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ABSTRACT 1 

Managers of mobile photo enforcement (MPE) programs must account for several road safety 2 

goals when deploying operators. However, there is no MPE design structure to systematically 3 

connect deployment decisions back to preset goals. We propose a method to aid MPE managers in 4 

using goals directly in the efficient allocation of limited program resources. A neighborhood-level 5 

resource allocation model is developed, which uses multi-objective optimization to determine how 6 

enforcement is allocated to city neighborhoods. The model is applied to an MPE program in 7 

Edmonton, Alberta, Canada, and delivered 200 optimal solutions for one month. One illustrative 8 

solution is plotted in GIS and assessed alongside the actual program deployment results for the 9 

same month. This solution efficiently allocates one month of operator shifts to sites in 44 10 

neighborhoods, based on the specific needs of each neighborhood. The actual MPE deployment 11 

was such that 60% of visits occurred in neighborhoods beyond the 44 identified in the illustrative 12 

optimal solution. The major contribution of our model is that it allows for MPE managers to 13 

quantitatively map performance outcomes to multiple program goals. This can lead to more 14 

transparent and efficient MPE programs, which in turn can improve urban road safety and 15 

ultimately, urban sustainability. 16 

 17 
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1. INTRODUCTION 1 

Roadway traffic collisions impose a serious impact on society, claiming more than one million 2 

lives worldwide each year, and this number is increasing (1). Saving the lives lost in traffic 3 

accidents is an indicator of urban sustainability (2, 3); however, traditional government 4 

interventions have not been highly effective in slowing or stopping the overall global trend of 5 

rising road fatalities. Since 2000, many cities have begun to develop and implement new road 6 

safety strategies, notably Vision Zero or Sustainably Safe Road, which aim to eliminate fatality 7 

and serious injury collisions (4, 5). 8 

Mobile photo enforcement (MPE) programs are documented to be an essential tool for 9 

achieving the Vision Zero road safety goal, and therefore play a critical role in promoting the 10 

continued sustainable growth of cities. An MPE program deploys operators driving vehicles 11 

containing photo radar cameras, which are used to catch speed violators. MPE programs have been 12 

effective in reducing fatal collisions by 17%-30% (6, 7).  13 

However, decisions on how to allocate operators within an MPE program is a multi-14 

objective problem. Program managers must consider several objectives simutaneouly, such as 15 

assigning operators to roadway locations experiencing high collision rates, high speed limit 16 

violations rates, and dense pedestrian traffic (8). Nonetheless, enforcement resources are usually 17 

limited due to the high costs of manpower and equipment. 18 

Randomized resource allocation discussed in (9–11) is a significant method for MPE 19 

deployment. The method randomly matches enforcement sites with daily operator hours to 20 

improve the drivers’ perception of randomness of MPE operation. Kim et al. (11) further 21 

introduces a priority index into this method to consider multiple deployment goals; however, the 22 

index values depend on the weights assigned to goals, which are difficult to obtain and are 23 

therefore based on program managers’ judgment and experience.  24 
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Very little research has been carried out on how to efficiently allocate finte MPE resources 1 

to address its program purposes. In contrast, since the early 1970s many studies have been 2 

conducted on how to optimally allocate emergency facilities such as fire stations, police stations, 3 

or emergency medical service (EMS) stations (12–14). Two typical approaches to solving this 4 

problem are the set covering location model (12) and maximal covering location model (13). The 5 

former covers all the demand for emergency services within a maximal service distance, while the 6 

latter covers areas with high demands using limited resources. However, most emergency facilities 7 

are stationary. Yin (15) proposes a min-max optimization model to optimally allocate mobile 8 

police patrol vehicles to freeway segments. As the model is developed based on the total patrol 9 

travel time spent handling worst-case freeway incidents, the optimal resource allocation plan 10 

obtained is independent of time and therefore independent of demand (that changes over time). 11 

Adler et al. (16) develops a maximal covering location model, allocating freeway police patrol 12 

vehicles based on demands that change over time. To consider multiple deployment goals without 13 

assuming weights for each, the model employs multi-objective optimization techniques.  14 

Although the aims of freeway police patrol programs focus on timely response to calls for 15 

service and general road policy duties rather than on identifying speed violators and reducing 16 

speeds at various roadway locations, namely the goals of MPE programs, the benefits of the two 17 

programs are similar. Hence, we propose an MPE resource allocation model that uses multi-18 

objective optimization to aid MPE managers in directly imposing multiple program goals in the 19 

efficient allocation of limited program resources. The model is applied to an MPE program in 20 

Edmonton, Canada, using three priorities—high collision sites, high speed violation sites, and 21 

school zones—that often receive the most enforcement attention, as reviewed in (8). The model 22 

assigns monthly operator shifts to city neighborhoods, directing enforcement coverage according 23 

to each neighborhood’s enforcement demand and needs quantified by three neighborhood-level 24 
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metrics: equivalent property-damage-only (EPDO) collision frequency per kilometer (km), speed 1 

violation indicator (SVI), and school zone density.  2 

This paper provides a data-driven process for mapping high-level road safety goals to MPE 3 

deployment planning decisions. This process has existed as a “black box” insofar as it has not been 4 

explicitly defined in the literature. Our proposed model can greatly facilitate the development and 5 

deployment of transparent and efficient speed enforcement programs, which will enhance traffic 6 

safety outcomes and more broadly, sustainable urban growth. Application of our model yields a 7 

pool of optimal deployment solutions, allowing program managers to consider multiple objectives 8 

in deploying MPE program resources. Instead of setting predetermined weights on the objectives, 9 

our method allows program managers to choose an optimal solution based on their preferences 10 

and needs at a given time. Finally, neighborhood-level deployment plans offer city- or region-wide 11 

information regarding where enforcement needs are and how to address them, such that program 12 

managers can then schedule individual resources to individual enforcement sites within each 13 

neighborhood. 14 

2. MOBILE PHOTO ENFORCEMENT (MPE) RESOURCE DEPLOYMENT 15 

 FRAMEWORK 16 

The MPE resource deployment framework uses multi-objective optimization to map high-level 17 

program goals to deployment decisions. The deployment process can be described in three parts 18 

