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Abstract

For a smooth projective variety X (of dimension d) defined over Q, Beilinson

(and independently Bloch) constructed a ‘height’ pairing

CHr
hom(X;Q)× CHd−r+1

hom (X;Q)→ R,

under very reasonable assumptions and with a number of conjectural prop-

erties. A folklore conjecture related to this pairing states that the Griffiths

Abel-Jacobi map

Φr : CHr
hom(X;Q)→ Jr(X)⊗Q

is injective (BBC). But if X is defined over a field of finite transcendence

degree over Q, then the injectivity of the Abel-Jacobi map doesn’t hold any

more. Instead we have the concept of a conjectural Bloch-Beilinson filtration,

a candidate for which was given by James Lewis. Under some assumptions,

specially BBC, the main point of this thesis is to generalize the height pairing

to the graded pieces of this candidate Bloch-Beilinson filtration using cohomo-

logical machinery.
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Chapter 1

Introduction

Let us fix a subfield k ⊂ C (k will be a finitely generated overfield of Q in most

of the situations). Henceforth, we will consider smooth projective varieties

over k. We will mention the underlying field only if we digress from the above

convention. Given a smooth geometrically irreducible projective variety X of

dimension d , we can associate its betti and Hodge cohomologies, as well as

cycle groups:

• The singular cohomology H l(X,Q) := H l(X(C),Q), where X(C) de-

notes the associated complex space. Via the de Rham isomorphism the-

orem, and the work of Hodge, this singular cohomology comes equipped

with a natural Hodge decomposition, as a reflection of the complex struc-

ture on X(C):

H l(X,Q)⊗Q C ∼= H l
de−Rham(X,C) = ⊕p+q=lHp,q(X)

where Hp,q(X) is the space of d-closed (p, q)-forms (modulo cobound-

aries), and Hp,q(X) = Hq,p(X), the complex conjugation induced by

conjugation on the second factor of H l(X,Q)⊗QC. Here H l
de−Rham(X,C)

denotes the de Rham cohomology of X(C). One can define a Hodge fil-

tration on H l(X,C) by assigning

F iH l(X,C) :=
⊕

p+q=l,p=i

Hp,q(X) ,
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a situation that holds more generally for compact complex Kähler man-

ifolds.

• The Chow group, which we formally define as follows : For an irreducible

subvariety Y ⊂ X, denote by

codimension(Y ) := d− dim(Y ) .

Now consider the Z-linear combination of irreducible subvarieties of X

of codimension r and denote it by Zr(X) (we call them algebraic cycles).

Define the Chow group of codimension r to be

CHr(X) := Zr(X)/ ∼rat ,

where ∼rat is an adequate equivalence relation (which, among other

things, provides a ring structure on
⊕

r≥0CH
r(X)), known as ratio-

nal equivalence. it is well-known that rational equivalence is the weakest

among all other equivalence relations, in the sense that being rationally

equivalent implies equivalent under any other adequate equivalence re-

lation.

Given the Chow group of X, there are two cycle class maps associated to the

cohomology of X. The first one is known as the fundamental class map into

singular cohomology:

clr : CHr(X)→ H2r(X,Z) ,

where H2r(X,Z) is the singular cohomology with Z coefficients (which can

have torsion elements). It can be shown that the image of this map lies in

Hr,r(X,Z) := H2r(X,Z) ∩Hr,r(X) ,

where the latter term is intended to include the torsion classes. One of the most

celebrated conjectures in algebraic geometry; known as the Hodge conjecture,

states that the (rational) cycle class map

clr : CHr(X;Q) := CHr(X)⊗Z Q→ Hr,r(X,Q) := H2r(X,Q) ∩Hr,r(X) ,
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is surjective. There is also a generalization of this conjecture, first formulated

as an important open question by Hodge, and later amended by Grothendieck,

called the general Hodge conjecture (GHC). This will be explained later in the

text.

The kernel of the (rational) cycle class map, denoted by CHr
hom(X;Q), is an

important algebraic object attached to X. One can define a secondary class

map, namely, the Abel-Jacobi map:

Φr : CHr
hom(X;Q)→ Jr(X)⊗Q ,

where Jr(X) is a certain compact complex torus called the Griffiths Jacobian

of X.

In the 1970’s Bloch conjectured that there should be a ‘natural’ decreasing

filtration on the (rational) Chow groups of smooth projective varieties (resem-

bling the Hodge filtration in cohomology). This was later fortified by Beilinson

in terms of motivic extension datum, based on the conjectural existence of the

category of mixed motives for varieties over a field. For a smooth projective

variety X, if we denote the conjectural filtration by {F iCHr(X;Q)}i≥0 , then

one criteria of it is F 1CHr(X;Q) = CHr
hom(X;Q); more precisely, the right

hand side (RHS) should be the Chow group of cycles numerically equivalent to

zero, but this will be the same as CHr
hom(X;Q) under the Hodge conjecture.

So far, there are several candidates for this filtration and one of the most im-

portant one was developed by James Lewis, in his paper[38]. It satisfies most

of the properties of a Bloch-Beilinson filtration. We will elaborate more on it

in the Chapter 3.

One can view the cycle class maps from the Chow groups of smooth projective

varieties to the category of “mixed Hodge structures”, which will play a role

in detecting non-zero cycles. The non-degenerate pairings

H2r−1(X,C)×H2d−2r+1(X,C)→ C , (Poincaré)

Hp,q(X)×Hd−p,d−q(X)→ C , (Serre)
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induced by

(η1, η2) 7→
∫
X

η1 ∧ η2

and more importantly (to us), the associate Hodge-Riemann bilinear relations,

will be seen to play an important role on the level of Chow groups.

For a smooth projective variety X (of dimension d) defined over a number field

k (i.e. [k : Q] <∞) or more generally over Q, Beilinson ([5]) and independently

Bloch ([6]) constructed a ‘height’ pairing (under very reasonable assumptions):

CHr
hom(X;Q)× CHd−r+1

hom (X;Q)→ R,

with a number of conjectural properties. For example, Conjectures 5.4 and

5.5 of [5] seem to mirror the nondegeneracy properties of the pairing stated

above. A folklore conjecture, due independently by Bloch and Beilinson, and

playing a role in this pairing, states that the (rational) Abel-Jacobi map

Φr : CHr
hom(X;Q)→ Jr(X)⊗Q

is injective, where the RHS is (again) defined in terms of the associated com-

plex space X(C). This conjecture is referred to as the Bloch-Beilinson conjec-

ture (BBC).

Returning to the conjectural filtration, let

GrνFCH
r(X;Q) := F νCHr(X;Q)/F ν+1CHr(X;Q)

denote the graded pieces of the Bloch-Beilinson filtration. It is an important

(motivic) invariant of X. We will work in the set-up of the filtration developed

by James Lewis ([38]). As with other candidate filtrations, an important

feature of which is the fact that F 2CHr(X;Q) ⊂ Ker(Φr), where

Ker(Φr) := {η ∈ CHr
hom(X;Q) ; Φr(η) = 0} .
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If X is defined over Q and we assume the BBC about the injectivity of the

(rational) Abel-Jacobi map, then

Gr1
FCH

r(X;Q) = F 1CHr(X;Q) = CHr
hom(X;Q),

and GrνFCH
r(X;Q) = 0 for ν ≥ 2, since F 2CHr(X;Q) ⊂ Ker(Φr) = 0.

The height pairing developed by Beilinson and Bloch can now be viewed as a

pairing

Gr1
FCH

r(X;Q)×Gr1
FCH

d−r+1(X;Q)→ R .

However if X is defined over a field of transcendence degree greater than 0 over

Q, there are plenty of examples where the Abel-Jacobi map is not injective

(see [14], [52], [40] and [45] among others). Hence we (conjecturally) have non

zero higher graded pieces. The main purpose of this thesis is to extend the

‘height’ pairing of Beilinson and Bloch to higher graded pieces of the candidate

Bloch-Beilinson filtration developed by James Lewis, in form of the following

theorem:

1.0.1 Theorem. Let X/Q be a smooth projective variety of dimension d and

let K/Q be a finitely generated overfield of transcendence degree ν − 1, where

ν ≥ 1 is an integer. Let us assume Grothendieck amended general Hodge

conjecture, together with the BBC, viz., the injectivity of the Abel-Jacobi map

for varieties defined over Q. Then there exists a pairing

〈 , 〉HT : GrνFCH
r(XK ;Q)×GrνFCHd−r+ν(XK ;Q)→ R ,

extending the Beilinson height pairing.

We will prove this in Chapter 7.

The set-up of this thesis is as follows: In Chapters 2-6, we develop the back-

ground material needed for the main body, including a brief review of arith-

metic intersection theory, a pathbreaking area developed by Gillet and Soulé

in [18]. Chapter 7 contains the proof of Theorem 1.1. In Chapter 8, we will see

some explicit computations of the pairing that we developed. The last chap-

ter, Chapter 9 is more speculative in nature, containing the generalizations of

Conjectures 5.3 (a) and 5.5 of [5], for the height pairing on graded pieces.
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Chapter 2

Chow group of a smooth

projective variety and its

connection to cohomology

General references for this chapter are [37], [39] and [42]. We work with the

following set up: Unless otherwise stated, by X we will denote a smooth

(geometrically irreducible) projective variety of dimension d over a subfield

k ⊂ C. X(C) will denote the complex points of X (which forms a compact

complex projective manifold of complex dimension d). We will also denote the

singular (or betti) cohomology H l
sing(X(C), A) by H l(X,A), where A is one of

Z,Q,R and C.

2.1 Preview of cohomology theory of X

Let Al(X) denote the C-valued C∞ l-forms on X(C). We have the decompo-

sition

Al(X) =
⊕
p+q=l

Ap,q(X), Aq,p(X) = Ap,q(X) , (2.1.0.1)

where Ap,q(X) are C∞ (p, q)-forms which in local holomorphic coordinates

z = (z1, · · · , zd) ∈ X(C), are of the form∑
|I|=p,|J |=q

fIJdzii ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,
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where the fIJ ’s are complex-valued and C∞.The differential d : Al(X) →
Al+1(X) splits into d = ∂ + ∂, where ∂Ap,q(X) ⊂ Ap+1,q(X) and ∂Ap,q(X) ⊂
Ap,q+1(X). Since d2 = 0, we get 0 = ∂2 = ∂

2
= ∂∂ + ∂∂. The decomposition

in (2.1) now descends to the level of cohomology as

2.1.1 Theorem. (Hodge decomposition)

H l(X,C) ∼= H l(X,Q)⊗Q C ∼= H l
de−Rham(X,C) = ⊕p+q=lHp,q(X) , (2.1.1.1)

where Hp,q(X) are the d-closed (p, q)-forms (modulo coboundaries), and Hq,p(X) =

Hp,q(X). All such cohomology groups are finite dimensional and we have the

description

Hp,q(X) ∼=
Ap,q(X)d−closed

∂∂Ap−1,q−1(X)
.

One can define a descending (Hodge) filtration on H l(X,C) by assigning

F iH l(X,C) :=
⊕

p+q=l,p=i

Hp,q(X) .

An easy consequence of the theorem is the following

2.1.2 Corollary. If l is odd, then H l(X,Q) is even dimensional.

The following result is well known:

2.1.3 Proposition. (Poincaré and Serre duality) The pairings

H2r−1(X,C)×H2d−2r+1(X,C)→ C , (Poincaré)

Hp,q(X)×Hd−p,d−q(X)→ C , (Serre)

induced by

(η1, η2) 7→
∫
X

η1 ∧ η2

are non-degenerate. Hence one can identify H l(X,C) ∼= H2d−l(X,C)∨ and

Hp,q(X) ∼= Hd−p,d−q(X)∨.

2.1.4 Remark. One can also prove Poincaré duality with Q-coefficients and

identify H l(X,Q) ∼= H2d−l(X,Q)∨.

We also recall

2.1.5 Theorem. (Künneth decomposition) For varieties X and Y , we have
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the following decomposition for H l(X ×C Y,Q):

H l(X ×C Y,Q) ∼= ⊕p+q=lHp(X,Q)⊗Q H
q(Y,Q)

which respects the Hodge decomposition of H l(X ×C Y,C) in the following

manner

Hr,s(X ×C Y ) ∼= ⊕r1+r2=r,s1+s2=sH
r1,s1(X)⊗C H

r2,s2(Y ) .

2.1.6 Abstract Hodge theory

The l-th cohomology of a smooth projective variety X is an example of what

is known as a pure Hodge structure (of weight l). Formally we define it as

follows:

2.1.7 Definition. Let A ⊂ R be a subring. An A- Hodge structure (HS) of

weight l ∈ Z is given by the following datum:

1. A finitely generated A-module V , and either of the two equivalent state-

ments below:

2. A decomposition

VC =
⊕
p+q=l

V p,q, V p,q = V q,p ,

where ¯ is complex conjugation on the second factor of VC := V ⊗ C, or

equivalently

3. A finite descending filtration

VC ⊃ · · · ⊃ F r ⊃ F r+1 ⊃ · · · ⊃ {0} ,

satisfying

VC = F r
⊕

F l−r+1, ∀r ∈ Z.

An A-subspace G ⊂ V is a sub-HS if and only if GC = ⊕p+q=lGp,q where

Gp,q = GC∩V p,q. Also the quotient V/G has a natural HS. The tensor product

of two HS, V1 and V2, of weights l and m respectively, is a HS, V1 ⊗ V2 of

weight l +m.

2.1.8 Remark. The equivalence of 2. and 3. can be seen as follows. Given

8



the decomposition in 2., set

F rVC =
⊕

p+q=l,p≥r

V p,q.

Conversely, given {F r} in 3., we put V p,q = F p ∩ F q.

2.1.9 Example. If X/k is smooth projective, then H l(X,Z) is a Z-Hodge

structure of weight l.

2.1.10 Example. A(r) := (2πi)rA is an A-Hodge structure of weight −2r

and of pure Hodge type (−r,−r), called the Tate twist.

2.1.11 Example. IfX/k is smooth projective, thenH l(X,Q(r)) := H l(X,Q)⊗
Q(r) is a Q-Hodge structure of weight l − 2r.

To extend these ideas to a singular varieties, one has the following terminology:

2.1.12 Definition. An A-mixed Hodge structure (A-MHS) is given by the

following datum:

1. A finitely generated A-module V ,

2. A finite descending “Hodge” filtration on VC = V ⊗ C,

VC ⊃ · · · ⊃ F r ⊃ F r+1 ⊃ · · · ⊃ {0},

3. An increasing weight filtration on VQ = V ⊗Z Q,

{0} ⊂ · · · ⊂ Wl−1 ⊂ Wl ⊂ · · · ⊂ VQ,

such that {F r} induces a (pure) HS of weight l on GrWl := Wl/Wl−1.

2.1.13 Example. (Deligne, [50]) Let Y/C be an algebraic variety. Then

H l(Y,Z) has a canonical and functorial Z-MHS.

2.1.14 Definition. A morphism h : V1,A → V2,A of A-MHS is an A-linear

map satisfying

• h(WlV1,Q) ⊂ WlV2,Q, ∀ l,

• h(F rV1,C) ⊂ F rV2,C, ∀r.

Deligne ([50], Theorem 2.3.5) shows that the category of A-MHS is abelian;

in particular if h : V1,A → V2,A is a morphism of A-MHS, then ker(h) and

coker(h) are endowed with induced filtration

9



2.1.15 Example. Let U/C be a compact Riemann surface, Ξ ⊂ U a fi-

nite set of points, and U := U − Ξ. According to the previous example,

H1(U,Z)(1)) := H1(U,Z) ⊗ Z(1) carries a Z-MHS. The Hodge filtration on

H1(U,C) is defined in terms of a filtered complex of holomorphic differentials

on U with logarithmic poles along Ξ ([50]). We can “observe” the MHS via

weights as follows. Poincaré duality gives H1
Ξ(U,Z) ∼= H1(Ξ,Z) = 0, and the

localization sequence in cohomology below is an exact sequence of MHS:

0→ H1(U,Z(1))→ H1(U,Z(1))→ H0(Ξ,Z(0))◦ → 0,

where

H0(Ξ,Z(0))◦ = ker
(
H2

Ξ(U,Z(1))→ H2(U,Z(1))
) ∼= Z|Ξ|−1 .

We put W0 = H1(U,Z(1)), W−1 = Im
(
H1(U,Z(1))→ H1(U,Z(1))

)
, W−2 =

0. ThenGrW−1(U,Z(1)) ∼= H1(U,Z(1)) has pure weight−1 andGrW0 H
1(U,Z(1)) ∼=

Z|Ξ|−1 has pure weight 0.

2.1.16 Definition. Let V be a A-MHS. We put

ΓAV := homA−MHS(A(0), V ),

and

JA(V ) := Ext1A−MHS(A(0), V ).

In case A = Z or A = Q, we put Γ = ΓA and J = JA.

2.1.17 Example. Suppose V = VZ is a (pure) HS of weight 2r. Then V ⊗Z(r)

is of weight 0, and (up to twist) one can identify ΓV with VZ ∩ F rVC =

VZ ∩ V r,r := ε−1(V r,r), where ε : V → VC

2.1.18 Example. Let V be a Z-MHS. There is the identification due to

J.Carlson (see [10] or [27], Lemma 9.2),

J(V ) ∼=
W0VC

F 0W0VC +W0V
,

where in the denominator, V := VZ is identified with its image VZ → VC (quo-

tienting out torsion). For example, if {E} ∈ Ext1MHS(Z(0), V ) corresponds to

the short exact sequence of MHS:

0→ V → E
α- Z(0)→ 0,

10



then one can find x ∈ W0E and y ∈ F 0W0EC such that α(x) = α(y) = 1.

Then x − y descends to a class in W0VC/{F 0W0VC + W0V }, which defines a

map from Ext1MHS(Z(0), V ) to W0VC/{F 0W0VC +W0V }.

2.1.19 A survey of Deligne cohomology

In this subsection, we will consider a smooth projective variety X/C (of di-

mension d) and ΩX will denote the sheaf of holomorphic 1-forms on X. We

define Ωl
X := ΩX ∧ · · · ∧ ΩX︸ ︷︷ ︸

l−times

. Recall that A(r) is the Tate-twist, for a subring

A of R. We introduce the Deligne complex AD(r):

A(r)→ ΩX → · · · → Ωr−1
X︸ ︷︷ ︸

=:Ω•<rX

.

2.1.20 Definition. Deligne cohomology is given by the hypercohomology:

H i
D(X,A(r)) := Hi(AD(r))

2.1.21 Remark. We have a product structure on Deligne cohomology

Hm
D (X,A(i))⊗Hn

D(X,A(j))→ Hm+n
D (X,A(i+ j))

induced from the multiplication of complexes µ : AD(i)⊗AD(j)→ AD(i+ j),

given in [15], Definition 3.2.

2.1.22 Example. When A = Z, we have the isomorphism

H2
D(X,Z(1)) ∼= CH1(X).

Alternate take. Let h : (A•, d) → (B•, d) be a morphism of complexes. We

define

Cone(A•
h- B•)

by the formula

[Cone(A•
h- B•)]q := Aq+1 ⊕Bq, δ(a, b) = (−da, h(a) + db).

Using the holomorphic Poincaré lemma, one can show that there is a quasi-

11



isomorphism between AD(r) and

Cone
(
A(r)⊕ F rΩ•X

ε−l- Ω•X)
)

[−1],

where ε and l are natural maps obtained after a choice of injective resolution

of A(r) and Ω•. Hence

H i
D(X,A(r)) ∼= Hi

(
Cone

(
A(r)⊕ F rΩ•X

ε−l- Ω•X)
)

[−1]
)
.

From the short exact sequence of sheaves

0→ Ω•<rX [−1]→ ZD(r)→ Z(r)→ 0

together with Hodge theory, we get the short exact sequence

0→ J(H2r−1(X,Z(r)))→ H2r
D (X,Z(r))→ Γ(H2r(X,Z(r)))→ 0.

Here we note that

Γ(H2r(X,Z(r))) = H2r(X,Z) ∩Hr,r(X) = ε−1(Hr,r(X)),

where ε : H2r(X,Z(r)) → H2r(X,C) is induced by the incusion Z(r) ↪→ C.

Further, from the identification of Carlson, (Example 2.1.18 above),

Jr(X) := J(H2r−1(X,Z(r))) =
H2r−1(X,C)

F rH2r−1(X,C) +H2r−1(X,Z(r))

∼=
F d−r+1H2d−2r+1(X,C)∨

H2d−2r+1(X,Z(d− r))
is a compact complex torus, known as Griffiths jacobian.

2.1.23 Remark. Strictly speaking, F rH2r−1(X,C) should be replaced by

F 0H2r−1(X,C). We resisted that temptation for “obvious” reasons.

Deligne-Beilinson cohomology

The Deligne cohomology described above is not adequate for a smooth quasi-

projective variety U ⊂ X. For example, with the above definition we will

obtain H1
D(U,Z(1)) = H0(U,O∗U), i.e. nowhere zero analytic functions on

12



U . For obvious reasons, one would accordingly like to recover the nowhere

zero algebraic functions, i.e. H0
Zar(U,O∗U), where the notation of the Zariski

topology Zar, is expected to mean that we now viewO∗U as the sheaf of nowhere

zero regular functions on U . In order to fix this, Beilinson introduced Deligne’s

logarithmic complex into the picture. We can assume that j : U = X − Y ↪→
X, where Y is a Normal Crossing Divisor (NCD) with smooth components.

We define Ω•X〈Y 〉 to be the de Rham complex of meromorphic forms on X,

holomorphic on U , with at most logarithmic poles along Y . So for example,

in local analytic coordinates (z1, · · · , zd) on X, Y is given by z1 · · · zl = 0, and

Ω1
X〈Y 〉 has local frame {dz1/z1, · · · , dzl/zl, dzl+1, · · · , dzd}. One has a filtered

complex

F rΩ•X〈Y 〉 = Ω•≥rX 〈Y 〉,

with Hodge to de Rham spectral sequence degenerating at E1. This gives

F rH i(U,C) = Hi(F rΩ•X〈Y 〉) ⊂ Hi(Ω•X〈Y 〉) = H i(U,C)

as the correct Hodge filtration regarding the MHS H i(U,Z).

2.1.24 Definition. ([15], Definition 2.6.) The Deligne-Beilinson cohomology

H i
D(U,A(r)) is defined as the hypercohomology of

AD(r) := Cone
(
Rj∗A(r)

⊕
F rΩ•X〈Y 〉

ε−l- Rj∗Ω
•
U

)
[−1],

where Rj∗A(r) (resp. Rj∗Ω
•
U) is the direct image sheaf of A(r) (resp. of Ω•U)

and where Rj∗Ω
•
U is represented in such a way that both ε and l exists (for

example by the direct image of an injective resolution of Ω•U). One can show

that this is independent of the good compactification of U .

We get a short exact sequence

0→ H i−1(U,C)

F rH i−1(U,C) +H i−1(X,A(r))
→ H i

D(U,A(r))→ F r ∩H i(U,A(r))→ 0,

and (for A = Z) an isomorphism ([15], Proposition 2.12, iii)

H1
D(U,Z(1)) ∼= H0

Zar(U,O∗U) := O∗U,alg(U) .

13



2.2 Chow group of X and its connection to

cohomology

In this section we fix an algebraically closed subfield k ⊂ C and a smooth

projective variety X/k of dimension d.

2.2.1 Adequate equivalence relations

The free abelian group Zr(X) is too large to work with in a meaningful way.

For example, one would like to have a ring structure on Z∗(X) := ⊕rZr(X), for

which one can define a ring structure, viz., an intersection theory of algebraic

cycles. But one has to quotient out Zr(X) by an adequate equivalence relation,

to accommodate such an intersection theory. This involves a moving lemma

to ensure that two cycles meet in the expected dimension, as well as a good

notion of intersection multiplicity. The moving lemma involves an adequate

equivalence relation. The precise definition of an adequate relation can be

found in [37]. We define some of the most studied such equivalence relations,

the weakest of which is rational equivalence.

