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Figure 4.5 Geometrical description of 1-D discontinuous interpolation
shape functions
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Chapter 5

Constitutive Relationships

5.1. Preliminary Coensiderations

It is of main concern to determine the laws that govern the local deformation response of
the shear band. Fully developed plastic shear flow is considered and it can be regarded
from the continuum stand-point as a plane simple shear flow if the scale of investigation is
large compared with the characteristic length of the granular structure. Geometrically
speaking, this kind of plastic shear flow can be visualized as the sliding of a set of
infinitesimally close planes taking place inside a band of material. According to the scale of
investigation, this simple shearing may not be continuous, and suffer discontinuity jumps
across a shear plane. If the band is considered as a shear plane, the discontinuity will be
rather described by a displacement jump. On the other hand for a relatively thick band, the
same discontinuity may be regarded as a weak type, i.e. a jump in the gradient of
displacement across the thickness of the band, see Figure 5.1.

From a macroscopic stand-point, the fully developed shear flow translates into
paths along which grains over-ride each other over infinite distances; these paths undulate
in a random manner about macroscopic shear planes. When considering a macroscopic
shear plane elefnent s s in Figure 5.1, it is possible at any instant to associate it with a

wavy surface element s° s'. In other words, the discontinuous shearing on a characteristic
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sliding plane will be the limit which a continuous shear flow approaches when the width of
the shear zone is made to vanish.

It is appropriate at this point to regard the shear flow phenomenon as a contact
friction interaction problem. The oldest and most popular idealization for friction is due to
Coulomb. Although originally postulated for contact between dissimilar rigid bodies, it
may have an analogous interpretation for contact between deformable similar bodies. It can
be stated that the relative motion between two adjacent points in contact will occur
whenever the tangential stress attains a value equal in magnitude to the normal compressive
stress multiplied by some constant called the friction coefficient which characterizes the
interface. Furthermore, it requires the relative tangential motion to be zero prior to frictional
slip. However in the case of geomaterials, considerable experimental evidence shows that
reversible tangential displacements take place prior to any permanent frictional sliding. This

appears specially in rock joints problems, see Rosso [1976].

5.2. Rupture interface rheology

The shear band is visualized as a zone of the soil body within which large structural
changes, in the form of either grain crushing or re-orientation, take place during localized
shearing. Furthermore, the surfaces demarcating the localized zone are considered planar
and parallel to each other separated by a distance which is a function of the grain size of the
material. As such the thickness of the band will generally be very small, and typically of the
order of 10 to 20 times the mean diameter of the soil grains for granular materials.

5.2.1 Experimental observations

In order to investigate the constitutive behaviour of the shear band, an experiment has to be
devised in which the band is allowed to form freely without any kinematic restraint so that
one ensures measuring only the mechanical properties of the band just as if it were isolated.

A very simple arrangement is the direct shear box apparatus, but there has been much
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controversy upon its validity, and interpretation of test results. It is well known that the
state of stress is far from being uniform inside the box due to stress concentrations at the
edges. As a result, the shear strength is not uniformly mobilized inside the specimen so that
the measured stresses can only be considered on an average sense. Figure 5.2 illustrates the
initiation of rupture surfaces at the two opposite ends of the box due to progressive failure,
and amazingly enough, they are not found to be horizontal in the direction of the physical
plane of shearing. Kink bands are initially formed and have been observed by Morgenstemn
and Tchalenko [1967] who investigated the microscopic characteristics of shear banding in
a Kaolin specimen subjected to direct shear. As the loading process progresses towards
higher shearing, those microscopic features coalesce and make way to a shear band in the
horizontal direction as a result of principal stress rotation, large deformation and
improvement of kinematic constraints. In this situation the mobilized shear strength is fairly
uniform along the shear band since at each material point, it may be considered that the
residual strength has been reached. The relative sliding between the top box and the bottom
one, then approximately represents the global behaviour of the shear band alone with
surrounding material in a rigid passive stress state.

The transition from the two states described is made through a rapid drop of the
shear strength from a peak value to a residual one, see Figure 5.3. The rate of drop in
strength, or softening rate which one measures depends on many factors. Firstly, due to
the non-uniform mobilization of shear stresses along the band, the stress-relative
displacement curve will not be unique for any material point. Secondly, the rate of
softening will be function of the grain size, thickness of the band and the size of the box as
well.

In order to obtain a reasonable representation of the behaviour of the shear band in
an experimental device, the end effects errors introduced must be eliminated. It would be
convenient to have an infinitely long shear box: a close approximation of it being the ring

shear apparatus, see Yoshimi and Kishida [1981]. In this device, the problems caused by
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non-uniformity of stress distribution are reduced, but freedom of formation of the shear
band is somewhat restricted. However, the stress-relative displacement behaviour in the
post-peak range will be obtained within a higher degree of accuracy than can be reached by
the direct shear box.

Both the direct shear box and the ring shear tests can be regarded as a surface
element test, the dual form of a volume element test. At this scale of investigation, both
stress and strain can be viewed as homogeneous along the idealized displacement
discontinuity surface. Due to kinematic constraints, the macroscopic shear band does not
change configuration and stays horizontal, i.e. the direction of imposed shearing. Several
experiments, for example x-ray photographs taken in a large shear box confirm this
observation, see Scarpelli and Wood [1982]. However, one has to be careful in dealing
with the extent of non-homogeneity in the vicinity of the shear band. Although the stress
and strain fields can be considered homogeneous along the shear band interface, they may

not be so inside it.

5.3  Formulation of stress-relative displacement relationship
The deformational properties of the shear band are in general different from those of a
material undergoing general 3-D deformation. This implies that although a constitutive
model may be valid for general continuum behaviour, its validity may need analysis and
investigation when specialized into shear band behaviour. For instance characterization of
large structural changes and dilation inside a shear band may be different from those
occurring in a body undergoing general deformation.

Figure 5.4 illustrates the generic shear band problem specialized into a two
dimensional configuration. The simple situation involving a shear band parallel to the x-z
plane with normal and shear stresses acting on the surface is considered. Also the stress

and strain fields are assumed homogeneous in the x-y plane and no deformation is allowed
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in the z direction. A relationship linking the loading vector, herein boundary stresses
{0,,7) defined on an average sense, to the response vector which contains the boundary
relative normal and tangential slip displacements {gn ,8:} is sought. Mathematically, a
functional depending on stresses, relative slip displacements and associated state variables
such as density and void ratio must be formulated. A pragmatic approach is herein adopted
whereby the functional ideally lumps all variables which may contribute to complex

phenomena such as grain crushing, large displacements and distortions and rotations.

Thus, ideally

.'F'(Oh sT s8n »8t ’pO’na"") =0. (5.1)

The symbol "....." refers to other variables that need to be accounted for, see
Malvern[1969], based on the Principle of Equipresence, which requires that all variables
that could possibly influence the response of the shear band be incorporated in F.In
precise terms, F represents a contact constitutive relationship. Due to the non-linear nature
of the problem, an incremental formulation which relates tangential response to tangential
load is preferably chosen. Also for simplicity of the formulation, a non-viscous behaviour
is considered such that ¥ is made a homogeneous function of order 1.

There are basically several approaches to determine ¥, either by fitting experimental
data using sophisticated mathematical techniques, or advocating the classical plasticity
formalism. The coming sections will basically review and hence assess the two different

approaches in view of applying them to the shear band problem.

5.3.1 Phenomenological approaches
In the phenomenological approach adopted by Ichikawa[1985] for modelling continuum
constitutive behaviour, the loading vector is expressed by means of a response f:ictional

covering the spectrum of all possible field variables and loading paths. The concept can be
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similarly applied to the shear band by postulating the stresses at the limiting boundaries to
be solely function of slip displacements. As such, the response of the stress normal to the
shear plane is made function of normal slip displacements, and to a lesser degree tangential
slip displacements. On the other hand, tangential slip displacements will be the predominant

factor governing the shear stress response. This can be mathematically written as:

On= Pfghel) and T= ¥ (gf,gh), (5.2)

in which ¥ and @ are the response functions to be experimentally determined from fitting
and spectrum techniques. Note that superscript p’ in Eq. (5.2) stands for plastic or
irrecoverable component of slip displacement. The incremental form of Eq. (5.2) obtained
by simple differentiation thus leads to the stress-slip displacement relationship. However,
the difficulty of the formulation lies in the proper determination of ¥ and & through
experiments. This requires considerable data and mathematical fitting techniques such as
spectrum analysis of functions in order to arrive at the final form of the functionals.
Alternatively, the processes characterizing the shear band can be conveniently cast
into the framework of damage theory. Damage theory has been recently used in engineering
mechanics and is a fairly well established, see Chaboche[1981]. In the same context, the
shear force along the boundaries of a shear band of finite thickness can be made to originate
from two contributing sources, namely one due to purely frictional effects and the other one
due to the extent of damage, i.e grain crushing, particle reorientation and micro-cracking
inside the band. This leads to partitioning the contact surface area into frictional and damage
components. The frictional component is described by a classical Coulomb law while
damage is given by a convenient evolution law. The determination of driving parameters
requires very sophisticated experimental techniques. It is usually difficult to experimentally

follow the evolution of damage, and hence the mathematical relationship. Consequently, a



damage based formulation will not be contemplated in the present analysis, and as a matter

of fact, is not justified.

5.4 Plasticity formalism
In the present study the behaviour of the band can be completely described by means of the
plasticity formalism. Both a yield surface and plastic potential are postulated. Softening
effects and microfabric changes in the band can be macroscopically modelled by the
expedient of making state variables such as mobilized band friction and cohesion degrade
with accumulated plastic deformations.

Suppose the behaviour of the surface discontinuity formed by the band be governed

by a conventional Coulomb contact law of the form

|7|=c,(y")- o, tan@,(7"), (5.3)

in which:

¢, = characteristic friction angle of discontinuity,
c, = characteristic cohesive strength of discontinuity, and

yP = plastic distortion taking place at the discontinuity.

