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Aabstract

Axisymmetric finite element models are useful for modelling many axisymmetric
or nearly axisymmetric structures. However, if three dimensional behaviour must be
modelled, either due to non-axisymmetric loads or buckling behaviour, a full three
dimensional mesh is usually required. One approach to utilizing axisymmetric elements
for three dimensional behaviour is to use Fourier decomposition to model the
circumferential variation in the displacement field. This is very effective for linear
problems because the harmonics become decoupled, and the finite element equations are
represented as a series of equation sets, each half again as large as the axisymmetric case.
This technique has not previously been extended to general large displacement
formulations, because the nonlinear terms couple the harmonics, and the size of the
system of equations increases significantly. However, for problems where only a few
harmonics are required, Fourier decomposition can be much more efficient than
conventional three dimensional elements.

In this thesis, a nonlinear finite element formulation for an axisymmetric solid
element is developed which models asymmetric behaviour. The clement is based on a
Total Lagrangian formulation and uses Fourier decomposition to model the displacement
field in the circumferential direction. The formulation is developed in terms of two
displacement types; Cartesion and cylindrical displacement components. Verification is
performed by comparison with results from the literature and general purpose analysis
programs. Problem types include linear and nonlinear axisymmetric problems, linear
tube - beam (asymmetric) analyses, asymmetric thin shell analyses, and a thick wall tube
loaded as a beam - column, exhibiting combined Euler and Brazier buckling behaviour.
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1. Introduction

Most general purpose finite element analysis codes include a solid element for
analysing axisymmetric problems. These problems are modelled by a two dimensional
mesh in a plane of symmetry and the element volumes are produced by a revolution
about the axis of symmetry. In these problems, the loads are axisymmetric and the
deformation field description is also restricted to modelling axisymmetric behaviour.

When the restrictions on the load and/or the deformation field description are
removed the behavicur varies in the circumferential direction (non-axisymmetric
behaviour) and three dimensional elements must usually be used to construct a model.
No benefit of the geometric symmetry is thus gained. The complexity of the model
increases, and the problem becomes much larger computationally. Even relatively
simple problems are beyond the capability of available computing systems when
modelled in three dimensions.

Because it is often important to determine the response to non-axisymmetric loads
with limited computing resources, efforts have been made to develop axisymmetric
elements which can model such behaviour. These elements ar. now becoming available
in some general purpose finite element programs such as ABAQUS, ANSYS, and
Cosmos. The most basic application of an axisymmetric element for non-axisymmetric
behaviour was presented by Zienkiewicz and Cheung(1967). They discussed an element
for modelling the torsional response of shafts by using the circumferential, or out of
plane, displacement component as degrees of freedom for the nodal points. A more
general discussion of non-axisymmetric modelling was put forth by Wilson(1963) in
which he discusses the technique of decomposing the displacement field in the
circumferential direction into a Fourier series. His focus was on linear problems, and he
recognized that for such formulations the harmonic stiffnesses are decoupled because of
the orthogonal properties of the Fourier functions. This characteristic made it practical to
extend an axisymmetric analysis to model three dimensional responses using the same
mesh and required only a modest increase in computing time over the axisymmetric case.

As the technique of Fourier decomposition became a recognized, effective means
of modelling three dimensional behaviour in axisymmetric structures, some authors
explored avenues for extending the caﬁabi.lities of these "harmonic elements.” Several
shell elements were developed, including the SABA element of Chan and Firmin(1970).



Interesting applications of mixed formulations for shells were put forth by Chan and
Trbojevic(1976). Spilker and Daugirda(1981) discussed a hybrid-stress formulation for a
solid element. All of the above were based on linear formulations in which the Fourier
terms were decoupled.

Some of these authors pursued the development of these models further to
accommodate material and geometric nonlinearities. Winnicki and Zienkiewicz(1979)
and Singh and Spilker(1984) demonstrated applications of Fourier decomposition to
elastic-plastic problems, incorporating nonlinear behaviour in the evaluation of the nodal
stress-equivalent equilibrating vector, which required numerical integration in the
circumferential direction. In both of these discussions, the initial stiffness matrix was
retained, avoiding the increased burden of coupled harmonics, and equilibrium iterations
were used to achieve equilibrium. Chan and Firmin(1970a), and Chan and
Trbojevic(1976) extended the shell elements referred to above to model "large"
displacements, however, their models were restricted to non-axisymmetric deformations
which were in the order of the shell thickness, and the geometry of the structure was
assumed to remain essentially axisymmetric. These elements permitted an estimate of
the buckling loads, but could not model deformations near the point of total collapse, nor
in the post buckling regime. Although Chan recognized that the harmonics are coupled
by the geometric nonlinearities, the deformations were small enough that the coupling
matrices were relatively small and could be ignored. He did, however, update the
geometric stiffness matrix for each harmonic, and used an iterative solution strategy to
achieve equilibrium.

More recently, Wunderlich, Cramer and Obrecht, 1985, and Wunderlich et al,,
1989 presented shell formulations which are more general in termus of their displacement
capabilities. Their approach is to model the nonlincarities as pseudo-load vectors so as to
retain an uncoupled system of equations. While this reduces the time required to solve
the system of equations, it does not reduce the amount of time required to evaluate the
harmonic coupling matrices. It also requires an iterative conjugate gradient method
solution technique to avoid convergence problems which requires significantly more
equilibrium iterations than does a Newton-Raphson type of solution using a coupled
stiffness matrix. Wunderlich et al., 1989, also employed a numerical integration
technique in the circumferential direction for improved solution accuracy.

Although these models are effective for modelling the problems for which they
were developed, most are limited to small or relatively small displacements. Also, the



techniques which do model geometric nonlinearities are shell formulations which can
only model simple stress and deformation patterns in the thickness dimension of the
element. Many problems require solid elements to model more general three
dimensional behaviour and demand a truly large displacement capability, which is best
provided by an incremental Lagrangian formulation. One example is a threaded
connection problem with asymmetric loads such as bending, Figure 1.1. The
performance of the connection can be evaluated by determining the behaviour in the
threaded and (where applicable) seal regions. Another example is a three dimensional
model of a well subject to general three dimensional loads, Figure 1.2. Currently, three
dimensional elements would be necessary to construct the problem geometry and mode!
the asymmetric deformations, but the number of elements and degrees of freedom
become enormous. Using an axisymmetric element with an asymmetric displacement
field is potentially many times mere efficient than the three dimensional element because
of the reduction in the number of degrees of fieedom require in the model.

Other authors have pointed out that the harmonic equations become cougled in a
general nonlinear formulation. While this makes the Feurier decomposition technique
less efficient for nonlinear problems than it is for linear problems, little effort has been
made to formulate and solve the coupled nonlinear equadons and compare the
effectiveness of the resulting formulation with existing general purpose three
dimensional models.

The topic of this thesis is to formulate the Fourier decomposition technique in
terms of an incremental Total Lagrangian formulation to provide a general large
displacement, non-axisymmetric modelling capability for axisymmetric structures. The
result is a model which takes advantage of the geometric symmetry of the structure and
also includes all kinematic nonlinearities. While the material properties used in this
study or discussed in the publications cited above are limited, the proposed incremental
formulation used can accommodate a much wider variety of material properties than the
models.

The Total Lagrangian formulation is developed in terms of orthogonal
curvilinear coordinate systems. This general formulation is used to develop two
axisymmetric solid elements; one in a cylindrical coordinate system, the other using a
Cartesian coordinate system. Both elements use the Fourier decomposition technique to
model circumferential variatiun in the response of the structure to non-axisymmetric
loads, and both are capable of modelling large displacements. The harmonics in the



system of equations that these elements produce are couplzz, making the solution time
significantly greater relative to the uncoupled formulations in the literature. However the
results show that for many problems, solution efficiency is much greater than that of
general purpose three dimensional elements. The elements are used to model a variety of
problems and comparisons are made with solutions from general purpose finite element
programs executed to verify the formulation and to compare solution efficiency.
Comparisons are also made with some analytical and experimental solutions from the
literature. Problem types include linear axisymmetric and asymmetric problems, large

di placement thin shell problems such as the torus subject to external pressure, and
spherical caps with symmetric and asymmetric loading. Considerable attention is also
paid to a thick shell tube subjected to axial loading, which is the primary vehicle for
evaluating the influence of various element properties and parameters.
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2. incremental Finite Element Formulation in General Curvilinear
Coordinates

This chapter discusses a basic Lagrangian finite element formulation in a ycneral
orthogonal curvilinear coordinate system. It includes the basic elements for describing
Lagrangian strains and strain increments using coordinates and displacement components
in orthogonal curvilinear coordinate systems, and the procedure for incorporating these
components into the integral virtual work equation which forms the basis of most
structural finite element applications. This generalized formulation is applied to a large
displacement cylindrical formulation in Chapter 3, which is an extension of the small
displacement Fourier decomposition formulations commonly available. In Chapter 4, a
Cartesian version of the formulation is developed. This version departs from the
conventional approach by using Cartesian displacement components in the core
formulation. Transformations between cylindrical and Cartesian degrees of freedom are
developed for this version, however, to maintain an interpretive reference frame which is
consistent with conventional Fourier decomposition finite element techniques.

2.1. Lagrangian Strains in Curvilinear Coordinates

Incremental formulations for finite element programs have been largely based on
Cartesian reference systems (for example Bathe, 1982, and Zienkiewicz, 1977]. Many
programs use cylindrical, spherical, or local coordinate systems for input convenience,
then transform the values to global Cartesian coordinates for the underlying finite
element formulation.

These approaches then use Cartesian coordinate systems for geometry,
displacements, stresses and strains. However, for some problems it may be advantageous
to formulate the problem in terms of some other coordinate system, for example
cylindrical or spherical coordinates. Significant efforts have been devoted to cylindrical
formulations (Wilson, 1965; Winnicki and Zienkiewicz, 1979; Spilker and Daugirda,
1981; Kleiber and Hien, 1983), however, these have typically been small displacement
formulations.

Lagrangian formulations are able to model nonlinear behaviour arising out of
large displacements, rotations, and strains. The Green-Lagrange strains on which these
formulations are based have the desirable characteristic of remaining invariant under
rigid body rotation. In this section, the Green - Lagrange strains, strain increments and



strain increment variations are developed in terms of general orthogonal curvilinear
coordinate systems.

2.1.1. Strain
Lagrangian Strains Based on the Deformation Gradient Tensor

Many authors (Malvemn, 1969; Fung, 1965; Truesdell and Toupin, 1960)
developed expressions for Green-Lagrange strains in terms of the deformation gradient
tensor in general curvilinear or orthogonal curvilinear coordinate systems. The
following development of the strain tensor in terms of the deformation gradient is based
largely on Malvem's discussion.

The Lagrangian strain tensor is defined to give the change in the squared length
of the material vector in terms of the material (or reference) coordinates, X:

(ds)’ - (dS)* = 2dX;E dX, 2.1)

where dS is the original material vector, ds is the deformed or strained material vector, X
are the material (original) coordinates, and E;; is the Green-Lagrange strain tensor.

The deformation tensor, Cij, gives the new squared length of the material vector

in tenns of material coordinates,
(ds)? = dX,CdX; (2.2)

The Green-Lagrange strain tensor may then be written in terms of the
deformation tensor and the Kronecker delta, 8jj:

1
By =5(Cy- 3,). (2.3)

In general orthogonal cuzvilinear coordinates, the material vector components are
functions of position:

ds,; = H' dX, (no sum) , and (2.4a)

ds; = hidx, (no sum), (2.4b)

where H' are the n:aterial (original) scale functions, and %' are the spatial (deformed)
scale functions.



Many authors use subscript and superscript indices to denote, respectively,
covariant and contravariant components of tensors, and sum over repeated indices on
different levels. Others use a convention that sums any repeatec index. In orthogonal
coordinate systems, the covariant and contravariant components are coincident, therefore,
only one set of components is considered, and a convention which distinguishes between
the two is not required. Instead, the convention introduced in Eq. (2.4) is employed
where summation occurs only for repeated subscript indices.

The most common orthogonal coordinate systems are the Cartesian, cylindrical
and spherical systems. The following treatment is concerned with the first two, although,
some interesting applications to spherical systems are certainly possible. Figure 2.1

illustrates these three coordinate systems, and Table 2.1 lists the scale factor functions for
each system.

The spatial material vector, ds, may be expressed in terms of the original material
vector through the deformation gradient tensor, F, :

Using Eq. (2.4b) it can be shown that

L 2.6
ds“‘H'“axmdm' (26)
and thus
h_k ..__.a“k
Fim = jm 3%, @7

Substituting Eq. (2.6) into Eq. (2.2), the deformation tensor C;; is now recovered as

When this is substituted into the Green-Lagrange strain tensor Eq. (2.3) and
expanded, the expression becomes

_l[ih_“)fhi’i 5]
i |

B3 =2 ww ox, 9%, @9



These are the equations for the Green-Lagrange strain tensor in terms of general
curvilinear spatial coordinates, which are not field variables suitable for numerical
solution. For this purpose, the spatial coordinates, and consequently the strain tensor,
can be expressed in terms of the displacement field.

Displacement Based Strain

In keeping with common displacement based finite element formulations, the
strains are expressed as functions of the displacement field. To do so, appropriate
displacement measures must be incorporated. In Cartesian formulations, this is straight
forward since the scale factors are unity and are independent of location, and
displacement. Within other coordinate systems, however, location dependent scale
functions introduce some complexity, and it is at this point that most authors restrict their
discussions to infinitesimal strain formulations. In this section a novel but simple
definition of displacement is introduced which accommodates the nonlinear scale
functions. However, the rationale for digressing from the traditional displacement
definition is first presented.

Smatll displacement formulations in cylindrical coordinates {Zienkiewicz, 1977,
Wilson, 1965; Spilker and Daugirda, 1981; Winnicki and Zienkiewicz, 1979) typically
use physical' displacements as degrees of freedom. Assuming that the displacements are
infinitesimally small relative to the size of the body suggests that the scale functions are
independent of displacements, and a simple relationship between physical displacements
and coordinate changes can be stated:

v, = H(X - x) . (2.10)

Appropriate substitution of these physical displacements into the small strain
component of the strain tensor produces the relatively simple expressions for
infinitesimal strains used in most cylindrical finite element formulations.

1 Physical displacements are the actual or physical distances travelled by a particle of material
initially located at the material coordinates such as Ar, 1A9 and Az in cylindrical coordinates,

assuming small displacements.
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Incorporation of physical displacements into the complete Green-Lagrange strains
is less obvious because it cannot be assumed that the scale functions are independent of
the motion of the body. Consider, for example, displacement ‘ncrements in the -8 plane
in a cylindrical coordin: te system (Figure 2.2). The definition of displacement used in
the small displacement formulaticin 1s retained, specifically

Au,=RAB, (2.11)
where R is the radial coordinate.

If the first increment is in the R direction, the physical displacement would
simply be the distance moved in that direction. If this were followed by motion in the 0
direction, the displacement would be defined by Eq. (2.11), but clearly, the actual
distance travelled by the position vector would be

physical

Aub”" M = (R + u,)AS. (2.12)

Thus, such a definition does not actually achieve its goal of describing a physical
displacement. It might be possible to define a more meaningful physical displacement
increment where the coordinate change is linear with some other variable such as time:

n=t + At
Aug=  Jrn8()dt (2.13)
Y
r,(t, -t) + r,(t-t,)
(1) = 1th t2-tlz 1
6(0) = 0,(t, - 1) + 68y(t-1))

L-Y

This, however, makes substitution into the strain expressions quite onerous, not to
mention development of the finite element matrix expressions. Furthermore, a physical
displacement definition would make the spatial position vector path dependent. In other
words, if the same displacement increments were made in a different order, the final
location would also be different (for an example, see Figure 2.3). Other, less
complicated approaches which approximate physical displacements are possible, but
inconsistencies between total displacements and displacement increments remain, and
such definitions introduce considerable complexity into the strain expressions.

11



The solution presented here to overcome these difficulties is to abandon the
use of physical displacements, and instead use coordinate displacements as the field
variables. Truesdell and Toupin(1960) used this approach to describe Lagrangian strains
in general curvilinear coordinate systems, but it has not been extended to an incremental
form suitable for implementation in a finite element. This definition eliminates the
ambiguities in the relationships between physical displacements, defined displacements
and displacement increments. It also enables sufficient simplification of the Green-
Lagrange strains, expressed in terms of displacements, to develop a generalized
incremental finite element formulation in orthogonal curvilinear coordinate systems. The
displacements are defined simply as

u=x-X. (2.14)

The deformation gradient tensor may now be expressed in terms of the

displacement field as
ox; BX, &u
or
n )
F;= u (0; + u; ). (2.16)

Substituting for F; into Eq. (2.9), the Grecn-L.aérange strains can then be
expressed strictly in terms of the displacement field and scale functions?:

ht k2
E - {[Lﬁ—}%skiakj-aﬁ] [-](-[—}—% Ji %.i%.f] 1.1] + -(H_léuhjuk,l\}v (2.17)

or

2 The spatial scale functions depend only on the displacement £ield, thus this expression for strain
ultimately is a function of the displacement field alone,

12
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The terms are rearranged in the latter equation to group the displacement gradient
components in the first term, and the pure scale factor components in the second term.
The displacement gradient terms are similar to the usual expressions developed for
Cartesian systems, however the pure scale function terms are less familiar. Ina
cylindrical coordinate system, for example, it is the scale function components which
describe the 0 or hoop strains that develop when a cylinder experiences a pure radial
displacement.

2.1.2. The Strain Increments

Since this study aims to develop an incremental formulation, it is required that the
incremental strains be expressed in terms of the incremental displacement field. To
accomplish this, the strains, displacements, and scale functions after an increment are
written in terms of th. values before the increment and the incremental values as

e s = B+ AE;, (2.19a)
TN + Au,, and (2.15b)
h,, = h' + Ahf, (2.19¢)

where E'u’ u;, and I are, respectively, the strains, displacements and scale functions at
time t, and the subscript t+At denotes the same quantity after the time increment. Using
these expressions to write the Green - Lagrange strain tensor after the increment yields

(h + Ahj)z(uj +Au); + (h' + AR (u; + Aui)z, j

2HH| ¢ 0k + AR (u, + Aup) (u, + Auy)
1@k + Ank?
+ 2{ T ot } @2

Subtracting expression (2.18) from Eq. (2.20), the strain increment tensor, AE;, i is

recovered. For convenience, it is split into parts corresponding to the order of
displacement gradient increment:

AE;= Ag;+ Aej + As + Ae + Agg” (2.21)

13



in which

2HHAE, = { (W) Au, + (h) Au ;] + (2R“AR'S, S, ) , (2.22a)
2
2HHIAE = { By A+ oy A ) (2.22b)
"7 | + 2(WAR'y;, + h'ARYy | + h*Ah"s, u,)) '
k2
(h*) Ay, J-Auk,i
2 02 2
: [ WANAw,+ nan A,
* +h“Ah¥*(u, By + u Ay )
2h*Ah*Au, Au, ;
2HHAE] = § + (Ahi)zAuL ;+ (AW)'Au;;  and (2.22d)
+ (ANS (A + Au, )
2HHIAE)” = (AhY) Au, Au, ;. (2.22€)

Note that Ag; is a first order strain component which does not depend on the
displacement gradient, u; ! and corresponds to the infinitesimal strain. The second term,
Ag’, is also a first order strain increment component, but is nonlinear because it depends
on the displacement gradients at time ¢. The second order strain increment component,
As”, is given in three parts; second order displacement gradient increments on the first
line, second order scale function increments on second line, and mixed terms coraining
displacement gradient increments and scale function increments grouped together at the
end of Eq. (2.22¢). The remaining two terms, Ac™, and Ae™”, are respectively third and
fourth order strain increment components. The first and second order terms are used in
the finite element formulations which follow in subsequent chapters. The higher order
terms are ignored in the linearizarion of the equations, and in fact, ¢’ and € reduce to
zero in Cartesian formulations.

It should be noted that Ae;; is dependent on the displacement field because of the
presence of h', and is thus not truly "infinitesimal". The terms are consistent, however,
because the separation is done according to the order of the displacement gradient
increment, not the displacement increment. Tt e terms could have been separated
according to the order of the displacement increment, however, the expressionz would
have been complicated unnecessarily by the separation of the spatial scale functions into

14



material scale functiuns and scale function displacements, producing many more terms.
The only advantage to such an approach would be a complete separation of the true
infinitesimal strain increment required for small displacement formulations. It can be
shown, however, that Eq, (2.22a) also reduces to the usual infinitesimal form when the
spatial scale functions are replaced by material scale functions, i.e., h' = H', providing a
small displacement formulation when required.

2.1.3. Strain Increment Variation

Expressions for the differential strain increment variation are required in the
virtual work expression that is used to develop the finite element equations, and which
will be shown in Section 2.2. Although there are five components in the strain
increment, linearizing assumptions are made which remove the highest order terms from
consideration in the virtual work expression. The terms of the strain increment variation
that will be required are limited to the first and second order terms of Eq. (2.21), 8As,
OAg’, and 8Ae”. In the following, quantities prefixed with & denote variations.

Applying a differential variation to the displacement field, the first and second
order strain component variations become

2H'HISAE; = (W) BAu, | + (B) SAu, , + Zh*3AKE,3,; (2.232)
Y, . . . )
2HHISAE] ={ () (o A+ u'“'afu‘”' } . and (2.23b)
' L+ 2(W8ARN; + h'SAhNy; | + hSAh u, u, ;)

(B’ (BAuy ;Au,; + Au, SAu, )
2{ SAWAN, ; + SAh'Ah'y, ; }
o e SAR" AR (uy oy + 8,8)
2H‘H’8A€'i; = In’:i\l*x’&&uj_i + h'Ah'dAy; i . (2.23¢)
+ W3ANAL,; + h'SAN Ay, |
+ h"Ah"(uhj dAu, ; +uy; SAu, )
L U+ h"3AhM(y, jAu +u; Au ) J

+2

Each of the strain increment variations are presented in the same way as the strain
increments were in Eq. (2.22), with deformation gradient increments first, scale function
increments second, and in the second order expressions, mixed terms containing scale
function increments and deformation gradient increments grouped together at the end.

15



2.1.4. Total Strain Increment

The exact strain increment in terms of the displacement field increment would
require the evaluation of all five strain increment components in Eq. (2.22). The number
of terms makes this evaluation time consuming, and matrix forms of the higher order
terms are difficult to produce. Instead, the total strains can be expressed in terms of the
total displacements from Eq. (2.18), which may be expressed in matrix form relatively
easily. Thus, the strain increment is more effectively evaluated by saving the strains at
the start of the increment and subtracting them from strains calculated after the

increment.

2.2.  The Principle of Incremental Virtual Work
2.2.1. Virtual Work Expression

The basic formulation for most structural finite element programs is based on the
principle of virtual work:

fo,8e; dV = fTSudl + [pF3udV, (2.24)
v r Y

where o;; arc the Cauchy stresses, p is the mass density, T; are the surface tractions per
unit area, and F is the body force per unit volume. All quantities are referred to the
current (deformed) configuration. &iix and Ju, are respectively variations of the strains
and displacements referred to spatial coordinates. Both terms must also be kinematically
admissible.

The term on the left represents the variation in the strain energy integrated over
the volume of the body in its deformed configuration. The first term on the right is the
virtual work of the surface tractions integrated over the surface of the body, and the
second term is the virtual work of body forces integrated over its volume.

The integral expression in Eq. (2.24) must be satisfied for equilibrium at each
point in time during the incremental solution process. Thus, it is assumed that at time t, a
solution exists which satisfies th's condition within some desired degree of accuracy.
Such a configuration is called the current converged configuration. The problem is to
satisfy this equilibrium equation after an increment at time't + At, at which point the
configuration is unknown. The approach taken is to use a known configuration for
reference and transform the values in Eq. (2.24) to the reference configuration. This is
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known as a Lagrangian (or material) formulation, because the original material points are
used for reference. This is in contrast to an Eulerian formulation, which uses a stationary
control volume. The choice of reference configurations is limited only by the number of
converged solutions in the incremental solution process. However, in practice the
reference configuration is taken to be either the initia! or the latest converged
configuration, and the respective formulations are referred to as Total Lagrangian and
Updated Lagrangian. Kinematically, these formulations are identical, however,
considerations such as constitutive modelling or the unique coordinate system
formulation discussed here, may suggest one or the other as being more efficient for a
particular modelling problem.

2.2.2. Total Lagrangian Formulation of Virtual Work Equation

The purpose of this work is to develop a formulation which models complex three
dimensional behaviour, while taking advantage of the structure’s geometric symmetry,
relative to the particular coordinate system. This symmetry usually exists at the start of
the solution, and is lost as the body undergoes three dimensional deformation. To utilize
this symmetry suggests that the formulation should be referred to the initial
configuration, and therefore a Total Lagrangian formulation would be most effective.

Expressing Eq. (2.24) in terms of the original configuration requires the use of

appropriate stress and strain measures, and the transformation of the mass density to the
original geometry. The second Piola-Kirchhoff stress tensor, S, is used as the stress

measure, and is defined? in terms of the Cauchy stress tensor, G, as

P 3% X
i~ p ox, Oma x.’ (2.25)

where pj is the original mass density and p is the current mass density.

It can be shown (Bathe, 1982) that a variation in the small strain tensor is related
to a variation in the Lagrange strain tensor by

For simplicity, derivation of the Total Lagrangian formulation of the virtual work equation is
donpe in a Cartesion coordinate system.
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Xy 0%y

BX, 3%, 5€ (2.26)
The mass in the differential volume is conserved during the deformation,
therefore,
PodV, =pdV . (2.27)

Combining Egs. (2.25) and (2.26), it can be seen that:

Po aX, _& axk axl
p ox_, 0%, Tma aX, oX;
Vo

JS,8E dV, =
Vﬂ

8e,,dV, . (2.28)

Using Eq. (2.27) and the identity

%
3X, ox,,  Oum

Eq. (2.28) reduces to

[, 8B dVo = [ 16,0V . (2.29)
Vo \%

This shows conjugation of the second Piola - Kirchhoff stresses and Green - Lagrange
strains because the volume integrated is arbitrary. Equation (2.29) can also be
substituted directly into Eq. (2.24) to produce the Total Lagrangian formulation for the
virtual work expression*:

S8, 8EdV, = f T,Sudl + [poF.du,dV, . (2.30)

Yo Yo

4 In this form, the traction loads are assumed to be deformation dependent. If deformation
independent loading can be assumed, [y can be used in place of I'. Itis also assumed that the

mass-body forces, F; are not deformation dependent, which is adequate for most structural
analysis.
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The above development is of course well known, but is included for
completeness.

2.2.3. Incremental Form of Virtual Work Equation

Equation (2.30) must be true for equilibrium to be satisfied at time t, and, with
appropriate substitutions for E, S, T, F.and u, after 4 time increment, At. In Eq. (2.19),
the strains at time t + At are expressed in terms ot the strains at time t and the incremental
strain, AE. Similar decompositions can be performed for S, T, F.and u and substituted
inio the virtual work equation producing

J(S; + AS)B(E; + AE)dV, = [(T; + AT)(u; + Au)dl
Vo r

+ [Po(F, + AF)8(u; + Au)dV, . (2.31)
Yo
It is assumed that at time t the strain, E;; and the displacement, u; are known
quantities. Hence, the variation in these quantities vanishes. Thus Eq. (2.31) reduces to

(S, + AS,)BAE; AV, = [(T, + AT)8Au, dT + fpy(F; + AF)8Au,dV,.  (232)
) r Vo

The constitutive tensor, Cyy,, defining the relationship between the stress and

strain tensors ic linearized for the increment. However, nonlinear material response
during a load step can he accommodated by equilibrium iterations:

AS; = CylE,y, . (2.33)

Substituting Eq. (2.33) into Eq. (2.32), the incremental virtual work equation
becomes

JAB,CuBAE, AV, + [S,8AE; AV = f(T; + AT)8Audl
Vo Vo T
+ [po(F; + AF,)8AudV, . (2.34)

Yo

Now, the expressions for the strain increments (2.22) and the strain increment
variations (2.23) can be substituted for AE and SAE. The virtual work expression is next
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linearized by neglecting the terms involving products of dAu. Rearranging and placing
the stiffness terms on the left and load terms on the right gives

S¥Ae, + Ae))C 5 (A8, + A[)AV, + [S;D AgfdV, =

Vo Yo
ST, + AT)8Audl + [po(F; + AF)8AudV, - [S.8( Ag, + Ae)AV, . (2.35)
r Vo Vo

Equation (2.35) is the same as that presented for a Total Lagrangian formulation
by Bathe et al., 1975. Expressing the strain increments and variations in matrix form as
functions of the displacement field is, however, considerably more involved because of
the additional terms introduced by the nonlinear scale functions.

