

University of Alberta

FEATURE BASED CONCEPTUAL DESIGN MODELING AND

OPTIMIZATION OF VARIATIONAL MECHANISMS

by

Abiy T. Wubneh

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Engineering Design

Department of Mechanical Engineering

©Abiy T. Wubneh

Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

i

Examining Committee

Prof. Chongqing Ru, Chair and examiner

Prof. Ming Lu, external examiner, Civil & Environmental Engineering

Prof. Gary Faulkner, examiner, Mechanical Engineering

Dr. Yongsheng Ma, supervisor, Mechanical Engineering

ii

Abstract

This research investigates and proposes methods to be used for the automation of

the conceptual design phases of variational mechanisms. It employs the concept

of feature-based modeling approaches. A method is proposed for integrating the

dimensional synthesis, mechanical design and CAD generation phases with

minimal designer intervention. Extended feature definitions are used in this

research to create a smooth data transfer platform between different engineering

tools and applications.

This paper also introduces another method by which a set of dimensional data

collected from a family of existing products is used to predict possible solutions

for a new design. This method, based on artificial neural networks for training and

solution generation, is used with optimization algorithms for the dimensional

synthesis of mechanisms.

An excavator arm mechanism is used as a case study to demonstrate these

methods. The design of this mechanism is carried out based on its digging mode

configurations.

iii

Acknowledgement

My sincere gratitude goes to my supervisor, Dr. Yongsheng Ma, for his advises and

encouragement during the course of this research.

I also would like to thank a very special and strong person, my Mom, Emodi, for being

the best mother one could ever ask for.

iv

Contents

Examining Committee ... i

Abstract ... ii

Acknowledgement ... iii

List of Figures ... vii

List of Tables ... ix

List of Acronyms .. x

List of Symbols .. xi

Chapter 1. Introduction.. 1

1.1 Background ... 1

1.2 Statement of the Problem .. 2

1.3 Objectives ... 3

1.4 Scope of the Study .. 3

1.5 Organization of the Thesis .. 4

Chapter 2. Literature Review .. 5

2.1. Dimensional Synthesis ... 5

2.2. Artificial Neural Networks (ANN) ... 6

2.3. Parametric and Feature-based CAD Modeling ... 9

2.4. Design Automation and Integration.. 11

2.5. Reverse Engineering and Knowledge Fusion ... 12

Chapter 3. The Proposed Approach .. 14

3.1 Introduction ... 14

3.2 General Design Automation Method .. 14

3.2.1 The Proposed Design Procedure ... 15

3.2.2 Features and Data Structures .. 17

3.3 Method for Mechanism Dimensional Synthesis ... 20

3.3.1 Synthesis and Validation Procedures.. 21

3.3.2 Artificial Neural Network Training .. 22

3.3.3 Input Configuration Parameter Validation ... 23

3.3.4 System Testing ... 24

3.3.5 Initial Solution Generation ... 25

3.3.6 Mechanism dimensions synthesis ... 25

v

3.3.7 Results Validation... 25

3.3.8. Random System Validation Check ... 25

Chapter 4. Design Calculations - Case study ... 26

4.1. Excavator Case Representation ... 26

4.2. Data Generation for Neural Network Training ... 28

4.2.1 Maximum Reach-out at Ground Level () .. 28

4.2.2 Maximum Digging Depth () ... 30

4.2.3 Maximum Cutting Height (S3) .. 31

4.2.4 Maximum Loading Height (S4) .. 33

4.2.5 Minimum Loading Height (S5) ... 34

4.3. Generation of Training Data ... 35

4.3.1 Neural Network Training .. 35

4.3.2 Solving for Linkage Parameters ... 38

4.3.3 Case Study Analysis Results and Discussion ... 38

4.4. Design for Strength ... 40

4.4.1 Homogeneous Coordinate Transformation ... 40

4.4.2 Boom Geometries, RB’s ... 41

4.4.3 Stick Rotation Matrix, RS .. 42

4.4.4 Transition Four-bar Dimensional Synthesis ... 43

4.4.5 Stress and Strength Calculations .. 45

4.4.5 Pin Design .. 49

Chapter 5. Virtual Mechanism Modeling and Simulation .. 53

5.1. Introduction ... 53

5.2. Simulation Setup ... 53

5.3. Simulink Model Construction ... 54

5.3.1 Boom Construction ... 54

5.3.2 Stick Construction .. 55

5.3.4 Bucket Modeling .. 56

5.3.5 Hydraulic Cylinders .. 57

5.3.6 Transition Four-bar Linkages ... 57

5.4. Numerical Example .. 59

Chapter 6. Feature-based CAD Embodiment .. 64

6.1. Introduction ... 64

vi

6.2. Reusability of Functions ... 65

6.3. Boom Modeling .. 65

6.4 Stick CAD Modeling .. 72

Chapter 7. Conclusions and Future Works .. 76

7.1 Conclusions ... 76

7.1.1 Proposed Method .. 76

7.1.2 Case Study .. 76

7.1.3 Scalability ... 77

7.2 Future Work .. 77

References .. 78

Appendix 1. MATLAB CODES ... 83

A1.1 General Excavator Design Code (Main Body) ... 83

A1.2 Functions and Subroutines Details .. 85

Appendix 2. API CAD Programming ... 106

A2.1 Boom API Programming .. 106

A2.1.1 Boom header file: ... 106

A2.1.2 Boom Main Codes Assembly: .. 109

A2.2 Stick API CAD Programming .. 124

A.2.2.1 Stick Header Files ... 124

A2.2.2 Stick Main Codes Assembly: ... 127

vii

List of Figures

Figure 3-1 Design process modules and data communication routes 16

Figure 3-2 Dimensional synthesis methodology .. 22

Figure 3-3 Input parameter validation and prioritizing scheme............................ 24

Figure 4-1 Work-range Configuration Parameters ... 26

Figure 4-2 Linear representation of excavator arm members 27

Figure 4-3 Maximum out-reach at ground level ... 28

Figure 4-4 Maximum digging depth ... 30

Figure 4-5 Maximum cutting height ... 32

Figure 4-6 Maximum loading height .. 33

Figure 4-7 Minimum loading height ... 34

Figure 4-8 Architecture of the Neural Network .. 36

Figure 4-9 Performance of the neural network ... 37

Figure 4-10 Regression result ... 37

Figure 4-11 Classification of angles ... 40

Figure 4-12 Operational configuration angles .. 41

Figure 4-13 Stick structural angles ... 42

Figure 4-14 Transition four-bar work-ranges ... 44

Figure 4-15 Upper mechanism locking configuration .. 44

Figure 4-16 Lower mechanism locking configuration.. 45

Figure 4-17 Cross-sectional area under transverse shear stress 46

Figure 4-18 Torsional cross-sectional area ... 47

Figure 4-19 Pin loads in global vertical and horizontal planes 49

Figure 4-20 Pin under double shear .. 51

Figure 4-21 Bending load distribution on pins ... 52

Figure 5-1 Typical excavator arm mechanism .. 54

Figure 5-2 Skeleton representation of excavator arm mechanism 54

Figure 5-3 Skeleton representation of boom structure .. 55

Figure 5-4 SimMechanics model of boom.. 55

Figure 5-5 Skeleton representation of stick .. 56

Figure 5-6 SimMechanics model of stick ... 56

Figure 5-7 Bucket schematics ... 56

Figure 5-8 Bucket SimMechanics model .. 57

Figure 5-9 Location of application point of digging force 57

Figure 5-10 Real-time simulation environment .. 58

Figure 5-11 SimMechanics diagram for an excavator arm mechanism 63

Figure 6-1 Boom coordinate system (CSYS) features .. 66

Figure 6-2 Boom B-spine curve features .. 67

viii

Figure 6-3 Evolvement of features ... 67

Figure 6-4 Joined curve features ... 68

Figure 6-5 Embodiment features .. 69

Figure 6-6 Sheet body features ... 70

Figure 6-7 Hinge joint profiles construction ... 71

Figure 6-8 Solid body features .. 71

Figure 6-9 Final CAD model of an excavator boom .. 72

Figure 6-10 Stick coordinate system features ... 73

Figure 6-11 Feature evolvement ... 73

Figure 6-12 Embodiment features .. 74

Figure 6-13 Stick sheet body features ... 74

Figure 6-14 Stick solid body feature ... 75

Figure 6-15 Final CAD mode of an excavator arm stick 75

ix

List of Tables

Table 4-1 Hydraulic Excavator Work Space Configuration Parameters 27

Table 4-2 Mechanism Linkage Dimensions ... 27

Table 4-3 System testing data collected from the existing products 39

Table 4-4 Initial and final solutions generated by the proposed method 39

Table 4-5 Accuracy statistics of the system results .. 39

x

List of Acronyms

2D 2 dimensional

3D 3 dimensional

ANN Artificial Neural Network

API Application Programming Interface

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CSYS Coordinate System

DOF Degree of Freedom

FBD Free body diagram

FEA Finite elements analysis

GUI Graphical user interface

JTMS Justification based Truth Maintenance System

KA Kinematic Analysis

KBE Knowledge base engineering

MAD Mass-acceleration diagram

MDA Minimum deviation area

MOO Multiple objective optimization

PS Product Specification

RE Reverse Engineering

SOO Single objective optimization

STEP Standardized exchange for product

xi

List of Symbols

 Angular measurement parameter

A Area

 Area direct stress

 Area torsional

x Axis x

y Axis y

 Bending stress

 Boom deflection angle

 Boom lower angular displacement limit

 Boom rotation matrix #1

 Boom rotation matrix #2

b Boom side length

 Boom upper angular displacement limit

 Bucket angle

h Cross-sectional height

b Cross-sectional base dimension

t Cross-sectional plate thickness

 Differential area

dig1 Digging configuration angle #1

dig2 Digging configuration angle #2

 Direct stress

Q First moment of area about neutral axis

 Force along x-axis

 Force along y-axis

 Force along z-axis

 Hinge to hinge boom length

 Hinge to tip bucket length

A Homogeneous transformation matrix

H horizontal excavator arm lengths

J1 Joint 1

J10 Joint 10

J11 Joint 11

J2 Joint 2

J3 Joint 3

J4 Joint 4

J5 Joint 5

J6 Joint 6

J7 Joint 7

J8 Joint 8

J9 Joint 9

h_J10 Joint J10 extension distance

xii

h_J11 Joint J100 extension distance

h_J2 Joint J2 extension distance

h_J8 Joint J8 extension distance

c Linear measurement parameter

 Maximum Cutting Height

 Maximum Depth Cut at Level Bottom

 Maximum Digging Depth

 Maximum Reach at Ground Level

 Maximum Loading Height

 Maximum Vertical Wall Digging Depth

 Minimum Loading Height

 Moment about x-axis

 Moment about y-axis

 Moment about z-axis

 pin diameter

 pin length

R Rotation transformation matrix

SD Scope Display output

I Second moment of area

V Shear force

 Stick length

RS Stick rotation matrix

 Stick-Joint J3 interior angle

 Stick-Joint J2 interior angle

 Stick-Joint J2 left interior angle

 Stick-Joint J2 right interior angle

J3l Stick-Joint J3 lower interior angle

J2u Stick-Joint J3 upper interior angle

<JS9 Stick-Joint J9 interior angle

J9l Stick-Joint J9 lower interior angle

J9u Stick-Joint J9 upper interior angle

 Torsional shear stress

 Transition four-bar coupler link

 Transition four-bar follower link

 Transition four-bar stationary link

 Transition four-bar driver link

T Translation transformation matrix

 Transverse shear stress

 Ultimate stress

V Vertical excavator arm lengths

 Yield stress

1

Chapter 1

Introduction

1.1 Background
The design process of multi-component products which are subject to frequent

changes and modification is a very complex process due to the large amount of

data involved. Dimensions and parameters defined at the initial stages of the

design process are used by latter stages during manufacturing. In the traditional

design approach, this set of information is usually lost between the design stages

due to the fact that the reusability of knowledge is not given due emphasis.

This complication even gets worse when different parts of the product are

designed by different people located in geographically different locations.

Changes and modifications evoked by one department take considerable time and

other resources before being fully reflected on components being developed by

the other departments. Constraint definition and management is also one area

affected by the method of data management system adopted in the design process.

Since the traditional CAD files, which are merely the collection of geometric

entities, cannot grasp additional information vital to the manufacturing and other

aspects of the product development process, they failed to lend themselves for the

implementation of an effective knowledge-driven design procedures. This has

forced researches to look into possible ways of appending more information to the

traditional CAD models.

Features were introduced as a means to address these needs. Features are basically

data structures containing a range of information required to fully describe the

shape and related aspects of the product. Some of the most commonly used data

elements include model geometries, material, manufacturing methods, tolerances,

and machining procedures. Recently, more complicated and sophisticated features

have been defined to cover previously overlooked but critical aspects.

The research is motivated by the advancement in the areas of feature definitions

and their potential applications in the areas of intelligent design automation and

integration. It is devoted to extending the use of feature-based modeling concepts

to include design intents and constraints.

2

1.2 Statement of the Problem
Traditional design systems, including CAD and CAE tools, have very limited

capability in terms of storing rich-information with data format that can be

accessed by the different phases of the product development cycles. This

limitation directly affects the choices of the design methodologies and the

necessary data communication mechanisms.

The required information by the different stages of the design process has to be

transferred in a very effective manner to achieve maximum level of automation

and efficiency. The most commonly employed method is storing the data in a

computer accessed by these process stages. This method has been working

satisfactorily for quite a long time. However, as the trend in the global market gets

more competitive and the market span of products gets shorter and shorter, this

method had been found to be less reliable and reusable.

Attention is now shifted to developing a method by which the pertinent design

information will be stored in a consistent and reusable data structure that is

integrated with the product’s CAD model. Thus, the previously fragmented design

data files and those corresponding product CAD models have to be encapsulated

into a single product data model. In fact, modern product models are no longer

merely a collection of CAD geometric entities. Customizable and advanced

semantic definitions called features have long been introduced enabling the

integration of CAD and other engineering data sets, such as manufacturing data.

The conceptual design process of variational mechanism, which is the focus of

this research, is well known for its several fragmented modules running on some

sets of basic data. Design process and knowledge development is iterative in

nature. Each design cycle generates a set of data or a data model to be used in the

creation of the next phase model of the product being designed. For example,

since the product will have different inertia properties after its 3D embodiment,

the next design cycle will have to include the new properties in both physical and

geometrical senses, into consideration before commencing the next new cycle.

Effective automation of this process requires the systematic creation of the CAD

models in a very consistent manner.

Associative relationships between different features of a CAD model have to be

constrained systematically to ensure that the final generated model can have

comprehensive physical as well as engineering descriptions.

In addition, in latter manufacturing stages the CAD and design information will

be needed by the manufacturing system to produce the product. A computer

numerical control (CNC) machining operation, for example, requires both the

3

material type (non-geometric property) and the CAD geometric entities for tool

selection and tool path generation, respectively.

A design procedure equipped with methods which can satisfy these needs and

requirements, most probably, earns itself a place in the advancing industrial

application.

Unlike forward kinematics problems, designs of this kind, whose end effector is

passing through a prescribed path or set of precision points, inherit the common

challenges observed in inverse kinematics problems. The availability of numerous

solutions and, in most cases, the lack of solution convergence is some of the most

prominent problems making its implementation in automated design environment

very difficult.

1.3 Objectives
The top objective of this research is to propose a feature-based conceptual design

automation scheme specific to variational mechanism products. This method will

attempt to use the capabilities of features in accommodating for both geometrical

and non-geometrical types of data into a CAD system. It aims to utilize features to

bridge the necessary automation gap in the conceptual design cycle and to further

investigate their applicability in terms of embedding conceptual design rules for

complex part shapes and structures development.

It is also the objective of this research to propose an additional hybrid

dimensional synthesis method based on Artificial Neural Networks (ANN) and

optimization techniques. The objective in this area is to overcome the challenges

of the dimensional synthesis process in terms of narrowing down the number of

available solutions for a given problem.

The applicability of the proposed methods will be demonstrated suing the design

procedures of an excavator mechanism as a case study. Other than its typical

product development processes, this problem poses some challenges in terms of

product configuration, linkage optimization, and its programming implementation

in the proposed design method application.

The above two proposed methods will be used together in the same case-study

design problem to investigate and measure their performances.

1.4 Scope of the Study
This research is proposing a conceptual product design automation method with

the integration of feature-based CAD model generation via APIs C++ and Matlab

programming tools.

4

A hybrid optimization- ANN method is proposed for dimensional synthesis of

variational mechanisms. The requirement of defining a high-quality initial

solution for optimization search algorithms is addressed by the use of artificial

neural networks. The ANN, trained with existing and generated product data, will

be used to suggest informed sets of initial solutions for the optimization

techniques. Based on these initial solutions, the optimization search algorithms

will be used to determine the final solutions for the inverse kinematics problems.

This work also includes the basic optimization design calculations of an excavator

arm mechanism for the purpose of demonstrating the proposed methods. Only the

digging operational conditions are considered for the design purpose. The design

has been carried out only taking the strength requirements (working stresses) into

consideration in a numerical approach (design for strength). It will not consider

deformation and other dynamic considerations. The Finite Elements Analysis

(FEA) will not be included in this work due to the tight time constraint.

1.5 Organization of the Thesis
Relevant concepts and theories in the areas of design automation and feature-

based modeling which are previously investigated by other researchers are first

reviewed in Chapter 2.

Chapter 3 discusses the proposed approaches. The first section of this chapter

covers a topic on the overall design automation and design data communication

architectures. The second section, on the other hand, discusses on the details of

the hybrid Artificial Neural Network (ANN)-Optimization technique developed

for the purpose of dimensional synthesis of variational mechanisms.

The next chapter, Chapter 4, is devoted to the theoretical design calculations of

the case study. Starting from user specification inputs, and by assuming known

values for joint forces, the cross-sectional parameters of the boom and sticks of an

excavator arm mechanism are determined by the use of optimization techniques.

Chapter 5 focuses on the discussion of tools and procedures used to carry out the

kinematic and dynamic simulations of the excavator arm mechanism. Modeling

procedures and justifications for selecting the digging operation for simulation

and design will be discussed in details in this chapter.

Procedures and methods employed for the CAD modeling and programming

using the application user interface (API) are discussed in Chapter 6 followed by

conclusions and future work recommendations in chapter 7.

5

Chapter 2

Literature Review

In this chapter, research works and publications carried out by other scholars are

reviewed in relevance to the objective of this research. The overall organization of

this section is targeted to cover the following major topics:

 Dimensional synthesis of mechanisms and manipulators

 Application of ANN in mechanism dimensional synthesis

 Design automation and integration

 Parametric and feature-based CAD modeling

 Reverse engineering and knowledge fusion in product development

2.1. Dimensional Synthesis

Dimensional synthesis is the first stage in the process of designing mechanisms

and manipulators. This process is mainly focused on determining the linear joint-

to-joint distances of linkages and members. Laribi et al. [14] discussed an

optimization technique developed to determine the linkage dimensions of a

DELTA parallel robot for a prescribed workspace. The method uses a Genetic

Algorithm to minimize an objective function developed by writing expressions for

the end effector location based on a concept called the power of the point. In their

work, the dimensions of the robots were calculated using an optimization

technique which minimizes a volume created by three intersecting surfaces but

containing the prescribed cubic workspace. A penalty method is used in their

approach to screen out and select feasible solutions from available solution

domains.

Using a similar philosophy, but this time with cylindrical prescribed volume, an

optimization based dimensional synthesis procedure was suggested by Zhao et al.

[43] to determine optimum dimensional parameters for the design of a 2-UPS-PU

parallel manipulator. Cylindrical coordinate system was used when formulating

the kinematic relationships including the forward and inverse kinematics of the

manipulator together with the Jacobian for force and velocity analysis. The

prescribed workspace was represented by a cylinder contained inside the

minimum workspace volume enclosed by the manipulator movement boundary

surfaces.

Analytical and optimizations techniques have been used by several scholars for

the purpose of synthesizing manipulator and mechanism dimensions. The multiple

6

numbers of possible solutions was pointed out by several researchers as the

primary disadvantage of analytical solution methods. The procedure of

synthesizing the linkage dimensions of a four-bar spherical linkage mechanism,

proposed by Alizade et al. [1], employed the method of polynomial

approximation to transform 5 non-linear equations into 15 linear equations to

solve for 5 design parameters.

The objective of their study was to determine the dimensions of a spherical four-

bar linkage mechanism by linearization of a set of non-linear equations. The

requirement for the synthesized mechanism was that it should be able to trace 5

precision points in space. The minimum deviation area (MDA) was proposed in

their work as a constraint criterion to select the most appropriate solution. The

result of their investigation was tested by plotting the path of the mechanism

against the prescribed precision points using AutoCAD 2000.

2.2. Artificial Neural Networks (ANN)

Artificial neural network procedures were used by Hassan and his colleagues [12]

to study the relationship between the joint variables and the position and

orientation of the end effector of a six-DOF robot. The study was motivated by

the fact that the use of ANN doesn’t require an explicit knowledge of the physics

behind the mechanism. The network was trained by the use of real time data

collected by sensors mounted on the robot. Designed with an input layer with 6

neurons for three Cartesian location coordinates and three linear velocity

components, the network was used to establish a mapping pattern between the

inputs and outputs. Their work mainly focused on finding the kinematic Jacobian

solutions. Other numerical methods are also discussed by other scholars for

solving synthesis and simulation related problems [2].

Problems and shortcoming associated with using ANN were also discussed in

their paper. Some of the challenges they discussed include the difficulty of

selecting the appropriate network architecture, activation functions, and bias

weights. The other problem discussed in the paper is the difficulty and

impracticality of collecting a large amount of data for the purpose of training the

neural network.

The advantage of using ANN is also highlighted in their work. The fact that this

method does not require any detailed knowledge of the mathematic and

engineering knowledge involved makes it best suited to a wide range of similar

applications. It was pointed out that as long as there is a sufficient number of data

for training purposes, the ANN can be used to predict the Jacobian kinematics of

other configurations without the need to learn and understand the explicit robotics

philosophies. Modifications and changes in existing robot structures can always

7

be addressed by training the ANN with a new set of data reflecting the new

modifications.

Another research was carried out by Gao et al. [11] on the areas of application of

ANN to dimensional syntheses of mechanisms. Discussed in their work was

implementation of generic algorithms and neural networks as a tool to synthesize

the dimensions of a six DOF parallel manipulator. They decided to use this

method because of the fact that traditional optimizations techniques lack the

highly needed convergence property in their solutions when used for handling a

larger number of geometric variables. The stiffness and dexterity of the

manipulator were taken to be the optimization criteria and they were derived

based on kinematic analysis procedures. Levenberg–Marquardt and standard back

propagation algorithms were used in the neural network to approximate stiffness

and dexterity analytical solutions. Due to the large numbers of variables included

in the analysis, they have used two different approaches for the optimizations;

Single Objective Optimizations (SOO) and Multiple Objective Optimizations

(MOO), namely. With the first approach, the two objectives, stiffness and

dexterity, were separately investigated while in the second approach they were

investigated together to understand their combined effect. Problems associated

with the implementation of their techniques were addressed in their work.

Modeling the objective function was one area discussed as a challenge in their

work. The other is the convergence difficulty arising due to the involvement of

large number of parameters in the formulations of the objective functions

specially when using the MOO optimization.

Kinematic synthesis of redundant serial manipulators has been the focus of

research. Singla et al. used augmented Lagrangian optimization technique to

determine optimum dimensions for a redundant serial manipulator [28]. The

algorithm was used for its robustness in identifying feasible solution ranges

effectively. The formulation of the problem in their paper was based on

minimization of the positional error subjected to the constraints of avoiding

manipulator collisions with either external obstacles or its own links.

The work of Jensen and Hansen [13] discusses a method by which dimensional

synthesis for both planar and spatial mechanisms are accomplished taking the

problem of non-assembly into consideration. The method makes use of a gradient

based optimization algorithm. Analytic calculation of sensitivities was done by

direct differentiation. The problem was mathematically formulated as a standard

optimization problem with inequality to take the non-assembly nature of the

problem into account. Newton-Raphson method, due to its rapid convergence

property, is used in the minimization of the kinematic constraints. Saddle point

8

and steepest decent methods are used to verify the direction of convergence and

stability of the minimization method, respectively.

By representing planar displacements with planar quaternion, Wu et al. [40]

formulated the kinematic constraints of closed chain mechanism as a mapping

from Cartesian space to a higher dimensional projective space called image space.

It was pointed out in their work that the use of this method enabled one to reduce

the problem of dimensional synthesis into determining algebraic parameters

defining the image spaces. Computational simplification was achieved by

transforming kinematic equality constraints into geometric constraints. Dealing

with geometric parameters of the constraint manifold instead of the mechanism

parameters provides ease and flexibility due to the decoupled nature of the

relationships.

Procedures and methods to be used to overcome problems arising due to joint

clearances have been proposed by Erkaya and Uzmay [9]. A dimensional

synthesis of four-bar mechanism was discussed as a case study in their work to

demonstrate their proposed method. The clearances were represented by high

stiffness and weightless links to make them suitable to be studied under rigid

motion considerations but without affecting the overall inertial property of the

mechanism. The clearances and the mechanism were characterized and optimized

using neural networks and genetic algorithms with the path and transmission

angle errors used as the components of the objective function.

To address the problems of convergence uncertainties and limitations on

maximum number of precision points of problems solved using optimization and

analytical techniques, Vasiliu and Yannou proposed in their work [34] the use of

artificial neural networks (ANN).

The ANN designed to be used for the synthesis application takes in the prescribed

path and motion as an input and gives out the linkage parameters as an output.

The need for large number of data for training purpose is addressed by simulation

of the path for a given set of linkage parameters. The ANN was trained using the

simulated data in the reverse direction, i. e., for given information on the path

prescription; the mechanism parameters were to be determined. It was pointed out

in their work that the absence of continuity between different morphologies

prohibited and discouraged the use of interpolation techniques.

The other important point discussed in their work is the fact that neural networks

perform well only in the data range they were trained with. Normalization of

parameters during the utilization phase of the network is needed to bring the input

values to within the known range of the training set.

9

Some researchers were more interested in simulation and analyzing spatial

configuration performances of manipulators. These works were motivated by the

need to understand the manipulators’ performances under some environmental

constraints. Frimpong and Li [10] modeled and simulated a hydraulic shovel to

investigate its kinematics and spatial configurations when deployed in constrained

mining environments. Denavit-Hartenberg homogeneous coordinate

transformation techniques were used to translate the relative orientations and

configurations of links into other reference frames within the overall assembly.

Forward kinematics of the machine was investigated as a five-linkage

manipulator. After formulating the kinematic equations, the manipulator was

modeled in 3D and was simulated using the MSC ADAMS simulation software

for selected time steps.

2.3. Parametric and Feature-based CAD Modeling

Several methods and procedures have been developed and used to automate and

increase the efficiency of CAD modeling processes. The depth of data embedded

on the CAD modes greatly depends on the specific technique employed to carry

out the process [33]. Parametric modeling, among several others, has become one

of the most rapidly growing and commonly adopted methods of product modeling

in the manufacturing industries. Modifying the Standardized Exchange of Product

(STEP) format, which contains only geometric information, to accommodate for

additional part-specific parameterized information has been the focus of some

research [25].

This process takes the traditional CAD geometry modeling method a step further

by enforcing permanent geometric constraints among members of CAD objects

and features. This system has also its own known limitations in terms of validity

in change and modification implementations. Basak and Gulesin, in their study

[3], suggested and demonstrated a method in which parametric modeling was

used in coordination with feature based and knowledge fusion approaches to

increase its robustness in the areas constraint validation. Standard feature libraries

were also used in their method to investigate the practicality of proposed part

manufacturing techniques by the designers.

Programming through the application programming interfaces (API) of existing

commercial CAD packages provides designer with more flexibility to embed the

design intent into the CAD models [18]. In their approach, Myung and Han [22]

took design unit and functionality features into consideration for the configuration

and CAD modeling of selected products. The work of Wang et al. [38] proposed a

modeling environment integration method by which interactive parametric design

modification was demonstrated using a CAD-linked virtual environment.

10

The success of parametric modeling greatly depends on the consistency and

preservation of topology of CAD features used in the creation of the part being

modeled. The parent-child relationships defined have to be validated at all times

in order to apply this method in the design process of customizable products. The

use of explicit relationship was suggested by Van et al. [33] to increase user

control and add sophistication to the modeling process.

Even though parametric modeling techniques are widely used in today’s design

and manufacturing industries for facilitating CAD modeling processes, their

power had been merely limited to the geometric attributes. Incorporation of

additional sets of information such as product material, method of manufacturing,

assembly procedures, and design intents to the CAD models have been the focus

of several recent research works.

Features, which are basically data structures, have been used to attach the

additional information to the CAD models. The type of information ranges from

purely geometric to non-geometric parameters. Traditional features used to

represent only those attributes related to the geometry of the part. Recently, new

types of feature definitions [30] have been introduced to embed other non-

geometric aspects of the product/part being designed with the CAD models.

The employment of parametric and feature-based modeling techniques has been

proven to contribute a significant role in the implementation of an integrated and

automated product design procedure [39]. The interest of manufacturers in

reducing the time-to-market and costs associated with the design process had

motivated and initiated researches [41] to investigate features in greater depth.

The power of feature-based modeling methods was coupled with the concepts of

reverse engineering techniques [41] to embed design intents and other constraint

into existing product’s retrieved by CAD scanning techniques (reverse

engineering). By doing so, manufacturers will be able to reduce the time required

to re-fabricate a given existing product with different material and modified

design constraints.

The data structures of features can handle more than one type of information. As

discussed earlier, information pertinent to product development such as

conceptual design intents, geometric constraints, non-geometric parameters, and

manufacturing and assembly procedures can be embedded into the CAD model of

the product by manipulating its feature (data structure). The extent to which this

information can be exploited mainly depends on the feature definition and the

11

level of organization and communication architectures of the network [39]. Ter et

al. [30] discussed this issue in their work and proposed a high level abstract

unified feature-based approach by categorization and generalization of conceptual

data.

The traditional definition of feature, which used to be used to merely describe the

shapes and geometries of the CAD models, has been extended to cover assembly

design features and other various aspects vital from the point of view of

manufacturing and concurrent engineering [5]. Associative relationships, both

geometric and non-geometric, between various parameters of two or more

members of an assembly were discussed by Ma et al. [18]. This ability opens the

door for design automation of frequently updated and modified products. Design

customization of products can be benefited from the inclusion of design intents,

constraints, and assembly hierarchy data [4] on the CAD files. Incorporating rules

and constraints in the CAD files in the form of features requires the definition of a

new set of features. By treating a feature more like a data structure than a

geometric parameter description, associative relationships between parts that have

not been considered before were defined. In addition, the feature definition was

extended to cover information pertinent to component mating conditions and

interfaces within an assembly.

