pitkow (1995). Catledge and Pitkow (1995)
estimate STT to be 25.5 by claiming that the most statistically significant events
occurred within 1.5 standard deviations (25.5 minutes) from the mean between
each user interface event which was 9.3 minutes. However, no definition of these
“significant events” was given; and why 1.5 standard deviations is selected is
never discussed. Hence, this study uses a model proposed by Huynh and Miller
(2009) to determine the STT. By applying the model, the STT is found to be 5
minutes for Site A and 11 minutes for ECE. As a cross-check, the results
presented in this study were replicated using STT = 30 minutes for both sites; and
while the numerical values clearly changed the basic interpretation of the results
remained constant.

7.1.2 Estimating the Tail Index α with LLCD Plot
Under the assumption that the data comes from a Pareto distribution, Goševa-
Popstojanova et al. (2006a, 2006b) estimate the tail index of the distribution using
a log-log complementary distribution (LLCD) plot. This approach has also been
used in many studies which concentrate on other workload metrics for web
servers (Arlitt and Jin 2000, Arlitt and Williamson 1997, Crovella and Bestavros
1997). LLCD plots produce an estimate of the tail index using the property

α−=
∂

>∂
x

xXP
log

])[log((7)

However, the approach does not utilize the entire distribution. The estimation of
the index is only over the range [xi, xi+j]; and the approach simply fits an ordinary
least-squares linear regression model to estimate α from the small set of values
([xi, xi+j]) which are assumed to represent the majority of the tail.

Downey (2001a, 2005) has shown that the LLCD plot is an ineffective
mechanism at discovering long-tailed distributions. Basically, the technique
cannot adequately distinguish between long-tailed distributions, such as the Pareto
distribution, and “similar looking” short-tailed distributions such as lognormal

126

distributions. Figueiredo et al. (2005) further support this viewpoint and provide
an extensive analysis demonstrating the inadequacy of this approach; they
demonstrate that the discovery of the appearance of a linear region in a LLCD
plot is by itself insufficient evidence to conclude that long-range dependence
exists within a data set. Finally, Goldstein et al. (2004) empirically demonstrate
that the LLCD plot and associated techniques are ineffective approaches to fitting
power-law distributions to experimental data and conclude that the approach
should be avoided.

7.1.2.1 Discussions of the LLCD Plot Results
This study uses three definitions of the tail as presented by Hernandez-Campos et
al. (2004). The extreme tail is the part of the tail that is beyond the last data point
(xn), hence no information is available for this part. The far tail is the part of the
tail where some data is present, but the distributional properties cannot be
understood because of the minimal information available (around xi+j). The
moderate tail is the part of the tail that contains “rich” (by comparison)
distributional information ([xi,xi+j]). Clearly, the definitions are heuristics because
the boundary between the moderate tail and the far tail cannot be defined
accurately. However, the definitions are required for discussions of the results in
this section.

Goševa-Popstojanova et al. (2006a, 2006b) have estimated α using LLCD plots.
Figures 7.1, 7.4, 7.7 and 7.10 display the LLCD plots for ECE and Site A with
each having two different STT values. This study utilized Huynh and Miller
(2009) dynamic STT estimation model and the commonly used 30 minute
constant STT value approach used by Goševa-Popstojanova et al. (2006a, 2006b)
to investigate if the value of STT was a covariant of the distributional
characteristics of the session length. Hence, LLCD plots were created for both
the dynamic model’s STT values and the constant STT value. These figures show
that for values below –1 on the vertical axis the distribution is generally linear
until the far tail is reached. Although, linear least squares fitting can be applied to
estimate α, this study uses a numerical differential equation to estimate α at all
possible data points. Figures 7.2, 7.5, 7.8 and 7.11 show results of this estimation.
These figures show that α does not stabilize in the moderate tail in any of the
LLCD plots. The variations are consistently too large to be explained by
numerical differential estimation error. To further confirm this observation, the
box plot for α for all LLCD plots are shown in Figures 7.3, 7.6, 7.9, and 7.12, and
the descriptive statistics for α are shown in Table 7.1. Box plots are used in this
study for their ability to visually display different types of populations without
any dependency on the statistical distribution of the data. These figures show that
the range for the non-outliers varies considerably; furthermore, the outliers are
numerous. Figures 7.2 and 7.8 perhaps provide the clearest evidence of α failing
to stabilize within the tail of the distribution. These figures can be approximated
as:

1. estimates for α are relatively “well-behaved” in the pre-tail;
2. estimates for α vary wildly in the moderate tail; and

127

3. estimates for α seem to be almost random values in the far tail.

Because the type of distribution for the data sets is unknown, Table 7.1 displays
the statistics for both parametric and non-parametric distributions. This table can
be seen as an exploratory tool to aid the data examination process. The table and
box plots further confirm that α is not stable enough for the least-squares linear
regression model

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6
log(x)

lo
g(

P[
X>

x]
)

Figure 7.1 LLCD Plot for ECE with 11mins STT

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

log(x)

α

Figure 7.2 Numerical Differential Estimation of α for ECE with 11mins STT

128

Figure 7.3 Box plot of α for ECE with 11mins STT Showing Numerous

Outliers

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

log(x)

lo
g(

P[
X

>x
])

Figure 7.4 LLCD Plot for Site A with 5mins STT

129

0.1

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

log(x)

α

Figure 7.5 Numerical Differential Estimation of α for Site A with 5mins STT

Figure 7.6 Box plot of α for Site A with 5mins STT Showing Numerous

Outliers

130

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

log(x)

lo
g(

P[
X>

x]
)

Figure 7.7 LLCD Plot for ECE with 30mins STT

0.01

0.1

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

log(x)

α

Figure 7.8 Numerical Differential Estimation of α for ECE with 30mins STT

131

Figure 7.9 Box plot of α for ECE with 30mins STT Showing Numerous

Outliers

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
log(x)

lo
g(

P[
X>

x]
)

Figure 7.10 LLCD Plot for Site A with 30mins STT

132

0.1

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

log(x)

α

Figure 7.11 Numerical Differential Estimation of α for Site A with 30mins

STT

Figure 7.12 Box plot of α for Site A with 30mins STT Showing Numerous

Outliers

133

Table 7.1 Statistics for α

 ECE 11m Site A 5m ECE 30m Site A 30m
Mean 49.87 2.49 35.92 2.50
Mean 95% Confidence
(Lower bound)

24.60 2.27 18.43 2.33

Mean 95% Confidence
(Upper bound)

75.14 2.71 53.41 2.67

Median 1.04 1.54 1.20 1.53
Variance 867872 33.61 578953 31.95
St.Dev 931.60 5.80 760.89 5.65
Minimum 0.06 0.12 0.06 0.10
Maximum 59851.53 159.08 59851.53 287.50

The figures and table show that data obtained from the proposed dynamic STT
model behave similarly to the data obtained from the commonly used 30 minute
STT. Hence, further data analysis methods in this study will only explicitly
examine the data set generated from the dynamic STT model as it is believed to
represent the state of the art in estimating STT.

7.1.2.2 “Wobbles” in the Distribution
During the investigation of the session length per month plots, two interesting
observations can be seen.

1. The distributions, at this level of granularity, appear to be stable. Hence,
the observable phenomenon seems to repeat in a deterministic fashion.

2. The distributions are not smooth; they include several points of inflection
or “wobbles”. While it might initially seem reasonable to dismiss these
“wobbles” as noise, the fact that they repeat across most of the monthly
patterns argues that they are more likely to be signal than noise. This
“wobbling” effect has been noted by several other authors investigating
related phenomenon (Downey 2001, Ljung and Box 1978, Reed and
Jorgensen 2004).

Figures 7.13 and 7.14 display the session length by month graphs for ECE and
Site A. For the ECE site, the points of inflection can be seen at approximately
2.6, 3.4 and 3.3. For Site A, two points of inflection happen in quick succession,
as can be seen by the smaller graph in Figure 7.14. This figure shows the points
of inflection occur at approximately 2.16, 2.18 and 2.5.

134

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5

log(x)

lo
g(

P[
X>

x]
)

Figure 7.13 “Wobbles” seen in LLCD plots for ECE

This “wobbling” phenomenon argues simple distributions such as Pareto or
lognormal distributions cannot be used to model the session workload. Hence,
attempting to fit the session length into the Pareto distribution will lead to the
wrong conclusion. Various researchers have investigated a range of more
complex models to fit this phenomenon:

1. Arlitt et al. (2000, 1998), Barford et al. (1998, 1999) and Downey (2001a,
2001b) have all investigated hybrid models that combine a lognormal
distribution with a Pareto tail;

2. Mitzenmacher (2003) investigate, amongst others, a double Pareto
distribution;

3. Reed and Jorgensen (2004) investigate a double Pareto-lognormal
distribution.

135

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

log(x)

lo
g(

P[
X>

x]
)

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

2 2.05 2.1 2.15 2.2 2.25 2.3

Figure 7.14 “Wobbles” seen in LLCD plots for Site A

While all of these models can provide a superior fit to the “wobbling”
phenomenon, there exists no real causal theory that they are an accurate model of
the general phenomenon. The alternative argument is that the superior fit is
simply the consequence of the greater number of free variables they possess
compared to the simpler distributions.

7.1.2.3 Discussions of the Pareto Distribution
Previous studies have demonstrated LLCD plots are not effective at discovering
heavy-tailed distributions because of the similarity between the Pareto distribution
and the lognormal distribution. Hence, this study will perform an investigation to
determine the Pareto distribution’s effectiveness at describing the data. Downey
(2001, 2005) and Goševa-Popstojanova et al. (2006b) applied the curvature test to
explore Pareto and lognormal distribution with conclusions stating that the data
can be either Pareto or lognormal. Goševa-Popstojanova et al. (2006b) provides
an explanation that the similarity is due to the lack of data at the far tail.
However, as discussed, the far tail of a heavy-tailed distribution will never
contain enough data points for any reasonable analysis. Hence, this study will
utilize the Q-Q plot (1983) to visually observe the Pareto and lognormal
distributions. This is the same approach used by Hernandez-Campos (2004) to
investigate Pareto and lognormal distributions. The Q-Q plot allows the quantiles
of the data set to be graphically compared against the theoretical distribution
(Pareto and lognormal for this investigation). The horizontal axis of the Q-Q plot
contains the theoretical quantiles while the vertical axis contains the sorted data
values. The natural log-log scale is used because of the possible large values.