2.3. Finite Element Equations
2.3.1. Linear Stiffness Matrix

The first term in Eq. (2.35) will produce the incremental linear stiffness matrix
when the set of linearized incremental equilibrium equations is recovered. The first
order strain incremetits can be expressed in terms of the displacement increments in
matrix form as

{Ag} = [b]{Au} , and (2.36a)
{Ag”) = [b]{Au}, (2.36b)

where [b] is the linear differential operator matrix, [b] is the differential operator matrix
for large rotations, { At} is a vector of small strain components, {Ag’} is a vector of large
rotation strain components, and {Au} is a vector of displacement field component
functions.

The differential operator matrices, [b] and [b], each have a component which is
simply a scaled version of those in the description by Bathe, 1982, and represents the
first terms of Eqs. (2.22a) and (2.22b). The second terms in those equations are scale
function increments that are not seen in other Total Lagrangian formulations because
they resolve to zero in a Cartesian formulation. The differential operator matrices can be
symbolically rewritten to show these components separately:

[b] = [d] + [h], and (2.37a)
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b7=1[d7+ T, (2.37b)

where [d] is the small displacement gradient component of {b}, [h] is the small
displacement scale function component of [b], [d"] is the large rotation displacement
gradient component of [b], and [h'] is the large rotation scale function component of

v}
Substituting Eqgs. (2.36) into the first term of Eq. (2.35),

S8Ae; + A))Cy (A8, + Ae[)dV, = [(BAu] b+ bTCI(b + b']{Au}dV, . (2.38)
\'A Vo

When interpolation functions are introduced in subsequent sections, this integral
equation becomes the linear stiffness matrix for the element.

2.3.2. Geometric or Nonlinear Stiffness Matrix

The second term in Eq. (2.35) represents the second order strain stiffness, usually
referred to as the geometric or nonlinear stiffness matrix. The second order component
of the strain increment, Eq. (2.22¢), can be decomposed further into subcomponents, in
the same manner that A¢ and Ag” were decomposed in the previous section, however,
because second order terms are involved, three subcomponents are involved; second
order displacement gradient components, second order scale function components, and
cross terms including products of first order displacement gradient and first order scale
function components. These three sets of strain increment variation can be seen in the
grouping of terms in Eq. (2.23c). Again, the first subcomponent is simply a scaled
version of a conventional Cartesian formulation. The other terms are quite complex.
However, in a specific coordinate system, only one or two scale functions depend on the
displacement field, and many of the terms drop out.

A similar approach to that taken for the linear stiffness matrix is adopted here so
that those components similar to conventional formulations can be illustrated distinctly.
The usual approach is to express the second term on the left side of Eq. (2.35) in matrix
form in terms of the displacement field:

J5,8 Afdv, = [(5Au) bg) S1bg) (Au)dV, . (2.39)
Vo Vo
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In conventional Cartesian formulations, the matrix [S] is simply a matrix
containing the stress tensor components, and [b] is a matrix of differential operators,

both arranged in such a way that a product equivalent to the tensor form on the left side
of the equation is produced (for example see Bathe, 1982). In the general formulation,
the same [S] matrix can be used, however, because there are three groups of components
in the second order strain variation, the geometric stiffness matrix function must be
decomposed into three parts:

f5,8887av, = [ (5au)[b2] [S][62] (au}av,
v0 VO

+ f1oauy[bE][s][64] {Au)av,
Vo

+ [(8au}{oBF][s1[63"] (Aujav,, (2.40)
Vo

where [bg] is a matrix of differential operators arranged to produce the dot product of S;;
with the displacement gradient components of Eq. (2.23¢). Similarly, [bg] produces the

dot product with the pure scale function components which are expressed in terms of the

displacement increments, and [bgﬂ] gives the dot product with the cross-term

components.

2.3.3. Loads

The terms on the right hand side of Eq. (2.35) represent the load terms of the
virrual work equation. The surface traction and body force components can be expressed
directly in terms of the incremental displacement field. Using Eq. (2.36), the equivalent
internal stress loads can also be expressed in terms of the displacement increment field.
In matrix form, the load terms are then

J(T; + AT)3Audl = [<8Au>{T + AT}dT, (2.41a)
r r

Spo(F; + AF)8AudV, = [<B8Au>{F + AF}pydV, , and (2.41b)
Vo Yo

5,8 Ag, + AepdV,y = [<BAu>[b +bTT{S)dV,. (2.41¢)
Vo Vo
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2.3.4. Finite Element Form of Incremental Virtual Work

All of the terms in Eq. (2.35) have been expressed in matrix form in terms of the
displacement field increment. The usual finite element procedure of discretizing the
body is now applied, whereby the body is divided into elemental volumes. The virtual
work equation is integrated on an element by element basis and summed to give the total
virtual work on the body. The displacement field within an element is interpolated using
displacement degrees of freedom at nodal locations on the body:

{u) = NJ{u}", (2.42a)
{Au) = [N}{Au}", and (2.42b)
(8Au) = N]{SAu}N . (2.42¢)

where [N] is a matrix of interpolation functions, and {u}¥, {Au}" are vectors containing

nodal displacemeats and nodal displacement increments for the element.

When Egs. (2.38), (2.40), and (2.41) are substituted into (2.35), and noting that
the variation in the nodal displacement increments is arbitrary, the final system of
incremental finite element equations is produced:

nel
f NI'[b + b T [Cl[b + b ] [N]dV, + f [N]'bg]'[S1lbg] [N]dVO]{Au W
Vo Vo
n=1
nel nel
2{ [T+ ATi)'[N]dI‘} + 2{ [ooF, + AFi)[N]dVO}
r VO
n=1 n=1
nel
; { [is)m+ b’][N]dVo} . (2.43)
Vo
n=1

The diffrential operator matrices are combined with the intexpolation function
matrix for efficiency:

(B] = [b]IN] , (2.44a)

23



(B’]=[b][N], (2.44b)

[Bs] = [bg]N] . (2.44¢)
and so on. The system of cquations is then expressed as

([KJ + Kg1l{Au)™ = (4R}, (2.45)

where [K, ] is the linear stiffness matrix. [Kg] is the geometric stiffness matrix which
was showr. as ene term in Eq. (2.43), but is actually integrated in three parts;
(BR1'[S1(BS], (BEI'SI(BY], and BV]'(SIBL"]. The three parts of [K] correspond
respectively to the displacement gradient, pure scale function, and mixed term
components of the second order strain variation found in Eq. (2.23¢). Finally {AR] isa
vector of the total increm. ntal unbalanced 1oads for the element.

The element stiffness and incremental unbalanced loads are assembled in the
manner of the direct stiffness technique to produce the system of equations for the entire
structure, which must be solved iteratively for the displacements using a nonlinear
solution strategy.

24. Chapter Summary

The general Total Lagrangian formulation of the virtual work equation was
developed for general orthogonal curvilinear coordinate systems. The equations are used
in the following two chapters to produce cylindrical isoparamer-ic elements using both
cylindrical and Cartesian formulations, including detailed des-riptions of the matrices
which were introduced symbolically in this chapter. Although any of the common
solution techniques for nonlinear systems of equations may be employed to solve the
finite element equations which are generated, subsequent chapters demonstrate the power
of the formulation when it is combined with the constant arc-length s.iution strategy
(Crisfield, 1980 and Ramm, 1981).



Table 2.1

Coordinates and Scale Factors for Common Reference Systems

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
X; H! X, H X H
X 1 R 1 R 1
Y 1 6 R 6 R cos(d)
Z 1 Z 1 ] R
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Cartesian

Cylindrical

Spherical

Figure 2.1 Common orthogonal coordinate systems
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Physical
Circumferential
Components

Figure 2.2 Displacement increments in cylindrical coordinates
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Path A Path B

ur UG ur ue
Increment 1 0 1 1 0
Increment 2 2 0 0 ! 2

Two paths with identical displacement
increments, executed in reverse order.
The final position depends on the order
in which the increments are executed.

Path A
(u_second)

A, =B,

Figure 2.3 Path dependence of physical displacements in cylindrical coordinates
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3. Cylindrical Formulation

3.1. Overview

In the preceding chapter, a basic Lagrangian formulation in general orthogonal
curvilinear coordinates was developed. The geometry of an initially axisymmetric
element is best described in terms of an axisymmetric coordinate system (Figure 3.1). In
this chapter, the incremental Total Lagrangian formulation of the finite element
equations are developed for such an element in terms of the cylindrical coordinate
system. All components of the equations are referenced in terms of this coordinate
system including geometry, displacements, strains ar.d stresses. The displacement field is
described using the usual polynomial interpolation functions in the axisymmetric plane,
and Fourier decomposition is used to represent the circumferential variation in the
displacement field. Additionally, integration techniques for the finite element equations
are developed, and the implications of boundary conditions in the framework of Fourier
decomposition are discussed.

Problems with this cylindrical formulation arise because the element
displacement field in cylindrical coordinates cannot exactly model all rigid body mades
with a finite number of harmonics. Consequently, only a modest amount of motion can
be accurately modelled with this formulation. Because of this deficiency, the Cartesian
formulation which is discussed in the subsequent chapter was developed so that
arbitrarily large displacements could be modelled. It may be possible to define an
element displacement field in cylindrical coordinates which can model rigid body modes
with one or two harmonics, but such pursuits will be 1+£ for future studies. The
cylindrical formulation is therefore given here to show how the general curvilinear
formulation presented i the preceding chapter is applied in a cylindrical coordinate
system.

3.2. Displacement Field

The cylindrical system uses coordinates defined by the radius, r, the angle about
the longitudinal axis, ©, and the location along the longitudinal axis, z. The scale factors

for these coordinates are respectively 1, r, and 1 (Table 2.1). Coordinate displacements
were shown to be more appropriate for large displacement formulations (Chapter 2).
Thus, the displacements are defined to be

u=r-R, (3.1a)
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ug=0-0,and (3.1b)

u=z-2, (3.10)

z

in which R, ©, and Z are the undeformed (original) position vector component values for
the cylindrical coordinate system.

The incremental displacements are required, and since the scale functions depend
on the displacement field, incremental scale functions are also required. In the
cylindrical reference system, only the 6 scale function varies, thus the incremental values
required are Au,, Aug, Au, and Ah®, in which Ah® = Au, and Ah' = Ah* = 0. Note that the
circumferential scale function is a linear function of the displacement field®>. Thus the
incremental equations can be expressed in terms of displacement field increment using
displacement increment components as the degrees of freedom; additional degrees of
freedom are not required for the scale functions.

3.2.1. Fourier Decomposition of Circumferential (Out-of-Plane) Displacement

The three dimensional displacement field is decomposed into a Fourier series of
two dimensional functions. Using indicial notation

u; = 3 ul(R,Z) cos(fO) + D ul(R,Z) sin(fO) , i=1,0,2 (3.2)
f=1 f=1

where ul_ and uf, are respectively the amplitude functions for the cosine and sine Fourier

terms. These harmonic amplitude functions are field variables, and while there are an
infinite number in the general displacement field description, for some (usually linear)
problems atl but a few Fourier amplitudes reduce to zero. Many other displacement
fields are accurately described by the first several harmonic terms, reducing the problem
to the solution of a few Fourier terms.

This is a special case for cylindrical reference systems, and does not apply to spherical refence
systems. In such circumstances, it would be necessary to linearize the scale function increment
in terms of the incremental displacement field to formulate the finite element equations.
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Spatial derivatives of the displacement field are required, and follow easily from
the series expansion, The harmonic amplitude functions are independent of @, thus
differentiating term by term with respect to #, th~ derivative becomes

a‘lli o0 o
= Y -ful(R,Z) sin(f®) + 3 f ul(R,Z) cos(f®) , i=r,0,z (3.3)
=0 =1

3.2.2. Polynomial In-Plane Interpolation with Parametric Transformation

Each of the harmonic amplitudes are functions in the two dimensional Cartesian
R-Z plane. The usual approach to interpolating field variables in Cartesian space is to
assume a polynomial distribution. Classically, the field variables (usually displacement
components) at discrete (nodal) locations in the element are defined as the degrees of
freedom for the element and the field in the element interior is defined in terms of the
nodal values using polynomial interpolation functions. For example, the field variable @
is interpolated in terms of the nodal values @° as

NP
DE, 1, O = Y P,E 1, D7, (3.4)
p=1

where NP is the number of interpolation functions (and thus the number of nodes), Pp are
the interpolation functions, and &, p, and { are coordinates in a local system which can
be transformed to global Cartesian coordinates by a transformation function.
Zienkiewicz(1977), provides a good discussion of field variable and spatial derivative
transformations from local to global coordinate systems, and a more detailed discussion
is also included later in this section.

Since the displacement in the circumferential direction is handled by Fourier
decomposition, the displacement amplitudes only require two dimensional interpolation:

NP

uf, = D P(E, w) utf, and (3.52)
p=1
NP

ul= Y P& wulfl. (3.5b)
p=1
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The variabics uff and uPf are the nodal values of cisplacement field amplitudes for cosine

and sine harmonics respectively.

Spatiai derivatives of the displacement field with respect to R and Z depend
directly upon the spatial derivatives of the harmonic displacement field variables. The
nodal values are discrete values, thus the spatial derivatives are easily producec:

f
aun: Z.._E upf (3,6)

The derivative of uf, with respect to Z has the same form, as do the derivatives of
ul. In the parametric formulation, the interpolation functions are in terms of the local
coordinates & and jt. However, transformation of the derivatives from local -t to
global R-Z coordinates will be shown subsequently.

3.2.3. Combined Interpolation

The element displacement field has now been decomposed into nodal harmonic
degrees of freedom, uff and uff, To summarize, the subscript (i) represents the
displacement component r, 8, or z ; subscripts (c) and (s) respectively denote cosine
and sine terms of the Fourier series; superscript (p) represents the polynomial
interpolation number, or node number; and superscript (£f) denotes the harmonic number.
The complexity of the element is evident in the number of nodal degrees of freedom.
Where traditional three dimensional formulations for solid elements use three degrees of
freedom per node, the Fourier element has six degrees of freedom per harmonic at each
node. However, an axisymmetric model requires far fewer nodal points than a full three
dimensional model, and in most cases, conditions of symmeiry will reduce the number of
degrees of freedom to three per harmonic.

Combining Eq. (3.2) and Eq. (3.5), and expanding for each displacement
component produces the following expressions for the element displacement field:

u = Z Z(N"f P4 NPfuPfy | )
p=1f=0

in which
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= Pp(r,s) cos(f@)) , and (3.8a)

=P (r,8) sin(f®)) . (3.8b)

The function: NEf and NFf are interpolation functions for node p, harmonic f, with

subscripts ¢ and s representing cosine and sine functions respectively.

Equations (3.3) and (3.6) are used to produce the unscaled displacement
gradients. The derivatives of the interpolation functions are

aNy' 9P,

R - 3R == cos(fO)), (3.9a)

BN"’

SR - 3R =2 5in(f@)) , (3.9b)

BN‘“’

BZ =3z == cos(fO®)) , (3.9¢)

oNE' 3P,

TZ_ 3Z == sin(f®)) , (3.9d)
f

_83= -f P, sin(f©)) , and (3.9¢)

ONFf

50 = f P, cos{i®)) . (3.99)

The interpolation function derivatives are used in the unscaled displacement gradients,
which are produced by differentiating Eq. (3.7):

EN NI N f]
% - ZZ[ax, 4 ) (3.10)

p=1 =0

The unscaled displacement gradient increments are produced simply by replacing uf!
with Au?f | and v® with Au®’ .

i
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3.2.4. Vector Notation for the Interpolation Functions

With the displacement field defined in terms of nodal degrees of freedom, it is
necessary to arrange the degrees of freedom in a consistent manner so that the
displacement field and displacement gradients can be expressed in matrix form. The
usual approach is to define a nodal numbering sequence and assign the degrees of
freedom accordingly. The Fourier decomposition approach to defining the displacement
field imposes an additional level of complexity due to the number of degrees of freedom
which are assigned to each node.

In linear formulations such as that by Wilson(1965) the orthogonal properties of
the Fourier functions decouple the harmonic stiffnesses, and it is most efficient to group
together the degrees of freedom for each harmonic to produce sets of uncoupled
equations which may be solved separately:

K% 0 {u%) {F°}
1 U2 =2
0 1 L S o
K14 LprFy (F"F)

In this system of equations, [Kf], {Uf} and {F'] represent the element stiffness,
displacements amplitudes and loads fr: ine fth harmonic. Both element and global
matrices are partitioned this way to minimize computer storage requirement.

The harmonics become coupled in the nonlinear incremental formulation because
the strain-displacement relationship includes higher order harmonic products. However,
to remain notationally consistent with other authors, the element stiffness matrix will be
arranged into harmonic parts.

The displacement amplitudes are arranged first by Fourier number, then
according to node number, and the six degrees of freedom are arranged for each node
with symmetric degrees of freedom first, antisymmetric degrees of freedom last. In this

application, symmetric degrees of freedom are defined as those which model behaviour
which is symmetric about the plane © = 0, which include the cosine terms for u, and u,,
and sine terms for u,. The remaining degrees of freedom describe behaviour which is

antisymmetric about the same plane. The element displacement vector is then
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({(U'})
{U?)

{U} =ﬁ $.whcre

(u') (3.123)

L[U.NF}J

' {Ulfl w
(U™

{Uf) =9 {U:,,,] ” . and (3.12b)

pf
{UPf} =9 E;‘, > (3.12¢)

L uﬂ;

The arrangement of nodal degrees of freedom is thus defined. The displacement
field is next interpolated in terms of the nodal values as

{UE(R,G,Z)} = [N(Rlelz)]lu} ' (3.13)

in which the interpolation functions are defined in matrix form, and partitioned into
nodal harmonic parts:

" NR,0,Z)] = [N (N1 ... [NT] ... (INMFj], where (3.14a)

N = [NV N . NP L NN, and (3.14b)

NY 0 0 NFf O O
mn=| 0 N O O N O | (3.14c)
0 0 Nf 0 0 N
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Thus, the first three columne of [N"f] contain the symmetric interpolation functions,
while the antisymmetric interpolation functions are in the last three columns.

The spatial derivatives of the displacement fields arc writien as

du, du, Qu, dug Juy duy Ju, Ju, Ju,
<D>=<3: 36 32 3R 30 32 3R 30 2 (3.15)

The derivatives vector may also be written in terms of nodal displacement amplitudes
and interpolation function derivatives as indicated by Eq. (3.10) as

{(D,} = [N;]{u}, (3.16)
in which the matrix of interpolation function derivatives, [N}], is partitioned into nodal
harmonics:

INJR,©,2)] = [N N ... IN2) .. . (N, where (3.17a)

N = [N T NP NP and (3.17b)
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- o -
kR 0 0 R 00
G one
0 0 30 0 0
ON¥f INF
3z 0 0 E 0 0
oN?f oN®f
0 -BT 0 0 3R 0
rpf aN‘Pj aNtr
NP = 0 o 0 0 v 0 . (3.18)
EAH o
0 0z 0 0 0z 0
INFt INPf
0 0 3R 0 0 —a"é—
INFf oNF!
0 0 30 0 0 30
0 o Ny
_ 0 %z ° 0 T

The displacement and displacement gradients have now been expressed in terms
of the interpolation functions and nodal harmonic displacement amplitudes. These
expressions are used in the following sections to develop matrix forms of the strain
equations, but first a more detailed discussion of the transformation functions for the
parametric formulation is presented.

3.3. In Plane Isoparametric Coordinate Transformation

The geometry of the element is described in exactly the same way as conventional
axisymmetric elements, and although the nodal degrees of freedom are harmonic
displacement amplitudes, the same interpolation functions are used to interpolate these
amplitudes in the axisymmetric plane. In the usual parametric transformations, the
element geometry in global space is transformed to a simple geometry in some local
space, a square for example (Figure 3.2). The transformation function between local and
global space is performed by a polynomial function. Usuaily, the order of the
polynomial function is the same as the displacement field function, utilizing the same
interpolation functions, and the transformation is referred to as an isoparametric function,
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Occasionally, the spatial transformation uses a lower order polynomial, producing a
subparametric transformation. Conversely, a higher order spatial transformation would

be used to produce superparametric elements.

Transforming the element geometry to a simpler geometry in a local coordinate
system may appear to be an unnecessary complication. It does, however, provide two
important advantages: it greatly simplifies the numerical integration of the element
properties because the integration occurs over a simple geometric region; and since the
geometry of the local element does not change, the interpolation functions need be

evaluated only once, rather than for each element.

Isoparametric elements are usually the most convenient to implement, because
separate interpolation functions are not required for displacements and geometry, and the
structure of the system of equations is easier to manage since additional book-keeping is
not re uired to assure correct assembly of the element stiffnesses. Because of these
simpl fications, this discussion will focus on isoparametric formulations. Although the
georaetric transformation will be of the same order as the displacement field, the order of
the element will not be fixed.

In Eq. (3.4), the polynomial interpolation functions were introduced to describe
the harmonic displacement amplitude field in terms of the nodal values. The same
interpolation functions are used to transform the coordinate:; witain the isoparametric

element:
NP
R(ER) = Y P (EW R, and (3.19a)
p=l
NP
ZEW = Y PEW Z°, (3.19b)
p=l

where RP and ZP are the coordinates of the element nodes. The matrix of derivatives of
the gichal coordinate functions with respect to the local coordinates is referred to as the
Jacobian matrix:
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The Jacobian matrix represents the transformation of a differential operation from
one coordinate system to another:

9 9.
ok oR
E = {J] Al 3.21)
o o0Z

Conversely, the inverse of the Jacobian matrix will perform the reverse transformation:

9 9

R )3

.ﬁ. =[J] _a- . (3.22)
d0Z d

When Eqgs. (3.6) and (3.10) were presented, it was noted that, although the
interpolation functions were not functions of R and Z, derivatives with respect to these
global coordinates were required to produce the displacement gradients. The Jacobian
matrix provides the required transformation to the global system:

s ap®
R\ . ]dk
apP ={J] ape( - (3.23)
dZ i)

3.4. The Strain Representation

In Chapter 2 the finite element form of the virtual work equation was developed
in general terms. Differential operator matrices were defined symbolically in Eqgs. (2.36)
anc ..40) which, combined with the interpolation matrix [N], form the basic
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components of the stiffness matrix. In this sectior, the symbolic components of Eq.
(2.43) are developed for the cylirdrical coordinate system into a matrix form suitable for
computer implementation.

3.4.1. The Small Strain Increment

The small strain increments were defined in Eq. (2.22a), which in matrix form
became, according to Eqs. (2.36) and (2.37)

{Ae) = (b]{An) = [[d] + M3} {Au} ,

in which [d] is a differential operator matrix for the displacement gradient based
component of (£}, and [h] is the scale factor based component. The complete matrix
form of the small strain increments in cylindrical coordinates is

T 7
R N IR,
Ag, R/ o8 3 R+u,) 0
0 0 —— Rz A
AE 2 BZ ur
Jal il @uwrs | o o A,
28 Re© R R 0 0 0 Au,
248 0 ®R+uyd 13 0 0 0
2, 2
|| oz oR _
(3.24)

where the first submatrix on the right hand side is the deformation gradient operator, and
the second matrix represents the scale function component. Only six strain terms need be
considered, since the strain tensor is symmetric. However, to include all of the strain
energy of the shear strain components, the shear strains must be doubled as shown on the
left hand side so that the matrix form of the virtual work cquation is energetically
equivalent to the tensor form.

Eq. (3.13) gives the displacement field in terms of the nodal degrees of freedom
using the interpolation matrix. Substituting this into the equation above, and combining
the differential operator matrix with the interpolation matrix, the strain vector is
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expressed in terms of an element strain-displacement matrix, [B], and the element
displacement increment vector:

{Ae} = [B]{AU} , (3.25)
in which [B] = [b][N] .

Recalling from Eq. (3.14) that the interpolation matrix is partitioned into parnts
associated with nodal harmonic parts of the element displacement vector, it follows that
the strain-displacement matrix can be partitioned in a similar manner:

B]=[B4B"...B9... 7], (3.262)
B9 = [B*B'9. .. B ... B"], and (3.26b)
B = [B*B%1] , where (3.26¢)
SR .
3R ¢ 0
R4\ o [E:E]B_N_"‘
2 Jm R 20 0
NP
0 0 3z
BY=| N R+u)? INF! : (3.27)
R 50 R 3R 0
(R+u,)? M INP!
0 R oz 20
19NY oNE
L R0 0 R

The matrix [B] is the strain-displacement matrix associated with node p and harmonic f,
and is partitioned into symmetric and antisymmetric parts®. The symmetric part, [B*]is

The terms symmetric and antisymmetric parts of the strain - displacement matrices refer to the
parts which operate on the symmetric and antisymmetric degrees of freedom described in
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shown in full, and the antisymmetric part, {B%] is the +ame, except that NP is replaced by
NP, and vice versa. Thus the infinitesimal strains are essentially expressed as a sum of

nodal harmonic components:

NF NP

{At—:l:Z E{aepfl , where (3.28a)
f=l p:l

(Ae®} = [B”}{v®) (3.28b)

The vector {Aeff} is the component of the linear strain tensor associated with the f'th
harmonic displacement amplitude at node p and {uPf} is the nodal harmonic displacement

vector.

3.4.2. The Nonlinear Strain Component Increment

The strain increment components that depend on the displacement gradients
where defined in Eq. (2.22b), and include components of the displacement gradient
tensor, D;;. The displacement gradient tensor in cylindrical coordinates can be produced
from the unscaled displacement gradients, given in vector form in Eq. (3.15), by
including the scale factor components in the appropriate elements which is written in
vector form as

Section 3.2.4. This should not be confused with the decomposition of square matrices into

symmetric and antisymmetric components.
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1 'éE
1 du
D 1 Y
12 R 30
Dy du,
oz
Dll (R+u,) a_Re
_{Pmh_{ Reudu
{D} X 30 4 (3.29)
Dy dug
(R+u,) 5>
D, E
dR
D
32 _1_1“_:
R 3@
Dy,
\. J iu_z
N VAR

The displacement gradient matrix, expressed in terms of the nodal displacements
and a scaled interpolation gradient matrix is

{D} = [N(U}. (3.30)

where [N'] is formed by scaling the rows of [N} in Eq. (3.14) in the same manner that
{D,) is scaled to produce {D].

The procedure to develop the small strain-displacement matrix also applies to the
nonlinear strain-displacement matrix, [B]. The nodal harmonic part of [B] was shown to
be similar in form to the small strain Jdifferential operator matrix, and the same is true for
[B’], therefore, the intermediate steps to arriving at the nodal harmonic part are not
shown, and the symmetric part, [B*'], is presented dirsctly:

[B? = [D?] + [H?], where (3.31)
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B .
2
R+u) "¢ v
2 Dy
D, [- + N0 0
2|IR " (R+u) ¢
2
Do) o 0 0
(R+u) "¢
HP = (3.31b)
1 Dy, £
2D, ["+ N 0 0
IR " R+u)j" ¢
1 Dy,
2D,, [— + Nfo 0
DR R+u)) e
D,, D
220723 ot
| 2 ®R+0) NP 0 0 |

3.5. The Linear Stiffness Matrix

The linear stiffness matrix is the integral over the element volume of the matrix
expression [B,_]T[C][B[j. The matrix [B,] is the sum of [B] and [B] which were

developed above. With the infinitesimal and deformation gradient strains defined in
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terms of element nodal degrees of freedom, the element linear stiffness matrix can be
evaluated and integrated using an appropriate numerical integration technique. Because
the geometric stiffness matrix, which is discussed in the next section, must also be
integrated numerically, the integration strategy will be addressed in a subsequent section
of this chapter.

