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Abstract 
 

This research investigates and proposes methods to be used for the automation of 

the conceptual design phases of variational mechanisms. It employs the concept 

of feature-based modeling approaches. A method is proposed for integrating the 

dimensional synthesis, mechanical design and CAD generation phases with 

minimal designer intervention. Extended feature definitions are used in this 

research to create a smooth data transfer platform between different engineering 

tools and applications.  

This paper also introduces another method by which a set of dimensional data 

collected from a family of existing products is used to predict possible solutions 

for a new design. This method, based on artificial neural networks for training and 

solution generation, is used with optimization algorithms for the dimensional 

synthesis of mechanisms. 

An excavator arm mechanism is used as a case study to demonstrate these 

methods. The design of this mechanism is carried out based on its digging mode 

configurations. 
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Chapter 1 

Introduction 
 

1.1  Background  
The design process of multi-component products which are subject to frequent 

changes and modification is a very complex process due to the large amount of 

data involved. Dimensions and parameters defined at the initial stages of the 

design process are used by latter stages during manufacturing. In the traditional 

design approach, this set of information is usually lost between the design stages 

due to the fact that the reusability of knowledge is not given due emphasis.  

This complication even gets worse when different parts of the product are 

designed by different people located in geographically different locations. 

Changes and modifications evoked by one department take considerable time and 

other resources before being fully reflected on components being developed by 

the other departments. Constraint definition and management is also one area 

affected by the method of data management system adopted in the design process.  

Since the traditional CAD files, which are merely the collection of geometric 

entities, cannot grasp additional information vital to the manufacturing and other 

aspects of the product development process, they failed to lend themselves for the 

implementation of an effective knowledge-driven design procedures. This has 

forced researches to look into possible ways of appending more information to the 

traditional CAD models.  

Features were introduced as a means to address these needs. Features are basically 

data structures containing a range of information required to fully describe the 

shape and related aspects of the product. Some of the most commonly used data 

elements include model geometries, material, manufacturing methods, tolerances, 

and machining procedures. Recently, more complicated and sophisticated features 

have been defined to cover previously overlooked but critical aspects.  

The research is motivated by the advancement in the areas of feature definitions 

and their potential applications in the areas of intelligent design automation and 

integration.  It is devoted to extending the use of feature-based modeling concepts 

to include design intents and constraints.  
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1.2 Statement of the Problem 
Traditional design systems, including CAD and CAE tools, have very limited 

capability in terms of storing rich-information with data format that can be 

accessed by the different phases of the product development cycles. This 

limitation directly affects the choices of the design methodologies and the 

necessary data communication mechanisms.  

The required information by the different stages of the design process has to be 

transferred in a very effective manner to achieve maximum level of automation 

and efficiency. The most commonly employed method is storing the data in a 

computer accessed by these process stages. This method has been working 

satisfactorily for quite a long time. However, as the trend in the global market gets 

more competitive and the market span of products gets shorter and shorter, this 

method had been found to be less reliable and reusable. 

Attention is now shifted to developing a method by which the pertinent design 

information will be stored in a consistent and reusable data structure that is 

integrated with the product’s CAD model. Thus, the previously fragmented design 

data files and those corresponding product CAD models have to be encapsulated 

into a single product data model. In fact, modern product models are no longer 

merely a collection of CAD geometric entities. Customizable and advanced 

semantic definitions called features have long been introduced enabling the 

integration of CAD and other engineering data sets, such as manufacturing data.   

The conceptual design process of variational mechanism, which is the focus of 

this research, is well known for its several fragmented modules running on some 

sets of basic data. Design process and knowledge development is iterative in 

nature. Each design cycle generates a set of data or a data model to be used in the 

creation of the next phase model of the product being designed. For example, 

since the product will have different inertia properties after its 3D embodiment, 

the next design cycle will have to include the new properties in both physical and 

geometrical senses, into consideration before commencing the next new cycle. 

Effective automation of this process requires the systematic creation of the CAD 

models in a very consistent manner.   

Associative relationships between different features of a CAD model have to be 

constrained systematically to ensure that the final generated model can have 

comprehensive physical as well as engineering descriptions.  

In addition, in latter manufacturing stages the CAD and design information will 

be needed by the manufacturing system to produce the product. A computer 

numerical control (CNC) machining operation, for example, requires both the 
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material type (non-geometric property) and the CAD geometric entities for tool 

selection and tool path generation, respectively. 

A design procedure equipped with methods which can satisfy these needs and 

requirements, most probably, earns itself a place in the advancing industrial 

application.  

Unlike forward kinematics problems, designs of this kind, whose end effector is 

passing through a prescribed path or set of precision points, inherit the common 

challenges observed in inverse kinematics problems. The availability of numerous 

solutions and, in most cases, the lack of solution convergence is some of the most 

prominent problems making its implementation in automated design environment 

very difficult. 

1.3 Objectives 
The top objective of this research is to propose a feature-based conceptual design 

automation scheme specific to variational mechanism products. This method will 

attempt to use the capabilities of features in accommodating for both geometrical 

and non-geometrical types of data into a CAD system. It aims to utilize features to 

bridge the necessary automation gap in the conceptual design cycle and to further 

investigate their applicability in terms of embedding conceptual design rules for 

complex part shapes and structures development. 

It is also the objective of this research to propose an additional hybrid 

dimensional synthesis method based on Artificial Neural Networks (ANN) and 

optimization techniques. The objective in this area is to overcome the challenges 

of the dimensional synthesis process in terms of narrowing down the number of 

available solutions for a given problem.  

The applicability of the proposed methods will be demonstrated suing the design 

procedures of an excavator mechanism as a case study. Other than its typical 

product development processes, this problem poses some challenges in terms of 

product configuration, linkage optimization, and its programming implementation 

in the proposed design method application.  

The above two proposed methods will be used together in the same case-study 

design problem to investigate and measure their performances. 

1.4 Scope of the Study 
This research is proposing a conceptual product design automation method with 

the integration of feature-based CAD model generation via APIs C++ and Matlab 

programming tools.  
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A hybrid optimization- ANN method is proposed for dimensional synthesis of 

variational mechanisms. The requirement of defining a high-quality initial 

solution for optimization search algorithms is addressed by the use of artificial 

neural networks. The ANN, trained with existing and generated product data, will 

be used to suggest informed sets of initial solutions for the optimization 

techniques. Based on these initial solutions, the optimization search algorithms 

will be used to determine the final solutions for the inverse kinematics problems. 

This work also includes the basic optimization design calculations of an excavator 

arm mechanism for the purpose of demonstrating the proposed methods. Only the 

digging operational conditions are considered for the design purpose.  The design 

has been carried out only taking the strength requirements (working stresses) into 

consideration in a numerical approach (design for strength). It will not consider 

deformation and other dynamic considerations. The Finite Elements Analysis 

(FEA) will not be included in this work due to the tight time constraint.  

1.5 Organization of the Thesis 
Relevant concepts and theories in the areas of design automation and feature-

based modeling which are previously investigated by other researchers are first 

reviewed in Chapter 2. 

Chapter 3 discusses the proposed approaches. The first section of this chapter 

covers a topic on the overall design automation and design data communication 

architectures. The second section, on the other hand, discusses on the details of 

the hybrid Artificial Neural Network (ANN)-Optimization technique developed 

for the purpose of dimensional synthesis of variational mechanisms. 

The next chapter, Chapter 4, is devoted to the theoretical design calculations of 

the case study. Starting from user specification inputs, and by assuming known 

values for joint forces, the cross-sectional parameters of the boom and sticks of an 

excavator arm mechanism are determined by the use of optimization techniques. 

Chapter 5 focuses on the discussion of tools and procedures used to carry out the 

kinematic and dynamic simulations of the excavator arm mechanism. Modeling 

procedures and justifications for selecting the digging operation for simulation 

and design will be discussed in details in this chapter.  

Procedures and methods employed for the CAD modeling and programming 

using the application user interface (API) are discussed in Chapter 6 followed by 

conclusions and future work recommendations in chapter 7.  
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Chapter 2 

Literature Review 
 

In this chapter, research works and publications carried out by other scholars are 

reviewed in relevance to the objective of this research. The overall organization of 

this section is targeted to cover the following major topics: 

 Dimensional synthesis of mechanisms and manipulators 

 Application of ANN in mechanism dimensional synthesis 

 Design automation and integration 

 Parametric and feature-based CAD modeling 

 Reverse engineering and knowledge fusion in product development 

2.1. Dimensional Synthesis  

Dimensional synthesis is the first stage in the process of designing mechanisms 

and manipulators. This process is mainly focused on determining the linear joint-

to-joint distances of linkages and members. Laribi et al. [14] discussed an 

optimization technique developed to determine the linkage dimensions of a 

DELTA parallel robot for a prescribed workspace. The method uses a Genetic 

Algorithm to minimize an objective function developed by writing expressions for 

the end effector location based on a concept called the power of the point. In their 

work, the dimensions of the robots were calculated using an optimization 

technique which minimizes a volume created by three intersecting surfaces but 

containing the prescribed cubic workspace.  A penalty method is used in their 

approach to screen out and select feasible solutions from available solution 

domains.  

Using a similar philosophy, but this time with cylindrical prescribed volume, an 

optimization based dimensional synthesis procedure was suggested by Zhao et al. 

[43] to determine optimum dimensional parameters for the design of a 2-UPS-PU 

parallel manipulator. Cylindrical coordinate system was used when formulating 

the kinematic relationships including the forward and inverse kinematics of the 

manipulator together with the Jacobian for force and velocity analysis. The 

prescribed workspace was represented by a cylinder contained inside the 

minimum workspace volume enclosed by the manipulator movement boundary 

surfaces.  

Analytical and optimizations techniques have been used by several scholars for 

the purpose of synthesizing manipulator and mechanism dimensions. The multiple 
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numbers of possible solutions was pointed out by several researchers as the 

primary disadvantage of analytical solution methods. The procedure of 

synthesizing the linkage dimensions of a four-bar spherical linkage mechanism, 

proposed by Alizade et al. [1], employed the method of polynomial 

approximation to transform 5 non-linear equations into 15 linear equations to 

solve for 5 design parameters.   

The objective of their study was to determine the dimensions of a spherical four-

bar linkage mechanism by linearization of a set of non-linear equations. The 

requirement for the synthesized mechanism was that it should be able to trace 5 

precision points in space. The minimum deviation area (MDA) was proposed in 

their work as a constraint criterion to select the most appropriate solution. The 

result of their investigation was tested by plotting the path of the mechanism 

against the prescribed precision points using AutoCAD 2000. 

2.2.  Artificial Neural Networks (ANN)  

Artificial neural network procedures were used by Hassan and his colleagues [12] 

to study the relationship between the joint variables and the position and 

orientation of the end effector of a six-DOF robot. The study was motivated by 

the fact that the use of ANN doesn’t require an explicit knowledge of the physics 

behind the mechanism. The network was trained by the use of real time data 

collected by sensors mounted on the robot. Designed with an input layer with 6 

neurons for three Cartesian location coordinates and three linear velocity 

components, the network was used to establish a mapping pattern between the 

inputs and outputs. Their work mainly focused on finding the kinematic Jacobian 

solutions. Other numerical methods are also discussed by other scholars for 

solving synthesis and simulation related problems [2]. 

Problems and shortcoming associated with using ANN were also discussed in 

their paper. Some of the challenges they discussed include the difficulty of 

selecting the appropriate network architecture, activation functions, and bias 

weights. The other problem discussed in the paper is the difficulty and 

impracticality of collecting a large amount of data for the purpose of training the 

neural network.  

The advantage of using ANN is also highlighted in their work. The fact that this 

method does not require any detailed knowledge of the mathematic and 

engineering knowledge involved makes it best suited to a wide range of similar 

applications. It was pointed out that as long as there is a sufficient number of data 

for training purposes, the ANN can be used to predict the Jacobian kinematics of 

other configurations without the need to learn and understand the explicit robotics 

philosophies. Modifications and changes in existing robot structures can always 
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be addressed by training the ANN with a new set of data reflecting the new 

modifications. 

Another research was carried out by Gao et al. [11] on the areas of application of 

ANN to dimensional syntheses of mechanisms. Discussed in their work was 

implementation of generic algorithms and neural networks as a tool to synthesize 

the dimensions of a six DOF parallel manipulator. They decided to use this 

method because of the fact that traditional optimizations techniques lack the 

highly needed convergence property in their solutions when used for handling a 

larger number of geometric variables. The stiffness and dexterity of the 

manipulator were taken to be the optimization criteria and they were derived 

based on kinematic analysis procedures. Levenberg–Marquardt and standard back 

propagation algorithms were used in the neural network to approximate stiffness 

and dexterity analytical solutions. Due to the large numbers of variables included 

in the analysis, they have used two different approaches for the optimizations; 

Single Objective Optimizations (SOO) and Multiple Objective Optimizations 

(MOO), namely. With the first approach, the two objectives, stiffness and 

dexterity, were separately investigated while in the second approach they were 

investigated together to understand their combined effect. Problems associated 

with the implementation of their techniques were addressed in their work. 

Modeling the objective function was one area discussed as a challenge in their 

work. The other is the convergence difficulty arising due to the involvement of 

large number of parameters in the formulations of the objective functions 

specially when using the MOO optimization. 

Kinematic synthesis of redundant serial manipulators has been the focus of 

research. Singla et al. used augmented Lagrangian optimization technique to 

determine optimum dimensions for a redundant serial manipulator [28]. The 

algorithm was used for its robustness in identifying feasible solution ranges 

effectively. The formulation of the problem in their paper was based on 

minimization of the positional error subjected to the constraints of avoiding 

manipulator collisions with either external obstacles or its own links. 

The work of Jensen and Hansen [13] discusses a method by which dimensional 

synthesis for both planar and spatial mechanisms are accomplished taking the 

problem of non-assembly into consideration. The method makes use of a gradient 

based optimization algorithm. Analytic calculation of sensitivities was done by 

direct differentiation. The problem was mathematically formulated as a standard 

optimization problem with inequality to take the non-assembly nature of the 

problem into account. Newton-Raphson method, due to its rapid convergence 

property, is used in the minimization of the kinematic constraints. Saddle point 
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and steepest decent methods are used to verify the direction of convergence and 

stability of the minimization method, respectively.   

By representing planar displacements with planar quaternion, Wu et al. [40] 

formulated the kinematic constraints of closed chain mechanism as a mapping 

from Cartesian space to a higher dimensional projective space called image space. 

It was pointed out in their work that the use of this method enabled one to reduce 

the problem of dimensional synthesis into determining algebraic parameters 

defining the image spaces. Computational simplification was achieved by 

transforming kinematic equality constraints into geometric constraints. Dealing 

with geometric parameters of the constraint manifold instead of the mechanism 

parameters provides ease and flexibility due to the decoupled nature of the 

relationships.  

Procedures and methods to be used to overcome problems arising due to joint 

clearances have been proposed by Erkaya and Uzmay [9]. A dimensional 

synthesis of four-bar mechanism was discussed as a case study in their work to 

demonstrate their proposed method. The clearances were represented by high 

stiffness and weightless links to make them suitable to be studied under rigid 

motion considerations but without affecting the overall inertial property of the 

mechanism. The clearances and the mechanism were characterized and optimized 

using neural networks and genetic algorithms with the path and transmission 

angle errors used as the components of the objective function. 

To address the problems of convergence uncertainties and limitations on 

maximum number of precision points of problems solved using optimization and 

analytical techniques, Vasiliu and Yannou proposed in their work [34] the use of 

artificial neural networks (ANN).    

The ANN designed to be used for the synthesis application takes in the prescribed 

path and motion as an input and gives out the linkage parameters as an output.  

The need for large number of data for training purpose is addressed by simulation 

of the path for a given set of linkage parameters. The ANN was trained using the 

simulated data in the reverse direction, i. e., for given information on the path 

prescription; the mechanism parameters were to be determined. It was pointed out 

in their work that the absence of continuity between different morphologies 

prohibited and discouraged the use of interpolation techniques.  

The other important point discussed in their work is the fact that neural networks 

perform well only in the data range they were trained with. Normalization of 

parameters during the utilization phase of the network is needed to bring the input 

values to within the known range of the training set. 
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Some researchers were more interested in simulation and analyzing spatial 

configuration performances of manipulators. These works were motivated by the 

need to understand the manipulators’ performances under some environmental 

constraints. Frimpong and Li [10] modeled and simulated a hydraulic shovel to 

investigate its kinematics and spatial configurations when deployed in constrained 

mining environments. Denavit-Hartenberg homogeneous coordinate 

transformation techniques were used to translate the relative orientations and 

configurations of links into other reference frames within the overall assembly. 

Forward kinematics of the machine was investigated as a five-linkage 

manipulator. After formulating the kinematic equations, the manipulator was 

modeled in 3D and was simulated using the MSC ADAMS simulation software 

for selected time steps. 

2.3. Parametric and Feature-based CAD Modeling 

Several methods and procedures have been developed and used to automate and 

increase the efficiency of CAD modeling processes. The depth of data embedded 

on the CAD modes greatly depends on the specific technique employed to carry 

out the process [33]. Parametric modeling, among several others, has become one 

of the most rapidly growing and commonly adopted methods of product modeling 

in the manufacturing industries. Modifying the Standardized Exchange of Product 

(STEP) format, which contains only geometric information, to accommodate for 

additional part-specific parameterized information has been the focus of some 

research [25]. 

 

This process takes the traditional CAD geometry modeling method a step further 

by enforcing permanent geometric constraints among members of CAD objects 

and features. This system has also its own known limitations in terms of validity 

in change and modification implementations. Basak and Gulesin, in their study 

[3], suggested and demonstrated a method in which parametric modeling was 

used in coordination with feature based and knowledge fusion approaches to 

increase its robustness in the areas constraint validation. Standard feature libraries 

were also used in their method to investigate the practicality of proposed part 

manufacturing techniques by the designers.  

 

Programming through the application programming interfaces (API) of existing 

commercial CAD packages provides designer with more flexibility to embed the 

design intent into the CAD models [18]. In their approach, Myung and Han [22] 

took design unit and functionality features into consideration for the configuration 

and CAD modeling of selected products. The work of Wang et al. [38] proposed a 

modeling environment integration method by which interactive parametric design 

modification was demonstrated using a CAD-linked virtual environment.  
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The success of parametric modeling greatly depends on the consistency and 

preservation of topology of CAD features used in the creation of the part being 

modeled. The parent-child relationships defined have to be validated at all times 

in order to apply this method in the design process of customizable products. The 

use of explicit relationship was suggested by Van et al. [33] to increase user 

control and add sophistication to the modeling process.  

 

Even though parametric modeling techniques are widely used in today’s design 

and manufacturing industries for facilitating CAD modeling processes, their 

power had been merely limited to the geometric attributes.  Incorporation of 

additional sets of information such as product material, method of manufacturing, 

assembly procedures, and design intents to the CAD models have been the focus 

of several recent research works.  

 

Features, which are basically data structures, have been used to attach the 

additional information to the CAD models. The type of information ranges from 

purely geometric to non-geometric parameters. Traditional features used to 

represent only those attributes related to the geometry of the part. Recently, new 

types of feature definitions [30] have been introduced to embed other non-

geometric aspects of the product/part being designed with the CAD models.  

 

The employment of parametric and feature-based modeling techniques has been 

proven to contribute a significant role in the implementation of an integrated and 

automated product design procedure [39]. The interest of manufacturers in 

reducing the time-to-market and costs associated with the design process had 

motivated and initiated researches [41] to investigate features in greater depth. 

The power of feature-based modeling methods was coupled with the concepts of 

reverse engineering techniques [41] to embed design intents and other constraint 

into existing product’s retrieved by CAD scanning techniques (reverse 

engineering). By doing so, manufacturers will be able to reduce the time required 

to re-fabricate a given existing product with different material and modified 

design constraints. 

 

The data structures of features can handle more than one type of information. As 

discussed earlier, information pertinent to product development such as 

conceptual design intents, geometric constraints, non-geometric parameters, and 

manufacturing and assembly procedures can be embedded into the CAD model of 

the product by manipulating its feature (data structure). The extent to which this 

information can be exploited mainly depends on the feature definition and the 
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level of organization and communication architectures of the network [39]. Ter et 

al. [30] discussed this issue in their work and proposed a high level abstract 

unified feature-based approach by categorization and generalization of conceptual 

data.  

 

The traditional definition of feature, which used to be used to merely describe the 

shapes and geometries of the CAD models, has been extended to cover assembly 

design features and other various aspects vital from the point of view of 

manufacturing and concurrent engineering [5]. Associative relationships, both 

geometric and non-geometric, between various parameters of two or more 

members of an assembly were discussed by Ma et al. [18]. This ability opens the 

door for design automation of frequently updated and modified products. Design 

customization of products can be benefited from the inclusion of design intents, 

constraints, and assembly hierarchy data [4] on the CAD files. Incorporating rules 

and constraints in the CAD files in the form of features requires the definition of a 

new set of features. By treating a feature more like a data structure than a 

geometric parameter description, associative relationships between parts that have 

not been considered before were defined. In addition, the feature definition was 

extended to cover information pertinent to component mating conditions and 

interfaces within an assembly. 

 

2.4. Design Automation and Integration 

The implementation of collaborative product development process requires a 

large amount of data to be transferred between applications used by different 

designers working toward a single product [23]. Change and modifications 

propagate both ways in these routes. Ma and his colleagues defined a data 

structure (feature) called operation in an effort to address the need to 

communicate data in feature level [19]. Associative fine-grain product repository 

mechanism with four-layer information scheme was proposed and demonstrated 

by the team for this purpose. The method was proposed taking into consideration 

the possibility of working on different applications and platform due to the multi-

discipline nature of product design process. 

 

Features, which have a higher level of semantic organization than the elementary 

geometric aspect of a product, are currently being used to create the link and 

bridging the gap in terms of the amount and detail of information needed to be 

shared by CAD and CAM systems [21,27]. Concurrent and collaborative 

engineering oriented product development processes require the implementation 

of an effective change propagation and constraint management mechanism to 

handle the flow of data between various development stages. In their work, Ma et 
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al. [20] proposed a unified feature approach method for constraint management 

and change propagation to be used in a collaborative and concurrent environment. 

The developed algorithm uses the JTMS-based dependency network. The data 

model was categorized under constraint-based associatively and share entities 

association. Lourenco et al. [17], in a slightly different approach, investigated a 

method of interactive manipulation of feature parameters. They proposed a 

solver-driven algorithm for optimization of geometric constraints using non-

application specific constraint solvers. 

 

Excavator arm mechanisms have been investigated from different research point 

of views. Solazzi discusses [29] with his work the advantages and quantitative 

analysis of performance improvements achieved by redesigning an existing 

hydraulic arm mechanism with a different material. Yoon and Manurung [42], on 

the other hand, investigated the development of a control system by which the 

operations of an excavator arm mechanism are controlled by the operator’s arms 

movement. Sensors attached at the different joint locations of an operator arm are 

used to map the arm joint displacements into the mechanism’s motion.   

 

The development of new design automation procedures [26,31] together with 

existing  mechanical simulation tools such as SimMechanics of MATLAB® and 

MSc ADAMS® have given researchers the edge to fully impose explicit 

constraints when investigating mechanisms and manipulator’s kinematic and 

dynamic responses [35]. The forward and inverse kinematics analyses involved in 

the design of mechanisms and manipulators are benefitted from the 

implementation of parametric and feature-based modeling approaches [35]. Work 

space configurations of manipulators and their dynamic responses require 

frequent changes and fine-tuning initial parameters which easily can be 

implemented by the use of appropriate feature definitions. 

2.5. Reverse Engineering and Knowledge Fusion  

Reverse engineering techniques are used to extract shapes and geometries from 

exiting products [7,8]. The outputs of RE procedures usually poorly represent the 

design logic used to create the parts. The gap between reverse engineering (RE) 

techniques and the requirement of embedding design intents into the CAD files of 

products retrieved using this method was discussed by Durupt et al. in their work 

[7,8]. The traditional RE tools allow creating the geometries of existing products 

but lack embedding the design intents. The method proposed in their work 

suggested procedures to integrate RE tools with knowledge fusion techniques. 

Similarly, Li et al. suggested the use of knowledge-driven graphical partitioning 

approaches to embed design intents to the RE scan results [16, 37].  
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Topological approaches have recently become more popular for their ability to 

generated 3D free shape models based on finite element concepts. However, like 

that of the RE techniques, a lot of effort needs to be done before smoothly extract 

simple CAD models from this shapes. The work of Larsen and Jensen [15] 

focuses on the investigation of methodologies to extract parametric models out of 

topologically optimized 3D shapes. 
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Chapter 3 

The Proposed Approach 
 

3.1 Introduction 
Product modeling involves the process of creating part geometries by combining 

individual basic semantic entities called features. A feature is a data structure with 

members of geometric elements and associative relations. The ability to create 

relationships between the data members of different features allows controlling 

part dimensions parametrically. With this modeling approach constraints can 

easily be imposed on geometric entities defining the features. The data from the 

features can easily be accessed and modified making this method robust in 

managing change propagations and modifications in the design process. In 

addition to geometric parameters, these features can be designed to store other 

design entities such as part material specifications and manufacturing methods. 

The fact that features are basically data structures makes them play an important 

role in the automation processes of conceptual design cycles.  

In this chapter are proposed and discussed two methods to be used in the 

implementation of feature based CAD modeling techniques in the development 

and design automation processes of variational mechanism.  

In the first section, the general design process modules and data flow architectures 

will be discussed. The second section focuses on the introduction and testing of a 

method designed to utilize the powers of artificial neural networks in the 

mechanism synthesis. 

3.2 General Design Automation Method 
The design of mechanisms and products that are subject to frequent changes and 

modifications involves several application-dependent processes utilizing a set 

common data. The given specifications, standards and design requirements may 

be changed at any time during the development process. These changes can be 

evoked by the customers as well as due to newly arising engineering 

requirements. Without having in place a system by which these activities are 

handled in a very efficient manner, the costs associated with the changes and 

modifications could unjustified the product need. 

This paper proposes a method by which such changes and design intent 

modifications are handled in a very cost effective and timely manner using feature 

based approach to reduce the CAD modeling and the overall design cycle times. 
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By employing commercially available programming and feature based 3D 

modeling tools, it is possible to create a reliable automation procedure which 

accommodates for the inevitable changes and modifications.  

3.2.1 The Proposed Design Procedure 

The following flowchart summarizes the general automation procedure proposed 

for this purpose. The area of data communications between different 

programming and modeling tools will not be fully investigated in this paper due 

to the time constraints. Instead the intended communication is achieved by the use 

of neutral text data files written and updated by the program codes developed for 

this purposes.  

In Figure 3-1, design input information in the form of user specification is used to 

start the process. This input, together with additional engineering rules and 

intents, is used by the Kinematic Analysis algorithm discussed in the next section 

to synthesize the linear dimensions of the mechanism.  

The newly calculated linear dimensions of the mechanism under investigation will 

be used in upcoming modules to model its skeleton assembly model to be used in 

an initial kinematic and dynamic analysis. This process results in the 

identification of forces and moment reactions between contacting joints and 

bodies. The output of the Dynamic Analysis and Simulation module will be used 

to establish the free body diagrams (FBD) and mass-acceleration diagrams 

(MAD) to be used during the design and optimization phases. 

Results obtained from these stages, together with the initial input specification 

values, will be used in the design of linkages and members of the mechanism. 

One or more applicable optimization criteria can be used in order to determine a 

set of optimum cross-dimensional parameters for the machine elements. In 

addition to the above mentioned inputs to the Design and Optimization phase, 

design codes, standards, assumption, and factor of safety are some of several 

additional factors to be considered depending on the type of product being 

designed. 

Based on dimensional data determined by previous processes the 3D models of 

the mechanism components will be modeled following feature based techniques. 

Application Programming Interfaces (API) of most commonly used modeling 

platforms can be used for this purpose. The choice of the programming and 

modeling tools depends on the compatibility of tools and the familiarity of the 

personnel using them. 
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Figure 3-1 Design process modules and data communication routes 

For this research, the programming part of the case study was carried out in C++ 

programming using Visual Studio 2008®. The final 3D models were generated 

from the codes using the UG NX 7.5 modeling software. 

These models, assembled preferably, will be exported back to the Dynamic 

Analysis and Simulation block to take the effects of their newly created 3D 

dimensions (inertia effects) into consideration. This first stage loop will be 

repeated until a stopping criterion is met. 

The strength and deformation of parts and models passing this screening stage can 

be further examined using FEA techniques. In the event these components fail to 
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meet the qualification criteria set for the FEA stage, the entire iteration can be 

restarted with modified input parameters to address the shortcomings.  

3.2.2 Features and Data Structures 

Concurrent engineering and product development processes involve the 

participation of personnel with different engineering and technical backgrounds. 

In most cases these persons work from within different departments requiring an 

efficient mechanism for smooth information transfer among them.  

Any information, whether in the form of initial input or generated data, has a very 

good chance of being used by more than one function module or application. In 

addition, a series of design data for a particular product family needs to be stored 

in a systematic repository database. This has potential for future use in the areas 

of knowledge fusion and as a training source for artificial neural network 

applications.  

Data structures, implemented by using object oriented programming tools, play 

the role of addressing these crucial needs. The Product Specification input shown 

in Figure 3-1, needs to be organized in a systematic manner and its scope be 

defined as “global” or “local” in order to define its accessibility by individual 

program modules. This is done by defining a data structure and instantiating its 

object. The following is an example of a class defined in MATLAB®. The data 

structure for handling a particular problem is defined by creating an object 

instance of this class and entering values to its data members. 

classdef Product_Specification_c 
    properties  
        Title = 'Specification Parameters' 
        T_1 = 'Geometric Spec.' 
        G1 = 0; 
        G2 = 100; 
        Gn = 0;  
        T_2 = 'Material Spec' 
        Modulus_Elasticity = 210e9; 
        Poisson_ratio = 0.3; 
    end 
end 

 

For example, to create a data structure for a new product model called 

Product_Spec_2010 by instantiating the above definition the following command is 

used. Note: Neither this particular example data structure nor its values are real 

values and are used here only for explanation purpose.  

global Product_model_2010 

Product_model_2010 = Product_Specification_c 
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And the values of this data structure are updated using the following object 

oriented programming syntax: 

Product_model_2010.G1: new value 

Product_model_2010.G2: new value 
Product_model_2010.Gn: new value 
Product_model_2010.Modulus_Elasticity: new value 
Product_model_2010.Poisson_ratio: new value 

 

The collection and input methods of the individual entities for the data structure 

greatly depends on the convenience and applicability to a particular problem. 