136

The curve generated should follow the 45 degree line if the data quantiles are the
same (or very similar) to the theoretical quantile.

Figures 7.15 and 7.16 show the Pareto Q-Q plots for the ECE and Site A sites
respectively. Visual observation of these figures shows that the Pareto
distribution does not fit extremely well to the data set as the curve does not
accurately match the 45 degree line. Further confirmation of this observation can
be seen with the detrended Pareto graphs as shown in Figures 7.17 – 7.18. If the
plot generated by the detrended graph is not near 0 on the x-axis, then the data set
is unlikely to be a good match for the distribution. Once again, these figures
show that the observed values deviate from the Pareto distribution very quickly.

Figure 7.15 Pareto Q-Q Plot for ECE
showing the observed values are not

near the expected values

Figure 3.16 Pareto Q-Q Plot for Site
A showing the observed values are

not near the expected values

Figure 7.17 Detrended Pareto for ECE
showing extreme deviations from the

line in the Q-Q plot

Figure 7.18 Detrended Pareto for

Site A showing the observed values
are not near the expected values

137

The lognormal Q-Q plots and detrended plots for the ECE and Site A sites can be
seen in Figures 7.19 - 7.22. These figures show that the lognormal distribution
also does not describe the distribution of the data accurately.

Figure 3.19 Lognormal Q-Q for ECE
showing the observed values are not

near the expected values

Figure 3.20 Lognormal Q-Q for
Site A showing the observed values

are not near the expected values

Figure 7.21 Detrended lognormal for

ECE showing extreme deviations from
the line in the Q-Q plot

Figure 7.22 Detrended lognormal

for Site A showing extreme
deviations from the line in the Q-Q

plot

To further examine the deviations in the detrended graphs between the lognormal
and Pareto distributions, a statistical significance test (t-test) was conducted. The
results are presented in Table 7.2. Based on the results, the null hypothesis that
the Pareto distribution has a smaller mean (closer to 0) can be rejected. Hence,
the alternative hypothesis, which is the mean for the lognormal distribution is
“closer” to 0 than the Pareto distribution, can be accepted.

138

Table 7.2 t-Test to compare the lognormal distribution versus the Pareto
distribution

 Site A ECE
 lognormal Pareto lognormal Pareto
Mean 95795.9 -3.5x108 -4299959.0 -3.5x1020
t Stat 9.3 9.9
t Critical 2.0 2.0
P(T ≤ t) 5.0x10-11 4.5x10-12

However, one can argue that the Pareto distribution is only applied to the tail of
the distribution, making a formal analysis difficult to generate due to the lack of
definition of the range of the tail. Hence, using this approach, no evidence is
found to validate that a Pareto distribution is superior to a lognormal distribution
in terms of fitting the underlying data. This observation is consistent with the
findings of Downey (2001, 2005) and Goševa-Popstojanova et al. (2006b).

7.1.3 Discussions of the Hill Estimator Results
Using the technique discussed, which is also utilized by Goševa-Popstojanova et
al. (2006a, 2006b), the Hill plots for k was created for both sites. Goševa-
Popstojanova et al. (2006a, 2006b) used 10% and 14% of the upper tail in their
Hill plot because k appears to settle to a constant value after those points.
However, the Hill plots in this study will be displayed across the entire tail to
better display the stability of k. The Hill estimator can only be performed on the
tail of the distribution. Hence, the tail was estimated using the method Goševa-
Popstojanova et al. (2006a, 2006b) proposed – even though Section 7.1.2 shows
that this approach is not accurate. In order to examine the Hill plot’s behavior , a
smaller range (0-5) is used for the y-axis as shown in Figures 3.23 – 3.24. These
figures show that again α does not stabilize in any part of the graph. In fact, it
decreases as the k value is increased. There does not appear to be a cut-off point
as stated by Goševa-Popstojanova et al. (2006a, 2006b). The Hill plot results
further confirms that the heavy-tailed property of the session length may not be an
accurate model over the web sites under investigation.

0 50000 100000 150000

0
1

2
3

4
5

k

H
ill

 e
st

im
at

or
 o

f a
lp

ha

Figure 3.25. Hill estimator for ECE

at a smaller range for the y-axis

0 50000 100000 150000

0
1

2
3

4
5

k

H
ill
 e

st
im

at
or

 o
f a

lp
ha

Figure 3.26. Hill estimator for Site
A at a smaller range for the y-axis

139

7.2 Results Discussion
The results from this study show that the session length data may not fit a heavy-
tailed distribution. The findings do not confirm the results discovered by Goševa-
Popstojanova et al. (2006a, 2006b). However, it should be noted that the websites
used in this study have different properties than the websites used in the previous
study. Chapter 6 shows that the durations of the log files used in Goševa-
Popstojanova et al. (2006a, 2006b) are short. This study performs the
investigation over a much longer period of time. Furthermore, although Goševa-
Popstojanova et al. (2006a, 2006b) examined a commercial website, the duration
is also very short (2 weeks and 1 week), whereas this study examined the
commercial website for a 27 month period.

Besides the difference in the duration of the log files, the traffic intensity between
the websites in this study and Goševa-Popstojanova et al. (2006a, 2006b) are also
vastly different. The websites investigated by Goševa-Popstojanova et al. (2006a,
2006b) have a much heavier traffic load than this study. The busiest website for
Goševa-Popstojanova et al. (2006a) received 37.9 millions hits and transferred 97
GB of data during a 3 week period. Goševa-Popstojanova et al. (2006b)’s busiest
website received 15.8 million hits and transferred 34.5 GB of data. This study’s
busiest website, which is ECE, received approximately 2.4 million hits and
transferred 22.6 GB of data. The difference in traffic intensity is another possible
cause for the different results obtained in this study.

140

This page is intentionally left blank.

141

Chapter 8 – Conclusions and Future Works
This dissertation explores two areas of web engineering. The next two sections
will present the conclusions and future works for these two areas.

8.1 Web Application Security
In Chapter 2, a research goal of determining whether web application
vulnerabilities have any common properties was raised. To reach this goal, four
questions were examined.

1. What proportion of security vulnerabilities in web applications can be
considered as implementation vulnerabilities? Section 2.3.1 shows that the
majority of the known vulnerabilities are of this type. This means
researchers should continue to concentrate on implementation
vulnerabilities as it will have the most impact on the security of web
applications.

2. Are these vulnerabilities the result of interactions between web applications
and external systems? The results from Section 2.3.2 show that dynamically
created strings passed to functions that allow interactions between the
application and an external system cause nearly all of the vulnerabilities in
this survey. Hence, developers should be careful when allowing data to flow
between the web application and other systems.

3. What is the proportion of vulnerable LOC within a web application? That is,
what is the vulnerability density? The results show that the percentage of
vulnerable LOC for a web application is extremely small; therefore it can be
beneficial to introduce a solution to solve implementation vulnerabilities by
concentrating on the CGs with vulnerable LOC.

4. Are implementation vulnerabilities caused by implicit or explicit data
flows? Tables 2.9 and 2.10, from Section 2.3.4, show that implementation
vulnerabilities for web applications are not caused by implicit data flows.
This means efforts on eliminating implementation vulnerabilities can focus
on explicit data flows.

Using the results from Chapter 2, Chapter 3 introduces a novel technique aimed at
detecting EIVs. The technique contains 4 steps:

1. Sitemap generation
2. Input identification
3. Contamination Data Graph generation
4. Test case selection and execution.

The steps are semi-automated using a web crawler, WAIC, WAGG and a capture
playback tool. This divide and conquer approach allocates the repetitive and time
consuming steps to various tools, and hence, reduces a significant effort required
by security practitioners. Furthermore, security practitioners’ expertise and
experience remain an essential part which allows the approach to have a high
detection rate without any false positives. This approach proposed satisfies the
research problems identified in Section 3.2; because it is a software development
process, it is applicable to all web applications, the large configuration space and

142

language dependent. A case study was performed to determine the effectiveness
of the approach; it demonstrates that the approach is practical and applicable to
commercial strength applications.

EIV analysis has been found to have a very high detection rate for EIVs. The
approach found all of the vulnerabilities found by the professionals during a
security review; and in addition, found 7 new vulnerabilities missed by the review
process. These vulnerabilities were missed because the review process did not
correctly identify all of the inputs and hence, several tainted paths were missed.
Furthermore, EIV analysis reduced the time required for a security review by
69%.

Because EIV analysis does not allow web administrators to protect their existing
platform, Chapter 4 presents an A-NIDS called AIWAS which specifically targets
web applications. AIWAS automatically classifies user behaviours into benign or
malicious and prevents malicious user behaviours from reaching the web
applications under protection.

AIWAS is a learning-based system comprised of two distinct components: the
Sentinel and the Oracle. The Sentinel maps the HTTP requests into an IM while
preserving important information that aids with the classification of the IM. The
Oracle classifies whether the IM is malicious or benign through the use of any
supervised ML algorithm.

The results from the case study show that AIWAS is highly capable of classifying
IMs in both a 10-fold cross validation test and against real attack test from known
vulnerabilities. Additionally, the results demonstrate that the two aggregate
algorithms are very consistent with their effectiveness at identifying malicious
IMs; hence, they should be the default ML algorithms for AIWAS.

Future works for AIWIAS include modifying AIWAS so it can monitor HTTP
requests at a finer granularity. Currently, AIWAS is trained to examine HTTP
requests at the web application level. However, each resource within the web
application has its own specific usage patterns. For example, a “login” resource
will have different usage patterns than a “post comment” resource because the
user usually only login once per session while that same user can make multiple
“post comments”. Furthermore, as stated 4.1.1 each resource is often associated
with different parameters and parameter values. Therefore, by training AIWAS
with usage patterns at the resource level, the accuracy of AIWAS can be increased
further.

8.2 Data Mining Web Server Logs
Chapter 5 investigates the validity of evaluating web site reliability based on
information extracted from existing web server logs. The investigation is a partial
follow up to a previously conducted study (Tian et al. 2004). Two additional
websites were examined using the methodology proposed in the original study.

