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ABSTRACT

The performance of smart structures depends omlythamic electromechanical

behavior of piezoelectric sensors/actuators andbtraling condition along the

interface. This thesis contents a theoretical stfdiie coupled electromechanical
characteristics of a surface-bonded piezoeleotmsar with interfacial debonding,
which is subjected to high frequency mechanicall$o® one dimensional sensor
model is proposed. Analytical solutions based eniitegral equation method are
provided.

Numerical simulation is conducted to evaluate ttecés of different parameters

upon the dynamic load transfer between the sensorttde host medium. The

results indicate that, the material combinatiore #ensor geometry, and the
loading frequency, affect the load transfer sigaifitly. The analytical solution of

the elastic wave field in the host medium is oledirand used to evaluate the
effects of different parameters upon the resultvayve field. The theoretical

solution demonstrates the basic properties of waepagation under current

loading conditions.
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81 Introduction

1.1 Background

Structural Health Monitoring (SHM) is a methodology the interdisciplinary
engineering field devoted to the monitoring andeasment of structural health
and durability, integrated with remote sensing, smaaterials, and computer
based knowledge systems to allow engineers obdée/eperformance of the
structures over time. For those large structurespacial structures like aero
vehicles or buried pipelines, it is impracticalgerform in-service monitoring by
high-in-cost traditional nondestructive testingleation (NDT/NDE) techniques
such as ultrasonic and eddy currents. Besidesntréoadents in the commercial
aircraft industry have raised doubts over the Ipdlig of NDT techniques to
detect cracking and corrosion. While new technolaggnerally improves
sensitivity of detection techniques it is essentiat they can be shown to have
the appropriate detection reliability in actual (ke

With the development of sensor systems, data atiqnisdata communication
and computational methodologies, instrumentatiosetbaon-line monitoring by
making use of sensors/actuators has been a wide@épted technology for in-situ
monitoring and diagnosing structural health and dd@ns, replacing or
combining with traditional nondestructive testingthds. Among the currently
available options, piezoelectric sensors incarttaesuperiority because they are
low in cost, highly sensitive, compact/light weiglegsily formed into different
shapes or wired into sensor arrays. Because oéxhellent dynamic response
characteristics, piezoelectric SHM is widely usedelastic wave based testing,
reading and analyzing the incipient informationed¢¢d by surface-bonded or
embedded-in piezoelectric sensors/actuators. Cadpawith traditional
point-by-point ultrasonic wave based NDT techniqudke piezoelectric

sensor/actuator SHM technique is much more timecéife and suitable for



in-service testing. Elastic wave based piezoete@®HM can be performed in
forms of either passive SHM or active SHM, while tlormer means a SHM
system with only piezoelectric sensors which jlistén to” the structure health;
and the latter means a SHM system with built-iuatdtrs “interacting with” the
structure by choosing suitable monitoring signals.

The efficiency of the monitoring is demonstrated ke coupled
electromechanical dynamic behavior of the systehichvis not only related by
the sensor/actuator properties but also thoseeofitist structure, as well as other
parameters including loading frequencies and bandionditions. A better
understanding of the resulting wave propagationthia structure is also a
prerequisite for achieving the goal of elastic whased health monitoring.

When the piezoelectric sensor/actuator is surfaceléd to the host medium, high
interfacial stress field may occur due to the maketiscontinuity [2]. The high
stress concentration may lead to the reductiorhefsensing/actuating ability of
piezoelectric patches by undesired debonding eslheo dynamic applications.
Moreover, imperfect bonding between the patches thedhost structure will
change the phase and the amplitude of propagatedsnsagnificantly, as well as
other important parameters used in monitoring tepgles, resulting in false
indications on the structural conditions without aefficient sensor-diagnostic
process [3]. Therefore, more detailed analytical arperimental studies on the
coupled dynamic behavior of surface-bonded pientte layer(s) with
interfacial debonding have to be performed, in ptdesvaluate the reliability and
feasibility of surface-bonded sensor SHM systems.

Previous works have been done to study the cometidacal stress field around
the perfectly bonded sensor/actuators [4-8]. Régesbme researchers have
studied the effects of bonding state on elasticengeneration and reception [9],
as well as the dynamic behavior of the imperfestisface-bonded sensor/actuator
system [10-13].



1.2 Research Objectives

The objective of this thesis is to investigatediffects of the interfacial debonding
upon the dynamic load transfer between a surfaceldxb piezoelectric sensor and
the elastic host medium, as well as the elasticewaropagation inside the host
structure. A one dimensional sensor model will B&alglished to simulate the
coupled dynamic behavior of the system. Numerigauktion is conducted to
study the effects of different loading frequenciesaterial combinations and
sensor geometries on the dynamic electromechapicgderties of the sensor
under high frequency dynamic mechanical loads.Wéee propagation generated
by the surface-bonded sensor and the interfacfactlen is studied by analytical

method as well as numerical simulation.
1.3 Organization of the Thesis

The thesis is organized as follow. The current meg and relevant theories and
technigues needed in modeling the sensor systemesi®@ved in Chapter 2. A
one dimensional sensor model is established in €©h&pto evaluate the coupled
dynamic behavior of the surface-bonded sensor sysig/pical examples are
provided to show the effects of the loading freques, material combinations
and sensor geometries upon the load transfer amdsehsor signals, and the
results are compared between the perfect-bonding iamperfect-bonding
conditions to investigate the influence of inteiddaefection. In Chapter 4, the
simulation of the elastic wave propagation generdig the sensor and the
interfacial crack is conducted using the estabtishee-dimension sensor model,
to investigate the effects of the above parametgrsn the resulting wave
propagation. The basic properties of the generatage are examined by the
explicit forms near the interface and far fieldidesthe host structure which can
be analytically obtained. The last chapter, Chaptesummarizes the conclusions
and contributions of the study and recommends smrospective topics for the

future research.



82 Literature Review

2.1 History of Piezoelectricity and Piezoelectric Devices

Piezoelectricity phenomenon is firstly demonstragggerimentally by Pierre and
Jacques Curie in the year of 1880 [14] which is toeipling between the
material's mechanical and electrical behaviors. pBimspeaking, electrical
charges can be collected on its surface when therimais under mechanical
stress. Conversely, when subjected to a voltagpieaoelectric material will
produce mechanical stress or deformation. In 18B8&, core of piezoelectric
applications science was established by the inieeaonvork of European
scientific community, which includes the identifica of piezoelectric crystals
on the basis of asymmetric crystal structure, thensible exchange of electrical
and mechanical energy, and the usefulness of tidmamnics in quantifying
complex relationships among mechanical, thermal eledtrical variables. The
work is extended in the future 25 years and thst feerious application of
piezoelectric took place during World War | in 19P7 Langevin and his French
co-workers developed an ultrasonic submarine tizsesdby gluing a mosaic of
thin quartz crystals between two steel plates, Wwiscsuccessfully used to locate
underwater objects. Their achievements lead to rdg@d development of
applications of piezoelectric devices.

In nature, hundreds of materials are already kndwrexhibit piezoelectric
behavior such as bone, silk, wood, etc. The dectides 1920 to 1940 are the
first generation of applications of natural piesm#lic materials. The second
generation is from 1940 to 1965, during World Wain the U.S., Japan and the
Soviet Union, isolated research groups workingraproved capacitor materials
discovered that certain ceramic materials (prepénedsintering metallic oxide
powders) exhibited dielectric constants up to ifite$ higher than common cut
crystals. Furthermore, the same classes of mate(called ferroelectrics) were
made to exhibit similar improvements in piezoelecproperties. The discovery



of easily manufactured piezoelectric ceramics watstonishing performance
characteristics naturally touched off a revivalmdénse research and development
into piezoelectric devices, in the following higitits and curiosities but not
limited to: powerful sonar, ceramic phono cartridgeezo ignition systems,
sonobuoy (a portmanteau of sonar and buoy), miaogs, ceramic audio tone
transducer, as well as piezo relays.

Beginning in 1965 Japanese commercial enterpressd the pioneering work in
piezoelectric device invention and patenting, byeleping several types of
piezoceramic signal filters, which addressed needig in television, radio, and
communications equipment markets; and piezocerammters for natural
gas/butane appliances.

As time progressed to 1980, the markets for thesgygts continued to grow, and
other similarly valuable ones were found. Most btgawere audio buzzers
(smoke alarms, TTL compatible tone generators), udirasonic transducers
(television remote controls and intrusion alarmej &AW filter devices (devices
employing Surface Acoustic Wave effects to achiéngh frequency signal
filtering) [15]. The huge commercial success ha® attracted interest of many
other nations in the world and efforts are takeddwelop successful piezoelectric
devices.

For the purpose of use, the piezoelectric matergabs divided into several
categories: piezoelectric crystals, piezoelectbers, piezoelectric ceramics and
piezoelectric polymers. At present, piezoelectrgracics and polymers have
been widely used because of their versatile supsrio physical, chemical and
piezoelectric characteristics over other piezoaleanhaterials. Compared with
traditional transducers, piezoelectric ceramic patymer sensors and actuators,
for example, lead zirconate titanate (PZT) and yialtidene fluoride (PVDF),
are compact in size and easy to tailor to suitabéges which can be embedded in
or surface attached to the host structure to parfaliagnosis, and most
importantly, they are low in cost which makes ibecmical to apply them in

large scale SHM systems.



2.2 Modeling and Analysis of Piezoelectric Sensors/Actuators

In the past few decades, since the importance efapplication of built-in
piezoelectric sensors/actuators in smart SHM systéime modeling and analysis
of piezoelectric sensors and actuators have atttagteat attention from the
research community, in order to simulate the pmadssensing or actuating of
surface-bonded or embedded sensors/actuators.

Bailey and Hubbard firstly established a pin-fonecedel for a thin polyvinylidene
difluoride (PVF2) layer bonded to one side of atdewer beam, with only
transverse vibration considered [16]. The outputdofrom the actuator is
constantly proportional to the input voltage applie the system. Then, analytical
model for a beam-like structure with segmented geéxctric actuators either
surface-bonded or embedded has been derived [1Wdrenthe load transfer
between the actuator and a Bernoulli-Euler bearfuither studied with the
assumption of uniform axial stress across the ttask of the actuator [18]. This
actuator model is further modified by accounting the effects of transverse
shear and axial stresses in addition to the bendiogent to formulate the
governing moment equilibrium [19]. Then a refinedtuator model in the plane
stress condition is presented for a beam strucitteched with symmetrically
surface-bonded piezoelectric actuator patches 130/ approximate dynamic
model is developed to investigate the vibratiorpoaese of a simply supported
elastic rectangular plate excited by a piezoelegdatch of variable rectangular
geometry [22]. The results demonstrate that modashe selectively excited and
that the geometry of the actuator shape markedécisf the distribution of the
response among modes. A pure bending actuator-ipe@ahel is established, to

describe a cantilever beam subjected to actuatiosymmetrically attached

actuators to the top and bottom of its surface, astdvated 180 out-of-phase,
since the sum of the axial forces by the actuatorero. The stress changes are
assumed linearly through the thickness of the &mtund the host structure. It is
based on the moment equilibrium about the neutxed 3]. A model of an

arbitrary surface bonded multiple layered actuestartilized to predict the applied



force and moment of the piezoelectric layers omngly supported beam [24].
The equations of motion for the transverse vibretiare derived by using
Timoshenko beam theory and cast in modal stateesjpac. The forced response
of the one dimensional actuator/substructure systethe piezoelectric induced
loads is obtained using an assumed mode technwjouieh is an approximate
method by representing the dynamic response oinfirete dimensional system
as a finite series of spatially dependent functioczesch multiplied by a time
dependent generalized coordinate.