Initial values can be assigned during the definition of the data structure or it can 

be updated afterwards using both the command line and graphical user interfaces 

(GUI). 

The following is a real example data structure taken from the excavator arm 

mechanism case study. 

classdef c_Spec_Data_SI 
    properties 
       Title = 'Commercial Specifications and Vehicle Dimensions' 
        Maximum_Reachout_at_Ground_Level_S1 = 0; 
        Maximum_Digging_Depth_S2 = 0; 
        Maximum_Cutting_Height_S3 = 0; 
        Maximum_Loading_Height_S4 = 0; 
        Minimum_Loaidng_Height_S3 = 0;         
        Horizontal_Distance_H = 0; 
        Vertical_Distance_V = 0; 
        Vehicle_Weight = 5000; 
    end 
end 

 

An object of this structure, SpcDat, instantiated and completed with its own values 

takes the form: 
 
SpcDat =  

  c_Spec_Data_SI 

  Properties: 

   Title: 'Commercial Specifications and Vehicle Dimensions' 

    Maximum_Reachout_at_Ground_Level_S1: 5.6700 

              Maximum_Cutting_Height_S3: 3.7248 

              Maximum_Loading_Height_S4: 1.3521 

                  Horizontal_Distance_H: 0.9857 

                    Vertical_Distance_V: 1.2300 

                         Vehicle_Weight: 5000 

 

The set of data generated within the Product Specification (PS) module is used 

directly by the Kinematic Analysis (KA) module when calculating the linear 

dimensions of the mechanism or manipulator. The KA, in turn, generates its own 

data structure and made it available to be used by downstream functional 

modules.  
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The number of programming applications and tools involved in the system dictate 

the number of databases involved. If there are two or more programming tools 

running on different platforms involved, it may be required to devise a 

mechanism by which their respective databases are able to communicate with 

each other.  

In Figure 3-1, it is assumed that the programming environment used for kinematic 

analysis and dimensional synthesis is different from the one employed by the API 

of the CAD modeling application, as this is the usual case. This is a very common 

practice since MATLAB® and Maple are usually used for engineering design 

calculations and optimizations processes while C#, C++, and VB are used for 

programming CAD in with the API tools. However, all of these tools are expected 

to operate based on a common set of data model and parameters produced during 

the initial phase of the conceptual design cycle. Accordingly, Data 1 and Data 2 

in Figure 3-1 are communicated by neutral intermediate text data files. Similar 

data structure is needed to be defined from within the other programming 

applications involved to read and import the data exported by other applications. 

These definitions do not have to be the exact copy of the previous one as long as 

the necessary parameters are imported. But defining all corresponding data 

structures in a consistently similar manner avoids confusion and helps one with 

better data management.  

The concept of feature has been investigated in greater depth in the last couple of 

decades to address the emerging product development and manufacturing needs 

and challenges. At the beginning, the term feature was used to refer only to the 

geometrical aspects of a model such as slots, holes and chamfers. The fact that 

products development process includes much more than geometric entities has 

forced researchers to look into ways of embedding more information into the 

CAD models. Today’s features have broader meaning in this sense. Both 

geometric and non-geometric information are able to be imbedded into the model 

aiding in rapid and reliable product information transfer mechanism.   

The following are some of the many features used in this work: 

 Coordinate system features: Used in the creation of relative and absolute 

CSYS. 

 Skeleton functional features :Used in the development of skeleton product 

profiles 

 Embodiment features :Features responsible for creation of 3D geometries 

 Sheet body features 

 Solid body features 

 Curve features 
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3.3 Method for Mechanism Dimensional Synthesis  
Existing manipulator mechanism products are frequently redesigned and 

customized to meet specific operational needs and increased efficiency. 

Specialized manipulators are needed to perform out-of-the-ordinary tasks under 

constrained space limitations. Although adding new design features to these 

existing models is one way of increasing versatility and addressing these needs, 

the approach might require the development of additional design procedures and 

incorporating them into the existing knowledge base.  In most cases, however, the 

objective is achieved by adopting a different set of configurations.  

The final spatial configurations of the overall assemblies are the bases on which 

users of these products evaluate the dimensional specifications. The conceptual 

design of these products usually starts with a set of target configurations or 

prescribed paths and motions identified by the end users that needed to be 

achieved by the overall mechanism. The dimensional synthesis phase of the 

design focuses on determining individual linkage dimensional parameters which 

when assembled in the mechanisms will meet the configuration requirements.  

In the event when a single position and orientation (pose) of the end effectors of 

the manipulator is defined for known values of its linkage dimensions, the joint 

variables are calculated using inverse kinematics procedures. Unlike the case of 

forward kinematics (direct configuration) problems, the solution to inverse 

kinematics problems usually is not unique. This poses considerable challenge 

when trying to automate the conceptual design process and implement it using 

programs. In addition, the fact that the calculated linkage dimensions and joint 

variables are expected to fully satisfy other set of additional configuration/path 

parameters makes this approach more difficult to be implemented on 

multivariable problems.  

Formulating a set of parametric geometric relationships for each configuration in 

terms of similar linkage parameters and searching a solution using optimization 

techniques is a standard approach. The implementation of this method requires a 

vector of initial solutions very close to the actual to be defined. Since there is a 

very strict correlation between the configurations parameters, random values 

cannot be used as an input when solving this system of equations. Failure to do so 

may produce mathematically accurate but physically impossible solutions.  

In this section is a method proposed by which dimensional synthesis is performed 

for manipulator mechanisms based on a random configuration parameter inputs. 

The method will be implemented in MATLAB and tested using the excavator arm 

mechanism as a case study. 
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Most optimization techniques usually require a very good initial solution to be 

defined for them to produce sound solutions. One of the objectives of this paper is 

to introduce a system by which a set of initial solutions which are reasonably 

close to the actual solution can be generated. Optimization techniques, when 

applied to the problems of dimensional synthesis of prescribed precision points, 

commonly encounter the difficulty of producing reasonable results from the point 

of view of practicality due to two reasons. The first reason is the closeness 

requirement of the pre-defined initial solution. The other reason is the 

incompatibility or feasibility issue of the prescribed precision points. This is to 

say that prescription of unrealistic and ambitious specifications most likely 

produce, if the search converges to a solution at all, unrealistic solutions. 

The hybrid method proposed in this research can be summarized by the flowchart 

as shown in Figure 3-2. It is the objective of this paper to introduce a hybrid 

method in which a well trained artificial neural network (ANN) tool is used to 

generate a set of high quality initial solution suggestions for target mechanism 

parameters based on the user specifications while optimization techniques are 

used to finally synthesize the necessary dimensions. The hybrid method attempts 

to jointly employ the powers of optimization procedures and neural networks to 

synthesize the dimensions of mechanisms and manipulators.  

The user specifications are quasi-dependent in nature to each other. There is an 

acceptable range of values for a single configuration parameter,   , that can 

feasibly coexist with a set of the remaining prescribed configuration parameters, 

    . In this regard, the given initial specification data set has to be validated 

before used in the design calculations.  

3.3.1 Synthesis and Validation Procedures   

The proposed method can be decomposed into the following stages: (1) Artificial 

neural network training; (2) Input parameter validation; (3) System Testing; (4) 

Initial solution generation; (5) Mechanism parameter synthesis; (6) Result 

verification; (7) System test with random existing values.  
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Figure 3-2 Dimensional synthesis methodology based on ANN and optimizations 

3.3.2 Artificial Neural Network Training 

Essentially, training the ANN is performed to build a database which will be used 

to generate the feasible suggestions of the initial mechanism parameters according 

to new configuration specifications. The first step is to collect the training data. 

Ideally, such training data can be obtained from those existing similar product 

information catalogues, usually in the form of product families, because the 

relevant data from that channel is proven workable with both input and output 

sets. As shown in Figure 3-2, the proposed method makes use of such data as 

indicated by the top job block.  Unfortunately, although these real product data 

sets are very useful for training the ANN, the number of available data sets is 
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always not enough. To find a solution for the shortage of training data, forward 

mechanism equations can be utilized to create as many input/output data sets as 

required [34]. Note that the generation of such simulation data is necessary 

because the available data is usually insufficient to serve the training purpose and 

the extra effort of collecting additional real product data is deemed costly.   

In the case of data generation process, the configuration parameters which define 

the total workspace of the mechanism assembly will be generated for the given set 

of linkage dimensions using forward kinematic equations. This is a mapping 

process in which the mechanism parameters (linkage dimensions) are mapped to 

the envelope configuration parameters (work range) of the workspace or the 

working path in the case of a planar mechanism. 

When training the artificial neural network (ANN), both the existing real product 

data sets and the generated data sets will be used in the reverse sense; that means 

the configuration parameters are used as the input data for the training while the 

mechanism parameters are used as the target output data. Note here that the 

generation and training methods have been used previously [34] and have 

provided satisfactory outcome while the proposed real product data sets still play 

an important role to incorporate the industrial optimization factors that are well 

embedded implicitly in them on top of the mathematical solutions. In fact, it may 

be potentially useful to increase the weights of such real product data sets in the 

training of the ANN. Due to the time limitation, this idea of enhancement will be 

explored in the future.  

Since the ANN is expected to be effectively used only for those parameters lying 

within the ranges of its training data, to make the training data more generically 

useful, normalizations of the input vector as well as the output vector during the 

training cycles should be carried out. Similarly, during the application of the 

trained neural network, the input and output new dimensional parameters have to 

be scaled or normalized to make sure they lie within the ranges. 

3.3.3 Input Configuration Parameter Validation 

In addition to the training of ANN, to search for a feasible mechanism parameter 

solution from a given set of configuration parameters, it is necessary to make sure 

that the configuration parameter values are compatible with each other and 

practically feasible to exist.  If this condition is not met, the analysis may give 

results inapplicable to practical cases. Figure 3-3 shows the procedure adopted to 

validate input configuration parameters. It is worth noting that the term validation 

is used here only to evaluate the given prescribed set of parameters from the point 

of view of their combined applicability to a particular machine or manipulator 

configuration. The validation is done by checking if the given multiple input 
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configuration parameters, after being scaled or normalized, lie within the relative 

permissible ranges established by the collected and generated data. The ranges 

derived from the collected data are based on the statistic analysis of results of all 

the generated and real product models data.  

 

Figure 3-3 Input parameter validation and prioritizing scheme 

3.3.4 System Testing 

To validate the overall procedure, real product data sets are used again for the 

testing purpose, as shown by line type #3 in Figure 3-2. This time, different from 

the ANN training process, the work-range configuration parameters are fed into 

trained ANN module to generate the initial solutions of the targeted mechanism 

dimensions. Then, together with work-range configuration parameters, the initial 

dimensions are used as the seeding vector to search for the goal vector of the 

targeted mechanism dimensions. This set of output goal vectors is compared with 

the real product mechanism dimension vectors. Theoretically, the system output 

should be well within the specified tolerance of the system accuracy requirement. 

Note, relatively, the real product data sets are only a small portion of the overall 

ANN training data sets. If the system is not up to the accuracy expectation, then 

more training data sets are required from the both channels as discussed 

previously. 
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3.3.5 Initial Solution Generation  

In this stage, the validated configuration parameters will be passed to the ANN 

module to generate initial solutions. This solution is in turn will be used by the 

appropriate optimization to refine and get the final solutions.   

3.3.6 Mechanism dimensions synthesis 

The dimension synthesis is carried out with optimization algorithms. This part is 

specific to the nature of the mechanism in question. In this work, an excavator 

arm linkage system is studied. The details of the algorithms are introduced in 

section 4. Finally, the calculated mechanism parameter solutions have to be scaled 

back to the original ratio before being reported back as a solution to the user. 

3.3.7 Results Validation 

The optimization results are to be validated before they are adopted in the design 

and displayed in an appropriate CAD context. The straight forward procedure is 

to apply forward mechanism simulation to check for the work-range space or path 

details against the specifications. Theoretically, if the results are not good enough, 

the troubleshooting procedure must be carried out. So far, with the limited tests, 

the generated results are quite satisfactory as discussed in the following section, 

so the troubleshooting method was not explored further. 

3.3.8. Random System Validation Check 

To measure and validate the performance of the system, again, randomly selected 

configuration parameter data sets from the existing products’ database are 

selected and used in the generation of mechanism parameters using the proposed 

method. The results of the procedure are cross-checked against the actual 

dimensions and the efficiency of the method is measured.  
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Chapter 4 

Design Calculations - Case study 
 

4.1. Excavator Case Representation 
In the conceptual design process of an excavator, translating the work-range 

specification parameters (prescribed points or an envelope path) into linear 

dimensions of the arm mechanism is the very first stage. To do this, the boom, 

stick, and buckets of this planar mechanism are represented by linear linkages, 

and other elements such as hydraulic cylinders and bucket transition four-bar 

linkages are left out of consideration at this stage. These three links, connected in 

boom-stick-bucket sequence, are positioned and oriented in different poses such 

that their final configurations pass through the input specifications.  Figures 4-1 

and Figure 4-2 show the traditional catalogue specification dimensions 

             and the representation of the mechanism by linear 

elements             , respectively. 

 

Figure 4-1 Work-range Configuration Parameters 
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Figure 4-2 Linear representation of excavator arm members 

Table 4-1 Hydraulic Excavator Work Space Configuration Parameters 

 

 

Table 4-2 Mechanism Linkage Dimensions 

   Hinge to hinge boom length 

   Stick length 

   Hinge to tip bucket length 

  Boom deflection angle β  

  

The design process hence involves determining a set of individual linkage 

dimensions of the excavator arm mechanism that, when connected to each other 

and form the overall mechanism, satisfy the working envelope requirements. 

Unlike forward kinematic problems in which the location and other properties of 

the end effector is to be calculated based on different joint variables and linkage 

dimensional inputs,  this problem involves the task of determining the joint 

variables and linkage dimensions for a given set of end effector configurations; 

bucket in this case. In forward kinematics or direct configuration analysis, the task 

is usually to determine the final configuration of the mechanism based on a given 

set of joint variables and linkage dimensions. This is a relatively simple and 

straight forward process since the analysis usually leads to a unique solution. The 

   Maximum Reach at Ground Level 

   Maximum Digging Depth 

   Maximum Cutting Height 

   Maximum Loading Height 

   Minimum Loading Height 



28 

 

inverse process being investigated in this research, on the other hand, is relatively 

complex due to the availability of multiple solutions.  

4.2. Data Generation for Neural Network Training 
The main purpose of this task is to generate configuration and linkage parameter 

data sets to be used for training the proposed ANN. The ANN will be used in 

latter stages to narrow down and select a physically viable set of linkage 

parameters to be used as initial solutions.  This is entirely a forward kinematic 

procedure in which each final vector of configuration parameters,    is determined 

from a given set of linkage dimensions and joint variables,  .  

Where                  and                  

The following sub sections describe the mathematical model derived for working 

out the envelop path configuration parameters              from the mechanism 

linkage parameters,             . 

4.2.1 Maximum Reach-out at Ground Level (  ) 

The position of the bucket tip is calculated using the forward kinematic methods. 

To apply this method to this problem, the individual rotational and linear 

transformation matrices are formulated using the Denavit-Hartenberg convention.    

By applying the Law of Cosine to Figure 4-3 shown below the following 

mathematical relationship is formulated. 

 

Figure 4-3 Maximum out-reach at ground level 

           
    

                       (4.1) 

               
                 (4.2) 
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(4.3) 

 
      

 

 
 

 

        
    

                

 
 

(4.4) 

 

         
 

 
       

 

 
 

            
                 

  

 

(4.5) 

                     
                    (4.6) 

            
                              (4.7) 

The sequence of frame of reference translation from the origin to a frame located 

at the tip of the bucket is represented by the homogeneous transformation: 

                        (4.8) 

Where 

     Linear displacement in the positive   direction with   value 

     Linear displacement in the positive   direction with   value 

       Rotation about the   axis by angular value of –   
     Linear displacement in the positive   direction by a value of   

  

The rotation sequences of Eq. (4.8), when represented by the corresponding 

matrices, take the form 

     

    
    
 
 

 
 

 
 

 
 

  

    
    
 
 

 
 

 
 

 
 

  

                    

                  
 
 

 
 

 
 

 
 

  

    
    
 
 

 
 

 
 

 
 

  

 

(4.9) 

The resulting homogenous transformation matrix is then given by: 

 
     

                    

                     
 
 

 
 

  
 

                    
                    

  

 

(4.10) 

The value of the maximum out-reach at ground level is then extracted from the 

above homogenous transformation matrix. The expression in cell       is the 

value of the   coordinate of the bucket tip from the origin of the fixed reference 

frame, which in this case is the same as the value of the maximum reach-out at 

ground level,   . 
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                            (4.11) 

 

4.2.2 Maximum Digging Depth (  ) 

The maximum digging depth requires the definition of angle    measured from 

the vertical to indicate the lower limit of the boom angular displacement about the 

base hinge. For a given value of this limiting angle, the maximum digging depth 

is expressed mathematically using the Denavit-Hartenberg convention.  

 

Figure 4-4 Maximum digging depth 

Again, by using Law of Cosine, 

   
                       (4.12) 

Where   in this equation is the length of each sides of the boom. For the purpose 

of simplification, they are assumed to be of equal length in this development. 
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           (4.13) 

Referring to Figure 4-4, 

                    (4.14) 

                       (4.15) 

                –        (4.16) 

The homogeneous transformation sequence in this case is given by  

                                           (4.17) 

      

    
    
 
 

 
 

 
 

 
 

  

    
    
 
 

 
 

 
 

 
 

  

                 
                

 
 

 
 

 
 

 
 

  

    
      
 
 

 
 

 
 

 
 

  

   

                
                

 
 

 
 

 
 

 
 

  

    
     
 
 

 
 

 
 

 
 

  (4.18) 

The resulting homogeneous transformation matrix takes the form 

      

                                          

                                         

 
 

 
 

 
 

                                                         
                    

  (4.19) 

The cell in this matrix representing the maximum digging depth is the   

displacement is cell     .  

                                        (4.20) 

4.2.3 Maximum Cutting Height (S3) 

For a given value of the upper angular limit of the boom rotation,   , the 

procedure for maximum cutting height expression formulation follows the similar 

procedure as that of the maximum digging depth calculation.  
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Figure 4-5 Maximum cutting height 

            (4.21) 

Where   in this case is given by  

          (4.22) 

                 (4.23) 

                (4.24) 

                  (4.25) 

                    (4.26) 

                (4.27) 

                                                 (4.28) 

                                                   (4.29) 

The homogenous coordinate transformation sequence for this configuration is 

given by  

                                          (4.30) 
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  (4.31) 

     

                                               

                                              
 
 

 
 

 
 

                                                                   
 

   (4.32) 

The   displacement component of this matrix represents the maximum cutting 

height. 

                                           (4.33) 

4.2.4 Maximum Loading Height (S4) 

 

Figure 4-6 Maximum loading height 

Referring to Figure 4-6, with slight modification of the expression developed for 

maximum cutting height and ignoring the orientation angle of the last frame of 

reference we get: 

               (4.34) 

                                     (4.35) 

The expression for maximum cutting height is modified with minor changes to 

make it fit for this configuration. The last linear coordinate translation in this case 
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is limited to    instead of            The bucket length    is further deducted 

from the   displacement component of the matrix. 

The final result is given by the following matrix. 

     

                                                          

                                                  

 
 

 
 

 
 

                                                                               
       

  (4.36) 

                                               

 

(4.37) 

 

4.2.5 Minimum Loading Height (S5) 

Following similar procedure gives an expression for the homogeneous 

transformation matrix of the minimum cutting height configuration. 

 

Figure 4-7 Minimum loading height 

                 (4.38) 

                         (4.39) 

                           (4.40) 



35 

 

     

                                                      

                                        

 
 

 
 

 
 

                                                     
       

   (4.41) 

                                     (4.42) 

4.3. Generation of Training Data 
The required training data is generated by mapping the configuration parameter 

for a set of mechanism dimension parameters. MATLAB is used to implement 

this task.  

  

  
  
  
 

       

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 (4.43) 

4.3.1 Neural Network Training 

Since the ANN is needed to serve the purpose of preliminary inverse kinematic 

analysis, the output data generated from the forward simulation,  , will be used as 

the input data for its training while the linkage parameters vector,  , is the target 

data.  

Since the values of the configuration parameters depend also on the overall 

dimensions of the vehicle on which they are mounted, constant values for the   

and   coordinates of the base hinge, H and V, are used in the analysis.    

Accordingly, a two-layer feed forward ANN is designed to map seven input 

configuration parameters to four target parameters. The ANN has one hidden 

layer with 20 neurons and one output layer with four neurons. The network is 

trained using the Levenberg-Marquardt back propagation algorithm.  Sigmoid 

activation functions are used for the first layer and a linear one-to-one activation 

functions for the output layer. The neural network is implemented using the 

neural network toolbox of MATLAB.  
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Figure 4-8 Architecture of the Neural Network 

Given any one of the configuration parameters,            , the developed 

method identifies possible ranges of the other four configuration parameters based 

on the data generated in the previous section. Since the data is generated by 

simulating a specific ranges of the linkage dimensions, this method scales input 

configuration parameters to make sure they lie within the available data range. 

Selected output ranges by this method are scaled back to the original before 

displayed for the user. 

The method implemented using a MATLAB program called f_Parameter_Sorter 

provides option to the user to select which configuration parameter to start with 

and the sequence of upcoming selections. This option gives the flexibility of 

prioritizing the operational configurations as needed.  Once the first item is 

entered for the first choice of configuration parameter, four different compatible 

configuration parameter ranges will be suggested for the others. This process will 

be repeated on the remaining four by selecting which configuration parameter out 

of the four to prioritize and picking its value from the range provided. The result 

of this second operation modifies the ranges of compatible values of the 

remaining three parameters. This process is repeated until all configuration 

parameters are assigned valid values. Figure 4-9 shows the convergence 

performance of the ANN training cycles while Figure 4-10 shows the standard 

ANN algorithm regression chart.  
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Figure 4-9 Performance of the neural network 

 

Figure 4-10 Regression result 
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4.3.2 Solving for Linkage Parameters 

The Equations 4-7, 4-16, 4-29, 4-35, and 4-40 relate the specification values   , 

  ,   ,   , and    to the geometric dimensions of the excavator arm mechanism 

            and β. Given the values of the other constant values, these non-linear 

equations can be solved using optimization techniques to determine the optimum 

linear and angular dimensions of the arm mechanism. 

Since buckets are available as standard parts, the calculation at this algorithm 

focuses on determining the lengths of the boom and the stick together with the 

boom deflection angle, i. e.               The selection of the bucket is done 

based on the initial solution suggested by the ANN. To determine the above three 

unknown variables, a combination of three of the above non-linear equations are 

solved using a MATLAB® function, fsolve( ), which employs the power of the 

Trust-Region-Reflective Algorithm.   

          (4.44) 

Where   and   are verctors of unknown mechanism dimension variables and 

input configuration specification parameters 

     

  
  
 

           

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 (4.45) 

Considering the maximum reach-out at ground level, maximum cutting height, 

and maximum loading height, the vector of equations will be formulated as 

follows 

 
  

                                    

                                              

                                 

      (4.46) 

The “trust-region-reflective” algorithm used to find the solution requires an initial 

solution to be defined as a starting point. The accuracy of the output for this 

particular problem greatly depends on the closeness of the initial solution to the 

actual solution. This is the stage where the suggested initial solution by the neural 

network is used. It is also expected that at this stage the viability of the initial 

input parameters,            , is confirmed by the use of the valid ranges 

developed according to the procedure discussed previously.  

4.3.3 Case Study Analysis Results and Discussion 

In this research work, 10 existing excavator product configuration data sets are 

collected.  Their contents are given in Table 4-3. A total of 1296 forward 
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simulation data sets were generated and they were used to train the ANN module 

developed with Matlab. Then to test the system performance, the 10 product 

working-range parameter values were fed into the ANN, and the output of the 

ANN, i.e. the initial suggestions for the downstream optimization module, was 

presented in Table 4-4 (left half). In comparison, the final solutions generated 

after the optimization processes are also listed in Table 4-4 (right half).  

Table 4-3 System testing data collected from the existing products (units: cm/degree) 

Product S1 S2 S3 S4 S5 l1 l2 l3 β H V

1 359 183 344 226 107 174.1 88.2 51.9 24.5 63 75

2 413 252 384 271 109 205.9 102 61.1 25 68 86

3 412 260 359 246 111 201.2 99.4 67.9 28 74 93

4 435 228 422 283 106 203.3 105.2 64.9 30 78 90

5 409 248 385 267 125 201.3 99.5 61.5 25 66 84

6 372 208 371 257 110 171.4 89.1 58.2 24 77 82

7 352 196 331 235 92 159 86.3 49.6 22 77 71

8 345 203 338 238 99 165.1 88.4 49 20 64 73

9 332 184 335 238 104 163.4 83.8 47.5 24 55 71

10 415 254 368 272 110 204.9 102 63.1 25.76 68 81

Configuration Mechanism dimensions Vehicle

 

Table 4-4 Initial and final solutions generated by the proposed method 

Product l1 l2 l3 β l1 l2 l3 β

1 174.7 68.8 63.4 17.28 209 93 63.4 34.97

2 196.97 95.99 65.56 19.4858 200.22 95.47 65.56 30.0233

3 204.53 84.33 70.19 26.524 202.82 85.81 70.19 35.2464

4 181.04 79.14 78.3 10.7072 169.81 83.82 78.3 18.6694

5 177.03 73.81 66.62 15.6772 204.33 83.23 66.62 30.1607

6 168.06 80.5 61.03 13.2475 198.83 91.17 61.03 25.8929

7 153.89 82.59 52.79 15.2362 201.48 99.88 52.79 30.014

8 162.75 94.62 51.38 12.3882 197 98.48 51.38 32.8084

9 161.05 90.9 46.87 14.3593 211.44 97.56 46.87 32.3521

10 195.89 107.73 60.04 24.8409 187.9 92.6 60.04 31.9021

ANN initial solution  (cm/degree) Optimization final solution (cm/degree)

 

Table 4-5 Accuracy statistics of the system results 

Dimensions Average error 

(%) 

Unbiased standard 

deviation 

Root mean square 

error (RMSE) 

   8.627 0.1569 0.1489 

   1.4641 0.1356 0.1286 

   7.1778 0.085 0.0806 

  23.858 0.2652 0.2516 

 
    

Clearly, the ANN module has served the purpose to provide useful initial 

suggestions that enabled the optimization module to find the feasible solutions for 

the given mechanism. Further, Table 4-5 shows the comparison results between 
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the final solutions and the original real product data obtained for the 10 existing 

configurations, the average errors for linear dimensions are pretty close, i.e. 

within 10%; but the angular β has bigger difference from the original dimension, 

about 24%. The deviations of these errors are relatively small. Thus, the test 

results show that the proposed method has a capability to generate a reasonably 

closer set of initial solutions that can be used by optimization search algorithms 

employed to find the final solutions. The method can be further improved by fine 

tuning the optimization algorithms and the boundary conditions as well as using 

more real product data sets for ANN training. 

4.4. Design for Strength 

4.4.1 Homogeneous Coordinate Transformation 

The output of the SimMechanics simulation provides only joint forces and 

motions expressed in the global reference frame. These global generalized joint 

forces have to be transformed into and expressed in separate coordinate systems 

local to the links or frame members under investigation.  

In order to achieve this, three coordinate transformation matrices are developed. 

The boom, due to its geometrical deflection, has two sides and requires two 

different matrices to express forces in frames local to these sides. Since the stick 

has a straight axis, it needs only a single transformation matrix for reference 

frame manipulation. 

The first step in this process is to identify stationary angles which, together with 

the linear dimensions, help to fully define the geometry of the boom and stick 

parts. This is followed by defining variable angles responsible for the operational 

configuration of the arm mechanism - digging operation in this case. 

 

Figure 4-11 Classification of angles 

Variable Angles 

Angles defining relative 

positions of connected parts, 

(Operational configuration 

angles) 

 

Static/Inherent 

Angles 

 

Semi-static angles 

Angles modified as a 

result of design iterations 

 

Permanent Angles 

Safety clearance 

angles 

 

Angles 
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As shown in Figure 4-12 and Figure 4-13, angle       and      define the 

orientations of the boom and the stick with respect to the ground, respectively, 

during a digging operation. Unlike static angles which are always assigned 

positive values, variable angles are direction sensitive.  

4.4.2 Boom Geometries, RB’s 

Referring to Figure 4-12, expressions for variable angles      and      can be 

formulated as follows. 

 

Figure 4-12 Operational configuration angles 

Summing the components of vectors along the horizontal direction gives: 

         
(4.47) 

                                           (4.48) 

                                     (4.49) 

Similarly, summing the components of these vectors along the vertical direction 

gives another expression. 

      
(4.50) 

                                 (4.51) 

Solving Equations (4.49) and (4.51) simultaneously gives the values of      

and     . 

The homogeneous coordinate transformation matrices for the first and second side 

of the boom are then derived using these calculated angles. 
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Figure 4-13 Stick structural angles 

Boom Rotation Matrix I,      

     
                          

                         
   

  
(4.52) 

Boom Rotation Matrix II,     

     
                          

                         
   

  
(4.53) 

4.4.3 Stick Rotation Matrix, RS 

Since the axis of the stick is not parallel to the axis of the second section of the 

boom, the transformation matrix developed for the second part of the boom 

cannot be directly used to transform global forces into the frame of reference local 

to the stick. 

The rotation matrix for the stick is formulated by carefully observing the 

subsequent chain of angular transformations starting from joint   . 

         
      

     

 
(4.54) 

          
      

     

  
(4.55) 

        (4.56) 
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                 (4.57) 

        
        

  
(4.58) 

          
     

      

  
(4.59) 

          
   

      

  
(4.60) 

           (4.61) 

          
      

   

  
(4.62) 

        (4.63) 

                 (4.64) 

                                             (4.65) 

                                            

                    

(4.66) 

The stick rotation matrix    is then given by the expression: 

     
                                              

                                             
   

  
 

(4.67) 

4.4.4 Transition Four-bar Dimensional Synthesis 

The major linear dimensions defining the working range of the overall mechanism 

have already been synthesized using the method developed in the previous 

chapter. For the purpose of making the mechanism complete, the transition four-

bar mechanism’s dimensions have to be synthesized for a given dimensions of 

standard buckets and sticks.  