143

The log data for ECE contain two months of data that are one year apart. The log
data for the second website (Site A) cover a continuous 15 months of operation.
These two websites belong to two organizations that have different reliability
requirements for their websites. In this chapter, several findings were discovered:

• Error codes such as 401, 403, and 404 error codes can be divided into
different types. Based on the classification of the error types, it is
discovered that most errors are no longer source content failures, but are
caused by external factors that cannot be controlled by website
administrators and content providers. These external factors can be
divided into two distinct categories.

• There are issues that exist with the workload information extraction
process. The original study explained the difficulties with extracting the
byte count workload. However, unique challenges also exist with the
extraction of the user and session and hit count workloads. For example
each IP may be shared by many users, thus counting each unique IP
address as a user will lead to the situation where the counted number of
users is actually less than the number of actual users.

• The number of high “value” errors is very low. Hence, the other
workloads examined cannot provide better granularity than the daily error
rate.

• The Nelson model, used for calculating reliability, is not applicable to
some workloads without modifications. The MTBF for a website can be
estimated because the total service time can be calculated from the total
number of sessions. However, the MTBF will vary depending on the error
codes used in the analysis. Thus, the correct error codes need to be
selected before reliability evaluation is performed.

• Some of the error codes in response to requests are very similar to requests
containing malicious payloads. For example, the 414 error is returned
when the URI is too long. A benign client can generate a long URI due to
some bug in its code; however the URI can also be too long when an
attacker is trying to embed a large piece of JavaScript code to take
advantage of a cross-site scripting vulnerability.

Future works for this chapter consist of detailed examination of the user and
session workloads. In particular, the investigation will focus on the intra/inter-
session characteristics as defined by Goseva-Popstojanova (2006a) in order to
examine the behaviors of new users (or sessions) versus repeat users (or sessions)
and how these behaviors may affect the reliability of the web server.

In Chapter 6, a new model for estimating the STT is proposed. Having a more
accurate STT will allow the session workload to be estimated more accurately
which benefits the reliability estimation method explored in Chapter 5. Through
empirical observations, this chapter introduces a model that enables web
administrators to obtain an accurate STT value for their website. The chapter
shows that using a single STT for all websites is not feasible due to the different
user profiles associated with each website. The model is then applied to two
websites. The first website is from a commercial website that is critical to the

144

company’s operation. The second website is an academic website that serves as a
cross reference of the results.

The model, when applied at different resolutions, shows that the results are
similar with the STT being shifted depending on the workload and intensity of the
resolution. That is, the resulting graphs all have very similar shapes. The results
show that the model, while applicable, should only be used at the correct
resolution due to different workload behaviours and intensities. Web
administrators looking to study the session workload unit should obtain all
possible requirements for the study before deciding the correct resolution for
applying the model. For example, a study examining user behaviours per month
should apply the model at the month resolution. For a long term overall trend, the
month resolution can also be used, however, the STT should be recalculated if
there are any modifications that can affect the website’s usability

Although an absolute correct value for the STT cannot be guaranteed, it is
believed that the STT can be estimated more accurately with the proposed model.
The model, while simple, allows researchers and web administrators a more
dynamic method to obtain STTs that specifically target the websites that they are
investigating. Having a more accurate STT is beneficial because it allows more
accurate data to be mined while also improving the security and usability of a
website. For example, if an online banking website uses an extremely short STT
then the user is constantly required to login which decreases the site’s usability.
However, if it uses an extremely long STT then the risk of the user’s account
being compromised is increased due to attacks such as XRF (Shiflett 2008), XSS,
etc. Furthermore, having an inaccurate STT can lead to session addition (division
of a session into two new ones) and subtraction (combining two short sessions
into a long one) errors as discussed by Huntington et al. (2008).

The research in Chapter 6 reveals that the distributional properties of the session
workload unit are poorly understood. Hence, Chapter 7 examines claims that
session length data are sampled from a heavy-tailed distribution. The dependency
of the data, the LLCD plot of the data, a Q-Q plot comparison of the performance
of the Pareto distribution against the lognormal distribution in fitting the data, and
a Hill estimator approach to estimating the tail index of the distribution are all
examined in detail. The investigation shows that the data may be dependent;
however, the results are disputable because the formulation cannot be extended to
cover all possible cases. Furthermore, this chapter confirms that LLCD plots may
not be ideal for investigating the heavy-tailed property of session data. The α
obtained from the LLCD plot does not stabilize during any part of the tail.
Additionally, the Pareto distribution itself is not sufficient for modeling heavy-
tailed data because of the “wobble” effect as demonstrated. The Hill estimator
was examined and was shown that it also does not provide a stable α value. In
fact, α does not stabilize for any k. Finally, the Q-Q plot suggests that the
lognormal is a “better” description of the entire distribution, although it cannot be

145

ruled out that a heavy-tailed distribution may be an adequate distribution of the
tail of the distribution due to the imprecise definition of the tail.

Although the investigation in this chapter provides empirical evidence that the
session data may not be heavy-tailed, the results can be disputed. The methods
utilized, while popular and well known are not entirely accurate. However, no
better alternatives exist; until accurate alternative approaches are presented, the
heavy-tailed status of the session data is unknown. Therefore future research
should consider the matter as being unresolved and should still consider
producing short-tailed models to describe this phenomenon.

146

This page is intentionally left blank.

147

Bibliography
[Anderson 1972] Anderson J. P., Computer security technology planning study, Technical Report

ESD-TR-73-51, United States Air Force, Electronic Systems Division, 1972.
[Antunes and Vieira 2009] Antunes N., Vieira M., Detecting SQL Injection Vulnerabilities in Web

Services, Fourth Latin-American Symposium on Dependable Computing, pp. 17-24, 2009.
[Agrawal and Horgan 1990] Agrawal H., Horgan J.R., Dynamic program slicing, Proceedings of

the ACM SIGPLAN’90 Conference on Programming Language Design and Implementation,
New York, USA, pp. 246–256, 1990.

[Alagar and Ormandjieva 2002] Alagar V.S., Ormandjieva O., Reliability Assessment of Web
Applications, 26th Annual International Computer Software and Applications Conference, pp.
405- 412, 2002.

[Alhazmi et al. 2007] Alhazmi O. H., Malaiya Y. K., Ray I., Measuring, Analyzing and Predicting
Security Vulnerabilities in Software Systems, Computers and Security Journal, 26(3), pp.
219-228, 2007.

[Alonso et al. 2003] Alonso G., Casati F., Kuno H., Machiraju V., Web Services: Concepts,
Architectures, and Applications. Springer Verlag, 2003.

[Arlitt and Jin 2000] Arlitt M., Jin T., A workload characterization study of the 1998 World Cup
Web site, IEEE Network, 14(3), pp. 30-37, 2000.

[Arlitt and Williamson 1997] Arlitt M.F., Williamson C.L., Internet Web servers: workload
characterization and performance implications. IEEE/ACM Transactions on Networking,
5(5), pp. 631-645, Oct. 1997.

[Arlitt et al. 1998] Arlitt M., Friedrich R., Jin T., Workload characterization of a Web proxy in a
cable modem environment, ACM Sigmetrics Performance Evaluation Review, 27(2), pp. 25 –
36, 1998.

[Arlitt et al. 2001] Arlitt M.F., Krishnamurthy D., Rolia J., Characterizing the scalability of a large
web-based shopping system, ACM Transactions on Internet Technology 1(1), pp.44-69, 2001.

[Baldi et al. 2000] Baldi P., Brunak S., Chauvin Y., C.A.F., Andersen, H. Nielsen, Assessing the
accuracy of prediction algorithms for classification: an overview, Bioinformatics, 16(5),
pp.412-424, 2000.

[Balzarotti et al. 2007] Balzarotti D., Cova M., Felmetsger V.V., Vigna G., Multi-Module
Vulnerability Analysis of Web-based Applications, Proc. 14th ACM Conference on Computer
and Communication Security, pp. 25-35, 2007.

[Bandhakavi et al. 2007] Bandhakavi S., Bisht P., Madhusudan P., Venkatakrishman V.,
CANDID: Preventing SQL Injection Attacks Using Dynamic Candidate Evaluations,
Proceedings of the 14th ACM conference on Computer and communications security,
Virginia, USA, pp. 12-24, 2007.

[Barford and Crovella 1998] Barford P., Crovella M. E., Generating representative Web
workloads for network and server performance evaluation, Performance SIGMETRICS ’98,
pp. 151-160, 1998.

[Barford et al. 1999] Barford P., Bestavros A., Bradley A., Crovella M., Changes in Web client
access patterns: Characteristics and caching implications. World Wide Web: Special Issue on
Characterization and Performance Evaluation, Vol. 2, pp. 15-28, 1999.

[Basili et al. 1994] Basili V., Caldeira G. Rombach H. D., The Goal Question Metric Approach,
Encyclopedia of Software Engineering, Wiley & Sons, 1994.

[Baskerville and Pries-Heje 2004] Baskerville, R., Pries-Heje, J., Short cycle time systems
development, Information Systems Journal, 14(3), pp. 237-264, 2004.

[Batista et al. 2004] Batista G.E.A.P.A., Prati R.C., Monard M.C., A study of the behavior of
several methods for balancing machine learning training data, ACM SIGKDD Explorations
Newsletter, 6(1), pp. 20-29, 2004.

[Beizer 1995] Beizer B., Black-Box Testing: Techniques for Functional Testing of Software and
Systems, Wiley: New York, 1995.

[Berendt et al. 2001] Berendt B., Mobasher B., Spiliopoulou M., Wiltshire J., Measuring the
accuracy of sesionizers for web usage analysis, Proceedings of the workshop on web mining
at the first SIAM international conference on data mining, pp. 7-14, 2001.

148

[Boehm and Abts 1999] Boehm B., Abts C., COTS Integration: Plug and Pray?, IEEE Computer,
32 (1): pp. 135-138, January 1999.

[Bolzoni and Etalle 2008] Bolzoni D., Etalle S., Boosting Web Intrusion Detection Systems by
Inferring Positive Signatures, On the Move to Meaningful Internet Systems, Vol. 5332, pp.
938-955, 2008.