3.6. The Geometric or Nonlinear Stiffr.ess Matrix

In Chapter 2 the geometric stiffness matrix was shown in Eq. (2.40) to be
composed of three parts corresponding to the parts of the second order strain increment
variation in Egs. (2.23). All three parts include the stress matrix, .«ranged to produce a
product equivalent to the tensor form of the virtual work equation:

s] [0] (0] Se Se S.

s1=| 1 151 [0 | s1=] Ser See Se (3.32)
S. §. §
(0] (0] [s] w S Sz

The three displacement operator matrices which form the basis of the geometric
stiffness matrix are also formulated in terms of the Fourier functions, just as the small
strain differential operator matrix was, and the intermediate steps to arrive at the
nonlinear strain-displacement matrix are again omitted. The nodal harmonic parts of
each matrix are presented directly.

3.6.1. The Displacement Gradient Part

The displacement gradient part of Eq. (2.23¢) is the same as the geometric
stiffness matrix for a three dimensional solid element (Bathe, 1982), except that the terms
of the nonlinear strain-displacement matrix are replaced by equivalent scaled terms, in a
fashion similar to that used for the interpolation gradient matrix in Eq. (3.29):
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N ]
3R 0 0
10NY
R 30 0 0
INF!
3z 0 0
o
0 (R+u,) 3R 0
(R+u,) NP
(BoM] = 0 R 30 0 . (3.33)
Ny
0 (R+u,) 3z 0
oNFf
0 0 3R
19N%
0 0 R 30
ONPf
i 0 0 Z -

As before, [B2Ff] contains the terms for the symmetric harmonic displacement
amplitudes, and the antisymmetric terms, [B2P], are formed by replacing N%' with N¥/,
and vice versa, The complete element matrix is assembled from these nodal harmonic
parts just as the linear strain-displacement matrix was assembled in Eq. (3.26).

3.6.2. The Scale Function Part

The pure scale function terms of the second order strain variation were shown in
Eq. (2.23c) to be

SAE” H_ 1 BAhJAh’UJ‘l + 5Ah'Ah'uu } 3.34
( ;J) = HIH]:.*_BAhkAhk(ukduk‘l_*_%&k‘l) . ( . )

Because there is only one non-constant scale function in the cylindrical reference
system, the pure scale function part contains far fewer non-zero terms than the

displacement gradient part. Expanding each of the pure scale function terms, and
substituting the displacement gradient terms (D;;) wherever possible produces
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D a
(er”) = dAu, [(R T )] Au,_,

(R+up)

D,. 1]*
(8Aze)™ = 8Au, [ 2, ﬁ] Au, ,

D,
e

2D D
H_ 21 22
(20Ag)y)" = dAu, [(R+u) [(R-i-u)
(2D D
H 4Dy 22
(26Aeg,)" = bAu, ®R+u) [(R+u)
(2D,,D
mH _ 21723
(25A8u) = 8Au (R+u )2]

1

(3.353)
(3.35b)
(3.35¢)

] Au,, (3.35d)

l;” Au_, and (3.35e)

(3.356)

The tensor product, S.8Ag’; , is then expressed in matrix form. However, because
p l] p

t |J

[KE] = BAI"s1(BE]

in which

B [ Dy,
(R+u,)

N-pf

(R'le)

[ngf] =

Dy
L [(R-i-u )] Ny

only one scale function is incremented, the number of terms is reduced, and the matrix
equivalent expression is formed using the smaller form of the stress matrix:

(3.36)

0 |

0 . (3.37)

0

The nodal harmonic matrix, [BHF), is associated with the symmetric part of the

nodal harmonic degrees of freedom, and the antisymmetric part is formed by replacing
the cosine interpolation functions with sine functions. Again, the complete matrix is
formed by assembling these nodal harmonic parts together.
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3.6.3. Thke Mixed Part

The mixed term part of the second order strain variation was shown in Eq. (2.23c)
to be

WARSAY,; + h'Ah'3AY;;
(1 ) +HW3AWAu; + h'3Ah'AY;
H'H! | + h“Ah"(u, ; 8Au, ; + u,; 5Au, )
+ h3Ah* (u,; Auy; +uy ; Auy )

(8ae))PH = (3.38)

Expanding this for each strain component in cylindrical coordinates, and using the scaled

displacement gradient terms gives

a(8A (A
(8Ae)PH = 2D, [Au, (aRue) + 8Au, (BI:G )] , (3.39a)
D d(dA (A
(8Aeg)PH 2[%}%%—;3] [Au, ( aeu") + 8Au, (ag")] . (3.39b)
(954 A
(8Ael)PH = 2D23{Aur ( az“e) + dAu, (B:’ )] , (3.39¢)
R+u,) 0(8Au,) D, 3(5Auy)
Au, R +tDn —"—-aR + R —ae
2(8Ae)™ =2 : (3.39d)
R+u,) d(Au,) D21 9(Aug)]
+ 8Au R *Do R +"R % |
(R-le) a(SAue) D23 a(aAue)
ATR *P2fTz *R oo
Saey )P =2 ,and (3.39)
(R+u,) d(Auy) Dn B(Aue)
+ 6Au R+ D,, 3R +R e
9(5Au,) 3(8Au,)
ur[DZI 9z : Dy, 3R ]
2(54e)H =2 25 - (3.396)
(8Auy) ( Aue)]
+ SAu,[th 3z D,y R
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As with the pure deformation gradient and scale function parts, the product of the
mixed second order strain variation part with the Piola - Kirchoff stress tensor is
expressed in matrix form. However, because these are mixed terms, this part of the
geometric stiffness matrix can be formed as the sum of two matnces, each the transpose
of the other, using the smaller form of the stress matrix, [s] as shown in Eq. (3.32)

S, 04€] = {8AUYT [(B19¥)(s1B20] + M328°1"[s1(B15%)] {8AU} (3.40)
in which

2D, N#f 0 0 ]

[B1g:P = +D,|Nf 0 0 |,and (3.41)

(R+u, )
15

o 2D, N?f 0 0 _

e
oR

19N
R 30 0 . (3.42)

B2 =

Ny
_ 0 3z 0 _

The matricas [B12:%] and [B2557f] are the nodal harmonic parts of [B!] and [B2]

corresponding tc the symmetric degrees of freedom for harmonic f of node p. The
antisymmetric parts are produced by replacing NPf with N?/, and vice-versa, and the

complete element matrices are assembled from the nodal harmonic comyonents in the
same manner as the linear strain-displacement matnix.

The first order components of the geometric stiffness matrix have now been
defined in matrix form. Because of the sparse structure of the [B;] matrices, however,

the geometric stiffness matrix components should be implemented in computer code by
direct evaluation, bypassing matrix operations involving a zero.
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3.7. Integration

Th~ stiffness functions defined above must be integrated into the linear and
geomgtric stiffness matrices for the element. These functions are based on the
polynomial interpolation functions in the local &-y space and harmonic interpolation in
the @ dimension of the element. In matrix form the process is defined as

S + KDV = [(K &1 + KgEp,0]MdV .

v v

el el

Integration procedures for the simple axisymmetric element and the linear
axisymmetric element for nonaxisymmetric behaviour are shown first to illustrate the
development of an integration strategy for the nonlinear equations for the nonlinear
cylindrical formulation.

3.7.1. Integration of the Conventional Axisymmetric Element

With most conventional axisymmetric solid elements, Gauss quadrature is
employed in the R-Z plane. Since no variation in the © direction is modelled, extending
the integration from this plane around the element circumference is straight forward.
The two dimensional quadrature is applied over the simple local region, and extended to
the global element space using the usual parametric transformation for the differential

area.
dA = dRdZ = JldEdy (3.43)

where the Jacobian, ]I, is the determinant of the Jacobian matrix in Eq. (3.20), and is
only a function of local coordinates § and p. The differential volume in the ring
produced by revolving dA about the centre of rotation is then

dV = 2nRIIAE) . (3.44)

The usual axisymmetric element, is then integrated thus:

1 1
Ky=2n § [ [KEWRIdEy . (3.45)

50



3.7.2. Integration of the Linear Elastic Non-Axisymmetric Element

The Fourier decomposition element has been developed to model a
circumferential variation in behaviour, and therefore requires a more general integration
strategy in the @ direction. Consider the differential volume described by Eq. (3.44)
which is infinitesimally small in the circumferential direction, as well as in the
axisymmetric plane. When the Fourier decomposition technique was introduced by
Wilson(1965) and applied to a small displacement, linear elastic formulation, it was
shown that the harmonic components were decoupled because of the orthogonal
nroperties of the Fourier functions. This can be shown in matrix form by paritioning the
stiffness function according to the order of the Fourier functions in each term;

Kol Kol -0 Kupl 7
Kl Kuyl ... Kyl
Kql = . . _ , (3.46)
L Kypl [Kypl [(Kaenpl —
in which
K.l = JB"'ICIB™RIdrdsd®, nm=0,1,... NF (347)

v

el

Each harmonic strain-displacement matrix can be separated into its sine and
cosine parts. The corresponding stiffness matrix is thus separated into second order sine
and cosine components,

[B = [B§) + [BY] . (3.48)

Equation (3.47) can therefore be written in the form

(Koz] = (Ko + K] + [KeL1 + KR, (3.49)
in which
Ke=1=f [ [BITCIBE Icos(n©)cos(mO)RIdrdsd® (3.50)
© s r
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where [Bflcos(fO) and [B}]sin(fO) are the cosine and sine components of the harmonic
strain-displacement matrix for the f'th Fourier term, and {K;] contains the cosine terms

of the harmonic stiffness matrix which couples the n'th load harmonics to the m'th
displacement harmonics. The sine terms and mixed cosine-sine terms in [K: 1, (K1,

and [K 7] are produced using sin() in place of cos() corresponding to where s replaces ¢

in Eq. (3.50).

Since the Jacobian matrix is independent of ©, and all dependence on © has been
moved outside of [B:], Eq. (3.50) is first integrated with respect to the local coordinates

€ and L leaving:
4
K] = k=] fcos(mO)cos(n@)de® , (3.51a)
-t

where [k ] is the inner integral of Eq. (3.50). Similarly for the sine and mixed parts of

the harmonic stiffness:

T

K] = [k*][sin(m@)sin(n®)de (3.51b)
-
T

[K*1=[k*][sin(mO)cos(n®)d® , and (3.51¢)
-1
14

K] = k2] [ cos(mO)sin(n@)de . (3.51d)
-

The integrals with respect to © are the well known Fourier integrals which
manifest the orthogonality of the Fourier functions:

n Ofora#b
f cos(a®@)cos(b@) d® ={2nfora=b=0 . (3.52a)

- 7 for a=b and a,b>0
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T Ofora#b

f5in(a@)sin(b@) d@ = {0 fora=b =0 ,and (3.52b)
- nt for a=b and a,b>0

b1

fcos(a@)sin(b@) de=0. (3.520)
-t

Thus, when the harmonic stiffness matrices are integrated with respect to ©, the
harmonics become decoupled in linear formulations because the coupled harmonic
stiffness matrices, [K_ ], n # m, vanish. The Fourier decomposition technique is very
effective for linear problems because of the simplified stiffness matrix structure produced
by the harmonic decoupling, and because the circumferential integration can be
performed analytically.

3.7.3. Nonlinear Non-Axisymmetric Integration

With the nonlinear formulation, the orthogonality advantage is lost, because the
harmonic stiffnesses remain coupled. Many of the virtual work equation components
which are constant in linear elastic formulations will vary in three dimensional r, z, @
space in more general nonlinear fo.mmnlations This produces higher order Fourier
products which couple the harmonic stiffnesses. These nonlinear components include the
constitutive matrix, [C], and the deformation gradient terms of the strain increment
compornents, Ag’, and Ae”. Integration of the virtual work equation in noniinear
applications is thus most effectively achieved using numerical integration in the ©
direction, as well as in the R - Z plane. However, to understand the best means of

performing this integration, it is necessary to consider analytical integration of the
equations in the © dimension.

Firstly, the constitutive matrix [C] is not constant, and will vary with ©. This

variation could be considered in terms of a Fourier series using the same approach
applied to the displacement field:

NF
[C(r,5,0)] = Y.[Clr,8)] cos(f®) + [CL(x,s)] sin(fO) . (3.53)
f=1
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Secondly. the deformation gradient strain - displacement matrix inciudes the
deformation gradient components, which also vary circumferentially. Thistoois a

Fourier series, because the displacement field is expressed in terms of a Fourler series:

NF
[B + B]f = cos(f®) 2 [B + B’ cos(a®) + [B + B'1* 5in(a®) . (3.54)
a=0

If these expressions were used to evaluate the harmonic coupling stiffness
matrices, the higher order Fourier decompositions would require a large summation be

performed:
NF NF NF
K, =22 % (K== Jcos(n© )cos(mO)cos(a@)cos(b@)cos(cO) +
a=0b=0c=0
[keess Jeos(n®@)cos(mO)cos(a®)cos(bO)sin(cO) +
ce. +
k™ 1sin(n®)sin(mO)sin(a®)sin(bO)sin(cO)) (3.55)

Clearly, analytical integration of the harmonic coupling stiffness matrices is
impractical, by virtue of the shear number of terms which must be evaluated. The
number of matrix evaluadons required is in the order of the number of sampling points
required for numerical integration. Furthermore, a iaxge amouut of overhead would be
required to separate the harmonic terms. The strain - displacement matrices are more
easily evaluated at sample points than the decomposition shown in Eq. (3.54), and the
decomposition expressed in Eq. (3.53) requires knowledge of the constitutive properties
at sample points around the circumference. Since this information is easier to obtain,
numerical integration of the stiffness and load terms is much more efficient than
attempting to carry out analytical integrations.

Gauss integration was developed to integrate polynomial functions. The Fourier
functions can be approximated by higher order polynomial functions, but this is not the
most effective approach to integrating the Fourier functions. First order Newton-Cotes
integration (trapezoidal rule) was investigated as a numerical means of in’ ~ating
Fourier equations such as Eq. (3.55) with some interesting results. It was discovered that
applying the trapezoidal rule to the Fourier functions produces exact results with
relatively few integration points in the © direction. To understand the sampling period
that provides adequate integration, and that which provides exact integration of the
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Fourier integrals requires that exact results be available for comparison with the
numerical result. Analytical integration of the product of two Fourier functions is
relatively simple, using the trigonometric identities

cos(a - b)x . cos{a + bix

cos(ax) cos{bx) = 2 ) , {3.56a)

cos(a - b)x cos(a+ b)x

sin{ax) sin(bx) = 5 ) , and (3.56b)

sin(ax) cos(bx) = Sm(az' b)x Sm(a; b)x (3.56¢)

The product of three or more Fourier functions can be expressed as sums of

trigonometric functions by recursively applying these identities. For example, three
function products would be

sinfa-b+c)x sinfa+b-c)x sinfa-b-c¢)x
4 + 4 - 4

sinfa+b+c)x
_sin a+4b+cx‘ (3.572)

sin(ax) sin(bx) sin{(cx) =

cos(a-b+c)x cos(a-b-c)x cos(a+b-c)x
4 * 4 - 4

cos(a+b+¢)x
_cos(a +4b + €)X ' (3.57b)

sin(ax) sin(bx) ccs(cx) =

sinfa-b+c¢)x sinfa-b-¢)x sinfa+b-co)x
4 + 4 + 4

sin(a+b +c)x
+sma+4b+cx‘and (3.57¢)

sin{ax) cos(bx) cos(cx) =

cos(a-b-c)x cos(a-b+c¢)x cos(a+b-c)x
4 * 4 + 4

costa+b+e)x
+cosa+4b+cx- (3.57d)

cos(ax) cos(bx) cos(cx) =

In general form, then, a product of n Fourier functions can be expressed as a sum
of 2™ cosine or sine functions (but not both) with each term a unique combination of

cosfatbtct...x ) sin(fatbxtcx...t )

t 2n-l or W. 2n.| !

w
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where w, is a function of value 1 or -1, and @, is the n'th character of the alphabet. Itis

important to note that if the number of sine terms in the Fourier product is even, the
equivalent Fourier sum will consist of cosine terms, otherwise, all terms will be sine

functicns.

The Fourier product integration for an even number of sine functions can
therefore be considered as a summation of several terms in the form of

An-1

h ~
n w ¥
J [ Ttcos I sin)(c,8) d6 = ; ZT'I fcos(y,8) d® (even sines), (3.58)
j=1 Lod -

o i=1

where IT is the product symbol, (cos | sin) signifies cosine or sine Fourier functions, and
¥, is a unique combination of the Fourier numbersin(atb* ... £ o).

The Fourier product integration for an odd numbser of sine functions is the same,
with the cosine functions replaced with sine functions in the integrand. Because the sine
functions are odd functions about the origin, the integration from -x to 7 will be zero,

thus eliminating Fourier products with an odd number of sine functions.

Integrating the cosine functions produces

T zn-l
n . | sin(y.0) |®

Jq(coslsin)(aje) e = E %[E(Y_L)L (3.59)
J=

-7 i=1

Because the Fourier numbers are integer values, ¥, must also be an integer value.

Evaluating the integral at the limits of the interval produces a zero result for all nonzero
values of ¥, The result for ¥, = 0 is undefined, but can be determined by considering the

limit

lim sin(x) 1
=0 x

Substituting x = Y
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lim msin(ym)
0 yx

Thus substituting for the limits of the integration interval, the integration is complete:

T
w; | sin(y0) |* Wion2 fory,=0
L ) ' (3.60)

0 fory,#0

b

These results are consistent with those reported by Chan and Trbojevic(1975) for
a three Fourier function product, but higher order results have not been reported in the
literature for comparison. An interesting point to note is that the denominator increases
in magnitude by a factor of two with each additional Fourier function in the product,
showing that the most significant terms in the integral are the lowest order, or linear,
terms. This has important implications for the minimum integration order required for
the Fourier element.

Numerical integration of the Fourier products, then, must produce zero for all
sine functions and for all cosine functions witha £ b+ ... £ o, # 0. For cosine functions

n . . .
n2 must result . The numerical approach should consistently

handle both cases so that all of the terms can be evaluated and summed simultancously.
It should also be general in the sense that if the highest order ifourier product is

integrated exactly, lower order Fourier products will also be integrated exactly and
simultaneously.

withatbt..to =0,

First, consider the case of non-zero ¥. If one cycle of the harmonic is considered,
it can be proven by application of a trigonometric identity that evaluating the harmonic
function at two or more evenly spaced sample points and summing the results will
produce zero. This suggests that if the number of sampling poirts over the total range -nt
< O <= m is greater than or equal to 2y, the integration will be exact. Giving the problem
further consideration, however, one can show that only y+! sample points evenly spaced
over the total range are required to generate the zero result, because the sampling will
occur at uniform interval points in each cycle. Using fewer sample points will produce a
nonzero result; more sample points require more computation, but generate the zero
result. Thus the optimal number of sample points required to evaluate the zero terms
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exactly is v, + 1, where y__ is the largest integral Fourier number that can be produced

from all the combinations of the Fourier terms.

If, in nonlinear analyses, fewer than y,,, + 1 sample points are used, a valid result
can be produced, because only the higher order components are not evaluated exactly.
The linear components are still integrated exactly, as long as at least 2NF + 1 sample
points are used. Because the denominator is largest for these terms, and because the
deformation gradient terms are v :nlly small relative to unity, integration with this
number of sample points is often ad.date. However, if the stiffness matrix is ill
conditioned or the deformation gradients are large, it is important that full integration be
used. This is analogous to integration rules discussed by Bathe, 1982 for Gauss
quadrature of polynomial based eleme:ts For example, two point quadrature provides
reliable integration of a quadratic element, however three point quadrature is required to
integrate the stiffness of the element in its deformed configuration when large
displacements are modelled.

A series of numerical integrations using the trapezoidal rule were carried out with
a large number of sample points to verify the analytical results presented above. The
tests proved that integration of two Fourier functions is exact when 2n+1 or more
sampling points are used, where n is the larger of the Fourier numbers. Integrating three
Fourier functions, the result converged at 3n+1 sampling points, where n is the largest of
the three Fourier numbers. Integrating four Fourier terms required 4n+1 sampling
points, and finally, five Fourier functions could be integrated with 5n+1 sampling points.
These results show that the trapezoidal rule will produce an exact result if the number of
sampling points is one greater than the sum of Fourier numbers in the product to be
integrated.

The circumferential integration rules may then be summarized as follows:

Small displacement, linear material: Product of two Fourier functions may be
integrated analytically, or numerically using 2#NF+1 circumferential integration
points, where NF is the number of harmonics tc be modelled.

Small displacement, nonlinear material: Product of three Fourier functions are
integrated. 3*NF+1 integration points will model a material variation of the same
order as the displacement variation. More circumferential points will improve the
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circumferential representation of the material by increasing the effective number
of Fourier t¢ s in the material model.

Large displacement, linear material: Deformation gradient strain-displacement matrix
includes products of two Fourier functions, thus the stiffness matrix must
integrate four Fourier functions. Therefore, 4*NF+1 integration points will
exactly integrate the stiffness matrix in the circumferential direction.

Large displacement, nonlinear material: Two Fourier functions from the strain -
displacement matrix and one from the constitutive matrix produce a total of five
Fourier functions which must be integrated. This requires 5*NF+1 integration
points to model material variation equivalent to displacement variation in the
circumferential direction.

The element uses the usual polynomial serendipity functions in the axisymmetric
plane, for which Gauss quadrature provides the most effective integration. Thus, the
integration formula is expressed as

NG NG, NT

Kq= JIKMV=wRY, 2 wwillX [Kgl, (3.61)
v, i=1 j=1 k=1

where NG; and NG, are the number of Gauss points in the E and p directions of the
element in local coordinate spiace, NT is the number of circumferential sampling points,
w; and w; are the usual Gauss quadrature weighting factors, and wy is the weighting
factor for trapezoidal integration, which is simply 2/NT. The matrix [K;;] is the
stiffness matrix function evaluated at the integration point:

(K = BER,001 [CIBE,1,0)] + BE 1,0 [SIBEE:1;00)]
+ [Bg(gi'uj'ek)]T[s][Bg(e.ﬁ'u'j'ek)] +B1g"¢§ le'ek)]T[SJ 1823"(&-#1-9.:)]
+ B2k, O] [sHB13"(E,.1;,0,)] (3.62)

The coordinate values of & and H; are the Gauss integration point coordinates, and
©, are the circumferential integration locations, (k-1)(2r/NT).

This completes the formulation of the Fourier decomposition element in
cylindrical coordinates. All of the matrix equations required to generate ihe element
stiffness matrix have been defined and can be implemented in computer code for a finite
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element program. All of the usual procedures for assembling and solving the complete
system of equations may be applied. Some additional consideration must be given to
accommadate the large number of degrees of freedom per node, but this is not a large
problem to address. A description of a finite element computer program which
implements this element, and results produced by the program are given in subsequent
chapters.

3.8. Boundary Conditions

The implications of boundary conditions rzquire some additional discussion in the
context of Fourier displacement field decomposition. It is interesting to note that
boundary conditions which are difficult to impose on axisymmetric models composed of
conventional elements are often simple to apply to models based on Fourier
decomposition elements. For example, shear stresses may be applied to one end of a pipe
using the circumferential (8) degrees of freedom of the first harmonic, and reacted at the
other end by constraining the circumferential degrees of freedom of the first harmonic.

If no other constraints are applied (other than those needed to remove rigid body modes),
the pipe cross section is as free to deform at the boundary as it is in the middle. This is
equivalent to the idealized boundary conditions used to evaluate a section of pipe with
intemnal stress equivalent boundary conditions. Modelling such boundary conditions is
difficult, if not impossible, with conventional elements.

The rigid body axial displacement mode and rigid bedy rotation about the
axisymmetric axis are all modelled by the zero'th harmonic. This harmonic also includes
the usual axisymmetric deformation modes, and uses boundary conditions associated
with axisymmetric analyses. Rigid body motion normal to the axisymmetric axis, and
rigid body rotation about any axis normal to the axisymmetric axis is primarily modelled
by the first displacement harmonic. However, because of the curvilinear nature of the
cylindrical coordinate system, the interpolation functions will not exactly model rigid
body motions with one harmonic. Constraining these degrees of freedom will, however,
remove the rigid body modes.

Common load applications are also relatively easy to impose on a Fourier element
based model. As illustrated earlier, pure shear on a thin wall is modelled exactly by the
circumferential degrees of freedom of the first harmonic. Similarly, pure bending is
modelled in the first harmonic using the axial degrees of freedom, as shown in Chapter 6.
Torsional loads are applied using the @ degree of freedom of the zero'th harmonic, while
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the R and Z degrees of freedom in the zero'th harmonic are used to apply the usual
axisymmetric load cases.

Often, more complex load cases are required, such as concentrated axial loads
applied to an axisymmetric shell. Such load cases must be separated into radial, axial

and circumferential component functions, and the functions decomposed into Fourier
components:

T{R.O,Z) = D (TL(R,Z)cos(FO) + TL(R,Z)sin(FO)) , (3.63)
=0

where T,(R,©,Z) are the traction component functions and T&(R,Z) and T-L(R,Z) are the

harmonic traction function amplitudes. Once this decomposition is achieved, the
orthogonal properties of the Fourier functions are utilized to integrate the harmonic nodal

equivalent loads for assembly into the global load vector in the same way used in
conventional formulations:

(F,) = JINI"{T}dS . (3.64)
S

el

Separating the interpoiation matrix and tractions into harmec..ic components, the load
vector can also be expressed in terms of harmonic components:

R
(F¥) = J JIN"IT{T?}cos*(fO)RAIAO , and (3.652)
Sel
R
HY
(F) = J [NIT{T®}sinX(€0)RAIAO (3.65b)
S¢|
-

where {F,} is the vector of nodal equivalent traction loads for the element boundary,
{FP} and {F?¥} are the cosine and sine portions of the load vector associated with node p
and harmonic f, (N] is the full interpolation function matrix, [N*] is the matrix of
polynomial functions, dl is the two dimensional, axisymmetric differential surface of the
element, and dS is the three dimensional surface generated by rotating dl about the axis
of axisymmetry. Other terms are, of course, generated in the expansion from Eq. (3.64)

61



to the Fourier form in Eq. (3.65). However, those extra terms vanish because of the
orthogonal properties of the Fourier functions. The integration with respect to © was

presented in Egs. (3.52), so the nodal harmonic load vector becomes

(F) = o IN°T{TPYR,Z)}Rdl for£>0. (3.66)
I

¢l

The interpolation matrix must include two polynomial interpolation submatrices
so that both sine and cosine parts of the harmoric are included. The axisymmetric load
function (that is, the harmonic load vector associated with £=0) uses the usual multiplier
of 2r rather than 7 because of its unique integration with respect to ©.

Development of these nodal harmonic load components have all assumed that the
loading tractions are independent of deformation. While many analysis cases are
accommodated by such assumptions, those that require deformation dependent loading
must include nonlinear terms which couple the harmonics of the load function
integration. The additional complexity is comparable to that introduced into the stiffness
functions by large displacements which is not unachievable, but is significant. Since
such a capability is not required to prove the large displacement formulation, its
development is not included here.

3.9. Cylindrical Formulation Summary

The formulation for a Fourier decomposition element in a cylindrical reference
system is complete. The basic formulation in general curvilinear coordinate systems has
been specialized to the cylindrical coordinate system and expanded into the full finite
element matrix form. Integration procedures have been developed to handle the unique
requirements of the Fourier decomposition, and boundary conditions for the Fourier

formulation have been discussed.