(Fig. 1): defining high-level program goals, the multi-objective linear programming (MOLP) 19 

resource allocation model, and choosing the final deployment plan for implementation. 20 
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FIGURE 1 MPE deployment framework. 2 
 3 

The inputs to the MPE deployment, as shown in Fig. 1, includes the three most critical and 4 

frequently considered high-level MPE program goals: reduction of collisions, reduction of speed 5 

limit violations, and presence in school zones (8). Although any number of, and types of, goals 6 

can be considered, the three mentioned above were chosen because of their prominence in the 7 

literature (8).  8 
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As discussed in Section 2, limited research has been conducted on how to allocate and 1 

utilize MPE program resources with direct consideration for multiple program goals. Therefore, 2 

Stage II of Fig. 1 has traditionally been a “black box”—inherently qualitative and imprecisely 3 

defined. We propose multi-objective linear programming (MOLP) to connect deployment 4 

decisions back to high-level program goals in Stage II, which requires two major tasks. The first 5 

is to convert high-level goals into operational deployment objectives. In this research, the 6 

operational deployment objectives consist of prioritizing sites with a high rate of collisions, high 7 

rate of speed limit violations, and those within school zones. The second task is to identify 8 

program-specific characteristics for use in the MOLP allocation model. In this research we have 9 

identified three: geographic units for enforcement allocation, program resources (i.e., operators, 10 

shift scheduling rules, equipment, etc.), and metrics to quantify the operational deployment 11 

objectives in the first task. The details of Stage II are discussed in Sections 3.1 and 3.2. The model 12 

outputs a set of candidate deployment options from which program managers can choose, based 13 

on their specific preferences and needs at a given time. 14 

2.1 MOLP Model Inputs 15 

Here we discuss the three inputs of the MOLP model as identified in Part II of Fig. 1, as defined 16 

for the MPE program in the city of Edmonton (COE), Alberta, Canada. Data was provided by the 17 

City of Edmonton Office of Traffic Safety, which oversees the COEs MPE program. Managers of 18 

other MPE programs with different operational and geographic considerations may need to adjust 19 

these inputs. 20 

2.1.1 Geographic Units for Enforcement Allocation 21 

In the COE, MPE sites are urban mid-block sections, their locations and lengths having been 22 

assessed and approved by MPE program managers. The MPE program has a site pool consisting 23 

of more than 1000 sites that are candidates for enforcement; with a limited set of operators, 24 
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vehicles, and equipment, deciding where to send these resources can be difficult. To make the 1 

planning stage of this deployment problem tractable, we allocate enforcement resources at a 2 

neighborhood level. A neighborhood is the considered unit of study in our application because it 3 

is commonly understood, and descriptive data is often available at this level of urban aggregation. 4 

In addition, neighborhoods have been proposed in road safety evaluation research to support high-5 

level management (17, 18). 6 

2.1.2 Program Resources 7 

The COEs MPE program is conducted through operator shifts that cover 20 hours of a day, seven 8 

days a week. During a shift, an operator is assigned to police speed at a set of enforcement sites. 9 

The 20-hour daily enforcement is divided into two shifts, including a daytime shift from 6AM-10 

4PM and an evening shift from 4PM-2AM. Therefore, we quantify available program resources in 11 

terms of the total monthly number of shifts. Providing deployment plans that cover a month is 12 

preferable to weekly or yearly plans, in order to best utilize historical data and maintain the 13 

perception of program randomness (19). 14 

2.1.3 Metrics to Quantify Operational Deployment Objectives 15 

We quantitatively define the three neighborhood-level deployment criteria based on those 16 

proposed by Li et al. (8). First, the total Equivalent property-damage-only (EPDO) collision 17 

frequency divided by the total road length (in km) for each neighborhood is used to quantify a 18 

neighborhood’s need for enforcement with regard to collision rates. Second, a speed violation 19 

indicator (SVI) is used to aggregate the proportion of vehicles exceeding the speed limit per 20 

neighborhood. SVI is the average of the percentage of violating vehicles across all segments in 21 

each neighborhood, weighted by the traffic volume over the length of time measured for each 22 

segment (20). Third, neighborhood school zone density, computed by dividing the total number of 23 

school zones by the total neighborhood area (in sq.km), is used to assess the level of enforcement 24 
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needed in a neighborhood due to the presence of schools. Neighborhoods exhibiting high metrics 1 

warrant a high level of enforcement, and the model is designed to allocate as many shifts as 2 

possible to these neighborhoods. 3 

2.2 MOLP Model  4 

A multi-objective linear programming (MOLP) model (Eqns. 1-3) is used to allocate one month 5 

of enforcement shifts to city neighborhoods, to optimize the three deployment criteria 6 

simultaneously. The three deployment objectives are quantified using the metrics introduced in 7 