2.4. Design Automation and Integration

The implementation of collaborative product development process requires a

large amount of data to be transferred between applications used by different

designers working toward a single product [23]. Change and modifications

propagate both ways in these routes. Ma and his colleagues defined a data

structure (feature) called operation in an effort to address the need to

communicate data in feature level [19]. Associative fine-grain product repository

mechanism with four-layer information scheme was proposed and demonstrated

by the team for this purpose. The method was proposed taking into consideration

the possibility of working on different applications and platform due to the multi-

discipline nature of product design process.

Features, which have a higher level of semantic organization than the elementary

geometric aspect of a product, are currently being used to create the link and

bridging the gap in terms of the amount and detail of information needed to be

shared by CAD and CAM systems [21,27]. Concurrent and collaborative

engineering oriented product development processes require the implementation

of an effective change propagation and constraint management mechanism to

handle the flow of data between various development stages. In their work, Ma et

12

al. [20] proposed a unified feature approach method for constraint management

and change propagation to be used in a collaborative and concurrent environment.

The developed algorithm uses the JTMS-based dependency network. The data

model was categorized under constraint-based associatively and share entities

association. Lourenco et al. [17], in a slightly different approach, investigated a

method of interactive manipulation of feature parameters. They proposed a

solver-driven algorithm for optimization of geometric constraints using non-

application specific constraint solvers.

Excavator arm mechanisms have been investigated from different research point

of views. Solazzi discusses [29] with his work the advantages and quantitative

analysis of performance improvements achieved by redesigning an existing

hydraulic arm mechanism with a different material. Yoon and Manurung [42], on

the other hand, investigated the development of a control system by which the

operations of an excavator arm mechanism are controlled by the operator’s arms

movement. Sensors attached at the different joint locations of an operator arm are

used to map the arm joint displacements into the mechanism’s motion.

The development of new design automation procedures [26,31] together with

existing mechanical simulation tools such as SimMechanics of MATLAB® and

MSc ADAMS® have given researchers the edge to fully impose explicit

constraints when investigating mechanisms and manipulator’s kinematic and

dynamic responses [35]. The forward and inverse kinematics analyses involved in

the design of mechanisms and manipulators are benefitted from the

implementation of parametric and feature-based modeling approaches [35]. Work

space configurations of manipulators and their dynamic responses require

frequent changes and fine-tuning initial parameters which easily can be

implemented by the use of appropriate feature definitions.

2.5. Reverse Engineering and Knowledge Fusion

Reverse engineering techniques are used to extract shapes and geometries from

exiting products [7,8]. The outputs of RE procedures usually poorly represent the

design logic used to create the parts. The gap between reverse engineering (RE)

techniques and the requirement of embedding design intents into the CAD files of

products retrieved using this method was discussed by Durupt et al. in their work

[7,8]. The traditional RE tools allow creating the geometries of existing products

but lack embedding the design intents. The method proposed in their work

suggested procedures to integrate RE tools with knowledge fusion techniques.

Similarly, Li et al. suggested the use of knowledge-driven graphical partitioning

approaches to embed design intents to the RE scan results [16, 37].

13

Topological approaches have recently become more popular for their ability to

generated 3D free shape models based on finite element concepts. However, like

that of the RE techniques, a lot of effort needs to be done before smoothly extract

simple CAD models from this shapes. The work of Larsen and Jensen [15]

focuses on the investigation of methodologies to extract parametric models out of

topologically optimized 3D shapes.

14

Chapter 3

The Proposed Approach

3.1 Introduction
Product modeling involves the process of creating part geometries by combining

individual basic semantic entities called features. A feature is a data structure with

members of geometric elements and associative relations. The ability to create

relationships between the data members of different features allows controlling

part dimensions parametrically. With this modeling approach constraints can

easily be imposed on geometric entities defining the features. The data from the

features can easily be accessed and modified making this method robust in

managing change propagations and modifications in the design process. In

addition to geometric parameters, these features can be designed to store other

design entities such as part material specifications and manufacturing methods.

The fact that features are basically data structures makes them play an important

role in the automation processes of conceptual design cycles.

In this chapter are proposed and discussed two methods to be used in the

implementation of feature based CAD modeling techniques in the development

and design automation processes of variational mechanism.

In the first section, the general design process modules and data flow architectures

will be discussed. The second section focuses on the introduction and testing of a

method designed to utilize the powers of artificial neural networks in the

mechanism synthesis.

3.2 General Design Automation Method
The design of mechanisms and products that are subject to frequent changes and

modifications involves several application-dependent processes utilizing a set

common data. The given specifications, standards and design requirements may

be changed at any time during the development process. These changes can be

evoked by the customers as well as due to newly arising engineering

requirements. Without having in place a system by which these activities are

handled in a very efficient manner, the costs associated with the changes and

modifications could unjustified the product need.

This paper proposes a method by which such changes and design intent

modifications are handled in a very cost effective and timely manner using feature

based approach to reduce the CAD modeling and the overall design cycle times.

15

By employing commercially available programming and feature based 3D

modeling tools, it is possible to create a reliable automation procedure which

accommodates for the inevitable changes and modifications.

3.2.1 The Proposed Design Procedure

The following flowchart summarizes the general automation procedure proposed

for this purpose. The area of data communications between different

programming and modeling tools will not be fully investigated in this paper due

to the time constraints. Instead the intended communication is achieved by the use

of neutral text data files written and updated by the program codes developed for

this purposes.

In Figure 3-1, design input information in the form of user specification is used to

start the process. This input, together with additional engineering rules and

intents, is used by the Kinematic Analysis algorithm discussed in the next section

to synthesize the linear dimensions of the mechanism.

The newly calculated linear dimensions of the mechanism under investigation will

be used in upcoming modules to model its skeleton assembly model to be used in

an initial kinematic and dynamic analysis. This process results in the

identification of forces and moment reactions between contacting joints and

bodies. The output of the Dynamic Analysis and Simulation module will be used

to establish the free body diagrams (FBD) and mass-acceleration diagrams

(MAD) to be used during the design and optimization phases.

Results obtained from these stages, together with the initial input specification

values, will be used in the design of linkages and members of the mechanism.

One or more applicable optimization criteria can be used in order to determine a

set of optimum cross-dimensional parameters for the machine elements. In

addition to the above mentioned inputs to the Design and Optimization phase,

design codes, standards, assumption, and factor of safety are some of several

additional factors to be considered depending on the type of product being

designed.

Based on dimensional data determined by previous processes the 3D models of

the mechanism components will be modeled following feature based techniques.

Application Programming Interfaces (API) of most commonly used modeling

platforms can be used for this purpose. The choice of the programming and

modeling tools depends on the compatibility of tools and the familiarity of the

personnel using them.

16

Figure 3-1 Design process modules and data communication routes

For this research, the programming part of the case study was carried out in C++

programming using Visual Studio 2008®. The final 3D models were generated

from the codes using the UG NX 7.5 modeling software.

These models, assembled preferably, will be exported back to the Dynamic

Analysis and Simulation block to take the effects of their newly created 3D

dimensions (inertia effects) into consideration. This first stage loop will be

repeated until a stopping criterion is met.

The strength and deformation of parts and models passing this screening stage can

be further examined using FEA techniques. In the event these components fail to

Data 1

Engineering

Data 2

CAD

Kinematic

Analysis

Dynamic Analysis

and Simulation

Feature –based

CAD modeling

Model

Assembly

FEA

Analysis

Product

Specification Design Intents

Engineering rules

Constraints

Codes/Standards

Assumptions

End

Check

No

Yes

Design and

Optimization

17

meet the qualification criteria set for the FEA stage, the entire iteration can be

restarted with modified input parameters to address the shortcomings.

3.2.2 Features and Data Structures

Concurrent engineering and product development processes involve the

participation of personnel with different engineering and technical backgrounds.

In most cases these persons work from within different departments requiring an

efficient mechanism for smooth information transfer among them.

Any information, whether in the form of initial input or generated data, has a very

good chance of being used by more than one function module or application. In

addition, a series of design data for a particular product family needs to be stored

in a systematic repository database. This has potential for future use in the areas

of knowledge fusion and as a training source for artificial neural network

applications.

Data structures, implemented by using object oriented programming tools, play

the role of addressing these crucial needs. The Product Specification input shown

in Figure 3-1, needs to be organized in a systematic manner and its scope be

defined as “global” or “local” in order to define its accessibility by individual

program modules. This is done by defining a data structure and instantiating its

object. The following is an example of a class defined in MATLAB®. The data

structure for handling a particular problem is defined by creating an object

instance of this class and entering values to its data members.

classdef Product_Specification_c
 properties
 Title = 'Specification Parameters'
 T_1 = 'Geometric Spec.'
 G1 = 0;
 G2 = 100;
 Gn = 0;
 T_2 = 'Material Spec'
 Modulus_Elasticity = 210e9;
 Poisson_ratio = 0.3;
 end
end

For example, to create a data structure for a new product model called

Product_Spec_2010 by instantiating the above definition the following command is

used. Note: Neither this particular example data structure nor its values are real

values and are used here only for explanation purpose.

global Product_model_2010

Product_model_2010 = Product_Specification_c

18

And the values of this data structure are updated using the following object

oriented programming syntax:

Product_model_2010.G1: new value

Product_model_2010.G2: new value
Product_model_2010.Gn: new value
Product_model_2010.Modulus_Elasticity: new value
Product_model_2010.Poisson_ratio: new value

The collection and input methods of the individual entities for the data structure

greatly depends on the convenience and applicability to a particular problem.

Initial values can be assigned during the definition of the data structure or it can

be updated afterwards using both the command line and graphical user interfaces

(GUI).

The following is a real example data structure taken from the excavator arm

mechanism case study.

classdef c_Spec_Data_SI
 properties
 Title = 'Commercial Specifications and Vehicle Dimensions'
 Maximum_Reachout_at_Ground_Level_S1 = 0;
 Maximum_Digging_Depth_S2 = 0;
 Maximum_Cutting_Height_S3 = 0;
 Maximum_Loading_Height_S4 = 0;
 Minimum_Loaidng_Height_S3 = 0;
 Horizontal_Distance_H = 0;
 Vertical_Distance_V = 0;
 Vehicle_Weight = 5000;
 end
end

An object of this structure, SpcDat, instantiated and completed with its own values

takes the form:

SpcDat =

 c_Spec_Data_SI

 Properties:

 Title: 'Commercial Specifications and Vehicle Dimensions'

 Maximum_Reachout_at_Ground_Level_S1: 5.6700

 Maximum_Cutting_Height_S3: 3.7248

 Maximum_Loading_Height_S4: 1.3521

 Horizontal_Distance_H: 0.9857

 Vertical_Distance_V: 1.2300

 Vehicle_Weight: 5000

The set of data generated within the Product Specification (PS) module is used

directly by the Kinematic Analysis (KA) module when calculating the linear

dimensions of the mechanism or manipulator. The KA, in turn, generates its own

data structure and made it available to be used by downstream functional

modules.

19

The number of programming applications and tools involved in the system dictate

the number of databases involved. If there are two or more programming tools

running on different platforms involved, it may be required to devise a

mechanism by which their respective databases are able to communicate with

each other.

In Figure 3-1, it is assumed that the programming environment used for kinematic

analysis and dimensional synthesis is different from the one employed by the API

of the CAD modeling application, as this is the usual case. This is a very common

practice since MATLAB® and Maple are usually used for engineering design

calculations and optimizations processes while C#, C++, and VB are used for

programming CAD in with the API tools. However, all of these tools are expected

to operate based on a common set of data model and parameters produced during

the initial phase of the conceptual design cycle. Accordingly, Data 1 and Data 2

in Figure 3-1 are communicated by neutral intermediate text data files. Similar

data structure is needed to be defined from within the other programming

applications involved to read and import the data exported by other applications.

These definitions do not have to be the exact copy of the previous one as long as

the necessary parameters are imported. But defining all corresponding data

structures in a consistently similar manner avoids confusion and helps one with

better data management.

The concept of feature has been investigated in greater depth in the last couple of

decades to address the emerging product development and manufacturing needs

and challenges. At the beginning, the term feature was used to refer only to the

geometrical aspects of a model such as slots, holes and chamfers. The fact that

products development process includes much more than geometric entities has

forced researchers to look into ways of embedding more information into the

CAD models. Today’s features have broader meaning in this sense. Both

geometric and non-geometric information are able to be imbedded into the model

aiding in rapid and reliable product information transfer mechanism.

The following are some of the many features used in this work:

 Coordinate system features: Used in the creation of relative and absolute

CSYS.

 Skeleton functional features :Used in the development of skeleton product

profiles

 Embodiment features :Features responsible for creation of 3D geometries

 Sheet body features

 Solid body features

 Curve features

20

3.3 Method for Mechanism Dimensional Synthesis
Existing manipulator mechanism products are frequently redesigned and

customized to meet specific operational needs and increased efficiency.

Specialized manipulators are needed to perform out-of-the-ordinary tasks under

constrained space limitations. Although adding new design features to these

existing models is one way of increasing versatility and addressing these needs,

the approach might require the development of additional design procedures and

incorporating them into the existing knowledge base. In most cases, however, the

objective is achieved by adopting a different set of configurations.

The final spatial configurations of the overall assemblies are the bases on which

users of these products evaluate the dimensional specifications. The conceptual

design of these products usually starts with a set of target configurations or

prescribed paths and motions identified by the end users that needed to be

achieved by the overall mechanism. The dimensional synthesis phase of the

design focuses on determining individual linkage dimensional parameters which

when assembled in the mechanisms will meet the configuration requirements.

In the event when a single position and orientation (pose) of the end effectors of

the manipulator is defined for known values of its linkage dimensions, the joint

variables are calculated using inverse kinematics procedures. Unlike the case of

forward kinematics (direct configuration) problems, the solution to inverse

kinematics problems usually is not unique. This poses considerable challenge

when trying to automate the conceptual design process and implement it using

programs. In addition, the fact that the calculated linkage dimensions and joint

variables are expected to fully satisfy other set of additional configuration/path

parameters makes this approach more difficult to be implemented on

multivariable problems.

Formulating a set of parametric geometric relationships for each configuration in

terms of similar linkage parameters and searching a solution using optimization

techniques is a standard approach. The implementation of this method requires a

vector of initial solutions very close to the actual to be defined. Since there is a

very strict correlation between the configurations parameters, random values

cannot be used as an input when solving this system of equations. Failure to do so

may produce mathematically accurate but physically impossible solutions.

In this section is a method proposed by which dimensional synthesis is performed

for manipulator mechanisms based on a random configuration parameter inputs.

The method will be implemented in MATLAB and tested using the excavator arm

mechanism as a case study.

21

Most optimization techniques usually require a very good initial solution to be

defined for them to produce sound solutions. One of the objectives of this paper is

to introduce a system by which a set of initial solutions which are reasonably

close to the actual solution can be generated. Optimization techniques, when

applied to the problems of dimensional synthesis of prescribed precision points,

commonly encounter the difficulty of producing reasonable results from the point

of view of practicality due to two reasons. The first reason is the closeness

requirement of the pre-defined initial solution. The other reason is the

incompatibility or feasibility issue of the prescribed precision points. This is to

say that prescription of unrealistic and ambitious specifications most likely

produce, if the search converges to a solution at all, unrealistic solutions.

The hybrid method proposed in this research can be summarized by the flowchart

as shown in Figure 3-2. It is the objective of this paper to introduce a hybrid

method in which a well trained artificial neural network (ANN) tool is used to

generate a set of high quality initial solution suggestions for target mechanism

parameters based on the user specifications while optimization techniques are

used to finally synthesize the necessary dimensions. The hybrid method attempts

to jointly employ the powers of optimization procedures and neural networks to

synthesize the dimensions of mechanisms and manipulators.

The user specifications are quasi-dependent in nature to each other. There is an

acceptable range of values for a single configuration parameter, , that can

feasibly coexist with a set of the remaining prescribed configuration parameters,

 . In this regard, the given initial specification data set has to be validated

before used in the design calculations.

3.3.1 Synthesis and Validation Procedures

The proposed method can be decomposed into the following stages: (1) Artificial

neural network training; (2) Input parameter validation; (3) System Testing; (4)

Initial solution generation; (5) Mechanism parameter synthesis; (6) Result

verification; (7) System test with random existing values.

22

Figure 3-2 Dimensional synthesis methodology based on ANN and optimizations

3.3.2 Artificial Neural Network Training

Essentially, training the ANN is performed to build a database which will be used

to generate the feasible suggestions of the initial mechanism parameters according

to new configuration specifications. The first step is to collect the training data.

Ideally, such training data can be obtained from those existing similar product

information catalogues, usually in the form of product families, because the

relevant data from that channel is proven workable with both input and output

sets. As shown in Figure 3-2, the proposed method makes use of such data as

indicated by the top job block. Unfortunately, although these real product data

sets are very useful for training the ANN, the number of available data sets is

Y
Final Solution,

Generation of

Linkage parameters

Forward Kinematics

Generation of

workspace

configuration

Configuration Parameter

Prioritizing and Validation

New

Configuration

parameters Based

on User Inputs

Validated Input

Configuration

Parameters

Neural Network

Training

Initial

Solution,

Input Normalization

Workout Scale Factor

Output Scale

Application

System test

Satisfactory

?

Inverse Kinematics

and Optimization

Neural Network

Use

N

System Ready

System Setup

Data collected from

existing products

(Links/Configuration)

Training data

Real –time data

System test data

23

always not enough. To find a solution for the shortage of training data, forward

mechanism equations can be utilized to create as many input/output data sets as

required [34]. Note that the generation of such simulation data is necessary

because the available data is usually insufficient to serve the training purpose and

the extra effort of collecting additional real product data is deemed costly.

In the case of data generation process, the configuration parameters which define

the total workspace of the mechanism assembly will be generated for the given set

of linkage dimensions using forward kinematic equations. This is a mapping

process in which the mechanism parameters (linkage dimensions) are mapped to

the envelope configuration parameters (work range) of the workspace or the

working path in the case of a planar mechanism.

When training the artificial neural network (ANN), both the existing real product

data sets and the generated data sets will be used in the reverse sense; that means

the configuration parameters are used as the input data for the training while the

mechanism parameters are used as the target output data. Note here that the

generation and training methods have been used previously [34] and have

provided satisfactory outcome while the proposed real product data sets still play

an important role to incorporate the industrial optimization factors that are well

embedded implicitly in them on top of the mathematical solutions. In fact, it may

be potentially useful to increase the weights of such real product data sets in the

training of the ANN. Due to the time limitation, this idea of enhancement will be

explored in the future.

Since the ANN is expected to be effectively used only for those parameters lying

within the ranges of its training data, to make the training data more generically

useful, normalizations of the input vector as well as the output vector during the

training cycles should be carried out. Similarly, during the application of the

trained neural network, the input and output new dimensional parameters have to

be scaled or normalized to make sure they lie within the ranges.

3.3.3 Input Configuration Parameter Validation

In addition to the training of ANN, to search for a feasible mechanism parameter

solution from a given set of configuration parameters, it is necessary to make sure

that the configuration parameter values are compatible with each other and

practically feasible to exist. If this condition is not met, the analysis may give

results inapplicable to practical cases. Figure 3-3 shows the procedure adopted to

validate input configuration parameters. It is worth noting that the term validation

is used here only to evaluate the given prescribed set of parameters from the point

of view of their combined applicability to a particular machine or manipulator

configuration. The validation is done by checking if the given multiple input

24

configuration parameters, after being scaled or normalized, lie within the relative

permissible ranges established by the collected and generated data. The ranges

derived from the collected data are based on the statistic analysis of results of all

the generated and real product models data.

Figure 3-3 Input parameter validation and prioritizing scheme

3.3.4 System Testing

To validate the overall procedure, real product data sets are used again for the

testing purpose, as shown by line type #3 in Figure 3-2. This time, different from

the ANN training process, the work-range configuration parameters are fed into

trained ANN module to generate the initial solutions of the targeted mechanism

dimensions. Then, together with work-range configuration parameters, the initial

dimensions are used as the seeding vector to search for the goal vector of the

targeted mechanism dimensions. This set of output goal vectors is compared with

the real product mechanism dimension vectors. Theoretically, the system output

should be well within the specified tolerance of the system accuracy requirement.

Note, relatively, the real product data sets are only a small portion of the overall

ANN training data sets. If the system is not up to the accuracy expectation, then

more training data sets are required from the both channels as discussed

previously.

Select First

Priority

Configuration

Specify Value

Scale Input

Suggest

Range

Record Value
DATA

Select Next

Priority

configuration

Select Value

from Range

Compatible

Configuration

Values

25

3.3.5 Initial Solution Generation

In this stage, the validated configuration parameters will be passed to the ANN

module to generate initial solutions. This solution is in turn will be used by the

appropriate optimization to refine and get the final solutions.

3.3.6 Mechanism dimensions synthesis

The dimension synthesis is carried out with optimization algorithms. This part is

specific to the nature of the mechanism in question. In this work, an excavator

arm linkage system is studied. The details of the algorithms are introduced in

section 4. Finally, the calculated mechanism parameter solutions have to be scaled

back to the original ratio before being reported back as a solution to the user.

3.3.7 Results Validation

The optimization results are to be validated before they are adopted in the design

and displayed in an appropriate CAD context. The straight forward procedure is

to apply forward mechanism simulation to check for the work-range space or path

details against the specifications. Theoretically, if the results are not good enough,

the troubleshooting procedure must be carried out. So far, with the limited tests,

the generated results are quite satisfactory as discussed in the following section,

so the troubleshooting method was not explored further.

3.3.8. Random System Validation Check

To measure and validate the performance of the system, again, randomly selected

configuration parameter data sets from the existing products’ database are

selected and used in the generation of mechanism parameters using the proposed

method. The results of the procedure are cross-checked against the actual

dimensions and the efficiency of the method is measured.

26

Chapter 4

Design Calculations - Case study

4.1. Excavator Case Representation
In the conceptual design process of an excavator, translating the work-range

specification parameters (prescribed points or an envelope path) into linear

dimensions of the arm mechanism is the very first stage. To do this, the boom,

stick, and buckets of this planar mechanism are represented by linear linkages,

and other elements such as hydraulic cylinders and bucket transition four-bar

linkages are left out of consideration at this stage. These three links, connected in

boom-stick-bucket sequence, are positioned and oriented in different poses such

that their final configurations pass through the input specifications. Figures 4-1

and Figure 4-2 show the traditional catalogue specification dimensions

 and the representation of the mechanism by linear

elements , respectively.

Figure 4-1 Work-range Configuration Parameters

27

Figure 4-2 Linear representation of excavator arm members

Table 4-1 Hydraulic Excavator Work Space Configuration Parameters

Table 4-2 Mechanism Linkage Dimensions

 Hinge to hinge boom length

 Stick length

 Hinge to tip bucket length

 Boom deflection angle β

The design process hence involves determining a set of individual linkage

dimensions of the excavator arm mechanism that, when connected to each other

and form the overall mechanism, satisfy the working envelope requirements.

Unlike forward kinematic problems in which the location and other properties of

the end effector is to be calculated based on different joint variables and linkage

dimensional inputs, this problem involves the task of determining the joint

variables and linkage dimensions for a given set of end effector configurations;

bucket in this case. In forward kinematics or direct configuration analysis, the task

is usually to determine the final configuration of the mechanism based on a given

set of joint variables and linkage dimensions. This is a relatively simple and

straight forward process since the analysis usually leads to a unique solution. The

 Maximum Reach at Ground Level

 Maximum Digging Depth

 Maximum Cutting Height

 Maximum Loading Height

 Minimum Loading Height

28

inverse process being investigated in this research, on the other hand, is relatively

complex due to the availability of multiple solutions.

4.2. Data Generation for Neural Network Training
The main purpose of this task is to generate configuration and linkage parameter

data sets to be used for training the proposed ANN. The ANN will be used in

latter stages to narrow down and select a physically viable set of linkage

parameters to be used as initial solutions. This is entirely a forward kinematic

procedure in which each final vector of configuration parameters, is determined

from a given set of linkage dimensions and joint variables, .

Where and

The following sub sections describe the mathematical model derived for working

out the envelop path configuration parameters from the mechanism

linkage parameters, .

4.2.1 Maximum Reach-out at Ground Level ()

The position of the bucket tip is calculated using the forward kinematic methods.

To apply this method to this problem, the individual rotational and linear

transformation matrices are formulated using the Denavit-Hartenberg convention.

By applying the Law of Cosine to Figure 4-3 shown below the following

mathematical relationship is formulated.

Figure 4-3 Maximum out-reach at ground level

 (4.1)

 (4.2)

29

(4.3)

(4.4)

(4.5)

 (4.6)

 (4.7)

The sequence of frame of reference translation from the origin to a frame located

at the tip of the bucket is represented by the homogeneous transformation:

 (4.8)

Where

 Linear displacement in the positive direction with value

 Linear displacement in the positive direction with value

 Rotation about the axis by angular value of –
 Linear displacement in the positive direction by a value of

The rotation sequences of Eq. (4.8), when represented by the corresponding

matrices, take the form

(4.9)

The resulting homogenous transformation matrix is then given by:

(4.10)

The value of the maximum out-reach at ground level is then extracted from the

above homogenous transformation matrix. The expression in cell is the

value of the coordinate of the bucket tip from the origin of the fixed reference

frame, which in this case is the same as the value of the maximum reach-out at

ground level, .

30

 (4.11)

4.2.2 Maximum Digging Depth ()

The maximum digging depth requires the definition of angle measured from

the vertical to indicate the lower limit of the boom angular displacement about the

base hinge. For a given value of this limiting angle, the maximum digging depth

is expressed mathematically using the Denavit-Hartenberg convention.

Figure 4-4 Maximum digging depth

Again, by using Law of Cosine,

 (4.12)

Where in this equation is the length of each sides of the boom. For the purpose

of simplification, they are assumed to be of equal length in this development.

31

 (4.13)

Referring to Figure 4-4,

 (4.14)

 (4.15)

 – (4.16)

The homogeneous transformation sequence in this case is given by

 (4.17)

 (4.18)

The resulting homogeneous transformation matrix takes the form

 (4.19)

The cell in this matrix representing the maximum digging depth is the

displacement is cell .

 (4.20)

4.2.3 Maximum Cutting Height (S3)

For a given value of the upper angular limit of the boom rotation, , the

procedure for maximum cutting height expression formulation follows the similar

procedure as that of the maximum digging depth calculation.

32

Figure 4-5 Maximum cutting height

 (4.21)

Where in this case is given by

 (4.22)

 (4.23)

 (4.24)

 (4.25)

 (4.26)

 (4.27)

 (4.28)

 (4.29)

The homogenous coordinate transformation sequence for this configuration is

given by

 (4.30)

33

 (4.31)

 (4.32)

The displacement component of this matrix represents the maximum cutting

height.

 (4.33)

4.2.4 Maximum Loading Height (S4)

Figure 4-6 Maximum loading height

Referring to Figure 4-6, with slight modification of the expression developed for

maximum cutting height and ignoring the orientation angle of the last frame of

reference we get:

 (4.34)

 (4.35)

The expression for maximum cutting height is modified with minor changes to

make it fit for this configuration. The last linear coordinate translation in this case

34

is limited to instead of The bucket length is further deducted

from the displacement component of the matrix.

The final result is given by the following matrix.

 (4.36)

(4.37)

4.2.5 Minimum Loading Height (S5)

Following similar procedure gives an expression for the homogeneous

transformation matrix of the minimum cutting height configuration.

Figure 4-7 Minimum loading height

 (4.38)

 (4.39)

 (4.40)

35

 (4.41)

 (4.42)

4.3. Generation of Training Data
The required training data is generated by mapping the configuration parameter

for a set of mechanism dimension parameters. MATLAB is used to implement

this task.

 (4.43)

4.3.1 Neural Network Training

Since the ANN is needed to serve the purpose of preliminary inverse kinematic

analysis, the output data generated from the forward simulation, , will be used as

the input data for its training while the linkage parameters vector, , is the target

data.

Since the values of the configuration parameters depend also on the overall

dimensions of the vehicle on which they are mounted, constant values for the

and coordinates of the base hinge, H and V, are used in the analysis.

Accordingly, a two-layer feed forward ANN is designed to map seven input

configuration parameters to four target parameters. The ANN has one hidden

layer with 20 neurons and one output layer with four neurons. The network is

trained using the Levenberg-Marquardt back propagation algorithm. Sigmoid

activation functions are used for the first layer and a linear one-to-one activation

functions for the output layer. The neural network is implemented using the

neural network toolbox of MATLAB.

36

Figure 4-8 Architecture of the Neural Network

Given any one of the configuration parameters, , the developed

method identifies possible ranges of the other four configuration parameters based

on the data generated in the previous section. Since the data is generated by

simulating a specific ranges of the linkage dimensions, this method scales input

configuration parameters to make sure they lie within the available data range.

Selected output ranges by this method are scaled back to the original before

displayed for the user.

The method implemented using a MATLAB program called f_Parameter_Sorter

provides option to the user to select which configuration parameter to start with

and the sequence of upcoming selections. This option gives the flexibility of

prioritizing the operational configurations as needed. Once the first item is

entered for the first choice of configuration parameter, four different compatible

configuration parameter ranges will be suggested for the others. This process will

be repeated on the remaining four by selecting which configuration parameter out

of the four to prioritize and picking its value from the range provided. The result

of this second operation modifies the ranges of compatible values of the

remaining three parameters. This process is repeated until all configuration

parameters are assigned valid values. Figure 4-9 shows the convergence

performance of the ANN training cycles while Figure 4-10 shows the standard

ANN algorithm regression chart.

37

Figure 4-9 Performance of the neural network

Figure 4-10 Regression result

38

4.3.2 Solving for Linkage Parameters

The Equations 4-7, 4-16, 4-29, 4-35, and 4-40 relate the specification values ,

 , , , and to the geometric dimensions of the excavator arm mechanism

 and β. Given the values of the other constant values, these non-linear

equations can be solved using optimization techniques to determine the optimum

linear and angular dimensions of the arm mechanism.