For a given dimension of the bucket   , the length of the other two linkages of the 

transition four-bar mechanism can be calculated as follows. 

As shown in Figure 4-14, there are two configurations of the four-bar linkage 

mechanism resulting in a phenomenon called “mechanism lock”. These two 

angular positions are considered to be the upper and lower range limits within 

which the bucket operates. 
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Figure 4-14 Transition four-bar work-ranges 

In Figure 4-14 (left) ,      is the eccentricity angle necessary to prevent the 

mechanism from self locking.      in Figure 4-14 (left),  is the minimum angle 

between the back of the bucket and the stick. The value of     depends on the 

safety clearance angle necessary to avoid physical contact between the links. The 

value of this angle is subject to change during the life of the design cycle 

reflecting changes in the dimensions of the contacting parts as a result of cyclic 

modifications.  

    serves the same purpose as      but on the opposite end of the bucket’s 

angular displacement range. Limiting factors in this case include direct contact 

between mechanical components and volumetric allowance for extra bulk 

material when loading the bucket. In addition to    and   , these two angles are 

assumed to be known to evaluate the lengths of links    and   . 

The critical values of    and   , i. e., those that result in mechanical locking of the 

mechanism, are determined from the following two simplified geometries 

corresponding to the two cases as shown by Figure 4-15 and Figure 4-16. 

 

Figure 4-15 Upper mechanism locking configuration 
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Figure 4-16 Lower mechanism locking configuration 

Applying Law of Cosines to the geometry of Figure 4-15 we get 

  
    

         
                   (4.68) 

Similarly referring to Figure 4-16 

  
    

                                    (4.69) 

Solving Eq. (4.68) and Eq. (4.69) simultaneously gives the values of    and   . 

This calculation is implemented using the custom MATLAB® function f_Four-

bar_Solver in the main program. 

4.4.5 Stress and Strength Calculations 

The expressions for the various stresses considered in this section are developed 

based on the assumptions and procedures outlined by Shigley and Mischke [44]. 

 (1) Transverse Shear Stress,    

Shear stress,    as a result of shear force and bending moment is derived from the 

relation  

  
  

  
 

(4.70) 

  
  

  
 

(4.71) 

Where   is the first moment of area about the neutral axis given by: 

        
 

  

 
(4.72) 



46 

 

             

Figure 4-17 Cross-sectional area under transverse shear stress 

  for the given cross-sectional geometry is computed by dividing the area into 

two sections 

Case 1 

For             
 

 
     

        
   

  

          

 
 
  

  

       

 
 

 
 
  

   

(4.73) 

Where                                     

          

 
 
  

  

       

 
 

 
 
 
   

 

(4.74) 

     
 

 
   

 

    
  

       

 
 

(4.75) 

Case 2 

For  
 

 
          

 

 
 

        

   

  

       
   

  

 
(4.76) 

   
 

 
        

   
(4.77) 

The second moment of area of the entire cross-section,    is given by  

       
 

 
     

       

 
 

(4.78) 
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(4.79) 

     
     

  
 

(4.80) 

        (4.81) 

   
    

 
 

     
       

 
 

    
   

  
 

             

  
 
 

 

(4.82) 

(2) Torsional Stress,      

The equations expressing torsional stresses in the cross-sectional areas are 

developed based on the assumptions and procedures outlined by Shigley and 

Mischke [44].  

Area of torsion,     , is given by the following expression 

 

Figure 4-18 Torsional cross-sectional area 

         
 

 
     

 

 
  

(4.83) 

                (4.84) 

The torsional stress,     , is given by  

     
 

            
 

(4.85) 

Where T, the torque creating the torsional stress, is recorded at every joint during 

the simulation of the mechanism in the SimMechanics environment  
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(3) Direct Stress,     

Area of direct stress distribution is given by the expression 

                  (4.86) 

For a given axial longitudinal force,    , the direct stress is calculated by using 

the formula  

    
   

   

 
(4.87) 

    
   

             
 

(4.88) 

(4) Bending Stresses,     

Bending stress,    , due to bending moment acting about the  -axis,   ,  is given 

by: 

     
   

   

          
 

 
   

 

 
  

(4.89) 

Where     is the second moment of area of the cross-section about the centroidal 

 -axis and it is given by: 

    
                 

  
 

(4.90) 

This stress reaches its maximum value when at the outer most boundaries of the 

cross section, i. e., when: 

    
 

 
 

(4.91) 

          
     

                 
 

(4.92) 

In a similar manner, bending stress,    , duet to moment acting about the y-axis is 

given by: 

     
   

   

          
 

 
   

 

 
  

(4.93) 

Where     in this case is the second moment of the cross-sectional area about the 

centroidal y-axis 

    
                 

  
 

(4.94) 
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(4.95) 

Superposition of the effects of these two bending stresses and the direct stress 

gives the maximum value of stress in the x- direction. 

                               (4.96) 

4.4.5 Pin Design 

(1) Methods of Pin Failure 

1. Localized contact stress 

2. Failure of pin due to double shear 

3. Failure of pin due to bending moment 

(2) Contact Stresses 

The interaction between the pin and the casing is modeled by a cylinder-plane 

contact instead of cylinder-cylinder contact. The resulting magnitudes of Hertz’s 

contact stresses will have relatively higher values than if they were calculated 

using the cylinder-cylinder assumption because of the reduced contact area. 

Where  

   Diameter of pin 

   Diameter of base hole 

   Poisson’s Ratio of the pin material 

   Poisson’s Ratio of the base material 

   Young’s Modulus of Elasticity of the pin material 

   Young’s Modulus of Elasticity of the base material 

 

Figure 4-19 Pin loads in global vertical and horizontal planes 

The total force exerted on the first end of the pin is given by: 
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(4.97) 

Where           are the pin diameter and its effective length, respectively 

The magnitude of this force,     , is: 

      
  

 
 

  

  
 

 

  
  

 
 

  

  
 

 

 

(4.98) 

(3) Hertz’s Contact Stress 

The maxim stress due to contact between the surfaces of the pin and the base is 

calculated using the Hertz’s method. The contact zone between these two surfaces 

is approximated by a rectangular region. The width of this region, commonly 

known as “contact half width” is calculated by using the formula: 

           
(4.99) 

                  
 

  
 
 
    

 

  
 

    
 

  
 

 
  

 
 
  

 

(4.100) 

Since the casing holes are modeled by a plane for the purpose of making the 

design compatible with higher stresses, the reciprocal term containing    will be 

approximated by zero. The resulting expression takes the form: 

   
 

 
    

    
 

  
 

    
 

  
 

  
 

(4.101) 

The maximum contact pressure is then written as a function of the length      and 

diameter      of the pin as follows: 

             
     

   
 

(4.102) 

The resulting principal stresses in the pin are given by the relations 
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(4.104) 

    
     

   

 

     
 
 
 

 
 

(4.105) 

To calculate the maximum value of stress from one of these three equations, these 

stress are computed at the critical section           

             

    

   
 

(4.106) 

           
    

   
 

(4.107) 

          
    

   
 

(4.108) 

The allowable contact stress is generally taken as the minimum of       or     . 

(4) Failure of Pin Due to Double Shear 

The total shear area of each pin is represented by the equation 

 

Figure 4-20 Pin under double shear 

      
   

 

 
 

(4.109) 

Direct shear stress on the pin is calculated by dividing the shearing force by the 

total area. An equation for this stress is derived in terms of the pin length and the 

pin diameter so that it can be used in calculating an optimum values for these two 

pin dimensions. 
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(4.110) 

    
     

   
  

(4.111) 

(5) Failure of Pin Due to Bending Moment 

Referring to Figure 4-21 for the loading distribution, the maximum bending 

moment at the mid-span of the pin is given by the expression: 

 

Figure 4-21 Bending load distribution on pins 
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         (4.113) 

        
  
 

    
  
 

      
  

 
 

  
 

  
(4.114) 

Where     and     are base reinforcement extensions.  

The maximum bending stress is then given by substituting the above expression 

into the general formula 

   
    

 
 

(4.115) 

   
   

  
  

  
  

 
    

 
 

(4.116) 
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Chapter 5 

Virtual Mechanism Modeling and Simulation 
 

5.1. Introduction 
The design process of linkages and members in the mechanism requires the 

identification of generalized reaction forces at each joint. These forces will be 

used in the free body diagrams (FBD) and mass-acceleration diagrams (MAD) 

during the design stages. This task is implemented by using SimMechanics®, the 

mechanical simulation and analysis tool available in MATLAB® software.  

5.2. Simulation Setup 
Now that the major linear dimensions of the mechanism are identified, the next 

step is determining the reaction forces and moments experienced by each joint as 

a result of the digging operation.  To do this, a skeleton mechanism is constructed 

using the previously calculated linear dimensions in the SimMchanics modeling 

environment of MATLAB®. Doing this provides the flexibility of calculating 

interaction forces and exporting the results into the workspace for further 

processing. Furthermore, during latter stages of the design cycles, the weightless 

links can be substituted by their 3D counterparts and the simulation can be re-run 

to include the inertia effects into considerations. 

When using this tool, the mechanism under investigation is constructed by 

connecting linear linkages of prescribed inertia properties with virtual mechanical 

joints available in the joint library. The virtual weld joint is used in the event it is 

required to model bending, splitting, or merging mechanical members.  

In order to this approach be applicable in the automation of design processes, two 

general requirements have to be met. The first requirement is that all linear 

dimensions need to be defined; either numerically or symbolically. The second 

one is that all forms of mating constraints between connecting members have to 

be imposed by the use of joints and limits on joint parameters. 

Although inertia properties are possible to be assigned to these bodies at the initial 

stages as mentioned above, the procedure adopted in this paper uses a different 

approach suitable for cyclic modifications.  

The first round of the simulations starts with weightless and high-stiffness rigid 

bodies and upcoming simulations will be carried out with updated 3D solid bodies 

produced as a result of previous design cycles. 
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The necessary kinetic and kinematic joint variables registered during the 

simulations are extracted to MATLAB® workspace using the Simulink® scope 

readers. SimMechanics Link®, another useful tool to import and export CAD 

solid models into and out of SimMchanics® simulation environment, supports 

only SolidWorks® and Pro/E® but not UG NX. To overcome this setback 

SolidWorks is used as an intermediate file transfer tool in exporting the 3D 

models to SimMechanics.  

5.3. Simulink Model Construction 
Figure 5-1 shows the major components of an excavator arm mechanism while 

Figure 5-2 shows the representation of the same mechanism by linear 

components. The latter model is constructed in SimMechanics environment using 

standard rigid body and joint library.  

 

Figure 5-1 Typical excavator arm mechanism 

 

Figure 5-2 Skeleton representation of excavator arm mechanism 

5.3.1 Boom Construction 

The boom as shown in Figure 5-3, has two sides;    and    . It is hinged to the 

vehicle body with joint J1 and to the stick with joint J2. Joints J10 and J11 are 
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connecting points for hydraulic cylinders C2 and C1, respectively. The deflection 

of the structure by an angle    is modeled by welding the two linear sides. 

The two hinges for the hydraulic cylinders, J10 and J11, are located at the end of 

the extension sticks h_J10 and h_J11 to represent for an initial thickness of the 

boom. The values of these lengths are updated at the end of each conceptual 

design cycle from the cross-sectional calculation results. This is done because the 

hinge locations are assumed to be on the surfaces of the boom which are subject 

to modification at the end of each conceptual design cycle. 

 

Figure 5-3 Skeleton representation of boom structure 

 

Figure 5-4 SimMechanics model of boom 

5.3.2 Stick Construction 

The stick has four joints. J2 connects it with the boom while J3 connects it with 

the bucket. The transition four-bar mechanism is connected with the stick at joint 

J6 with revolute joint. Joint J8 is the connection point for the second hydraulic 

cylinder, C2. 

Again in this case, the final distances of hinges J2 and J8 from the longitudinal 

axis of the stick, h_J2 and h_J8, are determined based on the final 3D dimensions 
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of the stick. To start the simulation, however, initial values are assigned for these 

dimensions. These parameters will be updated at the end of each cycle.  

 

Figure 5-5 Skeleton representation of stick 

 

Figure 5-6 SimMechanics model of stick 

5.3.4 Bucket Modeling 

The bucket, which is the follower link of the transition four-bar mechanism, has 

only two joints; J3 and J4 to connect it to the stick and the coupler link of the 

four-bar, respectively.  

 

Figure 5-7 Bucket schematics 
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Figure 5-8 Bucket SimMechanics model 

The application point of the ground reaction force is selected in such a way the 

overall mechanism will be subject to severe loading condition. Twisting moment 

about the x-axis and bending moments about the y and z- axes register maximum 

readings when the digging force is applied on the bucket at a point furthest from 

the x-axis.  An eccentricity loading distance of half the width of the bucket is 

introduced for this purpose as shown in Figure 5-9.  

 

Figure 5-9 Location of application point of digging force 

5.3.5 Hydraulic Cylinders 

Hydraulic cylinders are represented by simple weightless rigid links only for the 

purpose of keeping the mechanism rigid. The forces registered at the opposite 

ends of these links can be used to determine the required hydraulic capacity of the 

cylinders. However, this task is beyond the scope of this research and will not be 

discussed here. 

5.3.6 Transition Four-bar Linkages 

The other two remaining linkages in the transition four-bar mechanism are 

represented by simple blocks with joints at both ends. 
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The actual total number of revolute joints in the mechanism is 11. However, in the 

SimMechanics model there is one more joint needed to be introduced due to the 

location of the hydraulic force application point on the driving link of the 

transition four-bar. Two coaxial joints in the real mechanism are required to be 

modeled by combining them into a single joint. Because this point is chosen to be 

at the connection point of the driving and coupler links, an additional redundant 

hinge joint was required for creating a three branch connection. This 

representation will not have any negative effect on the final outcome of the 

analysis. 

The above SimMechanics sub-models are assembled and simulation environment 

parameters are defined. Figure 5-10 below shows the final assembled 

SimMechanics Model of the excavator arm mechanism in the real-time simulation 

window.  

The simulation for this model is run for 2 sec at the digging orientation. Scopes in 

the model such as                register and export joint variable data to 

the MATLAB® workspace in vector form. 

Because of the selection of the digging mode for the design purpose, it was not 

necessary to define angular displacement and speed limits. 

 

Figure 5-10 Real-time simulation environment 
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Figure 5-11 shows the assembled SimMechanics diagram of the excavator arm 

mechanism. The digging force is represented by a constant vector and is applied 

at the left tip of the bucket. 

5.4. Numerical Example 
An example problem is investigated in this section to demonstrate the 

applicability of the proposed methods. The methods and the necessary 

engineering rules and design intents are programmed and implemented in 

MATLAB®. This demonstration will be carried out in two stages designed to 

show the operational procedures of the two proposed methods and their 

corresponding results. The first stage deals with the application of the hybrid 

ANN-Optimization technique in the process of dimensional synthesis of 

mechanisms. In the second section, the calculations and involved and the 

generated results in the areas of optimizations of cross sectional dimensions of the 

boom and the stick will be discussed. 

The input to the module handling the dimensional synthesis is a set of the required 

output configurations of the excavator arm mechanism. As discussed before, these 

values are checked for compatibility to make sure the feasibility of their co-

existence.   

Input Problem: 

SpcDat = c_Spec_Data_SI 

  

  Properties: 

       Title: 'Commercial Specifications and Vehicle Dimensions' 

    Maximum_Reachout_at_Ground_Level_S1: 5.6700 

              Maximum_Cutting_Height_S3: 3.7248 

              Maximum_Loading_Height_S4: 1.3521 

                  Horizontal_Distance_H: 0.9857 

                    Vertical_Distance_V: 1.2300 

                         Vehicle_Weight: 5000 

 

Once the linear dimensions of the overall mechanism are calculated, the next task 

will be calculating the optimum cross-sectional dimensions of the boom and the 

stick. This process started by defining necessary geometric and non geometric 

constraints. In addition to the constraints, initial values for some variables and 

iteration-dependent dimensions are also initiated at this stage. 

Bucket geometric properties: 

BuckGeo =  c_Bucket_Geo_SI 

  

  Properties: 

       Title: 'Bucket Geometries and Dimensions' 
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                          Bucket_Length_l3: 0.8112 

                           Bucket_Width_BW: 0.4867 

                          Bucket_Height_b0: 0.2839 

                       Bucket_Pin_Width_bw: 0.2434 

                  Bucket_Angle_teta_bucket: 95 

               Bulk_Volume_Clearance_Angle: 40 

    Maximum_Upward_Bucket_Open_Limit_Angle: 35 

  

Dimensional Constraints: 
 
Dimensional_Constraints =    c_Dimensional_Constraints_SI 

  

  Properties: 

       Title: 'Structural Dimensions Constraints' 

                 Minimum_Plate_Thickness: 0.0070 

                 Maximum_Plate_Thickness: 0.0200 

                  Minimum_Base_Dimension: 0.1000 

                  Maximum_Base_Dimension: 0.5000 

           Minimum_Boom_and_Stick_Height: 0.0100 

                     Maximum_Boom_Height: 0.5000 

                    Maximum_Stick_Height: 0.5000 

     Extension_of_Boom_Pin_Reinforcement: 0.0140 

    Extension_of_Stick_Pin_Reinforcement: 0.0140 

 

Material Properties: 
 
MaterProp = c_Material_Properties_SI 

  

  Properties: 

       Title: 'Material Selection and Properties' 

                    Prpertiy: 'Poisons E  YS_kpsi TS_kpsi YS_MPa 

TS_MPa Elong_2% Area_% BHN' 

    Pin_Material: [0.3000 210 234 260 1612 1791 12 43 498] 

   Base_Material: [0.3000 210 26 47 179 324 28 50 95] 

     Allowable_Stress_in_Pin: 447750000 

            Poison_Ratio_Pin: 0.3000 

          Youngs_Modulus_Pin: 2.1000e+011 

    Allowable_Stress_in_Base: 81000000 

           Poison_Ratio_Base: 0.3000 

         Youngs_Modulus_Base: 2.1000e+011 

           Safety_Factor_Pin: 1.1500 

          Safety_Factor_Boom: 1.1500 

         Safety_Factor_Stick: 1.1500 

      Safety_Factor_Linkages: 1.1500 

 

Initial Variable Linkage Imitation: 

 
InitialParam = c_Initial_Parameters_SI 

  

  Properties: 

       Title: 'Initial Values for Variable Dimensions' 

    Distance_to_J2_and_J8_on_Stick: 0.1000 
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           Distance_to_J10_on_Boom: 0.1000 

           Distance_to_J11_on_Boom: 0.1000 

 

Linkage Geometries: 

 
LinkDims =  c_LinkDims_SI 

  

  Properties: 

        Title: 'Boom and Stick Dimensions' 

           Boom_Shortcut_Length_l1: 2.7126 

       Boom_Deflection_Angle_betta: 35.6055 

             Side_Length_of_Boom_T: 1.6682 

                   Stick_Length_l2: 1.5616 

                    Stick_Angle_J2: 156.9267 

                           J2_left: 70.5982 

                          J2_right: 86.3285 

                    Stick_Angle_J8: 156.9267 

                           J8_left: 70.5982 

                          J8_right: 86.3285 

                    Stick_Angle_J9: 38.8037 

                             J9_up: 19.4018 

                          J9_lower: 19.4018 

                    Stick_Angle_J3: 7.3429 

                             J3_up: 3.6715 

                          J3_lower: 3.6715 

    Distance_to_J2_and_J8_on_Stick: 0.1000 

           Distance_to_J10_on_Boom: 0.1000 

           Distance_to_J11_on_Boom: 0.1000 

                 Stick_Tail_Length: 0.2839 

              Stick_Forward_Length: 1.5584 

 

Transition Four-bar Dimensions: 

 
FourbarDims = c_Fourbar_Solver_SI 

  

  Properties: 

       Title: 'Fourbar Linkage Dimensions' 

    Fourbar_Link_b0: 0.2839 

    Fourbar_Link_b1: 0.3692 

    Fourbar_Link_b2: 0.4461 

    Fourbar_Link_b3: 0.2434 

 

Operational Configuration Matrices and Variables: 
 

OperConfig = c_Operational_Configuration_SI 

  

  Properties: 

  Title: 'Configuration Parameters and Rotational Matrices' 

         Boom_opertating_angle_dig1: 1.8619 

    Boom_Rotational_Matrix_Sec1_RB1: [3x3 double] 

    Boom_Rotational_Matrix_Sec2_RB2: [3x3 double] 

         Stick_Rotational_Matrix_RS: [3x3 double] 

                     Fourbar_teta_1: 72.8748 

                     Fourbar_teta_2: -36.7587 
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                     Fourbar_teta_3: 278.6715 

 

Generalized Joint Forces and Moments: 
 

Joint_Forces = c_Joint_Forces_SI 

 

  Properties: 

       Title: 'Generalized Forces on Joints' 

    JointForces: [12x7 double] 

         FORCES: '' 

             F1: [3x1 double] 

             F2: [3x1 double] 

             F3: [3x1 double] 

             F4: [3x1 double] 

             F5: [3x1 double] 

             F6: [3x1 double] 

             F7: [3x1 double] 

             F8: [3x1 double] 

             F9: [3x1 double] 

            F10: [3x1 double] 

            F11: [3x1 double] 

            F12: [3x1 double] 

        MOMENTS: '' 

             M1: [3x1 double] 

             M2: [3x1 double] 

             M3: [3x1 double] 

             M4: [3x1 double] 

             M5: [3x1 double] 

             M6: [3x1 double] 

             M7: [3x1 double] 

             M8: [3x1 double] 

             M9: [3x1 double] 

            M10: [3x1 double] 

            M11: [3x1 double] 

            M12: [3x1 double] 

 

Force and moment values can be extracted by calling the members of the data 

structure as follows: 

Joint_Forces.F5 

  

ans = 

  

  1.0e+004 * 

  

    0.5644 

   -1.9908 

         0 
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Figure 5-11 SimMechanics diagram for an excavator arm mechanism 
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Chapter 6 

Feature-based CAD Embodiment 
 

6.1. Introduction 
The Application Programming Interface (API) open platform is used to write 

program codes and generate the feature based 3D CAD parts of the boom and 

stick in NX. The programming part is implemented using Visual Studio 2008® 

C++. 

The results of the engineering design calculations carried out in previous sections 

using MATLAB® and SimMechanics® are needed to be imported in a systematic 

manner to be used in the generation of the CAD models. Additionally, the process 

of importing and exporting data was required to be performed without direct 

manual involvement. This was accomplished by creating intermediate sets of text 

data files to bridge the gap.  

At the end of the engineering design cycle calculations, a MATLAB® program is 

used to create or update a set of .dat* text files containing the necessary input 

dimensions and parameters data structures. The MATLAB® program 

writes/updates these files and stores them in specific directories created for this 

purpose.  

These files will automatically be accessed by the API C++ code during the 

generation of the CAD models. In a similar way done for the exporting command 

in MATLAB®, a C++ program is developed which is responsible for reading the 

values of this files and storing them in the internal memory.  

The choice of the locations of the shared directories was done taking into 

consideration the possibility of different sections of the tasks could be performed 

on different systems. One of the free internet file storage services was used to 

create a common directory shared by two computers involved in this research. In 

practical industrial applications, this approach lends itself to the implementation 

of efficient collaborative project. It provides the flexibility of assigning different 

tasks to different engineers working in different geographical locations.  

Classes and their corresponding objects are instantiated and used to effectively 

handle the data imported. Most of these data were used in the program more than 

once and adopting object oriented programming approach proved helpful in 
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managing the data. The following lines show a class for handling custom datum 

coordinate system (CSYS) creating function parameters. 

struct DATUM_CSYS_DATA{ 

 double offset_x; 

 double offset_y; 

 double offset_z; 

 double angle_x; 

 double angle_y; 

 double angle_z; 

 bool transform_sequence; 

 int rotation_sequence[2]; 

 }; 

6.2. Reusability of Functions 
All the functions developed for this project are created by the use of the C++ API 

functions provided in NX open documentations. Direct application the basic 

functions to this research was found to be very difficult and time consuming 

because of the need to specifically define most initializing parameters unrelated to 

the objective of this work. 

An effort has been put in place to generalize most of the developed functions and 

ensure their reusability. Based on the basic C++ API functions, customized 

functions were developed by incorporating additional procedures to bring user 

intuitivism while simplifying the definitions of input and output arguments.  

More than 40 functions were developed and used in the creation of the boom and 

the stick CAD files. The details of these functions are provided in Appendix B. 

The following are lists of some of the tasks these functions are responsible for. 

 Reading external data files 

 Creating new part model files in specified directories 

 Creation of datum CSYS (Absolute and Relative) 

 Creation of datum planes 

 Extraction of datum planes/axis out of datum CSYS  

 Creation of geometric objects such as  

o Points 

o Lines 

o Arcs 

o B-spline Curves from data points 

6.3. Boom Modeling 
The modeling of the boom part is initialized by creating a blank NX .prt file using 

the function  
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wub_Create_New_Part_File(char file_path[UF_CFI_MAX_FILE_NAME_SIZE])  

The next step after creating a blank CAD modeling environment was to properly 

position user defined CSYS features for the purpose of simplicity in additional 

features and object creation. The relative angular orientations and offset distances 

between consecutive CSYSs were represented by instantiating an object of the 

class DATUM_CSYS_DATA. In addition to relative linear displacements and 

angular orientations, these objects also define the coordinate transformation 

sequences.  

In the case study most of the CSYSs were defined and located at the joint 

locations for the purpose of simplifying creation of joint associative features such 

as hinges. The custom functions used for this purpose are: 

 wub_CSYS_origin_and_direction(void) 

 wub_CSYS_offset( tag_t referece_datum_CSYS,  

const double linear_offset[3], 

const double angular_offset[3],  

bool operation_sequence) 

 

 
Figure 6-1 Boom coordinate system (CSYS) features  

 

The optimization result vectors for the two sides of the boom exported from 

MATLAB® were previously saved in the following directory: 

 
D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat 

D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat 

 

These vectors define point coordinates of the top left edge of the boom.  B-spline 

curves representing each side of the boom were created from these data points by 

importing within their respective CSYS.  



67 

 

     

Figure 6-2 Boom B-spine curve features 

Since these edges are symmetrical about the local     and x-z planes, the 

curves defining the lower right edges of the boom are created by reflecting the 

existing curves about their     planes within the local CSYS.  

The function used for this purpose is: 

wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag, tag_t Plane_ Tag)  

 

Figure 6-3 Evolvement of features 

The curves are modified by trimming and bridging operations to create a joined 

curve feature. The following functions are used to for these operations. 

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag,  

tag_t Datum_Plane_Tag, 

int which_end); 
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tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag,  

tag_t Tool_curve1,  

tag_t Tool_curve2); 

 

tag_t wub_Bridge_Curves(tag_t Curve_1_Tag,  

tag_t Curve_2_Tag,  

int Reverse1,  

int Reverse2, 

int par1,  

int par2); 

 

The end of the boom at joints J1 and J2 are closed by arcs tangent to the upper 

and lower edge curves and centered at the origins of the CSYSs. 

 

Figure 6-4 Joined curve features 

This closed curve feature represents the side wall of the boom. To create the 

upper and lower floors of the boom it is required to create other sets of curve 

features defining the boundaries of the surfaces. The above modified closed 

curve, shown by the green line in Figure 6.5, is projected onto the vertical x-y 

plane to form a guide line to be used for surface sweeping operation together with 

the existing one. This projected curve will serve the purpose of defining the right 

section of the boom as seen from the –x directions. 

tag_t wub_Create_Projected_Curve(tag_t curve_tag,  

tag_t Datum_CSYS_tag,  

int Plane_Num) 

 



69 

 

 
Figure 6-5 Embodiment features 

The third closed curve, colored green in Figure 6-5, is created in a very similar 

procedure followed for the creation of the above curve but with an offset value 

added in the z direction to accommodate for a welding space. 

The top and bottom floor surface features of the boom are generated by sweeping 

a linear curve guided by the red and the green curves. To avoid potential 

modeling errors associated with availability of multiple solutions for a given input 

to the responsible function, this process was carried out in two stages. The side 

wall surface was created from bounding curves. The functions used for this 

purpose are: 

tag_t wub_Join_Curves(tag_t *curves,int n) 

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end) 

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2) 

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section) 

tag_t wub_BPLANE(tag_t Curve_String[2]) 

 

Hinge joint features are created by sketching and extruding their profiles. The 

boom has two types of hinge joints; one that passes thought the plate walls and 

the other one that is attached externally to the boom structure by welding. 

Joint J1 is constructed by introducing a hollow cylindrical feature of appropriate 

dimensions to the boom structure while joints J2, J10, and J12 are constructed 

from scratch by sketching and extruding their profile. 
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Figure 6-6 Sheet body features 

Functions used for this purpose include: 

tag_t wub_SKETCHES_J2_adopter(char name[30],  

tag_t Refrence_CSYS,  

int Plane_num,  

int Axis_num) 

 

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS) 

 

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS, 

int Plane_num,  

double radius,  

double arc_center[3], 

double start_ang,  

double end_ang) 

 

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS, 

int Plane_num,  

double radius,  

double arc_center[3], 

tag_t p1,  

tag_t p2) 

 

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2]) 

 

tag_t wub_SKETCH_J11(tag_t Reference_CSYS, 

int Plane_num, 

tag_t line_Tag,  

tag_t bridge_tag) 

 

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t 

Curve_Tag); 
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Figure 6-7 Hinge joint profiles construction 

The sheet bodies are thickened and the joint sketches are extruded with initial and 

final limits to create the final solid body features. After the necessary 

modification on the joint solid features the left side of the solid boom is created 

by merging the individual solids with each other.  

Custom functions used for these operations include:  

tag_t THICKEN_Sheet(tag_t sheet_body_tag) 

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid) 

 
Figure 6-8 Solid body features 

This left side of the boom is mirrored about the x-y plane to create the other half 

of the boom. The original and the newly created halves are then merged together 

to create the final boom solid body shown by Figure 6-9. 
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Figure 6-9 Final CAD model of an excavator boom 

6.4 Stick CAD Modeling 

The programming and part creation procedures followed for the stick are very 

similar to the one adopted for the boom. Most of the functions developed are 

reused directly or, in some instances, with minor modifications to address stick- 

specific modeling needs.  

As done for the boom, the modeling process for the stick started by creating a new 

part file called Stick.prt using the same function.  