5.4.1 Contact yield and plastic potential functions
The Coulomb yield function can thus be conveniently written in the following alternate

form:

F, =7 =[ci(y")- 0, un g, (y")] =0. (5.4)

The flow rule of plasticity requires the incremental plastic strain vectors £” to be orthogonal

to a plastic potential function. The plastic potential function can be formulated much in the
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same fashion as in Eq. (5.4) by simply replacing the friction angle @, by a dilatancy angle
v, ,and ¢, by ¢,. Thus,

G, =7 -[e,(y") - 0, tan y,(r")]. (5.5)

The incremental plastic strains are readily obtained from the flow rule

3%,

def =dA L,
do (5.6)

with de” = {de?,de? } and 6 = {5,, 7} in the band local system (n,2). It is noted that
when the thickness of the shear band becomes small compared to the dimensions of the
specimen, finite deformations within the shear band may develop and hence materially large

deformation measures may be needed in Eq. (5.6).
It can be readily shown that defining the above flow rule leads to imposing a

kinematic constraint to the normal slip displacement g? and tangential slip displacement gr,

i.e.

14
gg_"=”an'/’ds

dg/ (5.7)

inwhichs=-1if7 <0ands=1if7>0.

5.4.2 Evolution rule
The evolution of deformation inside the band—or at least in its neighbourhood—can be

traced by making both friction angle @, and cohesion c, become function of plastic
distortion ¥,
In plane strain conditions, the plastic distortion rate can be conveniently expressed

by
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7’ =‘\f2é:é, (5.8)

where the deviatoric strain rate € is classically given as

é=€- -l-trace(é) 1,
2 (5.9)

where in the special case of the simple 2-D band,

trace(g) = &,, + &, and 1,1; =2 since i,j=1,2 (1 is the Kronecker delta). (5.10)

By virtue of the above, and considering that the ¢ axis is a direction of zero extension

(¢, = 0; pure shear), the plastic distortion simplifies into

yP = (éM)2+2(é~)2. (5.11)
By making use of the shear band thickness d,, the above in terms of slip displacement rates
becomes

=@+ @] =l
b b (5.12)

It is seen that the plastic distortion rate degenerates into the norm of the slip displacement

vector for a point along the shearing plane.

5.4.3 Elasto-plastic contact constitutive tensor
In general, it can be considered that the deformation of the discontinuity (shear band) is

only partially recoverable. As such,
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dg=dg’ +dg”. (5.13)

The following elasticity relations hold:

do =n":dg’, (5.14)

aH
0 G (5.15)

The parameters K, and G, are respectively elastic normal and shear moduli for the

where

discontinuity.
The plastic slip displacements can be explicitly given by use of the alternate form of

Eq. (5.5) and Eq. (5.6), i.e.

dg! =d, dAtan y,,dg’ =d, dA. (5.16)

The consistency equation, i.e dF, = 0, ensures that the stress stays on the yield surface, in

other words,

gp—;’-:dc+-ai::dy’ =0.
oo dy (5.17)

Replacing dy”in the above with the aid of Eqs. (5.11) and (5.16) leads to the expression of

the plastic multiplier dA, i.e.

di =-L§&:dc,

H, do (5.18)
in which the hardening modulus H, is

L., 9

Hy=———h,;
‘T cosy, 4T oy (5.19)
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It can be readily shown, that the enforcement of the above consistency leads to the classical

rate-independent contact constitutive relation
G=t=n":g, (5.20)

where N is a second order tensor with the following expression

oF, oG
€. d ~d .
(g )elGen

U I L
R R Ay o)
4" do oo

(5.21)

® denotes the tensor product in the sense that (a ® b),,, =(a),(b),,.
The final explicit form of the above equation, in the special case of the 2-D planar shear

band is

G2 sG,K tany,

e :
4 |L0 K] Gy+K,tang tany,=hysec Vol 6k vny Ketany,tng,

(5.22)

In order to get some insight into the above expression, if A, tends to infinity, the elastic
constitutive tensor is recovered. For a purely cohesive shear band, it suffices to replace
both friction and dilatancy angles by zero in the very general expression in Eq.(5.22).

The evaluation of the constitutive tensor 1 depends explicitly on the shear band

thickness d,. In order to avoid the sensitivity to this dimension, which in fact cannot be
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uniquely determined, the problem can be reformulated in terms of strain rates, i.e. the shear

band is associated with a velocity discontinuity.
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s’-s’ microscopic shear plane

s-s macroscopic shear plane

(a) continuous (b) "jump" discontinuity (c) "weak” discontinuity
shearing type of shearing type of shearing

Figure 5.1 Macroscopic schematization of shear flow inside a shear band
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Figure 5.2 Non-uniform stress distribution inside a shear box: progressive failure
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Figure 5.3 Stress-relative displacement relationship in a direct shear box
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Chapter 6

Numerical Strategies

6.1. Introduction

The previous chapters laid the foundation for the establishment of a formalism for shear
band inception, ensuing kinematics and basic laws governing its behaviour. In precise
terms, it has been shown in Chapter 3, that bifurcation theory is appropriate for predicting
localization. Chapter 4 goes on and demonstrates that important features, such as the
discontinuous behaviour which arises during localization, can be incorporated into the
theory by modifying the Principle of virtual work into an equivalent one for a body
traversed by a discontinuity surface representing a shear band.

The pursuit of a finite element oriented framework has led to the design of special
finite elements with embedded discontinuities in their interpolation functions to adequately
model the real kinematics. Also, in Chapter 5, various contact laws have been reviewed and
subsequently adapted to describe the shear band constitutive behaviour.

In this chapter, the implementation of foregoing formulations into a finite element
program is discussed together with strategies adopted for the solution of numerical

difficulties which inevitably arise in such a complex model.
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6.2. Issues on model implementation

The discrete nature of the approach adopted for the modelling of shear bands inevitably
introduces problems associated with the proper determination of the geometrical location
and inclination of a shear band within a typical element. In a smeared scheme, the band
topology is not indeed a real issue—the sole concern is in fact to diffuse the deformations
generated inside the band over the entire representative domain, i.e. the element, in order to
reproduce an idealized pseudo-uniform mode.

In contrast, the methodology herein followed examines the shear banded element at
a discrete level—in more precise terms the kinematics are the primary features which
govern the behaviour of the structure. Therefore in the post localized regime, the
behavioural response of the element is modelled by introducing pseudo degrees of
freedoms meant to enhance its deformational capabilities. As such, the location of the shear
band inside the element must be determined as accurately as possible since any deviation
from reality may cause drastic changes in the predictive behaviour of the element. This is
why a scheme has to be found, based on stress values or state variables within the element.
Thus in order to arrive at a sensible method, a proper understanding of shear band
inception and physical meaning are needed.

The localization of deformation into a shear band is closely connected with the loss
of ellipticity (bifurcation) of the governing equilibrium equation. The characteristic
equations (surfaces) then indicate the location and shape of the localized zones, but leave
the size undetermined. It bears emphasis to say that in this method, localization conditions
are considered local, i.e. they can be ascertained into an elementary or point-wise fashion.
Turning back to the finite element discretization by a displacement type of formulation, it
can be seen that difficulties arise as to the accuracy of locating the band. As well established

now, in a displacement type formulation, a displacement field which satisfies inter-element



102

compatibility is searched so that it makes the potential energy functional achieve a stationary
value. As a result, equilibrium conditions will only be satisfied in an average sense, i.e. the
computed stress field will be approximate.

Since the loss of ellipticity can be assessed in a discrete manner, i.e. at Gauss
sampling points, the inclination predicted will not be representative of the actual ones
because they have been determined from stress values which satisfy governing equations of
equilibrium only on an average sense. This is the drawback which is usually inherited from
a displacement type of formulation. Even if the shear band were to be found accurately, the
continuity of stresses at the interface would not be fully satisfied—the analysis may be
thereby questionable. However, these problems can be erased by adopting a stress or
hybrid type of formulation. For a preliminary study, it is thought that the displacement
based formulation can still give fairly accurate results. The hybrid formulation would
require much more computational effort both from the analytical and computational stand-
points.

It is logical to think about trying to determine the locus of points which will satisfy
the bifurcation condition inside the element. The question is whether the shear band
directions found for each point on the locus surface really coincide with the tangent to the
same point. It is thought that they do not need to coincide since the locus surface can be
crossed by an infinite number of shear bands. A reasonable scheme to locate the shear band
would most probably involve finding an equivalent or mean value of all shear band
inclinations computable along the locus surface. Once this has been found the locus has to
be adjusted along the mean shear band inclination. However, the condition of bifurcation
along the shear band might not be satisfied any more. This inevitably requires an iterative

process similar to the location of a free surface in unconfined flow problems.
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6.3. Computational aspects of localization

In the solution of a generalized elasto-plastic boundary value problem, the whole domain is
viewed as being elastic at the very beginning of the deformation process. Moreover, as
applied external loads are gradually increased, the state of stress at any generic point
becomes progressively severe so as to cause a local instability (bifurcation) of the
constitutive law which coincides with localization. This condition was mathematically

derived in Chapter 3 and is recalled for clarity of exposition:

i

det(n-L"unl) = 0, (6. 1 )

in which the indices i, j, &, I range from 1 to 3 (summation implied upon repeated indices)
for 3-D stress conditions, n is the unit normal vector to an incipient shear band, and Ly is
the fourth order tensor of the tangential constitutive operator.

