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Abstract

The research reported in this thesis is multidisciplinary in nature. It presents the use

of kinetic simulations, state of the art data analysis, and machine learning techniques

to infer plasma parameters and satellite parameter from Langmuir probe measure-

ment. Physical parameters such as plasma state variables, are generally inferred from

probe measurements using analytic or empirical formulas derived by applying different

approximations to physical theories. The objective of this work is to develop more

accurate techniques to infer physical parameters from probe measurements under

more realistic plasma conditions with quantifiable uncertainties and with a potential

for incremental improvements by adding more complex physical processes. Three-

dimensional particle-in-cell simulations are used to calculate the current collected

by fixed-bias spherical Langmuir probes relative to the satellite under conditions of

increasing realism, starting with an isolated probe attached to a guard, to probes

attached to a satellite. The advantage of fixed bias probes considered in cases stud-

ied throughout this thesis, is their higher temporal and spatial resolutions, compared

to the more standard mode operation where bias voltages are swept in time. The

calculated currents and the plasma and satellite parameters assumed in the simu-

lations are then used to build a solution library or synthetic data set, to construct

regression models to infer parameters of interest such as the satellite potential, the

density, the plasma flow velocity, and the ratio between the plasma density and the

square root of the temperature. The solution library is randomly split into two dis-

joint sets; one to train models, and the other to validate inferences, and assess the

skill of the models and quantify their uncertainties. Different approaches are used
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to train models, including radial basis function (RBF) regressions, deep neural net-

works, and combinations of these methods with analytic estimates using the boosting

ensemble learning technique, and affine transformations. In the combined approach,

the parameters of interest are first estimated using analytic expressions, followed by

regressions to reduce inference errors. Simple affine transformations are also applied

to improve the accuracy of analytic inferences, when the Pearson correlation coeffi-

cient R with known values is high. In each case, models’ inference skills are assessed

using different metrics to quantify discrepancies compared with known values in syn-

thetic data sets. The models show excellent performance with the maximum relative

error ranging from 7% to 12% for the density and the ratio of density and the square

root of temperature, and a maximum absolute error in the range of 0.2 V to 0.4 V for

the floating potential in all the cases considered. The models are applied to in situ

data, and the inferences are compared to in-situ data from satellites, with which they

show excellent qualitative agreement. Finally, the agreements between the models

inferences and the synthetic data values indicate that the approaches used in this

thesis are promising with the advantage of producing uncertainty margins that are

specifically related to the inference techniques used.
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has been accepted for publication in IEEE Transactions on Plasma Science. In this

work, I did all the simulations and training of the models used in the analysis. I
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also ran and analyzed results from a test particle code provided by Professor Richard

Marchand. The manuscript was written by me with feedback from my supervisor

Professor Richard Marchand.
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Chapter 1

Introduction

1.1 Space environment and space weather

The effect of space weather on Earth-based and space infrastructures, due to the

dynamic nature of the space environment, has motivated the continuous study of

near-Earth space physics. The term space weather refers to the variability of the sun,

which, through the interplanetary solar wind and magnetic field, affects Earth’s mag-

netosphere, ionosphere, and surface. Abrupt changes in space weather can impact

different Earth-based technologies, such as power grids, navigation systems, telecom-

munication equipment, and satellites in Earth orbit. The sun is the primary driving

force in the variability of space weather due to its continuous release of magnetized

plasma in the form of solar wind [1–7]. Solar eruptions termed coronal mass ejections

(CMEs) (Fig. 1.1) can cause storms that can trigger disruptions or complete failures

in Earth based infrastructures. For instance, the first large magnetic storm resulting

from a CME impacting Earth magnetosphere known as the Carrington Event was

reported in 1859 [8, 9]. This event led to telegraph failure in Europe, America, and

some other parts of the world [10]. Other large storms, resulting in significant dam-

age include the Québec blackout of 1989, and Sweden’s power failure in 2003 [10–13].

Due to the risk posed by these storms, there is a need for reliable forecasting of these

events either through the application of first-principle models, empirical models [6, 14,

15], and more recently, models relying on artificial intelligence, or machine learning
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Figure 1.1: Illustration showing a coronal mass ejection (CME) blasting away from
the sun. Such storms can produce auroras and also damage different technologies.
Image Credit: NASA
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techniques [16, 17]. These in turn will enable measures to avoid or mitigate negative

impacts of extreme space weather events.

1.2 Earth’s Magnetosphere

The magnetosphere is the region of space near Earth, where the magnetic field lines

are connected to the Earth. It consists mainly of ionized particles that originate

from Earth’s ionosphere and the solar wind. It has an outer boundary called the

magnetopause, which separates the magnetosphere from the interplanetary magnetic

field embedded in the solar wind. The Earth’s magnetosphere is distorted where the

supersonic flow of solar wind encounters a bow shock, which slows down the supersonic

flow to a subsonic flow of plasma behind the bow shock in the magnetosheath. The

supersonic flow of the solar wind compresses the dayside of the magnetosphere and

stretches out the field lines on the nightside. The solar wind plasma penetrates into

the magnetosphere through reconnection at the dayside magnetopause [18]. This

reconnection creates open field lines in the north and south polar cap, which are

stretched out on the night side forming the magnetotail, which is a region featuring

a warm plasma sheet at the center bounded by near vacuum conditions and a strong

magnetic field between the plasma sheet and the magnetotail outer boundary, viz. the

tail lobes [19]. The magnetotail stores enormous magnetic energy which is released

during reconnection events in the form of substorms. Large storms and substorms in

turn can be detrimental to satellites through spacecraft charging [20].

1.3 Earth’s Ionosphere

Earth’s atmosphere consists mostly of neutral gas molecules at lower altitudes, but

at an altitude above 60 km, solar radiation strikes neutral gases, leading to dissocia-

tion of molecules, and ionisation of neutral particles. This region of the atmosphere

where the ionization takes place is referred to as Earth’s ionosphere. The ionosphere
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is of great importance because of its influence on radio wave propagation due to the

presence of ionized particles. The first reference to the existence of the ionosphere

was made in 1839 by Gauss, who suggested that the variation in the Earth’s mag-

netic field must be a result of an electrically conducting region in the atmosphere [21,

22]. The demonstration of the presence of a conducting medium was later confirmed

when a radio signal was transmitted over a long-range from Cornwall, England to

Newfoundland in Canada, by Marconi in 1901 [23]. It was concluded that the radio

waves had followed the curvature of the Earth along the electrically conductive layers

of the upper atmosphere [24, 25]. The ionosphere is divided into several layers or

regions according to their different sources of ionisation, and density peaks as shown

in Fig. 1.2. They are labeled with letters D, E, and F. The layers of the ionosphere

have different characteristics such as critical frequencies, and virtual heights when

they interact with radio waves. The electron density profile varies with height, time,

latitude and longitude. The physical mechanisms responsible for these layers differs,

as briefly described below:

The D-Layer is the lowest region of the Earth’s ionosphere. It is approximately at

an altitude range of 60 km to 90 km. It is sustained mainly by radiation from

the sun, so it vanishes at night because of the absence of solar radiation and

the recombination between electrons and positively charged ions. The layer is

formed from the ionization of neutral gases such as nitric oxide NO, Nitrogen

N2, and oxygen O2, by Lyman alpha radiation. Solar X-rays also contribute to

the ionization process in this region.

The E-Layer is the region immediately above the D-Layer at an altitude of approx-

imately 90 km to 140 km. The name E for this layer was chosen by Appleton

[22] in reference to the electric field of waves reflected in this region. Ionization

in the E-Layer is produced by extreme ultraviolet radiation and soft X-rays
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Figure 1.2: Ionospheric electron density profile showing diurnal variation for May 5,
2002 at latitude 20◦ and longitude 40◦ using the International Reference Ionosphere
(IRI) model.

from the sun. Unlike the D-layer, ionization in this layer persists at night due

to slower recombination rate although it is diminished.

The F-Layer extends upward above the E layer and it consists of the F1 and F2

regions during the day when radiation is incident from the sun. At night, the

plasma density decreases in the F1 region, which then merges with the F2 layer

which persists until dawn. The F layer is formed from the ionization of atomic

oxygen by extreme ultraviolet solar radiation.
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1.3.1 Variability of the Ionosphere

Earth’s ionosphere is very dynamic, and it undergoes daily changes due to different

processes such as the photo-ionization of the neutral gases, recombination of charged

particles, and diffusion. The electron density increases during the day due to solar

radiation, and it reaches its peak near 12 local noon (Fig. 1.2). As the sun sets, the

production of ionized particles starts to decrease, causing a reduction in the electron

density in some layers. Apart from diurnal variations which are due to the rotation

of Earth on its axis, the ionosphere also undergoes seasonal variations which result

from changes in the solar zenith angle or solar radiation flux, as Earth orbits around

the sun. There is also a latitudinal variation of the ionosphere because solar radiation

strikes the atmosphere more obliquely as the angle between the zenith and the sun

(the solar zenith angle) increases. The equatorial ionosphere receives more solar

radiation than the polar regions, which results in higher ionisation in the D, E, and

F1 layers in the equatorial regions [26]. Solar activity which varies over a period of 11

years is another factor that plays a significant role in the variation of the ionosphere.

An increase or decrease in solar activity affects the electron density in the ionosphere

through an increase or decrease in the ionisation production rate.

1.4 Instruments used to study Earth’s Space En-

vironment

The Earth’s space environment is impacted by space weather due to physical events

such as solar flares and geomagnetic storms which induce ionospheric responses. The

resulting ionospheric disturbances can impact, for example, the propagation of radio

waves used in communications, Global Navigation Satellite Systems (GNSS) [27]. The

monitoring of ionospheric anomalies and other physical events affecting the Earth’s

space environment is important in order to improve the performance of GNSS, radio

communications and to have better space weather forecast models. Different types
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of instruments are used to monitor the Earth’s space environment and the choice of

instrument in a given study depends on the type of analysis or the physical parameter

of interest. In general, the technique used in probing near Earth space environment

can be classified into two categories: i) remote and ii) in situ. With remote sensing,

measurements are mostly made using ground-based instruments. Conversely, in situ

measurements are made in the vicinity of space plasma using instruments mounted

on sounding rockets or satellites. In this section, some of the instruments used to

monitor Earth’s space environment are briefly discussed.

1.4.1 Spectrometers

Spectrometers are used to separate and measure the spectral components of a physical

phenomenon. Examples of this family of instruments include the mass spectrome-

ters, which measure the distribution of particle masses in a gas, and electron or ion

spectrometers which measure particle energy distributions. These devices have been

deployed on rockets or low Earth orbit satellites for in situ measurements of space

plasma parameters such as the density, temperature, and satellite floating potential

in different missions [28–31]. For example, the Photoelectron Spectrometer (PES)

which can be used to determine the floating potential of a satellite was part of the

instruments on three NASA atmosphere Explorers (AE) [32]. It consists of two hemi-

spheres as in Fig. 1.3, an electron detector, a control unit, and a data-handling

processing unit [32, 33]. If the voltage difference between the hemispheres is ∆V

and they are separated by δ, an electric field of approximately ∆V
δ

is created between

them. Electrons entering through the collimator will travel to the electron detector

without striking the two hemispheres only if their centrifugal force equals the elec-

tric centripetal force. For this condition to be satisfied, the electron kinetic energy

to charge ratio should be R
2δ
∆V , where R is the mean radius of the hemispheres.

Electrons with energies lower or higher than this value are collected on the inner and

the outer hemisphere respectively [32]. The hemispheres are enclosed in a magnetic
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Figure 1.3: Illustration of a hemispherical electrostatic charged particle analyzer of
an electron energy spectrometer used by Goembel to determine a satellite floating
potential [33].

shielding material to prevent the surrounding magnetic field from distorting the path

of the electrons. These magnetic shielding materials are called Mu-metal, and they

are a ferromagnetic alloy with very high magnetic permeability and low coercivity.

The PES is configured in such a way that the reference potential is maintained at the

spacecraft chassis potential, so if the spacecraft is negatively charged, electrons will

be decelerated and if it is positively charged, they will be accelerated as they enter

the analyzer. Atmospheric photoelectrons are accelerated or decelerated exactly by

the spacecraft potential, since the PES potential is equal to that of the spacecraft

[32–34]. This causes a peak shift in the energy spectra of the photoelectrons when

the satellite is positively or negatively charged with respect to as the surrounding

plasma as shown in Fig. 1.4. The floating potential of the satellite is determined

from the peak energy of the distribution, and the known energy peak of atmospheric

photoelectrons is 23.9 eV [33]. Other plasma parameters like the plasma density and

temperature can also be obtained from spectrometer measurements [35, 36]. The use

of spectrometers is not limited to the study of Earth’s space environment. They have

been used to study other planetary space environments, such as the Spectroscopy for

8



Figure 1.4: Illustration of the shifts in electron spectra at positive and negative
satellite potential.

Investigation of Characteristics of the Atmosphere for Mars (SPICAM) which was

flown on the European Space Agency’s (ESA) Mars Express satellite, Mars Atmo-

sphere and Volatile Evolution Mission (MAVEN) spacecraft which carries a Neutral

Gas and Ion Mass Spectrometer (NGIMS) also used to study Mars’s ionosphere, and

SPICA for Venus on Venus Express in 2005 [37–42].

1.4.2 Ionosondes

Ionosondes are high-frequency radars consisting of transmitter, receiver, and anten-

nas used to generate ionograms from which the structure and temporal evolution of

the ionosphere can be inferred. They can be classified into three types: i) vertical

incidence (VI) ionosondes, ii) oblique backscatter ionosondes, and iii) oblique inci-

dence ionosondes [43]. This classification is based on the setup of the transmitter and

receiver antenna. Ionosondes operate by transmitting short pulses of radio signals

from the ground upward, and recording the time delay of received echoes reflected

from layers of the ionosphere. The virtual heights of the reflected layers are calculated

from the time delay, while the measured critical frequencies vary due to variations

in the electron density in different regions of the ionosphere. Ionograms give traces
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of heights (altitudes) at which the signals are reflected against frequencies of the re-

ceived radio signals. Using ionogram traces, critical frequency1 parameters foE, foF1,

foF2 and virtual height2 parameters h’E, h’F1, and h’F2 respectively for the E, the

F1 and the F2 layers are determined. The plasma frequency as a function of altitude

is also derived from ionosonde measurements by first correcting for the time delay

between emission and reception of reflected pulses [44]. From the plasma frequency,

the electron density can readily be obtained analytically, or numerically [45]. Ground-

based ionosonde data are available only up to the plasma density maximum in the F2

region, which is mostly below satellite altitudes. This is why in-situ measurements

are needed.

1.4.3 Incoherent Scatter Radars (ISR)

These are ground-based instruments used to measure electron density profiles, elec-

tron and ion temperature profiles in the ionosphere. The ISR technique was first

developed by Gordon [46], who proposed the use of Thomson scattering of transmit-

ted high power radio waves to sound the ionosphere. With this approach, radio waves

are transmitted in the high to ultra-high frequencies, and they scatter incoherently

on plasma electrons and ions in the ionosphere. The radio signals are scattered at a

lower frequencies due to Doppler shifts and their wavelengths are not in phase. The

radar receiver records spectra of scattered waves, from which the electron tempera-

ture, ion temperature, and electron density can be inferred [47–52]. An advantage

of the ISR as a ground-based instrument is the possibility to monitor a single loca-

tion in the ionosphere over a long period of time resulting in measuring signature of

events in a fixed frame of reference. Another advantage is that, unlike ionosondes,

ISR measurements are not limited to the bottom side of the ionosphere, below the

electron density maximum, because they are applicable to lower densities above that

1This is the highest magnitude of frequency at which radio waves are reflected from ionosphere
layers.

2This is the height at which recorded radio waves are reflected from different ionosphere layers.
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maximum density height. Several ISRs have been developed over the years to study

the Earth’s ionosphere which has helped researchers have a better understanding

of the ionosphere. Examples include Arecibo in Puerto Rico(now decommissioned),

Jicamarca in Peru, and Resolute Bay (RISR) in Canada [50, 53–57].

1.4.4 Magnetometers

Magnetometers are instruments used to measure the magnetic field. They come in

two varieties; scalar magnetometers used to measure only the magnitude of the ambi-

ent magnetic field and vector magnetometers, which measure both the magnitude and

the direction of the magnetic field. These instruments are particularly important in

space research due to the significant effect of the geomagnetic field on both space and

ground-based infrastructures. Different magnetometers have been deployed in differ-

ent space missions to monitor the geomagnetic field and other physical phenomena

associated with it. For example, data obtained with the Geostationary Operational

Environmental Satellite (GOES) magnetometer are used to monitor daily variations

of the Earth’s magnetic field, to assess the level of geomagnetic disturbances, and

to detect magnetopause crossings by a spacecraft, which are used to improve space

weather forecasting and monitoring [58, 59]. Another example is the Swarm satel-

lites, which carry both the Vector Field Magnetometer (VFM) which measures the

magnetic field vector, and the Absolute Scalar Magnetometer (ASM) used to measure

the magnetic field strength to calibrate the VFM [60]. Magnetometers can also be de-

ployed as ground-based instruments to measure variations in surface magnetic fields,

associated with changes in current systems in the ionosphere and magnetosphere. Ex-

amples include i) the fluxgate magnetometer at Jicamarca used to monitor processes

leading to ionospheric anomalies such as equatorial spread F in response to geomag-

netic storms, and the determination of the E⃗ × B⃗ drift velocities [61–63], and ii) the

Canada Array for Realtime Investigations of Magnetic Activity (CARISMA) which

consists of an array of magnetometers used to measure disturbances in the Earth’s
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magnetic field [64].

1.4.5 Langmuir probes

A Langmuir probe is an electrode which, when inserted into plasma and biased to

different voltages, collects currents from plasma ions and electrons. Langmuir probes

come in different geometries, including spherical, cylindrical, and planar geometries.

The determination, or inference of physical parameters from probe measurements,

relies on the relation between collected currents and probe bias voltages relative to a

reference object called the “common” or “ground”. In space, the ground is usually

the satellite or rocket bus, and the relation between collected current and bias voltage

is referred to as the current-voltage (I-V) characteristic. The probe collects mostly

electron current when the bias voltage Vb is more positive than the plasma potential

Vp (Vb > Vp), and ion current when Vb < Vp. There are different parts or regions

in the I-V characteristics of a probe as illustrated in Fig. 1.5 from which different

plasma parameters can be determined:

The ion saturation region is the region where the probe is mainly collecting ion

currents; i.e., the probe potential is sufficiently negative so as to prevent most

electrons from being collected, and it mostly collects ions.

The floating potential Vf is the potential at which the ion and electron currents

collected by the probe are equal, which implies that the net current collected is

zero.

The plasma potential Vp is the potential of the background plasma relative to the

satellite.

The transition region is the region of the I-V characteristics where the probe po-

tential is greater than the floating potential but less than the plasma potential;

i.e., Vf < Vb < Vp. The ion current is negligible in this region and the electrons
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are partially repelled. In a Maxwellian plasma, the collected current grows

exponentially until the probe potential reaches the plasma potential.

The electron saturation region is where the probe potential Vb is greater than

the plasma potential. In this region, the electron current grows linearly with

the probe voltage.

Langmuir probes are commonly used instruments in space research, and they have

been flown on different scientific satellites such as Dynamics Explorer, Proba2, and

Swarm [65–67]. In this thesis, I present novel techniques with a potential to make

better inferences of plasma and satellite parameters from Langmuir probe measure-

ments, for selected probe geometries, and operating conditions. A brief overview of

the current techniques used to infer plasma parameters is therefore presented in the

next section, as background and reference, for the novel approaches to be presented

in the following sections.

1.5 Langmuir probe theory

As mentioned previously, when a probe is biased at a potential greater than the

plasma potential, it collects mostly electrons, while if it is at a potential sufficiently

lower than the plasma potential, ions are collected, while only electrons with enough

energy to overcome this potential barrier are collected by the probe. The attraction

and repulsion of charged particles from the probe leads to the formation of a plasma

sheath, which is a region where plasma quasi-neutrality breaks down. The surround-

ing charged particles in that region redistribute themselves so as to shield the electric

field induced which would otherwise exist, due to the probe’s presence. For a spheri-

cal probe in a stationary and thermal plasma, the resulting potential extends in the

plasma at a distance of the order of few Debye lengths λD, and it is written as

V (r) = V0
R

r
exp

(︃
−r −R

λD

)︃
, (1.1)
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Figure 1.5: Illustration of a Langmuir probe’s current-voltage (I-V) characteristics.

where V0 is the potential on the sphere surface, R is its radius, and V (r) is the

potential at distance r from the probe center. The effective Debye length in plasma

consisting of a single ion species is given as

λD =

(︃
1

λ2
De

+
1

λ2
Di

)︃1/2

, (1.2)

where λDe =
√︁
ϵ0kTe/e2ne and λDi =

√︁
ϵ0kTi/Ze

2ni are the electron and ion Debye

lengths, ϵ0 is the permittivity of free space, k is the Boltzman constant, Te is the

electron temperature, Ti is the ion temperature, e is the elementary charge, Ze is

the ion charge, ne and ni are the electron and ion densities respectively. The current

collected by a Langmuir probe is not only dependent on the probe potential with re-

spect to the background plasma, but also on different characteristic lengths including

the probe radius, and the thickness of the plasma sheath. In a magnetised plasma,

the gyration of electrons and ions around field lines can also influence the current, as

well as the collision mean free paths between charged particles or charged particles
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and neutral atoms and molecules in a collisional and weakly ionized plasma. Col-

lected currents can also be affected by the proximity to the wake and other satellite

components. While several theories have been developed to describe currents col-

lected by Langmuir probes, under different idealized conditions, none are capable of

accounting for all these physical conditions and processes, which is why theories are

based on several simplifying assumptions. One commonly used approach is based on

the orbital motion limited (OML) theory derived a century ago by Mott-Smith and

Langmuir [68, 69], leading to relatively simple analytic expressions for the current

collected by probes as a function of the probe voltage, and plasma parameters. In

the OML approximation, the following assumptions are made:

• Plasma is assumed to be collisionless and the radius of the probe, to be very

small compared to the Debye length.