There are also many models available for piezogdeglates in the literature. As
early as 1952, an elastic plate model was presdmedlindlin [25], and it is
extended to use for a two-dimensional piezoeleplate by utilizing power series
expansions [26]. The model is further modified withe use of full series
expansions [27-28]. In 1991 a consistent plate wds developed by extending
a one-dimensional beam model into two dimensiof$ [Phe classical laminated
plate theory is used to model bending and extensidaminated plates induced
by piezoelectric actuators [30]. In the year of 898 new thin piezoelectric plate
model was proposed based on Kirchhoff-Love thedthio plates [31].

For the analysis of piezoelectric shells, theookdistributed sensing and active
vibration control are first proposed by Tzou [32;33y using the multi-layered
thin shell model with an integration of distributglezoelectric sensors and
actuators. A new theory on thick anisotropic conmgogiezoelectric shell
transducer laminates is given by Tzou, by estaiblista multilayered triclinic
piezoelectric laminate model [34]. For piezoelecimaterials applied in multiple
layered structures, because of the brittlenesseabplectric materials, debonding
between interfaces of laminates is easy to appeagently the new piezoelectric
functional graded material, which is the integnataf piezoelectric material and
functional graded material, has attracted the a@steof theoretical researchers
[35-44].

Besides, based on the classic theory of piezothelamticity, the general solution
of three-dimensional piezothermoelastic problemshtined by using potential

functions [45-47]. Tauchert has further investigatdhe control of thermal



deformation of laminated piezoelectric plates [48}d Ashida has analyzed the
piezoelectric laminates subjected to axisymmelrgrhal loading [49]. The other
typical examples include the work by Choi [50] dre ttransient thermal stress
problem, by Qin [51] studying the mechanical resggonof imperfect
thermopiezoelectric materials under thermal loadamgl so on.

With the development of finite element modelinghi@ique, dynamic analysis for
laminated beams has been performed in details [BR{ension of coupled
Euler—Bernoulli model of sandwich piezoelectric imsas proposed by adopting a
mixed variational principle and Lagrange multiplieethod [53]. For complicated
piezoelectric structures, finite element methodaiso a powerful numerical
method for modeling and analyzing. A tetrahednaitdi element is presented by
Allik [54], for the analysis of three-dimensionalepoelectric vibration. A
three-dimensional thin hexahedron piezothermoelatéiment was established in
1994 [55]. A shear actuated smart structure beasmeit was proposed by
Benjeddou and his co-workers [56]. Finite elemeateis based on discrete layer
theories are used for the coupled field analysidaofinated plates containing
piezoelectric layers [57]. Moetakef has obtainedset form expressions for
higher order piezoelectric tetrahedral element$. [A8brid finite element models
are used to perform linear or non-linear three-disienal piezoelectric analysis
[59-60].

2.3 Dynamic Load Transfer of Piezoelectric Structures

Piezoelectric based vibration control systems hheen widely applied in
practical use [61-63], and piezoelectric structin@hlth monitoring has recently
attracted much interest in academic community. fiv&in detection strategies for
health monitoring of aging structures are considetbe Electro-Mechanical
impedance method (EMI) for near field damage detectind wave propagation
methods for far-field damage detection [64]. The IEMethod uses the
electro-mechanical coupling effect of piezoelectrignsducers to measure the
force impedance of the structure. By comparing ithpedance spectra of the
damaged structure with the baseline, i.e., the dapee spectra for the pristine



structure, the damage in the structure can be s=$465]. Among the various
schemes being considered for wave Structural Heédthitoring, Lamb-wave
testing has shown great promise. While Lamb-wasting using hand-held
transducers for Non Destructive Evaluation (NDE) as well-established
technology, Lamb-wave testing for SHM using surfboaded/embedded
piezoelectric sensors/actuators is a relatively field [66]. In this work, precise
mathematical modeling of transient plane and caicatested Lamb-wave
generation and sensing using surface-bonded pi@zosotropic plates is
established and consequently validated by numemedhods.

The effectiveness of the sensors/actuators isritieat factor of the performance
of the piezo-based SHM system. With respect toaserbonded piezoelectric
sensors/actuators, highly concentrated stresstefanes will appear due to the
material mismatches. Therefore, the local stresdd fiear the interfaces should be
studied in detail since it plays an important noléhe coupled dynamic behavior
between the sensors/actuators and the host s&ucke interfacial defection
problems have been investigated by many researdtd68]. Beside the
distributed surface-bonded sensors/actuators, tlgcesome researchers have

explored the feasibility of using a semi-infiniteepoelectric plate of crystals [69].
2.4 Wave Propagation in Piezoelectric Structures

In general, structural health monitoring systenludes five major parts: sensing
technology, diagnostic signal generation, signalcessing, identification and
interpretation, and integration. Nowadays, waveedaSHM methods are widely
used, and these parts are all connected by thesmased as diagnosis tools.
Wave-based structural health monitoring method neegn 1950s using the
techniques of generating and receiving elastic wawhich requires a transmitter
and receiver separately in the pitch-patch scheonejust one having both
transmitting and receiving functions with pulse-@donfiguration. By analyzing
the elastic waves generated and detected by thesduiaers/receivers, the
structural integrity can be monitored by compatimg actual state of the structure
with a predefined reference state. Piezoelectriterizds are widely used as the



wave transducers because of their excellent dynaesponse capabilities, and
because they can afford large strains producedrundk frequency mechanical
or electrical loads. In the past decade, with teeetbpment of the ultrasonic
elastic wave based testing techniques, studieh@mwhve generation/reception
have been performed by many researchers. Convahtiegthods are used in the
acoustic emission (AE) studies [70] and laser-basksonic wave testing
studies [71]. Different transducers and receivees developed to generate and
receive the waves. However, the traditional ultnisowave based testing
techniques used in NDT usually require bulky instemts and manual
interference, thus are not suitably applied diyedtr in-situ or in-service
monitoring of the structural health.

Recently, the feasibility of using bonded piezotlecactuators/sensors in
generating and receiving elastic waves to perfomntinuous diagnosis of
structural integrity has been studied by many nesegis. Various applications in
civil, aerospace, and other engineering fields H@een executed [72]. Techniques
have been developed in using distributed sens@ysrin an economic and
effective network especially for large industryrastructures. Experiments and
studies are also performed to investigate the featof various piezoelectric
materials used in measuring and generating wavesiagmostic signals [73].
Lamb waves are commonly used as diagnostic signafeed after Horace Lamb
(1849-1934, a British scientist) in honor of hisidamental contributions to this
subject. It is a type of ultrasonic wave propagatetween two parallel surfaces
of a structure. The velocity of Lamb wave dependmarily on the product of
actuation frequency and the thickness of the stractDifferent modes of Lamb
waves with controllable patterns and shapes cageberated by surface-bonded
PVDF patches [74-76]. Embedded piezoelectric ssfasciuators are also used to
excite and detect elastic waves [77]. The dataivedefrom either bonded or
embedded sensors contain a lot of information,iacdn be easily interrupted by
many factors. Especially, if the piezoelectric segsystem has defection itself,
such as unexpected imperfect bonding conditioroimdled sensor/actuator system,

it will affect the wave propagation apparently ingth frequency loading

10



conditions. Previous research works have been donavestigate the elastic
wave propagation in a cracked medium [78], anddfiect of bonding layers

between the sensor/actuator and the host mediutbeeasstudied [79]. However,
as mentioned in the former subsection, for the mepdy bonded sensor/actuator
system, the singular behavior of the debonding imeffect upon the resulting
wave propagation has not been thoroughly studied.

2.5 Summary

In this chapter, the brief history of piezoelectrsed structural health monitoring
devices has been reviewed, and the focus is onththeretical study of the
piezoelectric sensor/actuator based monitoringnigcies. The dynamic behavior
of the system and the characteristics of the elastives used in the testing
techniques are the essential factors determinirg diagnostic ability of the
system. In the commonly used surface-bonded seamwsoator monitoring
technigues, the bonding condition along the interfeetween the sensor/actuator
and the host structures has significant influencdath the load transfer as well
as the wave propagation. However, a thorough stadgn infinite sensor/actuator
system with interfacial defection is still on theyy and the current work aims at
providing comprehensive theoretical study on tieddf focusing high loading

frequency situations.
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83 Analysis of the Piezoelectric Sensor System

This chapter provides a comprehensive study ofcthepled electromechanical
characteristics of piezoelectric sensors with fat#al debonding, which are
subjected to high frequency mechanical loads. Basedhe developed one
dimensional sensor model by Wang and Meguid in 200® current sensor is
characterized by an electroelastic line model whsckubjected to a shear load
with the poling direction perpendicular to its lémgAnalytical solutions based on
the use of the integral equation method are pravid&e changes of geometry
and parameters of the materials can affect the leduglectromechanical
characteristics of this sensor system, as welhalastic wave propagation along
the interface and inside the host structure. Dmdathumerical simulation is
conducted to evaluate this effect under differeatling frequencies. The study is
further extended to treat the interfacial debondiatyveen the sensor and the host

medium.
3.1 Formulation of the Problem

The considered system is a homogeneous and isotedgstic medium, with a

thin sheet of piezoelectric sensor surface-bonded. fThere is a deboned area
(crack) along the interface between the mediumthrdsensor, as illustrated in
Figure 3.1. The length of the crack is denoted @sald the thickness of the
sensor is denoted &sIn Figure 3.1z axis is the poling direction of the sensor, in
which electric field is usually applied or measuréte system is subjected to an
obliqgue harmonic incident longitudinal wave with a frequgnaf « and an

incident angle ofg,. The horizontal displacement of the incident wes/given
by
G(y)(y, z) = A Uexpli(Kysing, + Kzcosg, —at)]  (3.1)
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whereA, denotes the magnitude of the displacement, #nd w/c, is the wave
number, with ¢, being the longitudinal wave velocity.

The steady state response of the system, incluispgacement, stress, and strain,
will involve a time factor exp(-i«t) . For example, the real displacement can be

expressed as:

0 _

Uy(y,2) = uy(y, 2) [exptiat) (3.2)
where US(y, z) represents the real displacement field, ar$cdy, Z) represents

the magnitude. Sinceexp(-iat) exists in all parameters, for the purpose of
convenience, in the following discussions, only thagnitudes of these field
variables are used to represent these field vasabl

This study will focus on a thin-sheet sensor, withatively small thickness in
comparison with its length and width. Here we oabnsider small debonding
situation, in which the boundary condition at thed® of the sensor may be
ignored, so the sensor can be assumed to be @nfimitength. Therefore, the
magnitude of axial stresg; and straing; can be assumed to be uniform
across the thickness of the sensor, where the sup#r's represents the sensor.
Because the thickness of the sensor used is veait sampared with its length,
the applied electric field will mainly result indeformation along the longitudinal
direction. Accordingly, the sensor can be modelsdaa electroelastic line
subjected to the applied electric field and a digted longitudinal force,r(y),

as shown in Figure 3.2, wherg(y) is the interfacial shear stress transferred
between the sensor and the host structure. The longitudispdacements of the

sensor and the host medium are represented;bynd u'y“, respectively.
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Figure 3.1: The geometry of the sensor system
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Figure 3.2: The stress field of the sensor system
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3.1.1 The Dynamic Sensor Model
3.1.1.1 Electromechanical Behavior of Piezoeled#aterials

When the piezoelectric material is subjected toeghmanical load, it will produce
electric displacement; and conversely, strainsbsagenerated when electric field
is applied. The former property is used in sensangl the electromechanical
behavior of piezoelectric materials can be desdrdse
{o} =[cfe} -[ef{E}
{D} =[ef{e} - [1{E}

where {ad},{&},{D} and {E} represent the magnitude of the stresses, the strain

(3.3)

the electric displacement and the electric fielterusity, respectively]c] is a
matrix containing the elastic stiffness parametersa constant electric potential,
[e] represents the piezoelectric constants, §Afl represents the dielectric
constants for zero strains.