Without losing too much generality, only 2-D stress configurations will be addressed
in this thesis. Equations (3.4) and (3.11) gave respectively the relation between the tensor
components of stress and strain, and the explicit form of the elasto-plastic tangential
constitutive tensor which would have to be replaced in Eq. (6.1). For finite element
analysis purposes, it is more convenient to express the relationship in matrix form, i.e., in

2-D situations:
{o}=[L] {4}, (6.2)

where
{6}=1{011, 622,612}, (6.3a)

(&) ={&1 , &2,61). (6.3b)
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Because of symmetry of the stress and strain tensors, interchanging i and j or £ and / in

Eq. (6.1) results in the same quantity, thus the matrix [L] is related to tensor Ly, as

follows:

[Ll=| Ly Loz Lyaa

Lint L2 L

L L1211 Lizzz L1212 |

6.4)

While the solution of the bifurcation criterion given in Eq. (6.1) has to be checked

during the numerical integration of the constitutive equation represented by (6.2), onset of

localization will occur at the first point in the deformation history for which non trivial

solutions of the determinant exist. Calling the tensor inside the determinant an acoustic

tensor Ay whose expression after partial expansion is

Ajk = nf Lyjia + ning (Lyjia + Loy ) + 08 Lojia

Eq. (6.1) reduces to

An An

A1 Az

in which

All = n12 L1111 + niny (L1112 + 14111 ) + ng 1/2112 ’
Az = nf L1z + ming (Lizoz + Loo12 ) + 18 Loaza |
A1z = n} Lz + mny (L2 + Liziz ) + #§ Lizz,

A1 = nf Liany + ming (L1221 + Laa1n ) + n8 Loana

(6.5)

(6.6)

(6.7a)
(6.7b)
(6.7¢)
(6.7d)
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Expanding the determinant finally gives rise to a complete fourth order polynomial,

f(8)="bo +bytan 8 + by tan26 + by tan®6 + by tan6 =0, (6.8)

where

b o= (L1111 L1212 — L1112 Liann )

b 1= (L1111 L1222 + Ly L2212 = Liasa Lagyy — Liang Ly122)

b 2= (L1111L2222 + L1112Ll222 + L1211L2212 = L122L1212 = L1122L 2211 = Li2ia Lagyy)

b 3= (L1112 Laa22 + L1211 La22a = L1223 Loayy ~Lagya Ly )

b 4= (L1212 L3222 ~ L1222 L212) (6.9)

and tan@ = ny/n;.

Once the shear band directions are determined, the acoustic tensor A is totally

defined and its zero eigenvectors are found. If a is an eigenvector whose components are a;

and a, in the Cartesian axes (x;, x,) then

s i (a)-(0)
Az1 A llaf (of (6.10)
and hence the bifurcation direction @ is given by

8 _ ¢ang - -1l + (Lingp + Ligy)tan + Ligyy tan?6 ]
“ L1112 + 122 + Lizya)tan + Ligptan?6] (6.11)
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The geometrical representation of the shear band direction with respect to the global
reference axes (x.y), together with the corresponding bifurcation direction are given in Fig.

6.1.

6.3.1 Determination of a bifurcation point

Ideally in a finite element analysis, real roots of Eq. (6.8) must be sought to confirm
localization conditions. In other words, the bifurcation point must be pin-pointed sometime
during the evolution of the loading history. Solving for roots of the polynomial in Eq. (6.8)
is tantamount to searching for the normals of the prospective fronts upon which the
displacement field may be discontinuous.

Since the bifurcation criterion will have to be checked in a point wise fashion during
the course of deformation at Gauss points where stress and strain are most accurately
determined, an efficient numerical procedure has to be found. It is proposed to analytically
solve the roots of f{0) rather than resort to a standard numerical scheme which involves
iterations.

Solving Eq. (6.8) is similar to finding the intersection of the quartic function with
the @ axis, see Fig. 6.2. If all possible roots of f{6) are complex, i.e minima of the quartic
are positive, this implies that the solution regime is elliptic. Possible real solutions will only
be obtained whenever one of the minima becomes zero or negative, i.e. tangent and past the
O axis respectively. As such, the possible solutions regimes will be obtained according to
the stress dependent coefficients b; given in Eq. (6.9) as the curve f(6) moves
continuously towards the 8 axis. This can be extended to a 3-D situation in which a
surface is instead obtained and its minima corresponding to points of tangency of the
surface to a horizontal plane passing through the origin are sought.

Keeping the above observation in mind, one has the following algorithm for a 2-D
situation, summarized in Table 6.1, which derives from Galois theory (see for example

Hungerford [1974]).



Table 6 1. Solution Algorithm for Quartic Equation

Solve for the real roots of:

b, + b, tan 0 + b, tan® @+ b, tan® 6 + b, tan* 6 = 0
if b4 = 0, then solve the corresponding cubic equation
else let A=tanf,a=b,/b,,b=b,/b,,c=b,[b,, d=b,/b,

solve
/1.4+ aried /’Lz+c A+d =0.
1. Form resolvant cubic:

A} ~b2? +(ac-4d)A +(~a*d + 4bd - c*) = 0.

2. Let
p=(b/3)-(ac—-4d)/3,
q=(b/3)’ —b(ac-4d)/ 6+ (a’d - 4bd +c?)/2.

3. If g* - p* 20 (resolvant cubic has only one real root)
then let

y=lg+g - p’ +q—g =7 +b/3

Else let

=2./p cos| +arcos(—I=) |+ /3.
y «/;cos(3arcos(p w/;)) /

4. Solution of two quadratics:
Let

a 3a® )
=% bty , §=22 _2p_0".
Qo \/4 y 2 Q

5. If Q #0 then let

Qe 2
T=4ab 8-a

40
Else let
T=2y*-4d

6. If T+S20 then let the first two roots be

=__a_+_Q_i'\/S+T
4 2 2
else if S—T 20 then let the two other roots be
a Q, 6 NS-T

4 27 2 ]
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6.3.2 Test problems
The algorithm used to locate shear band inception and its orientation in space is illustrated
by examining a single quadratic 4 node element.

Figure 6.3 illustrates one single element whose configuration is such that three
nodes are restrained to move in both x and y directions, while the fourth node is subjected
to prescribed displacements. The loading condition is of particular interest because the
prescribed displacements are consistent with a non uniform field very much prone to
localization conditions. In contrast to loading conditions consistent with a constant strain
field where all Gauss points bifurcate at the same time, the present configuration allows for
non-simultaneous bifurcation of Gauss points due to a non-homogeneous field.

The material is assumed to obey simple J, flow plasticity behaviour with a
hardening/softening stress-strain law. The material properties used and the explicit
expression of the consistent tangent operator are summarized in Table 6.2. It is noted that a
negative hardening modulus is used in the analysis to guarantee localization; a feature
which has been discussed in Chapter 3.

As displacements are prescribed, the material progressively deforms until plastic
yielding first occurs at Gauss point 1, Gauss point 4 subsequently follows while the other
Gauss points 2 and 3 are essentially still elastic.

During the stress integration, the tangential operator for the stress-strain law is
subjected to bifurcation analysis and the scheme described in the previous section is
applied. A bifurcation analysis at an elemental level predicts inception of a shear band at
Gauss point 1 with two distinct inclinations. It is understood there, that the two shear band
configurations are kinematically possible since the bulk material is deformable and not
rigid. Fig. 6.4 shows the force displacement curve for node 4 in the homogeneous situation
with the corresponding bifurcation point. The evolution of the determinant of the acoustic
tensor during the search of a prospective shear band is depicted in Fig. 6.5, while shear

strains at the Gauss points for the homogeneous situation are plotted in Fig. 6.6.
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At first, the governing field equations are elliptic in nature and this results into a
positive determinant. As the loading conditions become more severe, the equations change
regime from elliptic to parabolic. Two possible shear band inclinations are obtained. The
analysis necessitates both inclinations to be equally possible since they would both satisfy
conditions of statics and kinematics. However, the shear band inclination which dissipates

the most energy, and which is fully compatible with loading and boundary conditions will

prevail.

6.4 Numerical algorithm

The proposed model requires a special finite element algorithm for the solution of the
localized problem. The non-linear problem is solved by applying the load incrementally.
Within each load increment, several conditions are checked namely: plasticity, bifurcation
and evolution of the shear band. The analysis goes through several iterations until all
pertinent criteria—satisfaction of yield and slip conditions for the ambient material and the
shear band respectively—are satisfied, and an equilibrium state is reached.

The different steps in the algorithm used are summarized in Table 6.3. For a typical
pseudo-time interval of interest {t,, ¢,,1], suppose that displacements u,, slip
displacements g,, stresses ©, and internal tractions t, are perfectly known for the
beginning of the step #,. As an initial guess (iteration number i=1), all field variables are set
to previous values as shown in step 2. The load vectors for both the continuous and
discontinuous components are then computed. These are next compared with the internal
work equivalent forces in order to check for global equilibrium of the system as given in
step 5. Since there are two force equilibria to be satisfied, i.e one regarding the continuous
displacements, and the other the slip displacements, each criterion has to be treated one at 2

time until the two conditions are approximately achieved.
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The composite stiffness matrix is either updated or expanded (case there is a new
band formed) in step 6 in order to evaluate the trial displacements in step 7. The strains are
next computed using the standard procedure, except that now there is a contribution from
the discontinuous displacement components. The traction forces along the shear band are
checked against the Coulomb slip criterion. If slip occurs, the tangential traction forces are
limited to the values tolerated by the frictional and cohesive characteristics of the interface.
If the traction forces are tensile, then the opening of the interface at the shear band is kept to
a limiting value. The analysis continues by incrementing the displacements as well as the
slip displacements, and equilibrium is checked once again by going to step 4.

In the event that slip conditions are fulfilled along the shear band, together with
equilibrium, bulk convergence is next verified. If yielding of the bulk material occurs, the
analysis goes into a classical plasticity algorithm, and residual forces are evaluated
iteratively until an equilibrium state is reached.