• The energy and the angular momentum of a charged particle is conserved as it

approaches the probe.

• The plasma is not magnetised.

• The surface of the probe is far from any objects which could intersect or deflect

incoming particles.

• All particles species are often assumed to have Maxwellian velocity distribution

functions given as

f(v⃗) = n
(︂ m

2πkT

)︂3/2
exp

(︄
−m |v⃗ − v⃗d|2

2kT

)︄
, (1.3)

where m is the mass of the particle, n is the particle density, T is the temperature, k

is the Boltzman constant, and v⃗d is the drift velocity.

The current collected by a spherical probe due to the contribution of each particle

species is obtained from the flux of charges through the effective surface area of the

probe, that is

Is = qs

∫︂
Aeff v⃗ · n̂fs(v⃗) d3v, (1.4)
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Figure 1.6: Illustration of particle collection in the OML approximation.

where s denotes the particle species, Aeff is the effective surface area of the probe,

qs is the particles charge, vs is the velocity, and n̂ is the unit vector pointing into the

sphere. In the OML approximation, the effective cross-sectional area of the probe

is a function of the incoming particles’ speed, and probe bias voltage. The effective

collection area Aeff can be determined from the conservation of particle energy and

angular momentum. Specifically, let ri be the largest impact parameter for which a

particle moving with speed v0 far from a probe, would be collected at a grazing angle,

while all particles with impact parameter r < ri and the same initial speed, would hit

the surface of the probe and be collected (Fig. 1.6). Making use of particle energy

and angular momentum conservation, we write

1

2
mv20 =

1

2
mv21 + qV, (1.5)

and

mv0ri = mv1rp, (1.6)
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where qV is the particle electric potential energy at the sphere. From equation 1.5 and

1.6, an expression for the maximum impact parameter and the effective cross-section

area are obtained, and they are given as

ri = rp

√︄
1− 2qV

mv20
, (1.7)

and

Aeff = Ap

(︃
1− 2qV

mv20

)︃
, (1.8)

where Ap = πr2p is the geometrical probe cross section. Following a similar approach

as in [70], an analytic formula is derived for the net current collected by the probe

as follows: equation 1.8 is substituted in equation 1.4 for the effective cross-section

area, and the current Iatt collected from attracted species is obtained by performing

the integration below in spherical coordinates

Iatt = q

∫︂ 2π

0

dϕ

∫︂ π

0

sin θdθ

∫︂ ∞

0

v2f(v⃗)Aeffv dv, (1.9)

where Aeff is a function of V and v. Assuming a drifting Maxwellian distribution

function as in Eq. 1.3 and substituting for Aeff , we find

Iatt = qnπr2p

(︂ m

2πkT

)︂3/2 ∫︂ 2π

0

dϕ

∫︂ π

0

sin θdθ∫︂ ∞

0

v2 exp

(︄
−m |v⃗ − v⃗d|2

2kT

)︄(︃
1− 2qV

mv2

)︃
v dv,

(1.10)

where the drift velocity v⃗d is assumed to be along the z axis for simplicity. Integrating

equation 1.10, the current Iatt is of the form

Iatt = πr2pqn

(︃
2kT

πm

)︃1/2 [︃
e−x2

d +

(︃
1 + 2x2

d −
2qV

kT

)︃ √
π

2

erf(xd)

xd

]︃
, (1.11)

where xd = vd√
2kT/m

. The same procedure is used for repelled species. In this case,

however, the integration over speeds must be over sufficiently large values, for the
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particle to overcome the repulsive potential of the probe qV . The current Irep from

repelled species is then calculated with

Irep = q

∫︂ 2π

0

dϕ

∫︂ π

0

sin θdθ

∫︂ ∞

vm

v2f(v⃗)Aeffv dv, (1.12)

where vm =
√︂

2qV
m

is the minimum speed far from the probe, for a particle to have

sufficient energy to be collected. Substituting equation 1.3 for f(v⃗) and equation 1.8,

we find

Iatt = qnπr2p

(︂ m

2πkT

)︂3/2 ∫︂ 2π

0

dϕ

∫︂ π

0

sin θdθ∫︂ ∞

vm

v2 exp

(︄
−m |v⃗ − v⃗d|2

2kT

)︄(︃
1− 2qV

mv2

)︃
v dv.

(1.13)

The integration in equation 1.13 yields the current Irep for a repelled species given as

Irep = πr2pqn

(︃
2kT

πm

)︃1/2
{︄
xd + xm

2xd

e−(xd−xm)2 +
xd − xm

2xd

e−(xd+xm)2

+

[︃
1

2
+ x2

d −
qV

kT

]︃ √
π

2

erf(xd − xm) + erf(xd + xm)

xd

}︄
,

(1.14)

where xm =
√︂

qV
kT

. Finally, the net current collected by the probe is obtained by

adding 1.11 and 1.14 for all species involved. A similar expression for the net current

was reported by Whipple, who attributed the derivation to Hinteregger and Kana1

[70].

1.6 Kinetic Simulations

Kinetic simulations are useful to study and understand the interaction of space plasma

with satellites and instruments. These methods are applicable not only to space

plasma, but also to laboratory plasma experiments [71]. They have been used to

describe micro-scale phenomena in plasma such as the interaction of charged parti-

cles with waves, collisionless shocks, and magnetic reconnection [72–76]. Different

approaches used in kinetic simulations are now briefly reviewed.
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1.6.1 Particle-in-Cell

Particle-in-Cell (PIC) simulations are commonly used to simulate plasma dynamics.

The PIC approach involves tracking charged particles’ motion in their self-consistent

fields, calculated from the charges and current densities created by the particles them-

selves. PIC simulations are used to study a variety of physical problems in the field

of plasma and space physics such as the interaction of spacecraft with its environ-

ment [77], the study of plasma fusion [78, 79], and particle accelerators [80]. In this

approach, the simulation domain is discretized using either a structured or an un-

structured mesh. The fields are calculated on the vertices of these meshes at each

time step, after which they are interpolated to the particle positions. The calculated

fields are then used to advance particle positions and velocities, in time. Plasma

densities are specified at the start of the simulation. However, a typical electron den-

sity in ionospheric plasma is of the order of ne ∼ 1012 m−3, which is too large and

computationally expensive for tracing every particle, in a typical simulation domain

of volume, which could extend to several cubic metres. In practice, simulations are

therefore made using fewer “macro-particles”, which can represent a large number of

particles in a given system. Each macro-particles has a statistical weight (w) equal to

the ratio between the number of physical particles in a given volume, to the number

of macro-particles used in a simulation, that is,

ws =
V ns

Ns

, (1.15)

where V is the volume of the simulation domain, ns is the density of species s, while

Ns is the total number of macroparticles of species s.

1.6.2 Test Particle Approach

Test particle simulations are used to study plasma particles when their trajectories or

velocity (energy) distribution functions are of interest. It has been used by different

researchers to understand the behaviour of charged particles in space environments.
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For example, it was applied to investigate the interaction of radiation belt electrons

with magnetosonic waves [81], and the determination of particle distribution functions

in the magnetotail [82–84]. In test particle simulations, the fields are specified a priori,

which makes the approach not self-consistent. Test particle simulations can also make

use of Liouville’s theorem in a collisionless plasma, which states that the particle

velocity distribution function f(r⃗, v⃗, t) remains constant along the particle trajectory

in 6-dimensional phase space. There are different approaches to implementing test

particle simulations, including; (i) Particle trajectory sampling, (ii) Forward Monte

Carlo, (iii) Forward Liouville, and (iv) Backward Liouville. These four approaches

have been described and illustrated by Marchand 2010 [85].

1.6.3 Vlasov Approach

In the Vlasov approach, the system of particles at a given time is described by the

distribution function f(r, v, t) in 6-dimensional phase space consisting of positions

and momenta (or velocities). The method involves solving the Vlasov equation

∂fs
∂t

+ v · ∂fs
∂r

+
F

m
· ∂fs
∂v

= 0, (1.16)

for the distribution function fs of a given particle species s in a collisionless plasma,

where F is the Lorentz force [86, 87]. Particle number densities and velocities are

computed from the velocity distribution functions, and these are used in Maxwell’s

equations to compute electromagnetic fields self-consistently. One of the advantages

of the Vlasov approach over PIC approach is the absence of statistical noise due to

the use of a finite number of discrete particles used in the PIC approach [88].

1.6.4 Hybrid Approach

The hybrid approach combines both the fluid and the kinetic approaches. In this

method, some plasma species are treated kinetically, while others are treated in the

fluid approximation [89, 90]. The electromagnetic fields used are calculated self con-
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sistently by solving Poisson’s equation and/or Maxwell’s equations. The hybrid ap-

proach can be a combination of fluid and PIC, i.e hybrid fluid-PIC [91], or with Vlasov

as hybrid fluid-Vlasov [92]. In the hybrid fluid-PIC, macro-particles are used instead

of the actual physical particles as in the standard PIC approach. These particles

are advanced in time using self-consistent fields computed from charge and current

densities obtained from the particle distribution functions and the solutions to the

fluid equations used in the model. The approach used to determine the distribution

functions introduces statistical noise in the simulation. Conversely, in the hybrid

fluid-Vlasov, there is no statistical noise either from the fluid, or the Vlasov contribu-

tion to the electromagnetic field. Particle distribution functions are obtained from the

solution of the Vlasov equation at each time step, making the distribution functions

noiseless compared to hybrid fluid-PIC [86].

1.7 Machine Learning

The use of machine learning has increased in recent years in all fields of life for ana-

lyzing and interpreting data [93–95]. In physical sciences, the use of machine learning

has opened up new methods of comparing simulations and experiments, for instance,

in data analysis, space weather forecasting and predictions [96, 97]. Machine learn-

ing methods are classified into supervised and unsupervised learning methods. The

supervised approach involves the construction of inference or predictive models using

pre-labeled data sets. In this method, the input data which are often referred to as

the predictors (or independent variables), and the output data (responses or depen-

dent variables) are specified in the model training process. Supervised learning can

further be subdivided into a regression problem, which requires the prediction of con-

tinuous values based on the input values, and a classification problem which involves

the identification of discrete output variables. Unsupervised learning makes use of an

unlabeled data set, that is, only the input data are involved. Models are constructed

to learn the relationship and structure between inputted data. This type of learning
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technique is used mostly for clustering or grouping data based on their relationship

or structure [98]. It can also be used for dimensionality reduction when dealing with

data sets of very high dimensions. Several machine learning algorithms are used to

solve different problems. Some examples are linear regression, radial basis function,

support vector machine, deep neural network, Gaussian clustering, and K-clustering

[99–102]. The selection of an algorithm for a specific problem depends on the nature

of the problem. For instance, in a problem that requires prediction or inference of a

numerical value based on prior learning, regression base algorithms are used. But in a

problem in which prediction of data categories is done, classification algorithms such

as support vector machine, and random forest are used [103]. Another key component

in machine learning is model evaluation. There are several evaluation metrics used

and here again, the choice depends on the nature of the problem. In classification,

model evaluation is generally done using metrics such as accuracy, recall, precision,

F1-score, and confusion matrix [104, 105], while in regression, the mean absolute er-

ror, the mean square error, the r-square, etc. are used [103]. Machine learning has

also found many applications in the study of space weather. For example, it has been

used for solar activity forecasting [106, 107], prediction of solar flares [108, 109], of

ionospheric scintillation, and classification of plasma regions in near Earth space [110,

111]. In this thesis, the regression approach is used to construct inference models for

different plasma and satellite parameters. Brief descriptions of how regression meth-

ods are constructed and metrics used to assess the skill of the model follow. However,

detailed descriptions of the regression algorithms used in this thesis are explained in

later chapters.

1.7.1 Multivariate Regression

In general, the use of multivariate regression algorithms can be done in two ways.

The first involves the construction of a predictive (inference) model using one of the

regression-based algorithms. The other approach combines two or multiple models
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trained using the same regression algorithm or different algorithms. This procedure

of constructing a predictive model is referred to as ensemble learning strategy [103].

The advantage of using an ensemble approach is that it reduces both the bias and

the variance in a predictive model, leading to improvement in the model skill. The

ensemble learning strategies are mostly done using three different techniques, namely

bagging, boosting, and stacking and they are briefly described below.

Bagging Ensemble Learning This approach derives its name from “bootstrap ag-

gregation”. It uses multiple samples of a training data set obtained using a

bootstrap approach to construct multiple base learners that form an ensemble

for prediction [112]. The bootstrap approach involves random sampling of the

training data set with replacement, which means that if an observation is se-

lected in a given sample, the observation is returned to the data for possible

re-selection. Predictive models are then constructed for each of the selected

samples, and the final prediction is obtained from averaging predictions made

by all these models.

Boosting Ensemble Learning In this type of ensemble learning, the major aim is

to develop a strong learner by combining multiple lower skill learners. The main

component of boosting ensemble learning is to correct the errors made by a first

predictive model. This is done iteratively by constructing a model to correct

error, in a preceding model inference. That is, a first model is trained using

the training data set, the errors are calculated from the differences between

these first inferences, and known values in the training set, and a second model

is constructed which corrects errors in the first and the third model corrects

errors in the second, and so on. The final model is obtained from a combination

of all the models.

Stacking Ensemble Learning This involves training multiple models on a single

training data set followed by training a final model to aggregate the predictions
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of all the multiple models. In this ensemble approach, each model in the multiple

models is called the first-level learner, while the model used to aggregate their

predictions is called the second-level learner, or meta-learner. Any machine

learning algorithm can be used as the meta-learner, but it is better to use a

simple model such as the linear regression, so that the complexity of the model

resides at the first level [113].

1.7.2 Regression error metrics

The main objective, when training regression models, is to minimize the errors in the

model’s predictions. In practice, there are different metrics being used to assess the

performances of a model. Some of these metrics are mentioned below:

Maximum absolute error (MaxAE) This is the maximum value of the absolute

residual error i.e the difference between the inferred values and the actual data

values. It is of the form

MaxAE = max (|Yinf − Ydt|) , (1.17)

where Yinf and Ydt are respectively inferred values and the known values in the

data set.Minimising the MaxAE brings down the uncertainties in the model to

the most conservative value.

Mean absolute error (MeanAE) This measures the average magnitude of the

residual error in a model inferences, and it is of the form

MeanAE =
1

n

n∑︂
j=1

⃓⃓⃓
Y dt
j − Y inf

j

⃓⃓⃓
. (1.18)

Maximum relative error (MRE) This is the maximum value when the absolute

difference between the inferred and data values is normalized with the inferred

value as in

MRE = Max

⃓⃓⃓⃓
Ydt − Yinf

Yinf

⃓⃓⃓⃓
. (1.19)
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It is recommended when data values all have the same sign, and vary over

more than one order of magnitude. Note that in this definition of the relative

error, the inferred value Yinf rather than the known value Ydt from the data

set appears in the denominator. This is to facilitate the interpretation of rela-

tive uncertainties, considering that exact values are generally not known, while

inferred values are known from model inferences.

Root mean square error (RMSE) This gives an absolute measure of lack of fit

of the model; that is, it provides the standard deviation of the model inferences

from the actual values. It is calculated using

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
j=1

(︂⃓⃓⃓
Y dt
j − Y inf

j

⃓⃓⃓)︂2
. (1.20)

.

Root mean square relative error (RMSrE) This gives the root mean squared

error of the normalized square of the residual error as in

RMSrE =

⌜⃓⃓⎷ 1

n

n∑︂
j=1

(︄
Y dt
j − Y inf

j

Y inf
j

)︄2

. (1.21)

.

Coefficient of determination or R-square (R2) This measures the proportion of

the variance in the dependent variable that is accounted for in the inference

model. It is calculated using

R2 = 1−

∑︁n
j=1

(︂
Y dt
j − Y inf

j

)︂2
∑︁n

j=1

(︁
Y dt
j − Ymean

)︁2 , (1.22)

where Ymean is the mean value of the dependent variable in the data set. The

value of R2 is between 0 and 1, with a value close to 1 indicating that a large

fraction of the dependent variables in the data set are well approximated by

the model. Conversely, a value close to zero, corresponds to model with low

predictive skills.
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Pearson correlation coefficient (R) This measures the linear relationship between

two variables. It is defined as

R =

∑︁n
j=1 (Xj −Xmean) (Yj − Ymean)√︂∑︁n

j=1 (Xj −Xmean)
2
√︂∑︁n

j=1 (Yj − Ymean)
2
, (1.23)

where Xj and Xmean are the values and mean of X-variables, and Yj and Ymean

are the values and mean of Y-variables respectively. R has a value between

-1 and 1, where -1 indicates a strong negative correlation between the two

parameters, that is as one of the parameters increases, the other decreases. The

value 1 indicates a strong positive correlation, while 0 indicates no correlation.

R is not a measure of model accuracy, but a measure of affinity between model

inferences and the actual data. An affine transformation can usually be used

to improve the accuracy of a model if its affinity with data is strong; that is,

if there is strong affinity (i.e R is close to 1 in absolute value) between the

inferences and the actual data. An interesting property of this coefficient, is

that it is invariant under an affine transformation applied to any one of the two

sets. It follows that with a high |R|, it is often possible to improve the accuracy

of a model with a simple affine transformation.

1.8 Motivation

Langmuir probes are one of the most commonly used instruments in space research

to monitor plasma state parameters such as the density, the temperature, and the

satellite potential. Like other instruments, probes don’t directly measure physical

quantities of interest. Instead, they provide “low level” measurements such as col-

lected currents as a function of voltage, from which these physical quantities must be

inferred. These inferences in turn are practically always based on theories leading to

analytic solutions or empirical formulas. Several analytic solutions have been used to

infer plasma parameters under different plasma conditions [68, 69, 114–117]. How-

ever, these inferences mostly come with unquantified uncertainties as a result of the
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approximation made to derive analytic formulas. The objectives of this thesis are to:

(1) Develop new approaches that can be used to infer plasma and satellite parame-

ters from fixed bias probe measurements under more realistic plasma conditions than

what is possible with analytic or empirical formulas using different probe geometries.

(2) Develop a systematic strategy to quantify uncertainties, or confidence intervals

in model inferences.

(3) Develop approaches for which it is possible to make incremental improvements,

by accounting for more specific physical processes or geometrical features, in a given

problem.

These objectives are achieved by:

(a) Using kinetic simulations to calculate currents collected by different Langmuir

probe geometries. In the simulations, different ionospheric plasma conditions are

accounted for, including different plasma ion species, satellite potentials, and the

presence or absence of the satellite.

(b) Simulation results are then used to construct solution libraries containing

plasma and satellite parameters used in the simulations, and the calculated currents.

(c) The solution library is then randomly divided into two distinct sets. One, the

training set, is used to construct inference models for plasma and satellite parameters,

while the other, the validation set, is used to validate the skill of the models and also

to quantify the uncertainty in each of the model inferences.

(d) Considering Langmuir probes operating at fixed voltages, because of their rel-

ative simplicity, and their advantages of providing measurements with significantly

higher temporal and associated spatial resolution, rather than measurements made

with a swept-voltage probes.
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1.9 Thesis Outline

The remainder of my thesis is organized as follows. Chapter 2 describes a simple

concept of applying a combination of kinetic simulation of an isolated spherical Lang-

muir probe, analytic formulas, and regression techniques to infer plasma and satellite

parameters from probe measurements. This concept is extended in Chapter 3 by

considering the presence of a satellite. This is achieved by carrying out kinetic sim-

ulations for two Langmuir probes on a satellite using a truncated simplified Swarm

satellite geometry. The currents calculated from the simulations with known plasma

and satellite parameters used as input in the simulations are used to train mod-

els for the satellite potential, the electron density, and the electron density divided

by the square root of the electron temperature. The trained models are applied to

Swarm A in situ measurements. In Chapter 4, I explore the use of kinetic simulation

and multivariate regression methods to infer plasma and satellite parameters from

spherical segmented Langmuir probe measurements. Chapter 5 gives a summary and

conclusion of the thesis.

28



Chapter 2

Fixed bias spherical Langmuir
probes

This chapter is based on two published papers in peer-reviewed journals [118, 119].

A simple sensor to measure satellite potential and the ratio between the plasma

density and the square root of the electron temperature is described. The proposed

instrument consists of two small spherical Langmuir probes biased to different fixed

voltages, from which currents are measured. Inference models are constructed for

spacecraft floating potentials and the ratio of the plasma density and the square

root of the electron temperature by combining the orbital motion limited (OML)

approximation for the current collected by a spherical probe, and a multivariate

regression algorithm. The construction of the models is based on a training data

set obtained from 3-D simulation results, covering a range of plasma parameters of

relevance to satellites in low earth orbit (LEO) at mid-latitudes. The models’ skills

are then assessed by comparing inferences with values in a distinct validation data

set.