In the current study, for a surfaced bonded piesaiat thin sheet with interfacial
debonding, and the length of the interfacial cracémall compared with its width
in the x-axis direction, it is more reasonable to consither problem as a plane
stain problem iny-z plane, which suggests that, =0. The surface of the
piezoelectric sensor will be traction free. Therefothe following condition
should be satisfied,

=0 0,=0 (3.4)

X

The stress componentr, and the electric displacemer, can be obtained by

substituting the above equation into the conswugquation, and the results are

as follows:

Cs Cas

2
Dz = (els — 65 %j‘sy + (’133 + EJEZ

33 33

2
Uy = (Cll - &J‘sy - (em - %3 %J Ez
(3.5)
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where c,,,c,; and c,, are the elements ofc], e, and e, are the elements
of [€e], and A,;is the element of 1] .

Therefore, the constitutive relation of the pieestric material under plain
deformation is given by

du,
Uy = Ea— - eEZ
y (3.6)
ou
D, =e—2+E,
ay
with the small deformation assumption
ou
y = Wy (37)
The effective material constants of the piezoeleataterials can be expressed as
_. S
E=c,—
oG
e=e13_es3h (3.8)
CS3
2
A=Ay = A
CS3
3.1.1.2 The Current Sensor Model
dy
o; , 0y tdoy
>r

Figure 3.3: The stress field inside the sensor

The attention will be focused on cases where higlguency electric field is
applied, which results in wave propagation with ttypical wave length
comparable to the length of the interfacial crdokthis case, the inertia effect of

the sensor must be considered. According to theectipne-dimensional sensor
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model, the equation of motion of the sensor basethe equilibrium of force can
be expressed as

y r(y)
dy + =27 . +p.0fu; =0 (3.9)

where the superscript and subscript represent the sensorp_ is the mass
density of the sensor, and; represents the magnitude of the axial stress along

the sensor as shown in Figure 3.3.
In addition, the sensor will operate in an opemploaode with no external charge
supplied to it. Therefore, the electric displacetraross the sensor will be zero,

asD,= 0. By making use of Equation (3.6), the axiatssralong the sensar;

can also be expressed in terms of the axial displeat u; and the electric field

E, as
— ou’
=E.—2 (3.10)
y
E. is the effective modulus defined by
B =E+—, (3.11)

where E_, e, A, are piezoelectric material parameters.

Substitute Equation (3.10) into Equation (3.9), theverning equation of the

sensor can be rewritten as

2,.s

u
Y ez + I < (3.12)
Esh
where k. is the wave number given by
k, =wlc, (3.13)

and c, is the axial wave speed with a definition of = ,/E, / o, .

In order to determine the displacement and strald finside the sensor, the

governing equations can be solved using the follgvepatial Fourier transform,

T(9) = %T j"; f(y)e¥dy, f(y) = I:T(s)e"syds (3.14)
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Therefore, the axial displacement and strain of4lesor can be expressed in

terms of the unknown shear stressas:

—s T

G L 3.15
" Eh(s?-K2) (3.15)
Py 57 (3.16)

S=——"—"-T
Esh(S2 - ksz)
where 7, U;and & represent the Fourier transform o{y), the Fourier

transform of the axial displacement and the Fouremsform of the axial strain,

respectively.
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3.1.1.3 Dynamic behavior of the host medium

T T

—— ——
/ = ﬁ\ +
(@) (b) (©)

Figure 3.4: The stress field inside the host medium

The host medium is subjected to an incident wayvan(d a surface shear stregs
as shown in configuration (a) of Figure 3.4. Thadent wave will be reflected to
generate a reflected wave (R) amd will generate a dynamic field in the medium.
Therefore, the stress field inside the host medicam be expressed by
superimposing the configurations (b) and (c). Takit®n of configuration (b)
can be obtained by using free-surface boundaryitions, and the corresponding
displacement and strain field inside the host nradian be written as:

|

y

o i A (3.17)
y

Here A' and k, are the amplitude and the apparent wave numbehef t
induced wave field in the configuration (b), whiclan be obtained by using
equations (A.1) — (A.18) in Appendix A.

The unknown displacement in configuration (c) isnated asu,, which is
induced by the shear stregs on the top surface of the host medium.

The dynamic plane strain displacement field in anbgenous isotropic elastic

medium is governed by the following equations [80]:

(0*+K)D=0, (O°+Kk)¥Y=0 (3.18)
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in which the Laplacian operatofl® stands ford”/dy” +0°/0z°, ® and W
are two complex potentials, and =w/c, , k=w/c, are two wave numbers

with a«, ¢, and c¢; being the circular frequency of the incident watee

dilatational and shear wave velocities, respecgtivelThe non-vanishing

displacement and stress components are

U =—+—, U=T——" (3.19)
dy o0z 0z oy
The relevant stress components are
2 2
o,=U —kZCD—Za—cf+26—qJ
Y 0z 0yoz
2 2
o,=U —kZCD—Za—Cf—Za—qJ (3.20)
oy dyoz
2 2
T, =M 20°® —kzw—za—q:
0yoz ay

where p is the shear modulus of the isotropic elastic solid

Therefore, the general solution of the wave indumgthe shear stresg can be
determined by solving the governing equations bingishe Fourier transform
defined by Equation (3.14), which can be expressed
D(s,2) = A(s)e™, Y(s, 2) = B(s)e” (3.21)
From which the displacement components can berdated as
Ey = -isA(s)e™ + fB(s)e” (3.22)
u; = aA(s)e™ +isB(s)e”

whereA(s) andB(s) are two unknown functions gfand a, 8 are given by

= Js? —-K? s> K 5= \s? —k? sk
—ivK?2-¢2 |s<K’ -ivk?-¢2 |skk

which ensure that the induced stress field sasidhe radiation condition of the

(3.23)

problem at infinity.
The outgoing wave caused hy in the host medium should satisfy the following

conditions along its surface,
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r,=-r1, o0,=0 at z=0 (3.24)

yz

Making use of the general solution of and u, and the boundary conditions,

the unknown parameterd(s) and B(s) can be determined in terms af.
Therefore, the Fourier transform of the dynamiplisement in the host medium

uy can be expressed by
0r(s,2) = T% [2s2e™ - (257 - Kk?)2e”| (3.25)

where A = (2s* - k?)? - 4s’ap3 .
The Fourier transform of the dynamic stress fieddhponents cause by in the

host medium can be obtained as
77(s.2) = f%[— (k2 +202)™ + (25* —k?)e”|
o(s,2) = TZI—Z’B (257 —k?)[e™ - (3.26)

T(s2)= £[4szaf,6’e"’Z - (2s* - kz)ze[’z]

3.1.1.4. Perfectly Bonded Sensor
If the sensor is perfectly bonded to the host mmdiat the upper surface of the
host medium and the lower surface of the senser,dibplacement should be
continuous,

uy =u, +uj,atz=0 (3.27)
By substituting Equation (3.15) and (3.25) into Bgon (3.27), the Fourier

transform of 7 can be expressed as

o

m(ys) (3.28)

~l
I

1 B k*B
Eh(s®-k3)
Therefore, by substituting Equation (3.28) into &pn (3.15) and (3.16), and
applying the inverse Fourier transform, the disphaent and the strain field along

where m(s) =

the sensor can be obtained:
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. u £

' TERKE —K)m(k) Y T ER(KE -k )m(k,)

where u'y, £'y are given by Equation (3.17), ank}, is the apparent wave

[
u

(3.29)

number of the incident wave.

3.1.1.5 Sensor System with Interfacial Debonding

If the sensor is not perfectly bonded to the hostinim, the displacement field
will be discontinuous along the interface betwdendensor and the host medium.
The displacement discontinuity can be expressedhbyfollowing dislocation

density function:
p(y) = [us-ur - u'yl (3.30)
ay z=0
By applying Fourier transform we can get
#(9)=-idus-u’ -u!]

Therefore, the Fourier transform of the shear strescan be related to the

(3.31)

z=0

deformation, by substituting Equation (3.15) an@%3 into (3.31), as follow:

_ a, i
r(s)=—21—+
m(s) sIm(s)

9(s) (3.32)

The interfacial crack is subjected to the followlngundary conditions:
r=0, ly|<c
u(y0) =ul(y0)+u,(y0), |y=zc

from which the interfacial shear stressan be determined.

(3.33)

By applying the inverse Fourier transform to Equa{(3.32), the above boundary

conditions can be expressed in terms of the foligveingular integral equations:

u |

) s 1L 4 lsiniste - _Y
”-cg_ydfﬁ_c{swg) A}SIH[S(E =, i<e (334)

and

[L#@de=0 (3.35)
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where A = u/(1-v) is the limit of the kernel of the integration when- +o,
which represents the singular behavior of the field
Equations (3.34) and (3.35) can be solved by expang(¢) using Chebyshev

polynomials as follow:

S T,(¢/c)
=S¢ o'
#(<) % N

where T, are Chebyshev polynomials of the first kind afdare unknown

(3.36)

constants. From the orthogonality conditions of hleebyshev polynomials,
Equation (3.35) reduces t€, = . Bubstituting (3.36) into (3.34) and making use

of the following relationsg > 0):

{n( D"J,(p) j=2n+1
j=2n
(3.37)

Sin(pe)aé =

J. J—

[~ cos(pé)dé = { )=
1/— A-D"3,(p)  j=2n

with J; being Bessel functions of the first kind, the follng algebraic equation

for Cj are obtained

: y), < __ Y
CU . |Z[|+)YC f(y= , < 3.38
2% (c) 2Oy M<e (356)
where U; represent Chebyshev polynomials of the second kind with
o 1 .
-)" jo {— —1} (sc)cosky)ds  j=2n+1
A S .

fL(y) = (9 (3.39)

(- )"+1I {Fﬁn() 1}Jj(sc)sm(sy)ds j=2n

If the Chebyshev polynomials in Equation (3.36) are truncatduetdth term and
Equation (3.38) are satisfiedtcollocation points given by

= i = co{— nj 1=12,.. (3.40)

then Equation (3.38) reduces to the following limelgebraic equation:
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N e
C, = i1=12...,N (3.41
Z r( ) >.Cifi(¥)= Mm(k) j (3.41)
where ¥,,k,.k_, 5, 3., a,,£, are given by
y=ylc,
k,=kc, k =kc, S=sc, B2=52-k?
o
il = A oy (3.42)
Cc
i e'koy

By solving Equation (3.41)C,(j =12,..N) can be determined. Therefore, the

interfacial shear stresg and the axial strain inside the sen&j can be

expressed as

mn(k,) =

s_ QU £y S Ch (T
Ey_ﬂ{(kz k2)A tn(k,) JZ;‘ “(y)}

r=/1{ b, —Z c,lo, )+ f(y)]}

(3.43)

where

Uj—l(y) |y| <1
g(y)= _Sgn(y) 37 — S2 i ~
: ——=|V-sgnG )Wy -1 |y|>1
yZ _1[ ] | |

N R Y M. _
(-1 I {m 1}Jj(s)cos€y)ds j=2n+1

f(9) = (3.44)

( )n+I {W—l}%(g)sm@)ds j =2n

1" jo mJ (B)sin@y)ds  j=2n+1
1

=y
SN B2 [in(3)

J;(S)cos@y)ds j=2n

with
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== _ (3.45)

v=c/h (3.46)

3.2 Analysis and Discussion

This section will be devoted to the discussionha tdynamic load transfer from
the host medium to the surface-bonded sensor udifferent geometric and
loading conditions. A longitudinal wave will be intluced as the mechanical load,
and numerical simulation will be conducted to irigete the effect of the
following three parameters upon the strain distidyu along the sensor: the
loading frequenckc, the material combination factgras defined in (3.45), and
the crack geometryw expressed by (3.46).
Two types of sensors are considered, lead zircomnitdeate (PZT-4) and
polyvinylidene fluoride (PVDF) sensors. The matecanstants of the PZT-4
sensor and the host medium are assumed to be [81]:

Sensor (PZT-4):

c, =139x10°Pa, c,=743x10°Pa, c,,=115%x10"Pa

e, =-52C/m°, e,=151C/m?, e, =127C/nm7’

Ay = 645%x10°C/Vm, A, = 645x10°C/Vm.