Since buckets are available as standard parts, the calculation at this algorithm

focuses on determining the lengths of the boom and the stick together with the

boom deflection angle, i. e. The selection of the bucket is done

based on the initial solution suggested by the ANN. To determine the above three

unknown variables, a combination of three of the above non-linear equations are

solved using a MATLAB® function, fsolve(), which employs the power of the

Trust-Region-Reflective Algorithm.

 (4.44)

Where and are verctors of unknown mechanism dimension variables and

input configuration specification parameters

 (4.45)

Considering the maximum reach-out at ground level, maximum cutting height,

and maximum loading height, the vector of equations will be formulated as

follows

 (4.46)

The “trust-region-reflective” algorithm used to find the solution requires an initial

solution to be defined as a starting point. The accuracy of the output for this

particular problem greatly depends on the closeness of the initial solution to the

actual solution. This is the stage where the suggested initial solution by the neural

network is used. It is also expected that at this stage the viability of the initial

input parameters, , is confirmed by the use of the valid ranges

developed according to the procedure discussed previously.

4.3.3 Case Study Analysis Results and Discussion

In this research work, 10 existing excavator product configuration data sets are

collected. Their contents are given in Table 4-3. A total of 1296 forward

39

simulation data sets were generated and they were used to train the ANN module

developed with Matlab. Then to test the system performance, the 10 product

working-range parameter values were fed into the ANN, and the output of the

ANN, i.e. the initial suggestions for the downstream optimization module, was

presented in Table 4-4 (left half). In comparison, the final solutions generated

after the optimization processes are also listed in Table 4-4 (right half).

Table 4-3 System testing data collected from the existing products (units: cm/degree)

Product S1 S2 S3 S4 S5 l1 l2 l3 β H V

1 359 183 344 226 107 174.1 88.2 51.9 24.5 63 75

2 413 252 384 271 109 205.9 102 61.1 25 68 86

3 412 260 359 246 111 201.2 99.4 67.9 28 74 93

4 435 228 422 283 106 203.3 105.2 64.9 30 78 90

5 409 248 385 267 125 201.3 99.5 61.5 25 66 84

6 372 208 371 257 110 171.4 89.1 58.2 24 77 82

7 352 196 331 235 92 159 86.3 49.6 22 77 71

8 345 203 338 238 99 165.1 88.4 49 20 64 73

9 332 184 335 238 104 163.4 83.8 47.5 24 55 71

10 415 254 368 272 110 204.9 102 63.1 25.76 68 81

Configuration Mechanism dimensions Vehicle

Table 4-4 Initial and final solutions generated by the proposed method

Product l1 l2 l3 β l1 l2 l3 β

1 174.7 68.8 63.4 17.28 209 93 63.4 34.97

2 196.97 95.99 65.56 19.4858 200.22 95.47 65.56 30.0233

3 204.53 84.33 70.19 26.524 202.82 85.81 70.19 35.2464

4 181.04 79.14 78.3 10.7072 169.81 83.82 78.3 18.6694

5 177.03 73.81 66.62 15.6772 204.33 83.23 66.62 30.1607

6 168.06 80.5 61.03 13.2475 198.83 91.17 61.03 25.8929

7 153.89 82.59 52.79 15.2362 201.48 99.88 52.79 30.014

8 162.75 94.62 51.38 12.3882 197 98.48 51.38 32.8084

9 161.05 90.9 46.87 14.3593 211.44 97.56 46.87 32.3521

10 195.89 107.73 60.04 24.8409 187.9 92.6 60.04 31.9021

ANN initial solution (cm/degree) Optimization final solution (cm/degree)

Table 4-5 Accuracy statistics of the system results

Dimensions Average error

(%)

Unbiased standard

deviation

Root mean square

error (RMSE)

 8.627 0.1569 0.1489

 1.4641 0.1356 0.1286

 7.1778 0.085 0.0806

 23.858 0.2652 0.2516

Clearly, the ANN module has served the purpose to provide useful initial

suggestions that enabled the optimization module to find the feasible solutions for

the given mechanism. Further, Table 4-5 shows the comparison results between

40

the final solutions and the original real product data obtained for the 10 existing

configurations, the average errors for linear dimensions are pretty close, i.e.

within 10%; but the angular β has bigger difference from the original dimension,

about 24%. The deviations of these errors are relatively small. Thus, the test

results show that the proposed method has a capability to generate a reasonably

closer set of initial solutions that can be used by optimization search algorithms

employed to find the final solutions. The method can be further improved by fine

tuning the optimization algorithms and the boundary conditions as well as using

more real product data sets for ANN training.

4.4. Design for Strength

4.4.1 Homogeneous Coordinate Transformation

The output of the SimMechanics simulation provides only joint forces and

motions expressed in the global reference frame. These global generalized joint

forces have to be transformed into and expressed in separate coordinate systems

local to the links or frame members under investigation.

In order to achieve this, three coordinate transformation matrices are developed.

The boom, due to its geometrical deflection, has two sides and requires two

different matrices to express forces in frames local to these sides. Since the stick

has a straight axis, it needs only a single transformation matrix for reference

frame manipulation.

The first step in this process is to identify stationary angles which, together with

the linear dimensions, help to fully define the geometry of the boom and stick

parts. This is followed by defining variable angles responsible for the operational

configuration of the arm mechanism - digging operation in this case.

Figure 4-11 Classification of angles

Variable Angles

Angles defining relative

positions of connected parts,

(Operational configuration

angles)

Static/Inherent

Angles

Semi-static angles

Angles modified as a

result of design iterations

Permanent Angles

Safety clearance

angles

Angles

41

As shown in Figure 4-12 and Figure 4-13, angle and define the

orientations of the boom and the stick with respect to the ground, respectively,

during a digging operation. Unlike static angles which are always assigned

positive values, variable angles are direction sensitive.

4.4.2 Boom Geometries, RB’s

Referring to Figure 4-12, expressions for variable angles and can be

formulated as follows.

Figure 4-12 Operational configuration angles

Summing the components of vectors along the horizontal direction gives:

(4.47)

 (4.48)

 (4.49)

Similarly, summing the components of these vectors along the vertical direction

gives another expression.

(4.50)

 (4.51)

Solving Equations (4.49) and (4.51) simultaneously gives the values of

and .

The homogeneous coordinate transformation matrices for the first and second side

of the boom are then derived using these calculated angles.

42

Figure 4-13 Stick structural angles

Boom Rotation Matrix I,

(4.52)

Boom Rotation Matrix II,

(4.53)

4.4.3 Stick Rotation Matrix, RS

Since the axis of the stick is not parallel to the axis of the second section of the

boom, the transformation matrix developed for the second part of the boom

cannot be directly used to transform global forces into the frame of reference local

to the stick.

The rotation matrix for the stick is formulated by carefully observing the

subsequent chain of angular transformations starting from joint .

(4.54)

(4.55)

 (4.56)

43

 (4.57)

(4.58)

(4.59)

(4.60)

 (4.61)

(4.62)

 (4.63)

 (4.64)

 (4.65)

(4.66)

The stick rotation matrix is then given by the expression:

(4.67)

4.4.4 Transition Four-bar Dimensional Synthesis

The major linear dimensions defining the working range of the overall mechanism

have already been synthesized using the method developed in the previous

chapter. For the purpose of making the mechanism complete, the transition four-

bar mechanism’s dimensions have to be synthesized for a given dimensions of

standard buckets and sticks.

For a given dimension of the bucket , the length of the other two linkages of the

transition four-bar mechanism can be calculated as follows.

As shown in Figure 4-14, there are two configurations of the four-bar linkage

mechanism resulting in a phenomenon called “mechanism lock”. These two

angular positions are considered to be the upper and lower range limits within

which the bucket operates.

44

Figure 4-14 Transition four-bar work-ranges

In Figure 4-14 (left) , is the eccentricity angle necessary to prevent the

mechanism from self locking. in Figure 4-14 (left), is the minimum angle

between the back of the bucket and the stick. The value of depends on the

safety clearance angle necessary to avoid physical contact between the links. The

value of this angle is subject to change during the life of the design cycle

reflecting changes in the dimensions of the contacting parts as a result of cyclic

modifications.

 serves the same purpose as but on the opposite end of the bucket’s

angular displacement range. Limiting factors in this case include direct contact

between mechanical components and volumetric allowance for extra bulk

material when loading the bucket. In addition to and , these two angles are

assumed to be known to evaluate the lengths of links and .

The critical values of and , i. e., those that result in mechanical locking of the

mechanism, are determined from the following two simplified geometries

corresponding to the two cases as shown by Figure 4-15 and Figure 4-16.

Figure 4-15 Upper mechanism locking configuration

45

Figure 4-16 Lower mechanism locking configuration

Applying Law of Cosines to the geometry of Figure 4-15 we get

 (4.68)

Similarly referring to Figure 4-16

 (4.69)

Solving Eq. (4.68) and Eq. (4.69) simultaneously gives the values of and .

This calculation is implemented using the custom MATLAB® function f_Four-

bar_Solver in the main program.

4.4.5 Stress and Strength Calculations

The expressions for the various stresses considered in this section are developed

based on the assumptions and procedures outlined by Shigley and Mischke [44].

 (1) Transverse Shear Stress,

Shear stress, as a result of shear force and bending moment is derived from the

relation

(4.70)

(4.71)

Where is the first moment of area about the neutral axis given by:

(4.72)

46

Figure 4-17 Cross-sectional area under transverse shear stress

 for the given cross-sectional geometry is computed by dividing the area into

two sections

Case 1

For

(4.73)

Where

(4.74)

(4.75)

Case 2

For

(4.76)

(4.77)

The second moment of area of the entire cross-section, is given by

(4.78)

47

(4.79)

(4.80)

 (4.81)

(4.82)

(2) Torsional Stress,

The equations expressing torsional stresses in the cross-sectional areas are

developed based on the assumptions and procedures outlined by Shigley and

Mischke [44].

Area of torsion, , is given by the following expression

Figure 4-18 Torsional cross-sectional area

(4.83)

 (4.84)

The torsional stress, , is given by

(4.85)

Where T, the torque creating the torsional stress, is recorded at every joint during

the simulation of the mechanism in the SimMechanics environment

48

(3) Direct Stress,

Area of direct stress distribution is given by the expression

 (4.86)

For a given axial longitudinal force, , the direct stress is calculated by using

the formula

(4.87)

(4.88)

(4) Bending Stresses,

Bending stress, , due to bending moment acting about the -axis, , is given

by:

(4.89)

Where is the second moment of area of the cross-section about the centroidal

 -axis and it is given by:

(4.90)

This stress reaches its maximum value when at the outer most boundaries of the

cross section, i. e., when:

(4.91)

(4.92)

In a similar manner, bending stress, , duet to moment acting about the y-axis is

given by:

(4.93)

Where in this case is the second moment of the cross-sectional area about the

centroidal y-axis

(4.94)

49

(4.95)

Superposition of the effects of these two bending stresses and the direct stress

gives the maximum value of stress in the x- direction.

 (4.96)

4.4.5 Pin Design

(1) Methods of Pin Failure

1. Localized contact stress

2. Failure of pin due to double shear

3. Failure of pin due to bending moment

(2) Contact Stresses

The interaction between the pin and the casing is modeled by a cylinder-plane

contact instead of cylinder-cylinder contact. The resulting magnitudes of Hertz’s

contact stresses will have relatively higher values than if they were calculated

using the cylinder-cylinder assumption because of the reduced contact area.

Where

 Diameter of pin

 Diameter of base hole

 Poisson’s Ratio of the pin material

 Poisson’s Ratio of the base material

 Young’s Modulus of Elasticity of the pin material

 Young’s Modulus of Elasticity of the base material

Figure 4-19 Pin loads in global vertical and horizontal planes

The total force exerted on the first end of the pin is given by:

50

(4.97)

Where are the pin diameter and its effective length, respectively

The magnitude of this force, , is:

(4.98)

(3) Hertz’s Contact Stress

The maxim stress due to contact between the surfaces of the pin and the base is

calculated using the Hertz’s method. The contact zone between these two surfaces

is approximated by a rectangular region. The width of this region, commonly

known as “contact half width” is calculated by using the formula:

(4.99)

(4.100)

Since the casing holes are modeled by a plane for the purpose of making the

design compatible with higher stresses, the reciprocal term containing will be

approximated by zero. The resulting expression takes the form:

(4.101)

The maximum contact pressure is then written as a function of the length and

diameter of the pin as follows:

(4.102)

The resulting principal stresses in the pin are given by the relations

51

(4.103)

(4.104)

(4.105)

To calculate the maximum value of stress from one of these three equations, these

stress are computed at the critical section

(4.106)

(4.107)

(4.108)

The allowable contact stress is generally taken as the minimum of or .

(4) Failure of Pin Due to Double Shear

The total shear area of each pin is represented by the equation

Figure 4-20 Pin under double shear

(4.109)

Direct shear stress on the pin is calculated by dividing the shearing force by the

total area. An equation for this stress is derived in terms of the pin length and the

pin diameter so that it can be used in calculating an optimum values for these two

pin dimensions.

52

(4.110)

(4.111)

(5) Failure of Pin Due to Bending Moment

Referring to Figure 4-21 for the loading distribution, the maximum bending

moment at the mid-span of the pin is given by the expression:

Figure 4-21 Bending load distribution on pins

 (4.112)

 (4.113)

(4.114)

Where and are base reinforcement extensions.

The maximum bending stress is then given by substituting the above expression

into the general formula

(4.115)

(4.116)

53

Chapter 5

Virtual Mechanism Modeling and Simulation

5.1. Introduction
The design process of linkages and members in the mechanism requires the

identification of generalized reaction forces at each joint. These forces will be

used in the free body diagrams (FBD) and mass-acceleration diagrams (MAD)

during the design stages. This task is implemented by using SimMechanics®, the

mechanical simulation and analysis tool available in MATLAB® software.

5.2. Simulation Setup
Now that the major linear dimensions of the mechanism are identified, the next

step is determining the reaction forces and moments experienced by each joint as

a result of the digging operation. To do this, a skeleton mechanism is constructed

using the previously calculated linear dimensions in the SimMchanics modeling

environment of MATLAB®. Doing this provides the flexibility of calculating

interaction forces and exporting the results into the workspace for further

processing. Furthermore, during latter stages of the design cycles, the weightless

links can be substituted by their 3D counterparts and the simulation can be re-run

to include the inertia effects into considerations.

When using this tool, the mechanism under investigation is constructed by

connecting linear linkages of prescribed inertia properties with virtual mechanical

joints available in the joint library. The virtual weld joint is used in the event it is

required to model bending, splitting, or merging mechanical members.

In order to this approach be applicable in the automation of design processes, two

general requirements have to be met. The first requirement is that all linear

dimensions need to be defined; either numerically or symbolically. The second

one is that all forms of mating constraints between connecting members have to

be imposed by the use of joints and limits on joint parameters.

Although inertia properties are possible to be assigned to these bodies at the initial

stages as mentioned above, the procedure adopted in this paper uses a different

approach suitable for cyclic modifications.

The first round of the simulations starts with weightless and high-stiffness rigid

bodies and upcoming simulations will be carried out with updated 3D solid bodies

produced as a result of previous design cycles.

54

The necessary kinetic and kinematic joint variables registered during the

simulations are extracted to MATLAB® workspace using the Simulink® scope

readers. SimMechanics Link®, another useful tool to import and export CAD

solid models into and out of SimMchanics® simulation environment, supports

only SolidWorks® and Pro/E® but not UG NX. To overcome this setback

SolidWorks is used as an intermediate file transfer tool in exporting the 3D

models to SimMechanics.

5.3. Simulink Model Construction
Figure 5-1 shows the major components of an excavator arm mechanism while

Figure 5-2 shows the representation of the same mechanism by linear

components. The latter model is constructed in SimMechanics environment using

standard rigid body and joint library.

Figure 5-1 Typical excavator arm mechanism

Figure 5-2 Skeleton representation of excavator arm mechanism

5.3.1 Boom Construction

The boom as shown in Figure 5-3, has two sides; and . It is hinged to the

vehicle body with joint J1 and to the stick with joint J2. Joints J10 and J11 are

55

connecting points for hydraulic cylinders C2 and C1, respectively. The deflection

of the structure by an angle is modeled by welding the two linear sides.

The two hinges for the hydraulic cylinders, J10 and J11, are located at the end of

the extension sticks h_J10 and h_J11 to represent for an initial thickness of the

boom. The values of these lengths are updated at the end of each conceptual

design cycle from the cross-sectional calculation results. This is done because the

hinge locations are assumed to be on the surfaces of the boom which are subject

to modification at the end of each conceptual design cycle.

Figure 5-3 Skeleton representation of boom structure

Figure 5-4 SimMechanics model of boom

5.3.2 Stick Construction

The stick has four joints. J2 connects it with the boom while J3 connects it with

the bucket. The transition four-bar mechanism is connected with the stick at joint

J6 with revolute joint. Joint J8 is the connection point for the second hydraulic

cylinder, C2.

Again in this case, the final distances of hinges J2 and J8 from the longitudinal

axis of the stick, h_J2 and h_J8, are determined based on the final 3D dimensions

56

of the stick. To start the simulation, however, initial values are assigned for these

dimensions. These parameters will be updated at the end of each cycle.

Figure 5-5 Skeleton representation of stick

Figure 5-6 SimMechanics model of stick

5.3.4 Bucket Modeling

The bucket, which is the follower link of the transition four-bar mechanism, has

only two joints; J3 and J4 to connect it to the stick and the coupler link of the

four-bar, respectively.

Figure 5-7 Bucket schematics

57

Figure 5-8 Bucket SimMechanics model

The application point of the ground reaction force is selected in such a way the

overall mechanism will be subject to severe loading condition. Twisting moment

about the x-axis and bending moments about the y and z- axes register maximum

readings when the digging force is applied on the bucket at a point furthest from

the x-axis. An eccentricity loading distance of half the width of the bucket is

introduced for this purpose as shown in Figure 5-9.

Figure 5-9 Location of application point of digging force

5.3.5 Hydraulic Cylinders

Hydraulic cylinders are represented by simple weightless rigid links only for the

purpose of keeping the mechanism rigid. The forces registered at the opposite

ends of these links can be used to determine the required hydraulic capacity of the

cylinders. However, this task is beyond the scope of this research and will not be

discussed here.

5.3.6 Transition Four-bar Linkages

The other two remaining linkages in the transition four-bar mechanism are

represented by simple blocks with joints at both ends.

58

The actual total number of revolute joints in the mechanism is 11. However, in the

SimMechanics model there is one more joint needed to be introduced due to the

location of the hydraulic force application point on the driving link of the

transition four-bar. Two coaxial joints in the real mechanism are required to be

modeled by combining them into a single joint. Because this point is chosen to be

at the connection point of the driving and coupler links, an additional redundant

hinge joint was required for creating a three branch connection. This

representation will not have any negative effect on the final outcome of the

analysis.

The above SimMechanics sub-models are assembled and simulation environment

parameters are defined. Figure 5-10 below shows the final assembled

SimMechanics Model of the excavator arm mechanism in the real-time simulation

window.

The simulation for this model is run for 2 sec at the digging orientation. Scopes in

the model such as register and export joint variable data to

the MATLAB® workspace in vector form.

Because of the selection of the digging mode for the design purpose, it was not

necessary to define angular displacement and speed limits.

Figure 5-10 Real-time simulation environment

59

Figure 5-11 shows the assembled SimMechanics diagram of the excavator arm

mechanism. The digging force is represented by a constant vector and is applied

at the left tip of the bucket.

5.4. Numerical Example
An example problem is investigated in this section to demonstrate the

applicability of the proposed methods. The methods and the necessary

engineering rules and design intents are programmed and implemented in

MATLAB®. This demonstration will be carried out in two stages designed to

show the operational procedures of the two proposed methods and their

corresponding results. The first stage deals with the application of the hybrid

ANN-Optimization technique in the process of dimensional synthesis of

mechanisms. In the second section, the calculations and involved and the

generated results in the areas of optimizations of cross sectional dimensions of the

boom and the stick will be discussed.

The input to the module handling the dimensional synthesis is a set of the required

output configurations of the excavator arm mechanism. As discussed before, these

values are checked for compatibility to make sure the feasibility of their co-

existence.

Input Problem:

SpcDat = c_Spec_Data_SI

 Properties:

 Title: 'Commercial Specifications and Vehicle Dimensions'

 Maximum_Reachout_at_Ground_Level_S1: 5.6700

 Maximum_Cutting_Height_S3: 3.7248

 Maximum_Loading_Height_S4: 1.3521

 Horizontal_Distance_H: 0.9857

 Vertical_Distance_V: 1.2300

 Vehicle_Weight: 5000

Once the linear dimensions of the overall mechanism are calculated, the next task

will be calculating the optimum cross-sectional dimensions of the boom and the

stick. This process started by defining necessary geometric and non geometric

constraints. In addition to the constraints, initial values for some variables and

iteration-dependent dimensions are also initiated at this stage.

Bucket geometric properties:

BuckGeo = c_Bucket_Geo_SI

 Properties:

 Title: 'Bucket Geometries and Dimensions'

60

 Bucket_Length_l3: 0.8112

 Bucket_Width_BW: 0.4867

 Bucket_Height_b0: 0.2839

 Bucket_Pin_Width_bw: 0.2434

 Bucket_Angle_teta_bucket: 95

 Bulk_Volume_Clearance_Angle: 40

 Maximum_Upward_Bucket_Open_Limit_Angle: 35

Dimensional Constraints:

Dimensional_Constraints = c_Dimensional_Constraints_SI

 Properties:

 Title: 'Structural Dimensions Constraints'

 Minimum_Plate_Thickness: 0.0070

 Maximum_Plate_Thickness: 0.0200

 Minimum_Base_Dimension: 0.1000

 Maximum_Base_Dimension: 0.5000

 Minimum_Boom_and_Stick_Height: 0.0100

 Maximum_Boom_Height: 0.5000

 Maximum_Stick_Height: 0.5000

 Extension_of_Boom_Pin_Reinforcement: 0.0140

 Extension_of_Stick_Pin_Reinforcement: 0.0140

Material Properties:

MaterProp = c_Material_Properties_SI

 Properties:

 Title: 'Material Selection and Properties'

 Prpertiy: 'Poisons E YS_kpsi TS_kpsi YS_MPa

TS_MPa Elong_2% Area_% BHN'

 Pin_Material: [0.3000 210 234 260 1612 1791 12 43 498]

 Base_Material: [0.3000 210 26 47 179 324 28 50 95]

 Allowable_Stress_in_Pin: 447750000

 Poison_Ratio_Pin: 0.3000

 Youngs_Modulus_Pin: 2.1000e+011

 Allowable_Stress_in_Base: 81000000

 Poison_Ratio_Base: 0.3000

 Youngs_Modulus_Base: 2.1000e+011

 Safety_Factor_Pin: 1.1500

 Safety_Factor_Boom: 1.1500

 Safety_Factor_Stick: 1.1500

 Safety_Factor_Linkages: 1.1500

Initial Variable Linkage Imitation:

InitialParam = c_Initial_Parameters_SI

 Properties:

 Title: 'Initial Values for Variable Dimensions'

 Distance_to_J2_and_J8_on_Stick: 0.1000

61

 Distance_to_J10_on_Boom: 0.1000

 Distance_to_J11_on_Boom: 0.1000

Linkage Geometries:

LinkDims = c_LinkDims_SI

 Properties:

 Title: 'Boom and Stick Dimensions'

 Boom_Shortcut_Length_l1: 2.7126

 Boom_Deflection_Angle_betta: 35.6055

 Side_Length_of_Boom_T: 1.6682

 Stick_Length_l2: 1.5616

 Stick_Angle_J2: 156.9267

 J2_left: 70.5982

 J2_right: 86.3285

 Stick_Angle_J8: 156.9267

 J8_left: 70.5982

 J8_right: 86.3285

 Stick_Angle_J9: 38.8037

 J9_up: 19.4018

 J9_lower: 19.4018

 Stick_Angle_J3: 7.3429

 J3_up: 3.6715

 J3_lower: 3.6715

 Distance_to_J2_and_J8_on_Stick: 0.1000

 Distance_to_J10_on_Boom: 0.1000

 Distance_to_J11_on_Boom: 0.1000

 Stick_Tail_Length: 0.2839

 Stick_Forward_Length: 1.5584

Transition Four-bar Dimensions:

FourbarDims = c_Fourbar_Solver_SI

 Properties:

 Title: 'Fourbar Linkage Dimensions'

 Fourbar_Link_b0: 0.2839

 Fourbar_Link_b1: 0.3692

 Fourbar_Link_b2: 0.4461

 Fourbar_Link_b3: 0.2434

Operational Configuration Matrices and Variables:

OperConfig = c_Operational_Configuration_SI

 Properties:

 Title: 'Configuration Parameters and Rotational Matrices'

 Boom_opertating_angle_dig1: 1.8619

 Boom_Rotational_Matrix_Sec1_RB1: [3x3 double]

 Boom_Rotational_Matrix_Sec2_RB2: [3x3 double]

 Stick_Rotational_Matrix_RS: [3x3 double]

 Fourbar_teta_1: 72.8748

 Fourbar_teta_2: -36.7587

62

 Fourbar_teta_3: 278.6715

Generalized Joint Forces and Moments:

Joint_Forces = c_Joint_Forces_SI

 Properties:

 Title: 'Generalized Forces on Joints'

 JointForces: [12x7 double]

 FORCES: ''

 F1: [3x1 double]

 F2: [3x1 double]

 F3: [3x1 double]

 F4: [3x1 double]

 F5: [3x1 double]

 F6: [3x1 double]

 F7: [3x1 double]

 F8: [3x1 double]

 F9: [3x1 double]

 F10: [3x1 double]

 F11: [3x1 double]

 F12: [3x1 double]

 MOMENTS: ''

 M1: [3x1 double]

 M2: [3x1 double]

 M3: [3x1 double]

 M4: [3x1 double]

 M5: [3x1 double]

 M6: [3x1 double]

 M7: [3x1 double]

 M8: [3x1 double]

 M9: [3x1 double]

 M10: [3x1 double]

 M11: [3x1 double]

 M12: [3x1 double]

Force and moment values can be extracted by calling the members of the data

structure as follows:

Joint_Forces.F5

ans =

 1.0e+004 *

 0.5644

 -1.9908

 0

63

6
3

Figure 5-11 SimMechanics diagram for an excavator arm mechanism

64

Chapter 6

Feature-based CAD Embodiment

6.1. Introduction
The Application Programming Interface (API) open platform is used to write

program codes and generate the feature based 3D CAD parts of the boom and

stick in NX. The programming part is implemented using Visual Studio 2008®

C++.

The results of the engineering design calculations carried out in previous sections

using MATLAB® and SimMechanics® are needed to be imported in a systematic

manner to be used in the generation of the CAD models. Additionally, the process

of importing and exporting data was required to be performed without direct

manual involvement. This was accomplished by creating intermediate sets of text

data files to bridge the gap.

At the end of the engineering design cycle calculations, a MATLAB® program is

used to create or update a set of .dat* text files containing the necessary input

dimensions and parameters data structures. The MATLAB® program

writes/updates these files and stores them in specific directories created for this

purpose.

These files will automatically be accessed by the API C++ code during the

generation of the CAD models. In a similar way done for the exporting command

in MATLAB®, a C++ program is developed which is responsible for reading the

values of this files and storing them in the internal memory.

The choice of the locations of the shared directories was done taking into

consideration the possibility of different sections of the tasks could be performed

on different systems. One of the free internet file storage services was used to

create a common directory shared by two computers involved in this research. In

practical industrial applications, this approach lends itself to the implementation

of efficient collaborative project. It provides the flexibility of assigning different

tasks to different engineers working in different geographical locations.

Classes and their corresponding objects are instantiated and used to effectively

handle the data imported. Most of these data were used in the program more than

once and adopting object oriented programming approach proved helpful in

65

managing the data. The following lines show a class for handling custom datum

coordinate system (CSYS) creating function parameters.

struct DATUM_CSYS_DATA{

 double offset_x;

 double offset_y;

 double offset_z;

 double angle_x;

 double angle_y;

 double angle_z;

 bool transform_sequence;

 int rotation_sequence[2];

 };

6.2. Reusability of Functions
All the functions developed for this project are created by the use of the C++ API

functions provided in NX open documentations. Direct application the basic

functions to this research was found to be very difficult and time consuming

because of the need to specifically define most initializing parameters unrelated to

the objective of this work.

An effort has been put in place to generalize most of the developed functions and

ensure their reusability. Based on the basic C++ API functions, customized

functions were developed by incorporating additional procedures to bring user

intuitivism while simplifying the definitions of input and output arguments.

More than 40 functions were developed and used in the creation of the boom and

the stick CAD files. The details of these functions are provided in Appendix B.

The following are lists of some of the tasks these functions are responsible for.

 Reading external data files

 Creating new part model files in specified directories

 Creation of datum CSYS (Absolute and Relative)

 Creation of datum planes

 Extraction of datum planes/axis out of datum CSYS

 Creation of geometric objects such as

o Points

o Lines

o Arcs

o B-spline Curves from data points

6.3. Boom Modeling
The modeling of the boom part is initialized by creating a blank NX .prt file using

the function

66

wub_Create_New_Part_File(char file_path[UF_CFI_MAX_FILE_NAME_SIZE])

The next step after creating a blank CAD modeling environment was to properly

position user defined CSYS features for the purpose of simplicity in additional

features and object creation. The relative angular orientations and offset distances

between consecutive CSYSs were represented by instantiating an object of the

class DATUM_CSYS_DATA. In addition to relative linear displacements and

angular orientations, these objects also define the coordinate transformation

sequences.

In the case study most of the CSYSs were defined and located at the joint

locations for the purpose of simplifying creation of joint associative features such

as hinges. The custom functions used for this purpose are:

 wub_CSYS_origin_and_direction(void)

 wub_CSYS_offset(tag_t referece_datum_CSYS,

const double linear_offset[3],

const double angular_offset[3],

bool operation_sequence)

Figure 6-1 Boom coordinate system (CSYS) features

The optimization result vectors for the two sides of the boom exported from

MATLAB® were previously saved in the following directory:

D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat

D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat

These vectors define point coordinates of the top left edge of the boom. B-spline

curves representing each side of the boom were created from these data points by

importing within their respective CSYS.

67

Figure 6-2 Boom B-spine curve features

Since these edges are symmetrical about the local and x-z planes, the

curves defining the lower right edges of the boom are created by reflecting the

existing curves about their planes within the local CSYS.

The function used for this purpose is:

wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag, tag_t Plane_ Tag)

Figure 6-3 Evolvement of features

The curves are modified by trimming and bridging operations to create a joined

curve feature. The following functions are used to for these operations.