Section 3.1.3; the higher the total of the three metrics is for a neighborhood, the more enforcement 8 

shifts one would expect to be allocated to that neighborhood. 9 

Decision Variables: 10 

𝑥𝑥𝑖𝑖 = number of operator shifts assigned to neighborhood i in a given month, 𝑖𝑖 ∈ [1, … ,𝑛𝑛]. 11 

Objective Functions: 12 

𝑚𝑚𝑚𝑚𝑥𝑥 �
(𝐼𝐼) ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
(𝐼𝐼𝐼𝐼) ∑ 𝑆𝑆𝑆𝑆𝐼𝐼𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
(𝐼𝐼𝐼𝐼𝐼𝐼) ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1

       (1) 13 

Subject to 14 

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=0 = 𝐸𝐸         (2) 15 

𝐿𝐿𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖, ∀ 𝑖𝑖        (3) 16 

where: 17 

𝑖𝑖 = neighborhood index, 𝑖𝑖 = 1, … , 𝑛𝑛; 18 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = EPDO collision frequency per kilometer (km) for neighborhood 𝑖𝑖; 19 

𝑆𝑆𝑆𝑆𝐼𝐼𝑖𝑖 = speed violation indicator for neighborhood 𝑖𝑖; 20 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = number of school zones per square kilometer (sq.km) for neighborhood 𝑖𝑖; 21 

𝐸𝐸 = number of total shifts in one month; 22 

𝐿𝐿𝑖𝑖 = minimum allowable shifts that may be allocated to neighborhood 𝑖𝑖 in one month, and 23 
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𝑈𝑈𝑖𝑖 = maximum allowable shifts that may be allocated to neighborhood 𝑖𝑖 in one month. 1 

 2 

Eqn. 1 consists of three objective functions, each of which sums the product (over all 3 

neighborhoods) of a neighborhood’s metric in question and number of shifts assigned to that 4 

neighborhood in the one given month. Eqn. 1 maximizes the three objective functions 5 

simultaneously, with respect to the constraints on the total number of shifts available in one month, 6 

𝐸𝐸 (Eqn. 2), and the minimum and maximum shifts allowed for each neighborhood over that month, 7 

𝐿𝐿𝑖𝑖 and 𝑈𝑈𝑖𝑖 (Eqn. 3). The model searches for the optimal shift distributions to neighborhoods [1 …𝑛𝑛], 8 

allocating as many shifts as allowed by Eqn. 3 to neighborhoods experiencing high 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖, 𝑆𝑆𝑆𝑆𝐼𝐼𝑖𝑖, 9 

and 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖. 10 

3. APPLICATION AND RESULTS 11 

The model described in Section 3 was applied to produce candidate deployment plans for the COEs 12 

MPE program in September 2014. September was chosen because it is known that the COE MPE 13 

program aims to dedicate greater enforcement efforts to school zones at this time of year. We used 14 

GIS mapping to present one deployment plan produced by the MOLP model, which assigned 15 

higher priority to school zones and less to high collision and speed violation sites. Furthermore, 16 

these deployment results were visually compared against the results of the actual September 2014 17 

MPE program deployment. 18 

3.1 Description of the Data 19 

This section describes the data collected from the Edmonton case study. Data used for input to the 20 

MOLP model, including the metrics used for the objectives and total MPE program resources for 21 

a given month, are described. 22 

The COE has 𝑛𝑛 = 388  neighborhoods. Three years (2012-2014) of geocoded data 23 

consisting of 18,198 speed-related midblock collisions, 893 speed survey reports, and 296 schools’ 24 
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information were assigned to their corresponding neighborhoods in GIS, to calculate the three 1 

neighborhood-level metrics introduced in Section 3.1.3 and Eqn. 1. It is noted that in computing 2 

EPDO collision frequency, the direct cost of collisions of different severity levels, were used as 3 

the weights for different collision severities. Specifically, according to this 2010 report (21), one 4 

fatal collision is equivalent to 16.6 PDO collisions and one injury collision is equivalent to 3.6 5 

PDO collisions. Of the 388 COE neighborhoods, most neighborhoods have EPDO/km values 6 

between 0 and 7.7 EPDO/km, speed violation indicator (SVI) values between 0 and 0.6, and school 7 

zone densities (school zones/sq.km) between 0 and 1.6, from 2012-2014. 8 

Fig. 2 illustrates the neighborhoods that have calculated metrics within the top 10% of each 9 

of the three criteria; these neighborhoods are those that we have defined as warranting high 10 

enforcement attention. 11 
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FIGURE 2 Edmonton neighborhoods ranked by criteria, 2012-2014. 2 
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As seen in Fig. 2, there are no neighborhoods that fall in the top 10% of neighborhoods for 1 

all three metrics simultaneously. In addition, there are only nine neighborhoods in the top 10% of 2 

neighborhoods for any two of the three metrics (marked in red). This suggests that resources sent 3 

to these nine neighborhoods may address two of the three goals at once. However, overall it can 4 

be concluded that the goals of prioritizing neighborhoods with high collision rates, speed violation 5 

rates, and school zone densities for enforcement are not necessarily complementary to one another, 6 

and indeed, conflict. 7 

Neighborhoods within the top 10% for only one metric include 32 neighborhoods for 8 