2.2.2 Definition. Two cycles ξ1 and ξ2 in Zr(X) are rationally equivalent,

denoted by ξ1 ∼rat ξ2, if there exists a cycle w ∈ Zr(P1
k × X) in sufficiently

‘general position’ [so that w∗(t) := Pr2,∗((t × X) · w) ∈ Zr(X) is defined for

all t ∈ P1
k] such that ξ1 − ξ2 = w∗(0) − w∗(∞). Equivalently, one can define

ξ1 ∼rat ξ2 if there exists subvarieties Wi of codimension r − 1 and rational

functions fi ∈ k(Wi)
∗ such that ξ1 − ξ2 =

∑N
i divWi

(fi).

2.2.3 Definition. ξ1 and ξ2 are algebraically equivalent, denoted by ξ1 ∼alg
ξ2, if there exists a smooth connected curve C, a cycle w ∈ Zr(C × X) in

sufficiently ‘general position’ and points p, q ∈ Csuch that ξ1 − ξ2 = w∗(p) −
w∗(q).

Let Zr
rat(X) := {ξ ∈ Zk(X); ξ ∼rat 0}, Zr

alg(X) := {ξ ∈ Zk(X); ξ ∼alg 0}. We

have the following hierarchy relation

Zr
rat(X) ⊆ Zr

alg(X) ⊆ Zr
hom(X) ⊂ Zr(X) ,

where Zr
hom(X) are the null homologous cycles defined in the next section. We
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define

CHr(X) := Zr(X)/Zr
rat(X) (Chow group),

CHr
alg(X) := Zr

alg(X)/Zr
rat(X) (Chow group of cycles ∼alg 0).

2.2.4 The cycle class maps

We develop two cycle class maps from the Chow group of a smooth projective

variety X to its cohomology.

2.2.5 Definition. There is a cycle class map

clr : CHr(X)→ H2r
de−Rham(X,C) ∼= H2d−2r

de−Rham(X,C)∨,

which can be defined in one of the following two (equivalent) ways:

1. Let V ⊂ X be a subvariety of codimension r and w ∈ H2d−2r(X,C).

We define clr(V )(w) = 1
(2π
√
−1)d−r

δV := 1
(2π
√
−1)d−r

∫
V ∗
w and extend it

linearly to Zr(X) to obtain

clr : Zr(X)→ H2d−2r(X,C)∨ ∼= H2r(X,C) .

Here V ∗ = V − Vsing. It follows from resolution of singularities that the

integration is finite. Also, Zr
rat(X) ⊂ ker(clr) and hence one can define

clr : CHr(X)→ H2r(X,C).

2. From twisted Poincare duality, one has the fundamental class generator

{V } ∈ H2d−2r(V,Z(d−r)) ∼= H2r
V (X,Z(r))→ H2d−2r(X,Z(d−r)) ∼= H2r(X,Z(r)).

One can actually show that the image lies in

Γ(H2r(X,Z(r))) = Hr,r(X) ∩H2r(X,Z).

2.2.6 Example. For r = d the cycle class map cld : CHd(X) → Z is the

degree map, assigning the integer
∑

i ni to a zero-cycle z =
∑

i nipi. It is

obviously surjective.

At this point, we state the famous
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2.2.7 Conjecture. (Hodge conjecture)

clr : CHr(X;Q) := CHr(X)⊗Q→ Γ(H2r(X,Q(r))) = H2r(X,Q)∩Hr,r(X),

is surjective.

Here we make the following observation: The original Hodge conjecture was

made for smooth projective varieties defined over C. Here our varieties are

defined over an algebraically closed subfield k of C, however

2.2.8 Lemma. Hodge conjecture for smooth projective varieties over C =⇒
Hodge conjecture for smooth projective varieties over k.

Proof. Let X/k be a smooth projective variety of dimension d and we denote

X/C := X ×k C. Let us assume that the cycle class map

clr : CHr(X/C;Q)→ Hr,r(X,Q(r))

is surjective and let for γ ∈ Hr,r(X,Q(r)), ξ ∈ CHr(X/C;Q) be such that

clr(ξ) = γ. Now, the defining equations of ξ lies in a field K of finite tran-

scendence degree (say ν) over k. One can find a smooth projective variety S/k

such that k(S) ∼= K and spread ξ (not uniquely) to ξ̃ ∈ CHr(S ×kX;Q). Let

p ∈ S(k) (which exists by Nullstellensatz, since k = k̄). We consider the cycle

p × X ∈ CHν(S ×k X;Q) and the morphism jp : X → S ×k X︸ ︷︷ ︸
x7→(p,x)

. From the

commutativity of the cycle class map with morphisms, we have the following

chain of commutative diagram

CHr(S ×k X;Q)
j∗p- CHr(X;Q)

H2r(S ×C X,Q(r))

clr

? j∗p- H2r(X,Q(r)).

clr

?

Since H i(p,Q) = 0 for i > 0, the map j∗p : H2r(S×CX,Q(r))→ H2r(X,Q(r))

factors through (H0(S,Q) ⊗ H2r(X,Q))(r). Hence, we get that j∗p(clr(ξ̃)) =

clr(ξ) = γ and the required result.

2.2.9 Example. Using Lefschetz 1-1 theorem one can show that the cycle

class map cl1 : CH1(X)→ Γ(H2(X,Z(1))) is surjective ([37], Chapter 5).
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Appendix (General Hodge Conjecture)

Grothendieck was the first to introduce the following notion of coniveau filtra-

tion on cohomology ([1]):

2.2.10 Definition. The (descending) filtration by coniveau

H l(X,Q) ⊃ N1
kH

l(X,Q) ⊃ N2
kH

l(X,Q) ⊃ · · · ⊃ N l
kH

l(X,Q) ⊃ 0

on singular cohomology is defined by any of the following three equivalent def-

initions

N i
kH

l(X,Q) := ker

(
H l(X,Q)→ lim−→

cdXY≥i
H l(X − Y,Q)

)

:= Image

( ∑
cdXY≥i

H l
Y (X,Q)→ H l(X,Q)

)

:= Gysin Images

( ∑
cdXY≥i

H l−2r(Ỹ ,Q)→ H l(X,Q)

)
,

where Ỹ → Y is a desingularization.

Note that N i
kH

l(X,Q) ⊂ F iH l(X,C) ∩ H l(X,Q) is not an equality, since

the coniveau pieces are Hodge substructures of H l(X,Q) but ( as shown by

Grothendieck’s counterexample in [1]) F iH l(X,C) ∩ H l(X,Q) need not be.

Let N i
HH

l(X,Q) be the largest Hodge-substructure contained in F iH l(X,C)∩
H l(X,Q).

2.2.11 Conjecture. (Grothendieck Amended General Hodge Conjec-

ture (GHC)) The inclusion N i
kH

l(X,Q) ⊂ N i
HH

l(X,Q) is an equality. For

l = 2r and i = r, we recover the classical Hodge conjecture (Conjecture 2.2.7).

2.2.12 Remark. Grothendieck originally made this conjecture for smooth

projective varieties defined over C. But using a “spread” argument similar in

spirit to that of Lemma 2.2.8, one can show that N i
kH

l(X,Q) = N i
CH

l(X,Q).

2.2.13 Definition. (Abel-Jacobi map) Let CHr
hom(X) = ker(clr). We define

the Abel-Jacobi map

Φr : CHr
hom(X)→ Jr(X) := J(H2r−1(X,Z(r))),
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in the following way. Recall that

J(H2r−1(X,Z(r))) =
F d−r+1H2d−2r+1(X,C)∨

H2d−2r+1(X,Z(d− r))
.

Let ξ ∈ CHr
hom(X). Then ξ = ∂ζ for a real 2d − 2r + 1 dimensional chain ζ

in X. Let {w} ∈ F d−r+1H2d−2r+1(X,C). We define

Φr(ξ)(w) =
1

(2π
√
−1)d−r

∫
ζ

w

/
periods .

It is easy to show that if ξ = ∂ζ ′ for another chain ζ ′, then
∫
ζ
w =

∫
ζ′
w modulo

periods. Also, from a result of Dolbeault (Lemma 1.7 of [39]), one can show

that Φr is independent of the cohomological representative of {w}.

Alternate definition: We observe that

H2r−1
|ξ| (X,Z(r)) ∼= H2d−2r+1(|ξ|,Z(d− r)) = 0,

as dimR|ξ| = 2d − 2r. Also, there is the cycle class map clr : ξ 7→ {ξ} ∈
H2d−2r(|ξ|,Z(d− r)) ∼= H2r

|ξ|(X,Z(r)). Further, since ξ ∈ CHr
hom(X) (denoted

by ξ ∼hom 0), we have by duality

[ξ] ∈ H2r
|ξ|(X,Z(r))◦ := ker

(
H2r
|ξ|(X,Z(r))→ H2r(X,Z(r))

)
.

Hence ξ determines a morphism of MHS, Z(0) → H2r
|ξ|(X,Z(r))◦. From the

short exact sequence of MHS

0→ H2r−1(X,Z(r))→ H2r−1(X − |ξ|,Z(r))→ H2r
|ξ|(X,Z(r))◦ → 0,

we can pullback via the above morphism to obtain another short exact se-

quence of MHS,

0→ H2r−1(X,Z(r))→ E → Z(0)→ 0.

Then Φr(ξ) = {E} ∈ Ext1MHS (Z(0), H2r−1(X,Z(r))) = J(H2r−1(X,Z(r))). It

can be shown that this alternate definition of Φr agrees with that given in

2.2.13.

2.2.14 Example. It can be shown that the image Φr(CH
r
alg(X)) =: Jralg(X) ⊂

J(X) is an abelian variety defined over k. Here we recall the following descrip-
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tion of Jralg(X)Q given in terms of coniveau filtration: Observe thatN r−1
k H2r−1(X,Q)⊗

C = Hr,r−1
a (X)⊕Hr−1,r

a (X), where we describeHr,r−1
a (X) as Prr−1,r(N

r−1
k H2r−1(X,Q))⊗

C) ⊂ Hr−1,r(X) (similarly for Hr−1,r
a (X)). Then, Jralg(X)Q can be described

as

Jralg(X)Q ' J
(
N r−1
k H2r−1(X,Q(r))

)
' Hr−1,r

a (X)/N r−1
k H2r−1(X,Q(r)) ⊂ Jr(X)Q.

For details, see Proposition 12.31 of [37]. In general, the following is a deep

question: What is the image Φr(CH
r
hom(X)) ? We do know that the Griffiths

group Griff r(X) := CHr
hom(X)/CHr

alg(X) is countable (although non-trivial

in many cases). From this, and the above description of Jralg(X)Q we can

conclude that the (rational) Abel-Jacobi map

Φr : CHr
hom(X;Q)→ Jr(X)Q,

is not onto ifN r−1
H H2r−1(X,C) 6= H2r−1(X,C) (see discussions following Propo-

sition 3.2 in [39]).

2.2.15 Example. Recall the isomorphism Φ1 : CH1
hom(X) ∼= J1(X), which

also shows that CH1
hom(X) = CH1

alg(X). We note that CHd
hom(X) = CHd

alg(X)

and the abelian variety Jd(X) (known as the Albanese variety of X) is dual

to J1(X). The situation however, is very different for 1 < r < d, where as

seen above, Φr is not onto in general and neither can we say CHr
hom(X) =

CHr
alg(X). The kernel, ker(Φr) is another important object of study. In [14],

Mumford has the following result:

2.2.16 Theorem. Let X be a smooth projective complex surface (i.e. of di-

mension 2), with geometric genus dimCH
2,0(X) 6= 0. Then

ker
(
Φ2 : CH2

hom(X)→ J2(X)
)
,

is non-trivial.

Thus, there’s no easy answer ! At this point, we recall the folklore conjecture

due to Bloch and Beilinson

2.2.17 Conjecture. (Bloch-Beilinson Conjecture, BBC) IfX is a smooth

projective variety defined over Q, then the (rational) Abel-Jacobi map

Φr : CHr
hom(X;Q)→ J(X)Q = J(H2r−1(X,Q(r))),
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is injective.

There are no nontrivial concrete examples of this conjecture, which inciden-

tally is formulated out of exclusion. If trdegQk = 1, there are examples by

Schoen ([52]), Green-Griffiths-Paranjape ([45]) and James Lewis ([40]) that

the kernel of the Abel-Jacobi map is non-zero. The reader is also encouraged

to read sections 4 and 5 of [5] (specifically, Lemma 4.0.7, Remark 4.0.8 and the

discussion following Lemma 5.6) to get another motivation for this conjecture.

2.2.18 Example. Notice that any ξ ∈ CHr
alg(X) is in the image of a homo-

morphism J1(Γ) → CHr
alg(X) for a smooth projective curve Γ (from defini-

tion). Hence we can conclude that CHr
alg(X) is divisible.

2.2.19 Example. We end this section by relating the cycle class maps with

Deligne cohomology. One can define a cycle class map into Deligne cohomology

clr,D : CHr(X)→ H2r
D (X,Z(r)),

with the following prescription. Let ξ ∈ CHr(X) with support |ξ|. One has a

long exact sequence of cohomology with support

· · · → H2r−1
|ξ| (X,Z(r))⊕ F rH2r−1

|ξ| (X,C)→ H2r−1
|ξ| (X,C)

→ H2r
D,|ξ|(X,Z(r))→ H2r

|ξ|(X,Z(r))⊕ F rH2r
|ξ|(X,C)→ H2r

|ξ|(X,C)→ · · ·

Via Poincaré duality, one has cycle class maps

ξ 7→ [(2πi)r−d(ξ, δξ)] ∈ ker(H2r
|ξ|(X,Z(r))⊕ F rH2r(X,C)→ H2r

|ξ|(X,C)).

From the fact H2r−1
|ξ| (X,C) = 0, we get an element [ξ] ∈ H2r

D,|ξ|(X,Z(r)) and

the cycle class map

clr,D : CHr(X)
ξ 7→[ξ]- H2r

D,|ξ|(X,Z(r))
“forgetful map- H2r

D (X,Z(r)).

The Deligne cycle class map clr,D combines both the classical cycle class and
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the Abel-Jacobi map in the following (commutative) diagram:

CHr
hom(X) ⊂ - CHr(X) --

CHr(X)

CHr
hom(X)

J(H2r−1(X,Z(r)))

Φr

?
⊂- H2r

D (X,Z(r))

clr,D

?
-- Γ(H2r(X,Z(r))).

clr

?

2.3 Lefschetz theory

Let X/k be a smooth projective variety of dimension d, where k is a subfield

of C. We know that X(C) is complex projective algebraic with a choice of

polarization ωX induced by an algebraic cycle Y ∈ CH1(X) (called the

hyperplane section of X). Define the morphism (of HS)

LX : Ai(X)→ Ai+2(X), η 7→ η ∧ ωX ,

with an adjoint (with respect to Hodge-inner product)

ΛX : Ai(X)→ Ai−2(X) .

From abstract Hodge/Lefschetz theory one gets the following results

2.3.1 Theorem. (Strong Lefschetz theorem)

1. The map LiX : Hd−i(X,Q(r))
∼=- Hd+i(X,Q(r+i)) is an isomorphism.

2. Moreover, if we define the primitive cohomology

Primd−i(X,Q(r)) = Ker
(
Li+1
X : Hd−i(X,Q(r))→ Hd+i+2(X,Q(r + i+ 1))

)
,

we arrive at the Lefschetz primitive decomposition (for i = 0, 1, 2, · · · )

H i(X,Q(r)) ∼= ⊕j≥(i−d)+L
j
X(Primi−2j(X,Q(r − j))) .

The primitive decomposition is compatible with the Hodge decomposition

of H i(X,C), once we set

Primp,q(X) := Ker(Ld−i+1
X : Hp,q(X)→ Hd−p+1,d−q+1(X)) .
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At this point we would also like to state a weak version of Lefschetz theorem

2.3.2 Theorem. (Weak Lefschetz Theorem) Let Y ⊂
j- X be any smooth

hyperplane section of X. Then the restriction map

j∗ : H i(X,Q)→ H i(Y,Q)

is an isomorphism for i ≤ d− 2, and injective for i = d− 1.

This theorem is a consequence of the following result by Andreotti and Frankel

(using basic Morse theory). We call it the affine version of weak Lefschetz

theorem:

2.3.3 Theorem. Let U/k be a smooth affine variety of dimension d. Then

U(C) ⊂ Cr as a closed d-dimensional complex submanifold, has the homotopy

type of a CW-complex of real dimension ≤ d. As a consequence

H i(U,Q) = 0, ∀ i > d .

One uses the Lefschetz theory to develop the following bilinear relations on

cohomology:

Hodge-Riemann bilinear relations (Untwisted version)

We introduce a real bilinear form on H i(X,Q) using the following prescription:

Given

ξ = ⊕j≥(i−d)+L
j
X(ξj), η = ⊕j≥(i−d)+L

j
X(ηj) ∈ H i(X,Q)

with ξj, ηj ∈ Primi−2j(X,Q), set

Q(ξ, η) =
∑

j≥(i−d)+

(−1)(i(i+1)/2) +j

∫
X

Ld−i+2j
X (ξj ∧ ηj) .

We also introduce the Weil operator C = ⊕p+q=i(
√
−1)p−qPrp,q where Prp,q :

H i(X,C) � Hp,q(X) is the obvious projection. Then , it can be shown that

the bilinear form Q has the following property

Q(ξ, C(ξ̄)) > 0 for ξ 6= 0 . (2.3.3.1)

From equation (2.3), we deduce the
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2.3.4 Corollary. (Hodge-Riemann bilinear relations) (see [23], page 123).

The bilinear form Q satisfies the following relations:

• Q(Primp,q(X,Q), P rims,t(X,Q)) = 0 if s 6= q.

• (
√
−1)−i(−1)qQ(ξ, ξ̄) > 0 if 0 6= ξ ∈ Primp,q(X,Q) (p+ q = i).

If we set S = (−1)iQ on Primi(X,Q), then from the discussion following

Theorem 2.34 it follows that

S : Primi(X,Q)× Primi(X,Q)→ Q (2.3.4.1)

is bilinear (and non-degenerate) symmetric if i is even, skew if i is odd.

2.3.5 Remark. As we shall see in the next chapter, an analogous Lefschetz

theory for Chow groups is largely conjectural, with only a few concrete results.

It forms a large part of Grothendieck’s collection of standard conjectures in

algebraic geometry. Assuming such conjectures, a part of the motivation for

this thesis came from the desire to develop ‘Hodge-Riemann type bilinear

relations’ for Chow groups.

We end this chapter by generalizing Corollary 2.37 in case of a pure Hodge

structure.

2.3.6 Definition. A polarization of a (pure) Q-Hodge structure VQ (of

weight i) is a (non-degenerate) bilinear form S : VQ × VQ → Q, symmetric

if i is even, skew if i is odd, and satisfying

• S(V p,q, V s,t) = 0 unless p = t, s = q.

• (
√
−1)p−qS(ξ, ξ̄) > 0 if 0 6= ξ ∈ V p,q,

where p+ q = i. VQ is called a polarized Hodge structure.

2.3.7 Example. By Corollary 2.37, the cohomology of a smooth projective

variety X carries a natural polarization given by the Hodge-Riemann bilinear

relations.

2.3.8 Remark. Polarized Hodge structures are semi-simple in the sense that

if VQ is a polarized HS with polarization S and V1,Q is a a sub-HS, then V1,Q

and V ⊥1,Q := {u ∈ VQ; S(u, V1,Q) = 0} are both polarized HS, with polarization

given by restricting S. Moreover, we have

VQ ∼= V1,Q ⊕ V ⊥1,Q .
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Chapter 3

Motives and a conjectural

filtration on Chow groups

Unless otherwise stated, k will denote a subfield of C and X/k will denote

a smooth projective variety over k. The category of such varieties will be

denoted by V (k).

3.1 Motives

A general reference for this section is Section 4.1 of [48].

3.1.1 Motivation

In the early 1960s Grothendieck, along with Artin and Verdier, developed the

l-adic cohomology groups H i
et(X,Ql) for every prime l 6= 0. Since k ⊂ C, there

is also the classical singular H i(X,Q) and the de-Rham cohomology groups

H i
de−Rham(X,C). This gives us plenty of cohomology theories, each with their

own advantages and disadvantages ! There is also the de-Rham isomorphism

theorem: H i(X,C) ∼= H i
de−Rham(X,C) and the comparison isomorphisms:

H i(X,Q)⊗Q Ql
∼= H i

sing(X,Ql) ∼= H i
et(X,Ql) ,

between the singular and the l-adic cohomology groups. It was Grothendieck’s

genius that realized the necessity of an underlying category of ‘motives’ of
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which all these different cohomology theories share in common as realization

functors. Pictorially, one can describe it by the following arrow

M(k)→ (vector spaces)/F, M 7→ H∗(M,F ) ,

where M(k) denote the (conjectural) category of motives, F is a field (either

Q or Ql) and H∗( , F ) is a cohomology theory (usually l-adic or the singular).

3.1.2 Correspondences and projectors

Before we begin, we define an equivalence relation (given by Grothendieck)

known as the numerical equivalence which we could have put in Chapter 2.

But since it first arose in the theory of motives it is probably apt to define it

here !

3.1.3 Definition. Let X be of dimension d. An algebraic cycle ξ ∈ Zr(X)

is said to be numerically equivalent to zero, denoted by ξ ∼num 0, if the

intersection number of ξ · ξ′ is zero for all ξ′ ∈ Zd−r(X) (strictly speaking, for

all ξ′ ∈ Zd−i(X) for which the intersection number is defined). Let Zr
num(X) :=

{ξ ∈ Zr(X); ξ ∼num 0}. One has the following inclusions among the different

equivalence relations defined so far:

Zr
rat(X) ⊂ Zr

alg(X) ⊂ Zr
hom(X) ⊂ Zr

num(X) ,

and dividing out by the rational equivalence

CHr
alg(X) ⊂ CHr

hom(X) ⊂ CHr
num(X).

In this context, let us state the following fundamental conjecture, which is an

easy consequence of the Hodge conjecture, and indeed a consequence of the

weaker hard Lefschetz conjecture, to be discussed later.

3.1.4 Conjecture. Zr
hom(X)⊗Q = Zr

num(X)⊗Q

Notation: From now on, we will avoid torsion and consider Chow groups

tensored by Q. We will use the notation CH∗(X;Q) to denote CH∗(X)⊗ZQ.

3.1.5 Definition. Let X and Y be objects in V (k) of dimensions d and e

respectively, and we fix an equivalence relation ∼ .The group of correspon-
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dences between X and Y of degree r with respect to ∼ is defined by

Cd+r
∼ (X ×k Y ;Q) := Zd+r(X ×k Y ;Q)/Zd+r

∼ (X ×k Y ;Q) .

Let f ∈ Cd+r
∼ (X×kY ;Q), then tf ∈ Ce+(d+r−e)

∼ (Y ×kX;Q) denotes the trans-

pose of f . It is a correspondence from between Y and X of degree (d+ r)− e.
3.1.6 Example. Let φ : X → Y be the usual morphism of varieties and let Γφ

be the graph. Then Γφ ∈ Cd+(e−d)
∼ (X ×k Y ;Q) is a correspondence of degree

e− d and tΓφ ∈ Ce
∼(Y ×k X;Q) is a correspondence of degree 0.

3.1.7 Remark. As a special case of the above example, consider the identity

IdX : X → X morphism. Its graph is given by the diagonal correspondence

∆X ∈ CHd(X×kX;Q). Let [∆X ] ∈ H2d(X×CX,Q(d)) denote the cycle class

image of the diagonal correspondence. By the Künneth decomposition we get

[∆X ] =
∑
i

[∆X ]2d−i,i

where [∆X ]2d−i,i ∈ H2d−i(X,Q) ⊗H i(X,Q)(d) are the Künneth components.