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag,

tag_t Datum_Plane_Tag,

int which_end);

68

tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag,

tag_t Tool_curve1,

tag_t Tool_curve2);

tag_t wub_Bridge_Curves(tag_t Curve_1_Tag,

tag_t Curve_2_Tag,

int Reverse1,

int Reverse2,

int par1,

int par2);

The end of the boom at joints J1 and J2 are closed by arcs tangent to the upper

and lower edge curves and centered at the origins of the CSYSs.

Figure 6-4 Joined curve features

This closed curve feature represents the side wall of the boom. To create the

upper and lower floors of the boom it is required to create other sets of curve

features defining the boundaries of the surfaces. The above modified closed

curve, shown by the green line in Figure 6.5, is projected onto the vertical x-y

plane to form a guide line to be used for surface sweeping operation together with

the existing one. This projected curve will serve the purpose of defining the right

section of the boom as seen from the –x directions.

tag_t wub_Create_Projected_Curve(tag_t curve_tag,

tag_t Datum_CSYS_tag,

int Plane_Num)

69

Figure 6-5 Embodiment features

The third closed curve, colored green in Figure 6-5, is created in a very similar

procedure followed for the creation of the above curve but with an offset value

added in the z direction to accommodate for a welding space.

The top and bottom floor surface features of the boom are generated by sweeping

a linear curve guided by the red and the green curves. To avoid potential

modeling errors associated with availability of multiple solutions for a given input

to the responsible function, this process was carried out in two stages. The side

wall surface was created from bounding curves. The functions used for this

purpose are:

tag_t wub_Join_Curves(tag_t *curves,int n)

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end)

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2)

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section)

tag_t wub_BPLANE(tag_t Curve_String[2])

Hinge joint features are created by sketching and extruding their profiles. The

boom has two types of hinge joints; one that passes thought the plate walls and

the other one that is attached externally to the boom structure by welding.

Joint J1 is constructed by introducing a hollow cylindrical feature of appropriate

dimensions to the boom structure while joints J2, J10, and J12 are constructed

from scratch by sketching and extruding their profile.

70

Figure 6-6 Sheet body features

Functions used for this purpose include:

tag_t wub_SKETCHES_J2_adopter(char name[30],

tag_t Refrence_CSYS,

int Plane_num,

int Axis_num)

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS)

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS,

int Plane_num,

double radius,

double arc_center[3],

double start_ang,

double end_ang)

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS,

int Plane_num,

double radius,

double arc_center[3],

tag_t p1,

tag_t p2)

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2])

tag_t wub_SKETCH_J11(tag_t Reference_CSYS,

int Plane_num,

tag_t line_Tag,

tag_t bridge_tag)

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t

Curve_Tag);

71

Figure 6-7 Hinge joint profiles construction

The sheet bodies are thickened and the joint sketches are extruded with initial and

final limits to create the final solid body features. After the necessary

modification on the joint solid features the left side of the solid boom is created

by merging the individual solids with each other.

Custom functions used for these operations include:

tag_t THICKEN_Sheet(tag_t sheet_body_tag)

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid)

Figure 6-8 Solid body features

This left side of the boom is mirrored about the x-y plane to create the other half

of the boom. The original and the newly created halves are then merged together

to create the final boom solid body shown by Figure 6-9.

72

Figure 6-9 Final CAD model of an excavator boom

6.4 Stick CAD Modeling

The programming and part creation procedures followed for the stick are very

similar to the one adopted for the boom. Most of the functions developed are

reused directly or, in some instances, with minor modifications to address stick-

specific modeling needs.

As done for the boom, the modeling process for the stick started by creating a new

part file called Stick.prt using the same function.

Data was imported from the intermediate files using similar procedures. User

defined CSYS’s were created at the joint locations and some critical locations

necessary for the creation of sketches.

Generally, the stick construction procedure is relatively easier than that of the

boom because of the parallelism of the stick CSYS features (Figure 6-10).

73

Figure 6-10 Stick coordinate system features

The arcs of the stick at the joints J2, J3, and L9 were constructed first based on

the data imported from the neutral text files. Profiles defining the edges of the

stick were created by joining these arcs with the maximum middle point straight

tangent lines as shown in Figure 6-11.

Figure 6-11 Feature evolvement

After performing some line modification operations, such as trimming and

joining, the created closed loop curves are projected onto two different planes

positioned parallel to the middle x-y plane.

Figure 6-12 shows the cleaned and projected stick profile curves. The green and

blue curves will be used as guides to create a sheet body by a sweeping operation

while the red curve will be used as a boundary when creating a bounded plane.

The pink closed curve will be extruded to create the hinge solid for joint J9.

74

Figure 6-12 Embodiment features

A line element parallel to the z axis was created and used for the sweeping

operation. The following figures show the sweeping tool and the resulting sheet

body features.

Figure 6-13 Stick sheet body features

The side left side wall is created by using the other projected curve as a boundary

in the bounding plane operation.

These planes are thickened with appropriate thickness values and taking necessary

inference tolerances into consideration. Joints are created using similar procedure

as used in the boom modeling. The final left half of the boom is shown in Figure

6-14.

75

Figure 6-14 Stick solid body feature

The final complete stick solid body feature is created by merging individual

extruded and thickened solid features together into a single part and mirroring this

part about the x-y plane. The mirrored and its parent solid are converted again

into single solid by merging them with similar command to get the final model

shown by Figure 6-15.

Figure 6-15 Final CAD mode of an excavator arm stick

76

Chapter 7

Conclusions and Future Works

7.1 Conclusions

7.1.1 Proposed Method

The proposed generative feature-based conceptualization method for product

development is promising to upgrading the current information-fragmented and

experience-based practice.

The method discussed in this work can effectively capture engineering rules and

facilitate the design cycle processes, such as insightful configuration optimization

and embodiment development. The method also provides good flexibility in terms

of customization and standardization of other products which involve frequent

changes.

Reusability of the developed functions has provided evidence that, unlike

traditional modeling methods, the knowledge in the design stages can always be

embedded, harnessed for a new product, and be reused when developing future

generations of similar products.

However, it is worth noting that in the candidate’s opinion, regardless how

intelligent a design system is to be in the future, human design expertise is always

required while the developed system can only support the decision making more

effectively with some productivity tools.

7.1.2 Case Study

The case study proves that the knowledge-driven feature-based conceptual design

approach can handle traditionally-known and complex challenges such as

machine linkage optimization problems.

The proposed hybrid optimization-ANN dimensional synthesis method has

greatly increased the reliability of calculated solutions. Training the ANN with

larger size of existing product data is believed to produce solutions reflective of

design intents and industrial standards.

A hybrid ANN-Optimization method has been proposed and proved to provide

satisfactory result. The optimization procedure, specific to a selected product

configuration, was employed to calculate the final linkage dimensions which

satisfy work-range configuration requirements.

77

The ANN has the advantage to generate close initial solutions of the linkage

dimensions and, in combination with the optimization techniques, it can assist to

generate accurate optimal solutions in an integrated design environment.

7.1.3 Scalability

Although this research work was applied to an excavator case only, the method

proposed can be equally applied to other mechanical product development.

Product-specific engineering rules, data and procedures have to be replaced.

This method has some novelty in solving similar problems in the product design

domain, i.e. a hybrid linkage dimension synthesis method. The general procedure

can be followed for the conceptual design of other mechanisms in principle. All

the process modules will remain valid. The only exception would be the details of

design calculations and optimization criteria since they are usually very specific

to the product under discussion. Regardless of the product being designed, the

procedure is scalable.

7.2 Future Work
Formal definitions of generic conceptual design features need to be investigated

such that embedded engineering rules, constraints, data representations, behaviors

can be modeled and managed generically in an object-oriented approach and

systematically implemented.

Programming and engineering analysis tools such as Visual C++ and Matlab can

be integrated with feature-based tools, e.g. Siemens NX so that the analysis

procedure can be part of the integrated conceptual design system. Their input and

output as well as the constraints can automatically be managed according to the

formal definition of concept problems.

The conceptual design process discussed was based only on the mechanical

design aspect of the case-study. The data structures and communication

mechanisms can also be equally used in designing other aspects of the product.

The conceptual level design of hydraulic circuit subsystem in the case study, for

example, can also be modeled and solved under proposed data and information

management scheme by implementing its own conceptualization contents.

78

References

[1] Alizade, R. I., and Kilit, O., "Analytical Synthesis of Function Generating

Spherical Four-Bar Mechanism for the Five Precision Points," Mechanism and

Machine Theory, vol. 40(7) pp. 863-878, 2005.

[2] Barton, M., Shragai, N., and Elber, G., "Kinematic Simulation of Planar and

Spatial Mechanisms using a Polynomial Constraints Solver," Computer-Aided

Design and Applications, vol. 6(1) pp. 115-123, 2009.

[3] Basak, H., and Gulesin, M., "A Feature Based Parametric Design Program and

Expert System for Design," Mathematical and Computational Applications, vol.

9(3) pp. 359-370, 2004

[4] Bronsvoort, W. F., Bidarra, R., van, d. M., "The Increasing Role of Semantics

in Object Modeling," Computer-Aided Design and Applications, vol. 7(3) pp.

431-440, 2010.

[5] Danjou, S., Lupa, N., and Koehler, P., "Approach for Automated Product

Modeling using Knowledge-Based Design Features," Computer-Aided Design

and Applications, vol. 5(5) pp. 622-629, 2008.

[6] Dixon, A., and Shah, J. J., "Assembly Feature Tutor and Recognition

Algorithms Based on Mating Face Pairs," Computer-Aided Design and

Applications, vol. 7(3) pp. 319-333, 2010.

[7] Durupt, A., Remy, S., and Ducellier, G., "KBRE: A Knowledge Based

Reverse Engineering for Mechanical Components," Computer-Aided Design and

Applications, vol. 7(2) pp. 279-289, 2010.

[8] Durupt, A., Remy, S., and Ducellier, G., "Knowledge Based Reverse

Engineering - an Approach for Reverse Engineering of a Mechanical Part,"

Journal of Computing and Information Science in Engineering, vol. 10(4) 2010.

[9] Erkaya S. and Uzmay I., “A neural–genetic (NN–GA) Approach for

Optimizing Mechanisms Having Joints with Clearance,” Multibody System

Dynamics, vol. 20 pp. 69-83, 2008

[10] Frimpong, S., and Li, Y., "Virtual Prototype Simulation of Hydraulic Shovel

Kinematics for Spatial Characterization in Surface Mining Operations,"

International Journal of Surface Mining, Reclamation and Environment, vol. 19(4)

pp. 238-250, 2005.

79

[11] Gao, Z., Zhang, D., and Ge, Y., "Design Optimization of a Spatial Six

Degree-of-Freedom Parallel Manipulator Based on Artificial Intelligence

Approaches," Robotics and Computer-Integrated Manufacturing, vol. 26(2) pp.

180-189, 2010.

[12] Hasan, A. T., Hamouda, A. M. S., Ismail, N., "Trajectory Tracking for a

Serial Robot Manipulator Passing through Singular Configurations Based on the

Adaptive Kinematics Jacobian Method," Proceedings of the Institution of

Mechanical Engineers.Part I: Journal of Systems and Control Engineering, vol.

223(3) pp. 393-415, 2009.

[13] Jensen, O. F., and Hansen, J. M., "Dimensional Synthesis of Spatial

Mechanisms and the Problem of Non-Assembly," Multibody System Dynamics,

vol. 15(2) pp. 107-133, 2006.

[14] Laribi, M. A., Romdhane, L., and Zeghloul, S., "Analysis and Dimensional

Synthesis of the DELTA Robot for a Prescribed Workspace," Mechanism and

Machine Theory, vol. 42(7) pp. 859-870, 2007.

[15] Larsen, S., and Jensen, C. G., "Converting Topology Optimization Results

into Parametric CAD Models," Computer-Aided Design and Applications, vol.

6(3) pp. 407-418, 2009.

[16] Li, M., Zhang, Y. F., and Fuh, J. Y. H., "Retrieving Reusable 3D CAD

Models using Knowledge-Driven Dependency Graph Partitioning," Computer-

Aided Design and Applications, vol. 7(3) pp. 417-430, 2010.

[17] Lourenco, D., Oliveira, P., Noort, A., "Constraint Solving for Direct

Manipulation of Features," Artificial Intelligence for Engineering Design,

Analysis and Manufacturing: AIEDAM, vol. 20(4) pp. 369-382, 2006.

[18] Ma, Y., Britton, G. A., Tor, S. B., "Associative Assembly Design Features:

Concept, Implementation and Application," International Journal of Advanced

Manufacturing Technology, vol. 32(5-6) pp. 434-444, 2007.

[19] Ma, Y., Tang, S., Au, C. K., "Collaborative Feature-Based Design Via

Operations with a Fine-Grain Product Database," Computers in Industry, vol.

60(6) pp. 381-391, 2009.

[20] Ma, Y., Chen, G., and Thimm, G., "Change Propagation Algorithm in a

Unified Feature Modeling Scheme," Computers in Industry, vol. 59(2-3) pp. 110-

118, 2008.

80

[21] Mantyla, M., Nau, D., and Shah, J., "Challenges in Feature-Based

Manufacturing Research," Communications of the ACM, vol. 39(2) pp. 77-85,

1996.

[22] Myung, S., and Han, S., "Knowledge-Based Parametric Design of

Mechanical Products Based on Configuration Design Method," Expert Systems

with Applications, vol. 21(2) pp. 99-107, 2001.

[23] Ong, S. K., and Shen, Y., "A Mixed Reality Environment for Collaborative

Product Design and Development," CIRP Annals - Manufacturing Technology,

vol. 58(1) pp. 139-142, 2009.

[24] Prasanna, L., Guhanathan, S., and Agrawal, R., "Automated Approach for

Designing Components using Generic and Unitized Parametric Sketches,"

Computer-Aided Design and Applications, vol. 7(1) pp. 109-123, 2010.

[25] Pratt, M. J., and Anderson, B. D., "A Shape Modelling Applications

Programming Interface for the STEP Standard," CAD Computer Aided Design,

vol. 33(7) pp. 531-543, 2001.

[26] Riou, A., and Mascle, C., "Assisting Designer using Feature Modeling for

Lifecycle," CAD Computer Aided Design, vol. 41(12) pp. 1034-1049, 2009.

[27] Singh, D. K., and Jebaraj, C., "Feature-Based Design for Process Planning of

the Forging Process," International Journal of Production Research, vol. 46(3) pp.

675-701, 2008.

[28] Singla, E., Tripathi, S., Rakesh, V., "Dimensional Synthesis of Kinematically

Redundant Serial Manipulators for Cluttered Environments," Robotics and

Autonomous Systems, vol. 58(5) pp. 585-595, 2010.

[29] Solazzi, L., "Design of Aluminium Boom and Arm for an Excavator," 2010.

[30] Ter, H.,A.H.M., Lippe, E., and Van, d. W., "Applications of a Categorical

Framework for Conceptual Data Modelling," Acta Informatica, vol. 34(12) pp.

927-927, 1997.

[31] Thakur, A., Banerjee, A. G., and Gupta, S. K., "A Survey of CAD Model

Simplification Techniques for Physics-Based Simulation Applications," CAD

Computer Aided Design, vol. 41(2) pp. 65-80, 2009.

[32] van, d. M., and Bronsvoort, W. F., "Tracking Topological Changes in

Parametric Models," Computer Aided Geometric Design, vol. 27(3) pp. 281-293,

2010.

81

[33] van, d. M., and Bronsvoort, W. F., "Modeling Families of Objects: Review

and Research Directions," Computer-Aided Design and Applications, vol. 6(3) pp.

291-306, 2009.

[34] Vasiliu, A., and Yannou, B., "Dimensional Synthesis of Planar Mechanisms

using Neural Networks: Application to Path Generator Linkages," Mechanism

and Machine Theory, vol. 36(2) pp. 299-310, 2001.

[35] Verdes, D., Stan, S., Manic, M., "Kinematics analysis, workspace, design

and control of 3-RPS and TRIGLIDE medical parallel robots," 2009 2nd

Conference on Human System Interactions, HSI '09, May 21, 2009 - May 23,

2009, pp. 103-108.

[36] Vossoughi, G. R., Abedinnasab, M. H., and Aghababai, O., "Introducing a

New 3 Legged 6-DOF Ups Parallel Mechanism for Pole Climbing Applications,"

WSEAS Transactions on Systems, vol. 6(1) pp. 221-228, 2007.

[37] Wang, H., Zhou, X., and Qiu, Y., "Feature-Based Multi-Objective

Optimization Algorithm for Model Partitioning," International Journal of

Advanced Manufacturing Technology, vol. 43(7-8) pp. 830-840, 2009.

[38] Wang, Q., Li, J., Wu, B., "Live Parametric Design Modifications in CAD-

Linked Virtual Environment," International Journal of Advanced Manufacturing

Technology, vol. 50(9-12) pp. 859-869, 2010.

[39] Wong, L. M., and Wang, G. G., "Development of an Automatic Design and

Optimization System for Industrial Silencers," Journal of Manufacturing Systems,

vol. 22(4) pp. 327-339, 2003.

[40] Wu, J., Purwar, A., and Ge, Q. J., "Interactive Dimensional Synthesis and

Motion Design of Planar 6R Single-Loop Closed Chains Via Constraint Manifold

Modification," Journal of Mechanisms and Robotics, vol. 2(3) 2010.

[41] Ye, X., Liu, H., Chen, L., "Reverse Innovative Design - an Integrated

Product Design Methodology," CAD Computer Aided Design, vol. 40(7) pp. 812-

827, 2008.

[42] Yoon, J., and Manurung, A., "Development of an Intuitive User Interface for

a Hydraulic Backhoe," Automation in Construction, vol. 19(6) pp. 779-790, 2010.

[43] Zhao, Y., Tang, Y., and Zhao, Y., "Dimensional synthesis and analysis of

the 2-UPS-PU parallel manipulator," 1st International Conference on Intelligent

82

Robotics and Applications, ICIRA 2008, October 15, 2008 - October 17, 2008, pp.

141-151.

[43] Shigley J. E., and Misheke C. R., 2001. Mechanical Engineering Design.

McGraw-Hill Higher Education, Inc., New York, N.Y.

83

Appendix 1 MATLAB CODES

A1.1 General Excavator Design Code (Main Body)

Developed by:

Abiy T Wubneh

Department of Mechanical Engineering

University of Alberta

2010

The following code is the main part of the linkage synthesis computation. It is

assembled from individual functions and subroutines to compute different tasks

involved in the conceptual design of the excavator arm mechanism. Dimensional

synthesis of members and optimization of their cross-sectional area are the main

objective of this code. Please refer to the documentation of the respective

functions in the next section (Section 2) for details on the individual function

components used in this code.

 Global Variables

 Specifications and Constraints

 Dimensional Synthesis

 Design and Optimization

clear all;

clc;

clf;

close all;

Global Variables

The variables defined here are used by more than one function.

global SpcDat BuckGeo Dimensional_Constraints MaterProp InitialParam ...

 LinkDims Four-barDims OperConfig Joint_Forces PinDims

Specifications and Constraints

User inputs, material data, and engineering constraints are provided by the following

three functions.

[SpcDat,BuckGeo] = f_Specification()

[Dimensional_Constraints] = f_Dimensional_Constraints()

[MaterProp] = f_Material_Properties()

Dimensional Synthesis

file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%232
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%234
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%236
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%238

84

The functions under this category are responsible for calculations of linear dimensions of

linkages and members. The function f_Operational_Configuration() computes the

orientation angles during specified operations: digging in this case.

[InitialParam] = f_Initial_Parameters()

[LinkDims] = f_LinkDims()

[Four-barDims] = f_Four-bar_Solver()

[OperConfig] = f_Operational_Configuration()

Design and Optimization

Engineering design for strength is carried out by simulation of the model in

SimMechanics environment under this category of functions. This division also includes

functions responsible for extraction of forces and moments information and computing

the FBD and MAD analysis. The function f_Cross_Sectional_Optimizer() is used to

determine an optimized set of the cross-sectional parameters of the boom and the stick

based on minimum material consumption objective function.

OperForce = f_Operation_Force();

open_system Excav_Sim_Model ;

sim Excav_Sim_Model ;

JoinForce = [SD1; SD2; SD3; SD4; SD5; SD6; SD7; SD8; SD9; SD10; SD11;

SD12];

Joint_Forces = f_Joint_Forces(JoinForce);

[PinDims,Exitter] = f_Pin_Dimensions()

CrossDims = f_Cross_Sectional_Optimizer();

f_exceel_writter()

Published with MATLAB® 7.11

85

A1.2 Functions and Subroutines Details

Contents

 Commercial Specification and Bucket Dimension Inputs: f_Specification()

 Dimensional Constraints and Factor of Safties: f_Dimensional_Constraints()

 Material Properties Selector: f_Material_Properties()

 Initial Parameters: f_Initial_Parameters()

 Neural Network Training Data Generator: f_NN_Data_Generator()

 Creating and Training ANN: NN_Spec_create_fit_net(inputs,targets)

 Input Specification Prameters Sorter: f_NN_Parameter_Sorter(Input_Data_S)

 Linkage Dimension Stynthizer: f_LinkDims_NN()

 Four-bar Linkages Solver: f_Four-bar_Solver()

 Operational Configurations: f_Operational_Configuration()

 Operation Forces: f_Operation_Force()

 Joint Forces: f_Joint_Forces(JoinForce)

 Pin Dimensions: f_Pin_Dimensions()

 Cross-sectional Oprimization: f_Cross_Sectional_Optimizer()

 Data Exporter: f_exceel_writter()

2.1 Commercial Specification and Bucket Dimension Inputs:

 f_Specification()

function [SpcDat,BuckGeo] = f_Specification()

S11 = 5670; % actual value from catalog

S1o = 650; % screen measurement (random unit)

S3o = 427;

S4o = 155;

Ho = 113;

Vo = 141;

bucket_lengtho = 93;

bucket_widtho = 0.6*bucket_lengtho;

image_ratio = S11/S1o; % image ratio: screen measurement to real values

S1 = image_ratio*S1o/1000; % MAXIMMUM REACHOUT AT GROUND LEVEL

S3 = image_ratio*S3o/1000; % MAXIMUM CUTTING HEIGHT

S4 = image_ratio*S4o/1000; % MAXIMUM LOADING HEIGHT

H = image_ratio*Ho/1000;

V = image_ratio*Vo/1000;

% COMMERCIAL_SPECIFICATION = f_Spec_Data_SI(S1,S3,S4,H,V)

SpcDat = c_Spec_Data_SI;

SpcDat.Maximum_Reachout_at_Ground_Level_S1 = S1;

SpcDat.Maximum_Cutting_Height_S3 = S3;

SpcDat.Maximum_Loading_Height_S4 = S4;

SpcDat.Horizontal_Distance_H = H;

SpcDat.Vertical_Distance_V = V;

bucket_length = image_ratio*bucket_lengtho/1000;

bucket_width = image_ratio*bucket_widtho/1000;

bucket_pin_len = 0.5*bucket_width;

teta_bucket = 95; % Bucket angles (property of bucket geometry)

b0 = 0.35*bucket_length; % Initial value assumed for b0

Bucket_Geometry = [bucket_width, bucket_length, bucket_pin_len];

BuckGeo = c_Bucket_Geo_SI;

BuckGeo.Bucket_Length_l3 = bucket_length;

file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%231
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%234
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%236
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%239
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2312
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2315
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2318
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2321
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2324
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2327
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2330
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2333
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2335
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2338
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2341

86

BuckGeo.Bucket_Width_BW = bucket_width;

BuckGeo.Bucket_Height_b0 = b0;

BuckGeo.Bucket_Pin_Width_bw = bucket_pin_len;

BuckGeo.Bucket_Angle_teta_bucket = teta_bucket;

BuckGeo.Bulk_Volume_Clearance_Angle = 40;

BuckGeo.Maximum_Upward_Bucket_Open_Limit_Angle = 35;

2.2 Dimensional Constraints and Factor of Safeties:

 f_Dimensional_Constraints()

function [Dimensional_Constraints] = f_Dimensional_Constraints()

pin_tol = 0.03;

FS_pin = 1.5;

FS_base = 1.25;

thick_min = 7e-3; % Minimum plate thickness

thick_max = 20e-3; % maximum plate thickness

base_max = 500e-3;

base_min = 100e-3;

height_min = 10e-3;

height_max = 500e-3;

h_stick_max = 500e-3;

ext_1 = 2*thick_min; % extension of boom pin reinforcement

ext_2 = 2*thick_min; % extension of stick pin reinforcement

Dimensional_Constraints = c_Dimensional_Constraints_SI;

Dimensional_Constraints.Minimum_Plate_Thickness = thick_min;

Dimensional_Constraints.Maximum_Plate_Thickness = thick_max;

Dimensional_Constraints.Minimum_Base_Dimension = base_min;

Dimensional_Constraints.Maximum_Base_Dimension = base_max;

Dimensional_Constraints.Minimum_Boom_and_Stick_Height = height_min;

Dimensional_Constraints.Maximum_Boom_Height = height_max;

Dimensional_Constraints.Maximum_Stick_Height = h_stick_max;

Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement = ext_1;

Dimensional_Constraints.Extension_of_Stick_Pin_Reinforcement = ext_2;

2.3 Material Properties Selector:

f_Material_Properties()

function [MaterProp] = f_Material_Properties()

Mat_prop = material_data_importer;

Pin_Material = Mat_prop(29,:);

Base_Material = Mat_prop(1,:);

% PIN MATERIAL DATA

SigY_pin = 1e6*Pin_Material(1,5); % Yield stress in (MPa)

SigU_pin = 1e6*Pin_Material(1,6); % Ultimate tensile strength in (MPa)

Sigall1_pin = (2/3)*SigY_pin; % Allowable strength in Mpa

Sigall2_pin = (1/4)*SigU_pin; % Allowable strength in (MPa)

SSpin = [Sigall1_pin;Sigall2_pin];

SSpin2 = sort(SSpin);

Sig_all_pin = SSpin2(1,1); % Smallest of the allowable stresses (MPa)

v_pin = Pin_Material(1,1); % Poisson's Ratio

E_pin = 1e9*Pin_Material(1,2); %Young's modulus of elasticity in (GPa)

% BASE MATERIAL DATA

SigY_base = 1e6*Base_Material(1,5);

SigU_base = 1e6*Base_Material(1,6);

Sigall1_base = (2/3)*SigY_base;

Sigall2_base = (1/4)*SigU_base;

87

SSbase = [Sigall1_base;Sigall2_base];

SSbase2 = sort(SSbase);

Sig_all_base = SSbase2(1,1);

v_base = Base_Material(1,1);

E_base = 1e9*Base_Material(1,2);

MaterProp = c_Material_Properties_SI;

MaterProp.Pin_Material = Pin_Material;

MaterProp.Base_Material = Base_Material;

MaterProp.Allowable_Stress_in_Pin = Sig_all_pin;

MaterProp.Allowable_Stress_in_Base = Sig_all_base;

MaterProp.Poison_Ratio_Pin = v_pin;

MaterProp.Youngs_Modulus_Pin = E_pin;

MaterProp.Poison_Ratio_Base = v_base;

MaterProp.Youngs_Modulus_Base = E_base;

2.4 Initial Parameters:

f_Initial_Parameters()

function [InitialParam] = f_Initial_Parameters()

InitialParam = c_Initial_Parameters_SI;

2.5 Neural Network Training Data Generator:

f_NN_Data_Generator()

function [Input_Data_S,Target_Data_L] = f_NN_Data_Generator()

Div_gap = 6;

alp1d = 10;

alp2d = 12.5;

alpbud = 33;

alp1 = alp1d*pi/180;

alp2 = alp2d*pi/180;

alpbu = alpbud*pi/180;

% Boom Limits

L1_lb = 1.5;

L1_ub = 2.5;

% Stick Limits

L2_lb = L1_lb/2;

L2_ub = L1_ub/2;

% Bucket Limits

L3_lb = L1_lb/3;

L3_ub = L1_ub/3;

S_lb = 15;

S_ub = 30;

% Valued Vectors

L1 = L1_lb:(L1_ub-L1_lb)/Div_gap:L1_ub;

L2 = L2_lb:(L2_ub-L2_lb)/Div_gap:L2_ub;

L3 = L3_lb:(L3_ub-L3_lb)/Div_gap:L3_ub;

S = S_lb:(S_ub-S_lb)/Div_gap:S_ub;

L1 = L1';

L2 = L2';

L3 = L3';

H = input('H: ');

V = input('V: ');

88

S = S';

d = 1;

for i = 1:1:(Div_gap) % boom length index (L1)

 for j = 1:1:(Div_gap) % stick length index (L2)

 for k = 1:1:(Div_gap) % bucket length index (L3)

 for s = 1:1:(Div_gap)% angle β index (β)

 a = L1(i,1);

 b = L2(j,1) + L3(k,1);

 bl2 = L2(j,1);

 bl3 = L3(k,1);

 betta = S(s,1);

 c = sqrt(a^2 + b^2 + 2*a*b*cosd(betta));

 % 1. MAXIMUM REACH-OUT AT GROUND LEVEL, S1

 betta_s1 = real (rad2deg(asin(V/c)));

 TM_S1_1 = [1 0 0 H;

 0 1 0 V;

 0 0 1 0;

 0 0 0 1];

 TM_S1_2 = [cosd(-betta_s1), -sind(-betta_s1), 0, 0;

 sind(-betta_s1), cosd(-betta_s1), 0, 0;

 0, 0, 1, 0;

 0, 0, 0, 1];

 TM_S1_3 = [1 0 0 c;

 0 1 0 0;

 0 0 1 0;

 0 0 0 1];

 A_S1 = TM_S1_1*TM_S1_2*TM_S1_3;

 S1 = abs(A_S1(1,4));

 % 2. MAXIMUM DIGGING DEPTH, S2

 TM_S2_1 = [1 0 0 H;

 0 1 0 V;

 0 0 1 0;

 0 0 0 1];

 TM_S2_2 = [cosd(alp2),-sind(alp2),0,0;

 sind(alp2),cosd(alp2),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S2_3 = [1 0 0 0;

 0 1 0 -a;

 0 0 1 0;

 0 0 0 1];

 TM_S2_4 = [cosd(-betta),-sind(-betta),0,0;

 sind(-betta),cosd(-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S2_5 = [1 0 0 0;

 0 1 0 -b;

 0 0 1 0;

 0 0 0 1];

 A_S2 = TM_S2_1*TM_S2_2*TM_S2_3*TM_S2_4*TM_S2_5;