Host Medium:

E=274x10°Pa, v=03.
It results in the material mismatch factpr 0.54.
For the PVDF sensor and the host medium, the naai@nstants are as follows
[82], which leads to a value gf= 20.4.

Sensor (PVDF):

c, = 361x10°Pa, c,=14x10°Pa, c,=163x10°Pa
e, = 768x10°C/m*, e,=-307x10°C/m’, e, =-115x10°C/nm?
A, =0.061x10°C/Vm A, =0.067x10°C/Vm.
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Host Mediun:
E =195x10°Pa, v= 028
For the sake of convenience, in the following chltans, the incident angle of

the incident longitudinal wave is chosen s=30"; Poisson’s ratio of the host
medium v = 03; the mass density of the senspgand the host mediunp, is

chosen as the samgy, = p, = 270kg/m® [79].

3.2.1 Model Validation

In order to validate the current model, the finitened&t method (FEM) has been
used, based on the static coupled-field analysis pertbrine the ANSYS
software, by using the following loading condition: imetinterfacial deboning
area along the interface between the sensor and thenlkedatm, the distributed
shear stress with a uniform magnitude is applied. In the FEM model, ritye

nodes are created across the thickness of the sensor.
Figure 3.5 shows the magnitude of the longitudinal sti@fi the sensore;

induced by 7 along the interface between the sensor and the host mediung, u

the numerical method based on the current model, in casopamwith the

S

., £
corresponding FEM results. Here the strain has beenatiaed by &7 = Dyt ,
v 0
with &, = d and v=200, where v is defined by (3.46). The
HA+V)

anisotropic elastic stiffness matrix componentstité lead zirconate titanate
(PZT-4) sensor are:

c, =139x10°Pa, ¢, = 778x10"°Pa, c,,=743x10"Pa,

Cy; =115%x10°Pa, ¢, = 256x10°Pa, ¢, = 306x10°Pa
The material constants of the host medium are [81]:

E = 274x10"°Pa, v=03.

The main difference between these results occuttseirvicinity of the interfacial
crack tips wheny/c is close to -1, in which the mechanical field hees

complicated due to the high stress concentratioother areas far away from the
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crack tips, the difference is less than 2%. Theesfthe current model is validated

and can be used for the current analysis.

06 T T T T T T T

— — ~FEMresults
—— Numerical results

Figure 3.5: Amplitude ofe’

3.2.2 Strain Distribution

As shown in Figure 3.3 (a), if there is no bondedser on the surface of the host
structure, the strain field of the medium will b%(y). Because of the existence
of sensor, the strain field in the medium will bdstdrbed by the
electromechanical coupling between the host medindhthe sensor. In order to

study the relation between sensor response andnitisturbed deformation, the

following dynamic strain ratiox(y) is introduced:

_&M) _
k(y) = &)

whereA and & denote the amplitude and the phase angle of the dyrsimio

Ae’, (3.47)

ratio.

The dynamic strain ratio represents the percentagde@drmation transferred
from the host medium to the sensor. It is an index of the genkiracteristics of
the piezoelectric sensor. In this section, the effedifférent material properties

of the sensor and the host medium, the interfacial ayaoknetry, and the loading
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frequency upon it will be discussed. Special exawphill be given in both

perfect-bonding and imperfect-bonding cases.

3.2.2.1 Perfectly Bonded Piezoelectric Sensor

For the case of a perfectly-bonded sensor systeichviisubjected to an incident
longitudinal wave as the mechanical load, the dynastrain ratio is constant
along the interface. The strain in the sensor vemiby Equation (3.29), so the
strain ratio can be obtained by substituting Eaqua¢B.29) into (3.47),

1 1

BNk —kDmk) K2
Esh( 0 s)m( 0) 1_Eh(k§ _k2) :80
S S NAO

where B, = -i /K2 —kZ,A, = (2k? —k?)? - 4k2,[k? - k2 /K2 - KkZ .

For the static case where the loading frequéney k, = k, =0, from Equation

(3.48)

(3.48) we can obtain the strain ratio as 1. Fig8u@ and Figure 3.7 show the
influence of the loading frequenéi on the amplitudé\ and the phase anglé

of the dynamic strain ratiox for the cases wheq= 0.5, 1.0, 2.0, 5.0 and 20.0.
With the increase of the loading frequency, the lgoge of the strain ratio
decreases gradually. Besides, from Figure 3.6 amaré- 3.7 it can be observed
that whenq reaches 5.0 or higher, the curves are close amadgehwithq
insignificantly. The result indicates that, in tiperfectly bonded case, the
influence of the loading frequency on the load d¢fanis significant only when
the loading frequency is very high. For relativédyv frequency,kh < 1.0 for
example, the change Afand & in comparison with the static values is less than
5%.

As defined in Equation (3.45), the material misrhatactorq is an index of the
relative stiffness of the sensor, representingragerial combination of the sensor
and the host medium. Figure 3.8 and Figure 3.9 show the amplitude and
phase angle of the dynamic strain ratio change wiéh material combination
factor g, with a series okh values considered. From Figure 3.8 we can see that
the amplitude of the dynamic strain ratio will iaase to the maximum value 1.0,

whenq reaches a critical valugf about 0.3; and then diminish with the increase
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of g. This critical value of° is independent on the loading frequencies, amsl it
determined by the phase angle of the incident tadgial wave and Poisson’s
ratio, which can be expressed by solving the eqoatf « =1:

e _ 7TL-V?)sin’ g,
2

q (3.49)

where 6, is the incident angle of the incident longitudimadve, and Vv :1L.
-V

For §,=30 and v=03, g° = 0.31. From the figure we can also see that under

the higher loading frequency condition, the matedambination affects the

dynamic load transfer more significantly.
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3.2.2.2 Interfacial Debonding
If the sensor is not perfectly bonded to the hasicture, the interfacial defection
will disturb the dynamic load transfer and consedlyeaffect the performance of
the piezoelectric sensor. The dynamic strain ratih be dependent on the
location along the interface, which can be expré$geusing Equation (3.43) and
(3.17):
N
>.Cih(®)
kK(Y) =K+ (3.50)

£
y
where k is given by Equation (3.48), representing the stratio of the perfect

bonding caseC, are the coefficients of Chebyshev polynomials iru&mpn

(3.36), £ and hj(37) are given by Equation (3.42) and Equation (3.44),

y
respectively.
For the static case wheke= ky = k= 0, the right hand side of Equation (3.41)

equals zero, so the coefficient; are zero as well, and in Equation (3.50)

becomes 1.Therefore, the strain ratigy) given by (3.50) becomes a constant

value «(y) =« =1.

3.2.2.3 The Effect of the Loading Frequency

The loading frequency will have significant effeafgon the load transfer between
the sensor and the host structure. Three caseasidered withg = 0.5, v =
5.0;,0=5.0, v =5.0; andg = 0.5, v = 20.0, which is given by Equation (3.46)
and (3.47). A series of the loading frequenks) ¢alues fromkc = 0.0 to 8.0 are
chosen to investigate the effect of different logdfrequencies upon the strain
distribution.

Figure 3.10 shows the amplitud® of the dynamic strain ratioc(y) under
relatively low loading frequencidg = 0.0, 0.4, 0.8, 1.2 and 2.0, wig= 0.5, v

= 5.0. Figure 3.11 shows the amplitudeof the dynamic strain ratio under
relatively high loading frequencids = 0.0, 2.0, 4.0 and 8.0, witlp= 0.5, u=
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5.0. Figure 3.12 shows the amplitudlef «(y) for a relatively soft sensor with
g=5.0, v =5.0. For a more detailed look, Figure 3.13 amgife 3.14 show the
amplitudeA and the phase anglé of the dynamic strain ratioc(y) whenq =
0.5andv = 20.0.

From the results it can be observed that the lgaflimquency has much more
significant effects upon both the amplitude and phase angle of the dynamic
strain ratio, compared with the results of the @&trbonding situation. As shown
in Figure 3.10, whekc = 0, which corresponds to the static case, theevaf the
strain ratio is constantly equal to 1. When thealing frequency increases, the
amplitude of the dynamic strain ratio increaseshwhe maximum and minimum
values of the amplitude around the crack tipsc=x1. In Figure 3.11, as the
loading frequency continues to increase from 2.8, the magnitude oA
increases significantly. In the area away from tii@ck, the number of peaks
increases, as the loading frequency gets highera Boft sensog = 5.0 in Figure
3.12, the amplitude curve becomes very complicateein the loading frequency
reacheskc = 2.0. For a stiff and thin sensor as shown irufgg3.13, the suitable
loading frequency may bee < 2.0. The phase angle of the dynamic strain ratio
curve shows significant dependence on the loadimguency as well. As shown
in Figure 3.13, for the static case,= 0, the dynamic strain ratio is constantly 1,
which corresponds to a constant phase angle offf&nwhe loading frequency is
relatively low, forkc = 1.0 or 2.0, the curve is smooth, and the maxinaumna
minimum value of the phase angle occur around thekctips. When the loading
frequency continues to increase, more peaks appedrthe difference of the
phase angle as large @60 can be observed in Figure 3.14. However,
compared with the low frequency loading conditidthe location where the
greatest change of the phase angle is further &oaythe crack tips.
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Figure 3.10: Amplitude ofx (y)with relatively lowkc (g = 0.5, v =5.0)
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Figure 3.11: Amplitude ofx (y)with highkc (q=0.5, v =5.0)
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Figure 3.12: Amplitude ofx (y)with differentkc (Q = 5.0, v =5.0)
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Figure 3.13: Amplitude of«x(y) under differenkc (q= 0.5, v = 20.0)
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Figure 3.14: Phase angle &f(y) under differenkc (q= 0.5, v = 20.0)
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3.2.2.4 The Effect of the Material Combination

Compared with the perfect-bonding situation, théemal mismatch factog has
more significant effect upon the load transfer lestw the imperfectly bonded
sensor and the host medium. Typical examples avershin Figure 3.15 and
Figure 3.16.

Figure 3.15 shows the effect of the material mismatpon the amplitude of the
dynamic strain ratio for the case whéee= 1.0, v =5.0. For a relatively stiff
sensor with a low material combinatigr= 0.1, the curve is flat and the value of
the amplitude is around 0.8, which is close to #@malytical solution of the
dynamic strain ratiox of perfect-bonding situation. It means that whae t
sensor is very stiff, the disturbance of interfadebonding becomes insignificant
to the dynamic load transfer.

With the decrease of the stiffness of the senbkerdisturbance of the interfacial
crack becomes more important. When the materiabauationq reaches 5.0, the
maximum value of the dynamic strain ratio at thackrtips can reach about 5.0.
Considering the fact that highgwvalue corresponding to softer sensor, the current
result indicates that, even when the host mediumush stiffer than the sensor,
the effect of the interfacial crack upon the loadnsfer will still be very
important.

The change of the dynamic load transfer become® momplicated for higher
loading frequency case. From Figure 3.16 we carhegdghe number of the peaks
increases with the increase@fbut the peak value of the amplitude will riseato

maximum value wheq reaches 2.0 and decrease wh@&ontinues to increase.