2.1 Introduction

Charging and resulting electric potentials are an important process affecting the state

of spacecraft and their interaction with their environment. Satellite charging is caused

by a combination of plasma particle collection, photoelectron emissions, and sec-
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ondary electrons due to energetic electron and ion impact. Charging generally occurs

at conducting surfaces, and when satellites are exposed to fluxes of energetic particles,

charged particles can also penetrate satellites and cause “deep dielectric charging”. In

the presence of large internal charging, electrostatic discharges can occur and damage

sensitive electronic components. Discharges can also occur between different surface

components when they are at significantly different potentials[120, 121].

Even in the absence of physical damage, charging is of concern when interpret-

ing measurements involving charged particle sensors. Background particle energies

and trajectories, and therefore the measurement of particle velocity distributions or

the analysis of Langmuir probe measurements, are affected by sheath electric fields

associated with satellite charging and potentials. Controlling, or at least monitor-

ing, a satellite potential with respect to background plasma is critical in an optimal

interpretation of particle sensor measurements.

Studies have been made over the years to monitor and understand spacecraft charg-

ing and potentials in-situ, theoretically, and using computer models capable of self-

consistently accounting for the many physical processes responsible for spacecraft

charging, with realistic geometries. Early on-orbit measurements of potential associ-

ated with charging were made with the Explorer VIII satellite [122, 123]. In space,

SCATHA (P78-2) was designed specifically to study satellite charging in the magneto-

sphere where spacecraft are exposed to energetic particles [124–129]. Surface charging

and potentials have also been monitored on the Engineering Test Satellite V of Japan

[130]. More recently, the International Space Station has been equipped with the

Floating Potential Measurement Unit (FPMU) developed at Utah State University

[131]. For spacecraft in the right altitude range, on the dayside of their orbit, pho-

toelectron energy spectra have been used successfully to infer their potential, from

electron energy spectra. For spacecraft at altitudes up to 900 km on the dayside of

the ionosphere, satellite potentials have been measured from shifts in atomic photo-

electron energy peaks [31, 132, 133]. In addition to in-situ experiments, theoretical
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models have been applied to explain the principles of surface and spacecraft charging

[70, 134]. Theory plays a key role in the interpretation of measurements to determine

a satellite’s floating potential. For example, Sanders and Inouye estimate a satel-

lite floating potential by numerically solving the current balance equation for ion,

electron, secondary emission and backscattered currents, from which they obtained

multiple possible solutions for the floating potential Vf due to the two Maxwellian

energy distributions assumed in their analysis and the secondary electron yield [135].

Vf is also determined in other cases where only the currents due to ions and electrons

are considered in the current balance equation. This is done by fitting different an-

alytic expressions derived for both the ion and electron current collected by a probe

using different theories such as the Orbital Motion Limited (OML) theory and the

radial motion limited (RML) theory also called the Allen, Boyd and Reynolds (ABR)

theory [115–117]. The OML theory was developed by Mott Smith and Langmuir in

1926 [68, 69]. They assumed that the background plasma is Maxwellian, unmagne-

tized, and that the radius of the probe is much smaller than the Debye length. The

model was later modified by Bernstein, Rabbets and Laframboise by accounting for

the sheath formation around the probe in addition to the orbital motion of charged

particles and this modified model is referred to as the BRL theory [136–138]. The

radial motion limited (RML) theory derived by Allen, Boyd and Reynolds was first

applied to spherical probes by considering the radial motion of the charged particle

toward the probe, which requires solving Poisson’s equation for the potential in the

sheath region around the probe. This theory was later extended to a cylindrical probe

by Chen [136, 137, 139]. The analytic formulas derived from each of these theories

relate the electron currents and the ion currents to the probe potential, density, tem-

perature among the most important physical parameters. The I-V characteristic of

a probe is fitted using the analytic formula for the current collected by the probe

and since the floating potential is the potential when the probe is collecting zero

current, the fitted equation is interpolated to the point where the current collected is
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zero on the I-V characteristic and the potential at this point is the floating potential.

Finally, several spacecraft environment computer models have been developed under

national sponsorship, including NASCAP and NASCAP-2k developed under contract

by NASA and the U.S. Air force, [140, 141], MUSCAT, developed in Cho’s team for

the Japan Aerospace Exploration Agency [142], and the open source SPIS program

[143], developed for the European Space Agency.

In many cases, the focus is on a satellite floating potential; that is, the potential

that a satellite has when it collects no net current. However the interest in monitoring

a satellite potential is not limited to cases where the satellite is in electrostatic steady

state. Such cases occur for example with satellites carrying active instruments such as

thrusters or charged particle guns, or in the presence of rapidly varying environmental

conditions, as when a satellite crosses the solar terminator. Therefore, considering

that most studies on the subject of satellite potentials focus on satellite floating

potentials, the satellite potential will be referred to as the “floating potential” in this

part of the thesis, and will be written as Vf , with the understanding that the approach

presented is more general, and applies to the determination of a satellite potential,

whether or not it is collecting zero net current.

The motivation in this part is to go beyond analytic theories that have been used

to determine many satellites’ potentials and by extension other plasma parameters,

by using simulations and multivariate regression techniques. The reason for this is

that analytic formulas rely on assumptions and approximations which do not reflect

the true conditions encountered in actual measuring conditions. In order to have

an improved model, simulations are done for cases that account for more realistic

conditions under which measurements are made and, hence, obtain more accurate

interpretations of measurements. The range of satellite floating potentials considered

extends from −2 to +2 V. This is relevant to satellites in low earth orbit (LEO) at

low and mid latitudes. Under these conditions, plasma density is sufficiently high,

and temperatures sufficiently low (< 0.3 eV) for charging to appear primarily at
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surfaces, due to ion and electron impact. Under these conditions, secondary electron

and photoelectron emission are of minor importance.

In Sec. 2.2, I describe the computational approach used to create a solution library,

consisting of probe currents and associated floating potentials for a broad range of

space plasma parameters. A subset of this solution library can in turn be used as a

training data set to construct regression models. The remainder subset is then used

as a validation data set, to test the inference skill of the models. A methodology

to infer a satellite floating potential is presented in Secs. 2.3. While the primary

objective is to infer the floating potential, the approach is also extended to construct

an inference model for the ratio of the electron density divided by the square root of

electron temperature. A summary of the findings and some concluding remarks are

finally presented in Sec. 2.5.

2.2 Methodology

Kinetic simulations of the interaction between a small spherical Langmuir probe

(SLP) and plasma are done for several ionospheric conditions using PTetra, a three-

dimensional kinetic particle-in-cell code, in which electric fields and particle kinet-

ics are calculated self-consistently. In PTetra, the simulation domain is discretized

with an unstructured tetrahedral mesh, which makes it possible to represent different

spacecraft geometries, on which different boundary conditions can be applied. PTetra

has been validated by reproducing known analytic results, and it was benchmarked

by comparing results obtained with other, independently developed models [77, 144–

146]. This study considers the feasibility of determining a satellite floating potential

Vf and the ratio of electron density and square root of electron temperature ne/
√
TeV

from currents measured with two identical spherical Langmuir probes of radius 4 mm

with fixed bias voltages Vb1 and Vb2, as illustrated in Fig. 2.1. Considering the fact

that Vf represents the satellite potential with respect to the background plasma, it
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(V = 0)
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V=Vf
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Figure 2.1: Illustration of the two identical probes at fixed bias voltages with respect
to the spacecraft.

follows that the probe voltages with respect to background plasma are given by

V = Vf + Vb, (2.1)

where Vb is the bias voltage of either probe with respect to the spacecraft. The

simulations were made with different densities, temperatures, and ion compositions

obtained from the International Reference Ionosphere (IRI) model, corresponding

to mid latitude ionospheric plasma at different longitudes, latitudes and times, for

satellites in low Earth orbit (LEO). The scatter plot in Fig. 2.2 illustrates the extent

of the parameter space obtained with the IRI, with 14 squares and 1 circle, showing

15 specific cases for which simulations were made.

The goal here is to assess the feasibility of inferring floating potentials from currents

collected with two fixed bias probes and then extend the approach to other plasma

parameters. In doing so, the attention is limited to floating potentials ranging from

−2 V, to +2 V. It should be noted that this approach is not limited to fixed bias
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Figure 2.2: Scatter plot of plasma parameters obtained using the International Ref-
erence Ionosphere (IRI) model. Parameters selected in the simulations are identified
with black rectangles and one circle. The circle identifies the parameters used to
produce the profiles illustrated in Fig. 2.3.
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probes however, as demonstrated in [147] where the same technique was applied to

infer plasma densities and temperatures from characteristics of a sweep voltage probe.

In this first assessment of the method, the probes are biased to +2 V and +3 V with

respect to the satellite. Owing to Eq. 2.1, simulations are made for probes at voltages

ranging from 2− 2 = 0 V, to 3 + 2 = 5 V with respect to the background plasma. In

order to develop the approach for arbitrary floating potentials in the specified range,

currents are computed for arbitrary probe voltages in the range [0, 5] V with respect

to the background plasma. This is done for each of the 15 cases listed in Table 2.1,

by carrying out simulations for probes and posts at discrete voltages from 0 to 5 V

with increments of one volt.

For this range of voltages, and the plasma parameters considered, the current is

found to vary almost linearly with voltage and it is fitted with a maximum relative

error of 1.7% using a simple parabola. Given Eq. 2.1, the fit is then used to determine

the currents collected by a pair of probes for arbitrary values of the floating potential

between −2 and +2 V. As an example, Table 2.2 lists probe potentials corresponding

to selected floating potentials. Sample simulation results are shown in Fig. 2.3 for

cross sections of the average volume charge density, and the ion density at steady

state. The parameters used in the simulations in this case correspond to the circle

in Fig. 2.2; that is, ne = 1.08 × 1011 m−3, Te = 0.079 eV, an ion effective mass

meff = 7.39 amu, and a probe voltage V = 5 V with respect to background plasma.

In the simulations only the 4-mm-radius probe and an equipotential 1.5-mm-radius

guard cylindrical post are taken into account, and no other component of the satellite

is accounted for. This is made under the assumption that the probes are supported

by a sufficiently long boom on the ram side of the satellite, with the boom and guard

aligned along the ram direction. For simplicity, Earth’s magnetic field is not included,

which is justified by the fact that the sphere radius a = 4 mm is small compared to

a typical electron thermal gyro-radius ρe th =
√︁
2kTe/me/Ωe, where Ωe = eB/me is

the electron gyro-radius, k is the Boltzmann constant, Te and me are respectively
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Table 2.1: Simulation parameters used in the construction of the solution library.

n Te meff nO+ nH+ nHe+ nN+

1010 m−3 eV amu % % % %

2.6489 0.1516 8.31 93.15 6.06 0.53 0.26

6.2161 0.2003 13.87 94.44 0.95 0.16 4.45

6.4460 0.0722 6.28 86.39 10.2 0.62 2.79

6.4760 0.2464 15.93 99.73 0.00 0.15 0.12

8.1690 0.0981 11.01 96.57 2.95 0.37 0.11

8.9614 0.1559 12.91 95.49 1.53 0.23 2.76

10.859 0.0790 7.39 88.31 7.63 0.50 3.56

12.040 0.2144 15.83 94.73 0.00 0.11 5.16

15.110 0.1791 15.88 95.59 0.00 0.05 4.36

16.120 0.1994 12.83 94.03 1.58 0.17 4.22

18.730 0.2070 12.62 97.87 1.76 0.11 0.27

22.901 0.1515 15.86 95.07 0.00 0.06 4.88

26.629 0.1126 15.88 94.65 0.00 0.00 5.35

45.701 0.0828 15.86 94.65 0.00 0.05 5.30

84.190 0.0947 14.19 94.79 0.78 0.13 4.29

Table 2.2: Sample probe voltages with respect to background plasma, for a space-
craft floating potential ranging from −2 V to +2 V, assuming probes with fixed bias
voltages of +3 V, and +2 V.

Vf (V) V1(V) V2(V)

−2 1 0

−1 2 1

0 3 2

1 4 3

2 5 4
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the electron temperature and mass, and B is the geomagnetic field at the satellite

location. Indeed among all the cases considered in Fig. 2.2, and assuming B ∼ 30 µT

at mid-latitudes, the smallest value of ρe th is approximately a factor 9 times larger

than the probe radius. In the simulations, cases with multiple species are considered,

with both electrons and ions being described by Maxwellian distribution functions

at rest in the reference frame co-rotating with Earth. Thus, in the satellite (and

probe) reference frame, plasma is drifting from the ram direction at approximately

the orbital speed, assumed to be vorb = 7500 m/s. The distribution of current collected

(m-3)

 (m-3
)

Figure 2.3: Cross section of the charge density profile ‘rhoAv’ in the upper half and
ion density ‘dni’ in the lower half. Charge density and ion density are in SI units.
The parameters used in the simulation correspond to the circle in Fig. 2.2

per surface area on the probe and supporting post is shown in Fig. 2.4, corresponding

to the same case as in Fig. 2.3. With a positive voltage, the probe repels incoming

ions, thus creating a wake downstream, and both structures collect negative current,

as seen in the figure.
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8mm

12.5mm

Figure 2.4: Current per surface area (A/m2) collected by the probe and the equipo-
tential supporting guard cylinder. The plasma parameters and voltage used in the
simulation are the same as in Fig. 2.3.

Three dimensional kinetic simulation results are used to build a solution library

L, in which each data entry, or node in this multivariate space, contains currents

collected by the two probes for randomly distributed floating potentials in the range

[−2, 2] V, followed by the floating potential, the electron density, the temperature,

the calculated value of the electron density divided by square root of temperature

and the effective mass, for each of the 15 cases in Table. 2.1. Sixteen randomly

distributed floating potentials are considered for each of the 15 cases. This solution

library, in turn, is used to construct disjoint training and validation sets from which

models are trained and validated, respectively.

2.3 Construction of Inference Models

The approach adopted here to construct inference models makes use of a combination

of theory and multivariate regression; that is, the interpolations of dependent variables

in a multi-dimensional space of independent variables. The goal is to infer satellite
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floating voltages Vf and the ratio of density to the square root of electron temperature

given a two-dimensional vector (i1, i2) of currents collected by two fixed bias voltage

probes attached to a satellite. An approximate analytic expression for the floating

potential and the ratio ne/
√
TeV based on the Orbital Motion Limited (OML) theory

is first derived. A regression algorithm is then applied and assessed to perform the

same task, followed by a combination of the two methods using boosting ensemble

learning approach, in which multivariate regression is used to reduce the error in the

analytically inferred values. These approaches and sample applications are presented

in what follows.

2.3.1 Analytic model

The interpretation of currents collected by spherical Langmuir probes is commonly

based on Mott-Smith and Langmuir’s OML theory [68, 69]. This theory has since

been further refined and extended by many authors [136, 148], and continues to be

used to diagnose many laboratory and space plasma experiments [149]. This suc-

cess is due to the relatively simple analytic expressions that it produces in different

asymptotic limits, which can be used to quickly infer plasma parameters from probe

characteristics; that is, from collected currents as a function of applied voltage. OML

is based on a number of assumptions as discussed in Section 1.5. A common assump-

tion made for electrons is also that particles have zero mean velocity. This is justified

by the fact that electrons with temperature Te = 0.1 eV in the low Earth orbit have

a thermal speed of the order 105 m/s which is much larger than the plasma drift ve-

locity or the satellite ram speed. Under these conditions, OML predicts the following

expression for the electron current collected by a spherical probe biased positively

with respect to the background plasma:

I = −ner2
√︃

8πkTe

me

(︃
1 +

e (Vf + Vb)

kTe

)︃
, (2.2)
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where n is the electron density, and Vb + Vf is the probe voltage with respect to

background plasma. Using Eq. 2.2 as the first estimate, the currents I1 and I2

collected by two probes biased to voltages Vb1 and Vb2 are written as:

I1 = −ner2
√︃

8πkTe

me

(︃
e

kTe

)︃(︃
Vf +

kTe

e
+ Vb1

)︃
(2.3)

and

I2 = −ner2
√︃

8πkTe

me

(︃
e

kTe

)︃(︃
Vf +

kTe

e
+ Vb2

)︃
, (2.4)

where kTe/e = TeV is the electron temperature in units of electron-volts. Given the

known values of the bias voltages, and the measured currents, it is a straightforward

exercise to solve for Vf + TeV and obtain

Vf + TeV =
Vb1I2 − Vb2I1

I1 − I2
. (2.5)

which expresses the satellite potential and the unknown temperature in terms of

known bias voltages and measured collected currents. Assuming for simplicity that

TeV , the temperature in units of eV, is small compared with the satellite potential,

then the following approximation

Vf ≃ Vb1I2 − Vb2I1
I1 − I2

(2.6)

is obtained for the satellite potential. Also, if Eq. 2.5 is substituted in either Eq. 2.3

or 2.4, it gives

n√
TeV

=
1

er2

√︃
me

8πe

(︃
I1 − I2
Vb2 − Vb1

)︃
, (2.7)

which expresses ne/
√
TeV in terms of known physical quantities.

Equations 2.6 and 2.7 are used to first infer the floating potential and the ratio

ne/
√
TeV by direct substitution of the measured currents and known bias voltages in

the two equations. The result obtained for the floating potential is shown in Fig. 2.5,

where inferred potentials are plotted as a function of actual potentials in the library.

The analytic approximation in Eq. 2.6 is seen to overestimate the satellite potential

in all cases considered. This systematic discrepancy is due in part to the neglect of
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TeV in Eq. 2.5 since, from that equation, it is clear that the approximate expression

for Vf in Eq. 2.6 should give satellite potential plus the electron temperature in units

of electron-volts. This is not the only cause for the discrepancy because, if it were, the

discrepancy between inferred and actual potentials would be approximately constant

in the full range of potentials considered. Part of the difference might come from the

neglect of the ion contribution to the collected current, but the larger overestimate

at larger floating potentials suggests otherwise. Indeed, with a bulk kinetic energy

of approximately 4.7 eV, oxygen ions can reach the probes for all floating potentials

considered. When collected, positive ions contribute positive currents, thus reducing

the magnitude of the negative currents from electrons. This reduction, however, is

most important for the lower floating potentials (∼ −2 V), and least important for

the larger positive voltages, since the potential barrier is then the highest. Ion current

collection should, therefore, lead to a larger discrepancy in Fig. 2.5 at lower values

of Vf , which is not seen in the figure. Another cause of the discrepancy could be

the presence of the post holding the spherical probe and the formation of a wake

as shown in Fig. 2.3, which is not accounted for in the OML theory. Indeed, Fig.

2.4 shows that current is not collected uniformly around the probe as for an isolated

sphere in an assumed non-drifting surrounding plasma in OML. This, combined with

the supersonic ion drift and the resulting wake, are likely causes for the differences

between inference and actual values of Vf in Fig. 2.5. Nonetheless, the analytically

inferred floating potentials are in close proximity to actual values, both qualitatively,

and quantitatively. Inferred Vf values are tightly distributed along a line that nearly

parallels the solid line in Fig. 2.5 for an ideal correlation. The small scatter in

the inferences is due to the different plasma conditions, corresponding to different

densities, temperatures, and ion effective masses, accounted for in the solution library.

Fig. 2.6 compares values obtained when equation 2.7 is used to infer the ne/
√
TeV ,

and actual values from the database. While the general trend of analytically inferred

values agrees with actual data, analytically inferred values are systematically lower.

42



−2 −1 0 1 2
Data Vf (Volt)

−2

−1

0

1

2

M
od

el
 V

f (
Vo

lt)

RMSE=0.35
MaxAE=0.76
MeanAE=0.31
R=0.977

Figure 2.5: Comparison between the satellite floating potential approximated with
Eq. 2.6 and actual value in the synthetic data. The line corresponds to a perfect
agreement between the two floating potentials
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Figure 2.6: Comparison between ne√
TeV

obtained with Eq. 2.7 and actual value in
the synthetic data, with the line corresponding to a perfect agreement. The maxi-
mum relative error (MRE), root mean square relative error (RMSrE) and correlation
coefficient (R) are used as model skill metrics.

This observation is in contrast to what is observed when Eq. 2.6 is used for the

floating potential in which the inferred values are higher than the actual value. The

main cause of this discrepancy in the inferences made with Eq. 2.7 is likely due to

post holding the probe, which reduces its collection area. This in turn reduces the

probe’s effective radius which, referring to Eq. 2.7 should lead to higher values of

ne/
√
TeV than the estimates (dots in the figure) made with the full r = 4 mm radius.

2.3.2 Regression with Radial Basis Function (RBF)

As mentioned in Section 1.7, several approaches have been developed to do multi-

variate regression. For example, kriging was pioneered by Krige for geological survey
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applications [150], and further developed on formal mathematical grounds [151–153].

Deep learning neural networks also offer a powerful means for constructing predictive

regression models for large sets of data with complex interconnections between input

and output [154, 155]. The regression approach used here is based on radial basis

functions [156, 157]. In the following, RBF is used to directly infer a satellite floating

potential and the ratio of electron density and square root of electron temperature

from a pair of fixed bias probes.