[Boyd and Keromytis 2004] Boyd S. Keromytis A., SQLrand: Preventing SQL injection attacks,
2nd Applied Cryptography and Network Security (ACNS) Conference, pp. 292-304, 2004.

[Breiman 2001] Breiman L., Random Forests, Machine Learning, 45(1) pp. 5-32, 2001.
[Brockwell and Davis 1991] Brockwell P.; Davis R., Time Series: theory and Methods, Springer-

Verlag, 1991.
[Buehrer et al. 2005] Buehrer G.T., Weide B.W., Sivilotti P.A.G., Using Parse Tree Validation to

Prevent SQL Injection Attacks, In Proc. of the 5th Intl. Workshop on Software Engineering
and Middleware (SEM ’05), Lisbon, Portugal, pp. 106–113, 2005.

[Catledge and Pitkow 1995] Catledge L.D., Pitkow J.E., Characterizing browsing strategies in the
World-Wide Web, Proceedings of the Third International World-Wide Web conference on
Technology, tools and applications, pp.1065-1073, 1995.

[Chaudhri et al. 2003] Chaudhri A., Zicari R., Rashid A., XML Data Management: Native XML
and XML Enabled DataBase Systems, USA: Addison-Wesley, 2003.

[Chawla et al. 2002] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., SMOTE:
synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16(1),
pp.321-357, 2002.

[Chawla et al. 2004] Chawla N.V., Japkowicz N., Kotcz A., Editorial: special issue on learning
from imbalanced data sets, ACM SIGKDD Explorations Newsletter, 6(1), pp. 1-6, 2004.

[Chen 2002]Chen, Y-T., On the Robustness of Ljung-Box and McLeod-Li Q tests: a simulation
study, Economics Bulletin, 3(17), pp. 1–10, 2002.

[Chen et al. 2003] Chen Z., Fowler R.H., Fu A.W.-C., Linear time algorithms for finding maximal
forward references, Information Technology: Coding and Computing [Computers and
Communications], 2003. Proceedings. ITCC 2003. International Conference on, Vol. 28(30),
pp. 160- 164, 2003.

[Cheng et al. 2008] Cheng YC, Laih CS, Lai GH, Chen CM, Chen T, Defending On-Line Web
Application Security with User-Behaviour Surveillance, Third International Conference on
Availability, Reliability and Security, pp. 410-415, 2008.

[Cherkasova and Phaal 2002] Cherkasova L., Phaal P., Session-Based Admission Control: A
Mechanism for Peak Load Management of Commercial Web Sites, Transactions on
Computers, 51(6), pp. 669-685, 2002.

[Cooley at al. 1997] Cooley R., Mobasher B., and Srivastava J., Web mining: Information and
pattern discovery on the World Wide Web. In International Conference on Tools with
Artificial Intelligence, pp. 558–567, 1997.

[Cooley et al. 1999] Cooley R., Mobasher B., and Srivastava J., Data preparation for mining world
wide web browsing patterns. Knowledge and Information Systems, Vol. 1(1), pp. 5 – 32,
1999.

[Cova et al. 2007a] Cova M., Balzorotti D., Felmetsger V., Vigna G., Swaddler: An Approach for
the Anomaly-Based Detection of State Violations in Web Applications, Recent Advances in
Intrusion Detection, pp. 63-86, 2007.

[Cova et al. 2007b] Cova M., Felmetsger V., Vigna G., Vulnerability Analysis of Web-based
Applications, Test and Analysis of Web Services, pp. 363-394, 2007.

[Cowan et al. 1998] Cowan C., Pu C., Maier D., Hinton H., Bakke P., Beattie S., Grier A., Wagle
P., and Zhang Q., StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks, 7th USENIX Security Conference, San Antonio TX, pp. 63-78, 1998.

[Cremonesi and Serazzi 2002] Cremonesi P., Serazzi G., End-to-End Performance of Web
Services, Performance Evaluation of Complex Systems: Techniques and Tools, Performance
2002 Tutorial Lectures, Lecture Notes in Computer Sciences, Vol. 2459, pp. 158-178, 2002.

[Crovella and Bestavros 1997] Crovella M.E., Bestavros A., Self-Similarity in Word Wide Web
Traffic: Evidence and Possible Causes, IEEE/ACM Transactions on Networking, 5(6), pp.
835 – 846, 1997.

149

[Curbera et al. 2002] Curbera F., Duftler M., Khalaf R., Nagy W., Mukhi N., Weerawarana S.,
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI, IEEE
Internet Computing, 6(2), pp.86-93, March 2002.

[Davis and Resnick 1985] Davis R.; Resnick S., Limit theory for the sample covariance and
correlation functions of moving averages, Annuals of Statistics, Vol. 13, pp. 179 – 195, 1985.

[Denning and Denning 1997] Denning D.E., Denning P.J., Certification of programs for secure
information flow, Comm. Of the ACM, New York, USA, ACM, pp. 504-513, 1997.

[Dhamija et al. 2006] Dhamija R., Tygar J. D., Hearst M., Why phishing works, Proceedings of
the SIGCHI conference on Human Factors in computing systems, Montréal, Québec, Canada,
April 22-27, 2006.

[Doar 2005] Doar M.B., Practical Development Environments, O'Reilly Media, 2005.
[Downey 2001a] Downey A.B., Evidence for Long-tailed distributions in the Internet, Proceedings

of the 1st ACM SIGCOMM Workshop on Internet Measurement, pp. 229 – 241, 2001.
[Downey 2001b] Downey A.B., The structural cause of fie size distributions, Proceedings of the

IEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 361 – 370, 2001.

[Downey 2005] Downey A.B., Lognormal and Pareto Distributions in the Internet, Computer
Communications, 28(7), pp. 790-801, 2005.

[Eaton and Memon 2007] Eaton C., Memon A.M., An Empirical Approach to Testing Web
Applications Across Diverse Client Platform Configurations, International Journal on Web
Engineering and Technology (IJWET), Special Issue on Empirical Studies in Web
Engineering, 2007.

[Eirinaki and Vazirgiannis 2003] Eirinaki M., Vazirgiannis M., Web mining for web
personalization, ACM Transactions on Internet Technology, 3(1), pp.1-27, 2003.

[Estevez-Tapiador et al. 2005] Estevez-Tapiador JM, Garcia-Teodoro P, Diaz-Verdejo JE,
Detection of web-based attacks through Markovian protocol parsing, ISCC05, pp. 457-462,
2005.

[Evans and Larochelle 2002] Evans D., Larochelle D., Improving Security Using Extensible
Lightweight Static Analysis, IEEE Software, pp. 42-51, 2002.

[Fawcett 2003] Fawcett T., ROC graphs: notes and practical considerations for researchers,
Technical Report, HP Laboratories, 2003.

[Feigen and Resnick 1999] Feigen P.D.; Resnick S.I., Pitfalls of fitting autoregressive models for
heavy-tailed time series, Extremes, 1(4), pp. 391–422, 1999.

[Figueiredo et al. 2005] Figueiredo D.R., Jiu B., Feldmann A., Misra V., Towsley D., Willinger
W., On TCP and self-similar traffic, Performance Evaluation, Vol. 61, pp. 129–141, 2005.

[Fisher 1983] Fisher N.I., Graphical Methods in Nonparametric Statistics: A Review and
Annotated Bibliography, International Statistical Review, Vol. 51, pp. 25-58, 1983.

[Fleiss 1975] Fleiss J.L., Measuring Agreement between Two Judges on the Presence or Absence
of a Trait, Biometrics, 31(3), pp. 651-659, 1975.

[Forrest et al. 1996] Forrest S., Hofmeyr S, Somayaji A., Longstaff T., A sense of self for Unix
processes. Proceedings of IEEE Symposium on Security and Privacy, pp. 120-128, 1996.

[Frankl and Weyuker 1988] Frankl P.G., Weyuker E.J., An applicable family of data flow testing
criteria, IEEE Transactions on Software Engineering, 14(10), pp.1483-1498, Oct 1988.

[Fu et al. 1999] Fu Y., Sandhu K., Shih M., Clustering of web users based on access patterns,
International Workshop on Web Usage Analysis and User Profiling (WEBKDD'99), San
Diego, CA, 1999.

[Gabaix 1999] Gabaix X., Zipf’s law for cities: an explanation, Quarterly Journal of Economics,
114(3), pp. 739–767, 1999.

[Galleta et al. 2004] Galletta D.F., Henry R., McCoy S., Polak P., Web site delays: How tolerant
are users?, Journal of the AIS, 5(1): pp. 1-28, 2004.

[Garret 2008] Garrett J.J., Ajax: A new approach to web applications,
http://www.adaptivepath.com/publications/essays/archives/000385.php, last accessed January
20, 2008..

[Goldstein et al. 2004] Goldstein M.L., Morris S.A., Yen G.G., Problems with fitting to the power-
law distribution, European Physics Journal B, Vol. 41, pp. 255- 258, 2004.

150

[Gong et al. 2001] Gong W., Liu Y., Misra V., Towsley D., On the tails of web file size
distributions, Proceedings of the 39th Allerton Conference on Communication, Control and
Computing, 2001.

[Goševa-Popstojanova et al. 2004] Goševa-Popstojanova K., Mazimdar S., and Singh A.,
Empirical Study of Session-based Workload and Reliability for Web Servers, 15th IEEE
International Symposium on Software Reliability, pp. 403-414, 2004.

[Goševa-Popstojanova et al. 2006a] Goševa-Popstojanova K., Singh A.D., Mazimdar S., Li F.,
Empirical Characterization of Session–Based Workload and Reliability for Web Servers,
Empirical Software Engineering, Springer Netherlands, 11(1), pp. 71-117, 2006.

[Goševa-Popstojanova et al. 2006b] Goševa-Popstojanova K., Li F., Wang X., Sangle A., A
Contribution Towards Solving the Web Workload Puzzle, International Conference on
Dependable Systems and Networks (DSN'06), pp. 505-516, 2006.

[Granger 2003] Granger, S., Social Engineering Fundamentals, Part I: Hacker Tactics, Security
Focus, http://www.securityfocus.com/infocus/1527, 2003.

