$

l* " National Library - . Bubhotheque natlonale
: of Canada . " du Canada

Canadian Theses Service Services des théses canadiennes

Onawa, Canada

" KIAON4. : S o - -
CANADIAN. THESES THESES CANADIENNES K
NOTICE : . AVIS |
The quality of this microfiche is heavily dependent upon the La qualité de cette microfiche dépend grandement de ta quame'
quality of the original thesis submitted for microfilming. Every de la thése soumise au microfilmage. Nous avons tout fait pour
effort has beeh made to ensure the highest quality of reproduc- . assurer une qualité supérieure de reproduction. .
tlon possble '
If pages are missing, contact the umversuty WhICh grantedthe .. Sl manque des pages, veunllez communiquer avec l'univer-
degree _ s ‘ ’ sité qui a conféré le grade
Some pages may have indistinct print eépecially if the original La quahté d'impression de certaihes _pages ‘peut laisser &
_ pages were typed with a poor typewriter ribbon or if the univer- “désirer, surtout si les pages originales ont été dactylographiées
sity sent us an inferior photocdp)Q' . . .- araide d'un ruban usé ou si Funiversité nous a fait parvenir
: ' ‘ une photocople de quahté inférieure.
Pre\iiously copyrighted maferials {journal articles, published Les documents qui font déja 'objet d'un droit d'auteur (amcles
tests, etc.) are not filmed. : . ' de revue, examens publiés, etc.) ne sont pas microfilmés.
Reproduction in full or in part of this film is governed by the . La reproduction, méme partielle, de ce microfilm est soumise
Canadian Copyright Act, R.S.C. 1970, ¢, C-30. a Ja Loi canadienne sur le droit d’auteur, SRC 1970, c. C-30. ¢
THIS DISSERTATION @ - ~ LATHESE AETE
‘HAS BEEN MICROFILMED - MICROFILMEE TELLE QUE
(- EXACTLY AS RECEVED NOUS L'AVONS REGUE

i .
i . . .
! - -’

-.> . \‘l\ ‘v ’ B ) . . ’ " . . C o ]ﬁ
NL-339 (r.86/06)' : . ' - - I , . —— e



THE UNIVERSITY OF ALBERTA
INTERPRETATION OF TUNNEL CONVERGENCE MEASUREMENTS
by

JOHN PETER BARLOW

o

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

- . OF MASTER OF SCIENCE

*

DEPARTMENT OF CIVIL ENGINEERING.

- . v

~ EDMONTON, ALBERTA -

. SPRING 1986



Permission has been ‘granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither: the thesis nor
extensive extracts from it

may be printed or otherwise:
his/her
written? permiss iorn.;

reproduced . without -

"dtauteur)

L'autorisation -a &t& accordée
a2 la Bibliothe&que natdionale
du Canada - de microfilmer

“cette th&se et de pré&ter ou

de vendre des exemplaires du
film.

L'autéur (titulaire du droit
'se réserve les
autres droits de publication;

ni la .thé@se ni de longs
extraits de celle-ci ne
doivent @&tre imprim&s ou

autrement reproduits sans son
autorisation gcrite.

"ISBN $¢-315-38254-2



~THE UNIVERSITY OF ALBERTA

e
RELEASE FORM

NAME OF AUTHOR JOHN PETER BARLOW

TITLE'OF'THESIS INTERPRBTATION OF TUNNEL CONVERGENCE

MEASUREMENTS
DEGREE FOR WHICH THESIS WAS PRESENTED. MASTER OF SCIENCE
YEAR THIS DEGREE GRANTED  SPRING 1986

/

,  Permission is‘hereby granted'to THE UNIVERSITY
OF ALBERTA"LIBRARY to reproduce single copies of .

"~ this thesis and to lend or sell such coples for.
pr*vate, scholarly or sc1ent1f1c research purposés
only. I » ) “

: . i | o . . L

The author reserves other publication righ;s,

-aqd neither the-thesis nor extensive extracts from
it may be;printed.or-otherwiselreproduced without

the author's written permission.

¢ ° (SIGNED) ... D R TATCITRRIPTAPRT LY
 PERMANENT ADDRESS : | |
...../.<>..Z.f?.7...:'/.f?.'%.-..4.%‘1%%‘.;...; Ao 7%
o Cboren L Aeperm
75// ové o

--u-o'co.onloioooo.oo.oolooloooooolnoono.tiooooloco«

S

[

"/424f2V¢ N ac

« DATED ..‘..‘..'u'...v.lllll.l‘.l.l‘i‘.!'?ﬂ.l(l“'..'..‘lj..'lv'.v‘.“’-t‘l.’l"l.'rl_l 190



THE UNIVERSITY OF ALBERTA
v FACULTY OF GRADUATE S?UDIES AND RESEARCH'
- v' Y.
7 The undersigned certify that they héVe\fead, and
.‘recommendSto the.Fatuity-df Graduate Stdéies:and Research'
_for acceptance, a thesis entitled INTERPRETATION OF TJN&EL
CONVERGENCE MEASUREMENTS submltted by JOHN PETER BARLOW ln

partial’ fulfilment of the requirements for ;he degree of

<

MASTER OF SCI%QQE. )
- /‘_\ ,
Cee e .. e T T
. Supervisor .
oo\?ilootovov.noooo.ncc.o-oq;ob.u‘.oo‘o-ouoo'on-.‘:.b -------- .
s e 0 0 0 co/ogoo:u..-o-.-LE-MWC\_\I-.-‘.-;;.-"
Date......{eéaqug.f?;7 . ﬁ?ﬁ?;....;}...;..;,.,,,..}:....
"\\\ By S



v ABSTRACT »

An.increasing number of tunneISvare being designed
'acoording,to observationalnmethods;vwhere a preliminary
design is modified to suit the conditions observed«éuring‘
tunnel excavation.‘Deformation mqpitoringvplays a central
role in any obsenYatlonal design method buE unfor&unately,
1n present practlﬂe monitoring results are not ntullzed to
‘their full potential. pe51gn decisions are often hased
totally on eiperiencek_orkon a sinpiiStic rnterpretation of |

the monitoring results.

;A method‘hasﬁbeen"oeéeloped”for the interpretation of
’tunnel convergence measurements to prov1de a rat;onal ba51s
for the dec1s1ons that are made dur1ng the constructlon of a
tunnel.fThls method is applied hy fitting a series ot 4
semi—empirical eduations to the convergencermeasurements

~ near the tunnel face. The parameters that are determlned by
Jth1s process characterIZe the response of the rock mass to
”tunnel excavat;on,,and are related to-1mportant physical -
éuantitie; shch as the eXtent‘of'the'xieloed"zone andlthe
timefd%pendenQQproperties 6f the rock mass. This method has
‘beenuapplied%to laboratorY"tests and}field'observatiOns from -
‘a largevhighway{tunnel- to determ neAthe best method of

s

fpresentlng convergence datar and the bestgprocedure for
‘determ1n1ng %he parameters.~4 ST o

It has been found that the use of thlS method 1n the
,1nterpretat10n of tunnel Gonvergence measurements prov1des

"Important 1nformat10n to gu1de de51gn dec151ons. The z€ of



\ .

the zone of yielded material can be estimated with the
measurements takeﬁ”witﬁin.one tunnel radius of the face.
This enlightens the dimensioning and design of rock bolt
systems. Lrthermoré, this method canbe used to predict the
ultimate behavior of the fbnqel, and the effect that é
variet§ of gupport systems qould have on tﬁe tunnei, This

allows thg-designer to fine tune the design of the support

system to achieve the desired effect.
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1. INTRODUCTION
The design of a structure that interacts with the

ground has traditionally followed the pattern of: sampling
‘and testing to determine ground propertiesf modelling the
« response of the dround'to the structure by using an ‘
appropriate model that incorporates‘the ground properties;
and then designing the structure, based on the results of

the analysis, to ensure adequate'performance. This

traditiohalgapproach is often poorly suited to the des{gn of
a tunnel for several reasons. First, obtaining‘a
representative number of samples can be very difffgult,

\ )

) especially in a mountainous environment. Second, thé"{
" response of the'ground~to tunnel excavatign is not easily
modelled with analytical or- numerical methods, due to the .
~complexity of the tunnelihg environment. Factors that are
diffiéult to quahtify, such as the presence of ﬁoints ahd
fractures and the method of construction, often exert a
| dom1nant 1nfluence on the behav1o’<9f the ground Ig
A addltlon, there is an important interaction between the
ground and the support1ng eléhents of a tunnel ‘that 1s not~?
l: cohsldere ’1n the traditional de51gn approacﬁ‘ The loads
”'that must/ be carried by the.tunnel supports are a product of
b _thlS 1nt¥£agtlon. The'se difficulties have precluded the use
'Vof the graditlonal design- approach in most tunnellng
h‘:prOJects. | | _ |
A popular alternat1ve to the trad1t1onal approach 1s.i§”

’Jthe Observatlonal De51gn Method The general pattern that ig )

A
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followed when the Obseryational Method is employed is to
make a preliminary‘oeSign based on tne aVailéble Y
information, and make necessary modifications to the
preliminary design based on field observations. The

importance of field obsetvations in.this method necessitates

s

a thorough tunnel monitoring program. It is important to

note the dlfferent purposes for monltorxng a tunnel. If the

safety of the opening 1is the only concern, a relativgﬂy

w5

sparse monitoring program ‘could be adequate. However, 1f the
monitoring‘progtam is to provide information on the behavior
of the.ground for the design oﬁ'the;support system, a mucn
more comprehensive‘pfogramiis tequired.,Only the tunnel

monitoring results taken for the,fatter purpose are
» P s - - .

considered'in this thesis.

Unfortunately, “the present appl1cat10n of the fg;rJ

;1 , !
Observational Method ‘to tunneling projects falls sqo%t of¥
L.

the potentlal that ex1sts w%thln the method. Monltdflng \? .
P

: at is rout1nely taken, is not fully ut111zed,,as D

- , %

‘des1gn dec151ons are elther based totally on experlence, qr'

on. s1mpl1st1c 1nterpretat10ns of the mon1tor1ng data. The

-

ob]ectlve of this thes:s IS to develop a Patlonal framewonk

v

for the. lntenpretatlon of tunnel monltorlng pesults to
epnovrde lnfonmatlon For the dimensionrng of supports and the

evaluatlon oﬁ the penfonmance of exrstﬁhg supponts.
Mon;torlng p;ograms typlcally include measurements of -
'ethe‘gfounafdeﬁormation;inx:eSponse'to the excavation, .and

“the pfeséures that develop in-the supports. The most common

N

»



measurement taken is the convergence of the tunnel walls,
because it is the easiest to measure. Measurepents of the
deformation within the ground, using extensometers and
inclinometers, are‘less common, but very informative. L
Pressures are tjpically monitored'with gauges imbedded
within the liner, or load cells at the ground liner
interface. Howe&er,Aioad cells are very sensitive to
instaliation procedure, and oftendgive unreliable results.
The method pnoposed.jn this theSis to fnterpnet mon itor ing
results will focus solely on convengence measurements,
| because they are the most eas;ly obtained and universally
| measured. In addition, convergence is a' ' good ‘indicator of
the overall response of the ground because it.is'not
dominated by localized processes as the other types of
measurements mentioned above are (Kaiser et al., 1982).
The method proposed in this Ehesis for the

1nterpretat10n of convergence measurements is based on an

‘.approach developed by Guenot et al. (1985) In this

ﬂapproach a sem1 emplrlcal equatlon 1s fltted to the
convergence measurements by adjustlng parameters, that then
characterlze the response of .the. ground These parameters
are related to 1mportant physical quant1t1es,'such as. the
- time-dependent propertles of the ground and . the extent of
the y1eld1ng zone. This 1nformat10n prov1des valuable 1nput.
:1nto the Observatlon De51gn Method for the reflnement of

) support des1gn, and evaluatlon of support performapce.



The approach by Guenot et al. (1985) is-an important
step toward a more rational interpretation of convergence

data, but it i1s not applicable to many‘realistic tunneling

’

conditions. It does not incorporate the influenée that a B

 tunnel support has on conVergeﬁce, and it is unablg,fo model

P

sequentially staged excavations. This approach has been
A . 42 . ° A e .