They correspond to the identity homomorphism Idi : H i(X,Q) → H i(X,Q)

through the isomorphism

H2d−i(X,Q)⊗H i(X,Q)(d) ∼= HomQ(H i(X,Q), H i(X,Q)) .

Composition: Given two correspondences f ∈ C∗∼(X ×k Y ;Q) and g ∈
C∗∼(Y ×k Z;Q) the composition g • f ∈ C∗∼(X ×k Z;Q) is defined by

g • f := PrX×kZ ((f ×k Z) · (X ×k g))

where · is the intersection product of algebraic cycles on X ×k Y ×k Z.

Operations on algebraic cycles: A correspondence f ∈ Cd+r(X ×k Y ;Q)

of degree r operates on C∗∼(X;Q) by the prescription

f∗ : Ci
∼(X;Q)→ Ci+r

∼ (Y ;Q), Z 7→ f∗(Z) := (PrY )∗ [f · (PrX)∗(Z)]

for Z ∈ Ci
∼(X;Q). If ∼ is or finer than homological equivalence, then f also

operates on cohomology f∗ : H i(X,Q)→ H i+2r(X,Q(r)).
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3.1.8 Remark. 1. Correspondences with respect to rational equivalence

operate both on Chow groups and cohomology while those with respect

to homological equivalence operate on cohomology but not on Chow

groups. Finally, correspondences with respect to numerical equivalence

act on the cohomology groups provided Conjecture 3.2 is true.

2. Under the composition of correspondences, C∗∼(X ×k X;Q) becomes a

ring with ∆X as the unity and Cd
∼(X ×k X;Q) becomes a subring.

Projectors

3.1.9 Definition. A correspondence p ∈ Cd
∼(X×kX;Q) is called a projector

of X (with respect to ∼) if p2 := p•p = p. Two projectors p, q ∈ Cd
∼(X×kX;Q)

are orthogonal if p • q = q • p = 0

3.1.10 Example. 1. p = ∆X is obviously a projector.

2. For the graph Γφ of a morphism φ : X → Y of finite degree m, p =
1
m

t
Γφ • Γφ is a projector.

3. For a projector p, ∆X − p is a projector orthogonal to p and one has the

direct sum decomposition

C∗∼(X;Q) ∼= p∗(C
∗
∼(X;Q))⊕ (∆X − p)∗(C∗∼(X;Q)) .

We use the notation (C∗∼(X;Q))⊥ for (∆X − p)∗(C∗∼(X;Q)).

3.1.11 Grothendieck’s definition of (pure) motives

For an adequate equivalence relation ∼, the categoryM∼(k) of (pure) motives

consists of objects (X, p,m), where X ∈ V (k), p is a projector of X and m ∈ Z
with the following morphisms : if M = (X, p,m) and N = (Y, q, n), define

HomM∼(k)(M,N) := {q • f • p; f ∈ Cd+(n−m)
∼ (X ×k Y ;Q)}, d = dim(X)

and the composition of morphisms is defined via the composition of corre-

spondences. The objects M = (X, p,m) are called motives with respect to ∼.

The full subcategoryM+
∼(k) := {M ′ = (X, p, 0)} is usually called the effective

(pure) motives.
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3.1.12 Example. 1. There exists a functor h∼ : V opp(k)→M+
∼(k) defined

as h∼(X) = (X,∆X , 0).

2. 1k := (Speck, Idk, 0), is the trivial motive (i.e. the motive of a point).

3. Let k = k̄. Fix a point e ∈ X(k) and consider π0 := e ×k X and

π2d := X ×k e (d = dim(X)). They are both projectors orthogonal to

each other. Set h0
∼(X) := (X, π0, 0) and h2d

∼ (X) := (X, π2d, 0). Then we

have the following isomorphism in the category of motives: h0
∼(X) ∼= 1k

and h2d
∼ (X) ∼= (Speck, Idk,−d) where d = dim(X) for any X ∈ V (k).

4. Set T := (Speck, Idk, 1), L := (Speck, Idk,−1) and call them Tate and

Lefschetz motive respectively.

So, we have a very concrete definition of motives (or pure motives, but we will

just say motives from now on) with examples. What is still conjectural though

are some of the properties that a good category of motives should have. For

now, let’s list some of the known properties:

• It is known thatM∼(k) is a pseudo abelian category. It has been proved

by Jannsen ([28]) that the categoryMnum(k) is indeed an abelian, semi-

simple category (actually Jannsen proved an if and only if condition).

• M∼(k) has tensor product : for two objectsM = (X, p,m), N = (Y, q, n)

define M ⊗ N := (X ×k Y, p ×k q,m + n) and an involution : M =

(X, p,m) 7→ M̂ := (X,t p, d−m), d = dim(X).

Relation between various M∼(k): Fundamentally there are (a priori)

three different category of motives:

• Chow motives: If ∼ is rational equivalence, we write CHM(k) :=

Mrat(k) and ch(X) := hrat(X)

• Homological motives: Fixing (since k ⊂ C) the singular cohomology

theory H∗(X,Q), we get Mhom(k) and hhom(X)

• Numerical or Grothendieck motives: We take ∼ to be numerical

equivalence and we get Mnum(k) and hnum(X)

We have the following arrows

V opp(k)
ch- CHM(k)→Mhom(k)

∼=?,Conjecture 3.2-Mnum(k) .
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Note again that the Hodge-conjecture implies Conjecture 3.1.4 and hence the

isomorphism Mhom(k) ∼=Mnum(k).

3.1.13 Cycle groups and cohomology of motives

For M = (X, p,m) ∈M∼(k), define

Cr
∼(M) := {Im(p∗ : Cr+m

∼ (X;Q)→ Cr+m
∼ (X;Q))} .

In particular if M ∈ CHM(k), then we have the Chow groups/Chow vec-

tor spaces of motive CHr(M). Also, if ∼ is equal or finer than homological

equivalence, then p acts on cohomology and we define

H i(M) := {Im(p∗ : H i+2m(X,Q)→ H i+2m(X,Q))} ,

and get a realization functor

real :M∼(k)→ (vector spaces)/Q .

3.1.14 Remark. The importance of Conjecture 3.1.4 becomes apparent now.

The realization functor is from the category of motives with respect to ho-

mological equivalence (or finer than homological equivalence). On the other

hand, the categoryMnum(k) is closer to Grothendieck’s vision of motives since

it does not depend on any cohomology theory (also it is an abelian, semi-simple

category by [28]). The truth of Conjecture 3.1.4 will merge these two proper-

ties together beautifully.

3.2 Standard conjectures (Section 4.2 of [48])

Let k now denote an algebraically closed subfield of C, as before we fix the

category of smooth projective varieties as V (k). All fibre products are taken

with respect to the base field k. The first conjecture is an old one, usually

called the Künneth conjecture:

3.2.1 Conjecture. For X ∈ V (k) of dimension d, the Künneth components

[∆X ]2d−i,i of the cohomology of the diagonal class [∆X ] ∈ H2d(X ×X,Q) are
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algebraic classes, i.e. there exists algebraic cycles ∆X(2d − i, i) ∈ CHd(X ×
X;Q) such that [∆X(2d− i, i)] = [∆X ]2d−i,i.

This conjecture easily follows from the Hodge conjecture, but can actually

be deduced from the hard Lefschetz conjecture stated below. See [33]. For

examples where this conjecture holds, see subsection 3.2.2.

3.2.2 Standard conjecture of Lefschetz type

We begin with the following

3.2.3 Proposition. Let X and Y in V (k) of dimensions d and e respectively

and ξ ∈ CHr(X × Y ;Q). Let i = r − d. Then the Künneth component

[ξ]p,q induces [ξ]∗ : H l(X,Q(m))→ H l+2i(Y,Q(m+ i)), a morphism of Hodge-

structure, where l = 2d− p.

Keeping this proposition in mind, we introduce the following

3.2.4 Definition. Let p, q ∈ Z with p+ q even. A linear map

λ : Hp(X,Q(m))→ Hq(Y,Q((p− q/2)−m))

is said to be algebraic if it is induced by ξ ∈ CH(2d−p+q)/2(X × Y ;Q).

3.2.5 Remark. By the Hodge conjecture, λ being algebraic is the same thing

as saying that λ is a morphism of Hodge structure. Also λ being algebraic

does not necessarily mean that the class defined by λ in H2d−p(X,Q(d − p +

m)) ⊗ Hq(Y,Q((p− q/2) − m)) is induced by an algebraic cycle (although,

Hodge conjecture would imply even that).

Now, let Y ∈ CH1(X;Q) be a hyperplane section and LX : H i(X,Q(r)) →
H i+2(X,Q(r + 1)) be the operator associated to it. We have seen before the

hard and weak versions of Lefschetz theorem in cohomology.

Note that LX is induced by the algebraic cycle ∆X(Y ) := {(x, x) ∈ ∆X ; x ∈
Y } ∈ CHd+1(X ×X;Q). As seen before, there is an operator

ΛX : H i(X,Q(r))→ H i−2(X,Q(r − 1))

which serves ‘almost as an inverse’ of LX . Now, ΛX being a linear map in

cohomology, using Poincaré duality and Künneth decomposition, it can be
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seen as a topological correspondence in H2(d−1)(X × X,Q(d − 1)). We have

the following conjecture

3.2.6 Conjecture. Λ (and hence Λi for any i ∈ Z) is algebraic.

3.2.7 Remark. As Λ ∈ H2d−i(X,Q(d−i+r))⊗H i−2(X,Q(r−1))∩Hd−1,d−1(X×
X), Conjecture 3.11 is implied by Hodge conjecture. As such, this conjecture

has the following properties and known cases:

1. If Conjecture 3.2.6 holds for one hyperplane section Y (and the operator

LX), then it holds for any such sections.

2. Conjecture 3.2.6 implies the following conjecture: Let

CH
r
(X;Q) := CHr(X;Q)/CHr

hom(X;Q) ⊂ H2r(X,Q(r)) .

Then

3.2.8 Conjecture. Ld−2r : CH
r
(X;Q) → CH

d−r
(X;Q) is an isomor-

phism

3. Conjecture 3.2.6 implies the Künneth conjecture (Conjecture 3.2.1).

4. Conjecture 3.2.6 is known for projective spaces, Grassmannians, curves

(trivial), surfaces (Grothendieck, [33] and abelian varieties (Lieberman,

[33]).

3.2.9 Standard conjecture of Hodge-type

Let X ∈ V (k) of dimension d. Consider

CH
r
(X;Q) ∩ Prim2r(X,Q(r)) ⊂ H2r(X,Q(r)) .

Let x, y ∈ CHr
(X;Q) ∩ Prim2r(X,Q(r)) for r ≤ d/2. Then

3.2.10 Conjecture. The pairing

x, y 7→ (−1)r〈Ld−2r
X (x), y〉 ∈ Q

given by the cup product in cohomology, is positive definite.

We state this as a conjecture, although in our situation it is known to be true,

first by reducing it to k = C) (Lefschetz principle) and using Hodge-Riemann
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bilinear relations. But it is still a conjecture if the characteristic of the ground

field is nonzero.

3.2.11 Remark. Since Conjecture 3.2.10 is known in our situation, just by

assuming Conjecture 3.2.6 we can conclude Conjecture 3.1.4. As an exam-

ple, in case of abelian varieties we have numerical equivalence=homological

equivalence, modulo torsion.

3.3 Conjecture of Chow-Künneth type and a

filtration (4.2.2 of [48])

We consider a smooth projective variety X over a subfield k of C.

3.3.1 Definition. Let X ∈ V (k) of dimension d. We say that X has Chow-

Künneth decomposition over k if there exists πi ∈ CHd(X × X;Q), 0 5

i 5 2d, such that

1. The πi’s are mutually orthogonal projectors, i.e.,

πi • πj =

πi , if i = j

0 , otherwise

2.
∑

i πi = ∆X .

3. [πi] = [∆X ]2d−i,i, the usual i-th Künneth components

4. Moreover, we expect that π2d−i =t πi, 0 ≤ i ≤ d.

If we have such a Chow-Künneth decomposition, then

ch(X) := (X,∆X , 0) =
2d∑
i=0

chi(X), chi(X) := (X, πi, 0) . (3.3.1.1)

3.3.2 Example. For a smooth projective and irreducible curve C over k and

a point e ∈ C(k), if we choose π0 = e×C, π2 = C × e and π1 = ∆C − π0− π1,

then

ch(C) = ch0(C)⊕ ch1(C)⊕ ch2(C) .

Here ch0(C) and ch2(C) are the trivial parts of the motive ch(C) and ch1(C)

contains all the ‘crucial informations’ (see 4.1.8 of [48]).
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Now we state the following generalization of Conjecture 3.1.4

3.3.3 Conjecture. (Chow-Künneth conjecture, [48]) Every X ∈ V (k) has a

Chow-Künneth decomposition over k̄.

It is evident that Conjecture 3.3.3 implies Conjecture 3.2.1. It actually says

that the Künneth components

[∆X ]2d−i,i ∈ CHd
rat(X ×X;Q)/CHd

hom(X ×X;Q)

of [∆X ], can be lifted to CHd(X ×X;Q).

3.3.4 Example. (Some evidences of Conjecture 3.3.3) The conjecture is known

to be true for curves (shown in Example 3.3.2), and if X, Y ∈ V (k) has the

Chow-Künneth decomposition, then so does their product. Hence, it is known

for product of curves and surfaces ([48]). It is also known for abelian varieties

([13]), uniruled threefolds ([2]) and elliptic modular varieties ([19]).

3.3.5 Conjectural filtration on Chow groups (4.3.2 of

[48])

In the 1970s, Beilinson, based on his (still conjectural) theory of mixed motives,

conjectured about a possible filtration on the rational Chow groups of a smooth

projective variety (it was also independently conjectured by Bloch). We list

the conjectural properties of a Bloch-Beilinson filtration below (as formulated

by Jannsen in [27])

3.3.6 Definition. (Conjectural filtration) For X ∈ V (k) of dimension d, there

exists on CHr(X;Q) a decreasing filtration F ν , (ν ≥ 0) with the following

properties:

1. F 0 = CHr(X;Q), F 1 = CHr
num(X;Q).

2. F r · F s ⊂ F r+s under the intersection product.

3. F • is functorial with respect to correspondences.

4. Assuming Conjecture 3.2.1 (over k̄), the graded pieces GrνFCH
r(X;Q) :=

F ν/F ν+1 depends only on the Grothendieck motive h2r−ν
num (X) := (X,∆X(2d−

34



2r + ν, 2r − ν), 0), i.e.,

∆X(2d− 2r + `, 2r − `)∗|GrνFCHr(X;Q) =

Identity , if ` = ν

0 , otherwise

5. F r+1 = 0

3.3.7 Remark. The conjectural filtration is related to Conjecture 3.3.3 in the

following way: Suppose X ∈ V (k) of dimension d satisfies Conjecture 3.3.3

together with

3.3.8 Conjecture. The projectors {π2d, π2d−1, · · · , π2r+1} and {π0, π1, · · · , πr−1}
operate as zero on CHr(X;Q).

Then one can define a Bloch-Beilinson type filtration F ν on CHr(X;Q) with

the following characteristics:

1. GrνFCH
r(X;Q) = CHr(ch2r−ν(X)). Hence, one can get the ‘Hodge’

decomposition at the level of Chow groups

CHr(X;Q) =
r⊕

ν=0

GrνFCH
r(X;Q).

2. (Conjecture) The filtration is independent of the ambiguity in the

choices of πi.

3. F 1 ⊂ CHr
hom(X;Q) and they are conjectured to be equal.

4. F 2 ⊂ Ker(Φr) and again, they are conjectured to be equal.

Hence, Conjecture 3.3.3 and 3.3.8 defines a filtration with some conjectural

properties. It can be shown that this filtration and the one arising from Defi-

nition 3.3.6 are equivalent (Theorem 5.2 of [29]).

3.4 A candidate Bloch-Beilinson filtration

The references for this section are [39] (Chapter 9) and [38]. We will consider

a smooth projective and irreducible variety X (of dimension d) over K ⊂ C
which is finitely generated over Q. We will discuss a candidate Bloch-Beilinson

filtration developed by James Lewis in [38]. Except one, Lewis’s filtration has
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all the desirable properties of the conjectural Bloch-Beilinson filtration.

As seen from Definition 2.21 (2) and the alternate definition following Defini-

tion 2.27, we can interpret

Φr : CHr
hom(X;Q)→ J(X)Q ∼= Ext1MHS(Q(0), H2r−1(X,Q(r))) .

and

clr : CHr(X;Q)→ Hr,r(X,Q(r)) = Ext0MHS(Q(0), H2r(X,Q(r))) .

Define F 0 := CHr(X;Q), F 1 := Ker(clr) = CHr
hom(X;Q). In order to get

a Bloch-Beilinsion type filtration, the next natural step is to define F 2 :=

Ker(Φr) and try to find a map

F 2 → Ext2MHS(Q(0), H2r−2(X,Q(r))) .

Unfortunately, for two MHS’s H1 and H2, ExtνMHS(H2, H1) = 0 if ν ≥ 2, since

the functor Ext1MHS(H2, ∗) is right exact. Thus F ν≥2 cannot in general be cap-

tured by Extν≥2
MHS(Q(0), H2r−ν(X,Q(r))). Here, note that Ker(Φr) = 0 con-

jecturally (Conjecture 2.31) if K = Q or any number field. Thus, F 2 = 0 con-

jecturally, in case X is defined over Q or a number field k. But if trdegQk ≥ 1,

then there are plenty of examples for which Ker(Φr) 6= 0 and hence poten-

tially F 2 6= 0. At this point, we cannot resist the temptation of mentioning

Beilinsion’s beautiful (conjectural) formula

GrνFCH
r(X;Q) ∼= ExtνMM(K)(1, h

2r−ν(X)(r)) ,

where MM(K) is the conjectural category of mixed motives over a given

defining field K of smooth projective varieties and 1 is the trivial object in

the category.

3.4.1 Lewis filtration

Using the cycle class map to absolute Hodge cohomology, James Lewis in [38]

developed the following filtration

3.4.2 Theorem. (Theorem 1.2 of [38]) Assume given a smooth projective
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variety X/K, where K/Q is a finitely generated overfield. Then for all r,

there is a filtration

F 0CHr(X/K;Q) ⊃ F 1 ⊃ F 2 ⊃ · · · ⊃ F ν ⊃ F ν+1 ⊃ · · · ⊃ F r ⊃ F r+1 = F r+2 = · · · ,

which satisfies the following

1. F 0CHr(X/K;Q) := CHr(X/K;Q) and F 1CHr(X/K;Q) = CHr
hom(X/K;Q).

2. F 2CHr(X/K;Q) ⊂ Ker(Φr).

3. F l · F s ⊂ F l+s where · is the intersection product.

4. F ν is preserved under the action of correspondences between smooth pro-

jective varieties.

5. If we assume that the Künneth components of the diagonal class are

algebraic (Conjecture 3.8), then the graded pieces GrνFCH
r(X/K;Q) :=

F ν/F ν+1 depends only on the motive

h2r−ν
hom (X/K) := (X,∆X/K(2d− 2r + ν, 2r − ν), 0),

i.e.,

∆X/K(2d− 2r + `, 2r − `)∗|GrνFCHr(X/K;Q) =

Identity , if ` = ν

0 , otherwise

6. Let Dr(X/K) := ∩νF ν. If we assume that the rational Abel-Jacobi map

for smooth quasi projective varieties over Q is injective, then Dr(X/K) =

0 and hence F r+1 = 0.

3.4.3 Remark. By a conjecture of Jannsen ([27] (5.20)), the above variant

of Conjecture 2.2.17 for smooth quasi projective varieties should be true, and

indeed can be proven to be the same conjecture under the assumption of the

Hodge conjecture.

Although we won’t give a complete proof of Theorem 3.4.2, it is instructive

to explore the main idea: First we need the formalism of absolute Hodge

cohomology
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Absolute Hodge cohomology ([4] and Section 3 of [38])

Since we are only interested with the formal properties, we will give a brief

definition. Interested readers can find the details mainly in [4].

Let A ⊂ R be a subring such that A⊗Q is a field.

3.4.4 Definition. A mixed A-Hodge complex consists of the following:

1. A complex K•A of A-modules, that is bounded below, such that Hp(KA)

is an A-module of finite type for all p (technically, we are working in the

derived category of complexes).

2. A filtered complex (K•A⊗Q,W ) of A ⊗ Q-vector spaces that is bounded

below, and an isomorphism K•A×Q
∼=- K•A ⊗Q in the derived category.

3. A bifiltered complex (K•C,W, F ) of C-vector spaces, and a filtered isomor-

phism α : (K•CW )
∼=- (K•A⊗Q,W )⊗ C.

4. For every m ∈ Z,

GrmWK
•
A⊗Q → (GrmWK

•
C, F )

is a polarizable A⊗Q-Hodge complex of weight m.

3.4.5 Definition. A cohomological mixed A-Hodge complex on a spaceW is

essentially a sheafified version of the definition of a mixed A-Hodge complex.

For a precise definition, see [8], Definition 1.8. A cohomological mixed A-

Hodge complex naturally gives rise to a mixed Hodge complex by applying the

functor Γ(W ,−) to a corresponding acyclic resolution of a given complex of

sheaves on W.

We will work under the following set up: X/K is a smooth projective variety

(of dimension d), Y/K is a normal crossing divisor, and j : X − Y ⊂ - X is

an inclusion. The cohomolofical mixed Hodge complex of our interest is

(Rj∗Q, (Rj∗Q,W ), (Ω•X〈Y 〉,W, F )) ;

and the corresponding mixed Hodge complex will be denoted by

(
K•A, (K

•
A⊗Q,W ), (K•C,W, F )

)
, A = Q.

Then
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3.4.6 Definition. The absolute Hodge cohomology H•H((X − Y )C,Q(r))

is given by the cohomology of the cone complex

M• := Cone
(
K•A ⊕ Ŵ0K

•
A⊗Q ⊕ Ŵ0 ∩ F 0K•C

(α,β)- ′K•A⊗Q ⊕ Ŵ0(′K•C)
)

[−1],

where Ŵ• = (Dec W )• is the filtration decalée (see [12]) and α, β comes from

the definition of morphism in a derived category (see Section 3 of [38] for

details).

There is a short exact sequence

0→ J(H2r−1((X−Y )C,Q(r)))→ H2r
H ((X−Y )C,Q(r))→ Γ(H2r((X−Y )C,Q(r)))→ 0.

Now, we set

H2r
H ((X − Y )C,Q(r)) := Ψ(H2r

D (X,Q(r))),

where Ψ is given by restriction (noting that for X/K smooth projective,

H2r
H (X,Q(r)) = H2r

D (X,Q(r))).

Sketch and main ideas for Theorem 3.20

We can find a smooth quasi projective variety S/Q with generic point

ηS := lim←−
U⊂S/Q

U ,

(where U is affine Zariski open subset of S) such that Q(S) ∼= K and spread

out X/K to a family ρ : X → S with XηS ∼= X, where X is smooth and

quasi-projective over Q and ρ is smooth and proper (it is called a Q-spread).

There is a cycle class map

CHr(X ;Q)→ H2r
H (X ,Q(r))

to absolute Hodge cohomology, which would be injective if we assume the BBC.

Further, since CHr(X )→ CHr(X ) is surjective, the cycle class map takes its

image in H2r
H (X ,Q(r)). There is a decreasing filtration {FνCHr(X ;Q)}ν≥0

with the property that

GrνFCH
r(X ;Q) ↪→ Eν,2r−ν

∞ (ρ) ,
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where Eν,2r−ν
∞ (ρ) is the ν-th graded piece of a Leray filtration associated to ρ.