EPDO/km (identified in blue), 31 neighborhoods for SVI (identified in green), and 36 9 

neighborhoods for school zone densities (identified in yellow). All three top 10% criteria groups 10 

have an average calculated metric that is more than double the average for all 388 neighborhoods, 11 

but they have values in the other two metric categories close to or even below the average of all 12 

neighborhoods. For instance, the 2012-2014 average EPDO frequency of the neighborhoods 13 

exclusively in the top 10% of collision sites is 11.9 EPDO/km, which is almost three times the 14 

average EPDO frequency for all 388 neighborhoods (4.3 EPDO/km). However, the average SVI 15 

of those neighborhoods exclusively in the top 10% of collision sites is 0.3 SVI, mirroring the 16 

average for all neighborhoods. In addition, those neighborhoods’ average school zone density is 17 

only 0.4 school zones per square kilometer (sq.km), which is about half of the average for all 18 

neighborhoods (0.7 school zones/sq.km). Similar observations can be made for the other two 19 

groups of neighborhoods that fall exclusively in the top 10% of the speed violation metric or school 20 

zone density metric. These observations imply that allocating resources to the blue, green, and 21 

yellow neighborhoods shown in Fig. 2 will address high enforcement demand for only one of three 22 

deployment goals. Thus, these goals are in conflict. If program managers want to address 23 
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conflicting program goals at the same time, they must trade off and compromise when allocating 1 

resources to meet these goals, which is difficult without support from a mathematical tool. 2 

The total number of enforcement shifts made in September 2014 was used to fix the total 3 

number of shifts available for allocation over one month. The COE MPE program employs 20 4 

operators, who are deployed in 10-hour shifts that occur twice daily, from 6 am to 4 pm, and 4 pm 5 

to 2 am. A shift consists of one operator in one vehicle. In September 2014, a total of 458 shifts 6 

were deployed to 231 enforcement sites located in 135 neighborhoods across the city. An operator 7 

will visit anywhere from one to four sites during one shift, with an average of 6.7 hours spent on 8 

the enforcement task itself per 10-hour shift. The 458 shifts made in September 2014 was used in 9 

Eqn. 2 (𝐸𝐸 = 458).  10 

Also, the actual number of shifts made in each month of 2013 and 2014, in each Edmonton 11 

neighborhood 𝑖𝑖, were used to determine the minimum and maximum number of shifts available 12 

for allocation in September 2014 (𝐿𝐿𝑖𝑖 and 𝑈𝑈𝑖𝑖 in Eqn. 3). According to the COE MPE deployment 13 

data from 2013-2014, neighborhoods were classified as receiving 1) high attention, 2) medium 14 

attention, and 3) no attention. The first group consists of about 30 neighborhoods that were visited 15 

each month over the two years of 2013 and 2014, and assigned a minimum of 240 shifts each 16 

month (which is about half the total shifts available per month). This group of neighborhoods had 17 

a minimum of 8 shifts, and maximum of 49, allocated per month. The medium attention group 18 

consisted of 186 neighborhoods that were visited more occasionally, with a minimum of zero and 19 

maximum of 7 shifts per month. The remaining 172 neighborhoods were not visited at all over the 20 

two years. To correspond more closely to the actual needs of the Edmonton’s MPE program, we 21 

set the constraints 𝐿𝐿𝑖𝑖 and 𝑈𝑈𝑖𝑖 using the above information for the following application. However, 22 

this may be changed depending on the particular requirements, needs, and governing regulations 23 

of the MPE program. 24 
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3.2 Model Application 1 

The MOLP model was used to distribute 458 MPE operator shifts in September 2014 over 388 2 

Edmonton neighborhoods, based on each neighborhood’s calculated EPDO/km, SVI, and school 3 

zone density, as well as the bounds on shifts allocated to each neighborhood. The trade-offs 4 

(between the three metrics considered) of different solutions will be required when they are 5 

considered simultaneously. Usually there is not a single optimal solution but a set of optimal 6 

solutions (known as Pareto optimal solutions); at each of these optimal solutions, one objective 7 

cannot be increased without reducing at least one of the others (22). In this application, we used 8 

the generalized differential evolution 3 algorithm (GDE3) to find the Pareto solutions set. GDE3 9 

is a widely used multi-objective evolutionary algorithm (MOEA) that has been shown to 10 

outperform other MOEAs (such as the non-dominated sorting genetic algorithm) in finding 11 

solutions with fewer iterations (23, 24). An open-source MOEA Java Framework (25) was used to 12 

execute the GDE3 algorithm in searching for Pareto solutions (run on a Dell Precision T1700 13 

workstation running Windows 7 with 3.6 GHz processor and 8 GB RAM). The parameter settings 14 

used in this algorithm included a population size of 200, crossover rate of 0.1, and step size of 0.5. 15 

A population size of 200 was used because we felt that this would be large enough to provide good 16 

coverage of the Pareto “surface”, but not so large as to completely overwhelm MPE managers who 17 

would be responsible for choosing one solution among the Pareto set. The crossover rate and step 18 

size values chosen (0.1 and 0.5, respectively) are both within the recommended range for the GDE3 19 

algorithm (23). The algorithm’s iterative process is stopped when the number of iterations reaches 20 

a predefined limit. 21 

200 solutions were obtained and they represent MPE resource allocation solutions that are 22 

optimal when considering the three objective functions of Eqn. 1. All 200 solutions are plotted as 23 

points in Fig. 3 using the Visual Co-Plot software (26). MPE program managers are expected to 24 
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choose a solution from this set based on their specific needs for the month, and what trade-offs 1 

among the objectives are considered acceptable. 2 

 3 

 4 

FIGURE 3 Pareto solutions from the MOLP model. 5 
 6 

Each axis in Fig. 3 represents a metric associated with one of the Eqn. 1 objective functions. 7 