>

expanded in this thesis, to encompass thése tyb effects*to

broaden its application to more realistic tunneling
conditions. The most logical manner of presenting

conyefgence data and of perfbrming,the curve fitting

préCedure has also been investigated, using data from:
. ' < .
laboratory tunnel excavation simulation tests (Kaiser et

A

al., 1983a). Finally \,the use of the proposed method as a

s

practical design tool has been demonstrated on the Enasan

Tunnel in Japan (Ita, 1983).

s



2. REVIEW OF TUNNEL CONVERGENCE SOLUTIONS

]

Q

2.1 Introduetion

There are many faccofs which influence the convergencev
of the walls of a‘tunnel{-Theiexcavation of a tunnel Cauées
a redistribution of the existing stresses in the ground
which causes elastic deformation, time dependent deformation
.1 and plastic deformation if yielding of the rock occurs, The

convergence of a tunnel“is a“result of an interplay between
. .

the physzcal processes mentioned above. It is a formidable
task to model the convergencefof a tunnel taking all of the

abovejfectofé into account: It is necessary to use a three.
~dimensional vis€o-elastic or visco-plastic finite element
enelysis. ’ |

The major limitetion of this’type of rfgorous‘anAIYSis

for practical use, is that- the matenial properties required

as input‘parameters\are often difficult to determine and
vary-widely wi;hin the rock mass. The presence of
‘discontinuities also‘limiﬁs the usefﬁlnesé of the results as

they- often exert a controlllng 1nf1uence on the- deformatlon

'mode of the rock mass. In addltlon 1f the rock exhlblts

Q

straln weakenlng behav1or, the number of 1nput paramexers'
.'requzred is greatly 1ncreased As a result of these

d1ff1cult1es assoc1ated with' the reallstlc modelllng of

o !

]solutlons that 1nvolve sxmpllfylng assumptlons. These,‘

T ﬂsolutlonsvoften conta1n‘parameters that‘are determined by

_ R B R
5 o , : v .
“« & . . : . [



* materia)l properties.

Y
curve fitting fielﬁ:measurements, rather than actual
N

Thisychapter contains a discussion of the physical
_ v .

| processes. that cause convergence, followed by a comparison

¢

‘ deformatlon and causes tun -

"of the existing methods that have been proposed to model

change near an openln

tunnel 1Sfunsupported The tangentlal stress 1ncreases

convgrgence. The solution by Guenot, Panet and'Sulem (1985)

that has been adopted in the present study 1is then presented

in detai;Valong with a discussion of its advantages and

limitationk.

2.2 Physical Processes Causing Convergence

As.a tunnel iS'eXCavated the stresses that originally

& ‘
ex1sted in the excavated core of material are transferred to

o the rock mass ad]acent to and ahead of ‘the excavatloﬁ The'

to.reach a new stable equ111br1um cony 1t10n. Any such stress

o

change or- stress redlstrlbutlon rocess results in ground

is 1llustrated by F1gure 2.1 showlng
a rectangular elem%pt of rock at the tunnel ‘wall, The

E]

1n1t1al stress of Po before excavatlon 1s rel1eved in. the

radlal dlrectlon durlng eXCavatlon and dlsappears, 1f theu'

. A}

51multaneously due to archlng and may eventually exceed the

1o

'strength of the rock For a ground stress condltlon of

'-efeventual;ynlncrease toféﬁé when the face,1s‘far away;

~

'-1K0;1.0 shown 1n F1g, 2{1, the tangentlal stress w1ll

wall convergence. The stress '

compre551ve stresses generate an’arch that permrts the rock -

N
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Theset stress changes cause immediate elastic -

deformation and.may initiate creep deformation which c/
"contlzues at a decrea51ng rate untxl 4 new state of
equ1ltbr1@m is reached 1n the long term {unless accelerat1ng
creed lead$ssto a collapse of the open1ng) If the stresses
9generated by therexcavatlon exceed thg yleld strength of the

rock a plastﬂc or q1e1ded zone will propagate from the
9
“tunnel wallwunt1l a new state of stress equ111br1um 15,

'
'

achzeved Thls produces afdecompressed annulus of Y1elded
e o
V .
rock.surround1ng the excavation and addleroﬁal convergence.
L & s & ¢

The assoc1ated redlstrlbutlon .of stresses in turn affects .
the elastlc and creep response of the rock inside and
outside, of the yielded‘rock mass.

The amount of convergence produced by the interplay of

these processes at a given section along the tunnel is

7

,."’.«controlled by the p«Dtlon and shape of " tunnel’ face.

When the face 1s close,'lt carries some éf the add1t10nal

3o
Ll

streSses caused by excavatlon " As the face advances, 1ts

' 'support1ng effect decreases, and the stress in the rock

adJacent to the excavatﬁon 1ncreases untll it is bearlng all

' of the addltlonal stresses. This total stress change

A

produces the f1nal ‘maximum convergence.

%he varlous methods that have been proposed to model

. l ~
these processes are compared 1n the following sectlon.
. . 3 .-

'
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2.3 Comparison of Existing Methods

Various ipprokimate methods that have been used to
ﬁodel tunnel convergence. They differ\not only 1n the manner
they describe the'physical processes that cause convergence,
but also in'bow these processes are combined to express the
resultinohconvergence.

A simplifying assumption that is common to all of the

-

following methods, is that deformations only occur in a

plane perpendioular to the tunnel axis. This eliminates

. displacements along the tunnel axis, and makes it possible .

te reduce the problem from three dimensions to two.
Descoeudres (1977) derlved a closed form solution for ,
the convergence of a tunnel in the v1c1nty of the face
assumlng that the tunnel face was a spher1ca1 cavity at the
end of a cyllndrlcal tunnel. This was done to account for

-+

the over excavatlon at the tunnel face that produces a

‘non-planar face, and to assess the effect of damage or

o .
.yielding of the face. The solution considers the effect of
L 2 . .

¥

yielding, but neglects the time dependent deformation that

invériably occurs in every tunnel, to varyfng degrees.
. ]
Lo and Yuen (1981) developed an explicit closed form

—se%ﬁtfenAthatﬁdescrrbes~the—%&me dependenent response of the

'rock to.the -tunnel excavatlon. They pa1d part1cular

,attentlon to,the stress transfer from the rock to the tunnel.
support and the effect that this'decrease in stress has on
the time dependent response of: the rock. They did not,

however, include. the time 1ndependent component of



convergence in their solution, which makes it applicable
only to ca§és where the full additioﬁal stress has alfeady
been transferred torthe rock walls. This correspoﬁds to a
distange of at least two tunnel diameters past the face.
This limitation was justified for the case histories that Lo
and Yuen (1981) e?amined, where they‘were inzerested AT~ the. ~
deformatibn of a tunnel subport thgt was installed a long
distance behind the face. Howevér, thé neér face behavior ‘is
.of primary interest in}the’present'study so the
time-independent component of convergence cannot be
neglected.

Ladahyi and Gill (1984) went a step further toward
developing a more generally applicable formulation of the
time—dependent.:esponse, by considering the effect of fhé
advancing tunnel face. They realized that the.pgsition‘of'
tHe face determines the stress at a given point which causeé
the rock to creep. They fell short however of fully.
modelllng the 1nterplay between the advanc1ng face and the .
time-dependent convergence, as they only used th;vp951t10n
of the face at thé time of«lining installation to,determine
the initial stress fdr their creep solutibn..In reality,the .
convergénce coniinues to.be influenced by the positidn of
- the face.as the stress state ié constaﬁtly changing un£11
'nthé‘face ié.sufficiently'distahp. In additioﬁ to- this
’shortcoming,_this approéch only”considers tihé-dépendent
»convergence. Aiso, many 1nput parameters are- requ1red

H1nc1ud1ng rock propertles which are d1ff1cult to obtaln.'
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This precludes the use of this méthod for practicai
applicatiénsvwhere a small number of eésily obtained
parameters is desirable.

Otsuka and Kondoh (1981) developed an equation that
describesiggnvergence due to both the elastic, and
timeQdepgndent response of the rock to tunnel excavation.
They dérivedvit on the basis of a visco-elastic model, but
then simplified it by replacing expreésions'invblving
several material properties with four representative

) p%rameters. These parameters characterize differént aspects
of the roék behavior, but are:dgtermin;d by fitting |
_-equations to field data rather than by measuring phe
' parameters in field and‘léborafory tests. However, the§hdo
not incluﬁe‘the”effects of yielding in their eqguaticn and
also disregard tﬁe influence ¢Béf the positiéh‘of thé face
has on the'time—dependent'behavior.
B Sakﬁréi (1978) developed an equation that fitnéasés'
generatéd b}felééti¢ and visco~élast§c axisymmetfic finite
‘glément_analysés. The solutibn includes. both elastic and
~ time-dependent éohvergehce, ahé simulates the creéb7
“\\g\/realistiqallywby taking the effect of the'advaﬁcihg face
intoraccount. It does.not,rﬂowévgr, allow for‘yieldiné”of 1.
~ the rbck and iS“not Es,easy to appiymto:é iiéid caSé aéAﬁhé'_J
method by Otsuka and Kondoh (1981). | |
~ The method that &s adopted fof thé bfesentrétudy was
originally proposed by’Pahet_ana,Guenot.K1§82? and’latér.'
modifiea"bQ'SQlem.(1983). They cembined elasfg—plas:ié 

-
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finite element analyses with field measurements to develob‘
an equation with a similar structure to that proposed by
Otsuka and Kondoh (1981). It has alsoAfon parameters that
are determined by curve fitting. The solution contains
elaStié) plastic and time-dependent componients of
convergence end accounts for the influence of the advancing
face on time-dependent behavior in a ;eaiistic ménner. Their

approach is described in detail in the following section.

2.4 Presentation of Appfoach by‘Guenot, Panet and Sulem
(1985).
The general form of the convergence equation proposed
by Guenot e£ al. (1985) is as.follews: - .
( o ‘ . ,
Celxt) = Ciln) (€, + A Cy(t)] . Egn 2.1

'time—independenty or loading‘function;

where: C,(x)

Cz(t) time4dependent function;

Cro = yltimate time-independent convergence (elastic .

+.plaSti¢);\

A = ultimate time-dependent:convefgencefuand'
- (Cy f‘§)~= to;al_ultimete eonvepgence.
- ‘C1(x)rrgpreSents'the'properfien of the ultimate stress
change that has been transferred to the~§dck at.a”distance'x
from the face. The t1me 1ndependent convergence 1s g1ven by

the product c, (x) * C o’ and the time- dependent convergence .
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is given by C,(x) * A * C;(t). Thus, the timé~dependent'

convergence is a function of the position of the face, x

(which conﬁrqis the .stress change), and time. TBé;twoO L

functions C,(x) and C,(t) are described below.

2.4.1 Time-Indeperndent Ctherge@ce'

The loading function C,(x) dégcribes the stress
incrgase in the rock surrounding the tunhel excayation as
the face advanées. Panet and Guenot (1982)'simplified tﬁis_
\ three dimensional4pfocess by assuming>that the supportléiven
by ‘the face was eguivalent to a “fictitious" radial support
p:esépre acting on the tunnel walls. This'“fictitiousgf
pressure, p_, varies from thg initial stress in the medium,
pd,‘to zefo agtef tpqhel eicavat}on isyquﬁleted:gndfis
aescribed by the funéti§n X. This fuhction is illustrated in
"Fhg. 2.2. . | - | |

Pahet,%nd Guenot (1982)}de£ermined the form of*the
function X using: an akisymmetric;elasto?plastic finite ,
eleméht_anélési;. Théy found ﬁha; the distfibutign_gf

. convergence behind the faceuc0u1d'bevadeQUétely déscribediby

{1— \\¥ o - Eqn2.2

'_E @

tunnel radius; and

the fuhction:

- C1(X) =

+

where: ‘a
B

o
[}

curve fit parameter. B ..
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By, varfing the strength properties of the ground, they

o

creat plastic zones of different sfzes, and found that B

was almost constant at 0.84 R/a, where R is the radius OE//“\\
he plastic zone. This led to the form of the convergence

function that is‘used in the present study:
Cy{ )’- C i1—[——‘—]2} ' 2 E nf2 3
AR = e 1 + t , . =4 L

whe&e:‘x = 0.84 R.
This could be of great practicatl importanCe, because it
mmkes fb possible to determlne the radlus of the plastlc
zone by f1tt1ng the above function to convergence
'obseryat1ons. Unfortunatly, thls task is not as ‘sjmple as

Egn. 2.3'5Uggests as will be discussed later.

i

2.4, 2 T1me Dependen Convergence

The time- dependen nv gence can best betobserved '/
3dnr1ng,a stoppage of tunnel eXceﬁation, when the face
%advenceicomponent'of:convergence disappeare"and'the'
rema1n1ng convergence 1s solely due . to t1me dependent stress'.t
’redlstrlbutlon and rock mass creep | | |

Panet and Guenot>(1982) took advantage of one such work
istoppage at the Frejus Tunnel 1n France and determlned that

s the t1me dependent convergence could be adequately descr1bed.

_by:
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Calt) = {1-lgae1""7) ” " Eqn 2.4

.

= 1 lad

‘where:'T =- 'parameter reflecting'the.shape of ghe creep curve

. for a particular rock.