The term Eν,2r−ν
∞ (ρ) fits into the short exact sequence

0→ Eν,2r−ν
∞ (ρ)→ Eν,2r−ν

∞ (ρ)→ Eν,2r−ν
∞ (ρ)→ 0 , (3.4.6.1)

where

Eν,2r−ν
∞ (ρ) = Γ

(
Hν(S, R2r−νρ∗Q(r))

)
, (3.4.6.2)

and

Eν,2r−ν
∞ (ρ) =

J (W−1H
ν−1(S, R2r−νρ∗Q(r)))

Γ (Gr0
WH

ν−1(S, R2r−νρ∗Q(r)))
⊂ J(Hν−1(S, R2r−νρ∗Q(r))) ,

(3.4.6.3)

(the later inclusion is given by the short exact sequence

W−1H
ν−1(S, R2r−νρ∗Q(r)) ↪→ W0H

ν−1(S, R2r−νρ∗Q(r))� Gr0
WH

ν−1(S, R2r−νρ∗Q(r)) ,

and the image

Γ(Gr0
WH

ν−1(S, R2r−νρ∗Q(r)))→ J
(
W−1H

ν−1(S, R2r−νρ∗Q(r))
)

(3.4.6.4)

can be described in the following way: For y ∈ Γ(Gr0
WH

ν−1(S, R2r−νρ∗Q(r))),

we can choose

x ∈ W0H
ν−1(S, R2r−νρ∗Q(r))), xC ∈ F 0W0H

ν−1(S, R2r−νρ∗Q(r))) ,

mapping to y under the surjection W0 � Gr0
W . Then the image of y in 3.5 is

given by the image of x − xC in J (W−1H
ν−1(S, R2r−νρ∗Q(r))). ) Under the

identification K ∼= Q(ηS), we have (by definition)

F νCHr(X/K;Q) := lim−→
U⊂S/Q

FνCHr(XU/Q;Q), XU := ρ−1(U) .

We set

Eν,2r−ν
∞ (ηS) := lim−→

U⊂S/Q

Eν,2r−ν
∞ (ρU)

and same definitions for Eν,2r−ν
∞ (ηS) and Eν,2r−ν

∞ (ηS). Specifically,

Eν,2r−ν
∞ (ηS) = Γ(Hν(ηS , R

2r−νρ∗Q(r))) ,
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and

Eν,2r−ν
∞ (ηS) = J

(
W−1H

ν−1(ηS , R
2r−νρ∗Q(r)))

)
/Γ(Gr0

W ) .

Similar to 3.4.6.1, we have a short exact sequence

0→ Eν,2r−ν
∞ (ηS)→ Eν,2r−ν

∞ (ηS)→ Eν,2r−ν
∞ (ηS)→ 0 , (3.4.6.5)

and an injection: GrνFCH
r(X/K;Q) ↪→ Eν,2r−ν

∞ (ηS).

3.4.7 Remark. Typically in this thesis, we will consider XK/K, a smooth

projective variety which is obtained as a base change from a smooth projective

and irreducible X defined over Q. Note that, for such a situation, one can

choose a product Q-bar spread

PrS : (S ×X)Q → S ,

where S is a smooth projective variety over Q with generic point ηS, such that

Q(ηS) ∼= K and ηS ×X ∼= XK .

In later chapters, by a Bloch-Beilinson filtration we will always mean the candi-

date filtration of Theorem 3.4.2. We note here that assuming a Chow-Künneth

decomposition for X and BBC, Lewis filtration is same as the one developed

by S. Saito in [51]

As a final remark, we should clarify that for a Chow group CHr(X;Q) and

a candidate Bloch-Beilinson filtration, the condition that F r+1 = 0 is perhaps

the most crucial, as the vector space Dr(X) measures precisely whether we

can capture the whole of CHr(X;Q) using cohomological methods. Further,

by the BBC (Conjecture 2.2.17), Dr(X) = F r+1 = 0.
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Chapter 4

Height function and the

Néron-Tate pairing

The main references for this short chapter are [53], [7], [49] and [54]. We con-

sider a number field K with its fixed algebraic closure K ⊂ C and a smooth

projective variety X/K. By X(K) we mean the K-rational points of X (sim-

ilarly X(K)).

4.1 Height Function

As a motivation, one could roughly describe a height function as a function H :

X(K)→ R which defines the ‘arithmetic complexity’ of a point P ∈ X(K).

4.1.1 Height of K-rational points

To start off, suppose K = Q. For a
b
∈ Q (written in lowest terms) we can

define H(a
b
) := max[|a|, |b|] as a height function. More generally, for a non-

zero point P = [x0;x1; · · · ;xN ] ∈ PN(Q) such that (x0, · · · , xN) ∈ Z and

gcd(|x0|, · · · , |xN |) = 1, we define the height of P by

H(P ) := max[|x0|, |x1|, · · · , |xN |].

It is easy to see that there are only finitely many points of bounded heights in
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the above case.

Similarly, for a number field K, we define the height of a non-zero point

P := [x0, x1, · · · , xN ] ∈ PNK(K) by

HK(P ) :=
∏
ν∈MK

max[||x0||ν , · · · , ||xN ||ν ].

Here, MK denotes the set containing an archimedean prime for each embedding

of K in R or C and a p-adic absolute value for each prime ideal in OK , the

ring of integers in K.

Sometimes it is more convenient to use the absolute logarithmic height :

h(P ) :=
1

[K : Q]
log(HK(P )).

The absolute value is well-defined for P ∈ PNK(K).

Heights on Projective varieties

Let X be a smooth projective variety defined over K and φ : X → PNK be a

morphism. For x ∈ X(K), we define :

Hφ(x) := H(φ(x)),

hφ(x) := log(Hφ(x)) =: h(φ(x)).

The group Pic(X)

Let X be as defined above. We define Pic(X) to be the group of isomorphic

classes of algebraic line bundles (locally free sheaves of OX- modules of rank

1, here OX is the sheaf of regular functions) on X, with multiplication being

the tensor product. One has Pic(X) = H1(X,O∗X) ∼= CH1(X). If f : X → Y

is a morphism and c a line bundle on Y , then f ∗c defines a line bundle on X

and we have a homomorphism

f ∗ : Pic(Y )→ Pic(X).
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If for any x ∈ X, there is an element of the global section s of a line bundle E

such that sx 6= 0, then E is said to be generated by its global sections. For an

element c ∈ Pic(X) generated by its global sections, we get a corresponding

morphism φc : X → PNK . We say c is very ample if the corresponding morphism

φc is an immersion. We say that c is ample if there is an integer m > 0 such

that mc is very ample.

Heights and line bundles

Let H be the quotient of the vector space of real- valued functions on X(K)

modulo the space of bounded functions. Note that, we can write any c ∈
Pic(X) as c = cφ− cψ, where φ, ψ : X → PNK are immersions and cφ,cψ are the

corresponding (very ample) line bundles. We thus have the following

4.1.2 Theorem. There is a unique map c 7→ hc of Pic(X) to H such that,

1. hc+c′ = hc + hc′ for all c, c
′ ∈ Pic(X)

2. If c is very ample then hc = hφc

The key point in the above theorem is the fact that if cφ1 = cφ2 , then the

corresponding hφ1 = hφ2+O(1), where O(1) denotes ‘up to bounded functions’.

It uses the fact that the vector space Γ(X, cφ) of global sections of the line

bundle cφ is finite dimensional and change of basis does not change hφ.

4.1.3 Definition. (Divisors algebraically equivalent to zero in Pic(X))

For a non-singular variety X, an element c ∈ Pic(X) is algebraically equiv-

alent to zero if its image is algebraically equivalent to zero in CH1(X). We

denote the subgroup in Pic(X) of elements algebraically equivalent to zero by

Pic0(X). The Neron-Severi group of X is the quotient NS(X) := Pic(X)/P ic0(X).

4.1.4 Remark. Up to now, we have only defined algebraic equivalence for X

defined over an algebraically closed field. More generally, if X is defined over

a subfield k of C, we define a cycle ξ ∈ CHr(X) to be algebraically equivalent

to zero, if its image lies in CHr
alg(Xk̄/k̄).
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4.2 Néron-Tate pairing

4.2.1 Néron-Tate normalization

4.2.2 Proposition (Tate). Let S be a set and π : S → S a map. Let f be a

real-valued function on S such that f ◦π = λf +O(1), with λ > 1. Then there

is a unique function f̃ on S such that

1. f̃ = f +O(1)

2. f̃ ◦ π = λf̃

and we have

f̃(x) = lim
n→∞

(1/λn)f(πnx),

for every x ∈ S.

The function f̃ satisfies obvious functoriality and commutativity properties.

Suppose for a morphism φ : X → X and for c ∈ Pic(X) that we have φ∗c = λc

with λ(∈ Z) > 1. Then by the Theorem 4.1 we have hc(φ(x)) = λhc(x) +O(1)

on X(K). By the above proposition of Tate, we get a unique function h̃c such

that h̃c = hc+O(1) and h̃c(φ(x)) = λh̃c(x). This is the normalized logarithmic

height.

4.2.3 Height pairing in abelian varieties

4.2.4 Theorem. Let K be a number field and A be an abelian variety defined

over K. There is a unique function c 7→ h̃c on Pic(A) with values in the space

of real valued functions on A(K) such that,

1. h̃c(x) = hc(x) +O(1), where hc is as defined in theorem 4.1.

2. Additivity: h̃c1+c2 = h̃c1 + h̃c2 .

3. Functoriality: for all endomorphisms φ : A→ A, we have

h̃φ∗c = h̃c ◦ φ,
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for c ∈ Pic(A). Further if B is another abelian variety and ψ : B → A

is a homomorphism, then

h̃ψ∗c = h̃c ◦ ψ,

for all c ∈ Pic(A).

Let c ∈ Pic0(A), we identify c with a point in A∨(K) where A∨ is the dual

abelian variety. Then, using the Néron-Tate height function, one can define a

Néron-Tate pairing

(·, ·) : A(K)× A∨(K)→ R, (P, c) := h̃c(P − 0),

where 0 ∈ A(K) is the group identity. In [49], Néron showed that the above

pairing could be seen as a sum of local pairings (called Néron’s local symbols).

Néron-Tate pairing has the property that for every polarization λ : A → A∨,

the bilinear form : 〈x, y〉 := (x, λ(y)) is positive definite on A(K)Q. Also, for

any homomorphism f : A → B of abelian varieties, the pairing satisfies the

following projection formula:

(x, f∨(y))A = (f(x), y)B for x ∈ A(K), y ∈ B∨(K),

where f∨ : B∨ → A∨ is the dual morphism.
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Chapter 5

A brief tour of Arithmetic

Intersection Theory

In this chapter we present a brief exposition of arithmetic intersection theory,

an area developed by Gillet and Soulé. Interested readers can find the details

of arithmetic intersection theory either in [17] or in [9].

5.1 Motivation

For a variety X defined over a number field k, there is a very satisfactory notion

of intersection theory on its Chow group CH∗(X;Q) developed by Fulton

([16]), with many desirable properties (actually for any field k, for that matter).

Given the successes of such an intersection theory, it is only natural to ask for

a similar theory for varieties defined over the ring of algebraic integers Ok of k.

Now, Ok has both finite primes and primes at infinity (which corresponds to

embeddings of k inside C) and to have a good intersection theory, one has to

take into account these infinite primes as well. For example, if one considers

the degree map CH1(Spec(Z))→ Z from the usual Chow group, then it is not

an invariant under rational equivalence; indeed all such cycles are rationally

equivalent to zero, while the definition of the degree of a divisor of a rational

number q is log|q|. So, we cannot have a good notion of intersection numbers

unless we remedy this situation. We can do it by adjoining a point v at

infinity to Spec(Z) corresponding to the only real embedding of Q and define

the v-adic valuation of a rational number q to be −log|q|. It now follows from
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the product formula that a principal divisor has degree zero. Spec(Z) is an

example of an arithmetic curve (since it has dimension 1), more generally we

can consider X → Spec(Ok), where X is a regular scheme, projective and flat

over Spec(Ok). Gillet and Soulé considered a more general version of the usual

Chow group for such schemes, by taking into account the ‘places at infinity’

and systematically developed an intersection theory, which was the correct

analog of the one for varieties defined over a number field.

5.2 Green currents

This section is borrowed mainly from Chapter II of [9], including most of the

notations. We will state the main results and theorems, the proofs of which

could be found in [9] .

5.2.1 Currents on a smooth complex projective variety

Let X be an irreducible smooth complex projective variety of complex dimen-

sion d and Ap,q(X) denote the vector space of C-valued differential forms of

type (p, q). The space An(X) of differential forms of degree n is given by

An(X) =
⊕
p+q=n

Ap,q(X) . (5.2.1.1)

We denote by ∂ : Ap,q(X) → Ap+1,q(X), ∂ : Ap,q(X) → Ap,q+1(X) and

d = ∂ + ∂ : An(X) → An+1(X) the usual differential operators (all of these

notions are defined in chapter 2).

Let Dn(X) := An(X)∗, denoting the space of linear functionals on An(X),

which are Schwartz continuous: for a sequence γr ⊂ An(X) with Supp(γr)

contained in some compact set K and T ∈ Dn(X), we have T (γr) → 0, if

γr → 0 (which means that all the coefficients in the sequence of forms {γr}
together with finitely many of their derivatives tend uniformly to zero on K

when r →∞). By 5.2.1.1 we obtain a similar decomposition

Dn(X) =
⊕
p+q=n

Dp,q(X), (5.2.1.2)
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Dp,q(X) being the duals of Ap,q(X).

5.2.2 Definition. We define Dp,q(X) := Dd−p,d−q(X) to be the space of (p, q)-

currents on X.

The differentials ∂, ∂, d induce similar maps ∂′, ∂
′
, d′ fromDp,q(X) toDp+1,q(X), Dp,q+1(X)

and Dp+q+1(X) respectively. We have an inclusion map

Ap,q(X) ↪→ Dp,q(X)

γ 7→ [γ] ,

defined by

[γ](α) :=

∫
X

γ ∧ α, α ∈ Ad−p,d−q(X) .

Here we fix an orientation on X by declaring that(√
−1

2

)n
dz1 ∧ dz̄1 · · · dzn ∧ dz̄n,

has positive orientation on Cn. If p+ q = n, from Stokes’ theorem we get

[dγ](α) = (−1)n+1(d′[γ])(α) .

Denote (−1)n+1∂′, (−1)n+1∂
′
(−1)n+1d′ by ∂, ∂, d respectively. We have com-

mutative diagrams

Ap,q(X) ⊂ - Dp,q(X)

Ap+1,q(X)

∂

?
⊂ - Dp+1,q(X)

∂

?

(similarly for ∂ and d). These diagrams induce isomorphisms on the level of

cohomology with respect to ∂, ∂, d .

For every irreducible analytic subvariety Y ⊂
i- X of codimension p, we can

define a current δY ∈ Dp,p(X) by setting, for all α ∈ Ad−p,d−p(X),

δY (α) :=

∫
Y ns

i∗α
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where Y ns denote the non-singular locus of Y . It follows from Hironaka’s the-

orem on resolution of singularities that δY is well defined and gives a current.

5.2.3 Definition. Let us define dc := (4πi)−1(∂−∂) (so that ddc = −(2πi)−1∂∂).

5.2.4 Definition. A Green current for a codimension p subvariety Y , is a

current g ∈ Dp−1,p−1(X) such that

ddcg + δY = [γ]

for some form γ ∈ Ap,p(X).

5.2.5 Theorem. Every subvariety Y ⊂ X has a Green current. If g1 and g2

are two Green currents for Y, then

g1 − g2 = [η] + ∂S1 + ∂S2

with η ∈ Ap−1,p−1(X), S1 ∈ Dp−2,p−1(X), S2 ∈ Dp−1,p−2(X).

For subvarieties of codimnsion 1 (divisors) on X, there is a natural choice of

Green current given by the following

5.2.6 Theorem. (The Poincaré-Lelong formula). Let L be a holomorphic line

bundle on X with hermitian metric || · ||, s a meromorphic section of L and

c1(L, || · ||) the first Chern form of L. Then −log||s||2 ∈ L1(X), hence induces

a distribution [−log||s||2] ∈ D0,0(X). This is a Green current for div s :

ddc[−log||s||2] + δdiv s = [c1(L, || · ||)] .

5.2.7 Green forms of logarithmic type

As in the previous section, X will denote an irreducible smooth complex pro-

jective variety and Y ⊂ X is an analytic subvariety.

5.2.8 Definition. A smooth form α on X−Y is said to be of logarithmic type

along Y , if there exists a projective map π : X̃ → X such that E := π−1(Y ) is

a divisor with normal crossings, π : X̃ − E → X − Y is smooth and α is the

direct image by π of a form β on X̃ − E with the following property : Near

each x ∈ X̃, let z1z2 · · · zk = 0 be a local equation of E. Then there exists ∂
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and ∂ closed smooth forms αi and a smooth form γ such that

β =
k∑
i=1

log|zi|2 + γ . (5.2.8.1)

If α is of logarithmic type along Y , it is locally integrable on X, hence it

defines a current [α], which is the direct image by π of the current [β].

5.2.9 Lemma. • Let f : X ′ → X be a morphism of (irreducible) smooth

projective varieties such that f−1(Y ) 6= X ′, and on X − Y , let α be a

form of logarithmic type along Y . Then the form f ∗(α) is of logarithmic

type along f−1(Y ).

• Let f : X → X ′ be a projective morphism of (irreducible) smooth projec-

tive variety and α be a form on X−Y logarithmic type along Y . Assume

that f is smooth outside Y and f(Y ) 6= X ′. Then f∗(α) is of logarithmic

type along f(Y ) and f∗([α]) = [f∗(α)].

Now, we state a very important result related to the existence of Green’s

current of logarithmic type:

5.2.10 Theorem. For every irreducible subvariety Y ⊂ X there exists a

smooth form gY on X − Y of logarithmic type along Y such that [gY ] is a

Green current for Y :

ddc[gY ] + δY = [ω]

where ω is smooth on X.

For the proof, see [9]. After all these set up and results about existence, we

give an example of a Green current of logarithmic type :

5.2.11 Example. Let X = Pd, with homogeneous coordinates X0, · · · , Xd.

Y defined by X0 = · · · = Xp−1. Define

θ := log
(
|X0|2 + · · ·+ |Xd|2

)
, α := ddcθ on X ;

σ := log
(
|X0|2 + · · ·+ |Xp−1|2

)
, β := ddcσ on X − Y ;

Λ := (θ − σ)

(
p−1∑
i=0

αi ∧ βp−1−i

)
on X − Y .

Then, one can show that [Λ] defines a Green current of logarithmic type along

Y .
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Such explicit examples of Green currents are rare.

5.2.12 The ∗-product of Green currents

Let X be as before and Y, Z ⊂ X be closed irreducible subsets such that

Z * Y . Denote by gY a Green form of logarithmic type for Y . Let p : Z̃ → Z

be a resolution of singularities of Z and q : Z̃ → X its composite with the

inclusion Z ⊂ X. Now by Lemma 5.2.9 we know that q∗gY is of logarithmic

type along q−1(Y ). In particular it is integrable and the formula

[gY ] ∧ δZ := q∗[q
∗gY ]

defines a current on X. For any Green current gZ for Z, we define the ∗-
product with [gY ] to be

5.2.13 Definition. Define [gY ] ∗ gZ := [gY ]∧ δZ + [ωY ]∧ gZ. If codimXY = n

and codimXZ = m, then [gY ] ∗ gZ ∈ Dn+m−1,n+m−1(X).

The most important result about the ∗-product of Green currents is the fol-

lowing

5.2.14 Theorem. If Y, Z intersect properly, i.e, if Y ∩Z = ∪iSi with codimXSi =

codimXY + codimXZ = n+m, then

ddc([gY ] ∗ gZ) = [ωY ∧ ωZ ]−
∑
i

µiδSi

where the integers µi = µi(Y, Z) are the intersection multiplicities (see [16],

Chapter 7 for intersection multiplicities).

The essence of this theorem lies in the following observation : Let Y • Z de-

note the algebraic intersection of the two subvarieties, then [gY ] ∗ gZ serves as

a Green current for it.

We end this subsection on Green currents by listing down its few properties

(from now on, we will write gY ∗ gZ instead of the notation used before):

• Let Y ⊂ X be a closed irreducible subset and X ′ be an irreducible

smooth projective complex variety and f : X ′ → X with f−1(Y ) 6= X ′.

If gY is a Green current of logarithmic type for Y , then f ∗gY is a Green
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current of logarithmic type along f−1(Y ) for the cycle f ∗(Y ) :

ddcf ∗gY = [f ∗ωY ]−
∑
i

µiδSi

where f−1(Y ) = ∪iSi with codimX′Si = codimXY and µi are the multi-

plicities of the cycle f ∗(Y ).

• Let Y ⊂ X be a closed irreducible subset and gY be a Green current for

Y . By Theorem 5.2.10, we get a Green current g̃Y of logarithmic type

along Y . Also, Theorem 5.2.5 asserts that

gY = g̃Y + [η] + ∂S1 + ∂S2 .

So, modulo Im∂ + Im∂, every Green current can be represented by a

Green current of logarithmic type along Y .

Let Y, Z ⊂ X be closed irreducible subsets and Z * Y and gY (resp. gZ)

a Green current for Y (resp. Z). We can define the ∗-product of

gY ∗ gZ = g̃Y ∗ gZ modulo (Im∂ + Im∂)

where g̃Y is any Green current of logarithmic type, congruent modulo

Im∂ + Im∂. One can show that this definition does not depend on the

choice of g̃Y . Furthermore, we have

gY ∗ gZ = gZ ∗ gY modulo (Im∂ + Im∂) (Commutativity)

and for closed irreducible subvarieties Y, Z,W ⊂ X meeting properly

and respective choice of Green currents gY , gZ , gW

gY ∗ (gZ ∗ gW ) = (gY ∗ gZ) ∗ gW modulo (Im∂ + Im∂) (Associativity) .

The proof of all these facts can be found in Gillet and Soulé’s original paper

([17]). But to get an idea, one can just compute pretending that the above

Green currents are forms (see the end of chapter II in [9] ).
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5.3 Arithmetic Chow groups and the intersec-

tion pairing

Although we will only restrict ourselves to arithmetic varietiesX over Spec(Ok)

(where k is a number field) whose generic fibre Xk is smooth projective, we

will give a more general definition (and properties), as in [17].

5.3.1 Definition. (Arithmetic ring) An arithmetic ring is a triple (A,
∑
, F∞)

consisting of an excellent noetherian regular integral domain A, a finite nonempty

set
∑

of embeddings σ : A ↪→ C and a conjugate linear involution of C-

algebras, F∞ : C
∑
→ C

∑
such that the diagram

A
δ

- C
∑

A

=

? δ
- C

∑
F∞

?

commutes. Here δ denotes the map induced to the product by the family {σ :

A ↪→ C}σ∈∑. We also have the induced commutative diagram

C⊗Z A
δ′

- C
∑

C⊗Z A

c⊗ Id

? δ′
- C

∑
F∞

?

where c(z) = z̄ and δ′ = Id⊗ σσ∈∑. We use the notation C
∑

= Πσ∈
∑Cσ, so

that σ : A ↪→ Cσ.

5.3.2 Example. • This is the typical example we will consider: Let Ok

be the number ring of a number field k,
∑

= Hom(Ok,C) and F∞ be

the usual Frobenious on C
∑

.

• A = R,
∑

is the obvious embedding of R in C and F∞ the complex

conjugation

• A = C. Then (C, {Id, c}, F∞) is an arithmetic ring, where c(z) = z̄ and

F∞(a, b) = (b̄, ā).
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A homomorphism of arithmetic rings f : (A,
∑
, F∞)→ (A′,

∑′, F ′∞) is a pair

f1 : A→ A′ and f2 : C
∑
→ C

∑′
with f2 a homomorphism of C algebras, with

some commutativity conditions. Note that, for an extension l/k of number

fields, there is an obvious inclusion Ok ↪→ Ol of their number rings. Also, we

observe that Z is an initial object in the category of arithmetic rings.