The next step is to check bifurcation conditions locally for each element. If any new
Gauss point bifurcates, this will be taken into account in the next load increment when the
stiffness matrix is calculated in step 6. Since there has been a change in configuration,
pertinent information at Gauss points such as stresses, strains, plastic strains and other
state variables are reset, and appropriate values for new Gauss points required by the new
shear band element are found by extrapolation from original Gauss points.

Details on implemention with regards to calculation of the constituent stiffness

matrices, load terms and shape functions are given in Appendix B to assist the reader.
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Figure 6.1 Geometrical representation of shear band in 2-D situation
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Figure 6.2 Schematic represention of finding shear band inclinations
from bifurcation criterion
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Figure 6.3 Non-uniform shear loading: One element test problem
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loading history
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Table 6.2 J; flow plasticity

Yield Function:

F=4/3], —xk(€7)=0.
Hardening Rule:

k(€’)=0,+ HE".
Effective Plastic Strain Rate:

1]
&7 = | Z[er:e°]" dt, ef=¢g° -ltrace(é”)l.
o' ? 3

J, =3[s:s]"?, s=o- %tracc(o) 1. and 1 = Kronecker delta.

Incremental Stress - Strain Relationship:
6=L:¢g

For a load step between times 7, and ¢,,,, at iteration &,
the consistent modulus becomes:;

Lk

n+l

=K1®1+2GB(I1-41®1)~2GA , i®i

where
s"‘
= —(l,,l,q +1,1,), h= s""’ » Sn, the trial deviatoric stress,

n+l

(c +He+1) T
d » At =T = (1~
and f =3 =gt = 1T 1+H/3G a=h)

I . I| denotes a tensor norm and ® the tensor product in the sense
that (a ® b),,, = (a), (b),.

E =3.0 10*units, v=0.3, G, = 60.0 and H / 2G = —0.04

'Y (EP)‘

H

H >0 : Hardening
H <0 : Softening

.

EP



Table 6.3 Flow chart for localization problem algorithm

1. For increment n+1, set iteration number i=1

2. As initial guess, set: u’,, =u,, g, =g, Oy =0, t.,; =t,.

3. Setload level (f,),.; = Ahuifa s (F.)pes = Anuf,, withd',, = 1.

£, = J'N@ ydQ +IN‘“’.T dr,
2 r

f= f N®y d+ JN‘”’.T dr.
2 r

4. Evaluate residual forces:
i LI
‘l’n(“m) = (f.ﬂ)nﬂ - ‘[7 B(a) :cn«!-l dg’

V@)= () - L BP0, da~[ NeT.¢ ar.

s

5. Perform convergence check on norm of residual forces:

Vo <e (f2) 1
‘l’: - (f:)u-H .

...continued
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Has solution converged?

NO YES
6. Set up stiffness matrix or update as YES Bulk Convergence?
required: -
Koo Ko Set: Calculate
Kso Kgl u,, =u, iterative strains
a4l = Basld
7. Evaluate iterative displacements: g..=g",
i i+1 i : Classical
[Krm Kns] { ._.:11} - {\I’n (“_m )}. 6, =0, plasticity
Ksa Kgd (680 V.(8.) t,, =t calculations
8. Evaluate iterative strains: calenlate
oeti =B Sultl + BP Sgitt residual
i+1
8git) = strains in shear band, i.e. Wﬂ(f’ﬂ“)
o s t
slip displacements per unit thickness. ons%:;n 4g °

9. If relevant, check stress state on
shear band:;

8t =1".0g%,
toi =t + oty
Check following criteria:
lel<le,s+¢,tan g | — slip.
t, 2 —R;s — Tension.
R, = Tensile strength,
s = surface area of band.

slip?

YES NO
: —
Truncate t,,, ension?
to tolerable values, i.e. SZ(I;:"S — NO
l )i"‘ c s tan ) Al ,al'l
Wi ks wnel 5g . in the
normal direction
to maximum
aperture value.
Update displacements: u;?} ui,. &,
Update traction forces: t;3 i, &€,

Go to 4 to evaluate y, (g).

* Check bifurcation locally for
each element for converged
state, i.e. (det(n:L:n)=0)

* Go to next load increment
with a change in configuration
if bifurcation ever occurs.

* Reset information concerning
element topology, bandwidth,
gauss points etc.
and go to 1.
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Chapter 7

Numerical Results

7.1. Introduction

Many practical examples of application become amenable to analysis by means of the model
formulated in Chapter 4. In a first stage, in order to pursue an investigation of
fundamentals, a numerical assessment of the discontinuity element will be presented by an
eigenvalue analysis and a patch test. Then, the model is applied to simple test problems in
order to show exactly how it describes phenomena of localization. In a last stage, the
numerical tests will shift over to a general boundary value problem. Comparison is made
with the conventional continuous formulation in order to illustrate the method. It is
important to underscore at this point that all the cases examined herein are restricted to a

fairly elementary situation with no fluid flow regime.

7.2. Numerical assessment of the method

7.2.1 Eigenvalue analysis
The soundness and merit of the discontinuity interpolation functions described in Chapter 4

can be verified by an eigenvalue method approach which in other words gives a measure of
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strain energy content associated with the element under several deformational modes. The
decompositions of the element stiffness matrix into its consistent eigenvectors and
associated eigenvalues are a necessary check on the validity of the element. This analysis
was conducted to study the net effect of the discontinuous interpolation functions, their
ability to reproduce localized modes and sensitivity towards convergence of the solution.
The stiffness matrix as derived from the strain energy based upon the modified Principle of
Virtual Work is used. A typical form of the element stiffness matrix for a QD4 element is

recalled below for clarity of exposition:

Koo = J B :LB®dQ K = j B .L:B® dQ
n 12

[K]- , Ki = [ BO":LB® 40
K:, = LB“" LB@ 4R ST,

+| N®".q:N® ar J

Iy

(7.1)

Two cases on discontinuity locations have been considered, namely ...e
discontinuity cutting across two opposite sides of the QD4 element, denoted by option i,
and across two adjacent sides, denoted by option 2. The study has been performed on a
master element of side length one unit in plane strain elasticity using a Young's modulus of
1.0 unit and Poisson's ratio of 0.3. The corresponding properties for the shear band were
1.0 unit for the shear stiffness and 1000.0 units for the normal stiffness to avoid any
separation or penetration modes. Off-diagonal stiffness terms in the shear band matrix were
set to zero, implying no coupling between normal and tangential slip displacements at the

shear band interface.
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Due to element configuration which consists of 8 displacement degrees of freedom
at the external nodes and 4 slip displacement degrees of freedom at the localized nodes, the
size of the stiffness matrix in Eq. (7.1) becomes a 12x12 matrix.

The eigenvalue problem is mathematically recalled. It states that for an element

possessing non-zero eigenvalues, the eigenvectors of the stiffness can be found by solving

Kaa Km]{xn} {Xn}
=1 =f,
[Km Kgs I\ Xs X £ (1.2)

in which X and X, are nodal displacements for the continuous and discontinuous
components respectively, and f; are the nodal loads made proportional to the nodal
displacements through the constant A;, namely the corresponding eigenvalue.

Three zero eigenvalue modes corresponding to the combination of translation and
rotation of the continuum part were obtained. Relative displacements at the localized nodes
were found to be zero in these particular instances in order to permit rigid body motion,
refer to Section 4.9 for more details. From an energy point of view, this implies that the
rigid body motion does not produce any straining, and hence stresses are zero.

The remaining nine non-zero eigenvalues and deformation modes emerge as a result
of the amalgamation of modes belonging to the continuous and discontinuous components.
These are illustrated in Figs. 7.1 and 7.2. with associated energy values. It is interesting to
note that the five basic deformation modes pertaining to constant strain and linear strain
rates are combined with those of the discontinuity surface.

The amount of strain energy related to the non-zero eigenvalue modes accounts for
energies absorbed ixi deforming the continuum and the interface, as well as the continuum
interface interaction. In other words, premultiplying both sides of Eq. (7.2) by the eigen

vector results in the following:
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Koq Km]{xn}
X, X =1,
( 2 S)[KSD KSS XS i (73)

since the eigenvector is normalized as (X, X)X, X;)' =1 Further expansion of the

above leads to:

2,‘. =X};Km,Xn +X:KSSXS +X}I)KmXS+X:KmXD’ (7.4)

i.e, the eigen value corresponds to the sum of twice the continuum strain energy, twice the
interface strain energy and continuum interface coupling energy components. This implies
that, referring back to the eigen modes in Figs. 7.1 and 7.2, the strain energy associated
with modes 11 and 12 in both cases are very high, thus suggesting that they are least likely
to occur. Since in general the response of the element during an arbitrary loading will be a
linear combination of eigen modes, then separation and penetration of nodes at the interface
will not take place so long as the boundary conditions are not in accord with those

particular modes.

7.2.2 Patch test
It was proven in Chapter 4 that the assumed strain operator does not reduce the order of
convergence of the scheme and that the shear band element should pass the patch test.

In this section, a patch of elements (10 elements), see Fig. 7.3, is subjected to a
constant strain field and one investigates if it reproduces exactly the constitutive behaviour
of the material and correct stresses as the patch becomes infinitesimally small. Interior
nodes have been included in the region and an irregular mesh has been chosen to avoid any
fortuitous self correction by symmetry. A plane strain problem is considered on the patch
with the material governed by linear isotropic elasticity whose properties are summarized in

Fig. 7.3. The finite element procedure is based on the displacement formulation using
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classical 4-noded and 3-noded isoparametric shape functions, and linear discontinuous
shape functions for the shear band.