Figure 2.3 illustrates the two‘components of Egn 2.1
together with the total-convergence"curve that results from
the addltlon of the two components. ) ;' \

The effect of the extent oé the yxeld zone on the
convergence is shown in Fxg.' 2.4. While the ultimate'
convergence increases with R; the normalized convergence
hourve becomes flatter. This corresponds well with field
- observations as will be'denonstrated later. For Fig. 2.5,
the‘parameter T has been varied to iIIUStrate the'influence
}of thls creep parameter on the convergence curve, %he
convergence in both Flgures 2.4 and 2.5, were normallzed to
the ultlmate convergence, to demonstrate the dependence of
the shapes of fhe\ionvergence~curves on the four parameters‘
X, T A, and C' . It is important to note that ‘the extent ofud
y1eld1ng S1gn1f1cantly 1nf1uences the shape of the 1n1t1al B
'part of the convergence curve (w1th1n two dlameters of the
‘face) In cqntrast the creep characterlstlcs of- thé rock
;domlnate the shape of the latter part of the convergence

curve, As shown_later,rth;s.allows the determ1natlon of one'

parameter independent of the. other.
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The equation presented in this section has been
successfully used by'Su}em (1983) to match convergence : ;
measurements from two case histories. He found that fitting‘
the equation to the data yielded a consistent_set of
lparameters that characterized the rock mass.

2.4.3 Limitations of Approach

7 The major limitation of this approach is that the
effect of a tunnel‘support is not considered. As Ladanyi et
al. (1984) and Lo et al. (1981) have demonstrated, a support
reduces the additional stress.that could be transferred to -
the rock mass4§and in sdsEoing alters thevconvergence curye.l

Another limitatfgon is that the approach in its current form

does not consider the effect of excavation sequencing, as

the approach isvoni}.applicable to full face excavation.
»Many tunnel excavatlons, partlcularly in poor ground 1nvolve
' sequentlal excavatlon and support technlques that cannot be
simulated properly with thls,approach. All these llmltatlonsd.
necessitate an expansion of these otherwise,vaihable |
’conceptsfto-more realistic conditions. h

There s also a fundamental limitation to the manner en
whlch the t1me dependent behav1or is modelled The functlon‘

b

| that governs ‘the t1me dependent response of the rock, C, (t)
¢

*o‘"1s a contlnuous functlon that is 1n1t1ated at t= 0 The

"actual t1me dependent component of convergence is given by
the product of C,(t), A (the_magnltude) and C,(x), which

‘representsfthé propértion of the ultimate stress change that-
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has already developed. The function Cz(t) 1s not a true
creep functlon as creep represents the.response of a rock
to o constant applled stress, which i1s a material property.
Rather, C,(t) descrlbes the response of the rock to a
ehanging stress, that evolves from zero to the full stress
change. It is therefore not‘a true material property, but a
parameter that reflects the ereep properties of the rock anhd
-the loading history. The function C. (t) is not only
influenced by the rate of excavatlon, but also by the
variations in the excavation rate. A continuous function,
C.(t) will only be produced by a constant excavation rate.
‘Thus, . the eonvergence eguation by Guenot et al. (1985) is
only applicable to tunnels excavated at a~constant rate.
Fertunately, C‘(t)-(and henee, the parameter T) is
relatlvely 1nsen51t1ve to changes in excavatlon rate as will
be demonstrated ldter in Chapter 4, /

‘ The apprOach for 1nterpret1ng convergence'heasurements
fproposed by ‘Ladanyi and Gill (1?84) involves a completely
dlfferent method of modelllng time- dependent behavior.

Rather than commenc1ng at 2L0; their t1me dependent functlon
is" 1n1tlated when the suppd?t 1s 1nstalled Clearly, the
rock d;splays‘tlme dependent behav1or rlght from the
'beglnnlng of‘excavatlon, and this t1me dependent functxon 15
o notna pure creep fdnetien, as it not~only depends on the

. creep properties of thebreck, but also the time of*Sdpport

installation."
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The onlyiway of modelling the time;dependent behaviof
of the rock with a function that depends only on the creep
properties, would be to superimpose a series of creep curves
that correspond to each incremental increase in stress. This.
would be a formidable task that is not practically feasible.
Thbs, the methods mentioned above involve simplifying
.stumptions that maké it possible £o model‘thé éomplex
time-dependent response of a rock mass to the excavation of
a tunnel. Both methods of modelling timefdependént behavior
are a simplification of't‘e actual phyéical process, and it

‘is important to recognize’ these limitations.

L20N
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3. EXTENSION OF CONVERGENCE ‘EQUATION

*

3.1 Introduction o .
The convergence eguation by Guenot et al. (1985)'15
expanded in_thié section to broaden its application:to more
realistic tunneling conditions. The objective is. 1is fo.make
it applicable to the conditiéns present in the Enasén Tunnel
case history; examined in Chapter 5. This tunﬁél, with a
diametgr of.tén metets, wés exéavated in poor ground in
ﬁhreé sequential'stageé and lined wlth a temporary support.
The full details of the project are given in Chapter 5. Two

" modifications to the eguation are necessary to make 1t

applicable to the Enasan Tunnel. Firét, it must be extended

to describe the convergence ahead of the face for the second

. and third stages. The tunnel wall exposed by the first
. - N g\ .
“excavation is affected by the stress changes that occur both

before and after these advancing faces pass. Second, .the

convergence equation must also be expanded to incorporate

: 13} . .
the effectsiof a tunnel support. Both the stiffness of the. |

liner and the distance between the face and the point of

installation, influence the wall convergence, and must -be

o P
included in the equation. ‘
The proposed changes to the convergence eduation are

verified by comparison with results from a series of finite

element analyses.

22.



23

3.2 Extension for Pre-face Convergence.

The most important asbects of the pre-face convergence
<are the total amount of convergence that occurs ahead of the
face and the slope of the convergence curve immediately'
ahead of the face. The magnitude of the.convergence ahead of
the face 1s important, because it reflects the amount of
stress change that occurs aheadlof the\face; The slope of
the'convergence curve, or the~convergence rate, ‘immediately
ahead of the face has an important influence on the shape of
the overali convergencé rate curve, which will be examiped .
in detail in Chapters 4 and 5. It is not as important to
model the exact shape of the pre;face convergence‘curve,
even for a sequential excavation. The pr1mary reason for

predlctlon of the tunnel wall convergence, is to prov1de

4 -
»

information for the design of the -support system. Slnce
supports are,usually,not actlvated until all of the stages
have'been'ekcavated‘at a given Section,-it"is the post—faoe .
convergence curve that is of prlmary 1nterest. Thus; an ,/fg
eguation that prov1des an approxlmate f1t of the pre- face
convergence curve,"and models correctly the magnltude Of,
convergence at the face, and- the rate of convergence
1mmed1ately ahead of the face, would be adequate.

Several f1n1te element analyses ‘have been performed in
thlS study to model the convergence assoclated w1th the
excavatlon of a tunnel. Th1s analys1s will be presented. in

deta11 in Sectlon 3.4, but the pre-face portlon of the

convergence curve for the unllned tunnel case will be used i
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in this section to develop an equation that describes this
portion of the -curve.

Convergence occors ahead of the face because the
approaching excavation causes a redistribution of stresses
that increases the stress in the vicinity of the face. The
convergence eouation can be used to describe the:.
distribution of this convergence 1f the preseure’term,

1 (x), is altered to reflect the portion of this stress

s
.

change thac occqrs ahead of the face. Iﬁ nost increase from-
zero farhahead of the face to a value at the face that%‘ill
produce the amount of convergence given by the finite»
element analyses. |
The follow1ng equation is proposed to. descrlbe the
-

pre- face portxon of the convergence curve, based on the

finite element analy51s'

. l\ . ' ’ ' . : v‘
C(x,;),j Q,_Cpf(x)[de + A;Cz(t)] - - c‘Eqn 3.1
,where- Q4 .= proportlon of the total stress change assoc1ated

wlth ex aVatlon that occurs ahead of the face,_and

\. ‘ . . "- ‘ ‘ - .~ i ‘ o

h +

whete: x . = value of x at tunnel face.
\

The‘post-face poétion,of'the convergence curve would

{
\

épw be described by: .

r
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Clx,t) = [0y + Q: Ci(x)JIC  + A Calt)] Egn 3.2
‘where: Q. = proportion of the total strese change associated -
with excavation that occurs after the face.

Note that me and A nov represent the total (pre-face j//2
post~face) time—independent and time—dependent components o&
convergence, respectively. : | : C \\\

Equations 3.1 and 3.2 describe the entire range of
convergence‘ and will. be referred-to jointlv as the
"Convergence Solutlon in the remainder of this theSie

Tne proportlon ‘of the total stress change, glven by the
pressure term in BEgn 3.1, graduallyylncreases from zero, far
ahead of the faceﬁbto Q. at the face. This stress change
produces a‘téme—independént convergence °f'cxm * Q, at the
' face and initiates the timefdependent-convergencer,Tne N
proportion of'the‘total timefdependent convergence that haeA
‘occurred at tne~face'depends, therefore)“on‘the'rate of
excavatlon. The max1mum tlmerdependent convergence that
“could occur at the face is. Q, * A, ThlS would only occur.lf
jthe excavatlon rate was 1nf1n1tely slow. At regular advance
rates, the t1me dependent deformatlon at the face w1ll be
:ismall because 1nsuff1c1ent time WIll be" ava1lable to reach
cthe ultimate creep level The t1me—1ndependent and
H-tlme dependent components of convergence gaven by the
Convergence Solutlon (Eqns 3 1 and 3 2) are 1llustrated in

~ E;g.‘3.1. The convergence curves produced by ‘the Convergence



Solution in Fig. 3.1 were calculated by the computer program
:CONRATE.‘This program calculates convergence,curves
according to the Convergence Solution presented ahovevfor -
any‘given set of input parameters. A full description of the
capabilities of CONRATE, along with a program listing and an
egample run are contained in Appendix C. |

In Fig. 3.2, Egn 3.1 islgompared to the pre-face
portlon of the convergence curve from the f1n1te element
analys1s of an unsupported tunnel The equatlon satxsfle;
the criteria outlined earlier, i.e., lt produces'the correct
magn1tude of convergence at -the face and fits the slope of
the convergence curve immediately ahead of the face. The‘
time-dependeht behavior is notlincluded in‘thls figure
becgyse theéﬁEzanalysis did not consider the effect of time.

The value of Q,~determined=in the finite‘element'
ﬁanalysis Was 0.27, which corresponds to the. value glven by
’Panet and Guenot (1982) However,_ln ‘their elasto plastic
' analyses, they dlscovered that Q, 1ncreased w1th an 1ncreaseh
.1n the rad1us of the plastlc zone. For example, a rad1us of
fthe plastlc zone, ,'of 2. 1Sa produced a Q,-O '58. The effecthh
that y1e1d1ng has on the value of Q, is an 1mportant
lcon51deratlon that w1ll 1nfluence the appl1cat10n of thlS
method in Chapters 4 and 5. S i,f_‘ ) ,7

In summary, the convergence equatlon by Guenot et. al.
(1985) has been expanded to descr1be the full range of

o convergence, both ahead of ,and after the face. ThlS is an

,jessentlal mod1f1cat10n for the appllcat1on of the
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Convergence Solution to tunnels excavated in sequential
stages. The other modification that will broaden the
application of the Convergence Solution to mOre realistic
conditions, is the incorporation of the effect of a tunnel

support.
3.3 Extension for a Supported Tunnel

3.3.1 Approach by Sulem (1983)

Sulem (1983) outllned a proposal for 1ncorporat1ng the
effect of a support into the convergence equatlon (Guenot et
“al. 1985). He modelled atsupported tunnel with a series of
finite element analyses in which he varied the stiffness of
the‘linerd KS' and the distance between thevface and the .
point of liner dnstallation, Lg- He fltted the convergence

‘equatlon to,each of. these,cases, and found that -a varlatlon

t1n support stlffness was reflected in a varlation 1n the
‘parameters T A and C - The parameter x and the ratio’
,vA/me remalned more or less constant He alSo found'that'a
;var1at10n in . Lg caused a var1at1on in A and C o but x'andATi

remalned constant. From these flndlngs he suggested that the .