5.3.3 Arithmetic Chow groups

5.3.4 Definition. Given an arithmetic ring (A,
∑
, F∞), an arithmetic va-

riety X over A is a scheme which is flat and of finite type over S = Spec(A),

π : X → S. If F is the field of fractions of A, we write XF for the generic

fibre and suppose that it is smooth. For s ∈ S, we write X(s) = π−1(s) and

for σ ∈
∑

, we denote Xσ = X ×σ C and X∑ = X ×AC
∑

. Finally, we denote

by X∞ = X∑(C), the analytic space associated to the scheme X∑.

The conjugate-linear automorphism F∞ induces continuous involution of X∞.

Since XF is smooth, X∞ is a complex manifold. We denote by Ap,q(X), the

space of (p, q)-forms on X∞, similarly Dp,q(X), the space of (p, q)-currents

on X∞. Let Ap,q(XR) (resp. Dp,p(XR)) to be the subspace of Ap,p(X) (resp.

Dp,p(X)) consisting of real forms (resp. currents) satisfying F ∗∞α = (−1)pα.

Similarly, we define

Ãp,p(XR) := Ap,p(XR)/Im∂ + Im∂,

Ã(XR) := ⊕p=0Ã
p,p(XR),

and if XF is projective, then

Hp,p(XR) := {α ∈ Hp,p(X,R) = H2p(X,R) ∩Hp,p(X);F ∗∞α = (−1)pα}.

For an arithmetic variety X over an arithmetic ring (A,
∑
, F∞) with smooth

and quasi-projective generic fibre XF , we have the usual notion of (arithmetic)

cycles of codimension p, denoted by Zp(X). Given an integral subscheme

Y ⊂ X of codimension p, Y∞ ⊂ X∞ is an analytic subspace invariant under

F∞. Hence integration over Y∞ defines a current in Dp,p(XR), which we shall

denote by δY . Extending linearly, we get a map

Zp(X)→ Dp,p(XR).
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Now, let Ẑp(X) be the subgroup of Zp(X)⊕ D̃p−1,p−1(XR) consisting of pairs

(Z, gZ) such that gZ is a Green current for Z.

If Y ⊂ X is a reduced irreducible subscheme of codimension p − 1 and f ∈
k(Y )∗, one can define (see [17], 3.3.3 for details)

div(f) ∈ Zp(X)

in the usual way (see for example, the definition of a Chow group of a Noethe-

rian separated scheme in section I.2 of [9]), and an element

i∗[log|f |2] ∈ Dp−1,p−1(XR)

where i : Y → X is the inclusion. Denote by

d̂iv(f) := (div(f), i∗[log|f |2]) ∈ Ẑp(X).

5.3.5 Definition. Let R̂p(X) be the subgroup by all such pairs d̂iv(f) as above.

We define

ĈH
p
(X) := Ẑp(X)/R̂p(X), p ≥ 0 ,

and call it the arithmetic Chow group of X. We use the notation ĈH
∗
(X) :=

⊕p≥0ĈH
p
(X).

The map

ω : ĈH
p
(X)→ Ap,p(XR), ω(Z, gZ) = [ωZ ] = ddcgZ + δZ

is well defined and helps us to define ĈH
p
(X)0 = Ker(ω). Also, let

CHp
hom(X) = {Z ∈ CHp(X);ZF ∼hom 0}

and (assuming XF to be projective)

c : CHp(X)→ Hp,p(XR)

is the cycle class map. We have a surjective map ĈH
p
(X)0 � CHp

hom(X),

sending a class (Z, gZ) ∈ ĈH
p
(X)0 to Z ∈ CHp

hom(X) (for the proof, see part

(ii) and (iii) of Theorem 3.3.5 of [17]). For computations and examples of

arithmetic Chow group, the reader is encouraged to consult either [17] (sec-
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tion 3.4) or [9].

Arithmetic Chow groups behave well under pushforward and pullback of mor-

phisms, as the following theorem states (see 3.6.1 of [17]):

5.3.6 Theorem. Let f : X → Y be a morphism between arithmetic varieties

over an arithmetic ring (A,
∑
, F∞). Suppose that f induces a smooth map

XF → YF between generic fibres of X and Y . Then:

• If f is flat, for all p ≥ 0, there is a natural map

f ∗ : ĈH
p
(Y )→ ĈH

p
(X).

• If f is proper, and X, Y are equidimensional. there is a map

f∗ : ĈH
p
(X)→ ĈH

p−δ
(Y )

for δ = dim(X) − dim(Y ). If f : X → Y, g : Y → Z are two maps

inducing smooth maps on the generic fibres, then (gf)∗ = f ∗g∗ and

(gf)∗ = g∗f∗ when either compositions make sense.

5.3.7 Intersection theory

For a regular, noetherian and separated scheme X (of dimension d) and a

closed subscheme Y ⊂ X, define Zp
Y (X) to be the free abelian group of codi-

mension p integral subschemes supported on Y . One can then accordingly

define the Chow group with support in Y, denoted by CHp
Y (X). Observe that

if Y has codimension p, then CHp
Y (X) ∼= Zp

Y (X). There is an isomorphism

CHp
Y (X;Q) := CHp

Y (X)⊗Z Q ∼= GrpγK
Y
0 (X;Q)

where GrpγK
Y
0 (X;Q) denotes the graded piece associated to the γ-filtration on

the K-theory with supports in Y (and Q coefficients). See [9] for the proof of

this result. This isomorphism allows us to define a product

CHp
Y (X;Q)⊗ CHq

Z(X;Q)→ CHp+q
Y ∩Z(X;Q)

given by the natural (tensor) product in K-theory. This product, together with

the ∗-product of Green currents, allows one to define the following intersection
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product on the arithmetic Chow groups:

5.3.8 Theorem. For a regular arithmetic variety X, there is a pairing

ĈH
p
(X)⊗ ĈH

q
(X)→ ĈH

p+q
(X;Q), (Y, gY ) • (Z, gZ) = (Y · Z, gY ∗ gZ),

where · denotes the intersection product discussed above and ĈH
i
(X;Q) :=

ĈH
i
(X)⊗Z Q, for any i with 0 5 i 5 dim(X). This pairing has the following

properties:

1. ĈH
∗
(X;Q) := ĈH

∗
(X)⊗ZQ is a commutative graded unitary Q-algebra.

2. (Functoriality) Let X, Y be regular arithmetic varieties and let f : X →
Y be a morphism satisfying all the criterions of Theorem 5.3.6. Then

one has

f ∗(α • β) = f ∗α • f ∗β

for α ∈ ĈH
p
(Y ) and β ∈ ĈH

q
(Y ). • also satisfies the following pro-

jection formula:

f∗(f
∗α • β) = α • f∗β ∈ ĈH

p+q−δ
(Y ;Q)

where δ is as in Theorem 5.3.6 and α ∈ ĈH
p
(Y ) and β ∈ ĈH

q
(X).

We end this chapter with the definition of arithmetic intersection number for

regular and equidimensional (of Krull dimension d + 1) arithmetic varieties

defined over S = Spec(Ok), where Ok ⊂ k is the ring of integers of a number

field k: To start off, we have the following degree (see [17], section 3.4.3)

deg : ĈH
1
(S)→ R

defined by (Z, gZ) 7→ log|Z| + 1
2

∫
S
g, where Z = ⊕ni℘i for finite primes ℘i

(|Z| = |Ok/℘i|), g = {gσ}σ∈∑, gσ ∈ R and
∫
S
g =

∑
σ∈

∑ gσ. Now we have the

following

5.3.9 Definition. Let X be a regular, equidimensional (of Krull dimension d+

1) arithmetic variety over S = Spec(Ok), where Ok ⊂ k is the ring of integers

of a number field k. Given two arithmetic cycles z1 ∈ ĈH
r
(X) and z2 ∈

ĈH
d−r+1

(X), we can define the arithmetic intersection number (or arithmetic

degree) d̂eg(z1 • z2), through the following sequence of maps

ĈH
r
(X)⊗ ĈH

d−r+1
(X)→ ĈH

d+1
(X;Q)

π∗- ĈH
1
(S;Q)

deg- R ,

58



where π : X → S denotes the structural morphism.

5.3.10 Remark. As pointed out in 4.3.8 (iii) of [17], the above pairing induces

a pairing

CHr
hom(X)⊗ CHd−r+1

hom (X)→ R .

In the next chapter, we will see that this pairing induces Beilinson’s height

pairing (under certain assumptions).

This ends our brief and incomplete survey of this beautiful area. We have only

collected the results that we need for the following chapters. There are many

details that are being skipped. Interested readers are encouraged to consult

[17] and [9] for further reading.
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Chapter 6

Beilinson’s height pairing via

arithmetic intersection theory

In this small chapter, we introduce Beilinson’s height pairing on Chow groups

of cycles homologous to zero ([5]). We will describe this height pairing in light

of arithmetic intersection pairing, as discussed in [34]. First, we have to set

up the assumptions and definitions to work with.

6.0.11 Assumption. Let k,Ok always denote a number field and its ring

of integers respectively. In this chapter, an arithmetic variety will denote a

scheme which is projective and flat over S = Spec(Ok) and has a smooth

generic fibre.

6.0.12 Definition. Let X/k be a smooth projective variety over a number

field k of dimension d. A model of X is an arithmetic variety X̃ over S such

that X̃k
∼= X. A model X̃ which is also a regular scheme is called a regular

model.

To introduce Beilinson’s height pairing through arithmetic intersection theory,

we have to assume that a smooth projective variety X/k (of dimension d) has

a regular model X̃/S (which is equidimensional and of Krull dimension d+1).

For a smooth projective variety X/k (with a regular model X̃/S), define

CHr
hom(X;Q) = Ker(clr : CHr(X;Q)→ Hp,p(X̃R)) ,

where clr is the cycle class map. Since for any such model we have an isomor-
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phism X̃k
∼= X, the above definition is independent of a regular model of X.

We define CHr
fin(X̃;Q) := Ker(CHr(X̃;Q) → CHr(X;Q)). Note that,

CHr
fin(X̃;Q) ⊂ CHr

hom(X̃;Q). Denote by CHr
fin(X̃;Q)⊥ the orthogonal com-

plement of CHr
fin(X̃;Q) under the pairing

d̂eg : CHr
hom(X̃;Q)⊗ CHd−r+1

hom (X̃;Q)→ R

described in Definition 5.3.9 (and the remark following it). Let CHr
hom(X;Q)0

denote the image of the canonical map

λ : CHd−r+1
fin (X̃;Q)⊥ → CHr

hom(X;Q) .

We now obtain a pairing

〈 , 〉HT : CHr
hom(X;Q)0 × CHd−r+1

hom (X;Q)0 → R (6.0.12.1)

which we can define as follows. Given elements x = λ(x′) (x′ ∈ CHd−r+1
fin (X̃;Q)⊥)

and y = λ(y′) (y′ ∈ CHr
fin(X̃;Q)⊥), we set

〈x , y〉HT = d̂eg(x′ • y′) .

This pairing does not depend on the choice of x′ and y′, but may depend a

priori on the choice of a regular model of X. Now under the

6.0.13 Assumption. CHr
hom(X;Q) = CHr

hom(X;Q)0 ,

we define 〈 , 〉HT to be the Beilinson’s height pairing. For a detailed dis-

cussion, we refer to section 5 of [34] (the reader should be careful about the

change of notations).

6.0.14 Remark. In [5], Beilinson described the height pairing in a different

manner, albeit also under the assumption that a smooth projective variety

defined over a number field, admits of a regular model.

In brief, his idea is the following: For a number field k, we have the finite primes

℘ and the infinite primes σ : k ↪→ C. For two cycles x ∈ CHr
hom(X;Q) and

y ∈ CHd−r+1
hom (X;Q), he defined the Archimedean part of the height pairing as

〈x , y〉HT,∞ := −
∫
X(C)

gx ∗ gy
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where gx (resp. gy) is a Green current associated to the complex space re-

lated to x (resp. a Green current associated to the complex space related

to y). Also, for each finite prime ℘ he defined a non-archimedean part of the

pairing 〈x , y〉HT,℘ , which resembled the local symbol devised by Neron for di-

visors and zero cycles ([49]). The total height pairing 〈x, y〉HT is then defined

(roughly) as the sum of these local pairings. But under Assumption 6.0.13,

the two definitions should agree (section 2 and 4.1 of [5] is very relevant here)

! Except for the trivial case of divisors and zero cycles, the assumption holds

if X has a smooth model, and more non-trivially it holds for abelian varieties

which has totally degenerate reduction at all places of bad reduction (see [35]

for details).

From now till the end of the thesis, we are going to assume that a

smooth projective variety X/k admits of a regular model and also

that the condition of Assumption 6.0.13 holds.

It follows from the projection formula for the arithmetic intersection pairing,

that

6.0.15 Proposition. (Projection formula for height pairing). For

X, Y two smooth projective varieties defined over k and a correspondence

α ∈ CHr(X ×k Y ;Q), we have

〈x , α∗(y)〉HT,X = 〈α∗(x) , y〉HT,Y

for suitable choice of x and y.

6.0.16 Remark. Since regularity doesn’t behave well with taking products,

in order to be completely rigorous one has to use the cap product construction,

as in section 2.3 of [18]. This construction is also relevant when considering

base changes (as in Lemma 8.1 of [34]). One can also probably use de-Jong’s

alteration technique (specifically Theorem 8.2 of [11]) but the author is not

sure !
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6.1 Height pairing for cycles algebraically equiv-

alent to zero

We begin with a technical definition

6.1.1 Definition. (Incidence equivalence) For a smooth projective variety X

(of dimension d) defined over an algebraically closed field k ⊂ C, an element

u ∈ CHr
alg(X;Q) is said to be incidence equivalent to 0 (∼inc 0) if it

satisfies α∗(u) = 0 in CH1(T ) for every smooth projective variety T/k and

every correspondence α ∈ CHd−r+1(X × T ;Q). We denote the subgroup of

cycles incidence equivalent to zero by Ir(X;Q). We have the isomorphism

CHr
alg(X;Q)/Ir(X;Q) ∼= Picr(X)(k),

where Picr(X) is a certain abelian variety, known as the (higher) r-th Picard

variety (see Section 7 of [34] for details).

From now on, k will again denote a number field. For z ∈ CHr
alg(X;Q),

there exists a finite extension K/k, a geometrically irreducible curve CK over

K, an element z′ ∈ CH1
hom(CK ;Q) and a correspondence α ∈ CHr(CK ×K

XK ;Q) such that α∗(z
′) = zK . Using this, Künnemann ([34], Lemma 8.1)

showed that under the assumption of the existence of regular models, we

have CHr
alg(X;Q) ⊂ CHr

hom(X;Q)0. Hence we have a well-defined Beilin-

son’s height pairing

CHr
alg(X;Q)× CHd−r+1

alg (X;Q)→ R ,

which has a description via the Neron-Tate pairing on Picard varieties (The-

orem 8.2 of [34]):

6.1.2 Theorem. For x ∈ CHr
alg(X;Q) and y ∈ CHd−r+1

alg (X;Q), we get

1

[k : Q]
〈x, y〉HT =

1

κrXk

(
θr(x), fd−r+1

Xk
◦ θd−r+1(y)

)
Picr(Xk)

,

where Picr(Xk) denotes the r-th Picard variety associated to Xk (which is

an abelian variety defined over k), θr is the natural Picard homomorphism,

fd−r+1
Xk

is the duality homomorphism between Picd−r+1(X) and Picr(X)∨ (dual

of Picr(X)). The pairing ( , )Picr(Xk) is the Neron-Tate pairing for abelian
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varieties.

To see a detailed proof of this theorem, and to get an idea about Picard

varieties, see sections 7 and 8 of [34].

6.1.3 Remark. As mentioned at the end of Section 10 of [34], if we assume

that numerical and homological equivalence on Xk agree up to torsion, then we

have an isogeny between Picr(Xk) and Jralg(X) (or cycles incidence equivalent

to zero are same as cycles Abel-Jacobi equivalent to zero inside CHr
alg(X)).

One can get a similar height pairing relation, replacing Picr(Xk) by Jralg(X).

Under the above assumption if one chooses a hyperplane section LX ∈ CH1(X;Q),

then [LX ]d−2r+1 : Jralg(X)→ Jd−r+1
alg (X)Q = Jralg(X)∨Q is a polarization. We get

the following relation:

〈x, Ld−2r+1
X (x)〉HT ≡

(
Φr(x), [L]d−2r+1(Φr(x))

)
Jralg(X)

,

for x ∈ CHr
alg(X;Q), where ≡ means equality is up to a positive constant.

6.1.4 A Hodge-index result for cycles algebraically equiv-

alent to zero on an abelian variety

While developing the height pairing in [5], Beilinson predicted the following

results (conjecture 5.3 and 5.5 of [5]):

6.1.5 Conjecture. Let LX : CHr(X;Q) → CHr+1(X;Q) be the operator

associated to the hyperplane section LX ∈ CH1(X;Q). Then for 2r ≤ d + 1

(d = dim(X)),

• (i) The operator

Ld−2r+1
X : CHr

hom(X;Q)→ CHd−r+1
hom (X;Q)

is an isomorphism

• (ii) If x ∈ CHr
hom(X;Q), x 6= 0 and such that Ld−2r+2

X (x) = 0 (primitive

element), then

(−1)r〈x, Ld−2r+1(x)〉HT > 0 .

Note that (ii) resembles the Hodge-index conjecture for primitive Chow groups.
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We still don’t know the status of this conjecture; it seems that (i) should hold

only for algebraically closed fields. In any case, Künnemann has the following

result for an abelian variety A/k of dimension d, in [34] (Theorem 12.1).

6.1.6 Theorem. Let Br(A;Q) = CHr
alg(A;Q)/Ir(A;Q) where Ir(A;Q) de-

notes the subgroup of CHr
alg(A;Q) of cycles incidence equivalent to zero in Ak.

Let LA ∈ CH1(A;Q) denote a hyperplane section and 2r ≤ d+ 1.

• (i) The operator

Ld−2r+1
A : Br(A;Q)→ Bd−r+1(A;Q)

is an isomorphism

• (ii) If x ∈ Br(A;Q), x 6= 0 and such that Ld−2r+2
X (x) = 0, then

(−1)r〈x, Ld−2r+1(x)〉HT > 0 .

6.1.7 Remark. Assuming that homological and numerical equivalence agree

up to torsion, the subgroup Ir(A;Q) is same as the subgroup

CHr
alg,AJ(A;Q) := Ker

(
Φr : CHr

alg(A;Q)→ Jralg(A)Q
)
.

Now, if one assumes the Bloch-Beilinson conjecture that the rational Abel-

Jacobi map is injective, then Ir(A;Q) = CHr
alg,AJ(A;Q) = 0. So, it is a

reasonable guess that Theorem 6.1.6 should hold for CHr
alg(A;Q) and not just

for Br(A;Q). Also in Remark 12.2 of [34], it is mentioned that the result could

be generalized for any smooth projective variety X/k (of dimension d) if one

assumes the standard conjectures of Lefschetz type, along with the following:

• (a) The intersection product on CH∗hom(X;Q) is zero (this is actually

Conjecture 5.7 of [5]).

• (b) The Künneth components ∆X(2d − i, i) induce the zero map on

Br(X;Q) for all i 6= 2r − 1.

These assumptions all follow from the conjectural Bloch-Beilinson filtration

on the Chow group of X and Bloch-Beilinson conjecture mentioned in the

previous remark. Specifically since X is defined over a number field ,

F 2CHr(X;Q) ⊂ Ker(Φr : CHr
hom(X;Q)→ Jr(X)) = 0 .
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Hence we can deduce (a) and (b).

This concludes the chapter. Everything in here could be found in [34], in

greater details.
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Chapter 7

Height pairing between higher

graded pieces

This chapter consists of two sections. In the first section, we will develop

and discuss our main result (Theorem 7.0.11). In the second section, we will

speculate about a possible generalization of Theorem 7.0.11 for a family. Note

that from hereon, by a filtration we will mean Lewis Filtration, as discussed in

3.4.1 and k will denote a number field, i.e. a finite extension of Q with its ring

of integers Ok. We begin, and as a reminder, with the following assumption:

7.0.8 Assumption. (BBC) For a smooth projective variety X defined over a

number field (more generally, over Q), the rational Abel-Jacobi map

CHr
hom(X;Q)→ J(H2r−1(X,Q(r)))

is injective.

Since we will be interested in smooth projective varieties X/Q, we have to

modify the definition of height pairing. We do so through

7.0.9 Proposition. (Remark 4.0.6 of [5]) Let k′/k be an extension of degree

n. Then CHr
hom(Xk;Q) ⊂ CHr

hom(Xk′ ;Q) (this is immediate by a standard

norm argument) and for a1 ∈ CHr
hom(Xk;Q) and a2 ∈ CHd−r+1

hom (Xk;Q) one

has

〈a1, a2〉k =
1

n
〈a1, a2〉k′ .

By means of this formula we can define the height pairing between CHr
hom(Xk;Q)

and CHd−r+1
hom (Xk;Q); this pairing is Galois-invariant.
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For a smooth projective variety X defined over Q, we make the following

definition:

7.0.10 Definition. Let X/Q be a smooth projective variety. For algebraic

cycles α ∈ CHr
hom(X;Q) and β ∈ CHd−r+1

hom (X;Q), we can find a number

field k′, a smooth projective variety X ′/k′ with X ∼= X ′ ⊗k′ Q and cycles

α′ ∈ CHr
hom(X ′;Q), β′ ∈ CHd−r+1

hom (X ′;Q) such that α = q∗α′ and β = q∗β′

for the finite and proper map q : X → X ′. We define

〈α, β〉HT :=
1

[k′ : Q]
〈α′, β′〉,

Using Proposition 7.0.9, we can see that this pairing is independent of the

choice of k′, X ′, α′, β′. Note also that the choices of k′, X ′ depend on the cy-

cles α and β.

Now we state and prove the main result of the thesis:

7.0.11 Theorem. Let X/Q be a smooth projective variety of dimension d

and let K/Q be a finitely generated overfield of transcendence degree ν − 1,

where ν ≥ 1 is an integer. Let us assume Grothendieck amended general

Hodge conjecture (GHC) together with the Bloch-Beilinson Conjecture or BBC

(Conjecture 2.2.17). Then there exists a pairing

〈 , 〉HT : GrνFCH
r(XK ;Q)×GrνFCHd−r+ν(XK ;Q)→ R ,

extending Bloch-Beilinson’s height pairing.

7.0.12 Remark. Assuming Conjecture 5.3 and 5.5 in [5], we will show later

that the above pairing is non-degenerate and induces a ‘polarization’ on the

primitive pieces of GrνFCH
r(XK ;Q), analogous to the situation of Hodge-

Riemann bilinear relations on cohomology.

7.1 A key result and the proof of Theorem

7.0.11

We are going to prove a proposition which is essentially the motivation for the

heart of the theorem.
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Note that K ∼= Q(S) where S/Q is a smooth projective variety of dimension

ν − 1 and dim(S ×X) = d+ ν − 1. Let ηS be the generic point of S.

7.1.1 Proposition. Assume the general Hodge conjecture. Let us consider

the projector

P̃ := ∆S ⊗∆X(2d− 2r + ν, 2r − ν) .

Then we have a surjection

P̃∗ : CHr
hom(S ×X;Q)� GrνFCH

r(XK ;Q).

Proof. First note that we have the surjection

CHr((S ×X)Q;Q)
j∗-- CHr((U ×X)Q;Q) ; j : U ×X ↪→ S ×X ,

for affine Zariski open subsets U ⊂ S/Q. Now since

lim−→
U⊂S/Q

CHr((U ×X)Q;Q) = CHr(XK ;Q) ,

we have the following surjection (using right exactness of lim−→) :

CHr((S ×X)Q;Q)� CHr(XK ;Q) ∼= CHr((ηS ×X)Q;Q).