There are three circles labeled A, B, and C located beyond the ends of the axes; solutions contained 8 

in these circles are identified to have metric values within the top 5% of the metric represented by 9 

the axis on which they lie (10 points per group). In addition, there is one point marked in blue in 10 

each circle (labeled 1 in circle A, 2 in circle B, 3 in circle C). These points are located at the 11 

extreme ends of each axis and represent the highest value of the corresponding axis metric. Each 12 

point represents the result obtained by maximizing one of the three objective functions of Eqn. 1. 13 

Choice of each of these solutions represents the scenario where program managers have decided 14 

to allocate all enforcement resources to maximizing the one corresponding metric alone, without 15 

regard for the two others. The solutions in, say, Group A have high values of the EPDO/km metric 16 
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(first objective function in Eqn. 1), but exhibit a range of values of the other two metrics. Selecting 1 

a solution contained within one of these groups represents a high-level decision to give greater 2 

priority to that one deployment criteria over the others. 3 

The points in circle D represent solutions that are the most balanced among the three 4 

objectives in Eqn. 1. Specifically, they represent the 10 points (5% of solutions) with the shortest 5 

Euclidean distance to the intercept, with the black point labeled “4” being the closest of them all. 6 

The solutions in this group were found to have relatively average values for each of the three 7 

metrics represented. Therefore, if MPE program managers are aiming to find deployment resource 8 

allocation plans that best balance all three deployment objectives, they would consider these 9 

solutions. 10 

Solutions (represented by grey points) positioned between any two of the three axes exhibit 11 

relatively high values for two of the three metrics. If MPE program managers are looking to fulfill 12 

program goals that are more nuanced (i.e., somewhere between the extremes of focusing on one 13 

goal versus balancing all of them), they might focus on one of these solutions. 14 

Overall, the model delivers deployment solutions that simultaneously consider the three 15 

deployment goals at varying relative degrees of importance. MPE program managers are provided 16 

a diverse set of solutions that yield optimal deployment allocations for any configuration of 17 

program priorities called for in a given month. In addition, the variety of options available, even 18 

when narrowed down to meet a focused program objective that is in place for longer than a single 19 

month, allows MPE program managers to change the deployment plan from month to month within 20 

that same objective. This will help to maintain the perception of unpredictability (in time and 21 

location) of enforcement activities. 22 

3.3 Illustrative MOLP Model Solution 23 

Here we present one candidate deployment plan for a typical September in the city of Edmonton 24 
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(COE). As previously mentioned, September is the beginning of the school year for kindergarten 1 

through grade 12 (as well as post-secondary), and the COE MPE program will typically commit a 2 

significant portion of enforcement resources to school zones at this time. Therefore, we illustrate 3 

the deployment results of one potential deployment plan—solution 5, shown as a black point in 4 

circle D in Fig. 3. This solution gives the highest priority to the school zone criterion among the 5 

solutions in D (recall that D identified the 10 solutions that provide the most balance among the 6 

three objectives in Eqn. 1). Fig. 4 shows the neighborhoods identified in the plan, which are colored 7 

according to the level of proposed enforcement intensity. In addition, these results are shown 8 

against the actual MPE deployment made in Edmonton in September 2014. Specifically, Fig. 4 9 

uses circles to represent the MPE sites actually visited by program operators during the month. 10 

These circles are differentiated by color and size. Firstly, blue represents a road segment 11 

enforcement site located in at least one of the neighborhoods proposed by the plan; grey represents 12 

sites actually visited in neighborhoods not included in the candidate plan. Secondly, the size of the 13 

circle indicates the amount of enforcement time spent at each site over the month; the larger the 14 

circle is, the more time spent at the site. During a typical 10-hour shift in September 2014, 15 

operators spent an average of 6.7 hours on enforcement activities (with the balance spent in travel 16 

and other non-enforcement activities). However, sites that had less than 6.7 hours of enforcement 17 

over the month are represented by a lighter blue or grey colored dot that is not to scale (as they 18 

otherwise would be too small to be seen on the map). 19 
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FIGURE 3 Candidate and actual MPE deployment plans for Edmonton, September 2014. 2 
  3 
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As shown in Fig. 4, 44 neighborhoods were identified in the candidate deployment plan, 1 

and were further split into three categories based on the number of shifts assigned to each 2 

neighborhood: high, medium, and low enforcement intensity. Firstly, 5 neighborhoods (shown in 3 

red) are high enforcement intensity neighborhoods, which are assigned 227 shifts with each 4 

neighborhood allocated an average of 45 shifts in September. The average school zone density of 5 

this neighborhood group (based on the 2012-2014 data) is 2.1 school zones/sq.km, which is three 6 

times the average of all 388 neighborhoods. The high intensity neighborhoods of this group also 7 

have relatively higher values in the other two metrics, showing an average of 8.8 EPDO/km and 8 

0.6 SVI per neighborhood, which are each about twice the average figures for all 388 9 

neighborhoods. This indicates the three program goals are all addressed with a high level of 10 

enforcement, but school zones receive the most enforcement, given that the school zone density 11 

metric for these neighborhoods (equal to triple the average school zone density for all 12 

neighborhoods) is optimized in the model. 13 

Secondly, 17 neighborhoods fall within the medium enforcement intensity group and are 14 

marked in yellow in Fig. 4; these were assigned a total of 188 shifts, with each allocated an average 15 

of 11 shifts in September. These neighborhoods have mean school zone density, EPDO/km, and 16 

SVI values of 1.1 school zones/sq.km, 5.6 EPDO/km, and 0.5 SVI. The school zone density and 17 