"effect of a. support could be 1ntroduced 1nto the convergence',
”equatlon.through the p@rameters T C xe and A, He did not
~however, propose any generally app11cable relat10nsh1p

between the 11ner propertles and these parameters, that’
could be used for the 1nterpretat10n of convergence data

1
from other 11ned tunnels. '
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Sulem's approach constitutes an important step'toward
incorporating the effect of a support into.the converoence
equation, but it contains some inconsistencies that have
precl@led its use in the present study. The parameters in
‘the convergence equation all reflect certain phySlcal
'properties of the rock: T characterizes the time—dependent
‘properties_of the rock; merand A represent the ﬁagnitude ot
the immediate and time-dependent convergence,'}espectiyely;
that ocng in reSponse to the stress change associated with
tunnel excavatlon. The introduction of a support doesn't

change the prdpertieS'of the rock, but alters the stress

state. Therefore, introducing the‘effect of a suppdrt by

D
.meaning. L AT

i P

altering these'paramerersﬁc?anges their original thsical

- The approach developed 1n the f0110w1ng section

attempts to reflect more accurately the' effect of the actual
physlcal:processpofwsupport‘1nstallat10n sequence and
support,Stiffness. B R
' 3 3 2 Proposed Extens1on to Include Tunnel Support "
The excavation of a tunnel céuses a gradual transfer of
stress from the orlglnal J:;hcavated corq of rock to the
surroundlng rock mass, as tunnel excavatlon proceeds. When a
xtunnel support 1s 1ﬁtroduced 1t alters thlS process of .
stress transfer, by shar1ng the load w1th the rock mass/as
it evolves w1th the advance of . the tunnel face. Thzs reduces

the amount of addltlonal load carrled by the rock mass,vand
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hence decreases the convergence of the walls of the tunnel.
The Convergence Confinement Method (CCM),‘summarized by Hoek
and Brown (1980), provides a useﬁcsaillustration of this
process of load sharing:‘The method is illustrated in
Fig. 3.3, where the equivalent radial support pressure, ‘p_,
is plotted against the convergence of the tunnel wall. These
two‘qnantities‘are normalized to the initial pressure, p.,
and the ultimate time-independent convergence: Corenr . ,
»respectively. Also shown‘are the-convergence curves that
correspond to the CCM dlagram. The Ground Convergence Curve
‘(GCC) in Fig 3.3 gives the relationshipvbetween equivalent
support oressure and convergence. When there is no support
installed the equivalent’Support'pressure represents the
'three dlmeq51onal support prov1ded by the ground ahead of
: the tunnel face. Thls is 1dent1cal to the "fictitious"
support pressure of Panet and Guenot (1982) described'in
A the-preceedlng.chapter, “This pressure-decreasesvfrom the
lnftial stress'betore eXCavation, at ueo,'to-zero when:the
,exdavation.ié‘completed,vand the'facé;is:far'enough away
* that it providesdno shpporting infernCe.‘At this point, the

frock nass isdbearing‘all of the additonal loadi and the M
ult1mate tlme 1ndependent convergence (C is reached

However, when.a~support 1s 1nstalled 1t gradually takes on

?fload as the walls converge unt11 a new state of stress

'h,equ111br1um 1s reached At thlS p01nt the support bears the

fpressure Pg (flnal) and the rock mass is bear1ng the

pressure d1fference° [p -vps(flnal)];’shown in Flg. 3.3,
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The slope of the Support Confinement Curve (scC) is dictated
by the stiffness of the support. For a circular linér, this

is termed the ring stiffness and is given 'in Egn 3.3 (ﬁoek

and Brown, 1980).

2 2

Es[a —(a—ts)‘] ) :
K_ = _ ) 5 Egn 3.3
‘ (t+ns)[(1—2us)a +(a—ts) ] ’

where: E Young's modulus of the liner;

S
a = tunnel radius;
LY
ts = LMner thickness; and
vy = Poisson's ratioc of the liner.

The support pressure for a given liner convergence,

ACl) is given by:
ACl

vps(c(x,t)) = Ks @@

EQn»BTZ

-

. The flnlte element analyses (descrlbed in Section 3. 4)
that generated the convergence curves in Flg 3.3 do not
;1nclude t.ime- dependent convergence. The 1ntroductlon of a
_support also decreaseslthe tlme-dependent convergence.

. Without a supporw,“time—dependent cOnvergence is driven'by
/

-the full stress change, pé; after the face is far away. Whenllf'

a support is 1ntroduced it is the new ult1mate pressure,
[p - Pg (final)] that causes the tlme dependent convergence

'of the rock mass , and the pressure Pg dr1ves the creep of

~
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the liner material, if it exhibits creep.
The most logicel way of introducing the effect of the

support into the Convergence Solution is to subtract the
(o]

amount of pressure taken by the support, C(x t)), from

2

\_ } the total pressure that has been gﬁansferred to the rock
-

- 2 %
ﬂﬁass from the face, (Q, + Q. C (x)), as follows:

PS(C(x,t))

Clx,t) = [Qy *+ Q:C,(x) —'~———5—~———][cxm + AC,(t)] Egn 3.5

"The soopdrt pressure, PS(C(x,t)), is"normalized to the
initial stress, Pgr to be compatible with C,(x) which is

valso normalized to Po Subst1tut1ng Eqn 3 4 into Egn 3.5 and

51mp11fy1ng (Appendlx B) leads t0° 2
R [Q1 + QzC (X) +.KC_ ] [C__ + AC (t)] W.E 3.6'
€x,t) = S X 2t . =an -

- [1 + x(cx “+ AC; (t))] 'c - . :

where: Cs = Convergence at'the point of liner installation;.

- and_ - , .': o

. | ' o }__v
KS ' "‘ ‘. ' : ’ t. ) . . . -
23.90' S R AT

K =.

Ca

Thus, the Convergence Solut1on for a supported tunnel
is ‘now descrlbed by three equatlons' Equatlons 3 1 and 3. 2
gzve the convergence before the 11ner is 1nsta11ed and,'

‘Qqn 3.6 applles after;l1nerv1nstallat1on.f
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In contrast to the method proposed by Sulem (1§§3l for
handling the influence of a support, this lntroduces the
efgect of the support in one additional parameter, K, which
can be related directly to the liner properties.
Furthermore, the other parameters remain unchanged and
retain their original physical meaning.

A fnrther modification of the Convergence Solution will
be given laterJ.that reflects the influence that a support

has ahead of the point of support installation.

3.4 Numerical Analysis

A numerxcal analy51s has been performed to establish a

' ‘ba51s for the paramewers needed 1n the mod1f1ed Convergence

Solutlon The convergence curve for the unl1ned case has
“‘already been presented 1n Sectlon 3‘2 to aid- 1n‘rhe‘
n“development of the pre face port1on of the Convergence
-Solutlon{ ThlS sectlon conta1ns a. descr1pt1on of the’
numerlcal analysxs, a.presentatlon_of the result54'and{the
appllcation'ofvrhe‘resnlfs to thedsppportedvtpnnel case;
3;4v1‘DescriptionhOE-Finite Elementnknalysisfl
F1n1te element analyses were performed us1ng thev':

'.program SAFE (So11 Analysls by F1n1te Element) developed by

» Chan (1985) ‘at the Unlver51ty of Al erta. A brlef

descr1pt1on of. thlS program is contal_‘d 1n Appendlx A The:

grbund was modelled as_an axlsymmetrlc medlum, w1th 2 stress

condltlon of K Z1.0. ‘A 11near elastlc copstltutlve ,3\v"

3 LUy
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relationship has been used throughout. The mesh and the

" boundary conditions. are shown in Fig. 3.4. The top boundary

-

of the mesh is a pressure boundary with displacements

restrained in the horizontal direction. This simulates a

deep tunnel where the top boundary is within the rock mass
,and is therefore not free. to move horizontally.
The left sidem undary is initially a'preSSure

boundary, tog create an 1so§rop1c stress state in the ground

but 1t 1s changed to a’ boundary with zero horlzontal
. \ oy
displacement for alI folhsw1ng steps. Thi's 51mulates more

accurately the cond1t1ons that dould exist on such a plane
%

3

1n a rock mass, where the preSsuré does not remain constant,
\,

but changes in gesponse‘to the excaxat1on o% the tunnel. No
horizontal_displacements on the righf\side nér vertical . {:}
. % o v
,dlsplacements on. the bottom boundary w; allowed.

The analyses model six cases: an un\;ned tunnel and

.,

flve l1ned tunnels w1th 11ners of various st1ffnesses. The

propert1es of the rock .and each of the 11ners are summar1zed

N

" in Table 3.1.

4 ' .
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Table 3.1. Material Properties used;iﬁ Finite Element

bl

Analysis.
, ) ‘giner ‘*‘
E RS Thickness te
‘(GPa)_ " (mm) (mm)
" Rock™* 0.5 0.40 -
N j\Llner # 2.5 0.15 625 .52
. Liner #2 5.0 ©  0.15 625 - 104
Liner #3 10.0 0.15 625 - 208
" Liner~#4”"'- 30.0° 0.15 . 6257 625 |
| 015 625 = 1250 -

 Liner #5. 60:0

y3

a=5.0m p,x 11.25 MPa

* mhlckness of a c1rcu1ar concrete llner that would
prov1de the equ1valent support
* % Selected to::epresent'condltlons athEnasanfTUnnelf"«'”

I

'(seelthéptet 5) T."fi s

RN

) Each of the l1ned tunnel cases cons1sted of four runs
'-1n wh1ch the dxstance between the face and the polnt of

Illner 1nsta11at10n changes. These fou; gaps, termed Ld,varevff

B 0 25 0. 75 1 25 and 1 75,rad11. Due to the dlscrete nature',;

fof the excavatlon and 11n1ng placement process, Ld is an'i

e
tvhe sum of the dlstance between thp face and the front of
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the liner, and half of the round length. This is the same
definition adopted by Einstein and Schwartz (1979). The

sequence of steps involved in these analyses are summarized

[3

in Appendix D. - ‘§

&.4.2 Presentation -of Results

“

v ’ r
The distribution of convergence along the tunnel axis.
given by the f1n1te element analysis for the unllned tunnel
case is shown in Fig. 3.6 together with results from similar

analyses found in the literature (Kaisera 1983) and (Panet

armd Guenot,‘1982).-There is very close agreement with the

.other analyses

Typlcal convergence curves from the analy51s are 'shown

" in Fig. 3.75 The convergence curve of the unlined tunnel is

shown together w1th the four curves. from the tunnel 11ned

"wlth;L1n§; #3. The four curves ¢orrespond to four different

Ll

support_ elays.,The flgure shows,thatﬂa<decrease ;n support

¥

- delay reduces the-dltimate convergence’, “and affectS’the‘

.shape of the convergence curve, For a detailed discussion of~

the influence ‘of a finite'element.meshlon,convergence_
curves, see Pelli et al. (1986).
* - The Waviness of the curves is a result'of'the"discrete,

step¢w1se excavat1on -and 11n1ng placement process foll owed

__T"'Tﬁ'fﬁe ana1y51s. Both the Convergence Solutlon that these

—

'results are to be compared to, and observatlons made in real

‘w

N
tunnel prOJects are more contlnuous in nature. Thus, to

allow a better comparlson, smooth curves were created by
’ “<‘ i ’ .
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visually fitting a curve to the FE data. Figpre 3.8 contains
the smoothed curves for Liner #3 that correspond to tne data
shown 1in Fig..3.7.“The original and smoothed convergence
curves for each liner c'se are given in Appendix E.

The effect that the stiffnessvof the liner has on
convergence distribution is illustrated:by'Fig. 3.9. The
convergence curve for the unlined case is shown together,
with the curves from the five lined tunnel cases for a
support delay of 0.25‘radii. This 'shows that an increase in
stiffness causes a 51gn1f1cant reduction 1in convergence For
the remalnder of this chapter only the smoothed convergence

Q
curves will be used.

3.4. 3 Interpretatlon of Results

The purpose of performlng the numerlcal emaly51s was to
evalute the mod1f1cat10ns ‘proposed. for the Convergence
FSolutlon. In Fig. 3.10, the unlined case is conpared'toethe

convergence curve, produced by the Convergence Solution. for

[
‘an unllned tunnel (Egns 8.1 and 3.2). The program CONRATE
(Appendix C) was usedvto generate the Convergence Solut;on
corve: Good agreement between the resuite of the FE analysis
and'rhe Convergence Solgtion for the unlined case can be
observed. The solution slighty overpredictS'rne_convergence“w
from one to two radii'from the face,:but this fft is |
considered’edequa;e for practical purposes, end is

comparable to the fit that Panet and Guenot (1982) achieved.
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The Convergence Solution for a supported tunnel
(Eqns 3.1, 3.2, and 3.6) is compared to the convergence
curve from the f1n1te element analysis, with tiner #3, in
Fig. 3.11. Again, the program CONRATE (Appendlx C) was used
to generate the Convergence Solution curves. The convergence
produced by the FE analyéis is significantly less than the.
convergence ﬁreﬁicted by the solution. These two curves
diverge even before the pofht of lin&r:installation, Xy The
.po;tidn of the curve for x < x_ was described by the
vCOhvergence Solution for the unlined case.

This phenomenon can be obigfved in pther numericai
analyses of this nature.'Fig. 3.12 shows the lined and
unlined convergence curves from an ax1symmetr1c ‘
elasto plastic, finite element analy51s by Ranklne ana
Ghaboussi'(1975). A majof COpVergence?difference,‘ACk, also
exists betﬁeen the two curves at the point of'linef
instal}ation.‘The conve}gence curves from a éhree’
dimensional, 'linear‘elastic; finite elementiahalysisA
: ,performed by Kaiser (1983) are shown 1n Fig. 3.13. The
- unllned and 11ned curves in’ thlS figure also dlverge before

1the p01nt of liner installation. |
It foildwsvf;OM'these e#ampies; that the assumption of
Aequalewall conve:gence for a lined tunnel éndian unlined”
" tunnel before the poiﬁt of liﬁer instéllation,iis net
apppopfiate;'ﬂewever, thjé is.an. aseumption‘thét ie commonly'
aéepted ferﬂihe'use ef'the Convergence Conf1nement Method

A}

It 'is also implicit~in‘the Relative Stlffness Solutlon
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'proposed by Einstein and Schwartz (1979). The appdication of
this finding to the CCM will be discussed in more detail in
Section 3.6.