37



— 0=0.1
— 0=0.5
4.5 - - g=1.0
— ¢=2.0
—— 0=5.0
4L .
3.5k bl
3F 4
< 25 B
2F 4
1.5F *
1 L Pl S
0.5 *
0 L L L 1 L
-6 4 2 0 2 4 6

Figure 3.15: Amplitude ofx(y) with differentq(kc=1, v =5.0)
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3.2.2.5 The Effect of the Geometry of the Sensor

As the results shown above, the ratio of the lendtthe interfacial debonding to
the thickness of the sensor, denoted dy will also affect the load transfer
between the sensor and the host medium. For treecdatonvenience, the crack
lengthc is set as constant, and the thickness of the séngaries, corresponding
to different values of the geometry ratio defined by Equation (3.46). The
result is shown in Figure 3.17, with the loadingguencykc = 1.0 and the
material combination factay= 0.5. With the increase of the value of from 5.0
to 100.0, the value of the dynamic strain ratiathe vicinity of the crack tips
drops down from around 1.45 to 1.25, which meares disturbance of the
interfacial crack becomes more and more insigmtiosith the decrease of the
thickness of the sensor. Compared with the redutteoperfectly bonded situation,
the influence of interfacial crack upon the dynarneiad transfer can be clearly
seen. Even for a relatively small-sized crack ocelatively thick sensory =5.0
for example, the amplitude ok for perfectly bonded case is about 0.98, while the
maximum value of the amplitude for the interfadabonding situation is as large
as 1.45 in Figure 3.17.

3.2.3 Output Voltage

Since the sensor operates in an open-loop modenweigxternal charges applied

to it [83], therefore, the electric displacementoas the sensor will be zero, that

is,

D, =0. (3.51)
Then the electric field intensityE,, defined in Equation (3.6), can be expressed
as follow:

= —j_ss aatj (3.52)

According to the relationship between voltage atettac field intensity, the

voltage distribution along the sensor can be egec terms of the axial strain

ej as follow:
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h ehou; eh |
V(y)=-[ Ez(y)dz=/]—sa—yy—/]—sey (3.53)

where sj can be obtained using Equation (3.43), wigh A, being the effective

piezoelectric material constants of the sensongbseEquation (3.8).

Figure 3.18 shows the result of the distributionvoftage along the interface
between a typical piezoelectric sensor (PZT-4) d&mel host medium under

loading frequenckc = 2.0 withg = 0.54, v = 20.0, for both the perfect bonding
and imperfect bonding conditions. We can obseragthth interfacial debonding

the output voltage varies significantly along théerface, and around the tips of

the interfacial debondingy/c =41, the voltage measured by the sensor can be

increased by about 1.5 times. Here the voltagékas normalized by =V /V",
with V° :%hg'y.

S
Since the output voltage is an important indicatodrthe characteristics of the
sensor system, we consider the effects of the omedi parameters up&pay the
maximum value of the voltage along the longitudiaxsis inside the sensor, and

Vimaxis normalized byV__ =V, _ /V"as well.

The V. —kc curves in Figure 3.19 and Figure 3.20 show thaifiignt effect

of v upon the maximum output voltage for both relagn&tiff and soft sensors.
The number and the value of peaks in the curvesase with the increase af.
For a softer sensor wittp= 5.0, this effect is much more significant and freak

values of the amplitude o\‘7max correspond to lower loading frequencies.

Moreover, sincev represents the relative thickness of the senfog, is too
small, many other factors will affect the physiphlenomena of the problem and
the one-dimension sensor model may not be suitablese. Therefore, we don’t

consider the situations whea < 5.0.
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3.3 Concluding Remarks

Numerical simulation is conducted to describe tnepted dynamic behavior of a
surface bonded sensor attached to an elastic hedium. When the system is
subjected to high frequency mechanical loads, ffexts of loading frequency,
material combination and sensor geometry upon dfa&l Iltransfer have been
studied, and comparison between a perfect-bondegsos system and an
imperfect-bonding sensor system has been perforifieel.analysis is based on
the use of the integral transform method and tHatisa of singular integral
eqguations using Chebyshev polynomials. The reseltsal the dependence of the
dynamic strain ratio and the maximum output voltajehe sensor upon the
mentioned factors, and specific conclusions areainbtl from the results of
typical examples:

(2). For the perfectly bonded sensor system, when aeplarmonic wave is
applied, the load transfer is constant along therfiace between the sensor
and the host structure, and the effect of loadiegufency upon the dynamic
strain ratio is insignificant. The material comtioa will affect the sensing
ability, and there is a critical value of the makmismatch factorq,
depending on the incident angle of the incidentevas mechanical loads, as
well as Poisson’s rati@. The amplitude of the dynamic strain ratio will
increase withg whenq < g°, and then decrease with the increasq when
g > g This proves that the current perfect bonded sesystem is reliable
for high frequency applications, with material candtions properly chosen.

(2). The loading frequency plays a much more importate m the imperfect
bonding sensor system. Based on the current siimjatelatively low
frequenciekc < 2.0 are more suitable for the detection of debagavith
the predictable results. Moreover, the peaks ofifmeamic strain ratio appear
in the vicinity of the interfacial debonding witlarger amplitudes, which
increase with the increase of the loading frequeN¢yh respect to higher
frequencieskc > 4.0 for example, the maximum voltage detectedthsy

sensor varies significantly and becomes very carapgd with the change of
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3).

loading frequency. This means that the interfadetbonding will decrease
the sensing ability of the current sensor systanifscantly especially under
high frequency conditions.

The material combinationg and the sensor geometry show more
significant influence on the dynamic load transhdren the sensor is not
perfectly bonded. Under low loading frequencigdtom 0.5 to 5.0, andv
from 5.0 to 20.0 might be more suitable for detegtincident waves,

showing less significant disturbance from the iiateial debonding.
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84 Wave Propagation in the Piezoelectric Sensor System

This chapter provides an analytical and numeritadysto simulate the surface
wave propagation in an elastic half plane thatudgase-bonded to a surface
bonded piezoelectric sensor system under high-€mecyimechanical loads. This
solution is based on the developed one-dimensiseasor model, and the
resulting wave propagation is determined by usintggral transform method and
solving the resulting integral equations. The wisrkoncerned with the behavior
of the interface waveform and far field waveform ngeted by the

surface-bonded sensor with interfacial debonding.

4.1 Waveformsin Perfectly Bonded Sensor System

When the piezoelectric sensor is perfectly bondedlynamic displacement wave
will be generated inside the host medium with arident wave applied to the
host medium. For a sensor system subjected tolafftegquency harmonic wave
as the mechanical load, by substituting EquatioB8(Binto (3.26), and applying

the inverse Fourier transform, the waveform caplitained:

g H2se - 2t - Kk)e”|

u
g m(s)

(4.1)
sk,

By substituting Equation (3.28) into (3.26), and &yplying inverse Fourier

transform, the corresponding components of thesstreave field can be written

as:
o;(y,2) = —¢€, H,(k,, 2)
o;(y,2) = —¢, [H,(k,, 2) (4.2)
75,(y,2) = =€, Hy(ky, 2)

where
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H.(s2)=- 28 [— (k2 + Zcrz)e‘22 + (257 - kz)eﬂz]

m(s) [A
H,(s,2)=- m(zsfm (232 - kz)[e‘” - e/”Z] (4.3)
— _; 2 az _ 2 _1,2\2
H.(s,2) = STn(e) [43 afe™ - (2s* - k?) e"z]

with u'y and e'y are given by Equation (3.17).

From Expression (4.1)-(4.3) we can see that theded wave field is still a plane
harmonic wave, with the amplitude reducing with digtance from the sensor.

4.2 Wave Propagation in | mperfectly Bonded Sensor System

For an imperfectly boned sensor system, not onl sensor, but also the
interfacial delamination, will affect the wave fielnside the host medium. By
applying inverse Fourier Transform to Equation263. and by using Equation
(3.32), the general solutions of the induced warelze obtained as
a,(y,2)=0,(y,2) +0y(y,2)
o,(y,2)=0;(y,2)+ 7, (y,2) (4.4)
T,(¥,2) =1;,(y.2) +13,(Y,2)
with o.(y,2),0;(y,2) and 7,,(y,2) representing the contribution of the sensor
to the induced stress wave field, given by Equmati¢4.2); and

Ug(y, 2),0%(y,2) and r;’z(y, z) representing the contribution of the interfacial

debonding to the induced stress wave field, where

(—1)“](:" Hy(s2)J,(sc)sin(sy)ds  j=2n+1

d(y, :NC- w
72 JZ; D[ Hy(s,2)3; () cosy)ds  j=2n

(—1)“](:" H,(s2)J,(sc)sin(sy)ds  j=2n+1

d(y, :NC- w
7: (4.2 JZ; | (D[ H,(s,2)3 (st cosy)ds | =2n

N (-D" ) Hs(s 2)J;(sc)cosky)ds j=2n+1
. (.2)=2.C, b - | .
i (—1)”*1IO H,(s 2)J,(sc)sin(sy)ds  j =2n
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421 Far Field Wave Field

With the solved coefficients of Chebyshev polyndsigiven by Equation (3.36),
the stress wave field can be determined. Althohghrésulting waveform is very
complicated ad Equations (4.4), the fundamentalabieh of the propagating
wave can be predicted from wave field far away fitbm sensor. For any far field
point at the lower half space, its position carplesented in the polar coordinate
as
y=Rcos}, z=-Rsinp, O0<p<m (4.5)

where R denotes the distance from the center of the sengodenotes the

position angle with respect yoaxis. Making use of the relation of

€Y =cossy +isinsy (4.6)
The shear stress wave,(y,z) in the far field brought by the interfacial
debonding can be rewritten as

N . NlJ . (SC)(4SZO,ﬁ)e—R(asin/]—iscosq)
rr(y,2=12(y,2)+> C, 1) ds
AL RLAVLED) {I SO B

_J'°° NJlJJ (SC)(252 _ k2)2e—R(ﬁsinf7—iscosr7) ds
e sm(s) [

4.7)

where r;’Z(y, z) represents the surface wave field along the interfaduced by

the interfacial debonding between the sensor ardhtist structure due to the
singularity of the above integral, and

D" oo
Nt = (31)”*1 (4.8)
~ 7 ] =2n
2

ForR >> 1, the interfacial Waver‘y)z(y, z), which will decay exponentially with

the distance from the interface, will be ignoredtire far field solution. The
existence of the waveform propagating along theriate will be discussed in the
next subsection. For Equation (4.7), since the w&pbal functions
g Rasi-iscost) gnd g R(FsN1-iscosn) gre rapidly changing functions compared with

kernel functions in the above obtained integrag, dominant contribution to the

47



integral comes from the neighborhood of the poistss, and s=s;, where

asing—iscosy and fBsing-iscosy are the smallest, respectively. The
accuracy of that dominant contribution improvedwmitcreasindr. Based on this
idea, the method of steepest descent will be uséuki following discussion [80],
i.e. to deform the path of integration in tplane in Equation (4.7) into a contour
along the path of steepest descent, which passasgth the saddle point(s). The

saddle points can be determined by differentiabénh,(s) = a sinn —iscosy
and h(s) = Bsinn —iscosy, as s, =K cosy and s =kcosy, respectively.
At the saddle points we subsequently find

_ i
s K sin2/7

hy(9)., =-Ki.

(4.9)

h(9, =-k. N, ksmn

The direction of the steepest descent path carteerdined using
1. 2i6,, | — l " 2i6, | —
arc\{z hO(S)L:SD € } =0, arg{z h, (s)|stl € } =0 (4.10)

with “arg” representing the argument of a complexnber. The solutions of (4.10)

n
are 6,=6,4 e
Therefore, the approximation of the induced wavénhm far field induced by the

interfacial crack can be written as

{fu RS Ut Zg‘( J] (4.11)
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where

fo(im = 800 Gy = L)

9o (j.17) =43, (K cos)K 2 sin® 77 cospy/k? - K? cog 77
a:.(1,7) = —wgnn@kz cos - kz)2

P! o _;20032” * Esh(chAoO§/7—k§)

o) =i k®sing N A,

E.hlk? cog - k?)