A discussion of the element displacement field has also been presented,
specifically with regard to rigid body motion requirements. In a subsequent chapter,
results produced using this formulation are presented and compared with results from the
Fourier decomposition element with Cartesian displacements developed in the next

chapter. Those results show that the benefits of cylindrical displacement components are
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outweighed by the problems produced by inaccurate rigid body mations. This does not
mean, however, that the cylindrical formulation should be abandoned, only that more

v o7k is required to develop an element displacement field in cylindrical components that

can model rigid body motions.
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Figure 3.1

Axisymmetric three dimensional solid element
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4. Cartesian Formulation

3.1. Overview

The use of cylindrical displacement components is very useful for lincar problems
because the harmonic stiffnesses are uncoupled, and the stiffness matrix can be integrated
analytically, thereby simplifying generation of the system of equations fo- *hree
dimensional problems. However, these benefits are lost when nonlinear problems are
considered. Furthermore, the interpolation functions used in cylindrical formulations can
only approximate rigid body motion when large deflections are considered. Increasing
the number of Fourier overlays improves the range over which rigid body motion is
reasonably approximated. However results presented later (Chapter 6) show that many
harmonics are required to model even modest amounts of lateral motion, rendering the
cylindrical displacement field inadequarte for modelling large displacement problems.

Conventional brick elements are formulated in Cartesian coordinates using
Cartesian displacement components. These elements are well proven for modelling large
displacement problems. Cylindrical coordinates can be transformed to a Cartesian
system, thus it is possible to use Cartesian displacement components in a cylindrical
element. This provides the benefits of both systems: a cylindrical system is used to
simplify geometrical properties of the element, and a Cartesian system is used to
reference the displacements. The element formulation is, in fact, simpler than the
cylindrical displacement formulation, yet models rigid body displacements and rotations
exactly.

This chapter details development of the axisymmetric element for non-
axisymmetric bahaviour using Cartesian displacements, referred to henceforth as the
Cartesian element, and makes frequent comparisons to the cylindrical element developed
in the previous chapter. Many of the fundamental concepts are carried over from the
previous chapter, and the reader is advised to refer to that chapter for a more detailed
explanation of concepts which are not discussed here in full detail.

4.2. Displacement Field
4.2.1. Displacement Components

The geometry of the element is still expressed in terms of the cylindrical
coordinate system, defined by R, @, and Z. A Cartesian coordinate system is defined
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with a coincident origin and Z axis. The transformation functions between R, @, and X,
Y are as follows:

X =R cos(®), (410

Y =R sin(®) , (4.1b)

R=\X*+Y?,and (4.2a)
Y

© = tan’ [SE] (4.2b)

The scale functions for displacements in Cartesian systems are unity for all three
displacement components. Consequently, there is no need to distinguish between
physical and coordinate displacements, and the displacements are defined simply as

u,=x-X, (4.3a)
u, =y - Y ,and {4.3b)
B,=z-2. (4.3¢)

4.2.2. Fourier Decomposition of Circumferential (Out-of-Plane) Displacement

The three dimensional displacement field is decomposed into a Fourier series of
two dimensional functions using the same procedures as the cylindrical formulation.
However, Cantesian displacements are used rather than cylindrical displacements.
Although this approach has not previously been applied to finite slement analyses of
axisymmetric structures, solutions do exist in classical mechanics which use Fourier
techniques. For example, Sokolnikoff(1956) shows the solution for a cylindrical bar
subject to bending loads using Cartesian displacement components. The exact linear
solution for the displacement field is given as two or three Fourier terms depending on
the particular problem. This solution demonstrates that effective, simple solutions exist
for problems using Cartesian displacements and Fourier decomposition.

Using indicial notation the displacement field is expressed as the Fourier series

nk

u = ¥ ul(RZ)cos(f0) + I ul(R,Z)sin(fO) i=x,y,2 (4.4),

1 f=1

-
1l
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where uf and uf, are respectively the two dimensional amplitude functions for the cosine

and sine Fourier terms.

It is important to distinguish between the two coordinate systems which are
employed. The displacement components, u;, are Cartesian displacements, u,, u,, and u,.

Thest ac expressed as functions of the cylindrical coordinates which define the element

geometry.

The harmonic amplitude functions, uf, and uf, , are independent of ©, thus

differentiating term by term with respect to @, the derivative becomes

1 T -
55 = > -ful(R,Z) sin(fO) + Y f ul(R,Z) cos(fO) . (4.5)
f=0 f=1

4.2.3. Polynomial In-Plane Interpolation with Parametric Transformation

Polynomial interpolation of the harmonic displacement amplitudes is the same as
that used for the cylindrical element. As with other elements described in two
dimensions, the axisymmetric section of the element is transformed to a local coordinate
space to simplify the interpolation functions and integration:

NP

ul(Ep) = D P,Ep) uff , and (4.62)
p=1
NP

ufEp) = Y P(E) uff . (4.6b)
p=1

The variables u? and uff are the nodal values of displacement field amplitudes for cosine

and sine harmonics respectively. These are in fact the degrees of freedom of the element.
4.2.4. Combined Interpolation

T'o summarize, the subscript i represents the displacement component in the X, Y,
or Z directions; subscripts ¢ and s respectively denote cosine and sine terms of the
Fourier series; superscript p represents polynomial interpolation number, or node
number; and superscript f deniotes the harmonic number, The element matrices have the
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same size as the cylindrical element, since it requires the same number of degrees of
freedom.

Combining interpolation functions from Eq. (4.4) and Eq. (4.6) provides the
displacement field for the element in terms of combined interpolation functions and
nodal harmonic displacements:

NP NF
u= D, 3 (NPFuPl 4+ NEfuPfy 4.7
p=1f=0
where
NEf= P (E,1) cos(f®) , and (4.8a)
N#' = P (§,10) sin(fO) . (4.8b)

4.2.5. Displacement Gradients

Conventional solid elements use the Jacobian matrix to transform spatial
gradients from the local coordinate system to the global coordinate system. The Fourier
element local domain is defined in two dimensions by the &, i coordinates, and in the
third dimension oy the © coordinate. The Jacobian transformation between these
coordinate spaces is

(3) [ ay 3z (2)

o& o dE & oX
d X dY dZ d
AN | & 42 2= -7
) o (= oL on du ﬁ oY | - (4.9)

9 X dY d9Z (|9
Ge) L3 3 30 4.3z

In this formulation, then, the Jacobian matrix is a function of ©. The amount of

information which must be stored at each integration point can be reduced by using the R
coordinate as an intermediate value. Noting that Z is not a function of @, the
transformation becomes
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(2) & 3R oz 7<)
a5, 'E)WE: cos(®) 'égsin(e) 'éz 2D, 4
dJ d
13- (=] R oR 2z K=¢. (4.10)
du apcos(@) aMsm(@) o Y
ol |, » 1|2
Be) - -Rsin{®)  Rcos(©) -3z,

It is interesting to note that the determinant of the matrix above, known as the
Jacobian, is the same as the two dimensional Jacobian in conventional axisymmetric
formulations. Since from physical considerations the determinant must have a non-zero
value, the inverse of this Jacobian matrix exists. Indeed, the inverse relationship may be
expressed directly as

(3 [ % & 0 7(2)
X X ox ox || 2
oL | & op 90 8\
1% (=| 37 3% v \ENE .10
9 & du 99 || d
\gZ/ L. 0Z 09Z 0Z - \30/

The partial derivative of & with respect to Z is trivial, since these two coordinates
are independent. The derivatives of @ with respect to the other Cartesian coordinates are
easily obtained using the transformation functions between the two systems:

®=tan’'(X,Y), R =\/x2 +Y2, (4.12)

Differentiating these relationships gives

00 _-sin(@) 90 _ cos(©)
3X- R " 3y~ R ° (4.13a)
g% = cos(®) . and %% =sin(9) . (4.13b)

Derivatives of the local coordinates (§, ) with respect to Cartesian coordinates

cannot be expressed directly, however, they can be expressed using the two dime. sional
Jacobian inverse components:
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&k _RE

X dX R’
d& JR &
dY oY or' ¥

u Ry
0X 3XoR’
u_3R
oY dY IR’

Again, using the transformation functions,

i’i = ¢0s(0O) éé

oX dR’

dR

d
é?= sin(@)g& ,and

%% = cos(@)
d
5% = sin(©)

o
dR’

9
dR "

(4.14)

(4.14b)

(4.15a)

(4.15b)

Substituting these transformation functions into the inverse three dimensional

Jacobian matrix in Eq. (4.11) gives

(3 —
2).4

Y

=) L

cos(®)

< o\ _ sin(©)

o oL -sin(®)
R cos(®) 3R R
& du  cos(®)
R @3 TR
Ju
3z 0

9
'En

9 )

dg

d

ey

(4.16)

Thus, the two dimensional Jacobian matrix inverse, []’]‘1, can be stored for each

element and used to form the three dimensional Jacobian matrix inverse during

integration of the element stiffness matrix. The two dimensional matrix is identical to

that ascd in the cylindrical element or, for that matter, conventional axisyr.metric or

plane stress/strain elements.

It is important to note that the three dimensional Jacobian transformation is
depencent upon ©. Consequently, the polynomial and Fourier interpolation functions

cannot be completely separated in the complete interpolation function gradients as they

were in the cylindrical formulation. Symbolically, the interpolation function gradient

expressions are more complex. However, computationally, there is little difference in the

implementation. Much of the same code can be used, and the gradients of the

polynomial interpolation functions with respect to the R - Z coordinate system can still

be used:
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ONt' (9P, £ .

—a—)-(— = 3r cos{fO) cos(®@) + R P sin(f@) sin(@)! , (4.17a)
aN"’ (9P, ]

8X 3R == 5in(fO) cos(O) - P cos(f®) sm(@) , (4.17b)
INE' (3P, . £ ’

BY 3R cos(fO) sin(@) - R PP sin(f©) cos(@)‘ . {4.17¢)
an‘ dP,

aY 3R —2 5in(f®) sin(O) + £ P, cos(fO) cos(@)} , 4.17d)
aNe!

=z “é‘zncos(fO) and (4.17e)
aNP‘ dP,

BZ BZ —L5in(fO) . (4.17f)

Thus, the displacement gradients are expressed in terms of the interpolation
function derivatives:

aNz' oNEf ,]
”l . (4.18)

__ f , — B8
Z [ox W ax

p=1 =0
4.2.6. Vector Notation for Interpolation Functions

As with the cylindrical formulation, the convention used to arrange the nodal
degrees of freedom is grouped first by harmonics, then within each harmonic by node,
for each node into symmetric and antisymmetric parts, »nd finally within each part by x,
y aud z degrees of freedom. Clearly, with the degrees of freedom coupled by additional
cosine and sine functions, even linear problems will not have decoupled harmonic
stiffnesses, thus this arrangement provides no real advantage except that the program
structure remains very similar to the cylindrical formulation,

{u,E.p.©)} = INGr.s. U} (4.19)

The interpolation matrix is partitionzd into harmonic parts,
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NR.O.Z)] = [N [N ... N ... [NVF)] (+.20a)

and the harmonic parts into nodal harmonic parts,

N = [INYT N L L Ne L L NP (4.20b)

in which

NP0 0 NPP OO
N¥]=| 0 NY 0 0 N¥ 0 |. (4.20¢)
0 0 Nf 0 0 N

Since the scale functions are vnity in the Cartesian reference system, the unscaled
spatial derivatives, [N{], and the scaled derivatives,[N"], are the same. The displacement

gradient tensor, { D}, can therefore be written in terms of nodal displacement amplitudes
and interpolation function derivatives as indicated by Eq. (4.18) as

{D,} = [N{u} (4.21)

in which
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(u)

(D} =4 == (4.22)

\. 0Z /
The intespolation function derivativ. matrix is also partitioned into harmonic parts,

NR.O.2)] = [NTINY ... N ... N, (4.23)
and each harmonic part into nodal harmonic parts,

N2 = [P NG L N L MR (4.24)

where
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[ o ONY 7
X 0 0 X 0 0
G any
Y 0 0 Y 0 0
aN?! INF!
32_ 0 0 3? 0 0
, an!
X 0 0 3% 0
oONFf INFf
+ pf = hainibel § <
{N"P] 0 3y 0 0 > 0 ) (4.25)
, o
74 0 0 z 0
oNFf oNFf
0 0 X 0 0 B—X
NP ONPf
0 0 Y 0 0 e
0 0 ONg 0 Q_N_’f._'
3z 0 Z -

In the symbolic representation of the nodal harmonic parts, [N’ P'], the superscript
f refers to the f'th harmonic component of the displacement vector. However, this dces
not mean that it contains only cosine (f®) and sine (f&) terms, because the derivative
transformation to the Cartesian generate harmonic functions of (f-1)© and (f+1)© in

o2,

The displacements and displacement gradients have now been expressed in terms
of the interpolation functions and nodal displacement amplitudes. These are used in the
following sections to develop matrix forms of the virtual work equation.

4.3. The Strain Representation

In Chapter 2 the finite element form of the virtual work equation was developed
in general terms. Differential operator matrices were defined symbolically in Egs. (2.36)
and (2.39) which, combined with the interpolation matrix [N], form the basic
components of the stiffness matrix. In this section, the symbolic components of Eq.
(2.43) are developed for the Cartesian coordinate system into matrix form suitable for
computer implementation. The equations were develoned in Chapter 2 for orthogonal
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curvilinear coordinate systems. However, many of the additional terms are not required
here, because there are no incremental scale function terms in the Cartesian formulation.
This element is not new in terms of its variational formulation (which is the same as any
conventional brick element), but is novel in terms of the mapping of the displacement
field to the cylindrical geometry, and the Fourier decomposition of the displacement field
in the circumferential direction, both of which were discussed in the previous section.

Because the coordinate transformations were developed to maintain as much
similarity between cylindrical and Cartesian formulation, the finite element ~ quations
maintain a high degree of similarity. Some significant differences do exist however, and
these are highlighted in this section.

4.3.1. Small Strain Increment - Matrix Representation
The small strain increments defined in Bq. (2.22a), are written in matrix form as
(A€} = B){Au} = [d] + (1] {Au}

where [d] is a differential operator matrix for the displacement gradient component of
(€}, and [h] is the scale factor component. The complete matrix form of the small strain

increment in Cartesian coordinates is:

A 7]
) X g 0
Ae, ) 0 3 0
At, 3
Ag, } g g oz Au,
= L < A (4.26
ﬁ 2A8‘y aY ax 0 ‘At )
9 9
| 9z 0 X

There is no scale fraction increment component in this form, leaving only the
displacement increment yart, and only six strain terms need be considered, since the
strain tensor is Ssymmetric.
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Eq. (4.19) gives the displacement field in terms of the nodal degrees of freedom
using the interpolation matrix. Substituting this intu the equation above, and combining
the differential operator matrix and the interpolation matrix, the small strain vector is

expressed in terms of a strain-displacement matrix, [B], and the element displacement
vector, {AU},

{Ae} = [B]{AU} , in which (4.27)
(B} = (I[N} -

Following the same conventions for partitioning the interpolation function matrix
in Eqs. (4.20) for the interpolation function derivative matrix, the strain - displacement
matrix is partitioned into harmonic parts,

B)={BY®"...B9...B"]. (4.28a)
and each hammonic part into nodal harmonic parts,
B7=[E"1BY...B"...B"]. (4.28b)

where [BP} is the strain-displacement matrix associated with node p and harmonic f.
Each nodal harmonic submatrix has six columns, the first three columns associated with
symmetric degrees of freedom, the last three with the antisymmetric degrees of freedom.
Thus each nodal harmonic part can be subdivided into these two parts,

=# = [[B# [B7] (4.28¢)

where the symmetric part, [B®7], is given as
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- ot .
ax 0 0
EAA
0 3Y 0
0 0 aN?:
f oNef ONF! oz
B =| N N, J . (4.29)
% ax
ONP ONF!
0 z Y
EA ONY
| Tz 0 X

and the antisymmetric part, [BFT], is the same, except that N*' is replaced by NP, and vice
versa. Thus, the infinitesimal strain increments are essentially expressed as a sum of
nodal harmonic com jonents,

NF NP
(ag) = X 2 {Ae™), (4.30a)
f=1 p=1
where the nodal harmonic strain increments, {Ac™'), are given by
(Ae®) = B*]{u™) . (4.30b)

The strain increment vector, (Ae"f], is the component of the strain vector associated with
the f'th harmonic displacement amplitude at node p and {u™} is the nodal harmonic
displacement vector.

4.3.2. Nonlinear Strain Increment Component

The component of the strain increment tensor which depends on the displacement
gradient tensor was defined as Asi’j in Eq. (2.22b). It includes components of the

displacement gradient tensor, Dy, or in vector form {D} which was defined in Cartesian
coordinates by Eq. (4.22).

The procedure to develop the small strain - displacemeant matrix, [B] also applies
to the nonlinear strain-displacement matrix, [B’]. The nodal harmonic part of [B] was
shown to be similar in form to the small strain differential operator matrix, ard the same
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is true for [B’]. Therefore, the intermediate steps to airiving at the nodal harmonic part
are not shown, and the symmetric part of [B?'] is presented directly:

anPf anPf et ]
e T e
D 3% 21 3x D3y 3%
anPf anef an?f
Ve '} e
f Dia%y D225y D32 v
[B®] = 4-3D
anef P! anPf
a2 [~
D133z Pu 3z Dyy 3
[ an®! aN‘;‘] aPl NP el e
Do ax *Pniay) P ox *Puay) 1Pn3x *Puw
Nl P! aff atf e
[P35y *Pi2 7z D35y P27y B335y *Pn g
vt NP NPl P AN Y
ED_I.I 7z *P133x Dy 3z *Pa33x ) (Pniz *Pngx

With the infinitesimal and deformation gradient strains defined in terms of
element nodal degrees of freedom, the element linear stiffness matrix can be evaluated

and integrated using an appropriate numerical integration technique.

4,3.3. Linear Stiffness Matrix

The linear stiffness matrix is the integral over the element volume of the matrix
expression [B;]"[C][B,]. The matrix [B,] is the sum of [B] and [B’} which were

developed above, The linear stiffness matrix can be integrated using the same numencal
techniques discussed in chapter 3. The geometric stiffness matrix can also be integrated
simultaneously, and its development follows in the next section.

4.3.4. Geometric or Nonlinear Stiffness Matrix

In Chapter 2 the geowetric stiffness matrix was shown to be composed of three
parts corresponding to the three different parts of the second order strain increment
variation in Eq. (2.23). Only the first part is required in the Cartesian system, because
there are no scale function increments. The same stress matrix is used again to form the
geometric stiffness matrix:
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S1=| 0 5 © | 1= O S» 5w 432)

[0] 01 (s

The displacement operator matrix which forms the basis of the geometric stiffness
matrix is also formulated in terms of the interpolation functions, just as the small strain
differential operator matrix was, and the intermediate steps to arrive at the nonlinear

strain-displacement matrix are again omitted. The nodal harmonic parts of this matrix
are presented directly:

A NP .
X 0 0 X 0 0
ON®f oNPe
>y 0 0 3 0 0
ONFf oNF!
3z 0 0 _BE_ 0 0
ONPf oN?f
0 a_x 0 0 X 0
[BY] = 0 NG 0 0 ONg 0 (4.33)
G Y aY nr
NP ON¥!
0 7 0 0 = 0
ONFf NP
0 0 % 0 0 x
ONPf ONP!
0 0 3Y 0 0 B—Y
INef NP
0 0 a_z 0 0 a_z

There are no scale function and mixed parts for the geometric stiffness matrix
because the scale function increments are zero. The complete matrix is assembled from
these nodal harmonic parts just as the linear strain-displacement matrix was assembled in
Eq. (3.26). This displacement gradient matrix has the same general form as the
geometric stiffness matrix for Bathe's, 1982 three dimensional solid element . The main
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difference lies in the Fourier interpolation functions and the number of degrees of
freedom.

4.4. Integration

Integration of the stiffness matrix functions in this chapter uses essentially the
same procedures as those developed in the previous chapter for the cylindrical
formulation element. Integration in the axisymmetric plane is performed using Gauss
quadrature, and trapezoidal %itegration is applied in the circumferential direction. The
general form of the Cartesian stiffness functions have a slightly different form, however,
requiring some modifications to the rules regarding the number of trapezoidal integration
points. The interpolation functions presented in Eq. (4.8) have the same form as that
used in the cylindrical formulation. However, when the interpolation function gradients
are transformed from the local (E,11,©) system to global (X,Y,Z) coordinates by Eq.
(4.17), additional sine and cosine functions are included.

The harmonic parts of the linear strain displacement matrix could thus be
separated, not into just sine and cosine parts as it was in the cylindrical formulation, but
instead into four parts to accommodate the additional sine and cusine terms;

B]=[B° B"]...BY...B™],

where the harmonic part [Bf] is given in terms of the components associated with each
Fourier product,

[Bf] = [B.] cos(f®) cos(©) + [BL,] cos(fO) sin(©)
+ [BL] sin(f®) cos(®) + [BL] sin(fO) sin(8).

Applying the trigonometric identity used to develop the integration rules in
Chapter 3, the harmonic parts of the linear strain displacement matrix are expressed in an
alternate four part form;

[BY = [B,] cos((f+1)0) + [B;] cos((f-1)©)
+ [B!,] sin((f+1)©) + [Bf] sin((£-1)0) .

When the linear stiffniess matrix is integrated, the harmonic coupling stiffnesses
are nonzero only in the case where

K,]#0, ntl=mtl.
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The stiffness matrix form is therefore

[ Kol Kol O 0 7

Kol K] Kl 0 0

K]= 0 Kol [Kn] (K.l 0 0
- 0 s 0 Kyl [Fgl -

While some degree of decoupling is achieved, the storage required for the linear
stiffness matrix is triple that of the linear cylindrical formulation stiffness matrix in terms
of the k:armonic coupling. However, in real models, nodal coupling must also be taken
into consideration, making the savings in the structure stiffness matrix bandwith and
solution time negligible compared with the fully coupled stiffness matnix. The only real
savings result from the ability to analytically integrate the element in the circumferential
direction and from the reduction in the number of element submatrices which must be
evaluated. Compared with the small displacement, linear elastic cylindrical formulation,
this formulation has increased computational requirerents, but no modelling advantages,
and therefore is not considered further.

4.4.1, Nonlinear Non-Axisymmetric 7ntegration

With nonlinear problems, much of the integration advantage is lost in the
cylindrical formulation because the harmonic stiffnesses are coupled, and numerical
integration is required as a consequence. The additional coupling of the Cartesian
formulation demonstrated in the linear case abave, should impose little, if any, additional
overhead in such cases, and it would seem that the simplified finite element equations
would be less difficult to evaluate in the numerical integration process.

Recalling from Chapter 3, the number of trapezoidal integration points required
to exactly integrate the finite element equations in the circumferential direction was ¥,

+ 1, where ¥, is the maximum value of the sum of Fourier numbers in the stiffness
equation [B+B’]"[C][B+B‘]. For example, a full nonlinear problem modeiled using the
cylindrical formulation with F harmonics for the displacement field and material
properties gives a maximum value for Y of 5F: each [B+B’] has a maximum Fourier
number of 2F, and the constitutive matrix would use F harmonics. The [B] matrix
actually has a maximum Fourier number of F, but it is added to [B'] (containing 2F

32



harmonics) before the matrix product with [C] is formed. The [B’] matrix has a
maximum Fourier number of 2F because it includes products of the displacement

gradients interpolation function derivatives, each of which has a harmonic number of F.

The number of integration points in the circumferential direction increases
slightly in the Cartesian formulation. The additional cosine and sine functions
introduced to the interpolation gradient functions of Eq. (4.17) by the three dimensional
transformation from the local coordinate system effectively adds an additional Fourier

function to the strain-displacement matrix, [B], and to the deformation gradient part,
[B’]. Therefore, for an equivalent full nonlinear problem, ¥,,, increases to 5F +4,

The circumferential integration rules may then be summarized as follows:

Linear, small displacement analysis: Procnct of to Fourier functions may be
integrated analytically, or numerically using 2*NF+3 circomferential integration
points, where NF is the number of harmonics to be modelled. The cylindrical
formulation should be utilized for these problems because f the greater degree of
harmonic decoupling it provides.

Small displacement, material nonlinear analysis: Product of three Fourtier functions is
integrated. 3*NF+3 integration points will model a material variation of the same
order as the displacement variation. More circumferential points will improve the
circumferential representation of the material by increasing the effective number
of Fourier terms in the material model.

Large displacement, linear material analysis: Deformation gradient strain-
displacement matrix includes products of two Fourier functions, each with a
maximum Fourier number of NF+1, thus the stiffness matrix must integrate four
Fourier functions. Therefore, 4*NF+S5 integration points will exactly integrate
the stiffness matrix in the circumferential direction.

Large displacement, material nonlinear analysis: Two Fouricr functions from the
strain - displacement matrix and one from the constitutive matrix produce a total
of five Fourier functions which must be integrated. This requires 5*NF+5
integration points to model material variation equivalent to displacement variation
in the circumferential direction.
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The element uses the usual polynomial serendipity functions in the axisymmetric

plane, for which Gauss quadrature provides the most effective integration. Thus, the
integration formuia is expressed as

NG, NG, NT

Kgl= fKIAV=wRY 2 ww, Y [Kyl, (4.34)

Vi i=l j=1 k=1

where NG, and NG, are the number of Gauss points in the r and s directions of the
«.2ment in local coordinate space, NT is the number of circumferential sampling points,
w; and w; are the usual Gauss quadrature weighting factors, and wy is the weighting
factor for trapezoidal integration, which is simply 27/NT. The matrix [K,;] is the
stiffness matrix function evaluated at the integration point:

Kiad = BLrs;, 01 ICIBLT5;,0)] + Bgrs; Q)1 [SIBg(r;5,00] . (4.35)

The coordinate values of r; and s; are the Gauss integration point coordinates, and

©, are the circumferential integration locations, (k-1)(21e/NT).

This completes the formulation of the Fourier decomposition element in Cartesian
coordinates. The matrix equations required to generate the element stiffness matrix are
less complex than the equations developed for the cylindrical formulation. This
advantage is offset by increased integration demands, and imposes equivalent
computation demands. However, the displacement field in Cartesian coordinates models
exactly rigid body motion in the zero'th and first harmonics, making it much more
powerful for modelling large displacement problems, and more efficient than
conventional finite element formulations.

4.5. Boundary Conditions

Boundary condition considerations are, for the most part, the same for the
Cartesian formulation as they were for the cylindrical formulation. Often, however, the
loading applied to the axisymmetric finite element model, will be given in terms of the
cylindrical coordinate system, and these loads must be transformed to a Cartesian
equivalent form. The z dimension is the same in Cartesian and cylindrical coordinates,
but the transformations between r and 8 dimensions are performed by the harmonic
functions, cosine and sine. Consequently, loads of the F'th harmonic in the r and 6
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directions will be transformed to loads in the (F-1) and (F+1) harmonic in the x and y

directions.

For example, consider a total pressure distribution on the surface of an element.
Assume, in the general case, that the variation in the circumferential direction has been
decomposed into harmonic components:

NF
p(©) = Zpi cos(f@) + p! cos(fO) . (4.36)
=0

At any point on the circumference, the normal pressure applied to the surface can
be expressed in terms of its Cartesian components (Figure 4.1):

T, =R p(©) cos(®) dRAZ ,

T,=R p(©) sin(®) dRAZ , and

T,=R p(©)dRdZ.

The finite element expression for the load vector integrates the product of the

traction functions and the interpoiation function matrix. Integrating with respect to ©,

n

(F} = JINIT{T)d® .