Data was imported from the intermediate files using similar procedures. User 

defined CSYS’s were created at the joint locations and some critical locations 

necessary for the creation of sketches. 

Generally, the stick construction procedure is relatively easier than that of the 

boom because of the parallelism of the stick CSYS features (Figure 6-10). 
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Figure 6-10 Stick coordinate system features 

The arcs of the stick at the joints J2, J3, and L9 were constructed first based on 

the data imported from the neutral text files. Profiles defining the edges of the 

stick were created by joining these arcs with the maximum middle point straight 

tangent lines as shown in Figure 6-11. 

  

Figure 6-11 Feature evolvement 

After performing some line modification operations, such as trimming and 

joining, the created closed loop curves are projected onto two different planes 

positioned parallel to the middle x-y plane. 

Figure 6-12 shows the cleaned and projected stick profile curves. The green and 

blue curves will be used as guides to create a sheet body by a sweeping operation 

while the red curve will be used as a boundary when creating a bounded plane. 

The pink closed curve will be extruded to create the hinge solid for joint J9. 
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Figure 6-12 Embodiment features 

A line element parallel to the z axis was created and used for the sweeping 

operation. The following figures show the sweeping tool and the resulting sheet 

body features. 

 

Figure 6-13 Stick sheet body features 

The side left side wall is created by using the other projected curve as a boundary 

in the bounding plane operation.   

These planes are thickened with appropriate thickness values and taking necessary 

inference tolerances into consideration. Joints are created using similar procedure 

as used in the boom modeling. The final left half of the boom is shown in Figure 

6-14. 
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Figure 6-14 Stick solid body feature 

The final complete stick solid body feature is created by merging individual 

extruded and thickened solid features together into a single part and mirroring this 

part about the x-y plane. The mirrored and its parent solid are converted again 

into single solid by merging them with similar command to get the final model 

shown by Figure 6-15. 

 

Figure 6-15 Final CAD mode of an excavator arm stick 
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Chapter 7 

Conclusions and Future Works 

7.1 Conclusions 

7.1.1 Proposed Method  

The proposed generative feature-based conceptualization method for product 

development is promising to upgrading the current information-fragmented and 

experience-based practice. 

The method discussed in this work can effectively capture engineering rules and 

facilitate the design cycle processes, such as insightful configuration optimization 

and embodiment development. The method also provides good flexibility in terms 

of customization and standardization of other products which involve frequent 

changes.  

Reusability of the developed functions has provided evidence that, unlike 

traditional modeling methods, the knowledge in the design stages can always be 

embedded, harnessed for a new product, and be reused when developing future 

generations of similar products.   

However, it is worth noting that in the candidate’s opinion, regardless how 

intelligent a design system is to be in the future, human design expertise is always 

required while the developed system can only support the decision making more 

effectively with some productivity tools. 

7.1.2 Case Study 

The case study proves that the knowledge-driven feature-based conceptual design 

approach can handle traditionally-known and complex challenges such as 

machine linkage optimization problems. 

The proposed hybrid optimization-ANN dimensional synthesis method has 

greatly increased the reliability of calculated solutions. Training the ANN with 

larger size of existing product data is believed to produce solutions reflective of 

design intents and industrial standards. 

A hybrid ANN-Optimization method has been proposed and proved to provide 

satisfactory result. The optimization procedure, specific to a selected product 

configuration, was employed to calculate the final linkage dimensions which 

satisfy work-range configuration requirements.  
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The ANN has the advantage to generate close initial solutions of the linkage 

dimensions and, in combination with the optimization techniques, it can assist to 

generate accurate optimal solutions in an integrated design environment. 

7.1.3 Scalability 

Although this research work was applied to an excavator case only, the method 

proposed can be equally applied to other mechanical product development. 

Product-specific engineering rules, data and procedures have to be replaced. 

This method has some novelty in solving similar problems in the product design 

domain, i.e. a hybrid linkage dimension synthesis method. The general procedure 

can be followed for the conceptual design of other mechanisms in principle. All 

the process modules will remain valid. The only exception would be the details of 

design calculations and optimization criteria since they are usually very specific 

to the product under discussion. Regardless of the product being designed, the 

procedure is scalable. 

7.2 Future Work 
Formal definitions of generic conceptual design features need to be investigated 

such that embedded engineering rules, constraints, data representations, behaviors 

can be modeled and managed generically in an object-oriented approach and 

systematically implemented. 

Programming and engineering analysis tools such as Visual C++ and Matlab can 

be integrated with feature-based tools, e.g.  Siemens NX so that the analysis 

procedure can be part of the integrated conceptual design system. Their input and 

output as well as the constraints can automatically be managed according to the 

formal definition of concept problems. 

The conceptual design process discussed was based only on the mechanical 

design aspect of the case-study. The data structures and communication 

mechanisms can also be equally used in designing other aspects of the product. 

The conceptual level design of hydraulic circuit subsystem in the case study, for 

example, can also be modeled and solved under proposed data and information 

management scheme by implementing its own conceptualization contents. 
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Appendix 1 MATLAB CODES 

A1.1 General Excavator Design Code (Main Body) 

Developed by:  

Abiy T Wubneh  

Department of Mechanical Engineering  

University of Alberta  

2010 

The following code is the main part of the linkage synthesis computation. It is 

assembled from individual functions and subroutines to compute different tasks 

involved in the conceptual design of the excavator arm mechanism. Dimensional 

synthesis of members and optimization of their cross-sectional area are the main 

objective of this code. Please refer to the documentation of the respective 

functions in the next section (Section 2) for details on the individual function 

components used in this code. 

 Global Variables  

 Specifications and Constraints  

 Dimensional Synthesis  

 Design and Optimization 

clear all; 

clc; 

clf; 

close all; 

Global Variables 

The variables defined here are used by more than one function. 

global SpcDat BuckGeo Dimensional_Constraints MaterProp InitialParam ... 

       LinkDims Four-barDims OperConfig Joint_Forces PinDims 

Specifications and Constraints 

User inputs, material data, and engineering constraints are provided by the following 

three functions. 

[SpcDat,BuckGeo] = f_Specification() 

[Dimensional_Constraints] = f_Dimensional_Constraints()  

[MaterProp] = f_Material_Properties()  

Dimensional Synthesis 

file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%232
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%234
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%236
file:///C:/Users/wubneh/Documents/MATLAB/html/General_Excavator_Design_Code.html%238
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The functions under this category are responsible for calculations of linear dimensions of 

linkages and members. The function f_Operational_Configuration() computes the 

orientation angles during specified operations: digging in this case. 

[InitialParam] = f_Initial_Parameters()  

[LinkDims] = f_LinkDims()   

[Four-barDims] = f_Four-bar_Solver() 

[OperConfig] = f_Operational_Configuration() 

Design and Optimization 

Engineering design for strength is carried out by simulation of the model in 

SimMechanics environment under this category of functions. This division also includes 

functions responsible for extraction of forces and moments information and computing 

the FBD and MAD analysis. The function f_Cross_Sectional_Optimizer() is used to 

determine an optimized set of the cross-sectional parameters of the boom and the stick 

based on minimum material consumption objective function. 

OperForce = f_Operation_Force(); 

open_system Excav_Sim_Model ;     

sim Excav_Sim_Model ;   

JoinForce = [SD1; SD2; SD3; SD4; SD5; SD6; SD7; SD8; SD9; SD10; SD11; 

SD12]; 

Joint_Forces = f_Joint_Forces(JoinForce); 

[PinDims,Exitter] = f_Pin_Dimensions() 

CrossDims = f_Cross_Sectional_Optimizer(); 

f_exceel_writter() 

 

Published with MATLAB® 7.11 
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A1.2 Functions and Subroutines Details 

Contents 

 Commercial Specification and Bucket Dimension Inputs: f_Specification()  

 Dimensional Constraints and Factor of Safties: f_Dimensional_Constraints()  

 Material Properties Selector: f_Material_Properties()  

 Initial Parameters: f_Initial_Parameters()  

 Neural Network Training Data Generator: f_NN_Data_Generator()  

 Creating and Training ANN: NN_Spec_create_fit_net(inputs,targets)  

 Input Specification Prameters Sorter: f_NN_Parameter_Sorter(Input_Data_S)  

 Linkage Dimension Stynthizer: f_LinkDims_NN()  

 Four-bar Linkages Solver: f_Four-bar_Solver()  

 Operational Configurations: f_Operational_Configuration()  

 Operation Forces: f_Operation_Force()  

 Joint Forces: f_Joint_Forces(JoinForce)  

 Pin Dimensions: f_Pin_Dimensions()  

 Cross-sectional Oprimization: f_Cross_Sectional_Optimizer()  

 Data Exporter: f_exceel_writter() 

2.1 Commercial Specification and Bucket Dimension Inputs: 

 f_Specification() 

function [SpcDat,BuckGeo] = f_Specification() 

S11 = 5670;  % actual value from catalog 

S1o = 650;   % screen measurement (random unit) 

S3o = 427; 

S4o = 155; 

Ho = 113; 

Vo = 141; 

bucket_lengtho = 93; 

bucket_widtho = 0.6*bucket_lengtho; 

image_ratio = S11/S1o; % image ratio: screen measurement to real values 

S1 = image_ratio*S1o/1000; % MAXIMMUM REACHOUT AT GROUND LEVEL 

S3 = image_ratio*S3o/1000; % MAXIMUM CUTTING HEIGHT 

S4 = image_ratio*S4o/1000; % MAXIMUM LOADING HEIGHT 

H = image_ratio*Ho/1000; 

V = image_ratio*Vo/1000; 

 

% COMMERCIAL_SPECIFICATION = f_Spec_Data_SI(S1,S3,S4,H,V) 

SpcDat = c_Spec_Data_SI; 

SpcDat.Maximum_Reachout_at_Ground_Level_S1 = S1; 

SpcDat.Maximum_Cutting_Height_S3 = S3; 

SpcDat.Maximum_Loading_Height_S4 = S4; 

SpcDat.Horizontal_Distance_H = H; 

SpcDat.Vertical_Distance_V = V; 

bucket_length = image_ratio*bucket_lengtho/1000; 

bucket_width = image_ratio*bucket_widtho/1000; 

bucket_pin_len = 0.5*bucket_width; 

teta_bucket = 95;   % Bucket angles (property of bucket geometry) 

b0 = 0.35*bucket_length;    % Initial value assumed for b0 

Bucket_Geometry = [bucket_width, bucket_length, bucket_pin_len]; 

BuckGeo = c_Bucket_Geo_SI; 

BuckGeo.Bucket_Length_l3 = bucket_length; 

file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%231
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%234
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%236
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%239
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2312
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2315
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2318
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2321
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2324
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2327
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2330
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2333
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2335
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2338
file:///C:/Users/wubneh/Documents/MATLAB/html/AAAAA00_combinge_%20publishing.html%2341
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BuckGeo.Bucket_Width_BW = bucket_width; 

BuckGeo.Bucket_Height_b0 = b0; 

BuckGeo.Bucket_Pin_Width_bw = bucket_pin_len; 

BuckGeo.Bucket_Angle_teta_bucket = teta_bucket; 

BuckGeo.Bulk_Volume_Clearance_Angle = 40; 

BuckGeo.Maximum_Upward_Bucket_Open_Limit_Angle = 35; 

2.2 Dimensional Constraints and Factor of Safeties: 

 f_Dimensional_Constraints() 

function [Dimensional_Constraints] = f_Dimensional_Constraints() 

pin_tol = 0.03; 

FS_pin = 1.5; 

FS_base = 1.25; 

thick_min = 7e-3;       % Minimum plate thickness 

thick_max = 20e-3;      % maximum plate thickness 

base_max = 500e-3; 

base_min = 100e-3; 

height_min = 10e-3; 

height_max = 500e-3; 

h_stick_max = 500e-3; 

ext_1 = 2*thick_min;     % extension of boom pin reinforcement 

ext_2 = 2*thick_min;     % extension of stick pin reinforcement 

Dimensional_Constraints = c_Dimensional_Constraints_SI; 

Dimensional_Constraints.Minimum_Plate_Thickness = thick_min; 

Dimensional_Constraints.Maximum_Plate_Thickness = thick_max; 

Dimensional_Constraints.Minimum_Base_Dimension = base_min; 

Dimensional_Constraints.Maximum_Base_Dimension = base_max; 

Dimensional_Constraints.Minimum_Boom_and_Stick_Height = height_min; 

Dimensional_Constraints.Maximum_Boom_Height = height_max; 

Dimensional_Constraints.Maximum_Stick_Height = h_stick_max; 

Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement = ext_1; 

Dimensional_Constraints.Extension_of_Stick_Pin_Reinforcement = ext_2; 

2.3 Material Properties Selector:  

f_Material_Properties() 

function [MaterProp] = f_Material_Properties() 

Mat_prop = material_data_importer; 

Pin_Material = Mat_prop(29,:); 

Base_Material = Mat_prop(1,:); 

 

% PIN MATERIAL DATA 

SigY_pin = 1e6*Pin_Material(1,5);   % Yield stress in (MPa) 

SigU_pin = 1e6*Pin_Material(1,6);   % Ultimate tensile strength in (MPa) 

Sigall1_pin = (2/3)*SigY_pin;       % Allowable strength in Mpa 

Sigall2_pin = (1/4)*SigU_pin;       % Allowable strength in (MPa) 

SSpin = [Sigall1_pin;Sigall2_pin]; 

SSpin2 = sort(SSpin); 

Sig_all_pin =  SSpin2(1,1); % Smallest of the allowable stresses (MPa) 

v_pin = Pin_Material(1,1);  % Poisson's Ratio 

E_pin = 1e9*Pin_Material(1,2);  %Young's modulus of elasticity in (GPa) 

 

% BASE MATERIAL DATA 

SigY_base = 1e6*Base_Material(1,5); 

SigU_base = 1e6*Base_Material(1,6); 

Sigall1_base = (2/3)*SigY_base; 

Sigall2_base = (1/4)*SigU_base; 
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SSbase = [Sigall1_base;Sigall2_base]; 

SSbase2 = sort(SSbase); 

Sig_all_base = SSbase2(1,1); 

v_base = Base_Material(1,1); 

E_base = 1e9*Base_Material(1,2); 

MaterProp = c_Material_Properties_SI; 

MaterProp.Pin_Material = Pin_Material; 

MaterProp.Base_Material = Base_Material; 

MaterProp.Allowable_Stress_in_Pin = Sig_all_pin; 

MaterProp.Allowable_Stress_in_Base = Sig_all_base; 

MaterProp.Poison_Ratio_Pin = v_pin; 

MaterProp.Youngs_Modulus_Pin = E_pin; 

MaterProp.Poison_Ratio_Base = v_base; 

MaterProp.Youngs_Modulus_Base = E_base; 

2.4 Initial Parameters:  

f_Initial_Parameters() 

function [InitialParam] = f_Initial_Parameters() 

InitialParam = c_Initial_Parameters_SI; 

2.5 Neural Network Training Data Generator:  

f_NN_Data_Generator() 

function [Input_Data_S,Target_Data_L] = f_NN_Data_Generator() 

Div_gap = 6; 

alp1d = 10; 

alp2d = 12.5; 

alpbud = 33; 

alp1 = alp1d*pi/180; 

alp2 = alp2d*pi/180; 

alpbu = alpbud*pi/180; 

 

% Boom Limits 

L1_lb = 1.5; 

L1_ub = 2.5; 

 

% Stick Limits 

L2_lb = L1_lb/2; 

L2_ub = L1_ub/2; 

 

% Bucket Limits 

L3_lb = L1_lb/3; 

L3_ub = L1_ub/3; 

S_lb = 15; 

S_ub = 30; 

 

% Valued Vectors 

L1 = L1_lb:(L1_ub-L1_lb)/Div_gap:L1_ub; 

L2 = L2_lb:(L2_ub-L2_lb)/Div_gap:L2_ub; 

L3 = L3_lb:(L3_ub-L3_lb)/Div_gap:L3_ub; 

S = S_lb:(S_ub-S_lb)/Div_gap:S_ub; 

 

L1 = L1'; 

L2 = L2'; 

L3 = L3'; 

H = input('H:     '); 

V = input('V:     '); 



88 

 

S = S'; 

d = 1; 

for i = 1:1:(Div_gap)   % boom length index (L1) 

    for j = 1:1:(Div_gap)   % stick length index (L2) 

        for k = 1:1:(Div_gap)   % bucket length index (L3) 

          for s = 1:1:(Div_gap)% angle β index (β) 

            a = L1(i,1); 

            b = L2(j,1) + L3(k,1); 

            bl2 = L2(j,1); 

            bl3 = L3(k,1); 

            betta = S(s,1); 

            c = sqrt(a^2 + b^2 + 2*a*b*cosd(betta)); 

 

            % 1. MAXIMUM REACH-OUT AT GROUND LEVEL, S1 

 

            betta_s1 = real (rad2deg(asin(V/c))); 

            TM_S1_1 = [1 0 0 H; 

                0 1 0 V; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S1_2 = [cosd(-betta_s1), -sind(-betta_s1), 0, 0; 

                sind(-betta_s1), cosd(-betta_s1), 0, 0; 

                0, 0, 1, 0; 

                0, 0, 0, 1]; 

            TM_S1_3 = [1 0 0 c; 

                0 1 0 0; 

                0 0 1 0; 

                0 0 0 1]; 

            A_S1 = TM_S1_1*TM_S1_2*TM_S1_3; 

            S1 = abs(A_S1(1,4)); 

 

            % 2. MAXIMUM DIGGING DEPTH, S2 

 

            TM_S2_1 = [1 0 0 H; 

                0 1 0 V; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S2_2 = [cosd(alp2),-sind(alp2),0,0; 

                sind(alp2),cosd(alp2),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S2_3 = [1 0 0 0; 

                0 1 0 -a; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S2_4 = [cosd(-betta),-sind(-betta),0,0; 

                sind(-betta),cosd(-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S2_5 = [1 0 0 0; 

                0 1 0 -b; 

                0 0 1 0; 

                0 0 0 1]; 

            A_S2 = TM_S2_1*TM_S2_2*TM_S2_3*TM_S2_4*TM_S2_5; 

            S2 = abs(A_S2(2,4)); 

 

            % 3. MAXIMUM CUTTING HEIGHT, S3 

 

            TM_S3_1 = [1 0 0 H; 

                0 1 0 V; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S3_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0; 
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                sind(alp1-betta),cosd(alp1-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S3_3 = [1 0 0 0; 

                0 1 0 a; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S3_4 = [cosd(-betta),-sind(-betta),0,0; 

                sind(-betta),cosd(-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S3_5 = [1 0 0 0; 

                0 1 0 b; 

                0 0 1 0; 

                0 0 0 1]; 

            A_S3 =  TM_S3_1*TM_S3_2*TM_S3_3*TM_S3_4*TM_S3_5; 

            S3 = abs(A_S3(2,4)); 

 

            % 4. MAXIMUM LOADING HEIGHT, S4 

 

            TM_S4_1 = [1 0 0 H; 

                0 1 0 V; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S4_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0; 

                sind(alp1-betta),cosd(alp1-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S4_3 = [1 0 0 0; 

                0 1 0 a; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S4_4 = [cosd(-betta),-sind(-betta),0,0; 

                sind(-betta),cosd(-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S4_5 = [1 0 0 0; 

                0 1 0 bl2; 

                0 0 1 0; 

                0 0 0 1]; 

            A_S4 =  TM_S4_1*TM_S4_2*TM_S4_3*TM_S4_4*TM_S4_5; 

            A_S4(2,4) = A_S4(2,4)- bl3; 

            S4 = abs(A_S4(2,4)); 

 

            % 5. MINIMUM LOADING HEIGHT, S5 

            TM_S5_1 = [1 0 0 H; 

                0 1 0 V; 

                0 0 1 0; 

                0 0 0 1]; 

            TM_S5_2 = [cosd(alp1-betta),-sind(alp1-betta),0,0; 

                sind(alp1-betta),cosd(alp1-betta),0,0; 

                0,0,1,0; 

                0,0,0,1]; 

            TM_S5_3 = [1 0 0 0; 

                0 1 0 a; 

                0 0 1 0; 

                0 0 0 1]; 

            A_S5 =  TM_S5_1*TM_S5_2*TM_S5_3; 

            A_S5(2,4) = A_S5(2,4)- b; 

            S5 = abs(A_S5(2,4)); 

            Input_Data_S(1:1:7,d) = [S1;S2;S3;S4;S5;H;V]; 

            Target_Data_L(1:1:4,d) = [a;bl2;bl3;betta]; 

            d = d+1; 
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             end 

        end 

    end 

end 

Input_Data_S; 

Target_Data_L; 

2.6 Creating and Training ANN:  

NN_Spec_create_fit_net(inputs,targets) 

function NN_Spec_net = NN_Spec_create_fit_net(inputs,targets) 

% *Create Network* 

numHiddenNeurons = 20;  % Adjust as desired 

NN_Spec_net = newfit(inputs,targets,numHiddenNeurons); 

NN_Spec_net.divideParam.trainRatio = 70/100;   % Adjust as desired 

NN_Spec_net.divideParam.valRatio = 15/100;   % Adjust as desired 

NN_Spec_net.divideParam.testRatio = 15/100;   % Adjust as desired 

 

% *Train and Apply Network* 

[NN_Spec_net,tr] = train(NN_Spec_net,inputs,targets); 

outputs = sim(NN_Spec_net,inputs); 

 

% *Plot* 

plotperf(tr) 

plotfit(NN_Spec_net,inputs,targets) 

plotregression(targets,outputs) 

2.7 Input Specification Parameters Sorter: 

 f_NN_Parameter_Sorter(Input_Data_S) 

function [Spec_Paramters_Final,Norm_Ratio] = 

f_NN_Parameter_Sorter(Input_Data_S) 

Tol_spec = 2; 

Data_size = size(Input_Data_S); 

Data_length = Data_size(1,2); 

Vector_spec = ones(1,Data_length); 

Occupied = zeros(1,5); 

Final_S = zeros(5,1); 

RATIO_Mtx = zeros(5,1); 

for sc = 1:1:5  % priority counter 

    tt_t = 0; 

    for occ_counter = 1:1:5 

        if Occupied(1,occ_counter)==0 

            tt_t = tt_t + 1; 

            Disp_vector(1,tt_t) = occ_counter; 

        end 

    end 

    disp('Enter a valied specificaton parameter number to prioritize: ') 

    disp(Disp_vector) 

    PR = input('   ....') 

    Spec_val = input('Value of this parameter:     '); 

    Occupied(1,PR) = PR; 

    Final_S(PR,1) = Spec_val; 

    PR_data = Input_Data_S(PR,:); 

    Ratio_N = Spec_val/(mean(PR_data)); 

    RATIO_Mtx(sc,1) = Ratio_N; 

    Ratio_first = RATIO_Mtx(1,1); 

    Spec_data_norm = (Spec_val/Ratio_first)*Vector_spec; 
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    Difference_vec = abs(PR_data - Spec_data_norm); 

    rsc = 0 ;   % range size counter 

    for vc = 1:1:Data_length % vector size counter 

        if 100*((Difference_vec(1,vc))/(Spec_data_norm(1,vc)))<Tol_spec 

            rsc = rsc+1; 

            for csc = 1:1:5     % configuration type counter 

                if Occupied(1,csc) == 0 

                    Range_Matrix(csc,rsc) = Input_Data_S(csc,vc); 

                end 

            end 

        end 

    end 

    for rsc2 = 1:1:5 

if Occupied(1,rsc2) == 0 

    Lower_Limit_Matrix(rsc2,sc) = Ratio_first*(min(Range_Matrix(rsc2,:))); 

    Upper_Limit_Matrix(rsc2,sc) = Ratio_first*(max(Range_Matrix(rsc2,:))); 

    Range_Matrix_02(rsc2,1) = max(Lower_Limit_Matrix(rsc2,:)); 

    Range_Matrix_02(rsc2,2) = min(Upper_Limit_Matrix(rsc2,:)); 

elseif Occupied(1,rsc2) ~= 0 

        Range_Matrix_02(rsc2,:) = [0,0]; 

        end 

    end 

    disp(Range_Matrix_02) 

    disp(Final_S) 

    Norm_Ratio = Ratio_first; 

    clearvars Disp_vector Range_Matrix; 

end 

Spec_Paramters_Final = Final_S; 

2.8 Linkage Dimension Synthesizer:  

f_LinkDims_NN() 

function [LinkDims_NN] = f_LinkDims_NN() 

global SpcDat BuckGeo InitialParam C nn_init_sol 

S1 = C(1,1) 

S3 = C(4,1); 

S4 = C(5,1); 

H = C(6,1); 

V = C(7,1); 

linkdim0 = [ nn_init_sol.nn_boom_len_l1;    % initial solution 

            nn_init_sol.nn_sticklen_l2; 

            deg2rad(nn_init_sol.nn_deflang_beta)]; 

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ... 

    'TolX', 1e-5, 'TolFun', 1e-6); 

[linkdim,fval,exitflag,jacobian] = fsolve(@Links_Eq2_NN, linkdim0, 

options); 

ang = linkdim(3,1); 

betta = rad2deg(ang); 

linkdim(3,1) = betta; 

l1 = linkdim(1,1); 

l2 = linkdim(2,1); 

LinkDims_NN = linkdim; 

2.9 Four-bar Linkages Solver:  

f_Four-bar_Solver() 

function [Four-barDims] = f_Four-bar_Solver() 

global BuckGeo 
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% THIS SOLVES THE LINEAR EQUATIONS IN THE VECTOR Fourar_1_Eq.m STARTING 

% FROM AN INITIAL SOLUTION DERIVED IN PROPORTION FROM THE LENGTH OF LINK 

3. 

% global b0 tets11 tets2 tets12 teta_bucket 

 

% Note 

% For an excavator arm facing to the right side of the page, b0 

represents 

% the linkage on the bucket and b1, b2, and b3 are assigned on counter 

% clockwise sense. Hence, b3 will be on link l2. 

 

% 

************************************************************************* 

% Example: for future reference of calculation results 

% b0 = 69.7 

% b3 = 65.4 

% 

% b1 = 90.8 

% b2 = 102.5 

% 

************************************************************************* 

b0 = BuckGeo.Bucket_Height_b0; 

fb10 = [b0; b0]; 

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ... 

    'TolX', 1e-5, 'TolFun', 1e-6); 

[FB1,fval,exitflag,jacobian] = fsolve(@Four-bar_1_Eq, fb10, options); 

 

b1 = real(FB1(1,1)); 

b2 = real(FB1(2,1)); 

Four-barDims = c_Four-bar_Solver_SI; 

Four-barDims.Four-bar_Link_b0 = b0; 

Four-barDims.Four-bar_Link_b1 = b1;    % Initial value assumed for b3 

Four-barDims.Four-bar_Link_b2 = b2; 

Four-barDims.Four-bar_Link_b3 = 0.30*BuckGeo.Bucket_Length_l3; 

2.10 Operational Configurations:  

f_Operational_Configuration() 

function [OperConfig] = f_Operational_Configuration() 

global SpcDat BuckGeo LinkDims 

V = SpcDat.Vertical_Distance_V; 

S1 = SpcDat.Maximum_Reachout_at_Ground_Level_S1; 

betta = LinkDims.Boom_Deflection_Angle_betta; 

dig0 = [atan(V/S1), (2*pi-atan(V/S1))]';    % Initial solution 

options = optimset('Display','iter','MaxIter',300,'MaxFunEvals', 1e8, ... 

    'TolX', 1e-5, 'TolFun', 1e-6); 

[dig,fval,exitflag,jacobian] = fsolve(@Diggangles_Eq, dig0, options); 

dig1 = (180/pi)*(real(dig(1,1))); 

dig2 = (180/pi)*(real(dig(2,1))); 

stick_angleJ2 = LinkDims.Stick_Angle_J2;    % total angle of J2 

TS_1 = LinkDims.Stick_Tail_Length; % length of stick tail section 

TS_2 = LinkDims.Stick_Forward_Length; % length of longer stick section 

stick_angleJ9 = LinkDims.J9_lower; % lower angle of J9 

stick_angleJ3= LinkDims.J3_lower; % lower angle of J3 

 

%  1.1. BOOM ROTATION MATRICES 

%  Rotation matrices to transform forces from world coordinate system 

into 

%  local coordinate systems on first and second sides of the boom. 
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RB1 = [cosd(dig1 + betta), -sind(dig1 + betta), 0; 

    sind(dig1 + betta), cosd(dig1 + betta), 0; 

    0, 0, 1]'; 

RB2 = [cosd(dig1 + betta - 2*betta), -sind(dig1 + betta - 2*betta), 0; 

    sind(dig1 + betta - 2*betta), cosd(dig1 + betta - 2*betta), 0; 

    0, 0, 1]'; 

 

% 1.2. STICK ROTATION MATRIX 

% This rotation matrix is used to express vectors defined in the world 

% reference frame in axis local to the stick. 

 

RS = [cosd(dig1 + betta - 2*betta + stick_angleJ2 - (180 - 

stick_angleJ9)), ... 

    -sind(dig1 + betta - 2*betta + stick_angleJ2 - (180 - 

stick_angleJ9)), 0; 

    sind(dig1 + betta - 2*betta + stick_angleJ2 - (180 - stick_angleJ9)), 

... 

    cosd(dig1 + betta - 2*betta + stick_angleJ2 - (180 - stick_angleJ9)), 

0; 

    0, 0, 1]'; 

global OperConfig 

OperConfig = c_Operational_Configuration_SI; 

 

[fb_b2_orient, fb_b1_orient] = Fborient_Solver(); 

OperConfig.Boom_opertating_angle_dig1 = dig1; 

OperConfig.Boom_Rotational_Matrix_Sec1_RB1 = RB1; 

OperConfig.Boom_Rotational_Matrix_Sec2_RB2 = RB2; 

OperConfig.Stick_Rotational_Matrix_RS = RS; 

OperConfig.Four-bar_teta_1 = fb_b2_orient; 

OperConfig.Four-bar_teta_2 = fb_b1_orient; 

2.11 Operation Forces:  

f_Operation_Force() 

function OperForce = f_Operation_Force() 

global SpcDat 

S1 = SpcDat.Maximum_Reachout_at_Ground_Level_S1; 

H = SpcDat.Horizontal_Distance_H; 

operating_weight = SpcDat.Vehicle_Weight; 

% moment of forces about the rear tip of tracks is given by: 

Digging_force_mag = (operating_weight*9.81*H)/(H+S1); 

Digging_force_vec_gen = Digging_force_mag*[-cosd(90-

15)*cosd(45),cosd(15), ... 