A, = (2K20032/7—k2)2 +4K3singcos nyk* - K?cos n

f1.2 Rz
Al=(2k20032/7—k2)2+44'k‘°’sin/700§/7 k®cos 7 -K kcosy > K
-iyK?-k?*cogn kcosp<K

(4.12)

Similarly, the far field solution of stress compate o, and o, can be

obtained as

a;=ZcJ-N2f(m),/ +f(m),/ = e

o = 2OMN| f(m),/ Dt 2 2 (kR'] (4.14)

where
—(_21_) j=2n+1
2 _ i
Nj = (1" _ (4.15)
——  ]j=2n
2
and

, 9,(J,77) - 9:(,7) - 9,00.m) N O]
f ’ =—lf3 ’ _—1f4 ) _—,fs f -
(1,1) o) (i) a0 (i) o07) (i) a0

9,(j.77) = =23, (K cosp) sinngyk? - K? co§/7(k2 -2K? sin2/7)

95(j.77) = ~2ikJ, (k cosy) sin® 1 (2k? cog 17 — k?)

9.(j,m=-23;(K cosz7)sin/7\/m(2K2 codn - kz)
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(4.16)
Therefore, the whole wave field inside the host im@dcan be obtained by the
superposition of the waves induced by the senstrgrthe interfacial defection

as
—_ s f
Jy_J>'+Jy

o,=0°+0, (4.17)
r. =715 +71!

4.2.2 Interfacial Wave Propagation

From the previous discussion we have known thatgatbe interface between the
sensor and the host medium, an interfacial wavé bwlgenerated. This wave
shows no decay during propagation for ideal lirsdastic medium. To evaluate
the behavior of this interfacial wave generatet uke consider the induced shear

stress7,, by the interfacial debonding along the interface,

00 1 )
v |CD7) J (o) cosy)ds  j=2n+1
Pe(yO =10+ 2., I o | - (418
= (- Io ST(s) JJ- (sc)sin(sy)ds ] =2n

Here sz(y,O) denotes the contribution of the sensor to the faxél wave,

which can be obtained by using Equation (4.2).
The second part in the right-hand side of Expresglal8) demonstrates the shear

stress wave brought by the interfacial debondirfgclvis denoted byr‘yjzo. When

m(s) approaches zero at a special valsie s,, the integral becomes singular

when s=s,, wheres, =&/, with being the speed of this interfacial wave.
S & c, Co

The governing equation for determiningy is m(s) = 0, which can be rewritten

as:
— E, K*B(s* - k?)
U U

A (4.19)
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where A(s) = (28 —k*)* —4s*af3.

Around the points=1g, , m(s) can be written as

m(s) = 5% S-S (4.20)
Y
with
1
gp=— (4.21)
(S|,

This singular term represents the contributiorhefinterfacial wave.

To evaluate the integration, the contour integratitethod is used. If the infinite
integral of function f(s) exists, it can be expressed as a limit of contour
integrals along the contouf°® that goes along the real line frora te a and then

counterclockwise along a semicircle centered atonfa to -a, as shown in

Figure 4.1:

j f(s)ds= j f(s)ds= j f(s)ds+ j f(s)ds+ j f(s)ds+ j f(s)ds (4.22)

re o I I3 I,
Considering the integration of f(s) along the integration path
M=r,+r,+r,+r,, the singular points, of f(s) is excluded from the
closed integration path, so we can get

ff(s)ds: j f(s)ds+j f(s)ds+j f(s)ds+j f(s)ds=0 (4.23)

By using Jordan’s Lemma,jf(s)ds becomes zero when the radius
r4

approaches infinity. Equation (4.23) can be writien

j f (s)ds + j f(s)ds=- j f(s)ds (4.24)

rO r3 r2
Substitute Equation (4.24) into Equation (4.22)] ase the Residue Theorem, the

infinite integral of f(s) can be obtained as

j_"; f(9ds= [ f(s)ds~] f(s)ds= 27 I;«’:gsff ()] (4.25)

I
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Therefore, the part of the resulting interfacialvevacaused by the interfacial

debonding can be obtained as

do — Ai(soy+y)
r, =A

where

. N
A% = ﬂZCij(sOc)&
=1

{(—1)% j=2n+1
S

(_1) n+l J = 2n

(4.26)

(4.27)

with A°, ¢ being the amplitude and phase angle of the regyitiiterfacial wave

induced by the interfacial debonding, respectively.
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Figure 4.1: The integration path in compgplane

4.3 Results and Discussion

This section will be devoted to the discussion ha# behavior of the resulting
wave propagation under different geometric and ilmpdonditions. In order to
investigate the influence of interfacial debondimgon the induced wave
propagation, typical examples are given by both ewral simulation and

analytical solutions.

4.3.1 Wavesin the Medium

Figure 4.2 and Figure 4.3 show the amplitude ofréseilting total elastic wave
o,=0,lA, and the wave contributed by the interfacial cragk =o,/4,,
where o is given in Equation (4.5), andl, = u@+V)A'k, with A', k,
being the magnitude and the apparent wave numbeth@finduced wave
corresponding to the free-surface boundary condifidne loading frequency ke
= 3.0, and other parameters are chosen 19 $é.5, v = 20.0 and p,/ p, =1.
From the figures we can see that along the intertae influence of interfacial
debonding on the resulting wave field is significamd it decreases rapidly with

the increase of the distance from the sensor. iieefacial debonding will cause

high stress concentration at the tips whgnhc==x1. Figure 4.4 shows the
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amplitude of the resulting total shear stress Wagge: r, /A, with the same

loading conditions. Comparing the results in Fighi2and Figure 4.4, we can see
that the amplitude of the normal stress is aboutetwf that of the shear stress,

which is believed to be the dominant force to colritre interface delamination.
The stress component along thaxis direction g, vanishes along the interface,

but the stress concentration still appears atipiseof the debonding in the vicinity
of the interface, as shown in Figure 4.5. It is Bro@ampared with the other two
components and can be ignored. The interruptiothefinterfacial debonding

mainly exists in the area of4<z/c<0. Figure 4.6 shows the part of the

resulting wave contributed by the interfacial detiog, o" = a? / A,.

Figure 4.2: The amplitude o0&, (kc=3.0,=0.5, v=20.0)
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Figure 4.6: The amplitude o&?" (kc =3.0,0=0.5, v =20.0)
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4.3.2 Interfacial Wavefor m

Along the interface between the sensor and theunedi= 0, a surface wave with

the speed ofc, = w/s, will be generated, which propagates with non-vanig

amplitude along the surface of the matrix.
The resulting surface wave along the interface eetwthe sensor and the host
medium is characterized by Equations (4.20) andl{4.Figure 4.7 shows the

A-kc curve of the resulting surface wave correspondinthe contribution from

the debonding, which is normalized iﬁ? :rydzol)lo,under different loading

frequencies, where a series of material combindtiotors are chosen gs= 0.5,
1.0, 2.0 and 5.0, withv = 20.0. The amplitude of the surface wave increase
with the increase of loading frequeniay and the changes are more significant for
stiffer sensorsq = 0.5 for example). This implies that with the dase of the

stiffness of the sensor, the surface wave willdss kignificant.

x 10°

3.5 -~ g=2.0 [{

.
0.5 o

-0.5r- b

Figure 4.7: The amplitude of Y (v = 20.0)
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4.3.3 Far Field Waveform

Figure 4.8 compares the normalized far field stoissibution due to debonding

f

o/"=0! 1A, atylc=1,5 and 10, with that from the asymptotic residiven by

Equations (4.4) and (4.14). The loading frequensyké = 3.0 and other

parameters arg = 0.5, v= 20.0 and p,/ p, = Wery good match between the
two curves in Figure 4.8 assures the feasibilityusing asymptotic method to
simulate the far field stress distribution.

Figure 4.9 , Figure 4.10 and Figure 4.11 give the field stress distribution

o, using the asymptotic results under the loadingueagykc = 1.0, 2.0 and 4.0,

respectively. The results show that the maximunuevalf o/ appears along a

straight line whery/c changes from about 20 to 40, corresponding/d¢ofrom

—-40to -60. It means that the energy of the far field wavenanly along the

direction @ = arctan 22— | = arcta _40-20 =-45 , which agrees the
z, (-40) - (-60)

results obtained in Equation (4.10). The directbthe main energy of far field is
not sensitive to the change of the loading frequék; which shows the basic
property of the wave propagation in the sensoresystwith the current

mechanical load conditions.
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4.4 Concluding Remarks

The focus of this chapter is on the study of theatfof the wave propagation
inside the host medium with an imperfectly bondeg pelectric sensor, when the
system is under high frequency mechanical loads. Aigh frequency discussed
in this chapter corresponds to a wave length of itiduced elastic wave
comparable to the size of debonding. Typical exas@re given for the case
when the loading frequencies froke = 1.0 tokc = 4.0 and typical material
combinations frong = 0.5 tog = 5.0. The sensor geometry is considered as

20.0. Numerical simulation is conducted to investgthe wave propagation

inside the host medium and along the interfaceti@far field wave propagation,

both numerical and asymptotic results are given @rdpared with each other.

Special conclusions are obtained as follows:

(). For a perfectly bonded sensor system subjectedhighafrequency incident
harmonic wave as the mechanical load, the outgaiage will still be a
harmonic wave, and the waveforms can be analyichitained.

(2). For an imperfectly bonded sensor system, the axteaf debonding will have
significant influence upon the induced wave propiaga With the increase
of the distance from the sensor, the magnitudén@fwaves inside the host
medium decreases rapidly and the interruption efittterfacial debonding

upon the induced waves become more insignificattterfar field.

(3). Along the sensor the dominant stress is the nostnass a;, which is much

higher than the other stress components. In theeguresults of examples,

a; can be more than twice of the shear stress alamtarface. Under high

loading frequency situation, combined with the iifateial shear stress, it may
lead to the growing of the interfacial debonding awentually the damage of
the surface-bonded sensor system.

(4). For far field wave propagation, the main energyl wilopagate along
direction and the focus range of the wave energpisensitive to the change
of the loading frequency, which shows the basipertes of generated wave

propagation by surface bonded sensor with the cumechanical loads.
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85 Conclusions and Future Work

5.1 Conclusions

Throughout this study, two major issues essentiakthie establishment of a

structural health monitoring system using surfageeded piezoelectric sensors

are studied:

(2). An one dimensional sensor model has been usednidate the mechanical

and electrical field in a half infinite elastic maddue to surface bonded

piezoelectric sensor;

(2). The wave propagation induced by piezoelectric ssng® systematically

studied through numerical simulation and asympicaiculation.

Specific contributions and conclusions of this gttaithe field of the research can

be summarized as follows:

().

(b).

(c).

The one-dimensional sensor model is used to canside coupled
eletromechanical behavior of a piezoelectric sersmrded to an infinite
elastic medium under plane mechanical loading. Nigalkesimulations are
conducted under different loading frequencies, nateombinations and
sensor geometries to investigate the dynamic l@adster between the sensor
and the host structures, and comparison betweempdfect and imperfect
bonding conditions are performed.

The simulation results indicate that the loadinggérency has much more
significant effect upon the load transfer for imipetly bonding situations
other than the perfect bonding condition. Matepabperties and sensor
geometries are more important in imperfect bondiages, especially under
high loading frequency loads. This indicates thet sensing ability of the
piezoelectric testing systems are reduced and ddnivy the interfacial
defection greatly, and more careful consideratiohthe loading conditions
as well as the material characteristics are needed.

