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Abstract

This thesis is primarily concerned with the development and evaluation of an adaptive predictive
proportional-integral-derivative (PID) control scheme for control of processes with time varying
dynamics and a time varying delay. One of the main motivations for this new PID scheme is to
utilize existing industrial control computers that employ a PID algorithm for the implementation
of advanced control. Predictive PID constants and the internal model are chosen by cquating the
discreie PID control law with the linear form of generalized predictive control with steady state
weighting. A recursive least squares algorithm based on an upper diagonal factorization method
is employed to recursively update the model upon which the predictive PID controller is based.
In addition, a novel on-line time delay estimation technique is proposed by rationalization of the
coefficients of an extended numerator model. Excellent performance of predictive and adaptive
predictive PID with on-line time delay estimation is demonstrated for control of simulated,

experimental and industrial processes with time varying dynamics and time delays.
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Chapter 1

Introduction

The focus of this thesis is on the development of a model based adaptive PID controller suitable
for control of processes with time varying dynamics and time varying delays. This chapter gives
a brief background into PID control and provides the motivation for the work presented in

subsequent chapters.

1.1 History and Background

Prior to 1940, most processes in industrial chemical plants were manually operated while simple
proportional feedback control was used only in a select few applications. Large surge vessels
located between process units 21d numerous human operators were required for the continuous
operation of even siri-ie cheiuical plants. During the 1940s and 1950s, the development of more
efficient higher cu, . 'ty chemical process equipment and higher labour costs made manual
control either uneconomical or impossible (Luyben, 1990). Subsequently, the proportional-
integral-derivative (PID) feedback controller was used in numerous industrial applications which
motivated the development of rules or techniques for its tuning (Ziegler and Nichols, 1942;
Cohen and Coon, 1953; Lopez et al., 1967; Rivera et al., 1986). Significant time delays in the
prucess proved to be a major problem for a PID controller which prompted the development of
time delay compensation techniques such as the Smith predictor (Smith, 1957). Even during the

1970s when energy costs rose dramatically and inexpensive digital computers were produced,
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classical PID remained the controller of choice in industry. A new clas~ of adaptive predictive
controllers based on d step ahead predictions (where d is the time delay) evolved in the 1970s
starting with the developments of Astrém and Wittenmark (1973) and Clarke and Gawthrop
(1975). Subsequently, controllers based on long range multistep predictions (Richalet et al.,
1987; Cutler and Ramaker, 1980) ensued. This lead to the generalized predictive controller
(GPC) (Clarke et al., 1987) which unified previous long range predictive control (LRPC)
strategies. Numerous reported applications (Shah, 1994) and many more unreported applications
indicate the unprecedented success of LRPC in industry, particularly for difficult control
problems. However, one of the drawbacks of LRPC is that speciulized software is required and
the computational demands often require additional expensive computer hardware. Although
LRPC and other advanced controllers have managed tc capture a portion of the industrial control
applications, PID is still by far the most popular control algorithm used today (Astrém and
Higglund, 1988; Fisher 1991). Instrument and control engineers alike are familiar with the
entrenched philosophy of PID control. Consequently, control computers that employ a
conventional PID algorithm are manufactured in the hundreds of thousands every year (Astrom
and Higgiund, 1988) which suggests the continv:ed popularity of the conventional PID controller
for the foreseeable future.

Adaptive LRPC strategies have typically focused on the recursive estimation of a plant
model with a fixed time delay in conjunction with the execution of an LRPC algorithm based on
the plant model. For processes with time varying dynamics or nonlinear processes, adaptive
LRPC can potentially provide improved closed loop performance compared to a fixed model
controller. However, it was shown by Shook et al. (1992) that the identification strategy must be
compatible with the control strategy to meet the objectives of the adaptive controller.
Furthermore, Seborg et al. (1989) suggests that ad-hoc developments have had a significant
impact on the success of adaptive controllers in industry. Practical issues regarding the industrial
implementation of adaptive advanced control remains a relatively wide open area.

Many processes are known to exhibit a significantly varying time delay due to changing
flow rates or mixing conditions (Dumont et al., 1993). Since the time delay element contributes
significantly to the phase of the closed loop, it has a major effect on the closed loop stability.
For PID control applications it is always safe to base the controller constants on an overestimated
time delay which results in detuned but stable performance. However, for LRPC and other
advanced controllers, the time delay cannot be simply overestimated because this may result in

unstable or unacceptable performance. It is tiwerefore advantageous that the time delay and the
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process dynamics are simultanecusly estimated on-line in a continuous or on-demand basis for

adaptive control of time variant processes.

1.2 Motivation for the Current Work

The two primary motives of this thesis are:
1.) To facilitate the implementation of advanced control in existing industrial control
computers using a PID structure.
2.) Development of a practical identification strategy for adaptive control of processes

with varying dynamics and time delays.

1.3 Scope and Objectives of Thesis

This thesis is primarily concerned with the development and analysis of a model based adaptive
PID controller. Because GPC with steady state weighting (Kwok and Shah, 1994) is a useful
enhancement of the traditional finite-horizon LRPC, it was used as the basis for a new model
based or “predictive” PID controller. Since the augmented upper diagonal factorization
technique (denoted - AUDI; Niu er al., 1992) is an elegant and efficient reformulation of
recursive least square. ' entification, it was chosen for the parameter adaptation of adaptive
predictive PID. Although numerous time delay estimation techniques are reported in the
literature (Ferretti et al., 1991), a new method is proposed here to take advantage of the practical
features within the AUDI framework (Niu et al., 1994; Niu et al., 1995). Thus, the final
objective of this work is the development and evaluation of an adaptive model based PID
controller capable of controlling processes with time varying dynamics as well as a time varying
delay.

The main contributions of this thesis are:

e development of a model based predictive PID controller that is mathematically

equivalent to GPC and the variants of GPC for low order processes,

e implementation of a predictive PID control algorithm in an industrial control
computer that employs a conventional PID algorithm and evaluation of the

performance of a predictive PID controller for control of an industrial process,

o development of an overall performance measure which combines traditional

measures of performance with a measure of robustness for assessment of control



Chapter 1: Introduction 4
performance,

o development of a recursive time delay estimation technique based on the

rationalization of a time series model with a high order numerator,

e experimental evaluation of adaptive predictive PID with time delay estimaticn for

control of a process with varying dynamics and a varying time delay,

e batch identification case study using industrial open loop data.

1.4 Organization of Thesis

Since many of the chapters of this thesis have been submitted for publication or are planned for
future publication, each chapter is self contained with its own introduction and conclusion

section. The chapters are organized as follows.

Chapter 2 describes the formulation of a predictive PID controller from the linear form of the
GPC control law with steady state weighting. The resulting internal model of predictive
PID is interpreted as a multistep weighted predictor that is optimal in terms of the GPC
objective function. Extensions of predictive PID are described by selectively choosing
the GPC controller constants. The equivalence between GPC and predictive PID is
demonstrated through simulations and an experimental application. An industrial
application is also presented to show the practical effectiveness of a predictive PID

controller compared to a conventional PID controller.

Chapter 3 presents an overall performance measure for assessment of control behavior that
consists of an absolute performance measure subject to a penalty on the incremental
control action and the inverse of a new margin of robustness. The small gain theorem is
used to determine the new scalar robustness margin for a feedback control loop with a

known model plant mismatch.

Chapter 4 extends the predictive PID controller to an adaptive predictive PID controller by
combining the results of chapter 2 with the AUDI algorithm. It is shown that bandpass
filtering of the input-output data is required so that the long range objectives of
predictive PID are compatible with the one step ahead objective of AUDL. An
experimental evaluation of adaptive predictive PID for control of a process with linear

but time varying dynamics is conducted.
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Chapter 5 introduces a new method of on-line time delay estimation based on the rationalization
of an extended numerator (denoted as ENR) model which is estimated independently
from the plant model by a second AUDI algorithm. A method of moments is used to
extract a distinct time delay in terms of sampling intervals from the numerator
coefficients of the model. Uncertainty of the time delay estimate is computed from the
propagation of variance of the numerator coefficients. Experimental results of adaptivz
predictive PID with ENR for control of a process that exhibits significantly varying

dynamics and a time varying delay are presented.

Chapter 6 discusses the graphical development and data acquisition software, LabVIEW®
(Anon, 1993), for the experimental implementation of process control. Experience from
the experimental implementation in this work as well as teaching assistant experience in

an undergraduate real time computing course primarily motivate the discussion in this

chapter.

Chapter 7 compares the batch AUDI algorithm with the Matlab® System Identification Toolbox
(Ljung, 1992) for the identification of a time series model from open loop industrial data.
Time and frequency domain techniques are used to validate the models on two different

open loop data sets compared to the identification data set.

Chapter 8 summarizes the results of this thesis and suggests several areas for future work.
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Chapter 2

Development of a Stochastic Predictive
PID Controller’

A new stochastic predictive proportional-integral-derivative (PID) control law is proposed which
is mathematically equivalent to generalized predictive control (GPC) with a terminal matching
condition. The main motivation of this chapter is the extension of the classical PID algorithm on
industrial computers to do advanced control without employing specialized software. The
predictive PID constants and the internal model are chosen by equating the discrete PID control
law with the linear form of GPC. The result is a long range predictive control law with a model
based PID structure. Predictive PID is stochastic because GPC is based on an ARIMAX model
of the plant plus the noise term. A first order model yields a PI controller while a second order
plant results in a PID structure. The process model order is restricted to a maximum of two
although there is no restriction on the choice of GPC tuning parameters. Stochastic disturbances
are handled through solution of the appropriate Diophantine identities. Performance of
predictive PID scheme is shown, via simulation, to be identical to GPC. Results from applying
the predictive PID algorithm for the control of a laboratory process and a key industrial heat

exchanger are presented.

! A version of this chapter has been accepted for presentation as: Miller RM., K.E. Kwok, S.L. Shah and R.K. Wood,
“Development of a Stochastic Predictive PID Controller”, Proc. American Control Conference, Seattle, WA, 1995.
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2.1 Introduction

It ic well known that most industrial process control applications implement a PID feedback
strategy (Astrom and Higgland, 1988; Gawthrop, 1986; Fisher, 1991). The PID controller is
well understood and accepted among operations personnel and control engineers due to the
intuitive simplicity of the algorithm. Explicit knowledge of the process model is not required to
successfully implement PID control on many chemical processes. In addition, the dynamics of
many processes are well suited to PID control (Gawthrop, 1986). The ad-hoc nature of tuning a
PID control loop is an advantage for easy control situations, however, this becomes a
disadvantage when faced with a difficult control problem. A PID controller must be significantly
detuned to remain stable for adversities such as long time delays or non minimum phase plants
which results in poor performance. Mediocre process regulation is no longer acceptable or
profitable for many key processes. The recent focus on global markets and global competition
for many industries has made current product yields and efficiencies unprofitable in many cases.
These business conditions have expanded the requirement for tight regulation beyond the
capabilities of simple PID control particularly for key processes. Advanced control schemes
such as long range predictive control (LRPC) and linear quadratic Gaussian (LQG) control use
plant models in the control law which results in improved control for systems that are otherwise
difficult to control using PID. The advanced schemes can also compensate for stochastic
disturbances by including the noise model in the control law which results in improved
regulation and fewer control moves. A disadvantage of these advanced controllers is the
mathematical complexity and the expense of commercial scfiware.

This chapter first extends standard GPC theory to include a steady state weighting term,
v, in the objective function (and hence denoted as YGPC) in order to formulate a basis for
predictive PID. Readers familiar with YGPC may wish to advance to section 2.5. The conditions
under which the linear form of YGPC and a discrete incremental PID control law are equivalent
are established in section 2.5. An internal model for the PID controller is developed which
provides multistep long range prediction to compensate for time delays and stochastic
disturbances. The polynomials in the linear YGPC control law are used to determine the PID
constants and internal model for the predictive PID controller. The result is a model based PID
controller that is equivalent to YGPC for regulatory control. This will prove to be a useful result

because a YGPC equivalent PID controller can be implemented on existing devices without the
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expense and complexity of specialized software. Performance cf the proposed PID controller is
evaluated via simulation for various plant models. Special cases of the model based PID
controller are investigated by placing restrictions on the YGPC tuning parameters which form the

basis for the PID controller.

2.2 Generalized Predictive Control (GPC)

Although advanced control applications form a small fraction of industrial control systems,
LRPC is one of the most popular advanced techniques. The recent use of LRPC for difficult
industrial control problems is well noted in the literature (Cutler and Hawkins, 1987; Cutler and
Finlayson, 1988; Cutler and Hawkins, 1988; Park, 1988; Hokanson et al., 1989; Tran and Cutler,
1989:; Allison e al., 1991; Van Hoof et al., 1989; Shah, 1994). All LRPC methods optimize a
quadratic cost function over a multistep or finite-time horizon. The notion of a prediction
horizon and a control horizon are integral components of the LRPC objective function. Early
LRPC strategies were based on step-response or finite impulse response models as in IDCOM
(Richalet et al., 1978) and DMC (Cutler and Ramaker, 1979). Models containing as many as 50
step response coefficients may be required to adequately represent the process dynamics. This
fact constrains DMC to nonadaptive control (an adaptive implementation requires recursive
updating of up to 50 model parameters). DMC is restricted to stable plants with the exception of
integrating plants which are handled through the use of impulse response models. Even if the
process is known exactly, the step response model is only an approximation. In addition, the
DMC algorithm is not well suited to stochastic disturbance compensation because the noise
model is not a component of the DMC control law. In spite of these shortcomings, DMC has
been proven to be effective in industry and its documented use is increasing dramatically.
Generalized predictive control is based on an auto regressive integrated moving average
with exogenous input (ARIMAX) model of the process. The ARIMAX model can adequately
describe most process dynamics using three to five parameters, therefore, GPC is well suited to
adaptive control. In addition, unlike DMC, GPC is not restricted to stable plant models because
the ARIMAX model can effectively represent stable as well as unstable plants. The moving
average (MA) term in the ARIMAX model is the noise model of the plant, hence, stochastic
disturbance compensation is an integral part of the GPC control law. The closed loop transfer
function of GPC follows naturally from the linear representation of the control law which allows

a thorough theoretical analysis of robustness as noted in the literature (Bitmead et al., 1990;
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Mclntosh et al., 1991 and Banerjee and Shah, 1995). In comparison, DMC has only been
subjected to limited theoretical analysis because the characteristic equation is cumbersome
(McIntosh et ai., 1991).

The GPC law is chosen as a basis for predictive PID for two major reasons. First, GPC
has numerous desirable theoretical features as previously mentioned and secondly, GPC is a
“generalized” LRPC strategy which includes all desirable properties of DMC. The recent use of
DMC in industry suggests that DMC is a proven successor to PID for control problems not well
suited to PID.

The derivation of the GPC law introduced by Clarke et al. (1987) begins by assuming
that the process model can be approximated by the following linear ARIMAX model.

A 0= b+ X g @2.)

A

where A, B, and C are polynomials in the backward shift operator ¢~ and y, u, and & are the
predicted output, con‘rol input and zero mean white noise disturbance, respectively. In the
material that follows, the (¢') notation is omitted for brevity. The actual process model

polynomials, A,, B, and C, are typically of high dimensions, hence, A, B and C are their
corresponding low order approximations. The differencing operator A (or 1-¢7") in the plant

model ensures that the GPC control law has an integrator for offset elimination. An integrator in
the disturbance term also represents realistic disturbances such as random walk or “Brownian
motion” type disturbances. The j” step ahead prediction requires the solution of E; and F; in the

Diophantine identity given by
C=E;AA+q7'F, (22.2)

The j" solution of the Diophantine identity (2.2.2) is equivalent to the j™ step of the long division
of C by AA where E; and TF’A— represent the quotient and remainder terms, respectively.

Multiplying both sides of (2.2.1) by E;A results in
E;AAy(t + j)=E ;BAu(t + j = 1)+ E ,CE(t + j) (2.2.3)

Substitution of (2.2.2) into (2.2.3) yields the plant model
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E.BAu(t+j—1) F,y(t
Wi+ j)=—2 (c iz, ’é()+E,.§(z+j) (2.2.4)

The term EjB in (2.2.4) can be expressed in a second Diophantine identity as

E,B=CG,+q7'G; (2.2.5)

noting that E(r+j) is a zero mean white noise sequence with an expected value of zerc.
Substitution of (2.2.5) into (2.2.4) and then taking the expected value results in the optimal
ARIMAX predictor at time +j which is expressed as

5+ jir)=G,Au(t + j 1)+ f; 2.2.6)

where

f= Gau(e-1) | Fy()

; = = (2.2.7)

The notation 5(t + j|t) reads as follows: the prediction at time 7 of y(t + j) conditioned on data

up to time 1. Since (2.2.6) can be separated into a forced term, which depends on present and
future Au, and an unforced term, which depends only on past Auand y, it is convenient to write

the j =1,---, N multistep predictor in the compact vector form as

§=Gii+f (2.2.8)

where
9:[&(t+llt) y(e+2lr) - 5»(t+N|t)]T
~ o~ ~ T
6=[6,.G, - G (2.2.9)
i=[Au@) A +1) - Au(+N-1)]

f=[fE+1)f(+2) - fE+N)]

Derivation of the GPC control law follows from the minimization of a receding horizon cost

criterion composed of a prediction error squared term and an incremental control squared term.

J= E{ﬁ[&(t + ) - w(r+ j)]2 + ﬁx( Pau(e+j- 1)]2} (2.2.10)

j=l
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where w(r + j) is the setpoint,A(j) is the control weight, N, is the minimum output prediction
horizon, N, is the maximum output prediction horizon and N, is the control horizon.

Substitution of (2.2.8) into (2.2.10) and assuming a constant control weighting sequence allows

the cost function to be written in a compact form as

J={(Gu+1-w) (Gii+1-w). a7} @.2.11)

“v find the minimum J with respect to the future control trajectory, Au one needs to obtain AL
This v.sults in the GPC control law

i=(G"G+AI)" GT(w-f) (2.2.12)

In the implementation of GPC, solving the Diophantine identities (2.2.2) and (2.2.5) are the most

computationally inteasive steps. An obvious solution to (2.2.2) and (2.2.5) is to perform a
deconvolution of —% and LCB for N, steps. For non adaptive control, (2.2.2) and (2.2.5) need to
be solved only once. However, for adaptive control, a solution for every model update is
required. Several methods have been proposed to reduce the computational load of GPC in an
adaptive implementation. A recursive implementation of the Diophantine identity is investigated
in Clarke et al. (1987a) and Mcintosh (1988). An efficient method of evaluating the unforced
response, f, without solving the Diophantine identity is proposed by Mutha (1990). A reduced

Diophantine formulation by Saudagar et al. (1994) recognizes the redundancy of solving
- followed by -E—ég and lastly filtering y(f) and Au(z-7) by . Only one Diophantine identity is

required in this reduced formulation which reduces the compatational load significantly.

2.3  GPC with Steady State Weighting (YGPC)

In this section standard GPC theory is extended to include a steady state or Y weighting term
based on the development of Kwok (1992) (also see Kwok and Shah, 1994). A terminal
matching condition is included in the GPC cost function which is defined as the weighted square
of the steady state error. Thus, GPC with y weighting is obviously restricted to stable plants
because unstable plants do not have a steady state. The notation YGPC wiil be used to indicate

GPC with a steady state weighting term. The steady state prediction is an essential result and
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this section delves into some detail regarding its derivation.

The j step ahead ARIMAX predictor can be written as
5+ jit)= G, Au(t + j—1)+ G;au’ (. = 1)+ Fjy7 () (2.3.1)

where Au’ and y’ denote that Au and y are filtered by . Perhaps the most obvious method of
obtaining the steady state prediction would be to iterate the Diophantine identities (2.2.2) and
(2.2.5) until $(r+ jlt) converges to §(t+oolr). However, this would be a computationally
expensive and impractical operation. Kwok and Shah (1994) suggest another method to compute

the steady state prediction without iteration. Since the polynomials F; and (_?_,. are defined by

the identities (2.2.2) and (2.2.5), respectively the j+1 polynomials can be written as

C=E;AA+q77'F,;. (2.3.2)
and
E,.B= Céjﬂ + q—j-l—G-jﬂ (2.3.3)

Subtracting equations (2.2.2) and (2.2.5) from (2.3.2) and (2.3.3), respectively gives

e,AA=F,-q"'F,, (23.4)

and

e,B=g,C+q"G,, -G, (2.3.5)

J

where e; is the last coefficient in E,,, and g; is the last coefficient in 5j+,. As the j"

iteration approaches the steady state, (2.3.4) and (2.3.5) converge to

e,AA=e AA=F,-q"'F, (2.3.6)
and
e;B=eB=g C+ q'G, -G, 2.3.7
Solving for e, and g, results in
C
e =0 (2.3.8)

“
>
(=)

e
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8. = Agl; S.§ process gain 2.3.9)

Solving for F, and G, yields »
F. =eA (2.3.10)
GA=gC-eB (2.3.11)

6, can be solved by comparing the coefficients of the left and right terms of (2.3.11).

G, =e, Zb -g, Zc 23.12)

j=i+l j=i+l

which has the equivalent form (because of cross terms)

G, =gs2i,c,~—e,,ib, (2.3.13)
j=0 j=0

From (2.3.10) and (2.3.11), the orders of F; and 5, are nA and max(nB-1, nC-1), respectively.

The orders of the ARIMAX model polynomials A, B and C are nA, nB and nC, respectively.
With the use of (2.3.10) and (2.3.11), the optimal steady state predictor is found by taking the
limit of (2.3.1) as j approaches infinity, that is

Nu
lim $(z + jlt) = 5(slt) = g, Y Au(t + j=1)+ G, Au’ (¢ = 1)+ Fy’ (1) (2.3.14)
]

j=l

Summation in (2.3.14) is required for book keeping purposes when N, > 1 (see the remarks at the
end of this section). The control objective function proposed by Kwok and Shah (1994) contains
the first two terms of the GPC cost function plus a steady state prediction error term which is
based on the optimal steady state predictor (2.3.14). The cost function to be minimized can be

expressed as

J= Zy (J[y(t+1 W(t+j +ZK(J[Au(t+J—1)] +2'y(j[y(s|t+1-l w(s)]

j=N

(2.3.15)
where Y ,.( j) is the output weighting sequence and y(j) is the steady state error weighting
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sequence. Summation of the steady state term is required because the steady state prediction
requires the sum of the first N, consecutive control responses. Rewriting (2.3.15) in compact

form with constant weighting terms yields the following objective function.
J=[f-w]T,[§-w]+E Ad+[§, -w,] T[§, - w,] (2.3.16)
where §and i are defined by (2.2.8) and

Fy = Y _\-INz—N,HxNz-N,H

A =My,
L =9y N,
and
¥, =G,u+f (2.3.17)
where

¥, =[j3(s|t) j"(s|t+1) jr(slt+Nu—l)]TN"x|

g & ¢
G = .
A .0
g‘ ------ gs N“XN“

t={i1 1 1 [Gaw ¢-1+EY O},
Minimization of (2.3.16) yields the main result of this section — the YGPC control law.
i=[G'T,G+A+G'TG,] [6¢'T,(w-£)+GIT(w, -£.)] (2.3.18)

Remarks:
e Increasing v in the YGPC control law has the same control effect as incre.sing Nz in
tt  GPC control law when N, = 1. Therefore, using y weighting and a small
prediction horizon, N, gives the same result as a larger value of N; without a y
weight. This has the benefit of reducing the computational load by reducing the
number of deconvolutions required in the Diophantine identities. Adaptive control is

an obvious application of YGPC.
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e Several tuning strategies for Y weighting in GPC are prescrted in Kwok, 1992 and
Kwok and Shah, 1994. As a tuning parameter, y has the benefit of not requiring

scaling. In comparison, the effect of control weighting A in GPC is a function of the

process model and therefore requires scaling.

e y weighting has a stabilizing effect on closed loop control. Several stability

properties are discussed in Kwok and Shah, 1994.

o It is obvious from (2.3.18) that GPC is a subset of YGPC since if y=0, YGPC (2.3.18)
reduces to GPC (2.2.12).

e An infinite prediction horizon (only when N, = 1) is accomplished by setting A and v,
to zero and Y to some positive non-zero value. This is equivalent to setting N> to
infinity. Both schemes are equivalent to mean level control. Section 2.8 investigates

the special case of setting ¥, to zero in more detail.

e Although the YGPC control law accommodates values of N, over one for non zero
values of 7, it is not recommended. Increasing Yy when N, > | on the YGPC controller

does not have the same control effect as increasing N, on the GPC controller.

2.4 The Linear Form of GPC

The YGPC control law is implemented in a receding horizon. At each interval, the control vector,

ii, is computed for the control horizon t,z+1,---t+ N, =1 based on the prediction horizon
t+N,,-t+N,. For the receding horizon implementation, only the first element of @ is

implemented at the current interval and the remaining elements are discarded. This

implementation can be expressed in a linear form by solving for the first control move, Au(t), in

the control law. Because GPC is a subset of YGPC, the linear form of GPC will be a subset of the
linear form of YGPC.