 S2 = abs(A_S2(2,4));

 % 3. MAXIMUM CUTTING HEIGHT, S3

 TM_S3_1 = [1 0 0 H;

 0 1 0 V;

 0 0 1 0;

 0 0 0 1];

 TM_S3_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0;

89

 sind(alp1-betta),cosd(alp1-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S3_3 = [1 0 0 0;

 0 1 0 a;

 0 0 1 0;

 0 0 0 1];

 TM_S3_4 = [cosd(-betta),-sind(-betta),0,0;

 sind(-betta),cosd(-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S3_5 = [1 0 0 0;

 0 1 0 b;

 0 0 1 0;

 0 0 0 1];

 A_S3 = TM_S3_1*TM_S3_2*TM_S3_3*TM_S3_4*TM_S3_5;

 S3 = abs(A_S3(2,4));

 % 4. MAXIMUM LOADING HEIGHT, S4

 TM_S4_1 = [1 0 0 H;

 0 1 0 V;

 0 0 1 0;

 0 0 0 1];

 TM_S4_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0;

 sind(alp1-betta),cosd(alp1-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S4_3 = [1 0 0 0;

 0 1 0 a;

 0 0 1 0;

 0 0 0 1];

 TM_S4_4 = [cosd(-betta),-sind(-betta),0,0;

 sind(-betta),cosd(-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S4_5 = [1 0 0 0;

 0 1 0 bl2;

 0 0 1 0;

 0 0 0 1];

 A_S4 = TM_S4_1*TM_S4_2*TM_S4_3*TM_S4_4*TM_S4_5;

 A_S4(2,4) = A_S4(2,4)- bl3;

 S4 = abs(A_S4(2,4));

 % 5. MINIMUM LOADING HEIGHT, S5

 TM_S5_1 = [1 0 0 H;

 0 1 0 V;

 0 0 1 0;

 0 0 0 1];

 TM_S5_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0;

 sind(alp1-betta),cosd(alp1-betta),0,0;

 0,0,1,0;

 0,0,0,1];

 TM_S5_3 = [1 0 0 0;

 0 1 0 a;

 0 0 1 0;

 0 0 0 1];

 A_S5 = TM_S5_1*TM_S5_2*TM_S5_3;

 A_S5(2,4) = A_S5(2,4)- b;

 S5 = abs(A_S5(2,4));

 Input_Data_S(1:1:7,d) = [S1;S2;S3;S4;S5;H;V];

 Target_Data_L(1:1:4,d) = [a;bl2;bl3;betta];

 d = d+1;

90

 end

 end

 end

end

Input_Data_S;

Target_Data_L;

2.6 Creating and Training ANN:

NN_Spec_create_fit_net(inputs,targets)

function NN_Spec_net = NN_Spec_create_fit_net(inputs,targets)

% *Create Network*

numHiddenNeurons = 20; % Adjust as desired

NN_Spec_net = newfit(inputs,targets,numHiddenNeurons);

NN_Spec_net.divideParam.trainRatio = 70/100; % Adjust as desired

NN_Spec_net.divideParam.valRatio = 15/100; % Adjust as desired

NN_Spec_net.divideParam.testRatio = 15/100; % Adjust as desired

% *Train and Apply Network*

[NN_Spec_net,tr] = train(NN_Spec_net,inputs,targets);

outputs = sim(NN_Spec_net,inputs);

% *Plot*

plotperf(tr)

plotfit(NN_Spec_net,inputs,targets)

plotregression(targets,outputs)

2.7 Input Specification Parameters Sorter:

 f_NN_Parameter_Sorter(Input_Data_S)

function [Spec_Paramters_Final,Norm_Ratio] =

f_NN_Parameter_Sorter(Input_Data_S)

Tol_spec = 2;

Data_size = size(Input_Data_S);

Data_length = Data_size(1,2);

Vector_spec = ones(1,Data_length);

Occupied = zeros(1,5);

Final_S = zeros(5,1);

RATIO_Mtx = zeros(5,1);

for sc = 1:1:5 % priority counter

 tt_t = 0;

 for occ_counter = 1:1:5

 if Occupied(1,occ_counter)==0

 tt_t = tt_t + 1;

 Disp_vector(1,tt_t) = occ_counter;

 end

 end

 disp('Enter a valied specificaton parameter number to prioritize: ')

 disp(Disp_vector)

 PR = input(' ')

 Spec_val = input('Value of this parameter: ');

 Occupied(1,PR) = PR;

 Final_S(PR,1) = Spec_val;

 PR_data = Input_Data_S(PR,:);

 Ratio_N = Spec_val/(mean(PR_data));

 RATIO_Mtx(sc,1) = Ratio_N;

 Ratio_first = RATIO_Mtx(1,1);

 Spec_data_norm = (Spec_val/Ratio_first)*Vector_spec;

91

 Difference_vec = abs(PR_data - Spec_data_norm);

 rsc = 0 ; % range size counter

 for vc = 1:1:Data_length % vector size counter

 if 100*((Difference_vec(1,vc))/(Spec_data_norm(1,vc)))<Tol_spec

 rsc = rsc+1;

 for csc = 1:1:5 % configuration type counter

 if Occupied(1,csc) == 0

 Range_Matrix(csc,rsc) = Input_Data_S(csc,vc);

 end

 end

 end

 end

 for rsc2 = 1:1:5

if Occupied(1,rsc2) == 0

 Lower_Limit_Matrix(rsc2,sc) = Ratio_first*(min(Range_Matrix(rsc2,:)));

 Upper_Limit_Matrix(rsc2,sc) = Ratio_first*(max(Range_Matrix(rsc2,:)));

 Range_Matrix_02(rsc2,1) = max(Lower_Limit_Matrix(rsc2,:));

 Range_Matrix_02(rsc2,2) = min(Upper_Limit_Matrix(rsc2,:));

elseif Occupied(1,rsc2) ~= 0

 Range_Matrix_02(rsc2,:) = [0,0];

 end

 end

 disp(Range_Matrix_02)

 disp(Final_S)

 Norm_Ratio = Ratio_first;

 clearvars Disp_vector Range_Matrix;

end

Spec_Paramters_Final = Final_S;

2.8 Linkage Dimension Synthesizer:

f_LinkDims_NN()

function [LinkDims_NN] = f_LinkDims_NN()

global SpcDat BuckGeo InitialParam C nn_init_sol

S1 = C(1,1)

S3 = C(4,1);

S4 = C(5,1);

H = C(6,1);

V = C(7,1);

linkdim0 = [nn_init_sol.nn_boom_len_l1; % initial solution

 nn_init_sol.nn_sticklen_l2;

 deg2rad(nn_init_sol.nn_deflang_beta)];

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ...

 'TolX', 1e-5, 'TolFun', 1e-6);

[linkdim,fval,exitflag,jacobian] = fsolve(@Links_Eq2_NN, linkdim0,

options);

ang = linkdim(3,1);

betta = rad2deg(ang);

linkdim(3,1) = betta;

l1 = linkdim(1,1);

l2 = linkdim(2,1);

LinkDims_NN = linkdim;

2.9 Four-bar Linkages Solver:

f_Four-bar_Solver()

function [Four-barDims] = f_Four-bar_Solver()

global BuckGeo

92

% THIS SOLVES THE LINEAR EQUATIONS IN THE VECTOR Fourar_1_Eq.m STARTING

% FROM AN INITIAL SOLUTION DERIVED IN PROPORTION FROM THE LENGTH OF LINK

3.

% global b0 tets11 tets2 tets12 teta_bucket

% Note

% For an excavator arm facing to the right side of the page, b0

represents

% the linkage on the bucket and b1, b2, and b3 are assigned on counter

% clockwise sense. Hence, b3 will be on link l2.

%

% Example: for future reference of calculation results

% b0 = 69.7

% b3 = 65.4

%

% b1 = 90.8

% b2 = 102.5

%

b0 = BuckGeo.Bucket_Height_b0;

fb10 = [b0; b0];

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ...

 'TolX', 1e-5, 'TolFun', 1e-6);

[FB1,fval,exitflag,jacobian] = fsolve(@Four-bar_1_Eq, fb10, options);

b1 = real(FB1(1,1));

b2 = real(FB1(2,1));

Four-barDims = c_Four-bar_Solver_SI;

Four-barDims.Four-bar_Link_b0 = b0;

Four-barDims.Four-bar_Link_b1 = b1; % Initial value assumed for b3

Four-barDims.Four-bar_Link_b2 = b2;

Four-barDims.Four-bar_Link_b3 = 0.30*BuckGeo.Bucket_Length_l3;

2.10 Operational Configurations:

f_Operational_Configuration()

function [OperConfig] = f_Operational_Configuration()

global SpcDat BuckGeo LinkDims

V = SpcDat.Vertical_Distance_V;

S1 = SpcDat.Maximum_Reachout_at_Ground_Level_S1;

betta = LinkDims.Boom_Deflection_Angle_betta;

dig0 = [atan(V/S1), (2*pi-atan(V/S1))]'; % Initial solution

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ...

 'TolX', 1e-5, 'TolFun', 1e-6);

[dig,fval,exitflag,jacobian] = fsolve(@Diggangles_Eq, dig0, options);

dig1 = (180/pi)*(real(dig(1,1)));

dig2 = (180/pi)*(real(dig(2,1)));

stick_angleJ2 = LinkDims.Stick_Angle_J2; % total angle of J2

TS_1 = LinkDims.Stick_Tail_Length; % length of stick tail section

TS_2 = LinkDims.Stick_Forward_Length; % length of longer stick section

stick_angleJ9 = LinkDims.J9_lower; % lower angle of J9

stick_angleJ3= LinkDims.J3_lower; % lower angle of J3

% 1.1. BOOM ROTATION MATRICES

% Rotation matrices to transform forces from world coordinate system

into

% local coordinate systems on first and second sides of the boom.

93

RB1 = [cosd(dig1 + betta), -sind(dig1 + betta), 0;

 sind(dig1 + betta), cosd(dig1 + betta), 0;

 0, 0, 1]';

RB2 = [cosd(dig1 + betta - 2*betta), -sind(dig1 + betta - 2*betta), 0;

 sind(dig1 + betta - 2*betta), cosd(dig1 + betta - 2*betta), 0;

 0, 0, 1]';

% 1.2. STICK ROTATION MATRIX

% This rotation matrix is used to express vectors defined in the world

% reference frame in axis local to the stick.

RS = [cosd(dig1 + betta - 2*betta + stick_angleJ2 - (180 -

stick_angleJ9)), ...

 -sind(dig1 + betta - 2*betta + stick_angleJ2 - (180 -

stick_angleJ9)), 0;

 sind(dig1 + betta - 2*betta + stick_angleJ2 - (180 - stick_angleJ9)),

...

 cosd(dig1 + betta - 2*betta + stick_angleJ2 - (180 - stick_angleJ9)),

0;

 0, 0, 1]';

global OperConfig

OperConfig = c_Operational_Configuration_SI;

[fb_b2_orient, fb_b1_orient] = Fborient_Solver();

OperConfig.Boom_opertating_angle_dig1 = dig1;

OperConfig.Boom_Rotational_Matrix_Sec1_RB1 = RB1;

OperConfig.Boom_Rotational_Matrix_Sec2_RB2 = RB2;

OperConfig.Stick_Rotational_Matrix_RS = RS;

OperConfig.Four-bar_teta_1 = fb_b2_orient;

OperConfig.Four-bar_teta_2 = fb_b1_orient;

2.11 Operation Forces:

f_Operation_Force()

function OperForce = f_Operation_Force()

global SpcDat

S1 = SpcDat.Maximum_Reachout_at_Ground_Level_S1;

H = SpcDat.Horizontal_Distance_H;

operating_weight = SpcDat.Vehicle_Weight;

% moment of forces about the rear tip of tracks is given by:

Digging_force_mag = (operating_weight*9.81*H)/(H+S1);

Digging_force_vec_gen = Digging_force_mag*[-cosd(90-

15)*cosd(45),cosd(15), ...

 -cosd(90-15)*cosd(45)];

Lifting_force_vec_gen = -Digging_force_mag*[-cosd(90-

15)*cosd(45),cosd(15), ...

 -cosd(90-15)*cosd(45)];

OperForce = c_Operation_Force_SI;

 OperForce.Digging_Force = Digging_force_vec_gen;

 OperForce.Lifting_Force = Lifting_force_vec_gen;

2.12 Joint Forces:

f_Joint_Forces(JoinForce)

function Joint_Forces = f_Joint_Forces(JoinForce)

Joint_Forces = c_Joint_Forces_SI;

 Joint_Forces.JointForces = JoinForce;

% Force Designations

94

Joint_Forces.F1 = (JoinForce(1,5:7))';

Joint_Forces.F2 = (JoinForce(2,5:7))';

Joint_Forces.F3 = (JoinForce(3,5:7))';

Joint_Forces.F4 = (JoinForce(4,5:7))';

Joint_Forces.F5 = (JoinForce(5,5:7))';

Joint_Forces.F6 = (JoinForce(6,5:7))';

Joint_Forces.F7 = (JoinForce(7,5:7))';

Joint_Forces.F8 = (JoinForce(8,5:7))';

Joint_Forces.F9 = (JoinForce(9,5:7))';

Joint_Forces.F10 = (JoinForce(10,5:7))';

Joint_Forces.F11 = (JoinForce(11,5:7))';

Joint_Forces.F12 = (JoinForce(12,5:7))';

% Moment Designations

Joint_Forces.M1 = (JoinForce(1,2:4))';

Joint_Forces.M2 = (JoinForce(2,2:4))';

Joint_Forces.M3 = (JoinForce(3,2:4))';

Joint_Forces.M4 = (JoinForce(4,2:4))';

Joint_Forces.M5 = (JoinForce(5,2:4))';

Joint_Forces.M6 = (JoinForce(6,2:4))';

Joint_Forces.M7 = (JoinForce(7,2:4))';

Joint_Forces.M8 = (JoinForce(8,2:4))';

Joint_Forces.M9 = (JoinForce(9,2:4))';

Joint_Forces.M10 = (JoinForce(10,2:4))';

Joint_Forces.M11 = (JoinForce(11,2:4))';

Joint_Forces.M12 = (JoinForce(12,2:4))';

end

2.13 Pin Dimensions:

f_Pin_Dimensions()

function [PinDims,Exitter] = f_Pin_Dimensions()

% This calculates the diameter and lengths of the pins at each joints

PinDims = c_Pin_Dimensions_SI;

global pin_counter

 AA = [4,-1];

 bb = [0];

 lb = [0.010,0.080]';

 ub = [0.150,0.2]'; % upper bound

 x0 = 0.5*(lb+ub);

for pin_counter = 1:1:3

 options =optimset('Display','iter','Algorithm','active-set','TolX', ...

 1e-9,'TolFun', 1e-6);

 [x,fval,exitflag] = fmincon(@pin_objective_function,x0,AA,bb,[],[],

...

 lb,ub,@min_pin_stress_con,options);

 PinDimVec(pin_counter,:) = x;

 Exitter(pin_counter,:) = exitflag;

 lb = [0.010,0.080];

 ub = x;

 x0 = x;

end

PinDims.Pin1 = PinDimVec(1,:);

PinDims.Pin2 = PinDimVec(2,:);

PinDims.Pin3 = PinDimVec(3,:);

clearvars -global pin_counter

95

2.14 Cross-sectional Optimization:

f_Cross_Sectional_Optimizer()

function CrossDims = f_Cross_Sectional_Optimizer()

global SpcDat BuckGeo OperConfig Dimensional_Constraints LinkDims ...

 Joint_Forces MaterProp PinDims Four-barDims

% ***

% ***************** BOOM **************************

% ***

% Force Designations

F1 = Joint_Forces.F1;

F2 = Joint_Forces.F2;

F3 = Joint_Forces.F3;

F4 = Joint_Forces.F4;

F5 = Joint_Forces.F5;

F6 = Joint_Forces.F6;

F7 = Joint_Forces.F7;

F8 = Joint_Forces.F8;

F9 = Joint_Forces.F9;

F10 = Joint_Forces.F10;

F11 = Joint_Forces.F11;

F12 = Joint_Forces.F12;

% Moment Designations

M1 = Joint_Forces.M1;

M2 = Joint_Forces.M2;

M3 = Joint_Forces.M3;

M4 = Joint_Forces.M4;

M5 = Joint_Forces.M5;

M6 = Joint_Forces.M6;

M7 = Joint_Forces.M7;

M8 = Joint_Forces.M8;

M9 = Joint_Forces.M9;

M10 = Joint_Forces.M10;

M11 = Joint_Forces.M11;

M12 = Joint_Forces.M12;

FS_base = MaterProp.Safety_Factor_Boom;

Sig_working_base = (1/FS_base)*MaterProp.Allowable_Stress_in_Base;

sigall = Sig_working_base;

RB1 = OperConfig.Boom_Rotational_Matrix_Sec1_RB1;

RB2 = OperConfig.Boom_Rotational_Matrix_Sec2_RB2;

RS = OperConfig.Stick_Rotational_Matrix_RS;

% PART ONE OF BOOM ===> [J1 ----> J10/J11]

% FORCES AND MOMENTS EXPRESSED IN REFERENCE TO A LOCAL AXIS PARALLEL TO

SIDE #1

F1T1 = RB1*F1;

F10T1 = RB1*F10;

F11T1 = RB1*F11;

F2T1 = RB1*F2;

M1T1 = RB1*M1;

M10T1 = RB1*M10;

M11T1 = RB1*M11;

M2T1 = RB1*M2;

96

% FORCES EXPRESSED IN REFERENCE TO AN AXIS PARALLEL TO SIDE #2

F1T2 = RB2*F1; % F1 expressed in T2 axis

F10T2 = RB2*F10; % F10 expressed in T2 axis

F11T2 = RB2*F11; % F11 expressed in T2 axis

F2T2 = RB2*F2;

M1T2 = RB2*M1; % M1 expressed in T2 axis

M10T2 = RB2*M10; % M10 expressed in T2 axis

M11T2 = RB2*M11; % M11 expressed in T2 axis

M2T2 = RB2*M2;

% ===

% ========= MOMENTS ON SECTION #1 AND SECTION #2 OF BOOM =============

% ===

T = LinkDims.Side_Length_of_Boom_T;

betta = LinkDims.Boom_Deflection_Angle_betta;

h_j10 = LinkDims.Distance_to_J10_on_Boom;

h_j11 = LinkDims.Distance_to_J11_on_Boom;

dig1 = OperConfig.Boom_opertating_angle_dig1;

thick_min = Dimensional_Constraints.Minimum_Plate_Thickness;

thick_max = Dimensional_Constraints.Maximum_Plate_Thickness;

base_min = PinDims.Pin2(2) + 2*thick_min;

base_max = PinDims.Pin1(2) + 2*thick_min;

height_min = 0;

height_minxx = 2*PinDims.Pin1(1); % ############# (needs revise)

height_max = Dimensional_Constraints.Maximum_Boom_Height;

lb_boomxx = [thick_min,base_min,height_minxx]; % lower bound

lb_boom = [thick_min,base_min,height_min]; % lower bound

ub_boom = [thick_max,base_max,height_max]; % upper bound

x0_boom = 0.5*(lb_boomxx + ub_boom);

A_boom = [2,-1,0;2,0,-1];

b_boom = [0;0];

smplpoint_b = 50;

trial_iter = 0;

iter_limit = 5;

for aa = 0:(T/smplpoint_b):(iter_limit*T/smplpoint_b)

 trial_iter = trial_iter+1;

 anglet1_F1 = 180+dig1+betta; % Angle of the vector directed to F1 (abs)

 vecb1_F1 =aa*[cosd(anglet1_F1),sind(anglet1_F1),0]'; % The vector to F1

 BM_bFt1 = cross(vecb1_F1,F1);% Bending moment only due to F1 on section #1

 BM_bFDt1 = M1; % Moment due to the eccentricity of the digging force FD

 BM_boom11 = -(BM_bFt1 + BM_bFDt1); % Total Moment at section aa

 BM_boom1 = RB1*BM_boom11; % the total bending moment (local)

 BM_bxx = BM_boom1(1,1); % Torsion about local x on section #1

 BM_byy = BM_boom1(2,1); % Bending Moment about local y on section #1

 BM_bzz = BM_boom1(3,1); % Bending Moment about local z on section #1

 BM_bx(trial_iter,1) = BM_bxx; % Vector of Torsion on section #1

 BM_by(trial_iter,1) = BM_byy; % Vector of Lateral Bending Moment on #1

 BM_bz(trial_iter,1) = BM_bzz; % Vector of Bending Moment on #1

 FT1 = -(F1T1); % Reaction force from the joint (w.r.t. local frame)

 FBx1 = FT1(1,1); % axial forces (tensile or compressive)

 FBy1 = FT1(2,1); % lateral force (local y)

 FBz1 = FT1(3,1); % lateral force (local z)

 FBxx = FBx1; % total axial force

 FBvv = sqrt(FBy1^2 + FBz1^2); % total lateral force

 FB_axial(trial_iter,1) = FBxx; % axial force; total

 FB_shear(trial_iter,1) = FBvv; % total lateral force = total shear force

 bmx = BM_bxx;

 bmy = BM_byy;

 bmz = BM_bzz;

 fx = FBxx;

 fv = FBvv;

 options = optimset('Display','iter','Algorithm','active-set','TolX', ...

97

 1e-6,'TolFun', 1e-6);

 [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom, ...

 ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHB(trial_iter,1:1:3) = x;

 TBHB(trial_iter,4) = fval;

 TBHB(trial_iter,5) = aa;

 x0_boom = x;

 clearvars x bmx bmy bmz fx fv TBHB TBHS BM_bx BM_by BM_bz

end

x0_boom

j = 0;

for t1 = 0:T/smplpoint_b:T

 j = j+1;

 tt(j,1) = t1;

 anglet1_F1 = 180+dig1+betta;

 vecb1_F1 = t1*[cosd(anglet1_F1), sind(anglet1_F1), 0]';

 BM_bFt1 = cross(vecb1_F1,F1);

 BM_bFDt1 = M1;

 BM_boom11 = -(BM_bFt1 + BM_bFDt1);

 BM_boom1 = RB1*BM_boom11;

 BM_bxx = BM_boom1(1,1);

 BM_byy = BM_boom1(2,1);

 BM_bzz = BM_boom1(3,1);

 BM_bx(j,1) = BM_bxx;

 BM_by(j,1) = BM_byy;

 BM_bz(j,1) = BM_bzz;

 FT1 = -(F1T1);

 FBx1 = FT1(1,1);

 FBy1 = FT1(2,1);

 FBz1 = FT1(3,1);

 FBxx = FBx1;

 FBvv = sqrt(FBy1^2 + FBz1^2);

 FB_axial(j,1) = FBxx;

 FB_shear(j,1) = FBvv;

 bmx = BM_bxx;

 bmy = BM_byy;

 bmz = BM_bzz;

 fx = FBxx;

 fv = FBvv;

 options = optimset('Display','iter','Algorithm','active-set','TolX',...

 1e-6,'TolFun', 1e-6);

 [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom,...

 ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHB(j,1:1:3) = x;

 TBHB(j,4) = fval;

 TBHB(j,5) = t1;

 x0_boom = x;

 % DEFINING THE COORDINATES OF THE SPLINE IN THE FIRST QUADRANT

 % NOTE: HEIGHT -> Y AXIS IN THE MODELING ENVIRONMENT IN NX

 % BASE -> Z AXIS

 % INCREMENTAL VALUE OF "t1" -> X AXIS

 Boom_vec1(j,1) = t1; % vector of t1 (X-COMPONENT)

 Boom_vec1(j,2) = 0.5*TBHB(j,3); % half-height measured from the middle

 Boom_vec1(j,3) = 0.5*TBHB(j,2); % half-base measured from the middle

 NX_Boom_Vec1_orig(j,1) = Boom_vec1(j,1);

 NX_Boom_Vec1_orig(j,2) = ...

 Boom_vec1(j,2) - Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3;

 NX_Boom_Vec1_orig(j,3) = ...

 Boom_vec1(j,3) - Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Boom_Vec1_offstd(j,1) = Boom_vec1(j,1);

 NX_Boom_Vec1_offstd(j,2) = ...

 Boom_vec1(j,2) - Dimensional_Constraints.Minimum_Plate_Thickness;

98

 NX_Boom_Vec1_offstd(j,3) = Boom_vec1(j,3) + ...

 Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement;

 clearvars x bmx bmy bmz fx fy

end

% PART 2 .. SECOND SECTION OF THE BOOM (FROM JOINT 10/11 TO JOINT 2)

 start_pt = 1;

 t2_starter = @(t22)(sqrt(h_j11^2 + t22^2 - 2*h_j11*t22*cosd(90-

betta)));

 t2_critical = fminsearch(t2_starter,0);

 i = 1;

 q = 0;

for t2 = 0:T/smplpoint_b:T

 t2_NX = t2;

 if t2<t2_critical

 t2 = t2_critical;

 end

 j = j+1;

 q = q+1;

 tt(j,1) = t1+t2_NX;

 v2_01 = sqrt(T^2 + t2^2 - 2*T*t2*cosd(180-2*betta));

 v2_10 = sqrt(h_j10^2 + t2^2 - 2*h_j10*t2*cosd(2*betta));

 v2_11 = sqrt(h_j11^2 + t2^2 - 2*h_j11*t2*cosd(90 - betta));

 alpp2_01 = (asin((T/v2_01)*sind(180-2*betta)))*180/pi;

 alpp2_10 = (asin((h_j10/v2_10)*sind(2*betta)))*180/pi;

 alpp2_11 = (asin((h_j11/v2_11)*sind(90-betta)))*180/pi;

 anglet2_F1 = 180 + dig1 - betta + alpp2_01;

 anglet2_F10 = 180 + dig1 - betta - alpp2_10;

 anglet2_F11 = 180 + dig1 - betta + alpp2_11;

 vecb2_F1 = v2_01*[cosd(anglet2_F1) sind(anglet2_F1) 0]';

 vecb2_F10 = v2_10*[cosd(anglet2_F10), sind(anglet2_F10), 0]';

 vecb2_F11 = v2_11*[cosd(anglet2_F11), sind(anglet2_F11), 0]';

 BM_bFt2 = cross(vecb2_F1, F1) + cross(vecb2_F10,F10) + ...

 cross(vecb2_F11, F11);

 BM_bFDt2 = M1 + M10 + M11;

 BM_boom22 = -(BM_bFt2 + BM_bFDt2);

 BM_boom2 = RB2*BM_boom22;

 BM_bxx = BM_boom2(1,1); % Torsion about local x on section #2

 BM_byy = BM_boom2(2,1); % Lateral Bending Moment about local y on #2

 BM_bzz = BM_boom2(3,1); % Bending Moment about local z on section #2

 BM_bx(j,1) = BM_bxx; % Vector of Torsion on section #2

 BM_by(j,1) = BM_byy; % Vector of Lateral Bending Moment on section #2

 BM_bz(j,1) = BM_bzz; % Vector of B. Moment in the vertical plane on #2

 FT2 = -(F1T2 + F10T2 + F11T2); % total reaction force at the cross-sec

 FBx2 = FT2(1,1);

 FBy2 = FT2(2,1);

 FBz2 = FT2(3,1);

 FBxx = FBx2; % axial force

 FBvv = sqrt(FBy2^2 + FBz2^2); % resultant transverse(shear) force

 FB_axial(j,1) = FBxx;

 FB_shear(j,1) = FBvv;

 bmx = BM_bxx;

 bmy = BM_byy;

 bmz = BM_bzz;

 fx = FBxx;

 fv = FBvv;

 options = optimset('Display','iter','Algorithm','active-

set','TolX',...

 1e-6,'TolFun', 1e-6);

 [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom, ...

 ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHB(j,1:1:3) = x;

99

 TBHB(j,4) = fval;

 TBHB(j,5) = t2_NX;

 step_boom_h = TBHB((j-1),3) - TBHB(j,3);

 if (step_boom_h >= 2e-3) | (step_boom_h <= -2e-3)

 if step_boom_h >= 2e-3

 AAA(i,1) = abs(step_boom_h);

 i = i+1;

 TBHB(j,3) = (TBHB(j,3) + AAA(1,1));

 elseif step_boom_h <= -2e-3

 AAA(i,1) = abs(step_boom_h);

 i = i+1;

 TBHB(j,3) = (TBHB(j,3) - AAA(1,1));

 end

 min_area_onevar_b = @(minbase)((minbase)*(TBHB(j,3))) - ...

 ((minbase-2*TBHB(j,1))*(TBHB(j,3)-2*TBHB(j,1)));

 base_complemenatary =

fminbnd(min_area_onevar_b,base_min,base_max);

 TBHB(j,2) = base_complemenatary;

 end

 Boom_vec2(q,1) = t2_NX; % vector of t1 (X-COMPONENT)

 Boom_vec2(q,2) = 0.5*TBHB(j,3); % half-height = (0.5*...)(Y-COMPONENT)

 Boom_vec2(q,3) = 0.5*TBHB(j,2); % half-base = (Z-COMPONENT)

 NX_Boom_Vec2_orig(q,1) = Boom_vec2(q,1);

 NX_Boom_Vec2_orig(q,2) = ...

 Boom_vec2(q,2) - Dimensional_Constraints.Minimum_Plate_Thickness+ 2e-3;

 NX_Boom_Vec2_orig(q,3) = ...

 Boom_vec2(q,3) - Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Boom_Vec2_offstd(q,1) = Boom_vec2(q,1);

 NX_Boom_Vec2_offstd(q,2) = Boom_vec2(q,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Boom_Vec2_offstd(q,3) = Boom_vec2(q,3) + ...

 Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement;

 x0_boom = x;

 clearvars x bmx bmy bmz fx fy step_boom_h

end

NX_Boom_vec1_Original = 1000*NX_Boom_Vec1_orig;

NX_Boom_vec1_Offsetted = 1000*NX_Boom_Vec1_offstd;

NX_Boom_vec2_Original = 1000*NX_Boom_Vec2_orig;

NX_Boom_vec2_Offsetted = 1000*NX_Boom_Vec2_offstd;

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec1_Original.dat', ...

 NX_Boom_vec1_Original,'delimiter',',','precision',4);

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec1_Offsetted.dat', ...

 NX_Boom_vec1_Offsetted,'delimiter',',','precision',4);

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec2_Original.dat', ...

 NX_Boom_vec2_Original,'delimiter',',','precision',4);

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec2_Offsetted.dat', ...