This result is, however, consistent with the actual
‘physical process of'stress transfer near.the face. The
effect that a liner has on the rock is notrconfined to the
area behind the liner installation point. It 1s ddstributed
along the'tunnel axis, ahead of, Aand after xs,‘in the same
manner that the supportlng 1nfluence of the rock at/the face
is dlstrlbuted before and after the face Flgure 3.1

<>1llustrates the supportlng effect that the face and the
liner have on the unsupported gap between the face and Xg
through the process of arching.

A;further"modification‘ofvthe Convergence Solution is
therefo;e requlredAto intorporate this effect. It should
reflect the actual phy51ca1 process that occurs in the rock
- Fig. 3.15 prov1des a helpful 1llustratlon of the effect ‘that
the supportlng components have on the equ1valent radlal
" support pressure, P.- Thls is not an actual pressure,‘but is'
the equxvalent two d1men51onal rad1al pressure that would

: preduce the observed convergence. This flgure shows the |
lnteract1on between'the equ1valenf support prov1ded by the'
.rock ahead-of-the“advancing tunnel face (pf) ~and the
equ1va1ent support - prov1ded by the l1ner (pl) The
quant1t1es shown in Flg 3 15 werevcalculated from the
finite element ana1y51s, L1ner #3 w1th a.: support delay of

e

0. 25 rad11. The curve labelled pf is-the equ1valent support
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provided by the face that decreases with tunnel excavation
from»I.O before the face to zero after the face is far away.-
The curve labelled ps'represents'the actual pressure at the-
rock/linér interface that is.generated by the liner as it is .
. . , . .

compressed by the converging walls. The ‘curve p, represents

the equivalent radial pressure that is felt by the rock mass

in response to the liner.

Thus, pl is the equ1valent two d1mensxonal radlal

'support pressufe that would produce the same effect as the

4
actual liner pressure, Pg - The quantity p, was calculated

from the convergence‘curves for the lined and unlined tunnel
cases'in Fig -3.8. The dlfference between,these two curves
' ,

reflects the impact that the liner has on tunnel wall 4

convergence. Consequently, the equ1valent effect of‘thef

'11ner, pl,'ls obtazned by expre551ng thzs difference as a

' proportlon of C ! ON the assumptlon that eQUivalent

’

pressure is proportlonal to time- 1ndependent convergence. -

This assumption is central to the development of the

orlglnal convergence equatlon hy—Panet and Guenot (1982)

The sum of Ps . .ang- pl y1e1ds ptotal’ wh1ch ig the total

‘equ1valent support pressure that produces thé actual

t1me 1ndependent convergence in a supported tunnel This is

“the equ1valent pressure that reflects the stress change that

drlves the time- dependent convergence.i_.~

$

The dlfference between the curves p and P 1nd1cates

.’that there 1s a. transfer of stress from the unsupported gap

to the lxner. Thlszstress transfer'wlll now be.descrlbed for
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a point (A) on the tunnel wall (Fig. 3.15). The pressure
experienoed at thisnpoint, as it moves from Position 1, to
Position 4, reflects the sequence of events that would occur
at a stationary point as the excavation-lining pr£::ment
process proceeds through the roch mass. )

At Rbsition’l, P¢ is decreasing due to the unloading of
the approaching excavation and Py is increasing as the
supporting effect of the approaching liner is just being
.feit. At Position 2, both'the rock ahead of the ﬁace, and
the liner are.workiné together to support a rock arch. The
pressure pf‘is deoreasing rapidly as the faoehis advancing)
and py is increasing rapidly as the‘liner is approaching. Py
;1ncreases to p, at the point of liner 1nstallatlon Thus,
Ahthe total amount of equ1valent pressure that has been
' transferred to Point A before liner 1nstallat;on 1s‘pk. At
Position 3, the 11ner has been 1nstalled and is generatingr

the. actual pressure,~p as 1t deforms w1th the tunnel

57
walls. The pressure, Pgr that the llner 1s ‘exerting on the
rock mass at P01nt A 1s 1nh1b1t1ng the dlsplacement of P01nt‘*
A, and is therefore 1ncrea51ng the equlvalent support' -
"pressure, pl. However,'lt ‘is also partlally supportlng the

g rock ‘arch whlch is 1nh1b1ttng dlsplacements of the present .
unsupported length Whlch is now to the left of Poxnt A,
Thus, the pressure pS at P01nt A 1ncreases more than the
'equlvalent support pressure pl, as only a portlon of ps is

'1nh1b1t1ng dlsplacement at Point ‘A. At P051t10n 4 p and pi

; \
~are equal ‘which means that the full - pressure, pk, that was

e Q
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2
“~

transferred tp Point A while it was ahead of the liner has.
now been transferred to the liner at point A as 1t has
supported subsequent unsupported lengths. The equivalent
pressure provided by the face, Pgo has_almost vanished; as
the face has advanced more than-four radi; past point A.
When the face becomes sufficiently distant, that it provides
no support, Pg and Piotal are equal.

VThis transfer of therequivalent pressure, Py, MUSt be
1ncorporated 1nto the series of\equat1ons t?at constltute
the Convergence Solutlon This has been done by 1ntroduc1ng
‘another term 1nto_tne two equations that describe
convergence before x_ (Eqns; 3.1 and'342)l This term
gradually .applies an equ1valent support pressure ahead of
the llner,.up to a: value of Py at xs Furthermore, a 51m11ar
term must'also be*added to the. last equation such that thls
pressure pk is gradually applled to the l1ner. |
| The addﬁtlonal term that appl1es pressure before X

f
must fit the,pl curve, shown 1n Flg. 3.15 -up to xs. Thus, a

S

»ﬁterm is requ1red that starts at zero- and increases to’\pk at -

Xg e An equatlon 51m1lar in form to the pre- face Eqn 3
.;would accompllsh thlS. However, the shape of the pl curve
'depends on the support delay, as 1llustrated in qu. 3. 16
This fxgure shows)the p1 curves for the four delay cases of
'L1ner #3 (f1n1te element. analyses) For a, delay of 0.25 g
?rad11, the pre 11ner portlon of the pl curve . r1ses very

steeply.'As the delay 1ncreases, the curves rise much more’

gradually. Hence;_lt wasVdec1ded to approx1mate~thls effect-b
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by an eouation similar in form to Egn 3.1. The exponent will
. . .

depend on the magnitude of the delay.
The .exponent shown in the following equation provides

an adequate fif to the py curves of Fig. 3.15.

Q, * P (x) = Q, [ X o Egn 3.7
7o+ ( % )
where: a = 1 + a_.
La

The function‘P (x) gradually increases from zero to a
value of 1.p at x_. The parameter Qk is the equxvalent
_pressure, Py normallzed to the total.pressure p Hence,
the product of Q, and Pk+(x) yields a funct1on that
1ncreases from zero to Qk at the face '

The exponent (@) of Eqn 3. 7 is large for small support
;delays, which glves a more gradually r1s1ng function. The
curves generated bz thlS equatlon are compared to the f1n1te
element p1 curve for a’ delay of 0. 25 rad11, in Flg 3.17.
VTh1s shows ‘that Equat1on 3 .7 18 only an approx1mat1on of the‘;
pre liner- portlon of the pl curve. The. p1 curve has an
_abrupt change in slope at the face, but is approx1mated by
one contlnuous funct1on (Eqn 3.7). The reason for thls t
‘approx1matlon 1s that 1t 1s de51rable to express thlS effect
in one term anOlV1ng as few add1t10nal parameters as - |

p0551b1e. As will be shown later, thlS approx1mat1on o

| ',produces convergence curves that adequately fit the £1n1te §

&
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element convergence curves.
: \ :
The new;term given by Egn 3.7 is 1ncorporated inko .
. g
,4@gns/;&1wand’3.2 in the following manner: '
. -
e for x < x.__
face”
C(x,t) = [Q,Cpf(x)—QkPk+(x)][me+AC2(t)] ~ Egn 3.8
/ ,
e for Xfnce < % < Xgi
C(x,t) = [Q:+02Cy(x)-Q, P, (x)] [C _+AC.(t)] . Egn 3.9
B - é‘
/// ‘ Qkpk+(X) is subtracted from the loading terms in the

,‘ above equations to simulate the infdgenee that the liner has
:ahead:ofvthe point of liner instaliatgbnr This decreases the
amount of pressure transferred te'the rock nass‘fromvtne‘
'advaneing'face, given by’Q,Cpf(x)Qin Egn 3;§'and Q,+QZC}(x)\
in Eqn 3.9. The'result of‘thiaydecreaSe in the préssure that
acts on the rock mass is a decrease in both time- 1ndependent

o and t1me dependent convergence. | |

B | The term that reapplles the pressure, pk,tonto*the

.; lined portion of . the tunnel must now. be added to Eqn 3. 6

%

whlch descrlbes the lined portlon of ne convergence curve
\.

(x > X ) ThlS is’ accompllshed by decreasrng thlS extra PR
support pressure that was applled ahead of the llner “from a
;

value of pk at Xg “to zero at large X. The reverse of the

functlon-glven in Eqn 3;7.15 proposed as follows;
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O * P _(x) = QI Eqn 3.10

- p
This function decreases from a value of 55 (or Q) at
o)
X to zero at large x, This is incorporated into Egn 3.6 in

the following manner:

e for x > x-:
s

h

C(x,t)

[Q+ Qsz(x;)- PS(C(X-,t))' Qk

P,_(x)] [C *+ AC,(t)]"

[Q+ 0:Cy(x)+ KC - 9P, (x)] .
= [me+AC2(t)]’ Egqn 3.1
[1 + K(C #AC,(t))] - =

The simplification to obtain Egn 3.11 'follows the same
procedure as that found in Appendlx B.
The term Qk k- (x) transfers the éxtra pressure p, onto

‘the lined port;on of the tunnel;as it decreases'from a value

' pk L . ’ c ’ . '

of — (=Q,) to zero.
P, K . o

- The elimination of_this pre-liner support pressure

¥

increases tne total equy’plentppressure that .causes
convergence to Q, + QzC (x). This increase in total
equ1valent pressure causes 1ncreased llner deformatlon and‘
. hence, a. greater 11ner pressure,‘ps. In thls manner, the‘

equ1valent support pressure, pk, that acts ahead of the

11ner to 1nh1b1t convergencevls transferred to” ‘the llner.
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The equivalent support pressure is given by the'term?-
[p/fCix,t)) - Qkpkr(X)] in Bgn 3.11. This sum is plotted in
" F g. 3.17 to describe the p, curve after the point of liner
installation. This f{gure illustrates the equivalent support
pressure that is produced by the Convergence Solutjion with,
the new terms introduced above. As shown in Fig. 3.17:the
predictedpl éurve giveslan éiﬁggate fitﬁoﬁ the cgrvé given

by the finit

€leyent analyses. . )

The applicatilon of this series of equations requires a
knowledge of the parameter Q,. The values of Q, that have
been derived from the f&nite elehént analyses are shown in

N _
Fig. 3.18. This figure shows that Q, decreases with a
decrease in liner stiffness and with an increase in support
delay. These results can be generalized beyond the specific
cbnditidns of this anglysis by egpressing the stiffness of.
the liner relaﬁive to the Stiffneés of ‘the groﬁnd. A useful
ra;io that has be;n used to express the rélativé stiffness

’

of the ground and liner is thevcompressibility’ratio, c*

(Einstein and Schwartz, 1979): .~;/A
*'E_aa(1-xz§,.‘ . . o
C" = - > ‘ - ~ Egn 3.12
'ngA (1 = »°) : s . S
. #8 T's:
£ :
where: E = Young's ModuLUS‘ofwthefo6und;
v = ?oiSSOn's'Ratio of the Ground;
ES = Youhg's Modulus ofrthQVSupporﬁ;_ '3
Vg = Poisson's Ratio of thé Sﬁpport;,and

P

: Ygf
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A = Cross Sectiofal Area of the Support/Unit Length.

The- Compressibility ratios that correspond to, each of

the five liner cases are given in Table 3.2.

Table 3.2 Compressibility Ratios for Liner Casés #1 to #5.