The first control element of (2.3.18) can be written as

Au(t)=h(w—f)+h,(w, - f,) (24.1)

where

h= first row of [T, G +A+G7TG,] G, (2.4.2)
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w is the setpoint vector, f is defined in (2.2.9), w, is steady state setpoint and

h = Z {the first row of [GTI“_\.G +A+GITG, ]_] GTT}

f,=Gau! (1 -1)+Fy' (1)
Expanding w, f, w, and f; in (2.4.1) and assuming a constant setpoint yields

[ w(t)= Fy,y? (t)- Gy 0u’ (1 -1)
W(I)— FN,Hyf (t)_ EN,HAuI (t - 1)
Au(t)=[h h,] :
w(r)- FNzyf (t)- ENzAuf(t -1
()~ Fuy? ()= G (t-1)

Expanding (2.4.5) and grouping commion Au(t), w(1) and y(z) terms gives

N, Ny A
{C+ q"[zajhj + C_Ixh_‘_:”Au(t)= {C{Zhj +hs:|}w(t)— iz Fih; + Iv}hs}y(t)

where h; is the j" element of h. The above equation is now in the linear form

TAu(t) = Rw(t)— Sy(r)

where

Li=M
N,
S= ) Fjh; +Fh
j=N

The order of the linear polynomials is:

nT = max(nB,nC) nR=nC nS = max(nA,nC-1)

18

(24.3)

(2.4.4)

(2.4.5)

(2.4.6)

247

(24.8)

(24.9)

(2.4.10)

(24.11)
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2.5 The Discrete PID Control Law

Before the days of digital computers, continuous PID control of industrial processes was
implemented using analog or pneumatic devices. In fact, pneumatic PID controllers are still
manufactured and used today for local control of many remote processes. With the introduction
of digital computers in the 1970’s came the possibility of using advanced techniques such as
LQG and minimum variance control (Astrom and Wittenmark, 1973). Aerospace and defense
industries used LQG control techniques extensively but process industries in general did not use
advanced control extensively. Instead, industrial process control took the route of discretizing
the continuous PID algorithm because it was already well understood and it provided adequate
regulation of most processes. Subsequently, many ad-hoc and sub-optimal advancements were
made for the PID control structure. The discrete PID controller can take many forms as shown in
Astrém and Wittenmark (1984) and Isermann (1981).

This section develops the incremental discrete PID control law from the ideal continuous
algorithm given by

G de(t)

u(t)=Kpe(t)+ K, et + Ky, —= 25.1)
0

where e(t), Kp , K, and K, are the error, non interacting proportional, integral and derivative

constants, respectively. There are many variants of interacting PID control laws in industry. The
non interacting algorithm (2.5.1) was chosen as a basis because it is the simplest PID form and
interacting forms can be easily derived from it. A first order discretization of (2.5.1) results in
the following discrete control law (in all subsequent development, the notation () denotes a

discrete time variable)

u(t)=Kpe(t)+K, Y. e(i)+ K p[e(t)—e(t-1)] (2.5.2)
i=0
where
K, =K,
K, =K, T, (2.5.3)
KD.
KD = —7:‘;—
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and .5 is the sampling interval. Applying the differencing operator A to the controller output

gives the incrementai output.
Au(t)=u(t)-u(t-1) (2.5.9)

Substitution of the control law, (2.5.2) into (2.5.4) yields the incremental or velocity PID control

law.
Ault)=[(Kp+K, +Kp )+(-Kp=2Kp )0 +(Kp)a™ 20 (2.5.5)

A common industrial practice is to remove the setpoint signal from the derivative term in (2.5.5)
to avoid abrupt control actions following a setpoint change otherwise known as the derivative
kick. It is also not uncommon to remove the setpoint from the proportional term (Astrom and
Wittenmark, 1984) to further reduce large control actions following a setpcint change. The

resulting setpoint on iutegral only (SP on I) controller is described by

Au(t)=G o, w(t)-Ge, (1) (2.5.6)

where
Ge, =K,

2.5.7
Gc,v'—‘(KP +K, +KD)+(_KP_2KD)q—] +(Ko)q-2 ( )

Observation of the G, and G¢, polynomials in the SP on I control law (2.5.7), shows that a P1
controller is first order in y(z), a PID controller is second order in y(#) and PI/PID controllers are

zero order with respect to w(z).

2.6 The PI/PID form of yGPC

As the published literature shows, there has been considerable interest over the years to
incorporate process knowledge into PID tuning to improve control performance. Ziegler and
Nichols (1942) developed a systematic method of PID controller tuning based on the period of
sustained closed loop oscillations and the ultimate controller gain. From first order dynamics,
the Cohen and Coon (1953) PID relations give % amplitude decay response. PID tuning based
on an integral of the error squared (ISE) criterion was developed by Lopez et al. (1967). Internal

model control (IMC) techniques were used by Rivera et al. (1986) for PID controller design. An
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excellent discussion on PID tuning using time and frequency domain techniques can be found in
Astrom and Higgland (1988). All of the above PID tuning techniques are based on some ad-hoc
criterion which may work in some cases but may often fail in other cases. Noise variance and
disturbance correlation are important considerations for controller tuaing, although, the PID
tuning methods mentioned above do not compensate for noise.

It was recognized by McIntosh (1988) and Henningsen er al. (1990) that a discrete PID
control law such as (2.5.6) is structurally equivalent to standard GPC given some restrictions to
the ARIMAX model on which GPC is based. This section analyzes the conditions under which
YGPC is equivalent to PID. A predictive PID control law that is based on a long range predictive
control strategy will prove to be an excellent candidate for the replacement of classical PID.
Consicer the deterministic (C = 1) linear YGPC control law for a second order A polynomial and
zero order B polynomial which is a second order plant model without time delay. From (2.4.11),
the linear polynomials T, R and S are of order 0, 0 and 2, respectively so the control law (2.4.7)

can be written as
Au(t)= row(t)—(so +5,97" +5,97 )y(t) (2.6.1)

where 7, and s, are the coefficients of the R and S polynomials, respectively. Recall that the T

polynomial has a leading 1, therefore, a zero order T polynomial is unity. Equating the PID SP

on I control law (2.5.6) and the linear YGPC control law (2.4.7) yields an exact match if

G, =R (2.6.2)
G, =S (26.3)

The superscript in (2.6.2) and (2.6.3) indicates a deterministic model representation. The PID

tuning constants in (2.5.7) can be expressed in terms of the linear YGPC coefficients by equating
(2.5.7) with (2.6.1) to yield

Kp=—(s; +25,)=85,~ 1 — 5
K, =r, (2.6.4)

Kp=s,

A first order plant model results in a first order S polynomial and an equivalent PI controlier
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while a second order plant yields a PID controller from the relations in (2.6.4). The block
diagram of the predictive PID control loop in Figure 2.1 reveals a two degree of freedom PID

controller defined by (2.5.6) (dist and y denote continuous time variables).

dist

w(t

Figure 2.1: Block diagram of the predictive deterministic PID control loop.

A comparison of GPC and equivalent PID servo and regulatory response is shown in Figure 2.2

—0.015
1-195¢" +0.935¢~

for the unstable plant Gp = . A step disturbance of 0.1 is applied/removed at

2

100/150 and 250/300 sampling instants, respectively. The simulation shows an exact match

between GPC and PID and the control performance is satisfactory for a difficult control problem.
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Figure 2.2: GPC and equivalent PID control response for a discrete second order plant.
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The following remarks summarize the main results for this section. A long range
predictive PI and PID control law results from equating the linear pelynomials in GPC with the
PID constants given by the relation (2.6.2) for first and second order plants, respectively. This
implies that the proportional and derivative constants in the chosen PID form are predictive in a
long range sense when chosen optimally. The B polynomial is restricted to zero order and the C
polynomial is restricted to 1 although there are no restrictions on the YGPC tuning parameters N,,
Ny, N, A, yand v,. These restrictions imply that the PID controller cannot be optimal for plant

models with higher orders, non zero time delays or stochastic disturbances.

2.7 The Multistep Long Range Predictor, G,p

2.7.1 Time Delay Compensation

Although the PID controller proposed in section 2.5 is interesting, it does not offer a practical
solution to control problems with time delays or realizable second order plant models (i.e. with
two coefficients in the numerator). Almost all chemical processes contain time delays and higher
order dynamics, therefore, an effective control law must account for such adversities. The
conventional PID structure can only deal with a time delay and higher order dynamics by
detuning which can result in mediocre or unacceptable performance. As the control problem
becomes more difficult, conventional PID is less capable of achieving the control objective
regardless which method of choosing the PID parameters is used. Smith (1957) proposed a
method for time delay compensation by using an internal model that consists of the difference of
the plant model and the undelayed plant model. Under perfect modelling conditions, (a utopian
concept) the Smith predictor removes the time delay element from the characteristic equation
which allows more aggressive PID tuning. The major disadvantage of the Smith predictor is it’s
sensitivity to time delay mismatch because it gives a k step ahead prediction where £ is the time
delay plus one. Walgama (1986) found that an ad-hoc exponential filter in the feedback path of a
PID controller with a Smith predictor gives improved robustness in the case of a time delay
mismatch. It was shown by Harris ef al. (1982) that a minimum variance controller (MVC)
reduces to a PI control structure with a Smith predictor for first order plant models with a time
delay.

The practical extension of MVC is to a long range multistep prediction as in GPC. A

significant advantage of a long range prediction over a k step ahead prediction is reduced
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sensitivity to model-plant-mismatch. In essence, the LRPC strategy plots a smooth trajectory
over the prediction horizon to guide the controlled variable to the setpoint. In comparison, the
MVC controller takes the control action necessary to bring the controlled variable to the setpoint
after k steps. This implies that a long range weighted predictor must be developed so that the
model based PID controller is equivalent to GPC. The objective of this section is to develop a
multistep long range weighted predictor by comparison with GPC.

The deterministic linear GPC control law (2.4.6) can be expressed by

{1 +q-l[§5jhj + E_‘hs]}Au(t)= [ihj +hst(x)--[§: F;h; +Fshs}y(t) (2.7.1)

! =M =M =M,

which can be rewritten as

Au(t) = [ﬁ:h ;+ hx:lw(t)—[i Fih; + Fh, }y(t)— [ ‘2’: Gh; +G,h, :IAu(t -1) (212

j=N, j=N Jj=Ny

From section 2.5, the linear YGPC polynomials R and S are equivalent to the discrete PID terms

G¢, and Gg_‘., respectively. The discrete PID terms can then be substituted into (2.7.2) as

follows

N.
Au(t) = Ga,w(t)- Gey(t)~ [ 25,}: ;+G.h, ]Au(r - 1) (2.7.3)

=N

Because (2.7.2) is mathematically equivalent to (2.7.3), it is evident that the term
N, _ _
> 1,G; + Gk, |Au(t—1) (2.7.4)
i=N,

will be a predictor when used in addition to the discrete PID control law. The GPC law is an
optimal multistep predictive control law which implies that (2.7.4) is an optimal multistep
weighted predictor when used as an internal model for PID control. The deterministic predictor

is defined as

Ny
Y. hG; +Gh,
Gi, =2 (2.1.5)
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where the superscript, d, indicates a deterministic plant. The incremental model based PID

algorithm equivalent to (2.7.1) can now be written as
Au(t)=GE w(t)-G&y(t)-GE.GpAu(t-1) (2.7.6)

where the PID constants are determined from the relations in (2.6.4). The model order is
restricted to a maximum of two because the maximum order of G, is two. There are no
restrictions on the choice of YGPC tuning parameters. The block diagram of the mcdel based

predictive PID controller can be expressed as shown in Figure 2.3 which is equivalent to Figure

2.1 in addition to the predictor G'yp.

w(t)

d
G'cw

G'c q'G'we

S

Figure 2.3: Block diagram of the predictive model based PID control loop.

The control performance of GPC and equivalent predictive PID is demonstrated in Figure 2.4 for

=55
the second order plant: G, =+—%——. A step disturbance of 0.05 is applied/removed at

P (3s + l)(Sx + l) )

100/150 and 250/300 sampling instants, respectively. The simulation results in Figure 2.4 show
excellent performance for the predictive PID scheme for a process with a significant time delay.
The main result of this section is a PID algorithm with a multistep predictive internal
model that is equivalent to GPC. This provides multistep weighted time delay compensation
although the C polynomial is restricted to unity (i.e. the plant is represented by an ARX or an

. ARIX model) and the maximum plant model order is two.
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Figure 2.4: GPC and equivalent PID response to a second order plan'.

2.7.2 Extension of Gyp to Stochastic Disturbance
Compensation

The design relations for determining PID constants discussed in section 2.7.1 are based on noise
free deterministic plants. However, real processes are subject to random disturbances which may
be correlated. A PID controller must be significantly detuned (particularly the derivative term)
to provide acceptable performance when significant noise is present. Moreover, the detuning of
a PID controller in the presence of process noise is usually done in some ad-hoc fashion. GPC
compensates for correlated noise by including the noise model in the development of the control
law. The moving average term, C/AA, in the GPC control law provides the basis for a realistic
noise model. A PID control law based on GPC with a non unity C polynomial will not require
ad-hoc detuning for noisy plants because the noise model is included in the control law. In
addition, the control performance will be improved because the control law predicts the effect of
past correlated disturbances rather than simply reacting to feedback.

This section extends the predictor, Gyp, to include stochastic disturbance compensation.

It is recommended by MclIntosh et al. (1991) that the C polynomial be used as a tuning parameter
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rather than an approximation of C,. In the following sequel, the notation, C. is used to indicate

the use of C as a controller tuning parameter. The linear YGPC control law (2.4.6) can be

expressed as

Au(r)= {Cc[ﬁhj + hx]}w(t)—{if‘jhj + F;hx}y(t)

j=N, =N

(eAN)

—{[iaihj + (—;xh.r:|+ (€. - l)}A“(’ -1

because there is always a leading 1 in the C, polynomial. The first or the servo term in (2.7.7) is
of order nC, which does not fit into the PID SP on I form unless C=i. In industry, most
processes are operated in a regulatory fashion for the vast majority of the time and changes in
setpoint are infrequent. A zero order approximation of the servo term in (2.7.7) would
compromise the servo performance but leave regulatory control unchanged. The most logical
zero order approximation is the final or steady state value of the C. polynomial in the servo term
of (2.7.7). A steady state approximation of C, will always give a conservative or detuned servo
response but will be offset free during regulatory response. The following expression is such an

approximation to (2.7.7)

Au(r)= {ﬁ ch[ihj +h, :”w(t)— { f: Fih; + F.h, }y(t)

j=M j=N

(2.7.8)
N _
_{[Zojh, + Gsh,} +(C. - 1)}Au(t -1)
j=N
The PID equivalent to (2.7.8) is given by

where

IIC‘. Nz
G, =2ch[2hj +h,] (2.7.10)
j=t

i=M

N.
Ge, = S Fh, + Eb, 2.7.11)

=N,
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N _ _
[Zajh, +th,]+(cc -1)
Gp =222 o (2.7.12)

¥

The PID controller constants Kp, K; and Kp can be solved for in the same manner as in section
2.5 because the order of (2.7.10) and (2.7.11) are O and nA, respectively. The stochastic PID
polynomials in (2.7.9) are equivalent to the deterministic PID polynomials when C. = 1,
therefore, the deterministic case is naturally a subset of the stochastic case. Figure 2.5 shows the

block diagram of the stochastic predictive PID control loop. The stochastic predictive PID

1
w(t Gon _"',(T}_Au(t) < ut) 70H )__)l G,
Gey q-lGMPl

S F

Figure 2.5: Block diagram of the stochastic predictive PID control loop.

controller can also be expressed in a model based PID form as shown in Figure 2.6. This
alternative representation uses all three control modes (P, I and D) on setpoint changes which
differs from the SP on I form discussed previously. The setpoint filter in Figure 2.6 has the same
effect as removing the proportional and derivative action from setpoint char.ges. Industrial
implementation of predictive PID may be better suited to the representation in Figure 2.5 or
Figure 2.6 depending on the limitations of the specific control computer. Other representations
of predictive PID can be developed by simple block diagram manipulations to Figure 2.5.

Figure 2.7 shows the performance of a deterministic PID controller given by (2.7.9) for

(-2s + 1)

the plant model: ¢ P =m.

The plant noise is correlated by C,=1-08g™" with

variance 6> = 0.0005. The controlled variable response is satisfactory although the manipulated
variable variance is excessive. Figure 2.8 shows that the response of the stochastic PID

controller is slightly more sluggish than GPC for servo response, however, regulatory response is
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u(t)

ZOH

Figure 2.6: Alternate block diagram of the stochastic predictive PID control loop.

equivalent. The controller output variance in Figure 2.8 is significantly smaller than the
controller output variance in Figure 2.7. A stochastic control law compensates for correlated
noise which results in less aggressive control. The detuned PID servo response compared with
the GPC control performance presented in Figure 2.8 is expected because of the approximation
of the C, polynomial in Gg,. This detuned response only occurs for a short period following
setpoint changes This should not be a problem for most processes because regulation is the
typical control objective. The amount of detuned servo response is proportional to the final
value of C, (i.e. C(1)). If C«(1) is very close to O then the servo response of predictive PID will
be very detuned. As the final value of C, approaches zero, the servo approximation of predictive
PID, (2.7.10), deviates further from the GPC solution. This is illustrated in Figure 2.9 fcr the
same plant model and controller tuning as in Figure 2.8 except C. is now set to 1-0.92¢". The
servo response for the predictive PID controller is significantly slower than achieved using the
GPC law as shown by the results given in Figure 2.9. Continuous processes do not usually
require frequent setpoint changes. Furthermore, it may be desirable to change from one steady
state to another slowly to avoid upsets in downstream and parallel processes. Ar ad-hoc solution
to increase servo aggression in the predictive PID controller was considered for the case where
the detuned servo response is unacceptable. This method involves including the proportional
action for setpoint changes (PI on SP) for the predictive PID scheme developed earlier. Figure
2.10 shows the response of the PI on SP form of the predictive PID controller for the same plant
and controller tuning as in Figure 2.9. The servo response of the PID controller is now almost
identical to the GPC response. However, this solution should only be considered for cases where

C.(1) is very close to zero and the servo response is too slow. The stability properties of the



Chapter 2: Development of a Stochastic Predictive PID Controller
2.0 T 1 T 4 ] 1 1 T ¥ Ll ] 4 L

b e — (=2541) -

1.5¢ v Gp = (65+1)(2s+1) ]

- C,=1-08¢"" &7 =00005 1

i 1.0+ AN IR TR T L THO v 4

Z ost -
[~

& - -

> 0.0 NATRITTETT .,

-0.5}¢ Predictive PID: K,=18.06,K=4.67,Kp=16.92,G »;#0 -

GPC: N;=1,N,=10,N,=2,2=0.01,%=0.00,%,=1.00,C =1

pu

T T L i 1 ] L

—l 1 [l [ -t L

150 200
Time interval

250

300

350

Figure 2.7: Response of deterministic GPC and predictive PID to a stochastic process.
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Figure 2.8: Response of stochastic GPC and predictive PID to a stochastic process.
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Figure 2.10: Response of GPC and predictive PID with a PI on SP form and an over estimated C

polynomial to a stochastic process.
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predictive PID scheme can not be guaranteed when a PI on SP form is used. Figure 2.11 shows
the response of the predictive PID scheme with a PI on SP form and C, = 1 for the same plant as
in Figure 2.7. As can be seen, the result of employing the predictive PI on SP law for this case is

a large unacceptable change in controller output following setpoint changes.

20 T T T T T T T T T . ; : .
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Figure 2.11: Response of GPC and predictive PID with a PI on SP form to a stochastic process.

2.8 Interpretations of the Predictor, Gyp

It is apparent from the previous sections that a discrete PID control law with the internal model
Gup is equivalent to YGPC. Conceptually, Gyp can be interpreted as a long range predictor by
comparison with YGPC. The objective of this section is to gain a deeper understanding of Gup by
further analysis. Consider the special case where y is set to zero and C, = 1. The resulting model

based PID controller can be interpreted by expanding the Gyp term. Recall from (2.2.4) that 51

contains the nB-1 j™ step ahead step response coefficients for a deterministic plant model. This
can be illustrated by the following example. Let the first order plus time delay plant be given by

A=1-09¢~" and B=0.q"" (note that the plant ZOH is removed from the model). The step
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response coefficients are: 0.0, 0.100, 0.190, 0.271, 0.344, ..., 1.000. For the first step (j = 1)
(—71 = 0.1 and for the second step (j = 2) 52 =0.19, therefore, C_;J contains the j* step ahead
prediction and is of order nB-1. The predictor Gyp can now be interpreted as an optimal
weighted sum of j step ahead predictions from the minimum prediction horizon, N, to the
maximum prediction horizon, N,. This is illustrated in Figure 2.12. The h; weight in Figure

2.12 corresponds to the j* coefficient of h where
h= first row of [G'T,G+A] G,

The block diagram in Figure 2.12 can be extended to include y weighting by including the G,
and h, terms. The interpretation of Gup is more difficult to see when the plant model is
stochastic i.e. C, #1. Both Diophantine identities (2.2.2) and (2.2.5) contain the C, polynomial
from which the linear YGPC polynomials are based. Therefore, the extension of the above
interpretation to include stochastic disturbance compensation is not as simple as inserting a ¢

filter in the block diagram. All of the linear PID polynomials, Ge., Gey and Gyp are strong
functions of C.. The C, polynomial has the effect of detuning all of the linear PID polynomials.

Extendiry the block diagram to include C, #1, and y weighting results in Figure 2.13.

dist
G

+ ¥+
- =

W(t)al Gde ‘

—1 Gnis1

Q
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T
£
hd

Figure 2.12: Block diagram of deterministic predictive PID control loop with the expanded
predictor, Gyp.
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Figure 2.13: Block diagram of the stochastic predictive PID control loop with the cxpanded
predictor, Gup.

2.9 Infinite Horizon GPC and PID

In practical applications of GPC, it is recommended that a maximum prediction horizon, N,,
corresponding to 50% to 90% of the rise time of the process be used (Kwok and Shah, 1994).
For a stable overdamped process, most of the dynamics cre contained in the first time constant.
Unstable control response may result from an N; that is too short. Setting N; to infinity (<GPC)
results in mean level control or steady state model inverse control (Clarke, 1987b; Mclntosh,
1991). The closed loop poles of a mean level controller are the same as the open loop poles,
(Clazke et al., 1987b), therefore. for an open loop stable process without model plant mismatch,
mean level control response is guaranteed to be stable. It is generally desirable to set the closed
loop poles to be somewhat faster than the open loop poles although robustness to model-plant-

mismatch must be compromised for gains in performance. Mean level control offers a



Chapter 2: Development of a Stochastic Predictive PID Controller 35

conservative but robust approach to automatic control. Clarke (1991) states that the mean level
equivalent in GPC is often very effective in difficult control situations. It was verified
experimentally by Lambert (1987) that the disturbance rejection abilities of mean level GPC are
excellent.

This section analyzes the conditions under which YGPC and PID are equivalent tc mean
level control. Setting N, to infinity in GPC is not a practical implementation, however, the
equivalent in YGPC can be accomplished by removing the finite horizon weight i.e. ¥y = 0. The

following theorem formally shows this result.

Theorem 1

For an open loop stable process, the GPC control .. -« sulting from the minimizaiion of J
(2.3.15) with N, = 1, N;=0 and A = 0 (=GPC) is equivalent to the YGPC control law where
N,=1,v=1,v,=0and A = 0(C is the same for both control schemes).

Proof

Expanding the h term in the linear form of standard GPC (y=0, v, = 1) with N, = 1, Na—oo and
A=0 gives

h=[c"G] G’

where g; and g.. are the step response coefficients and the steady state gain, respectively.

For a stable plant model, Zh i G ; and F; converge to g;’ G. and F_, respectively. The

oo

i=l

linear control law can now be expressed as
G. C F,
C. +q' = |Au(t)==<w(t)- —=y(t 2.9.1
[c q g”]u() 2. O-2=>0 9.1
The linear form of YGPC with N, =1, y=1 and y, = 0 is given by

[cc +q” %]Au(r)= e w)-250) 292)

s
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but from section 2.2

G.=G,

F.=F,
20

8 A(T)'

$0 (2.9.1) is equivalent to (2.9.2).

36

A PID equivalent to «GPC, denoted as «PID, can be developed following the same procedure as

utilized in section 2.5 and 2.6. From (2.9.2), the linear polynoinials for cGPC are

G,

T=C +q"' =%

<4,
R=Se
8s
F
§=—*
&;

(29.3)

Equating the PID polynomials in (2.7.9) with (2.9.3) along the same lines of section 2.6 yields

oo c (1
G2, _-_-___ng).

L 5
L) s g.\' 1
G MP ————"__—F( £ )

)

The infinite prediction horizon PID control law is then given by

Au(1)=Ga,w(t)-G5y(t)-GupGAu(t-1)

(294)

(2.9.5)

The terms in (2.9.4) are significantly simpler than the finite horizon case that was developed in

sections 2.6 and 2.7. Equation (2.9.4) can be further decomposed by substitution of (2.3.8),

(2.3.9), (2.3.10) and (2.3.11) to give
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« _C.AQ)
GCw - B(l)

-_C()
Gz, -WA (2.9.6)
o= - BOC ~C. ()B+BUA(C -1)

MP C.(1)AA

The above polynomials now are independent of any GPC tuning parameters. Predictive PID
controller constants, Kp, K; and Kp can be expressed in terms of the model parameters by

comparing the coefficients of (2.9.6) with the linear relations in (2.5.7) which results in

K - (a) +2a,}-C.(1))

P B(1)
K, =—CL%()SQ (29.7
_c.@
KD = ?(-]-)—az

Figure 2.14 shows the response of the «PID controller for the same plant and disturbance that
gave rise to the response presented in Figure 2.8. Although the «PID control iaw is very simple,
the control performance is quite acceptable providing a very similar disturbance rejection
trajectory compared to the cortrol response of the significantly more complicated GPC law
shown in Figure 2.8. However, thz servo performance of =PID is considerably slower than the
GPC response in Figure 2.8 which is expected for a mean level controller. Increasing servo
aggression on the «PID controller is accomplished simply by including the proportional term to
setpoint changes as discussed in section 2.7.