EPDO/km mean values are respectively 33% and 20% lower than those of the low intensity group, 18 

while the SVI values are similar to those of the low intensity group. The reason that these 19 

neighborhoods are assigned greater enforcement intensity than those in the low intensity group is 20 

due to the values of the constraints in Eqn. 3. The minimum and maximum enforcement shifts 21 

allowed to a neighborhood in the MOLP model were set using the actual numbers of shifts made 22 

in 2013 and 2014 (this was discussed in 4.1). Most neighborhoods in the medium intensity group 23 

are those that had received significant enforcement attention—10 to 51 shifts per neighborhood 24 
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per month. Therefore, the minimum shifts (𝐿𝐿𝑖𝑖, Eqn. 3) for neighborhoods in this group were quite 1 

high and they received significant enforcement attention, despite that they also exhibited the lowest 2 

average school zone density and EPDO/km among the three intensity groups. 3 

Marked in green are 22 low enforcement intensity neighborhoods. They received the lowest 4 

enforcement intensity, with an average of two shifts allocated to each neighborhood during the 5 

month. As mentioned previously, this neighborhood group has higher mean values of school zone 6 

density and EPDO/km metrics than the medium intensity group (but lower than the high intensity 7 

group), and similar mean SVI value as the medium intensity group, at 1.7 school zones/sq.km, 7.1 8 

EPDO/km and 0.5 SVI. 9 

 The statistics of the above three neighborhood categories show that the candidate 10 

deployment plan efficiently utilizes one month of shifts based on resource constraints and 11 

measured neighborhood enforcement needs, as per the program goals. The measures of our three 12 

objective functions are widely accepted proxies of roadway traffic safety (27–29);  optimizing the 13 

allocation of enforcement resources to neighborhoods according to these measures, as we have 14 

demonstrated, is expected to result in traffic safety improvements. Specifically, we would expect 15 

to see reduced collisions and near misses. 16 

We also compare our illustrative candidate deployment plan with the actual COE MPE 17 

deployment made in September 2014. Fig. 4 shows that 93 (40%) of 231 MPE sites enforced in 18 

September 2014 are located in neighborhoods included in the candidate plan; these are represented 19 

in blue. The remaining 138 MPE sites (represented as grey circles) in the actual deployment were 20 

in neighborhoods not covered by the candidate deployment plan. To compare how well the three 21 

goals were addressed simultaneously, we compared the values of the three objective functions in 22 

Eqn. 1 for the proposed resource allocation plan and the actual program deployment. To do the 23 

comparison, we used hours rather than shifts as the unit for the decision variable 𝑥𝑥𝑖𝑖. In the actual 24 
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September 2014 deployment, some operators visited enforcement sites belonging to different 1 

neighborhoods during one shift; however, the candidate plan assigns an operator to visit sites only 2 

within one neighborhood during a shift. Thus, we multiplied the proposed number of shifts per 3 

neighborhood in the candidate plan by 6.7 hours (recall this is the average time actually spent 4 

doing enforcement during a shift) and calculated the three metrics (also the objective function 5 

values of Eqn. 1) when 𝑥𝑥𝑖𝑖 is in hours rather than shifts. Then, the actual hours spent enforcing sites 6 

in each neighborhood in September 2014 were used to calculate the three resulting metrics values 7 

for the actual MPE deployment. 8 

The results indicate that the EPDO/km, SVI and school zone density metrics obtained in 9 

the candidate plan are 18%, 11% and 34% higher than those of the actual September 2014 10 

deployment, respectively. The actual program spent a total of 1968 hours in September 2014 doing 11 

MPE in neighborhoods also identified for enforcement in the candidate plan; this accounts for 12 

about two-thirds of the total September 2014 enforcement hours (3068 hours). However, the actual 13 

program spent significant time in neighborhoods that were identified as warranting medium 14 

enforcement intensity in the candidate plan. Neighborhoods that were identified as part of the 15 

medium intensity group in the candidate plan were covered a total of 1147 hours in the actual 16 

program (which is 58% of the total MPE hours assigned in the candidate plan). In contrast, the 17 

actual September 2014 program spent only 19% (365 hours) and 23% (456 hours) of the total 18 

hours proposed for neighborhoods in the candidate plan on neighborhoods in the high intensity 19 

and low intensity groups, respectively. Conversely, the proposed proportion of total deployment 20 

time for high, medium, and low intensity neighborhoods over one month in the candidate plan is 21 

50% (1521 hours), 41% (1259 hours), and 9% (288 hours), with the differences among the 22 

neighborhood groups based on the metrics and model constraints. This comparison indicates that 23 

the actual September 2014 deployment did not invest a greater proportion of enforcement 24 
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resources to neighborhoods that exhibit high levels of enforcement demand, as identified by the 1 

metrics of the three program goals. 2 

Another difference is that the actual deployment spent 36% of total enforcement time (3068 3 

hours) on 138 MPE sites in 97 neighborhoods not identified in the candidate deployment plan. 4 

These 97 neighborhoods have averages of 4.5 EPDO/km, 0.4 SVI, and 1.3 school zones/sq.km, all 5 

of which are at least 17% lower than the average metrics of the 44 neighborhoods included in the 6 

candidate plan (with averages of 6.7 EPDO/km, 0.5 SVI, and 1.5 school zones/sq.km). Moreover, 7 

it is worth noting that 83% of these 138 MPE sites not also covered in the candidate plan 8 

(represented as light grey circles) were only visited 2 hours per site over the month of September 9 