 NX_Boom_vec2_Offsetted,'delimiter',',','precision',4);

plot(tt,BM_bx,'g')

hold on

plot(tt,BM_by,'b')

plot(tt,BM_bz,'r')

title('Boom - Torsion and Bending Moment Diagrams')

legend('Torsion (local x)','Bending M. (local y)','Bending M. (local z)')

figure

plot(tt,FB_axial,'g')

hold on

plot(tt,FB_shear,'r')

title('Boom Axial and Shear Froces')

legend('Axial Force','Total shear force')

figure

plot(TBHB(:,1:1:4))

title('Dimensions of cross sectional area')

xlabel('Boom span')

legend('Thickness','Base','Height')

100

% ===

% ============================= END OF BOOM ===========================

% ===

% ***

% ************************ STICK *******************************

% ***

% FORCES AND MOMENTS EXPRESSED WITH RESPECT TO A LOACAL COORDINATE SYSTEM

F2S = RS*(-F2);

F9S = RS*F9;

F8S = RS*F8;

F6S = RS*F6;

F3S = RS*F3;

M2S = RS*(-M2);

M9S = RS*M9;

M8S = RS*M8;

M6S = RS*M6;

M3S = RS*M3;

angles1_F6 = 180;

angles1_F9 = 180;

% MOMENTS

% PART 1 .. STICK TAIL SECTION

thick_min = Dimensional_Constraints.Minimum_Plate_Thickness;

thick_max = Dimensional_Constraints.Maximum_Plate_Thickness;

h_stick = LinkDims.Distance_to_J2_and_J8_on_Stick;

h_j8 = h_stick;

TS_1 = LinkDims.Stick_Tail_Length;

TS_2 = LinkDims.Stick_Forward_Length;

b3 = Four-barDims.Four-bar_Link_b3;

base_min = PinDims.Pin3(2) + 2*thick_min;

base_max = base_min;

height_min = 2*PinDims.Pin2(1);

height_max = Dimensional_Constraints.Maximum_Stick_Height;

lb_stick = [thick_min,base_min,height_min]; % lower bound

ub_stick = [thick_max,base_max,height_max]; % upper bound

x0_stick = 0.5*(lb_stick + ub_stick);

A_stick = [2 -1 0;2 0 -1];

b_stick = [0;0];

smplpoint_s1 = (TS_1/T)*smplpoint_b;

smplpoint_s2 = ((TS_2-b3)/T)*smplpoint_b;

smplpoint_s3 = (b3/T)* smplpoint_b;

k = 0;

for st1 = 0:TS_1/smplpoint_s1:TS_1

 k = k+1;

 ST(k,1) = st1;

vecs1_F9 = st1*[cosd(angles1_F9); sind(angles1_F9); 0]; % Vector to F9 #1

BM_s1 = cross(vecs1_F9,F9S); % B. moment only due to F9 (w.r.t. local)

BM_DFs1 = RS*M9; % Pure bending moment at joint 9 (w.r.t. local frame)

 BM_stick11=-(BM_s1+ BM_DFs1);%total REACTION moment st1(local frame)

 BM_stick1 = BM_stick11; % (local frame)

 bmx = BM_stick1(1,1); % Torsion at location St1

 bmy = BM_stick1(2,1); % Lateral Bending Moment at location St1

 bmz = BM_stick1(3,1); % B. Moment in the vertical plane at location St1

 BM_sx(k,1) = bmx; % formation of Vector of Torsion along the tail sec

 BM_sy(k,1) = bmy; % '' '''' Lateral B. Moment along the tail ''

 BM_sz(k,1) = bmz; % '' '' '' B. Moment in the vertical plane

 % calculation of direct shear and axial forces

 FS1 = -(F9S);

101

 FSx1 = FS1(1,1);

 FSy1 = FS1(2,1);

 FSz1 = FS1(3,1);

 fx = FSx1; % axial force

 fv = sqrt(FSy1^2 + FSz1^2); % combined to give resultant value

 FS_axial(k,1) = fx;

 FS_shear(k,1) = fv;

 options = optimset('Display','iter','Algorithm','active-set','TolX', ...

 1e-6,'TolFun', 1e-6);

 [x,fval] =

fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick,...

 ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHS(k,1:1:3) = x;

 TBHS(k,4) = fval;

 TBHS(k,5) = st1;

 x0_stick = x;

 Stick_vecc(k,1) = st1; % vector of thickness

 Stick_vecc(k,2) = 0.5*TBHS(k,3); % vector of half-height

 Stick_vecc(k,3) = 0.5*TBHS(k,2); % vector of half-base

 NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3;

 NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ...

 Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement;

 clearvars x bmx bmy bmz fx fy

 end

% PART 2 .. LONGER (INTERMIDIATE) STICK SEECTION

k2 = 0;

for st2 = 0:TS_2/smplpoint_s2:(TS_2 - b3)

 k = k+1;

 k2 = k2+1;

 st22 = TS_1 + st2;

 ST(k,1) = st22;

 vecs2F2 = sqrt((h_stick)^2 + st2^2); % Magnitude of F2 from location st2

 vecs2F8 = sqrt((h_j8)^2 + st2^2); % magnitude of vector from st2 to F8

 alps2F2 = radtodeg(atan(h_stick/st2)); % Intermediate variable

 alps2F8 = radtodeg(atan(h_j8/st2)); % Intermediate variable

 anglest2_F2 = 180 + alps2F2;

 anglest2_F8 = 180 - alps2F8;

 vecs2_F2 = vecs2F2*[cosd(anglest2_F2); sind(anglest2_F2); 0];

 vecs2_F9 = (TS_1 + st2)*[cosd(angles1_F9); sind(angles1_F9); 0];

 vecs2_F8 = vecs2F8*[cosd(anglest2_F8); sind(anglest2_F8); 0];

 BM_s2 = cross(vecs2_F2,F2S) + cross(vecs2_F9,F9S) +

cross(vecs2_F8,F8S);

 BM_DFs2 = RS*(M9 + M2 + M8);

 BM_stick22 = -(BM_s2 + BM_DFs2);

 BM_stick2 = BM_stick22; % (local frame)

 bmx = BM_stick2(1,1);

 bmy = BM_stick2(2,1);

 bmz = BM_stick2(3,1);

 BM_sx(k,1) = bmx;

 BM_sy(k,1) = bmy;

 BM_sz(k,1) = bmz;

 % axial and direct shear forces

 FS2 = -(F2S + F9S + F8S);

 FSx2 = FS2(1,1);

 FSy2 = FS2(2,1);

 FSz2 = FS2(3,1);

102

 fx = FSx2;

 fv = sqrt(FSy2^2 + FSz2^2);

 FS_axial(k,1) = fx;

 FS_shear(k,1) = fv;

 options = optimset('Display','iter','Algorithm','active-set','TolX', ...

 1e-6,'TolFun', 1e-6);

 [x,fval] = fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick, ...

 ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHS(k,1:1:3) = x;

 TBHS(k,4) = fval;

 TBHS(k,5) = st2;

 x0_stick = x;

 Stick_vecc(k,1) = st22; % vector of thickness

 Stick_vecc(k,2) = 0.5*TBHS(k,3); % vector of half-height

 Stick_vecc(k,3) = 0.5*TBHS(k,2); % vector of half-base

 Stick_VEC_2nd(k2,1) = st2;

 Stick_VEC_2nd(k2,2) = Stick_vecc(k,2);

 Stick_VEC_2nd(k2,3) = Stick_vecc(k,3);

 NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3;

 NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ...

 Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement;

 clearvars x bmx bmy bmz fx fy

end

% PART 3 .. SECTION BETWEEN JOINT 6 AND JOINT 3

for st2 = (TS_2 - b3):b3/smplpoint_s3:TS_2

 k = k+1;

 st22 = TS_1 + st2;

 ST(k,1) = st22;

 vecs2F2 = sqrt((h_stick)^2 + st2^2); % magnitude of vector to F2

 vecs2F8 = sqrt((h_j8)^2 + st2^2); % magnitude of vector to F8

 alps2F2 = radtodeg(atan(h_stick/st2)); % frame-independent angle

 alps2F8 = radtodeg(atan(h_j8/st2)); % frame-independent angle

 anglest2_F2 = 180 + alps2F2; % (local frame)

 anglest2_F8 = 180 - alps2F8; % (local frame)

 vecs2_F2 = vecs2F2*[cosd(anglest2_F2); sind(anglest2_F2); 0];

 vecs2_F9 = (TS_1 + st2)*[cosd(angles1_F9); sind(angles1_F9); 0];

 vecs2_F8 = vecs2F8*[cosd(anglest2_F8); sind(anglest2_F8); 0];

 vecs2_F6 = (st2- (TS_2 - b3))*[cosd(angles1_F6); sind(angles1_F6);

0];

 BM_s3 = cross(vecs2_F2,F2S) + cross(vecs2_F9,F9S) + ...

 cross(vecs2_F8,F8S) + cross(vecs2_F6,F6S); % (local frame)

 BM_DFs3 = M9S + M2S + M8S + M6S; % (local frame)

 BM_stick33 = -(BM_s3 + BM_DFs3); %(local frame)

 BM_stick3 = BM_stick33; % local frame

 bmx = BM_stick3(1,1); % Torsion on section #2

 bmy = BM_stick3(2,1); % Bending Moment on section #2

 bmz = BM_stick3(3,1);% Bending Moment in the vertical plane on sec.#2

 BM_sx(k,1) = bmx; % Vector of Torsion on section #2

 BM_sy(k,1) = bmy; % Vector of Lateral Bending Moment on section #2

 BM_sz(k,1)= bmz;% Vector of B. Moment in the vertical plane on sec.#2

 FS3 = -(F2S + F9S + F8S + F6S); %(local frame)

 FSx3 = FS3(1,1);

 FSy3 = FS3(2,1);

 FSz3 = FS3(3,1);

 fx = FSx3; % total axial force (local frame)

103

 fv = sqrt(FSy3^2 + FSz3^2); % total shear force (local frame)

 FS_axial(k,1) = fx;

 FS_shear(k,1) = fv;

 options = optimset('Display','iter','Algorithm','active-set','TolX', ...

 1e-6,'TolFun', 1e-6);

 [x,fval] =

fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick,...

 ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options);

 TBHS(k,1:1:3) = x;

 TBHS(k,4) = fval;

 TBHS(k,5) = st2;

 Stick_vecc(k,1) = st22; % vector of thickness

 Stick_vecc(k,3) = 0.5*TBHS(k,2); % vector of half-base

 Stick_vecc(k,2) = 0.5*TBHS(k,3); % vector of half-height

 NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3;

 NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1);

 NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ...

 Dimensional_Constraints.Minimum_Plate_Thickness;

 NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ...

 Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement;

 NX_Stick_vecc = 1000*Stick_vecc;

 x0_stick = x;

end

NX_Stick_vecc = 1000*Stick_vecc;

NX_Stick_vecc_orig = 1000*NX_Stick_vecc_orig;

NX_Stick_vecc_offstd = 1000*NX_Stick_vecc_offstd;

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_vecc_orig.dat',...

 NX_Stick_vecc_orig,'delimiter','\t','precision',4);

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_vecc_offstd.dat',...

 NX_Stick_vecc_offstd,'delimiter',',','precision',4);

NX_Stic_vec_Y_val_orig = NX_Stick_vecc_orig(:,2);

Stick_Y_first_orig = NX_Stic_vec_Y_val_orig(1,1);

Stick_Y_middle_orig = max(NX_Stic_vec_Y_val_orig);

Stick_Y_last_orig = NX_Stic_vec_Y_val_orig(k,1);

NX_Stick_Linearized_Data_orig = [Stick_Y_first_orig,

 Stick_Y_middle_orig,

 Stick_Y_last_orig,

 0.5*1000*base_min];

NX_Stic_vec_Y_val_offstd = NX_Stick_vecc_offstd(:,2);

Stick_Y_first_offstd = NX_Stic_vec_Y_val_offstd(1,1);

Stick_Y_middle_offstd = max(NX_Stic_vec_Y_val_offstd);

Stick_Y_last_offstd = NX_Stic_vec_Y_val_offstd(k,1);

NX_Stick_Linearized_Data_offstd = [Stick_Y_first_offstd,

 Stick_Y_middle_offstd,

 Stick_Y_last_offstd,

 0.5*1000*base_min];

Dlmwrite

('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_Linearized_Data_orig.dat',...

 NX_Stick_Linearized_Data_orig,'delimiter',',','precision',4);

Dlmwrite

('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_Linearized_Data_offstd.dat',...

 NX_Stick_Linearized_Data_offstd,'delimiter',',','precision',4);

figure

plot(ST,BM_sx,'g')

hold on

plot(ST,BM_sy,'b')

plot(ST,BM_sz,'r')

title('Stick - Torsion and Bending Moment Diagrams')

legend('Torsion (local x)','Bending M. (local y)','Bending M. (local z)')

figure

104

plot(ST,FS_axial,'g')

hold on

plot(ST,FS_shear,'r')

title('Stick Axial and Total Sehar Forces')

legend('Axial Force','Shear Force')

figure

plot(TBHS(:,1:1:4))

title('STICK - Cross-sectional dimensions')

xlabel('Stick span')

legend('Thickness','Base','Height')

% ===

% ============================= END OF STICK ===========================

% ===

CrossDims = c_Cross_Sectional_Optimizer_SI;

 CrossDims.Boom_Optimized_Crosssectional_Area_TBHB = TBHB;

 CrossDims.Boom_Spline_Vec1 = Boom_vec1;

 CrossDims.Boom_Spline_Vec2 = Boom_vec2;

 CrossDims.Stick_Optimized_Crosssectional_Area_TBHS = TBHS;

 CrossDims.Stick_Spline_Vec = Stick_vecc;

2.15 Data Exporter: f_exceel_writter()

function [] = f_exceel_writter()

global PinDims LinkDims OperConfig Four-barDims

% Pin Dimension Writer

NX_PinDims = 1000*[PinDims.Pin1;

 PinDims.Pin2;

 PinDims.Pin3;

 PinDims.Pin4;

 PinDims.Pin5;

 PinDims.Pin6;

 PinDims.Pin7;

 PinDims.Pin8;

 PinDims.Pin9;

 PinDims.Pin10;

 PinDims.Pin11;

 PinDims.Pin12];

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_PinDims',NX_PinDims)

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_PinDims.dat',NX_PinDims,...

 'delimiter','\t','precision',4);

% Link Dimensions Writers

NX_LinkDims = [1000*LinkDims.Boom_Shortcut_Length_l1;

 LinkDims.Boom_Deflection_Angle_betta;

 1000*LinkDims.Side_Length_of_Boom_T;

 1000*LinkDims.Stick_Length_l2;

 LinkDims.Stick_Angle_J2;

 LinkDims.J2_left;

 LinkDims.J2_right;

 LinkDims.Stick_Angle_J8;

 LinkDims.J8_left;

 LinkDims.J8_right;

 LinkDims.Stick_Angle_J9;

 LinkDims.J9_up;

 LinkDims.J9_lower;

 LinkDims.Stick_Angle_J3;

 LinkDims.J3_up;

 LinkDims.J3_lower;

 1000*LinkDims.Distance_to_J2_and_J8_on_Stick;

105

 1000*LinkDims.Distance_to_J10_on_Boom;

 1000*LinkDims.Distance_to_J11_on_Boom;

 1000*LinkDims.Stick_Tail_Length;

 1000*LinkDims.Stick_Forward_Length];

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_LinkDims.xls',NX_LinkDims)

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_LinkDims.dat',NX_LinkDims,...

 'delimiter','\t','precision',4);

% Four-bar Linkage dimensions

NX_Four-barDims = 1000*[Four-barDims.Four-bar_Link_b0;

 Four-barDims.Four-bar_Link_b1;

 Four-barDims.Four-bar_Link_b2;

 Four-barDims.Four-bar_Link_b3];

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Four-barDims.dat',...

 NX_Four-barDims,'delimiter','\t','precision',4);

% Configuration Parameter Writer

NX_OperConfig = [OperConfig.Boom_opertating_angle_dig1;

 0;

 0;

 0;

 OperConfig.Four-bar_teta_1;

 OperConfig.Four-bar_teta_2;

 OperConfig.Four-bar_teta_3];

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_OperConfig.xls',NX_OperConfig)

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_OperConfig.dat',NX_OperConfig,...

 'delimiter','\t','precision',4);

Published with MATLAB® 7.11

106

Appendix 2 API CAD Programming

A2.1 Boom API Programming

A2.1.1 Boom header file:

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))

#define xc_axis 1

#define yc_axis 2

#define zc_axis 3

#define xy_plane 1

#define yz_plane 2

#define zx_plane 3

#define NX_BOOM_VEC_1_ORIGINAL

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat","r"

#define NX_BOOM_VEC_1_OFFESETTED

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Offsetted.dat","r"

#define NX_BOOM_VEC_2_ORIGINAL

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat","r"

#define NX_BOOM_VEC_2_OFFESETTED

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Offsetted.dat","r"

typedef struct _iobuf FILE;

struct DATUM_CSYS_DATA{

 double offset_x;

 double offset_y;

 double offset_z;

 double angle_x;

 double angle_y;

 double angle_z;

 bool transform_sequence;

 int rotation_sequence[2];

 };

struct LINK_DIMENSIONS{

 double Boom_shot_len_l1;

 double Boom_defct_ang_betta;

 double Boom_side_len_T;

 double Stick_len_l2;

 double Stick_ang_J2;

 double J2_left;

 double J2_right;

 double Stick_ang_J8;

 double J8_lfet;

 double J8_right;

 double Stick_ang_J9;

 double J9_up;

 double J9_lower;

 double Stick_ang_J3;

 double J3_up;

 double J3_lower;

 double Dist_2_J2andJ8_on_Stick;

 double Dist_2_J10_on_Boom;

 double Dist_2_J11_on_Boom;

 double Stick_tail_len;

 double Stick_forward_len;

 };

107

struct PIN_DIMENSIONS{

 double Pin1;

 double Pin2;

 double Pin3;

 double Pin4;

 double Pin5;

 double Pin6;

 double Pin7;

 double Pin8;

 double Pin9;

 double Pin10;

 double Pin11;

 double Pin12;

 };

struct OPERATIONAL_CONFIGURATION{

 double Boom_oper_ang_dig1;

 double Boom_matrix_1_RB1;

 double Boom_matrix_1_RB2;

 double Stick_matrix_RS;

 double Four-bar_teta_1;

 double Four-bar_teta_2;

 double Four-bar_teta_3;

 };

struct FOUR-BAR_DIMENSIONS{

 double link0_bo;

 double link1_b1;

 double link2_b2;

 double link3_b3;

 };

int report_error(char *file,

int line,

char *call,

int irc);

tag_t wub_Create_New_Part_File(char file_path[UF_CFI_MAX_FILE_NAME_SIZE]);

tag_t wub_CSYS_origin_and_direction(void);

tag_t Extract_Smart_tag_of_Datum_CSYS(tag_t tag_DATUM_CSYS);

tag_t Extract_daxis_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag,

int Axis_Num);

tag_t Extract_dplane_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag,

int Plane_Num);

tag_t wub_set_wcs(tag_t target_DATUM_wcs_CSYS);

tag_t wub_CSYS_offset(tag_t referece_datum_CSYS,

const double linear_offset[3],

const double angular_offset[3],

bool operation_sequence);

tag_t wub_Ceate_Datum_Plane_Offset(tag_t Referece_DATUM_CSYS,

int Axis_about);

tag_t wub_Create_Projected_Curve(tag_t curve_tag,

tag_t Datum_CSYS_tag,

int Plane_Num);

tag_t wub_Sketch_boom_profile1(tag_t datum);

tag_t wub_Create_Fit_Spline_on_WCS(FILE *csv_file);

tag_t do_ugopen_api(void);

tag_ wub_Create_DATUM_CSYS_Offset_Method(DATUM_CSYS_DATA

Transformation_Data,

tag_t Reference_CSYS);

int wub_LinkDim_Data_Importer(FILE *dat_filepath,

LINK_DIMENSIONS *pLink_Dimensions_obj);

108

int wub_OperConfig_Data_Importer(FILE *dat_filepath,

OPERATIONAL_CONFIGURATION *pOperConfig_obj);

tag_t wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag,

tag_t Plane_Tag);

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag,

tag_t Datum_Plane_Tag,

int which_end);

tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag,

tag_t Tool_curve1,

tag_t Tool_curve2);

tag_t wub_Bridge_Curves(tag_t Trimmed_Curve_1_Tag,

tag_t Trimmed_Curve_2_Tag,

int Reverse1,

int Reverse2,

int par1,

int par2);

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2);

tag_t wub_Lines_Point_Tangent(tag_t point,

tag_t tangent,

tag_t Reference_CSYS,

int Plane_Num);

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section);

tag_t wub_Join_Curves(tag_t *curves,int n);

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end);

tag_t wub_BPLANE(tag_t Curve_String[2]);

tag_t wub_SKETCHES_J2_adopter(char name[30],

tag_t Refrence_CSYS,

int Plane_num,

int Axis_num);

tag_t THICKEN_Sheet(tag_t sheet_body_tag);

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS);

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS,

int Plane_num,

double radius,

double arc_center[3],

double start_ang,

double end_ang);

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS,

int Plane_num,

double radius,

double arc_center[3],

tag_t p1,

tag_t p2);

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2]);

tag_t wub_SKETCH_J11(tag_t Reference_CSYS,

int Plane_num,

tag_t line_Tag,

tag_t bridge_tag);

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag);

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid);

int wub_Four-barDim_Data_Importer(FILE *dat_filepath,

FOUR-BAR_DIMENSIONS *pFour-

bar_dimensions_obj);

109

A2.1.2 Boom Main Codes Assembly:

Main_Body_8.cpp

#include <stdio.h>

#include <string.h>

#include <uf.h>

#include <uf_ui.h>

#include <uf_part.h>

#include <uf_csys.h>

#include <uf_modl.h>

#include <uf_modl_primitives.h>

#include <uf_disp.h>

#include <uf_so.h>

#include <uf_curve.h>

#include <uf_obj.h>

#include <uf_object_types.h>

#include <uf_assem.h>

#include <uf_modl_datum_features.h>

#include <uf_defs.h>

#include <stdlib.h>

#include <malloc.h>

#include <uf_sket.h>

#include "Prototype_functions_8.h"

 /*==*/

 /*==================== MAIN FUNCTION =======================*/

 /*==*/

void ufusr(char *param, int *retcode, int paramLen)

 {

 if (UF_CALL(UF_initialize())) return;

 LINK_DIMENSIONS

 Link_Dimensions_obj;

 OPERATIONAL_CONFIGURATION

 OperConfig_obj;

 FOUR-BAR_DIMENSIONS

 Four-bar_dimensions_obj;

 FILE

 *boom_csv_file1_orig,

 *boom_csv_file1_ofstd,

 *boom_csv_file2_orig,

 *boom_csv_file2_ofstd,

 *NX_PinDims_file,

 *NX_LinkDims_file,

 *NX_Four-barDims_file,

 *NX_OperConfig_file;

NX_LinkDims_file =

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_LinkDims.dat","r");

 wub_LinkDim_Data_Importer(NX_LinkDims_file, &Link_Dimensions_obj);

 fclose(NX_LinkDims_file);

NX_Four-barDims_file =

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_Four-barDims.dat","r");

wub_Four-barDim_Data_Importer(NX_Four-barDims_file, &Four-

bar_dimensions_obj);

 fclose(NX_Four-barDims_file);

110

NX_OperConfig_file =

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_OperConfig.dat","r");

 wub_OperConfig_Data_Importer(NX_OperConfig_file, &OperConfig_obj);

 fclose(NX_OperConfig_file);

 tag_t

 Boom_part,

 DATUM_CSYS_boom_0,

 DATUM_CSYS_boom_1,

 DATUM_CSYS_boom_2,

 DATUM_CSYS_boom_3,

 DATUM_CSYS_boom_4,

 DATUM_CSYS_boom_5,

 DATUM_CSYS_boom_6,

 DATUM_CSYS_boom_7,

 DATUM_CSYS_boom_8,

 DATUM_CSYS_boom_9,

 DATUM_CSYS_boom_10,

 DATUM_CSYS_boom_11,

 datum_PLANE_1,

 datum_PLANE_2,

 Line_straight,

 bridge_J1,

 bridge_J2,

 Sketch_Boom_profile_1;

 DATUM_CSYS_DATA CSYS_boom_0_data;

 CSYS_boom_0_data.offset_x = 0.0;

 CSYS_boom_0_data.offset_y = 0.0;

 CSYS_boom_0_data.offset_z = 0.0;

 CSYS_boom_0_data.angle_x = 0.0;

 CSYS_boom_0_data.angle_y = 0.0;

 CSYS_boom_0_data.angle_z = 0.0;

 CSYS_boom_0_data.transform_sequence = true;

 CSYS_boom_0_data.rotation_sequence[0] = 1;

 CSYS_boom_0_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_1_data;

 CSYS_boom_1_data.offset_x = 0.0;

 CSYS_boom_1_data.offset_y = 0.0;

 CSYS_boom_1_data.offset_z = 0.0;

 CSYS_boom_1_data.angle_x = 0.0;

 CSYS_boom_1_data.angle_y = 0.0;

 CSYS_boom_1_data.angle_z =

Link_Dimensions_obj.Boom_defct_ang_betta +

OperConfig_obj.Boom_oper_ang_dig1;

 CSYS_boom_1_data.transform_sequence = true;

 CSYS_boom_1_data.rotation_sequence[0] = 1;

 CSYS_boom_1_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_2_data;

 CSYS_boom_2_data.offset_x = Link_Dimensions_obj.Boom_side_len_T;

 CSYS_boom_2_data.offset_y = 0.0;

 CSYS_boom_2_data.offset_z = 0.0;

 CSYS_boom_2_data.angle_x = 0.0;

111

 CSYS_boom_2_data.angle_y = 0.0;

 CSYS_boom_2_data.angle_z = 0.0;

 CSYS_boom_2_data.transform_sequence = true;

 CSYS_boom_2_data.rotation_sequence[0] = 1;

 CSYS_boom_2_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_3_data;

 CSYS_boom_3_data.offset_x = Link_Dimensions_obj.Boom_side_len_T;

 CSYS_boom_3_data.offset_y = 0.0;

 CSYS_boom_3_data.offset_z = 0.0;

 CSYS_boom_3_data.angle_x = 0.0;

 CSYS_boom_3_data.angle_y = 0.0;

 CSYS_boom_3_data.angle_z = -

2*(Link_Dimensions_obj.Boom_defct_ang_betta);

 CSYS_boom_3_data.transform_sequence = true;

 CSYS_boom_3_data.rotation_sequence[0] = 1;

 CSYS_boom_3_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_4_data;

 CSYS_boom_4_data.offset_x = Link_Dimensions_obj.Boom_side_len_T;

 CSYS_boom_4_data.offset_y = 0.0;

 CSYS_boom_4_data.offset_z = 0.0;

 CSYS_boom_4_data.angle_x = 0.0;

 CSYS_boom_4_data.angle_y = 0.0;

 CSYS_boom_4_data.angle_z = 0.0;

 CSYS_boom_4_data.transform_sequence = true;

 CSYS_boom_4_data.rotation_sequence[0] = 1;

 CSYS_boom_4_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_5_data;

 CSYS_boom_5_data.offset_x =

0.9*Link_Dimensions_obj.Boom_side_len_T;

 CSYS_boom_5_data.offset_y = 0.0;

 CSYS_boom_5_data.offset_z = 0.0;

 CSYS_boom_5_data.angle_x = 0.0;

 CSYS_boom_5_data.angle_y = 0.0;

 CSYS_boom_5_data.angle_z = 0.0;

 CSYS_boom_5_data.transform_sequence = true;

 CSYS_boom_5_data.rotation_sequence[0] = 1;

 CSYS_boom_5_data.rotation_sequence[1] = 2;

 DATUM_CSYS_DATA CSYS_boom_6_data;

 CSYS_boom_6_data.offset_x = -

0.05*Link_Dimensions_obj.Boom_side_len_T;

 CSYS_boom_6_data.offset_y = 0.0;

 CSYS_boom_6_data.offset_z = 0.0;

 CSYS_boom_6_data.angle_x = 0.0;

 CSYS_boom_6_data.angle_y = 0.0;

 CSYS_boom_6_data.angle_z = 0.0;

 CSYS_boom_6_data.transform_sequence = true;

 CSYS_boom_6_data.rotation_sequence[0] = 1;

 CSYS_boom_6_data.rotation_sequence[1] = 2;

/*

CREATE PART FILE (NEW)

*/

 char

Boom_part_path[UF_CFI_MAX_FILE_NAME_SIZE] =

"D:\\NX Files 2010\\Parts\\Boom\\Boom_New.prt";

112

 Boom_part = wub_Create_New_Part_File(Boom_part_path);

 DATUM_CSYS_boom_0 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_0_data,NULL_TAG);

DATUM_CSYS_boom_1 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_1_data,

DATUM_CSYS_boom_0);

 wub_set_wcs(DATUM_CSYS_boom_1);

/*

IMPORT DATA POINTS FROM FILE AND CONSTRUCT THE SPLINE LINES

*/

 tag_t

 Boom_Spline1_Orig,

 Boom_Spline2_Orig,

 Boom_Spline1_Ofstd,

 Boom_Spline2_Ofstd;

boom_csv_file1_orig = fopen(NX_BOOM_VEC_1_ORIGINAL);

Boom_Spline1_Orig = wub_Create_Fit_Spline_on_WCS(boom_csv_file1_orig);

fclose(boom_csv_file1_orig);

boom_csv_file1_ofstd = fopen(NX_BOOM_VEC_1_OFFESETTED);

Boom_Spline1_Ofstd = wub_Create_Fit_Spline_on_WCS(boom_csv_file1_ofstd);

fclose(boom_csv_file1_ofstd);

DATUM_CSYS_boom_2 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_2_data,

DATUM_CSYS_boom_1);

DATUM_CSYS_boom_3 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_3_data,

DATUM_CSYS_boom_1);

DATUM_CSYS_boom_4 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_4_data,

DATUM_CSYS_boom_3);

DATUM_CSYS_boom_5 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_5_data,

DATUM_CSYS_boom_3);

DATUM_CSYS_boom_6 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_6_data,

DATUM_CSYS_boom_5);

wub_set_wcs(DATUM_CSYS_boom_3);

boom_csv_file2_orig = fopen(NX_BOOM_VEC_2_ORIGINAL);