E (GPa) - C
Liner #1 2.5 1.86
Liner #2 5.0 0{93
Liner #3 10.0 0.47
Liner #¢ °~ 30.0 - 0.16
Liner #5 60.0 - 0.08

' By substltutlng C for E %ﬁ Fig '3.]8, it becomes’a
chart that applles to-a range‘gf ground and. 11ner N
cond1t1ons. It should be noted that thIS chart has Heen
developed on the ba51s of elast1c condltlons. ‘

The Convergence Solutlon (Eqns 3. 8 3. 9 _and>3 11) has
been fltted to two f1n1te element convergence curves £rom

Liner #3 w1th support delays of 0.25 and. 1. 25 rad11, These

‘curves are compared 1n F1g 3, 19 The Convergence Solut1on‘

curves in this flgure were generated u51ng the pﬂGgram o

CONRATE (Append1x C) Now, excellent agreement between the

Af1n1te element results and the proposed Convergence Solutlon

bcan be observed,
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‘:F1gs 3.3 and '3.20, The SCC is placed at the: convergence-

3.4.4 Application to Convergence Confinement Method.

. The results presented in this chapter have important\
implications for the use of the Convergence Confinement
Method (CCM) in design. Although the method is generally

applied in a dqualitative manner to examine the tunnel

5upporting‘pn0cess, 1t has also been used quant1tat1vely as

a design tool. A notable example of this 1s the Relat1ve

Stiffness Solution (RSS) (Einstein and Schwartz, 1979) They

»u5ed the CCM to determlne the pressure acting on the

support ‘which is then used to calculate final

displacements, thrusts and bendlng moments w1th1n the liner. .

A typlcal CCM dlagram that would be used in the RSS wa

shown in Fig. 3.3, together w1th the correspondlhg

_converéence curve. Elnste1n and Schwartz (1979) only dealt
'with cases that have no support delay (L ) 1n their ’
‘presentation of the RSS. Howeversy a common appllcatlon of

this methodfwhen there-is‘a‘sunoort delay‘is as shown.in

i

value on the hor1zontal ax1s épat cbrresponds to the_

' convergence curve at the polnt of llner 1nstallat10n (see

- dF1g 3 3). The assumpt;on that is commonly employed is that'>

w.

the walls converge as an unsupported tunnel untll the p01nt

‘of l1ner 1nstallat10n, when the conVergence 1s 1nh1b1ted by ’

:the l1ner. The behav1or of thls post llner portlon is

' descrlbed by the RSS (E1nste1n and Schwertz, 1979) The

r

commonly accepted use of the RSS descr;bed above w111 be

54' 4.,

1 ,termed the Tradltlonal RSS in the dlscu551on that follows.f
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The resuits presented in this chapter_shoz that;xhe'
Traditional RSS portrays the convergence of a supported
tunnel in an incorrect manfer. It assumes that Lhe lined
convergence curve follows the nnllned convergence curve up
to the point of 11ner 1nstallat1on. However, it has been
demonstrated that the 1li ned convergence curve falls be10w
the unlined curve before ‘the p01nt of llner 1nstallat10n
(CS). = | ‘ |

The error that.results.from‘this incorrect as5umption
. is illust;atea in Fig. 3.20, where the‘Traditionai'RSS‘frcmf
Figu'3;3 is. compared to the Connergence>Solutiqnc The~.

convergenCe curves in this figure were calculated fcr the

conditions of. the tunnel with Liner #3. The two ccnve;gence"

curves yield two different equilibrium points.on‘tne GCC.
The diffefénces.between these cwo'sqlqtionseére'summarizea‘

in Table 3.3.

iTable 3. 3 Comparlson of Convergence Solutlon and the

Tradltlonal RSS. = TN o ';_; o
, "C(xé)_‘ C(f1nal) L1n1ng Pressure'
C (mm) {mm)' (MPd)
":?Tradltlonal 185 . 212;e '.‘n4;Qf 
RSS . AR : , e :
eConvergence “]43“‘:.x.181;£e:fu"ff$QO
‘SolutlonA':" T L -
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T

; aga1nst distance along the tunnel ax1s,,x, 1n F1g ‘3. 15
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N

The Tradltional RSS oberestimates the ultimate
convergence, and‘underestinates the ultimate lining.
pressure. The,latter ertor’is.nnconservative, as it could
lead t¢ the selection_of;a support with insufficient
capacity. |

. TQo methods of representing the eﬁfect of the linef'
Qith.the new.SOIU¢lon are -presented in Fig. 3.20. The
traditional Support'Conﬁlnement Curve (scc) that_corresponds

to the new solution is. en by the dashed line. Thls is

calculated in a 51m11ar manner to the RSS except that the

initial convergence is- corrected by thecamount C
(= Q *C, o) shown .in this figure. The value of C, that.

applles to any- g1ven set of ground/llner cond1t1ons can be

EN
k-3

. Getedmined from the chart in Flg 3. 18
o The neu method of represent;ng the effect of a’ llner on
the CCM dragram.}s glven4by the solid p]z curvef Thls

. l . C _ - ‘ o
represents” the equivalent radial support pressure that.is

felt by the rock 'in response to the liner. Tﬂfs concept has. «

been introduced in»Séctionf3.4.‘The plicUrve'in Fig. 3.20 is

plotted agalnst convergence, whereas earller 1t was plotted

These two methods yleld the same equ111br1um point, buthf

.they represent tWO dlﬁferent quantltles. The scc shows the

hactual two d1mens1onal radial pressure (p ) that the liner-

?

exerts as'gtAdeforms,»The Py curve gives the equ1valent

%aaial SUpport;pre55ure:that would cause the observed
convergence:'Thus_it is‘the equivalent three dimensional

&
-
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effect that the liner has on the rock. The GCC represents
the eqguivalent radial support preSsure provided by the rock
atithe tunnel face as excavation proceeds. A'comparison of
the equivalent support pressures provided by tég liner, and
the rock at 'the face, gives a more cohsistent representatioh
of the inp%ract}on between the liner and the rock. It is a
_comparison of like quantities, in contrast to the‘ |
Trad1t10na1 RSS which compares equivalent support pressure
to actual®two d1men51onal 11n1ng pressure P

The CCM dlagram can be used for dlfferent purposes It
can predlct the pressure that a- given llner would experxence
for a glven set of condltlons, t6 furnish theirequ1red liner
capacity, for design, For this'purpOSe, the Convergence |
Solut1on can be used to predict the convergehce curve and
'\hence, thefp1 curve, or the SCC. The CCM dlagram can also be

)

used to evaluate the effectlveness of support measures This-
can be accomplished byaplottlng the measured-convergence
‘data on the CCM diadram.‘ | A

o For_both of thése‘purpos5§, the representatioh'of the
effect of the liner with the pl'curve has'distinot ‘
advantages. It provides a morevrealistdc, coﬁsisteht
illustratioh“of”the actual effect of a linerionfthe rock. It
aiso aizovs a comparlson of the effectlveness of many
~different types of supports. Supports such as’ rock anchars
» are dlfflcult to’ evaluate u51ng a SCC but the equ1valent~
effect they have on the rock .can. be translated onto the CCM

dlagram by plottlng the pl curve, based on the observed
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-

-convergence Thus the equlvalent supportlng effect that’ any
type of support prov1des can be- evaluated using the pl
curve. . |

In summary, the convergence equatton:developed'by

Guenot et al (1985) hqs been expanded to describe the

| convergence of the walfs of a supported tunnel in response

“~;to excavatlon,,both ahead of, and.after the face. The

| convergence ahead #of the face-is given by Eqn 3.8; the
coqﬁergence after the face but before the liner is g;ven by
Eqn 3:9; and the convergence after the llnerfls 1nstalled is’
glven by Eqn 3 1. Also, the chart in Figure 3.18 is to be
used 1n conjunctlon ‘with Egn 3.1i to furnish the parameter
Qk; that corresponds ‘to the support condltlons

While the orlglnal equafﬁon has grown from one to three

equatlons,'lt has only galned one,addltlonal parameter, K.
This parameter reflects the stlffness of ‘the support system,
and can be determlned dlrectly from the llner propertles. If

. the support system is other than a circular liner, K may be
determined by'fitEThg'the solutéon'tolconvergehce:data.‘
‘Thus, for a circularaliner,_the application'of the’
ConvergencerSOIUtion is no more compfex than‘the original
eguation, as- both 1nvolve the determlnatlon of four
parameters by curve f1tt1ng The expansion of the -
Convergence Solutron (Eqns 3.8, 3. 9, and 3.11) makes it

appllcahle to a. w1de ‘range of real1st1c tunnellng

‘conditions. T



52

*Tauuny vwcﬂcm 10} uotInyos aouabiaauo) jo mu,cmcomaou 1°€ wu:mmmm

(sAop) owu]

si0ak (1 21 ot 8 g y 2 0 2-

T T T ~Ae— T T Y T T T Y e T
L a i
n ]

uspuadag—awil . :
H. P a- .H, Ww 08 = V

ooy ww ¢l = O 7

. : fop/w 0'G = A
i skop 01 = 1 ]
_ (o1 =0/¥)" . |

Wy =X
- Jjuapuadapuj—awll | ‘§l8jdwnidd 7 S
- - -
- [D}O | ) CvNo,Q«OAvaU_ C
| . , ‘yjuspuadag—oewl] ]
: (M¥((x)ofo+to) PXo((x) 'o%o+'0) R RV ORI
1juspuadag—awi} ‘yuspuadapul—awil | Lcmncoamnc.lmEﬁ, .
. - . . : v Ay > % -

, . X < X
! I i 1 ] ! I ! 1 ! A L 1 TR L1

091 0zl 08" 14
(wuwi) eousbisauo)

002

0ve

l



53

o ‘
n T T T T T T T T T T T )
a, | LEGEND TunnelFoce —
- s=—a Finite Element Analysis. ~

B — — Equation 3.1 , . . ]

Cdﬁye;gence~(nvn)

_28 -24  -20 -16 . -12 -8 -4 - O

Figure'3f2‘Ptg¥face Convergehcétéurves from an Unlined:

"Tunnei;-




A ¢
2
© GCC
(o] e :
a \ Pressure -
o™ i | ‘Carried
o © ! by 'GrO\.md
St ! p, —ps (final)
! Po
! ! .
< : ‘
o i ! : -
i Pressure
o’ Carried W
. o by Support ’{"’
: .
face v
———————— xs
o
N\
- X
Unlined -
v

a

'ﬁigure 3.3 Convergence Confinement Method Diagram with .
~Gorresponding CngérgencéACufvés,



55~

©ySeW JusWSTE 93TUTL §°¢ 2INBTd

JUswWa(3 Joul M L e ._,,occa.r butoubApy . ..

R (‘“) : 95“'6}3!0; JDQg}Jé A }

, Y - T - =T T T " —T"
0z - 0 - 0- o 0z -oo0e . 0Y

-

-3

| (w) soubysig |DIUOZLIOH



56

Ly

ANCANANGNLNAN

—
NN

€

e — —=

NZ\ZNZN\Z N7\

T

. Round
Length- R . - -
(L ‘ A S

C— Exk:'_o?otic)h ‘i‘n‘ Su_be,edi‘ng'S‘te'p. R
i Lining Placement in .’.SUGeedin'g Step N

. . o £
o o qQ
. .

-Figure -3. 5 Unsupported ‘Length Between Liner.and Face.



57

- .,

Aq sasdreuy yjzim mﬂmmdmcﬂ JuswaTd 83TUTd Tauunl paulTun ‘m‘o uostaedwed.9*¢ wu:m...m,.m

‘.\«1\\ O\X Py

00°S 0S'€ - p0°2 . 0s'0 . 00°l- 05 2-

T 1 T T T T T T o
‘ c
i ) a
. .O
! 4 -
Ny
- y
. o
- (zg6L) Yousng % jeupd 1 &
‘Y34 Ol}BWASIXY v v . e
- - (288))iesion 'vid d—ce e T >
PNis juasaid ‘Vi4e—=a . ,wO*
i AN3937 4 ° a
, P i m bed
. i -
i o
4 i st
i I
% ‘ ¢ b °
. 1 1 1 1 1 1 i | i A. 1 1 —f | i

“518Y30°



58

~ q

't
1
-\
\

",

~c# 12d17 303 ‘sasdyieuy uRwEwaw ajtutryg Eouu ejeq wo:omuw\,cou.shm ,Mun.mm.wu

9AUOD -

(W x
82 v 02 9l 21 8 ! 0 V- 8@ 21
— T T T T T T T T T T
i ¥Z -
| I i
i ) )/ o
. o | %
- - o n - - R - 4 o m -
i GZ'0="1 ’ ; yae ; p .
. // . PN |
- - E- -
06£0="1 ; g S
- D mN.,uwH = . | .
| — ~ Ly d . . .)

nommF141 . Y ] @ T .

paujun - ‘ o .
- od9 Ol = 3°
T 18 off dour -

i L I 1 Lt ! 1 ! 1 L 1 1 L ]

, &
» :
. ~ﬁ l& .