Since the stiffness computation includes only first derivatives of displacements, and
no derivative for slip displacements, the formulation converges provided the patch test is
satisfied for all linear polynomial solutions of displacements. The patch test is performed
using a 2x2 Gaussian, standard quadrature to compute each element stiffness. Nodes 1 and
2 are restrained both horizontally and vertically, while nodal displacements values of -0.1
unit are prescribed at nodes 3 and 4. The patch of elements is compared with a one single
element, using option 1 in which the shear band cuts across two opposite edges the same
way as in the patch of elements.

The values of displacements, hence strains and stresses, computed for the interior
of the patch verify a constant field and satisfy the patch test. The solution obtained for

displacements u,v and slip displacements g, and g,, are given as :

u =-0.18784 1072

v =0.09962y +0.37665 103

gy =-0.18784 102

g, = -0.37667 10 } uniform along shear band
y ="V,

This displacement field with the accompanying slip displacement field (g, and 5y ), see

also Table 7.1, produce zero body forces and zero stresses except for
o, =-0.09962
and interface traction forces

1! =-0.01916
¢! = -0.09579
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The same solution can be reproduced from the one element patch test which involves the
use of discontinuous shape functions for a quadrilateral. Alternatively forces compatible
with the state of stress obtained in the previous tests were applied to nodes 3 and 4 and

exactly the same results for stresses and strains were recovered.

Table 7.1 Patch test solution for Figure 7.3

Nodes Displacements Slip displacements

X Yy u v 8x 8y
1100 |00 0.0000000 0.000000
2100100 0.0000000 0.000000
3]1.0 1.0 -0.0018784 -0.100000
4 | 0.0 1.0 -0.0018784 -0.100000
5]031] 069 -0.0018784 -0.069117
6| 080| 0.80} -0.0018784 -0.080075
71 020] 0.25 0.0000000 -0.024906
8 | 0.65| 0.35 0.0000000 -0.034868
9 100 ]0.40 -0.0018784 -0.00037665
101 0.152 10430 -0.0018784 -0.00037665
11} 0.250 § 0.450 -0.0018784 -0.00037665
1210.50 |0.50 -0.0018784 -0.00037665
131 0.714 | 0.543 -0.0018784 -0.00037665
141 0.857 |1 0.571 -0.0018784 -0.00037665
15| 1.000 ] 0.600 -0.0018784 -0.00037665
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7.3 Simple boundary value problems

Many practical examples of application become amenable to analysis by use of the
foregoing special discontinuity element. However in order to pursue an investigation of
fundamentals, the cases herein presented are restricted to fairly elementary configurations

for a preliminary study.

7.3.1 Mini-footing problem

An initially homogeneously stressed region is made to succumb to localization phenomena
by artificial generation of shear bands within it, see Figure 7.4. A uniformly distributed
load is applied on the element edge denoted by nodes 4 and 5. The medium is considered
elastic and all geometric and material non-linearity is assumed concentrated in the shear
band.

Shear bands are artificially made to branch from different sites in the mesh
involving elements 1, 3, 2 and 4. Initiation and orientation of the shear band are dictated by
a Mohr-Coulomb type of criterion based on the principle of maximum stress obliquity.
Furthermore, in the event of conjugate directions, the orientation compatible with prevailing
kinematic constraints is chosen. In order to establish compatibility between discontinuous
(shear band) elements and adjacent continuum elements, the tip of the band is prescribed as
a node of zero slip in the computations. Figure 7.5 depicts the distribution of typical
displacements in such situation when the shear band is not fully developed, with the tip
located at the boundary of two elements.

The mobilized slippage tendency indicates that most of the movement occurs in the
vicinity of the applied loads. Also the stress distribution with the shear band in place
reveals a substantial difference from the one expected for the unfaulted case, i.e, stresses
are released and principal stress rotations reduced in regions outside the band. For example
the rotation of principal stresses adjacent to line 1-4 in Figure 7.4 may be noted. This

suggests that loads tend to localize along the band leaving the surrounding areas in an
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unloading state. Moreover, stresses in element 2 are very small in comparison with others
while some tension develops in elements 1 and 4 as one segment of corresponding shear
band elements tries to detach itself from the rest of the elements. Here the normal stiffness
of the shear band has been prescribed at a high enough value that tensile opening or
separation is prohibited although the shear band curves upwards or downwards. If the load
were to be incremented further in the analysis, a new stress field would have to be found
and a new equilibrium configuration established with the band penetrating further into
element 5. However the shear band orientation in other elements would have to be adjusted
until a new equilibrium state is reached. Finally the mobilized shear stresses plotted at
Gauss integration points along the shear band typically show the well known trend of peak

values at the leading tip with lesser values at sites where most movement has taken place.

7.3.2 Mini-embankment problem

The numerical example shown in Figure 7.6 relates to a slope problem involving an
embankment subjected to loads at the crest. A very coarse mesh is used since the object of
the analysis is to illustrate the effectiveness of the kinematics. An elastic analysis was
performed. Based upon the principle of maximum stress obliquity or the bifurcation
expression in equation (3.7), shear bands were artificially embedded in the mesh by
activating the discontinuity shape functions which interpolate the slip displacements.

A noteworthy outcome of the analysis is the promotion of enhanced kinematics
under shear band mode of deformation. By way of contrast, a conventional analysis does
not capture the discontinuous behaviour since localization tends to be diffused and smeared
out in the mesh, unless the latter is properly designed. Figure 7.7 shows the distribution of
internal traction forces, hence mobilized shear stresses along the shear band. However, due
to bending of the shear band as it daylights to the free surface, the element tends to lock
itself at kinks. This explains the drop in internal traction distribution. In fact for a finer

mesh, the distribution would smooth out. Figure 7.8 illustrates the levels of contours of
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shear strains. It is observed that the gradient of shear strains becomes higher in the
enhanced analysis when compared with a conventional continuum run in Figure 7.9. This
demonstrates the promotion of localization and highlights the significance of such

calculations.

7.4 Rigid punch problem

The classical punch problem is presented in this section. The material is the conventional
incompressible isotropic elastic hardening/softening plastic Prandtl-Reuss material. Figure
7.10 shows the two-dimensional finite element representation of the problem geometry and
notation. The punch is represented by a strip of elements ten thousand times stiffer than the
supporting medium and loading is achieved by a central vertical force P. The strip footing
elements correspond to a total width of B while the supporting medium extends 10B wide

and 5B deep 50 as to preclude any boundary effects.

7.4.1 Continuous case
A perfectly plastic medium—plastic modulus H equals 0—is considered in the first case
with the conventional finite element scheme. The load P was applied incrementally to the
maximum failure load. In order to avoid problems of convergence, a consistent
linearization of the finite element equations as proposed by Simo and Taylor[1985] is
adopted. It has been proven that the use of 2 consistent tangent coefficient matrix derived
consistently from the integrated constitutive equation—combined with a closest point
projection—results in an iterative scheme which preserves the asymptotic rate of
convergence of Newton's method.

The computed load-displacement curve is shown in Figure 7.11. The failure load is
captured quite accurately by the numerical solution but one should note that no localization
occurs because of the symmetry of the loading, geometry and homogeneity of the material

properties. The development of the plastic zone under the punch with increasing settlement
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is shown in Figure 7.12. The plastic growth spreads about 2.5B deep under the footing
and extends one full width B on either side of the punch. It is seen that the plastic growth is
slightly less extensive than the one postulated by Hill's slip mechanism.

An attempt to promote localization in the medium was done by making the medium
initially inhomogeneous by placing a weak element with plastic modulus ratio H/2G=—
0.048 beneath the left corner of the rigid footing. The elastic shear modulus is herein
denoted by G and the material strength characterized by c, the cohesion, or o, , the uniaxial
yield strength. Figure 7.13 shows the constitutive relationship relevant to the weak
element. It was found that the load-displacement curve basically remains identical to the one
obtained for the hoinogeneous case. Also, the spreading of the yield zones follows sensibly
the same trend shown in Fig. 7.12 for the homogeneous case. This shows that localization
effects are difficult to capture using the classical finite element formulation—this even if

artificial inhomogeneities such as a weak element are introduced.

7.4.2 Discontinuous case
The finite element rhethod with the possibility of an internal discontinuity is next tried out to
examine the performance of the proposed method.

The domain of interest is initially discretized with ordinary elements and the
bifurcation criterion is checked at every loading step. Once bifurcation is detected, the
standard element is replaced by the discontinuous one, and the stress-strain as well as the
other history dependent state quantities must be then extrapolated from original Gauss
points into the new integration peints required by the new element. A detailed description
of the integrating scheme is given in Appendix B. Alternatively, one could possibly find the
band orientation and its location from a preliminary analysis, and then place the
discontinuous element there from the beginning of the analysis. However, this alternative

method does not represent the actual locations of the shear band segments as they develop
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during loading because the determination of the path is history dependent. The direction the
next band segment takes depends on the already in place previous bands in the mesh.

In the present study, as the developments are still at a preliminary stage, the
complexities involved in locating and constructing the shear band, as it evolves in the
mesh, are by-passed by using the simple discontinuous triangular element presented in
Chapter 4. As such, it suffices only to check bifurcation criterion at the centroid (also single
Gauss point) of the element. The very first shear band in the analysis is made to pass
through the centroid of the element. For subsequent loadings, the newly formed shear band
in the adjoining element is simply shifted and made to connect with the leading tip of the
previous band since the stress-strain quantities are supposed to be constant over the element
just prior to localization.

Bifurcation conditions which emerge from equation (3.7) are numerically checked
at each Gauss integration point during the loading process. Details of the numerical
procedure were previously covered in Section 6.3 of this thesis. A shear band is precisely
located in the weak element, and au inclination of 4.5° with respect to the vertical is
computed. Conjugate shear band direciions are usually obtained. The direction which is
consistent with the prevalent boundary conditions is chosen. However, in less obvious
situations, the strain rate prior to localization and the one at the onset of bifurcation are
compared. The direction which gives more or less the same strain rate at the point under
consideration just before bifurcation is considered as the one the shear band will eventually
follow. This should be equivalent to choosing the direction which produces the most
dissipation through inelastic dissipation in the band, in other words, the one which
minimizes the potential energy of the system.