The «PID controller defined by (2.9.5) no longer requires the solution of the
Diophantine identities as was the case in the predictive PID controller developed in section 2.6.
This has several advantages. Implementation of this control law is very simple and should not
require highly specialized control engineers. Also, the understanding of the control law can be
made entirely in terms of the steady state predictions rather than a weighted sum of finite horizon
predictions. This should be significantly easier to understand than standard GPC or DMC for
operations personnel that are accustomed to PID control. The fact that the Diophantine identities

are not required also means that the execution of the «PID controller is very efficient in
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Figure 2.14: response of oGPC and «<PID to a stochastic plant.

comparison to GPC or DMC. The adaptive implementation will also be very efficient because
only simple multiplications are required to compute the control law. The relations in (2.9.6) are
only linked to GPC by the ARIMAX model polynomials.

When the C polynomial is used as a tuning parameter rather than an estimation of the
plant, the oPID control law can be considered to be a robust model based controller with two
tuning parameters. It is tempting to choose a C. polynomial that is not physically realizable in
order to increase controller aggression for the mean level case. If C. = 1+4cq’, it is not physically
possible for ¢ to be greater than zero because current measured values are not correlated to future
noise. Some intuitive reasoning may suggest using a positive c to increase controller aggression
because a negative value of ¢ detunes the controller response. However, by considering ¢ as a
tuning parameter and setting it to a value greater than zero, the response may be degraded rather
than improved which is illustrated in Figure 2.15 for ¢ = 0.4. Therefore, use of positive values of
¢ in order to increase controller aggression is not recommended.

Use of the C polynomial as a tuning parameter ix: «PID can be analyzed more rigorously
by observing the closed loop characteristic equation as C, changes. The closed loop

characteristic equation for YGPC as given by (Kwok and Shah, 1994) is
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CE=AAT +q”'BS (2.9.8)

which is also equivalent to the characteristic equation for predictive PID. For «PID, T and § are
defined by (2.9.3). Substitution of (2.3.10), (2.3.11) and (2.9.3) into (2.9.8) for the infinite

horizon configuration yields the following characteristic equation
CE pp = AC, (2.9.10)

If C=1 in (2.9.10), then the closed loop poles are in the same position as the open loop poles
which is the mean level case. Construction of a root locus of «PID is now a trivial matter of
plotting the open loop poles and following the trajectory of the roots of the C, polynomial. It is
also clear that selecting a positive value of ¢ will place the pole in the left half of the z plane unit

circle. This reaffirms the recommendation of not selecting positive values of c.
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Figure 2.15: Respsese @f oGPC and «oPID with C=14+04q"
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2.10 Experimental Evaluation of Predictive PID

Simulation studies are an effective technique to demonstrate controlled behavior for linear plant
models. Physical processes consist of many characteristics which cannot be modelled exactly
such as high order and time varying dynamics. Since the prextical application of control
algorithms is for the control of physical processes, it is imperative that a thorough evaluation of
controller performance include experimental work. Performance of GPC and ¥GPC for the
control of pilot scale processes is well documented (Clarke, 1991; McIntosh et ai., 1991; Kwo:.
and Shah, 1994). A thorough experimental evaluation of predictive PID to show the effect of
different controller constants would merely duplicate previous work because predictive PID is
equivalent to YGPC for regulatory control. In this section an experimental corsmarison of GPC,

predictive PID and «oPID is presented.

2.10.1 The Light Bulb Process

Figure 2.16 shows the schematic diagram of the experimental equipment used in this section.
The plant consists of a 100 watt light bulb which is powered by a variable 0-120 volt AC source.
A ] type thermocouple is horizontally mounted approximately one mm above the highest point of
the light bulb. The process dynamics are dominated by natural convective heat transfer from the
bulb surface to the thermocouple when the fan is not running (which is the nominal case). The
heating process of the filament and the bulb surface contribute to the high order dynamics of the
overall process. The process is inherently nonlinear because the relationship between voliage

and power is nonlinear (P = v? /R ). In addition, the prime mode of heat transfer between the

filament and the bulb surface is radiation which is highly nonlinear. The simplified radiation

heat transfer relationship is given by

9raa = AEC gp (Tf?l - Tb:lb) (2.10.1)

where g, = heat transferred from the filament to the bulb surface, A = filament area, € =
filament emissivity, Gss = Stefan-Boltzmann constant, Ty = filament temperature and Ty = bulb
surface temperature. Because the dominant component of the overall process is natural
convection, air movement in the room has a dramatic effect on the measured temperature.

Therefore, the variance of the measured temperature is inconsistent and sometimes very large. A
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Figure 2.16: Schematic diagram of the light bulb process.

manually controlled fan is used to introduce step disturbances to the temperature.

The data acquisition hardware consists of a PC chassis mounted card which has 12 bit
resolution for analog to digital conversion. Thermocouple linearization, signal amplification and
transient protection are performed by the signal conditioning hardware as shown in Figure 2.16.
A custom program written at the University of Alberta which runs under the LabVIEW® software
development system was used for control of the light bulb process. A brief description and an

evaluation of LabVIEW® for implementation of advanced control can be found in chapter 6.

2.10.2 Open Loop Analysis

As mentioned in section 2.10.1, the light bulb process dynamics are nonlinear, high order and
noisy. Since the purpose of this experiment was not to test a linear controller on a significantly
nonlinear process, a linearization table was used to linearize the process. Figure 2.17 shows that
the steady state temperature versus controller output relationship is nonlinear with a significant
amount of hysterisis. The average of the steady state temperatures at each controller output in
Figure 2.17 was used for the linearization table.

A wide range of guidelines for the choice of the sampling interval have been proposed as
documented by Seborg et al. (1989). A sampling interval that is one tenth of the dominant time
constant satisfies most guidelines for digital control and was selected for this work. Since the

dominant or first order time constant for the light bulb process was estimated to be 77 seconds, a
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sampling interval of eight seconds was chosen.

A second order plant model was chosen because the plant is inherently higher order and
the maximum allowabie order for the predictive PID algorithm is two. The open loop
temperature response to step changes in controller output is shown in Figure 2.18. The Matlab®
System Identification Toolbox (Ljung, 1992) was used to determine the following ARMAX

model of the process.

g7 (00324 -0.00485™")
T 1-13360g7" +0.3995¢

¥(t) u(t - 1)

C=1-06109¢~" ~0.0953¢7*

The continuous model estimate based on the eight second sampled discrete transfer function is

y(s) _ 0.4352¢7% (4.85+1)
u(s) ~ (10.1s +1)(65.0s +1)
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Figure 2.17: Steady state temperature versus controllerawtput for the light bulb process.
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Figure 2.18: Open loop response of the light bulb process.

Although the light bulb process is noisy, the linearized open loop response is a good fit to the
above second order ARMAX model as shown in Figure 2.18.

The open loop respense (sampled at eight second intervals) to the fan disturbance
presented in Figure 2.19 shows that the cooling dynamics of cooling with the san operating are
considerably slower than the dynamics of heating when the fan is stopped. In addition, the

variance of the measured temperature is significantly higher when the fan is on as shown by
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Figure 2.19: Temperature response to the fan disturbance for the light bulb process.
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Figure 2.19. This is likely due to swirling air currents over the light bulb surface which is caused
by the fan. The duration of the fan disturbance is 320 seconds which is the same duration as

used for the closed loop experimental results presented in the follewing section.

2.10.3 Closed Loop Comparison of GPC and Predictive PID

The objective of the closed loop runs presented in this section is to compare the experimental
servo and regulatory performance of GPC, predictive PID and «PID in order to corroborate the
theoretical and simulation results presented previously. The effect of different GPC and YGPC
controller tuning parameters is not studied here as a thorough evaluation already exists
(McIntosh er al., 1991; Kwok and Shah, 1994). Because of the inconsistent variability of the
light bulb process, an absolute performance measure such as the integral of the square of the
error is not used to quantitatively compare each run. The focus is on the relative performance of
each controller rather than the absolute performance. A combination of suggested tuning guide
lines (McIntosh et al., 1991) and ad-hoc measures were used to select the controller constants for
GPC and the same controller constants were used for the predictive PID controller. Each run
consists of a setpoint change and a fan disturbance which is 320 seconds in duration.

The GPC, predictive PID and «PID closed loop controlled response of the light bulb
process is shown in Figure 2.20, Figure 2.21 and Figure 2.22, respectively. The controller output
of GPC is more aggressive than the controller output of predictive PID following the setpoint
changes which results in a slightly faster servo response. This can be explained by the choice of
the C. polynomial which is 1-0.75¢". The final value of C, is 0.25 which eifectively detunes the
servo performance of the predictive PID controller. This behavior is consistent with the
simulation results presented in section 2.7. From a practical perspeétive, the setpoint changes for
GPC and predictive PID are very acceptable because there is no overshoot and the settling time is
100 seconds or less which is just slightly longer than the open loop > constant of 77 seconds.
The oPID servo response is significantly slower than both GPC =21 preiictive PID as shown by
the results displayed in Figure 2.22. The C, polynomial was chosen to be 1-0.7¢" for the «PID
controller which explains the sluggish response. This «PID conirol loop may be a good
candidate for including proportional action on setpoint changes as dis:ussed in section 2.7.

Rejection of the fan disturbance for the GPC and the predictive PID controllers is very
similar as shown by the responses in Figure 2.19 and Figure 2.20. Small differences in the

temperature responses can be attributed to the high variability while the fan is running. The
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Figure 2.20: GPC servo and regulatory response to the light bulb process.
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similar regulatory response of GPC and predictive PID is consistent with the theoretical analysis
in section 2.7. The magnitude of the temperature disturbance is higher when the fan is stopped
compared to when the fan is operating which agrees with the previous observation of the fan
disturbance dynamics in section2.10.2. Considering that the operation of the fan causes the
temperature to fall below 65 °C under open loop operation, the regulatory performance of GPC
and predictive PID is excellent. Although the regulatory performance of «PID is slightly inferior
to that of GPC and predictive PID, it is still very acceptable as shown in Figure 2.22. The
maximum temperature deviation is about 2 °C higher than the corresponding GPC response
during the fan disturbance. Considering the simplicity of the «PID control algorithm, the

experimental performance is very good.
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Figure 2.22: «PID servo and regulatory response to the light bulb process.

2.11 Industrial Application of Pred:ictive PID

The ultimate evaluation of controller performance is its acceptance in an industrial setting.
Industrial corporations are primarily motivated by profit margins and competition in global

markets which means that the plant must operate near the highest possible efficiency.
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Acceptance of a control scheme upgrade by industry therefore implies superior performance
compared to the previous scheme. As mentioned previously, predictive controllers such as DMC
are rapidly gaining popularity as a replacement of classical PID control. However, one of the
major hurdles of the employment of DMC is that specialized or custom software must be
purchased and implemented either as a stand alone application or a complex user defined
function in the existing control computer. The proposed predictive PID control scheme in this
chapter is intended to allow the implementation of advanced control in existing control
computers without the use of specialized software and hardware.

The application of predictive PID to a key process in an Edmonton area fertilizer plant is
presented in this section. A comparison of the performance of the existing PID controller and the

predictive PID controller is shown for a step disturbance to the process.

2.11.1 Process Description

The main function of the industrial process described in this section is the production of NO;
which is used by subsequent processes to produce urea. Some of the operating data are
normalized and process identification tags are changed because of the proprietary nature of the

process. Figure 2.23 shows the simplified schematic and instrument diagram of the process.

K4
compressor

NO,, NH,
NC,, H,

R3

reactor
@

j

E2c
superheater

T ¢

Figure 2.23: Simplified schematic and instrument diagram for the NO, process.

—————_
_;_ 185 psig steam.>
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Subcooled liquid ammonia enters E1 where it is heated to a saturated vapour by 50 psig process
steam. A D controller is used to regulate the pressure of the saturated ammonia. The saturated
ammonia enters E2a, E2b and E2c and is heated to about 300 °F by 185 psig process steam. The
existing superheated ammonia temperature controller, (TC2) a conventional PID controller, has
been replaced by a predictive PID control law. Superheaied ammonia and compressed air enter
the highly exothermic reactor, R3, which produces NO; and NO, in a yield of less than 50 %.
TC3 is a DMC controller which is cascaded to the ammonia flow controller, FC3. All control

loops are implemente¢ + a Heneywell TDC2000 control computer.

2.11.2 The NO; Process Problem

The undesired byproducts NO, (other than NO,) are produced in significant quantities if the
catalyst temperature of R3 drops below 1495 °F (the nominal catalyst temperature is normalized
to 1500 °F) while the catalyst degrades prematurely if the temperature exceeds 1505 °F. The
result is a very narrow operating range for the catalyst temperature. Controi of the catalyst
temperature is further complicated by disturbances to the ammonia temperature and the ambient
air temperature. The heat exchangers E1 and E2 use process steam which has a significantly
higher variance in pressure than utility steam. Although the pressure of the steam header is
regulated, there are numerous disturbances caused by load changes in adjacent processes.
Furthermore, the ten  rature transmitter, TT2, is located several metres downstream of the E2
parallel configuration which results in a significant time delay for the TC2 control loop.
Interactions between R3 and E2 result in additional disturbances to the ammonia temperature.
For example, a one psig decrease in the pressure of the steam in the 185 psig process steam
header will cause the superheated ammonia temperature to drop which causes the temperature of
the catalyst in R3 to drop. The dynamics of R3 are much faster than E2 which means that the
flow rate of ammonia will be quickly increased by TC3 to maintain the catalyst temperature. The
increased ammonia flow rate then causes the temperature of the superheated ammonia to fall
even more because of reduced retention time in E2. The existing PID controller is tuned to strike
a compromise between fast disturbance rejection and good regulation during nominal conditions.
As a result, the PID controller oscillates for long periods following disturbances to the steam
pressure while the controller output variance is somewhat excessive. In addition, setpoint

changes to the ammonia temperature were often observed to cause unstable behavior.
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2.11.3 Control Strategy and Implementation

The E2 controller, TC2, was chosen to be upgraded to the predictive PID controller presented
earlier because the existing PID controller was known to cause increased variability in the
catalyst temperature. In addition, the long time delay and the stochastic nature of E2 are not well
suited to conventional PID control. Open loop data and the Matlab® System Ildentification
Toolbox (Ljung, 1992) were used to identify the plant model of E2. The PID controller constants
and internal model, G,, were then computed using equations (2.6.4) and (2.7.12), respectively.
The predictive PID algoritiim was implemented in a conventional TDC2000 PID control loop
with the addition of a simple user defined function for Gy and the removal of proportional and
derivative terms from setpoint changes (a built in option). The block diagram of this
implementation of predictive PID is illustrated in Figure 2.5. The total time required for this

implementation was about one hour (not including modelling of E2).

2.11.4 Comparison of PID and Predictive PID

A comparison of PID and predictive PID control of E2 is shown in Figure 2.24 for a series of
step disturbances to the steam pressure. The maximum deviation of the ammonia temperature is
approximately the same for both controllers following a five psig step disturbance to the steam
pressure. The predictive PID controller rejected both steam pressure disturbances without
oscillation in the ammonia temperature. Although the PID controller also rejected the steam
pressure disturbances, the ammonia temperature oscillaied for several hours following the first
disturbance and for over one hour following the second disturbance. After 375 minutes, the
controller comparison test was stopped and the loop was placed on manual control because the
plant operators were concerned about poor R3 product quality using the existing PID controller.
The controller output variance for the predictive PID controller was significantly lower than the
PID controller as indicated by the bottom plot of Figure 2.24. Further improvements in
“regulatory pzrformance for the predictive scheme are likely by increasing controller aggression
because the controller output variance is very low. Although increasing controller aggression
was suggested by the author, the plant personnel denied the request because the performance of
ihe predictive PID controller was already adequate. Several months after predictive PID was

implemented for control of E2, it remains as the controller of choice with a high service factor.
A 15 hour comparison of the control performance using predictive PID and the existing

PID during nominal operating conditions is shown in Figure 2.25. The variance of the ammonia
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temperature is significantly higher when E2 is controlled by the PID controller compared to the
period that is controlled by the predictive PID controller. The FCOR (for filtering and
correlation analysis) method described by Huang er al. (1995) was used to assess the
performance of PID and predictive PiD in Figure 2.25 relative to minimum variance. A FCOR
measure of 1.0 indicates minimum variance while 0.0 indicates open loop response. The PID
controlled response resulted in a FCOR measure of 0.14 while predictive PID yielded a measure
of 0.26 which represents an 86 % improvement relative to minimum variance. Therefore,

predictive PID is superior to the existing PID controller for control of E2.
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Figure 2.24: Comparison of PID and predictive PID for control of the NO, process.

2.12 Conclusions

Long range predictive stochastic PI and PID control laws result from equating the linear
polynomials in GPC with PID constants plus an internal model for first and second order plants,
respectively. This implies that the proportional and derivative constants in a PID controller are

predictive in a long range sense. The internal model Gyp, which can be interpreted as a multistep
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Figure 2.25: Extended regulatory comparison of PID and predictive PID for control of the NO,
process.

weighted predictor, exisis for models with time delay. There are no restrictions on
the YGPC tuning parameters N,, N>, N,, A, ¥, and 7 fron: which the predictive PID
controller is based. Predictive PID is equivalent to GPC for all cases except for an
approximation of stochastic servo control. In some cases adding the proportional

action of predictive PID to setpoint changes results in improved servo response.

e A mean level formulation of PID is determined by setting the finite horizon weight to
zero in the predictive PID control law. The resulting «PID controller can be

expressed as a simple function of ARIMAX model parameters.

e The performance of predictive PID with a finite and an infinite prediction horizon

was shown to be excellent in simulation and a pilot scale experimental process.

o Implementation of the predictive PID controller on a TDC2000 control computer for
control of a key heat exchanger in a fertilizer plant required only one hour. The
performance of the predictive PID scheme was demonstrated to be superior to the
existing PID controller for a series of disturbances to the steam pressure and during

nominal operation.
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Chpter 3

Control Analysis with Performance
Measures

A new overall measure of control performance is proposed in this chapter which combines
traditional measures of performance with a new measure of robustness. A graphical example
using the overall performance measure is presented to demonstrate the analysis of generalized

predictive control (GPC) tuning parameters in the presence of model plant mismatch.

3.1 Introduction

In practice, the overall performance of a controller is based on a combination of many factors
including the variance of the controlled variable, variance of the manipulated variable and the
ability to minimize the effect of major upsets to the process. Controller constants of model based
and PID feedback controllers alike are normally based on some linear model of the process. It is
a virtual certainty that the dynamics of the process are somewhat nonlinear and will vary with
time therefore robustness to model plant mismatch is essential. The design and subsequent
tuning of a controller in industry always involves a tradeoff between robustness and performance
(i.e. in order to increase performance, robustness is compromised). Because robustness is not a
component of most control objective functions (the H.. control law (Francis, 1987) is one
exception), ad-hoc means are usually employed to determine the controller tuning constants that

are relatively intolerant to the expected range of plant dynamics. Although commonly used in
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industry, ad-hoc controller tuning is time consuming and often ineffective. Traditional measures
of performance such as integral of the square of the error (ISE) are effective for determining the
absolute performance of the controlled variable. However, during periods of model plant
mismatch, which often results in low amplitude oscillations in the controlled variable, the ISE
criterion may indicate satisfactory or good performance although the loop may only be
marginally stable. By combining traditionai measures of performance with a measure of
robustness for a wide range of controller constants and model plant mismatch, control analysis in
simulation will more closely approximate the physical conditions.

The purpose of this chapter is to develop an overall performance measure that consists of
the mean square error, mean square incremental control and a margin of robustness based on the
small gain theorem. A simple example also presented to demonstrate the application of the

overall performance measure for the analysis of GPC (Clarke et al., 1987) control performance.

3.2 Robustness Measure

There are numerous methods available to analyze the closed loop stability of linear control
systems. The purpose of such analysis is either to determine the bounds of the controller
constants such that the closed loop stability is guaranteed or to determine if some specific
conditions give stable closed loop performance. The n. am bounded small gain theorem based on
the Nyquist stability theorem is one such technique for -be analysis of closed loop stability in the
presence of model plant mismatch (Bitmead et al., 17'0). Much of the work presented in this
section is based on the developments of Banerjee a1 Shah (1995) in which the small gain

theorem is applied for the robustness analysis of GPC.

3.2.1 The Small Gain Theorem

This section gives a brief account of the small gain theorem applied for the robustness of the
GPC and PID control laws (see Banerjee and Shah, 1995 for a more thorough treatment).
Predictive PID developed in Chapter 2 (also see Miller ez al., 1995) has the same closed loop
characteristic equation as GPC, therefore the robustness analysis of GPC also applies to the
predictive PID control structure.

The PID feedback structure with an additive unmodelled plant perturbation is shown in

Figure 3.1 where é,, is the plant model and ép is the model plant mismatch. By grouping the
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(3]

Figure 3.1: Feedback control of a modelled plant with additive perturbation.

modelled feedback control terms with a constant setpoint, Figure 3.1 can be simplified as shown

in Figure 3.2 where the PID feedback transfer function is given by the following expression

-G
Mp,=%=—"t— 32.1)
11466,

According to McIntosh ez al. (1991), the linear formulation of GPC can be expressed as
TAu(t)= Rw(t)— Sy(t) (3.2.2)

where T, R and S ore linzar time series polynomials. The GPC feedback transfer function can

then be given by

~S

AT +SG,

M GPC

In addition, the predictive PID control law described in Chapter 2 (also see Miller et al., 1995)

and its corresponding feedback transfer function are given by

Au(t)= G o, w(t) ~ G, (1)~ Gyp Gy bt 1) (3.2.4)

(3.2.5)

Figure 3.2: Perturbed feedback loop.
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With the assumption that the modelled feedback control loop is stable and the additive plant

perturbation is stable (i.e. M and 5’,, are stable), the small gain theorem gives a sufficient

condition for closed loop stability which can be expressed as
G, (e m(e ) <1 Voelon] (3.2.6)
or alternatively

1

M(e""")

Banerjee and Shah (1995) have presented a graphical robustness analysis of GPC by plotting the

16, (e7 )< Vo e[0,n] (3.2.7)

spectrum of the right and left terms of (3.2.7) for various controller constants. Because the small
gain theorem is a sufficient but not necessary condition for closed loop stability, the ensuing

analysis is potentialiy conservative.

3.2.2 Robustness Margin

Although the results of the previous section provide the means for a thorough analysis of the
stability of linear feedback control systems in the presence of model plant mismatch, the degree
or margin of robustness is not quantified. It is therefore the purpose of this section to develop a
measure of robustness based on the small gain theorem.

Any violation of (3.2.7) constitutes the potential conditions for unstable closed loop
behavior. Thus, a scalar margin of robustness can be given by the minimum difference between

the right and left terms of (3.2.7) over the specified frequency range which can be expressed as

(3.2.8)

RM = min[————— ~|G,(e )|] Voe[o,n] if SGT valid

if SGT invalid

where RM is the robustness margin. If the small gain theorem is violated then there is no concept
of a robustness margin hence the reason for setting RM to zero in (3.2.8) for this case. Since the
small gain theorem is potentially conservative, the robustness margin is also a conservative

measure. A spectral plot for a third order plant and a GPC controller based on a first order model
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is shown in Figure 3.3 to illustrate the robustness margin. A scalar margin of robustness is a very
useful measure because it can be used to determine the margin available for increased controller
aggression or model plant mismatch. However, the proposed robustness margin is in terms of a

magnitude difference which is a case specific measure.
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Normalized frequency

F'=nre 3.3: Graphical interpretation of the robustness margin.

3.3 QOvwersi- Performance Measure

An overall meazie of control performance intended for the analysis of closed loop behavior in
the presence of model plant mismatch is presented in this section. The most common controller
performance measures reported in the literature are ISE, IAE and ITAE which are absolute
measures because a value of zero is not practically or mathematically achievable. Depending on
the specific objectives of the process, one of th_se criteria may be preferred over the others. For
this study, the ISE criterion is assumed to best reflect the goals of the control system. Although
aggressive control action often improves the performance of the controlled variable, it is
undesirable in practice because of high variability of the input to the process and increased
control valve wear. A penalty on the incremental controller output should be included in the
overall performance measure to 1éflect the desired low controller output variance. In addition, a
penalty on the inverse of the robustness margin will reflect that the most important control

objective is stable closed loop behavior. The overall performance measure which includes an
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absolute performance measure subject to penalties on the plant input variance and the closed

loop stability is given by

N N
L 1
N}; w(r)— y(t) g} Au(t) +V 5 | (3.2.9)
where N is the run length, A, is the incremental control penalty, g is the gain of the plant model
and  is the penaity on the inverse of the robustness margin. The square of the plant model gain
is included in the second term in order to remove the gain dependence of the control penaity
(McIntosh, 1991). The incremental control penalty and the robustness penalty are chosen in

accordance to the process objectives.

3.4 Examples

Several illustrative examples are presented in this section in order to demonstrate the overall
performance measure for the analysis of control behavior. It is not the intent of this section to
perform an exhaustive case study or justify the choice of controller constants.