\

17

(ww) ‘uam

g
N



‘€4 19Ul 103 ‘sasdleuy JUBWATH S3ITUTJ WOIJ S9aIn) uocmmwwgoo payjoows g8°¢ .uu:mﬁm

82 vz 21 Y B L S 1
T T : Y — : :
- i
o
L “ - Po)
: 3
pgz0=" @
| ©5z'0="1 | 8
. - 4 2
0 gz 0=P | 3
o gz=P 1 3
0gs1=P . =
paulun )
- . ST T
- . . m‘ | Cf deur - ]
1 ] 1 1o L S WEINESS T | 1 L
A - ...\,n
/



‘e Gz'0 = vq 103 'sasATeuy juawald 83TuUTd woij saaan) adouabisauo) payioouws £°¢ ou:mmm.
, o . o - N R o B
82 R/ 82 91 2! 8 A e S S 4 b

T T T T 1 T 1

Gf 4auin
¥# 19un

cf 48U

24 Jour

T Lf seun

o |
(wuw) s0uabisruoy 4

paulun

«o 1 1 I 4 1 i 1 ! 1 1 1 r p ! S R WA NI B 1




e | : ~asep
paurtun 103 uot13InTos 9ousabiaauo) pue s3ITNSdY JuUAWSTH a3tutd 3O, uostaedwo)d Qi€ wuamm...m.
(W) x
, 82, b2 | |
! 1
o -
L -
<
o
°
- To 8
Ll
3
| -0
- t . [ R
ey
3
- w
-~
) (zetigsubzy)y . L R
, Uuoln|og 9douabiaauo)” S B R .
- 4 pauljun 'sisAjpuy juawall AYUi4e—=a .,.,,.w.y;_ R S -
, o AN3931 R . . :
] 1 1 1 1 L1 | IO N I 1 ! 1 i
© : .




62

aaut

82

q_J03 ‘uot3ntos

/ : B
/

a

22uab134U0D pUE muazmmm_ucmawﬂm 23TUTd 3

e#

o uostaedwo) || '€ anBrd

c# Jourt vag

K}

Y
—

— e e e e e e e = e — T

(9°c+Z g+l e subl)
~uonnog aauabipauo)

02¢

ooV

23

‘;-’(uuh)yapua619§u§37'

N



- _ f/? B o , *(5L61 .Jmm.:onm:u pue autyuey woly

/’\

), vmﬂﬁ@ozv mﬁm::.m.c« u:wswﬁm wu::.m uﬁﬁmmﬁm O3SETH weaJ mw>uDU mocmmuw>cou N—.\m mu:mﬂm

- o .. ’g 3 ” .O\x - ... ‘ | N K .
- 09 0§ 0y 0 - 072 -
. " T T T | L AR S T T . .
. 4.  wQg=o0b." .
- - . N “ ] . ] \
1o W GOg - =.§SaUMdO}
. o .r . .. . . . ) - ) mP-O “ AA. ‘.
, . bdO 8¢l = 37
- - . se1j4adoiad J4aul
w ‘ .. . . ,. . . ..: o W - ’ @)
~N S
N, : S
- 4 o -
’ e 3.
_ o ) @
. - - o . * 6
:
¢ . 3 s 2
. . % m
1 8 @ .. 1 . L
S P
u § : 1 L 3
. . h IM\ﬁo
;v Al . [
i 4 o be - .
© ; '
. ”I 7 . H ﬂ - L.....\ - .
. ) . £ 1 |
. T, . —— < —MX\ S L. .
b . . \. ... N o&.ﬁ w vn = m . . - o . W, 3
v mw_tmaoi nc:ogo e I o o o ,. |
t 1 1 L 1 1 " N L, 1. L ) L . "
. - . . ’ '
) - ~ * . , S
- - } ~ \ R o " [



6

v - . . . 5

‘(€861 ‘3a9stey 1933e) sisdTeuy JudwdTg 23ITUT4 J-t wWoaj $34IN) wo:umu0>:ou €1°¢ @anbra

:

() x .
S*'Le 0°0c¢ G2t 0°S . e
T T T T T T T T T ‘_ T .
) ® _ a ‘ !
e - N — ‘
-~ _ * ’
P S I )
L . ~ A )
\ - W 0'g = O 1 . 1 .
w ¢'0.= 3} I - S
- €0 = [ 2 =)
0d9 0'1C = 3 5 3
L 'sal}sadoid Jauln | a
w
X @ ] ™. O
i paui 135 o
3
e | - /w.\
- pawln ‘ ” 48 .
e ) ’ | — -—
cp =4 L
a D49 90 = 3 [ IS -
'sa1}48doud punouds _ , o
1 IR 1 1 | _




Rock Arch

N AN N AN AN

%

*o ci...-x*‘ - - -
N .

4

AN IO\

ihl

"

3 _Figuref3214'Sppri;iﬁgaAEéh;Generatéd in the Rock Mass.

- o . R .

65



66

‘uotrjeaedXd TauUUN] s....wz ku.mmuowmx‘ 9i1nssaid wuoaasm. u_u:.mawwm:,um_ GlL*¢€ wuam«,h

1

_ S

G




.67

"€# 19Ul 103 ‘stsd1euv juswalg 93TUTI WOl Banss

;

a

12

R E| mnmcmq,uc@.ﬁwﬁusvm 9] _..n.....,__

om:..mm.m,.;. A

& ,.O\x \ B
0s* sL- P
_ : - --08* ﬁl.. -
i o
_ o
i o
L ] e
L o
o 'y
I S
o
| o
b= .0.
@ .
] o
ﬁ 18
.| e
. , ogrt=Pr—un T
L 0 WN..—n..u.._.ql.lc o
D SL0=ple—o o 5.
i 062 0="1a—as o
-2, LAN3931 i
. u . .
i 1 L L L L 1 E .0 ’
| -

ce




68

. - i .» , .ﬂ . al .».,_ E
' oL : T . I R
+ " :tuol3inyTos aouabiaaud) IYJ pue ‘gF IaulT 103 . ..
sisdTeuy juswald ¥3TUTJ wolj S3iInssaiad bururg juateanby jo uostaedwo) ()¢ sanbrg
N \\M ) ) .. ...v ' N : .. P'l.w 0. )
L A v ) o/% . r
. a,| o , . e i . o . .k.
0S¥ SL'E "pre 7 s2re 051 . SL'o 00°0 SL°0- 0§ 1-
T T T —r T T T 2| - | pre— T T T T .M P o
: e
. . 4 °
. ﬂ . N -
_— ()7'd"0 + ((¥)0)°d =—. 1z . -
. 3 ’ .._,. . L ot
b o . os
. N 13
| . -
1 T
| 5"
4 s T
) | 0 . l.vdt
_ ! " ‘S
- _ - , B .,ﬁv °
............... [ . 8 18 -
@ . R v ‘ d
» ’ ‘ — ) f I
| : o
™ . i, ) o
= B o ] g
. S-1 .
"94nssalg bBu juspAINby « ". " ' - v
‘uonnjos 22uabiaAuo) «._a — [ 'D. GZ°0 .H~u.._ o
- | . Ul— > 0 nyln.
‘sisApuy Juawa(3 sy ,da---m [ dd 0 = m ;
aN3937 | Cf Jour] T
1 i n L 1 1 1 L 1 A L 1 i i 1 1 i ._. Lo ¥ e.
- o : - -~
o
-~ . L4 : . <
- . " ks. .




69

0.225
T

0150 F

0.075

e

LEGEND

Liner Properties:

= 0.15
= 625 mm
=50m
Ground Properties:
E = 050
‘v = 0.40

80——&E = 60 GPa .
o———oF = 30 GPa B
a——4fF = 10 GPa* '
+—+E = 5 GRa
»—XE = 25 GPa .
v
t

]o.doo |

%o

X

 from Finite Elemerit Analyses vs Normalized Suppp

o .

i,

ROy "

«

o

.. Figurfe 3.18 Normalized Pracliner Equivalent Lining Pressure '~ “.,



70

~ ' g4 sur1 103 ‘uorinios 3ouabiaauo) e
.. . S v - ’ . . - B » . .m.n.. L
pue sasdfeuy 3uaWATZ-83TuTd WOIJ $8AIND 2dudbi1daucd jo uosiiedwod 1€ anbra o

ve

‘

t

.

GZ'0 = 1

szl.= M

"uonynjog: asusbioauc) — — L I .
sisA|puy juaws|3 ayui4 : ST " ..o&@.,o.ﬁ.. l.,hm... . T S
i Yy aN393T . -, T e mﬂ%o.f_mcﬁ. e o

R U SR L1 ! L&y oy Ceo oy S

1
00V

. . . A . - . o S IR
: : . P i E

s



Q.

o
. R .
A
]
o
3] -
3
b e
o
o n
o‘ -
\ ™ .
& ,
o | Equilibrium
> o Points
LA -
1 - —
(=)
4
o~
o
' .
& - . N
& ’ N
i C/Cy o
o 1 —L —>
i .0
O p—
]
o .
; face
o N A
il ——— === == =Xy
3 - 2 )
1 ) sy
o | ¥
p v - . \\ e
b o
) s
~N [ ‘
xX . -
. N
{
f‘ v"'
o ' ) g . ) ‘. .’ -
;e - 4 New - |Traditional S,
- B . S > 2. . .
R _ Solution RSS Unlined
: L « -
. ‘ . .
r3 (=] . O
N A o N )
-+ R . z . N il R
| . v‘» S )
‘- .
e °. *' .
4 N . .

Convergence Curves, for New and Traditional .Solutions.

C: 4 - : \ B .

v

71

SN et T P 4 TR U
- Figure 3;ZO?CoqyergéncéjCOnfipement,Method?Diagram with

04"



.
- : //;
- .

4. APPLICATION OF CONVERGENCE SOLUTION TO LABORATORY TESTS

4.1 Introduction

- There are a'variety of different ways to present

convergence data measured in tunneling projects. The method

of data presentatlon that 1s best sulted ‘to a partlcular

s
L

prOJect depends on the _purpose of the tunnel mOQ}torlng
program. 'If safety monitoring was the only concern, the data
k3
o . ' '
‘yould be presented 1in-.a défferent manner than if the data

~

" were to be used as input to the Conveggence Solution for the
o . o .
observational design_approach. For this latter purpose, it
is desirabledto present the data in avmanner thatﬁsimblifies
the task of fitting the solution to the datat It is proposed
in this-chapter that convergence rates} normalized to the
maxinum rate, be plotted against time. This format enables a
ot wsetVOf independentrparametersﬁthat describe the Convergence'
Solution to be determlned from the data. The benefit of this
metﬂod .of data presentatlon is demonstrated using data from )

s

a tunnel excavatlon.51mulat10n test, conducted in the

laporatory N : 3L<</ ,',f_,,‘n S

- . . . . - o
N

4. 2 Descrxptzon of Laboratory Test1ng

f A series of laborator ,ests were conducted at". the_A

'ﬁ\ﬁUnlver51ty of Alberta (Ka1ser et al., 1983a) to 51mulate.‘

Jf tunnellng in a weak rock mass. Tunnel excavat1on was -
symulated by dr1lllng a hole through a block of coal wh1le

": it was under pressure.,Each block of coal was 1nstrumented
’ / . : ] DTN -
. - : »7.2.,.' ) ) . '. ‘:',. ‘ . L ’ v ) - ° R
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«anto the hole after excavat1on was completed to measureftheff_

actual convergence. Unfortunately, thlS convergence

“gfof convergence that occurs near the tunnel facer but only

& | ' .73
. ' R A :
to monitor tHe deformation of the coal in response to the

excavation.
The coal samples wer€ taken from the Highvale mine,
L 4

approximately 75 kilometers west of Edmenton. Each sample

was cut to the size: 62 cm x 62 cm x 21 cm. The two samples

- > - ‘.
that are considered in this study contained non-linear joint

sets trending at 45 degrees to the axis of the principal

stresses. The joint spacing ranged from about 5 to 20 mm.
' LS R

The coal samples were mounted in { large testing f me

that applied a.pressure of 12.5 MPa on the sides~?f the '

" ~

. - ¢ .
sample. The topfand bottom of each sample were loaded in
R ‘ . k - X o .
such a manner that no movement occurred., This created a

condition of plane strain with no strain along the axis of.

the tunnel.aDiamond bit core barrels of varying d}aheter

the center of -each sample. Thls 51mulated the excavation of

an unsupported tunnel

fhe po 1t10ns of the 1nstruments in Sample MC- 6 are

shown 1n F1g 4.1, Three concentrlc rlngs of. extensometers

{.

Lare 1nd1cated in the flgure by RJ, R2, and R3 Average _5 o

. M v
- \ B

were uséd to'driil holes, or overcore existing holes through'

‘rad1a1 strains were derlved from the relatlve dlsplacements‘

of anchor p01nts 35 mm apart measured by LVDTs connected te

each extensometer. A mult1d1rect1onal gauge was 1nserta*

4 Lot i /;.‘

1
) t '

]

A

'measurement does not 1nclude the t1me 1ndependent componént

K3

Lo

— ‘b?"_‘_./‘n‘/‘

‘.