-

The interpolation matrix was shown partitioned into harmonic parts. Similarly,
partitioning the load vector into harmonic parts and expanding (T} into a Fourier series,
the element load vector can be separated into harmonic parts. The part associated with
the f'th harmonic is expressed as

NF &
(Fy =Y SovT(Thde .
g=0-n

Separating [N] and [T} into sine and cosine components, and moving the Fourier
functions outside the matrices:
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T cos(G))
{F“}—Z [NE)T Sm(@) cos(g®) cos(fO) | O,
g—O

where {F.} is the component of {Ff} from the cosine parts of [N] and p(®). Three more
components, {F;l, {FL}, and {F[}, have the same form with sine replacing cosine in the
integral when s replaces ¢ in the subscripts of {F}. The rules used by Chan and
Trbojevic, 1975, and extended in the previous chapter are then applied here:

Ofora=g=f=0
fcos(a@) cos(g®) cos(fO) dO =

nfora=0,g=f , (4.37a)

- 7/2 for 2(f - g) = 1 and a=1
p nfora=0andg=f
Jcos(a©) sin(g®) sin(fO) dO = l n2foracland #f-g)=1 (4.37b)
-
" n/2fora=landg-1=f
f5in(a®) sin(g®) cos(f@) dO = { o2 fora=landg+l=f " (4.37c)
-
T

. . m2fora=landf-1I=g
fsm(a@) cos(g®) sin(f®) d© = {-Rﬁ- fora=landf+l=g ’ and (4.37d)
-
f (other combinztions of sin and cos) =0 . (4.37¢)

Thus a harmonic variation in axial tractions will appear as nodal harmonic
equivalent loads in the corresponding harmonic of the load vector, {F}, as one might
intuitively expect. Radial traction components, however, have no nodal harmonic
equivalent loads'in corresponding harmonic parts of the load vector. Equivalent forces
appear instead in the harmonics immediately before and after that which corresponds to
the harmonic variation. The results chapter also illustrates this transformation
phenomenon in the displacement pattemn. An elastic wave in the circumferential
direction with an angular wavelength of 2rt/N requires N + 1 harmonics to model such
behaviour.
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These results demonstrate that the Cartesian forrnulation imposes more overhead,
relative to the cylindrical formulation, than just increasing the number of circumferential
integration points. It also demands an additional harmonic be included for a given
harmonic response, and this additional harmonic also implies even more trapezoidal
integration points should be added.

4.6. Transformation to Cylindrical Degrees of Freedom

The formulation in this chapter has been based on a cyiindrical geometrical
description, but used Cartesian displacement, stress and sirain components to simplify the
development of the nonlinear finite element equations. Given the stresses at integration
points, the procedure for transforming the stress components to a cylindrical reference
system is straight forward. Also, given the Cartesian displacements at a point, the
transformation to ¢ylindrical displacements is also a simple task. These results
transformations may be useful in interpreting the behaviour of the structure, but
obviously have no impact on the implementation of the formulation.

Often the mechanical behaviour can be expressed more efficiently in terms of a
cylindrical system. For example, thin shells of revolution will buckle into axial and
circumferential waves. The circumferential waves in particular, are best expressed in
terms of cylindrical components. In contrast, using Cartesian components requires the X
and Y degrees of freedom in the harmonics above and below the equivalent radial
harmonic degree of freedom.

Consider the displacement transformation shown in Figure 4.2. The
displacement vector is shown in terms of the Cartesian components, and in terms of
displacement components which are coincident with the cylindrica. coordinate system at
the point considered. The latter components are equivalent to the physical displacements
used in the small displacement cylindrical formulation. However, when used in a large
displacement formulation, these components should not be referred to as physical
cylindrical displacements. A preferred description is to refer to them as transformed
displacements. In the following, only the symmetric parts of the displacement field will
be considered, though certainly the same development can be applied to the
antisymmetric part as well.

The relationship between Cartesian and transformed displacements is

u, = u, cos(8) - uy sin(v) , (4.38a)

87



y = U, sin(8) + ug cos(8) ,

(4.38b)
u, = u, cos(d) + u, sin(9) , and (4.392)
ug = -u, sin(0) + u, cos(9) . (4.39b)
The symmetric parts of the X and Y components of the circumferential
displacement field are interpolated using Eq. (4.4);
= . f
u, = zu“(R,Z)cos(f@) and (4.40a)
f=0
- . f ;
u, = Zuy.(R.Z)sm(fG)) . (4.40b)
f=1
Substituting these into the displacement transformations in Eq. (4.39) gives the
interpolated transformed displacement field;
u, = 3 vl cos(fO) cos(@) + Y uf, sin(fO) sin(®) and (4.41a)
=0 f=1
up = Y., cos(fO) sin(®) + D uf, sin(fO) cos(®) (4.41b)
=0 f=1

Applying the trigonometric identities, the transformed displacement field is given as

2u, = Yl (cos((£+1)0) + cos((-1)0)) -
£=0

Y, (cos((£+1)8) - cos((£-1)0)) (4.42a)
f=1

2uy = S, (-sin((£+1)0) + sin((£-1)0)) +
f._:o

3!, (sin((F+1)©) - sin((f-1)©)) (4.42b)
f=1
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The transformed displacements can also be expressed in terms f a Fourier series.
The symmetric part of the transformed displacement field is

u, = Y ul(R,Z) cos(f@) and (4.43a)
=0

up = I U6(R,Z) sin(fO) . (4.43b)
f=1

Thus a relationship between the Cartesian nodal harmonic component degrees of freedom
and the transformed nndal harmonic component degrees of freedom can be seen to be

1 2 - - + B
u!:=§(u:c1 -u§,' +uft! +ultly, £=2,3,..., 0, and (4.44a)
ugc =% ( -ui'c' + u;’ll + u::l + u;:l) , £=2,3,...,0 . (4.44b)

Note that these relationships are given for the second harmonic and above. If the
expressions produced by the trigonometric identities are considered carefully, it will be
seen that they may be applied correctly to the zero'th and first harmonic. However, the
relationship between nodal harmonic degrees of freedom must be given explicitly. The
first harmonic relationships are therefore

u?t = ( u:c + u;-) L] (4453)
1
U = Ug +5 (U +uy,) , and (4.46b)
1 o 1 1
Ug. = -1, + 2 (uxc + uyl) . (4-47(:)

The reader is reminded that the superscripts refer to Fourier number, rather than an
exponent.

These simple transformations are easily expressed in matrix form,

{u,) =[Tl{y,,}, (4.48)
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where (ux},} are the Cartesian nodal harmonic degrees of freedom, [T] is the

transformation matrix and {{u,} are the transformed degrees of freedom. This matrix

equation can be used directly with the Cartesian formulation t easily provide equivalent
cylindrical displacement components. The transformation can also be used to transform
the load vector to equivalent cylindrical commonents.

The transformation equation car »'so be inverted. By doing :0, the Cartesian
displacement gradient, stress, strains, aiic so forth may be evaluated in terms of

transformed cylindrical displacements. Consider for example the strains. The matrix
equation,

{e} = [B]lu,,), (4.49)

is used to give the strains in terms of the nodal harmonic degrees of freedom. Using the
inverse transformation equation, the strains may also be expressed in terms of the
transformed nodal harmonic degrees of freedom;

{e} = BT {u,} . or (4.50)
{e} =[Bllu.l}, (4.51)

where [B_] is the strain-displacement matrix transformed in terms of the cylindrical

displacement components. The stains, (£}, however, remain Cartesian.

It is possible to evaluate the finite element equations, either on a global or
element level, and then transform the system in terms of cylinarical displacements and
loads. Consider for example the giobal system of equations,

K, Hu,) = {F,y). (4.52)

Using the inverse transformation to replace the Cartesian displacements with cylindrical
components, and premultiplying both sides of the equation by the transpose, inverse
transformation matrix, and noting that the transpose of the transformation matrix is equal
to the inverse of the transformation matrix, the global system becomes

(ITT7Y (K, T {ug)= [THF, ) s or (4.53)
(K (v} = (F.}, (4.54)

where [K_] is the stiffness matrix transformed in terms of the cylindrical displacements.
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There is no economy, in performing this transformation vnless the behaviour is
adequately described by a few harmonic components in the cylindrical reference system.
In such cases, however, 't hardly makes any sense to develop the complete system of
equations {or a complete element for that matter) using all harmonics, perform the
wransformation, and then discard the unnecessary degrees of freedom. Instead, the logical
approach to take would be to evaluate the transformed shain-displacement with the
required harmonics, and use this to directly evaluate the transformed linear stiffness
matrix. Likewise, a transformed geometric stiffness matrix could be evaluated directly
with only the required harmonics.

Of course, these additional transformations do not alter the underlying Cartesian
formulation, only the degrees of freedom which are used to describe the behaviour.
These transformed degrees of freedom exist in a cylindrical reference system. However,
although they represent a physical displacement in a cylindrical reference system, they
are not physical, cylindrical displacement components. It was shown in Chapter 3 that
physical, cylindrical displacements could not be properly defined because of
complications arising from the scale functions.

4.7. Cartesian Formulation Summary

The Fourier decomposition element in a Cartesian reference system is complete.
The formulation is similar to the cylindrical element developed in the previous chapter,
but the finite element equations are considerably less complex since the scale functions
do not introduce any incremental terms. It was also shown that the transformation to
Cartesian displacements makes loading functions and boundary conditions somewhat
more difficult for this element. The same integration procedures can be applied, but
additional circumferential integration points must be used for the Cartesian formulation,
because of the Fourier functions used to transform gradients from the local coordinate
system to the global Cartesian system. It was noted that an additional harmonic must be
added to the system of equations to model a given degree of circumferential variation in
response because of this transformation.

Tt was also shown that the Cartesian form of the finite element equations could be
transformed back in terms of physical displacements and forces in a cylindrical reference
system. Although the transformed displacements are in a cylindrical reference system
they are not cylindrical physical displacements. The transformation is useful for
problems, such as thin shell problems, where the behaviour is adequately described by a
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few transformed harmonics, requiring fewer degrees of freedom relative te an
untransformed system of equations. In most problems, however, all of the harmonics
below a certain number will be required for an acceptable solution. In such cases, the
coordinate transformation imposes additional overhead, with providing any improvement
in the solution. In these situations, a simple transformation of the output displacements
may be all the cylindrical response information that is required.
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PRdO ¢

PR sin(0) do

-~

: PR cos(8) d6 )

Figure 4.1 Decomposition of radial pressure into Cartesian
components
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u, = u, cos(6} + u, sin(e)

Uy = -U, sin(8) + u, cos(6)

Figure 4.2 Transformation between Cartesian and cylindrical
displacements

94



5.  Program "Static Lagrangian Analysis of Tubular Structures
(SLATS)"

A finite element program was written to evaluate the performance of the
Harmonic Lagrangian Tubular (HLT) element developed in the Chapters 2, 3 and 4 for
modelling large displacement behaviour of axisymmetric structures. The program is
essentially a vehicle for assembling and solving the nonlinear finite element equations
generated by the element for the structure. It was written in the Fortran 77 programming
language, developed primarily on a DOS based personal computer, and later ported to
0S/2, Unix and Macintosh operating systems. No extensions to the Fortran standard
were utilized so that the code would remain portable. However, some mairix subroutines
were replaced with hardware specific vector calls in the Apollo version to improve
performance.

This chapter discusses the organization and capabilities of the finite element
program used to test the formulation. A basic description of the program organization is
provided by the flow char:s at the end of this chapter.

5.1. The Harmonic Lagrangian Tubular (HLT) Finite Element
5.1.1. General Description

Tke element geometry is identical to the shape of conventional axisymmetric
finite elements used for assembling axisymmetric models. Although solid elements are
evaluated in this study, the same Fourier decomposition techniques could be applied to
shell elements. Both Cartesian and cylindrical formulations were implemented, sharing
most of the same program code, with the exception of the subroutines which evaluate the
strain-displacement matrices, and the geometric stiffness matrix. The intent of this study
is to evaluate the effectiveness of the harmonic decomposition formulation for modelling
geometric nonlinearities. Hence, nonlinear matcrial capabilities have not been
incorporated into this implementation. However, adding nonlinear material models can
be accomplished with relative ease. Currently, the code limits the displacement field to
symmetric behaviour about one plane but this limitation will be removed in the future.

5.1.2. Geomelric Properties

The element volume is formed by rotating a two dimensional surface about an
axis of symmetry. Axisymmetric elements are formed from a variety of surfaces in the
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R-Z plane - triangular or quadrilateral surfaces described by linear or higher order
boundaries. Harmonic decomposition was tested using quadratic elements, formulated to
utilize either linear or quadratic element boundaries. Figure 3-1 shows the geometry of
the quadratic version of the element, with nodcs on the midside of the element.

5.1.3. Nodal Degrees of Freedom

Chapters 3 and 4 discussed the decomposition of the three dimensional
displacement field into a Fourier series of two dimensional fields of harmonic
displacement amplitudes. Thus the formulation is essentially an extension of common
two dimensional analysis techniques, since any of the common two dimensional
interpolation techniques can be used for each of the harmonics.

The displacement harmonics include two parts; one part is symmetric about the
plane © = 0, the other antisymmetric about © = 07. Each part requires three degrees of
freedom for the three displacement components at each node. Thus, an eight node
element requires 24 degrees of freedom for the symmetric part of each harmonic and
another 24 degrees of freedom for the antisymmetric part of each harmonic. There is an
exception for the zero'th harmonic, because the sine terms reduce to zero, eliminating one
degree of freedom in the symmetric part and two degrees of freedom in the
antisymmetric part. The number of degrees of freedom for the element is then

NDOF = (NFOU+1Y*NFND*6 - 3, (5.1

where NDOF is the number of degrees of freedom for the element, NFOU is the
maximum Fourier number used in the decomposition, and NFND is the number of nodes
used to describe the element.

Often, the coordinate reference system can be chosen so that the load description
and response will be symmetric or antisymmetric about one plane, ard only one part of
each harmonic is required, reducing the number of degrees of freedom by one half.

The nonlinear terms of the stiffness matrix couple the harmonics, making
evaluation of the entire element stiffness matrix necessary, rather than the diagonal
submatrices required by linear and some nonlinear formulations. Consequently, the size

7 See Chapter 3 for a discussion of the symmetric and antisymmetric parts of the harmonics.
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of the stiffness matrix produced by this formulation increases with the square of the
harmonics used in the formulation, and the time required to evaluate the stiffness terms

increases accordingly.
5.1.4. Integration Requirements

Integration of the element properties is performed using two dimensional Gauss
quadrature in the axisymmetric plane, while the trapezoidal rule is used for integration in
the circumferential direction at each Gauss point. The order of Gauss integration is user
selectable, but must be the same in the £ and p directions. Integration of the Fourier
functions was discussed in detail in Chapter 3, where it was shown that the number of
integration points required in the circumferential direction depends linearly on the
number of harmonics modelled by the element. The total number of integration points,
N, required to integrate the stiffness matrix is thus

N = NGAUSS * NGAUSS * NTRAP, (5.2)

where NGAUSS is the number of Gauss points in each local element direction: and
NTRAP is the number of trapezoidal integration points in the circumferential direction at
each Gauss point.

Integration point data is maintained in a file that is created during the input phase.
As the solution proceeds, this file is read during each iteration. When convergence is
achieved, the information in the file is updated to reflect the state of the model at the new
converged configuration, and solution results are sent to the output files. To reduce the
amount of integration point data required, all elements use the same number of nodes, so
that the interpolation functiors do not need to be stored with each integration point. The
polynomial and Fourier interpolation functions are stored in core memory instead.

For each Gauss point, a record of geometric data is stored which includes the
initial radius of the point, the inverse of the Jacobian matrix, and a multiplier for the
point. This multiplier is the product of combining the Gauss weighting factor,
trapezoidal weighting factor and Jacobian. Following this are records for each
trapezoidal integration point, each of which contains stress and strain tensors and
material history data for the integration point. The stresses and strains are maintained to
simplify evaluation of the strain increments and internal nodal stress-equivalent forces.
The space for material history information is for implementing nonlinear material models
in the future.
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5.2, Element Generation

Chapters 3 and 4 showed the element stiffness partitioned into harmonic parts (for

example Eq. 3.46). The stiffness matrix can also be partitioned into smaller nodal
harmonic parts:

K] = JBI[CIB¥IRIIdrdsd®, f.g=0,1,...,NF, (5.3)
v

3]

p.q=1,2,...,NFND,

where [Kpqu] is a nodal harmonic part of 'K] and [BFf] is a nodal harmonic part of the
element strain - displacement matrix.

During initial program development, the element stiffnesses were evaluated one
part at a time and assembled into the global stiffness matrix. This approach was used to
reduce storage requirements for the strain-displacement and element stiffness matrices,
reserving as much main storage as possible for the global system of equations. A slight
improvement in performance was achieved when the stiffness was evaluated by harmonic
parts, rather than nodal harmonic parts, because of a reduction in program control
overhead. Regardless of which type of submatrix is used, evaluating the stiffness matrix
part by part requires that the stiffness terms be assembled into the giobal stiffness as they
are evaluated at each integration point. Thus, generating the element part by part trades
off element generation speed for increased maximum model size.

The size of this trade-off was not fully appreciated until the program was ported
to Unix, where memory restrictions were effectively removed. The element generation
routines were modified to generate the entire element matrix at each integration point.
The stiffness terms could therefore be assembled into the global system once, after
integration is complete, rather than at each integration point. The vector calls were also
utilized to perform the matrix multiplication [B]'[C][B], which reduced matrix operation
time by more than fifty percent relative to that required by equivalent Fortran routines.
Generating the full element matrix reduced the stiffness matrix time by an additional 35
percent on the Apollo workstation,

Bvaluating the stiffness matrix in full requires significantly increased storage for
the element matrices, particularly if many harmonics are modelled. The size of the
strain-displacement matrix is linearly dependent on the number of harmonics, and the
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required stiffness matrix storage increases with the square of the number of harmonics.
For example, an eight node element modelling harmonics zero through ten requires
nearly two megabytes for a complete double precision stiffness matrix, compared with 18
kilobytes for one harmonic part of the element matrix or two kilobytes for an eight node
axisymmetric element.

Furthermore, this large element matrix must be evaluated at each integration
point. The number of circumferential integration locations also varies linearly with the
nnmber of harmonics modelled, thus the computational time required to evaluate an
element stiffniess matrix increases with the cube of the number of harmonics modelled.

The process for evaluating the stiffness matrix is described by the flow charts in
Figures 5.1 to 5.3. In both cascs, integration point data is read in sequence and used to
form the strain-displacement matrix. Data stored with each Gauss point is used at every
associated trapezoidal integration point, which provides significant savings in storage
requirements for integration point data. The most significant difference between the two
approaches is that the element is assembled once after it is integrated in its entirety with
the full matrix approach, as opposed to the submatrix approach, where each submatrix
must be assembled into the global system at each integration point.

Once the linear stiffness matrix (or matrix part) is evaluated for an integration
point, the geometric stiffness matrix components are evaluated and added. Each element
of the geometric stiffness matrix is evaluated directly, rather than by the matrix
operations which are shown in previous chapters (for example, the last three terms of Eq.
3.62) because of the number of zero operations involved in the matrix form. As a result,
evaluating the geometric stiffness matrix in the system of equations requires only 15 to
20 percent of the time required for the linear stiffness matrix.

5.3. Stiffness Matrix Storage

The program uses the skyline storage technique to contain the stiffness matrix
(discussed in Bathe, 1982). This format minimizes both the storage and arithmetical
operations requirements for Gaussian elimination solution algorithms for linear systems.
This format stores the matrix values in an array in column order, and uses a second array
of integer pointers to locate the diagonal values. The stiffness matrix is symmetric, so
only the upper diagonal part of the global matrix is stored in this program. However, the
approach can be extended to non-symmetric systems which are produced by some
techniques such as contact algorithms and some nonlinear material properties.
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Currently, the program arranges the equation numbers in the order of the nodal
number sequence. The program is structured so that inclusion of a bandwidth
optimization routine can be accomplished quite easily. Two methods of assigning nodal
degrees of freedom to equation numbers by harmonics are employed. For linear systems
using the cylindrical formulation, the harmonics are uncoupled, so the degrees of
freedom for each harmonic are grouped together for the entire structure to minin:ize
storage requirements and numerical operations. For example, the two degrees of
freedom for node 1, harmonic zero are assigned equation number 1 and 2; for node 2,
equations 3 and 4; for node N equations 2N - 1 and 2N, and so on until the last node,
NNODE. Equations are then assigned for the next harmonic, harmonic one, with the
three degrees of freedom for node 1 assigned to equations 2NNODE + i, i=1, 2, 3; for
node 2, equations 2NNODE +i, i =4, 5, 6; for node N equations 2NNODE + 3(N-1) + i,
i=1, 2, 3; and so on. This sequence is repeated for each harmonic to be modelled. The
column height for a degree of freedom using this assignment pattern is the maximum
difference between node numbers for all elements which use the degree of freedom times
h, where h is 2 for the zero'th harmonic and 3 for other harmonics, plus the other degrees
of freedom for that node and harmonic which were previously assigned.

The other pattern is used to assign degrees of freedom when the harmonics are
coupled. In this case, degrees of freedom for all harmonics are grouped together for cach
node, rather than be grouped by harmonic as discussed in the previous paragraph. This
grouping is used in the nonlinear formulations which require the entire coupled stiffness
matrix, and is currently employed in the small displacement Cartesian formulation. The
equation number sequence for the coupled stiffness matrix assigns all degrees of freedom
for node 1 first, to equations 1, 2, 3, ..., 3NF + 2, where NF is the number of
harmonics. Node 2 is assigned equations numbered 3NF + 3, 3NF +4, ..., 23NF + 2).
The sequence is repeated for each node in the structure. The column height for each
degree of freedom is therefore the maximum difference between node numbers for all
elements which use that degree of freedom multiplied by (3NF + 2), plus the other
degrees of freedom assigned previously for the same node.

5.4. Load Vector Calculation

The incremental load vector and out of balance load vector are formed using the
same technique. The total load vector is calculated, and the nodal equivalent internal
stress vector is subtracted, leaving the incremental or out of balance loads. This method
ensures that the solution satisfies equilibrium, and provides a better basis for including
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deformation dependent loading. Deformation dependent loading has not yet been
included. Formulating a generalized deformation dependent load description is relatively
complex, because the loads must be transformed to the axisymmetric geometry of the
undeformed structure. This transformation would produce load and stiffness terms in
every harmonic modelled.

The nodal equivalent internal stress vector for an element, {F5}, is formed by the

matrix product integral

<F>= (<S>[BldV,, (5.4)
Vv

[+

where <S> is a row vector containing the second Piola-Kirchoff stress tensor and [B] is
the strain-displacement matrix, composed of the linear and nonlinear parts, [Bl=[B. 1+

[By)- The process for evaluating the nodal equivalent internal stress vector for the
structure is very similar to that used to generate the stiffness matrix. All of the steps
shown in Figures 5.2 and 5.3 are the same, except that the matrix product [BT)(C][B] is
replaced by <S>[B], and the result is assembled into {F} rather than [K;]. The same
subroutine is therefore used to assemble the stiffness matrix and nodal equivalent internal
stress vector. A parameter is passed to the assembly routine to determine which matrix
product and assembly is to be performed.

5.5. Boundary Conditions

Only the most basic boundary conditions are provided in this version of SLATS.
Input of total loads is limited to point loads applied to individual degrees of freedom, and
to pressure loads on an axisymmetric line which can have a harmonic variation. The
integration of such pressure loads is discussed in sections 3.8 and 4.5. This is sufficient
for the majority of load conditions which are encountered. More complex load types can
be modelled by writing a preprocessor to generate nodal harmonic point loads for
individual degrees of freedom.

Boundary restraints are limited to removing particular degrees of freedom. Inthe
harmonic decomposition technique, this usually provides sufficient capability for
modelling restraints which would be very difficult in other formulations. An example is
the shear restraint boundary condition, where lateral motion is removed by constraining
the zero'th harmonic in the Cartesian formulation. The cross section remains free to
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deform, but total lateral motion of *he cross section is fixed. Such a boundary condition
would be most difficult to modsl with conventional formulations.

Some program hooks have been included in the code for future enhancements to
the boundary modelling capabilities. These include imposed displacements and linear
multipoint constraints. Once these are included, SLATS will provide boundary
conditions capabilities for most problems suited to solution by Fourier decomposition.

5.6. Solution Strategies

Two nonlinear solution strategies have been implemented in SLATS; a Newton -
Raphson (Bathe, 1985), and the Constant Arc Length technique (Ramm, 1981). The
strategy first implemented was the Newton-Raphson iterative technique. This provides a
basic load control approach to solving a nonlinear system of equations by fixing the load
vector and iteratively solving for the displacement vector until equilibrium is satisfied,
within a specified tolerance. Input parameters specify whether full Newton iteration is
used, in which case the stiffness matrix is formed for each iteration, or if a modified
iteration is used. In the modified Newton solution strategy, the stiffness matrix is not
reformed for every iteration. Instead the stiffness is reformed after a given number of
iterations, at the beginning of each solution increment, after a specified number of
increments, or only at the start of the solution. Full Newton iteration can model severe
nonlinearities, and usually requires fewer iterations, however, each iteration takes longer
because of the time required to reform the stiffness matrix. This is particularly so for the
HLT element, because of the relatively large amount of time required to form the
stiffness matrix, and the small number of degrees of freedom required for a given model.
Modified Newton iterations can model less severe nonlinearities, and require more
iterations to achieve equilibrium. However, since the stiffness matrix is not reformed for
each iterate, the total solution time can be considerably less than that required by a Full
Newton approach.

The nonlinear capabilities of the HLT element were initially verified with the
Newton - Raphson solution strategy, but because it uses load control, post peak
behaviour, and the large displacements associated with it, could not be modelled.
Therefore, the Constant Arc Length Method (Ramm, 1981) has been implemented in
SLATS code and used in all verification problems in subsequent work. This solution
strategy controls both the load and displacement vector during the equilibrium iterations.
The load vector is defined by a reference vector scaled by a load factor. Thus, the load is
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controlled by the load factor. The square of the length of the increment is defined by the
sum of the Euclidean norm of the incremental displacement vector and the square of the
load factor increment. During equilibrium iterations, the orthogonality condition

NS
> Auj Aut + AAg AR =0 (5.5)
d=1

is applied, in which d is a degree of freedom number, NS is the total number of degrees
of freedom in the system, i is the equilibrium iteration number, Au, and Al are the

initial incremental values of the displacements and load factor (which define the arc
length), and Au, and AA, are the iterate increments of the displacement vector and load
vector. This condition defines a solution path during equilibrium iterations which is
orthogonal {or normal} to the initial increment (or zero'th iterate). Thus, the load is
controlled during the equilibrium iterations, and response beyond critical loads can be
modelled.

If the determinant of the stiffness matrix is positive, the load is increasing, so the
load factor increment is positive. If the determinant is negative, the solution is
proceeding on a descending branch of the solution path. The matrix reduction routine
was modified to count the number of negative pivots encountered during triangulation of
the stiffness matrix to indicate whether the determinant is positive or negative. Thus, the
Constant Arc Length solution strategy is able to follow descending solution branches
beyond the peak load for the structure.

Modifications similar to those available in the Newton-Raphson solution strategy
are also provided for the Constant Arc Length approach. Input parameters are used to
specify the frequency with which the stiffness matrix is reformed during an increment,
and for which increments the stiffness is reformed. In addition, the length of the arc is
modified dynamically, according to the convergence rate during the increments. Input
parameters specify a maximum and minimum allowable arc length, the number of
iterations beyond which the arc length is reduced, the number of iterations below which
the arc length is increased, and the maximum number of iterations allowed before the
solution is restarted with a smaller arc length. This approach allows the solution to
proceed rapidly in regions far from critical points, yet enables the solution path to be
traced near critical points.
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5.7. Summary

Program SLATS is a basic finite element program developed to test the
effectiveness of the Harmonic Lagrangian Tubular element. A complete program was
written, because the structure of the HLT element equations makes it difficult to
incorporate this element into common finite element packages. The program currently
supports only elastic material properties, but because of its nonlinear capabilities, SLATS
can be used as a platform for continued development and incorporation of other
nrnlinearities into the Fourier decomposition formulation.
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6. Discussion and Verification of Formulation

6.1. Introduction

This chapter presents results of the nen-axisymmetric formulation for
axisymmetric elements, applied to several sample analysis cases. Analysis types include
linear cases, geometrically nonlinear, thin shell cases with relatively small displacements
(in the order of the shell thickness), and very large displacement thick shell problems
(¢'isplacements in the order of the dimensions of the structure). The Cartesian and
cylindrical formulations are compared with other Fourier decomposition techniques from
the literature which use physical displacements, and with each other.

The discussion of linear problems is limited to a small displacement bending
problem. This simple problem provides an exact linear analytical solution for
comparison, and demonstrates the non-axisymmetric capabilities of the Fourier
decomposition technique. The nonlinear examples start with several axisymmetric cases,
including the torus and spherical cap problems. Nonlinear effects are demonstrated
through comparison with linear results, and numerous comparison are made with results
in the literature.