The inverse of (3.2.9) with A, = 0.5 and y = 0.1 is computed in each example from a

simulation of an ARIMAX plant with © é =(0.0005,C = l-O.Sq‘l and consistent disturbances and

setpoint changes. In practice, the simulation should be designed to closely einulate the
conditions of the process under study. The inverse of (3.2.9) was chosen for the surtace plot
because the resulting surface is more conducive te a visual analysis of closed ioop performance.

In addition, unstable closed loop behavior is indicated by 1/P = 0.

3.4.1 Example1

In the first example, the same plant and model as in Figure 3.3 are used to demonstrate the
overall performance relative to the GPC controller constams A, N, and a first order C.
polyncmial. Figure 3.4 shows the performance surface for N, = 1 as A and C, vary. Optimum
performance is observed for C. = 1-0.755"" and A = O although the peak is relatively sharp. As A
is increased the performance measure is lower while the peak at C, = 1-0.75¢™" also diminishes.
When N, = 2, the maximum performance occurs when C. = 1 and A = § as shown in Figure 3.5.
Based on the performance objective (3.2.9), increasing N, from one to two results in a

degradation of closed loop performance which shows that increasing the controller aggression
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Figure 3.5: Performance surface for GPC control of a third order plant with N, = 2.
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does not always give improved performance. Figures 3.4 and 3.5 compress the information from

over 800 simulations intv two surfaces which gives a deep insight into controller tuning.

3.42 Example 2

In this example, the effect of a single GPC controller parameter is shown for varying degrees of
time delay mismatch. The first order plant G . - ﬁ}:—, and model é,, =,—f,;5—:,- are used while the

colored noise, simulation pattern, and performance measure parameters are the same as in
Example 1. Figure 3.6 shows the performance surface as the C. polynomial and the plant time
delay varies. At values of ¢ less than 0.88, nnstable performance results from even small
mismatches in the time delay. This information is crucial for controller tuning if the plant
dynamics are known to vary. The performance as A and the time delay varies is shown by the
surface in Figure 3.7. As shown, even small values of A are capable of stabilizing the closed loop
performance for this example although the performance measure is somewhat Jower than the use
of C, in Figure 3.6. Larger values of A significantly detune the controller enough to make the
closed loop performance relatively invariant to a time delay mismatch. For this example, it is

clear that both C, and A weight are required to balance robustness and performance.

Figure 3.6: Performance surface for GPC control of a first order process as C. and the time
delay varies.
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Figure 3.7: Performance surface for GPC control of a first order process as A and the time delay
varies.

3.43 Example3

The final example studies the effect of model plant mismatch on the performance of a fixed
parameter GPC controlier. The performance surface as a function of tir- w00 2+ ady state
plant gain for the same plant and model as used in Example 2 is dispia;-2d in Fiere 3.8. A
combination of A and C, are used tc provide stable performance for a £50% gain mismaich and a
+3 second time delay mismatch. Values of A and C, for the GPC controller were chosen based
on the results of the analysis in Example 2. It is surprising that the nusmatch case, d = 2 and
g« = 1.5, results in the best performance while the zero mismatch case yields a significantly lower
performance. To further investigate the effect of controller tuning on the performance in the
presence of model plant mismatch, a single normalized value of the performance in Figure 3.8
(perhaps the sum of each performance value) could be plotted as two controller constants vary.
This would essentially allow two more degrees of frecdom in the analysis of controlle:

performance although the computing requirements would be very high.
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Figurc 3.8: Performance surface for GPC control of a first order process with a varying time
delay and gain.

3.5 Conclusions

o A new scalar robustness margin based on the small gain theorem is developed which
is well suited to analysis of closed loop stability in the presence of model plant

mismatch.

e An overall performance measure which combines a control performance measure
with penalties on the control output variance and the margin of robustness was

presented.

o Computing the overall performance measure as a function of two parameters results
in a surface which essentially compresses the information of many simulations into a

single plot that is conducive to a visual analysis of control behavior.
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Chapter 4

Adaptive Predictive PID'

A new adaptive predictive PID controller based on the generalized predictive control (GPC) law
with a terminal matching condition is presented in this chapter. The PID constants and the
internal model are chosen optimally by equating the discrete PID control law with the linear form
of GPC. The result is a long range predictive control law with a model based PID structure that
can be implemented in any industrial computer control system. First and second order plant
models yield, respectively, PI and PID control laws. The plant medel order is therefore restricted
to a maximum of two although there is no restriction on the choice of GPC tuning parameters. A
recursive least squares algorithm based on an upper diagonal factorization method is employed to
recursively update the model upon which the predictive PID controller is based. The proposed
adaptive predictive PID controller was applied to a steam heated stirred tank heater which
exhibits significant time delay. Excellent regulatory response of the proposed scheme 1is
demonstrated for a series of disturbances some of which result in a significant change in plant

dynamics.

I A version of this chypter has been accepted for presentation as: Miller R.M., S.L. Shah and R.K. Wood, “Adaptive
Predictive PID,” Proc. ISA/95, Toronto, April 25-27, 1995
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4.1 Intreduction

The demand for tighter control of processes with significant non-linearities and time varying
dynamics has increasingly motivated research in the field of self tuning and adaptive control over
the last twenty years. The two classes of comroller adaptation, self tuning or autotuning and
adaptive control, correspond to periodic automatic controller tuning and continuous controller
adaptation, respectively. The current focus of industrial PID control is in the area of self tuning
or autotuning on demand from the operator (Astrém and Higgland, 1988). Commercial
autotuners including the Foxboro Exact™ and the Satt Control Instruments® autotuner perform on
demand autotuning based a set of heuristic rules applied to a perturbation of the process. Such
controllers are very useful for the initial commissioning of control loops or when the operator
recognizes a change in process dynamics but this class of controllers is not intended to track time
varying or non-linear plant dynamics. Moreover, PID control is not well suited to contrcl of
plants with non-minimum phase behavior and long time delays.

For an adaptive controller to be effective in industry it must exhibit superior performance
to non-adaptive control during periods of time varying plant dynamics. The adaptive controller
must also exhibit reliable regulatory performance during periods when the dynainics are time
invariant. Adaptive long range predictive control (LRPC) has been shown to be effective for
control of processes with non-linearities (McIntosh et al., 1991), time varying dynamics (Clarke,
1991) and multivariable interactions (Shah et al., 1987). The popularity of LRPC is increasing
as noted in the literature (Shah, 1994), however, PID remains the work horse of industrial
process control (Astrom and Higgland, 1988). A LRPC control strategy with a model based PID
structure was recently proposed by Miller er al. (1995) which was intended to utilize the power
of a LRPC control law in existing industrial computer control systems.

The focus of this chapter is to extend the long range predictive PID controller developed
in Chapter 2 to adaptive control using a recursive least squares (RLS) technique based on an
upper diagonal (UD) factorization (Niu er al., 1992). The UD decomposition maintains
numerical stability of the covariance matrix and provides a wealth of on-line process
information. An experimental evaluation of adaptive predictive PID is conducted on a steam
heated stirred tank heater which is subject to a series of disturbances. The emphasis is on
regulatory control rather than servo control because this is the usual mode of operation in

industry.
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4.2 The Predictive PID Control Law

This section gives a brief overview of the predictive PID control law. See Chapter 2 or Miller et
al. (1995) for a thorough treatment of the topic. The predictive PID control law is derived by
equating a linear form of generalized predictive control (GPC) (Kwok and Shah, 1994) with a
discrete velocity form of PID. Predictions in GPC assume that the process can be adequately

represented by a time series model expressed as

Alg™)y(e)=B(g™ Ju(r - 1)+4C (Z_l ) E(r) 4.2.1)

where A, B and C are polynomials in the backward shift operator (g1, A is an integrator -g™")
and E(¢) is a zero mean white noise sequence. The objective function used to establish the GPC
control law with steady state weighting (Kwok and Shah, 1994) is composed of a finite horizon
error squared term, a control squarec term and an infinite horizon error squared term. The GPC
control law is formed by minimizing this objective function with respect to future control action.
A linear formulation the GPC control law is derived by solving for the current control move as a

function of known variables which can be written as
Au(t)= Rw(t)- Sy(t)- T, Au(t - 1) (4.22)

The order of R, S and T, is nC, nA and nB, respectively where nA, nB and nC correspond to the
order of the polynomials in the plant model (4.2.1).
The discrete velocity form of a PID control law, with derivative and proportional action

removed from setpoint changes (SP on I), can be expressed as

Au(k)= G, w(k)— Ge, y(k) (4.3.4)
where

Goo = K, T,
Ge, =(Kp + K, T, + Kp [T,)+ (-Kp - 2K, [T, g™ +(Kp /T g™

where Kp, Ki, Kp and T, are the non-interacting proportional, integral, derivative and sample
interval. For models without time delay and without correlated disturbances (i.e. C=1and T, =

0), the PID control law (4.3.4) is equivalent to GPC if
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Go. =R Ge, =S 4.2.5)

Therefore, a first order plant model results in a predictive PI controller and a second order plant
vields a predictive PID coatroller by equating the linear form of GPC (4.2.2) with the SP on 1
PID control law (4.3.4). The predictive PI/PID controller can be extended to plants with time
delay and correlated disturbances by developing a multistep weighted predictor and a zero order
approximation of R. The predictive PID control law is derived by equating (4.2.2) with (4.3.4)

for first or second order plant models with time delay and correlated disturbances.
Au(t)= G, 1) = G, ¥(t) = G pp Gy Aufr — 1) (4.2.9)

where the multistep weighted predictor is

TI’
GMP = 'GT (427)
and the zero order approximation to R is
G, = R(1) (4.2.8)

It follows that the model based PID control law (4.2.6) is mathematically equivalent to GPC for
regulatory control while servo controi is slightly detuned compared to GPC. The PID controller
constants are solved for by comparing the coefficients of the relations in (4.2.5). The block

diagram of closed loop predictive PID can be expressed as shown in Figure 4.1.

w(t o, + Au(t) 1 uft ZO0H
‘ . A
¥

G'ey || 4'G'wr
l 4)‘-:‘+ T ]
L '

Figure 4.1: Block diagram representation of the predictive PID controller.
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4.3 Recursive Plant Model Estimation Using the
Augmented Upper Diagonal Identification
(AUDI) Method

1 east squares parameter estimation schemes have been widely adopted for batch and recursive
estimation of linear models from empirical data. These empirical models are used extensively in
model based control laws such as GPC. The objective of a least squares estimate of the plant is
to minimize the square of the error between the single step ahead prediction and the actual
measured value. Recursive least squares (RLS) is the most popular method of estimating time
varying process models according to Shah and Cluett (1991). Specific details on the
implementation of RLS and its many variants can be found in Shah and Cluett (1991). It is
assumed in RLS that disturbances are white (i.e. C = 1). Extended least squares (ELS) expands
RLS to include estimation of the C polynomial. The disadvantage of ELS is slow parameter
convergence due to the iterative nature of updating C. The present work uses a least squares
echnique because fast convergence is essential to non-linear and time varying plants. In
addition, the input-output data can be filtered to remove a bias caused by colored noise.

The main idea behind RLS is to recursively execute the following scheme to update the

A and B polynomials of the model described by (4.2.1).

New Previous Gain Prediction
. = . + X “4.3.1)
Estimate Estimate Vector Error

The gain vector in (4.3.1) is composed of the product of the covariance matrix and the regressor.
Recursion of the covariance matrix often results in numerical instability which is well noted in
the literature (Bierman 1977, Clarke and Gawthrop 1979, Shah and Cluett 1991). An effective
technique to avoid an ill-conditioned covariance matrix is to decompose it into its UDU"
components and update :tem separately (Bierman, 1977). U and D are the upper diagonal and
the diagonal matrices, respectively. The fundamental concept in the augmented UD algorithm

(Niu et al., 1992) is the formulation of an augmented regressor given by
o) iy ~n) W -n-d) .. -y(-1) ult-1-d) -y(t)]T (4.32)

where d is the delay and n is the model order. The corresponding parameter vector is
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6()=[a, &, .. a b 1J (4.33)

The estimated plant model can now be expressed as
0=6()() (4.3.4)

The covariance matrix based ¢ th2 ~ugmented regressor (4.3.2) is given by
' -1
()= [Z 7»""¢(j)¢’(j)] (4.3.5)
j=1

where A is the forgetting factor which is used to place more emphasis on current data or forget

old data. The upper diagonal factorization of (4.3.5) yields the following form
c()=uU@)DEW(r) (4.3.6)

The U and D matrices contain the model parameters and the loss functions as shown in (4.3.7).

(1 &) 6 - ar 6] [ ]
i 8y .- ar é: L 0
1 - a7 @ J!
u@r)= ooan gl D)= (4.3.7)
0 1 67, 0 L
i 1] i J" ]

where 6 contains the parameter estimates in (4.3.3), @ contains the parameters of a different

(backward) model, J is the loss function of the & model and L is the loss function of the &

model. The superscripts and subscripts in (4.3.7) correspond to the model order and element of

~

® or G, respectively. It is clear from (4.3.7) that the augmented UD scheme simultaneously
estimates the model parameters and loss functions for al! .;nodel orders from / to n. Although not
employed in this work, a criterion such the Akaike information theoretic criterion (AIC) as
described by Ljung (1987) could be used to choose the optimal model order. A thorough
explanation of the AUDI structure and its properties can be found in Niu et al. (1992). The
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recursive implementation of the augmented UD algorithm with a variable forgetting factor is
presented in Table 4.1. An asymptotic data length in the variable forgetting factor as proposed
by Niu (1994) is used in order to place more weight on new input-output data that contains more
information than the average. Matlab source code for the implementation of AUDI can be found

on the Mathworks ftp site: fip.mathworks.com. The U and D matrices can also be used to

Table 4.1: The Recursive AUDI Algorithm with Variable Forgetting.

U(0)=1, initialization only at startup
DO)=10-1, mEdnrl
R r if desired, U and 0 can be initialized
8(0)= [0 = 0 l]m to the nominal plant values
0()=[-y(t-n) u(t-n-d) ... =y(-1) ult—1-d) —y(t)]T regressor
f=U T(, ~-1)(r) innovation sequence
g=D(t~1)f
AT (g N variable forgetting factor (Niu, 1994)
A(r)=1- [6 (t l)b(t)] N, K = asymptotic, constant data length
4 T N ]
Noi(1+/"g) N=K[7 (-1 )| /og

B,= ;"(’)
forj=1tom m=2n+1

B,=B;+f;g,

D; (;) =D, (r- 1)B ; / B /A_(;) update the D matrix

wy==1/8,

Vi=8;
end
for j=2tom

Vij-nj SV -1 +Ul:j-l.j(t "1)"1,'

Usjorj O =Up o =14V o ik update the U matrix
end

provide on-line estimates of the signal to noise (S/N) ratio, noise variance, (Niu and Fisher,
1995), identifiability conditions (Niu and Fisher, 1994) and identification stopping rules (Niu,
1994) with minimal computationai effort. Although these on-line estimates are not utilized in
this chapter, a practical adaptive control scheme must evaluate the current input output data to
establish if sufficient conditions for identification exist. Bad data, strong feedback and severe
disturbances may result in insufficient conditions for reliable estimation of plant dynamics.

Execution of any identification algorithm in the presence of insufficient conditions could result
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in unacceptable or unstable performance. A decision on whether to use the current model
estimate could be based on a set of heuristic rules which uses the on-line estimates provided
within the AUDI fram>work. However, the development of a set of general practical rules for
on-line identification remains a relatively untouched but essential area of research. The AUDI
method has tremendous potential in the future development of practical on-line identification of

plant dynamics.

4.4 Adaptive Control Sirategy

From section 4.2, the control objective of predictive PID is minimization of the square of the
prediction errors and contrcl variance over some long range horizon. The adaptive form of the
predictive PID controller is established from the general objective of automatic control which

can be expressed as minimizing the following criterion with respect to future control action
(Shook et al., 1992)

N, .
Tie= D [w=y(t+ 7] (4.4.1)

j=N|

where w is the setpoint, N}, is the minimum horizon and N,, is the maximum horizon. Since

future feedback y(t + j) is unknown, a predici*~ “iction error are substituted.
N, 3
Jac= 27 o+ )} (4.4.2)
j=

Expansion of (4.4.2) yields the fo.

Jac= Zﬁl N
+ i [ + )= 5+ i) (4.4.3)
-2:,2:;[w— 5’(t + j|z)ly(r +j)- )7(1 + j|t)]

The first term in (4.4.3) is the LRPC objective, the second term is the long range identification

objective and the third term contains non-linear cross-product terms between control and
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identification. The objective of least squares algorithms (including AUDD) is to minimize the
single step ahead errors which is inconsistent with the long range horizon in (44.3). One
possible solution is to use a long range predictive identification (LRPI) a'zorithm (Shock er al.,
1992; Kwok and Shah, 1991) and neglect the cross-product terms (i.e. third term of (4.4.3)) but
such an approach leads to a complex algorithm and demanding computational resources for its
implementation. Another approach is to use a least squares estimator and an ad-hoc band pass
filtering of the input and output data. Since it was shown by Shook er al. (1992) that this
approach produces results similar to LRPI this method will be employed in this work.

The approach taken to adaptive control here is to combine predictive PID with AUDI and

a band pass filter. The implementation of such a scheme is shown in Figure 4.2.

A
1
W(t)E Ge %, Au(t) i A} u(t) Z0H
i 0N 3 \
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Figure 4.2: Block diagram of adaptive predictive PID in closed loop.

4.5 Experimental Evaluation of Adaptive
Predictive PID

The true test of controller performance is an industrial application. Industrial processes are
subject to many uncontrolled disturbances and non-linearities which are not present in simulation
studies. In addition, the best evaluation of controller performance is in the intended mode of
operation which is usually regulation. Non-adaptive predictive PID was shown to be superior to
conventional PID for regulatory control of an industrial steam heated heat exchanger in Chapter

2 (also see Miller et al., 1995). Although experimental or pilot scale plants have more control
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over disturbances than an industrial process, a comparison study of disturbance rejection is better
suited to the consistcat conditions in a pilot scale plant.

An experimental study of adaptive predictive PID on a pilot scale steam heated stirred
tank hcater with a significant time delay is presented in this section. The focus of this study is
reguiatory performance during a series of disturbances. The stirred tank heater is neither noisy
nor significantly nonlinear, however, some of the disturbances result in a significant change in
process dynamics. This is intended to test the regulatory performance of the adaptive predictive

PID controller.

4.5.1 The Stirred Tank Heater Experimental Setup

The schematic diagram of the pilot scale steam heated stirred tank heater used in this study is
shown in Figure 4.3, The tank consists of a double-walled glass vessel with a height of 50 cm
and an internal diameter of 14.5 cm. Steam is the heating medium which is manipulated by an
equal percentage control valve. The process fluid consists of ordinary utility hot and cold water

which is mixed by a single impeller in the tank. The temperature transmitter is located about 8.0

..............

> hot water

> cold water

Figure 4.3: Schematic diagram of the stirred tank heater.
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meires from the tank exit which results in a time delay of 24 seconds for the nominal case. The
/O subsystem consists of an OPTO 22® Optomux unit which provides an interface between the
host computer and the field devices. The host computer consists of a 486 PC running the
LabVIEW® software development system (Anon, 1993). All manipulated variables and
disturbances on the stirred tank heater were controlled by a custom program written at the
University of Alberta running under LabVIEW. Although LabVIEW does not use a robust real-
time opeiating kernel, the stirred tank heater application was observed to be flawless.

Communications between the PC and OPTO 22 was provided by an RS-232 serial link.

4.5.2 Control Scheme Implementation

The control configuration consisted of two single input single output loops for control of level
and temperature. Water level control was performed by a conventional PID controller which
manipulated the cold water control valve signal (control valve signal will be denoted as cvs).
The discharge temperature was controlled by predictive PID or adaptive predictive PID which
manipulated the steam cvs. Both level control and discharge temperature control are executed by
the LabVIEW program. Hot water inlet flow rate, discharge flow rate and level represent the
disturbances for this configuration. Table 4.2 shows the steady state operating conditions and

temperature transfer function for the nominal case.

Table 4.2: Nominal operating conditions.

Cold water inlet temperature 6 °C
Hot water inlet temperature 45 °C

Tank discharge temperature 35°C

Level 31cm
Hot water CV position 8 %
Discharge CV position 100 %

4.5.2.1 Selection of Sampling Rate

There is no universal agreement in the literature on the selection of sampling rate for PID and
model based control (Seborg et al., 1989). However, it is agreed that a slow sampling rate with
respect to the dominant process time constant can cause aliasing and poor disturbance rejection
while a fast sampling rate can cause numerical problems and a high computational load. The

dominant open loop time constant and signal-to-noise ratio are two of the major considerations in
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the selection of sampling rate. Some of the guide lines for sample rate selection are

L1<7T <4t (Franklin et al, 1990), and 3T <T, <31 (Isermann, 1981; Stephanopoulos,

1984). The specific considerations for the stirred tank heater are T = 48s, S/N ratio is high and
disturbance rejection is of prime importance. A sampling rate of 4 seconds was chosen as a best

compromise to these considerations.

4.5.3 Open Loop Analysis

The open locp responses of the discharge temperature were determined for changes in steam cvs
during nominal operating conditions as well as several abnormal steady state conditions. Table
4.3 lists the operating conditions for each open loop discharge temperature response presented in
this section. Transfer functions between discharge temperature and steam cvs for the nominal
and abnormal operating cases are presented in Table 4.4. The open loop discharge temperature
response to step changes in the steam cvs as displayed in Figure 4.4 was used for batch
identification (performed by the Matlab System Identification Toolbox (Ljung, 1992)). Although
nut shown, the discharge temperature response to the same steam cvs input as shown in Figure

4.4 at each abnormal operating case listed in Table 4.3 was used for identification.

Table 4.3: Operating conditions for the open loop stirred tank heater runs.

Figure | Manipulated Variable Fixed Variables
44 steam’ hot water cvs=8%; level=31cm; discharge cvs =100%
4.5 hot water CV steam cvs =40%; level=31cm; discharge cvs =100%
4.6 level hot water cvs =8%; steam cvs =40%; discharge cvs =100%
4.7 discharge CV hot water cvs =8%; level=31lcm; steam cvs =40%

" nominal operating conditions

A disturbance in the hot water flow rate and then a subsequent adjustment in cold water
flow by the PID controller in order to maintain the level is shown in Figure 4.5. This causes a
sustained disturbance in the discharge temperature with a minimal change in plant dynamics as
shown by comparison of the nominal and hot water cvs deviation transfer functions in Table 4.4.
The small change in dynamics compared to the nominal case is due to a change in the steady

state steam requirement which results in a shift along the steam control valve curve.
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Table 4.4: Open loop modeling of the stirred tank heater.

Deviation from

Nominal Case

nominal

hot water cvs=4%

level=22cm

level=40cm

discharge cvs=75%

Continuous Transfer Function | Discrete Transfer Function
(G,, = %fc%) T, =4 seconds
03817 g~°0.0303

4835 +1 1-09214™"
0341e7 _q°00311_
419s+1 1-0.909¢™"
0372¢™ q770.0350
40.5s +1 1-0.906g""
0.340¢ 2 q7°0.0274
4765 +1 1-0919¢™"
0.503¢ 7% g~°0.0273
718s+1 1-09464™"

Temperature, °C
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Figure 4.4: Cpe« foop discharge temperature response for the nominal case.
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Steam cvs. %

Increasing (decreasin:s th tavel setpoint on the PID controller results in a momentary

but significant increase (decrez<.>; ‘ the cold water flow rate to change the water level followed

by a slightly higher (lower) steaix

-1t cold water flow rate compared to the nominal level case.

Therefore, 2 change in the leve} setpoint results in an impulse type of disturbance to the

discharge temperature which is shown by Figure 4.6. A moderate change in plant dynamics

compared to the vominal operating case occurs for a change in level which is shown in Table 4.4.

Since the discharge flow rate is a function of liquid level in the tank, the time delay in the

transfer function is a function of the tank level. The time delay changes by one sampling interval

or four seconds as a result of the level setpoint changes indicated in Table 4.4.
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Figure 4.6: Open loop temperature response for the level disturbances.
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A step decrease of 25 % in the discharge cvs results in a significant decrease in the

discharge flow rate. The PID controller reduces the cold water flow rate in order to maintain the

level which results in a severe sustained upset to the discharge temperature as shown in Figure

4.7. The time delay, time constant and plant gain increase by 50 %, 48 % and 32 %, respectively

as indicated by the open loop transfer function in Table 4.4. A 50 % increase in the time delay is

a severe mismatch compared to the nominal case because the of the phase contribution of the

time delay element. The discharge cvs is therefore the most challenging of all three disturbances.
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Figure 4.7: Open loop temperature response for the discharge flow disturbance.

4.5.4 Closed Loop Adaptive Predictive PID

The closed loop experimental tests were conducted to study the effectiveness of the non-adaptive
and adaptive predictive PID control algorithms for the control of discharge temperature in the
presence of input disturbances. For the hot water cvs disturbance, the performance of a
conventional PID controller was investigated to provide a benchmark comparison. Constants of
the PID controller were established by Cohen and Coon (1953) design relations with ad-hoc fine
tuning in order to minimize the effect of disturbances on the outlet temperature. The predictive
PID algorithms used in all predictive runs were based on the following GPC controller constants:
Ni=1,N,=30,N,=1,A=08,7v=03,7,=10and C, = 1-0.8¢"". Readers not familiar with
these GPC controller constants should consult Chapter 2 or Miller et al. (1995). The C. filter
was chosen to be (1-0.4g™")* for all predictive runs. For each test, a setpoint change was first
introduced to provide sufficient excitation for the initialization of the covariance matrix.
Although this step is obviously not required for non-adaptive algorithms, for consistency, the
same format was used for all tests. Although it has been shown in closed loop adaptive GPC that
RLS parameter estimates converge approximately to the correct values without a priori
knowledge (Clarke, 1991; Mclntosh et al., 1991; Shook er al., 1992), in practice, on-line
identification algorithms are not tumned on until the covariance matrix is sufficiently initialized.
In view of practical interest and consistency, the ARX parameters in the U matrix were
initialized to the nominal values based on the transfer function parameters in Table 4.4 for all

adaptive runs. Table 4.5 summarizes the series of closed loop runs in this section.
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Table 4.5: Experimental closed loop control of the stirred tank heater.