[Halfond and Orso 2005] Halfond W. G., Orso A., AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks, In Proceedings of 20th ACM International Conference
on Automated Software Engineering (ASE), Long Beach, CA, USA, pp. 174-183, 2005.

[Halfond et al. 2006] Halfond W.G., Orso A., Manolios P., Using positive tainting and syntax-
aware evaluation to counter SQL injection attacks, In Proceedings of the 14th ACM
SIGSOFT international Symposium on Foundations of Software Engineering, Portland,
Oregon, USA, pp. 175-185, 2006.

[Halfond et al. 2008] Halfond W.G.J., Orso A., Manolios P., WASP: Protecting Web Applications
Using Positive Tainting and Syntax-Aware Evaluation, IEEE Transactions on Software
Engineering, 34(1), pp. 65-81, 2008.

[Harrold and Rothermel 1994] Harrold M.J., Rothermel G., Performing data flow testing on
classes, In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations of Software
Engineering (New Orleans, Louisiana, United States, December 06 - 09, 1994), SIGSOFT '94,
ACM Press, New York, NY, pp. 154-163, 1994.

[He and Goker 2000] He D., Goker A., Detecting session boundaries from Web user logs,
Proceedings of the 22nd Annual Colloquium on Information Retrieval Research, pp.57-66,
British Computer Society, 2000.

[Heberlein et al. 1990] Heberlein L.T., Dias G.V., Levitt K.N., Mukherjee B., Wood J., Wolber
D., A network security monitor, Proceedings of IEEE Symposium on Security and Privacy,
pp. 296-304, 1990.

[Hernández-Campos et al. 2004] Hernández-Campos F., Marron J. S., Samorodnitsky G., Smith F.
D., Variable heavy tails in Internet traffic, Performance Evaluation, 58(2+3), pp. 261-284,
2004.

[Heydon and Najork 1999] Heydon A., Najork M., Mercator: A scalable, extensible Web crawler,
World Wide Web, 2(4), pp. 219–229, December 1999.

[Hill 1975] Hill B., A simple approach to inference about the tail of a distribution, Annuals of
Statistics, Vol. 3, pp. 1163–1774, 1975.

[Howard and LeBlanc 2003] Howard M., LeBlanc D., Writing Secure Code, Second Edition,
Microsoft Press, 2003.

[Howden 1975] Howden W. E., Methodology for the generation of program test data, IEEE Trans.
Comput., C-24(5), pp. 554-559, May 1975.

[Huang et al. 2003] Huang Y.W., Huang S.K., Lin T.P., Tsai C.H., Web application security
assessment by fault injection and behavior monitoring, 12th International Conference on
World Wide Web, pp. 148-159, 2003.

[Huang et al. 2004] Huang Y. W., Yu F., Hang C., Tsai C.H., Lee D.T., Kuo S. Y., Securing web
application code by static analysis and runtime protection, in WWW '04: Proceedings of the
13th International Conference on World Wide Web. New York, NY, USA: ACM Press, pp.
40-52, 2004.

[Huang et al. 2004] Huang X., Peng F., An A., Schuumans D., Dynamic web log session
identification with statistical language models, Journal of the American Society for
Information Science and Technology, Vol. 55, pp. 1290-1303, 2004.

151

[Huntington et al. 2008] Huntington P., Nicholas D., Jamali H.R., Website usage metrics: A re-
assessment of session data, Information Processing & Management. Vol. 44, pp. 358-372,
2008.

[Hurst 2004] Hurst A., Analysis of Perl’s taint mode, http://hurstdog.org/papers/hurst04taint.pdf,
2004.

[Huynh and Miller 2005] Huynh T., Miller J., Further Investigations into Evaluating Website
Reliability, 4th International Symposium on Empirical Software Engineering, pp 162-171,
2005.

[Huynh and Miller 2009] Huynh T., Miller J., Empirical Observations on the Session Timeout
Threshold, Journal of Information Processing & Management, 45(5), pp.513-528, 2009.

[Jansen and de Vries 1991] Jansen D.W. de Vries C.G., On the frequency of large stock returns:
putting booms and busts into perspective, Review of Economics and Statistics, Vol. 73, pp.
18–24, 1991.

[Jansen and Spink 2003] Jansen B.J., Spink A., An Analysis of Web Documents Retrieved and
Viewed, The 4th International Conference on Internet Computing, pp.65-69, 2003.

[John and Langley 1995] John G.H., Langley P., Estimating Continuous Distributions in Bayesian
Classifiers, 11th Conference on Uncertainty in Artificial Intelligence, pp. 338-345, 1995.

[Johnson and Wagner 2004] Johnson R., and Wagner D., Finding user/kernel pointer bugs with
type inference, In Proceedings of the 2004 Usenix Security Conference, San Diego, CA,
USA, pp. 119–134, 2004.

[Jolliffee 1986] Jolliffee I.T., Principal Component Analysis, Springer-Verlag, New York, 1986.
[Jovanovic et al. 2006] Jovanovic N., Kruegel C., Kirda E., Pixy: A Static Analysis Tool for

Detecting Web Application Vulnerabilities, In 2006 IEEE Symposium on Security and
Privacy, Berkeley/Oakland, CA, USA, pp. 258-263, 2006.

[Kallepalli and Tian 2001] Kallepalli C., Tian J., Measuring and Modeling Usage and Reliability
for Statistical Web Testing, IEEE Trans. Software Eng., 27 (11), pp. 1023-1036, 2001.

[Kals et al. 2006] Kals S., Kirda E., Kruegel C., Jovanovic N., SecuBat: A Web Vulnerability
Scanner, The 15th International World Wide Web Conference (WWW 2006), Edinburgh,
Scotland, pp. 247-256, 2006.

[Kiezun et al. 2008] Kiezun A., Guo P.J., Jayaraman K., Ernst M.D., Automatic Creation of SQL
Injection and Cross-Site Scripting Attacks, Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, Vancouver, British Columbia, Canada, pp. 199-209,
2008.

[Kristol and Montulli 2000] Kristol D.M., Montulli L., HTTP State Management Mechanism,
RFC 2965 (http://tools.ietf.org/html/rfc2965), October 2000.

[Krugel et al. 2002] Krugel C., Toth T., Kirda E., Service specific anomaly detection for network
intrusion detection, ACM Symposium on Applied Computing, pp. 201-208, 2002.

[Kruegel and Vigna 2003] Kruegel C., Vigna G., Anomaly detection of web-based attacks, ACM
conference on Computer and communication security, pp. 251-261, 2003.

[Kruegel and Vigna 2005] Kruegel C., Vigna G., A multi-model approach to the detection of web-
based attacks, Computer Networks 48(5), pp. 717-738, 2005.

[Kuncheva and Rodriguez 2007] Kuncheva L.I., Rodriguez J.J., An Experimental Study on
Rotation Forest Ensembles, Multiple Classifier Systems, Vol. 4472, pp. 459-468, 2007.

[Landwehr et al. 2005] Landwehr N.L., Hall M., Frank E., Logistic Model Trees, Machine
Learnings, 59(1-2), pp. 161-205, 2005.

[Laski and Korel 1983] Laski, J. W., Korel, B., Data flow oriented program testing strategy, IEEE
Transactions on Software Engineering, 9(3), pp. 347-354. 1983.

[Lazarevic et al. 2005] Lazarevic A, Kumar V, Srivastava J, Intrusion Detection: A Survey,
Managing Cyber Threats, pp.19-78, 2005.

[Lin and Chen 2006] Lin J.-C., Chen J.-M., An Automatic Revised Tool for Anti-Malicious
Injection, Sixth IEEE International Conference on Computer and Information Technology
(CIT'06), Seoul, South Korea, pp. 164-170, 2006.

[Lipner 2000] Lipner S.B., Security and Source Code Access: Issues and Realities, 2000 IEEE
Symposium on Security and Privacy (S&P 2000), pp. 124-125, 2000.

[Lippmann et al. 2000] Lippmann R., Haines J., Fried D., Korba J., Das K., The 1999 DARPA
off-line intrusion detection evaluation, Computer Networks 34(4), pp. 579–595, 2000.

152

[Liu et al. 2009] Liu A., Yuan Y., Wijesekera D., Stavrou A., SQLProb: a proxy-based
architecture towards preventing SQL injection attacks, Proceedings of the 2009 ACM
symposium on Applied Computing, Honolulu, Hawaii, pp.2054-2061, 2009.

[Liu et al. 2000] Liu C. H., Kung D., Hsia P., and Hsu C. T., Structure testing of web applications,
In Proceedings of the 11th Annual International Symposium on Software Reliability
Engineering, pp. 84–96, San Jose CA, October 2000.

[Livshits and Lam 2005] Livshits V.B., Lam M.S., Finding Security Vulnerabilities in Java
Applications with Static Analysis, In Proceedings of the 14th Usenix Security Symposium,
Aug. 2005.

[Ljung and Box 1978] Ljung G.M., Box G.E.P., On a measure of lack of fit in time series models,
Biometrika 65, pp. 553-564, 1978.

[Lyu 1995] Lyu M.R., Handbook of Software Reliability, McGraw-Hill, 1995.
[Ma and TIan 2003] Ma L., Tian J., Analyzing Errors and Referral Pairs to Characterize Common

Problems and Improve Web Reliability, 3rd International Conference on Web Engineering,
pp. 314-323., 2003.

[Mahoney and Chan 2004] Mahoney M., Chan P., An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection, Recent Advances in Intrusion
Detection (RAID), pp. 220–237, 2004.

[Mahoui and Cunningham 2000] Mahoui M., Cunningham S.J., A comparative transaction log
analysis of two computing collections, Lecture Notes in Computer Science. Vol 1923, pp.418-
423, 2000.

[Martin et al. 2005] Martin M., Livshits B., and Lam M. S., Finding Application Errors and
Security Flaws Using PQL: a Program Query Language, In OOPSLA ’05: Proc. of the 20th
Annual ACM SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, San Diego, CA, USA, pp. 365–383, 2005.

[Martin and Lam 2008] Martin M., Lam M., Automatic Generation of XSS and SQL Injection
Attacks with Goal-Directed Model Checking, Proceedings of the 17th conference on Security
symposium, San Jose, CA, pp. 31-43, 2008.