Along with the action of P̃∗ on CHr((S ×X)Q;Q), we get the following com-

mutative diagram :

CHr((S ×X)Q;Q) -- CHr(XK ;Q)

CHr(U ×X;Q)

-

j ∗

--

P̃∗(CH
r((S ×X)Q;Q))

P̃∗

?

--

j
∗

-

GrνFCH
r(XK ;Q)

??-

(7.1.1.1)

where, the vertical arrow on the right is given by ∆XK (2d − 2r + ν, 2r − ν)∗.
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Thus

P̃∗ : CHr((S ×X)Q;Q)� GrνFCH
r(XK ;Q).

The key issue now is to replace CHr((S×X)Q;Q) by CHr
hom((S×X)Q;Q) and

still get surjectivity. Note that, by the affine Lefschetz theorem, Hν(U,Q) = 0

for any smooth affine subvariety U ⊂ S/Q. Thus, from the diagram below

CHr((S ×X)Q;Q)
P̃∗- P̃∗(CH

r((S ×X)Q;Q))

H2r((S ×X)Q,Q)

clr

? [P̃ ]∗- Hν(S,Q)⊗H2r−ν(X,Q)

clr

? j∗
- Hν(U,Q)⊗H2r−ν(X,Q) = 0,

(7.1.1.2)

we conclude that

j∗(P̃∗(CH
r((S ×X)Q;Q)) ⊂ CHr

hom((U ×X)Q;Q),

for U smooth. If we show

j∗(CHr
hom((S ×X)Q;Q)) = CHr

hom((U ×X)Q;Q),

then we can replace CHr((S × X)Q;Q) from the commutative diagram 7.1

with CHr
hom((S ×X)Q;Q) and still get the following surjectivity :

P̃∗ : CHr
hom((S ×X)Q;Q)� GrνFCH

r(XK ;Q).

Hence we conclude the proof by the following lemma:

7.1.2 Lemma. Let X/Q be smooth projective and j : U ↪→ X be open. Then,

j∗ : CHr
hom(X;Q)→ CHr

hom(U ;Q)

is surjective.

Proof. Let Y = X\U , with desingularization Ỹ → Y , and the corresponding

map:

σ : Ỹ → X.
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For simplicity, we assume that Y has pure codimension l in X. One has the

following exact sequence :

H2r−2l(Ỹ ,Q)
σ∗- H2r(X,Q)

j∗- H2r(U,Q).

Next, let η ∈ CHr
hom(U ;Q). Then there exists η ∈ CHr(X;Q) such that

j∗(η) = η. Note that [η] = 0 ∈ H2r(U ;Q) and thus by Hodge theory,

[η] = σ∗[γ] for some [γ] ∈ Hr−l,r−l(Ỹ ,Q). By the Hodge conjecture and

a spread argument (since Q is algebraically closed), we can assume that

γ ∈ CHr−l(Ỹ ;Q). Thus (η− σ∗γ) ∈ CHr
hom(X;Q) and j∗((η− σ∗γ)) = η.

This indeed shows that j∗(CHr
hom((S ×X)Q;Q)) = CHr

hom((U ×X)Q;Q) and

the result follows.

7.1.3 Proving Theorem 7.0.11

From Lefschetz decomposition and polarization, we obtain the following (per-

fect) dualities (see [51], Remark 1.3.3, 1.3.4 and Lemma 1.2.4 for details):

N r−ν+1
H H2r−ν(X,Q)×Nd−r+1

H H2d−2r+ν(X,Q)→ Q ,

N1
QH

ν−1(S,Q)×N1
QH

ν−1(S,Q)→ Q .

The pairings above induce natural decompositions :

H2r−ν(X,Q) = N r−ν+1
H H2r−ν(X,Q)

⊕
{N r−ν+1

H H2r−ν(X,Q)}⊥ ,

Hν−1(S,Q) = N1
QH

ν−1(S,Q)
⊕
{N1

QH
ν−1(S,Q)}⊥,

and the natural projectors

P : H2r−ν(X,Q)� N r−ν+1
H H2r−ν(X,Q) ,

Q : Hν−1(S,Q)� N1
QH

ν−1(S,Q) .

Note that, assuming the Künneth type standard conjectures or more generally

the Hodge conjecture, the projectors P and Q are induced by algebraic cycles

P ∈ CHd((X × X)Q;Q) and Q ∈ CHν−1((S × S)Q;Q) respectively (we use
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the same notations for cycles).

Let us revisit Proposition 7.1.1 in light of cohomology. The motivation for

this is to initiate the whole idea of an isomorphism between the graded piece

GrνFCH
r(XK ;Q) and a certain subgroup, inside CHr

hom((S ×X)Q;Q).

Since S has dimension ν − 1, by the affine Lefschetz theorem, we note that

Eν,2r−ν
∞ (ηS) = Γ

(
Hν(ηS, R

2r−νρ∗Q(r))
)

= 0 .

Hence from the definition of Lewis filtration, it follows that

GrνFCH
r(XK ;Q) ↪→ Eν,2r−ν

∞ (ηS) .

In case of a product spread PrS : (S × X)Q → S, we have the following

description of Eν,2r−ν
∞ (ηS)

7.1.4 Lemma.

Eν,2r−ν
∞ (ηS) =

J (W−1 (Hν−1(ηS,Q)⊗H2r−ν(X,Q)) (r))

Γ (Gr0
W (Hν−1(ηS,Q)⊗H2r−ν(X,Q)) (r))

.

Proof. As seen in the description of Lewis filtration, for a general spread ρ :

X → S of XK we have

Eν,2r−ν
∞ (ηS) =

J (W−1H
ν−1(ηS, R

2r−νρ∗Q(r)))

Γ (Gr0
W (Hν−1(ηS, R2r−νρ∗Q(r))))

.

For the product spread, we have the isomorphism

Hν−1(ηS, R
2r−νPrS,∗Q(r)) ∼=

(
Hν−1(ηS,Q)⊗H2r−ν(X,Q)

)
(r) ,

and the lemma follows immediately.

One can actually say even more, through the following

7.1.5 Proposition. Assume that the General Hodge conjecture holds for smooth

projective varieties over Q. Then there is an injective map

GrνFCH
r(XK ;Q) ⊂ - J(H0)
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Here J(H0) denotes the Jacobian of the pure Hodge structure H0 defined by

H0 :=

(
Hν−1(S,Q)

N1
QH

ν−1(S,Q)
⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

)
(r) .

7.1.6 Remark. Note that H0 is actually the lowest weight part of the (mixed)

Hodge structure (
Hν−1(ηS,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

)
(r) .

Proof. The idea of the proof is essentially in [41], Theorem 4.6. It crucially

uses the fact that Q is algebraically closed. We only need S to be smooth and

quasi projective for it to work.

Since the projector

P : H2r−ν(X,Q)� N r−ν+1
H H2r−ν(X,Q)

is cycle induced, from [41], Section 4 we know that

P∗(Gr
ν
FCH

r(XK ;Q)) = 0.

(Here we are using the fact that Q is algebraically closed, in order to conclude

N r−ν+1
H H2r−ν(X,Q) = N r−ν+1

Q H2r−ν(X,Q) ).

Let U ⊂ S/Q be an affine open subvariety. Let us consider the (mixed) Hodge

structures

H1 :=
(
Hν−1(U,Q)⊗H2r−ν(X,Q)

)
(r)

H2 :=
(
Hν−1(U,Q)⊗N r−ν−1

H H2r−ν(X,Q)
)

(r).

We have the following short exact sequence on the lowest weight part:

0→ W−1H2 → W−1H1 → W−1(H1/H2)→ 0,

and hence at the level of Jacobians, we get

J(W−1H2) ↪→ J(W−1H1)� J(W−1(H1/H2)),
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since Γ(W−1(H1/H2)) = 0.

From [41] (Lemma 4.5) it follows that Im(ΓGr0
H2

) = Im(ΓGr0
H1

) and we obtain

the exact sequence

J(W−1H2)/ΓGr0
H2
↪→ J(W−1H1)/ΓGr0

H1
� J(W−1(H1/H2)) .

Taking direct limit over all U ⊂ S/Q, we get

J
(
W−1

(
Hν−1(ηS,Q)⊗N r−ν−1

H H2r−ν(X,Q)
)

(r)
)
/ΓGr0

H2
(ηS) ↪→ Eν,2r−ν

∞ (ηS)

→ J(W−1(H1/H2)(ηS)) .

Since P∗ preserves the intersection

GrνFCH
r(XK ;Q)⋂

Im
(
J
(
W−1

[(
Hν−1(ηS,Q)⊗N r−ν−1

H H2r−ν(X,Q)
)

(r)
])
→ Eν,2r−ν

∞ (ηS)
)
,

it is actually zero (Proposition 4.1 (iii) of [41]). Also, since S is smooth and

projective, the lowest weight part

W−1(H1/H2)(ηS) = H0 .

Hence, we conclude that

GrνFCH
r(XK ;Q) ⊂ - J(H0) .

It is easy to see that this injective map of Proposition 7.1.5 is given by the

projector

P ′ := (∆S(ν − 1, ν − 1)−Q)⊗ (∆X(2d− 2r + ν, 2r − ν)− P ) .
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The essence of which could be captured in the following commutative diagram:

GrνFCH
r(XK ;Q)

[P ′]∗ = Identity
- GrνFCH

r(XK ;Q)

Eν,2r−ν
∞ (ηS)

?

∩

[P ′]∗ -- J(H0)
?

∩

(7.1.6.1)

7.1.7 Remark. Note that J(H0) ↪→ J(H2r−1((S ×X)Q,Q(r))). There is the

following decomposition at the level of Jacobians:

J(H2r−1((S ×X)C,Q(r))) ∼= J(H0)⊕ J(H⊥0 ) ,

where H⊥0 arises due to polarization.

Coming back to the case at hand, let

Φr : CHr
hom((S ×X)Q;Q) ↪→ J(H2r−1((S ×X)C,Q(r)))

be the Abel-Jacobi map and

P1 =
[(

[(∆S(ν − 1, ν − 1)−Q)⊗ (∆X(2d− 2r + ν, 2r − ν)− P )] • P̃
)]

denote the cohomology class of the cycle(
[(∆S(ν − 1, ν − 1)−Q)⊗ (∆X(2d− 2r + ν, 2r − ν)− P )] • P̃

)
.

Then the surjectivity result of Proposition 7.1.1 has the following cohomology

counterpart:

CHr
hom((S ×X)Q;Q)

P̃∗ -- GrνFCH
r(XK ;Q)

J(H2r−1((S ×X)C,Q(r)))

Φr

?

∩

P1,∗ -- J(H0),
?

∩

(7.1.7.1)
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since

P1 : H2r−1((S ×X)C,Q(r))�

(
Hν−1(S,Q)

N1
QH

ν−1(S,Q)
⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

)
(r)

is a projector. Now one can write

Φr(CH
r
hom((S ×X)Q;Q)) ∼= GrνFCH

r(XK ;Q)
⊕

(GrνFCH
r(XK ;Q))⊥ ,

(7.1.7.2)

where

(GrνFCH
r(XK ;Q))⊥ = (IdH2r−1((S×X)C,Q(r)) − P1)∗(Gr

ν
FCH

r(XK ;Q)) .

Via 7.1.7.2, let Ξ1 := Φ−1
r (GrνFCH

r(XK ;Q)) ⊂ CHr
hom((S × X)Q;Q). Note

that

Ξ1 =
(

[(∆S(ν − 1, ν − 1)−Q)⊗ (∆X(2d− 2r + ν, 2r − ν)− P )] • P̃
)
∗

(CHr
hom((S×X)Q;Q)) .

Now the choice of an algebraic cycle (say) w1, corresponding to P1 is not

unique. But assuming the BBC, we will show that Ξ1 can indeed be uniquely

chosen.

7.1.8 Lemma. Ξ1 is independent of the choice of correspondence w1 modulo

CHr
hom, AJ((S×X)Q;Q) := Ker

(
Φr : CHr

hom(S ×X;Q)→ J(H2r−1(S ×X,Q(r))
)
.

Proof. If w
′
1 is another such projector, then

(w1−w
′

1)∗(CH
r
hom((S×X)Q;Q)) ⊂ F 2CHr((S×X)Q;Q) ⊂ CHr

hom, AJ((S×X)Q;Q) .

Hence if we assume the BBC, the choice of Ξ1 is independent of the projector

w1.

We now have a natural isomorphism: Ξ1
∼= GrνCHr(XK ;Q), given by the

Abel-Jacobi map Φr and illustrated more clearly through the commutative

diagram:
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CHr
hom((S ×X)Q;Q) ⊂

Φr - J(H2r−1((S ×X)Q,Q(r)))

Ξ1

w1,∗

??
⊂

Φr - J(H0)

P1,∗

??

(7.1.8.1)

Following a similar method but for GrνFCH
d−r+ν(XK ;Q) we get an isomor-

phism

Ξ2
∼= GrνFCH

d−r+ν(XK ;Q).

Here Ξ2 ⊂ CHd−r+ν
hom ((S × X)Q;Q) is obtained as w2,∗(CH

d−r+ν
hom ((S × X)Q)),

for an algebraic cycle w2 corresponding to the projector

P2 : H2(d+ν−r)−1((S×X)Q,Q)�

(
Hν−1(S,Q)

N1
QH

ν−1(S,Q)
⊗ H2d−2r+ν(X,Q)

Nd−r+1
H H2d−2r+ν(X,Q)

)
︸ ︷︷ ︸

H′0

.

Note that dim((S × X)Q) = d + ν − 1 and d − r + ν = (d + ν − 1) − r + 1.

Hence, we can use the height pairing introduced by Beilinson (and Bloch)

〈 , 〉HT : CHr
hom((S ×X)Q;Q)× CHd−r+ν

hom ((S ×X)Q;Q)→ R

to get a pairing between Ξ1 and Ξ2 and hence (via the natural isomorphisms)

between the graded pieces

〈 , 〉HT : GrνFCH
r(XK ;Q)×GrνFCHd−r+ν(XK ;Q)→ R.

7.1.9 Remark. For ν = 1 it follows from construction that the above pairing

is the one introduced by Beilinson in [5].

Since the choice of S such that Q(S) ∼= K is not fixed, apparently the height

pairing should a priori vary if we vary S. In our next proposition we show

that it does not.

7.1.10 Proposition. Assuming BBC, the height pairing developed here is

independent of the choice of smooth projective variety S with Q(S) ∼= K.
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Proof. Let S ′ be another smooth projective variety such that Q(S ′) ∼= K.

Then S and S ′ are birational. One can then find a smooth projective variety

S ′′ ↪→ (S × S ′)Q and birational morphisms f1 : S ′′ � S and f2 : S ′′ � S ′

(see 2.5 of [31]). Hence we have similar birational morphisms F1 := f1× IdX :

(S ′′ ×X)Q � (S ×X)Q and F2 := f2 × IdX : (S ′′ ×X)Q � (S ′ ×X)Q.

Now, given elements x ∈ GrνFCHr(XK ;Q) and y ∈ GrνFCHd−r+ν(XK ;Q), one

can find either

xS ∈ Ξ1 ⊂ CHr
hom((S ×X)Q;Q), yS ∈ Ξ2 ⊂ CHd−r+ν

hom ((S ×X)Q;Q),

and compute 〈xS, yS〉HT , or

xS′ ∈ Ξ
′

1 ⊂ CHr
hom((S ′ ×X)Q;Q), yS′ ∈ Ξ

′

2 ⊂ CHd−r+ν
hom ((S ′ ×X)Q;Q),

(where Ξ′1 and Ξ′2 are the counterparts of Ξ1 and Ξ2 respectively) and a height

pairing 〈xS′ , yS′〉HT . But, assuming BBC, we have isomorphisms: Ξi
∼=︸︷︷︸
F ∗1

Ξ′′i
∼=︸︷︷︸
F2,∗

Ξ′i, i =

1, 2 (as before, Ξ′′i is the counterpart to Ξi, for i = 1, 2). Moreover xS′ =

F2,∗(F
∗
1 (xS)) and yS′ = F2,∗(F

∗
1 (yS)). Now it follows from the projection for-

mula for height pairing (Proposition 6.0.15) that

〈xS, yS〉HT = 〈F ∗1 (xS), F ∗1 (yS)〉HT = 〈xS′ , yS′〉HT .

7.1.11 Height pairing between the algebraic graded pieces.

7.1.12 Definition. (Algebraic part of the graded piece) : Let

F νCHr
alg(XK ;Q) := F νCHr(XK ;Q)

⋂[
Im(CHr

alg((S ×X)Q;Q) - CHr(XK ;Q))
]
.

Then we can define

GrνFCH
r
alg(XK ;Q) := Im

(
F νCHr

alg(XK ;Q)→ GrνFCH
r(XK ;Q)

)
.

There is one remark in order: If S ′ is another such variety, then we can dom-
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inate both S and S ′ by a third S
′′
↪→ S × S ′ (similar to Proposition 7.1.10).

From this, and the fact that the rational Chow group of cycles algebraically

equivalent to zero being a Q vector space is divisible, one can show

Im
(
CHr

alg((S ×X)Q;Q) - CHr(XK ;Q)
)

= Im
(
CHr

alg((S
′ ×X)Q;Q) - CHr(XK ;Q)

)
.

Thus the definition of GrνFCH
r
alg(XK ;Q) is independent of the choice of S.

Now we have the following

7.1.13 Theorem. Under the same set up as in Theorem 7.0.11 , we have the

height pairing

〈, 〉HT : GrνFCH
r
alg(XK ;Q)×GrνFCHd−r+ν

alg (XK ;Q)→ R,

extending the Neron-Tate height pairing.

Proof. Let J∗alg((S ×X)Q)Q := Φ∗(CH
∗
alg((S ×X)Q;Q)). Assuming BBC, we

have the following diagram (see [5] for details)

〈, 〉NT : Jralg((S ×X)Q)Q × Jd−r+νalg ((S ×X)Q)Q - R

〈, 〉HT : CHr
alg((S ×X)Q;Q)
∪

6

×CHd−r+ν
alg ((S ×X)Q;Q)

∪

6

- R.

(7.1.13.1)

The proof now goes exactly in the same way as Theorem 7.0.11, if we replace

CHr
hom((S×X)Q;Q) (resp. CHd−r+ν

hom ((S×X)Q;Q)) with CHr
alg((S×X)Q;Q)

(resp. CHd−r+ν
alg ((S × X)Q;Q)). We obtain Ξ1,alg ⊂ CHr

alg((S × X)Q;Q)

(respectively Ξ2,alg ⊂ CHd−r+ν
alg ((S ×X)Q;Q)), such that

Ξ1,alg
∼= GrνFCH

r
alg(XK ;Q)

Ξ2,alg
∼= GrνFCH

d−r+ν
alg (XK ;Q) .

The height pairing is now given as the pairing between Ξ1,alg and Ξ2,alg.

7.1.14 Remark. For a smooth projective variety Z defined over a number

field k, let us define

CHr
alg,AJ(Z;Q) := ker

(
Φr : CHr

alg(Z;Q)→ J(H2r−1(Z,Q(r)))
)
.
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We have the following lemma ([5], Lemma 4.0.7)

7.1.15 Lemma. Let Z/k be a smooth projective variety defined over a number

field k and a ∈ CHr
alg,AJ(Z;Q). Then a lies in the kernel of the height pairing.

In fact, it follows from the remark following Theorem 6.1.2 that the height

pairing for cycles algebraically equivalent to zero is given by the Neron-Tate

pairing between Jralg(Z)Q and Jd−r+1
alg (Z)Q (see also [5], Remark 4.0.8).

Thus, one can arrive at the result of Theorem 7.1.13, working modulo the

group CH∗alg,AJ((S ×X)Q;Q) (instead of assuming it to be zero via BBC).

7.1.16 Motivic viewpoint

This subsection is intended to develop a Q ⊗Q R valued height pairing for

the graded pieces tensored by Q, by reinterpreting it as a pairing between

CH∗hom( ; Q) of a certain motive and its dual. This beautiful (but conjec-

tural) insight was introduced in section 5 of [5] (see the discussion following

Conjecture 5.8). Also [4], section 8.3-8.5 has it in more detail.

For a variety X defined over Q, we assume that F 2CHr(X;Q) = 0. Since

F 2CHr(X;Q) ⊂ ker(Φr) this assumption is actually a consequence of the

BBC. In particular, it means that the Q valued intersection pairing for cycles

homologous to zero is zero.

For X/Q an irreducible smooth projective variety, we fix the following defini-

tions:

• By motives we will mean motives modulo homological equivalence with

coefficients in Q.

• For a motive M := (X, p, l), denote by

CHr
hom(M ;Q) := Im

(
p∗ : CHr+l

hom(X;Q)→ CHr+l
hom(X;Q)

)
.

• For a motive M := (X, p, 0), we have its dual M∨ = (X,t p, d− 2r + 1),

where d is the dimension of X.
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We will need the following observation

7.1.17 Claim. For the projectors considered in the previous section

P : H2r−ν(X,Q)� N r−ν+1
H H2r−ν(X,Q) .

Q : Hν−1(S,Q)� N1
QH

ν−1(S,Q)

and their transpose tP and tQ, we have Q =t Q and

tP : H2d−2r+ν(X,Q)� Nd−r+1
H H2d−2r+ν(X,Q) .

Proof. Note that since dim(S) = ν − 1, we can think of the map

tQ : (Hν−1(S,Q))∨ → (Hν−1(S,Q))∨

as
tQ : Hν−1(S,Q)→ Hν−1(S,Q).

Also,
tP : H2d−2r+ν(X,Q)→ H2d−2r+ν(X,Q).

Now from the discussion at the beginning of 7.1.3, we see that

(N1
QH

ν−1(S,Q))∨ ∼= {N1
QH

ν−1(S,Q)}⊥ = N1
QH

ν−1(S,Q)

and

(N r−ν+1
H H2r−ν(X,Q))∨ ∼= {N r−ν+1

H H2r−ν(X,Q)}⊥ = Nd−r+1
H H2d−2r+ν(X,Q)),

and the claim follows immediately.

As seen in 7.1.3, we can choose

w1 := (∆S(ν − 1, ν − 1)−Q)⊗ (∆X(2d− 2r + ν, 2r − ν)− P ) • P̃

with the property that

[w1]∗ : H2r−1((S ×X)Q,Q)� {N1
QH

ν−1(S,Q)}⊥ ⊗ {N r−ν+1
H H2r−ν(X,Q)}⊥
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and

Ξ1 := w1,∗(CH
r
hom((S ×X)Q;Q)) ∼= GrνFCH

r(XK ;Q) .

The isomorphism carries through if we tensor with Q, i.e

w1,∗(CH
r
hom((S ×X)Q;Q)) ∼= GrνFCH

r(XK ;Q) .

If we consider

tw1 =t P̃ •
[(

∆S(ν − 1, ν − 1)− tQ
)
⊗
(
∆X(2r − ν, 2d− 2r + ν)− tP

)]
then by Claim 7.1.17, we have

[tw1]∗ : H2(d+ν−r)−1((S×X)Q,Q)� {N1
QH

ν−1(S,Q)}⊥⊗{Nd−r+1
H H2d−2r+ν(X,Q)}⊥

and

Ξ2 :=t w1,∗(CH
d−r+ν
hom ((S ×X)Q;Q)) ∼= GrνFCH

d−r+ν(XK ;Q) .

which carries through if we tensor with Q, i.e

tw1,∗(CH
d−r+ν
hom ((S ×X)Q;Q)) ∼= GrνFCH

d−r+ν(XK ;Q) .

Consider the motive

M(S×X)Q
:= ((S ×X)Q, w1, 0)

and its dual

M∨
(S×X)Q

= ((S ×X)Q,
tw1, d− 2r + ν).