Figure Controller Type Disturbance Purpose
4.8 | Conventional PID Hot water cvs | sustained disturbance; small A in TF
1.9 | Predictive PID Hot water cvs | sustained disturbance; small A in TF

4,10 | Adaptive predictive PID | Hot water cvs | sustained disturbance; small Ain TF

4.11 | Predictive PID Level impulse disturbance; medium A in TF
4.12 | Adaptive predictive PID | Level impulse disturbance; medium A in TF
4.13 | Predictive PID Discharge cvs | sustained disturbance; large A in TF

4.14 | Adaptive predictive PID | Discharge cvs | sustained disturbance; large A in TF

4.5.4.1 Hot Water Flow Rate Disturbance

As a consequence of the stationary dynamics of a hot water flow rate disturbance, it might be
expected that conventional PID control would provide satisfactory control of discharge
temperature with the predictive PID controller providing little improvement. However, this is

not the case as can be seen in the closed loop responses shown in Figures 4.8 and 4.9.
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Figure 4.8: PID control of the stirred tank heater with a hot water flow disturbance.
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Figure 4.9: Predictive PID control of the stirred tank heater with a hot water flow disturbance.

Examination of the responses in these figures shows that setpoint changes result in an initial
overshoot for the PID controlled response compared to the response of the predictive PID
controller. In addition, the regulatory performance of predictive PID during hot water {ow rate
disturbances is clearly superior to conventional PID. Figure 4.10 displays the controlled
response for the adaptive form of the predictive PID algorithm. As can be seen, the response of
the discharge temperature to the initial setpoint change is inferior to either of the other control
algorithms because the covariance matrix is not yet “full crough” of process information for the
recursive identification algorithm to provide reliable parameter estimates. Consequently,
examination of the performance after 400 seconds of operation shows that the adaptive form
provides the best control performance of the three algorithms. The AUDI technique with a band
pass filter is therefore able to cope with sustained disturbances that do not result in a major

change in dynamics.
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Figure 4.10: Adaptive predictive PID control of the stirred tank heater with a hot water flow

disturbance.

4.5.4.2 Level Disturbance

The performance of the predictive PID algorithm for the control of discharge temperature during

a level disturbance is displayed in Figure 4.11 and for the adaptive predictive PID algorithm in

Figure 4.12. As the water level is decreased, the time delay increases as shown by the transfer

functions in Table 4.4. When the level is changed to 22 cm, the predictive PID controller is

basei nn a model that has a shorter time delay than is exhibited in the stirred tank heater.

Consequently, it is not surprising that the predictive PID coutrol performance is oscillatory in the

600 to 800 second interval as a result of the reduced phase margin. Although the adaptive

predictive PID control scheme is based on a fixed time delay model, recursive adaptation of the
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Figure 4.11; Predictive PID control of the stirred tank heater with a level disturbance.

model parameters is able to compensate for the mismatch. Comparison of Figures 4.11 and 4.12
shows superior performance for the adaptive predictive PID controller for each level disturbance.
The magnitude and duration of the discharge temperature upsets caused by each of the level
changes are significantly lower for the adaptive scheme compared to the non-adaptive controller.
It is difficult to compare the parameter trajectories in Figure 4.12 with the level deviation open
loop models in Table 4.4 because there is a minor time delay mismatch. However, a distinct shift
in parameter estimates following each level setpoint change occurs which indicates that the plant

model adapts within the constraints of the fixed time delay structure.

4.5.4.3 Discharge Flow Rate Disturbance

The final disturbance used to test the performance of the predictive PID control algorithms was a
change in the discharge flow rate which as shown in Table 4.4 results in the largest change in
dynamics of the three different disturbances employed. The control performance that resulted
from the predictive PID and adaptive predictive PID algorithms is shown in Figures 4.13 and
4.14, respectively. The discharge temperature response of the fixed model predictive controller

is clearly not acceptable during the 600 to 1200 second interval of Figure 4.13. In contrast, the



Chapter 4: Adaptive Predictive PID 85

42 T ¥ L T LR 1 i ¥ L 1 LI 1 ' Ll L
L Discharge -
Or N Setpoint

Temperature, °C
L W
(=) oo

(¥8)
N

39
° £
> Q
o -
E 30 %

-
&
20
- 21
-0.89
0.04

a 0 0.03 b,
0.93F% i 0.02
‘_0.95 1 1 1 1 ] i j . 3 1 1 ] L 1 [l [ 1 1

0 200 400 600 800 1000 1200 1400 1600 1800
Time, s

Figure 4.12: Adaptive predictive PID control of the stirred tank heater with a level disturbance.

adaptive predictive PID control algorithm was able to return the discharge temperature to the
setpoint after about 450 seconds of the disturbance despite the fact that the time delay of the
controller’s predictive model remained at 24 seconds. It is obvious from the parameter trajectory
plot in Figure 4.14 that in order to accomplish this control behavior, the estimated parameters
were adjusted significantly, particularly the a; value. The fact that a, is adjusted close to its
minimum allowable value of -0.995 indicates that the AUDI algorithm is overestimating the time
constant in order to compensate for the time delay mismatch. It is also revealing to observe that
the gain of the plaiit model is over estimated by a factor of six which acts to detune the control
action. It is this adaptation of the preiictive model that eliminates the oscillatory behavior that is
evident for the fixed model controller. However, the a, coefficient was slow to recover to the

nominal model parameter value after the discharge flow is returned to the nominal case which
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may reduce controller performance if another upset occurred. On-line estimation of time delay in

parallel to estimation of the ARX parameters may offer further improvement in performance.

42 1 T T 1 1 LR Ll 1 T 1

E-S
[=]

(93]
00

w
A

Temperature, °C
(3]
N

(5]
N

1 T

Discharge

Setpoint

60
SBa
€ A0Rscragat - oo oo 100
g 30
s [~ 4
3 20 . Steam cvs .

0r........ Discharge cvs 475

0 1l 1 S | 1 1 1 1 i 1 1. ) I X
0 200 400 600 800 1000 1600 1800
Time, s

Figure 4.13: Predictive PID control of the stirred tank heater with a discharge flow rate

disturbance.

4.6 Conclusions

Discharge cvs, %

e The proposed predictive PID control law was shown to exhibit excellent regulatory

performance when applied to a steam heated stirred tank heater in the presence of

moderate disturbances and moderate model-plant-mismatch.

e A long range predictive PID control law with the augmented UD factorization

method of on-line model estimation was proposed. An ad-hoc band pass filter is

suggested to condition the input output data prior to identification to yield an

estimated -nodel that is compatible with the long range predictive control law.

e Adaptive predictive control of the stirred tank heater was demonstrated to be

excellent for a series of one impulse disturbance and two step disturbances during

regulatory control.
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Figure 4.14: Adaptive predictive PID control of the stirred tank heater with a discharge flow
rate disturbance.

» The adaptive predictive PID controller based on a model with a fixed time delay
showed good experimental results to a process with a significantly varying time
delay. On-line estimation of time delay may offer further improvements to the

adaptive controller which is the topic of Chapter 5
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Chapter 5

Recursive Time Delay Estimation’

A novel on-line time delay estimation technique based on the rationalization of a discrete plant
model numerator is presented in this chapter. An auto-regressive with exogenous input (ARX)
model with an over parameterized numerator that covers the full expected range of time delay is
updated on-line using a recursive least squares technique. The magnitude and sign of the
numerator coefficients of the ARX model are used to compute an integer time delay. A low
order plant model based on the estimated time delay is recursively updated at each time interval.
The proposed time delay estimation technique in combination with a long range predictive
control law was applied to a steam heated stirred tank heater with a time varying delay.
Experimental results show good time delay tracking during periods of varying dynarnics which

results in excellent closed loop performance compared to non-adaptive control.

5.1 Introduction

Many chemical and industrial processes exhibit varying time delays which are mainly due to
transportation lags and incomplete mixing. The phase contribution of the time delay component
can dominate the overall dynamics of the process leading to an unstable clesed loop response.

The best solution from a control perspective is to reduce the time delay as much as possible by

! A version of this chapter has been accepted for presentation as: Miller, R.M., S.L. Shah and R.K. Wood, “Adaptive
predictive control employing on-line time delay estimation,” Proc. ISA/95, New Orleans, 1995.
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repositioning the measurement transducer closer to the source of the process dynamics. In some
cases a reduct.on in time delay is not possible, for example, a large heat exchanger with a
multipass bundle has a significant time delay even if the temperature transmitter is located at the
process exit. Also, the cost of moving a measurement sensor may be prohibitive or require a
plant shutdown. Therefore, long time delays are part of the process dynamics so the delay must
be accepted and dealt with by the control strategy. Model based control laws, such as GPC, are
very capable of controlling systems with a time invariant delay (Clarke et al., 1987). However,
an unknown variable time delay poses a considerable challenge to any control system even for
severely detuned controllers (Dumont et al., 1993). Variable time delays, caused by variable
flow rates and mixing among other conditions, occur frequently in industrial processes. For
example, black liquor evaporators in the pulp industry are known to exhibit varying time delays
due to changing mixing conditions, channeling and dead zones (Dumont et al., 1993). In order
for model based control laws to operate effectively, the time delay must be known to some
reasonable accuracy. Batch cross-correlation analysis of large quantities of open or closed loop
data can provide a good estimate of the average time delay which is adequate for control of fixed
delay processes. However, the average time delay estimate is often insufficient for stable control
of processes which exhibit a time varying delay. Moreover, selecting the longest estimated time
delay of for a process for use with a fixed model controller will result in severely detuned or
unpredictable performance. On-line estimation of the process time delay offers a solution to the
problem of controlling variable time delayed processes.

This chapter begins with a brief review of current recursive time delay estimation
techniques for use in adaptive model based control. Following this, a novel time delay
estimation technique is proposed which is based on the rationalization of an extended numerator
time series model. A comparison study of the proposed technique with variable regression
estimation (Elnaggar et al., 1991), via simulation, is presented. Finally, an experimental closed
loop evaluation of the proposed time delay estimation method with a long range predictive

controller is performed.

5.2 Review of Existing Recursive Time Delay
Estimation Techniques

Existing on-line time delay estimation methods generally fall into one of two categories. The

first is the development of a plant model that has a flexible structure encompassing the full range
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of possible time delays (i.e. from d,,;, to d,.,,). The second is the estimation of a distinct integer

time delay in terms of sampling intervals for use in a fixed structure model.

5.2.1 Variable Delay Model Structures

In the methods reviewed in this section, the time delay is not specifically estimated but the model
structure contains sufficient degrees of freedom to approximate a range of time delay between
the process input and the process output. The simplest method of this group is over
parameterizing the numerator (known as an extended numerator) of the auto-regressive with

exogenous input (ARX) model given by

(blq—dmin +b2q—drnin—l doeedh -dmnx-n+1)

n+(dmax-dmin)J

y(t)= u(t-1)+x(t) 5.2.1)

1+a,q”' +-+a,q™"
where dyin and dno are in terms of sampling intervals. As (5.2.1) is recursively updated, the b
coefficients will be weighted such that (5.2.1) approximates the process dynamics including the
time delay within the range dpp to dmu,. Dumont et al. (1993) point out that the extended
numerator method increases the likelihood of common factors in the numerator and denominator
of (5.2.1) which increases the difficulty of the recursive identification problem. Also, the
increased number of parameters has several disadvantages. Computational requirements of
recursive identification and execution of the control algorithm increase significantly as the
number of parameters in the model increase. The requirement for persistent input excitation is
higher with a higher order B. In addition, recursion of an exiended numerator model converges
slowly to time varying dynamics compared to a fixed delay ARX model. Several applications
are reported in the literature which are based on an extended numerator model including adaptive
control of processes with a varying time delay (Clough and Park, 1985), adaptive control of
integrating processes with a varying time delay (Prasad et al., 1985) and adaptive control with a
Smith predictor model (Chien et al., 1984).

A popular group of methods involves a low order rationa) approximation of the time
delay. The simplest type in this group is the Padé approximation (Robinson and Soudack, 1970;
Gabay and Merhav, 1976; and De Souza et al., 1988) in which the quotient of two low order

polynomials are chosen to approximate the Taylor series expansion of e,

Other rational
approximations to the time delay include Walsh functions (Rao and Siuakumar, 1970), an all-

poles approximation (Gawthrop and Nihtila, 1985) a Laguerre series model (Zervos and Dumont,
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1988) and a Markov-Laguerre model (Banerjee and Shah, 1995). Durront er al. (1993) reports
several industrial applications of adaptive control based on a Laguerre series model of the plant.
However, rational approximations to plant dynamics have several disadvantages when used in
adaptive control. A distinct delay cannot be identified from the discrete form of the rational
function which means the control law must be based on the same rational function. Most rational
approximation models are non-minimum phase even for minimum phase processes which may
cause difficulties in closed loop control. In addition, the order of the rational function must be
proportional to the time delay in order to preserve numerical accuracy of the discretized

representation which restricts the application to processes with a short range of time ::lay.

5.2.2 Distinct Time Delay Estimation

This group of methods recursively estimates a distinct time delay from plant input-output data for
use in any model type w':.ch has the advantage of not requiring the control law to be redefined in
terms of a model with many degrees of freedom. An obvious brute force method to estimate the
time delay involves recursive identification of an ARX model for each time delay in the expected
range of plant time delays. Therefore, diux - dwin + 1 models are updated and the optimal choice
of the time delay with a resolution of the sampling interval corresponds to the ARX model with
the lowest loss function. An advantage of this method is the simultaneous estirnation of moilel
parameters and time delay but a major disadvantage is the intensive computational requirements
of recursively updating r:umerous models. In order to reduce the computational load, only a few
ARX models could be updated that still cover the entire range of time delays but do not include
each interval within the range. Pearson and Wuu (1984) suggest using a spline function to
determine the time delay from this reduced set of ARX models although the model parameters
that correspond to the estimated delay must still be estimated. Kurtz and Goedecke (1981)
propose a time delay estimation method consisting of comparing some function of a fixed delay
ARX model with the same function of an extended numerator ARX model. Although this
procedure is somewhat complicated, reported simulation results show good estimation of time
varying delays in the presence of persistent servo excitation. A method proposed by Ferretti et
al. (1991) uses the fact that time delay uncertainty can be compensated for by high frequency real
negative zeros. Inspection of the phase contribution of these zeros is used to recursively update
the time delay estimate in a discrete time ARX model. The authors claim that this method is

particularly suited to systems that use a fast sampling rate (< 1 second).
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5.2.2.1 Variable Regression Estimation of Process Time Delays

A recursive cross-correlation method, denoted as variable regression estimation (VRE),
is suggested by Elnaggar er al. (1991) for on-line estimation of the process time delay. The VRE

method, described below, uses a first order ARX. model,
3@)=a,y(t-1)+q b, ult-1) (5.2.2)

that is a basis for estimation of the prediction error given by

e2(r)= [y - 300 (5.2.3)

substituting the model (5.2.2) into the prediction error (5.2.3) yields

e2(1)=[y()- a, (e ~1)=bu(t—d - 1)] (5.2.4)
which can be expanded into the following expression

ez(t)zy2 (t)+a,2,,y2(t -D+ bf,uz(t—d -1)-2a,y{t)y(r-1)

(5.2.5)
-2b, y()u(t —d - 1)+2a,,b, y({t —Du(t—d - 1)

The minimum value of the sum of the squares of the prediction errors at the " sampling instant is

given by the expected value of (5.2.5) which is
J =E(e?(t)) = E, - 2b,E, (5.2.6)

where E, and E, represent the expected value of the auto-correlation and cross-correlation terms

in (5.2.5), respectively.
Eo = E[y* () + a2y’ (t - 1)+ bju* (1= d 1)~ 2a, y()y(t - 1] (5.2.7)
E, = E[y(t)u(t - d - 1)-a,,y(t - u(t - d - 1)] (5.2.8)
It is obvious from (5.2.6) that in order to minimize J, E; must be maximized which is a strong
function of the time delay. Furthermore, Elnaggar et al. (1991) indicate that it is advantageous to

fix the value of a,, in (5.2.8) to 1.0 for the purposes of time delay estimation. E; can now be

rewritten as a cross-correlation between incremental plant output and plant input expressed as
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E,(v.d,)=Ay(tu(t - d, - 1) (5.2.9)

Estimation of the time delay from (5.2.9) simply requires compiiting E; for each d; within the

finite range
d=[dpn duon - di - ] (5.2.10)

where d,;, is the smnailest expected process time delay and dp.x is the largest expected delay. As
the sampling time goes to zero, the time delay that maximizes E; is equivalent to the time delay
estimated by extending the tangent to the maximum slope of the step response. The recursive

implementation of VRE is illustrated in Table 5.1.

Table 5.1: The recursive VRE algorithm with data forgetting.

E,(0,d;)=0 Vd, initialization at 1 = 0
for i = dyin 10 dimax

E, (.i))=AE (1 - 1,i)+u(t =i - 1)y(t)—-y(t~1)] | compute £, for each d;
end

d(t)=d, A E(1.d; )= max(E, (¢)) d(r) maximizes E, (t,d;)

The delay estimate from VRE can now be used in any recursive identification method to estimate
a model of the plant. Elnaggar et al. (1991) indicate that the term variable in VRE rises from the
fact that the structure of the plant model will vary as the time delay estimate changes. Since
VRE is based on a first order ARX model. the time delay estimate will be optimal for a first
order approximation of the plant dynamics. The VRE time delay estimate will obviously
overestimate the time delay best suited to higher order plant models. This fact should not be a
problem because the cases in which on-line time delay estimation are important are when the
time delay is a dominant factor in the plant dynamics and a first order approximation to the plant
should suffice. Computational requirements for the implementation of VRE in Table 5.1 are
minimal because only simple multiplications are required. Elnaggar et al. (1991) cite several
simulation and experimental applications of VRE in combination with a pole placement
controller for control of varying time delay processes in the presence of persistent servo
excitation. The ability of VRE to track time varying delays is good for square wave servo input

although this is a completely unrealistic test. Frequent setpoint changes result in a very high
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level of plant input excitation which is ideal for identification. However, the main function of
process control is regulation of process variables not to significantly magnify the variability of
the process. A more realistic evaluation of VRE in closed loop simulation is presented in section
5.4. During regulatory control, plant input excitation is generally very low while disturbances
add further adversity to the identification problem. Practical implementation issues such as

filtering the estimates, stopping rules and validation are not addressed in the VRE technique.

5.3 Extended Numerator Rationalization for
On-line Estimation of Time Delay

In this section, a new on-line time delay estimation technique is proposed for use in closed loop
adaptive control. This method, like VRE, estimates an integer time delay in terms of sampling
inteials for use with the plant model. The purpose behind the development of yet another time
delay estimation technique is to address more realistic problems, such as on-line closed loop
identifiability during regulatory control due to low excitation and bad data. The proposed
method involves the rationalization of an extended ARX numerator (which will be denoted as
ENR) model that is updated by a recursive least squares (RLS) technique based on an augmented

upper diagonal factorization method (AUDI) by Niu et al. (1992) (also see Chapter 4).

5.3.1 Development of ENR

A first order ARX model with an over-parameterized numerator that contains adequate

parameters to cover the variation of the plant delay can be expressed as

(bl q-dmin +b, q—dmin—l . +bl+(dm_dmm) q—dmax )

1+a,q'I

y(1)=

u(t-1)+x(t) (53.1)

In response to a change in the plant time delay, the AUDI algorithm adapts the coefficients of
(5.3.1) such that converged model approximates the new dynamics of the plant. The b;
coefficients will converge to different relative values to reflect the change in plant time delay.
Although a, initially shifts in response to a plant time delay change, the converged value of a,
will be close to its nominal value providing that £b; converges to its nominal value. Clearly, the
relative weights of b; contain the information required to estimate the plant time delay. Since the

value of a, is unrelated to the plant time delay and (5.3.1) is used only for time delay estimation,



Chapter 5: Recursive Time Delay Estimation 97

a, in (5.3.1) is fixed to the nominal estimated value rather than recursively estimated. This new

model can be expressed as

yO)+ay(-1)= (blq-dmin +byg ™™ +”'+b|+(dmax-dmin)q-dmax )“(’ -1)
= Bdu(t - 1)

(3.32)

where @, is the nominal value of ;. Recursion of the AUDI algorithm based on (5.3.2) rather

than (5.3.1) has the advantage of reducing the computational requirements slightly because one
fewer parameter is updated. In addition, the b; coefficients of (5.3.2) are forced to adapt more
vigorously by fixing the denominator which increases the sensitivity of the time delay

information contained in the relative b; weights. This is illustrated in Figure 5.1 for white input

-d
excitation of the plant, G, = T‘:’o—;";} , which is subject to changes in the time delay. As expected,

the numerator coefficient of (5.3.1) and (5.3.2) which corresponds the current plant time delay
converges to 0.2. In addition, the a, parameter of (5.3.1) responds to an increase (decrease) in

the plant time delay by a sharp decrease (increase) in value with the exception of the first plant

1.2

0.3 T T T T T
R =2 \ d=>5 ‘ d=2 ‘ d=5 l =2 -
-10.8

200 300 400 500
Time interval

100
Figure 5.1: Recursion of extended numerator models to a time delay varying plant with open

loop input excitation.

change at the 100™ sampling interval. This has the effect of compensating for changes in plant

time delay by adapting the time constant of the model. As a result, the b; coefficients of (5.3.2)
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converge slightly faster than the b; coefficients of (5.3.1). It is also interesting to note that the
gain of (5.3.1) changes sign momentarily at the 303" sampling interval which causes an abrupt
and incorrect change in the bs parameter. It was observed in closed loop experimental tests that
effects such as colored noise, step disturbances and input-output data filtering can also bias the
value of a,. It is therefore established that (5.3.2) is superior to (5.3.1) for the purpose of time
delay estimation.

The next step in the formulation of the ENR method is the extraction of a distinct time
delay from B, in (5.3.2). The value of b, relative to ZB, reflects the correlation between the
current plant output and the plant input i+dy, intervals in the past. As was shown in Figure 5.1,
the b; parameter corresponding to the current plant delay converged approximately to the value of
the plant nume- .tor while all remaining b;’s converged very close to zero. Likewise, if the actual
plant delay is not a multiple of the sampling interval, the two b;'s that straddle the actual delay

will converge to non-zero values. For example, the discrete mode! structure

—f+1 =1
G( -1)= ) _4 (b, +byg ) (5.3.3)
u(r—1) 1-a,q”
approximates the catinuous plant structure
o ((TGmmT,)s 534
Gls)= Ts+1 (5.3.4)

where £ is an integer >1, 12m=0 and b;’s are non-zero. In addition, the relative weights of b; can

be used to approximate the fractional delay as given by

=1-m (5.3.5)

It is formally shown in the following lemma that as the sampling time approaches zero, the

approximation in (5.3.5) becomes an equality.
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lemma

. b, _
7]_,1_% b4b, - I-m (5.3.6)

Proof
The discrete approximation to (5.3.4) is given by the following modified z transform (Franklin et

al., 1990)

emT}.\- mTs

N_2—1 __e
Gl)="7 Z{ TSI

() T ey
I3

=z —
z-e’ %

or in terms of the backward shift operator, '

_ ) (1 _e-mn/t)_*_(e—mT,/t _e._r‘/t )q__1
G(q 1)=q ‘ e

. b .
lim ——2— can now be written as
b +b
1;__,0 (] 2

-mT.Jt T/t

lim f—l:e—‘f;/— (5.3.7)

The limit in (5.3.7) can be solved by applying 1’Hospital’s Rule

=mTfv _ =T/t
lim &—=f—=1-m
L0 ]—g B

which concludes the proof of (5.3.6).

Increasing the sampling time is shown to decrease the accuracy of the approximation in
(5.3.5) as shown in Figure 5.2. Although there is no consensus on the sampling time with respect
to the dominant time constant of the process, a sampling time of /10 is included in the intervals
of most of the published guidelines (Seborg er al., 1989). The solution of (5.3.5) that
corresponds to a sampling time of /10 results in a slightly underestimated but insignificant error

as shown in Figure 5.2.
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Figure 5.2: Graphical approximation of fractional time delay by comparing the relative weights
of Bd.