[Mat-Hassan and Levene 2005] Mat-Hassan M., Levene M., Associating search and navigation
behavior through log analysis, Journal of the American Society for Information Science and
Technology, 56(9), pp.913-934, 2005.

[McAllister et al. 2008] McAllister S., Kirda E., Kruegel C., Leveraging User Interactions for In-
Depth Testing of Web Applications, Recent Advances in Intrusion Detection, vol 5230, pp.
191-210, 2008.

[McGraw 2004] McGraw G., Software Security, IEEE Security & Privacy, 2(2), pp. 80–83, 2004.
[McHugh 2000a] McHugh J., The 1998 Lincoln Laboratory IDS evaluation, Recent Advances in

Intrusion Detection (RAID), pp. 145–161, 2000.
[McHugh 2000b] McHugh J., Testing intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by Lincoln Laboratory, ACM
Transactions on Information Systems Security, 3(4), pp. 262–294, 2000b.

[Menascé et al. 1999] Menascé D. A., Almeida V.A., Fonseca R., Mendes M.A., A methodology
for workload characterization of E-commerce sites, In Proceedings of the 1st ACM
Conference on Electronic Commerce, ACM Press, pp. 119-128, 1999.

[Menasce et al. 2000a] Menasce D., Almeida V., Foneca R., Mendes M., Business-oriented
Resource Management Policies for E-commerce Servers, Performance Evaluation, 32 (2-3),
pp. 223-239, 2000.

[Menasce et al. 2000b] Menasce D., Almeida V., Ried R., In Search of Invariants for E-Business
Workloads, 2nd ACM Conference on Electronic Commerce, Minneapolis, MI, pp. 56-65,
2000.

[Menascé et al. 2002] Menascé D.A., Barbara, D., Almeida V., Ribeiro F., Fractal characterization
of web workloads, 11th International World Wide Web Conference, pp. 7-11, 2002.

[Miller and Bharat 1998] Miller R.C., Bharat K., SPHINX: A framework for creating personal,
site-specific Web crawlers, In Proceedings of the Seventh International World Wide Web
Conference, pp. 119-130, April 1998.

[Mitzenmacher 2003] Mitzenmacher M., Dynamic Models for File Sizes and Double Pareto
Distributions, Internet Mathematics, 1(3), pp. 305–333, 2003.

153

[Mobasher et al. 2000] Mobasher B., Cooley R., Srivastava J., Automatic personalization based on
Web usage mining, Communications of the ACM, 43(8), pp. 142-151, 2000.

[Moody and Palomino 2003] Moody K., Palomino M., SharpSpider: Spidering the Web through
Web Services, First Latin American Web Congress (LA-WEB 2003), 2003.

[Montgomery and Faloutsos 2001] Montgomery A.L, Faloutsos C., Identifying web browsing
trends and patterns, IEEE Computer, 34(7), pp. 94-95, 2001.

[Musa et al. 1987] Musa J.D., Iannino A., and Okumoto K., Software Reliability: Measurement,
Prediction, Application, McGraw-Hill, 1987.

[Musciano and Kennedy 2002] Musciano C., Kennedy B., HTML and XHTML: The Definitive
Guide, O'Reilly & Associates, Inc., Sebastopol, CA, 2002.

[Myers 1979] Myers G.J., The Art of Software Testing, Wiley, 1979.
[Nah 2002] Nah F.H., A Study of Web Users’ Waiting Time, Intelligent Support Systems

Technology: Knowledge Management, Vijayan Sugumaran (editor), IRM Press, pp. 145-152,
2002.

[Needleman and Wunsch 1970] Needleman S.B., Wunsch C.D., A general method applicable to
the search for similarities in the amino acid sequence of two proteins, J Mol Biol, 48(3), pp.
443–53, 1970.

[Nelson 1978] Nelson E., Estimating Software Reliability from Test Data, Microelectronics and
Reliability, 17(1), pp. 67-73, 1978.

[Nguyen-Tuong et al. 2005] Nguyen-Tuong A., Guarnieri S., Greene D., Shirley J., Evans D.,
Automatically Hardening Web Applications Using Precise Tainting, In Proceedings of the
20th IFIP International Information Security Conference, Chiba, Japan, pp. 372-382, 2005.

[Nicholas et al. 2000] Nicholas D., Huntington P., Lievesley N., Wasti A., Evaluating consumer
Web site logs: Case study The Times/Sunday Times Web site, Journal of Information
Science, 26(6), pp. 399-411, 2000.

[Nicholas et al. 2006a] Nicholas D., Huntington P., Jamali H.R., Watkinson A., What deep log
analysis tells us about the impact of big deal, case study OhioLink, Journal of Documentation,
62(4), pp. 482-508, 2006.

[Nicholas et al. 2006b] Nicholas D., Huntington P., Jamali H.R., Watkinson A., The information
seeking behaviour of the users of digital scholarly journals, Information Processing and
Management, 42(5), pp. 1345-1365. 2006.

[Ntafos 1984] Ntafos S.C., Required element testing, IEEE Trans. Software Eng., SE-10(6), pp.
795-803, Nov. 1984.

[Offutt 1994] Offutt A.J., A practical system for mutation testing: Help for the common
programmer, Proceedings of the International Test Conference, pp. 824-830, 1994.

[Offutt 2002] Offutt J., Quality Attributes of Web Applications, IEEE Software: Special Issue on
Software Engineering of Internet Software, 19 (2), pp. 25-32, 2002.

[Offutt 2004] Offutt J., Wu Y., Du X., Huang H., Bypass testing of Web applications In
Proceedings of The Fifteenth IEEE International Symposium on Software Reliability
Engineering, Saint-Malo, Bretagne, France, pp.187-197, 2004.

[Ollman 2004] Ollman G., The phishing guide - understanding and preventing phishing attacks,
White Paper, Next Generation Security Software Ltd., 2004.

[OWASP 2010] OWASP, Guide to Building Secure Web Applications and Web Services: Data
Validation, OWASP, http://www.owasp.org/index.php/Guide_Table_of_Contents, last
accessed January 9, 2010.

[Park and Park 2008] Park Y.J., Park J.C., Web Application Intrusion Detection System for Input
Validation Attack, Third 2008 International Conference on Convergence and Hybrid
Information Technology, pp. 498-504, 2008.

[Pallis et al. 2005] Pallis G., Angelis L., Vakali A., Model-based cluster analysis for web users
sessions, 15th International Symposium on Methodologies for Intelligent Systems, Springer-
Verlag Berlin Heideberg, pp. 219-227, 2005.

[Pankratz 1983] Pankratz A., Forecasting with univariate Box-Jenkins models: Concepts and
cases, New York: John Wiley and Sons, 1983.

[Pietraszek and Berghe 2005] Pietraszek T., Berghe C.V., Defending Against Injection Attacks
through Context-Sensitive String Evaluation, In Proceedings of Recent Advances in Intrusion
Detection (RAID2005), Seattle, Washington, USA, pp. 124-145, 2005.

154

[Pitkow 1999] Pitkow J.E., Summary of WWW characterizations, World Wide Web, 2(1-2), pp.
3-13, 1999.

[Provost and Fawcett 2001] Provost F.J., Fawcett T., Robust classification for imprecise
environments, Machine Learning, 42(3), pp. 203-231, 2001.

[Raghavan and Garcia-Molina 2001] Raghavan S., Garcia-Molina H., Crawling the hidden web, In
Proc. of 27th Int. Conf. on Very Large Databases, pp. 129-138, Sept. 2001.

[Rapid7 2005] Rapid7, Vulnerability Management Trends, Issue 2, pp. 1-9, 2005.
[Rapps and Weyuker 1985] Rapps S., Weyuker E.J., Selecting software test data using data flow

information, IEEE Trans. Software Eng., 11(4), pp. 367-375. April 1985.
[Reed et al. 2004[Reed J.W., Jorgensen M., The Double Pareto-Lognormal Distribution—A New

Parametric Model for Size Distributions, Communications in Statistics – Theory and
Methods, pp. 1733 – 1753, 2004.

[Resnick 1997] Resnick S.I., Heavy Tail modeling and teletraffic data, The Annuals of Statistics,
25(5), pp 1805–1849, 1997.

[Rezaul and Grout 2006] Rezaul K.M., Grout V., A Comparison of Methods for Estimating the
Tail Index of Heavy-tailed Internet Traffic, Proceedings of the 2nd International Joint e-
Conference on Computer, Information, and Systems Sciences, and Engineering, pp.219-222,
2006.

[Rittel and Webber 1973] Rittel H.W.J., Webber M.M., Dilemmas in a general theory of planning,
Policy Sciences, Vol. 4, pp. 155-169, 1973.

[Rodriguez et al. 2006] Rodriguez J.J., Kuncheva L.I., Alonso C.J., Rotation Forest: A new
classifier ensemble method, IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10), pp. 1619-1630, 2006.

[Rose et al. 2001] Rose G.M., Lees J., and Meuter M., A refined view of download time impacts
on e-consumer attitudes and patronage intentions toward e-retailers, The International Journal
on Media Management, 3(2), pp.105-111, 2001.

[Rosenstein 2000] Rosenstein M., What is Actually Taking Place in Web Sites: E-Commerce
Lessons from Web Server Logs, 2nd ACM Conference on Electronic Commerce (EC’00), pp.
38-43, 2000.

[Rourke et al. 2001] Rourke L., Anderson T., Garrison D.R., Archer W., Methodological Issues in
the Content Analysis of Computer Conference Transcripts, International Journal of Artificial
Intelligence in Education, pp. 8-22, 2001.

[Rushton et al. 2006] Rushton J.P., Brainerd C.J., Pressley M., Behavioral Development and
Construct Validity: The Principle of Aggregation, Psychological Bulletin, 94(1), pp. 18-38,
1983.

[Scambray et al. 2006] Scambray J., Shema M., Sima C., Hacking Exposed: Web Applications
Second Edition, San Francisco, CA, USA, McGraw-Hill, 2006.