From above, we get

CHr
hom(M(S×X)Q

;Q) ∼= GrνFCH
r(XK ;Q)

and

CHr
hom(M∨

(S×X)Q
;Q) ∼= GrνFCH

d−r+ν(XK ;Q) .

In this way, we can develop a Q⊗R valued height pairing betweenGrνFCH
r(XK ;Q)

and GrνFCH
d−r+ν(XK ;Q) as a height pairing between CHr

hom( ; Q) of the mo-

tive M(S×X)Q
and its dual.
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7.2 Speculation about a more general situa-

tion

In this incomplete section, we are going to speculate how one can generalize

Theorem 7.0.11 in the following situation: we can find a family ρ : X → S,

where X and S smooth and quasiprojective over Q and ρ is smooth and proper.

If ηS denote the generic point of S, then Q(ηS) ∼= K and XηS ∼= XK . One can

then have the following diagram:

X ⊂ - X

S

ρ

?
⊂ - S

ρ̄

?

(7.2.0.1)

where X and S are the projective closures of X and S respectively. We call

this a general Q-spread of XK . In the previous section we worked with the

product PrS : (S ×X)Q → S.

One has the following (non-canonical) decomposition

H2r−1(X ,Q(r)) ∼=
⊕
ν=1

Hν−1(S, R2r−νρ∗Q(r)),

and (after possibly shrinking S) an inclusion⊕
ν=1

Hν−1(S, N r−ν+1
K R2r−νρ∗Q(r)) ⊂

⊕
ν=1

Hν−1(S, R2r−νρ∗Q(r))

of MHS. Here, we make the following assumption

7.2.1 Assumption. Let ρ : X → S be a smooth and proper map of smooth

quasiprojective varieties defined over Q. Then the images of

ΓGrW0 H
ν−1(S, N r−ν+1

K R2r−νρ∗Q(r)),
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and

ΓGrW0 H
ν−1(S, R2r−νρ∗Q(r))

inside the Jacobian J(W−1H
ν−1(S,R2r−νρ∗Q(r))), are same.

7.2.2 Remark. As seen in the proof of Proposition 7.1.5, this assumption

holds in the product situation. It would be interesting to explore further as to

which situations it holds.

Now, we hope to generalize Theorem 7.0.11 to

7.2.3 Theorem. Let K/Q be an overfield of transcendence degree ν − 1 and

X/Q be an irreducible smooth projective variety of dimension d. Let us assume

7.2.1, together with the Grothendieck amended general Hodge conjecture and

BBC. Then using the spread ρ : X → S (see discussion at the beginning of the

section), one can develop a height pairing

GrνFCH
r(XK ;Q)×GrνFCHd−r+ν(XK ;Q)→ R

on the graded pieces of the Lewis filtration ([38]), extending the Beilinson’s

height pairing.

7.2.4 Remark. We would also want this height pairing to be independent of

the spread ρ : X → S. In particular we get back the height pairing developed

in Theorem 7.0.11, where Assumption 7.2.1 holds.

Proof. Note that dim(S) = ν − 1 and the relative dimension of X is d. There

is a surjection

CHr(X ;Q)� CHr(XK ;Q)
∆XK

(2d−2r+ν,2r−ν)∗-- GrνFCH
r(XK ;Q).

We can choose a lift ∆X (2d−2r+ν, 2r−ν) ∈ X×SX of ∆XK (2d−2r+ν, 2r−ν),

of relative dimension d, and get the following commutative diagram

CHr(X ;Q)
∆X (2d− 2r + ν, 2r − ν)∗- ∆X (2d− 2r + ν, 2r − ν)∗CH

r(X ;Q)

(7.9)

H2r
H (X ,Q)

clH

? [∆X (2d− 2r + ν, 2r − ν)]∗ - Eν,2r−ν
∞ (ρ)

clr

? j∗
- Eν,2r−ν

∞ (ρV ) = 0,

where V ⊂ S is smooth, affine and open. Further, using the Hodge conjecture
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we conclude

∆X (2d− 2r + ν, 2r − ν)∗ : CHr
hom(X ;Q) -- GrνFCH

r(XK ;Q). (7.2.4.1)

We also need to use

7.2.5 Proposition. Let Assumption 7.2.1 hold, then we have an injective map

GrνFCH
r(XK ;Q) ⊂ - J

(
W−1H

ν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
H R2r−νρ∗Q(r)

))
.

The proof of this proposition goes exactly in the same way as that of Propo-

sition 7.1.5, now noting that there is a natural map

Eν,2r−ν
∞ (ηS)→ J

(
W−1H

ν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
H R2r−νρ∗Q(r)

))
,

given by the projector

Hν−1(ηS , R
2r−νρ∗Q(r))� Hν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
H R2r−νρ∗Q(r)

)
.

Now, the image Φr : CHr
hom(X ;Q) ↪→ J(H2r−1(X ,Q(r))) actually lands in

J(W−1H
2r−1(X ,Q(r)))

ΓGrW0 H
2r−1(X ,Q(r))

,

via the short exact sequence

0→ W−1H
2r−1(X ,Q(r))→ W0H

2r−1(X ,Q(r))→ GrW0 H
2r−1(X ,Q(r))→ 0.

But from Assumption 7.2.1, it follows that there is a map

J(W−1H
2r−1(X ,Q(r)))

ΓGrW0 H
2r−1(X ,Q(r))

→ J

(
W−1H

ν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
K R2r−νρ∗Q(r)

))
,

which is given by the following series of (non-canonical) projections

W−1H
2r−1(X ,Q(r))� W−1H

ν−1(S, R2r−νρ∗Q(r))� W−1H
ν−1(ηS , R

2r−νρ∗Q(r))

� W−1H
ν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
H R2r−νρ∗Q(r)

)
.
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Now we can see the surjection of equation 7.2.4.1 inside the Jacobian, through

the following commutative diagram

CHr
hom(X ;Q) ⊂ -

J(W−1H
2r−1(X ,Q(r)))

ΓGrW0 H
2r−1(X ,Q(r))

GrνFCH
r(XK ;Q)

??
⊂ - J

W−1H
ν−1

(
ηS ,

R2r−νρ∗Q(r)

N r−ν+1
H R2r−νρ∗Q(r)

)
︸ ︷︷ ︸

W−1H0


? (7.2.5.1)

Now, from the (non-canonical) decomposition

W−1H
2r−1(X ,Q(r)) ∼= W−1H0

⊕
(W−1H0)⊥,

we get a similar decomposition at the level of Jacobians

J(W−1H
2r−1(X ,Q(r))) = J(W−1H0)

⊕
J((W−1H0)⊥).

The idea now is to conclude (viewing everything inside the respective Jaco-

bians)

CHr
hom(X ;Q) ∼= GrνFCH

r(XK ;Q)
⊕

(GrνFCH
r(XK ;Q))⊥. (7.2.5.2)

(In progress).

We will see some computations of our height pairing in the next chapter.
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Chapter 8

Some computations for product

of curves

This chapter is motivated towards jump starting calculations.

8.1 Product of general curves

Notation : Henceforth, for two smooth projective varieties X and Y over any

field k, their usual fibre product X×k Y will be denoted simply by X×Y . This

is done mainly for the ease of writing than for any other reason.

We will begin with a lemma which will serve as a prototypical example for all

the later computations. We thank Dr. José Burgos Gil for providing us with

the idea of the proof of this lemma.

8.1.1 Lemma. Let C be smooth projective curve and X be a smooth projective

variety of dimension d − 1, both defined over a number field k. Let α1, α2 ∈
CH1

alg(C;Q) and π1 : C ×X → C and π2 : C ×X → X are the projections.

Given w1 ∈ CHr−1(X;Q) and w2 ∈ CH(d−1)−(r−1)(X;Q) = CHd−r(X;Q) and

the cycles

ξ1 := π∗1(α1) · π∗2(w1) ∈ CHr
alg(C ×X;Q)

ξ2 := π∗1(α2) · π∗2(w2) ∈ CHd−r+1
alg (C ×X;Q).
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We get the following height pairing relation :

〈ξ1, ξ2〉HT = (deg(w1 · w2)X)〈α1, α2〉NT .

Here (w1 · w2)X is the usual intersection pairing on X, 〈 , 〉HT and 〈 , 〉NT
denotes the Beilinson/arithmetic and the Neron-Tate height pairings respec-

tively.

Proof. We fix the following notation : For an arithmetic variety Y over Spec(Ok)

of a number field k, we will denote the structural morphism Y → Spec(Ok)→
Spec(Z) by ΠY .

Let C̃ be the unique minimal regular model for C over Spec(Ok) (by [44],

Proposition 10.1.8 , such a model exists). Choose Zi, i = 1, 2 cycles on C̃ of

codimension 1 such that

• Zi|C = αi.

• Zi ·V = 0 for any vertical cycle V . We can arrange this, see for example

[34], section 6.

Choose gi, i = 1, 2 Green’s functions for Zi such that ddcgi+δαi = 0. We have

[(Zi, gi)] ∈ ĈH
1
(C̃), i = 1, 2 .

Then,

〈α1, α2〉NT = ΠC̃,∗ ([(Z1, g1)] · [(Z2, g2)]) ∈ ĈH
1
(Spec(Z)) = R

is independent of the choices of Zi, gi.

Now, for any projective and flat model X̃ ′ over Spec(Ok) of X, we get, by de

Jong’s alteration (see [11] for details), a projective, flat and regular scheme

X̃ over Spec(Ok) with a finite and surjective morphism to X̃ ′, in particular

dim(X̃ ′) = dim(X̃). Let Wi, i = 1, 2 be cycles on X̃ of codimensions r − 1

and d− r respectively such that

Wi|X = wi, i = 1, 2 .
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Let gW1 (resp. gW2) be a Green current of logarithmic type for W1 (resp. W2).

Then

[(W1, gW1)] ∈ ĈH
r−1

(X̃)

[(W2, gW2)] ∈ ĈH
d−r

(X̃) .

For the scheme C̃ ×Spec(Ok) X̃, we can use the alteration trick once again to

obtain a regular flat and projective scheme Z over Spec(Ok) and a domi-

nant and finite morphism f : Z → C̃ ×Spec(Ok) X̃. In particular dim(Z) =

dim(C̃ ×Spec(Ok) X̃) = d+ 1. For the projections

πC̃ : C̃ ×Spec(Ok) X̃ → C̃

πX̃ : C̃ ×Spec(Ok) X̃ → X̃ ,

consider

fC̃ := πC̃ ◦ f

fX̃ := πX̃ ◦ f ,

and the cycles

ξ̃1 := f ∗
C̃

([(Z1, gZ1)])f
∗
X̃

([(W1, gW1)])

ξ̃2 := f ∗
C̃

([(Z2, gZ2)])f
∗
X̃

([(W2, gW2)]) .

Then

〈ξ1, ξ2〉HT = ΠZ,∗

(
ξ̃1 · ξ̃2

)
∈ ĈH

1
(Spec(Z)) = R .

Since f ∗
C̃

and f ∗
X̃

are morphisms of rings ([17], 4.4.3 (5)),

ξ̃1 · ξ̃2 = f ∗
C̃

([(Z1, g1)] · [(Z2, g2)]) · f ∗
X̃

([(W1, gW1)] · [(W2, gW2)]) .

By the projection formula for arithmetic intersection pairing ([17], 4.4.3 (7))

fC̃,∗

(
ξ̃1 · ξ̃2

)
= [(Z1, g1)] · [(Z2, g2)]︸ ︷︷ ︸

∈ĈH
2
(C̃)

· fC̃,∗
[
f ∗
X̃

([(W1, gW1)] · [(W2, gW2)])
]︸ ︷︷ ︸

∈ĈH
0
(C̃)

.

Since

ΠZ,∗

(
ξ̃1 · ξ̃2

)
= ΠC̃,∗

(
fC̃,∗(ξ̃1 · ξ̃2)

)
and

fC̃,∗
[
f ∗
X̃

([(W1, gW1)] · [(W2, gW2)])
]

= deg(w1 · w2)X ,
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we obtain our desired result.

Now, we state and prove a corollary which will serve as an example for the

theory developed through Theorem 7.0.11.

8.1.2 Corollary. Assume given smooth projective curves C1, · · ·Cd over Q and

let X = C1×· · ·×Cd. For ν = 2, we fix an embedding K = Q(C2×· · ·×Cν) ↪→
C, and let p = (η2, · · · , ην) ∈ C2(C) × · · · × Cν(C) be a very general point

corresponding to this embedding. We fix ej ∈ Cj(Q), j = 2, · · · , d. For distinct

points p1, q1, p2, q2 ∈ C1(Q) and ν 5 r 5 d, let

ξ1 := Pr∗1,··· ,ν((p1−q1)×(η2−e2)×· · ·×(ην−eν))
⋂

Pr∗ν+1,··· ,r(eν+1, · · · , er) ∈ GrνFCHr(XK ;Q),

ξ2 := Pr∗1,··· ,ν((p2−q2)×(η2−e2)×· · ·×(ην−eν))
⋂

Pr∗r+1,··· ,d(er+1, · · · , ed) ∈ GrνFCHd−r+ν(XK ;Q).

Assume also

N1
H

(
H1(C1,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= N1

Q

(
H1(C2,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= 0.

Then, 〈ξ1, ξ2〉HT =
(∏ν

j=2[deg(∆2
Cj

(1, 1))Cj×Cj ]
)
〈p1 − q1, p2 − q2〉NT ,

where 〈, 〉NT is the Neron-Tate pairing on (J1(C1)(Q))⊗Q.

We add some comments before we begin the proof :

1. Note that, XK = C1,K×· · ·×Cd,K and we view (ηj−ej) ∈ CH1
hom(Cj,K)

for 2 5 j 5 ν.

2. For a smooth projective curve C of genus g, we know that the homology

class of ∆C(1, 1) in H1(C,Z) is given by

∆C(1, 1) =

g∑
i=1

(αi ⊗ βi − βi ⊗ αi) ,

where {α1, · · · , αg, β1, · · · , βg} are the canonical generators of H1(C,Z),

having the property αi·αj = βi·βj = 0, αi·βj = δij and αi·βj = −(βj ·αi),
· denoting the intersection number. Hence, it follows that

deg(∆2
C(1, 1)) = −2g .
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So, we can rewrite

〈ξ1, ξ2〉HT = (−1)ν−1 · 2ν−1

(
ν∏
j=2

gj

)
〈p1 − q1, p2 − q2〉NT ,

where gj is the genus of the curve Cj.

3. The assumption of this corollary holds for example if we take X = E1×
E2, a product of two non-isogenous elliptic curves, and S = E2. Here

N1
Q(H1(E2,Q)) = 0 is automatic and

N1
H(H1(E1,Q)⊗H1(E2,Q)) = H2

alg(E1×E2,Q)∩(H1(E1,Q)⊗H1(E2,Q)) = 0

follows from the fact any non-zero element [ξ] ∈ H2
alg(E1 × E2,Q) ∩

(H1(E1,Q)⊗H1(E2,Q)) will in turn define an isogeny between E1 and

E2.

Proof. We will closely follow the set up of Theorem 7.0.11 . Set S = C2 ×
· · · × Cν with projections

πSi : S → Ci, i = 2, · · · ν,

πXj : X → Cj, j = 1, · · · d,

πi,j := πSi × πXj : S ×X → Ci × Cj.

We have (from Chow-Kunneth decomposition for smooth curves)

∆Cj(1, 1) = ∆Cj − ej × Cj − Cj × ej.

We now put

ξ̃1 :=

(
ν⋂
2

π∗i,i(∆Ci(1, 1))

)⋂(
πX,∗1 (p1 − q1)

)⋂(
r⋂

ν+1

πX,∗j (ej)

)
,

ξ̃2 :=

(
ν⋂
2

π∗i,i(∆Ci(1, 1))

)⋂(
πX,∗1 (p2 − q2)

)⋂(
d⋂
r+1

πX,∗j (ej)

)
,

and observe that since (pj − qj) ∼alg 0, it follows from basic intersection

theory of algebraic varieties that ξ̃1 and ξ̃2 belong to CHr
alg(S × X;Q) and
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CHd−r+ν
alg (S ×X;Q) respectively.

8.1.3 Lemma. The Abel-Jacobi images of ξ̃1 and ξ̃2 lies in

J
(
[⊗νi=2H

1(Ci,Q)][⊗νj=1H
1(Cj,Q)][⊗rj=ν+1H

2(Cj,Q)][⊗dj=r+1H
0(Cj,Q)](r)

)
↪→ J(Hν−1(S,Q)⊗H2r−ν(X,Q)(r)),

and

J
(
[⊗νi=2H

1(Ci,Q)][⊗νj=1H
1(Cj,Q)][⊗rj=ν+1H

0(Cj,Q)][⊗dj=r+1H
2(Cj,Q)](d− r + ν)

)
↪→ J(Hν−1(S,Q)⊗H2d−2r+ν(X,Q)(d− r + ν))

respectively.

Proof. We will prove for ξ̃1 and the argument for ξ̃2 is exactly similar. Consider

the correspondence

Z1 := π∗C1×C1
(∆C1(1, 1)) ·

(
ν⋂
2

π∗i,i(∆Ci(1, 1))

)⋂(
r⋂

ν+1

πX,∗j (ej)

)

SInce Z1,∗(p1 − q1) = ξ̃1, it follows from the commutative diagram

CH1
alg(C1;Q)

Z1,∗ - CHr
alg(S ×X;Q)

J(H1(C1,Q(r)))

Φ1

? [Z1]∗- J(H2r−1(S ×X,Q(r)))

Φr

?

(8.1.3.1)

that the Abel-Jacobi image of ξ̃1 lies in

J
(
[⊗νi=2H

1(Ci,Q)][⊗νj=1H
1(Cj,Q)][⊗rj=ν+1H

2(Cj,Q)][⊗dj=r+1H
0(Cj,Q)](r)

)
.

For smooth curves we have H2(Cj,Q) = H1,1(Cj,Q) from basic Hodge theory.

Also from the conditions

N1
Q

(
H1(C2,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= 0
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and

N1
H

(
H1(C1,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= 0

we obtain that the Abel-Jacobi invariants of ξ̃1 and ξ̃2 belongs to

P1,∗J(H2r−1(S ×X,Q(r)))

and

P2,∗J(H2(d−r+ν)−1(S ×X,Q(d− r + ν)))

respectively. Here, P1 and P2 are the projections defined in Chapter 7. Note

also that ξ̃1 = w1,∗(ξ̃1) and ξ̃2 = w2,∗(ξ̃2), if we assume BBC. Thus, ξ̃1 ∈ Ξ1

and ξ̃2 ∈ Ξ2 where Ξ1 and Ξ2 are as defined in Chapter 7.

8.1.4 Lemma. Under the isomorphism

Ξ1
∼= GrνFCH

r(XK ;Q)

respectively

Ξ2
∼= GrνFCH

d−r+ν(XK ;Q)

we have that ξ̃1 7→ ξ1 and ξ̃2 7→ ξ2.

Proof. Note that, once we fix a general point p ∈ S(C) and an embedding

evp : K ↪→ C, the surjection

CHr(S ×X;Q)� CHr(XK ;Q)

is given by Z 7→ Z ∩ ({p} ×X) where Z ∈ CHr(S ×X;Q). In our situation,

p = (η2, · · · , ην) and if we pick up πX,∗1 (p1 − q1) as a prototype, we have the

following computation :

πX,∗1 (p1− q1) = (C2×· · ·×Cν)×{(p1− q1)}× (C2×· · ·×Cd) ∈ CH1
alg(S×X).

Intersecting with {(η2, · · · , ην)} ×X, we get :

{(η2, · · · , ην)} × {(p1 − q1)} × (C2 × · · · × Cd).

Similar calculation shows that the image of (p1 − q1) ∈ CH1
hom(C1;Q) under

the map Pr∗1,··· ,ν is exactly the same.
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Mimicking this computation above for other components and using the fact

that ∆Cj(1, 1) = ∆Cj − ej × Cj − Cj × ej, we get our result.

By Lemma 8.1.4, it suffices to compute 〈ξ̃1, ξ̃2〉HT with respect to the height

pairing

〈, 〉HT : CHr
alg(S ×X;Q)× CHd−r+ν

alg (S ×X;Q)→ R.

Collecting coefficients, we can assume that the curves Ci, i = 1, d are defined

over a number field k. We set up the following notations :

• C := C1

• X := [(C2 × C2)× · · · × (Cν × Cν)]× Cν+1 × · · · × Cd

• αi := pi − qi, i = 1, 2

• w1 :=
(⋂ν

2 π
∗
i,i(∆Ci(1, 1))

)
·
(⋂r

ν+1 π
X,∗
j (ej)

)
• w2 :=

(⋂ν
2 π
∗
i,i(∆Ci(1, 1))

)
·
(⋂d

r+1 π
X,∗
j (ej)

)
,

following Lemma 8.1.1. Then the height pairing is given by

〈ξ1, ξ2〉HT = (deg(w1 · w2)X) 〈p1 − q1, p2 − q2〉NT .

But

deg(w1 · w2)X =
ν∏
j=2

[deg(∆2
Cj

(1, 1))Cj×Cj ] .

Thus we obtain the required relation.

****************************

8.2 A computation for self product of elliptic

curves

The assumption

N1
H

(
H1(C1,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= N1

Q

(
H1(C2,Q)⊗ · · · ⊗H1(Cν ,Q)

)
= 0
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of Corollary 8.1.2 is very general condition and was made for the ease of com-

putation. An ideal situation would be to able to compute without this assump-

tion. As an example, if we consider the self product C × C of an irreducible

smooth projective curve C, the aforementioned assumption is no longer valid.

Indeed, going further, we will restrict ourselves to the self-product of a CM

elliptic curve.

We will stick to the following notation :

Let X/Q := C1 × C2 where Ci, i = 1, 2 are irreducible smooth projective

curves defined over Q and S := C2. Note that

{N1
QH

1(S,Q)}⊥ = {0}⊥ = H1(S,Q) ,

and

{N1
HH

2(X,Q)}⊥ = {H2
alg(X,Q)}⊥ = H2

tr(X,Q) ,

is the transcendental cohomology. We can choose a basis {D1, · · · , DN} of

H2
alg(X,Q) with the dual basis (with respect to the cup product) {D′1, · · · , D′N}.

The transcendental projector T : H2(X,Q)� H2
tr(X,Q) is then given by

∆X(2, 2)− A .

where A :=
∑N

1 D
′
j × Dj is the algebraic projector. Since X is defined over

Q, we can choose Dj, D
′
j over Q. Let us consider a situation where we can

explicitly compute the basis {D1, · · · , DN} ; that of X/Q := E × E where

E/Q is a CM-elliptic curve with complex multiplication given by the lattice

Z[i] (i.e E(C) ∼= C/Z[i]), although the method that we are going to adopt

should generalize to any CM-elliptic curve.

The basis for H2
alg(X,Q) is given by

{[∆E(2, 0)], [∆E(0, 2)], [∆E(1, 1)], [ΞE(1, 1)]} ,

where ΞE ∈ CH1(E × E;Q) is the graph of the complex multiplication by i.
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Note up to a factor of 2, the dual basis is given by

{[∆E(0, 2)], [∆E(2, 0)], [−∆E(1, 1)], [−ΞE(1, 1)]} .

In particular, we have the following intersection numbers (using that the genus

g of E is 1)

• deg(∆E(2, 0) ·∆E(0, 2)) = 1

• deg(∆E(1, 1) · ΞE(1, 1)) = 0

• deg(∆2
E(1, 1)) = −2 and deg(Ξ2

E(1, 1)) = 2.

Consider the cycle ξ := (p−q)×(η−o) ∈ Gr2
FCH

2(XK ;Q), where K ∼= Q(E),

η ∈ E(K) is a very general point and {p, q, o} ∈ E(Q), with o being the

basepoint of E. Our aim is to compute

〈ξ, ξ〉HT .