The -.:.in idea behind the ENR method is to extend the concept of (5.3.5) to any order of
B,. This is ... mplished by applying the rethod of moments whereby each delay index is
weighted by ti::: corresponding b; coefficient. The delay estimate then corresponds to the zero
moment position of the delay index or alternatively the weighted average of the delay index

which can be expressed by

$-m

o

i (5.3.7)

where nd is dpax-dmin+1. The plant time delay estimate from the ENR method is then given by
d=d +i (53.8)

which can take fractional values of the sampling interval. A simulated application of ENR is
shown in Figure 5.3 for a first order plant with a variable time delay subject to white open loop
excitation and low level noise. Recursive least squares (see Shah and Cluett, 1991 for details)

with a constant forgetting factor of 0.95 was used to update the model:
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Y(t) - 0.9048y(r — )= (g ™*b, +4°b, + g by +q7'by +q7*bs +q by Ju(t ~1)

at one second intervals and the fixed a, parameter was the same as the discrete plant. Although
the time delay estimated by ENR is briefly erratic at the start of the run because the covariance
matrix is not yet rich with plant data, the estimates converge quickly in response to changes in
the plant time delay. At the 300" sampling instant, the plant time delay changes to 8.5 seconds
which is not a multiple of the one second sampling time. Despite this, the ENR time delay
estimate converges to the true plant time delay.

For implementation in the plant model (with A and B of the same order), the ENR result
(5.3.8) must be rounded to (he nearest integer. A first order plant model will be the most
compatible with ENR estimates because ENR is based on a model with first order dynamics. As
mentioned for the VRE method, this should not be a problem because the applications for which
time delay estimation are most important are when the time delay is a dominant factor of the

plant dynamics and a first order model is a sufficient approximation.

10 1 I I 1] V i 1 ] ¥
| e e Plant N
G(s)= 151 ENR

9| o©%=0.0001 T

Time delay, s

200 300 400 500
Time interval

0 100

Figure 5.3: Application of ENR to a time delay varying first order plant subject to open loop
excitation.
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5.3.2 Statics Interpretation of ENR

A statics analogy of the ENR method is presented in this section in order to provide a different
perspective of ENR. Consider a horizontal zero mass rigid member with a length of nd-1 units.
Now imagine that each b; coefficient is a vertical force positioned at i-1 units from the left edge

of the member as depicted in Figure 5.4 for the b/s: . 0.14,0.17,0.63, 0.11, 0.15. The ENR

0.8
0.6
04
0.24, b b, b, bs
0.0

I , 4
<

1 L4 |

by

Figure 5.4: Statics analogy of ENR.

estimate of the time delay is the position of a fulcrum or bolt measured from the left that results
in a zero moment of the rigid member. For this example, the zero moment position (and also the
time delay estimate based on B,) of the member is 1.97 units. This analogy holds irrespective of

the sign (i.e. + or -) of the b; coefficients.

5.3.3 Practical Iimplementation of ENR

This section outlines the steps required for the recursive implementation of ENR based on closed
loop input-output plant data. Recursive least squares based on an upper diagonal factorization
(AUDI) (see Chapter 4 or Niu et al., 1992 for a description of AUDI) method was chosen to
update the ENR model (5.3.2) for several reasons. First, AUDI is numerically superior to
classical RLS (i.e. without UD factorization), second, with little additional computational effort,
AUDI provides estimates of the noise variance and parameter variance (Niu ef al., 1995) and
third, stopping riles developed for AUDI prevent implementation of ENR when the current
estimate is adequate. It was suggested by Shook et al. (1992) that band pass filtering of input-
output data is recommended for use with least squares estimators such as AUDI to be compatible
with long range predictive control laws. The block diagram representation of the on-line plant

model adaptation is given in Figure 5.5 where -% is a bandpass filter. Outliers and bad data can

be detected by comparing the current residual with the previous residual. If the difference
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u(r) y(©)

v

Plant model

Figure 5.5: Block diagram representation of ENR in combination with plant model adaptation
for an on-line implementation.

between the current and previous residual errors is greater than three times the standard deviation
of the noise, then it can be concluded that the current input-output data are abnormal and should
not be used for identification. Unnecessary updating of the time delay durin  steady state
conditions is avoided by using the stopping rule developed by Niu (1994). In concept, the
stopping rule discontinues the current update if the square of the current prediction error is less
than the noise variance. Although not employed in the present work, the measure of
identifiability conditions outlined by Niu et al. (1994) can also be used to determine if the
current input-output data contains sufficient excitation for identification of the plant model.
Filtering of the ENR estimate is strongly recommended to ensure smooth tracking of the plant
time delay. The steps required to implement ENR based on recursive AUDI are outlined in an
algorithmic form in Table 5.2. The noise variance can be estimated either by the variance of the

residuals from batch data or on-line using the developments of Niu et al. (1994).

5.3.4 ENR Time Delay Uncertainty Estimate

Uncertainty bounds are an important indication of confidence and reliability in any measured or
estimated quantity. Using the U D matrices in AUDI (see Table 5.2), the covariance matrix can

be computed on-line without computing a matrix inverse as given by
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Table 5.2: Implementation of ENR Based on Recursive AUDI.

U(O) = I nd+1
D(0)=10-1,,,,
8(0)=[o o 11,

initialization only at startup

if desired, U and & can be initialized
to the nomir..: plant values

0(r)=[ult - dp =1) -+
F=U"(@-1)0()

g=D(t-1)f

N 0
Noi(1+£7g)

: 1

lf)\.(t)> 1 —m

do not proceed; use previous estimate
of d; do not update U or D

end

B,= 7‘(’)

for j=1tom
Bj+l =Bj+fjgj
D;(t)=Dy;(t—-1)B,/B /M)

u;==f;/3;
Vij =8;

end

for j=2tom

Vi =Y j-1j-1 +U|:j-|.j(’ ‘l)V Ji

Uija, (0)= Uyjorj (- D+v j-1.j-1M
end

é(t)= Ul:nd+l.nd+l (t)
Bd = é nd:1 (t)

3 (-1)8,0)
d' =dgy, +&——————
ZBd(i)

d'()=od" +(1-a)d’{t-1)
d(t) = round{a’ (t)]

ut—dy, 1) y()-ay(t - 1)]T

regressor

innovation sequence

variable forgetting factor (Niu, 1994)
N is the asymptotic data length

4] g is the noise variance

stopping rule (Niu, 1994)

update the D matrix

update the U matrix

extract the model from U

this is the ENR time delay estimate

filter the ENR estimate (O<a<1)
and round to the nearest integer

104
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C(r)=UDUT={21”’¢(i)¢7(j)] (5.3.8)

-

where C is the covariance matrix and A is the forgetting factor. The covariance of each
parameter estimate corresponds to the elements on the diagonal of (5.3.8). The variance of each

b; coefficient is then computed by the following expression
6} =6:C(nd ~i,nd —i) (5.3.9)

With the assumption of normally distributed coefficients of B, a confidence interval for each b;

estimate is easily approximated by

(¢
bio=b Lty 'J-% (5.3.10)

where N is the length of the data window considered in the identification scheme and fcy.; 1s the

critical value from the r-distribution tables. If the noise variance, cé , is computed on-line within

the AUDI framework (Niu er al., 1995) then the # value corresponds to the data length in Table
5.2. If the noise variance is based on batch analysis of a large quantity of data then infinite
degrees of freedom can be used to establish the confidence interval of b;.

The confidence interval of the ENR time delay estimate corresponds to the minimum and
maximum value computed from the confidence inervals of b. A nonlinear optimization of
(5.3.7) is required to determine the maximum and minimum values subject to the b;’s constrained
to their respective confidence intervals. Developing an analytical sclution to this problem
requires solving the Kuhn-Tucker conditions (Reklaitis ez al. 1983) of (5.3.7) which turn out to
be very messy even for a low order numerator. Non-linear optimization appears to be the only
realistic approach for computing the uncertainty of ENR from the respective b;c.

An alternative approach to estimating the uncertainty of the ENR estimate is through the
propagation of variance of the b; coefficients. In general, the variance of a non-linear function of
several variables can be expressed as the propagation of variance and covariance of each variable

given by
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v=fx,, %5000 x,)
= ZZ( )(ay}, 5.3.11)

2 » . - » . 3
where o is the variance of x; and © i | is the covariance of x; and x;. The variance of the ENR

delay can then be expressed as

“h
»
—
(%)
~—

—Ggii(al )( i ] C(nd - i,nd - j) (5.3.

i=1 j=1 ‘

where

nd

(]—I)Zb Z(:—l)b

9 (5.3.13)

TR

Using (5.3.12) and (5.3.13), the confidence interval of the ENR time delay estimate can be

determined in the same fashion as in (5.3.10). The estimation of the ENR uncertainty by (5.3.12)
and {5.3.13) consists of simple multiplications which can be performed on-line with a low
computational effort. In addition to the identifiability conditions mentioned in section 5.3.3, the
ENR uncertainty estimate can be used to decide whether the current time delay estimate should

be implemented in the plant model.

5.4 Simulation Study

The purpose of this section is to compare the performance of the VRE technique with the
proposed ENR method for on-line estimation of time delay in closed loop simulation. Adaptive

predictive PID (see Chapter 4 or Miller er al., 1995) in combination with the discrete plant

-dg
G,= T"F is used for all simulation runs.

5.4.1 Persistent Servo Excitation

Although persistent servo excitation is an unrealistic test for adaptive control, most of the

literature in the area of on-line time delay estimation exclusively uses servo control without
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disturbances or noise. The simulation results in this section are not presented as an absolute
evaluation of the ENR method but rather to compare it with the performance of the VRE
technique for circumstances similar to those presented by Elnaggar et al. (1991). Predictive PID
controller constants are based on the GPC parameters Ny = 1, N, =30 N, = 2, A=03,7v=00,

Y,=1.0and Cc= 1-0.84" while the input-output data is filtered by —2— for model estimation
¥ 1-0.05¢

by both AUDI algorithms (plant model and ENR model). The data length (N) was 40 and the

noise variance (Gg) was 107 for computation of the variable forgetting factor used in plant

model estimation. Figure 5.6 shows the ENR method in combination with adaptive predictive

PID for a square wave setpoint input. The @ coefficient in (5.3.2) was set to 0.9 while N and
og in Table 5.2 were 40 and 10°'°, respectively. Estimation of the time delay by ENR responds

to changes in the plant time delay very quickly with minimal mismaich as shown by the bottom

2 { T 1 T 1 L ) i 1 U I i 1 T ¥
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Figure 5.6: Adaptive predictive PID in combination with ENR subject to persistent servo
excitation.
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plot. Consequently, the response of the manipulated variable is excellent during changes in the
plant time delay. The effect of a significant mismatch in a, is shown in Figure 5.7 for the same
setpoint changes and plant as in Figure 5.6. The trajectory of the ENR time delay estimation is
skewed by +1 for a, =-0.85 and -1 for a, =—0.95. When aq; is overestimated (underestimated),
the time constant is overestimated (underestimated) so it is expected that the weighting of the
numerator coefficients will reflect the time delay best suited to the ENR model and not the plant
time delay. Despite this fact, it is recommended that a, be fixed for use with the ENR method

because other factors such as colored noise and the selection of C, have a significant influence on

the convergence of a,.

12 T 1 Ll T T 1 1 T 1 L L] 1 1 1 1
| fmmmmmm—mmmm . —— Plant 4
: v mmmemes a, = -0.85
10 : SE— 21, = -0.95
' '
E’ - 'l; ................. .! I e e e == : .
-g 8t ':' : Ll T
E | ! j i !
'F = E ———————————— .4:. ............... -E —————————————— -
61— : - -
NI e |
[}
4 } 1 1 1 Il i ] 1 [l 1 L L i i (] L
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Figure 5.7: Effect of mismatch in a for closed loop on-line time delay estimation using ENR.

Time delay estimation using the VRE method with a forgetting factor of 0.99 is
displayed in Figure 5.8 for the same plant and setpoint input as used for the ENR simulation.
The VRE algorithm given in Table 5.1 was found to perform very poorly so the value of 4, in
(5.2.8) was set to 0.9 instead of the recommended value of 1.0 by Elnaggar et al. (1991). With
this modification, the trajectory of the VRE estimated time delay responds quickly to changes in
the plant time delay although the estimates are very erratic. The simulation results reported by
Elnaggar et al. (1991), based on a first order plant with a varying time delay, are not erratic as
shown in Figure 5.8 so it is assumed that heavy filtering of the VRE time delay estimates was
required although it is not included in the algorithm given in Table 5.1. The VRE time delay
trajectories for a mismatch in a are displayed in Figure 5.9. Similar to the ENR results, the time

delay estimates are skewed compared to Figure 5.8.
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Figure 5.8: Adaptive predictive PID in combination with VRE subject to persistent servo

excitation.
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Figure 5.9: Effect of mismatch in a for closed loop on-line time delay estimation using VRE.
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5.4.2 Regulatory Control

The main objective of chemical process centrol is to regulate a process in the presence of
disturbances by manipulating one or more of the inputs to the process. Minimization of both the
manipulated variable variance and the effect ~f disturbances to the process are key factors in
selecting a control scheme while excellent pen. -mance during setpoint changes is seldom
required or desired in industry. It is therefore important for consideration of adoption of new
control techniques in the process industries that their performance is evaluated thuroughly and
realistically. Simulation results as presented in this section provide an objective evaluation
because the conditions are completely controlled.

It is the intent of this section to compare ENR with VRE for time delay estimation of a
tirae delay varying process that is noisy and =ubject to frequent step disturbances. Each run starts
with an initial setpoint pulse to initialize all of the recursive estimation algorithms to the nominal

plant dynamics. The discrete plant is the same as in the previous section while the plant output is

subject to colored noise with 62 =0.001 that is correlated by C = 12989 The bandpass filter in
3 y AA P

Figure 5.5 is chosen to be consistent with C (i.e. C, = 1-0.8q'1). The data length (V) in the
forgetting factors used by the ENR algorithm and the plant model AUDI algorithm was 200 for
all runs in this section. Following the initial setpoint pulse, a step disturbance of 0.1 is applied
and removed every 80 sampling intervals.

The performance of the adaptive controller in combination with ENR for time delay
estimation is shown in Figure 5.10. Although this simulation is considerably more challenging
than in the previous section, the ENR time delay estimate responds quickly to changes in the
plant delay and is usually within one sample interval of the actual time delay. In particular, the
ENR estimated time delay responds very quickly to the plant time delay increase at the 280"
sampling interval. This reaction is essential to avoid unstable closed loop behavior following a
significant increase in the plant time delay. Excellent sensitivity to small changes in time delay
is also demonstrated by the response of the ENR estimate after the 600" sampling interval. The
response of the manipulated variable is very good as a result of the time delay adaptation.

Adaptive predictive control with VRE for time delay estimation of the same plant as in
Figure 5.10 is shown in Figure 5.11. A forgetting factor of 0.995 was used for the VRE
algorithm in Table 5.1 while the value of a, in (5.2.8) was the same as the plant. As can be seen,

the trajectory of the on-line VRE estimate is very erratic and does not appear to respond to
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Figure 5.10: Adaptive predictive PID in combination with ENR for regulatory control of a noisy
process subject to frequent disturbances.
changes in the plant time delay. The VRE time delay estimate climbed to over nine prior to the
increase in plant time delay at the 380" sampling interval and remained above nine for the
duration of the run. Response of the manipulated variable is stable but somewhat oscillatory
because the time delay is significantly over estimated for most of the run. Because the VRE
forgetting factor was 0.955, there is little hope in reducing the variation of the time delay
estimates. It is clear from this example that the cross-correlation between input and output

requires a high level of excitation to accurately estimate the time delay.
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Figure 5.11: Adaptive predictive PID in combination with VRE for regulatory control of a noisy
process subject to frequent disturbances.

5.5 Experimental Evaluation of ENR

Evaluation of adaptive control performance for control of a physical process is not only
significantly more challenging but also more realistic than simulation of a process. Process
noise, measurement noise, non-linearities, hysterisis and time varying process dynamics, typical

of the environment encountered in controlling an industrial process are present. Although pilot
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scale processes are not subject to the same magnitude of these factors compared to an industrial
process, a realistic evaluation can be performed.

The purpose of this section is to evaluate the performance of the ENR method in
combination with adaptive predictive PID control of a steam heated stirred tank heater with a
time varying time delay. Because the main objective of industrial control is regulation, the focus

of this study is regulation during a series of disturbances and changes in plant dynamics.

5.5.1 Experimental Equipment

The schematic diagram of the stirred tank heater used in this study is shown in Figure 5.12. The
tank consists of a double-walled glass vessel with an internal diameter of 14.5 cm and a height of
50 cm. Low pre:-&.. steam, manipulated by an equal percentage valve, is used to heat the fluid
in the tank. Ordinary utility cold water is the process fluid which is mixed by a single impeller in
the tank. Two temperature transmitters are located at 8.0 and 14.4 metres down stream from the
tank exit which result in a time delay of 24 seconds and 44 seconds, respectively. An OPTO 22%
1/O interface and a custom program written on the LabVIEW® software development system are

used to control at{ of the manipulated variables and disturbances on the stirred tank heater.

> hot water
> cold water

Figure 5.12: Schematic diagram of the stirred tank heater.
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3.3.2 Implementation Details and Open Loop Modelling

The control configuration consisted of two single input single output loops for control of level
and discharge temperature. A conventional PID controller was used to maintain the water level
in the tank by manipulating the cold water control valve signal (cvs). Adaptive predictive PID
with and without ENR was used to regulate the temperature of the water in the tank by

manipulating the steam cvs. Steady state nominal operating conditions are given in Table 5.3.

Table 5.3: Nominal operating conditions for the stirred tank heater.

Cold water inlet temperature 10 °C

Tank discharge temperature 35°C

Level 31cm
Discharge cvs 100 %
Temperature transmitter position  #1

The two disturbances used in this study to alter the time delay in this study are a change
in the discharge valve cvs and a change in the temperature transmitter position which both cause
in a significant shift in the time delay. Open loop transfer functions for the nominal conditions in
Table 5.3 in addition to the abnormal conditions which result from the disturbances used in this
study are presented in Table 5.4. Changing the discharge cvs from 100 % to 75 % results in a
severe upset to the discharge temperature and a significant shift in the dynamics of the stirred
tank as indicated by the transfer function in Table 5.4. Switching the temperature transmitter

position from #1 to #2 changes the time delay but does not disturb the discharge temperature.

Table 5.4: Open loop modelling ot the stirred tank heater.

Deviation from Continuous Transfer Function | Discrete Transfer Function
Nominal Case (G,, =f,—{%.°c%) T, =4 seconds
nominal % 1—"_2?9‘—%2,—
discharge cvs=75% %él%_;;i %
TT position # 2 % 11_-3(;—%‘:)‘92:%
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The sampling time for adaptive control was chosen to be four seconds based on the
nominal stirred tank heater time constant of 48 seconds and the guidelines given in Seborg er al.
(1989). An asymptotic data length of 150 was used in the forgetting factors for both AUDI
algorithms (plant model and ENR model) while :ie ENR filter constant (o) in Table 5.2 was set
to 0.2. Input-output data used by both AUDI algorithms was filtered by the band pass filter in
Figure 5.5 with C, = (1-0.4¢")2. For each run, an initial setpoint pulse is made to initialize the
AUDI algorithms of the adaptive control schemes to the nominal plant dynamics. The last
column of the U matrix was initialized to the nominal temperature dynamics listed in table 5.4.
Furthermore, the value of «; was limited to a minimum of -0.995 by disregarding any a, estimate
that is smaller than -0.995 in addition to disregarding updates of the U and D matrices.
Controller constants of predictive PID for all runs are based on the GPC parameters N, = 1, N> =

30,N,=2,A=0.8,y=03,,=10and C. = 1-0.84"' except the run in Figure 5.13 where N, = 1.

5.5.3 Experimental Results

The experimental results presented in this section are intended to show the ability of adaptive
predictive PID in combination with ENR relative to fixed time delay control structures for
control of the stirred tank heater.

The first series of experiments shows the performance of each control scheme in
response to a 600 second period of reduced discharge flow followed by a return to the nominal
flow for 600 seconds. Predictive PID control of the discharge temperature during a disturbance

to the discharge cvs is shown in Figure 5.13. Shortly after the discharge cvs changes from 100 %

I L 1 L T I 1 T 1 ¥ 1

Discharge temp
.......... Setpoint
------- Discharge cvs

Pt
=
o

Discharge cvs, %

75

0 200 400 600 800

1600 1800

1000 1200 1400
Time, s

Figure 5.13: Fixed gain predictive PID control performance for a discharge flow rate
disturbance.
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to 75 %, the discharge temperature becomes marginally unstable which continues until 150
seconds after the discharge cvs returns to 100 %. As indicated by Table 5.4, the time delay
increases by 50 % as a result of this disturbance. This performance is clearly unacceptable
which proves that a long range predictive controller based on a fixed model is not suitable for
control of processes with a significantly varying time delay. It is possible that detuning the
predictive PID controller constants would result in stable temperature response for this type of
disturbance. However, the overall performance would be very detuned. Adaptive predictive PID
control for the same reduction in discharge flow rate employed for the test result in Figure 5.13 is
displayed in Figure 5.14. Although the time delay is fixed, the time constant and gain of the
model adapt to over estimated values in response to the time delay mismatch. This results in a
stable but severely detuned response. In particular, the a, parameter estimate in Figure 5.14
converged very quickly to its minimum allowable value of -0.995 in response to the reduced flow
disturbance introduced at 600 seconds. However, convergence of a, to its nominal value was
very sluggish after the flow returned to its nominal value thus giving rise to the detuned
temperature response. In addition, it was observed on subsequent runs without the imposed

minimum value of q, that the gain of the model changed sign and the temperature response
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Figure 5.14: Adaptive predictive PID control performance for a discharge flow rate disturbance.
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became unstable. It is uncertain whether this is a case specific behavior or if it applies to control
of any process with a time varying delay. The temperature conirol that was achieved using
adaptive predictive PID in combination with ENR is shown by the response displayed in Figure
5.15 for the same disturbance. In response to the decreased discharge flow rate at 600 seconds,
the time delay estimated by the ENR method shifted to 12 intervals and remained constant for the
duration of the disturbance. Consequently, the discharge temperature is stabilized quickly after a
short period of diminishing oscillations. The time delay estimate did not return to its nominal
value within 600 seconds after the discharge flow rate returned to its nominal value although the
discharge temperature was stabilized quickly which considerably reduced the input excitation.

Moreover, the model parameter estimates, a; and b,, converged to -0.95 and 0.025 during the
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Figure 5.15: Adaptive predictive PID with ENR control performance for a discharge flow rate
disturbance.
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period of reduced discharge flow which compares very closely to the open loop estimates of
-0.946 and 0.0273, respectively. The addition of ENR time delay estimation to adaptive
predictive PID control is clearly effective for control of the stirred tank heater with a discharge
flow rate disturbance.

The second series of tests is intended to test the ability of adaptive predictive PID with
and without ENR to reject a disturbance following an increase in the plant time delay. Control
performance of adaptive predictive PID is displayed in Figure 5.16 for a decrease in discharge
flow rate at 600 seconds followed by an increase in the inlet water temperature from 10 °C to
17 °C at 1200 seconds. Similar to the response in Figure 5.14, the adaptive controller using a
fixed time delay model is able to stabilize the discharge temperature following a decrease in
discharge flow rate by overestimating the gain and the time constant of the process. However, as
a result of the model plant mismatch, the controller is very detuned and cannot restore the
discharge temperature to its setpoint even after 600 seconds from the time of the reduced
discharge flow. In addition, the response to the inlet temperature disturbance is also very
sluggish which results in a continued period of offset. A fixed time delay model is clearly

inadequate for adaptive control of plants with a significantly time varying time delay.
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Figure 5.16: Adaptive predictive PID control performance for a discharge flow rate disturbance
followed by an inlet temperature disturbance.
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The temperature control behavior using adaptive predictive PID with ENR for the same
disturbance pattern as used for the previous test is presented in Figure 5.17. As can be seen, the
ENR time delay estimate increased from 7 to 11 sample intervals within 150 seconds of the
decrease in discharge flow rate which resulted in the stabilization of the discharge temperature
within 300 seconds of the disturbance. The plant model parameters converged almost exactly to
the open loop values for the decreased discharge flow condition presented in Table 5.4.
Consequently, the inlet temperature disturbance at 1200 seconds is rejected very quickly without
oscillation. At the end of the test, the ENR time delay estimate was 10 sample intervals (40
seconds) which is only one sample interval larger than in the open loop model in Table 5.4. The

response in Figure 5.17 shows that adaptive prediciive PID with ENR is very capable of
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Figure 5.17: Adaptive predictive PID control performance for a discharge flow rate disturbance
followed by an inlet temperature disturbance.
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controlling processes subject to varying time delays and disturbances.

The third series of experiments is intended to show the performance of predictive PID
and adaptive predictive PID with ENR for a process that exhibits a shift in time delay (i.e. plant
gain and time constant remain constant). Performance of predictive PID, using a fixed model
based on the nominal conditions, in response to switching the temperature transmitter position
from #1 to #2 (see Figure 5.12) at 600 seconds is displayed in Figure 5.18. The inlet temperature
was also perturbed at 600 seconds in order to accelerate the inevitable outcome of the response
of the discharge temperature. This configuration resulted in an unstable discharge temperature

response which demonstrates once again that use of a fixed time delay model with the predictive
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Figure 5.18: Predictive PID control performance for a shift in the plant time delay and a
perturbation in the iniet temperature.