    -cosd(90-15)*cosd(45)]; 

Lifting_force_vec_gen = -Digging_force_mag*[-cosd(90-

15)*cosd(45),cosd(15), ... 

    -cosd(90-15)*cosd(45)]; 

OperForce = c_Operation_Force_SI; 

    OperForce.Digging_Force = Digging_force_vec_gen; 

    OperForce.Lifting_Force = Lifting_force_vec_gen; 

2.12 Joint Forces:  

f_Joint_Forces(JoinForce) 

function Joint_Forces = f_Joint_Forces(JoinForce) 

Joint_Forces = c_Joint_Forces_SI; 

    Joint_Forces.JointForces = JoinForce; 

% Force Designations 
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Joint_Forces.F1 = (JoinForce(1,5:7))'; 

Joint_Forces.F2 = (JoinForce(2,5:7))'; 

Joint_Forces.F3 = (JoinForce(3,5:7))'; 

Joint_Forces.F4 = (JoinForce(4,5:7))'; 

Joint_Forces.F5 = (JoinForce(5,5:7))'; 

Joint_Forces.F6 = (JoinForce(6,5:7))'; 

Joint_Forces.F7 = (JoinForce(7,5:7))'; 

Joint_Forces.F8 = (JoinForce(8,5:7))'; 

Joint_Forces.F9 = (JoinForce(9,5:7))'; 

Joint_Forces.F10 = (JoinForce(10,5:7))'; 

Joint_Forces.F11 = (JoinForce(11,5:7))'; 

Joint_Forces.F12 = (JoinForce(12,5:7))'; 

 

% Moment Designations 

 

Joint_Forces.M1 = (JoinForce(1,2:4))'; 

Joint_Forces.M2 = (JoinForce(2,2:4))'; 

Joint_Forces.M3 = (JoinForce(3,2:4))'; 

Joint_Forces.M4 = (JoinForce(4,2:4))'; 

Joint_Forces.M5 = (JoinForce(5,2:4))'; 

Joint_Forces.M6 = (JoinForce(6,2:4))'; 

Joint_Forces.M7 = (JoinForce(7,2:4))'; 

Joint_Forces.M8 = (JoinForce(8,2:4))'; 

Joint_Forces.M9 = (JoinForce(9,2:4))'; 

Joint_Forces.M10 = (JoinForce(10,2:4))'; 

Joint_Forces.M11 = (JoinForce(11,2:4))'; 

Joint_Forces.M12 = (JoinForce(12,2:4))'; 

end 

2.13 Pin Dimensions:  

f_Pin_Dimensions() 

function [PinDims,Exitter] = f_Pin_Dimensions() 

% This calculates the diameter and lengths of the pins at each joints 

 

PinDims = c_Pin_Dimensions_SI; 

global pin_counter 

    AA = [4,-1]; 

    bb = [0]; 

    lb = [0.010,0.080]'; 

    ub = [0.150,0.2]';      % upper bound 

    x0 = 0.5*(lb+ub); 

for pin_counter = 1:1:3 

    options =optimset('Display','iter','Algorithm','active-set','TolX', ... 

        1e-9,'TolFun', 1e-6); 

    [x,fval,exitflag] = fmincon(@pin_objective_function,x0,AA,bb,[],[], 

... 

        lb,ub,@min_pin_stress_con,options); 

    PinDimVec(pin_counter,:) = x; 

    Exitter(pin_counter,:) = exitflag; 

    lb = [0.010,0.080]; 

    ub = x; 

    x0 = x; 

end 

PinDims.Pin1 = PinDimVec(1,:); 

PinDims.Pin2 = PinDimVec(2,:); 

PinDims.Pin3 = PinDimVec(3,:); 

clearvars -global pin_counter 
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2.14 Cross-sectional Optimization:  

f_Cross_Sectional_Optimizer() 

function CrossDims = f_Cross_Sectional_Optimizer() 

global SpcDat BuckGeo OperConfig Dimensional_Constraints LinkDims ... 

    Joint_Forces MaterProp PinDims Four-barDims 

% ************************************************************************* 

% *****************               BOOM           ************************** 

% ************************************************************************* 

 

% Force Designations 

 

F1 = Joint_Forces.F1; 

F2 = Joint_Forces.F2; 

F3 = Joint_Forces.F3; 

F4 = Joint_Forces.F4; 

F5 = Joint_Forces.F5; 

F6 = Joint_Forces.F6; 

F7 = Joint_Forces.F7; 

F8 = Joint_Forces.F8; 

F9 = Joint_Forces.F9; 

F10 = Joint_Forces.F10; 

F11 = Joint_Forces.F11; 

F12 = Joint_Forces.F12; 

 

% Moment Designations 

 

M1 = Joint_Forces.M1; 

M2 = Joint_Forces.M2; 

M3 = Joint_Forces.M3; 

M4 = Joint_Forces.M4; 

M5 = Joint_Forces.M5; 

M6 = Joint_Forces.M6; 

M7 = Joint_Forces.M7; 

M8 = Joint_Forces.M8; 

M9 = Joint_Forces.M9; 

M10 = Joint_Forces.M10; 

M11 = Joint_Forces.M11; 

M12 = Joint_Forces.M12; 

 

FS_base = MaterProp.Safety_Factor_Boom; 

Sig_working_base = (1/FS_base)*MaterProp.Allowable_Stress_in_Base; 

sigall = Sig_working_base; 

RB1 = OperConfig.Boom_Rotational_Matrix_Sec1_RB1; 

RB2 = OperConfig.Boom_Rotational_Matrix_Sec2_RB2; 

RS = OperConfig.Stick_Rotational_Matrix_RS; 

 

% PART ONE OF BOOM ===>  [J1 ----> J10/J11] 

 

% FORCES AND MOMENTS EXPRESSED IN REFERENCE TO A LOCAL AXIS PARALLEL TO 

SIDE #1 

 

F1T1 = RB1*F1; 

F10T1 = RB1*F10; 

F11T1 = RB1*F11; 

F2T1 = RB1*F2; 

M1T1 = RB1*M1; 

M10T1 = RB1*M10; 

M11T1 = RB1*M11; 

M2T1 = RB1*M2; 
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% FORCES EXPRESSED IN REFERENCE TO AN AXIS PARALLEL TO SIDE #2 

 

F1T2 = RB2*F1;          % F1 expressed in T2 axis 

F10T2 = RB2*F10;        % F10 expressed in T2 axis 

F11T2 = RB2*F11;        % F11 expressed in T2 axis 

F2T2 = RB2*F2; 

M1T2 = RB2*M1;          % M1 expressed in T2 axis 

M10T2 = RB2*M10;        % M10 expressed in T2 axis 

M11T2 = RB2*M11;        % M11 expressed in T2 axis 

M2T2 = RB2*M2; 

 

% ========================================================================= 

% =========     MOMENTS ON SECTION #1 AND SECTION #2 OF BOOM  ============= 

% ========================================================================= 

T = LinkDims.Side_Length_of_Boom_T; 

betta = LinkDims.Boom_Deflection_Angle_betta; 

h_j10 = LinkDims.Distance_to_J10_on_Boom; 

h_j11 = LinkDims.Distance_to_J11_on_Boom; 

dig1 = OperConfig.Boom_opertating_angle_dig1; 

thick_min = Dimensional_Constraints.Minimum_Plate_Thickness; 

thick_max = Dimensional_Constraints.Maximum_Plate_Thickness; 

base_min = PinDims.Pin2(2) + 2*thick_min; 

base_max = PinDims.Pin1(2) + 2*thick_min; 

height_min = 0; 

height_minxx = 2*PinDims.Pin1(1); % ############# (needs revise) 

height_max = Dimensional_Constraints.Maximum_Boom_Height; 

lb_boomxx = [thick_min,base_min,height_minxx];         % lower bound 

lb_boom = [thick_min,base_min,height_min];         % lower bound 

ub_boom = [thick_max,base_max,height_max];      % upper bound 

x0_boom = 0.5*(lb_boomxx + ub_boom); 

A_boom = [2,-1,0;2,0,-1]; 

b_boom = [0;0]; 

smplpoint_b = 50; 

trial_iter = 0; 

iter_limit = 5; 

for aa = 0:(T/smplpoint_b):(iter_limit*T/smplpoint_b) 

    trial_iter = trial_iter+1; 

    anglet1_F1 = 180+dig1+betta;   % Angle of the vector directed to F1 (abs) 

    vecb1_F1 =aa*[cosd(anglet1_F1),sind(anglet1_F1),0]'; % The vector to F1 

    BM_bFt1 = cross(vecb1_F1,F1);% Bending moment only due to F1 on section #1 

    BM_bFDt1 = M1;  % Moment due to the eccentricity of the digging force FD 

    BM_boom11 = -(BM_bFt1 + BM_bFDt1); % Total Moment at section aa 

    BM_boom1 = RB1*BM_boom11;  % the total bending moment (local) 

    BM_bxx = BM_boom1(1,1);   % Torsion about local x on section #1 

    BM_byy = BM_boom1(2,1);   % Bending Moment about local y on section #1 

    BM_bzz = BM_boom1(3,1);   % Bending Moment about local z on section #1 

    BM_bx(trial_iter,1) = BM_bxx;   % Vector of Torsion on section #1 

    BM_by(trial_iter,1) = BM_byy;   % Vector of Lateral Bending Moment on #1 

    BM_bz(trial_iter,1) = BM_bzz;   % Vector of Bending Moment on #1 

    FT1 = -(F1T1);  % Reaction force from the joint (w.r.t. local frame) 

    FBx1 = FT1(1,1); % axial forces (tensile or compressive) 

    FBy1 = FT1(2,1); % lateral force (local y) 

    FBz1 = FT1(3,1); % lateral force (local z) 

    FBxx = FBx1; % total axial force 

    FBvv = sqrt(FBy1^2 + FBz1^2); % total lateral force 

    FB_axial(trial_iter,1) = FBxx; % axial force; total 

    FB_shear(trial_iter,1) = FBvv; % total lateral force = total shear force 

    bmx = BM_bxx; 

    bmy = BM_byy; 

    bmz = BM_bzz; 

    fx = FBxx; 

    fv = FBvv; 

    options = optimset('Display','iter','Algorithm','active-set','TolX', ... 
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        1e-6,'TolFun', 1e-6); 

    [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom, ... 

        ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHB(trial_iter,1:1:3) = x; 

    TBHB(trial_iter,4) = fval; 

    TBHB(trial_iter,5) = aa; 

    x0_boom = x; 

    clearvars x bmx bmy bmz fx fv TBHB TBHS BM_bx BM_by BM_bz 

end 

x0_boom 

j = 0; 

for t1 = 0:T/smplpoint_b:T 

    j = j+1; 

    tt(j,1) = t1; 

    anglet1_F1 = 180+dig1+betta; 

    vecb1_F1 = t1*[cosd(anglet1_F1), sind(anglet1_F1), 0]'; 

    BM_bFt1 = cross(vecb1_F1,F1); 

    BM_bFDt1 = M1; 

    BM_boom11 = -(BM_bFt1 + BM_bFDt1); 

    BM_boom1 = RB1*BM_boom11; 

    BM_bxx = BM_boom1(1,1); 

    BM_byy = BM_boom1(2,1); 

    BM_bzz = BM_boom1(3,1); 

    BM_bx(j,1) = BM_bxx; 

    BM_by(j,1) = BM_byy; 

    BM_bz(j,1) = BM_bzz; 

    FT1 = -(F1T1); 

    FBx1 = FT1(1,1); 

    FBy1 = FT1(2,1); 

    FBz1 = FT1(3,1); 

    FBxx = FBx1; 

    FBvv = sqrt(FBy1^2 + FBz1^2); 

    FB_axial(j,1) = FBxx; 

    FB_shear(j,1) = FBvv; 

    bmx = BM_bxx; 

    bmy = BM_byy; 

    bmz = BM_bzz; 

    fx = FBxx; 

    fv = FBvv; 

    options = optimset('Display','iter','Algorithm','active-set','TolX',... 

        1e-6,'TolFun', 1e-6); 

    [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom,... 

        ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHB(j,1:1:3) = x; 

    TBHB(j,4) = fval; 

    TBHB(j,5) = t1; 

    x0_boom = x; 

 

    % DEFINING THE COORDINATES OF THE SPLINE IN THE FIRST QUADRANT 

    % NOTE: HEIGHT -> Y AXIS IN THE MODELING ENVIRONMENT IN NX 

    %       BASE -> Z AXIS 

    %       INCREMENTAL VALUE OF "t1" -> X AXIS 

    Boom_vec1(j,1) = t1;       % vector of t1   (X-COMPONENT) 

    Boom_vec1(j,2) = 0.5*TBHB(j,3);   % half-height measured from the middle 

    Boom_vec1(j,3) = 0.5*TBHB(j,2);   % half-base measured from the middle 

    NX_Boom_Vec1_orig(j,1) = Boom_vec1(j,1); 

    NX_Boom_Vec1_orig(j,2) = ... 

        Boom_vec1(j,2) - Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3; 

    NX_Boom_Vec1_orig(j,3) = ... 

        Boom_vec1(j,3) - Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Boom_Vec1_offstd(j,1) = Boom_vec1(j,1); 

    NX_Boom_Vec1_offstd(j,2) = ... 

        Boom_vec1(j,2) - Dimensional_Constraints.Minimum_Plate_Thickness; 
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    NX_Boom_Vec1_offstd(j,3) = Boom_vec1(j,3) + ... 

        Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement; 

    clearvars x bmx bmy bmz fx fy 

end 

 

%   PART 2 .. SECOND SECTION OF THE BOOM (FROM JOINT 10/11 TO JOINT 2) 

 

    start_pt = 1; 

    t2_starter = @(t22)(sqrt(h_j11^2 + t22^2 - 2*h_j11*t22*cosd(90-

betta))); 

    t2_critical  = fminsearch(t2_starter,0); 

    i = 1; 

    q = 0; 

for t2 = 0:T/smplpoint_b:T 

    t2_NX = t2; 

    if t2<t2_critical 

        t2 = t2_critical; 

    end 

    j = j+1; 

    q = q+1; 

    tt(j,1) = t1+t2_NX; 

    v2_01 = sqrt(T^2 + t2^2 - 2*T*t2*cosd(180-2*betta)); 

    v2_10 = sqrt(h_j10^2 + t2^2 - 2*h_j10*t2*cosd(2*betta)); 

    v2_11 = sqrt(h_j11^2 + t2^2 - 2*h_j11*t2*cosd(90 - betta)); 

    alpp2_01 = (asin((T/v2_01)*sind(180-2*betta)))*180/pi; 

    alpp2_10 = (asin((h_j10/v2_10)*sind(2*betta)))*180/pi; 

    alpp2_11 = (asin((h_j11/v2_11)*sind(90-betta)))*180/pi; 

    anglet2_F1 = 180 + dig1 - betta + alpp2_01; 

    anglet2_F10 = 180 + dig1 - betta - alpp2_10; 

    anglet2_F11 = 180 + dig1 - betta + alpp2_11; 

    vecb2_F1 = v2_01*[cosd(anglet2_F1) sind(anglet2_F1) 0]'; 

    vecb2_F10 = v2_10*[cosd(anglet2_F10), sind(anglet2_F10), 0]'; 

    vecb2_F11 = v2_11*[cosd(anglet2_F11), sind(anglet2_F11), 0]'; 

    BM_bFt2 = cross(vecb2_F1, F1) + cross(vecb2_F10,F10) + ... 

        cross(vecb2_F11, F11); 

    BM_bFDt2 = M1 + M10 + M11; 

    BM_boom22 = -(BM_bFt2 + BM_bFDt2); 

    BM_boom2 = RB2*BM_boom22; 

    BM_bxx = BM_boom2(1,1);   % Torsion about local x on section #2 

    BM_byy = BM_boom2(2,1);   % Lateral Bending Moment about local y on #2 

    BM_bzz = BM_boom2(3,1);   % Bending Moment about local z on section #2 

    BM_bx(j,1) = BM_bxx;   % Vector of Torsion on section #2 

    BM_by(j,1) = BM_byy;   % Vector of Lateral Bending Moment on section #2 

    BM_bz(j,1) = BM_bzz;   % Vector of B. Moment in the vertical plane on #2 

    FT2 = -(F1T2 + F10T2 + F11T2);  % total reaction force at the cross-sec 

    FBx2 = FT2(1,1); 

    FBy2 = FT2(2,1); 

    FBz2 = FT2(3,1); 

    FBxx = FBx2;    % axial force 

    FBvv = sqrt(FBy2^2 + FBz2^2);   % resultant transverse(shear) force 

    FB_axial(j,1) = FBxx; 

    FB_shear(j,1) = FBvv; 

    bmx = BM_bxx; 

    bmy = BM_byy; 

    bmz = BM_bzz; 

    fx = FBxx; 

    fv = FBvv; 

    options = optimset('Display','iter','Algorithm','active-

set','TolX',... 

        1e-6,'TolFun', 1e-6); 

    [x,fval] = fmincon(@min_area,x0_boom,A_boom,b_boom,[],[],lb_boom, ... 

        ub_boom,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHB(j,1:1:3) = x; 
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    TBHB(j,4) = fval; 

    TBHB(j,5) = t2_NX; 

    step_boom_h = TBHB((j-1),3) - TBHB(j,3); 

    if (step_boom_h >= 2e-3) | (step_boom_h <= -2e-3) 

        if step_boom_h >= 2e-3 

            AAA(i,1) = abs(step_boom_h); 

            i = i+1; 

            TBHB(j,3) = (TBHB(j,3) + AAA(1,1)); 

        elseif step_boom_h <= -2e-3 

            AAA(i,1) = abs(step_boom_h); 

            i = i+1; 

            TBHB(j,3) = (TBHB(j,3) - AAA(1,1)); 

        end 

        min_area_onevar_b = @(minbase)((minbase)*(TBHB(j,3))) - ... 

            ((minbase-2*TBHB(j,1))*(TBHB(j,3)-2*TBHB(j,1))); 

        base_complemenatary = 

fminbnd(min_area_onevar_b,base_min,base_max); 

        TBHB(j,2) = base_complemenatary; 

    end 

    Boom_vec2(q,1) = t2_NX;             % vector of t1   (X-COMPONENT) 

    Boom_vec2(q,2) = 0.5*TBHB(j,3);    % half-height = (0.5*...)(Y-COMPONENT) 

    Boom_vec2(q,3) = 0.5*TBHB(j,2);     % half-base = (Z-COMPONENT) 

    NX_Boom_Vec2_orig(q,1) = Boom_vec2(q,1); 

    NX_Boom_Vec2_orig(q,2) = ... 

    Boom_vec2(q,2) - Dimensional_Constraints.Minimum_Plate_Thickness+ 2e-3; 

    NX_Boom_Vec2_orig(q,3) = ... 

    Boom_vec2(q,3) - Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Boom_Vec2_offstd(q,1) = Boom_vec2(q,1); 

    NX_Boom_Vec2_offstd(q,2) = Boom_vec2(q,2) -  ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Boom_Vec2_offstd(q,3) = Boom_vec2(q,3) + ... 

        Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement; 

    x0_boom = x; 

    clearvars x bmx bmy bmz fx fy step_boom_h 

end 

NX_Boom_vec1_Original = 1000*NX_Boom_Vec1_orig; 

NX_Boom_vec1_Offsetted = 1000*NX_Boom_Vec1_offstd; 

NX_Boom_vec2_Original = 1000*NX_Boom_Vec2_orig; 

NX_Boom_vec2_Offsetted = 1000*NX_Boom_Vec2_offstd; 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec1_Original.dat', ... 

    NX_Boom_vec1_Original,'delimiter',',','precision',4); 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec1_Offsetted.dat', ... 

    NX_Boom_vec1_Offsetted,'delimiter',',','precision',4); 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec2_Original.dat', ... 

    NX_Boom_vec2_Original,'delimiter',',','precision',4); 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\Boom_vec2_Offsetted.dat', ... 

    NX_Boom_vec2_Offsetted,'delimiter',',','precision',4); 

plot(tt,BM_bx,'g') 

hold on 

plot(tt,BM_by,'b') 

plot(tt,BM_bz,'r') 

title('Boom - Torsion and Bending Moment Diagrams') 

legend('Torsion (local x)','Bending M. (local y)','Bending M. (local z)') 

figure 

plot(tt,FB_axial,'g') 

hold on 

plot(tt,FB_shear,'r') 

title('Boom Axial and Shear Froces') 

legend('Axial Force','Total shear force') 

figure 

plot(TBHB(:,1:1:4)) 

title('Dimensions of cross sectional area') 

xlabel('Boom span') 

legend('Thickness','Base','Height') 
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% ========================================================================= 

% =============================   END OF BOOM   =========================== 

% ========================================================================= 

 

% ************************************************************************* 

% ************************        STICK     ******************************* 

% ************************************************************************* 

 

% FORCES AND MOMENTS EXPRESSED WITH RESPECT TO A LOACAL COORDINATE SYSTEM 

 

F2S = RS*(-F2); 

F9S = RS*F9; 

F8S = RS*F8; 

F6S = RS*F6; 

F3S = RS*F3; 

M2S = RS*(-M2); 

M9S = RS*M9; 

M8S = RS*M8; 

M6S = RS*M6; 

M3S = RS*M3; 

angles1_F6 = 180; 

angles1_F9 = 180; 

 

% MOMENTS 

 

% PART 1 .. STICK TAIL SECTION 

 

thick_min = Dimensional_Constraints.Minimum_Plate_Thickness; 

thick_max = Dimensional_Constraints.Maximum_Plate_Thickness; 

h_stick = LinkDims.Distance_to_J2_and_J8_on_Stick; 

h_j8 = h_stick; 

TS_1 = LinkDims.Stick_Tail_Length; 

TS_2 = LinkDims.Stick_Forward_Length; 

b3 = Four-barDims.Four-bar_Link_b3; 

base_min = PinDims.Pin3(2) + 2*thick_min; 

base_max = base_min; 

height_min = 2*PinDims.Pin2(1); 

height_max = Dimensional_Constraints.Maximum_Stick_Height; 

lb_stick = [thick_min,base_min,height_min];     % lower bound 

ub_stick = [thick_max,base_max,height_max];     % upper bound 

x0_stick = 0.5*(lb_stick + ub_stick); 

A_stick = [2 -1 0;2 0 -1]; 

b_stick = [0;0]; 

smplpoint_s1 = (TS_1/T)*smplpoint_b; 

smplpoint_s2 = ((TS_2-b3)/T)*smplpoint_b; 

smplpoint_s3 = (b3/T)* smplpoint_b; 

k = 0; 

for st1 = 0:TS_1/smplpoint_s1:TS_1 

    k = k+1; 

    ST(k,1) = st1; 

vecs1_F9 = st1*[cosd(angles1_F9); sind(angles1_F9); 0]; % Vector to F9 #1 

BM_s1 = cross(vecs1_F9,F9S);    % B. moment only due to F9 (w.r.t. local) 

BM_DFs1 = RS*M9;  % Pure bending moment at joint 9 (w.r.t. local frame) 

    BM_stick11=-(BM_s1+ BM_DFs1);%total REACTION moment  st1(local frame) 

    BM_stick1 = BM_stick11;     % (local frame) 

    bmx = BM_stick1(1,1);   % Torsion at location St1 

    bmy = BM_stick1(2,1);   % Lateral Bending Moment at location St1 

    bmz = BM_stick1(3,1);   % B. Moment in the vertical plane at location St1 

    BM_sx(k,1) = bmx;   % formation of Vector of Torsion along the tail sec 

    BM_sy(k,1) = bmy;   % '' '''' Lateral B. Moment along the tail '' 

    BM_sz(k,1) = bmz;   % '' '' '' B. Moment in the vertical plane 

    % calculation of direct shear and axial forces 

    FS1 = -(F9S); 
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    FSx1 = FS1(1,1); 

    FSy1 = FS1(2,1); 

    FSz1 = FS1(3,1); 

    fx = FSx1;  % axial force 

    fv = sqrt(FSy1^2 + FSz1^2); %  combined to give resultant value 

    FS_axial(k,1) = fx; 

    FS_shear(k,1) = fv; 

    options = optimset('Display','iter','Algorithm','active-set','TolX', ... 

        1e-6,'TolFun', 1e-6); 

    [x,fval] = 

fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick,... 

        ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHS(k,1:1:3) = x; 

    TBHS(k,4) = fval; 

    TBHS(k,5) = st1; 

    x0_stick = x; 

    Stick_vecc(k,1) = st1; % vector of thickness 

    Stick_vecc(k,2) = 0.5*TBHS(k,3);    % vector of half-height 

    Stick_vecc(k,3) = 0.5*TBHS(k,2);    % vector of half-base 

    NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3; 

    NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ... 

        Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement; 

    clearvars x bmx bmy bmz fx fy 

    end 

% PART 2 .. LONGER (INTERMIDIATE) STICK SEECTION 

k2 = 0; 

for st2 = 0:TS_2/smplpoint_s2:(TS_2 - b3) 

    k = k+1; 

    k2 = k2+1; 

    st22 = TS_1 + st2; 

    ST(k,1) = st22; 

    vecs2F2 = sqrt((h_stick)^2 + st2^2); % Magnitude of F2 from location st2 

    vecs2F8 = sqrt((h_j8)^2 + st2^2); % magnitude of vector from st2 to F8 

    alps2F2 = radtodeg(atan(h_stick/st2)); % Intermediate variable 

    alps2F8 = radtodeg(atan(h_j8/st2)); % Intermediate variable 

    anglest2_F2 = 180 + alps2F2; 

    anglest2_F8 = 180 - alps2F8; 

    vecs2_F2 = vecs2F2*[cosd(anglest2_F2); sind(anglest2_F2); 0]; 

    vecs2_F9 = (TS_1 + st2)*[cosd(angles1_F9); sind(angles1_F9); 0]; 

    vecs2_F8 = vecs2F8*[cosd(anglest2_F8); sind(anglest2_F8); 0]; 

    BM_s2 = cross(vecs2_F2,F2S) + cross(vecs2_F9,F9S) + 

cross(vecs2_F8,F8S); 

    BM_DFs2 = RS*(M9 + M2 + M8); 

    BM_stick22 = -(BM_s2 + BM_DFs2); 

    BM_stick2 = BM_stick22; % (local frame) 

    bmx = BM_stick2(1,1); 

    bmy = BM_stick2(2,1); 

    bmz = BM_stick2(3,1); 

    BM_sx(k,1) = bmx; 

    BM_sy(k,1) = bmy; 

    BM_sz(k,1) = bmz; 

 

    % axial and direct shear forces 

    FS2 = -(F2S + F9S + F8S); 

    FSx2 = FS2(1,1); 

    FSy2 = FS2(2,1); 

    FSz2 = FS2(3,1); 
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    fx = FSx2; 

    fv = sqrt(FSy2^2 + FSz2^2); 

    FS_axial(k,1) = fx; 

    FS_shear(k,1) = fv; 

    options = optimset('Display','iter','Algorithm','active-set','TolX', ... 

        1e-6,'TolFun', 1e-6); 

    [x,fval] = fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick, ... 

        ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHS(k,1:1:3) = x; 

    TBHS(k,4) = fval; 

    TBHS(k,5) = st2; 

    x0_stick = x; 

    Stick_vecc(k,1) = st22; % vector of thickness 

    Stick_vecc(k,2) = 0.5*TBHS(k,3);    % vector of half-height 

    Stick_vecc(k,3) = 0.5*TBHS(k,2);    % vector of half-base 

    Stick_VEC_2nd(k2,1) = st2; 

    Stick_VEC_2nd(k2,2) = Stick_vecc(k,2); 

    Stick_VEC_2nd(k2,3) = Stick_vecc(k,3); 

    NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3; 

    NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ... 

        Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement; 

    clearvars x bmx bmy bmz fx fy 

end 

 

% PART 3 .. SECTION BETWEEN JOINT 6 AND JOINT 3 

 

for st2 = (TS_2 - b3):b3/smplpoint_s3:TS_2 

    k = k+1; 

    st22 = TS_1 + st2; 

    ST(k,1) = st22; 

    vecs2F2 = sqrt((h_stick)^2 + st2^2);    % magnitude of vector to F2 

    vecs2F8 = sqrt((h_j8)^2 + st2^2);       % magnitude of vector to F8 

    alps2F2 = radtodeg(atan(h_stick/st2));  % frame-independent angle 

    alps2F8 = radtodeg(atan(h_j8/st2));     % frame-independent angle 

    anglest2_F2 = 180 + alps2F2;    % (local frame) 

    anglest2_F8 = 180 - alps2F8;    % (local frame) 

    vecs2_F2 = vecs2F2*[cosd(anglest2_F2); sind(anglest2_F2); 0]; 

    vecs2_F9 = (TS_1 + st2)*[cosd(angles1_F9); sind(angles1_F9); 0]; 

    vecs2_F8 = vecs2F8*[cosd(anglest2_F8); sind(anglest2_F8); 0]; 

    vecs2_F6 = (st2- (TS_2 - b3))*[cosd(angles1_F6); sind(angles1_F6); 

0]; 

    BM_s3 = cross(vecs2_F2,F2S) + cross(vecs2_F9,F9S) + ... 

        cross(vecs2_F8,F8S) + cross(vecs2_F6,F6S);  % (local frame) 

    BM_DFs3 = M9S + M2S + M8S + M6S;    % (local frame) 

    BM_stick33 = -(BM_s3 + BM_DFs3);    %(local frame) 

    BM_stick3 = BM_stick33; % local frame 

    bmx = BM_stick3(1,1);   % Torsion on section #2 

    bmy = BM_stick3(2,1);   % Bending Moment on section #2 

    bmz = BM_stick3(3,1);% Bending Moment in the vertical plane on sec.#2 

    BM_sx(k,1) = bmx;   % Vector of Torsion on section #2 

    BM_sy(k,1) = bmy;   % Vector of Lateral Bending Moment on section #2 

    BM_sz(k,1)= bmz;% Vector of B. Moment in the vertical plane on sec.#2 

    FS3 = -(F2S + F9S + F8S + F6S);     %(local frame) 

    FSx3 = FS3(1,1); 

    FSy3 = FS3(2,1); 

    FSz3 = FS3(3,1); 

    fx = FSx3;                      % total axial force  (local frame) 



103 

 

    fv = sqrt(FSy3^2 + FSz3^2);     % total shear force (local frame) 

    FS_axial(k,1) = fx; 

    FS_shear(k,1) = fv; 

    options = optimset('Display','iter','Algorithm','active-set','TolX', ... 