Nonlinear, non-axisymmetric capabilities are the objectives of this work. These
capabilities are demonstrated first in shell analyses. Comparisons are made with
published shell results, including results of other Fourier decomposition shell elements.
Although the element developed here was not intended to be utilized for thin shell
problems, the efficiency of the formulation is shown to be potentially high relative to
conventional shell formulations, and the results demersiaic that the formulation is both
accurate and robust.

The major evaluation analysis is performed on a thick tube - column, subjected to
a slightly offset axial load. The response of the tube to this load includes two critical
points: the first at the load where Euler buckling occurs; the second at the point where
bending at the centre produces ovalization and Brazier collapse of the tube. Because of
the highly nonlinear relationship between the applied axial load and Brazier collapse, and
the obvious non-axisymmetric behaviour, this model serves as a good test for the
formulation, and is used as the basis for studying the various element parameters.
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Finally, the performance of the program is compared with conventional
formulations. The equation structure imposed by the formulation causes the solution
time to increase dramatically as the number of harmonics employed increases. However,
mesh refinement has the same impact on conventional polynomial formulations. The
performance results show that for a wide range of problems, the Fourier decomposition

formulation provides better computational efficiency than general purpose three
dimensional elements.

6.2, Linear Formulation in Pure Bending

Clearly, the results of a large displacement formulation must converge to a small
displacement solution as the displacements and strains approach infinitesimal values.
Therefore, the non-axisymmetric formulations are evaluated in their small displacement
form. In addition to the Cartesian and cylindrical formulations which were developed in
the previous chapters, the ¢ylindrical formulation based on physical displacements
(Wilson, 1965) is also compared. In their axisymmetric forms, both formulations are
exactly equivalent to conventional axisymmetric formulations and will not be considered.
Furthermore, nonlinear axisymmetric analysis cases are discussed in later sections, so
small displacement axisymmetric cases are not considered here. Simple three
dimensional load cases are considered, and the elemenis' capabilities for modelling the
correct behaviour are compared.

The problem considered is a tube subject to pure bending (Figure 6.1), which is a
three dimensional load case. The exact solution to the linear elastic displacement field
for this case is easily determined (Sokolnikoff, 1956) to be

u =R @+ VX -vYY), (6.1a)
omu

4 =ER vXY , and (6.1b)

uz=-:;“ vXZ, (6.1c)

where 0, ,, is the maximum bending stress on the beam cross section.
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The displacement field of the harmonic element is interpolated in terms of the
cylindrical (R, ©, Z) coordinate system. Expressing the displacement field of the beam
in terms of these coordinates produces

cmu
U = 2ER_ (Z% + VR*cos(20)) , (6.2a)
u, = E’ﬁ“ VR?5in(20) , and (6.2b)
u,=- EE: VRZ cos(©)} . (6.2¢)

The physical displacements in the R-@ plane in cylindrical coordinates (Wilson,
1965} are found using the coordinate transformation functions:

u, = u, cos(®) + u, sin(@) , and (6.3a)
Ug = uycos(e) -y, sin(®) . (6.3b)

Thus, the physical displacements of the tube are

Gmu

U =JER (Z% +vR?) cos(©) (6.4¢)
o, ax

Uy = 2ER,, (VR? - Z%) sin(©) (6.4b)
G,

u,=Fg VZR cos(©) (6.4b)

Coordinate displacements in a small displacement formulation are the same as physical
cylindrical displacements, except that the © displacement is divided by the radius to give
the change in the © coordinate. The two © displacements are therefore distinguished by

a superscript "p" and

¢” for physical and coordinate displacements respectively:

P_ Oinax 2 2y s
w=2mr (VR'-Z)sin(®) (6.52)
. O 73
%=%R_ (VR-R sin(©) (6.5b)
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All of the displacement components in Eqgs. (6.2) to (6.5), with the exception of
the © coordinate displacement, can be modelled exactly with a second order polynomial
and the first harmonic®. The © component of the coordinate displacements includes a

| .
term with R which can only be approximated by the polynomial interpolation functions.

This clearly puts this formulation at a disadvantage. In fact, rigid body translation also
includes R in the denominator of the © coordinate displacement. Thus the small
displacement form using cylindrical coordinate displacements cannct exactly model rigid
body transiation normal to the axis of radial symmetry.

Figure 6.2 shows the model that was used to test and verify the small
displacement formulations for bending problems. The tube - beam is 200 inches long
with an outside diameter of 10 inches. An elastic modulus of 30 x 10° psi. and Poisson's
ratio of 0.3 were used. The inside diameter was varied from 9.998 inches down to zero
to evaluate the elements’ capabilities for modeling a wide range of diameter ratios,
though the very thin shell cases are obviously of pure academic interest. The mesh
consisted of nine node elements so that the polynomial components of the displacement
field would be modelled exactly. Models constructed of quadratic elements used 20
element rows in the axial direction. Those using linear elements consisted of 20 and 40
elements in the axial direction. The number of rows through the wall thickness was
varied between one and three. The integration order was also investigated by varying the
number of Gauss points in the R-Z plane between two and four.

Boundary conditions were applied to approximate those used by Sokolnikoff in
his solution of the elasticity equations. A bending momsnt was applied to the end of the
tube using axial tractions in the first harmonic. A linear variation through the wall
thickness was used to ensure that the exact axial stress distribution was applied.
Symmetri¢c boundary conditions were applied at one end of the tube model, and one
additional degree of freedom was constrained at the plane of symmetry to remove rigid
body modes. In the Cartesian formulation, the x degree of freedom in the zero'th
harmonic was removed from one node. The cylindrical formulations used the © degree
of freedom in the first harmonic to remove the rigid body displacement mode.

The reader is reminded that the first harmonic refers to Fourier number one. The zero'th

harmonic , with Fourier number zero, refers to the axisymmetric part of the displacement field.
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The base case considers one element row through the wall thickness, nine node
elements providing a quadratic Lagrangian displacement field, and three point Gauss
quadrature in both R and Z directions. The base geometry uses an outside diameter of
ten inches and an inside diameter of nine inches.

The first parameter considered is the inside diameter of the tube. This can also be
interpreted as a study of the ratio of the element thickness to radius. Figure 6.3 shows
the error in the maximum displacement at the centre of the pipe relative to the exact
value for each of the three formulations as a function of the inside radius of the tube.

The Cartesian formulation produces exact results, as does the cylindrical formulation
with physical displacements for all inside diameter values. On the other hand, the
cylindrical formulation with coordinate displacements produces relatively accurate
results only where the element size in the radial direction is small relative to the diameter
of the element. This is because the 1/R displacement terms are represented somewhat
accurately when the element thickness is small relative to element radius.

Analyses using variations on the quadratic element all show similar behaviour to
that shown in Figure 6.3. The variations studied included reduced (two point) Gauss
quadrature and an incomplete quadratic meridional displacement field (eight node
elements). In ev. - case, the Cartesian an¢ . lindrical formulation with physical
displacements produced exact results within output precision, with one exception, that
being two point Gauss quadrature with nine node regular rectangular elements. In that
case, spurious deformation modes resulted a singular stiffness matrix.

The cylindrical formulation with coordinate displacements produced accurate
results only for large R/t,, values, where t,, is the element thickness as shown in Figure
6.4. Interestingly, the reduced integration provided an improved solution for small R/t
values. Clearly, the error in the displacement field produced by coordinate displacements
and polynomial interpolation functions is large over a wide range of R/t values, even in
the small displacement form. In all cases, the degree of element locking in bending
problems is significant in the range Rit< 10,

The element diameter te thickness ratio can be increased for a given tube by
increasing the number of row. through the wall thickness. Figure 6.5 shows the
improvement in solution accuracy by plotting cylindrical formulation resuits with various

mesh densities through the wall thickness. Note that models with similar element radius
to thickness (R/t,) ratios produce similar errors, regardless of the tube R/t ratio. Upon
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consideration of the poor performance of the cylindrical formulation with coordinate
displacements, it was realized that the formulation could be cast into a form which
retains the coordinate displacement concept, but scales the circurr ferential displacements
in the finite element form to be equivalent to the physical displacements. Finite element
degrees of freedom could be defined in terms of the coordinate nodal displacements as

p_Ye
ue = EI (6-6)

aiid the spatial derivatives would be expressed as

du, Jug
oR ~ RgR *+le- (6.7a)
duy _ Oug
30 =R 30 and (6.7b)
du, _ Qug
3z =R 3Z° (6.7b)

Substituting these into the linear form of the cylindrical formulation produces
equations identical to the small displacement formulation using physical displacements.
The same substitutions could be made into the large displacement formulation.

However, it is important to note the resulting equations would not be formulated in terms
of physical displacements, since the © component is scaled by the original
(undeformed) radial coordinate. Such © degrees of freedom instead are correctly
referred to as scaled coordinate displacements.

Although such a modification to the circumferential displacement degrees of
freedom would produce a large displacement formulation which reduces to a proven
linear formulation in the limit as the displacements vanish, the modified formulation
would still not model rigid body motion with a finite number of harmonics when large
displacement terms are included. Thus, this modification has not been explored, in
favour of pursuing the Cartesian formulation instead.

Four point quadrature was not investigated, since three point quadrature integrates
the element matrices exactly for rectangular elements.
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The Cartesian formulation was also studied using a four node implementation of
the harmonic elements in the bending model. A first order displacement field
significantly impacts the resuits, because the displacement field must be approximated by
a piece wise linear representation. Figure 6.6 plots the error in displacement at the end of
the tube for the Cartesian formulation as a function of the inside diameter. Results are
shown for two mesh densities in the axial direction aud three in the radial directions.

Comparing results from the radial refinement, one observes that the solution is markedly
improved for R/t , ratios less that about 10. Axial mesh refinement is clearly more

significant for higher R/t ratios. In other words, the first harmonic of the element
performs like a linear beam element, providing a linear displacement field in the axial
direction and in the direction normal to the neutral axis. It models simple beam theory,
but since quadratic displacement terms are not included, the exact displacement field
through the thickness is not represented.

6.3. Nonlinear Analyses

The behaviour of a structure undergoing collapse is a nonlinear process.
Although the response of a structure near collapse depends strongly on the displacement
field, the displacements at collapse are often relatively small, and the geometry of the
structure remains essentially unchanged. This is frequently true for thin shell structures.
Several finite element formulations using Fourier decomposition techniques have been
developed for thin shells. Examples include the displacement based SABAS5 element
presented by Chan and Firmin, 1970, 1970a, and the mixed formulation of Chan and
Trbojevic, 1976 and 1977. These formulations are limited, however, to displacements
which are small relative to the radius of the structure.

The Fourier decomposition formulations discussed in this dissertation were
developed to model nonlinear behaviour arising out of arbitrarily large displacements.
The importance of accurately determining structural responses near collapse is one of the
most important aspects of large displacement formulations. This section will focus on
geometrically nonlinear problems involving displacements which are small relative to the
dimensions of the structure, so that comparisons can be made with results available in the
literature. In addition to verifying the capability for modelling large displacement
nonlinearities, the results prove the element to be applicable to thin axisymmetric shells
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undergoing asymmetric deformations. Some of the results also illustrate the errors which
are introduced by fundamental shell theory assumptions.

6.3.1. Torus

The torus under extemal pressure serves as a useful problem for verifying the
nonlinear capabilities of axisymmetric formulations. Nonlinear terms in a large
displacement analysis produce results which are much different than those from a linear
analysis. A large displacement analysis of the torus is provided by Kalnins, 1967, and

comparisons to Kalnins' solution are made by Chan and Fimin, 1970a, and Chan and
Trbojevic, 1977.

A model of the torus analysed is shown in Figure 6.7. Utilizing the symmetry of
the problem, half of the shell was modelled, using 20 elements for one model, and 40
elements for a second model to approximate the higher bending gradients of the
nonlinear solution. The elements are assembled around half of the minor diameter of the
shell, from the inside major diameter to the outside major diameter. The axisymmetric
element geometry is thus generated around the major diameter of the torus. Quadratic
elements with a full Lagrangian description of the meridional displacement field were
utilized. Linear and nonlinear analyses were performed, using both cylindrical and
Cartesian formulation elements. The cylindrical formulation used only the zero'th
harmonic. Since axisymmetric Cartesian displacements include displacement amplitudes

in the zero'th and first harmonics, both of these harmonics were included in the Cartesian
model.

The results of the Cartesian and cylindrical fonnulations were identical, verifying
that both formulations resolve to the usual axisymmetric formulation. Axisymmetric
displacement results for the torus are shown in Figure 6.8 along with the results from
Kalnins, 1967. The linear solution is adequately modelled using 20 elements. Kalnins
shows that higher bending gradients are produced in a nonlinear analysis, and Figure 6.8
shows that 20 quadratic elements are insufficient to accurately model such gradients.
The 40 element model, however, clearly provides sufficient degrees of freedom to
accommodate the nonlinear displacement field for this shell. Figure 6.9 plots the hoop
stress in the shell, and Figure 6.10 gives the bending force in the shell calculated by the
nonlinear formulation. These figures show clearly the large stress gradients in the shell
which require additional mesh refinement for accurate representation. Results from Chan
and Trbojevic, 1977 are also given in Figures 6.9 and 6.10 for comparison. The
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difference between the HLT results and those from Kalnins is slight. Kalnins' technique
is based on shell theory, and therefore does not account for shear deformation in the
shell. On the other hand the HLT element is a continuum formulation with a quadratic
meridional element displacement field models shear deformations.

Compared with Kalnins' ten segment model, and the six element models of Chan
and Firmin, 1970 and Chan and Trbojevic, 1977, the number of HLT elements required
for an accurate solution may seem large. However, the HLT element is formulated with
a quadratic field, whereas the SABAS element uses a quintic displacement field, and
Kalnins' technique was developed specifically for solving the nonlinear shell equations
for shells of revolution. The HLT formulation could also be optimized for thin shell
problems by increasing the order of the displacement field in the meridional plane of the
shell to reduce the number of elements required for such problems. However, this
avenue is not pursued here. Although the quadratic element is not particularly efficient
when applied to this problem, the results prove that the formulation accurately models
axisymmetrical nonlinear behaviour.

6.3.2. Spherical Cap
Axisymmetric Analyses

Three spherical caps were modelled for comparison with results from Chan and
Firmin, 1970, and Chan and Trbojevic, 1977. The first two shells were modelled under
axisymmetric loads (uniform external pressure) with axisymmetric behaviour, while the
third was subjected to asymmetric loading, using four complete harmonics to model the
asymmetric behaviour. Analyses were performed with the Cartesian and cylindrical
formulations.

The torus analysis demonstrated that both formulations are equivalent to a
conventional axisymmetric formulation when only axisymmetric terms are included. The
axisymmetric analyses of the spherical caps provides further proof of this. The geometry
of the first cap was chosen by Chan and Firmin to demonstrate a softening behaviour as
pressure is applied. The second cap was selected to demonstrate stiffening behaviour at
the centre of the cap.

Figure 6.11 shows the caps that were analysed. The first cap is thicker, relative to
the cap radius and curvature, and therefore has a higher membrane bending stiffness.
Consequently, when pressure is initizlly applied, the maximum displacement occurs at
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the centre of the cap. On the other hand, the second cap, being thinner, initially develops
an axisymmetric wave about half way between the centre and the edge of the cap as

pressure is applied. Thus, in this case, the maximum displacement is not at the centre of
the cap.

Figure 6.12 gives the load - displacement results from the analysis of cap 1 using
the nine node HLT element. Results from Chan and Firmin, 1970, are also shown for
comparison. The softening behaviour exhibited at the centre of the cap in this problem is
well suited to the displacement control solution strategy used by Chan and Firmin,
enabling a solution to be determined beyond the peak load. The range of their solution,
however, remains in the relatively small displacement regime. The maximum
displacement they model is only in the order of the shell thickness, and only one third of
the cap height. The HLT element is able to mcdel the cap as it is pressured through
inversion. The curve shows a single load maximum, then a drop in pressure as the cap
snaps through. The results should be qualified by noting that the pressure loading as
modelled does not include any follower force effects. Since the cap is quite shallow,
though, follower force effects would have little significance.

Results for cap 2 are shown in Figure 6.13 in the range modelled by Chan and
Firmin. Because they used a displacement controlled solution strategy, the range of their
solution was limited in this case to the first displacement maximum. Although the cap
stiffens at the centre as pressure is applied, the discussion later will show softening at
other locations as the pressure is applied. Had Chan and Firmin chosen a location
midway between the centre and edge of the cap as the point for displacement control,
they could have determined the cap response significantly beyond the peak displacement
that they achieved. However, as the loading sequence progresses, the deformation
pattern changes completely. Thus, no single point displacement control solution strategy
could model the complete response of this cap during snap through.

The Constant Arc Length Method solution strategy implemented in SLATS is
able to trace the equilibrium path past load and displacement critical points, regardless of
where the maximum displacement increment is, providing much greater solution
flexibility. Figure 6.14 shows the equilibrium path for the centre location of cap 2 over a
greater range. This cap clearly exhibits far more complex behaviour than the first,
because of the initial deformation mode which develops. The labels on the curve for the
crown denote points where displacement distributions are plotted in the present
discussion. In general, critical points were chosen, that is, local load and displacement
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maxima and minima. The solution points closest to the point where the equilibrium path
crosses are also chosen. Figure 6.15 shows the initial stages of equilibrium paths for two
additional points in the second cap; one half way between the edge and crown, the other
three quarters of the distance towards the crown from the edge. These curves clearly
demonstrate that the initial hardening characteristic exhibited at the centre is not evident
everywhere in the cap.

The curves include several unstable equilibrium branches and demonstrate
¢ "currences of snap-through and snap back. It must be remembered that the equilibrium
curve is a mathematical construct, and by no means represents the physical behaviour of
the cap. Only when dynamic effects are included in the analysis can it be said that the
results are physically meaningful.

Figures 6.16 and 6.17 show the bending stress distribution for caps 1 and 2. The
bending stress plotted is the difference between the meridional membrane stress at the
inside and outside Gauss integration points. Positive bending indicates compressive
bendiug stress on the inside, tensile bending stress on the outside of the cap. In the first
cap, the bending distribution is almost linear across the cap, and changes in magnitude as
pressure is applied, but the distribution remains essentially the same. The second cap, on
the other hand, exhibits a bending distribution which changes as loading progresses.
Comparing the bending distributions for the first three critical points, one observes that
initially there is one complete wave in the bending distribution, but at the first load
maximum, there are almost one and a half waves in the bending distribution. Also, the
bending stresses increase most in the midsection of the cap meridian, rather than at the
centre or edge of the cap.

The displacement distribution shows most clearly the cause of the unusual
behaviour of cap 2. Figure 6.18 gives the displacement distributions at three locations on
cap 2 at the first four critical points of the equilibrium curve. In particular, compare the
displacements at the centre of the cap (element 40) with the mid-section (specifically,
element 19) as loading progresses. The centre of the cap moves very little, even
rebounding slightly, as loading progresses - hence the apparent stiffening. The
displacements at the midsection, however, are greatest and increase more rapidly as
loading proceeds. Essentially, an axisymmetric buckle half way between the edge and
the centre of the cap forms, and a minor snap-through of the mid-section of the meridian
occurs as the pressure drops to the value at point d. The cap stabilize at this point and
begins to carry more load.
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The displacement at point d is quite different from that when the cap is fully
inverted. Ultimately, the point of maximum displacement must move to the centre of
the cap for the snap-through to be complete. For example, comparing the displacement
distributions in Figure 6.19 for two nearly adjacent points on the equilibrium curve, d
and h, it is obvious that the redistribution of displacements is quite significant. As the
load increases to the maximum near point e, the buckled form changes from one to one
and a half waves, and the point of maximum displacement moves to the centre of the cap
(Figure 6.20). This axisymmetric buckic remains a dominant feature of the deformed
shape and increases in size up to point f on the curve. At this point, the final snap-
through process of the cap begins. The buckled shape is reduced as the cap snaps back
towards point g. From this point, the cap undergoes its final snap-through (Figure 6.21),
with the axisymmetsic buckle disappearing and the displacement at the centre increasing
as the pressure drops. After passing through the last pressure minimum, point i,
membrane action takes over, and the cap stiffens in its inverted form.

The cylindrical and Cartesian formulations produce identical results, as
demonstrated by the single HLT line in Figures 6.12 through 6.14. The slight differences
are in the order of the machine accuracy, which indicates that the formulations are
identical in their axisymmetric forms.

Although the initial slope of the load displacement curves (Figure 6.12) matches
results from shell analyses reported in the literature, the peak load given by the HLT
element is lower in both cases, and the local displacement maximum in the second cap is
also lower than the result given by Chan and Trbojevic, 1977. The difference in ioading
discussed in the torus analysis is partially responsible for this discrepancy. However,
another significant source of the disparity could be due to differences in the stress
distribution through the shell modelled by the two techniques. The shell theory on which
the earlier formulations are based assumes a linear displacement and stress distribution
through the shell. More recent research has considered higher order deformation theories
through the shell thickness. For example, Dennis and Palazotto, 1989, and Tsai and
Palazotto, 1990, discuss shell formulations which incorporate higher order s. .2ar
deformation theory, and show significant differences between their solutions and linear
shear deformation theory results. The quadratic HLT element provides a higher order
representation of shear, membrane and bending deformations through the wall.
Consequently, the system of equations is less stiff (more accurate), and a lower peak load
is predicted.

120



To test this theory, the second cap was modelled using four node elements. The
shell was modelled using one element row through the wall, and 200 elements in the
axisymmetric length of the shell. This mesh provides a good representation of the
displacement field along the shell, and the through-thickness behaviour modelled by the
linear displacement field elements is equivalent to that in linear deformation shell models
like those employed by Chan and Firmin, 1970a. The results of this analysis, which are
also included in Figure 6.13, show better comparison with those of Chan and Firmin. It
should be noted that the integration error in the SABAS5 formulation of Chan and Firmin
is a consideration only in asymmetric analyses, and thus is not a factor in this
axisymmetric comparison.

This is an interesting result, because it highlights a limitation of shell
formulations which is ofte + neglected; the assumption of a linear variation in behaviour
through the wall thickness. Although the through thickness behaviour is almost linear,
the sensitivity of the critical load to inaccuracies in the stress and strain field is great
enough that the predicted critical load can be significantly affected. It is true that many
problems are imperfection sensitive, and this is the usual explanation for the discrepancy
berween experimental and analytical results. But the improvement in results preduced
with more accurate modelling of through thickness behaviour suggests that a significant
portion of the error stems from the fundamental assumptions made in shell theory. In the
first cap example, the collapse pressure predicted by the nine node HLT is about 35%
higher than the 60.5 psi experimental result quoted by Chan and Firmin, 1970, compared
with an error of over 60% calculated by their shell mod.:l, and that of Budianski, 1960.
Thus, while imperfections play a significant role in thest; coltapse problems, limitations
of the finite element models are also a contributor to the discrepancies.

Asymmetric Analysis

The third cap was modelled under asymmetric pressure loading. Chan and
Firmin, 1970a applied the displacement based SABAS element to the same problem, and
Chan and Trbojevic, 1977 used the mixed formulation harmonic shell element to study
this problem as well. They also pointed out the error made by Chan and Firmin in
integrating the harmonic function products, thus producing an artificially low buckling
load.

Figure 6.22 shows the asymmetric analysis results of the third cap at the two most
significant le~ations; at the centre of the cap, and at the location of maximum
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displacement. Included with the figure is an illustration of the loading which is applied
to approximate a pressure load over one half of the shell. Chan and Firmin's results are
included for comparison. Results from Chan and Trbojevic are not shown because their
results were different by a factor of two at the centre. Since good agreement is achieved
at the centre location, with the harmonic displacement amplitudes, and with Chan and
Firmin's solution, it is assumed that a scaling error occurred in the preparation of the
figure in Chan and Trbojevic's paper.

Figure 6.23 shows the harmonic displacement amplitudes at the location of
maximum displacement for the Cartesian formulation, along with comparison with Chan
and Trbojevic's resuits. Aside from the discrepancy with Chan and Trbojevic centre
location results, the asymmetric analysis also shows good agreement with published
results. Of particular note is the harmonic coupling in the nonlinear problem. Although
there is no loading component in the 2@ harmonic, there is a 2& displacement
component. As the displacements increase, the nonlinear terms become large, and the
coupled displacement becomes particularly pronounced as the buckling load is
approached.

Figure 6.24 contains a series of plots comparing harmonic displacement results
from the Cartesian and cylindrical formulations. It is clear that the cylindrical
formulation is stiffer and gives a slightly higher maximum ioad. The difference is quite
small, however, and the shape of each harmonic displacement is similar for both
formulations, even ints the post critical regime.

The linear bending study in Section 6.2 showed that the major source of error in
th - cylindrical formulation was its inability to model lateral motion. This is not a major
component of the deformation of the asymmetrically loaded cap. Thus the cylindrical
formulation does a reasonable job of modelling its behaviour. However, the lower
buckling load produced by the Cartesian formulation suggests a more accurate
representation of the deformation and stress field. As with the axisymmetric caps, the
maximum stress is lower than that given by the shell analysis of Chan and Trbojevic,
1977, perhaps because of the higher order representation of deformations and stresses
through the shell thickness. It is also interesting to note that, although it is inferior to the
Cartesian formulation, the cylindrical formulation still gives a more accurate result than
do the shell models.
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6.3.3. Cylinder Collapse

Cylinders subject to external pressure collapse in a variety of deformation
patterns, depending on the geometry of the shell. Short cylinders buckle
circumferentially into several harmonic waves. If the length of tube considered is
increased, the number of circumferential waves in the buckling pattern decreases until the
buckled form is elliptical, described by the second cylindrical displacement harmonic.
Figure 6.25 shows the deformation modes for various cylinder lengths evaluated for this
discussion.

Flugge, 1960, and Von Mises et al, 1961, provide analytical predictions of the
buckling pressure and pattern. Experimental studies by Gerrard, 1962, and numerical
results from Chan and Firmin, 1970a, compare favourably with these predictions. Chan
and Firmin also explored the impact of deformation dependent loads on the cylinder's
response to external pressure. Additionally, Chan and Trbojevic, 1977 reported results
produced for a similar model using their harmonic mixed formulation. They also pointed
out that a minor error integrating multiple harmonics by Chan and Firmin, 1970a,
produced buckling loads which are anificially low.

A model geometrically identical to Chan and Firmin's (Figure 6.26) was
constructed out of the Harmonic Lagrangian Tubular element for comparison. A second
model was also prepared using the general purpose nonlinear finite element code ADINA
(1986) to compare results with a conventional formulation. The harmonic model
consisted of 20 quadratic elements with a complete Lagrangian displacement field in the
meridional plane (9 node elements), The ADINA model was constructed using the MIT4
shell element using various mesh densities. Variations of the model used combinations
of 20 and 40 element rows in both axial and circumferential directions. Both the ADINA
and harmonic models utilized the symmetry at the axial midplane, and the ADINA model
utilized the plane of symmetry along the longitudinal axis. Radial displacement and
meridional rotations were restrained at the end of the model.

Like SLATS, ADINA provides a constant arc-length solution technique which
permits evaluation of the equilibrium state of the structure beyond the peak load.
However, this capability cannot be utilized with deformation dependent loads.
Furthermore, ADINA's implementation of the constant arc-length algorithm usually
caused the solution strategy to jump from the primary equilibrium path to a secondary or
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complimentary solution. Consequently, ADINA's linearized buckling algorithm was
employed to determine the approximate buckling load.

Chan and Firmin, 1970a demonstrated the influence of deformation dependent
loading on the collapse load with their harmonic shell element. Their results showed that
inclusion of this effect can have a significant impact on the solution of a buckling
problem. However, it is not clear how the integration error in their paper contributed to
this conclusion. In any case, a deformation dependent load capability has not been
developed for the solid harmonic element presented here. Thus, a comparison with the

deformation independent load results is appropriate to evaluate the accuracy of the
formulation.