This method is similar to kriging, in that it performs interpolations of dependent

variables at locations in a multi-dimensional space, from their “distance” from selected

reference points or “centers”. The advantage of RBF compared with neural networks

or kriging, is its simplicity and the fact that, in many cases, it requires relatively

few centers in order to provide accurate models. This is in contrast with neural

networks, which require large data sets for training a model, as well as large sets for

validation. This difference in the number of data entries or nodes required for training

and validating is critical when constructing an inference model based on computed (or

synthetic) data, because of the large computational resources often needed in order

to carry out simulations.

In this application of the RBF approach, independent variables are therefore two

dimensional vectors (i1, i2), and dependent variables are scalars (one dimensional

vectors) Vf or ne/
√
TeV . For more generality, however, assume that the independent

and dependent variables are n-tuples X and Y , respectively. These n-tuples can

be of arbitrary dimensions, and these dimensions need not be the same. Given a

set of N centers consisting of vectors Xi and Yi, i = 1, N , the method consists of

approximating dependent variables for an arbitrary X within a given domain, as

Y ≃
N∑︂
j=1

ajG (|X −Xj|) , (2.8)

where the Xj are selected reference nodes, or centers, and G is a suitable regression or

interpolation function. The argument of G is a scalar given by the “radial distance”
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between X and the centers Xi. There is no constraint in the metric used to define

this radial distance, but a common choice is the L2 norm, or Euclidean distance. The

accuracy of the model in a given data set depends on the number and location of the

centers, as well as on the interpolation function G. Centers can be selected among

nodes in the solution library, or they can be defined independently. For a library con-

structed from kinetic simulations requiring large computational resources, however, a

practical choice is to select them from nodes in the library. Different strategies have

been proposed for determining the selection of centers from a set of nodes. Here, a

straightforward approach consisting of trying every possible combination of N cen-

ters among the N nodes in a given training data set is used, for a total number of

combinations

Nc =

⎛⎝ N

N

⎞⎠ =
N !

N ! (N −N)!
. (2.9)

For large values of N , this number increases very rapidly with N , and it may be

necessary to restrict training to a small subset of randomly selected nodes in L.

In this study, a training set is made from 90 randomly selected nodes among the

240 nodes in the solution library. This then offers the possibility of validating the

model with the remaining 150 nodes. The combination of centers selected for the

construction of the model is the one that produces the highest inference skill over the

full training set, as measured with a cost function. Different types of cost functions

can be used as a measure of the discrepancy between inferred and data, provided that

they be positive definite, and that they increase as inferred values deviate from data

values. Examples include the mean square deviation, the maximum relative error,

and the maximum absolute error. The next question concerns the determination of

the regression coefficients aj. In what follows, these are determined by requiring exact

collocation at centers; that is,

Yi =
N∑︂
j=1

ajG (|Xi −Xj|) , i = 1, 2, ..., N, (2.10)
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which can be written in matrix form as⎛⎜⎜⎜⎜⎜⎜⎝
A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
a1

a2
...

aN

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
Y1

Y2

...

YN

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.11)

where Aij are matrix elements defined as

Aij = G (|Xi −Xj|) (2.12)

and aj are regression or fitting coefficients. If dependent variables are scalars, then

the regression coefficients ai are also scalars; otherwise, they are vectors with the

same dimension as the Y vectors. More generally, collocation can be relaxed at the

centers in order to improve a model skill (reduce the cost function) by introducing

“smoothing” or the “nugget” effect as in geostatics [158]. This can be achieved by

adding non-zero elements to the diagonal elements of matrix A in Eq. 2.11, or to

each component of the center Yi dependent vectors, and minimizing the cost function

with respect to these values. In this work, smoothing was not applied, as it was found

to lead to minimal improvement in the model inference skill. Smoothing should be

considered, however, when model training is made on data with statistical noise.

Floating potential inferences

The procedure described above is now applied to infer floating potentials from a 2

-tuple of currents (i1, i2) measured by the probes. The number of centers N used

in training this model is important, as the accuracy of the model inference generally

increases with increasing values of N . However, too large a value of N can lead to

over-fitting. While the model skill may improve with larger values of N , when applied

to the training data set, it can deteriorate on the validation set. The cost function

used in constructing the model is the MaxAE defined in equation 1.17. The model

uses six centers, which is the combination that minimizes the MaxAE when inferring
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the floating potential for the 90 entries in the training set. The validation data set

consisted of the remaining 150 nodes. Several interpolating functions were used for

training, and the one found to give the best results is

G(x) = 0.5xλ lnx, (2.13)

where x is the Euclidean distance, or L2-norm of the difference between two current

vectors, defined as
√︁
(I − Ij) · (I − Ij) and λ = 1.6. The trained model was then

applied to the validation set in order to assess its skill. A comparison between inferred

potentials with known potentials from the validation set is shown in Fig. 2.7. The

distribution of points in this plot is clearly different from the one in Fig. 2.5. While

the maximum error is comparable (1 V vs. 0.8 V) the distribution around the solid

line, corresponding to a perfect agreement, shows more scatter than in Fig. 2.5 where

points are more tightly aligned above the solid line.

Density divided by square root of temperature

An inference model is also constructed for ne/
√
TeV using RBF. The model makes use

of the same interpolating function as the one used for the floating potential model.

However, the cost function used in training the model is the maximum relative error

MRE (in absolute value) due to the fact that this ratio varies over more than one order

of magnitude. This choice is preferred to the maximum absolute error because training

the model by minimising the maximum absolute error would lead to inferences with

excellent skill when applied to larger values of inferred values of ne/
√
TeV , but large

relative errors for smaller values. With MRE, the absolute difference is normalized by

dividing by the inferred ne/
√
TeV as in equation 1.19. Figure 2.8 shows a correlation

plot of RBF inferences of ne/
√
TeV with values used in the simulations contained in

the validation set when applied to the model trained with 6 centers. This approach

shows an improvement to the inferences made when using Eq. 2.7 with a reduction in

the maximum relative error from 87% to 33%. The points in Fig. 2.8 are distributed
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Figure 2.7: Comparison between floating potentials inferred with RBF using six cen-
ters and actual value in the synthetic data. The line corresponds to a perfect agree-
ment between the two floating potentials
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Figure 2.8: Comparison between ne√
TeV

inferred with RBF using six centers, and actual
data in the validation set. The line corresponds to a perfect agreement.

on either side of the solid line, which is in contrast to Fig. 2.6 where all the points

fall below the solid line.

2.3.3 Combination of Orbital Motion Limited (OML) Ap-
proximation and Radial Basis Function (RBF)

The regularity in the difference between OML-inferred and actual potential shown in

Fig. 2.5, and that of ne/
√
TeV in Fig. 2.6 suggests that it should be possible to use

regression to correct for this difference and construct an improved combined model

for both parameters. This is done by first using Eq. 2.6 and 2.7 to estimate the

parameters, and then using RBF to model and correct the error between data values

and the analytic estimates. The improved models resulting from these combinations
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are written as

V model
f =

Vb1I2 − Vb2I1
I1 − I2

+
N∑︂
j=1

ajG (|I − Ij|) , and (2.14)

n√
TeV

=
1

er2

√︃
me

8πe

(︃
I1 − I2
Vb2 − Vb1

)︃
+

N∑︂
j=1

ajG (|I − Ij|) . (2.15)

The results obtained when this boosting ensemble approach described in Section 1.7

is used to train inference models for both the floating potential and the ratio ne/
√
TeV

as presented below.

Floating potential

Following the same procedure as in Section 2.3.2, the model is first constructed using

a training data set consisting of 90 randomly selected nodes in the solution library,

and it is validated using the remaining 150 nodes. In doing so, training is done assum-

ing different numbers of centers, and here also, increasing N generally leads to better

inferences in the training set, but for validation, the model skill deteriorates when N

exceeds a certain value. In this case, training with four centers, the maximum abso-

lute error (MAE) is 0.15 V on the training set, but 0.2 V on the validation set. With

six centers, however, the MAE in training is 0.13 V, and 0.18 V in validation which

correspond to errors of 3.3% and 4.5% relative to the range of floating potentials

considered. Larger numbers of centers result in larger errors in validation, so in this

case, the optimal number of centers used is N = 6. The excellent correlation between

inferred and actual voltages is shown in Fig. 2.9a for which a correlation R = 0.998

and a root-mean-square difference of 0.07 V are calculated. The combination of Eq.

2.6 derived from OML theory and RBF, therefore, leads to a significantly improved

inference model.

As a final exercise, the robustness of the model to noise in the collected currents

is assessed. This is done by applying the same trained model constructed from the

training data set with no noise to sets obtained by adding increasing levels of normal
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Table 2.3: Different measures of the combined model inference skill when applied to
the validation data sets, with different levels of noise.

σ MAE RMSE Correlation

0.0 0.18 0.07 0.9983

2× 10−3 0.18 0.07 0.9980

5× 10−3 0.31 0.10 0.9959

1× 10−2 0.43 0.15 0.9919

2× 10−2 0.85 0.28 0.9728

distributed noise to all currents in the validation set. To be specific, noise is added

to each current in the validation set using

In = I + σrI, (2.16)

where I is the data (simulated) current without noise, σ is a specified relative noise

standard deviation, and r is a zero-mean random number with normal (Gaussian)

distribution. The results in Table 2.3 show a steady degradation in the inference

model skill as noise increases, as expected. With σ = 0.2%, the effect is negligible,

but for larger values, the maximum absolute errors increase steadily, and the loss of

inference skill is clearly visible in Fig. 2.9d. With σ = 2%, the maximum absolute

error in the inferences is about 0.85, and the RMS error is 0.28 V. Interestingly,

while deviations from a perfect agreement increase as noise increases, the points

remain distributed along the solid line, with apparently equal probability for over-

and underestimates.

Density divided by square root of temperature

Using the same procedure as for the floating potential, equation 2.15 is now applied to

infer the ratio ne/
√
TeV . The RBF model is constructed using four centers for optimal

validation skill. The correlation plot in Fig. 2.10 for resulting model inferences shows
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Figure 2.9: Comparison between satellite floating potentials obtained from a combi-
nation of Eq. 2.6, and RBF with six centers, and potential values in the validation
data set. The line corresponds to a perfect agreement between the two floating po-
tentials. In panel a, no noise is added to currents in the validation set, while in b, c,
and d, noise with a relative standard deviation σ = 0.005, σ = 0.01, and σ = 0.02 is
added respectively.
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Figure 2.10: Comparison between ne√
TeV

inferred with combined OML and RBF using
four centers, against data in the validation set. The line corresponds to a perfect
agreement.

a significant improvement in the model skill compared to those when only OML or

RBF are used. The points align very closely to the line indicating excellent model

inference, and the vertical spread in the distribution of points are very small compared

to the ones in Fig. 2.6 and Fig.2.8. This model produces a MRE of 15%, a root mean

square relative error (RMSrE) of 6%, and a Pearson correlation R = 0.992 when the

skill of the model is assessed using the validation data set.

2.4 Possible experimental verification

While beyond the scope of this study, ways by which the proposed technique could be

verified experimentally are of interest, and are briefly discussed here for a spacecraft

potential. One obvious approach would be to compare floating potentials of a rocket
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or a spacecraft inferred with this technique, with those obtained from an independent

measurement. A possibility would be to use an electron spectrometer to measure the

energy of known peaks resulting from upper atmospheric photoelectron emission, as

described by Goembel, et al. [31, 159]. Another approach could consist of equiping

a rocket or satellite with two double-probe units as illustrated in Fig. 2.11. Each

unit would support a double-probe sensor with fixed bias voltages of say, +2 and +3

V with respect to their respective units. The two units would be biased to different

and variable voltages, V1 and V2, with respect to the spacecraft bus which would

be at potential Vf with respect to the background plasma. The technique presented

above would then be used to infer the potentials Ṽ 1 and Ṽ 2 of units 1 and 2, with

respect to the background plasma. According to the analysis presented above, Ṽ 1

and Ṽ 2 should approximate Vf + V1 and Vf + V2 respectively. Thus, the difference

(Ṽ 1 − Ṽ 2)− (V1 − V2), which should ideally be zero, would provide a straightforward

validation of the method used in this work. The possibility exists of course, for

inferences of Vf made with this approach to be in error by a systematic and constant

voltage, independent of the floating potential. While possible, this appears to be

unlikely, and should it be the case, the method could be recalibrated, for example,

using the method described above to correct for such a constant error. Since this

second validation method is independent of the actual potential of a satellite, it

could be carried out in space, as well as in a lab experiment, in which space plasma

conditions could be suitably reproduced [160, 161]. Also noteworthy, this validation

technique is not limited to the double-probe unit considered here. It could also be

applied by replacing either one or both units with any two instruments capable of

measuring a satellite potential.

2.5 Summary and Conclusions

Three approaches are presented to determine the satellite floating potential and the

ratio between the electron density and the square root of the temperature from cur-
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Figure 2.11: Illustration of a two double-probe units at fixed bias voltages with respect
to their units, which are biased to different voltages, V1 and V2, with respect to the
spacecraft.
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rents collected with a pair of fixed-bias Langmuir probes. This relatively simple sensor

would provide measurements with higher temporal and spatial resolution than pos-

sible with swept-voltage Langmuir probes. This ability to monitor rapid responses

in a spacecraft floating potential would be useful in active experiments where short

(≲ 1 ms) intense beams of charged particles are emitted periodically [162–164], or in

the presence of high frequency waves. All approaches are assessed using a solution

library in which currents collected by the two probes are obtained from kinetic sim-

ulations, assuming different plasma environment parameters and satellite potentials

with respect to the background plasma. The first approach is based on simple analytic

expressions, derived in the Orbital Motion Limited (OML) approximation. While the

results obtained with this approximation systematically overestimate the potential

and underestimate the value of ne/
√
TeV , they both produce very regular inferences

that tightly parallel actual values. In the second approach, inference models are

constructed, based exclusively on RBF regression. The comparison between inferred

and actual potentials shows less regularity and more scatter than with the analytic

approach, but the model skill, measured as the MaxAE, is comparable in magnitude

with that found with the OML analytic model. When applied to ne/
√
TeV however,

the RBF model performs better than the analytic model with an improved MRE of

32.6% compare to 86.8% obtained using OML analytic model. The third approach is a

combination of the first two, with RBF being used to correct the differences between

OML inferred values, and actual values in the training set. The floating potential

model using this approach is found to have the highest inference skill, with a MaxAE

of 0.18 V and a relative error of 4.5% when applied to a validation set without noise.

The tolerance of this model to statistical noise is assessed by adding normal noise

to currents with different standard deviations σ in the validation set. As expected,

the model skill decreases with noise, whether measured in terms of the maximum

inference error, the root mean square deviation, or the correlation coefficient R. The

acceptable uncertainty in the inference of course depends on the application, and on
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the parameters being considered. Assuming that an upper acceptable limit to the

skill degradation corresponds to doubling the MaxAE in a noiseless validation set,

it is found that the noise level that would be tolerable in the range of parameters

considered, would be reached with a value of σ between 0.5 and 1.0%. Similarly,

the best technique to infer the ratio ne/
√
TeV is obtained by combining the analytic

expression in equation 2.7 with RBF regression, in which RBF is used to correct the

offset in the analytic inferences. While the ratio ne/
√
TeV is generally not a physical

parameter of prime interest, it can be a useful constraint to check the consistency

of independently measured densities and temperatures or to estimate one of these

parameters when the other can be measured accurately. Two possible approaches

have also been described, for validating the proposed approach applied to infer the

floating potential experimentally.

Several assumptions are made in this analysis. In particular, background electrons

are assumed to be unmagnetized, with a drifting Maxwellian distribution function,

secondary electron, and photoelectron emission are neglected. These assumptions are

justified in mid-latitude ionospheric plasma encountered by satellites along nightside

low Earth orbits (LEO) where collisions with neutrals are sufficiently frequent for

electrons to be approximately Maxwellian. The neglect of the Earth’s magnetic field

is justified by the fact that a typical electron thermal gyro-radius (≳ 3.5 cm) is

larger than the probe radius considered (r = 4 mm). Finally, the analysis in this

work is based on a solution library constructed with kinetic simulations assuming a

greatly simplified geometry consisting of a single spherical probe attached to a guard

post at the same potential. In this geometry, the presence of the satellite bus and

other payloads is not accounted for. This implies that the probes and guards would

be held at the ends of sufficiently long booms extending in the ram direction (the

direction in which the satellite is traveling). Even under such idealized conditions,

one could expect effects caused by the proximity to the satellite, owing to the presence

of geomagnetic fields, and the fact that electrons gyrate around and travel along
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magnetic field tubes. Perturbations in collected currents could occur when magnetic

field lines passing through the probes also intersect other satellite components, the

electric sheath around the satellite, or the wake region. Those considerations are

mentioned here with the caveat that they would depend on the specifics of a given

mission and should be included in the creation of a model in support of a mission,

prior to deployment in space. In this study, the range of satellite potentials considered

has been limited to [−2, 2] V, which is deemed relevant to LEO orbits. The approach,

however, is not limited to this range, as it could readily be adapted to cover a wider

range of satellite potentials.

59



Chapter 3

Swarm Spherical Langmuir Probes

This chapter is based on a manuscript titled “Inference of fixed bias probe mea-

surements - A machine learning approach” submitted for publication in the Jour-

nal of Geophysical Research (JGR) by Akinola Olowookere, Richard Marchand, and

Stephan Buchert. In this chapter, both kinetic simulation and regression techniques

are used to interpret Langmuir probe measurements by considering a truncated simpli-

fied Swarm satellite geometry, in which the two probes are biased to a fixed potential.

3.1 Introduction

The importance of Langmuir probes in the study of both space and laboratory plasma

cannot be overstated. This instrument is used routinely in lab and space experiments

to infer plasma densities, temperature, and plasma potential from measured currents

as a function of bias voltage. However, despite a century of experimentation, theory,

and more recently computation, accurate inferences of parameters such as plasma

density, temperature, and spacecraft potential, with quantified uncertainties using

this relatively simple instrument remain elusive. Most approaches used in the inter-

pretation of probe’s measurements rely on analytic expressions obtained theoretically

for probe characteristics; that is, currents collected as a function of bias voltages. A

common framework used in interpreting probe measurements is the orbital motion

limited (OML) theory which was developed a century ago by Mott Smith and Lang-
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muir[68, 69, 149]. Many authors have contributed improvements to this theory, so

as to account for conditions not considered in OML [115, 116, 165]. Lam proposed a

theory [166] to solve the Langmuir problem in a quiescent, collisionless plasma in the

limit where the probe dimension is large compared to the Debye length, in contrast

with the limit considered in OML which assumes a small probe radius compared to

the Debye length. These theories were validated numerically by Chen [167] on the

assumption of zero ion temperature made in the Allen, Boyd, and Reynolds (ABR)

theory [115–117] and for monoenergetic ions in the Bernstein, Rabinowitz theory

[168]. These authors validated the applicability of the Lam theory to large probes

while other theories are primarily useful for small probes. Niyogi and Cohen in their

work developed a theory for an ionized collisional plasma from which space plasma pa-

rameters can be determined [169]. In addition to theory, other authors have carried

out experiments to verify the accuracy of the proposed theoretical formulas. Sau-

dit and Woods experimentally verified the accuracy of the OML and radial motion

theories by comparing the result obtained with these theories, to measure ion and

electron densities in long, low pressure cylindrical nitrogen and helium dc discharge

when using a computer controlled Langmuir probe [139]. Also, Tuszewski and Tobin

experimentally determined the ion densities in a low frequency inductively coupled

discharge using ion saturated currents of a Langmuir probe [170]. However, the de-

termination of plasma parameters experimentally in the laboratory is not the same as

in space. This is due to plasma inhomogeneities in laboratory experiments resulting

from the proximity of probes to the vacuum vessel walls and other components. De-

spite these shortcomings, analytic expressions have been and continue to be largely

used to infer plasma parameters from probe characteristics, due to their relative sim-

plicity. In space, other instruments such as incoherent scatter radars(ISR), digitalized

ionosonde, global navigation satellite systems(GNSS), are also used to infer plasma

parameters such as densities, temperatures, and flow patterns [171–174]. The inter-

pretation of measurements obtained with these instruments also relies on different
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theories and approximations as explained in Section 1.4 for incoherent scatter radars

and ionosondes. Yet another technique, GNSS, is used to determine ionospheric

slant and vertical total electron contents (TEC). From there, standard tomographic

techniques can be used to construct 3D maps of ionospheric electron densities [175].

Detailed explanations on how different plasma parameters can be determined from

digitalized ionosonde, ISR, and GNSS measurements can be found in the literature

[45, 176–178]. These instruments have been used to independently validate or cor-

rect measurements made with Langmuir probes in space [179–182]. Comparisons

between ground based observations and in-situ measurements nonetheless come with

appreciable uncertainties, owing to significant differences in temporal and spatial

resolutions. While probe measurements on a satellite in low Earth orbit can have

a temporal resolution of ∼ 10 ms, with a spatial resolution ∼ 100 m along track,

ground based measurements have a spatial resolutions of order 10 km horizontally

and vertically, and temporal resolutions of order of many seconds. In this chapter, a

new and promising approach to infer plasma parameters from Langmuir probe mea-

surements, with quantified uncertainties, and a high potential for improved accuracy

is presented. This approach combines results from 3D self-consistent kinetic simula-

tions of probes in their environment, and adapted multivariate regression techniques.