        1e-6,'TolFun', 1e-6); 

    [x,fval] = 

fmincon(@min_area,x0_stick,A_stick,b_stick,[],[],lb_stick,... 

        ub_stick,@(x)min_area_con(x,bmx,bmy,bmz,fx,fv,sigall),options); 

    TBHS(k,1:1:3) = x; 

    TBHS(k,4) = fval; 

    TBHS(k,5) = st2; 

    Stick_vecc(k,1) = st22; % vector of thickness 

    Stick_vecc(k,3) = 0.5*TBHS(k,2);    % vector of half-base 

    Stick_vecc(k,2) = 0.5*TBHS(k,3);    % vector of half-height 

    NX_Stick_vecc_orig(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_orig(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness + 2e-3; 

    NX_Stick_vecc_orig(k,3) = Stick_vecc(k,3) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,1) = Stick_vecc(k,1); 

    NX_Stick_vecc_offstd(k,2) = Stick_vecc(k,2) - ... 

        Dimensional_Constraints.Minimum_Plate_Thickness; 

    NX_Stick_vecc_offstd(k,3) = Stick_vecc(k,3) + ... 

        Dimensional_Constraints.Extension_of_Boom_Pin_Reinforcement; 

    NX_Stick_vecc = 1000*Stick_vecc; 

    x0_stick = x; 

end 

NX_Stick_vecc = 1000*Stick_vecc; 

NX_Stick_vecc_orig = 1000*NX_Stick_vecc_orig; 

NX_Stick_vecc_offstd = 1000*NX_Stick_vecc_offstd; 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_vecc_orig.dat',... 

    NX_Stick_vecc_orig,'delimiter','\t','precision',4); 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_vecc_offstd.dat',... 

    NX_Stick_vecc_offstd,'delimiter',',','precision',4); 

NX_Stic_vec_Y_val_orig = NX_Stick_vecc_orig(:,2); 

Stick_Y_first_orig = NX_Stic_vec_Y_val_orig(1,1); 

Stick_Y_middle_orig = max(NX_Stic_vec_Y_val_orig); 

Stick_Y_last_orig = NX_Stic_vec_Y_val_orig(k,1); 

NX_Stick_Linearized_Data_orig = [Stick_Y_first_orig, 

        Stick_Y_middle_orig, 

        Stick_Y_last_orig, 

        0.5*1000*base_min]; 

NX_Stic_vec_Y_val_offstd = NX_Stick_vecc_offstd(:,2); 

Stick_Y_first_offstd = NX_Stic_vec_Y_val_offstd(1,1); 

Stick_Y_middle_offstd = max(NX_Stic_vec_Y_val_offstd); 

Stick_Y_last_offstd = NX_Stic_vec_Y_val_offstd(k,1); 

NX_Stick_Linearized_Data_offstd = [Stick_Y_first_offstd, 

    Stick_Y_middle_offstd, 

    Stick_Y_last_offstd, 

    0.5*1000*base_min]; 

Dlmwrite 

('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_Linearized_Data_orig.dat',... 

    NX_Stick_Linearized_Data_orig,'delimiter',',','precision',4); 

Dlmwrite 

('D:\My Dropbox\ForNX\Delimited Files\NX_Stick_Linearized_Data_offstd.dat',... 

    NX_Stick_Linearized_Data_offstd,'delimiter',',','precision',4); 

figure 

plot(ST,BM_sx,'g') 

hold on 

plot(ST,BM_sy,'b') 

plot(ST,BM_sz,'r') 

title('Stick - Torsion and Bending Moment Diagrams') 

legend('Torsion (local x)','Bending M. (local y)','Bending M. (local z)') 

figure 
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plot(ST,FS_axial,'g') 

hold on 

plot(ST,FS_shear,'r') 

title('Stick Axial and Total Sehar Forces') 

legend('Axial Force','Shear Force') 

figure 

plot(TBHS(:,1:1:4)) 

title('STICK - Cross-sectional dimensions') 

xlabel('Stick span') 

legend('Thickness','Base','Height') 

% ========================================================================= 

% =============================   END OF STICK  =========================== 

% ========================================================================= 

 

CrossDims  = c_Cross_Sectional_Optimizer_SI; 

        CrossDims.Boom_Optimized_Crosssectional_Area_TBHB = TBHB; 

        CrossDims.Boom_Spline_Vec1 = Boom_vec1; 

        CrossDims.Boom_Spline_Vec2 = Boom_vec2; 

        CrossDims.Stick_Optimized_Crosssectional_Area_TBHS = TBHS; 

        CrossDims.Stick_Spline_Vec = Stick_vecc; 

2.15 Data Exporter: f_exceel_writter() 

function [] = f_exceel_writter() 

global PinDims LinkDims OperConfig Four-barDims 

 

% Pin Dimension Writer 

NX_PinDims = 1000*[PinDims.Pin1; 

                PinDims.Pin2; 

                PinDims.Pin3; 

                PinDims.Pin4; 

                PinDims.Pin5; 

                PinDims.Pin6; 

                PinDims.Pin7; 

                PinDims.Pin8; 

                PinDims.Pin9; 

                PinDims.Pin10; 

                PinDims.Pin11; 

                PinDims.Pin12]; 

 

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_PinDims',NX_PinDims) 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_PinDims.dat',NX_PinDims,... 

    'delimiter','\t','precision',4); 

 

% Link Dimensions Writers 

 

NX_LinkDims = [1000*LinkDims.Boom_Shortcut_Length_l1; 

                LinkDims.Boom_Deflection_Angle_betta; 

                1000*LinkDims.Side_Length_of_Boom_T; 

                1000*LinkDims.Stick_Length_l2; 

                LinkDims.Stick_Angle_J2; 

                LinkDims.J2_left; 

                LinkDims.J2_right; 

                LinkDims.Stick_Angle_J8; 

                LinkDims.J8_left; 

                LinkDims.J8_right; 

                LinkDims.Stick_Angle_J9; 

                LinkDims.J9_up; 

                LinkDims.J9_lower; 

                LinkDims.Stick_Angle_J3; 

                LinkDims.J3_up; 

                LinkDims.J3_lower; 

                1000*LinkDims.Distance_to_J2_and_J8_on_Stick; 
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                1000*LinkDims.Distance_to_J10_on_Boom; 

                1000*LinkDims.Distance_to_J11_on_Boom; 

                1000*LinkDims.Stick_Tail_Length; 

                1000*LinkDims.Stick_Forward_Length]; 

 

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_LinkDims.xls',NX_LinkDims) 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_LinkDims.dat',NX_LinkDims,... 

    'delimiter','\t','precision',4); 

 

% Four-bar Linkage dimensions 

NX_Four-barDims = 1000*[Four-barDims.Four-bar_Link_b0; 

                    Four-barDims.Four-bar_Link_b1; 

                    Four-barDims.Four-bar_Link_b2; 

                    Four-barDims.Four-bar_Link_b3]; 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_Four-barDims.dat',... 

    NX_Four-barDims,'delimiter','\t','precision',4); 

% Configuration Parameter Writer 

NX_OperConfig = [OperConfig.Boom_opertating_angle_dig1; 

                0; 

                0; 

                0; 

                OperConfig.Four-bar_teta_1; 

                OperConfig.Four-bar_teta_2; 

                OperConfig.Four-bar_teta_3]; 

xlswrite('D:\My Dropbox\ForNX\Delimited Files\NX_OperConfig.xls',NX_OperConfig) 

dlmwrite('D:\My Dropbox\ForNX\Delimited Files\NX_OperConfig.dat',NX_OperConfig,... 

    'delimiter','\t','precision',4); 

 

Published with MATLAB® 7.11 
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Appendix 2  API CAD Programming 

A2.1 Boom API Programming 

A2.1.1 Boom header file:  
  

#define UF_CALL(X) (report_error( __FILE__, __LINE__, #X, (X))) 

 

 

#define xc_axis 1 

#define yc_axis 2 

#define zc_axis 3 

#define xy_plane 1 

#define yz_plane 2 

#define zx_plane 3 

 

#define NX_BOOM_VEC_1_ORIGINAL  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat","r" 

#define NX_BOOM_VEC_1_OFFESETTED  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Offsetted.dat","r" 

#define NX_BOOM_VEC_2_ORIGINAL  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat","r" 

#define NX_BOOM_VEC_2_OFFESETTED  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Offsetted.dat","r" 

 

typedef struct _iobuf FILE; 

 

struct DATUM_CSYS_DATA{ 

 double offset_x; 

 double offset_y; 

 double offset_z; 

 double angle_x; 

 double angle_y; 

 double angle_z; 

 bool transform_sequence; 

 int rotation_sequence[2]; 

 }; 

struct LINK_DIMENSIONS{ 

 double Boom_shot_len_l1; 

 double Boom_defct_ang_betta; 

 double Boom_side_len_T; 

 double Stick_len_l2; 

 double Stick_ang_J2; 

 double J2_left; 

 double J2_right; 

 double Stick_ang_J8; 

 double J8_lfet; 

 double J8_right; 

 double Stick_ang_J9; 

 double J9_up; 

 double J9_lower; 

 double Stick_ang_J3; 

 double J3_up; 

 double J3_lower; 

 double Dist_2_J2andJ8_on_Stick; 

 double Dist_2_J10_on_Boom; 

 double Dist_2_J11_on_Boom; 

 double Stick_tail_len; 

 double Stick_forward_len; 

 }; 
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struct PIN_DIMENSIONS{ 

 double Pin1; 

 double Pin2; 

 double Pin3; 

 double Pin4; 

 double Pin5; 

 double Pin6; 

 double Pin7; 

 double Pin8; 

 double Pin9; 

 double Pin10; 

 double Pin11; 

 double Pin12; 

 }; 

 

struct OPERATIONAL_CONFIGURATION{ 

 double Boom_oper_ang_dig1; 

 double Boom_matrix_1_RB1; 

 double Boom_matrix_1_RB2; 

 double Stick_matrix_RS; 

 double Four-bar_teta_1; 

 double Four-bar_teta_2; 

 double Four-bar_teta_3; 

 }; 

 

struct FOUR-BAR_DIMENSIONS{ 

 double link0_bo; 

 double link1_b1; 

 double link2_b2; 

 double link3_b3; 

 }; 

 

 

int report_error( char *file,  

int line,  

char *call,  

int irc); 

tag_t wub_Create_New_Part_File(char file_path[UF_CFI_MAX_FILE_NAME_SIZE]); 

tag_t wub_CSYS_origin_and_direction(void); 

tag_t Extract_Smart_tag_of_Datum_CSYS(tag_t tag_DATUM_CSYS); 

tag_t Extract_daxis_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag,  

int Axis_Num); 

tag_t Extract_dplane_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag,  

int Plane_Num); 

tag_t wub_set_wcs(tag_t target_DATUM_wcs_CSYS); 

tag_t wub_CSYS_offset(tag_t referece_datum_CSYS,  

const double linear_offset[3],  

const double angular_offset[3],  

bool operation_sequence); 

tag_t wub_Ceate_Datum_Plane_Offset( tag_t Referece_DATUM_CSYS,  

int Axis_about); 

tag_t wub_Create_Projected_Curve( tag_t curve_tag,  

tag_t Datum_CSYS_tag,  

int Plane_Num); 

tag_t wub_Sketch_boom_profile1(tag_t datum); 

tag_t wub_Create_Fit_Spline_on_WCS(FILE *csv_file); 

tag_t do_ugopen_api(void); 

tag_ wub_Create_DATUM_CSYS_Offset_Method(DATUM_CSYS_DATA  

Transformation_Data,  

tag_t Reference_CSYS); 

int wub_LinkDim_Data_Importer(FILE *dat_filepath,  

LINK_DIMENSIONS *pLink_Dimensions_obj); 
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int wub_OperConfig_Data_Importer(FILE *dat_filepath, 

OPERATIONAL_CONFIGURATION *pOperConfig_obj); 

tag_t wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag,  

tag_t Plane_Tag); 

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag,  

tag_t Datum_Plane_Tag, 

int which_end); 

tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag,  

tag_t Tool_curve1,  

tag_t Tool_curve2); 

tag_t wub_Bridge_Curves(tag_t Trimmed_Curve_1_Tag,  

tag_t Trimmed_Curve_2_Tag,  

int Reverse1,  

int Reverse2, 

int par1,  

int par2); 

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2); 

tag_t wub_Lines_Point_Tangent(tag_t point,  

tag_t tangent, 

tag_t Reference_CSYS,  

int Plane_Num); 

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section); 

tag_t wub_Join_Curves(tag_t *curves,int n); 

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end); 

tag_t wub_BPLANE(tag_t Curve_String[2]); 

tag_t wub_SKETCHES_J2_adopter(char name[30],  

tag_t Refrence_CSYS,  

int Plane_num,  

int Axis_num); 

tag_t THICKEN_Sheet(tag_t sheet_body_tag); 

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS); 

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS, 

int Plane_num,  

double radius,  

double arc_center[3], 

double start_ang,  

double end_ang); 

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS, 

int Plane_num,  

double radius,  

double arc_center[3], 

tag_t p1,  

tag_t p2); 

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2]); 

tag_t wub_SKETCH_J11(tag_t Reference_CSYS, 

int Plane_num, 

tag_t line_Tag, 

tag_t bridge_tag); 

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag); 

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid); 

int wub_Four-barDim_Data_Importer(FILE *dat_filepath,  

FOUR-BAR_DIMENSIONS *pFour-

bar_dimensions_obj);  
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A2.1.2  Boom Main Codes Assembly:  

Main_Body_8.cpp 
 

#include <stdio.h> 

#include <string.h> 

#include <uf.h> 

#include <uf_ui.h> 

#include <uf_part.h> 

#include <uf_csys.h> 

#include <uf_modl.h> 

#include <uf_modl_primitives.h> 

#include <uf_disp.h> 

#include <uf_so.h> 

#include <uf_curve.h> 

#include <uf_obj.h> 

#include <uf_object_types.h> 

#include <uf_assem.h> 

#include <uf_modl_datum_features.h> 

#include <uf_defs.h> 

#include <stdlib.h> 

#include <malloc.h> 

#include <uf_sket.h> 

 

 

#include "Prototype_functions_8.h" 

 

 /*==============================================================*/   

 /*====================  MAIN FUNCTION    =======================*/   

 /*==============================================================*/   

void ufusr(char *param, int *retcode, int paramLen) 

 { 

 if (UF_CALL(UF_initialize())) return; 

 

 LINK_DIMENSIONS 

  Link_Dimensions_obj; 

 OPERATIONAL_CONFIGURATION 

  OperConfig_obj; 

 FOUR-BAR_DIMENSIONS 

  Four-bar_dimensions_obj; 

 FILE  

  *boom_csv_file1_orig, 

  *boom_csv_file1_ofstd, 

  *boom_csv_file2_orig, 

  *boom_csv_file2_ofstd, 

   

  *NX_PinDims_file, 

  *NX_LinkDims_file, 

  *NX_Four-barDims_file, 

  *NX_OperConfig_file;  

 

NX_LinkDims_file =  

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_LinkDims.dat","r"); 

 wub_LinkDim_Data_Importer(NX_LinkDims_file, &Link_Dimensions_obj); 

 fclose(NX_LinkDims_file);  

 

NX_Four-barDims_file =  

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_Four-barDims.dat","r"); 

wub_Four-barDim_Data_Importer(NX_Four-barDims_file, &Four-

bar_dimensions_obj); 

 fclose(NX_Four-barDims_file); 
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NX_OperConfig_file =  

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_OperConfig.dat","r"); 

 wub_OperConfig_Data_Importer(NX_OperConfig_file, &OperConfig_obj); 

 fclose(NX_OperConfig_file); 

  

 tag_t 

  Boom_part, 

  DATUM_CSYS_boom_0, 

  DATUM_CSYS_boom_1, 

  DATUM_CSYS_boom_2, 

  DATUM_CSYS_boom_3, 

  DATUM_CSYS_boom_4, 

  DATUM_CSYS_boom_5, 

  DATUM_CSYS_boom_6, 

  DATUM_CSYS_boom_7, 

  DATUM_CSYS_boom_8, 

  DATUM_CSYS_boom_9, 

  DATUM_CSYS_boom_10, 

  DATUM_CSYS_boom_11, 

 

  datum_PLANE_1, 

  datum_PLANE_2, 

 

  Line_straight,   

   

  bridge_J1, 

  bridge_J2, 

   

  Sketch_Boom_profile_1; 

 

 DATUM_CSYS_DATA CSYS_boom_0_data; 

 

 CSYS_boom_0_data.offset_x = 0.0; 

 CSYS_boom_0_data.offset_y = 0.0; 

 CSYS_boom_0_data.offset_z = 0.0; 

 CSYS_boom_0_data.angle_x = 0.0; 

 CSYS_boom_0_data.angle_y = 0.0; 

 CSYS_boom_0_data.angle_z = 0.0; 

 CSYS_boom_0_data.transform_sequence = true; 

 CSYS_boom_0_data.rotation_sequence[0] = 1; 

 CSYS_boom_0_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_DATA CSYS_boom_1_data; 

 

 CSYS_boom_1_data.offset_x = 0.0; 

 CSYS_boom_1_data.offset_y = 0.0; 

 CSYS_boom_1_data.offset_z = 0.0; 

 CSYS_boom_1_data.angle_x = 0.0; 

 CSYS_boom_1_data.angle_y = 0.0; 

 CSYS_boom_1_data.angle_z = 

Link_Dimensions_obj.Boom_defct_ang_betta +                 

OperConfig_obj.Boom_oper_ang_dig1; 

 CSYS_boom_1_data.transform_sequence = true; 

 CSYS_boom_1_data.rotation_sequence[0] = 1; 

 CSYS_boom_1_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_DATA CSYS_boom_2_data; 

 

 CSYS_boom_2_data.offset_x = Link_Dimensions_obj.Boom_side_len_T; 

 CSYS_boom_2_data.offset_y = 0.0; 

 CSYS_boom_2_data.offset_z = 0.0; 

 CSYS_boom_2_data.angle_x = 0.0; 
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 CSYS_boom_2_data.angle_y = 0.0; 

 CSYS_boom_2_data.angle_z = 0.0; 

 CSYS_boom_2_data.transform_sequence = true; 

 CSYS_boom_2_data.rotation_sequence[0] = 1; 

 CSYS_boom_2_data.rotation_sequence[1] = 2;   

 DATUM_CSYS_DATA CSYS_boom_3_data; 

 

 CSYS_boom_3_data.offset_x = Link_Dimensions_obj.Boom_side_len_T; 

 CSYS_boom_3_data.offset_y = 0.0; 

 CSYS_boom_3_data.offset_z = 0.0; 

 CSYS_boom_3_data.angle_x = 0.0; 

 CSYS_boom_3_data.angle_y = 0.0; 

 CSYS_boom_3_data.angle_z = -

2*(Link_Dimensions_obj.Boom_defct_ang_betta); 

 CSYS_boom_3_data.transform_sequence = true; 

 CSYS_boom_3_data.rotation_sequence[0] = 1; 

 CSYS_boom_3_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_DATA CSYS_boom_4_data; 

 

 CSYS_boom_4_data.offset_x = Link_Dimensions_obj.Boom_side_len_T; 

 CSYS_boom_4_data.offset_y = 0.0; 

 CSYS_boom_4_data.offset_z = 0.0; 

 CSYS_boom_4_data.angle_x = 0.0; 

 CSYS_boom_4_data.angle_y = 0.0; 

 CSYS_boom_4_data.angle_z = 0.0; 

 CSYS_boom_4_data.transform_sequence = true; 

 CSYS_boom_4_data.rotation_sequence[0] = 1; 

 CSYS_boom_4_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_DATA CSYS_boom_5_data; 

 

 CSYS_boom_5_data.offset_x = 

0.9*Link_Dimensions_obj.Boom_side_len_T; 

 CSYS_boom_5_data.offset_y = 0.0; 

 CSYS_boom_5_data.offset_z = 0.0; 

 CSYS_boom_5_data.angle_x = 0.0; 

 CSYS_boom_5_data.angle_y = 0.0; 

 CSYS_boom_5_data.angle_z = 0.0; 

 CSYS_boom_5_data.transform_sequence = true; 

 CSYS_boom_5_data.rotation_sequence[0] = 1; 

 CSYS_boom_5_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_DATA CSYS_boom_6_data; 

 

 CSYS_boom_6_data.offset_x = -

0.05*Link_Dimensions_obj.Boom_side_len_T; 

 CSYS_boom_6_data.offset_y = 0.0; 

 CSYS_boom_6_data.offset_z = 0.0; 

 CSYS_boom_6_data.angle_x = 0.0; 

 CSYS_boom_6_data.angle_y = 0.0; 

 CSYS_boom_6_data.angle_z = 0.0; 

 CSYS_boom_6_data.transform_sequence = true; 

 CSYS_boom_6_data.rotation_sequence[0] = 1; 

 CSYS_boom_6_data.rotation_sequence[1] = 2; 

 

/* 

CREATE PART FILE (NEW) 

*/  

 

 char  

Boom_part_path[UF_CFI_MAX_FILE_NAME_SIZE] =  

"D:\\NX Files 2010\\Parts\\Boom\\Boom_New.prt"; 
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 Boom_part = wub_Create_New_Part_File(Boom_part_path); 

 

 DATUM_CSYS_boom_0 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_0_data,NULL_TAG); 

DATUM_CSYS_boom_1 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_1_data, 

DATUM_CSYS_boom_0); 

 wub_set_wcs(DATUM_CSYS_boom_1);  

 

/* 

IMPORT DATA POINTS FROM FILE AND CONSTRUCT THE SPLINE LINES 

*/  

  tag_t 

  Boom_Spline1_Orig, 

  Boom_Spline2_Orig, 

  Boom_Spline1_Ofstd, 

  Boom_Spline2_Ofstd; 

 

boom_csv_file1_orig = fopen(NX_BOOM_VEC_1_ORIGINAL); 

Boom_Spline1_Orig = wub_Create_Fit_Spline_on_WCS(boom_csv_file1_orig); 

fclose(boom_csv_file1_orig); 

 

boom_csv_file1_ofstd = fopen(NX_BOOM_VEC_1_OFFESETTED); 

Boom_Spline1_Ofstd = wub_Create_Fit_Spline_on_WCS(boom_csv_file1_ofstd); 

fclose(boom_csv_file1_ofstd); 

  

DATUM_CSYS_boom_2 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_2_data, 

DATUM_CSYS_boom_1); 

DATUM_CSYS_boom_3 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_3_data, 

DATUM_CSYS_boom_1); 

DATUM_CSYS_boom_4 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_4_data, 

DATUM_CSYS_boom_3); 

DATUM_CSYS_boom_5 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_5_data, 

DATUM_CSYS_boom_3); 

DATUM_CSYS_boom_6 = wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_6_data, 

DATUM_CSYS_boom_5); 

 

wub_set_wcs(DATUM_CSYS_boom_3); 

boom_csv_file2_orig = fopen(NX_BOOM_VEC_2_ORIGINAL); 

Boom_Spline2_Orig = wub_Create_Fit_Spline_on_WCS(boom_csv_file2_orig); 

fclose(boom_csv_file2_orig); 

 

boom_csv_file2_ofstd = fopen(NX_BOOM_VEC_2_OFFESETTED); 

Boom_Spline2_Ofstd = wub_Create_Fit_Spline_on_WCS(boom_csv_file2_ofstd); 

fclose(boom_csv_file2_ofstd);  

 

/* 

CREATE MIRROR PLANES 

*/ 

 tag_t 

  CSYS1_YZ_datum_plane, 

  CSYS1_ZX_datum_plane, 

  CSYS2_YZ_datum_plane, 

  CSYS2_ZX_datum_plane, 

  CSYS3_YZ_datum_plane, 

  CSYS3_ZX_datum_plane, 

  CSYS5_YZ_datum_plane, 

  CSYS6_YZ_datum_plane; 

  

CSYS1_ZX_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_1, zx_plane); 

CSYS2_YZ_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_2, yz_plane); 



113 

 

CSYS2_ZX_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_2, zx_plane); 

CSYS3_YZ_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_3, yz_plane); 

CSYS3_ZX_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_3, zx_plane); 

CSYS5_YZ_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_5, yz_plane); 

CSYS6_YZ_datum_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_6, yz_plane); 

 

/* 

MIRROR SPLINE LINES ABOUT PLANES 

*/ 

 tag_t  

  Boom_Spline1_Orig_mirrored, 

  Boom_Spline1_Ofstd_mirrored, 

  Boom_Spline2_Orig_mirrored, 

  Boom_Spline2_Ofstd_mirrored; 

 

Boom_Spline1_Orig_mirrored = 

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline1_Orig, 

CSYS1_ZX_datum_plane); 

Boom_Spline1_Ofstd_mirrored = 

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline1_Ofstd, 

CSYS1_ZX_datum_plane); 

Boom_Spline2_Orig_mirrored = 

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline2_Orig, 

CSYS3_ZX_datum_plane); 

Boom_Spline2_Ofstd_mirrored = 

wub_Mirror_a_Curve_through_a_Plane(Boom_Spline2_Ofstd,   

     CSYS3_ZX_datum_plane); 

/* 

TRIM LINES WITH PLANES 

*/ 

 tag_t  

  Boom_Spline1_Orig_trmd, 

  Boom_Spline1_Ofstd_trmd, 

  Boom_Spline2_Orig_trmd, 

  Boom_Spline2_Ofstd_trmd, 

  Boom_Spline1_Orig_mrrd_trmd, 

  Boom_Spline1_Ofstd_mrrd_trmd, 

  Boom_Spline2_Orig_mrrd_trmd, 

  Boom_Spline2_Ofstd_mrrd_trmd; 

 

Boom_Spline1_Orig_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Orig,CSYS3_ZX_datum_plane,2); 

Boom_Spline1_Ofstd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Ofstd,CSYS3_ZX_datum_plane,2); 

Boom_Spline2_Orig_trmd = wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig, 

CSYS2_ZX_datum_plane, 

1); 

Boom_Spline2_Ofstd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd,CSYS2_ZX_datum_plane,1); 

Boom_Spline1_Orig_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Orig_mirrored, 

CSYS3_YZ_datum_plane, 

2); 

Boom_Spline1_Ofstd_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline1_Ofstd_mirrored, 

CSYS3_YZ_datum_plane, 

2); 
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Boom_Spline2_Orig_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_mirrored, 

CSYS2_YZ_datum_plane, 

1); 

Boom_Spline2_Ofstd_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_mirrored, 

CSYS2_YZ_datum_plane, 

1); 

 

// FURTHER MODIFICATION FOR JOINT "J2" 

 

Boom_Spline2_Orig_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_trmd, 

     CSYS5_YZ_datum_plane, 

2); 

Boom_Spline2_Ofstd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_trmd, 

CSYS5_YZ_datum_plane, 

2); 

Boom_Spline2_Orig_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Orig_mrrd_trmd, 

CSYS5_YZ_datum_plane, 

2); 

Boom_Spline2_Ofstd_mrrd_trmd = 

wub_Trim_Curve_by_Datum_Plane(Boom_Spline2_Ofstd_mrrd_trmd, 

CSYS5_YZ_datum_plane, 

2); 

 

/* 

BRIDGING TRIMMED SPLINES 

*/  

 tag_t 

  BRIDGE_Orig_Top, 

  BRIDGE_Ofstd_Top, 

  BRIDGE_Orig_Down, 

  BRIDGE_Ofstd_Down; 

 

BRIDGE_Orig_Top = wub_Bridge_Curves(Boom_Spline1_Orig_trmd, 

Boom_Spline2_Orig_trmd,0,0,1,0); 

BRIDGE_Ofstd_Top = wub_Bridge_Curves(Boom_Spline1_Ofstd_trmd, 

Boom_Spline2_Ofstd_trmd,0,0,1,0); 

BRIDGE_Orig_Down = wub_Bridge_Curves(Boom_Spline1_Orig_mrrd_trmd, 

Boom_Spline2_Orig_mrrd_trmd,0,0,1,0); 

BRIDGE_Ofstd_Down = wub_Bridge_Curves(Boom_Spline1_Ofstd_mrrd_trmd, 

Boom_Spline2_Ofstd_mrrd_trmd,0,0,1,0); 

 

 tag_t 

  BRIDGE_J1_Orig, 

  BRIDGE_J1_Ofstd,   

  BRIDGE_J2_Orig, 

  BRIDGE_J2_Ofstd;  

 

 BRIDGE_J1_Orig = 

wub_Bridge_Curves(Boom_Spline1_Orig_trmd,Boom_Spline1_Orig_mrrd_trmd,1,0,

0,0); 

 BRIDGE_J1_Ofstd = 

wub_Bridge_Curves(Boom_Spline1_Ofstd_trmd,Boom_Spline1_Ofstd_mrrd_trmd,1,

0,0,0); 

 BRIDGE_J2_Orig = 

wub_Bridge_Curves(Boom_Spline2_Orig_trmd,Boom_Spline2_Orig_mrrd_trmd,0,1,

1,1); 
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 BRIDGE_J2_Ofstd = 

wub_Bridge_Curves(Boom_Spline2_Ofstd_trmd,Boom_Spline2_Ofstd_mrrd_trmd,0,

1,1,1); 

 

/* 

JOIN LINES TO FORM GUIDES  

*/ 

 tag_t 

  GUIDE_Ogig_Top_joined, 

  GUIDE_Ogig_Down_joined, 

  GUIDE_Ofstd_Total_Joined, 

 

GUIDE_Ofstd_total_curves[7] =  {Boom_Spline1_Ofstd_trmd, 

BRIDGE_Ofstd_Top, 

Boom_Spline2_Ofstd_trmd, 

BRIDGE_J2_Ofstd, 

Boom_Spline2_Ofstd_mrrd_trmd, 

BRIDGE_Ofstd_Down, 

Boom_Spline1_Ofstd_mrrd_trmd}; 

 tag_t 

  GUIDE_Orig_Top[3] = {Boom_Spline1_Orig_trmd, 

BRIDGE_Orig_Top, 

Boom_Spline2_Orig_trmd}, 

  GUIDE_Orig_Down[3] = {Boom_Spline1_Orig_mrrd_trmd, 

BRIDGE_Orig_Down, 

Boom_Spline2_Orig_mrrd_trmd}; 