PID algorithm is inadequate for variable time delay processes. The control performance obtained
using the adaptive predictive PID with ENR algorithm for tne disturbance pattern is displayed in
Figure 5.19. The time delay estimated by the ENR method responded much slower to an
increase in the plant time delay compared to the discharge flow disturbance in Figures 5.17 and
5.15. This can be explained by the reduced level of input-output excitation compared to a
reduced discharge flow rate. However, the estimated time delay eventually climbs tc 10
sampling intervals which stabilizes the discharge temperature by 1400 seconds. The a,
parameter converges to about -0.975 which is significantly different than the open loop estimate
of -0.919. The likely reason for this difference is the extended period of time delay mismatch
between the plant and the model while the ENR estimate is converging. In contrast, the b,

parameter in the plant model remained relatively constant after the setpoint pulse which
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Figure 5.19: Adaptive predictive PID with ENR control performance for a shift in the plant time
delay and a perturbation in the inlet temperature.
corroborates the decision to fix a, in the ENR model. However, it is important to note that in the
absence of rich excitation, the ENR method produced constant time delay estimates rather than
erratic estimates. This result motivated a more challenging experiment in which the temperature
transmitter position is switched without an inlet temperature perturbation. The resulting control
performance of adaptive predictive PID with ENR is displayed in Figure 5.20. In the presence of
very low level input excitation, the ENR estimate does converge to 10 sampling intervals which
also stabilizes the discharge temperature. It is not surprising that the value of a, deviates farther
from the open loop estimate and the response of ENR is slower compared to the run in Figure

5.19 because the conditions for identification are even more challenging.
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Figure 5.20: Adaptive predictive PID with ENR control performance for a shift in the plant time

delay without an inlet temperature perturbation.
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5.6 Conclusions

o The proposed ENR method for on-line estimation of time delay was shown to
produce accurate estimates during regulatory adaptive control in simulation and
experimental tests. ENR time delay estimates converged quickly in response to
changes in the plant time delay which resulted in excellent closed loop performance
in cases where controllers based on a fixed time delay model produced unstable or

poor control performance.

e During periods of low plant input excitation, the ENR time delay estimates

converged slowly but smoothly to the plant time delay in experimental tests.

e It is recommended that the value of the a, parameter of a first order extended
numerator model be fixed to the nominal value for use with the ENR time delay

estimation method.

e The ENR method was shown to be superior to the VRE method of Elnaggar er al.

(1991) during reguiatory control in simulation.
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Chapter 6

LabVIEW® for Experimental Process
Control

Assessment of the LabVIEW software development system for the experimental implementation
and evaluation of advanced process control is presented in this chapter. Comments on tF:
development of specific functions required for execution of adaptive long range predictive

control (LRPC) are given in addition to recommendations for future development.

6.1 Introduction

Experimental evaluation will always be an important component of process control research.
Since most research occurs at the university level, it is essential that a cost effective platform be
available for implementation of advanced process control and identification algorithms on pilot
scale processes. It is equally important that control algorithms be easily implemented and
modified. LabVIEW (this strange capitalization is a trademark of the manufacturer; Anoz, 1993)
is one such software development system that meets the above criteria and was subsequently
used for the experimental implementation of adaptive predictive PID presented in earlier
chapters.

The main purpose of this chapter is to specifically address the most challenging issues in
the LabVIEW implementation of adaptive LRPC for control of pilot scale processes. There were

three LabVIE3V version upgrades (2.5.2, 3.0 and 3.0.1) during the course of this research and at
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the time of writing version 3.1 was released which indicates that LabVIEW is evolving at a rapid
pace. This chapter is therefore not intended to function as a users manual for the control
programs developed in this thesis or to evaluate LabVIEW relative to alternative software
because this would quickly become obsolete. However, general recommendations are made
regarding the role of LabVIEW in the future development of advanced process control

applications.

6.2 General LabVIEW Description and
Comments

6.2.1 General Description

LabVIEW is a general purpose software development system intended for laboratory data
acquisition and control that is presently available for the PC (Windows), Mclntosh, Sun and
Hewlett Packard computer hardware. A graphical object oriented language is used to create
programs which visually resemble electronic circuit diagrams. There are three main components
of a LabVIEW program: the block diagram which is the source code, the front panel which is
the graphical users interface and the icon and connector which is used to pass parameters
between subprogr ms. Si ‘ce LabVIEW programs are intended to emulate physical instruments,
they are called vinu»' "astruments. Libraries of some basic and some advanced functions are
available for creating programs some of which are further discussed in section 6.3 relative to the
implementation of adaptive LRPC. Virtual instruments are naturally modular in design whereby
complicated tasks are easily subdivided into subtasks. Data acquisition utilities and the graphical
users interface are particular strengths of LabVIEW and will be further discussed in section 6.3.
Readers are urged to consult the LabVIEW users manual (Anon, 1993) for a more detailed

description.

6.2.2 LabVIEW Programming Paradigms

Perhaps the most significant difference between LabVIEW and conventional text based
programming languages is the process of translating ideas or algorithms into executable code.
When one is familiar with a conventional programming language (e.g. Pascal), learning another

conventional language (e.g. C) requires only a relatively small amount of effort because the
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programming methodologies are directly transferable. Like all languages, LabVIEW ... strict
rules or syntax regarding the construction and execution of programs. Although LabVIEW
contains many of the same structures found in conventional programming languages (e.g. while
loop, for loop, case structure etc.), a very different methodology is required to solve problems.
There is generally no preset order of execution except that a function can not execute until its
input parameters are defined which is very different from a text based program. Consequently,
the initial learning curve was found to be very steep by the author and also by undergraduate
students in a real time computing course at the University of Alberta. However, after this initial
learning period, construction of programs was perceived by the author to require approximately
the same amount of time and effort as text based programming languages. One interesting
observation was that people proficient in writing text based programs generally had a higher

level of frustration during this initial learning period compared te inexperienced programmers.

6.2.3 Simple Examples

Two simple examples are described in this section to illustrate some programming paradigms of
LabVIEW.
Example 1
Consider the most simple of problems; that is, adding two scalar numbers. In almost all
programmatic languages, the entry a+b=c will give the correct result. The LabVIEW front panel

and block diagram for this problem is shown in Figure 6.1. It was required to create a front panel

Front Panel Block Diagram
Figure 6.1: LabVIEW program to interactiveiy add :+/0 numbers.

object for the inputs a and b and the sum, ¢ which are automazt:alty linked to their respective
source or sink in the block diagram. A wiring tool is then used to cuimect these objects to the
add function. This may scem at first to be a somewhat tedious procedure just to add two
numbers. However, the above program can be run continuously and the inputs can be changed
interactively without any additional effort. This latter feature would require considerable

additional effort with any text based language.
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Example 2

The next example considers one possible LabVIEW implementation of a unity gain first order

digital filter given by

N [0
y! == Y ¥(©) (6.2.1)

Figure 6.2 shows the LabVIEW front panel and block diagram for the implementation of (6.2.1).

Front Panel Block Diagram
Figure 6.2: LabVIEW implementation of a digital first order filter.

The large rectangular box in the block diagram of Figure 6.2 is a while loop and the arrow blocks
located on the wall of the while loop represent a shift register which functions as a backward
shift operator. In this fashion, y/(z-1) is available for computation of y(#). Similar to Example 1,
o and y(:) can be changed interactively while the program is running or alternatively, y(7) can
function as an input parameter if the above program is used as a subprogram. From a text based
language programmers point of view, this is not an obvious implementation of a digital filter

although it is not particularly difficult or complicated.

6.3 Adaptive LRPC Implementation Issues

This section gives the author’s personal perspective and assessment regarding some of the issues
in the LabVIEW implementation of adaptive LRPC for control of the steam heated stirred tank

heater presented in Chapters 4 and 5.

6.3.1 Program Structure

The highest level block diagram for the adaptive predictive PID program for control of the stirred
tank heater is shown in Figure 6.3. Each shaded square in Figure 6.3 represents a subprogram,

some of which contain up to ten lower levels of subprograms, while the thick shaded lines that
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Figure 6.3: Block diagram of adaptive predictive PID for control of a steam heated stirred tank
heater.

connect the subprograms are data clusters containing scalars, vectors and matrices. Logical
groups of functions are combined so that the general structure of the program is clearly visible.
This object oriented approach in LabVIEW was found to be excellent for implementation of

adaptive LRPC while troubleshooting was quickly isolated to particular modules.

6.3.2 Diophantine Identity

Solutions of two Diophantine identities over the prediction horizon are required for long range
predictions in the LRPC law (see Chapter 2 for more details). Deconvolution and simple linear
algebra operations, found in the advanced analysis libraries of LabVIEW, were used for the
solution of both Diophantine identities. This proved to be the most challenging LRPC
subfunction to implement in LabVIEW and required more time and effort than required for the
Matlab® (Anon, 1994) implementation. One of the difficulties in the LabVIEW implementation
was the result of the deconvolution function. When the last element of the current deconvolution
solution is zero, the vector is truncated such that the last element is nonzero. Addition or
subtraction of two unequal length vectors in LabVIEW is a valid operation and results in a
truncated solution (e.g. [1 3 2 9 8]+[2 5 3]=[3 8 5]). Conversely, in Matlab this is an illegal
operation. It was therefore necessary to pad the deconvolution solution with zeros to retain the
correct vector length so that subsequent operations on the deconvolution resuit were correct (e.g.
[13298]+[25300]=[38598]).
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6.3.3 GPC Control Law

Computation of the future control vector simply requires matrix multiplications, a matrix inverse
and subtractions. There were no major problems with the LabVIEW implementation although
each operation required a separate icon which resulted in a cluttered block diagram. In

comparison, only one text line is required for the Matlab solution.

6.3.4 Augmented UD Identification (AUDI) Algorithm

The algorithmic representation of AUDI given in Table 4.1 was implemented in LabVIEW for
on-line estimation of the plant model which was used ir. conjunction with LRPC. Execution of
the AUDI algorithm requires many matrix manipulations which can be very tedious and are
complicated procedures in LabVIEW. In particular, replacing a row of a matrix with another row
requires a “for loop” or a “while loop” to replace each element one by one. This is a single line
operation in Matlab. Other difficulties in LabVIEW include redefining a matrix with a
dimension of nx1 to a vector and removing a row or column from a matrix which both require an
element by element approach. Although these problems did not prevent the implementation of
AUDI, it is clear that LabVIEW is not the ideal software for operations with complicated matrix

operations.

6.3.5 Data Logging

Data Jogging utilities in LabVIEW were found to be both convenient and flexible. Data can be
written to an ASCII file or to a spreadsheet file at each time interval or at the end of the run.
Only one simple function was required to write the input-output data, controller constants and

estimation parameters to a file.

6.3.6 Graphical User Interface

The front panel serves as the graphical users interface for LabVIEW programs. A wide
assortment of front panel controls and indicators are available to interactively exchange
information between the user and the block diagram. Front p:nel object attributes such as size,
color, shape, decoration, data type etc. are easily modified to constnict a custom interface. An
example of such an interface used for the adaptive predictive PID controller described earlier is

shown in Figure 6.4. The left portion of the front panel contains four clusters of parameters
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Figure 6.4: Front panel of adaptive predictive PID for control of a steam heated stirred tank
heater.

which are used to change the controller constants, setpoint, plant model, as well as process
disturbance parameters such as level and drain valve signal interactively. Each of these clusters
are in turn connected to the block diagram objects as shown in Figure 6.3. Trend charts on the
right portion of Figure 6.4, used to display the setpoint, the plant output and the plant input, can
be rescaled interactively simply by clicking on the numerical value and typing in the desired
value. Only a few hours were required to construct this graphical interface which indicates that

LabVIEW has very powerful and convenient graphical utilities suitable for control applications.

6.3.7 Data Acquisition

Three methods of data acquisition are possible with LabVIEW. First, is communication with
instruments that use the IEEE-488 protocol, second, is specialized data acquisition cards that
plug into the computer chassis and third is serial communications with an /O subsystem. Since
only the latter two methods were used in the experiments discussed in this thesis, this will form
the focus of the following remarks.

The LabPC+ data acquisition card in conjunction with the LabVIEW DAC library was

found to be very simple and effective when used for the light bulb control experiment presented
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in Chapter 2. Only one high level function is required for a read or write operation while
numercus low level functions exist for more specialized data acquisition procedures.

Serial communications at 9600 BAUD to an existing OPTO 22 (Anon, 1990) /O
subsystem provided the data acquisition for the stirred tank heater experiments presented in
Chapters 4 and 5. Some familiarity with the operation of OPTO 22 was required to construct the
stirred tank control prograsas although this was a relatively minor issue. The OPTO 22 library
within LabVIEW provided a powerful but simple suite of functions which required little effort
for the construction of the stirred tank heater control applications. Because Windows is not a
real time operating system, LabVIEW programs running under Windows can not truly be
classified as real time applications. However, the actual execution of all LabVIEW programs
was flawless for all experiments conducted in this thesis. It is concluded that data acquisition

facilities within LabVIEW are ideal for experimental process control applications.

6.3.8 Program Execution: and Debugging

Prior to running, LabVIEW programs are automatically compiled to machine code which results
in fast program execution. However, it was observed that a significant decrease in execution
speed occurs when the front panel contains waveform charts with the strip chart update mode and
a data length that exceeds the x axis limit. It is therefore recommended that the sweep chart
update mode be used for execution of time critical applications (e.g. experimental applications
with a short sampling time).

Recause of the visual nature of LabVIEW programs, debugging takes on a visual
approach whereby step by step execution of the block diagram can be visually observed and

probed. These debugging features were effective and simple to use.

6.4 Recommendations for Future Development

One of the most important issues regarding the future use of LabVIEW for experimental
implementation of advanced process control and identification is integration with Matlab.
Process control engineers and researchers have used Matlab extensively for many years to test
and evaluate control and identification algorithms. Furthermore, many recent control and
identification textbooks utilize Matlab (Franklin et al., 1990; Ljung, 1987; Strum and Kirk, 1994;
Leonard and Levine, 1992). It is clear from the discussions in section 6.3 that LabVIEW has a

very powerful and flexible graphical users interface and excellent data acquisition utilities. With
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these comments in mind, the following recommendations are made regarding the future use of

LabVIEW for experimental process control.

1.

Control functions that currently exist as C source code programs can be compiled and used
as subfunctions in LabVIEW programs with the use of the code interface utility in the
LabVIEW advanced analysis library. In addition, it is possible to translate Matlab functions
to C source code which can also be compiled and used as LabVIEW subfunctions to build
experimental applications. This combines the most powerful featur:: of LabVIEW with the
most powerful features of Matlab and also allows existing Matlab cede reuse. Aithough not
tested thus far at the University of Alberta, it is believed these methods will be key in the
future use of LabVIEW for experimental process control.

In Matlab version 4.2c and LabVIEW version 3.0.1, dynamic data exchange (DDE) is
permitted in the Windc s environment. This method remains to be evaluated at the
University of Alberta. One disadvantage of this approach is that numerically intensive
Matlab programs such as identification algorithms will require excessive computational
resources because Matlab programs are executed in an interpretive manner.

Use LabVIEW exclusively (i.e. without Matlab or C subprograms) but take note of the
comments in section 6.3. If a significant amount of time and effort has not been spent
developing Matlab programs and if the programmer is sufficiently proficient in writing

LabVIEW programs, this may be the best alternative.

6.5 Conclusions

e The LabVIEW learning curve was observed to be steep by undergraduate students
and the author primarily because the programming methodologies differ significantly

from text based programming languages.

o The graphical users interface and data acquisition utilitics in LabVIEW for
implementation of adaptive LRPC are excellent although complicated matrix

operations were found to be excessively tedious.

e Combining LabVIEW and Matlab through the C code facility or through DDE may

prove to be an ideal tool for experimental implementation of process control.
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Chapter 7

Industrial Batch Identification Study

Batch identification of industrial input-output data using the Matlab® System Identification
Toolbox and batch least squares based on an augmented upper diagonal factorization method are
presented in this chapter. Model types suitable for use with generalized predictive control are
evaluated using time and frequency domain analysis. ARX and ARMAX models were found to

give a good fit to the plant dynamics which was validated by two independent data sets.

7.1 Introduction

With the recent increased use of model based control and on-line optimization in industry, the
demand for simple but effective batch identification techniques has never been greater. The
trend toward advanced control and process optimization will continue in the future as industrial
corporations compete for a larger share of the global market. A popular vehicle for
implementing advanced control is through model-based predictive control. It is well understood
that such model-based advanted vontrol techniques are effective only if the plant model is a
reasonable approximation \c i#+ *.iant dynamics. It is also imperative to the success of advanced
contsi ihat simple standardized identification techniques are available so that plant personnel
can ¢csdically validate and update plant models. The modelling process involves selecting the
model type and the medlel structure in addition to determining the parameters of the model. The

model type is noriwely chosen to accommodate the control application. For example,
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generalized predictive control (GPC) requires a linear time series (ARIMAX) type of model.
The model structure, which includes the model order, time delay and noise model type, must be
chosen carefully so that the most significant characteristics of the process are captured in the
model. Lastly, the parameters of the model must be chosen to provide an optimal compromise
betweern high frequency and steady state dynamics. The published literature is rich in the area of
identification with thousands of reported applications and several textbooks.

The focus of this chapter is an identification case study using industrial open lo .. .nput-
output data and standard analytical software. Two batch least squares techniques are consider~d
in this study — both of which are standard available Matlab applications. The first is the Mz:lab
System Identification Toolbox by Ljung (1992) which is available {1:m The Mathworks, Inc.
The second is the augmented upper diagonal identification (AUDI) method developed by Niu
(1994) which is publicly available from the ftp site: fip.mathworks.com in the directory:
/pub/contrib/systemid/audidemo. A linear time series type of model is selected to be compatible
with GPC although the techniques presented in this chapter also apply to other model and control
techniques. Although practical considerations such as time varying and nonlinear plant dynamics
are important, it is assumed for the purposes of this study that the dynamics are relatively linear

and time invariant.

7.2 Batch Least Squares Identification
Techniques

Batch least squares (BLS) techniques are used by many disciplines to generate empirical models
from input-output data. As far back as 1809 (Gauss, 1809), BLS was used for the development
of models for the prediction of planetary orbits. Today, BLS and variants of BLS remain the
most popular estimation techniques because of their simplicity and effectiveness. The intent of
this section is to give a brief overview of estimating a simple time series model with batch least

squares techniques.

7.2.1 Process Models

A linear time series model representation for the plant shown in Figure 7.1 can be expressed as

Alg™)yit)= B{g™ Jule — 1)+ x(r) (7.2.1)
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x(t)
u(r) G ¥(1)

P

Figure 7.1: General process representation.
where u(t) represents the process input, x(r) is the disturbance, y(¢) is the noise corrupted
output and
A=1+a,q”" +a,q2+-+a,,q ™ B= q"’(bl +byq™ +---+b,,,,q""")
where nA is the order of the plant denominator, nB is the order of the plant numerator and d is

the time delay. The piant dynamic model, G, is then given by £ while the disturbance term,

x(z), can be expressed in several formulations. The disturbance models that apply to the GPC

control law are given by the following expressions

ARX x(r)=E(r)

ARIX *(1)= 4 &)

ARMAX x(t): C(q"l )§(t) (7.2.2)
ARIMAX x(r)=5(7§;)¢(r)

where E(1) is a zero mean random sequence. The abbreviations in (7.2.2) apply when combined
with (7.2.1) which are: auto-regressive (AR) applies to A and B; integrated (I) applies to & ;

moving average (MA) applies to C; with exogenous input (X) applies to u. Rearrangement of

(7.2.1) gives the following
y(t)=-a,y(t =1)—+—a,, y({t —nA)+ bu(t —d — 1}t +b,gu(t —nB—-d - 1)+ x(t) (7.2.3)

Such a model structure is also known as the equation error (EE) model. The main characteristic
of the EE model structure being that the denominator dynamics due to the A polynomial are

common to both the input and the disturbance.

7.2.2 Batch Least Squares

The ARX representation of (7.2.3) can be expressed as a product of a parameter vector and an
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input-output data vector given by

Y(1)=0 5.5 (08 s +E() (7.2.4)
where the parameter vector is
6ps=[a, ay ~ aw b by - byl (7.2.5)
and the data vector is
Ops@O)=[-y-1) -y(t-2) - -y@-nA) u@t-d-1) uft-d-2) - u(t-d-nB)]'
(7.2.6)

The objective of BLS in this case is to determine the parameter vector 17.2.5) that minimizes the

sum of the single step ahead prediction errors expressed as

=3 ) - 0T (s (127

j=

The parameter vector which minimizes (7.2.7) from the input-output data in the series 1 =171,

is given by

6 s =['2¢w(j»§,.s(j)] 3 05 ()20) (12.8)

j=n j=n

which is essentially a multiple linear regression. A proof of (7.2.8) can be found in almost every
textbook on process identification or statistics (e.g. Ljung, 1987). It should be noted that the
BLS solution in (7.2.8) can be applied to any of the model types in (7.2.2).

7.2.3 Augmentet Upper Diagonal Identification

The AUDI method. $or process identification is & variant of least squares. As such, the objective
of batch AUDI $s exactly the same as BLS. The neajor differences between AUDI and BLS for
batch ident:” -ation are the formulation of the augmented parameter and data vectors and the
numerical solution of the parameter vector. This sec*ion is intended to give a very brief account
of the AUDI method for estimating ARX models. ARIX models can be estimated by

differencang the input-output data. For a thorough treatment of the topic and detailed derivation
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of the AUDI algorithm, see Niu et al. (1992) or Niu (1994).
The augmented parameter and data vectors are defined by defining the elements of the

parameter and data vectors as follows

0@)=[ 1-n) u@g-n-d) ... -y(-1) u(@-1~d) -y@)] (7.2.9)
6()=[a, b, ... a b 1J (7.2.10)

The ARX model based on the avgmentzd vectors can then be expressed as

C=0" (B ()+E() (7.2.11)

A special covariance matrix denoted. ~  :ugmented information matrix (AIM) is defined as

i=h

-1
i
C(t)=[2¢(j)¢’(j)} (1.2.12)
The AIM is then factored into the following diagonal and upper diagonal matrices
c(t)=U@)D() (1) (7.2.13)

where the U and D matrices are defined by

16 6 - & & J°
1 6 - a1 61 L 0
1 - & én J!
u(r)= a4t el D)= (7.2.14)
0 163, 0 !
L 1_ L. Jn-

where 6 is the model given by (7.2.10), & contains the parameters of a different model, J is the
loss function of the € model given by (7.2.7) and L i the loss function of the & model. The

superscripts and subscripts in (7.2.14) cortespes:d to the model crder and element of 6 oré,
respectively. For about the same effort as the BLS solution, AUDI provides estimates and the

loss functions of all ARX models from order one to n. In the AUDI algorithms available at the
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previously mentioned Mathworks ftp site, either LU, QR or Cholsky decomposition of C™'(r)

can be selected by the user. Therefore, AUDI does not involve computation of a matrix inverse

which has significant numerical advantages compared to BLS for low plant input excitation.

7.2.4 The Matlab System Identification Toolbox

The functions contained in the Matlab System Identification Toolbox (denoted as ID toolbox)
provide the means to estimate time series and state space type of models from input-output data.
Frequency and time domain techniques are employed to validate and analyze the mode!. This
section briefly discusses the techniques used in the estimation of ARX and ARMAX models by
the ID toolbox in order to provide a basis for comparison with AUDI. As was the case in the
AUDI method, integrating models can be estimated by differencing the input-output data.
Readers interested in the specific use of the ID toolbox are urged to consult the user’s guide
(Ljung, 1993). Throughout the remainder of this chapter italicized commands represent
functions in the ID toolbox.

The arx function in the ID toolbox is usad to estimate the ARX model given by (7.2.3).

For a time series of input-output data and model order n, (7.2.3) can be expressed as

5’(’1) [ ¢2Ls(‘|) ]
3, +1) _ 0 25 (1, +1)

>

6,s or  y=®0,; (7.2.15)

56) | | 0%ts) |

The solution of (7.2.15) employed by the ID toolbox uses the Matlab function “\” for computing

the solution of the parameter vector given by

-

8y =D\y (7.2.16)

ARMAX models are estimated by using the armax command ir the TD toolbox which employs a
robustified Gauss-Newton algorithm to iterate the solutions ot A, B and C. Iteration is required

because a non-unity value of C requires the current noise input, §(¢), which is estimated by the

residual, é,(t): y(£)-5().
The solution matrix returned by the arx and armax functions (denoted as theta) contains

the loss function, model uncertainty and the model estimate in addition to other relevant
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information about the identification result. The element rheta(l,1) contains the loss function of

the model which differs slightly from the definition in (7.2.7) given by

LF]
- 1 N af T
J= s ;[y(z)— 10 (7.2.17)
=4
where N is the data length (or #-1,+1) and dim is max(nA, nB+d+1)-1. This is a very useful loss

function definition because it also approximates the noise variance for a large N.

7.3 Identification Case Study

The objective of this case study is to estimate a dynamic model of an industrial process that is
suitable for use with a GPC controller. The process consists of a highly exothermic catalytic
reactor in the fertilizer plant described in Chapter 2. In relation to the general representation in
Figure 7.1, the plant input is the reactant flow rate and the plant output is the catalyst
temperature. Three open loop runs were performed on the reactor in which step changes were
made to the reactant flow rate while the catalyst temperature was recorded at five second
intervals which is displayed in Figure 7.2. The approach taken in this study is to use one data set
for identification (denoted as ID data set) and the remaining two data sets for validation (denoted
as validation set 1 an validation set 2) of the model. It is essential for reliable identification that
the sample mean and linear trends are removed from the input-output data. Therefore, the
Matlab ID Toolbox command dtrend(z, 1) was used to condition the industrial data prior to all

estimation results presented in this chapter.