[Scott and Sharp 2002] Scott D., and Sharp R., Abstracting Application-level Web Security, In
Proc. of the 11th Intl. Conference on the World Wide Web (WWW 2002), Honolulu, Hawaii,
USA, pp. 396-407, 2002.

[Shankar et al. 2001] Shankar U., Talwar K., Foster J. S., Wagner D., Detecting format string
vulnerabilities with type qualifiers, In 10th USENIX Security Symposium, Washington, D.C.,
pp. 201-220, 2001.

[Shapiro and Wilk 1972] Shapiro S.S. and Wilk M.B., An analysis of variance test for the
exponential distribution, TechnoMeterics, Vol. 14, pp 355-370, 1972.

[Shiflett 2008] Shiflett C., Cross-site request forgeries, http://shiflett.org/articles/security-corner-
dec2004, last accessed January 20, 2008.

[Shiflett 2004] Shiflett C., PHP Security, O’Reilly Open Source Convention, Portland, Oregon,
USA, 26 Jul 2004.

[Simon 1955] Simon H.A., A Behavioral Model of Rational Choice, Quarterly Journal of
Economics, 69(1), pp. 99-118, 1955.

[Spiliopoulou 2000] Spiliopoulou M., Web usage mining for Web site evaluation,
Communications of the ACM, 43(8), pp. 127-134, 2000.

[Spiliopoulou et al. 2003] Spiliopoulou M., Mobasher B., Berendt B., Nakagawa M., A framework
for the evaluation of session reconstruction heuristics in Web usage analysis. INFORMS
Journal of Computing, 15(2), pp. 171-190, 2003.

155

[Spitzner 2001] Spitzner L., Know Your Enemy: Revealing the Security Tools, Tactics, and
Motives of the Blackhat Community, Chapter 6, Addison-Wesley, 2001.

[Squillante et al. 1999] Squillante M.S., Yao D.D., Li Z., Web traffic modeling and Web server
performance analysis, Proceedings of the 38th IEEE Conference on Decision and Control,
Vol.5, pp. 4432-4439, 1999.

[Stevens and D’Agostino 1986] Stevens M.A., D'Agostino R.B., Goodness of Fit Techniques,
Marcel Dekker, New York 1986.

[Su and Wassermann 2006] Su Z., Wassermann G., The Essence of Command Injection Attacks in
Web Applications, In The 33rd Annual Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, pp. 372–382, 2006.

[Sumner et al. 2005] Sumner M., Frank E., Hall M., Speeding up Logistic Model Tree Induction,
In: 9th European Conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 675-683, 2005.

[Sutton et al. 2007] Sutton M., Greene A., Amini P., Fuzzing: Brute Force Vulnerability
Discovery, Addison-Wesley Professional, 2007.

[Swiderski and Snyder 2004] Swiderski F., Snyder W., Threat Modeling, Redmond, Washington,
USA, Microsoft Press, 2004.

[Tappenden et al. 2005] Tappenden A.; Beatty P.; Miller J.; Geras A.; Smith M., Agile security
testing of Web-based systems via HTTPUnit, Agile Conference, 2005. Proceedings, pp. 29-
38, July 2005.

[Tappenden et al. 2006] Tappenden A.F., Huynh T., Miller J., Geras A., Smith M.R., Agile
Development of Secure Web-Based Applications, International Journal of Information
Technology and Web Engineering, 1(2), pp. 1–24, 2006.

[Thompson 2003] Thompson H.H., Why Security Testing Is Hard, IEEE Security & Privacy, 1(4),
pp. 83–86, 2003.

[Tian et al. 2004] Tian J., Rudraraju S., Li Z., Evaluating Web Software Reliability Based on
Workload and Failure Data Extracted from Server Logs, IEEE Transactions on Software
Engineering, 30(11), pp.754-769, 2004.

[Tip 1995] Tip F., A survey of program slicing techniques. Journal of Programming Languages,
3(3), pp. 121-189, 1995.

[Trivedi 2001] Trivedi K.S., Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, second ed., John Wiley & Sons, 2001.

[Tsai et al. 2009] Tsai CF, Hsu YF, Lin CY, Lin WY, Intrusion detection by machine learning: A
review, Expert Systems with Applications, 36(10), pp. 11994-12000, 2009.

[Tsourti and Panaretos 2001] Tsourti Z., Panaretos J., Extreme Value Index Estimators and
Smoothing Alternatives: Review and Simulation Comparison, Athens University of
Economics and Business, Statistics Technical Report No. 149, 2001.

[Valeur et al. 2005] Valeur F., Mutz D., Vigna G., A learning-based approach to the detection of
SQL attacks, Intrusion and Malware Detection and Vulnerability Assessment, pp. 123-140,
2005.

[Vaswani 2000] Vaswani V., MySQL: The Complete Reference, McGraw-Hill/Osborne, 2004.
[Wagner et al. 2000] Wagner D., Foster J. S., Brewer E. A., and Aiken A., A First Step towards

Automated Detection of Buffer Overrun Vulnerabilities, Network and Distributed System
Security Symposium, San Diego, CA, pp. 3–17, 2000.

[Wang and Tang 2003] Wang W. and Tang M., User-Oriented Reliability Modeling for a Web
System, 14th International Symposium on Software Reliability Engineering, pp. 293-304,
2003.

[Weiser 1984] Weiser, M., Program slicing, IEEE Transactions on Software Engineering, SE-
10(4), pp. 352-357, 1984.

[Weiss and Provost 2003] Weiss G., Provost F., Learning when training data are costly: The effect
of class distribution on tree induction, Journal of Artificial Intelligence Research, Vol. 19, pp.
315-354, 2003.

[Wheeler 2003] Wheeler, D., A., Secure Programming for Linux and Unix HOWTO,
http://dwheeler.com/secure-programs, 2003.

[Whittaker and Thompson 2003] Whittaker J., Thompson H., How to Break Software Security,
Addison-Wesley, 2003.

156

[Widenius and Axmark 2002] Widenius, M., Axmark, D., MySQL Reference Manual, Sebastopol,
Calif.: O’Reilly, 2002.

[Wiegers 1999] Wiegers K., Software Requirements, Microsoft Press, Redmond, 1999.
[Witten and Frank 2005] Witten I.H., Frank E., Data Mining: Practical Machine Learning Tools

and Techniques, Morgan Kaufmann, 2005.
[Williams and Lane 2002] Williams H.E., Lane D., Web Database Applications with PHP &

MySql, O'Reilly, 2002.
[Williams 2001] Williams J., Avoiding the CNN Moment, IT Pro, March-April, pp. 68–72, 2001.
[Woodward et al. 1980] Woodward M. R., Hedley D., Hennel M.A., Experience with path

analysis and testing of programs, IEEE Trans. Software Eng., SE-6(3), pp. 278-286, May
1980.

[Xie and Aiken 2006] Xie Y., Aiken A., Static Detection of Security Vulnerabilities in Scripting
Languages, Proceedings of the 15th conference on USENIX Security Symposium, Article 13,
2006.

[Xu et al. 2005] Xu W., Bhatkar S., Sekar R., Practical dynamic taint analysis for countering input
validation attacks on web applications., Technical Report SECLAB-05-04, Department of
Computer Science, Stony Brook University, May 2005.

[Yeung and Ding 2003] Yeung DY, Ding Y, Host-based intrusion detection using dynamic and
static behavioral models, Pattern Recognition, 36(1), pp. 229-243, 2003.

[Zhang et al. 2002] Zhang X., Edwards A., Jaeger T., Using CQual for static analysis of
authorization hook placement. In the Proceedings of the 11th USENIX Security Symposium,
San Francisco, CA, USA, pp. 33-48, 2002.

[Zipf 1949] Zipf G.K., Human Behavior and the principle of least effort, Addison-Wesley, 1949.

157

Appendix 1 – Introduction to Heavy-Tailed and
Pareto Distributions
The majority of statistical work is based on short-tailed distributions such as the
normal and lognormal distributions. These distributions decay “quickly”
(commonly exponentially) in contrast with heavy-tailed distributions. The rank
size law53 (1949) can be used to informally describe heavy-tailed distributions.
This law states that: the second largest entity is half the size of the largest; the
third largest entity is one third the size of the largest, etc. That is, if the entities
are ranked from largest (rank 1) to smallest (rank n), and their values are denoted
as:

nxx ≥≥K1
the rank i for an entity of value xi is proportional to the proportion of entities
greater than i. Or:

i
kxi ≈ (A1.1)

for some constant k. More formally, Resnick (1997) states that a random variable
X has a Pareto tail with index α, α > 0, if for x > 1

α−≈> xxXP][1, >x (A1.2)
Many authors provide a slightly more generic distribution of a Pareto distribution
by incorporating an additional multiplicative term α

minx (the location parameter,

the actual term is L(x). For the Pareto distribution, L(x)= α
minx), where α

minx is a

positive minimal value of X; i.e. ∀x•x> α
minx .

Examination of the Pareto distribution (which is a commonly examined heavy-
tailed distribution) involves analysis of the tail index α. Hence, α is examined
with the common approach of setting α

minx =1 and the requirement for the
additional inequality (Equation A1.2). Technically, the above distribution is
defined in a continuous domain; however, within this investigation’s domain, the
estimation of values clearly has a defined resolution. So strictly speaking X is a
discrete random variable; and the discrete probability distribution analogue to the
Pareto distribution applies. Therefore, the zeta distribution, or the Zipf
distribution, is the actual distribution under analysis. However, the distributions
only differ in their definition of the multiplicative term L(x) and hence the above
definition resolves the issue of having a distribution defined in a continuous
domain being applicable on a discrete random variable.

The Pareto distribution is an example of a wider set of distributions, namely
heavy tailed distributions. X has a heavy tailed CDF F(x) if

53 The rank size law is a good approximation for entities of high rank, but not for the largest.

158

)(][)(1 xLxxXPxF α−=>=− (A1.3)
where L is slowly varying; i.e.

1
)(
)(lim =

∞→ tL
txL

t
 (A1.4)

The Pareto distribution is the “simplest” example of a heavy-tailed distribution
and is used throughout this paper; and hence the more general definition can be
considered solely for information purposes.