2014. This suggests that most of the enforcement sites not located in neighborhoods included in 10 

the candidate plan may have been visited to encourage the perception of program randomness, 11 

which was not an explicit goal of the proposed model. Another 17% of these 138 MPE sites 12 

(marked in dark grey circles) were visited with higher intensity, at an average of 37 hours per site 13 

per month. This difference in the actual allocation may be due to the COE MPE program possibly 14 

having other goals or needs to address, which we cannot comment on here. 15 

Overall, this application has demonstrated how the proposed model can allocate resources 16 

to balance multiple and conflicting program priorities. Visualizing the candidate plan provides 17 

program managers with insight on how the deployment goals can be quantitatively mapped to the 18 

deployment decisions, which may make the decision process simpler and evidence-based. 19 

4. CONCLUSIONS AND FUTURE WORK 20 

This paper describes a resource allocation model for a mobile photo enforcement (MPE) program. 21 

The model uses multi-objective optimization to optimize one month of enforcement to city 22 

neighborhoods, according to a set of deployment objectives. The model found optimal allocation 23 

solutions for a demonstrated 3-objective MPE deployment problem in Edmonton. The problem 24 
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balanced enforcement presence in September 2014 at high collision sites, high speed violation 1 

sites, and school zones. Each optimal solution corresponds to a set of values for enforcement 2 

coverage units at three types of sites. Choosing a solution represents a decision that gives a 3 

quantitative trade-off between the three goals. A candidate solution was further visualized on a 4 

GIS map. It allocates one month's shifts to 44 neighborhoods, achieving higher enforcement 5 

coverage than the actual deployment in September 2014, with 11%, 34%, and 18% more coverage 6 

units at high speed violation sites, school zones, and high collision sites, respectively. This suggests 7 

that using our optimization model produces greater efficacy in achieving program objectives than 8 

the expert defined approach. 9 

The proposed model facilitates deployment decisions in three ways. First, it can guide MPE 10 

program managers to make resource deployment decisions that directly reflect the program’s high-11 

level priorities. This has traditionally been somewhat of a “black box”—inherently qualitative and 12 

imprecisely defined. Through this work, program-level goals can be better achieved, which, in turn 13 

will improve the progress toward achieving Vision Zero. Second, the MOLP model results provide 14 

program managers with a set of candidate deployment options that correspond to different 15 

considerations and preferences. Finally, assigning shifts at the neighborhood level provides the 16 

first step towards site-level MPE shift scheduling. The model to distribute and schedule 17 

neighborhood shifts to predetermined enforcement sites is currently under development. 18 

The model can be applied to MPE programs in other jurisdictions, simply by tailoring the 19 

high-level program goals and corresponding metrics to local program specifications, as in Fig. 1. 20 

Future work may include incorporation of additional neighborhood-level metrics on top of the 21 

three introduced in this paper; one such candidate metric may consider other vulnerable users. 22 

Also, the proposed MOLP model does not directly address how an MPE program’s perception of 23 



 24 

randomness may be increased; this could be included as an objective in the MOLP, or an additional 1 

post-processing step. 2 

 3 

ACKNOWLEDGEMENT 4 

This research was made possible through support from the Office of Traffic Safety, City of 5 

Edmonton. The authors thank the Office of Traffic Safety for providing data and inputs to facilitate 6 

this work, and Aalyssa Atley for providing editing support. 7 

  8 



 25 

REFERENCES 1 

1.  WHO. Global Status Report on Road Safety 2018. World Health Organization, 2018. 2 

2.  Shen, L.-Y., J. J. Ochoa, M. N. Shah, and X. Zhang. The Application of Urban 3 

Sustainability Indicators–A Comparison between Various Practices. Habitat International, 4 

Vol. 35, No. 1, 2011, pp. 17–29. 5 

3.  Wann-Ming, W. Constructing Urban Dynamic Transportation Planning Strategies for 6 

Improving Quality of Life and Urban Sustainability under Emerging Growth Management 7 

Principles. Sustainable Cities and Society, Vol. 44, 2019, pp. 275–290. 8 

4.  Koornstra, M. J., M. P. M. Mathijssen, J. A. G. Mulder, R. Roszbach, and F. C. M. 9 

Wegman. Red.(1992). Naar Een Duurzaam Veilig Wegverkeer; Nationale 10 

Verkeersveiligheidsverkenning Voor de Jaren 1990/2010.[Towards Sustainably Safe Road 11 

Traffic; National Road Safety Survey for 1990/2010]. SWOV, Leidschendam. 12 

5.  Tingvall, C., and N. Haworth. Vision Zero: An Ethical Approach to Safety and Mobility. 13 

No. 1999, 2000. 14 

6.  OECD/ECMT, Ed. Speed Management. Organisation for Economic Co-operation and 15 

Development (OECD), European Conference of Ministers of Transport (ECMT), 16 

OECD/ECMT Transport Research Centre, Paris, 2006. 17 

7.  Chen, G., J. Wilson, W. Meckle, and P. Cooper. Evaluation of Photo Radar Program in 18 

British Columbia. Accident Analysis & Prevention, Vol. 32, No. 4, 2000, pp. 517–526. 19 

8.  Li, Y., A. Kim, and K. El-Basyouny. Using GIS to Interpret Automated Speed Enforcement 20 

Guidelines and Guide Deployment Decisions in Mobile Photo Enforcement Programs. 21 

Transportation Research Part A: Policy and Practice, Vol. 86, 2016, pp. 141–158. 22 