Boom_Spline2_Orig = wub_Create_Fit_Spline_on_WCS(boom_csv_file2_orig);

fclose(boom_csv_file2_orig);

boom_csv_file2_ofstd = fopen(NX_BOOM_VEC_2_OFFESETTED);

Boom_Spline2_Ofstd = wub_Create_Fit_Spline_on_WCS(boom_csv_file2_ofstd);

fclose(boom_csv_file2_ofstd);

/*

CREATE MIRROR PLANES

*/

 tag_t

 CSYS1_YZ_datum_plane,

 CSYS1_ZX_datum_plane,

 CSYS2_YZ_datum_plane,

 CSYS2_ZX_datum_plane,

 CSYS3_YZ_datum_plane,

 CSYS3_ZX_datum_plane,

 CSYS5_YZ_datum_plane,

 CSYS6_YZ_datum_plane;

CSYS1_ZX_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_1, zx_plane);

CSYS2_YZ_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_2, yz_plane);

113

CSYS2_ZX_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_2, zx_plane);

CSYS3_YZ_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_3, yz_plane);

CSYS3_ZX_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_3, zx_plane);

CSYS5_YZ_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_5, yz_plane);

CSYS6_YZ_datum_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_6, yz_plane);

/*

MIRROR SPLINE LINES ABOUT PLANES

*/

 tag_t

 Boom_Spline1_Orig_mirrored,

 Boom_Spline1_Ofstd_mirrored,

 Boom_Spline2_Orig_mirrored,

 Boom_Spline2_Ofstd_mirrored;

Boom_Spline1_Orig_mirrored =

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline1_Orig,

CSYS1_ZX_datum_plane);

Boom_Spline1_Ofstd_mirrored =

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline1_Ofstd,

CSYS1_ZX_datum_plane);

Boom_Spline2_Orig_mirrored =

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline2_Orig,

CSYS3_ZX_datum_plane);

Boom_Spline2_Ofstd_mirrored =

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline2_Ofstd,

 CSYS3_ZX_datum_plane);

/*

TRIM LINES WITH PLANES

*/

 tag_t

 Boom_Spline1_Orig_trmd,

 Boom_Spline1_Ofstd_trmd,

 Boom_Spline2_Orig_trmd,

 Boom_Spline2_Ofstd_trmd,

 Boom_Spline1_Orig_mrrd_trmd,

 Boom_Spline1_Ofstd_mrrd_trmd,

 Boom_Spline2_Orig_mrrd_trmd,

 Boom_Spline2_Ofstd_mrrd_trmd;

Boom_Spline1_Orig_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Orig,CSYS3_ZX_datum_plane,2);

Boom_Spline1_Ofstd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Ofstd,CSYS3_ZX_datum_plane,2);

Boom_Spline2_Orig_trmd = wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig,

CSYS2_ZX_datum_plane,

1);

Boom_Spline2_Ofstd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd,CSYS2_ZX_datum_plane,1);

Boom_Spline1_Orig_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Orig_mirrored,

CSYS3_YZ_datum_plane,

2);

Boom_Spline1_Ofstd_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Ofstd_mirrored,

CSYS3_YZ_datum_plane,

2);

114

Boom_Spline2_Orig_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_mirrored,

CSYS2_YZ_datum_plane,

1);

Boom_Spline2_Ofstd_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_mirrored,

CSYS2_YZ_datum_plane,

1);

// FURTHER MODIFICATION FOR JOINT "J2"

Boom_Spline2_Orig_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_trmd,

 CSYS5_YZ_datum_plane,

2);

Boom_Spline2_Ofstd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_trmd,

CSYS5_YZ_datum_plane,

2);

Boom_Spline2_Orig_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_mrrd_trmd,

CSYS5_YZ_datum_plane,

2);

Boom_Spline2_Ofstd_mrrd_trmd =

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_mrrd_trmd,

CSYS5_YZ_datum_plane,

2);

/*

BRIDGING TRIMMED SPLINES

*/

 tag_t

 BRIDGE_Orig_Top,

 BRIDGE_Ofstd_Top,

 BRIDGE_Orig_Down,

 BRIDGE_Ofstd_Down;

BRIDGE_Orig_Top = wub_Bridge_Curves(Boom_Spline1_Orig_trmd,

Boom_Spline2_Orig_trmd,0,0,1,0);

BRIDGE_Ofstd_Top = wub_Bridge_Curves(Boom_Spline1_Ofstd_trmd,

Boom_Spline2_Ofstd_trmd,0,0,1,0);

BRIDGE_Orig_Down = wub_Bridge_Curves(Boom_Spline1_Orig_mrrd_trmd,

Boom_Spline2_Orig_mrrd_trmd,0,0,1,0);

BRIDGE_Ofstd_Down = wub_Bridge_Curves(Boom_Spline1_Ofstd_mrrd_trmd,

Boom_Spline2_Ofstd_mrrd_trmd,0,0,1,0);

 tag_t

 BRIDGE_J1_Orig,

 BRIDGE_J1_Ofstd,

 BRIDGE_J2_Orig,

 BRIDGE_J2_Ofstd;

 BRIDGE_J1_Orig =

wub_Bridge_Curves(Boom_Spline1_Orig_trmd,Boom_Spline1_Orig_mrrd_trmd,1,0,

0,0);

 BRIDGE_J1_Ofstd =

wub_Bridge_Curves(Boom_Spline1_Ofstd_trmd,Boom_Spline1_Ofstd_mrrd_trmd,1,

0,0,0);

 BRIDGE_J2_Orig =

wub_Bridge_Curves(Boom_Spline2_Orig_trmd,Boom_Spline2_Orig_mrrd_trmd,0,1,

1,1);

115

 BRIDGE_J2_Ofstd =

wub_Bridge_Curves(Boom_Spline2_Ofstd_trmd,Boom_Spline2_Ofstd_mrrd_trmd,0,

1,1,1);

/*

JOIN LINES TO FORM GUIDES

*/

 tag_t

 GUIDE_Ogig_Top_joined,

 GUIDE_Ogig_Down_joined,

 GUIDE_Ofstd_Total_Joined,

GUIDE_Ofstd_total_curves[7] = {Boom_Spline1_Ofstd_trmd,

BRIDGE_Ofstd_Top,

Boom_Spline2_Ofstd_trmd,

BRIDGE_J2_Ofstd,

Boom_Spline2_Ofstd_mrrd_trmd,

BRIDGE_Ofstd_Down,

Boom_Spline1_Ofstd_mrrd_trmd};

 tag_t

 GUIDE_Orig_Top[3] = {Boom_Spline1_Orig_trmd,

BRIDGE_Orig_Top,

Boom_Spline2_Orig_trmd},

 GUIDE_Orig_Down[3] = {Boom_Spline1_Orig_mrrd_trmd,

BRIDGE_Orig_Down,

Boom_Spline2_Orig_mrrd_trmd};

 GUIDE_Ofstd_Total_Joined =

wub_Join_Curves(GUIDE_Ofstd_total_curves,7);

 GUIDE_Ogig_Top_joined = wub_Join_Curves(GUIDE_Orig_Top,3);

 GUIDE_Ogig_Down_joined = wub_Join_Curves(GUIDE_Orig_Down,3);

/*

PROJECTING GUIDE ONTO THE XY PLANE

*/

 tag_t

 PROJECTED_J1_Bridge_Ofstd,

 PROJECTED_GUIDE_Ofstd_Total_Joined,

 PROJECTED_top_Bridge;

PROJECTED_GUIDE_Ofstd_Total_Joined =

wub_Create_Projected_Curve(GUIDE_Ofstd_Total_Joined,

DATUM_CSYS_boom_1,xy_plane);

PROJECTED_J1_Bridge_Ofstd = wub_Create_Projected_Curve(BRIDGE_J1_Ofstd,

DATUM_CSYS_boom_1,xy_plane);

PROJECTED_top_Bridge = wub_Create_Projected_Curve(BRIDGE_Ofstd_Top,

DATUM_CSYS_boom_1,xy_plane);

/*

CREATING POINTS FOR PROFILE GENERATION

*/

 tag_t

 POINT_Top_ofstd,

 PROJECTED_POINT_Top_ofstd,

 POINT_Top_orig,

 POINT_Down_orig,

 POINT_J2_Top_orig,

 POINT_J2_Down_orig;

POINT_Top_ofstd = wub_Point_from_Spline(Boom_Spline1_Ofstd_trmd,0);

PROJECTED_POINT_Top_ofstd = wub_Create_Projected_Curve(POINT_Top_ofstd,

DATUM_CSYS_boom_1,xy_plane);

POINT_Top_orig = wub_Point_from_Spline(Boom_Spline1_Orig_trmd,0);

116

POINT_Down_orig = wub_Point_from_Spline(Boom_Spline1_Orig_mrrd_trmd,0);

POINT_J2_Top_orig = wub_Point_from_Spline(Boom_Spline2_Orig_trmd,1);

POINT_J2_Down_orig =

wub_Point_from_Spline(Boom_Spline2_Orig_mrrd_trmd,1);

/*

CREATING PROFILE CURVES (LINES)

*/

 tag_t

 SECTION_Boom_profile_top,

 SECTION_Boom_profile_side,

 SECTION_J2_Boom_profile_side;

SECTION_Boom_profile_top = wub_Lines_from_two_points(POINT_Top_ofstd,

PROJECTED_POINT_Top_ofstd);

SECTION_Boom_profile_side = wub_Lines_from_two_points(POINT_Top_orig,

POINT_Down_orig);

SECTION_J2_Boom_profile_side =

wub_Lines_from_two_points(POINT_J2_Top_orig, POINT_J2_Down_orig);

/*

CREATING SWEEP SHEET SURFACES AND BOUNDED PLANES

*/

 tag_t

 SHEET_Boom_top,

 SHEET_J1,

 SHEET_Boom_side;

SHEET_Boom_top = wub_SWEEP_2_guides(GUIDE_Ofstd_Total_Joined,

PROJECTED_GUIDE_Ofstd_Total_Joined, SECTION_Boom_profile_top);

SHEET_J1 = wub_SWEEP_2_guides(BRIDGE_J1_Ofstd, PROJECTED_J1_Bridge_Ofstd,

SECTION_Boom_profile_top);

SHEET_Boom_side = wub_SWEEP_2_guides(GUIDE_Ogig_Top_joined,

GUIDE_Ogig_Down_joined, SECTION_Boom_profile_side);

tag_t

String_bplnae_J1[2] = {BRIDGE_J1_Orig,SECTION_Boom_profile_side},

String_bplnae_J2[2] = {BRIDGE_J2_Orig,SECTION_J2_Boom_profile_side},

BPLANE_J1,

BPLANE_J2;

BPLANE_J1 = wub_BPLANE(String_bplnae_J1);

BPLANE_J2 = wub_BPLANE(String_bplnae_J2);

/*

CREATE SKETCH

*/

 char

 sketch_name1[30] = {"BOOM_JOINT_#2"};

 tag_t

SKETCH_J2_Adopter = wub_SKETCHES_J2_adopter(sketch_name1,

 DATUM_CSYS_boom_4,

xy_plane,

xc_axis);

 tag_t

 arc_J2_outside;

 double J2_center[3] = {0.,0.,0.},

 J2_outer_radius = 50.;

117

 arc_J2_outside =

wub_ARC_Center_Radius(DATUM_CSYS_boom_4,xy_plane,J2_outer_radius,J2_cente

r,0.,360.);

 tag_t

 LINE_J2_plate_top,

 LINE_J2_plate_Down;

LINE_J2_plate_top = wub_Create_Projected_Curve(Boom_Spline2_Orig_trmd,

DATUM_CSYS_boom_1,xy_plane);

LINE_J2_plate_Down =

wub_Create_Projected_Curve(Boom_Spline2_Orig_mrrd_trmd,

DATUM_CSYS_boom_1,xy_plane);

//Further modify by trimming

LINE_J2_plate_top = wub_Trim_Curve_by_Datum_Plane(LINE_J2_plate_top,

CSYS6_YZ_datum_plane,1);

LINE_J2_plate_Down = wub_Trim_Curve_by_Datum_Plane(LINE_J2_plate_Down,

CSYS6_YZ_datum_plane,1);

 tag_t

 POINT_J2_top_left_end,

 POINT_J2_down_left_end,

 POINT_J2_top_right_end,

 POINT_J2_down_right_end;

POINT_J2_top_left_end = wub_Point_from_Spline(LINE_J2_plate_top,0);

POINT_J2_down_left_end = wub_Point_from_Spline(LINE_J2_plate_Down,0);

POINT_J2_top_right_end = wub_Point_from_Spline(LINE_J2_plate_top,1);

POINT_J2_down_right_end = wub_Point_from_Spline(LINE_J2_plate_Down,1);

 tag_t

 LINE_J2_left,

 LINE_J2_connecting_top,

 LINE_J2_connecting_Down;

LINE_J2_left = wub_Lines_from_two_points(POINT_J2_top_left_end,

POINT_J2_down_left_end);

LINE_J2_connecting_top = wub_Lines_Point_Tangent(POINT_J2_top_right_end,

arc_J2_outside,DATUM_CSYS_boom_4, xy_plane);

LINE_J2_connecting_Down =

wub_Lines_Point_Tangent(POINT_J2_down_right_end,

arc_J2_outside,DATUM_CSYS_boom_4, xy_plane);

 tag_t

 POINT_tangent1,

 POINT_tangent2;

 POINT_tangent1 = wub_Point_from_Spline(LINE_J2_connecting_top,1);

 POINT_tangent2 = wub_Point_from_Spline(LINE_J2_connecting_Down,1);

 tag_t ARC_J2_secant =

wub_ARC_Point_Point_Radius(DATUM_CSYS_boom_4,xy_plane,J2_outer_radius,J2_

center,POINT_tangent1, POINT_tangent2);

 tag_t

J2_joined_curves[6] = {LINE_J2_plate_top,

LINE_J2_connecting_top,

ARC_J2_secant,

LINE_J2_connecting_Down,

LINE_J2_plate_Down,

LINE_J2_left};

 tag_t JOINED_J2_sketch = wub_Join_Curves(J2_joined_curves,6);

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_plate_top);

118

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_plate_Down);

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_left);

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_connecting_top);

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_connecting_Down);

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&ARC_J2_secant);

 UF_SKET_update_sketch(SKETCH_J2_Adopter);

 UF_SKET_terminate_sketch();

 UF_DISP_set_highlight(SKETCH_J2_Adopter,1);

/*

EXTRUDE SKETCH OF JOINT J2

*/

 char *limit_J2[2] = {"63.","83."};

 tag_t EXTRUDED_J2 = wub_Extrude(JOINED_J2_sketch,limit_J2);

tag_t PROJECTED_csysline =

wub_Create_Projected_Curve(Boom_Spline2_Orig_trmd,

DATUM_CSYS_boom_1,

xy_plane);

tag_t POINT_csys7 = wub_Point_from_Spline(PROJECTED_csysline,0);

 double

 point_csys7_d[3];

UF_CURVE_ask_point_data(POINT_csys7,point_csys7_d);

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d);

 DATUM_CSYS_DATA CSYS_boom_7_data;

 CSYS_boom_7_data.offset_x = point_csys7_d[0] + 80.;

 CSYS_boom_7_data.offset_y = point_csys7_d[1] + 40.;

 CSYS_boom_7_data.offset_z = point_csys7_d[2];

 CSYS_boom_7_data.angle_x = 0.0;

 CSYS_boom_7_data.angle_y = 0.0;

 CSYS_boom_7_data.angle_z = 0.0;

 CSYS_boom_7_data.transform_sequence = true;

 CSYS_boom_7_data.rotation_sequence[0] = 1;

 CSYS_boom_7_data.rotation_sequence[1] = 2;

 DATUM_CSYS_boom_7 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_7_data,DATUM_CSYS_boom_3);

 DATUM_CSYS_DATA CSYS_boom_10_data;

 CSYS_boom_10_data.offset_x = 80.;

 CSYS_boom_10_data.offset_y = 0.0;

 CSYS_boom_10_data.offset_z = 0.0;

 CSYS_boom_10_data.angle_x = 0.0;

 CSYS_boom_10_data.angle_y = 0.0;

 CSYS_boom_10_data.angle_z = 0.0;

 CSYS_boom_10_data.transform_sequence = true;

 CSYS_boom_10_data.rotation_sequence[0] = 1;

 CSYS_boom_10_data.rotation_sequence[1] = 2;

DATUM_CSYS_boom_10 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_10_data,DATUM_CSYS_boom_7);

tag_t DPLANE_trimmer =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_10, yz_plane);

PROJECTED_csysline = wub_Trim_Curve_by_Datum_Plane(PROJECTED_csysline,

DPLANE_trimmer,2);

119

 tag_t

 PROJECTED_LOWER_Bridge =

wub_Create_Projected_Curve(BRIDGE_Ofstd_Down,

DATUM_CSYS_boom_1,xy_plane);

 tag_t

POINT_J12_left_t = wub_Point_from_Spline(PROJECTED_LOWER_Bridge,0),

POINT_J12_right_t = wub_Point_from_Spline(PROJECTED_LOWER_Bridge,1);

 double

 POINT_J12_left_d[3],

 POINT_J12_right_d[3];

 UF_CURVE_ask_point_data(POINT_J12_left_t,POINT_J12_left_d);

 UF_CURVE_ask_point_data(POINT_J12_right_t,POINT_J12_right_d);

 double

POINT_J2_hinge_d[3];

POINT_J2_hinge_d[0] = 0.5*(POINT_J12_left_d[0] + POINT_J12_right_d[0]);

POINT_J2_hinge_d[1] = 0.5*(POINT_J12_left_d[1] + POINT_J12_right_d[1]);

POINT_J2_hinge_d[2] = 0.5*(POINT_J12_left_d[2] + POINT_J12_right_d[2]);

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d);

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d);

 DATUM_CSYS_DATA CSYS_boom_8_data;

 CSYS_boom_8_data.offset_x = POINT_J2_hinge_d[0];

 CSYS_boom_8_data.offset_y = POINT_J2_hinge_d[1];

 CSYS_boom_8_data.offset_z = POINT_J2_hinge_d[2];

 CSYS_boom_8_data.angle_x = 0.0;

 CSYS_boom_8_data.angle_y = 0.0;

 CSYS_boom_8_data.angle_z = 0.0;

 CSYS_boom_8_data.transform_sequence = true;

 CSYS_boom_8_data.rotation_sequence[0] = 1;

 CSYS_boom_8_data.rotation_sequence[1] = 2;

DATUM_CSYS_boom_8 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_8_data,DATUM_CSYS_boom_0);

 DATUM_CSYS_DATA CSYS_boom_9_data;

 CSYS_boom_9_data.offset_x = 0.0;

 CSYS_boom_9_data.offset_y = -25.;

 CSYS_boom_9_data.offset_z = 0.0;

 CSYS_boom_9_data.angle_x = 0.0;

 CSYS_boom_9_data.angle_y = 0.0;

 CSYS_boom_9_data.angle_z = 0.0;

 CSYS_boom_9_data.transform_sequence = true;

 CSYS_boom_9_data.rotation_sequence[0] = 1;

 CSYS_boom_9_data.rotation_sequence[1] = 2;

DATUM_CSYS_boom_9 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_9_data,DATUM_CSYS_boom_8);

 DATUM_CSYS_DATA CSYS_boom_11_data; // Location of Transition four-

bar

 CSYS_boom_11_data.offset_x = -Four-bar_dimensions_obj.link0_bo;

 CSYS_boom_11_data.offset_y = 0.;

 CSYS_boom_11_data.offset_z = 0.0;

 CSYS_boom_11_data.angle_x = 0.0;

 CSYS_boom_11_data.angle_y = 0.0;

120

 CSYS_boom_11_data.angle_z = 0.0;

 CSYS_boom_11_data.transform_sequence = true;

 CSYS_boom_11_data.rotation_sequence[0] = 1;

 CSYS_boom_11_data.rotation_sequence[1] = 2;

DATUM_CSYS_boom_11 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_11_data,

DATUM_CSYS_boom_4);

tag_t JOINED_J11 =

wub_SKETCH_J11(DATUM_CSYS_boom_7,xy_plane,PROJECTED_csysline,PROJECTED_to

p_Bridge);

 UF_DISP_set_highlight(JOINED_J11,1);

 char* limit_J11[2] = {"25.","50."};

 tag_t EXTRUDE_J11 = wub_Extrude(JOINED_J11, limit_J11);

tag_t JOINED_J12 =

wub_SKETCH_J12(DATUM_CSYS_boom_9,xy_plane,BRIDGE_Ofstd_Down);

 UF_DISP_set_highlight(JOINED_J12,1);

 char* limit_J12[2] = {"25.","50."};

 tag_t EXTRUDE_J12 = wub_Extrude(JOINED_J12, limit_J12);

 tag_t

 THICKEN_top,

 THICKEN_J1_rear,

 THICKEN_side,

 THICKEN_J1_side,

 THICKEN_J2_side;

 tag_t

 UNITED_solid;

 UF_MODL_create_thicken_sheet(SHEET_Boom_top,

 "0.",

 "7.0",

 UF_NULLSIGN,

 &THICKEN_top);

 UF_MODL_create_thicken_sheet(SHEET_J1,

 "0.",

 "-7.0",

 UF_NULLSIGN,

 &THICKEN_J1_rear);

 UF_MODL_create_thicken_sheet(SHEET_Boom_side,

 "0.",

 "-7.0",

 UF_NULLSIGN,

 &THICKEN_side);

 UF_MODL_create_thicken_sheet(BPLANE_J1,

 "0.",

 "-7.0",

 UF_NULLSIGN,

 &THICKEN_J1_side);

 UF_MODL_create_thicken_sheet(BPLANE_J2,

 "0.",

 "7.0",

 UF_NULLSIGN,

 &THICKEN_J2_side);

 tag_t

 SOLID_TOP,

 SOLID_J1_REAR,

 SOLID_SIDE,

 SOLID_J1_SIDE,

 SOLID_J2_SIDE;

121

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_top, &SOLID_TOP));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J1_rear, &SOLID_J1_REAR));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_side, &SOLID_SIDE));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J1_side, &SOLID_J1_SIDE));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J2_side, &SOLID_J2_SIDE));

 UNITED_solid = wub_UNITE_SOLIDS(SOLID_TOP,SOLID_J1_REAR);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_SIDE);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_J1_SIDE);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_J2_SIDE);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDED_J2);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDE_J11);

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDE_J12);

/*

CREATE CYLINDERS

*/

 wub_set_wcs(DATUM_CSYS_boom_1);

 UF_DISP_set_highlight(DATUM_CSYS_boom_1,1);

 double

 origin_bool_J1[3] = {0.,0.,0.},

 dirction_bool_J1[3] = {0.,0.,1};

 tag_t

 bool_J1_cylinder_outside,

 bool_J1_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

origin_bool_J1,

UF_CSYS_ROOT_COORDS,

origin_bool_J1);

 tag_t

 UNITED_solid_body =

 UF_MODL_create_cylinder(UF_POSITIVE,

 UNITED_solid,

 origin_bool_J1,

 "100.",

 "75.",

 dirction_bool_J1,

 &bool_J1_cylinder_outside);

 UNITED_solid =

wub_UNITE_SOLIDS(UNITED_solid,bool_J1_cylinder_outside);

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_solid,

 origin_bool_J1,

 "110.",

 "25.",

 dirction_bool_J1,

 &bool_J1_cylinder_inside);

/*

+++

*/

 wub_set_wcs(DATUM_CSYS_boom_4);

 double

 origin_bool_J2[3] = {0.,0.,0.},

 dirction_bool_J2[3] = {0.,0.,1};

 tag_t

 bool_J2_cylinder_outside,

 bool_J2_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS

,origin_bool_J2,UF_CSYS_ROOT_COORDS,origin_bool_J2);

122

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_solid,

 origin_bool_J2,

 "110.",

 "35.",

 dirction_bool_J2,

 &bool_J2_cylinder_inside);

/*

 ++

*/

 wub_set_wcs(DATUM_CSYS_boom_7);

 UF_DISP_set_highlight(DATUM_CSYS_boom_7,1);

 double

 origin_bool_J10[3] = {0.,0.,0.},

 dirction_bool_J10[3] = {0.,0.,1};

 tag_t

 bool_J10_cylinder_outside,

 bool_J10_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS

,origin_bool_J10,UF_CSYS_ROOT_COORDS,origin_bool_J10);

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_solid,

 origin_bool_J10,

 "110.",

 "35.",

 dirction_bool_J10,

 &bool_J10_cylinder_inside);

/*

 ++

*/

 wub_set_wcs(DATUM_CSYS_boom_9);

 UF_DISP_set_highlight(DATUM_CSYS_boom_9,1);

 double

 origin_bool_J11[3] = {0.,0.,0.},

 dirction_bool_J11[3] = {0.,0.,1};

 tag_t

 bool_J11_cylinder_outside,

 bool_J11_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS

,origin_bool_J11,UF_CSYS_ROOT_COORDS,origin_bool_J11);

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_solid,

 origin_bool_J11,

 "110.",

 "35.",

 dirction_bool_J11,

 &bool_J11_cylinder_inside);

/*

 +++

*/

 tag_t

 mirror_plane,

 mirrored_body,

 final_boom_solid;

 mirror_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_1,xy_plane);

 UF_MODL_create_mirror_body(UNITED_solid,

123

mirror_plane,

&mirrored_body);

 UF_MODL_unite_bodies(UNITED_solid,mirrored_body);

 UF_terminate();

 }

int ufusr_ask_unload(void)

 {

 return(UF_UNLOAD_IMMEDIATELY);

 }

124

A2.2 Stick API CAD Programming

A.2.2.1 Stick Header Files

Prototypeff.h

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))

#define RT(X) report_object_type_and_subtype(#X, X)

#define xc_axis 1

#define yc_axis 2

#define zc_axis 3

#define xy_plane 1

#define yz_plane 2

#define zx_plane 3

#define NX_BOOM_VEC_1_ORIGINAL

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat","r"

#define NX_BOOM_VEC_1_OFFESETTED

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Offsetted.dat","r"

#define NX_BOOM_VEC_2_ORIGINAL

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat","r"

#define NX_BOOM_VEC_2_OFFESETTED

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Offsetted.dat","r"

#define NX_STICK_VEC_MEGRGED

"D:\\My Dropbox\\ForNX\\Delimited Files\\NX_Stick_vecc.dat","r"

#define NX_STICK_LINEARIZED

"D:\\My Dropbox\\ForNX\\Delimited

Files\\NX_Stick_Linearized_Data_orig.dat","r"

#define NX_STICK_LINEARIZED_OFFSETTED

"D:\\My Dropbox\\ForNX\\Delimited

Files\\NX_Stick_Linearized_Data_offstd.dat","r"

typedef struct _iobuf FILE;

struct DATUM_CSYS_DATA{

 double offset_x;

 double offset_y;

 double offset_z;

 double angle_x;

 double angle_y;

 double angle_z;

 bool transform_sequence;

 int rotation_sequence[2];

 };

struct LINK_DIMENSIONS{

 double Boom_shot_len_l1;

 double Boom_defct_ang_betta;

 double Boom_side_len_T;

 double Stick_len_l2;

 double Stick_ang_J2;

 double J2_left;

 double J2_right;

 double Stick_ang_J8;

125

 double J8_lfet;

 double J8_right;

 double Stick_ang_J9;

 double J9_up;

 double J9_lower;

 double Stick_ang_J3;

 double J3_up;

 double J3_lower;

 double Dist_2_J2andJ8_on_Stick;

 double Dist_2_J10_on_Boom;

 double Dist_2_J11_on_Boom;

 double Stick_tail_len;

 double Stick_forward_len;

 };

struct PIN_DIMENSIONS{

 double Pin1;

 double Pin2;

 double Pin3;

 double Pin4;

 double Pin5;

 double Pin6;

 double Pin7;

 double Pin8;

 double Pin9;

 double Pin10;

 double Pin11;

 double Pin12;

 };

struct OPERATIONAL_CONFIGURATION{

 double Boom_oper_ang_dig1;

 double Boom_matrix_1_RB1;

 double Boom_matrix_1_RB2;

 double Stick_matrix_RS;

 double Four-bar_teta_1;

 double Four-bar_teta_2;

 double Four-bar_teta_3;

 };

struct STICK_DATA{

 double Y_first;

 double Y_middle;

 double Y_last;

 double base_min;

 };

int report_error(char *file, int line, char *call, int irc);

int report_object_type_and_subtype(char *name, tag_t object);

tag_t wub_Create_New_Part_File(char

file_path[UF_CFI_MAX_FILE_NAME_SIZE]);

tag_t wub_CSYS_origin_and_direction(void);

tag_t Extract_Smart_tag_of_Datum_CSYS(tag_t tag_DATUM_CSYS);

tag_t Extract_daxis_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag, int

Axis_Num);

tag_t Extract_dplane_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag, int

Plane_Num);

tag_t wub_set_wcs(tag_t target_DATUM_wcs_CSYS);

tag_t wub_CSYS_offset(tag_t referece_datum_CSYS, const double

linear_offset[3], const double angular_offset[3], bool

operation_sequence);

tag_t wub_Ceate_Datum_Plane_Offset(tag_t Referece_DATUM_CSYS, int

Axis_about);

126

tag_t wub_Create_Projected_Curve(tag_t curve_tag, tag_t Datum_CSYS_tag,

int Plane_Num);

tag_t wub_Sketch_boom_profile1(tag_t datum);

tag_t wub_Create_Fit_Spline_on_WCS(FILE *csv_file);

tag_t do_ugopen_api(void);

tag_t wub_Create_DATUM_CSYS_Offset_Method(DATUM_CSYS_DATA

Transformation_Data, tag_t Reference_CSYS);

int wub_LinkDim_Data_Importer(FILE *dat_filepath, LINK_DIMENSIONS

*pLink_Dimensions_obj);

int wub_OperConfig_Data_Importer(FILE *dat_filepath,

OPERATIONAL_CONFIGURATION *pOperConfig_obj);

tag_t wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag, tag_t

Plane_Tag);

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag, tag_t

Datum_Plane_Tag,int which_end);

tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag, tag_t Tool_curve1,

tag_t Tool_curve2);

tag_t wub_Bridge_Curves(tag_t Trimmed_Curve_1_Tag, tag_t

Trimmed_Curve_2_Tag, int Reverse1, int Reverse2,int par1, int par2);

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2);

tag_t wub_Lines_Point_Tangent(tag_t point, tag_t tangent,tag_t

Reference_CSYS, int Plane_Num, int Quadrant);

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section);

tag_t wub_Join_Curves(tag_t *curves,int n);