The wave propagation induced by the surface bompdezbelectric sensor is
analytically studied. The numerical simulation cocigd indicates that the
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effect of the interfacial defection upon the resgitwave propagation is very
significant, especially for high loading frequentases. The basic properties
of the wave field are demonstrated by the analysiclution of the wave field

far away from the sensor.

Based on the analysis conducted in Chapter 3 amapt€h 4, the following

specific conclusions which are potentially usefuldesigning the piezoelectric

sensor SHM systems can be obtained:

(1). For the current infinite sensor system model, thairs field measured as the

(2).

3).

output signal will be disturbed by the sensorh# sensor is perfectly bonded,
the change of the load transfer will increase with increase of loading
frequency. The material combination will affect tlead transfer as well.
There is a critical valugg, which is dependent on the properties of
mechanical loads and materials. Whipn g°, the sensing ability will increase
with the decrease of the thickness of the sensdrnilewthe opposite
phenomena appear whgrk g°. Moreover, the disturbance of the sensor will
be reduced by decreasing the thickness of the sefserefore, by choosing
proper sensor material and geometry, as well aohtrolling the mechanical
loads properly, the sensing ability of the system loe promoted.

For imperfectly bonded sensor system, both theaseasd the interfacial
debonding will disturb the strain distribution aipthe sensor. The main
energy of the disturbances comes from the inteafat@bonding, especially
for high frequency cases. The change of the sfraid by different loading
frequencies is more complicated far > 4.0 for currently chosen examples.
kc < 2.0 will be more suitable for the sensor systenthwnterfacial
debonding. Compared with the perfect-bonding sesgstiem under the same
loading condition and material combinations, thickincy of dynamic load
transfer is greatly reduced.

The material combination of the sensor and the btvatture plays a more
important role in the electromechanical behavior thfe imperfect
piezoelectric sensor system. A softer sensor witariacial debonding will

bring more significant disturbance of the straieldialong the sensor, even
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(4).

(5).

under relatively low loading frequen&g = 1.0. Harder sensor can be chosen
to reduce the influence of interfacial debondingwever, since the stress
concentration around the tips of the interfaciabateding increases along
with the stiffness of the sensor, attention shalsd be paid to make sure that
the sensor will not peel off the host medium.

Even for relatively low loading frequency case thtio of the crack size to
the sensor thicknesgis an important factor affecting the dynamic bebavi
of the system. The difference of the strain distiitn along the sensor can be
up to 20% compared with the corresponding resultpeffect bonding
conditions. Therefore, thinner sensor is requieadsure the efficiency of
the sensor, and) > 20.0 is more suitable for the currently selectedsor
system. For the currently selected sensor wittxedfilength of interfacial
debonding sizeg = 2cm for exampley can reach 100.0 with a sensor
thicknessh = 0.2 mm. Sov from 20.0 to 100.0 is appropriate for practical
applications.

The wave propagation is significantly changed ke é¢listence of interfacial
debonding. For the current sensor system subjéatadiarmonic wave as the
load, the induced wave by the sensor will be a baimwave. The wave
field will be changed greatly by the interfaciabdeding. Along the interface,
a non-vanishing surface wave can be generated. Howeith the distance
from the sensor increasing, it diminishes rapidglyexponential way in the
hose medium. The disturbance of the interfacialodding on the wave
propagation mainly appears in the vicinity of theerfacez = 0, in the given

example, it becomes insignificant wheg -1.0.

5.2 Future Studies

Based on the results of the work done in this hekie additional investigations

in a number of areas, which could be further cotetlicare suggested as follows:

The simulation results obtained by using the cursansor model need to be

verified by experimental work or other simulatingtmod such as finite element

64



method. Proper modification of the sensor model bmyeeded according to the

corresponding results.

(a).

(b).

().

(d).

The current work only considered one interfaciddateling along the infinite
interface. In the next step, more debonding witffetBnt sizes can be
introduced. The interaction of the waves inducedheydebonding need to be
studied theoretically.

The current two-dimensional model has its limitaio The practical SHM
system is usually three dimensional, so furthedystand detailed simulation
using 3-D model will be very important for a redi8 system.

Considering the existence of interfacial debondidgsign of piezoelectric
sensor system will be more complicated. Extensixgeemental work is
desired to verify the proposed sensor testing teclen as well as the
selections of the existing sensor and host mageialorder to give more
concrete suggestions about the optimal designndmesystems.
Piezoelectric actuator systems also need to beestumcause of their wider
uses in SHM techniques. Besides, embedded piezoelsensor/actuator

systems can be expected to be studied in the sivwala.

65



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Smith R. L., Waites C., Murgatroyd R., 1992, Assamst of NDT reliability,
Proceedings of the NDT for corrosion in aerospdacectires Conference,
London, United Kingdom, A93-54894 24-38, p. 8.1:8.5

Wang B L, 2003, Failure Mechanics of Piezoeledi#terials and Structures
(in Chinese), National Defense Industry Press,i@gijChina

Park G, Farrar CR, Scalea di FL, Coccia S, 2008fofeance assessment
and validation of piezoelectric active-sensorstmctural health monitoring,
Smart Materials & Structures, 15 (6): 1673-1683.

Wang X D, Huang G L, 2006, The coupled dynamic behaf piezoelectric
sensors bonded to elastic media, Journal of igeili material systems and
structures, 17(10): 883-893.

J. Sirohi, I. Chopra, 2000, Fundamental understandf piezoelectric strain
sensors, Journal of Intelligent Material Systemsd arstructures,
11(4):246-257.

V. V. Varadan, J. Kim, V. K. Varadan, 1997, Modgliof piezoelectric
sensor fidelity, IEEE Transactions of UltrasonicSerroelectrics, and
Frequency Control, 44(3):538-547.

M. W. Lin, C. A. Rogers, 1993a, Modeling of the wstion mechanism in a
beam structure with induced strain actuators, FRmiogs of
AIAA/ASCE/ASME/ASC 34th Structures, Structural Dynms and
Materials Conference, AIAA Inc., Washington, DC rtPdl, 3608-3617, La
Jolla, CA, 19-22, April

M. W. Lin, C. A. Rogers, 1993b, Actuation respon$@ beam structure with
induced strain actuators, Adaptive Structures amatekibl Systems, AD
35:129-139.

Charles E Seeley, 1998, Experimental investigadibcomposite beams with
piezoelectric actuation and debonding, Smart M&tuct. 7: 502-511.

66



[10]Sun Dongchang, Tong Liyong, Satya N, Atluri, 208ffects of piezoelectric
sensor/actuator debonding on vibration controlméag beams, International
Journal of Solids and Structures, 38(50-51): 99G31.

[11]Sun Dongchang, Tong Liyong, 2006, Modeling and ysiglof curved beams
with debonded piezoelectric sensor/actuator patdhésrnational journal of
mechanical sciences, 44(8): 1755-1777.

[12]Steven A. Martin, James L. Blackshire, 2001, EffettAdhesive Material
Properties on Induced Stresses in Bonded SenserseWR of progress in
guantitative nondestructive evaluation.

[13]James L. Blackshire, Steven A. Martin, Jeong K. R@Q7, Disbonding
Effects on Elastic Wave Generation and ReceptiolBbiyded Piezoelectric
Sensor Systems, Proceedings of Conference on Seysi@ms and Networks:
Phenomena, Technology, and Applications for NDE Hedlth Monitoring,
San Diego, US, 6530.

[14]Wikipedia, Retrieved in 2009, Piezoelectricity,rfro
http://en.wikipedia.org/wiki/Piezoelectricity

[15]Piezo Systems Inc., Retrieved in 2009, History @zBelectricity, from:
http://piezo.com/tech4history.html

[16]Bailey T., Hubbard J. E., 1985, Distributed piercélic polymer active
vibration control of a cantilever beam. J. Guidn@ol Dyn. 8: 605-611.

[17]Crawley E. F., Luis, J. D., 1987, Use of piezoeledctuators as elements of
intelligent structures, AIAA J. 25: 1373-1385.

[18]Edward F. Crawley, Eric H. Anderson, 1990, Detailddodels of
Piezoceramic Actuation of Beams, Journal of Ingelit Material Systems
and Structures, 1(1): 4-25.

[19]Im S., Atluri S.N., 1989, Effects of a Piezo-Actoiabn a Finitely Deformed
Beam Subjected to General Loading, AIAA Journa(12y:1801-1807.

[20]M.W. Lin and C.A. Rogers, 1993, Modeling of theustton mechanism in a
beam structure with induced strain actuators, FRmiogs of
AIAA/ASCE/ASME/ASC 34th structures, structural dynias and materials
conference, Part VI, La Jolla, CA, AIAA Inc., Wasgton, DC, 3608-3617.

67



[21]M.W. Lin and C.A. Rogers, 1993, Actuation respoo$en beam structure
with induced strain actuators, Adaptive Structiard Material Systems AD
35, 129-139.

[22]Dimitriadis E K, Fuller C R, Rogers C A, 1991, Riefectric actuators for
distributed vibration excitation of thin plates,. \db. Acoust., 113: 100-107.

[23]Dimitriadis E K, Fuller C R, Rogers C A, Roger. 983 Piezoelectric
Actuators for Distributed Noise and Vibration Extibn of Thin Plates,
Proceeding of ASME Failure Prevention and ReligbilConference,
Montreal, 223-233.

[24]John S. Richard, Harley H. Cudney, 1993, Modelingiltiple-layer
piezoelectric actuators in active structural cdntRroceedings of SPIE on
Smart Structures and Materials, Albuquerque, NMAUB16: 231.

[25]Mindlin R. D., 1952, Forced thickness-shear andkutal vibration of
piezoelectric crystal plates, J. Appl. Phys., 23883

[26] Tiersten H. F., Mindlin R. D., 1962, Forced viboats of piezoelectric crystal
plates, Quat. Appl. Math., 20:107-119.

[27]Mindlin R. D., 1972, High frequency vibrations aépoelectric crystal plates,
Int. J. Solids. Struct., 8:895-906.

[28]Mindlin R. D., 1984, Frequencies of piezoelectlicdbrced vibrations of
electrodes doubly rotated quartz plates, Int. idSdStruct., 20:141-157.
[29]E. Crawley and K.B. Lazarus, 1991, Induced straiaation of isotropic and

anisotropic plates, AIAA Journal, 29: 944-951.

[30]Wang B.T., Rogers C., 1991, A Laminate plate thdonspatially distributed
induced strain actuators, Journal of Composite N&se 25: 433-452.

[31]Rahmoune M., Benjeddou A., Ohayon R., Osmont D.9819New thin
piezoelectric plate models, Journal of intelligematerial systems and
structures, 9(12): 1017-1029.

[32]Tzou H. S., 1989, Distributed sensing and contafldlexible plates and
shells using distributed piezoelectric elementyrdal of wave-material

interaction, 4: 1-3.

68



[33]Tzou H. S., Gadre M., 1989, Theoretical analysia ofulti-layered thin shell
coupled with piezoelectric shell actuators for mhsited vibration controls,
Journal of Sound and Vibration

[34]Tzou H. S, Y Bao, 1994, Modeling of thick anisoimpomposite triclinic
piezoelectric shell transducer laminates, Smareka&truct. 3: 285-292.

[35]Zzhu X, Wang Q, Meng Z, 1995, A functionally gradiepiezoelectric
actuator prepared by power metallurgical proces®MNN-PZ-PT system,
Journal of Material Science Letter, 14: 516-518.

[36]Wu C M, Kahn M, Moy W, 1996, Piezoelectric ceramweith functionally
gradients: a new approach in material design, dwhAmerican Ceramic
Society, 79: 809-812.