As soon as the bifurcation criterion is satisfied the discontinuous shape functions are
triggered with relative displacements along the shear band following a simple Coulomb
contact law with a cohesive strength of 10 units, and no frictional resistance. The normal

stiffness of the shear band is made of the order of 108 units to avoid separation of the band,
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and a shear stiffness of 105 units is chosen, which is within the same magnitude of the
modulus of the bulk material. The features of the governing constitutive relationship for the
shear band is given in Fig. 7.14.

Figure 7.15 shows the progression of the shear band at three selected stages, as the
footing load is gradually increased. At an early stage of the punch, Figure 7.15a, four
elements have already bifurcated, and the shaded area shows the yield zone. It is clear that
yielding localizes in the vicinity of the shear band, although some yielding also occurs
beneath the right corner of the footing. This is probably due to stress concentrations at the
corners.

As the load is further increased (Figure 7.15b), more yielding occurs and the plastic
zone migrates to adjacent elements as the tip of the band penetrates further into the mesh.
The resulting footing load must increase since plastic deformations can still take place—at
least in the neighbourhood and in the shear band. There is a tendency for the ambient zone
to plastify together with the shear band.

At an advanced stage of the loading (Figure 7.15c), the plastic zone has now become
quite extensive, but is still clustered around the shear band. Consequently, this provokes a
levelling-off of the load-displacement curve. Since, the achievement of a stable solution
becomes more and more difficult, displacements are instead prescribed as oppoéed to
loads. Figure 7.16 illustrates the kinematics of the problem with the shear band fully
developed. Note the discontinuous nature of the displacement field, and the tilt of the
footing to accommodate the rotational nature of the kinematics.

The curves of slip displacements along the shear band at selected normalized footing
displacements are plotted in Fig. 7.17. The results show that the slip displacements are
significantly affected by the presence of kinks between two connecting shear band
segments. The slip displacement tends to drop at these kinks, but the general trend follows
a gradual decrease of slip towards the tip of the band where there is no movement. As the

tip advances in the mesh, the slip displacements generally increase as shown by the shift of
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-he curves. When the band has daylighted, it is noticed that very little slip occurs in the
upper segment near the free surface. There is a phenomenon of locking of the mesh in the
lower segment where the material is squeezed.

Figure 7.18a shows the fully developed shear band together with the Prandtl's slip
lines. The shear band computed is very close to those slip lines, thus indicating that the
model can capture similar mechanisms as postulated by Prandtl. The behaviour of the shear
band can be elucidated by examining the distribution of traction forces along the interface,
as shown in Fig. 7.18b. It is noted that the force distribution trend is consistent with the
strength of the shear band. In regions of the shear band located near point A, considerable
slip has occurred such that the corresponding traction force is kept to a limiting value of 10
units, the strength of the shear band. However, the segments of the shear band near point
B undergo less slippage, to such an extent that the corresponding tracticn forces are low. It
is observed that this phenomenon is somewhat disturbing due to the fact that slippage
should have been uniform throughout the shear band as it daylights. This is attributed to the
fact that there are kinks at the connections of the shear band segments at locations with an
abrup® change in orientation. These kinks seem to hinder slippage such that further
deformation in the form of plastic flow spread in the ambient region instead of in the band
itself. The phenomenon apparently produces a spurious plastification which appears to lead
to an unrealistically high footing load.

The new load-displacement curve is finally shown in Figure 7.19. The bearing
capacity is marginally lower than the one obtained without any shear band because of the
allowance made for a discontinuous displacement field and the tilt of the footing. Also, it is
thought that the low cohesive strength of the shear band may be a contributing factor which
led to such a low bearing capacity value. It seems that a substantially lower value should
have been obtained considering the low resistance of the shear band compared to the
ambient material strength. This is partly due to the problem of locking of slippage at kinks

between two shear band segments, which makes the surrounding material yield instead of
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constricting plasticity into the band. Thus, the introduction of this error together with the
nature of the analysis lead to a bearing capacity which is higher than the theoretical limit
load and this is consistent with an upper bound solution.

The load-displacement relation seems to show some softening in the ultimate range,
but this may be apparent and purely due to the switching of scheme from loading to
prescription of displacement. The last point on the load-displacement curve in Figure 7.19
represents an equilibrium state which has not fully converged, most probably due to the
shear band having daylighted.

The effective plastic strain history for a point 'A’ in the element number 44 (see Fig.
7.18) found just below the left hand corner of the footing is given in Figure 7.20. During
the initial phase, both the strain fields in the localized and non-localized zones are identical
since there is no shear band. During subsequent deformation, the effective plastic strain for
a point in the shear band increases steadily, while plasticity is less extensive for a point
outside the localized zone. In the localized zone, the increase in effective plastic strain
indicates a continuous plastification. On the other hand, in the non-localized zone, the
effective plastic strain increases slowly but remains at a relatively low value when
compared with the extent of plasticity in the shear band. It seems that one would expect
very low plastic strains or values close to zero in the non-localized zone 50 as to produce an
unloading phenomenon with a decrease in effective stresses. However, in this present
analysis, there is still some residual plastic strains in the non-localized zone due to the
locking phenomenon occurring at kinks. Even though this shortcoming may look serious in
the sense that it may mask the influence of localization, Fig. 7.20 certainly illustrates the
general tendency of having higher plastic strains in the band and less extensive plasticity in
the ambient region. This is a definite improvement over the conventional (continuous)
analysis in which the plastic strains would steadily increase in a diffuse way with loading

history,
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Figure 7.1 Non-zero eigen-modes for Shear Band L.sment QD4 (option 1)
in plane strain
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Figure 7.2 Eigen-modes for Shear Band Element QD4 (option 2)
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Figure 7.3 Patch of triangular discontinuous elements
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Figure 7.4. Finite element schematization of slippage along shear band
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I, (shear band)

Figure 7.5 Condition of displacement field compatibility at the junction between
discontinuous and continuum elements
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finite element mesh

Figure 7.10 Rigid punch problem
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(c) shear stress versus tangential slip displacement

Figure 7.14 Constitutive law for shear band
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Figure 7.16 Kinematics of rigid punch problem using proposed method
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions
A method has been developed by which a shear band in a soil medium can be adequately

meodelled in a numerical analysis. The approach consisted of writing a modified principle of
virtual work equation which accounts for discontinuities in the domain of interest. The
formulation was then supplemented with governing fluid flow equations for a fluid
saturated porous medium. Controlling field variables in the variational principle became
continuous displacement, discontinuous displacement and pore fluid pressure. The finite
element discretization led to the development of a special 2-D element with implicit
discontinuity in its interpolation function to obviate the need to update the mesh topology
during progression of an internal discontinuity surface.

The derived formulations were implemented into a finite element code to
demonstrate the validity of the proposed modelling technique. In this thesis, only the
draiiied case has been implemenicd—fluid pressures were excluded, and only global and
slip displacements were retained as principal variables. The plasticity equations—J,

plasticity—for the bulk material have been solved by a Newton Raphson algorithm using
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the notion of consistent tangent operator for rate independent elasto-plasticity which
resulted in an asymptotically quadratic convergence rate. Post peak failure—engendered by
the spreading of the shear band—was governed by a simple interface relationship for
rupture with constant cohesive strength. In the special shear band element developed in this
study, the stresses at the shear band interface were made continuous and therefore
equilibrium of internal traciions was satisfied. This feature, due to the superiority of the
shape functions used, has a definite advantage over the traditional joint element where
stresses being not continuous often lead to instability in convergence.

According to the various numerical examples presented, the following conclusions
could be derived from the results. First of all, the developed formulation for the simulation
of a discontinuous body is theoretically sound. It was shown from an eigen value analysis
in elasticity that the specially developed elements were very conducive in capturing the slip
mechanism produced by an internal shear band. Also, the patch test ensured the stability of
the shape functions for an assembly of arbitrarily arranged elements. It was further
demonstrated that discontinuous behaviour could be captured whenever shear banding
occurred with deformations subsequently localized in a restricted zone. Besifles modelling
shear bands, the convergence of the elasto-plastic solution obtained for the bulk material by
using the consistent tangent operator was found to be very efficient and proved to be
quadratically convergent.

Secondly, the model provides a framework for incorporating bifurcation concepts
for the inception of shear bands. A procedure has been devised for the detection of shear
bands by which the equations can be solved analytically in the program in an efficient
fashion. The classical punch problem was analyzed, and the model demonstrated that the
possibility of a shear band spreading into the supporting medium can lead to a consistently
lower bearing capacity. This bears an important consequence on the validity of the classical
finite element method analysis of structures undergoing localization. The approximation to

a diffuse type of yielding may fead to an over-estimation of the bearing capacity in contrast
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to a more realistic case in which yielding, taking place in a localized fashion, leads to a
lower collapse load.

Thirdly, the model accounts for dissipation of energy even with a vanishing zone of
localization because of the consistency of the variational principle. It is notorious that
classical models, fail to do so and consequently tend to make the localization analysis mesh
dependent—different levels of mesh refinements would give different localization patterns
with different amounts of dissipation. Since the proposed formulation avoids this
shortcoming, it can be regarded as a non-local model—prescribing an arbitrary thickness
for the band in the equations provides the internal characteristic length. In this research
work, a shear band thickness of unity was used. It is difficult to determine this parameter
experimentally: anyway its evolution with loading history is not fully known. Finally, it is
emphasized that even though the model is non-local, mesh dependency inherited from the
finite element discretization/linearization of the variational principle for the evaluation of
stresses cannot be avoided.

The above developments and results are significant because for the first time, to the
knowledge of the author, a consistent numerical approach has been established to account
for the development of a shear band in a discrete manner (not in a smeared fashion) in a soil

medium.