Computer simulations are used to calculate the currents collected by probes under a

range of selected space environment conditions. These currents and the known envi-

ronment conditions (densities, temperatures, ion masses, etc.) used as input in the

simulations, are then used to construct a solution library, or synthetic data set from

which inferences can be made using adapted regression techniques. The advantage of

this simulation-regression approach is that it makes it possible to account for more

realistic conditions and physical processes than what is possible analytically. Also,

by following a machine learning technique, whereby models are trained on subsets of

the synthetic data set, and validated on different subsets, it is possible to quantify

uncertainties with which inferences are made. In this study, a simplified Swarm ge-
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ometry is considered, which includes a segment of the ram-facing side of the satellite,

the Electric Field Instrument faceplate, and the two Langmuir probes at the base of

the satellite. The two probes are assumed to be at fixed potentials of 4 V and 5 V

with respect to the satellite. Satellite potentials relative to the background plasma

are varied between −3 V and 0 V, consistently with floating potentials inferred for

the Swarm satellites, and reported in the Swarm data portal [183]. The resulting

synthetic data set, covering a range of plasma densities, temperatures, effective ion

masses, and satellite potentials, is then used to train inference models, and assess

them against known input parameters used in the simulations.

In Section 3.2, I present the approach used in creating the solution library which

covers a broad range of densities, temperatures, spacecraft potentials used as input

in the simulations, and the computed currents collected by each of the two Langmuir

probes. I describe three approaches used to construct models for the satellite floating

potential Vs, the electron density n, and the ratio n/
√
TeV , where TeV is the electron

temperature in electron-volts. Validation results obtained from applying these ap-

proaches to the synthetic data set are presented in Section 3.3. The models are then

applied to Swarm in-situ measured currents, and inferences are compared with data

reported on the Swarm satellite data portal. Also, using the same regression tech-

nique, models are trained using a subset of currents and reported electron densities,

temperatures, and satellite potentials from in-situ measurements. These models are

then applied to infer densities, satellite floating potentials and ratios n/
√
TeV from

currents in a distinct subset, and regression inferences are compared with reported

values in a different subset of data portal values. The differences in all these cases,

are comparable to those found when training and validation are made with synthetic

data. These comparisons show that this regression approach is not biased to syn-

thetic data, and that given accurate data, the regression technique can be used to

make good inferences, with known uncertainty margins. Finally, a summary of the
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Figure 3.1: Illustration of an approximate truncated Swarm geometry used in the
simulation, as seen from the ram side. Except for the probes and the “stubs”, all
satellite components are assumed to be at the same potential Vs.

results and concluding remarks are presented in the Section 3.6.

3.2 Methodology

The approach adopted here to infer satellite and plasma parameters while accounting

for a more realistic geometry of the Swarm satellites, closely follows the one used in

Chapter 2 [118, 119]. It is summarized here for completeness.

3.2.1 Construction of a synthetic data set

The data set used in this chapter is derived from kinetic simulations of an approxi-

mate truncated Swarm geometry shown in Fig. 3.1. Cases where the two probes on

the satellite are biased at fixed voltages of 4V and 5V with respect to the satellite,

while varying the satellite potential with respect to the background plasma are sim-

ulated. It is assumed in the simulations that the spherical probes and the “stubs”;

that is, the last segments of the post attaching the probes to the satellite, are at the

same potential. All other satellite components, including the faceplate and the two

shells of the thermal ion imagers (TII), are assumed to be at the satellite potential
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Table 3.1: Sample probe voltages with respect to the background plasma, for a space-
craft floating potential ranging from −3 V to 0 V, assuming that probes are at a fixed
bias voltages of +4 V, and +5 V.

Vs(V) V1(V) V2(V)

−3 1 2

−2 2 3

−1 3 4

0 4 5

Vs. In recent years, the faceplate and the TII shells have often been biased to −3.49

V relative to the satellite, but for the period considered in Section 3.4, when settings

were optimised for the TII, it was grounded to the satellite bus. Plasma with mul-

tiple ion species are considered, with both background ions and electrons described

by Maxwellian velocity distribution functions with different drift velocities. Also, the

presence of the geomagnetic field is neglected in the simulations. This is justified by

the fact that, with positive probe voltages relative to the background plasma, probes

mainly collect electrons for which a typical gyroradius (ρe ≳ 2 cm) is larger than the

4 mm probe radius. The relation between the satellite potential Vs, the probe bias

voltage Vb, and probe voltage V relative to the background plasma is given in Eq.

2.1. This relation is illustrated in Table 3.1 with sample floating potentials assumed

in the simulations. In the simulations, different space plasma parameters, including

densities, temperatures, and ion compositions are assumed. These parameters are

obtained from the International Reference Ionosphere (IRI) model, for plasma con-

ditions at mid-latitudes, at different longitudes, and altitudes (from 450 to 500 km),

and times of the day. The electron temperature ranges from 0.15 eV to 0.28 eV, the

effective mass, from 8.3 amu to 15.9 amu, and the density from 1010 m−3 to 4× 1011

m−3. A summary of the plasma parameters used in the simulations is presented in

Table 3.2, and the currents collected by each of the probes for these parameters are
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Table 3.2: Simulation parameters used in the construction of the solution library.

n Te meff nO+ nH+ nHe+ nN+

1010 m−3 eV amu % % % %

2.16 0.1613 8.30 93.14 6.07 0.53 0.26

2.33 0.1715 12.35 97.78 1.90 0.32 0.00

2.65 0.1516 8.31 93.15 6.06 0.53 0.26

2.67 0.1723 10.10 91.93 3.81 0.27 4.00

3.09 0.1778 12.73 97.92 1.66 0.27 0.15

4.40 0.2470 14.52 99.17 0.64 0.19 0.00

5.27 0.2470 14.30 99.01 0.75 0.19 0.05

6.48 0.2464 15.88 99.7 0.00 0.148 0.12

6.79 0.2722 14.59 99.16 0.61 0.17 0.06

7.18 0.2743 14.09 98.92 0.86 0.22 0.00

8.41 0.2772 13.80 98.69 1.02 0.22 0.07

10.32 0.2741 13.67 98.52 1.09 0.22 0.18

29.4 0.2426 15.87 95.37 0.00 0.05 4.58

calculated using PTetra, a three-dimensional particle-in-cell (PIC) code in which ions

and electrons are treated kinetically [77, 144]. Collected probe currents calculated

from the simulations made with satellite potentials 0, −1, −2, and −3 V are fitted

using a simple second degree polynomial for each of the 13 sets of plasma parameters

separately. In all cases, the maximum relative error between currents found from

simulations and fitted values does not exceed 2%. Using these fits, a synthetic data

set, or solution library, is constructed, which consist of a total of 200 nodes; each

one consisting of currents and bias voltages for the two probes, followed by the cor-

responding plasma density, the electron temperature, the ion effective mass, and the

satellite potential assumed in the simulations. The solution library is then subdivided

into two disjoint subsets made of randomly selected elements; one being used to con-
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struct the inference models and the other to assess, or validate the model skills. The

models are then applied to in-situ measured currents obtained from Swarm satellite

portal.

3.2.2 Analytic estimates

This approach leverages the approximate OML expression for the current collected

by a spherical probe at a positive potential with respect to background plasma, to

derive a simple formula for the satellite potential Vs and the ratio n/
√
TeV in terms

of the currents collected by the two probes and their bias voltages with respect to the

spacecraft as in Chapter 2. Equation 2.5 is used as a first approximation to determine

the satellite potential by neglecting the term TeV , due to the fact that this term is

generally small compared to Vs in absolute value, and Eq. 2.7 is used to make a

first estimate of n/
√
TeV . This is done by direct substitution of the currents and bias

voltages in the data set, for the two probes considered. These first analytic estimates

can then be combined with regression techniques to produce more accurate inferences.

3.2.3 Affine Transformation

An affine transformation is a simple transformation which preserves collinearity in

a distribution of points. Another interesting property is that it also preserves the

Pearson correlation coefficient R between data sets, when applied to any one of the

sets. Geometrically, an affine transformation is a combination of a translation and a

scaling multiplicative factor. The general affine transformation is in the form:⎡⎢⎢⎢⎢⎢⎢⎣
Y1

Y2

...

YN

⎤⎥⎥⎥⎥⎥⎥⎦ = A×

⎡⎢⎢⎢⎢⎢⎢⎣
X1

X2

...

XN

⎤⎥⎥⎥⎥⎥⎥⎦+B, (3.1)

Where the Y s are the transformed values of the Xs, A and B are the transformation

coefficients. In what follows, affine transformations will be applied to analytically
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inferred data, by choosing A and B so as to minimise the root mean square difference

with known data values.

3.2.4 Radial Basis Function (RBF)approach

RBF is a method used to interpolate a function in a multivariate space of independent

variables. The RBF approach is explained in more detail in Section 2.3.2 and it is

expressed mathematically with Eq. 2.8. In this problem, X in Eq. 2.8 is a two-tuple

set of currents collected by the two probes, and Y represents the plasma parameter of

interest, to be inferred. The selection of the centers follows the same approach used

in Section 2.3.2. However, the interpolating function used to construct the model in

all cases considered in this chapter is G = |I − Ij|1.8 using six centers, because it gives

optimal results for the three quantities for which inference models are constructed.

This approach is used to construct inference models for Vf , n, and n/
√
TeV using the

training data set in the solution library.

3.2.5 Combination of Orbital Motion Limited (OML) and
Radial Basis Function

In this boosting ensemble approach, OML and RBF are now combined to obtain

inferences with more accuracy. This is done by first using the OML formulas to infer

a plasma parameter and then RBF, to model and correct for the error in the first

inference. The final models for Vf and n/
√
TeV are are given in Eqs. 2.14 and 2.15

respectively. In these expressions, RBF is used to model the discrepancy between the

actual data and analytic estimates.

3.3 Construction of Inference Models with Syn-

thetic Data

In this section, inference models are constructed and assessed using synthetic data

from the solution library. For each satellite potential, the analytic fits mentioned
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above are used to determine the current collected by each probe. Each node, or entry

in the solution library consists of two fitted collected currents, followed by the corre-

sponding density, temperature, and satellite floating potential. The two currents are

the independent variables used to infer the density, the ratio n/
√
TeV , and the satel-

lite floating potentials as dependent variables. Training and validation data sets are

constructed as explained in Section 3.2.1. The training sets consists of 140 randomly

selected nodes among the full solution library, and the validation set consist of the re-

maining 60 nodes. For the floating potential and the ratio n/
√
TeV , three approaches

are used to construct the inference models. The first makes use of combination of

OML and the affine transformation. In this approach, the model is first constructed

using the OML approximation in Eq. 2.6 for the Vs and Eq. 2.7 for the n/
√
TeV . The

inferred Vs and n/
√
TeV are then transformed using affine transformation to minimise

the uncertainties in the inferred values. The second consists only radial basis function

(RBF), while the third approach makes use of a combination of OML estimates, and

RBF using Eqs. 2.14 and 2.15. However, for the electron density ne, for which there

is no approximate analytic expression involving only two currents collected for two

different voltages, only RBF is used. The results obtained are presented by directly

comparing inferences made with currents from the synthetic data set, against plasma

parameters assumed in the simulations.

3.3.1 Spacecraft potential

The RBF and OML-RBF models for the Vs are constructed using the maximum

absolute error as the cost function. This is minimised to obtain models with optimal

inference skills. Figure 3.2a. shows the correlation plot of the Vs obtained when using

only the OML formula against the actual data values. There is excellent affinity

between these values as indicated in the value of the Pearson correlation coefficient

R= 0.976 even though other metric values are low. This excellent affinity suggests
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Figure 3.2: Comparison between spacecraft potentials inferred with (a) only the OML
formula, and (b) a combination of OML and an affine transformation and known
values in the synthetic validation set. The line corresponds to a perfect agreement
between the two potentials. The maximum absolute error (MaxAE), the root mean
square error (RMSE), the mean absolute error (MeanAE), and the Pearson correlation
coefficient (R) are used as model skill metrics.

that an affine transformation can be applied to improve the inferences. Figure 3.2b.

shows the correlation plot when an affine transformation is applied so as to minimise

the RMS error between the two data sets. It shows a significant improvement in the

accuracy of the model as the RMS error dropped from 0.736 to 0.187. Figure 3.3 shows

the correlation plot between the RBF model inferences and actual data values from

the validation set. The numerical values of the metrics in the plot indicate excellent

qualitative and quantitative agreement between model inferences and known values

from the validation set with reductions in the MaxAE, RMS error and MeanAE by

factors ranging from ∼ 3.5 to ∼ 4.4 when compared to the OML inference in Fig.

3.2a. The results obtained for the third model when combining the OML and the

RBF approach are shown in Fig. 3.4. The figure shows a similar trend as with the

result obtained when using only RBF, although, the points are less scattered around

the solid line than in Fig. 3.3. The improvement in the inferences resulting from the

combined OML and RBF, compared to OML alone, is also clear from the numerical
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Figure 3.3: Comparison between spacecraft potentials inferred with RBF using six
centers and known values in the synthetic validation set. The line corresponds
to a perfect agreement between the two potentials. The maximum absolute error
(MaxAE), the root mean square error (RMSE), the mean absolute error (MeanAE),
and the Pearson correlation coefficient (R) are used as model skill metrics.
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Figure 3.4: Comparison between spacecraft potentials inferred with a combination of
analytic formula, and RBF with six centers, and known values from the validation
set. The line corresponds to a perfect agreement between the two potentials
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values of the metric coefficients, with reduction by 4.15, 4.77, and 4.57 for RMSE,

MaxAE, and MeanAE respectively. In general, the RBF, the combined OML and

RBF,and the combined OML and affine transformation all have similar inference

skill, with the combined OML and RBF slightly better than the two other methods

as summarised in table 3.3.

Table 3.3: Summary of discrepancies between inferred satellite potentials, with values
in the synthetic data.

RMSE MaxAE MeanAE R

OML 0.736 1.717 0.672 0.976

OML-affine 0.187 0.497 0.155 0.976

RBF 0.210 0.390 0.190 0.976

OML-RBF 0.177 0.360 0.147 0.986

3.3.2 Plasma density

A model is also constructed for the electron density ne, for which there is no ap-

proximate analytic expression involving only two currents collected for two different

voltages. This is why in this case, RBF alone with six centres is considered. Here, the

independent variables are two-tuples of currents collected by the probes. The com-

parison between model inferences and data in the validation set is shown in Fig.3.5.

The three metrics used to assess the model skill are the MRE in Eq. 1.19, RMSrE in

Eq. 1.21, and the Pearson correlation coefficient(R). The plot shows excellent corre-

lation between the predicted densities and actual densities in the validation set, with

a maximum relative error less than 13%.

3.3.3 Density divided by the square root of the temperature

An inference model is constructed for n/
√
TeV . The choice of this dependent variable

is motivated by Eq. 2.7, which is an exact consequence of the OML approximation,
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Figure 3.5: Comparison between electron densities obtained using RBF with six cen-
ters, and actual densities in the validation data set. The line corresponds to a perfect
agreement between the two densities.

introduced in Section 2.3.1. While n/
√
TeV is not generally of particular interest to

characterize the state of a plasma, an accurate inference of this ratio would be useful to

determine one of the n or TeV parameters if the other could be determined accurately

by other means. In this case, three models are constructed using a combination of

OML and an affine transformation, RBF alone using Eq. 2.8, and a combination of the

RBF and the OML approximation using Eq. 2.15. Figure 3.6 shows the correlation

plot when (a) only OML is used, and (b) when an affine transformation is applied to

correct the first OML inferences. The figure shows the improvement in the inference

when the affine transformation is combined with the OML, with the MRE decreasing

from the initial 74% when only OML is used, to 22%. Correlation plots for inferences

with RBF alone, and with combined RBF and OML are shown in Figs. 3.7 and 3.8.

In both cases, model inferences show an excellent qualitative agreement with data

from the validation set. Quantitatively however, the calculated skill metrics, show

an appreciable improvement in the inferences when RBF is combined with OML as

summarised in table 3.4.
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Figure 3.6: Comparison between n√
TeV

inferred with (a) OML only, (b) a combination
of OML and affine transformation, and actual data in the validation set. The line
corresponds to a perfect agreement.
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Figure 3.7: Comparison between n√
TeV

inferred with RBF using six centers, and actual
data in the validation set. The line corresponds to a perfect agreement.
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Figure 3.8: Comparison between n√
TeV

inferred with combined OML and RBF using
six centers, against data in the validation set. The line corresponds to a perfect
agreement.

3.4 Application of models to in-situ measurements

The models constructed in Section 3.3 using synthetic data are now applied to ex-

perimental data obtained from the Swarm A satellite. Swarm A is one of the three

satellites deployed by the European Space Agency (ESA) in 2013, with accurate mon-

itoring of the Earth’s magnetic field as the primary objective. The satellite carries

different types of instruments designed for specific purposes but this study’s focus

is on the spherical Langmuir probes. The Swarm Langmuir probes are, most of the

time, operated in a modulated-bias harmonic-amplitude-ratio detection mode, where

the bias is not swept, but set to only three different values within a measurement cycle

[184]. At each setting, there is a small sinusoidal modulation of the bias at typically

about 100 Hz. This allows a relatively accurate estimations of the derivative of the

I-V curve at these points. The probes are also operated in sweep voltage mode, once

every 128 s for a duration of 1 s. In this mode, bias voltages are varied between the

maximum range of −5 V and 5 V. Swarm probes have not been operated in fixed bias

mode, which would correspond to the situation considered in the simulations, where
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Table 3.4: Summary of errors between inferred n/
√
TeV and values in the synthetic

data.

RMSrE MRE R

OML 0.421 0.736 0.999

OML-affine 0.059 0.223 0.999

RBF 0.064 0.125 0.998

OML-RBF 0.037 0.102 0.999

currents are collected from probes at fixed 4 V and 5 V bias voltages. In order to apply

the trained models to Swarm measured currents, one of the Swarm Langmuir probes

(Probe 2) characteristics obtained in sweep voltage mode is considered, and currents

collected with the 4 V and 5 V assumed in the simulations are selected. This is done

by first analytically fitting measured characteristics in an interval of bias voltages,

which includes 4 V and 5 V, and from there, interpolating the currents collected at

these voltages. These currents are then used in the models, assuming that the inter-

polated currents approximate the currents which would be collected simultaneously

by fixed bias probes at these voltages. Data collected during 3 days which are the

1st, 2nd, and 4th of February 2014, when sweep voltages extended up to +5 V are

used for the analysis. From this, a new data set, the Swarm-based set, is constructed

consisting of measured currents with densities, floating potentials, and temperatures

as reported in the L1b Langmuir probe data set. In order to avoid extrapolating

beyond the range of parameters used to train the models, data with currents beyond

those found from the simulations were not included in the Swarm-based data set. As

a first consistency check, the overlap between the currents obtained in the simulations

and those measured in space are shown in Fig. 3.9, in which the currents collected

at 4 V is plotted as a function of currents collect at 5 V for both the synthetic data

set (blue circles) and in-situ measurements (red squares). The figure shows that the
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Figure 3.9: Current collected by the +4 V probe against the current collected by the
+5 V probe, for both synthetic data and in-situ data.

two data sets have a similar range of values, with more points clustering at the higher

current values. The two-tuples of currents from the Swarm data set are then used

as input in the models, which were trained using simulation-generated synthetic data

as described in Section 3.2. These models are then used to infer the same physical

parameters as in Sections 3.3.1 to 3.3.3. Inferences are then compared with cor-

responding physical parameters reported on the Swarm data portal. It should be

noted that these comparisons between the model inferences and the reported values

on the Swarm portal are not meant to assess the accuracy of the models, but rather

to check the consistency between the inferences and those reported on the Swarm

A data portal. At this stage, in the absence of accurate, independently measured

plasma parameters, with quantified uncertainties, it is unfortunately not possible to

determine if, and if so, to what extent the inferences constitute an improvement in

accuracy compared to those reported. The comparison is nonetheless of interest, as

data reported on the Swarm data portal are deemed state of the art, with which

improved inferences are expected to agree, at least qualitatively.
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Figure 3.10: Correlation plot of RBF inferred satellite potential, and values reported
on the Swarm data portal for 04/02/14, from 00:00 UTC to 23:59 UTC. The solid
line corresponds to a perfect agreement.

3.4.1 Inference of in-situ floating potentials

The satellite potential is first inferred using a model constructed with RBF alone,

followed by a combination of the OML and affine transformation, and then, with a

combination of the OML approximation and RBF. Inferences are compared to the

potentials reported on the Swarm data portal in Figs. 3.10, 3.11 and 3.12, with

inferred values of Vs in ordinate, against reported values shown on the abscissa.