[37]Qiu J, Tani J, Soga T, 1996, Smart functionallydgch material without
bending deformation, Proceedings of the 4th int@ynal symposium on
functionally graded materials, FGM’96: 773-780.

[38]Ootao Y, Tanigawa Y, 2000, Three-dimensional pi&sieity in
functionally graded rectangular plate bonded taezqelectric plate, Int. J.
Solids Structures, 37: 4377-4401.

[39]Almajid A, Taya M, Hudnut S, 2001, Analysis of cuftplane displacement
and stress field in a piezoelectric plate with fiowally graded
microstructure, Int. J. Solids Structures,38: 333%2.

[40]He X Q, Ng T Y, Sivashanker S, Liew K M, 2001, Aeticontrol of FGM
plates with integrated piezoelectric sensors andia&mrs, Int. J. Solids
Structures, 38(9): 1641-1655.

[41]Wwang B L, Noda N, 2001, Design of a smart functipnagraded
piezothemoelastic structure, Smart Materials anac8tres, 10(2): 189-193.

[42]Wang B L, Noda N, 2001, Thermally induced fractof@ smart functionally
graded composite structure, Theoretical and apfadure mechanics, 35(2):
93-109.

[43]Wang B L, Noda N, 2001, Axisymmetric deformation piezoelectric
multilayers, Philosophical Magazine Part A, 81)09-1019.

69



[44]Chen W Q, Wang L Z, 2002, Free vibrations of fuowslly graded
piezoceramic hollow spheres with radial polarizatid. Sound Vib., 251(1):
103-114.

[45]Nowachi W. 1978, Some general theorems of thermzopiectricity, Journal
of Thermal Stresses, 1:171-182.

[46]Chandrasekharaiah D. S., 1988, A generalized litteamoelasticity theory
of piezoelectric media, Acta Mech., 71: 39-49.

[47]Ding H, Guo F, Hou P, 2000, A general solutiongezothermoelasticity of
transversely isotropic piezoelectric materials ant$ applications,
International Journal of Engineering Science, 385:1440.

[48]Tauchert T R, 1992, Piezothermoelastic behaviothef laminated plate,
Journal of Thermal Stresses, 15: 25-37.

[49]Ashida F., Tauchert T.R, Noda N, 1993, Responsa piezothermoelastic
plate of crystal class 6 mm subject to axisymmeheating, International
Journal of Engineering Science, 31: 373-384.

[50]Choi J, Ashida F, Noda N, 1995, Transient piezotioslasticity of a
hexagonal plate class 6 mm, Achieve of Applied Meits, 65: 24-37.

[51]Qin Q H, 2000, General solutions for thermopiezcieles with various holes
under thermal loading, International Journal ofi@®oland Structures, 37:
5561-5578.

[52]Y. W. Kwon and H. Aygunes, 1996, Dynamic finite raknt analysis of
laminated beams with delamination cracks using amfitnpact conditions,
Computers & Structures, 58(6): 1161-11609.

[53]Corrado Maurini, Joél Pouget, Francesco dell'ls@@06, Extension of the
Euler—Bernoulli model of piezoelectric laminatesinolude 3D effects via a
mixed approach, Computers & Structures, 84: 143814

[54]Allik, H., T. J. R. Hughes, 1970, Finite Element thed for Piezoelectric
Vibration, International Journal for Numerical Metts in Engineering,
2:151-157.

70



[55]H. S. Tzou, C. I. Tseng , H. Bahrami, 199A thin piezoelectric hexahedron
finite element applied to design of smart continké@pite Elements in
Analysis and Design, 16(1): 27-42.

[56]Benjeddou A., M. A. Trindade, R. Ohayon, 1998, Avrehear actuated smart
structure beam element, AIAA 98:1922.

[57]Heyliger P., Ramirez G., Saravanos D., 1994, Calplscrete-layer finite
elements for laminated piezoelectric plates, Comopations in numerical
methods in engineering, 10(12): 971-981.

[58]M.A. Moetakef, K.L. Lawerence, S.P. Joshi, P.S.akblas, 1995, Closed
form expressions for higher order electroelasti@bedral elements, AIAA J.,
33:136-142.

[59]C.C. Wu, K.Y. Sze, Y.Q. Huang, 2001, Numerical sohs on fracture of
piezoelectric materials by hybrid element, Int. Solids Struct., 38:
4315-4329.

[60]K.Y. Sze, 1992, Efficient formulation of robust higb elements using
orthogonal stress/strain interpolants and admessiatrix formulation, Int. J.
Numer. Methods Eng., 35: 1-20.

[61]Lesieutre, George A., 1998, Vibration damping aodtol| using shunted
piezoelectric materials, SHOCK VIB DIG., 30(3): 1895.

[62]Preumont, A., 1997, Vibration Control of Active &ttures - An Introduction,
Kluwer Academic Publishers.

[63]K. Chandrashekhara, S. Varadarajan, 1997, Adapkepe Control of
Composite Beams with Piezoelectric Actuators, Jalurof Intelligent
Material Systems and Structures, 8(2): 112 - 124.

[64]Victor Giurgiutiu, Andrei Zagrai, Jing Jing Bao, @) Piezoelectric Wafer
Embedded Active Sensors for Aging Aircraft Struatudealth Monitoring,
Structural Health Monitoring, 1(1): 41-61.

[65]Chee-Kiong SOH, Yaowen YANG, 2007, Integrating Enmnary
Programming and Electro-Mechanical Impedance MetHod Damage
Identification, Procedinging of ASCE(American Sdgief Civil Engineers)

71



International Workshop on Computing in Civil Engémmg; Pittsburgh,
PA(US), 24-27, July.

[66]Ajay Raghavan, Carlos E. S. Cesnik, 2004, Modetihgiezoelectric-based
Lamb wave generation and sensing for structuraltiheaonitoring, Proc.
SPIE, 5391: 4109.

[67]Deng W, Meguid S A, 1998, Analysis of conductingidiinclusion at the
interface of two dissimilar piezoelectric materjals Appl. Mech., (ASME)
65:76-84.

[68]Beom H G, Auluri S N, 1996, Near-tip fields andeinsity factors for
interfacial cracks in dissimilar anisotropic pielsmtric media, Int. J. Fracture,
75:163-183.

[69]Dongchang Sun; Liyong Tong, 2002, Modeling and ysialof curved beams
with debonded piezoelectric sensor/actuator patdhésrnational Journal of
Mechanical Sciences, 44(8): 1755-1777.

[70]Yang Jiashi, 2007, Thickness-twist edge modes in semi-infinite
piezoelectric plate of crystals with 6mm symmetyEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Consd(2): 220-221.

[71]William H Prosser, 1996, Advanced AE techniguesamposite material
research, 1996, Journal of Acoustic Emission, #($1-S11.

[72]Kromine A. K, Fomitchov P. A, Krishnaswamy S., Adbach J. D, 2000,
Laser ultrasonic detection of surface breakingahsiouities: scanning laser
source technique, Materials Evaluation, 58(2):173-1

[73]Fu-Kuo Chang, 2000, Structual Health Monitoringr Aorce, Office of
Scientific Research, United States.

[74]X Lin, F G Yuan, 2001, Diagnostic Lamb waves in artegrated
piezoelectric sensor/actuator plate: analytical @xuerimental studies, Smart
Mater. Struct. 10: 907-913.

[75]MONKHOUSE R S C,WILCOX P D,CAWLEY P, 1997, Flelab
interdigital PVDF transducers for the generatioh@ib waves in structures,

Ultrasonics, 7.

72



[76]MONKHOUSE R S C, WILCOX P D, 2000, The rapid monitg of the
structures using interdigital Lame wave transdyc&mart Materials and
Structures, 5.

[77]J. P. Lynch , A. Sundararajan , H. Sohn , GkRarC. Farrar , K. H.
Law, 2004, Embedding Actuation Functionalities in\areless Structural
Health Monitoring System, Proceedings of the Inaional Workshop on
Smart Materials and Structures Technology.

[78]X. D. Wang, G. L. Huang, 2001, Wave PropagatiorEiactromechanical
Structures: Induced by Surface-Bonded Piezoeleétdtators, Journal of
Intelligent Material Systems and Structures, 12{P5-115.

[79]L. Han, X. D. Wang, Y. Sun, 2008, The effect of By layer properties on
the dynamic behaviour of surface-bonded piezoatesénsors, International
Journal of Solids and Structures, 45(21): 5599-5612

[80]J. D. Achenbach, 1973, Wave propagation in elasttds, American
Elsevier Publishing Company, Inc. New York, N.Y.AIS

[81]Y. Eugene Pak, 1990, Crack Extension Force in aoeiectric Material, J.
Appl. Mech., 57( 3): 647

[82]Jaehwan Kim, Vasundara V. Varadan, Vijay K. Varadaf97, Finite
element modelling of structures including piezo#&lecactive devices,
International  Journal for Numerical Methods in  Hregring,
40(5): 817 — 832

[83]C. K. Lee, F. C. Moon, 1989, Laminated piezopolyiplates for torsion and
bending sensors and actuators, Journal of the AicoBsciety of America,
85(6): 2432-2439.

73



Appendix A

Plane Harmonic Waves in Elastic Half-spaces

A plane harmonic displacement wave propagating \phlase velocity ¢ in a

direction defined by the unite propagation vectpis represented by:

0 = Ade” (A1)
wheren =k(xI[p-ct), A and k as the amplitude and the wave number,
respectively.

The plane harmonic waves are divided into two tyjpeased on the directions of

motion and wave propagation:
Longitudinal wave, for whichd =+p and c=c,;
Transverse wave, for whicki (p=0 and c=c;,.

For in-plane motions, the incident as well as #flected and refracted waves can
be obtained, denoted by:

g™ = Ad"Me" (A.2)
where

n, =k (xp™ -c,t) (A.3)
Different values of the index numberserve to label the various types of waves

that occur. The value = 0 is assigned for the incident wave, with

p©@ =sing, [, + cosd, [,. (A.4)
where g, is the phase angle of the incident wave.
For an incident longitudinal wave, we have:

d®=p9 ¢ =c. (A.5)
For an incident transverse wave, we have:

d9mp©@=0 ¢ =c. (A.6)
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The reflected waves may be both longitudinal aaddverse waves. The reflected
longitudinal waves and the reflected transverseeware labeled hy= 1 andn =
2, respectively. The expressions are as follows:
Reflected longitudinal wave:
p® =sing, [, —-cosg, 0,, d®=p®, ¢ =c (A7)
Reflected transverse wave:
p® =sing, 0, —-cosd, d,, d?=i,0p?, c,=c (A8)
And the unknown amplitudé\., A, and phase anglé,,8, of the reflected
waves can be solved with the stress and displadeb@emdary conditions along
the joined surfaces between the two elastic haltep. For a plane longitudinal
waves which propagates in an elastic half spade avitee surface, the following
conclusions can be obtained:
k, sing, = k; sing, =k, sing, = k= Apparent wave number (A.9)
k,c. =k, =k,c, =w = Circular frequency. (A.10)

These results provide, in turn, the following relas:

k, =k, (A.11)
Koty (A12)
Ko Cr
6 =6, (A.13)
sing, = ksing,. (A.14)
The material constank is defined by:
_\\ 172
K= [M} (A.15)
1-2v

wherev is Poisson’s ratio.

The relations of the amplitude of reflected wawved e incident wave are:

A _sin26,sin26, - k* cos 26, (A16)
A, sin26,sin26, + k* cos 26, '
A _ | 2/(T'~:|n260 co;<,262 _ (A17)
A, sin26,sin26, + k* cog 26,
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Therefore, the displacement field in the elastitf Bpace can be obtained by
superposing the displacements induced by the intids well as the reflected
waves, which is:

a=09+a® +a® (A.18)
with which the corresponding components of theirstaad stress field inside the

half space can be obtained.
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