 

 GUIDE_Ofstd_Total_Joined = 

wub_Join_Curves(GUIDE_Ofstd_total_curves,7); 

 GUIDE_Ogig_Top_joined = wub_Join_Curves(GUIDE_Orig_Top,3); 

 GUIDE_Ogig_Down_joined = wub_Join_Curves(GUIDE_Orig_Down,3); 

 

/*  

PROJECTING GUIDE ONTO THE XY PLANE 

*/  

 tag_t  

  PROJECTED_J1_Bridge_Ofstd,     

  PROJECTED_GUIDE_Ofstd_Total_Joined, 

  PROJECTED_top_Bridge; 

 

PROJECTED_GUIDE_Ofstd_Total_Joined = 

wub_Create_Projected_Curve(GUIDE_Ofstd_Total_Joined, 

DATUM_CSYS_boom_1,xy_plane); 

PROJECTED_J1_Bridge_Ofstd = wub_Create_Projected_Curve(BRIDGE_J1_Ofstd, 

DATUM_CSYS_boom_1,xy_plane); 

PROJECTED_top_Bridge = wub_Create_Projected_Curve(BRIDGE_Ofstd_Top, 

DATUM_CSYS_boom_1,xy_plane); 

   

/* 

CREATING POINTS FOR PROFILE GENERATION 

*/  

 tag_t 

  POINT_Top_ofstd, 

  PROJECTED_POINT_Top_ofstd, 

  POINT_Top_orig, 

  POINT_Down_orig, 

  POINT_J2_Top_orig, 

  POINT_J2_Down_orig; 

 

POINT_Top_ofstd = wub_Point_from_Spline(Boom_Spline1_Ofstd_trmd,0); 

PROJECTED_POINT_Top_ofstd = wub_Create_Projected_Curve(POINT_Top_ofstd, 

DATUM_CSYS_boom_1,xy_plane); 

POINT_Top_orig = wub_Point_from_Spline(Boom_Spline1_Orig_trmd,0); 
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POINT_Down_orig = wub_Point_from_Spline(Boom_Spline1_Orig_mrrd_trmd,0); 

POINT_J2_Top_orig = wub_Point_from_Spline(Boom_Spline2_Orig_trmd,1); 

POINT_J2_Down_orig = 

wub_Point_from_Spline(Boom_Spline2_Orig_mrrd_trmd,1);  

 

/* 

CREATING PROFILE CURVES (LINES) 

*/ 

 

 tag_t 

  SECTION_Boom_profile_top, 

  SECTION_Boom_profile_side, 

  SECTION_J2_Boom_profile_side; 

 

SECTION_Boom_profile_top  = wub_Lines_from_two_points(POINT_Top_ofstd, 

PROJECTED_POINT_Top_ofstd); 

SECTION_Boom_profile_side  = wub_Lines_from_two_points(POINT_Top_orig, 

POINT_Down_orig); 

SECTION_J2_Boom_profile_side  = 

wub_Lines_from_two_points(POINT_J2_Top_orig, POINT_J2_Down_orig); 

 

/* 

CREATING SWEEP SHEET SURFACES AND BOUNDED PLANES 

*/ 

 

 tag_t  

  SHEET_Boom_top, 

  SHEET_J1, 

  SHEET_Boom_side;  

 

SHEET_Boom_top = wub_SWEEP_2_guides(GUIDE_Ofstd_Total_Joined, 

PROJECTED_GUIDE_Ofstd_Total_Joined, SECTION_Boom_profile_top); 

SHEET_J1 = wub_SWEEP_2_guides(BRIDGE_J1_Ofstd, PROJECTED_J1_Bridge_Ofstd, 

SECTION_Boom_profile_top); 

SHEET_Boom_side = wub_SWEEP_2_guides(GUIDE_Ogig_Top_joined, 

GUIDE_Ogig_Down_joined, SECTION_Boom_profile_side); 

 

tag_t 

String_bplnae_J1[2] = {BRIDGE_J1_Orig,SECTION_Boom_profile_side}, 

String_bplnae_J2[2] = {BRIDGE_J2_Orig,SECTION_J2_Boom_profile_side}, 

BPLANE_J1, 

BPLANE_J2; 

 

BPLANE_J1 = wub_BPLANE(String_bplnae_J1); 

BPLANE_J2 = wub_BPLANE(String_bplnae_J2); 

 

/*  

CREATE SKETCH 

*/ 

 char  

  sketch_name1[30] = {"BOOM_JOINT_#2"}; 

 

 tag_t 

SKETCH_J2_Adopter = wub_SKETCHES_J2_adopter(sketch_name1, 

       DATUM_CSYS_boom_4,  

xy_plane,  

xc_axis);  

 

 tag_t  

  arc_J2_outside; 

 double J2_center[3] = {0.,0.,0.}, 

  J2_outer_radius = 50.; 
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 arc_J2_outside = 

wub_ARC_Center_Radius(DATUM_CSYS_boom_4,xy_plane,J2_outer_radius,J2_cente

r,0.,360.); 

 tag_t 

  LINE_J2_plate_top, 

  LINE_J2_plate_Down; 

 

LINE_J2_plate_top = wub_Create_Projected_Curve(Boom_Spline2_Orig_trmd, 

DATUM_CSYS_boom_1,xy_plane); 

LINE_J2_plate_Down = 

wub_Create_Projected_Curve(Boom_Spline2_Orig_mrrd_trmd, 

DATUM_CSYS_boom_1,xy_plane); 

//Further modify by trimming 

LINE_J2_plate_top = wub_Trim_Curve_by_Datum_Plane(LINE_J2_plate_top, 

CSYS6_YZ_datum_plane,1); 

LINE_J2_plate_Down = wub_Trim_Curve_by_Datum_Plane(LINE_J2_plate_Down, 

CSYS6_YZ_datum_plane,1); 

 

 tag_t 

  POINT_J2_top_left_end, 

  POINT_J2_down_left_end, 

  POINT_J2_top_right_end, 

  POINT_J2_down_right_end; 

 

POINT_J2_top_left_end = wub_Point_from_Spline(LINE_J2_plate_top,0); 

POINT_J2_down_left_end = wub_Point_from_Spline(LINE_J2_plate_Down,0); 

POINT_J2_top_right_end = wub_Point_from_Spline(LINE_J2_plate_top,1); 

POINT_J2_down_right_end = wub_Point_from_Spline(LINE_J2_plate_Down,1); 

 

 tag_t 

  LINE_J2_left, 

  LINE_J2_connecting_top, 

  LINE_J2_connecting_Down; 

 

LINE_J2_left = wub_Lines_from_two_points(POINT_J2_top_left_end, 

POINT_J2_down_left_end); 

LINE_J2_connecting_top = wub_Lines_Point_Tangent(POINT_J2_top_right_end, 

arc_J2_outside,DATUM_CSYS_boom_4, xy_plane); 

LINE_J2_connecting_Down = 

wub_Lines_Point_Tangent(POINT_J2_down_right_end, 

arc_J2_outside,DATUM_CSYS_boom_4, xy_plane); 

 

 tag_t 

  POINT_tangent1, 

  POINT_tangent2; 

 

 POINT_tangent1 = wub_Point_from_Spline(LINE_J2_connecting_top,1); 

 POINT_tangent2 = wub_Point_from_Spline(LINE_J2_connecting_Down,1); 

  

 tag_t ARC_J2_secant = 

wub_ARC_Point_Point_Radius(DATUM_CSYS_boom_4,xy_plane,J2_outer_radius,J2_

center,POINT_tangent1, POINT_tangent2); 

 

 tag_t  

J2_joined_curves[6] = {LINE_J2_plate_top, 

LINE_J2_connecting_top, 

ARC_J2_secant, 

LINE_J2_connecting_Down, 

LINE_J2_plate_Down, 

LINE_J2_left}; 

 tag_t JOINED_J2_sketch = wub_Join_Curves(J2_joined_curves,6); 

 

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_plate_top); 
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 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_plate_Down); 

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_left); 

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_connecting_top); 

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&LINE_J2_connecting_Down); 

 UF_SKET_add_objects(SKETCH_J2_Adopter,1,&ARC_J2_secant); 

 

 UF_SKET_update_sketch(SKETCH_J2_Adopter); 

 UF_SKET_terminate_sketch(); 

 UF_DISP_set_highlight(SKETCH_J2_Adopter,1); 

 

/* 

EXTRUDE SKETCH OF JOINT J2 

*/ 

 char *limit_J2[2] = {"63.","83."}; 

 tag_t EXTRUDED_J2 = wub_Extrude(JOINED_J2_sketch,limit_J2); 

 

tag_t PROJECTED_csysline = 

wub_Create_Projected_Curve(Boom_Spline2_Orig_trmd, 

DATUM_CSYS_boom_1, 

xy_plane); 

 

tag_t POINT_csys7 = wub_Point_from_Spline(PROJECTED_csysline,0); 

  

 double  

  point_csys7_d[3]; 

UF_CURVE_ask_point_data(POINT_csys7,point_csys7_d); 

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d); 

 

 DATUM_CSYS_DATA CSYS_boom_7_data; 

 

 CSYS_boom_7_data.offset_x = point_csys7_d[0] + 80.;   

 CSYS_boom_7_data.offset_y = point_csys7_d[1] + 40.;   

 CSYS_boom_7_data.offset_z = point_csys7_d[2]; 

 CSYS_boom_7_data.angle_x = 0.0; 

 CSYS_boom_7_data.angle_y = 0.0; 

 CSYS_boom_7_data.angle_z = 0.0; 

 CSYS_boom_7_data.transform_sequence = true; 

 CSYS_boom_7_data.rotation_sequence[0] = 1; 

 CSYS_boom_7_data.rotation_sequence[1] = 2; 

 

 DATUM_CSYS_boom_7 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_7_data,DATUM_CSYS_boom_3); 

 

 DATUM_CSYS_DATA CSYS_boom_10_data; 

 

 CSYS_boom_10_data.offset_x = 80.;   

 CSYS_boom_10_data.offset_y = 0.0;   

 CSYS_boom_10_data.offset_z = 0.0; 

 CSYS_boom_10_data.angle_x = 0.0; 

 CSYS_boom_10_data.angle_y = 0.0; 

 CSYS_boom_10_data.angle_z = 0.0; 

 CSYS_boom_10_data.transform_sequence = true; 

 CSYS_boom_10_data.rotation_sequence[0] = 1; 

 CSYS_boom_10_data.rotation_sequence[1] = 2; 

 

DATUM_CSYS_boom_10 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_10_data,DATUM_CSYS_boom_7); 

tag_t DPLANE_trimmer = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_10, yz_plane); 

PROJECTED_csysline = wub_Trim_Curve_by_Datum_Plane(PROJECTED_csysline, 

DPLANE_trimmer,2); 
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 tag_t  

  PROJECTED_LOWER_Bridge = 

wub_Create_Projected_Curve(BRIDGE_Ofstd_Down, 

DATUM_CSYS_boom_1,xy_plane); 

 tag_t  

POINT_J12_left_t = wub_Point_from_Spline(PROJECTED_LOWER_Bridge,0), 

POINT_J12_right_t = wub_Point_from_Spline(PROJECTED_LOWER_Bridge,1); 

  

 double  

  POINT_J12_left_d[3], 

  POINT_J12_right_d[3]; 

 UF_CURVE_ask_point_data(POINT_J12_left_t,POINT_J12_left_d); 

 UF_CURVE_ask_point_data(POINT_J12_right_t,POINT_J12_right_d); 

 

 double  

POINT_J2_hinge_d[3]; 

POINT_J2_hinge_d[0] = 0.5*(POINT_J12_left_d[0] + POINT_J12_right_d[0]); 

POINT_J2_hinge_d[1] = 0.5*(POINT_J12_left_d[1] + POINT_J12_right_d[1]); 

POINT_J2_hinge_d[2] = 0.5*(POINT_J12_left_d[2] + POINT_J12_right_d[2]); 

 

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d); 

UF_CSYS_map_point(UF_CSYS_ROOT_COORDS,point_csys7_d,UF_CSYS_ROOT_WCS_COOR

DS,point_csys7_d); 

 

 DATUM_CSYS_DATA CSYS_boom_8_data; 

 

 CSYS_boom_8_data.offset_x = POINT_J2_hinge_d[0];   

 CSYS_boom_8_data.offset_y = POINT_J2_hinge_d[1];   

 CSYS_boom_8_data.offset_z = POINT_J2_hinge_d[2]; 

 CSYS_boom_8_data.angle_x = 0.0; 

 CSYS_boom_8_data.angle_y = 0.0; 

 CSYS_boom_8_data.angle_z = 0.0; 

 CSYS_boom_8_data.transform_sequence = true; 

 CSYS_boom_8_data.rotation_sequence[0] = 1; 

 CSYS_boom_8_data.rotation_sequence[1] = 2; 

 

DATUM_CSYS_boom_8 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_8_data,DATUM_CSYS_boom_0); 

 

 DATUM_CSYS_DATA CSYS_boom_9_data; 

 

 CSYS_boom_9_data.offset_x = 0.0;  

 CSYS_boom_9_data.offset_y = -25.;   

 CSYS_boom_9_data.offset_z = 0.0; 

 CSYS_boom_9_data.angle_x = 0.0; 

 CSYS_boom_9_data.angle_y = 0.0; 

 CSYS_boom_9_data.angle_z = 0.0; 

 CSYS_boom_9_data.transform_sequence = true; 

 CSYS_boom_9_data.rotation_sequence[0] = 1; 

 CSYS_boom_9_data.rotation_sequence[1] = 2; 

 

DATUM_CSYS_boom_9 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_9_data,DATUM_CSYS_boom_8); 

 

 DATUM_CSYS_DATA CSYS_boom_11_data; // Location of Transition four-

bar  

 

 CSYS_boom_11_data.offset_x = -Four-bar_dimensions_obj.link0_bo;  

 CSYS_boom_11_data.offset_y = 0.;   

 CSYS_boom_11_data.offset_z = 0.0; 

 CSYS_boom_11_data.angle_x = 0.0; 

 CSYS_boom_11_data.angle_y = 0.0; 
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 CSYS_boom_11_data.angle_z = 0.0; 

 CSYS_boom_11_data.transform_sequence = true; 

 CSYS_boom_11_data.rotation_sequence[0] = 1; 

 CSYS_boom_11_data.rotation_sequence[1] = 2; 

 

DATUM_CSYS_boom_11 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_boom_11_data, 

DATUM_CSYS_boom_4); 

 

tag_t JOINED_J11 = 

wub_SKETCH_J11(DATUM_CSYS_boom_7,xy_plane,PROJECTED_csysline,PROJECTED_to

p_Bridge); 

 UF_DISP_set_highlight(JOINED_J11,1); 

 char* limit_J11[2] = {"25.","50."};    

 tag_t EXTRUDE_J11 = wub_Extrude(JOINED_J11, limit_J11); 

 

tag_t JOINED_J12 = 

wub_SKETCH_J12(DATUM_CSYS_boom_9,xy_plane,BRIDGE_Ofstd_Down); 

 UF_DISP_set_highlight(JOINED_J12,1); 

 char* limit_J12[2] = {"25.","50."};    

 tag_t EXTRUDE_J12 = wub_Extrude(JOINED_J12, limit_J12); 

 

 tag_t  

  THICKEN_top, 

  THICKEN_J1_rear, 

  THICKEN_side,   

  THICKEN_J1_side, 

  THICKEN_J2_side; 

 tag_t 

  UNITED_solid; 

 

 UF_MODL_create_thicken_sheet(SHEET_Boom_top, 

     "0.", 

     "7.0", 

     UF_NULLSIGN, 

     &THICKEN_top); 

 UF_MODL_create_thicken_sheet(SHEET_J1, 

     "0.", 

     "-7.0", 

     UF_NULLSIGN, 

     &THICKEN_J1_rear); 

 UF_MODL_create_thicken_sheet(SHEET_Boom_side, 

     "0.", 

     "-7.0", 

     UF_NULLSIGN, 

     &THICKEN_side); 

 UF_MODL_create_thicken_sheet(BPLANE_J1, 

     "0.", 

     "-7.0", 

     UF_NULLSIGN, 

     &THICKEN_J1_side); 

 UF_MODL_create_thicken_sheet(BPLANE_J2, 

     "0.", 

     "7.0", 

     UF_NULLSIGN, 

     &THICKEN_J2_side); 

 tag_t 

  SOLID_TOP, 

  SOLID_J1_REAR, 

  SOLID_SIDE, 

  SOLID_J1_SIDE, 

  SOLID_J2_SIDE; 
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 UF_CALL(UF_MODL_ask_feat_body(THICKEN_top, &SOLID_TOP)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J1_rear, &SOLID_J1_REAR)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_side, &SOLID_SIDE)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J1_side, &SOLID_J1_SIDE)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J2_side, &SOLID_J2_SIDE)); 

 

 UNITED_solid = wub_UNITE_SOLIDS(SOLID_TOP,SOLID_J1_REAR); 

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_SIDE); 

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_J1_SIDE); 

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,SOLID_J2_SIDE); 

 

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDED_J2);  

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDE_J11); 

 UNITED_solid = wub_UNITE_SOLIDS(UNITED_solid,EXTRUDE_J12); 

 

/* 

CREATE CYLINDERS 

*/ 

  

 wub_set_wcs(DATUM_CSYS_boom_1); 

 UF_DISP_set_highlight(DATUM_CSYS_boom_1,1); 

 double  

  origin_bool_J1[3] = {0.,0.,0.}, 

  dirction_bool_J1[3] = {0.,0.,1}; 

 tag_t  

  bool_J1_cylinder_outside, 

  bool_J1_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

origin_bool_J1, 

UF_CSYS_ROOT_COORDS, 

origin_bool_J1); 

 tag_t 

  UNITED_solid_body =  

 UF_MODL_create_cylinder(UF_POSITIVE,  

    UNITED_solid, 

    origin_bool_J1,  

    "100.",  

    "75.",  

    dirction_bool_J1,  

    &bool_J1_cylinder_outside); 

 UNITED_solid = 

wub_UNITE_SOLIDS(UNITED_solid,bool_J1_cylinder_outside); 

 UF_MODL_create_cylinder(UF_NEGATIVE,  

    UNITED_solid, 

    origin_bool_J1,  

    "110.",  

    "25.",  

    dirction_bool_J1,  

    &bool_J1_cylinder_inside); 

/* 

+++++++++++++++++++++++++++++++++++++++++++++++++ 

*/ 

 

 wub_set_wcs(DATUM_CSYS_boom_4); 

 double  

  origin_bool_J2[3] = {0.,0.,0.}, 

  dirction_bool_J2[3] = {0.,0.,1}; 

 tag_t  

  bool_J2_cylinder_outside, 

  bool_J2_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS 

,origin_bool_J2,UF_CSYS_ROOT_COORDS,origin_bool_J2);  
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 UF_MODL_create_cylinder(UF_NEGATIVE,  

    UNITED_solid,  

    origin_bool_J2,  

    "110.",  

    "35.",  

    dirction_bool_J2,  

    &bool_J2_cylinder_inside); 

 

/* 

 ++++++++++++++++++++++++++++++++++++++++++++++++ 

*/ 

 wub_set_wcs(DATUM_CSYS_boom_7); 

 UF_DISP_set_highlight(DATUM_CSYS_boom_7,1); 

 

 double  

  origin_bool_J10[3] = {0.,0.,0.}, 

  dirction_bool_J10[3] = {0.,0.,1}; 

 tag_t  

  bool_J10_cylinder_outside, 

  bool_J10_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS 

,origin_bool_J10,UF_CSYS_ROOT_COORDS,origin_bool_J10); 

  

 UF_MODL_create_cylinder(UF_NEGATIVE,  

    UNITED_solid,  

    origin_bool_J10,  

    "110.",  

    "35.",  

    dirction_bool_J10,  

    &bool_J10_cylinder_inside); 

   

/* 

 ++++++++++++++++++++++++++++++++++++++++++++++++ 

*/ 

 wub_set_wcs(DATUM_CSYS_boom_9); 

 UF_DISP_set_highlight(DATUM_CSYS_boom_9,1); 

 

 double  

  origin_bool_J11[3] = {0.,0.,0.}, 

  dirction_bool_J11[3] = {0.,0.,1}; 

 tag_t  

  bool_J11_cylinder_outside, 

  bool_J11_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS 

,origin_bool_J11,UF_CSYS_ROOT_COORDS,origin_bool_J11); 

  

 UF_MODL_create_cylinder(UF_NEGATIVE,  

    UNITED_solid,  

    origin_bool_J11,  

    "110.",  

    "35.",  

    dirction_bool_J11,  

    &bool_J11_cylinder_inside); 

/* 

 +++++++++++++++++++++++++++++++++++++++++++++ 

*/  

 tag_t 

  mirror_plane, 

  mirrored_body, 

  final_boom_solid; 

 mirror_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_boom_1,xy_plane); 

 UF_MODL_create_mirror_body(UNITED_solid,  
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mirror_plane,  

&mirrored_body);  

 

 UF_MODL_unite_bodies(UNITED_solid,mirrored_body); 

  

 UF_terminate(); 

 } 

 

int ufusr_ask_unload(void) 

 { 

 return(UF_UNLOAD_IMMEDIATELY); 

 } 
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A2.2  Stick API CAD Programming 

A.2.2.1  Stick Header Files  

Prototypeff.h 

 

#define UF_CALL(X) (report_error( __FILE__, __LINE__, #X, (X))) 

#define RT(X) report_object_type_and_subtype(#X, X) 

 

 

#define xc_axis 1 

#define yc_axis 2 

#define zc_axis 3 

#define xy_plane 1 

#define yz_plane 2 

#define zx_plane 3 

 

#define NX_BOOM_VEC_1_ORIGINAL  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Original.dat","r" 

#define NX_BOOM_VEC_1_OFFESETTED  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec1_Offsetted.dat","r" 

#define NX_BOOM_VEC_2_ORIGINAL  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Original.dat","r" 

#define NX_BOOM_VEC_2_OFFESETTED  

"D:\\My Dropbox\\ForNX\\Delimited Files\\Boom_vec2_Offsetted.dat","r" 

 

 

#define NX_STICK_VEC_MEGRGED  

"D:\\My Dropbox\\ForNX\\Delimited Files\\NX_Stick_vecc.dat","r" 

#define NX_STICK_LINEARIZED  

"D:\\My Dropbox\\ForNX\\Delimited 

Files\\NX_Stick_Linearized_Data_orig.dat","r" 

#define NX_STICK_LINEARIZED_OFFSETTED  

"D:\\My Dropbox\\ForNX\\Delimited 

Files\\NX_Stick_Linearized_Data_offstd.dat","r" 

 

typedef struct _iobuf FILE; 

 

 

 

struct DATUM_CSYS_DATA{ 

 double offset_x; 

 double offset_y; 

 double offset_z; 

 double angle_x; 

 double angle_y; 

 double angle_z; 

 bool transform_sequence; 

 int rotation_sequence[2]; 

 }; 

struct LINK_DIMENSIONS{ 

 double Boom_shot_len_l1; 

 double Boom_defct_ang_betta; 

 double Boom_side_len_T; 

 double Stick_len_l2; 

 double Stick_ang_J2; 

 double J2_left; 

 double J2_right; 

 double Stick_ang_J8; 
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 double J8_lfet; 

 double J8_right; 

 double Stick_ang_J9; 

 double J9_up; 

 double J9_lower; 

 double Stick_ang_J3; 

 double J3_up; 

 double J3_lower; 

 double Dist_2_J2andJ8_on_Stick; 

 double Dist_2_J10_on_Boom; 

 double Dist_2_J11_on_Boom; 

 double Stick_tail_len; 

 double Stick_forward_len; 

 }; 

 

struct PIN_DIMENSIONS{ 

 double Pin1; 

 double Pin2; 

 double Pin3; 

 double Pin4; 

 double Pin5; 

 double Pin6; 

 double Pin7; 

 double Pin8; 

 double Pin9; 

 double Pin10; 

 double Pin11; 

 double Pin12; 

 }; 

 

struct OPERATIONAL_CONFIGURATION{ 

 double Boom_oper_ang_dig1; 

 double Boom_matrix_1_RB1; 

 double Boom_matrix_1_RB2; 

 double Stick_matrix_RS; 

 double Four-bar_teta_1; 

 double Four-bar_teta_2; 

 double Four-bar_teta_3; 

 }; 

struct STICK_DATA{ 

 double Y_first; 

 double Y_middle; 

 double Y_last; 

 double base_min; 

 }; 

 

int report_error( char *file, int line, char *call, int irc); 

int report_object_type_and_subtype(char *name, tag_t object); 

tag_t wub_Create_New_Part_File(char 

file_path[UF_CFI_MAX_FILE_NAME_SIZE]); 

tag_t wub_CSYS_origin_and_direction(void); 

tag_t Extract_Smart_tag_of_Datum_CSYS(tag_t tag_DATUM_CSYS); 

tag_t Extract_daxis_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag, int 

Axis_Num); 

tag_t Extract_dplane_tag_of_Datum_CSYS(tag_t Datum_CSYS_tag, int 

Plane_Num); 

tag_t wub_set_wcs(tag_t target_DATUM_wcs_CSYS); 

tag_t wub_CSYS_offset(tag_t referece_datum_CSYS, const double 

linear_offset[3], const double angular_offset[3], bool 

operation_sequence); 

tag_t wub_Ceate_Datum_Plane_Offset(tag_t Referece_DATUM_CSYS, int 

Axis_about); 
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tag_t wub_Create_Projected_Curve(tag_t curve_tag, tag_t Datum_CSYS_tag, 

int Plane_Num); 

tag_t wub_Sketch_boom_profile1(tag_t datum); 

tag_t wub_Create_Fit_Spline_on_WCS(FILE *csv_file); 

tag_t do_ugopen_api(void); 

tag_t wub_Create_DATUM_CSYS_Offset_Method(DATUM_CSYS_DATA 

Transformation_Data, tag_t Reference_CSYS); 

int wub_LinkDim_Data_Importer(FILE *dat_filepath, LINK_DIMENSIONS 

*pLink_Dimensions_obj); 

int wub_OperConfig_Data_Importer(FILE *dat_filepath, 

OPERATIONAL_CONFIGURATION *pOperConfig_obj); 

tag_t wub_Mirror_a_Curve_through_a_Plane(tag_t Curve_Tag, tag_t 

Plane_Tag); 

tag_t wub_Trim_Curve_by_Datum_Plane(tag_t Curve_Tag, tag_t 

Datum_Plane_Tag,int which_end); 

tag_t wub_Trim_Curve_by_Curves(tag_t Target_curve_Tag, tag_t Tool_curve1, 

tag_t Tool_curve2); 

tag_t wub_Bridge_Curves(tag_t Trimmed_Curve_1_Tag, tag_t 

Trimmed_Curve_2_Tag, int Reverse1, int Reverse2,int par1, int par2); 

tag_t wub_Lines_from_two_points(tag_t point1, tag_t point2); 

tag_t wub_Lines_Point_Tangent(tag_t point, tag_t tangent,tag_t 

Reference_CSYS, int Plane_Num, int Quadrant); 

tag_t wub_SWEEP_2_guides(tag_t Guide_s1, tag_t Guide_s2, tag_t Section); 

tag_t wub_Join_Curves(tag_t *curves,int n); 

tag_t wub_Point_from_Spline(tag_t curve_Tag, int line_end); 

tag_t wub_BPLANE(tag_t Curve_String[2]); 

tag_t wub_SKETCHES_J2_adopter(char name[30], tag_t Refrence_CSYS, int 

Plane_num, int Axis_num); 

tag_t THICKEN_Sheet(tag_t sheet_body_tag); 

tag_t wub_ARC_on_sketch(tag_t Reference_CSYS); 

tag_t wub_ARC_Center_Radius(tag_t Reference_CSYS,int Plane_num, double 

radius, double arc_center[3],double start_ang, double end_ang); 

tag_t wub_ARC_Point_Point_Radius(tag_t Reference_CSYS,int Plane_num, 

double radius, double arc_center[3],tag_t p1, tag_t p2); 

tag_t wub_Extrude(tag_t Connected_Curve, char* limit[2]); 

tag_t wub_SKETCH_J11(tag_t Reference_CSYS,int Plane_num,tag_t line_Tag, 

tag_t bridge_tag); 

tag_t wub_SKETCH_J12(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag); 

tag_t wub_UNITE_SOLIDS(tag_t Target_Solid, tag_t Tool_Solid); 

 

int wub_Stick_Data_Importer(FILE *dat_filepath, STICK_DATA 

*Stick_data_Obj); 

tag_t wub_Bridge_Arc_with_Line(tag_t arc, tag_t Line_Tag, int Reverse1, 

int Reverse2,int par1, int par2); 

tag_t wub_Trim_Curve_by_Curve(tag_t line_to_trim, tag_t boundary_line,int 

line_end); 

tag_t wub_EXTRACT_Object_out_of_Feature(tag_t item_Tag); 

tag_t wub_SKETCH_J8S(tag_t Reference_CSYS,int Plane_num,tag_t Curve_Tag); 
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A2.2.2 Stick Main Codes Assembly: 

Stick_Main_12.cpp 

 

#include <stdio.h> 

#include <string.h> 

#include <uf.h> 

#include <uf_ui.h> 

#include <uf_part.h> 

#include <uf_csys.h> 

#include <uf_modl.h> 

#include <uf_modl_primitives.h> 

#include <uf_disp.h> 

#include <uf_so.h> 

#include <uf_curve.h> 

#include <uf_obj.h> 

#include <uf_object_types.h> 

#include <uf_assem.h> 

#include <uf_modl_datum_features.h> 

#include <uf_defs.h> 

#include <stdlib.h> 

#include <malloc.h> 

#include <uf_sket.h> 

 

 

#include "Prototypeff.h" 

 

void ufusr(char *param, int *retcode, int paramLen) 

 { 

 if (UF_CALL(UF_initialize())) return; 

 

/* 

STICK PART CREATION 

*/ 

 

tag_t Stick_Part; 

char Stick_part_path[UF_CFI_MAX_FILE_NAME_SIZE] =  

"D:\\NX Files 2010\\Parts\\StickII.prt"; 

 Stick_Part = wub_Create_New_Part_File(Stick_part_path); 

 

 STICK_DATA 

  Stick_data_Obj; 

  

 FILE 

  *stick_data_file; 