8.2 Recommendations for future work

The modelling technique developed in this research represents a starting basis for the
analysis of shear bands in geological media. However, the model is still in an embryonic
state, and in order to fully realize its potential application to real engineering problems, a
number of additional issues should be addressed. It is necessary to include in the analysis,
the formulation of an element with an internal curvilinear shear band to better describe the

geometry, and hence the kinematics of the shear band. In this research effort, the shear
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band is approximated by linear segments along which the slip displacements (jumps in
displacement) vary linearly. This restricts the formation of a shear band for which slip
displacements are zero at both tips—the situation occurs for an isolated shear band in the
interior of the finite element mesh. Also, linear shear band elements tend to produce a
locking phenomenon at kinks produced at the junction of two adjoining tips of the band.
This locking problem may prevent plastic deformations to develop extensively in the shear
band by forcing the ambient material to plastify rather than unload elastically. An expedient
solution to the above shortcoming is to refine the mesh or resort to a higher order shear
band element.

A possible avenue of research leading to the improvement of the model is to
contemplate the possibility of formulating a stress-displacement or hybrid shear band
element. It is well-known that using a displacement type of forfnulation does not ensure
continuity of stresses at the element boundaries. Since at the interface formed by the shear
band, the stress vector has to be continuous, the displacement type of formulation may be
awkward. The solution lies in writing a hybrid formulation, or imposing some internal
constraint in the form of continuity in displacement gradient in a certain direction at the
discontinuity front. The latter technique was employed in this research.

Stress and localization inds#:2d anisotropy are not included in the model. In other
words, as the shear band forms, the bulk material surrounding the shear band does not
become anisotropic due to damage. This could be partially solved by considering a damage
based formulation. Also, the model is restricted to proportional loading conditions under
which the behaviour of the structure changes smoothly, and not in a chaotic manner.

Although the herein algorithm—by which the shear band position once determined
from trial stresses, is not corrected as the stress regime changes—works for simple cases,
the model still needs considerable enhancements with regard to the correction of the shear
band position wifii ;vading history. It seems that the problem of self correction for the shear

band position is very similar to the search of a free surface in the analysis of unconfined
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flow. However, it is thought that the propagation of the shear band cannot be fully
automatized and has still to be carried out manually in the sense that at each load step, the
shear band evolution has to be visually checked. Problems specially arise when there are
conjugate directions for the shear band orientation. In this thesis, the orientation which is
more obvious to the boundary conditions is chosen. However, it seems that the use of a
more profound criterion for the choice of the correct orientation is preferable. One
possibility could be evaluating the entropy of the mechanical system according to the
second law of thermodynamics: for a change in state the second order change in work or
entropy must to be positive. Therefore to achieve a stable state, the second order entropy
change must be negative. Using this concept, the shear band direction which maximizes the
entropy or energy dissipation—thus minimizes the Helmholtz free energy—will be the one
which prevails.

Another issue which is worth examining is the consideration of the possibility of
unifying the concepts of shear banding with tensile fracture. In this research work, it has to
be emphasized that the fracture aspect, i.e possibility of the shear band opening in a tensile
mode, has been overlooked and tacitly solved by prescribing a very high normal stiffness
to the shear band. In the case of fracture, the driving mechanism which establishes the
crack advance is the tip where the material undergoing degradation provokes a release of
energy whose magnitude is congruous with the one involved in extending the crack by a
certain length. In contrast, the mechanism behind the shear band mode of failure is rather
associated with a material instability phencmenon.

In closure, the development of a more robust algorithm for the search of
equilibrium states could result in better solutions. In this thesis, close to ultimate loads,
displacements are prescribed instead in order to achieve a solution. Perhaps, a solution
strategy such as the arc length method could be used. This treatment would seemingly give

better results for more difficult problems than the ones examined in this thesis,
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Aprendix A

Derivation of Flow and Deformation
Equations

A.l. Theory of mi-iures

Consider a 2-pliase medium in which the 2 phases interact so that their behaviours give
average response. Let p; and p; represent respectively the density of the solid and fluid
phases, p(‘) and pm the corresponding relative densities (the ones we actually measure
experimentally). Thus, the total density p can be defined as the sum of the densities of

each constituent phase, i.e.

p=p(3)+p(f), (A.l)
0. 9M, _dM, dV, _dM, dV -
i A TG
A # (A2)
p(!? =£A_{L=%.ﬁ _:,!g"!
av de av (A.3)

Each constituent phase has to satisfy the mass balance equation, i.e.
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V@
(i — 0,

P +p
Jx; (A4)

in which () stands for the flui: phase and the superimposed dot represents the material

derivative. This mass balance or continuity condition written for the solid phase beccines:

- - (£)
a(1-n)p, + (1 —mp,v¥ _ 0.
at 3x. (A.S)

Expanding Eq. (A.5) and using the operator d() =a§-) + v aa(-) the following is
dr t X;

obtained.

- 7]
dn_(-nm)idp, , o, , forp, # 0.
i p, | dt 9x

s

(A.6)
Lets define a bulk relative fluid velocity g; as

v, =n(v? —v), (A7)

The continuity equation for the fluid phase can be written as

a(np;) . Anp, vy _
+ =0,
dat ox, (Ag)

Using Eq. (A.7) to eliminate v ,(f ) and with the aid of Eq. (A.6), one gets after some algebra

; 1d 1dp, v
-~ =(-) £‘+n Z’+ aV' :
p, Ox [+ Py X; (A9)

But
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v _ _ii“L:i(i'i): é,
dx; dx; dt dt\dx, (A.10)
Darcean flow can be written as
)
vl = _ku[s-x’!—-‘-png]’
i (A.1D)

in which z is the pore fluid pressure and 8 is the j th. component of gravity. When Eq.

(A.11) is substituted into (A.9), one gets:

1 ap,[ aﬂ+p,g;-| Q=)L %Py p 1 e’+e

p; Ox ' dx; ] p, dt p, dt (A.12)

For incompressible solid and fluid phases, Eq. (A.13) obviously reverts to the following

well-known form:

J on .

e [ i 5y +p,g,}-e,-‘- =0.
(A.13)

A.2. Flow equations

o Strong form
Consider the fluid flow described in Chapter 4 for a discontinuous medium as previously
illustrated in Figure 4.2. The strong form (S) or the classical statement of the flow problem

is mathematically represented by physical laws that govemn the phenomenon , i.e.

* Mass conservation:

Vi +it; =0. (A.19)
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» Darcean flow:

Vi = —kij(’t,j + 7,)

(A.15)
*Boundary conditions:
n(x)=7(x) on I, (A.16)
g=vponl, (A.17)
[W - v®]n = -4 +g,, on I, (A.18)

If pore fluids are principal unknowns, then the equation of mass balance combined with

Darcean flow become::

ki(m; + 9.} —12“=0in.{2,u.(22,
j 1

(A.19)

x(x)=7(x) on I, (A.20)
—ky(m; + ¥ =7, (A.21)
[kéz)(,,'(l;) +7;)- k,-ﬁ."(n“’ + 7;)] M =_pn®+g, on T, (A22)

o Weak form : Problem statement:

The weak form (W) or the variational counterpart of (S) involves the foliowing: find 7 (x)
such that Eq. (A.19) is satisfied everywhere inside £ = £ US3 with boundary conditions
specified by Egs. (A.20) to (A.22). Note that the pore fluid 7 is discontinuous across the

shear band interface.
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Variational statement:

A Galerkin approximation of the problem is obtained by posing the variational problem on
a finite dimensional subspace #£ of the space . hydraulically admissible functions, i.e.
those which satisfy the homogeneous essential boundary conditions and are smooth

enough. In particular, # is defined as

H={z"=2"(x)/ T =00onT,} (A.23)
The differential equation in (A.6) with associated boundary conditions can be cast in an
integral form by multiplying it by the admissible pore fluid field #*(x) in order to obtain a

weak form. By virtue of the weighted residual method which aims at minimizing the error

on an average weighted sense,

L [k;(x; + 71‘],: or’ dQ2+ J'nu,.',. or" dR=0.

(A.24)
Noting that
[k, + 7;'],.- o' = [i(; + 7:‘)5"'],.- ~kim;+ 1,88, (A.25)
integration by parts yields:
J' ki(%; +7,)0m; d.(2+j i, 0n dQ= ky(m; +¥,)n dT.
fa fa fyvla (A.26)

This boundary integral on the right hand side of the above equation can be broken down

into the following components, with the aid of Eq.(A.15)
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-j v, &n° dr +I [vOn® +vPn®) 67" dr.
r, I (A27)

Considering n,(l)= - n‘gz) , the above integral becomes

—j g on dr- j [-8n"+7,]6n" dr,
T fs (A.28)

which yields boundary conditions (A.17) and (A.18). The final form of the Galerkin

expression emerges as:

[ km;om, a0+ [ a6 an-| gnar=-{ ky,én.00- [ gonar
a7 a " Iy °n ’ r,

- aj‘b 5”‘ dr.
T

(A.29)



Appendix B

Numerical Implementation

B.1. Evaluation of composite element stiffness matrix
Consider the expanded form of the stiffness matrix as ok:oi=1d from the esscretization of
the variational principle in Chapter 4. Fig. B.1. shows ffz fypual size of the stiffness
matrix for a QD4 type of element and the different partitions which have to be computed
during a numerical analysis.

Explicit forms of the compatibility matrices B@), B®) | cor. ::tive tensors L and
M as well as the geometrical location of the discontinuity are required for the numerical

integration of the various stiffnesses in the comyposite stiffness matrix. in plane strain

conditions, the compatibilit; marix B(® is traditionally given by

(5

ON®
ox

0

0

N
dy

IN®

[B1“ = with i = 1, node,

(5

P M(a) @
(%)

ox

()
)
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in which node takes the value of 4 for a quadrilateral element and 3 for a constant strain
triangular element.
If one envisions a linear variation of slip displacement along the shear band by

having two localized nodes, the compatibilty matrix B® for the discontinuity is

aN‘(ﬁ) (e)
5 o

. aN(p) (e)
[B?”]": 0 (_,_) for whichi=1, 2.