With RBF alone, the spread around the perfect correlation line is noticeably larger

than with inferences using the combination OML-affine transformation and combi-

nation OML-RBF. Moreover, with RBF alone, several inferred values of the floating

potential can be significantly lower than −3 V, which is the lower bound of satellite

potentials used to train the model. It is noteworthy, as seen in Fig. 3.9, that these

extrapolated inferred values are obtained with the currents in the same range as those

used to train the model. In contrast, in Fig. 3.11 and 3.12, inferences made with the

combination OML-affine transformation and combination OML-RBF model, using

the same in-situ data set, are all consistently within the range of floating potentials
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Figure 3.11: Correlation plot of the combined OML-affine transformation inferred
satellite potentials, and values reported on the Swarm data portal for 04/02/14, from
00:00 UTC to 23:59 UTC. The solid line corresponds to perfect agreement.
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Figure 3.12: Correlation plot of the combined OML- RBF inferred satellite potential,
and that reported on the Swarm data portal for 04/02/2014, from 00:00 UTC to 23:59
UTC. The solid line corresponds to perfect agreement.
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considered in the synthetic data set. Also, most of the inferences from the combi-

nation OML-affine transformation model are above the perfect correlation as shown

in Fig. 3.11. A comparison between the two figures shows that the Pearson correla-

tion, and other skill metrics are higher (lower discrepancies) when RBF is combined

with OML. This observation differs from what was found in Section 3.3.1 where the

combined OML-RBF model performed better in all the metric assessment with the

synthetic validation data set. A plot of the spacecraft potentials inferred using the

OML-RBF model, OML-affine transformation model and the values reported on the

Swarm portal as a function of time is shown in Fig. 3.13 for four consecutive intervals

extending over a 12-hour period. The figure shows a general similarity between the

three inferred floating potentials with occasional larger deviations occurring mostly

at the larger (≳ 50◦) latitudes, and fewer at low latitudes. The OML-RBF and OML-

affine inferences show more similarity at the larger (≳ 50◦) latitudes compared to the

reported values. The agreement between the inferred satellite potentials using both

models, and those reported on the Swarm data portal are found to be generally good

at low and mid-southern latitudes. Note that the gaps between the points, filled

with dashed lines in the plots, result from the removal of data outside the range of

simulated currents in the synthetic data. The skill metrics calculated for each of the

three days of in-situ data considered are summarized in Table 3.5.

In all three periods, OML-RBF inferences are closest to reported values, followed

closely by OML-affine. This is interesting in view of the fact that both OML ap-

proximation, and the affine transformation are significantly simpler than RBF, which

could make this technique a method of choice in practice.

3.4.2 Inference of in-situ densities

The model used for the density inference is the same as in Section 3.3.2. It is con-

structed with synthetic data, using RBF only, with six centers. No combination of

RBF with OML is used here because there is no analytic approximation for the den-
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Figure 3.13: Plot of satellite potential using the OML-RBF model (black), OML-affine
transformation model (purple), the satellite potential reported on the Swarm portal
(red), and the latitude (green) against time for a twelve-hour period on 04/02/2014.
The panels show four consecutive three-hour periods from 00:00 UTC to 12:00 UTC
that day.
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Table 3.5: Summary of discrepancies between inferred satellite potentials, with those
reported on the Swarm data portal, over three days considered.

Day RMSE MeanAE R

01/02/2014 RBF 0.61 0.44 0.719

OML-RBF 0.34 0.26 0.850

OML-affine 0.41 0.31 0.911

02/02/2014 RBF 0.54 0.37 0.433

OML-RBF 0.37 0.25 0.773

OML-affine 0.44 0.33 0.890

04/02/2014 RBF 0.70 0.59 0.769

OML-RBF 0.34 0.24 0.783

OML-affine 0.40 0.34 0.907

sity in terms of two currents measured with probes at two fixed bias voltages. The

model is applied to Swarm experimental data and a correlation plot between inferred

densities and densities reported on the Swarm data portal are shown in Fig. 3.14.

The plot shows general similarity between inferences and reported values, but with

significant scatter, and mostly lower values than reported, particularly for the lower

densities. Although model inferences are smaller than the reported values with an

RMSrE of 0.70 as summarized in Table 3.6, the RBF inferred densities plotted as a

function of time of the day in Fig. 3.15 clearly follow a similar pattern as the ones

reported on the Swarm data portal.

It is also noted that, as for the floating potential, the main discrepancies between

RBF inferred density and Swarm portal densities, occur near the higher northern

latitudes. In contrast, the agreement between the inferences is generally good in

southern latitudes, as observed in Fig. 3.13 for the satellite potential Vs.
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Figure 3.14: Correlation plot of density inference using the RBF model and reported
density on the Swarm portal for 04/02/2014, from 00:00 UTC to 23:59 UTC. The
solid line corresponds to perfect agreement.

Table 3.6: Summary of RBF density inference discrepancies with reported values from
the Swarm data portal, computed over three days

Day R RMSrE

01/02/2014 RBF 0.978 1.02

02/02/2014 RBF 0.977 0.94

04/02/2014 RBF 0.958 0.70

3.4.3 Inference of in-situ n√
TeV

As seen with Eq. 2.7, in the OML approximation the ratio between the electron

density and the square root of the temperature can be expressed exactly in terms

of two measured currents and corresponding bias voltages. Following the approach

in 3.3.3, the three models constructed using synthetic data, to infer n/
√
TeV using

measured currents, and to compare with values of that same ratio calculated with
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Figure 3.15: Plot of densities inferred using the RBF model and densities reported on
the Swarm portal against time for a twelve-hour period on 04/02/2014. The panels
show four consecutive three-hour periods from 00:00 UTC to 12:00 UTC that day.
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reported values of the density and temperature on the data portal. The correlation

plots in Figs. 3.16, 3.17, and 3.18, obtained respectively with RBF only, combined

OML-affine transformation, and combined OML-RBF, show nearly identical results,

both qualitatively and quantitatively as measured with the Peterson correlation and

the RMSrE.
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Figure 3.16: Correlation plot of RBF inferred n√
TeV

and calculated values from densi-

ties and temperatures reported on the Swarm portal for 04/02/2014, from 00:00 UTC
to 23:59 UTC. The solid line corresponds to perfect agreement.

The strong similarity is also visible in Fig. 3.19 showing the inferred and reported

values n/
√
TeV for four consecutive intervals extending over a 12 hour period. In

general, the three inferences overlap and they are smaller than the reported values on

the Swarm portal. This observation differs from the similar comparison made with

the synthetic validation set in Figs. 3.6, 3.7 and 3.8, where the combination of RBF

and OML produced slightly more accurate inferences than the two other methods.

A point worth noting in Figs. 3.14 to 3.19 is that, as for the density, the inferred

values of n/
√
TeV are generally lower than those calculated from reported values of

n and TeV on the Swarm portal. This similarity with n is not surprising, considering

that the ratio considered here depends more strongly on the density, than on the

temperature and the fact that the ratio between the maximum to the minimum value
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Figure 3.17: Correlation plot of the combined OML-affine transformation inferred
n√
TeV

and calculated values from densities and temperatures reported on the Swarm

portal for 04/02/2014, from 00:00 UTC to 23:59 UTC. The solid line corresponds to
perfect agreement.

1011 1012
Data ne

√TeV
 (m−3

eV0.5)

1011

1012

M
od
el

 
n e
√
T e

V
 (m

−3

eV
0.
5
)

R=0.952
RMSrE=0.52

Figure 3.18: Correlation plot of combined OML-RBF inferred n√
TeV

and calculated

values from densities and temperatures reported on the Swarm portal for 04/02/2014,
from 00:00 UTC to 23:59 UTC. The solid line corresponds to perfect agreement.

of the densities considered, is larger than that of the temperatures. Another point

of interest, which contrasts with the comparisons made for Vs and to a lesser extent,

for n, is that the magnitudes of the discrepancies between the two inferences shows
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Figure 3.19: Comparison between inferred n√
TeV

using RBF models (blue colour),

OML-RBF model (black colour), OML-affine transformation model (purple colour)
and calculated values from densities and temperatures reported on the Swarm portal
as a function of time for a twelve-hour period on 04/02/2014. The panels show four
consecutive three-hour periods from 00:00 UTC to 12:00 UTC that day.
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less dependence on the latitude. In particular, there is significantly less difference in

the discrepancies between the two inferences made at the higher and lower latitudes.

Table 3.7 gives the skill metrics calculated for the three days of in-situ data considered.

Table 3.7: Summary of result discrepancies from the n√
TeV

model.

Day RMSrE R

01/02/2014 RBF 0.68 0.975

OML-RBF 0.78 0.978

OML-affine 0.72 0.973

02/02/2014 RBF 0.59 0.974

OML-RBF 0.66 0.975

OML-affine 0.64 0.975

04/02/2014 RBF 0.49 0.967

OML-RBF 0.52 0.952

OML-affine 0.52 0.943

3.5 Training with in-situ measurements

In the previous sections the good qualitative agreement between simulation-regression

inferences and those from in-situ measurements using state of the art techniques, are

seen as encouraging. These comparisons, however, are not sufficient to determine if,

or to what extent, the regression approach provides more accurate inferences, because

that would require independent accurate and validated measurements, with known

uncertainty margins. This task is unfortunately beyond the scope of this study, but

nonetheless, the regression component of this approach can be assessed by training

and validating models constructed exclusively with measured currents and plasma

parameters reported on the Swarm data portal. This is to verify whether the re-

gression algorithm is not biased to synthetic data, and show that a model trained
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with accurate data, whether synthetic or experimental, would produce good quality

inferences. To this end, 151 randomly selected entries from the Swarm data portal,

consisting of collected current pairs by the gold-plated probe biased at 4 V, and 5 V,

and reported satellite floating potentials, densities, and calculated densities divided

by the square root of the temperature, were used to train models for each of these

three parameters. A different set consisting of 201 entries was used for validation. In

all cases, as in Section 3.2.1 with synthetic data, RBF training and regressions are

made using six centers.

Floating potentials inferred from currents in the validation set are compared with

reported values in Fig. 3.20. In this case, OML inferences are very different from po-

tentials expected from either synthetic data or reported values from the data portal,

for the combined OML-RBF or OML-affine method to be practical. This is why only

inferences obtained with direct RBF are considered. Despite the larger RMS error
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Figure 3.20: Correlation plot (a) of RBF inferred floating potentials with six centers
and reported values on the Swarm portal, and (b) histogram of the distribution of
the absolute errors in the model inferences.

of 0.25 V compared to 0.21 V found in Fig. 3.3 for the synthetic data, consistency

with reported potentials from the validation set are seen to be significantly better
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than in Fig. 3.12, with an RMS error of 0.34 V. The histogram in the figure shows

that consistently with the RMS error of 0.25 V, approximately 68% of the inferences,

corresponding to one sigma in a normal distribution, are in error by less that 0.2 V.

Similarly, Fig. 3.21 shows a correlation plot of inferred values of the RBF-inferred

electron densities, and validation densities from the data portal. Here again, while
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Figure 3.21: Correlation plot (a) of RBF inferred electron densities with six centers,
and reported validation values from the Swarm portal, and (b) histogram of the
distribution of the relative errors in the model inferences.

the inference skill, with a maximum absolute value of the relative error of 12% is

larger than the 6.3% found in Fig. 3.5, inferences are significantly more consistent

with reported densities than in Fig. 3.5, with a RMSrE of 70% when the RBF is

trained with synthetic data. In this case, the histogram in panel b shows that 90% of

the inferred values are in error by less that 20%. Lastly, Fig. 3.22 compares inferred

values of n/
√
TeV with this same ratio from reported data in the validation set. As

in the previous two comparisons, the quantitative agreement between inferred and

reported values, with a RMSrE of 12% is comparable to what was found in Figs. 3.7

and 3.8, with RMSrE values of order 6%. These relative errors in turn are signif-
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Figure 3.22: Correlation plot (a) of RBF inferred n√
TeV

with six centers and calculated

values from densities and temperatures reported values on the Swarm portal, and (b)
histogram of the distribution of the relative errors in the model inferences.

icantly lower than in Figs. 3.16 and 3.18 with a RMSrE values of order 50%, and

the histogram in part b shows that approximately 90% of the inferences have errors

lower than 15%. The larger errors in the inferences here compared to inferences made

with synthetic data are likely due to the fact that in-situ measured currents exhibit

more variability than simulated currents, due to conditions not accounted for in the

simulations, as well as differences in the temporal and spatial sampling.

In summary, models trained and validated with experimental data only, have com-

parable skills to those in Section 3.3 where training and validation is made with

synthetic data. This finding confirms what was reported by Guthrie, et al. [185] in

which a similar approach was applied to data collected in the Visions-2 rocket mis-

sion. This shows that the regression technique used is not biased to a particular data

set, and that given training and validation sets, whether from simulations or accurate

and validated measurements, good inferences of plasma parameters can be made with
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regression techniques similar to the ones used in this chapter.

3.6 Summary and Conclusion

A new and promising approach is presented and applied to infer satellite and plasma

parameters from currents collected by two spherical Langmuir probes at fixed bias

voltages relative to a spacecraft. The method consists of constructing a synthetic data

set, or solution library, from three-dimensional particle-in-cell (PIC) kinetic simula-

tions. A subset of the solution library is used as a training set, from which a multivari-

ate regression inference model is constructed, and assessed using the remaining subset

for validation. This procedure, following machine learning approaches, enables a vali-

dation of the inference models, with quantifiable uncertainties. The PIC code PTetra

used in the simulations reproduces probe characteristics calculated analytically in the

OML approximation, under conditions when this model is valid [77, 144]. It was also

benchmarked against independently developed codes [186, 187], and applied to in-situ

rocket measurements [185]. In addition to reproducing analytic results, kinetic simu-

lations can account for more physical processes, and more realistic geometries under

which measurements are made, than what is possible analytically. The combination

of kinetic simulations and regression techniques to directly infer space plasma param-

eters, or to improve the accuracy of approximate analytic inferences, is a promising

option to go beyond analytic approximations, and improve space plasma metrology.

Models have been constructed for the satellite potential Vs, the electron density n,

and the ratio between the density and the square root of the temperature in eV,

n/
√
TeV . Each model was first constructed and assessed on the basis of the synthetic

data set, in which all parameters to be inferred are known since they appear as input

in the simulations. The root mean square (RMS) error was found to be less than 0.18

V for satellite potentials in the range [−3, 0] V, when RBF is used in combination

with the approximate analytic estimate in Eq. 2.3.1. For n/
√
TeV both direct RBF,

combined OML-affine transformation, and combined OML-RBF have been used, and
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found to yield comparable skills, but with the latter being slightly more accurate,

with a RMS relative error lower than 4%. Only direct RBF regression was used to

construct a model for density with a RMS relative error of 6.3% over the range of

densities considered.

The same models, trained with synthetic data, were then applied to in-situ cur-

rent measurements from the gold plated spherical probes on Swarm A. Since Swarm

probes were never operated in fixed bias mode, currents collected by a single probe

biased at 4 V and 5 V were used, when the probes were operated in sweep voltage

mode. Using a single probe has the advantage that one does not need to account for

the two different surface en-coatings that the Swarm probes have (gold plated vs tita-

nium nitrid). Also, the different positions of both probes on the spacecraft can have

a large effect and make a direct comparison of Vs between probes difficult. Using cur-

rents from a single probe, however, introduces uncertainty, as these two currents are

not measured simultaneously, and therefore, plasma conditions can change along the

satellite trajectory between the times at which the probe is at these two bias voltages.

Considering the short delay (∼ 80 ms) between Vb = 4 V and 5 V in sweep mode,

the assumption of simultaneity is deemed acceptable. The electron density inferred

with fixed bias probes as considered in this chapter, should be of interest in practice,

as an independent means of inference in comparisons with measurements with other

instruments. Also, on Swarm, the electron density in the background plasma can

be inferred from Langmuir probes in normal sweep mode [188]. These two densities

are generally not equal, however, and the method presented here, with quantified

uncertainties, should prove relevant and useful in an effort to reconcile these density

inferences. Inferences made with in-situ measured currents compared with parame-

ters reported in the Swarm data portal show a general agreement qualitatively and

quantitatively. Based on the assessments made with synthetic and in-situ data the

best inferences for the satellite floating potential are obtained with a combination of
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RBF and OML approximation. Unlike what was found with synthetic data, however,

the inferences of n/
√
TeV with in-situ measurements made with direct RBF, combined

OML-affine transformation, or with combined OML-RBF models were practically the

same. Since no analytic approximation of the density can be made from only two cur-

rents collected by probes at two different bias voltages, only direct RBF inferences

of the density were considered. In contrast to the relatively good agreement found

between model inferences and synthetic data, the comparisons made here with in-

ferred data reported in the Swarm data portal, show general qualitative consistency,

but significant quantitative differences, with regression-inferred densities being lower

than values reported on the data portal. This regression approach was also assessed

against a possible bias, by training models using exclusively measured currents and

plasma parameters from the Swarm data portal. Inferences made with these models

were found to have skills comparable to those constructed and validated with syn-

thetic data, thus showing that given accurate training data, the regression approach

can be used to obtain accurate inferences. Based on these comparisons, it is estimated

that inferences obtained with multivariate regressions can be made with uncertainties

of order 0.2 to 0.25 V for the satellite potential, with relative uncertainties ranging

from 0.06 to 0.30 for the density, and of order 0.1 for the ratio n/
√
TeV . At this

point it is not possible to ascertain to what extent these discrepancies between model

inferred and reported results are caused by uncertainties in simulations from the se-

lected regression techniques, or from uncertainties in inferred parameters reported

on the Swarm data portal. Ideally, such an assessment would require more simula-

tions with the creation of a larger solution library, possibly accounting for a more

detailed satellite geometry, and more physical effects. It would also require validated

accurate measurements made independently with other instruments, with quantified

confidence intervals. In conclusion, the use of kinetic simulations, combined with

adapted multivariate regression techniques, should be considered as a promising av-

enue to improve the accuracy of inferences in space and lab plasma, with quantified
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confidence intervals, and it should elicit interest and contributions from both modelers

and experimentalists.
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Chapter 4

Segmented Spherical Langmuir
Probes

This chapter is based on a manuscript titled “A new technique to infer plasma density

and flow velocity, and satellite potential from ion currents collected by a segmented

Langmuir probe” by Akinola Olowookere and Richard Marchand. At the time of this

writing, the manuscript is accepted and in preparation for publication in the IEEE

Transactions on Plasma Science. With this project, I consider the use of spherical

segmented Langmuir probes as a means to measure ionospheric plasma transverse

velocity using kinetic simulations and regression methods. The approach is later

extended to determine the plasma density and satellite potential. The density model

is applied to Proba-2 segmented Langmuir probe in-situ measurements, and model

inferences are compared to reported densities from the Proba-2 data portal.

4.1 Introduction

Several studies are being made to better monitor and understand the many physical

properties of space plasma using a variety of instruments. In particular, different

flow meters have been used on satellites to determine direction of the plasma flow

along satellite trajectories [189, 190]. For example, IAP was flown on DEMETER to

measure the direction of ion bulk velocity, in addition to the energy distribution and

plasma density [190, 191]. Similarly, ion drift velocities can be determined with the
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thermal ion imager (TII) on Swarm [149]. In addition, VEIS on the WIND satellite

and the flow meter on Dynamics Explorer B have been used to study plasma flow

directions [192–194]. Mach probes have also been used to measure the plasma flow

speed relative to the sound speed, or the Mach number. There are several types

of Mach probes such as the parallel Mach probe which consist of two directional

probes separated by an insulator [195]. Using the upstream and downstream ion

saturation currents of the probes, the Mach number can be determined, from which

the velocity is obtained using different theoretical approximations [195–198]. Other

types of Mach probes include the rotating Mach probe, the Gundestrup probe, and

the vico-Mach probe, and their detailed operation can be found in the literature

[195, 196, 199]. Another multi-purpose Langmuir probe used to measure plasma

velocities, is the spherical segmented Langmuir probe, first flown on DEMETER [200].

The probe is designed to leverage the angular anisotropy of the current collected by

each of its six segments to determine the plasma bulk velocity [200]. This type of

Langmuir probe was later implemented on the European Space Agency micro satellite,

Proba-2. Each of the two spherical segmented Langmuir probes on Proba-2 has seven

equi-potential segments, or spherical caps and a guard holding them together [66].

Numerical modeling of the spherical segmented Langmuir probe has also been done

using particle-in-cell simulations to investigate the variations in the collected currents

from each of the segments; the results obtained are similar to what is reported for

DEMETER [201, 202].

In the following, kinetic simulations and regression techniques are applied to con-

struct inference models for measurements made with a segmented probe. The goals

are i) to characterize the response of each segment on the probe to different plasma

velocities and environmental conditions using computer simulations, ii) to construct

regression models to infer plasma densities, transverse flow velocities, and satellite

potentials, and iii) to assess the skill of the inference models. Two geometries are

considered, the first one is for a spherical probe with 20 segments at the centers
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of the 20 triangles of a regular icosahedron. This idealized geometry is chosen for

its symmetry, and it is used to make a first assessment of the regression method.

The second geometry represents the actual Proba-2 spherical segmented probe. In

both cases, the equipotential posts to which the probes are attached are included in

the simulations. Synthetic data sets are constructed for both geometries, a subset

of which is used to train models, which can then be assessed by applying them to

make inferences with a distinct subset used as validation set. The models trained

with synthetic data are then applied to actual in-situ current measurements obtained

from the Proba-2 data portal, for the segmented probes. The model inferences are

then compared with data available from the Proba-2 portal. In the remainder of this

chapter, the approach used to create the two synthetic data sets is explained. The

two machine learning techniques used to train the models are presented in Section

4.2, while the inference models constructed using the two synthetic data sets and the

validation results are presented in Section 4.3. The trained models are applied to

in-situ measurements in Section 4.4, and a summary of the findings is presented in

Section 4.5.