 

 stick_data_file = fopen(NX_STICK_LINEARIZED); 

 wub_Stick_Data_Importer(stick_data_file,&Stick_data_Obj); 

 fclose(stick_data_file); 

 

 

 LINK_DIMENSIONS 

  Link_Dimensions_obj; 

 OPERATIONAL_CONFIGURATION 

  OperConfig_obj; 

 

 FILE  

  *NX_PinDims_file, 

  *NX_LinkDims_file, 

  *NX_OperConfig_file;  
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NX_LinkDims_file =  

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_LinkDims.dat","r"); 

wub_LinkDim_Data_Importer(NX_LinkDims_file, &Link_Dimensions_obj); 

fclose(NX_LinkDims_file); 

NX_OperConfig_file =  

fopen("D:\\My Dropbox\\ForNX\\Delimited Files\\NX_OperConfig.dat","r"); 

wub_OperConfig_Data_Importer(NX_OperConfig_file, &OperConfig_obj); 

fclose(NX_OperConfig_file); 

 

/* 

COORDINATE SYSTEM CREATION 

*/ 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ9_data; 

 

 CSYS_Stick_SJ9_data.offset_x = 0.0; 

 CSYS_Stick_SJ9_data.offset_y = 0.0; 

 CSYS_Stick_SJ9_data.offset_z = 0.0; 

 CSYS_Stick_SJ9_data.angle_x = 0.0; 

 CSYS_Stick_SJ9_data.angle_y = 0.0; 

 CSYS_Stick_SJ9_data.angle_z = 0.0; 

 CSYS_Stick_SJ9_data.transform_sequence = true; 

 CSYS_Stick_SJ9_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ9_data.rotation_sequence[1] = 2; 

 

 tag_t 

DATUM_CSYS_Stick_SJ9 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ9_data,NULL_TAG); 

 

DATUM_CSYS_DATA CSYS_Stick_SJ3_data; 

 

CSYS_Stick_SJ3_data.offset_x = Link_Dimensions_obj.Stick_tail_len + 

Link_Dimensions_obj.Stick_forward_len; 

 CSYS_Stick_SJ3_data.offset_y = 0.0; 

 CSYS_Stick_SJ3_data.offset_z = 0.0; 

 CSYS_Stick_SJ3_data.angle_x = 0.0; 

 CSYS_Stick_SJ3_data.angle_y = 0.0; 

 CSYS_Stick_SJ3_data.angle_z = 0.0; 

 CSYS_Stick_SJ3_data.transform_sequence = true; 

 CSYS_Stick_SJ3_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ3_data.rotation_sequence[1] = 2; 

 

 tag_t  

  DATUM_CSYS_Stick_SJ3 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ3_data,DATUM_CSYS_Stick_

SJ9); 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ6_data; 

 

 CSYS_Stick_SJ6_data.offset_x = -200.0;  

 CSYS_Stick_SJ6_data.offset_y = 0.0; 

 CSYS_Stick_SJ6_data.offset_z = 0.0; 

 CSYS_Stick_SJ6_data.angle_x = 0.0; 

 CSYS_Stick_SJ6_data.angle_y = 0.0; 

 CSYS_Stick_SJ6_data.angle_z = 0.0; 

 CSYS_Stick_SJ6_data.transform_sequence = true; 

 CSYS_Stick_SJ6_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ6_data.rotation_sequence[1] = 2; 

 

 tag_t  
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  DATUM_CSYS_Stick_SJ6 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ6_data,DATUM_CSYS_Stick_

SJ3); 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ2_data; 

 

 CSYS_Stick_SJ2_data.offset_x = Link_Dimensions_obj.Stick_tail_len;  

 CSYS_Stick_SJ2_data.offset_y = -Stick_data_Obj.Y_middle; 

 CSYS_Stick_SJ2_data.offset_z = 0.0; 

 CSYS_Stick_SJ2_data.angle_x = 0.0; 

 CSYS_Stick_SJ2_data.angle_y = 0.0; 

 CSYS_Stick_SJ2_data.angle_z = 0.0; 

 CSYS_Stick_SJ2_data.transform_sequence = true; 

 CSYS_Stick_SJ2_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ2_data.rotation_sequence[1] = 2; 

 

 tag_t  

  DATUM_CSYS_Stick_SJ2 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_data,DATUM_CSYS_Stick_

SJ9); 

 

DATUM_CSYS_DATA CSYS_Stick_SJ8_data; 

 

CSYS_Stick_SJ8_data.offset_x = Link_Dimensions_obj.Stick_tail_len + 80;  

 CSYS_Stick_SJ8_data.offset_y = Stick_data_Obj.Y_middle + 40;  

 CSYS_Stick_SJ8_data.offset_z = 0.0; 

 CSYS_Stick_SJ8_data.angle_x = 0.0; 

 CSYS_Stick_SJ8_data.angle_y = 0.0; 

 CSYS_Stick_SJ8_data.angle_z = 0.0; 

 CSYS_Stick_SJ8_data.transform_sequence = true; 

 CSYS_Stick_SJ8_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ8_data.rotation_sequence[1] = 2; 

 

 tag_t  

DATUM_CSYS_Stick_SJ8 = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ8_data,DATUM_CSYS_Stick_

SJ9); 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ8_2ND_data; 

 

 CSYS_Stick_SJ8_2ND_data.offset_x = 80;  

 CSYS_Stick_SJ8_2ND_data.offset_y = 0;  

 CSYS_Stick_SJ8_2ND_data.offset_z = 0.0; 

 CSYS_Stick_SJ8_2ND_data.angle_x = 0.0; 

 CSYS_Stick_SJ8_2ND_data.angle_y = 0.0; 

 CSYS_Stick_SJ8_2ND_data.angle_z = 0.0; 

 CSYS_Stick_SJ8_2ND_data.transform_sequence = true; 

 CSYS_Stick_SJ8_2ND_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ8_2ND_data.rotation_sequence[1] = 2; 

 

 tag_t  

DATUM_CSYS_Stick_SJ8_2ND = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ8_2ND_data,DATUM_CSYS_St

ick_SJ8); 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ2_CONS_data; 

 

CSYS_Stick_SJ2_CONS_data.offset_x = Link_Dimensions_obj.Stick_tail_len; 

 CSYS_Stick_SJ2_CONS_data.offset_y = -Stick_data_Obj.Y_middle; 

 CSYS_Stick_SJ2_CONS_data.offset_z = Stick_data_Obj.base_min; 

 CSYS_Stick_SJ2_CONS_data.angle_x = 0.0; 

 CSYS_Stick_SJ2_CONS_data.angle_y = 0.0; 

 CSYS_Stick_SJ2_CONS_data.angle_z = 0.; 
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 CSYS_Stick_SJ2_CONS_data.transform_sequence = true; 

 CSYS_Stick_SJ2_CONS_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ2_CONS_data.rotation_sequence[1] = 2; 

 

tag_t DATUM_CSYS_Stick_SJ2_CONS = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_CONS_data,DATUM_CSYS_S

tick_SJ9); 

 

 DATUM_CSYS_DATA CSYS_Stick_SJ2_CONS_OUT_data; 

 

 CSYS_Stick_SJ2_CONS_OUT_data.offset_x = 0.; 

 CSYS_Stick_SJ2_CONS_OUT_data.offset_y = 0.; 

 CSYS_Stick_SJ2_CONS_OUT_data.offset_z = 12.;  

 CSYS_Stick_SJ2_CONS_OUT_data.angle_x = 0.0; 

 CSYS_Stick_SJ2_CONS_OUT_data.angle_y = 0.0; 

 CSYS_Stick_SJ2_CONS_OUT_data.angle_z = 0.; 

 CSYS_Stick_SJ2_CONS_OUT_data.transform_sequence = true; 

 CSYS_Stick_SJ2_CONS_OUT_data.rotation_sequence[0] = 1; 

 CSYS_Stick_SJ2_CONS_OUT_data.rotation_sequence[1] = 2; 

 

tag_t DATUM_CSYS_Stick_SJ2_CONS_OUT = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_SJ2_CONS_OUT_data, 

DATUM_CSYS_Stick_SJ2_CONS); 

 

 

 DATUM_CSYS_DATA CSYS_Stick_MIDDLE_data; 

 

CSYS_Stick_MIDDLE_data.offset_x = 

0.25*Link_Dimensions_obj.Stick_tail_len; 

 CSYS_Stick_MIDDLE_data.offset_y = 0.0; 

 CSYS_Stick_MIDDLE_data.offset_z = 0.0; 

 CSYS_Stick_MIDDLE_data.angle_x = 0.0; 

 CSYS_Stick_MIDDLE_data.angle_y = 0.0; 

 CSYS_Stick_MIDDLE_data.angle_z =0.0; 

 CSYS_Stick_MIDDLE_data.transform_sequence = true; 

 CSYS_Stick_MIDDLE_data.rotation_sequence[0] = 1; 

 CSYS_Stick_MIDDLE_data.rotation_sequence[1] = 2; 

 

tag_t DATUM_CSYS_Stick_MIDDLE = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_MIDDLE_data,DATUM_CSYS_Sti

ck_SJ9); 

 

 DATUM_CSYS_DATA CSYS_Stick_HINGE_data; 

 

 CSYS_Stick_HINGE_data.offset_x = 0.0; 

 CSYS_Stick_HINGE_data.offset_y = 0.0; 

 CSYS_Stick_HINGE_data.offset_z = 25.0; 

 CSYS_Stick_HINGE_data.angle_x = 0.0; 

 CSYS_Stick_HINGE_data.angle_y = 0.0; 

 CSYS_Stick_HINGE_data.angle_z =0.0; 

 CSYS_Stick_HINGE_data.transform_sequence = true; 

 CSYS_Stick_HINGE_data.rotation_sequence[0] = 1; 

 CSYS_Stick_HINGE_data.rotation_sequence[1] = 2; 

 

tag_t DATUM_CSYS_Stick_HINGE = 

wub_Create_DATUM_CSYS_Offset_Method(CSYS_Stick_HINGE_data,DATUM_CSYS_Stic

k_SJ9); 

 

/* 

 ++++++++++++++++++++++++++++ PLANES  +++++++++++++++++++++++++++++++ 

*/ 
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 tag_t  

  PLANE_Horizontal_middle, 

  PLANE_Vertical_middle, 

  PLANE_Vertical_JS8_SND, 

  PLANE_HINGE_xy, 

  PLANE_MIDDLE_yz; 

  

PLANE_Horizontal_middle = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9, zx_plane); 

PLANE_Vertical_middle = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9, xy_plane); 

PLANE_HINGE_xy = Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_HINGE, 

xy_plane);   

PLANE_MIDDLE_yz = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_MIDDLE, yz_plane); 

PLANE_Vertical_JS8_SND = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ8_2ND, yz_plane); 

 

/* 

 +++++++++++++++++++++++++++++++ POINTS +++++++++++++++++++++++++++++++ 

*/ 

 

 double  

  point_stick_first[3], 

  point_stick_middle[3], 

  point_stick_last[3]; 

 

 point_stick_middle[0] = Link_Dimensions_obj.Stick_tail_len; 

 point_stick_middle[1] = Stick_data_Obj.Y_middle; 

 point_stick_middle[2] = 0.0; 

 

 tag_t 

  POINT_Stick_fist, 

  POINT_Stick_middle, 

  POINT_Stick_last; 

 

 UF_CURVE_create_point(point_stick_middle,&POINT_Stick_middle); 

 

 /* 

 +++++++++++++++++++++++++++ ARCS ++++++++++++++++++++++++++++++++++++ 

 */ 

   

 double  

  Rad_J2S_out = 40.0,  

  Rad_JS9_out = Stick_data_Obj.Y_first, 

  Rad_JS3_out = Stick_data_Obj.Y_last, 

  Center_J2S[3] = {0.,0.,0.}, 

  Center_J3S[3] = {0.,0.,0.}, 

  Center_J9S[3] = {0.,0.,0.}; 

 

 tag_t 

  ARC_JS2_out, 

  ARC_JS3_out, 

  ARC_JS9_out; 

 

 ARC_JS2_out = 

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ2,xy_plane,Rad_J2S_out, 

Center_J2S,180., 300.); 

 ARC_JS3_out = 

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ3,xy_plane,Rad_JS3_out, 

Center_J3S,-115., 115.); 

 ARC_JS9_out = 

wub_ARC_Center_Radius(DATUM_CSYS_Stick_SJ9,xy_plane,Rad_JS9_out, 

Center_J9S,85., 300.); 
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/* 

 ++++++++++++++++++++++++ ADDITIONAL POINTS +++++++++++++++++++++++++++ 

*/  

 

 double  

  pt_J2_RIGHT[3], 

  pt_J9_RIGHT[3] = {0.,0.,0.};  

 tag_t  

  POINT_J2_RIGHT, 

  POINT_J9_RIGHT; 

 

 pt_J2_RIGHT[0] = 3*Rad_J2S_out; 

 pt_J2_RIGHT[1] = 0; 

 pt_J2_RIGHT[2] = 0; 

 

 wub_set_wcs(DATUM_CSYS_Stick_SJ2); 

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

pt_J2_RIGHT, 

UF_CSYS_ROOT_COORDS, 

pt_J2_RIGHT);  

UF_CURVE_create_point(pt_J2_RIGHT,&POINT_J2_RIGHT); 

   

wub_set_wcs(DATUM_CSYS_Stick_MIDDLE); 

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

pt_J9_RIGHT, 

UF_CSYS_ROOT_COORDS, 

pt_J9_RIGHT);   

UF_CURVE_create_point(pt_J9_RIGHT,&POINT_J9_RIGHT); 

 

/* 

 ++++++++++++++++++++++++++++ LINES  +++++++++++++++++++++++++++++++++++ 

*/  

   

 tag_t 

  LINE_stick_top_left, 

  LINE_stick_top_right, 

  LINE_stick_top_right_2ND, 

  LINE_stick_down_left, 

  LINE_stick_down_right, 

  LINE_001; 

 

LINE_stick_top_left = wub_Lines_Point_Tangent(POINT_Stick_middle, 

ARC_JS9_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2); 

LINE_stick_top_right = wub_Lines_Point_Tangent(POINT_Stick_middle, 

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2); 

LINE_stick_top_right_2ND = wub_Lines_Point_Tangent(POINT_Stick_middle, 

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 2); 

LINE_stick_down_left = 

wub_Mirror_a_Curve_through_a_Plane(LINE_stick_top_left, 

PLANE_Horizontal_middle); 

LINE_stick_down_right = wub_Lines_Point_Tangent(POINT_J2_RIGHT, 

ARC_JS3_out,DATUM_CSYS_Stick_SJ9, xy_plane, 4); 

LINE_001 = wub_Lines_Point_Tangent(POINT_J9_RIGHT, 

ARC_JS2_out,DATUM_CSYS_Stick_SJ2, xy_plane,4); 

 

 // this line has to be projected before modified 

tag_t 

 PROJECTED_LINE_stick_top_left; 

PROJECTED_LINE_stick_top_left = 

wub_Create_Projected_Curve(LINE_stick_top_left, DATUM_CSYS_Stick_HINGE, 

xy_plane); 

 

 tag_t 
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  LINE_stick_top_left_trmd, 

  LINE_stick_down_left_trmd, 

  LINE_stick_top_right_2ND_trmd, 

 

  ARC_JS2_out_trmd, 

  ARC_JS3_out_trmd, 

  ARC_JS9_out_trmd; 

 

LINE_stick_top_left_trmd = 

wub_Trim_Curve_by_Datum_Plane(LINE_stick_top_left, PLANE_MIDDLE_yz,2); 

LINE_stick_down_left_trmd = 

wub_Trim_Curve_by_Curve(LINE_stick_down_left,LINE_001,1); 

ARC_JS2_out_trmd = wub_Trim_Curve_by_Curve(ARC_JS2_out,LINE_001,1); 

ARC_JS3_out_trmd = 

wub_Trim_Curve_by_Curve(ARC_JS3_out,LINE_stick_top_right,0); 

ARC_JS3_out_trmd = 

wub_Trim_Curve_by_Curve(ARC_JS3_out_trmd,LINE_stick_down_right,1); 

ARC_JS9_out_trmd = 

wub_Trim_Curve_by_Curve(ARC_JS9_out,LINE_stick_down_left_trmd,0); 

 

LINE_stick_top_right_2ND_trmd = 

wub_Trim_Curve_by_Datum_Plane(LINE_stick_top_right_2ND, 

PLANE_Vertical_JS8_SND,2); 

 

 UF_DISP_set_highlight(LINE_stick_top_right_2ND_trmd,1); 

  

/* 

 +++++++++++++++++++++++++ BRIDGES +++++++++++++++++++++++++++++++++++++ 

*/ 

 

 tag_t 

  BRIDGE_J2_RIGHT, 

  BRIDGE_J9_RIGHT; 

 

 BRIDGE_J2_RIGHT =  wub_Bridge_Arc_with_Line(ARC_JS2_out,  

LINE_stick_down_right, 

0, 

0, 

1, 

0);  

 BRIDGE_J9_RIGHT = wub_Bridge_Curves( LINE_stick_top_left_trmd, 

LINE_001,  

0,0,1,0); 

 

/* 

 ++++++++++++++++++++++  PROJECTION OF CURVES  +++++++++++++++++++++++++ 

*/ 

 tag_t 

  PROJECTED_LINE_stick_down_left_trmd, 

  PROJECTED_ARC_JS9_out_trmd, 

  PROJECTED_LINE_001, 

  PROJECTED_BRIDGE_J9_RIGHT; 

 

PROJECTED_LINE_stick_down_left_trmd = 

wub_Create_Projected_Curve(LINE_stick_down_left_trmd,  

DATUM_CSYS_Stick_HINGE,  

xy_plane); 

PROJECTED_ARC_JS9_out_trmd =  

wub_Create_Projected_Curve(ARC_JS9_out_trmd,  

DATUM_CSYS_Stick_HINGE,  

xy_plane); 

PROJECTED_LINE_001 =  

wub_Create_Projected_Curve(LINE_001,  

DATUM_CSYS_Stick_HINGE,  
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xy_plane); 

PROJECTED_BRIDGE_J9_RIGHT =  

wub_Create_Projected_Curve(BRIDGE_J9_RIGHT,  

DATUM_CSYS_Stick_HINGE,  

xy_plane); 

/* 

 ------------------ MODIFY PROJECTED CURVES -------------------- 

*/ 

 tag_t  

  PROJECTED_LINE_stick_top_left_trmd, 

  PROJECTED_LINE_001_trmd; 

 

 PROJECTED_ARC_JS9_out_trmd = 

wub_Trim_Curve_by_Curve(PROJECTED_ARC_JS9_out_trmd, 

PROJECTED_LINE_stick_top_left, 

1); 

 PROJECTED_LINE_stick_top_left_trmd = 

wub_Trim_Curve_by_Curve(PROJECTED_LINE_stick_top_left, 

PROJECTED_BRIDGE_J9_RIGHT, 

1); 

 PROJECTED_LINE_001_trmd =  

wub_Trim_Curve_by_Curve(PROJECTED_LINE_001, 

PROJECTED_LINE_stick_down_left_trmd, 

0); 

/* 

 ++++++++++++++++++++++++  JOINING CURVES  +++++++++++++++++++++++++++ 

*/ 

 // HINGE PROFILE (5 ITEMS) 

PROJECTED_ARC_JS9_out_trmd = 

wub_EXTRACT_Object_out_of_Feature(PROJECTED_ARC_JS9_out_trmd); 

PROJECTED_LINE_stick_top_left_trmd = 

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_stick_top_left_trmd); 

PROJECTED_BRIDGE_J9_RIGHT = 

wub_EXTRACT_Object_out_of_Feature(PROJECTED_BRIDGE_J9_RIGHT); 

PROJECTED_LINE_001_trmd = 

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_001_trmd); 

PROJECTED_LINE_stick_down_left_trmd = 

wub_EXTRACT_Object_out_of_Feature(PROJECTED_LINE_stick_down_left_trmd); 

 

// STICK PROFILE (8 ITEMS) 

BRIDGE_J9_RIGHT = wub_EXTRACT_Object_out_of_Feature(BRIDGE_J9_RIGHT); 

LINE_stick_top_left_trmd = 

wub_EXTRACT_Object_out_of_Feature(LINE_stick_top_left_trmd); 

LINE_stick_top_right = 

wub_EXTRACT_Object_out_of_Feature(LINE_stick_top_right); 

ARC_JS3_out_trmd = wub_EXTRACT_Object_out_of_Feature(ARC_JS3_out_trmd); 

LINE_stick_down_right = 

wub_EXTRACT_Object_out_of_Feature(LINE_stick_down_right); 

BRIDGE_J2_RIGHT = wub_EXTRACT_Object_out_of_Feature(BRIDGE_J2_RIGHT); 

ARC_JS2_out_trmd = wub_EXTRACT_Object_out_of_Feature(ARC_JS2_out_trmd); 

 LINE_001 = wub_EXTRACT_Object_out_of_Feature(LINE_001); 

 

 tag_t 

  joined_data_Hinge[5] = {PROJECTED_ARC_JS9_out_trmd,  

     

 PROJECTED_LINE_stick_top_left_trmd, 

    PROJECTED_BRIDGE_J9_RIGHT, 

    PROJECTED_LINE_001_trmd, 

    PROJECTED_LINE_stick_down_left_trmd}; 

 tag_t 

  joined_data_stick_profile[7] = {LINE_stick_top_right, 

      LINE_stick_top_left_trmd, 

      BRIDGE_J9_RIGHT, 
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      LINE_001, 

      ARC_JS2_out_trmd, 

      BRIDGE_J2_RIGHT, 

      LINE_stick_down_right, 

      }; 

 tag_t 

  JOINED_HINGE_J9, 

  JOINED_STICK_PROFILE; 

 JOINED_HINGE_J9 = wub_Join_Curves(joined_data_Hinge,5); 

 JOINED_STICK_PROFILE = 

wub_Join_Curves(joined_data_stick_profile,7); 

/* 

+++++++++++++++++ PROJECT PROFILES ON VERTICAL PLANES ++++++++++++++++ 

*/ 

 

 tag_t  

  PROJECTED_Stick_profile, 

  PROJECTED_Stick_wall_profile; 

 

 PROJECTED_Stick_profile = 

wub_Create_Projected_Curve(JOINED_STICK_PROFILE, 

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane); 

 PROJECTED_Stick_wall_profile = 

wub_Create_Projected_Curve(JOINED_STICK_PROFILE, 

DATUM_CSYS_Stick_SJ2_CONS, xy_plane); 

 

/* 

++++++++++++++++++++++++  EXTRUDE CURVES +++++++++++++++++++++++++++++ 

*/ 

 

 char* limit_J9S[2] = {"0.","25."};    

 tag_t EXTRUDE_J9S = wub_Extrude(JOINED_HINGE_J9, limit_J9S); 

 

/* 

++++++++++++++++++++++++ SHEET BODIES CONSTRUCTIONS +++++++++++++++++++ 

*/ 

  

tag_t POINT_SECTIONAL  = wub_Point_from_Spline(LINE_stick_top_right, 1); 

tag_t POINT_SECTIONAL_prjctd =  

wub_Create_Projected_Curve(POINT_SECTIONAL, 

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane); 

tag_t ARC_JS3_out_trmd_prjcted_out = 

wub_Create_Projected_Curve(ARC_JS3_out_trmd, 

DATUM_CSYS_Stick_SJ2_CONS_OUT, xy_plane);  

tag_t ARC_JS3_out_trmd_prjcted =  

wub_Create_Projected_Curve(ARC_JS3_out_trmd, DATUM_CSYS_Stick_SJ2_CONS, 

xy_plane); 

 tag_t LINE_SECTIONAL =  

wub_Lines_from_two_points(POINT_SECTIONAL, POINT_SECTIONAL_prjctd);  

 tag_t SWEEP_top =  

wub_SWEEP_2_guides(PROJECTED_Stick_profile,  

JOINED_STICK_PROFILE,  

LINE_SECTIONAL); 

  

tag_t SWEEP_J3S = wub_SWEEP_2_guides(ARC_JS3_out_trmd_prjcted_out,  

ARC_JS3_out_trmd,  

LINE_SECTIONAL); 

  

tag_t  Curve_String[2] = 

{ARC_JS3_out_trmd_prjcted,PROJECTED_Stick_wall_profile}; 

 tag_t  

  BPLANE_WALL = wub_BPLANE(Curve_String); 

/* 

 +++++++++++++++++++++++++++ THICKEN SURFACES ++++++++++++++++++++++++++ 
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*/  

 tag_t  

  THICKEN_top, 

  THICKEN_side,   

  THICKEN_J3; 

 tag_t 

  UNITED_solid; 

 

 UF_MODL_create_thicken_sheet(SWEEP_top, 

     "-1.", 

     "6",  

     UF_NULLSIGN, 

     &THICKEN_top); 

 UF_MODL_create_thicken_sheet(SWEEP_J3S, 

     "1.", 

     "-6",  

     UF_NULLSIGN, 

     &THICKEN_J3); 

 UF_MODL_create_thicken_sheet(BPLANE_WALL, 

     "0.", 

     "-7.0",  

     UF_NULLSIGN, 

     &THICKEN_side); 

 

/* 

 +++++++++++++++++     JOINT STRUCTURES    ++++++++++++++++++++++ 

*/   

 

 tag_t 

  SOLID_THICKEN_top, 

  SOLID_THICKEN_side, 

  SOLID_THICKEN_J3, 

  UNITED_Stick_solid; 

   

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_top, &SOLID_THICKEN_top)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_side, &SOLID_THICKEN_side)); 

 UF_CALL(UF_MODL_ask_feat_body(THICKEN_J3, &SOLID_THICKEN_J3)); 

  

 UNITED_Stick_solid = wub_UNITE_SOLIDS(SOLID_THICKEN_top, 

SOLID_THICKEN_side); 

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid, 

SOLID_THICKEN_J3); 

 UNITED_Stick_solid = 

wub_UNITE_SOLIDS(UNITED_Stick_solid,EXTRUDE_J9S); 

 

 // JOINT 3 HINGE STRUCTRE 

 

 wub_set_wcs(DATUM_CSYS_Stick_SJ3); 

    double  

     origin_bool_SJ3[3] = {0.,0.,0.}, 

     dirction_bool_SJ3[3] = {0.,0.,1}; 

    tag_t  

     bool_SJ3_cylinder_outside, 

     bool_SJ3_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

origin_bool_SJ3, 

UF_CSYS_ROOT_COORDS, 

origin_bool_SJ3); 

 UF_MODL_create_cylinder(UF_POSITIVE,     

      UNITED_Stick_solid,   

       origin_bool_SJ3,  

     "100.",  

     "40.",  
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     dirction_bool_SJ3,  

     &bool_SJ3_cylinder_outside); 

 UNITED_Stick_solid =  

wub_UNITE_SOLIDS(UNITED_Stick_solid,bool_SJ3_cylinder_outside); 

 UF_MODL_create_cylinder(UF_NEGATIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ3,  

     "110.",  

     "25.",  

     dirction_bool_SJ3,  

     &bool_SJ3_cylinder_inside); 

 

 // JOINT 9 HINGE STRUCTURE 

 

 wub_set_wcs(DATUM_CSYS_Stick_SJ9); 

    double  

     origin_bool_SJ9[3] = {0.,0.,0.}, 

     dirction_bool_SJ9[3] = {0.,0.,1}; 

    tag_t  

     bool_SJ9_cylinder_outside, 

     bool_SJ9_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

origin_bool_SJ9, 

UF_CSYS_ROOT_COORDS, 

origin_bool_SJ9); 

 UF_MODL_create_cylinder(UF_NEGATIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ9,  

     "100.",  

     "25.",  

     dirction_bool_SJ9,  

     &bool_SJ9_cylinder_outside); 

 

 // JOINT 6 (FOUR-BAR MECHANISM CONNECTION POINT) STRUCTURE 

     

 wub_set_wcs(DATUM_CSYS_Stick_SJ6); 

    double  

     origin_bool_SJ6[3] = {0.,0.,0.}, 

     dirction_bool_SJ6[3] = {0.,0.,1}; 

    tag_t  

     bool_SJ6_cylinder_outside, 

     bool_SJ6_cylinder_inside; 

 UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS, 

origin_bool_SJ6, 

UF_CSYS_ROOT_COORDS, 

origin_bool_SJ6); 

 UF_MODL_create_cylinder(UF_POSITIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ6,  

     "100.",  

     "40.",  

     dirction_bool_SJ6,  

     &bool_SJ6_cylinder_outside); 

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid, 

bool_SJ6_cylinder_outside)

; 

 UF_MODL_create_cylinder(UF_NEGATIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ6,  

     "110.",  

     "25.",  

     dirction_bool_SJ6,  

     &bool_SJ6_cylinder_inside); 
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 // JOINT 2 STRUCTRE 

 

 wub_set_wcs(DATUM_CSYS_Stick_SJ2); 

    double  

     origin_bool_SJ2[3] = {0.,0.,0.}, 

     dirction_bool_SJ2[3] = {0.,0.,1}; 

    tag_t  

     bool_SJ2_cylinder_outside, 

     bool_SJ2_cylinder_inside; 

UF_CSYS_map_point(UF_CSYS_ROOT_WCS_COORDS , 

origin_bool_SJ2, 

UF_CSYS_ROOT_COORDS, 

origin_bool_SJ2); 

UF_MODL_create_cylinder(UF_POSITIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ2,  

     "100.",  

     "40.",  

     dirction_bool_SJ2,  

     &bool_SJ2_cylinder_outside); 

 UNITED_Stick_solid = wub_UNITE_SOLIDS(UNITED_Stick_solid, 

bool_SJ2_cylinder_outside)

; 

 UF_MODL_create_cylinder(UF_NEGATIVE,  

     UNITED_Stick_solid,  

     origin_bool_SJ2,  

     "110.",  

     "25.",  

     dirction_bool_SJ2,  

     &bool_SJ2_cylinder_inside); 

 

/// MIRROR STICK BODY 

 

 tag_t 

  mirror_plane, 

  mirrored_body, 

  final_sTICK_solid; 

 mirror_plane = 

Extract_dplane_tag_of_Datum_CSYS(DATUM_CSYS_Stick_SJ9, 

xy_plane); 

 UF_MODL_create_mirror_body(UNITED_Stick_solid,  

mirror_plane,  

&mirrored_body);  

 

    UF_terminate(); 

 } 

int ufusr_ask_unload(void) 

 { 

 return(UF_UNLOAD_IMMEDIATELY); 

 } 

 

 

 