 26 

9.  Leggett, L. M. The Effect on Accident Occurrence of Long Term, Low Intensity Police 1 

Enforcement. No. 14, 1988. 2 

10.  Leggett, L. M. W. Using Police Enforcement to Prevent Road Crashes: The Randomised 3 

Scheduled Management System. Policing for Prevention: Reducing Crime, Public 4 

Intoxication and Injury. Crime Prevention Studies, Vol. 7, 1997, pp. 175–97. 5 

11.  Kim, A. M., X. Wang, K. El-Basyouny, and Q. Fu. Operating a Mobile Photo Radar 6 

Enforcement Program: A Framework for Site Selection, Resource Allocation, Scheduling, 7 

and Evaluation. Case Studies on Transport Policy, Vol. 4, No. 3, 2016, pp. 218–229. 8 

12.  Toregas, C., R. Swain, C. ReVelle, and L. Bergman. The Location of Emergency Service 9 

Facilities. Operations Research, Vol. 19, No. 6, 1971, pp. 1363–1373. 10 

13.  Church, R., and C. R. Velle. The Maximal Covering Location Problem. Papers in regional 11 

science, Vol. 32, No. 1, 1974, pp. 101–118. 12 

14.  Curtin, K. M., F. Qiu, K. Hayslett-McCall, and T. M. Bray. Integrating GIS and Maximal 13 

Covering Models to Determine Optimal Police Patrol Areas. Geographic Information 14 

Systems and Crime Analysis Hershey: IDEA Group Publishing, 2005, pp. 214–235. 15 

15.  Yin, Y. Optimal Fleet Allocation of Freeway Service Patrols. Networks and Spatial 16 

Economics, Vol. 6, No. 3–4, 2006, pp. 221–234. 17 

16.  Adler, N., A. S. Hakkert, T. Raviv, and M. Sher. The Traffic Police Location and Schedule 18 

Assignment Problem. Journal of Multi-Criteria Decision Analysis, Vol. 21, No. 5–6, 2014, 19 

pp. 315–333. 20 

17.  Ho, G., and M. Guarnaschelli. Developing a Road Safety Module for the Regional 21 

Transportation Model, Technical Memorandum One: Framework. Insurance Corporation of 22 

British Columbia, Vancouver, Canada, 1998. 23 



 27 

18.  Lovegrove, G. R., and T. Sayed. Macro-Level Collision Prediction Models for Evaluating 1 

Neighbourhood Traffic Safety. Canadian Journal of Civil Engineering, Vol. 33, No. 5, 2 

2006, pp. 609–621. 3 

19.  Kim, A., X. Wang, K. El-Basyouny, and Q. Fu. Operating a Mobile Photo Radar 4 

Enforcement Program: A Framework for Site Selection, Resource Allocation, Scheduling, 5 

and Evaluation. Manuscript submitted for publication, 2015. 6 

20.  Hakkert, A. S., V. Gitelman, and M. A. Vis. Road Safety Performance Indicators: Theory. 7 

2007. 8 

21.  de Leur, P., L. Thue, and B. Ladd. Collision Cost Study. Capital region intersection safety 9 

partnership, 2010. 10 

22.  Steuer, R. E. Multiple Criteria Optimization: Theory, Computation, and Applications. 11 

Wiley, 1986. 12 

23.  Kukkonen, S., and J. Lampinen. GDE3: The Third Evolution Step of Generalized 13 

Differential Evolution. No. 1, 2005, pp. 443–450. 14 

24.  Antonio, L. M., and C. Coello Coello. Use of Cooperative Coevolution for Solving Large 15 

Scale Multiobjective Optimization Problems. 2013. 16 

25.  Hadka, D. 2.9. MOEA Framework - A Free and Open Source Java Framework for 17 

Multiobjective Optimization. 2015. 18 

26.  Talby, D., and A. Raveh. 5.5. Visual Co-Plot. 2015. 19 

27.  Delaney, A., K. Diamantopoulou, and M. Cameron. MUARC’s Speed Enforcement 20 

Research: Principles Learnt and Implications for Practice. 2003. 21 



 28 

28.  Li, R., K. El-Basyouny, A. Kim, and S. Gargoum. Relationship between Road Safety and 1 

Mobile Photo Enforcement Performance Indicators: A Case Study of the City of Edmonton. 2 

Journal of Transportation Safety & Security, No. just-accepted, 2016, pp. 00–00. 3 

29.  Newstead, S., and M. H. Cameron. Evaluation of the Crash Effects of the Queensland 4 

Speed Camera Program. Monash University Accident Research Centre Victoria, Australia, 5 

2003. 6 

 7 


	early termination form mar 2016 Li Huanan.pdf
	Abstract
	1. INTRODUCTION
	2. MOBILE PHOTO ENFORCEMENT (MPE) RESOURCE DEPLOYMENT  FRAMEWORK
	FIGURE 1 MPE deployment framework.
	2.1 MOLP Model Inputs
	2.1.1 Geographic Units for Enforcement Allocation
	2.1.2 Program Resources
	2.1.3 Metrics to Quantify Operational Deployment Objectives
	2.2 MOLP Model
	3. APPLICATION AND RESULTS
	3.1 Description of the Data
	FIGURE 2 Edmonton neighborhoods ranked by criteria, 2012-2014.
	3.2 Model Application
	FIGURE 3 Pareto solutions from the MOLP model.
	3.3 Illustrative MOLP Model Solution
	FIGURE 3 Candidate and actual MPE deployment plans for Edmonton, September 2014.
	4. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENT
	REFERENCES