4.2 Methodology

The first, idealised segmented Langmuir probe used in the simulations is constructed

on a regular icosahedron with 20 triangular faces, 12 vertices, and 30 edges. The

coordinates of the center of each triangular face are used as the centers of the 20 caps

(segments) on the probe. The advantage in this idealised geometry is to leverage the

five-fold symmetry of the structure and minimize the number of required simulations.

Fig. 4.1 illustrates an icosahedron and the segmented probe used in the simulations,

which consists of twenty 5-mm-radius segments on a 2-cm-radius conducting guard,

and the 1.5-cm-long, 6-mm-radius cylindrical post holding them. The dimensions of

the segments, guard and the cylindrical post for the idealised geometry is the same

as that of the Proba-2 segmented Langmuir probes. In the simulations, the spherical
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guard, the twenty segments, and the cylindrical post are assumed to be equipotential,

and the currents collected by these independent components are calculated separately.

It is assumed that the probe is held by a boom sufficiently far from other satellite

components in the ram direction, so that the probe is not affected by any other

component on the satellite. The segments on the probe are assembled into 4 groups

of 5 segments at angles 37.38◦, 79.19◦, 100.81◦, and 142.62◦ relative to the axis of

the post, which is assumed to be oriented in the ram direction. The response of the

probe to different plasma conditions is simulated with PTetra, a three-dimensional

particle-in-cell (PIC) code, and the simulation domain is discretized with an adaptive

unstructured tetrahedral mesh [203]. Electrons and ions are treated kinetically, and

the fields and particle trajectories are calculated self-consistently at every time step

[77, 144, 145, 201]. The plasma parameters considered in the simulations are obtained

from the International Reference Ionosphere (IRI) model for conditions encountered

by satellites in low Earth orbit (LEO) at latitudes in the range −65◦ to 65◦, different

longitudes, for altitudes ranging from 500 to 730 km, different seasons, and times

of the day. Plasma densities considered vary from 9 × 1010 m−3 to 2 × 1012 m−3,

electron temperatures from 0.0591 eV to 0.2464 eV, ion temperatures from 0.0591 eV

to 0.2268 eV, and effective ion masses, from 5 amu to 13 amu. A summary of the

parameters used in the simulation is presented in Table 4.1.

4.2.1 Construction of the synthetic data set

The data set used in this chapter is made from the simulation of an isolated spherical

segmented Langmuir probe shown in Fig 4.1. The probe bias voltage is assumed to be

swept or varied in time from −5 V to −1 V with respect to the background plasma.

Plasmas with multiple ion species are considered in the simulations, as presented in

Table 4.1. In the simulations, plasma is assumed to flow directly from the ram direc-

tion, and at an angle of 18◦ from the ram direction, with speeds ranging from 7000 to

8000 m/s. Two sets of data are created; the first one corresponding to a hypothetical
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Table 4.1: Simulation parameters used in the construction of the solution library.

n Te Ti meff nO+ nH+ nHe+ nN+

1010 m−3 eV eV amu % % % %

0.911 0.2268 0.2268 5.21 76.80 13.60 0.60 9.00

1.160 0.1632 0.1203 8.23 92.97 6.19 0.53 0.31

2.540 0.1717 0.1123 12.09 97.58 2.09 0.32 0.00

4.579 0.1354 0.1202 9.29 94.68 4.72 0.48 0.12

4.572 0.1692 0.1102 12.80 98.02 1.61 0.27 0.09

4.840 0.0591 0.0591 16.00 100.0 0.00 0.00 0.00

6.446 0.07218 0.07218 6.27 86.39 10.20 0.62 2.79

6.476 0.2464 0.1089 15.93 99.73 0.00 0.15 0.12

8.169 0.09805 0.09805 11.01 96.57 2.95 0.37 0.11

12.04 0.2144 0.09356 15.83 94.73 0.00 0.11 5.16

15.11 0.1791 0.1006 15.88 95.59 0.00 0.05 4.36

18.73 0.2207 0.09438 12.62 97.87 1.76 0.11 0.27

22.90 0.1515 0.1003 15.86 95.07 0.00 0.06 4.88

44.50 0.0894 0.0766 15.86 94.65 0.00 0.05 5.30

84.19 0.09467 0.09467 14.19 94.79 0.78 0.13 4.29

106.0 0.0935 0.0869 15.89 95.07 0.00 0.00 4.93

112.0 0.0983 0.0868 15.89 95.07 0.00 0.00 4.93
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Figure 4.1: Illustration of the geometry of the segmented probe used in the simulation
(right) and an icosahedron (left).

satellite at the same potential as the background plasma, and the second correspond-

ing to satellite potentials varying from −6 to −3 V relative to the background plasma.

All simulations are carried out to steady state, at which time, the currents collected by

each segment, the guard, and the cylindrical post are computed. Test particle back-

tracking simulations are then used to calculate the particle distribution functions at

selected points on the sphere by applying Liouville’s theorem in a collisionless plasma

[85]. The electric fields used in the calculation of particle trajectories are obtained

from the PIC simulations in which they are calculated self-consistently. The particle

fluxes and current densities are then determined numerically from moments of the

distribution functions discretised on an adaptive octree velocity grid [83, 204, 205].

Particle distribution functions are calculated on the probe spherical surface along

each of four meridians, 90◦ apart longitudinally. The selected points are located at

different co-latitude angles θ relative to the ram direction in the range 0◦ ≤ θ ≤ 130◦,

with each meridian having different values of θ as listed in Table 4.2. The current

densities are then fitted as a function of θ with a sum of cosine functions as

I (θ) =
N∑︂
k=0

ak cos (kθ) , (4.1)

101



for each set of plasma parameters in Table 4.1. In Eq. 4.1, ak are fitting coefficients,

and N is the number of fitting coefficients. The fitting coefficients are obtained from

a straightforward least square fit to the computed current densities. In practice, the

value N = 6 is found to provide excellent accuracy, with maximum relative errors

not exceeding 1.2%. The fits are then used to calculate the currents collected by

each segment on the probe for arbitrary plasma flow directions in the range [0◦,15◦]

relative to the ram direction. Currents collected by segments are obtained by using

the fit to calculate the current density at the centre of the triangles defining each

segment. Note that with the unstructured tetrahedral mesh, segments are delimited

by triangles corresponding to faces of tetrahedra adjacent to the segments. Owing

to the symmetry of the probe, the angle θ in the fit is simply the angle between

the direction of the incoming plasma flow and the radial position of the triangle

centre in a given segment. The current collected by each segment is obtained by

adding the current densities times the areas of the triangles in each segment. The

performance of the fits is accessed by comparing currents calculated directly from

PIC simulations, with corresponding currents calculated using the fits as described

above. The accuracy of the calculated currents is found to be withing 3% in all cases

considered.

4.2.2 Machine Learning Approach

Depending on the nature of problem, there are different methods used in machine

learning to train inference models. In this chapter, two approaches based on i) Radial

Basis Functions, and ii) deep learning neural networks are used. These are briefly

explained below.

Radial Basis Functions (RBF)

RBF is a relatively simple but efficient regression technique to construct inference

models for complex relations between output and input variables. It has been widely
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Table 4.2: List of angles θ relative to the ram direction of points considered in each
meridian.

First Meridian Second Meridian Third Meridian Fourth Meridian

0.0◦ 3.75◦ 7.5◦ 11.25◦

15.0◦ 18.75◦ 22.5◦ 26.25◦

30.0◦ 33.75◦ 37.5◦ 41.25◦

45.0◦ 48.75◦ 52.5◦ 56.25◦

60.0◦ 63.75◦ 67.5◦ 71.25◦

75.0◦ 78.75◦ 82.5◦ 86.25◦

90.0◦ 93.75◦ 97.5◦ 101.25◦

105.0◦ 108.75◦ 112.5◦ 116.25◦

120.0◦ 123.75◦ 127.5◦ 130.0◦

used for interpolating scattered data in a multi-dimensional space [206–208]. The

technique consists of inferring a dependent variable Y at position X̄ in an n-tuple

space of independent variables, with a linear superposition of a function of the distance

between X̄ and selected reference points or centers X̄ i, as in Eq. 2.8. In this chapter,

X̄ is a tuple consisting of currents collected by the segments on the probe, and Y

represents the plasma parameter of interest to be inferred, which can also be a tuple

or a scalar. There are different methods used to select a set of centers. One way is by

carrying out an extensive search for the set of Np centers which minimizes the cost

function among all possible combinations of Np centers chosen from N nodes in the

entire data set as explained in Section 2.3.2 in Chapter 2. The computation time of

going through all the possible combinations can be prohibitively long if the model

is trained using a large data set and the time increases rapidly with an increase in

the number of Np centers. The strategy used in this chapter in selecting Np centers

consists of successively and randomly selecting M small subsets of nodes from the full

training set, each containing M nodes (M being the batch size). For the first batch,
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all the possible combinations of Np centers among the M nodes are considered and

the set of centers that minimizes the cost function, calculated on the full training set,

is temporarily kept as optimal. These Np nodes are then kept in the next batch, in

which M−Np nodes are randomly selected from the full N training set. This random

selection must of course be made so as not to duplicate the previously found optimal

NP nodes. These steps continue until the M number of batches have been considered,

and the final set of centers that minimizes the cost function is selected for the final

model. This approach is numerically much more efficient than the straightforward

extensive search, while producing models with comparable accuracy.

Neural Networks (NN)

Neural Networks have become a useful tool in modern scientific research, in space

physics, as well as in many areas of science, medicine, and other fields [95, 209–211].

In this chapter, a multi-layer perceptron (MLP) network is used. MLP is one of

the commonly used network architectures in training neural network models [212].

The network is arranged in a layered feed-forward topology as shown in Fig. 4.2.

Weighted sums of the input data from the input layer are passed through a nonlinear

activation function which produces an output which is then passed to the next layer

as the input data. This continues until the final output is produced in the output

layer. For illustration, given nodes j in layer i with values zij, the nodes in the next

layer i+1 take in the output of each node in the previous layer, the value is assigned

to zi+1,k as in

zi+1,k =

ni∑︂
j=1

wi,j,kf (zi,j + bi,j) , (4.2)

where ni is the number of nodes in layer i, wi,j,k are weights, and bi,j are bias terms.

The weights and bias terms are optimized using a back-propagation learning scheme

using algorithms like gradient descent, ADAgrad, RMSprop, or ADAM [213, 214].

Each node in the input layer is assigned a current from one of the segments, and all

the models are trained with TensorFlow [215]. The bias terms in Eq. 4.2 are all set to
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Figure 4.2: Illustration of a feedforward neural network.

zero when training the model because they are found to make no significant difference

in the outcome, and the activation function used is the rectified linear unit (ReLU);

f (z) = ReLU (z) = max{0, z}, which performs a nonlinear combination of all the

input data. Another key component in neural networks is the cost function described

in Section 2.3.2, which measures the discrepancy between inference and known data.

4.3 Construction of inference models

Inference models are constructed using synthetic data sets generated for the idealised

segmented probe and the Proba-2 probe. Only the 10 segments on the ram side are

considered in the regression. The models’ skills are then assessed in each case by

comparing inferences to known values used as input in the simulations. Comparisons

between inferences and data from the validation sets are presented below for the two

geometries considered.

4.3.1 Idealised probe geometry

As a first step, the currents collected by the 10 segments located on the side of

the probe facing the ram direction are calculated as described in Section 4.2.1. For

simplicity, the satellite is initially assumed to be at the plasma potential so as to

concentrate on the flow velocity, without having the extra complication coming from

different floating potentials. A synthetic data set consisting of 24000 nodes is created,
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each node consisting of a 10-tuple of currents for each of the 10 segments, followed

by the physical parameters to be inferred; that is, the transverse velocity which

ranges from −1000 m/s to 1000 m/s, and the densities as in Appendix A.1. The

resulting synthetic data is randomly split into two disjoint subsets, one being used

to train inference models, and the other for assessing the accuracy of the inferences.

The training set consists of 14500 randomly selected nodes from the solution library,

while the validation set consists of the remaining 9500 nodes. Using the two regression

techniques explained in Section 4.2.2, models are trained to infer the electron density

ne, and the plasma transverse velocity. Each model is then assessed for accuracy by

comparing its inferences with known values in the validation set.

Density model

Both the neural network and RBF models are used to infer the plasma density. The

neural network consists of an input layer of 10 nodes for each of the 10 currents, 2

hidden layers of 8 and 5 nodes respectively, and a single output node for the density.

The cost function used is the mean absolute relative error (MARE) given by

MARE =
1

n

n∑︂
j=1

⃓⃓⃓⃓
Ydt − Yinf

Yinf

⃓⃓⃓⃓
, (4.3)

where n is the number of entries in the training data set, Ydt is the data value and

Yinf is the inferred value. The cost function is minimized with the Adam algorithm,

which is an adaptive optimization algorithm implemented in Tensor Flow [216]. This

algorithm was chosen among other minimization options because of its optimal per-

formance in these problems. The correlation plot in Fig. 4.3a. shows a comparison

between neural network inferences and data from the validation set. The model skill

is assessed with the MRE, the RMSrE, and the Pearson correlation coefficient (R).

Model inferences are in excellent qualitative and quantitative agreement with valida-

tion values, with a MRE not exceeding 11% and RMSrE of 3.1%. In the RBF model,

50 batches, each consisting of 90 randomly selected nodes from the training set are
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Figure 4.3: Comparison between inferred densities using (a) neural network, (b) RBF
with six centers, and actual densities in the idealised probe validation data set. The
straight line corresponds to a perfect agreement between the two densities.

used. Six (6) center points are used in the model, as this number is found to provide

a good balance between training and validation, while avoiding overfitting. The cost

function used to construct the RBF model is the MRE given in Eq. 1.19. Several

interpolating functions were tested, but the best one that minimised the maximum

relative error for the density model is G = |I − Ij|1.8. Figure 4.3b shows a correlation

plot of the inferred density as a function of the actual densities from the validation

set. The skill of the RBF model is assessed using the same metrics as for the NN

model and it shows a comparable inference accuracy between the two models with

the RBF models having lower MRE in contrast to the RMSrE which is higher in

RBF than the neural network model. The MRE is minimised as the cost function

when training the RBF model, and this accounts for its lower value in the RBF model

compared to the NN model. The correlation plots for both methods also show that

model predictions closely follow the ideal correlation line, with a strong affinity as

measured with the Pearson correlation coefficients which are close to unity in both

cases.
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Transverse velocity inferences

Here, only the neural network model is applied to infer transverse velocities, because

in this case, RBF was found to produce lower quality results. The neural network

used has 5 layers, comprised of the input layer with 10 nodes, 3 hidden layers with 8,

6, and 4 nodes respectively, and an output layer with 2 nodes for the two components

of the transverse velocities. The cost function used is the mean square error defined

as

MSE =
1

n

n∑︂
j=1

(|Ydt − Yinf |)2 . (4.4)

Figure 4.4 shows a two dimensional scatter plot of the components of the transverse

velocities, with the colour bar showing the absolute errors in the model inferences.

The plot is dominated by blue points, with very few red and light red points which

indicates that most of the errors in the model inferences fall below 100 m/s. The

maximum absolute error in the inferences is 193.54 m/s but almost 98% of the values

inferred have an absolute error less than 100 m/s as seen in the histogram in Fig.

4.5, showing the distribution of errors. The mean absolute error is 28.93 m/s and the

root mean square error is 45.41 m/s, which corresponds to 2.3% relative to the range

of speeds, [-1000 m/s, 1000 m/s] considered in the simulation. The values of these

errors show a good quantitative agreement between model inferences and the known

transverse velocities used as input in the simulation. The error values are consistent

with the range of velocity accuracy estimate for Swarm TII of 100 - 200 m/s [149].

4.3.2 Proba-2 probe geometry

The synthetic data used in this part are generated for the segmented Langmuir probe

A (SLPA) geometry, as one of the Proba-2 dual segmented Langmuir probes (DSLP).

DSLP is part of the scientific payload of the European Space Agency (ESA) mi-

cro satellite Proba-2, which was launched November 2, 2009 [217]. It consists of

two identical segmented Langmuir probes, SLPA and SLPB, with each having eight
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Figure 4.4: Inferred transverse velocities in the range of −1000 m/s to 1000 m/s using
the neural network model for the idealised probe. The colour scale shows the absolute
errors in the velocity model inference.
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Figure 4.5: Histogram showing the distribution of the absolute error in the velocity
inference model for the idealised probe.
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equipotential independent collectors electrically insulated from each other. The col-

lectors consist of spherical guard electrode supporting seven circular caps, or segments

positioned at different locations. In the Proba-2 data portal, the ram velocity of the

satellite is stated to be in the −Y direction in the spacecraft body reference frame

(BOF), and thus the plasma flow velocity in the spacecraft frame is assumed to be in

the +Y direction. The segments on the SLPA are positioned relative to the segments

frame of reference (SEG), which is different from the spacecraft BOF. The BOF can

be transformed to the SEG by first performing a counterclockwise rotation around the

BOF x-axis by 40◦, followed by another counterclockwise rotation of 60◦ around the

transformed z-axis. This transformation is necessary because the fit in Eq. 4.1 is done

relative to a system in which the z axis coincides with the cylindrical post axis. After

the transformation, the trigonometric fit is used to determine the current density at

the center of the triangles defining each of the seven segments on the probe, which

makes it possible to integrate, and determine the current collected by each segment as

described in Section 4.2.1. The currents are calculated by assuming that the probe is

biased at fixed voltages relative to the satellite. The advantage of considering a fixed

bias probe is that measurements can be made with a higher temporal, and owing to

the large satellite speed, higher spatial resolution. The satellite potentials assumed

in the synthetic data set range from −6 V to −3 V, which falls within the range of

potentials reported on the Proba-2 SLPA portal, and different transverse speeds in

the range [−1000 m/s, 1000 m/s] are also considered. A total of 8500 nodes are gen-

erated in the solution library; each entry consisting of the currents calculated for each

segment, followed by the densities, the transverse velocities, and the satellite poten-

tials. Here again, the data set is randomly divided into a set consisting of 5950 nodes

used to train the models, and a distinct set containing the remaining 2550 nodes used

for validation. The models are trained using currents for all segments excluding only

segment 6. The choice of the six segments among the seven on the sphere is dictated

by the orientation of the probe on Proba-2 (Fig. 4.6) and the limited interval in angle

110



S4

BOF XBOF Z

BOF Y

SEG Z

SEG X

SEG Y

Vd

S5

S7

S6
S3

S2

S1

Figure 4.6: Illustration of the position of the segments relative to the direction of
plasma flow.

(0◦ ≤ θ ≤ 130◦) for the fitted current densities, relative to the ram direction. With

currents from the probe, the independent variables then consist of twelve-tuples; six

from a probe biased at 1 V and six for a probe biased at 2 V.

Density model assessment with synthetic data

The density inference models are constructed using a neural network and RBF. The

neural network consists of 5 layers, which comprise the input layer with 12 nodes

for the currents collected by the selected segments on the two probes (6 segments

on each probe), at the two bias voltages, three hidden layers with 10, 7, 3 nodes

in layers 2, 3, and 4 respectively, and an output layer with a single node. The

model is trained using the mean absolute relative error given in Eq. 4.3 as a cost

function. This is minimised to achieve an optimal model, using the same activation

function as in Section 4.3.1. In the RBF model, 6 centers are used, the interpolating

function chosen is again G = |I − Ij|1.8, and the model is constructed by minimizing

the maximum relative error. Figure 4.7 shows the correlation plots obtained when

comparing model inferences when the trained models are applied to the validation

set. Both techniques show excellent agreement with known data, with the neural
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network slightly outperforming RBF with a maximum relative error (MRE) of 7.1%

and root mean square relative error (RMSrE) of 2.1% compared to MRE of 9.6% and

RMSrE of 3.4% for RBF. The points on the plot for both methods closely follow the

perfect correlation line, but the vertical spread in the RBF model is slightly larger

than that obtained with the neural network. The Pearson correlation coefficients R

indicate the two models show an excellent affinity with known density values from

the validation set.
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Figure 4.7: Inferred densities against validation data set densities for the Proba-2
synthetic data. Neural network inferences are shown on the left, and RBF inferred
densities using 6 centers, on the right. The line corresponds to a perfect agreement
between the two densities.

Satellite potential model assessment with synthetic data

Here, only results obtained with a neural network to infer the satellite potential are

considered, because its inference skills are significantly better than those found with

RBF. The neural network model has a similar structure to the one used in training

the density model presented in Section 4.3.2. In this case, however, instead of using

the MARE given in Eq. 4.3 as the cost function, the MSE in Eq. 4.4 is used, with

which the best inferences are achieved. The skill of the trained model is assessed using

different metrics when applied to the validation data set. The Pearson correlation
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coefficient between the inferred satellite potential and the actual satellite potential

is 0.995, which indicates a good affinity. A correlation plot between these values

is shown in Fig. 4.8, with the calculated values of the MaxAE, the RMSE and the

MeanAE. From the plot, a slight extrapolation in the model inferences is noticed, as a

small fraction of the points fall outside the range in the data used to train the model.