Table 6.1 shows the buckling pressures determined by the various techniques for
a variety of cylinder lengths. Results from SLATS and ADINA in this table were
produced using the basic mesh densities. The Cartesian formulation results compare well
with the harmonic shell model. The ADINA models generated higher collapse pressures
because both the circumferential geometry and displacement field is approximated by a
piecewise linear function, and the linearized buckling solution does not include the
nonlinearities introduced by the deformation as loading commences. On the other hand,
the Cartesian and harmonic shell formulations can model the circumferential geometry

and displacement field exactly, thus producing a better solution with fewer degrees of
freedom.

Tables 6.2 and 6.3 show the improvement in solution achieved by increasing the
mesh refinercent for the various techniques at the minimum and maximum cylinder
length considered. Also shown is the increase in solution time required. The solution
clearly improves with increased mesh reiinement. The improvement is greatest for the
short cylinder because the number of circumferential waves is higher, resulting in a
greater variation in the circumferential displacement field. The ADINA model shows the
largest improvement, but remains the most inaccurate predictor of the buckling pressure
because of the linearized buckling evaluation. Furthermore, the timing results show that
the size of the model and solution time increase rapidly as the mesh is refined.

The harmonic Lagrangian tubular element produced the correct collapse mode for
the various cylinder lengths modelled. There is also excellent agreement between the
collapse pressures predicted by the element and the results from Chan and Firmin which
do not include deformation dependent loading. This demonstrates the formulation is
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valid for modelling the grometrically nonlinear, asymmetric behaviour of cylinder

~ollapse under pressure.
6.3.4. Hyperbolic Cooling Tower

The cooling tower analyses were performed exclusively with the Cartesian
formulation of the HLT element because of it's superior large displacement capability.
The tower is basically a thin shell problem, and the dominant displacements are in the
radial direction, rather than the X or Y direction. In Chapter 4, it was pointed out that
the transformation between Cartesian and cylindrical reference systems requires an
additional Cartesian harmonic to model a given Fourier decomposition of the radial and
circumferential displacement components. Because of this, some elaboraticn of the
Fourier numbering in the following examples is in order to clarify the comparisons
between the present study and the harmonic numbering used in the literature,

Chan and Firmin, 1970a, and Chan and Trbojevic, 1977 use the term "harmonic”
to describe the total number of Fourier overlays employed in their models, including the
zero'th, or axisymmetric, harmonic. Thus, when they refer to ten harmonics, for
example, they mean specifically Fourier overlays zero through nine. To model an
equivalent displacement field with ths Cartesian HLT element, 2 total of eleven
harmonics are required, numbered zero through ter. To remain consistent with the
conventions from the literature, we will refer to the number of harmonics by the highest
number employed - in this case ten. In so doing, the displaccment field for a given
number of harmonics is consistent between SLATS 2nd models reported in the literature.

External Pressure Load Case

Chan and Trbojevic, 1977 present an analysis of a cooling tower under external
pressure. Their paper also includes an analysis of a scale mode! for comparisor: with
experimental results from Ewing, i971. Analyses were performed using the
displacement based SABAS element and the mixed formulation element developed in the

paper.

A model of the full size tower was prepared using the HLT element. Details of
the model are given in Figure 6.27. Clamped boundary conditions are applied to the base
of the model. Two load cases were considered. In the first, external pressure is applied
incrementally to the mode! along with a perturbation load of 106 times the external
pressure in each harmonic to initiate buciling. All harmonics are perturbed
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simultaneously. The second load case duplicates the asymmetric wind loading given by
Chan and Trbojevic, 1977. The tower was modelled in both cases beyond the collapse
load and the results are compared with those given in the literature.

Figure 6.28 shows the results from the uniform extemal pressure load case. Chan
and Trbojevic modelled the tower with a total of ten harmonics. However, they indicated
that the higher harmonics, 2 through 9, were "tested one at a time.” It is not clear if this
meant that the a perturbation load was introduced in only one hammonic in each analysis,
or that one harmonic was modelled in addition to the axisymmetric harmonic to
determine the coupling between the load and each collapse mode. In any case, the
modelling parameters are different from the simultaneous perturbations used to produce
the results presented here. Consequently, no direct comparisons can be made between
load - harmonic displacement relationships determined in this study, and those given in
the literature, Collapse pressures, however, can be compared.

Their conclusion was that the lowest collapse mode occurred in the seventh
harmonic. The HLT results, however, show that the collapse mode is in the ninth
harmonic, at a pressure of 209 psf. The seventh harmonic is the next most significant
displacement mode. This collapse pressure is at a lower pressure than those given by
Chan and Trojevic, which range from 260 psf. to 275 psf., depending on the harmonic.
This is not surprising though, given the discussion in the previous section regarding the
behaviour modelled through the shell thickness. Furthermore, Chan and Fimmin, 1970a,
note the large discrepancies between experimental results and shell theory predictions,
both numerical and theoretical.

The fact that the tower buckles in the highest harmonic modelled suggests that the
true buckling mode may be in an even higher harmonic. Program SLATS has not yet
been equipped to efficiently model select higher order harmonics, therefore tests with
more harmonics were not practical. These results do, however, indicate that the cooling
tower problem has not been definitively answered in the literature surveyed here.

Wind Loading Case

Chan and Trbojevic, 1977 also modelled the cooling tower under wind loads.
The number of harmonics used in their wind load study was reduced from ten to eight,
presumably because of the computation demands of the coupled nonlinear problem.
Chan and Firmin, 1970, evaluated the Fourier coefficients for the pressure distribution
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around a cylinder subject to lateral wind loading, which Chan and Trbojevic also used for
their analysis. These pressure coefficients employed in the present analysis as well. In
all analyses, the pressure distribution in the vertical direction was assumed to be constant.

Results from the Cartesian formulation are given in Figures 6.29 and 6.30, along
with Chan and Trbojevic’s results. Deformed shapes are shown in Figure 6.31 for the
initial and large displacement deformation modes. Figure 6.29 gives the radial harmonic
displacement amplitudes at the top of the shell for the fourth and fifth harmonics. Figure
6.30 plots the total radial displacement at the stagnation point at two vertical locations.
Initial solutions using eight harmonics with the HL.T element showed poor correlation
with Chan and Trbojevic's results, so a additional runs were executeq, using ten
harmonics. Despite the additional harmonic refinement, the HLT solution is significantly
different from Chan and Trobojevic's as the collapse load is approached. Initially, the
slope of the load - displacement curves compare well between the formulations, but as
the deformations increase, so does the devi: tion between the two solutions.

Several measures were taken to verify that comparable evaluations were being
performed. Loading was changed from total (or normal) pressure loads to lateral
pressure alone. The effect on the solution was minimal. Clearly, some fundamental
differences between the two formulations exist.

Reviewing Chan and Trbojevic's formulation, it must be noted that all of the
geometric nonlinear terms are not included. Their formulation is valid only where the
displacements are small, that is, in the order of the shell thickness, meaning that the
axisymmerric nature of the structure is not affected by the displacements. This
characteristic of their formulation limits it to modelling the linearized buckling response
of the shell, rather than the nonlinear buckling analysis which is provided by true
Lagrangian formulations such as that employed in the HLT element.

6.3.5. Cylindrical Shell under Wind Load

The above conclusion was tested by comparison with a similar analysis,
performed using large displacement shell elements with a cubic displacement field. The
analysis is presented by Schweizerhof and Ramm, 1986, in their paper on follower force
effects on shell stability. Their paper includes a discussion of a cantilever cylinder
subject to wind loading. The pressure distribution is similar to that given by Chan and
Firmin,1970a, thus allowing the same pressure coefficients to be used in a comparative

127



analysis. A model of the same cylinder was prepared with HLT elements (Figure 6.32),

using three axial mesh densities and two levels of harmonic refinement - eight and ten
harmonics.

Results of the wind loaded cylinde: are presented in Figure 6.32 along with the
solution from Schwiezerhof and "<amm w~hich does not consider follower type loading.
The displacement shown is the radial displacement of the stagnation point at the free end
of the cylinder. The correlation between these two formulations is obviously much
better than that seen earlier. An interesting feature of the results is the limit point in the
ten harmonic solution, where the load drops slightly before picking up more load as the
displacement increases. An explanation for this behaviour will be presented in the
following; discussion of the harmonic displacements. But first, we should note the
influence of the axial mesh refinement on the solution. Schweizerhof and Ramm used
four cubic element rows in the axial direction of their model. Initially, eight quadratic
HLT elements were used to provide an approximately equivalent displacement field in
the axial direction. As Figure 6.32 demonstrates, this prehlem is relatively insensitive to
the degree of axial mesh refinement. It appears that the harmonic refinement is far more
important in this model. Although the model with ten harmonics is initially stiffer, after

the initial peak, the response of the ten harmonic model is closer to that given by
Schweizerhof and Ramm.

Figure 6.33 shows the load-harmonic displacement relationship fo- the first five
radial displacement amplitudes at the free end of the shell. These are the largest
displacement amplitudes, because the lower harmonic components of the loading
function are most significant. When the cylinder undergoes collapse, however, these
displacement components do not grow rapidly. In many cases, in fact, the harmonic
displacement amplitudes decrease after passing the critical point.

The higher harmonic displacements are given in Figure 6.34. The amplitudes of
these displacements are smaller than the lower harmonics. But, when the critical load is
reached, it is these higher order harmonics which increase rapidly. Clearly, the higher
order harmonics dominate the nonlinear buckling behaviour of the shell. Several
additional harmonics would have to be added to approach the displacement field
provided by Schweizerhof and Ramm's model, which employed 16 cubic elements
around half of the circumference. Since the cubic displacement field can closely
approximate a complete sine wave, 32 harmonic would be required to be comparable.
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Given the rate at which the comy.utational time increases with additional harmonics, this

degree i harmonic refinement is impractical.

The higher order displacement field provided by Schweizerhof and Ramm's
mode! permits a greater degree of deformation localization to be riodelled. Figure 6.35
shows the deformation at the top of the cylinder during initial loading, and after the
initial collapse. A sketch of the deformed shape given by Schweizerhof and Ramm is
also shown for qualitative comparison. One can see that the lobes of deformation move
from the sides of the tower towards the stagnation point as the wind load is increased.
The lobes on Schweizerhof and Ramm's results are more localized. The finite number of
harmonics limits the degree to which the deformation localization can be modelled. By
the same token, however, a finite number of polynomial based shell elements also limits
the degree of localization which can be modelled by the usual shell formulations. For
example, Schweizerhof and Ramm’s results show displacement lobes closer to the
stagnation point because of the higher order circumferential displacement field provided
by 16 rows of cubic elements. Very high degrees of mesh or harmonic refinement would
be required to model the sharp bends or kinks which develop in the physical shell under
wind load. However, comparing the two results, it does appear that a less refined mesh
than that used by Schweizerhof and Ramm would suffice.

6.4. Large Displacement Analysis: Beam Bending

One of the major motives for developing ihe harmonic Lagrangian tubular
element was to model the response of heavy walled tubular goods to bending. The
curvature of a bent beam produces an accumulated lateral displacement which may be
small relative to the wall thickness, or many times larger than the pipe diameter. Other
harmonic elements which model geometric ronlinearities are restricted to thin shell
structures and are limited to displacements in the order of the shell thickness. Given the
target problem type for which the element was developed it is appropriate to evaluate its
effectiveness for modelling a simple problem.

The cylindrical beam modelled is shown in Figure 6.36. The outside diameter of
the beam is 100 mm, the wall thickness 10 mm, and the length 20 meters. The elastic
modulus is specified as 200,000 MPa, and Poisson's ratio is 0.3. The bending stiffnzss,
EI, is thus 5.796x10!1, A vertical plane of symmetry is utilized at the centre of th beam,
and bending loads are applied to the end. Displacements are referenced relative to the

plane of symmetry.
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Since SLATS admits only nodal forces and deformation dependent tractions are
not yet available, the bending forces do not rotate with the end of the tube as bending
increases. The moment arm for the loads becomes smailer, the loads develop an in-plane
component, and the end of the pipe is "pinched" (Figure 6.37) as loading progresses.
Thus, the bending moment experienced by the beam does not vary linearly with the load
increment. This must be taken into consideration when comparing with analytical
evaluations of the large displacement bending response of the beam. However, the
pinching phenomenon is also reduced by partially restraining the radial displacement of
the pipe at the point where load is applied.

Timoshenko, 1961 and Sokolnikoff, 1956 both provide elastic solutions for
beams subject to pure bending. This solution is easily extended to large displacement, as
the curvature of the beam, k, and its inverse, the radius of curvature, p, are constant
along the beam length (Figure 6.38). The curvature is given by

M

=gl (6.8)

The included angle, B, formed at any point x on the undeformed neutral axis :3
x/p, therefore

Mx
B=TFr- (6.9)

The angle included by the arc of the deformed neutral axis also corresponds to the
section rotation of the beam where the load is applied. Because the tractions of the
model in Figure 6.36 are not deformation dependent as ment'oned above, the bending
moment varies with the bending stress and the projected area of the beam section where
the moment is applied (Figure 6.39). The bending moment is expressed in terms of the
axial tractions on the end of the pipe, and the rotation of the pipe,

Al
M= Tc“o cos(fy) , (6.10)
0

where A is the loading scale factor, 0, is the reference bending stress, and 1, is the outside

radius of the pipe. Substituting into the curvature expression yields a nonlinear
relationship between A and f;;
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COS(BI)_A' ER ) (6.11)

Once B is determined, the applied bending moment and beam curvature can be

calculated, and the displacement field along the neutral axis evaluated using
ugy =x - p sin (B) (6.12a)

uz =p (1 - cos () (6.12b)

Figure 6.40 shows the load factor - displacement relationships for the beam and
the results of analyses using the Cartesian formulation. The Cartesian formulation
matches the analytical description above almost exactly over a wide range of
displacements using only three Cartesian harmonics (0, 1, and 2). Since the bending
loads do not rotate with the end of the beam, the theoretical limit to the rotation at the
end of the tube is 90 degrees. The Cartesian formulation remains accurate to within a
few percent of this theoretical limit. The cylindrical formulation, however, would stiffen
immediately, and would not produce meaningful results for such a long slender beam,
even when several more harmonics are included. This is a consequence of the large
lateral translation at the end of the beam, which the cylindrical displacement field is
unable to model. The Cartesian formulation element provides much greater capability
for modelling such problems and better solution economy because it requires 2 minimal
number of harmonics to model latera! motion.

This conclusion also suggests a possible application to modelling tubular
components in structural assemblies such as flexible space frames. The clement could be
implemented as a structural member with appropriate transformations. Using the first
one or two harmonics, the element would behave like a conventional large displacement
beam or truss element. By utilizing more harmonics, however, more complex behaviour
could be modelled in the structural component by this formulation. This could be
valuable in analyses where predictions of post failure response are required.

6.5. Large Displacement Analysis: Beam-Column Collapse
6.5.1. Problem Overview

A tube was modelled under compressive axial loading (Figure 6.41) to test the
effectiveness of the formulation for modelling nonlinear collapse problems with very
large displacements. A small bending moment applied to the end of the beam produced
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the effect of a slight eccentricity in the load relative to the beam axis. Model parameters
were selected to produce Euler buckling at loads approaching the yield of common steel
materials. Local post collapse stresses are large compared to typical yield stresses, but
sance nonlinear material properties have not yet been integrated into the program,
comparisons with post collapse results of physical tests are not possible. Instead
numerical results from conventional codes are used to verify the results.

6.5.2. Model Descriptions

The model is shown in Figure 6.41. The half length is 100 inches long, ten
inches in diameter, and one half inch through the wall thickness. Symmetric boundary
conditions are applied at one end, and other end has one lateral degree of freedom fixed
to remove the rigid body mode. In addition to the axial load applied to the free end, a
small perturbing moment corresponding to a load eccentricity of 0.14 inches was
included to initiate lateral motion of the neutral axis. The nodal harmonic loads

calculated from these boundary conditions were maintained in the same ratio throughout
the analysis.

Several SLATS models were used to model the problem with varying parameters.
Most used 15 nine node elements with three point Gauss quadrature and full integration
of the Fourier products. Results were first verified by comparison with analytical
solutions and numerical solutions from the commercial finite element program, ADINA.
Additional models were then used to test the influence of the various parameters,
including integration order in and out of the axisymmetric plane, displacement field
(eight, or nine node elements), and mesh density and distribution.

The ADINA models used 27 node quadratic brick elements, since the
displacement field provided by these elements most closely approximates that in the
quadratic HLT element. The computational demands of this model limited the number
of cases that could be modelled. The mesh included one element row through the wall
thickness, 20 elements along the length of the meridional plane, and circumferential
mesh densities of eight and twelve elements around half of the circumference.

6.5.3. General Behaviour

The first comparison is with the linear buckling analysis of the column. Popov,
1978 gives the linear buckling solution for a column subjected to a combination of
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bending and axial compression. His solution for the fourth order differential equarion for

elastic buckling of columns with an eccentric load? is:
v = A sin (Ax) + e (cos (Ax) - 1), (6.13)

where v is the lateral displacement of the beam, A is a constant, determined from
boundary conditions, A = P/EIL and e is the eccentricity of the load. The constant A is
determined to be:

sin (AL/2)
=€ cos ALR2) (6.14)
The equation for the displacement at the centre of the column is the familiar secant
formula:
v(L/2) = e (sec (AL/2) - I) (6.15)

Figure 6.2 shows the initial load - displacement behaviour at the end of the
column, compared with the secant formula Eq. (6.15). The numerical solution is in close
agreement with the linear analytical solution, particularly in the early stages of loading.
The finite element mode! includes nonlinear terms, thus giving a buckling load that is
lower than the linear buckling solution. The difference is small, however, with the linear
analytical result only 4% higher than the nonlinear solution.

The linear beam-column analysis does not consider nonlinearity arising out of
deformations in the beam cross-section. This has minor significance in determining the
limit load of the column, as evidenced by the agreement cited above. But, as the column
buckles, the lateral displacement of the centre of the beam, combined with the axial load
produces an increasing bending moment at the centre of the beam. As bending increases,
the circumferential distribution of axial stress produces ovalization of the tube. As the
ovalization increases, the moment of inertia is reduced, thus reducing the resistance to

? Although Popov, 1978 does not make it clear, his solution is for the deformed shape of the beam
relative to the eccentric load point, rather than the neutral axis of the beam. Equation (1.13)
includes a comection to Popov's equation, giving the displacement field relative to the unloaded

neutral axis of the column.
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bending. The bending resistance decreases with bending, until a maximum bending
stress is reached, at which point collapse by ovalization will occur.

The reduction in bending resistance with bending was first studied by Brazier,
1926, and is known as the Brazier effect. Collapse by Brazier buckling is a nonlinear
effect, because the reduction in bending stiffness is produced by the change in the

geometry of the cylinder. Brazier showed the critical bending load for a thin walled
cylinder to be

M _ 22 EnR?

«= 9 ‘\fl_vzl (6.16)

where R is the radius at the centre of the cylinder wall and t is tne wall thickness. The
criticzl bending moment for the cylinder under consideration is 36.87 x 10° Ib-in.,
assuming a shell radius of 4.75 inches. The bending stress for this bending moment is
well beyond the elastic limit of rubular goods made of steel. The nonlinear analysis,

however, is valuable for verifying the formulation. This sample is therefore pursued
numerically.

Figure 6.43 gives the load - displacement relationship for the axial and lateral
deflections at the end of the beam. This problem is interesting because it exhibits two
types of collapse in the course of the solution. The first is Euler buckling at the
classically defined limit load. The second is Brazier collapse at the symmetry plane due
to bending produced by the lateral deflection of the loaded end as the column buckles.
Although the load - displacement relationship appears quite complex, the Brazier
collapse is perhaps easier to understand when the results are expressed in terms of the
bending moment on the collapsing sections, rather than the axial load, Figure 6.44.
Comparing the critical points on the load - displacement and bending - displacement
curves one sees clearly that the first limit point is only a limit relating to the magnitude
of the axial load, while the second limit point is related to the bending moment on the
critical cross section and is a consequence of the nonlinear ovalization behaviour of the
section (Brazier, 1926, and Brush and Almroth, 1975).

Figure 6.45 shows the shape of the tube at three stages of loading; immediately
prior to Brazier buckling on the equilibrium curve (point a, Figure 6.43); at the
minimum displacement point after collapse of the section (point b); and at a point far
beyond the critical bending point on the curve (point a). The deformations shown are
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actual deformed shapes, not exaggerated. Figure 6.46 shows an enlarged perspective
view of the outside surface of the tube at the last point of the analysis. It illustrates
clearly the large asymmetric deformations that the formulation is able to model. Atthe
end of this analysis, the inside diarneter has not closed to the point of touching at the
centre. Ir other cases, the analysis was continued beyond the point where contact occurs.
However, no procedures to handle contact have been developed, so the two surfaces
would penetrate each other, making any solution beyond the point of contact invalid.

Figure 6.44 shows the bending moment - displacement relationship for the tube -
column calculated using SLATS. The bending moment at the column centre is
calculated by multiplying the axial load by the lateral displacement at the centre. The
load eccentricity moment (about 0.14 Ib-in.) is insignificant in comparison. The
maximum bending calculated is 34.83 x 108 1b-in., which is about 6% less than Brazier's
solution. This agreement is considered excellent, given that Brazier's analysis assumes a
long thin wall cylinder, and does not consider the influence of axial load on the solution.

6.5.4. Numerical Verification

The analytical comparisons described above clearly provide high confidence in
the large displacement Fourier decomposition technique. Further verification is achieved
by numerical solution of the same problem using a general purpose finite element
program with a conventional polynomia bas=d solid element. The nonlinear finite
element code ADINA was used to model the same problem. The same number of
elements in the axial direction (20) and also in the radial direction (1) were used. A three
dimensional quadratic Lagrangian element which uses 27 nodes was selected from
ADINA's element library. This provides 2 meridional displacement field equivalent to
that used in the SLATS modei. Two mesh densities were employed in the
circumferential direction, the first using eight elements around the circumference, and the
second using 12 elements to provide additional refinement to the cylinder geometry and
element displacement field. A third model using 16 elements around the half
circumference was attempted, but the solution time was unacceptably high.

The load - displacement curves from ADINA and SLATS are compared in Figure
6.47. The models show good agreement up to the point of Brazier buckling. The
ADINA models calculate larger lateral displacements, and therefore bending moments,
before the ovalization collapse occurs, but comparing results from the two
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circumferential mesh densities, it is clear that the solution approaches the SLATS results

as the circumferential geometry and displacement field are refined.

The ADINA solution has problems evaluating the post Bra.ier collapse response
of the tube, presumably because of the manner in which it adjusts the size of the arc
length in the incremental solution strategy. In the ADINA model with eight
circumferential elements, the arc length became too large, and the solution strategy found
a different equilibrium path, which was traced for a time before execution was
terminated. The twelve element model reversed direction more accurately, but the post
collapse solution proceeded slowly, and it was necessary to stop the solution before much
of the post collapse response could be determined. The point of collapse is close to the
HLT result, and the slope of the post collapse curve is much closer in the higher
resolution ADINA model.

Cylindrical Formulation Resulits

The tube - column was als+: analysed using the large displacement cylindrical
formulation. Previously in this chapter, it was shown that this formulation stiffens with
lateral displacements n:aking it unsuitable for global bending type problems. The tube -
column obviously falls into this category, particularly near the collapse load. Even with
the load eccentricity used in the previous problem, the lateral displacements early in the
loading process produced problems.

Figure 6.48 shows the load - displacement relationship produced with the
cylindrical problem for a column with a much smaller load eccentricity - 0.0004 inches.
These results show the cylindrical formulation to provide a reasonable solution over the
initial portion of the curve. But, as the lateral displacements increase, the solution breaks
down because rigid body translation is not modelled exactly. Increasing the numnber of
harmonics also increases the range over which the solution is reasonably accurate, but
eventually, the strain energy developed by the inaccurate displacement field causes the
structure to stiffen artificially, and the solution to deviate from the correct behaviour.

The results show that even with six harmonics, the range of motion is only 0.4
inches, which is less than the wall thickness of the tube, Furthermore, this magnitude of
displacement can be reached at load levels much lower than the collapse load if, for
example, the eccentricity of the load were higher. In such cases, the solution would be
inaccurate over most of the range of the response, and no valid conclusions could be

136



drawn from the results. In contrast, the Cartesian mode! will accurately model beam
behaviour including arbitrarily large displacemexts with only two harmonics, or one

harmonic if the degrees of freedom are transformed into cylindrical components.

As discussed in previous sections, the deficiencies in the cylindrical formulation
stem entirely from the difficulty in providing an element displacement field which can
model rigid body modes with large displacements, not from an inherent flaw in the
formulation. The cylindrical formulation could be as accurate and more efticient than

sh= Cartesian formulation if this problem were resolved.

6.6. Element Parameters

Several parameters affect the performance of the HLT element in modelling
structural behaviour. The element displacement field is currently selectable through the
use of four, eight, and nine node elements, and by the number of displacement harmonics
included in the analysis. Other configurations are also possible with higher order
meridional displacement fields in one or two directions. Integration parameters are also
significant factors in the performance of the element. Meridional integration is
influenced by the Gaussian integration order; circumferential integration is affected by
the trapezoidal integration order. The following subsections discuss the manner in which
these various parameters influence the element behaviour.

6.6.1. Polynomial Displacement Field

The behaviour of a beam under pure bending was shown to be modelled exactly
by elements with a quadratic displacement field. Both eight and nine node elements
include quadratic terms, but the nine node version has the quadratic cross-terms, R?Z2%,
whereas the eight node version does not. These higher order cross terms are not a
component of the linear pure bending displacem=nt field, so the eight and nine node
element models produce identical results.

Section 6.2.2 showed that the linear displacement field of the four node version of
the element produced significant errors in the displacement field under pure bending, but
the eight and nine node elements produced identical exact results. In the current subject
model, the lateral displacement ficld is a trigonometric function which can be
approximated reasonably well with a quadratic polynomial function, but not with the
linear displacement field of the four node element. It was therefore understood that the
four node element would produce results significantly different from the eight and nine
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node elements. There was some question, though, regarding any differences beiween the
eight and nine node element results. A test model was run to determine the difference in
solutions produced by eight and nine node elements.

Figure 6.49 shows the load - displacement results produced by identical eight and
nine node element models. Both models used eight harmonics to model the
circumferential displacement field, 20 elements in the axial direction, three point Gauss
quadrature in the plane R - Z, and full integration in the circumferential direction. The
results show virtually no ditference up to and beyond the Brazier collapse point. Only
slight differences appear when the asymmetric deformations at the centre become large.
Consequently, it may be concluded that the displacement field does not have any
significant R?Z? terms in the displacement field while the deformations in the cross
section of the tube are small. Only when the cross section is subject to large
deformations are any differences noticeable, but even so, the differences are slight.

This conclusion should not automatically be assumed valid for all problems. In
some situations, the highest order displaceinent terms can be significant. It must be
remembered, though, that in this element, these higher order terms would be significant
through the element thickness, not the entire element cross section, since the overall
cross sectional displacement field is modelled by the Fourier functions. This explains
why the difference between the eight and nine node solutions is slight and noticeable
only when the cross sectional deformations become large.

6.6.2. Harmonic Displacement Field

As the complexity of the circumferential displacement field increases, the number
of harmonics required to model the displacement field increases as well. The simple
beam behaviour, for examples, requires only the zero'th, first, and second Cartesian
displacement harmonics. If the displacement degrees of freedom are transformed to the
cylindrical components, only the zero'th and first harmonics would be necessary. The
results referred to in the following discussion were calculated with the Cartesian
formulation, using Cartesian degrees of freedom, but since the model is a shell, albeit a
thick one, the displacements have been transformed to cylindrical components for
discussion.

Figures 6.50 shows the lateral displacement (first radial cylindrical harmonic) for
the beam column calculated using the Cartesian formulation with a variety of harmonic
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refinements. As the previous paragraph stated, simple beam behaviour producing Euler
buckling is modelled well with two harmonics. The model stiffens as the displacements
become very large, but this is a consequence of nonlinear terms becoming significant, not
a limitation of the formulation. When higher harmonics are included, the structure shows
a more significant softening behaviour produced by the reduced bending resistance as the
cross section ovalizes. Ovalization is modelled by the second cylindrical harmonic,
which is plotted with load in Figure 6.51. Note that models using three or more
Cartesian harmonics model a similar limit point behaviour because of the ovalization
capability. The model with two Cartesian harmonics cannot model ovalization, because
the second cylindrical displacement harmonic is reproduced in the first, second, and third
Cartesian displacement harmonics.