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end);

tag_t wub_BPLANE(tag_t Curve_String[2]);

tag_t wub_SKETCHES_J2_adopter(char name[30], tag_t Refrence_CSYS, int

Plane_num, int Axis_num);

tag_t THICKEN_Sheet(tag_t sheet_body_tag);

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS);

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS,int Plane_num, double

radius, double arc_center[3],double start_ang, double end_ang);

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS,int Plane_num,

double radius, double arc_center[3],tag_t p1, tag_t p2);

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2]);

tag_t wub_SKETCH_J11(tag_t Reference_CSYS,int Plane_num,tag_t line_Tag,

tag_t bridge_tag);

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag);

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid);

int wub_Stick_Data_Importer(FILE *dat_filepath, STICK_DATA

*Stick_data_Obj);

tag_t wub_Bridge_Arc_with_Line(tag_t arc, tag_t Line_Tag, int Reverse1,

int Reverse2,int par1, int par2);

tag_t wub_Trim_Curve_by_Curve(tag_t line_to_trim, tag_t boundary_line,int

line_end);

tag_t wub_EXTRACT_Object_out_of_Feature(tag_t item_Tag);

tag_t wub_SKETCH_J8S(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag);

127

A2.2.2 Stick Main Codes Assembly:

Stick_Main_12.cpp

#include <stdio.h>

#include <string.h>

#include <uf.h>

#include <uf_ui.h>

#include <uf_part.h>

#include <uf_csys.h>

#include <uf_modl.h>

#include <uf_modl_primitives.h>

#include <uf_disp.h>

#include <uf_so.h>

#include <uf_curve.h>

#include <uf_obj.h>

#include <uf_object_types.h>

#include <uf_assem.h>

#include <uf_modl_datum_features.h>

#include <uf_defs.h>

#include <stdlib.h>

#include <malloc.h>

#include <uf_sket.h>

#include "Prototypeff.h"

void ufusr(char *param, int *retcode, int paramLen)

 {

 if (UF_CALL(UF_initialize())) return;

/*

STICK PART CREATION

*/

tag_t Stick_Part;

char Stick_part_path[UF_CFI_MAX_FILE_NAME_SIZE] =

"D:\\NX Files 2010\\Parts\\StickII.prt";

 Stick_Part = wub_Create_New_Part_File(Stick_part_path);

 STICK_DATA

 Stick_data_Obj;

 FILE

 *stick_data_file;

 stick_data_file = fopen(NX_STICK_LINEARIZED);

 wub_Stick_Data_Importer(stick_data_file,&Stick_data_Obj);

 fclose(stick_data_file);

 LINK_DIMENSIONS

 Link_Dimensions_obj;

 OPERATIONAL_CONFIGURATION

 OperConfig_obj;

 FILE

 *NX_PinDims_file,

 *NX_LinkDims_file,

 *NX_OperConfig_file;

128

NX_LinkDims_file =

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_LinkDims.dat","r");

wub_LinkDim_Data_Importer(NX_LinkDims_file, &Link_Dimensions_obj);

fclose(NX_LinkDims_file);

NX_OperConfig_file =

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_OperConfig.dat","r");

wub_OperConfig_Data_Importer(NX_OperConfig_file, &OperConfig_obj);

fclose(NX_OperConfig_file);

/*

COORDINATE SYSTEM CREATION

*/

 DATUM_CSYS_DATA CSYS_Stick_SJ9_data;

 CSYS_Stick_SJ9_data.offset_x = 0.0;

 CSYS_Stick_SJ9_data.offset_y = 0.0;

 CSYS_Stick_SJ9_data.offset_z = 0.0;

 CSYS_Stick_SJ9_data.angle_x = 0.0;

 CSYS_Stick_SJ9_data.angle_y = 0.0;

 CSYS_Stick_SJ9_data.angle_z = 0.0;

 CSYS_Stick_SJ9_data.transform_sequence = true;

 CSYS_Stick_SJ9_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ9_data.rotation_sequence[1] = 2;

 tag_t

DATUM_CSYS_Stick_SJ9 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ9_data,NULL_TAG);

DATUM_CSYS_DATA CSYS_Stick_SJ3_data;

CSYS_Stick_SJ3_data.offset_x = Link_Dimensions_obj.Stick_tail_len +

Link_Dimensions_obj.Stick_forward_len;

 CSYS_Stick_SJ3_data.offset_y = 0.0;

 CSYS_Stick_SJ3_data.offset_z = 0.0;

 CSYS_Stick_SJ3_data.angle_x = 0.0;

 CSYS_Stick_SJ3_data.angle_y = 0.0;

 CSYS_Stick_SJ3_data.angle_z = 0.0;

 CSYS_Stick_SJ3_data.transform_sequence = true;

 CSYS_Stick_SJ3_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ3_data.rotation_sequence[1] = 2;

 tag_t

 DATUM_CSYS_Stick_SJ3 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ3_data,DATUM_CSYS_Stick_

SJ9);

 DATUM_CSYS_DATA CSYS_Stick_SJ6_data;

 CSYS_Stick_SJ6_data.offset_x = -200.0;

 CSYS_Stick_SJ6_data.offset_y = 0.0;

 CSYS_Stick_SJ6_data.offset_z = 0.0;

 CSYS_Stick_SJ6_data.angle_x = 0.0;

 CSYS_Stick_SJ6_data.angle_y = 0.0;

 CSYS_Stick_SJ6_data.angle_z = 0.0;

 CSYS_Stick_SJ6_data.transform_sequence = true;

 CSYS_Stick_SJ6_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ6_data.rotation_sequence[1] = 2;

 tag_t

129

 DATUM_CSYS_Stick_SJ6 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ6_data,DATUM_CSYS_Stick_

SJ3);

 DATUM_CSYS_DATA CSYS_Stick_SJ2_data;

 CSYS_Stick_SJ2_data.offset_x = Link_Dimensions_obj.Stick_tail_len;

 CSYS_Stick_SJ2_data.offset_y = -Stick_data_Obj.Y_middle;

 CSYS_Stick_SJ2_data.offset_z = 0.0;

 CSYS_Stick_SJ2_data.angle_x = 0.0;

 CSYS_Stick_SJ2_data.angle_y = 0.0;

 CSYS_Stick_SJ2_data.angle_z = 0.0;

 CSYS_Stick_SJ2_data.transform_sequence = true;

 CSYS_Stick_SJ2_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ2_data.rotation_sequence[1] = 2;

 tag_t

 DATUM_CSYS_Stick_SJ2 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_data,DATUM_CSYS_Stick_

SJ9);

DATUM_CSYS_DATA CSYS_Stick_SJ8_data;

CSYS_Stick_SJ8_data.offset_x = Link_Dimensions_obj.Stick_tail_len + 80;

 CSYS_Stick_SJ8_data.offset_y = Stick_data_Obj.Y_middle + 40;

 CSYS_Stick_SJ8_data.offset_z = 0.0;

 CSYS_Stick_SJ8_data.angle_x = 0.0;

 CSYS_Stick_SJ8_data.angle_y = 0.0;

 CSYS_Stick_SJ8_data.angle_z = 0.0;

 CSYS_Stick_SJ8_data.transform_sequence = true;

 CSYS_Stick_SJ8_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ8_data.rotation_sequence[1] = 2;

 tag_t

DATUM_CSYS_Stick_SJ8 =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ8_data,DATUM_CSYS_Stick_

SJ9);

 DATUM_CSYS_DATA CSYS_Stick_SJ8_2ND_data;

 CSYS_Stick_SJ8_2ND_data.offset_x = 80;

 CSYS_Stick_SJ8_2ND_data.offset_y = 0;

 CSYS_Stick_SJ8_2ND_data.offset_z = 0.0;

 CSYS_Stick_SJ8_2ND_data.angle_x = 0.0;

 CSYS_Stick_SJ8_2ND_data.angle_y = 0.0;

 CSYS_Stick_SJ8_2ND_data.angle_z = 0.0;

 CSYS_Stick_SJ8_2ND_data.transform_sequence = true;

 CSYS_Stick_SJ8_2ND_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ8_2ND_data.rotation_sequence[1] = 2;

 tag_t

DATUM_CSYS_Stick_SJ8_2ND =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ8_2ND_data,DATUM_CSYS_St

ick_SJ8);

 DATUM_CSYS_DATA CSYS_Stick_SJ2_CONS_data;

CSYS_Stick_SJ2_CONS_data.offset_x = Link_Dimensions_obj.Stick_tail_len;

 CSYS_Stick_SJ2_CONS_data.offset_y = -Stick_data_Obj.Y_middle;

 CSYS_Stick_SJ2_CONS_data.offset_z = Stick_data_Obj.base_min;

 CSYS_Stick_SJ2_CONS_data.angle_x = 0.0;

 CSYS_Stick_SJ2_CONS_data.angle_y = 0.0;

 CSYS_Stick_SJ2_CONS_data.angle_z = 0.;

130

 CSYS_Stick_SJ2_CONS_data.transform_sequence = true;

 CSYS_Stick_SJ2_CONS_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ2_CONS_data.rotation_sequence[1] = 2;

tag_t DATUM_CSYS_Stick_SJ2_CONS =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_CONS_data,DATUM_CSYS_S

tick_SJ9);

 DATUM_CSYS_DATA CSYS_Stick_SJ2_CONS_OUT_data;

 CSYS_Stick_SJ2_CONS_OUT_data.offset_x = 0.;

 CSYS_Stick_SJ2_CONS_OUT_data.offset_y = 0.;

 CSYS_Stick_SJ2_CONS_OUT_data.offset_z = 12.;

 CSYS_Stick_SJ2_CONS_OUT_data.angle_x = 0.0;

 CSYS_Stick_SJ2_CONS_OUT_data.angle_y = 0.0;

 CSYS_Stick_SJ2_CONS_OUT_data.angle_z = 0.;

 CSYS_Stick_SJ2_CONS_OUT_data.transform_sequence = true;

 CSYS_Stick_SJ2_CONS_OUT_data.rotation_sequence[0] = 1;

 CSYS_Stick_SJ2_CONS_OUT_data.rotation_sequence[1] = 2;

tag_t DATUM_CSYS_Stick_SJ2_CONS_OUT =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_CONS_OUT_data,

DATUM_CSYS_Stick_SJ2_CONS);

 DATUM_CSYS_DATA CSYS_Stick_MIDDLE_data;

CSYS_Stick_MIDDLE_data.offset_x =

0.25*Link_Dimensions_obj.Stick_tail_len;

 CSYS_Stick_MIDDLE_data.offset_y = 0.0;

 CSYS_Stick_MIDDLE_data.offset_z = 0.0;

 CSYS_Stick_MIDDLE_data.angle_x = 0.0;

 CSYS_Stick_MIDDLE_data.angle_y = 0.0;

 CSYS_Stick_MIDDLE_data.angle_z =0.0;

 CSYS_Stick_MIDDLE_data.transform_sequence = true;

 CSYS_Stick_MIDDLE_data.rotation_sequence[0] = 1;

 CSYS_Stick_MIDDLE_data.rotation_sequence[1] = 2;

tag_t DATUM_CSYS_Stick_MIDDLE =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_MIDDLE_data,DATUM_CSYS_Sti

ck_SJ9);

 DATUM_CSYS_DATA CSYS_Stick_HINGE_data;

 CSYS_Stick_HINGE_data.offset_x = 0.0;

 CSYS_Stick_HINGE_data.offset_y = 0.0;

 CSYS_Stick_HINGE_data.offset_z = 25.0;

 CSYS_Stick_HINGE_data.angle_x = 0.0;

 CSYS_Stick_HINGE_data.angle_y = 0.0;

 CSYS_Stick_HINGE_data.angle_z =0.0;

 CSYS_Stick_HINGE_data.transform_sequence = true;

 CSYS_Stick_HINGE_data.rotation_sequence[0] = 1;

 CSYS_Stick_HINGE_data.rotation_sequence[1] = 2;

tag_t DATUM_CSYS_Stick_HINGE =

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_HINGE_data,DATUM_CSYS_Stic

k_SJ9);

/*

 ++++++++++++++++++++++++++++ PLANES +++++++++++++++++++++++++++++++

*/

131

 tag_t

 PLANE_Horizontal_middle,

 PLANE_Vertical_middle,

 PLANE_Vertical_JS8_SND,

 PLANE_HINGE_xy,

 PLANE_MIDDLE_yz;

PLANE_Horizontal_middle =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9, zx_plane);

PLANE_Vertical_middle =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9, xy_plane);

PLANE_HINGE_xy = Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_HINGE,

xy_plane);

PLANE_MIDDLE_yz =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_MIDDLE, yz_plane);

PLANE_Vertical_JS8_SND =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ8_2ND, yz_plane);

/*

 +++++++++++++++++++++++++++++++ POINTS +++++++++++++++++++++++++++++++

*/

 double

 point_stick_first[3],

 point_stick_middle[3],

 point_stick_last[3];

 point_stick_middle[0] = Link_Dimensions_obj.Stick_tail_len;

 point_stick_middle[1] = Stick_data_Obj.Y_middle;

 point_stick_middle[2] = 0.0;

 tag_t

 POINT_Stick_fist,

 POINT_Stick_middle,

 POINT_Stick_last;

 UF_CURVE_create_point(point_stick_middle,&POINT_Stick_middle);

 /*

 +++++++++++++++++++++++++++ ARCS ++++++++++++++++++++++++++++++++++++

 */

 double

 Rad_J2S_out = 40.0,

 Rad_JS9_out = Stick_data_Obj.Y_first,

 Rad_JS3_out = Stick_data_Obj.Y_last,

 Center_J2S[3] = {0.,0.,0.},

 Center_J3S[3] = {0.,0.,0.},

 Center_J9S[3] = {0.,0.,0.};

 tag_t

 ARC_JS2_out,

 ARC_JS3_out,

 ARC_JS9_out;

 ARC_JS2_out =

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ2,xy_plane,Rad_J2S_out,

Center_J2S,180., 300.);

 ARC_JS3_out =

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ3,xy_plane,Rad_JS3_out,

Center_J3S,-115., 115.);

 ARC_JS9_out =

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ9,xy_plane,Rad_JS9_out,

Center_J9S,85., 300.);

132

/*

 ++++++++++++++++++++++++ ADDITIONAL POINTS +++++++++++++++++++++++++++

*/

 double

 pt_J2_RIGHT[3],

 pt_J9_RIGHT[3] = {0.,0.,0.};

 tag_t

 POINT_J2_RIGHT,

 POINT_J9_RIGHT;

 pt_J2_RIGHT[0] = 3*Rad_J2S_out;

 pt_J2_RIGHT[1] = 0;

 pt_J2_RIGHT[2] = 0;

 wub_set_wcs(DATUM_CSYS_Stick_SJ2);

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

pt_J2_RIGHT,

UF_CSYS_ROOT_COORDS,

pt_J2_RIGHT);

UF_CURVE_create_point(pt_J2_RIGHT,&POINT_J2_RIGHT);

wub_set_wcs(DATUM_CSYS_Stick_MIDDLE);

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

pt_J9_RIGHT,

UF_CSYS_ROOT_COORDS,

pt_J9_RIGHT);

UF_CURVE_create_point(pt_J9_RIGHT,&POINT_J9_RIGHT);

/*

 ++++++++++++++++++++++++++++ LINES +++++++++++++++++++++++++++++++++++

*/

 tag_t

 LINE_stick_top_left,

 LINE_stick_top_right,

 LINE_stick_top_right_2ND,

 LINE_stick_down_left,

 LINE_stick_down_right,

 LINE_001;

LINE_stick_top_left = wub_Lines_Point_Tangent(POINT_Stick_middle,

ARC_JS9_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2);

LINE_stick_top_right = wub_Lines_Point_Tangent(POINT_Stick_middle,

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2);

LINE_stick_top_right_2ND = wub_Lines_Point_Tangent(POINT_Stick_middle,

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2);

LINE_stick_down_left =

wub_Mirror_a_Curve_through_a_Plane(LINE_stick_top_left,

PLANE_Horizontal_middle);

LINE_stick_down_right = wub_Lines_Point_Tangent(POINT_J2_RIGHT,

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 4);

LINE_001 = wub_Lines_Point_Tangent(POINT_J9_RIGHT,

ARC_JS2_out,DATUM_CSYS_Stick_SJ2, xy_plane,4);

 // this line has to be projected before modified

tag_t

 PROJECTED_LINE_stick_top_left;

PROJECTED_LINE_stick_top_left =

wub_Create_Projected_Curve(LINE_stick_top_left, DATUM_CSYS_Stick_HINGE,

xy_plane);

 tag_t

133

 LINE_stick_top_left_trmd,

 LINE_stick_down_left_trmd,

 LINE_stick_top_right_2ND_trmd,

 ARC_JS2_out_trmd,

 ARC_JS3_out_trmd,

 ARC_JS9_out_trmd;

LINE_stick_top_left_trmd =

wub_Trim_Curve_by_Datum_Plane(LINE_stick_top_left, PLANE_MIDDLE_yz,2);

LINE_stick_down_left_trmd =

wub_Trim_Curve_by_Curve(LINE_stick_down_left,LINE_001,1);

ARC_JS2_out_trmd = wub_Trim_Curve_by_Curve(ARC_JS2_out,LINE_001,1);

ARC_JS3_out_trmd =

wub_Trim_Curve_by_Curve(ARC_JS3_out,LINE_stick_top_right,0);

ARC_JS3_out_trmd =

wub_Trim_Curve_by_Curve(ARC_JS3_out_trmd,LINE_stick_down_right,1);

ARC_JS9_out_trmd =

wub_Trim_Curve_by_Curve(ARC_JS9_out,LINE_stick_down_left_trmd,0);

LINE_stick_top_right_2ND_trmd =

wub_Trim_Curve_by_Datum_Plane(LINE_stick_top_right_2ND,

PLANE_Vertical_JS8_SND,2);

 UF_DISP_set_highlight(LINE_stick_top_right_2ND_trmd,1);

/*

 +++++++++++++++++++++++++ BRIDGES +++++++++++++++++++++++++++++++++++++

*/

 tag_t

 BRIDGE_J2_RIGHT,

 BRIDGE_J9_RIGHT;

 BRIDGE_J2_RIGHT = wub_Bridge_Arc_with_Line(ARC_JS2_out,

LINE_stick_down_right,

0,

0,

1,

0);

 BRIDGE_J9_RIGHT = wub_Bridge_Curves(LINE_stick_top_left_trmd,

LINE_001,

0,0,1,0);

/*

 ++++++++++++++++++++++ PROJECTION OF CURVES +++++++++++++++++++++++++

*/

 tag_t

 PROJECTED_LINE_stick_down_left_trmd,

 PROJECTED_ARC_JS9_out_trmd,

 PROJECTED_LINE_001,

 PROJECTED_BRIDGE_J9_RIGHT;

PROJECTED_LINE_stick_down_left_trmd =

wub_Create_Projected_Curve(LINE_stick_down_left_trmd,

DATUM_CSYS_Stick_HINGE,

xy_plane);

PROJECTED_ARC_JS9_out_trmd =

wub_Create_Projected_Curve(ARC_JS9_out_trmd,

DATUM_CSYS_Stick_HINGE,

xy_plane);

PROJECTED_LINE_001 =

wub_Create_Projected_Curve(LINE_001,

DATUM_CSYS_Stick_HINGE,

134

xy_plane);

PROJECTED_BRIDGE_J9_RIGHT =

wub_Create_Projected_Curve(BRIDGE_J9_RIGHT,

DATUM_CSYS_Stick_HINGE,

xy_plane);

/*

 ------------------ MODIFY PROJECTED CURVES --------------------

*/

 tag_t

 PROJECTED_LINE_stick_top_left_trmd,

 PROJECTED_LINE_001_trmd;

 PROJECTED_ARC_JS9_out_trmd =

wub_Trim_Curve_by_Curve(PROJECTED_ARC_JS9_out_trmd,

PROJECTED_LINE_stick_top_left,

1);

 PROJECTED_LINE_stick_top_left_trmd =

wub_Trim_Curve_by_Curve(PROJECTED_LINE_stick_top_left,

PROJECTED_BRIDGE_J9_RIGHT,

1);

 PROJECTED_LINE_001_trmd =

wub_Trim_Curve_by_Curve(PROJECTED_LINE_001,

PROJECTED_LINE_stick_down_left_trmd,

0);

/*

 ++++++++++++++++++++++++ JOINING CURVES +++++++++++++++++++++++++++

*/

 // HINGE PROFILE (5 ITEMS)

PROJECTED_ARC_JS9_out_trmd =

wub_EXTRACT_Object_out_of_Feature(PROJECTED_ARC_JS9_out_trmd);

PROJECTED_LINE_stick_top_left_trmd =

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_stick_top_left_trmd);

PROJECTED_BRIDGE_J9_RIGHT =

wub_EXTRACT_Object_out_of_Feature(PROJECTED_BRIDGE_J9_RIGHT);

PROJECTED_LINE_001_trmd =

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_001_trmd);

PROJECTED_LINE_stick_down_left_trmd =

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_stick_down_left_trmd);

// STICK PROFILE (8 ITEMS)

BRIDGE_J9_RIGHT = wub_EXTRACT_Object_out_of_Feature(BRIDGE_J9_RIGHT);

LINE_stick_top_left_trmd =

wub_EXTRACT_Object_out_of_Feature(LINE_stick_top_left_trmd);

LINE_stick_top_right =

wub_EXTRACT_Object_out_of_Feature(LINE_stick_top_right);

ARC_JS3_out_trmd = wub_EXTRACT_Object_out_of_Feature(ARC_JS3_out_trmd);

LINE_stick_down_right =

wub_EXTRACT_Object_out_of_Feature(LINE_stick_down_right);

BRIDGE_J2_RIGHT = wub_EXTRACT_Object_out_of_Feature(BRIDGE_J2_RIGHT);

ARC_JS2_out_trmd = wub_EXTRACT_Object_out_of_Feature(ARC_JS2_out_trmd);

 LINE_001 = wub_EXTRACT_Object_out_of_Feature(LINE_001);

 tag_t

 joined_data_Hinge[5] = {PROJECTED_ARC_JS9_out_trmd,

 PROJECTED_LINE_stick_top_left_trmd,

 PROJECTED_BRIDGE_J9_RIGHT,

 PROJECTED_LINE_001_trmd,

 PROJECTED_LINE_stick_down_left_trmd};

 tag_t

 joined_data_stick_profile[7] = {LINE_stick_top_right,

 LINE_stick_top_left_trmd,

 BRIDGE_J9_RIGHT,

135

 LINE_001,

 ARC_JS2_out_trmd,

 BRIDGE_J2_RIGHT,

 LINE_stick_down_right,

 };

 tag_t

 JOINED_HINGE_J9,

 JOINED_STICK_PROFILE;

 JOINED_HINGE_J9 = wub_Join_Curves(joined_data_Hinge,5);

 JOINED_STICK_PROFILE =

wub_Join_Curves(joined_data_stick_profile,7);

/*

+++++++++++++++++ PROJECT PROFILES ON VERTICAL PLANES ++++++++++++++++

*/

 tag_t

 PROJECTED_Stick_profile,

 PROJECTED_Stick_wall_profile;

 PROJECTED_Stick_profile =

wub_Create_Projected_Curve(JOINED_STICK_PROFILE,

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane);

 PROJECTED_Stick_wall_profile =

wub_Create_Projected_Curve(JOINED_STICK_PROFILE,

DATUM_CSYS_Stick_SJ2_CONS, xy_plane);

/*

++++++++++++++++++++++++ EXTRUDE CURVES +++++++++++++++++++++++++++++

*/

 char* limit_J9S[2] = {"0.","25."};

 tag_t EXTRUDE_J9S = wub_Extrude(JOINED_HINGE_J9, limit_J9S);

/*

++++++++++++++++++++++++ SHEET BODIES CONSTRUCTIONS +++++++++++++++++++

*/

tag_t POINT_SECTIONAL = wub_Point_from_Spline(LINE_stick_top_right, 1);

tag_t POINT_SECTIONAL_prjctd =

wub_Create_Projected_Curve(POINT_SECTIONAL,

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane);

tag_t ARC_JS3_out_trmd_prjcted_out =

wub_Create_Projected_Curve(ARC_JS3_out_trmd,

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane);

tag_t ARC_JS3_out_trmd_prjcted =

wub_Create_Projected_Curve(ARC_JS3_out_trmd, DATUM_CSYS_Stick_SJ2_CONS,

xy_plane);

 tag_t LINE_SECTIONAL =

wub_Lines_from_two_points(POINT_SECTIONAL, POINT_SECTIONAL_prjctd);

 tag_t SWEEP_top =

wub_SWEEP_2_guides(PROJECTED_Stick_profile,

JOINED_STICK_PROFILE,

LINE_SECTIONAL);

tag_t SWEEP_J3S = wub_SWEEP_2_guides(ARC_JS3_out_trmd_prjcted_out,

ARC_JS3_out_trmd,

LINE_SECTIONAL);

tag_t Curve_String[2] =

{ARC_JS3_out_trmd_prjcted,PROJECTED_Stick_wall_profile};

 tag_t

 BPLANE_WALL = wub_BPLANE(Curve_String);

/*

 +++++++++++++++++++++++++++ THICKEN SURFACES ++++++++++++++++++++++++++

136

*/

 tag_t

 THICKEN_top,

 THICKEN_side,

 THICKEN_J3;

 tag_t

 UNITED_solid;

 UF_MODL_create_thicken_sheet(SWEEP_top,

 "-1.",

 "6",

 UF_NULLSIGN,

 &THICKEN_top);

 UF_MODL_create_thicken_sheet(SWEEP_J3S,

 "1.",

 "-6",

 UF_NULLSIGN,

 &THICKEN_J3);

 UF_MODL_create_thicken_sheet(BPLANE_WALL,

 "0.",

 "-7.0",

 UF_NULLSIGN,

 &THICKEN_side);

/*

 +++++++++++++++++ JOINT STRUCTURES ++++++++++++++++++++++

*/

 tag_t

 SOLID_THICKEN_top,

 SOLID_THICKEN_side,

 SOLID_THICKEN_J3,

 UNITED_Stick_solid;

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_top, &SOLID_THICKEN_top));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_side, &SOLID_THICKEN_side));

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J3, &SOLID_THICKEN_J3));

 UNITED_Stick_solid = wub_UNITE_SOLIDS(SOLID_THICKEN_top,

SOLID_THICKEN_side);

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid,

SOLID_THICKEN_J3);

 UNITED_Stick_solid =

wub_UNITE_SOLIDS(UNITED_Stick_solid,EXTRUDE_J9S);

 // JOINT 3 HINGE STRUCTRE

 wub_set_wcs(DATUM_CSYS_Stick_SJ3);

 double

 origin_bool_SJ3[3] = {0.,0.,0.},

 dirction_bool_SJ3[3] = {0.,0.,1};

 tag_t

 bool_SJ3_cylinder_outside,

 bool_SJ3_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

origin_bool_SJ3,

UF_CSYS_ROOT_COORDS,

origin_bool_SJ3);

 UF_MODL_create_cylinder(UF_POSITIVE,

 UNITED_Stick_solid,

 origin_bool_SJ3,

 "100.",

 "40.",

137

 dirction_bool_SJ3,

 &bool_SJ3_cylinder_outside);

 UNITED_Stick_solid =

wub_UNITE_SOLIDS(UNITED_Stick_solid,bool_SJ3_cylinder_outside);

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_Stick_solid,

 origin_bool_SJ3,

 "110.",

 "25.",

 dirction_bool_SJ3,

 &bool_SJ3_cylinder_inside);

 // JOINT 9 HINGE STRUCTURE

 wub_set_wcs(DATUM_CSYS_Stick_SJ9);

 double

 origin_bool_SJ9[3] = {0.,0.,0.},

 dirction_bool_SJ9[3] = {0.,0.,1};

 tag_t

 bool_SJ9_cylinder_outside,

 bool_SJ9_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

origin_bool_SJ9,

UF_CSYS_ROOT_COORDS,

origin_bool_SJ9);

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_Stick_solid,

 origin_bool_SJ9,

 "100.",

 "25.",

 dirction_bool_SJ9,

 &bool_SJ9_cylinder_outside);

 // JOINT 6 (FOUR-BAR MECHANISM CONNECTION POINT) STRUCTURE

 wub_set_wcs(DATUM_CSYS_Stick_SJ6);

 double

 origin_bool_SJ6[3] = {0.,0.,0.},

 dirction_bool_SJ6[3] = {0.,0.,1};

 tag_t

 bool_SJ6_cylinder_outside,

 bool_SJ6_cylinder_inside;

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS,

origin_bool_SJ6,

UF_CSYS_ROOT_COORDS,

origin_bool_SJ6);

 UF_MODL_create_cylinder(UF_POSITIVE,

 UNITED_Stick_solid,

 origin_bool_SJ6,

 "100.",

 "40.",

 dirction_bool_SJ6,

 &bool_SJ6_cylinder_outside);

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid,

bool_SJ6_cylinder_outside)

;

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_Stick_solid,

 origin_bool_SJ6,

 "110.",

 "25.",

 dirction_bool_SJ6,

 &bool_SJ6_cylinder_inside);

138

 // JOINT 2 STRUCTRE

 wub_set_wcs(DATUM_CSYS_Stick_SJ2);

 double

 origin_bool_SJ2[3] = {0.,0.,0.},

 dirction_bool_SJ2[3] = {0.,0.,1};

 tag_t

 bool_SJ2_cylinder_outside,

 bool_SJ2_cylinder_inside;

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS ,

origin_bool_SJ2,

UF_CSYS_ROOT_COORDS,

origin_bool_SJ2);

UF_MODL_create_cylinder(UF_POSITIVE,

 UNITED_Stick_solid,

 origin_bool_SJ2,

 "100.",

 "40.",

 dirction_bool_SJ2,

 &bool_SJ2_cylinder_outside);

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid,

bool_SJ2_cylinder_outside)

;

 UF_MODL_create_cylinder(UF_NEGATIVE,

 UNITED_Stick_solid,

 origin_bool_SJ2,

 "110.",

 "25.",

 dirction_bool_SJ2,

 &bool_SJ2_cylinder_inside);

/// MIRROR STICK BODY

 tag_t

 mirror_plane,

 mirrored_body,

 final_sTICK_solid;

 mirror_plane =

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9,

xy_plane);

 UF_MODL_create_mirror_body(UNITED_Stick_solid,

mirror_plane,

&mirrored_body);

 UF_terminate();

 }

int ufusr_ask_unload(void)

 {

 return(UF_UNLOAD_IMMEDIATELY);

 }