7.3.1 ARX Model Estimation

7.3.1.1 Selection of Time Delay and Model Order

The phase contribution of the time delay can be a dominant factor in the closed loop stability of
model based crirol. Significant model plant mismaich can occur when the time delay is either
under or over estimated. In addition, over estimating the model order can lead to numerical

instability of the plant model estimate. The selection of time delay and model order is the first
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Figure 7.2: Open loop industrial input-output data.

procedure in the identification process because these are integral components of the model
structure and they affect the structure of the ¢; vector. Although the actual time delay of the
process is not normally related to the actual order of the pla:t «Jynamics, the estimated time delay
is strongly related to the chosen order of the plant model (e.g. the time delay that gives the best
model-plant fit for a first order model is not the same time delay that gives the best fit for a
higher order model). It is therefore important that the model order and time delay are chosen in a
simultaneous fashion. A computationally intensive but effective method of simultaneously

choosing time delay and model order consists of estimating all of the models for a wide range of
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time delay and model order. The ID toolbox function arxstruc computes the loss functions
according to (7.2.17) for any given range of ARX model structures. As shown in the top plot of
Figure 7.3, the optimal time delay increases with decreasing model order. Cross-validation is
performed (an option of arxstruc) by selecting one data set for identification and a different data
set for computation of the loss function. Comparison of the top plot with the bottom two plots of
Figure 7.3 indicate that the cross-validation loss functions are consistent with the ID data set loss
functions. It is clear that no single estimate of the time delay is optimal for all model orders.
The approach taken in this study is to base the selection of model order on the optimal time delay

estimate of each model order rather than a single time delay for all model orders.
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Figure 7.3: ARX model loss function plots with respect to time delay using the 1D tooibox.

Cross-correlation analysis can also give an indication of time delay for input-output data.
The ID toolbox function cra computes the cross-correlation between y and u following
prefiltering the data. The plot in Figure 7.4 shows the first 11 estimated impulse response

coefficients computed by cra in addition to the 99 % confidence level. A delay of between 3 and
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4 sample intervals is indicated although the confidence level is very high. Significantly more
data than is available in these industrial open loop data sets are required to obtain meaningful

time delay estimation results from cross-correlation analysis.
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Figure 7.4: Impulse response estimate of the ID data set using the ID toolbox function cra.

The loss functions corresponding to the optimal time delay estimate at each model order
are presented in Figure 7.5 for the ID data set as well as the validation sets. Loss functions
computed by AUDI in Figure 7.5 are multiplied by 1/(N-dim) to be consistent with the loss
function definition in (7.2.17). Although AUDI and the ID toolbex are both based on a least
squares algor...im, the solutions are not exactly the same presumably because of the differences
in the numerical solution (i.e. pseudoinverse vs. the UDU factorization) and data conditioning in
the ID toolbox. There is a significant improvement in loss function for increasing the model
order up to three but further increases result in a negligible improvement as shown in Figure 7.5.
High model orders increase the computational lvad of the application and may result in
numerical instability. Intuitively, the best choice on model order from the loss function plot in
Figure 7.5 is three because higher orders give minimal improvements. The model order selection
process can be formalized by using an objective function that penalizes high dimensionality. The

following expression is one such objective function used by the ID toolbox function selstruc.
oo =J(1+cN, /N) (13.1)

where ¢ is the penalty applied to the dimension and N, is the sum of the order of A and B (i.e. for
a third order model N, = 6). The Akaike information theoretic criterion (AIC) as used by Ljung
(1987) is described by (7.3.1) with ¢ = 2. The “optimal” model order is then given by the model
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Figure 7.5: Loss function plot with respect to model order for ARX models.

that minimizes (7.3.1). Model structure selection based on AIC (i.e. ¢ =2)and ¢ = 5 in (7.3.1)
using the ID toolbox function selstruc is presented in Table 7.1. Based on the resulis of selstruc,

the optimal model order and time delay are three and one, respectively.

Table 7.1: Optimal ARX model order and time delay using the ID toolbox function selstruc.

ID data set Validation set 1 Validation set 2
AIC c=5 AlIC c=5 AlIC c=5
(c=2) (c=2) (c=2)
Model order 4 3 4 3 3
Time delay 1 1 1 i 0 0

Model estimation of the detrended data based on the optimal ARX structure using AUDI
and the ID toolbox is presented in Table 7.2. Coefficients of the A polynomial estimated by
AUDI and the ID toolbox show close agreement, but the B polynomial coefficients differ
significartly. Similarly, the poles of the AUDI solution match closely with the ID toolbox
solution while the zeros are significantly different. In addition, the model generated from the ID
toolbox is non-minimum phase while the AUDI solution is minimum phase. It is therefore
expected that the high frequency dynamics will differ somewhat while low frequency dynamics

will be very similar.
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Table 7.2: Estimated ARX model parameters using AUDI and the ID toolbox.

ID Method Plant Model Zeros Poles Gain
-d
_q9°'B
G, =15
g7'(0.9718+0.8805™' +0351057%) 0.9163
AUDI - — 2| -0.4530j0.3949 | 0.7434 | 665
1—-1.1168¢"" - 0.2198¢g +0.3697g -0.5428
q7'(0.5606 +0.4092¢™" +1151697*) 0.9172
ID toolbox . - 2| -0.3650j1.3861 | 0.7579 | 67.4
1-113294" - 0.2066¢% +0.3709¢ 05372

7.3.1.2 Time Domain Validation

Cross-validation of dynamic models is an essential component of the identii:. iitor preicess. This
ensures that the model is a good fit to the plant dynamics and not just *o a specific set of input-
output data. Two time domain methods are employed to validate the models in Table 7.2. The
first is the loss function (7.2.17) which is computed independent of the results in section 7.3.2.1
to ensure consistency between the ID toolbox and AUDI. The second method is the mean square

fit (computed by the ID toolbox function compare) defined by

\]2')"}’,;,,,'2

MSF = ————— (7.3.2)

JN

_ where ygn is the simulated response with the plant input data. Table 7.3 shows the loss functions

and mean square fit for the ARX models in Table 7.2 applied to all input-output data sets. As
expected, the MSF is best for the ID data set although the fit is acceptable for the validation data
sets as well. The sum of J and the sum of MSF for all data set< matches very closeiy for the
models generated by AUDI and the ID toolbox. The predicted plant output trajectory using the
ARX models in Table 7.2 (without actual plant output feedback) in response to the plant input

Table 7.3: Time domain validation of ARX model estimates.

ID data set Validation set 1 | Validation set 2 combined
J MSF J MSF J MSF pN IMSF

ID toolbox 0.0087 | 0.5390 | 0.0090 | 0.7646 | 0.0080 | 0.7819 | 0.0257 | 2.0855
AUDI 0.0089 | 0.5262 | 0.0094 | 0.7655 | 0.0082 | 0.7903 | 0.0265 | 2.0819
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data is plotted with the actual plant output data in Figure 7.8. The models generated by AUDI
and the ID toolbox produce simulations that are almost indistinguishable. The observed fit
between the simulations and.the ID data is excellent. Although the observed fit between the
simulations and the validation data is not as good as the ID data set, it is still very acceptable. It
is not surprising that the model plant mismatch is the smallest for the ID data set because the

mode] was estimated from the same data.

7.3.2 ARIX Model Estimation

An ARIX model was estimated by differencing the input-output data and following the same
procedure as in section 7.3.1. To make a long story short, the ARIX model can not adequately
represent the dynamics of the industrial reactor. As shown in Figure 7.6, the simulated response
of the ARIX models is a very poor fit to the plant output data. Further investigation is not

required to conclude that the reactor dynamics are not suited to an integrating noise model.
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4F------- ID toolbox

-
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Figure 7.6: Simulated response of the ARIX model.

7.3.3 ARMAX Model Estimation

Identification of ARMAX models requires iteration as mentioned in section 7.2. Since the AUDI
routines available are not formulated for batch identification of ARMAX models, the
identification results presented in this section are performed only by the ID toolbox. The only
difference in the analysis of this section compared to section 7.3.1 is that the analogous function
to arxstruc does not exist for ARMAX models. Instead, the ARMAX model for each model

structure was identified using the armax function and a separate function was written to compute
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Jomod for selection of time delay and mods! order.

7.3.3.1 Selection of Model Order and Time Delay

Selection of the optimal structure for models of the ARMAX type follows the same procedure as
in section 7.3.1. Although higher order C polynomials were evaluated in the ARMAX model
estimation, a first order C resulted in the best fit and was used in all subsequent analysis. The
loss functions corresponding to the optimal time delay estimate at each model order are presented
in Figure 7.7 for the ID data set and the validation sets. Significant improvements in loss
functions are shown by increasing the model order from one to two but further increases in
model order results in diminishing improvements. The intuitive choice of model order is either
two or three depending on the constraints of the application. Selection of an ARMAX model
structure based on the AIC and ¢ = 10 in (7.3.1) zriteria 1s presented in Table 7.4 Additional
improvements in loss function by increasing the model order to taree from two exceed the
penalty on the higher model dimension even when a sirong weight is applizd to the selection
criterion. The optimal time delay and model order for the ARMAX model estin:ation is therefore

chosen to be one and three, respectively.
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Figure 7.7: Loss function with respect to model order for the ARMAX model with a first order
C polynomial.
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Table 7.4: Optimal ARMAX model order and time delay using the ID toolbox and (7.3.1).

ID data set Validation set 1 Validation set 2
AIC c=10 AIC =10 AIC c=10
(c=2) (c=2) (c=2)
Model order 3 3 3 2 3
Time delay 1 1 1 1 0 0

Model estimation based on the optimal ARMAX structure using the ID toolbox is
presented in Table 7.5. Coefficients of the A polynomial and the poles are similar to those
estimated in Table 7.2 while the B polynomial coefficients are somewhat different than in Table
7.2. Furthermore, the zeros indicate that the model exhibits non-minimum phase behavior while
the gain is slightly lower than the gain estimated by the ARX models. The C polynomial

estimate indicates that the plant noise is not strongly correlated.

Table /.5: Estimated ARMAX model parameters using the ID toolbox.

Plant Model Noise Model Zeros Poles Gain
-d C
_gq9"'B =Lk
6, =L, x()=£¥()
-1 -1 =2 .
0.6336 +0.11844" + 0.6590 — -l 0. 0.0468
7 , 7 ? )3 10441497 | 4 09341j1.0155 | 057508 64.4
1-14569¢~ +0.2456q97° +0.2332¢q™ A -0.3010

ARMAX model: Ay=Bu+CE (equation error structure)

7.3.3.2 Time Domain Model Validation

The time domain performance of the ARMAX model presented in Table 7.6 shows a slight
improvement in every case compared to the ARX model performance in Table 7.3. The MSF of
the simulated model also follows the same pattern as the ARX model which is best for the ID
data set and acceptable for the validation sets. The simulated response of the ARMAX model in
Table 7.5 to the plant input data is plotted with the actual plant output data in Figure 7.8. The
ARMAX simulated response is an excellent fit to the plant data although it is barely distinguish-

Table 7.6: Time domain validation of the ARMAX model.

ID data set Validation set 1 | Validation set 2 combined
J MSF J MSF J MSF J IMSF

0.0082 | 0.4990 | 0.0087 | 0.7510 | 0.0079 | 0.7741 | 0.0247 | 2.024!
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able from the ARX model simulations. Unit step responses of all models estimated in this
chapter are displayed in Figure 7.9. As can be seen, the response of the ARX and ARMAX
models are very similar while the ARIX model differs significantly. The cumulative sum of the
Matlab cra impulse response as shown in Figure 7.4 is also plotted in Figure 7.9. Good transient
response agreement between the cra and the ARX and ARMAX models is shown although a
steady state of the cumulative sum of the cra model cannot be obtained because the impulse

coefficients converge close to but not exactly zero.
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Figure 7.8: Simulated response of ARX and ARMAX models to all data sets.
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Figure 7.9: Unit step responses of plant models.

7.3.4 Analysis of Residuals

A common technique used to validate the ability of a model to fit the dynamics of the plant and
the noise is to perform an auto-correlation analysis on the residuals or prediction errors. If the
noise model is a reasonable representation of the true noise dynamics, the residuals will not be
auto-correlated. Conversely, strong auto-correlation of the residuals indicates that the noise
model is inappropriate. The auto-correlation of the residuals along with the 99 % confidence
interval (from the ID toolbox function resid) is plotted for the ID data set in Figure 7.10. As
expected, the residuals from the ARIX model are strongly correlated which indicates that ARIX
is a poor model choice. It is also not surprising that the residuals from the ARMAX model are
virtually uncorrelated because the noise model was specifically estimated along with the plant
model parameters. Although the ARX models show a small amount of auto-correlation, there is

only one violation of the confidence interval for each ARX model as shown in Figure 7.10.

7.3.5 Frequency Domain Model Validation

Spectral analysis techniques such as fast Fourier transforms offer a convenient means to validate
a model with input-output data in the frequency domain. Both low frequency and high frequency

dynamics can be evaluated by computing the magnitude and phase of the models at various
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Figure 7.10: Auto-correlation of residuals for the ID data set.

frequencies. In Matlab this is executed with the function bode while the frequency response of
the plant data is evaluated with the spa command. Standard Bode analysis methods can be used
to evaluate the fit of the model to the plant spectrum. Figure 7.11 shows the frequency response
of the plant models in Tables 7.2 and 7.5 x.-d the frequency spectrum of the plant data. The
magnitude plot shows good agicement bet .. zen the models and the plant at low frequencies
which means the steady state gain is estim:.. d correctly. Attenuation at mid frequencies of the
plant magnitude plot is also followed very cl. - 2ly by all of the models until about 0.06 Hz which
indicates the dominant time constant of the - :odels matches the plant dynamics. Noise is
dominant at high frequencies which explains the significant deviation between the models and
the plant spectrum for both magnitude and phase plots. Good agreement in phase plots between
the plant and all models is shown for low and mid frequencies. All of the ARX and ARMAX
models therefore match the low and mid frequency dynamics of the plant. In order to evaluate
the high frequency fit, significantly more plant data and stronger filtering are required to increase

the reliability of the plant spectrum.
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Figure 7.11: Frequency response of the plant data and models.

7.4 Conclusions

¢ ARX and ARMAX model structures are a good fit to the plant reactor input-output

data which was validated in the time and frequency domains.

o Analysis of the residuals shows a weak correlation for ARX models which motivates

the use of the ARMAX type model.

e Both AUDI and the System Identification Toolbox provided a convenient means for
batch identification of plant models. The discrepancy in ARX models is due to
numerical differences in the algorithms and the data conditioning in the ID toolbox.
The System Identification Toolbox was found to be is a very convenient and
powerful tool for the identification and validation plant models from input-output

data.



Chapter 7: Industrial Batch Identification Study 155

References

Gauss, K.F., “Theoria motus corporum coelestium (1809) English translation: Theory of motion
of the heavenly bodies,” Dover, New York, 1963.

Ljung, L., System Identification Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.

Ljung, L., System Identification Toolbox for use with Matlab, The MathWorks, Inc., Natick,
Mass., 1992.

Niu, S., D.G. Fisher and D. Xiao, “An augmented UD identification algorithm,” Int. J. Control,
Vol. 56, No. 1, pp. 193-211, 1992.

Niu, S., “Augmented UD identification for process control,” Ph.D. thesis, University of Alberta,
1994.



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This thesis has addressed two main issues: first, the development of a model based PID control

law .0 - aizat to a long range predictive control law and second, the on-line estimation of
a plamt #nie o~ . .rom an extended numeraior model. In addition, several supporting topics
were ‘- .w. .0 including an overall performance measure and an industrial batch

identification case study. A summary of the main contributions is given as follows:

1. Predictive PID Control Law

A predictive PID control law results from equating the linear polynomials of GPC (Kwok and
Shah, 1994) with the linear polynom:ils of an incremental form: of a PID control law with
proportional and derivative action removed from setpoint changes. The third term in the linear
GPC control law constitutes the internal model (denoted as Gyyp) for the predictive PID algorithm
which exists only if there is a time delay or colored noise in the plant model. Therefore, plant
time delays and stochastic disturbances are compensated {or in an optimal fashion by Gy which
can also be interpreted as a multistep weighted predictor. First and second order plant models
yield model based PI and PID controllers, respectively. Thus, the maximum plant model order is

two although there is no restriction on the GPC controller constants or the noise model
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characteristics on which the predictive PID law is based. For the case where the C polynomial in
GPC is non unity, there is a slight approximation required in the predictive PID servo term which
will always result in a detuned servo response compared to GPC. An ad-hoc solution to increase
the servo aggression of predictive PID for cases where servo response is too slow simply requires
including proportional action for setpoint changes. Setting the finite prediction weight in GPC to
zero results in a mean level formulation of predictive PID for which the PID controller constants
can be solved explicitly in terms of the plant model parameters. This formulation of the
predictive PID controller is especially attractive because it is very simple and requires minimal
effort to compute the PID controller constants. Two block diagram representations of predictive
PID were presented to facilitate its implementation and interpret the mode] based structure.
Simulations of predictive PID prove that it is equivalent to GPC for regulatory control while for

servo control it is slightly more sluggish when colored noise is specified in the plant model.

2. Extended Numerator Rationalization for On-line Time Delay
Estimation

A new method of on-line time delay estimation was presented based on the rationalization of the
numerator coefficients of an extended numerator model. It was proved that for a first order ARX
model with two numerator coefficients, the timz delay czn be represented by the relative weight
of the second B coefficient. The main idea behind the ENR technique is to extend this concept to
any number of B coefficients using a method of moments. It is recommended that a first order
ARX model with enough numerator coefficients to cover the expected range of plant time delay
and a fixed denominator coefficient be recursively updated using AUDI (Niu et al., 1992).
Fixing the denomninator of the time delay model was shown to increase the sensitivi' of the
numerator following changes in the plant time delay. Recursive AUDI was chosen because the
additional information contained in the U and D matrices proved to be key for the practical
implementation of ENR. An example of ENR applied to a first order plant with open loop
excitation and a time varying delay was shown to give accurate integer and fractional estimates
of the time de'»y. it was demonsirated that an estimate of the ENR uncertainty can be calculated
based on the propagation of variance of the estimated B coefficients.

Simulation results showed that the ENR technique is as good or better than the variable
regression estimation method of Elnaggar et al. (1991) under closed loop servo and regulatory
operation. Cencluding remarks regarding the experimental evaluation of ENR in combination

with an adaptive predictive PID contrel law follow in the next section.
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3. Practical Evaluation of Predictive PID, Adaptive Predictive PID
and ENR

Two potentially successful areas for the practical application of predictive PID controllers are the
replacement of conventional PID in industrial contro! computers and adaptive or self-tuning PID
when combined with an on-line identification algorithm such as AUDI. The main focus of all of
the experimental tests performed on the stirred tank heater and the industrial implementation was
regulatory control performance to be consistent with the primary objective of industrial process
control.

Predictive PID was implemented using an industrial control computer for control of an
industrial heat exchanger by specifying a user defined function for Gyr and removing
proportional and derivative action from setpoint changes which are built in options. Only one
hour was required to implement the predictive PID algorithm on the TDC2000 control computer
not including the modelling and controller design. This represents a significa::t savings in
implementation costs compared to any other advanced control scheme. In comparison with the
existing PID controller, the performance of the predictive PID control algorithm was superior as
indicated by the significantly lower variance of the controlled variable as well as the variance of
the manipulated variable during regulatory control.

Extensive experimental testing of the predictive PID controller combined with AUDI for
control of the discharge temperature of a stirred tank heater permitted a thorough evaluation of
the algorithm’s performance. Based on the findings of Shook ez al. (1991), the input-output data
were filtered using a bandpass filter prior to parameter estimation using AUDI to make the
identification objectives compatible with the long range objectives of predictive PID. Varying
degrees of disturbances to the discharge temperature were introduced some of which resuited in a
significant change in the plant dynamics. Excellent regulatory control performance was
demonstrated by the adaptive predictive PID controller during all of tiie runs. The improvement
in performance of adaptive predictive PID compared to predictive PID increased with the
magnitude of the change in plant dynamics. In response to a significant increase in the time
delay, the gain and time constant of the estimated model were overestimated by a factor of six
times which resulted in a detuned but stable performance. However, it is possible that this
phenomenon is a case specific occurrence.

Adaptive predictive PID in combination with ENR proved to be effective for control of

the stirred tank heater during upsets that caused the time delay to vary significantly. The ENR
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estimate of the time delay responded quickly and accurately to changes in the time delay which
resulted in an improvement in performance compared with the adaptive predictive PID controller
based on a fixed time delay model. During the period of increased time delay, the parameters of
the plant model converged approximately to the correct values that were identified by open loop
tests and this resulted in significanuy improved performance during subsequent disturbances. It
is concluded that adaptive predictive “ID in combination with ENR for control of time delay

varying processes is a very effective control scheme.

4. Robustness Margin and an Overall Performance Measure

A new scalar robustness margin based on the small gain theorem was proposed for closed loop
feedback control systems subject to model plant mismatch. In addit.on, an overall performance
measure which includes a traditional performance measure such as ISE subject to a penalty on
the square of the incremental control action and a penalty on the inverse of the margin of
robustness was introduced. Several examples were presented to demonstrate use of these
measures for assessment of control performance while varying two control or plant parameters.
The resulting 3-dimensional surface provides a graphical view of control performance with

respect to tuning parameters and model plant mismatch.

5. LabVIEW® and Matlab® System Identification Toolbox

LabVIEW® for Windows™ 3.0.1 (Anon, 1993) and the Matlab® System Identification Toolbox
3.0 (Ljung, 1992) were used extensivaty thrcughout this thesis for experimental evaluation and
open loop modelling, respectively. General comments on the value of this software are made on
the basis of their use in this work with some experience in undergraduate course labs.

It was found that the initial learning curve of programming in LabVIEW was steep for
both the author and undergraduate students although after several months the author became a
somewhat proficient LabVIEW programmer. The graphical utilities and data acquisition
capabilities of LabVIEW were found to be outstanding although the graphical language proved to
be somewhat tedious for implementation of the AUDI and GPC algorithms.

The Matlab System Identification Toolbox v as forad to be an excellent tool for the
batch identification and validation of industrial and experimental input-output data. The lack of
a description in the documentatior: for the loss function used throughout the functions in the

Identificaiion Toolbox, while annoying, was resolved by analysis of the source code.
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8.2 Recommendations

1. Base Predictive PID on Other Linear Control Structures

Utilizing t-e same procedure as outlined in Chapter 2, the use of other linear control structures
can be used as a foundation for a model based PID control structure. Among the more interesting
controllers is the very new unified approach of Saudagar er al. (1995; denoted as UPC) which
extends GPC to output error noise modei structures. The output error noise model, v.nich allows
a more accurate treatment of the noise dynamics, is more general than the equation error model
found in GPC. It is likely that a predictive PID control law based on UPC will result in an
improvement in performance for noisy plants compared to predictive PID based on GPC.

Because the infinite horizon predictive PID controller constants can be explicitly
expressed in terms of the model parameters in a simple formulation, it is an excellent candidate
for adaptive control when combined with a recursive identification algorithm. An intriguing
topic worth considering is increasing the aggression of infinite horizon or mean level PID
without significantly increasing its complexity. However, in Chapter 2 it was determined that
using unrealistic values of the C, polynomial to increase the aggression of infinite horizon PID

were unsuccessful.

2. Practical Identification Issues

Although some theoretical concepts of identifiability have been introduced by Niu er al. (1994)
and the concept of filtering the input-output data was formalized by Shook et al. (1991), practical
identification remains very much an art form. Furthermore, numerous authors have suggested
that the performance of an adaptive controller depends mainly on the quality of the plant model
(Clarke, 1991; Fisher, 1991; Shook, 1991). It is imperative for the future success of adaptive
control and recursive identification in industry that practical identification issues be addressed.
General rules or guidelines regarding bad data, sufficient conditions for reliable estimation and

model validation must be developed.

3. Simultaneous Time Delay and Parameter Esfimation

Within the AUDI framework, it may be possible to simultaneously estimate the model

parameters and the time delay for a fixed model order. Consider the following augmented
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regressnr for a first order model and a possible range of time delay, de[dyn * Ama)

O()=[~Y(t- s +duin =1) u(t=ds -1) (=l oy + i) -
—y(t=2) ult=dpy~1) ~y(t=1) u(t=dpe-1) -¥()]

and the U matrix in a multidiagonal structure expressed as
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where nis d,,, —d;, +1. Readers are urged to consult Chapter 4 or Niu et al. (1992) for an

explanation of the above notation. The solution with the lowest cost function will
simultaneously solve for the first order model parameters and the time delay. However, the
problem with this proposed method is that the U matrix that resuits from a batch or recursive
solution places nonzero elements in the upper right positions. If these elements can be fixed to
zero, then this method could work. Simultaneous estimation of modei parameters and time defay -
would be very beneficial for adaptive control of processes with time varying dynamics and time
varying delays. Since this problem was beyond the scope of this thesis, it is stated as a future

recommendation.

4. Extend Steady State Weighting for N, > 1

In Chapter 2 it was stated that for N, = 1, increasing the steady state weight in GPC has the same
effect as increasing N,. For cases where N, > 1, increasing the steady state weight has a different
effect compared to increasing N,. If the steady state property at N, = 1 mentioned above could be
extended to higher values of N,, this would allow an infinite prediction horizon (by setting the

finite weight to zero) for N, > 1 which would result in a simple but very effective contro} Jaw.



Chapter 8: Conclusions and Recommendations 162

5. Multi Input Multi Output Predictive PID

Extension of the predictive PID approach to apply to a MIMO system would be a tremendous
benefit because a MIMO PID algorithm currently does not exist. This may be possible by
analyzing the linear formulation of MIMO GPC.
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