In this situation S = E and S×X = E×E×E, we know from the consideration

of Corollary 8.1.2 that

ξ̃ := π∗13(∆E(1, 1)) · π∗2(p− q) ∈ CH2
alg(E × E × E;Q)

is a pre image of ξ. To get an unconditional pairing, we need to consider the

image of ξ̃ under the projector

T := [∆E,14(1, 1))]⊗ [∆X(2, 2)−A] ∈ CH3((E × E × E)× (E × E × E)︸ ︷︷ ︸
numbered 1···6

;Q) ,

where A now is given by the projector

∆E,23(2, 0)×∆E,56(0, 2)+∆E,23(0, 2)×∆E,56(2, 0)−∆E,23(1, 1)×∆E,56(1, 1)−ΞE,23(1, 1)×ΞE,56(1, 1) .

Note that, assuming BBC we get that [∆E,14(1, 1)⊗∆X(2, 2)]∗(ξ̃) = ξ̃. Hence

we obtain

T∗(ξ̃) = π∗13(∆E(1, 1)) · π∗2(p− q)︸ ︷︷ ︸
ξ̃1=ξ̃

+ π∗1(p− q) · π∗23(∆E(1, 1))︸ ︷︷ ︸
ξ̃2

+ π∗1(i(p− q)) · π∗23(ΞE(1, 1))︸ ︷︷ ︸
ξ̃3

.
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It is easy to see, that under the isomorphism defined in Chapter 7,

T∗(ξ̃) 7→ ξ .

Hence the height pairing is given by

〈ξ, ξ〉HT := 〈T∗(ξ̃), T∗(ξ̃)〉HT .

The point now is to get a relation similar to Corollary 8.1.2 for this height

pairing. That will be our next

8.2.1 Proposition. Let E/Q be the CM-elliptic curve such that E(C) =

C/Z[i] and {p, q} ∈ E(Q). Let ΞE be the graph of the morphism of multi-

plication by i. For the cycle

T∗(ξ̃) := π∗2(p− q) · π∗13(∆E(1, 1))︸ ︷︷ ︸
ξ̃1

+ π∗1(p− q) · π∗23(∆E(1, 1))︸ ︷︷ ︸
ξ̃2

+ π∗1(i(p− q)) · π∗23(ΞE(1, 1))︸ ︷︷ ︸
ξ̃3

,

on E × E × E the following height pairing relation holds :

〈T∗(ξ̃), T∗(ξ̃)〉HT = 2〈p− q, p− q〉NT ,

where 〈 , 〉NT is the Neron-Tate pairing on curves.

Proof. First note that, from linearity of height pairing we obtain

〈T∗(ξ̃), T∗(ξ̃)〉HT =
3∑
1

〈ξ̃i, ξ̃i〉HT + 2
(
〈ξ̃1, ξ̃2〉HT + 〈ξ̃1, ξ̃3〉HT + 〈ξ̃2, ξ̃3〉HT

)
.

The computations for each of 〈ξ̃i, ξ̃i〉HT and 〈ξ̃2, ξ̃3〉HT follows the method used

in the proof of Lemma 8.1.1. We get the following relations

• 〈ξ̃1, ξ̃1〉HT = [deg(∆2
E(1, 1))]〈p− q, p− q〉NT = −2〈p− q, p− q〉NT .

• 〈ξ̃2, ξ̃2〉HT = −2〈p− q, p− q〉NT .

• 〈ξ̃2, ξ̃3〉HT = [deg(∆E(1, 1) · ΞE(1, 1))]〈p− q, i(p− q)〉NT = 0 .

• 〈ξ̃3, ξ̃3〉HT = 2〈p− q, p− q〉NT .

Let’s elaborate on the last relation : First note that since deg(Ξ2
E(1, 1)) = 2,
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we get the relation

〈ξ̃3, ξ̃3〉HT = 2〈i(p− q), i(p− q)〉NT .

We compute the height pairing on the right hand side with the following

observation

〈i(p−q), i(p−q)〉NT = 〈[i]∗(p−q), [i]∗(p−q)〉NT = 〈p−q, [i]∗([i]∗(p−q))〉NT = 〈p−q, p−q〉NT .

Hence

〈ξ̃3, ξ̃3〉HT = 2〈p− q, p− q〉NT .

We are left with computing 〈ξ̃1, ξ̃2〉HT and 〈ξ̃1, ξ̃3〉HT .

Computation for 〈ξ̃1, ξ̃2〉HT : Note that

∆E(1, 1) = ∆E −∆E(2, 0)−∆E(0, 2)

and

π∗13(∆E(1, 1)) · π∗23(∆E(1, 1)) = ∆123︸︷︷︸
{(x,x,x)}

− ∆13︸︷︷︸
{(x,o,x)}

− ∆23︸︷︷︸
{(o,x,x)}

+ ∆3︸︷︷︸
{(o,o,x)}

?

Here o ∈ E(Q) is the base point. Let Ẽ/Spec(Ok) be the minimal regular

model for E and assume (using de-Jong’s alteration) that all the self products

Ẽ×· · ·× Ẽ over Spec(Ok) are regular. Let Z be an arithmetic cycle in Ẽ such

that Z|E = p− q and Z · v = 0 for any vertical cycle v. For a choice of Green

current gZ , such that ddcgZ + δp−q = 0, consider

α := [(Z, gZ)] ∈ ĈH
1
(Ẽ) .

Then, as seen before

〈p− q, p− q〉NT = ΠẼ,∗(α · α) ∈ ĈH
1
(Spec(Z)) ∼= R ,

where, as before ΠẼ is the structural morphism. Now, it is evident that the
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required height pairing is given by

ΠẼ×Ẽ×Ẽ,∗

[
π∗1(α) · π∗2(α) · π∗13([(∆̃E(1, 1), g)]) · π∗23([(∆̃E(1, 1), g)])

]
.

Here, for the cycle ∆E(1, 1) ∈ CH1(E × E;Q), ∆̃E(1, 1) ∈ ĈH
1
(Ẽ × Ẽ)

denotes an arithmetic cycle with generic fibre ∆E(1, 1) and g is a suitable

Green current. From ? moreover, we can break it up even further : Let us

consider the following arithmetic cycles

[(∆̃123, g123)], [(∆̃13, g13)], [(∆̃23, g23)], [(∆̃3, g3]

for suitable choice of Green currents. Then, the height pairing is given by

ΠẼ×Ẽ×Ẽ,∗(π
∗
1(α)·π∗2(α)·[(∆̃123, g123)]−π∗1(α)·π∗2(α)·[(∆̃13, g13)]−π∗1(α)·π∗2(α)·[(∆̃23, g23)]

+π∗1(α) · π∗2(α) · [(∆̃3, g3)]) .

We first compute

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃123, g123)]

)
.

The idea for the proof was kindly communicated to us by Dr. José Burgos

Gill. Let us denote

∆123 : E → E × E × E︸ ︷︷ ︸
x7→(x,x,x)

,

now as an embedding. Note that this has an obvious extension to the regular

models. We will use the same notation for it. Since the generic fibre of α is

homologically trivial, we get

π∗1(α) · π∗2(α) · [(∆̃123, g123)] = ∆123,∗∆
∗
123 (π∗1(α) · π∗2(α)) .

Since ΠẼ×Ẽ×Ẽ,∗(∆123,∗()) = ΠẼ,∗(()), we deduce

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃123, g123)]

)
= ΠẼ,∗ (∆∗123π

∗
1(α) ·∆∗123π

∗
2(α)) .

Since each of ∆∗123π
∗
1 and ∆∗123π

∗
2 is identity, we get

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃123, g123)]

)
= ΠẼ,∗ (α · α) = 〈p− q, p− q〉NT .
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This is the only non zero intersection number that we get, as we will see in

our next computation. Let

∆13 : E → E × E × E︸ ︷︷ ︸
x7→(x,o,x)

denote an embedding. As before, this has an extension to the regular models

once we choose and fix a cycle õ with generic fibre o. We note here the following

observations : π1 ◦∆13 = IdE and π2 ◦∆13 is the constant morphism. Using

the same idea as before, we get

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃13, g13)]

)
= ΠẼ,∗ (∆∗13π

∗
1(α) ·∆∗13π

∗
2(α)) = ΠẼ,∗ ((π2 ◦∆13)∗α · α) .

The last equality follows from projection formula.

Using the facts that Z · v = 0 for all vertical cycles and (π2 ◦∆13)∗(p−q) = 0,

we deduce

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃13, g13)]

)
= 0 .

Using similar idea, we obtain

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃23, g23)]

)
= 0

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(∆̃3, g3)]

)
= 0 .

Hence, overall we get

〈ξ̃1, ξ̃2〉HT = 〈p− q, p− q〉NT .

Computation for 〈ξ̃1, ξ̃3〉HT : We start with the following observations:

ΞE(1, 1) = ΞE −∆E(2, 0)−∆E(0, 2) ,

π∗13(∆E(1, 1)) · π∗23(ΞE(1, 1)) = Ξ123︸︷︷︸
{(ix,x,ix)}

−∆13 − Ξ23︸︷︷︸
{(o,x,ix)}

+∆3 .

Since we consider the minimal regular model Ẽ of E, the automorphism

[i] : E → E︸ ︷︷ ︸
x7→ix

has an extension which we will still denote by [i] : Ẽ → Ẽ. Thus
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the embedding

Ξ123 : E → E × E × E︸ ︷︷ ︸
x7→(ix,x,ix)

also has an extension to the regular models. Note here that π1 ◦ Ξ123 = [i]

and π2 ◦ Ξ123 = IdE. Let [i]∗α denote the pushforward of the cycle α with

generic fibre i(p − q). Thus (π1 ◦ Ξ123)∗[i]∗α = [i]∗[i]∗α = α. Now, similar

computations as before yields

ΠẼ×Ẽ×Ẽ,∗

(
π∗1(α) · π∗2(α) · [(Ξ̃123, g

′
123)]

)
= ΠẼ,∗ (α · α) = 〈p− q, p− q〉NT

and all other intersection numbers being zero. Overall, we get

〈ξ̃1, ξ̃3〉HT = 〈p− q, p− q〉NT .

Putting this all together, we get the desired result.
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Chapter 9

Some Hodge-index type results

In section 5 of [5], Beilinson stated a Hodge-index type conjecture for his height

pairing. The idea of this chapter is to extend his conjecture to our situation.

We will first see that based on the conjecture, we can actually obtain a Hodge-

index type result in our situation. This will be our main goal. Using this and

one of Kunnemann’s result (see [34], Theorem 12.1), we will obtain a result

for the case for abelian varieties and cycles algebraically equivalent to zero. In

the second section, we will speculate some results for product of curves, albeit

conditionally.

9.1 Hodge-index result for graded pieces

Notation : The usual fibre product of two (or more) smooth projective vari-

eties X and Y over a field k will be denoted by X × Y .

Let us make the following assumptions :

9.1.1 Assumption. For a smooth projective variety X of dimension d defined

over a number field k, assume the following (Conjectures 5.3 and 5.5 of [5]):

• (hard Lefschetz) : Let LX ∈ CH1(X;Q) be the operation of intersecting

with a hyperplane section. Then for r ≤ (d+ 1)/2,

Ld−2r+1
X : CHr

hom(X;Q)→ CHd−r+1
hom (X;Q)
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is an isomorphism.

• (Hodge-index) : Let the hard Lefschetz assumption hold. If x ∈ CHr
hom(X;Q),

x 6= 0, and Ld−2r+2(x) = 0 then

(−1)r〈x , Ld−2r+1
X (x)〉HT > 0

for r ≤ (d+ 1)/2 .

If X is defined over Q , we can collect coefficients of the defining polynomials

of X to get an X ′ defined over a number field k (not uniquely) and a finite

proper morphism X = X ′ ×k Q → X ′. The assumptions above can now be

made for X/Q.

Coming back to our situation, if LXK ∈ CH1(XK ;Q) be the operation of

intersection hyperplane section in XK , then LS×X := LS × X + S × LX is a

natural choice for the same operation in S × X. We also have the following

isomorphism for Lewis filtration (see diagram 4.6 in [38])

Ld−er+νXK
: GrνFCH

r(XK ;Q) ∼= GrνFCH
d−r+ν(XK ;Q).

Now, under Assumption 9.1.1, together with that made in Theorem 7.0.11, we

get the following result :

9.1.2 Proposition. Let LXK denote the operation of intersecting with a hyper-

plane section. Then for x 6= 0 ∈ GrνFCHr(XK ;Q) such that Ld−2r+ν+1
XK

(x) = 0,

the height pairing

(−1)r〈x , Ld−2r+ν
XK

(x) 〉HT > 0 ,

when r ≤ (d+ ν)/2.

Proof. From the commutativity of the Abel-Jacobi map with correspondences,

we get

Ξ1

Ld−2r+ν
S×X - CHd−r+ν

hom (S ×X;Q)

J(H0)

Φr

?

∩

[LS×X ]d−2r+ν
- J(H ′0)

Φd−r+ν

?

∩

(9.1.2.1)
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where H0 and H ′0 are the respective Künneth pieces given by the (cohomology

class of) w1 and w2 respectively (see Chapter 7 for details). Now, observe the

following : For any x ∈ Ξ1

Φd−r+ν
(
Ld−2r+ν
S×X (x)− w2,∗ ◦ Ld−2r+ν

S×X (x)
)

= [LS×X ]d−2r+ν(Φr(x))− [w2]∗ ◦ [LS×X ]d−2r+ν(Φr(x))︸ ︷︷ ︸
∈J(H′0)

= [LS×X ]d−2r+ν(Φr(x))− [LS×X ]d−2r+ν(Φr(x)) = 0

as [w2]∗ is a projector onto J(H ′0). Since we are assuming the BBC, we get

Ld−2r+ν
S×X (x) = w2,∗ ◦ Ld−2r+ν

S×X (x)

We have shown that Ld−2r+ν
S×X maps Ξ1 to Ξ2. Hence, the following diagram

commutes:

Ξ1

Ld−2r+ν
S×X - Ξ2

GrνFCH
r(XK ;Q)

Φr
∼=

? Ld−2r+ν
XK

∼=
- GrνFCH

d−r+ν(XK ;Q).

∼= Φd−r+ν

?

(9.1.2.2)

It shows that Ld−2r+ν
S×X : Ξ1

∼= Ξ2. Further, let Ξ′2 ⊂ CHd−r+ν+1
hom (S ×X;Q) be

such that Ξ′2
∼= GrνFCH

d−r+ν+1(XK ;Q). Now to actually prove Proposition

9.1.2, we note that similar to diagram 9.1.2.2 we can also have the commutative

diagram

Ξ1

Ld−2r+ν+1
S×X - Ξ′2

GrνFCH
r(XK ;Q)

Φr
∼=

? Ld−2r+ν+1
XK - GrνFCH

d−r+ν+1(XK ;Q).

∼= Φd−r+ν+1

?

(9.1.2.3)

Then for x′ ∈ Ξ1

Φr(x
′) = x ∈ GrνFCHr(XK ;Q) =⇒ Φd−r+ν+1(Ld−2r+ν+1

S×X (x′)) = Ld−2r+ν+1
XK

(x) .
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So, Ld−2r+ν+1
XK

(x) = 0 =⇒ Ld−2r+ν+1
S×X (x′) = 0. We also have

(−1)r〈x , Ld−2r+ν
XK

(x) 〉HT = (−1)r〈x′ , Ld−2r+ν
S×X (x′) 〉HT .

Note that x′ ∈ Ξ1 ⊂ CHr
hom(S ×X;Q) and Ld−2r+ν+1

S×X (x′) = 0. We can apply

the Hodge-index assumption (Assumption 9.1.1) to conclude

(−1)r〈x′ , Ld−2r+ν
S×X (x′) 〉HT > 0 ,

and Proposition 9.1.2 follows immediately.

9.1.3 A case for abelian varieties

Here we use Kunnemann’s Hodge-index result (see [34], section 12) in the

following situation : Consider X := A be an abelian variety of dimension d,

and B be another abelian variety of dimension ν − 1, all defined over Q and

K ∼= Q(B). So, our S = B and S ×X := B × A is an abelian variety. Since

we are assuming the Bloch Beilinson Conjecture, the subgroup of incidence

equivalence mentioned in [34] is zero. We have the following result :

9.1.4 Corollary. Let X := A and B be abelian varieties of respective dimen-

sions d and ν − 1, defined over Q and let K = Q(B). Let LAK be an ample

line bundle on AK and 2r ≤ d + ν. Assume the General Hodge Conjecture

for Q and the Bloch Beilinson Conjecture. Then for x ∈ GrνFCHr
alg(AK ;Q),

x 6= 0, and Ld−2r+ν+1
AK

(x) = 0, we have

(−1)r〈x, Ld−2r+ν
AK

(x)〉HT > 0 .

Proof. From the proof of Proposition 9.2, the height pairing is given by

〈x′, Ld−2r+ν
B×A (x′)〉HT ,

where x′ ∈ CHr
alg(B × A;Q) is the unique choice of preimage of x. The

corollary now follows from Theorem 12.1 of [34].

As a special case of this corollary, if we choose X := E1 × · · · × Ed, to be a

product of elliptic curves and K ∼= Q(E2×· · ·×Eν), we obtain a Hodge-index

result for x ∈ GrνFCHr
alg(XK ;Q) and Ld−2r+ν+1

XK
(x) = 0.

105



9.1.5 A Non-degeneracy result

Here we present a small result on non-degeneracy of the height pairing on the

algebraic graded pieces :

9.1.6 Proposition. If we assume the Bloch-Beilinson conjecture on the injec-

tivity of Abel-Jacobi map (BBC) and the General Hodge Conjecture for smooth

projective varieties over Q, , then the bilinear pairing

(x, y) := 〈x , Ld−2r+ν
XK

(y)〉HT : GrνFCH
r
alg(XK ;Q)×GrνFCHr

alg(XK ;Q)→ R

is non-degenerate.

Proof. As shown in Theorem 7.1.13, the height pairing is given by the height

pairing between Ξ1,alg and Ξ2,alg via the following isomorphisms:

GrνFCH
r
alg(XK ;Q) ∼= Ξ1,alg ⊂ CHr

alg(S ×X;Q)

GrνFCH
d−r+ν
alg (XK ;Q) ∼= Ξ2,alg ⊂ CHd−r+ν

alg (S ×X;Q) ,

where (assuming BBC), we have

Ξ1,alg
∼= Jalg(H0)

Ξ2,alg
∼= Jalg(H

′
0) .

Here

H0 :=

(
Hν−1(S,Q)

N1
QH

ν−1(S,Q)
⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

)
(r)

and

H ′0 :=

(
Hν−1(S,Q)

N1
QH

ν−1(S,Q)
⊗ H2(d−r+ν)−ν(X,Q)

Nd−r+1
H H2(d−r+ν)−ν(X,Q)

)
(d− r + ν) ,

and we define

Jalg(H0) := P1,∗(Jalg(H
2r−1(S ×X,Q(r))))

respectively

Jalg(H
′
0) := P2,∗(Jalg(H

2(d−r+ν)−1(S ×X,Q(d− r + ν))))
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for projectors P1 and P2 defined in Chapter 7.

Assuming the General Hodge Conjecture over Q, there is a natural identifica-

tion between Jralg(S×X) and its dual Jd−r+νalg (S×X) via [LS×X ]d−2r+ν . Hence

we can identify Jalg(H0) and Jalg(H
′
0) through the commutative diagram:

Jralg(S ×X)
[LS×X ]d−2r+ν

- Jd−r+νalg (S ×X)

Jalg(H0)

P1,∗

?? [LS×X ]d−2r+ν
- Jalg(H

′
0) := Jralg(H0)∨

P2,∗

??

(9.1.6.1)

Hence, [LS×X ]d−2r+ν is a polarization between Jalg(H0) and its dual Jalg(H
′
0).

Proposition 9.1.6 now is a consequence of the positivity of the Neron-Tate

pairing.

9.1.7 Remark. The assumption that the Abel-Jacobi map is injective (BBC)

was needed for the ease of writing as much as anything else. We could very

well work modulo the kernel of the Abel-Jacobi map and arrive at the same

conclusion.

9.2 Hodge-index result for product of curves

In this small section, we try to provide Hodge-index result for a special sit-

uation in case of product of curves, modulo assumptions made in Corollary

8.1.2. The bulk of the computations were already done in Chapter 8 and we

feed off those results.

We fix X := C1×· · ·×Cd, a product of smooth projective curves defined over

Q with ej ∈ Cj(Q) and K ∼= Q(C2 × · · · × Cν). We set S := C2 × · · · × Cν
with a very general point (η2, · · · , ην) ∈ C2(C)× · · · × Cν(C) and work in the

setting of Chapter 8, Corollary 8.1.2.
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The result is motivated by Corollary 1.3 of [40].

9.2.1 Proposition. Let X be as above and consider the situation ν = r. Then

for the choice of hyperplane section LXK :=
∑d

j=1 π
∗
j (ej) and

ξ := Pr∗1,··· ,r((p−q)×(η2−e2)×· · ·×(ηr−er)) ∈ GrrFCHr(XK ;Q), p, q ∈ C1(Q) ,

we obtain

(−1)r〈ξ, Ld−rXK
(ξ)〉HT > 0 .

Proof. First note that, since dim(XK) = d, Ld−r+1
XK

(CHr(XK ;Q)) = 0 for

any hyperplane section LXK . In particular the whole of GrrFCH
r(XK ;Q) is

primitive. Now, for the hyperplane section

LXK :=
d∑
i=1

π∗i (ei) ,

we have an obvious choice of hyperplane section in S ×X, namely

LS×X := S × LX + LS ×X

where LX =
∑d

i=1 π
∗
i (ei) and LS =

∑r
2 π
∗
j (ej). We can be even more explicit

to obtain

LS×X = π∗1(e1) +

(
r∑
2

π∗i,i (∆Ci −∆Ci(1, 1))

)
+

d∑
r+1

π∗j (ej) .

Also, following the assumptions made in Corollary 8.1.2, we see that the unique

choice of a preimage for ξ is given by

ξ̃ :=
(
πX,∗1 (p− q)

)⋂(
r⋂
2

π∗i,i(∆Ci(1, 1))

)
.

Thus, the height pairing is given by

〈ξ, Ld−rXK
(ξ)〉HT = 〈ξ̃, Ld−rS×X(ξ̃)〉HT .
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We compute Ld−rS×X(ξ̃) to obtain

Ld−rS×X(ξ̃) = ξ̃ ·

(
d∑

j≥r+1

π∗j (ej)

)d−r

.

Using Lemma 8.1.1, we get the following form of height pairing

〈ξ, Ld−rXK
(ξ)〉HT = (−1)r−1((d− r)!)2r−1 (Πr

2gi) 〈p− q, p− q〉NT .

Here gi is the genus of Ci. From Theorem 6.1 of [34] we know that the Neron-

Tate pairing is definite of sign (−1). Our result follows immediately.

9.2.2 Remark. Since Hr,0(X) 6= 0, by Corollary 1.3 of [40], the subspace

generated by such ξ is of infinite rank inside GrrFCH
r(XK ;Q). Thus, we

are able to show that the Hodge-index conjecture holds for this infinite rank

subspace, albeit certain assumptions.
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[12] P. Deligne. Théorie de Hodge ii. Inst. Hautes Études Sci. Publ. Math 40,

5-58, 1971.

[13] C. Deninger and J. P. Murre. Motivic decomposition of abelian schemes

and the Fourier transform. J. reine angew. Math. 422, 201-219, 1991.

[14] D.Mumford. Rational equivalence of 0-cycles on surfaces. J. Math. Kyoto

Univ. 9, 195-204, 1968.

[15] H. Esnault and E. Viehweg. Deligne-beilinson cohomology. Beilinson’s

Conjectures on Special Values of L-functions, Persp. Math. 4, Academic

Press, Boston, 1988.

[16] W. Fulton. Intersection Theory. Springer, 1980.
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