(B.2)

@
]

The discontinuous shape functions N; 'whose derivatives exist on either side of the

discontinuity front were defined in Chapter 4. The form of the shape matrix (N“”)‘ which

is suitable for a numerical implementation is

N® 0 NP 0 ]

vy -

0 NP 0o NP

(B.3)
For plane strain elasticity, the constitutive tensor L and 1 are simply
[(l -V) 14 0
Leem—re—' v (1-v) 0
(1+VX1-2V)[ 0 0 (1-v)
2 (B.4)

Ny Na
nn.r nm (B_ 5 )
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In a more general case, the tensore L and N would take the classical elasto-plastic form

similar to that presented in Eq. (3.11).

B.2. Quadrature rule for element stiffness integration

A numerical quadrature scheme that accommodates for the proposed displacement and
strain fields must be considered in order to achieve accurate results and handle the effect of
the localized zone as well. A standz  quadrature scheme, say 2x2 Gauss integration will
not capturc the presence of the jump inside the element provided a large number of
quadrature points is used.

Consider the QD4 element wish the embedded shear band zs shown in Fig. B.2.
The sought effect is to have strains localized aleng the shear band ar::} non-localized strains
in regions outside the band. A normal 2x2 Gauss integration scheme will result in the
smes:- ;5 of the displacement field jump over the element so that a bilinear distribution
simii.. to the classical Q4 element will be obtained rather than a distribution with an
intrinsic jurap.

The integration scheme adopted herein guarantees accuracy in capturing the jump
inside the eiement by using standard numerical integration over separate domains
demarcated by the shear band boundary, see Fig. B.3. This procedure inevitably introduces
a large number of integration points, i.e. 10 in all for a (D4 element (4 over eac* domain
adjacent to the shear band and 2 other ones alony the shear band itself).

A typical integral over the area of the element for a discontinuous function fix)is

given by

I= f F(x)ds2. (B.6)
2
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Sirice f{x) takes up different values depending on whether x is in region 2%r Q°, the

integral has to be discretized over each separate domain, i.e.

NGAUS NGAUS NGAUS NGAUS
I= 2 2 f*(r;.,sl.)(detl),.j(detf),.jw,.w_,.+z Z (1,s;)(det )y (det "), ww,.

i=1 J=1 i=1 4=l

(B.7)

(&:,m;) are the coordinates in the local reference system, (7,s;) the coordinates in the sub-

local reference system, J the Jacobian of the transformation between the local and global
systems, J* the Ja:~::::n of the transformation bciween the sub-local and local coordinates
and w; the weizhiz, ~ce Fig. B.3 for details.

The different constituent stiffnesses of the composite matrix given in Fig, B.3 are

evaluated on the basis of the foregoing scheme.
 Bulk stiffness K%},

K&, = J-B‘“’T (x,y):L(x,y):B"(x,y) dxdy
nl
= L“ B (&, m):L(E, m):B@* (£,7) detJ dEdn

+f BTG ML mB (G, m) det agan,

(B.8)
When integrated in the local system,
K% = ZZ B(a)r (5,-. 77,-)314(6.-, 71,-)13(“)(5.-, ﬂj)(det-’).-,- Ww;.
i (B.9)

Note that B(®)+and B(*)- are the same and the integration may be accomplished in the

(&. ) space.
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. Bulk - shear band interaction stiffnesses K& and K3

The numerical integration of stiffness terms K&} and K) is performed in the same fashion

as in Eq. (B.6). It is noted that the symmetry K$ = Kf,‘,?,r is destroyed as soon as L ceases

to be symmetric.

K& —Zz B@* (r,s,):L(75,5,): B (1,5, )(det J);(detJ ™) ww;

+Zz B (5,5,): L7, 5,): B (1,5, Ndet D) (det ) ww,,

V(r;,s;) € 2 or 2.
(B.10)
« Global shear band stiffness K{?
K“’-EZB‘”’* (7s5,):L735,): B (5, 5,)(det ) (det T ) ww;
+3 BO (5,855, B (s et (detJ"™), ww,;
i
+j N [n]._, dT.
r‘
(B.11)

B.3. Calculation of cartesian derivatives of shape functions

The dual transformation described in the previous section, i.e.

%

En) —L e (rs)

(x.y)
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requires the evaluation of two Jacobians which are

dx Jdy & In

_| 9 OE J._ar or
“1ox adyl| " T|9& any

an dn ds O (B.12)

The cartesian derivatives of the shape functions are calculated by multiplying the local

derivatives by the appropriate Jacobian matrices. Typically in the local (£,71) reference

axes
INY _ N 9E  IND an
ox c?é ox 317 ox’ (B.13)
INY _INO JE NP 3n
dy 9 dy on I’ (B.14)
or
IND 9 anl(oN®
i CLL N b il |
8N,-""(§ " =|9& anflano [
d dy dyj| on (B.15)

in which j = ccor B refers to continuous and discontinuous components respectively. The
cartesian derivatives in the (r,s) space are obtained by evaluating the Jacobian and shape

function derivatives at points &(r,s) and 7(r.s), i.e.
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()]
AL )| [Zmer G N (& (r,0, 100
J:n =12 a ag
algy (r,s) gyé-(r,-v) _é_;l(,,s —é-ﬁ-@(r,S).n(r,S))
N
2
—[" ];(r £),n(r,8) alvg(l) *
]

(B.16)

It is noted that J and J* describe the geometry of the element and may be evaluated using
different shape functions such that the transformation does not need to be isoparametric in
the true sense. It would indeed be either sub-parametric, i.c the geometric mapping is of a
lower degree basis or a subset of the interpolant for displacement, o super-parametric if the
geometric map is of a higher order than the interpolant as in the case of a linear variation of

slip displacements along 2 curved shear band.

B.4. Calculation of interface stiffness
Consider the geometrical representation of the shear band oriented in an arbitrary manner
inside the element as shown in Fig. B.4. Call 0 the inclination of the shear band axis with
respect to the global x axis. The local coordinate system attached to the shear band are
defined by (n,s).

Since during the discretization process, linear variation of slip displacement g was

prescribed within the element and along the discontinuity line I';, ie

T 148 ser
g(g) 2 gZ’ ge Iy (B.l7)
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with §; and g the slips vector at localized nodes 1 and 2 respectively. The incremental

slip displacement vector in the (n,s) system anywhere along I’ becomes

A4z,
{Ag,}_l[(l-ﬁ) 0 a+d 0 ]Af,l
ag. 2l 0 a-& o0  +&)48.| (B.18)
Ag,,

In compact form, the incremental slip displacements in the (n,s) axesis

Ag=N'".4g. (B.19)

The interface stiffness term K} in the discretized FEM equations, see last term in
Eq.(B.11), refers to the global axes (x,y) . Since the contact constitutive tensor 1 is
expressed in s-n  axes, it has to be pre and post multiplied by the appropriate

transformation matrix A which is
<[ o)
[0] [al (B.20)
with

cos@ sin 0]

[a]= [—sin 6 cosb| B.21)

Since for a linear shear band, A remains constant, then the interface stiffness K;, (xy) in

the x-y reference frame is simply
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Koen = jN‘”’ M:N® dr= A’U N :fyon: N dr]A.
(B.22)

B.5. Evaluation of load vectors

The load terms in the discretized variational principle comprise two basic components,

namely:

« Load emanating from the continuous component

Af, = | N af a2+ IN‘“’TAT ar
a re

NGAUS NGAUS r
= ) ) N (AR, wow, (et

i=1  j=1

NGAUS (@) 2 (@) 22
+2N(a)r(§ YAT(E; )[( I;'g ) (81;5 )] w;.

Jj=1

The computations involved in the above expression are straightforward since they do not

include any discontinuous shape functions.

« Load emanating from the discontinuous component

Af, = N“” Af dQ2+ | N®' AT dr.

rl

The above load expression describes the discontinuous contribution term which has to be
added to the boundary loads. It effectively connects the boundary to the discontinuity
surface as long as the boundary is part of a shear band element.

The first contribution, i.e. the volume integral over the element domain is integrated

by means of the quadrature rule introduced in Section B.2 and results in
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[N a8 a0 =Y S NG (1,5 AR Xt i,
i

al

+ZZN“’"(’;,S,-)Af('vSJ)(det".~)"' Wi
i J

The second contribution which is a surface integral will have to be evaluated whenever the
load is applied along an edge which is crossed by the shear band, see Fig. B.5.
Accordingly,

IN“”T AT dr= N“’)+r AT dr+ [ N®" AT ar
re

rl‘-

NGAUS 3N° 2 aN 2 V2
sz("(gp,np»AT(")[( FT ) (3§ ):l w;

i=1
NGAUS 2 22
BN
p...
where N ; is either a linear or quadratic interpolation function for the mapping of (x,y) onto

local coordinates &. x; and yj are the coordinates which define the boundary of the

domains along the edge.
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!

K‘;"}z=j B .L:B@dQ Kg, =
a j B@.L:BPdQ
o

KQ-

I I BO".L: B® dQ
K‘;Q’=J B® :L:B@dQ o
fog

+j NG N©® dr

Figure B.1 Structure of typical stiffness matrix for a shear band element
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% integration point

O global node

O localized node

non-localized zone

shear band
(localized zone)

Figure B.2 Smearing effect for normal quadrature rule
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Figure B.4 Shear band geometry in global and local coordinate systems
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Figure B.5 Integration of loads along a discontinuous edge