Quantitatively, the overall performance of the model is excellent, with a MeanAE

of 0.063 V which corresponds to 2.1% discrepancy relative to the range of satellite

potential in the data set.
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Figure 4.8: Comparison between satellite potentials inferred using the neural network
model, and actual potentials in the synthetic data set constructed with the Proba-2
geometry. The line corresponds to a perfect agreement between the two potentials.
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Transverse velocity model assessment with synthetic data

Here also, only the neural network approach is used to construct a model for the

transverse velocity, because it produces appreciably better model inferences than the

RBF. In this case, the network has 5 layers, with the input layer having 12 nodes

and the three hidden layers consisting of 15, 9, and 6 nodes respectively, while the

output layer consists of 2 nodes, for the two components of the transverse velocity.

The model is obtained by minimising the mean square error defined in Eq. 4.4. Fig.

4.9 is a scatter plot of the components of the transverse velocities, with the colour bar

showing the absolute errors in the model inferences. In the figure, most points are

blue, indicating that the majority of the absolute errors in the inferences fall below

the 100 m/s mark. This observation is confirmed with the histogram in Fig. 4.10,

showing the distribution of inference errors when applying the model to the validation

set. The histogram shows that nearly 99% of the inferences are made with absolute

errors not exceeding 100 m/s. The skill of the model is further quantified with the

mean absolute error and the root mean square error, with values 22.54 m/s and 39.53

m/s corresponding respectively to errors of 1.12% and 1.98% relative to the range

[-1000 m/s, 1000 m/s] of transverse velocities in the data set. These metric scores

indicate an excellent model inference skill.

4.4 Application to Proba-2 in-situ measurements

In this section, the density model constructed in Section 4.3.2 are applied to the

Proba-2 segmented Langmuir probe A (SLPA) measurements reported on the Proba-

2 portal [218]. The currents used are obtained from the measured IV characteristics

when the probe is operated in sweep mode between -5 V and 5 V. In addition to the

probe’s IV characteristics, the portal also reports densities and satellite potentials

inferred from each segment separately, as well as from the spherical guard. One point

worth noting, is that densities and satellite potentials reported for these probe com-
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Figure 4.9: Inferred transverse velocities in the range of −1000 m/s to 1000 m/s using
the neural network model, and actual velocities in the synthetic data set constructed
with the Proba-2 geometry. The colour scale shows the absolute errors in the velocity
model inference.
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Figure 4.10: Histogram of the distribution of the absolute errors in the velocity in-
ference model when applied to the synthetic data set constructed with the Proba-2
geometry.

ponents are generally all different from one another, and to the author’s knowledge,

the method used to infer these reported values is not documented. Here, the same

models presented in Section 4.3.2 are used. These models are trained using synthetic
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Figure 4.11: Correlation plots for currents collected between pairs of currents collected
by segments 2 and 3, and segments 4 and 7. The blue circles are taken from the
synthetic data set, while the red squares are from Proba-2 measurements.

data generated assuming probe biased at fixed voltages of 1 V and 2 V. The assump-

tion of fixed bias probes is of course different from the sweep mode actually used with

these probes. The measured currents needed in the model are nonetheless obtained

by fitting each segment characteristic in the range −1.5 to 2.5 V, and using these fits

to interpolate the current collected at 1, and 2 V bias voltages. As a first test, and

in order to assess whether the currents found in the simulations are of relevance to

measured currents, Fig. 4.11 shows samples of correlation plots between simulated

and measured currents collected by segments 2 and 3 (panel a) and segments 4 and

7 (panel b). The red squares are from Proba-2 SLPA measurements and the blue cir-

cles are from simulations. This comparison is also useful in order to eliminate cases

corresponding to currents outside the range of currents considered in the synthetic

data set. The figure shows an overlap between the range of the in-situ currents and

the synthetic data currents, with the synthetic data having a wider range of currents.

The neural network model is then applied to infer the plasma density using mea-

sured currents as the input. The neural network model is used here rather than RBF,
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because it proved to be more accurate based on the validations made with synthetic

data. The average values for each set of densities reported for the six segments used

in the model and their respective standard deviations are calculated. Using these

two values, a confidence interval delimited by an upper and lower boundary for each

density is determined by adding and subtracting the standard deviations to the aver-

age. A comparison between the densities inferred using the model with the reported

guard densities on Proba-2 portal, and the calculated upper and lower boundary den-

sities is shown in Fig. 4.12. The comparison shows general qualitative agreement

between the inferred densities, and those reported in the Proba-2 portal, albeit with

reported densities being larger than neural network inferred densities by more than

100%. The inferred densities are more consistent with reported guard densities, than

with those calculated from the segments, and both are generally below the confidence

interval estimated from densities reported for the segments. The gaps or jumps in

the horizontal axis scale in the plots are due to the removal of data outside the range

of simulated currents used to construct the model. Correlation plots between the

inferred densities and in-situ reported densities are shown in Fig. 4.13, for each of the

segments and the guard when using the neural network model, with their respective

RMSrE and MRE skill metrics. In general, the inferences from the neural network

model are closer to in-situ measurements than those obtained with RBF model, as

apparent with the similarity metrics listed in Table 4.3.

Lastly, the satellite potential model and the transverse velocity model were also ap-

plied to the in-situ measurement, but the inferences in these cases are far beyond the

range of satellite potentials and velocities considered in training the models which in-

dicate that these models in their present form, are not applicable. A probable cause

for this shortcoming is the proximity of the probes to the solar panels on Proba-2,

which is not accounted for in the simulations.
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Figure 4.12: Comparison between densities inferred using the neural network model
(red circles), with those reported for the guard (black circles), the upper (blue
squares), and lower (green inverted triangles) density boundaries of the confidence
interval. The confidence interval is calculated from the averages and standard devi-
ations of densities reported on the Proba-2 portal for the six segments considered.
The gaps in the comparison correspond to currents outside the range over which the
models were trained.
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Figure 4.13: Correlation plot of density inferences using the neural network model
and reported density on the Proba-2 portal for SLPA (a) segment 1, (b) segment 2,
(c) segment 3, (d) segment 4, (e) segment 5, (f) segment 7, and (g) the guard. The
solid line corresponds to a perfect agreement.
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Table 4.3: Summary of the metrics of similarity between neural network and RBF
inferences, and reported inferences of the densities for the six segments considered.

Segment Method RMSrE MRE R offset

1 RBF 3.21 10.26 0.64 2.65

NN 2.19 8.22 0.66 1.87

2 RBF 2.61 9.57 0.64 2.14

NN 1.83 8.36 0.65 1.51

3 RBF 2.29 8.91 0.59 1.86

NN 1.60 6.77 0.61 1.31

4 RBF 2.28 15.03 0.61 1.81

NN 1.59 19.52 0.62 1.26

5 RBF 2.50 9.62 0.60 1.97

NN 1.71 7.53 0.62 1.37

7 RBF 2.79 32.89 0.56 2.00

NN 2.04 25.51 0.58 1.42
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4.5 Summary and Conclusions

Results are presented for the interpretation of measurements made by a spherical

segmented Langmuir probe using two multivariate regression techniques. As a first

step, the approach is assessed by considering an idealised probe consisting of twenty

equipotential segments that are insulated from one another, from which ten segments

are used in the analysis. The segments are centered at different points on the spheri-

cal guard in such a way that they are symmetrically oriented relative to the direction

of incoming plasma flow. Three-dimensional kinetic PIC and test particle simulations

are made to calculate currents collected by each segment at a fixed satellite potential

for different plasma parameters relevant to space environment near satellites in LEO

at mid latitudes. These currents and the corresponding plasma conditions are used to

construct a first synthetic data set to train inference models, and assess their skills.

In the simulations, only the spherical guard of the probe, its equipotential segments

and post are considered, which should be valid provided that the probe be on the

ram side, sufficiently far from other satellite components. The geomagnetic field is

also neglected, since the probe is biased so as to collect ion current, and the fact that

for the conditions considered, ion gyroradii in the ionosphere are of the order 1 m for

H+, and 5 m for O+, which are much larger than the probe radius. This should again

be valid provided that the probe be held sufficiently far from the satellite, and well

separated from other satellite components. Synthetic data are then used to construct

inference models for the plasma density, the satellite potential, and plasma transverse

flow velocity. The density model is constructed using RBF and neural network, and

both have comparable excellent inference skills. The two models yield densities with

a MRE of 9.4% and 10.6% for RBF and neural network respectively, when applied

to the validation set obtained from simulations. A transverse velocity model is also

trained using neural network and it shows a good inference skill when assessed quan-

titatively using the synthetic validation data set. The RMSE in the model inference
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is estimated to be 45.4 m/s, which is about 2.3% relative to the [-1000, 1000] m/s

velocity range, in arbitrary directions, considered in the data set.

A second synthetic data set is constructed using the Proba-2 probe geometry. The

currents collected by the segments are calculated using a similar approach to that

for the idealised probe, with the main difference being that variable effective satellite

potentials relative to which the probes are biased, are assumed in the interval -6 to

-3 V. The choice of the range of satellite potentials is based on the reported probe

characteristics on the Proba-2 SLPA data portal. As with the first synthetic data,

RBF and neural network models are trained to infer the plasma density. The two

models have a MRE of 9.6% and 7.1% for RBF and neural network respectively. In

this case again, the neural network inferences are more accurate than RBF when

inferences are made with the synthetic validation set. Comparing the results to the

ones obtained with the idealised probe synthetic data set where only a single potential

is assumed for the satellite, it is found that the model accuracy when using RBF is

comparable, but in the case of the neural network, the results obtained when varying

the floating potential are slightly better than when it is fixed. The overall performance

of the models are nonetheless good whether the satellite potential is varied or fixed.

The neural network model is also trained to infer the satellite potential using the

synthetic data. The model performance on the validation set is good, with a mean

absolute error of 0.063 V, which corresponds to an uncertainty around 2% relative to

the range of satellite potential considered in constructing the model. The final model

is constructed using neural network model to infer the transverse velocity, and the

model has an excellent inference skill when applied to the synthetic validation data set

with a root mean square error of 39.5 m/s. The density models trained with Proba-2

geometry synthetic data are then applied to Proba-2 SLPA in-situ measurement using

the currents reported in the portal as the input values, and the models’ inferences

are compared to the reported values on Proba-2 portal. Systematic discrepancies are
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found in the inferred densities, with the reported data in the portal having higher

values than the model inferences.

To conclude, kinetic simulations combined with multivariate regressions and ma-

chine learning techniques appear as a new promising avenue to better infer plasma

parameters from currents collected with segmented Langmuir probes for which no an-

alytic expressions are available. The simulations used here can reproduce known ana-

lytic results under conditions assumed in theories from which they were derived. They

can also account for conditions and physical processes and geometries which are too

complex to be tractable analytically. The assessment of the two methods considered,

using synthetic data, shows good inference skills for all the parameters considered,

and the application of the density model to actual in-situ measurements are found to

be in good qualitative agreement with reported inferences for the segmented Langmuir

probes on the Proba-2 data portal. Quantitatively however, systematic differences

are found, with regression inferred densities being lower than values reported on the

data portal, generally by more than a factor two. Owing to unknown confidence

intervals in physical parameters reported on the Proba-2 data portal, and without

knowing how these inferences were made, it is not possible to conclude whether the

technique presented here leads to an improvement in inference accuracy, and if so,

to what extent. In order to make such an assessment, more detailed simulations and

comparisons with cross validated measurements made in different plasma conditions

and geometries, using independent instruments and quantified uncertainties will be

needed.
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Chapter 5

Conclusion

In this thesis, a new approach to infer plasma parameters and satellite potentials

from fixed bias probes is presented. The choice of fixed bias probes over the com-

monly used sweep mode is based on the higher temporal and spatial resolutions of

their measurements. The study follows a multidisciplinary approach to the problem

of plasma and satellite parameters inference, by applying kinetic simulations, state of

the art data analysis procedures, and machine learning techniques. The research was

motivated primarily by three objectives. The first is to construct and assess infer-

ence models which can account for more realistic geometries, and physical conditions

under which measurements are made. The second is to provide inference techniques

with quantified uncertainty margins. The third objective is to construct inference

models with the potential of being improved incrementally, by accounting for more

details in the geometry, or physical processes in the simulations as needed. While

questions remain, and additional work is needed to further refine the approaches pre-

sented in the thesis, each of these objectives has been in good part realised. The

use of three-dimensional kinetic simulations, in domains discretised with adaptive

unstructured tetrahedral meshes, makes it possible to account for the actual geome-

tries of the probe and nearby satellite components. Such codes are also capable of

including progressively more physical effects, while being able to reproduce analytic

results under conditions in which they are valid. In the simulations, different plasma
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parameters; i.e., plasma densities, temperature, and multiple ion masses obtained

from IRI model are used. The currents collected by the probes are calculated from

simulations, and they are then used to build a solution library or synthetic data set,

from which inference models are constructed and validated.

In the first project, kinetic simulations of an isolated small spherical Langmuir

probe, attached to a post in plasma were made. For simplicity, the presence of satel-

lite components was neglected in the simulation, and both the probe and the post

were assumed to be biased at a fixed potential relative to the satellite. The calcu-

lated currents collected by the probe are used as the independent variables in the

models constructed to infer the satellite floating potential and the ratio of density

and the square root of temperature. Three methods are used to construct models.

The first makes use of analytic formulas derived from the electron current collected

by a spherical probe in an OML approximation to make estimates of both the floating

potential and the ratio density divided by the square root of the temperature. The

analytic estimates for the floating potentials over-predicted the actual floating poten-

tials while the ratio ne/
√
TeV estimates are smaller than the actual simulated data

values. These discrepancies in the analytic estimates are in part due to the fact that

the analytic formula used is obtained from OML approximation for electron currents

collected by a spherical probe by neglecting contribution from the ions. While this

might contribute in part to the overestimate, most of the overestimate of the floating

potential likely comes from the neglect of TeV in equation 2.5. For ne/
√
TeV , the

analytic estimate based on equation 2.7 is underestimated because the probe surface

area (the effective r2) is overestimated in the analytic expression as it does not ac-

count for the area of the stub (the bottom portion of the post) with which the probe

spherical surface is in contact. The second method uses radial basis function (RBF)

regression in a multi-multivariate space, while the third approach involves the use of

the boosting ensemble learning approach. In the latter approach, analytic formulas

and the RBF are combined to train models for the floating potential and the ratio
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ne/
√
TeV . The first inferences are made with the analytic formulas followed by RBF

to correct errors made in the initial analytic estimate. The advantage of using the

boosting ensemble is that it reduces the variance and increases the skill of the models,

resulting in models with excellent skills. The performances of the three approaches

used to train the models are assessed, and it is found that the boosting ensemble

method gives the best inference for both the satellite floating potential and the ratio

of density to the square root of temperature when they are applied to the validation

data set.

The second part of this thesis goes beyond the ideal conditions considered in the

first part, by accounting for more physical processes such as the plasma sheath around

the spacecraft. Simulations are made using a geometry consisting of an approximate

truncated Swarm satellite, the two Langmuir probes at fixed potentials of 4 V and 5

V with respect to the satellite, and different satellite potentials in the range [-3, 0]

V, under different plasma conditions relevant to those found along the Swarm orbit.

The calculated currents for the two probes are used as the independent variables in

the models, while the plasma and satellite parameters used in the simulations are the

dependent variables for which inference models are trained and validated. Models are

constructed for the satellite potentials and the ratio ne/
√
TeV using three approaches

including the use of affine transformation to transform the analytic estimates, the

combination of RBF and analytic formulas by applying the boosting ensemble learn-

ing method, and only RBF. The analytic estimates for both the satellite potentials,

and the ratio ne/
√
TeV follow similar patterns to the observations in the first project

when they are compared with known values from the validation set. These estimates

have excellent affinities with the actual simulated data values as evidenced by the

high Pearson correlation coefficients of 0.98 and 0.99 for the satellite potentials, and

the ratio ne/
√
TeV respectively. These strong affinities motivated the use of affine

transformations which improve the accuracy of the models drastically. The boost-

ing ensemble models and RBF models for both the satellite potential, and the ratio
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ne/
√
TeV have excellent inference skills, and their uncertainty margins are quanti-

fied. Overall, all the models from the three methods yield comparable skills, but the

combined RBF-OML is slightly more accurate. For the density, only one model is

trained using RBF, and the model has an excellent inference skill. The trained models

are then applied to in-situ measurements obtained from the Swarm data portal for

Swarm A. The reported currents for the gold plated probe are used as the independent

variables in the models, to infer the plasma and satellite parameters of interest. The

models’ inferences show qualitative agreement with the reported values on the Swarm

portal, even though systematic offsets are noticed between the model inferences and

the values reported on the Swarm portal. Due to the absence of uncertainty margins

in the in-situ measurements, it is impossible to conclude if the models’ inferences are

more accurate than the reported values, and if so, to what extent.

The final project of this thesis focuses on the inference of segmented spherical Lang-

muir probe measurements using kinetic simulations and machine learning approaches.

Compared to other types of Langmuir probes, segmented probes are arguably the least

often used, to diagnose the state of plasma. Their size and the fact that they consist

of several equipotential caps or “segments”, from which individual currents are col-

lected, introduce considerable complexities in the construction of inference techniques

for their characteristics. In this project, the focus is on the use of new techniques to

infer plasma densities, flow velocities, and satellite potentials, from currents collected

by two segmented probes biased to two different fixed potentials relative to the space-

craft. As in the other two projects, the currents collected by each of the equipotential

segments are calculated using a three-dimensional kinetic self-consistent particle-in-

cell (PIC) and test particle simulations. Computed currents and corresponding known

plasma and satellite parameters used as input in the simulations are then used to cre-

ate a solution library with which regression-based inference models are constructed,

following standard machine learning techniques. Two solution libraries are created,

corresponding to i) an idealised probe geometry with 20 segments, of which only 10
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were considered in the regressions, and ii) to the Proba-2 probe geometry. Models

constructed with the training subsets of the two solution libraries are found to have

excellent skill, when applied to their respective validation sets. Models constructed

for the segmented probes on Proba-2 are then applied to in-situ measurements made

with segmented Langmuir probes mounted on the Proba-2 satellite. The inferred

densities are compared with the densities reported on the Proba-2 data portal. The

advantage of this approach is that it readily produces uncertainty margins that are

specifically related to the inference technique used. Finally, while this thesis has

focused on inference models for spherical probes with different, but fixed potentials

relative to a satellite, the methodology is by no means limited to this mode of oper-

ation, as it could readily be applied to probes operated in full sweep mode and any

probe geometries. An important outcome and contribution of this thesis is that the

use of machine learning techniques combined with kinetic simulations is shown to be a

promising and useful tool to improve inferences of satellite and plasma parameters in

space plasma, while providing confidence intervals. The methodology is also capable

of implementing incremental adjustments and improvements in models, to account

for specific conditions; something that is generally not possible or too difficult in

practice, with models based on analytic approximations.

Future Work

The results presented in this study combine the use of data analysis procedures,

kinetic simulations, and machine learning techniques to improve the inferences of

plasma and satellite parameters from probe measurements. The data analysis aspect

of the work involves wrangling1 experimental data sets by cleaning, transforming,

and storing the data in a useable format for testing the applicability of the models.

These steps were carried out for all data sets involving reported in-situ measurements

1Data wrangling is the process of cleaning, transforming and unifying messy and complex data
sets for easy access and analysis.
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considered in this thesis. One of the future plans is to improve on the data analysis

procedures by implementing a robust automated approach by developing an algorithm

that can be adapted to any satellite mission data sets. This algorithm would be in the

form of a pipeline in which experimental data are extracted from the source where

they are stored, transformed into clean and structured data, and then loaded into

a database for accessibility and direct use for analysis without the need for further

data wrangling. The supervised machine learning approaches used in this thesis

requires labeled data sets making it impossible to use in-situ measurements to train

the models. This is because in-situ or experimental data are not labeled since the

plasma parameters and satellite parameters are unknown, therefore, the data sets used

to construct the models are generated from the kinetic simulations in which plasma

and satellite parameters are known as they are specified as input in the simulations.

In the simulations, some physical processes and plasma conditions affecting probe

measurements in space were neglected. Some examples are the presence of a magnetic

field in the background plasma and the presence of suprathermal electrons. These

assumptions should be addressed in future work while considering a broader range

of plasma parameters by leveraging on one of the objectives of this work, which

involves the implementation of incremental improvements to the models. However,

the future work is not only limited to these, as it goes beyond accounting only for the

physical processes, plasma conditions or the development of automated data analysis

approaches. The final goal is to construct and deploy more accurate and scalable

models to infer plasma and satellite parameters with estimates of the uncertainty

margins or confidence intervals for specific space missions. Collaboration between

experimentalists and modelers will be required to achieve all these future goals. These

joint efforts will involve careful selection of plasma and satellite parameters of interest

that will be used in the kinetic simulations, the determination of the types of probes

and satellite geometries to consider, and access to in-situ data sets, in order to design

and test the algorithm for data analyses. Aside from all these, there is a need for
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other means of validating the accuracy of the models’ inferences using independent

instruments which will necessitate collaborations with instrument scientists. Finally,

the scope of this study should be broadened to include the inference of other plasma

state variables such as the electron and ion temperatures, ion mass distributions, and

possible non-Maxwellian particle distribution functions. These are ambitious goals,

but ones which can be pursued, and be successful by following and extending the

approaches presented in this thesis.
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