As the bending moment at the centre approaches the critical value, where Brazier
buckling occurs, the circumferential displacement begins to localize. The first occurs in
the third cylindrical harmonic, Figure 6.52. Although the axial load begins to increase,
the bending moment decreases because the lateral displacement decreases. Four
Cartesian harmonics are required to complete the third cylindrical harmonic. However,
the four harmonic model would not produce a large displacement in the third harmonic
mode. This must be due to significant coupling terms between the third and fourth
harmonics c¢ylindrical harmonics.

Figure 6.53 shows the fourth radial cylindrical harmonic at the centre of the tube.
The fourth harmonic first decreases in magnitude as the section begins to collapse, while
the third harmonic ir -reases rapidly. When the load reaches a maximum, the fourth
harmonic reverses direction and increases rap.dly as the load drops off.

The plots of harmoenic displacements may not clarify the role each plays in the
deformation of the cross section. Figure 6.54 shows the deformed shape of the outside
diameter of the pipe at several points in the load deflection curve. The first shape is for
the undeformed shape of the tube outside diameter. The second shape is near the point
where Brazier buckling is imminent, point (a) on the equilibrium curve (Figure 6.43).
The cross section exhibits a strong ovalization pattern at this point. The next shape is at
the snap back, point (b), where the third harmonic is at a maximum. Note that the side of
the pipe on the inside of the radius of curvature has moved slightly outward, giving the
cross section something of a kidney shape. The final form given is for point (c) of the
analysis. The deformed shape shows that the ovalization suggested by the displacement
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graphs translates into a shape similar to an hourglass, with some asymmetry about the
neutral plane produced by the third and fourth harmonics.

Using more than five Cartesian harmonics for the displacement field has an
insignificant effect on the response of the model up to the point of Brazier collapse.
Initially, the post collapse behaviour is the same in all cases, but as the deformation at the
point of symmetry increases, differences between results arise. Figure 6.55 demonstrates
how additional harmonics affect the solution. Obviously more than five harmonics are
not required to determine the collapse point, or the immediate post buckling behaviour.

It is interesting that the post collapse displacement curves are grouped into pairs. This
suggests the higher order harmonic deformations are in modes which are multiples of the
basic ovalization mode. This simply means that higher localization of the deformations

in the lobes of the ovalization mode can be modelled when more harmonics are included.

6.6.3. Gaussian Integration Order

As in the linear analysis case, reduced integration in the meridional plane of the
quadratic element using a Lagrangian element displacement field (nine node element)
produced an indefinite stiffness matrix, because of spurious modes. It was shown that
reduced integration worked fine for the eight node element, and in some cases yielded
better results than full integration using three point Gauss quadrature. It was also shown

that for uniform rectangular elements, three print quadrature integrates the elements
exactly.

In nonlinear analyses, the strain - displacement matrix, [B, ], includes higher

order polynomial terms which require more integration points for an accurate evaluation
of the element stiffness matrix and equilibrium condition. In the unloaded configuration,
the nonlinear strain displacement matrix reduces to the linear version. Therefore, the
nonlinear analysis can be started using the same integration parameters used in the lincar
analysis case. As loading progresses, the higher order terms in the strain - displacement
matrix, and the geometric stiffness matrix, become significant, requiring higher order
integration procedures.

An effort was made to mode] the tube - column with eight node elements using
reduced (2 x 2) Gauss quadrature in the meridional plane and full integration of the
Fourier terms in t.e circumferential direction. The first increment produced a correct
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answer, but because of the relatively large lateral displacements, the stiffiess matrix in

subsequent increments produced negative pivots, and the solution was unable to proceed.

When the Guass integration order was increased to four point quadrature, the
solution was identical to the three point quadrature solution. Therefore, it must be
concluded that, since the Jacobian is constant throughout the regular rectangular element,
the order of displacement terms in the stiffness matrix must be no higher than R® and Z°,
since quadrature using n points will exactly integrate a nolynomial of order 2n - 1. If
distorted elements are used, the influence of Gauss integration order will be noticeable,
since the variation in the Jacobian will not generally be a polynomial distribution.
Usually, though, unless element distortions are very large, it will not dramatically affect
the solution.

6.6.4. Fourier Integration Order

Gaussian integration of the polynomial meridional interpolation functions has
been commonly addressed in the literature, and is discussed in virtually all finite element
texts because of the prevalence of polynomial interpolation functions in finite elements.
Utilization of the Fourier functions, on the other hand, is relatively uncommon. In those
cases where Fourier decomposition is employed, the formulations are primarily linear,
permitting analytical integration of the element in the circumferential direction. In the
rare instances where the decomposition technique is used in nonlinear formulations, such
as Chan and Firmin, 1970a, and Chan and Trbojevic, 1977, the formulation is limited to
relatively small displacements because analytical integration was determined fora
product of inree Fourier functions at most.

The HLT formulation was developed to model general three dimensional
behaviour. To achieve this, it was shown in Chapters 3 and 4 that the product of as many
as five harmonic functions must be integrated. Rather than try to perform this
analytically, numerical procedures were developed to integrate all of the Fourier products
simultaneously. The validity of the integration procedures was investigated by analysing
the tube - column, using a range of circumferential integration orders. Figure 6.56 shows
the load displacement results for the column with a number of circumferential integration
orders. All models used nine node Cartesian formulation elements, five Castesian
displacement harmonics, and three point Gauss quadrature in the meridional plane. The
number of harmonics specified in the legend give the number of integration points
employed about the entire circumference of the tube. The analysis assumed, however,
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that the displacement f::1d would be symmetric about the meridional plane, so only half
the total number of harmonics actually were needed to integrate the stiffness matrix.

Consequently, only even numbers of circumferential sample points could be used for the
Fourier product integration.

A model with only ten circumferential integration points was attempted. The
stiffness matrix evaluated at the initial, unloaded state v-as indefinite and could produce
no meaningful results. When the number of integration points was increased to 12, a
reasonable solution could be achieved up to and beyond the point of Brazier buckling at
the centre of the tube. Even in the region well beyond Brazie: buckling, the 12 point
integration scheme gives results tha’ asc surprisingly close t-. the full integration case.
This level of integration would be adequate 0 exactly integrate the linear form of the
finite element equations for four harmonics. Why, then, would this number of integration
points produce such good resuits over such a large region of the column's response? The
reason is that until Brazier coilapse occurs, the deformation of the beam section is
relatively small, and the dominant displacements are in harmonics numbered zero, one
and two. The nonlinear stiffniess terms associated with these harmonics only are also
integrated exactly with 12 integration points. The model is initially governed by these
lower harmonics. Since the nonlinear terms for the lower harmonics, and the linear

terms for the higher harmonics are integrated exactly, the solution is very accurate.

It is only in the post - Brazier collapse regime where the difference between
integration orders become significant. Figure 6.56 shows that the 12 integration point
model exhibits minor deviations from the full integration base case soon after Brazier
buckling occurs, snapping back further than the higher order integration cases. The 18
point model follows the base case around the curve after Brazier buckling, deviating
noticeably only after relatively large deformations in the tube section are produced.

The most interesting result is from the 22 point integration model, which matches
the "full" 26 point model exactly over the entire analysis range. Higher integration
orders also produced solutions which were identical. The close match between these
models indicates that only 22 integration points are required for exact integration of the
Fourier products. This number of circumferential sampling points would exactly
integrate the stiffness matrix in the cylindrical formulation, but since trigor ometric
functions must be used in the strain - displacement matrix for the geometr.cal
transformations, it was expected that additional integration points would b= required.
This result suggests that not all of the harmonic components are Cross - multiplied in
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evaluating the stiffness matrix or equilibrium state. Thus, the same circumferential
integration rules used in the cylindrical formulation can also be applied to the Cartesian
formulation to determine the number of circumferential points required for exact
integration of the Fourier products.

6.6.5. Element Geometry

To determine the effect of element geometry on the solution of the test problem,
the tube - column was evaluated with a variety of mesh densities for comparison
purposes. The first evaluation considered the axial mesh density used to model the tube.
The base model used a higher mesh density near the plane of symmetry to more
accurately model the axial harmonic displacement gradients of the kink in the tube. Two
more models were executed which used the same number of elements, but distributed
tkem more uniformly along the length. The length of the elements at the centre of the
iuhe wvere extended from 1.2 inches in the base case to 2 inches and 5 inches in the other
rwo cases. Two more models were also run with fewer elements, and the mesh in these
cases was uniform along the length of the tube: one model with 10 elements used an
element length of 10 inches, and the other ustd five element each 20 inches long.

Figure 6.57 shows the lateral displacement at the tube centre for each axial
refinement model. Clearly Euler collapse is not significantly affected by the mesh
density. Every model gives a peak load within 0.02% of the mean 1196.75 kip average.
The cross sectional deformations are small at the peak load, and the axial distribution of
the harmonic displacement distributions is closely approximated by the quadratic
displacewent field. Even halving the number of elements from ten to five produced no
significant change in the limit load of the column.

Brazier buckling, on the other hand, is strongly influenced by the mesh density
because of the accompanying high axial gradients of the harmonic displacements. Figure
6.58 shows the axial distribution of the second, third and fourth radial displacement
harmonics for point {b) on the equilibrium curve (Figure 6.43). The curves are
referenced to the harmonic displacement at the centre of the tube. It shows the length of
the asymmetric deformation region to be prevalent over an 18 inch region. Obviously,
the 20 inch element in the five element model cannot model the localized deformations
which occur in this region. consequently there is no bifurcation in the load -
displacement curve for this model. The ten element model has elements more closely
matched to the asymmetric deformation region, and therefore shows some tendency to
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collapse at the centre. However, the displacement field of the smaller element provides
only a crude approximation of the axial displacement field, and does not accurately
represent the behaviour of the tube. The ten element model predicts collapse
siznificantly beyond that produced by the higher resolution models, and rather than a

bifurcation in the load - displacement curve, it produces a less significant change in the
slope of the curve.

The element size in all of the 15 element models is smaller than the length of the
asymmetric deformation pattern. In these cases, a more accurate representation of the
harmonic displacement field can be modelled by the elements. Consequently, the
collapse behaviour is modelled more completely. All of the 13 element models give a
similar collapse load and lateral displacement, and thus displacement. The 15 element
model least refined at the centre calculates a critical bending moment on the cross section
only 1.4% below that given by the most refined model, which utilizes a localized mesh
density more than four times higher. The initial post buckling response is also similar
amongst these three models. However, once significant axisymmetric deformations
develop, the models begin to produce different solutions because of the higher gradients
which develop. The model with 5 inch elements is significantly different from the two
higher resolution models. The 2 inch and 1.2 inch elements are very similar, indicating
mesh density convergence has been achieved for this collapse mode.

‘The mesh density in the radial direction waz also investigated by testing a model
which used the highest resolution axial mesh near the centre, along with two elements
through the wall thickness. The results from the two element row model are compared
with the base case single row model v. Figure 6.59. The analysis proves that the
displacement field through the wall thickness modelled with sufficient accuracy up to the
point of Brazier collapse. The difference between results in terms of collapse ioads
(bending and axial) and lateral displacement is negligible. The higher resolution model
through the thickness give a significantly different post Brazier collapse response,
because of the high displacement gradients through the wall thickness which result from
large asymmetric deformations at the centre of the tube.

6.7. Solution Efficiency

Others have demonstrated the solution efficiency achieved by the Fourier
decomposition technique in linear analysis, and in a few nonlinear cases were the large
displacement formulation is not completely general. In linear formulations the solution
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efficiency is high because the harmonics are uncoupled. In mildly nonlinear problems,
the harmonic coupling may be ignored in the stiffness matrix. A correct solution can still
be obtained by using equilibrium iterations. But, as the nonlinearities and harmonic
coupling increase, the number of i‘erations required for convergence also increase. At
some point, the stiffness properti=< he:ome such that a solution will not be found
without the coupling terms in the stiffness matrix.

Of course, the Cartesian formulation presented here, by necessity has coupled
harmonic stiffnesses because of the trigonome.ric geometric transformation which is
used. There was some discussion of transforming the finite elemen: degrees of freedom
from Cartesian displacement components to cylindrical type components which would
decouple the stiffness matrix for the unloaded structurs. However, this exercise will be
left for another time. Comparisons of solution efficiency are therefore made between the
coupled harmonic analyses and solutions using the general purpose program ADINA.

Figure 6.60 compares the solution times for the thin shell cylinder using SLATS
and ADINA. All times for one iterate in the nonlinear solution strategy. The ADINA
model used the four node shell element, which models a linear element displacement
field. Two mesh densities - 20 and 40 element rows - were used in each of the axial and
circumferential directions, for a total of three models The SLATS model consisted of
10 elements with a quadratic harmonic displacement field. Three runs are compared,
with three, five and eight harmonics. The graph shows the two models to be roughly
comparable in terms of total execution time, but the distribution of distribu.lon of
solution times is quite different. While the simple ADINA shell element can be
evaluated quite quickly, the system of equations is much larger, so most of the execution
time is consumed solving the equations. The HLT element requires more time to
evaluate, but the system of equations is more compact, requiring only 2 fraction of the
solution time. The time required to evaluate the elements could be reduced by a factor of
four if a linear meridional displacement field were used in the HLT model which would
make the meridional displacement field equivalent to the ADINA model. Although the
HLT element was not designed for modelling thin shell problems, it proved to be quit
capable for modelling several thin shell problems accurately and with relative efficiency.

Where the HLT formulation truly excels in terms of performance is in
axisymmetric structures which require a solid element formulation. Figure 6.61 shows a
comparison of solution times from SLATS and ADINA for comparable solid models.
The HLT elements in SLATS used a Lagrangian biquadratic element displacement field,
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while the 27 node polynomial based solid element was chosen from the ADINA element
library, because it most closely resembles the behaviour of the element used in the
harmonic formulation. Both models consisted of 20 elements in the axial direction. In

both models, solution times are given for a variety of circumferential displacement fields
radial mesh refinements.

The analysis results demonstrated superior accuracy froia the HLT formulation,
while the solution times are significantly less than those from ADINA. As with the
timing comparison for the shell models, the HLT element requires significantly more
time to generate the system of equations, but because the number of degrees of freedom
is so much smaller, the stiffness matrix can be solved much more quickly. The
significance of this is illustrated by comparing the solution times for the one and two row
models. Since matrix generation dominates the total calculation time in these simple
SLATS models, total solution time approximately doubles when the mesh is doubled in
the radial dimension. With ADINA, the total time nearly quadruples: matrix generation
increases by more than a factor of two, because the stiffness matrix is too large to be
contained in main memory, and solution of the equations takes more than five times as
long because the bandwidth and number of equations has doubled.

In both the shell and solid models, the number of elements is relatively small.
The advantage of the Fourier decomposition formulation will increase even more
dramatically in models where the number of elements, and the number of rows, are
higher. As more elements are required to represent practical structures, the size of the
system of equations will increase, and the associated increase in solution time for the
stiffness matrix will cause the major processing task to shift from matrix generation to
matrix solution. The computing requirements will be large, but three dimensional
analysis will be possible for problems which were previously out of reach.

6.8. Chapt r Summary

This chapter focussed on investigation and verification of the "t v..al Lagrangian
formulation of the axisymmetric finite element using Fourier decomposition for the
circumferential variation in the displacement field. Comparisons with analytical and
numerical studies in the literature verified that the Cartesian form of the element provides
accurate evaluations of asymmetric behaviour in axisymmetric structures. The
cylindrical form produced poor results in general because of inaccurate rigid body
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modelling. Problems which did not include rigid body translation were, however,
modelled reasonably well.

While not intended for thin shell structures, the program works well in modelling
these structures, provided the deformations do not become too localized, in which case
the number of harmonics required for adequate displacement field representation

becomes unmanageable.

The main analysis suite focussed on a tube subjected to an eccentric axial load.
The analysis was limited to elastic material properties, so comparisons were made to
analytical solutions and numerical solutions produced by the commercial finite element
program, ADINA. The results from the Fourier decomposition formulation
corresponded very weli with analytical and numerical solutions.

The element exhibited modest variations in behaviour with changes in element
evaluation parameters. Parameters in the meridional plane, such as Gauss quadrature
order and number of nodes (displacement field order) influence element behaviour in the
same way conventional polynomial based elements are influenced. Circumferential
integration parameters produced relatively small changes in the solution, provided the
number of integration points was sufficient to integrate the linear stiffness matrix. It
appears that the trigonometric geometry transformation functions have no influence on
the number of circumferential integration points that are required to exactly integrate the
Fourier products in the formulation. It also seems that refinement of the circumferential
integration techniques holds the most promise for increasing the solution efficiency even
further.
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Table 6.1 - Cylinder Critical Pressures
Basic Mesh' Results

Cylinder | FLUGGE? SABAS5® SLATS* ADINA®
Length - 1 element | 10elements | 20x20
5 harmonlcs | 5 harmonics | elements
30 30.5 31.4 321 39.17
100 8.9 9.6 9.96 11.39
200 4 4.9 5.32 5.60
600 2.7 3.5 3.65 3.77
Notes:
\ Mesh refinement of model, a x b, where a refers to number of element rows in

axial direction, and b refers to the number of element rows or the number of
harmonics in the circumferential direction.

2 Reference - Flugge, 1960

3 Reference - Chan and Firmin, 1970a, Pressure independent loading.
4 Present Study

S ADINA, 1987
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Table 6.2 - Cylinder Critical Pressures

30 inch Cylinder
Source Mesh1 Pcr
FLUGGE? - 30.5
SABAS® 1x5 31.4
SLATS* 10x5 32.1
SLATS 20x5 30.1
ACINA® 20x20 39.17
ADINA 20 x 40 36.21
ADINA 40 x 40 35.96

See Table 6.1 for complete references
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Table 6.3 - Cyiinder Critical Pressures
600 inch Cylinder, Basic Mesh

Source Mesh' Per
FLUGGE? - 2.7
SABAS® 1x5 3.5
SLATS* 10x5 3.65
SLATS 20x 5 3.40
ADINA® 20 x 20 3.77
ADINA 20 x 40 3.72
ADINA 40 x 40 3.71

See Table 6.1 for complete references
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Figure 6.25 Buckling modes for various length cylinders under external
pressure
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Figure 6.26
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Figure 6.27  Full size cooling tower model, two load cases
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Figure 6.28 Load - radial displacement amplitude response for the
cooling tower under external pressure measured 150 ft
below throat
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Figure 6.31
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Figure 6.32  Radial displacement at top of cylindrical shell subject to
wind load
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Figure 6.35 Displacement patterns at top of cylinder subjected to wind
load. (10 harmonics, 4 elements)
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Figure 6.36  Large displacement bending model (not shown to scale)
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Figure 6.37 Pinching effect of deformation independent nodal harmonic loads
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Figure 6.38 Deformed beam geometry, pure bending
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Figure 6.39 Deformation dependence of bending load with deformation
independent nodal harmonic forces
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Figure 6.40 Load vs. displacement at the neutral axis for the slender beam
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Figure 6.44 Bending moment at plane of symmetry vs. displacement at
middle for the tube - column problem
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Figure 6.46 Enlarged view of collapsed cross section at middle of tube
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Figure 6.50 Load - displacement variation with harmonic refinement
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7. Summary and Conclusions

7.1.  Overview of Formulation

In this thesis, the techrique of Fourier decomposition was applied to the Total
Lagrangian formulation of the virtual work equation to produce the finite element
equations for an axisymmetric solid element. Additional degrees of freedom are used at
the element nodes to model a non-axisymmetric displacement field, allowing more
general behaviour to be modelled while utilizing the geometric simplicity afforded by the
circumferential symmetry. All of the nonlinear stiffniess terms on the left hand side of
the virtual work equation are retained. Consequently, the Fourier components are
coupled, which increases the computational effort significantly, relative to linear
formulations, but permits a solution to be determined when the deformations become
very large.

The Fourier decomposition form of the virtual work equations was first
developed by extending earlier published works, using cylindrical displacement
components. During early verification runs, it was discovered that the coordinate
displacements utilized would not adequately model large displacement problems.
Though it was not investigated, a partial solution was found to correct the element
displacement field so that small displacement problems could be accurately modelled
over the entire range of element thickness to radius ratios. However, this would not
solve the large displacement problem of modelling rigid body motion.

In previous linear formulations, the Fourier stiffnesses were decoupled when
cylindrical displacements were used. This desirable characteristic is lost, however, when
nonlinear problems are considered. It was realized that cylindrical displacements
possessed no inherent advantage over Cartesian displacement coordinates in nonlinear
problems. Therefore, the same Total Lagrangian formulation was developed using the
simple geometrical description of the cylindrical coordinate system, but employing
Cartesian displacement components to describe the deformations. Using appropriate
transformation functions, expressions were developed for the strains in terms of these
two reference systems. The formulation which results includes slightly more overhead in
evaluating the stiffness and equilibrium equations, but this is well worth the
improvement in modelling capability.
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Because Cartesian displacement components are used as nodal harmonic degrees
of freedom, this form is referred to as the Cartesian formulation. The Cartesian
displacement components are interpolated using the polynomial functions in the
meridional plane, and Fourier decomposition is used in the circumferential direction. As
a result, the problem of modelling rigid body motion is eliminated, in both small and
arbitrarily large displacement problems. The results show this formulation to be very

capable of modelling complex, non-axisymmetric, arbitrarily large displacement
problems.

7.2.  Solution Efficiency

For problems where the deformation does not become too localized, only the first
few Fourier harmonics are required for an accurate solution. The results demonstrate
that for such problems, the Fourier decomposition approach is significantly more
efficient than general purpose polynomial solid or shell elements, both in terms of
solution accuracy and efficiency. The HLT element demonstrated faster execution times
and more reliable predictions of the post collapse behaviour in the test problems. There
are many opportunities for improving the efficiency of evaluating the stiffness matrix,
particularly in the realm of circumferential integration of the system of equations. The
nature of the Fourier functions could provide far more efficient numerical integration
techniques than those developed thus far.

7.3. Fature Directions

The formulation developed in this thesis provides the basic framework for
developing a complete analysis system for axisymmetric structures. Following are
descriptions of additional capabilities which are under consideration for development.

7.3.1. Nonlinear Material Models

The most significant enhancement to be added to SLATS is nonlinear material
modelling capabilities, The formulation was developed for modelling tubular goods,
particularly threaded connections. Material properties for steel will therefore be
implemented first. There is also great potential for application to well analysis. With the
addition of formation material models, the program will be able to model the mechanical
behaviour of, and interaction between tubular goods and formation.

213



7.3.2. Contact Model

One of the most significant factors in threaded connection behaviour is the
interface between the mating components in the threads, and the sealing region if one is
present. Extending the axisymmetric model to include asymmetric contact conditions
presents some challenging problems, if it is to have the same generality as the solid
element formulation. This may be undertaken in stages, with the first efforts focussing
on asymmetric, small deformation contact modelling. This will probably be sufficient
for connection modelling, since the connection is usually stiffer than tubular body, and
the displacements are relatively small.

7.3.3. Antisymmetric Capability

Although the formulation was developed in a general mathematical form,
implementation of the finite element program included only the symmetric part of the
Fourier series. Since torsional behaviour and antisymmetric buckling modes are included
in the antisymmetric part of the Fourier series, it will be important to include the
antisymmetric terms in the program to address such problems.

7.3.4. Curved Axis of Symmetry

The oil industry is demonstrating a great deal of interest in advancing deviated
well technology as a means of making oil recovery more cost effective. The asymmetric
loading and behaviour in well systems and formations are ideally suited to analysis by
Fourier decomposition. The geometry of these wells is not truly axisymmetric because
of the curvature in the well. However, it may be possible to develop transformation
functions which would permit the element to include the effects of well curvature,

7.3.5. Additional Symmetric and Selective Harmonic Capabilities.

Many analyses utilize partial circumferential symmetry to reduce the size of
model required to model a particular deformation mode. In fact, the current form of
SLATS utilizes such symmetry, that is the restriction to symmetric terms in the Fourier
series, to reduce the number of integration point required in the circamferential direction.
In analyses where higher harmonic deformation modes are to be modelled, the lower
order Fourier terms could be neglected, and integration would only have to occur over on
wave of the lowest order harmonic which is to be modelled. It might also be desirable to
include selective higher order harmonics to model specific deformation localization. For
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example, the post collapse behaviour of the cylinders under external pressure, modelled
in Chapter 6, could be improved significantly if higher order harmonics could be
included to allow the deformations to become localized.

7.3.6. Improved Integration Techniques

The circumferential integration requirements, combined with the large number of
element degrees of freedom, makes the effort of element stiffness matrix generation grow
rapidly with increasing numbers of Fourier terms. There is no way to decouple the
harmonic stiffnesses, but there may be potential in reducing the circumferential
integration requirements. The work so far has shown, for example, that the cylindncal
formulation stiffness matrix requires 4*NF+1 circumferential integration points to
exactly integrate the Fourier products. In the Cantesian formulation, it appeared that
4*NF+5 would be required, the additional four points added by the geometrical
transformations which are incorporated into the strain - displacement matrix and the
displacement gradient tensor. However, test case analyses showed that the Cartesian
formulation also required only 4*NF+1 integration points.

It may be possible to utilize some of the characteristics of the Fourier functions to
provide exact circumferential integration of the stiffness matrix much more efficiently.
If, for example, the number of integration points could be fixed at a specific number, the
increase in cpu time to generate an element would vary with the square of the maximum
harmonic number, rather than the cube as it does currently. This would make feasible
analysis with higher harmonic numbers, thus permitting greater capabilities for
modelling localized behaviour, and extending the range of application for the program
significantly.

7.3.7. Resolve Cylindrical Formulation Rigid Body Motion

There are several advantages to formulating the Fourier decomposition element in
terms of cylindrical coordinates. Boundary conditions are usually more naturally applied
in cylindrical coordinates, and the harmonic displacement modes often are decomposed
into separate Fourier displacement components, particularly with relatively thin shell
models. This is in contrast to the Cartesian formulation, where the geometrical
transformation functions distribute a harmonic displacement mode across three Cas“esian
displacement harmonics. These are the primary reasons for pursuing the cylindrical
formulation further.
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Several avenues could he explored to correct the problems with the cylindrical
formulation. The most elegant solution would be to define the displacement field in
terms of some physical displacement definition in the cylindrical reference system to
eliminate the nonlinear influence of the metric tensor.

Another approach could be to transform all of the variables in the Cartesian
formulation into cylindrical counterparts. This was partially accomplished in Chapter 4
where transformations from Cartesian to cylindrical nodal harmonic degrees of freedom
were developed to simplify resuits comparisons with published solutions. It was shown
that the transformations could be extended to produce a global system of equations in
terms of the cylindrical system. The exercise could be carried further, transforming
stresses and strains to complete the description in terms of cylindrical coordinates.

A third approach would retain the coordinate displacement based formulation
presented in Chapter 2, and use a refined element displacement field to develop the
Cylindrical formulation, along the lines of development in Chapter 3. One way to refine
the displacement field to accommodate the rigid body modes might be to define
additional degrees of freedom to model the lateral motion of the nodal rings, and
superimpose circumferential deformations in the rings, using the remaining nodal

harmonic displacements.

It is presumed that the first two models would resolve to the same formulation,
given the correct physical displacement definition in the cylindrical form. All three
models should resolve to the small displacement Fourier decomposition of Wilson, 1965
when reduced to the small displacement case.

7.4. Closure

This thesis has presented a large displacement finite element formulation for
modelling general three dimensional behaviour of axisymmetric structures. Analyses
prove the formulation to be accurate and efficient reiative to tiree dimensional models
using conventional polynomial based elements. However, the formulation does maintain
many similarities to common polynomial based formulations, so incorporation of the
most important enhancements discussed above should be a relatively straight forward
process. In particular, addition of nonlinear material properties will make the program
applicable to a wide range of problems which cannot be dealt with by current analysis
techniques.
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