The implications of deciding that X is from a heavy-tailed or Pareto distribution
are severe as the definition of the standardized moments become problematic.
For the Pareto distribution, the first two moments are defined as:

1
)(min

−
=
α
αxXE (A1.5), 2

2
min

)1)(2(
)(

−−
=

αα
αxXVar (A1.6)

This implies that, for α ≤ 1 the expected value is infinite; and for α ≤ 2 the
variance infinite. Clearly, this demonstrates serious limitations on the types of
models which can be constructed using Pareto distributed variables. In addition,
these definitions are unrealistic in many situations because the distribution of X
will be bounded by physical constraints. Hence, a more rigorous and realistic
definition requires the above to hold over a finite range [xi, xi+j] where the
distribution applies.

Although this might seem an unimportant technical point, it is actually a recurring
theme in this domain. Basically, all common methods of exploring potentially
Pareto distributed variables follow this pattern where the investigation is only
carried out within a finite range. Hence, the approaches introduce a bias because
they only investigate a small component of the distribution, namely the “tail”. xi
is often considered to be the start of the tail, although there is no method of
evaluating i and no definition of the term tail. xi+j is commonly considered to be
near xn; i.e. the highest ranked point within the data set. Clearly, the points, which
in theory exist with ranks greater than n, cannot be inferred. It is important to
note that this range only corresponds to an extremely finite part of the
distribution; it is not uncommon for the “tail component” or Pareto range to be
defined for less than 1% of the sampled range nxx ≥≥K1 . Hence, it is
exceptionally difficult to make accurate estimations and infer reliable facts across
such amounts of data. The amounts of data are very small both in absolute terms
(the raw number of points) and relative terms (the percentage of the total sample).
Hence, given the difficulty of accurately characterizing information as belonging
to a heavy-tailed distribution and the significant consequences in terms of
undefined standardized moments, one should be careful in inferring that a heavy-
tailed distribution exists.

It should not be inferred from this discussion that the shape of the Pareto, or
heavy-tailed, distributions are highly distinctive from short-tailed distributions. In
fact, many heavy-tailed and short-tailed distributions “look” highly similar. For

159

example, Gong et al. (2001) plot the data from the Crovella and Bestavros (1997)
paper, a time-series which contains file sizes transferred over a period of time.
They compare the data at the 95% confidence intervals for both Pareto and
lognormal models; and observe that the confidence intervals of both models grow
with file size; and, at the tail, the two confidence intervals have a “large overlap
which makes it difficult to distinguish them”. Mathematically, Pareto and
lognormal distributions also have a lot in common.

Adapting from Gabaix (1999) and Gong et al. (2001), consider a time series of
i.i.d. positive random variables Z1, …., Zt, ….Z∞. Let Zi be defined as:

ttt AZZ 1−= , t = 1, …. (A1.7)
With Z0 = 1. Taking logarithms yields

∑=
=

t

i
it AZ

1
ln , t = 1,….. (A1.8)

which by the central limit theorem converges in distribution to a normally
distributed random variable. Consequently, Zt converges in distribution to a
lognormal distributed random variable. Now, let’s add a condition that Zt must
always exceed a threshold Δ.

,....1},,max{ 1 =Δ= − tAZZ ttt (A1.8)
Gabaix (1999) shows that Zt now converges to a random variable with a Pareto
distribution. That is, if Δ = 0, it produces a lognormal distribution, otherwise a
Pareto distribution. Because of the similarity between the two distributions, this
paper also examines the lognormal distribution for the session lengths recorded.

160

This page is intentionally left blank.

161

Appendix 2 – Independence of Data Test for
Chapter 7
Extreme value analysis methods are techniques that attempt to model rare events
based on limited data. Heavy-tail analysis requires a dataset of unobtainable size;
and hence, the analysis performed in this paper can be classified as extreme.
Many extreme value analysis methods assume that the data set is independent. In
fact, the Hill estimator is the only known estimator to perform accurately with
dependent data (Rezaul and Grout 2006, Tsourti and Panaretos 2001). Hence, if
the data is considered as dependent, extreme value analysis methods need to be
modified. Therefore, in this appendix, this question is considered; however, in
this situation, the definition and associated tests for independence is an extremely
complex subject with no single clear answer. Independence or randomness is one
of the four assumptions that typically underlie all measurement processes. The
randomness assumption is critically important because most standard statistical
tests depend on it; the validity of the test conclusions are directly linked to the
validity of the randomness assumption.

To illustrate this issue, the autocorrelation function (ACF) is used to test for
randomness or dependence of the data set. While an autocorrelation approach to
the question is used, other approaches exist (see Brockwell and Davis (1991) for a
discussion of alternatives). The session length data can be seen as a time-series
because each session length is recorded according to the session start time. If the
time-series is completely random then the entire ACF should be zero or the null
hypothesis is ACF(k) = 0; where k is the lag. Examining ACF values, and
determining if they are within the 95% confidence bounds around this central
value is commonly utilized as a mechanism to test this hypothesis. If there are
values exceeding this bound, then the data is considered dependent. Figures
A2.1a and A2.1b show the ACF plots for ECE and Site A.

Figure A2.1a ACF for ECE Figure A2.1b ACF for Site A

These plots also contain the 95% confidence bounds; the plots show that 10%
and 67% of the values exceed the upper bound for the ECE and Site A sites

162

respectively, implying that the data may be dependent. However, the analysis
uses Barlett’s formula (Pankratz 1983) to estimate the confidence interval. This
formula assumes that the data is normally distributed, and hence the confidence
bounds are meaningless if the samples are drawn from a heavy-tailed distribution.
Alternatively, the Ljung-Box test (Ljung and Box 1978) can be used to evaluate
the null hypothesis. The Ljung-Box test utilizes the following formula:

∑
= −

+=
m

k

k

kn
acf

nnQ
1

)2((A2.1)

where ACFk is the ACF value for lag k, n is the number of samples and m is the
maximum lag. Q is distributed as χ2 with (m-p-q) degrees of freedom. The
assumption that that p = q = 0 is made; i.e. that the data sets have no trend or
periodic information. Clearly, this assumption is invalid as web-sites clearly have
many different types of periods with differing resolutions; e.g. day/night;
weekday/weekend; non-holiday-period/holiday-period etc. However, the exact
nature of the periodic information is not understood and approaches to estimating
p and q can be error prone. Hence this simplifying assumption is used. This
assumption effectively inflates the Type II error; which is considered an
acceptable risk in this situation. Using the above equation χ2 is calculated to be
6582.68 and 586.88 for ECE and Site A respectively. These χ2 values, with 100
degrees of freedom, correspond to a p-value of p < 0.001 for both websites.
Hence, the null hypothesis can again be rejected which means that the data set is
dependent, but only if it is not sampled from a heavy-tailed distribution. While
this approach can be considered less distributionally restrictive than the previous
approach, it is still, both theoretically (Jansen and de Vries 1991) and empirically
(Chen 2002), not robust to heavy-tailed data.

In addition, the standard ACF formula is invalid if the sample is from a heavy-
tailed distribution as the formula basically measures deviations from the sample
mean, while the sample mean is mathematically undefined for many heavy-tailed
distributions. Fortunately, the construction of a non-centered autocorrelation
function is straightforward (Davis and Resnick 1985):

∑

∑

=

−

=
+

= n

i
i

kn

i
kii

HT

X

XX
kACF

1

2

1)((A2.2)

Figures A2.2a and A2.2b shows the heavy-tailed ACF plots for ECE and Site A.
These plots show that the ACF values do not exceed 0.17 and 0.13 for the ECE
and Site A sites respectively. However, confidence bounds estimations (or Q
statistics) no longer exist; and unless specific information about the underlying
distribution, including accurate values for its parameters, are known, a confidence
interval cannot be defined (Feigen and Resnick 1999).

163

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Lag Number

AC
F

Figure A2.2a Heavy-Tailed ACF for

ECE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Lag Number

A
C

F

Figure A2.2b Heavy-Tailed ACF for Site

A

However, several alternative approaches still exist for evaluating the null
hypothesis. Feigin and Resnick (1999) show that if the series can be modeled as a
moving average process of lag l then the coefficients of the heavy-tailed ACF
should decay to approximately zero beyond l; and in the limiting case where

∞→l , the coefficients should again all be approximately zero. This question
can be investigated by asking if the co-efficients are summable. In addition, a
more formal test can be constructed by forming a permutation distribution. The
heavy-tailed ACF’s behavior, with respect to the null hypothesis, can be
characterized by a summary statistic; e.g. the maximum absolute ACF
coefficient54; this option is recommended by Feigen and Resnick (1999). The p-
value of the observed summarizing statistic is estimated by generating 999
permutations of the time-series; computing the statistic for each permutation and
counting the number (C) of values greater than or equal to the actual observed
statistics. The p-value is given approximately by ((1+C)/1000). Clearly, this
approach avoids relying in the asymptotic theory or distribution for this particular
summarizing statistic; and the test is distributionally robust for heavy-tailed
situations. Figures A2.3 and A2.4 display the results of the permutation test.

54 Other options include the partial or biserial autocorrelations.

164

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 101 201 301 401 501 601 701 801 901

permutation

AC
F

Figure A2.3 Permutation test for ECE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961

permutation

AC
F

Figure A2.4 Permutation test for Site A

165

Visual inspection show that the majority of the max(ACF) of the permutations are
below the actual max(ACF) which is represented by the horizontal line. In fact,
for the ECE site, none of the permutations are greater than or equal to the actual
max(ACF) which means the p-value < 0.001. For Site A, two of the permutations
are greater than or equal to the actual max(ACF); hence, the p-value < 0.003.
Because the p-value for both websites are below the standard type I error cut-off
values, the null hypothesis can be rejected which means that the data for both
websites are dependent.

While this approach is now a relatively robust examination of the null hypotheses
several situations still exist where the validity of the approach and hence the
associated results are at best questionable and at worst non-applicable. Feigin and
Resnick (1999) empirically demonstrate that the heavy-tailed ACF tends to
exhibit erratic results in the following situations:

• the presence of any non-linearities, such as the process being a bilinear
process;

• when the process is a moving average(l) process; if l > m;
• the series is contaminated by (additive) outliers.

These situations clearly represent risks to the internal validity of the results
presented in this appendix.