Iy
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E .
ameasures the time-dependent convergence that occurs after

the excavation is complete. Thus, only the radial strains:

measured;hy the extensometers can be used in this'anaIYSis,
K as théy are thefonly measurements that tnolude both
‘g-lig.g‘e.—_independent and time-dependent behavi‘or.l |
L ;.L,The e;cavation simulation‘on Sample ﬁC-S that-has‘heen

-

i ' . ] . . ] . . . ' *
énalyzed here is Test MC-6. 02. In this test, a 108 -mm - [
. dlameter hole was drllled through the center of the sample,

"indicated by D1 in Flg 4.1, at an average rate of i2.5
-: i mm/min. The fleld stress of 12.5 MPa was apﬁiled to the
ﬁ»; sampIe 2.8 days prlor-tO'drqll1ng; This allowed the.
hydrostatlc creep caused by this load to d1551pate to a-
suff1c1ent1y how level- tiat it would not 1nterfere with the
. response of the coal to the excavation. The-radlal strains
.r~ measured durlng the excavatlon by the gauges in Rlngs Rl and -
R2 are plotted in Flgures 4,2 and 4.3 (Kaiser et al.,.1982) 'h
agalnst time. Rlng R1 represented by the SOlld 11nes :s at .'%_
.. a depth of 81.mm (Statlon 81) and ang-RZ-.lnd1cated by the'

dashed 11nes 15 at a depth of 106_ ‘mm (Statlon 106) Thel

'-tf WIdeﬂlng of thls hqle fo” the dxameter D2 shown an Fig@"4:
“: ~ L ’ .

was not analyzedrln thlS study. ?_,“' _ ¥
The second test that has been analyz;d 1n thlS study 1s e
Testgﬁc 7, 13 on Sample MC- 7.-The layout of the .

3 ;“,* . | ,
' ' 1nstrumentation 1n th1s sample 1s shown in Fug. 4.4, ~Thev4

markers 1nd1cate the p051t10n of the extensometers at each
e .
o of the three measurlng locatlons that are analyzed 1n thas

o N Lo . v‘ .
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considerably more complex than that of MC-6.02. An initial

™

hole of 42 mm diameter was drilled in a similar. manner to
the excavation in MC-6.02. %%15 hole was subsequently
widened to a 108 mm diameter, and then to a 152 mm diameter.
The ppsitions of the three holes in.the sample are shown in

Fig 4.4. Only Test MC-7. 13,'during the final uidening, is
p
~;analyzed in this study, due to several problems encountered
/ ser
during the first twoaexcavatlons; The flrst excavatlon of 42

mm diameter produced a poor response in the’ extensometers *

probably due to the relat1ve1y large dlstance between thlS
:hole and the extensometers. _The w1den1ng ta 108 mm d§§ |
plagued with many 'stoppages in excavat1on due to
‘1nterrupt10ns in Lhe power supply This produced - .

fluctuatlons in the radial strain with time that make it

’

d1ﬁf1cult to apply ‘the Convergence Solutlon.

The f1na1 w1den1ng of the opening, to a 152 mm dlameter
1Y .
(MC-7. 13) was dr1lled contlnuously at the rate of 1.22

mm/mln, an order. of magn1tude lower than in Test MC 6.02.

“Thls took place after the sample had been allowed to- creep

: ~for .2 days under a pressure of 12 5 MPa’ w1th the 108 ‘mm
RS & ‘ :
' dlameter hole 1@ 1t. The time- dependent response of the

'r'sample under load was recorded for 3. 5 days after the flnal f

’ A A\\\'—f’

'wldenmhg ‘was completed Thé response of four extensometers QV.”

L@

: to the excavatlon for the flrst 3 5 hours 1s shown 1n o

(13

Flg 4. 5 for Statlon 56 The data from Statlons 81, and 106'
are glven ‘ih Append1x F. | 'f\ff o

e e
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o

The response of ‘the coal to the excavatlon in both of

.owts

'

the tests descrxbed above was- reqorded’only by extensometers
b S

that measured rad1a1 strain at varying dlstances to the ir
B

tunnel wall. However the Convergence SOlUthﬂ proposed in

Chapter 3 applies to the convergence of the actual tunnel

»

walls. It is necessary therefore, to relate radial §train

w1th1n the - rock mass to tunnel wall”convergence. The radial

i

, -

G = Shearimodulus},b

The convergence of the tunnel walls for tHe

condltlons 1s glven by: f._ ”'hf'" . e
5 - ‘ "F'v'_. #
‘- o 4 '
y ;poa{ -~ B > BATENN el L G o o

A comparlson of Eqns 4 1 and 4 2 shows that radaal

1

straln 1n the I

walls'by a constant factor, ”a2 In both tests,_MC 6 02 and

-
B

strain that ogcurs in an elastic rock mass (w1th K =1.0) in €§
respense- to tumnel excavation is giyen{by: S
; . A
P Ll e - Wy
o L
p,(3)° : | :
‘r T T 2G o B <. .E?Q@?*i _
' SE Y-S . - e G,
, v ) ’ \“: '~. . 3 E . ')- . L : N .
. whére: r = distance from cent er of tunnel to point of =~ '7
! ' ! T e S . ) N ‘ . P ’
measurement; . Lo s e
Py = inital uniferm ground stress (KO=1;0); and

,ck mass dlffers from the convergence of the,v?‘"”




~ e

are equ1dlstant from the center of the tunnel. Thus, the

radial strains measured in these test$ can be converted to

N

equivalent convergence measurements by;dividdng.them by a

. i 2r
provided that tae behavior is elastic. There was not a

significant amount of nonrecoverable strains observed for
either of these tests. In the absence of more detailed

information about the radial strain tc convergence ratio,

—97 was assumed; Kaiser et al. (1982) made the same
2r ’

assumptlon : -

It has been demonstrated by Kaiser et al. (1982) that

H

-

there is-one 1mportant di fference between rad1a1 strains and

tunne1 wall conVefgence Radial strains are sen51t1ve to

“

local processes that are occur1ng within the rock mass and

‘. are extremely varlable. In contrast convergence

measurements fail to‘detect.localized processes butvreflect
,the'giobal resoonsevof the rock mass. Convergence’then,
_nseems‘to.tefleCt'an a&erage-of‘al} of the'localised

’ processes surroundang a tunnel -For. this reason,'it was

_assumed that an average of the radlal stralns at a ngen

cor

’.;measnrlég,sectlon would hest reflect tpe convergence-
’:behav1ot.v'-d’ T . - | |

_: The-avefaged fadial strain curves are given in Figures
4. 6 and 4.7 for Tests MC- 6 02 and MC~- 7 3,'reSpectively ‘The

;sanaly51s in- thlS chapter is based on the curves presentedfln

*:these two flgures. The valldlty of tak1ng ave:aged radlal

“straln mult1p11ed by the ratlo —35 as . equ1valent to
o Lo 2F
,convergence w1ll be examlned 1n the followxng sectlon.

%

)
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.3 Logic of Data Presentation
A format for the presentation of the laboratory results

is proposed here that will aid in the fhterpretation of the

yl A

results with the Convergence Solution.
’

Convergence measurements may either be plotted with
respect to time, or distance to the,?ace. When the
excavation rate is constant, these two plots will be
ldentical. However,‘if there are interruptions in
excavation, the convergence vs distance plot would become
discontinuous if the material exhibits time-dependent
convergence. This would yield infinite convergence rates,
and would be difficult to analyze. Thus, the laboratory
results will be plottedlwith respect to time to give
continuous plots.

It is desirable to normalize the convergence curves to
make them independent of the magnitude‘of convergence. The
main assumption that the Convergence Solution is based on,
is that the behav1or of the rock mass can be characterlzed
by the shape of the convergence curve, Both the parameter X,
which 1nd1cates the amount of y1e1d1ng, and ‘the parameter T,

-

which, characterizes the time-dependent behavior,'arﬁk
-

determined by the shape of the convergence curve. Thls was
demonstrated in Figures 2.4 and 2.5. It would be

advantageous, therefore, to plot convergence?such that the

shapes of various curves could be compared 1ndependent of
d1fferences in magnltude. Th1s was accompllshed in Flgures

. 2.3 to 2 5 where the convergence curves were normallzed to

. %

. N
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the ul@mga&e cohvergence. Guenot et al. (1985) and Sulem
(1983) also present their convergence curves 1n tgls manner .
Unfortunately, in the;observational design method,
observations most be interpreted before the ultimate
convergence is known.  Thus, normalizing in this manner is
besr suited to a back analysis, where the ultimate
convergence 1s known. However, the ultimate convergence is
the only‘appropriate quantity to normalize the convergence,
to achieve independence from magnitude.

This problem can be circumvented by plotting -~ oo
convergence rates, instead‘of actual convergence, end
normalizing to the maximum rate. The maximum converdence‘
rate is.a convenient quantity to normalize’tbe rate to, |
because it occurs at or near the face, and“hence can always
be observed eerly‘in a monitoring program. Thus, the shape
of the convergence rate cnrves can be compared for
measurenents wifh,different magnitudes of convergence rate.
This also provides independence from the magnitude of- |
convergence, as the maximum convergence and the maximum .
convergence rate are. proportional. Th1s will be demonstrated
in Section 4 4 with the- Convergence Solutlon. F1gure 4. 8
_{shows'the normalized strain rate curves ‘that correspond to "
'fihe two radial strain curves shown in‘?ig. 4.6, Thls shows

'that the shape of two curves that have dlfferent magnltudes
‘ofvconvergence can be read1ly compared when presented;1n
”‘this nanner. it is‘necessary'to plot ;&5 logarithm-of sgrain“-

'-rate‘to preséfit the enormous range of data on one graph.
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It was assumed earlier that the averdged radial strain

v

shown in Figures 4.6 and 4.7 differed from equivalent tunnel

wall convergence by the constant factor, -—7 The validity.
. - ‘ or |
of this assumptlon can be exam1ned in Flg 4.0, wher\ the

averaged radial strain rate is Compared to the tunnel wall
c0nvergence rate for Test MC-6.02, Station 81. As mentidnedih
earlter, the tunneldwall convergence measurements did not
commence until sometime after dril)ing was complete, which
corresponds to =100 min'in Fig. 4.9. Ac&ording. to the above
‘ assumption, the convergenci rate should differ from the
radial strain rate by the amount indicated in the figure.
The radial strain rate 'i1s slightly higher than the assumed
rate based onvthe convergenCe measuremeénts (indicated by the
.dashed line), but the slope and‘shape of the two curves are
similar. Thus, the averaoed radial strains, adjusted with
tne factor : 2,‘give a»reasonable apifoéimation of tunnel
wall convergence. These convergence/measurements will also

be compared to- the Convergen/e/Solutlon in Section 4 5.

In summary, “when gonvgrgence measurements are presented

on a normalized vergence rate versus time dlagram, a

e A

-

continuou - nrve.is'obtained that is independent of the

' 1tude ofrconvergence. This,facilitates a comparison of
‘the shapes of various . curves, whlch is de51rable for the |
appl1cat1on of the Convergence Solutlon to field data

aL,

1ngerpretatlon. It.is now necessary to alter the Convergence

i’*l;" )

Solutlon to flt data presented in the normalized convergence

. rate format/ S T
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4.4 Adaptation of Convergence Solution

The CQnQergehce Solution for an unsupported tuSnel
.consistségf Equations 3.1 and;3;2, whigh'give cq?vergence as
a fungtionfof x and t. There are‘thfee‘steps involved in
coﬁverting these equations ffom'pfedicfing convérgence to
predicting normalized éohvergence rate.

First, @Sey must be expregsedvas a function-bf‘time
aione. This is accomplished by SUbstitQting vt (adﬁahdé;
.velocity*time) for k.*If the excavation does not‘pfooqed‘
with constant velecity, it mdst:be divided into-a,sefiés of

- ; .

.constant velocity interyalsﬁ In this case, the ,following

Substiﬁntion would be réquired:

X = x oy Yntn , . . uggn-4.3
where: v .= velocity of nth constant veiogity intervals
th = time from the beginning of the nth constant

~velocity interval;

.

. _ n-1
X = Z vit1; v
n-1 i=1 -~
J ‘ [N ' C0
_vi = velocity of‘ithﬁconStant<yelocityfinterval; and
v 'duration'ofvthe.ith interval. . -

r
L]

-\\\\\;;Eiii;gives the position of the face in the'nth constant”

. velocity dinterval as a function of time.



Second, these equatlons must be converted from
’ ¢

cOnﬁergence to convergence ratqs ThlS 1s accompllshed by

. : “
taking.the first derivative with respect to time, as

follows: - ' . : " ' -

e Pre-face equation:

fi ';'dC(t) _ ".‘
Clt) oiav: -l -,Q,cpf(t)cx -+ 0, be AC (t t)

+

Q,cpf(t)Aéz(t) T ‘ . EQn 4.4

° Posfifece equatfon:

Q:C1(t)C, . + Q. (£)AC(t) .

),
‘ + 0,C, (£)AC, (t) + Q,AC,(t) - ~ Egn

T 1. .'1.
1152

.-(x+vt) g
[ i Shbaias B

where; Cpf(t) = I

(b) = le2v [ 1 12-2




',Substituting t=t, into Egn 4.5 yieldé:

14
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. f
i
I
ci(t) = 2 4 1°; and
,(x+vt)~xf
1 +/{. % ']
. 0.3 1 1.3
C.(t) = —==[ ]
: T .t
T = .
. : o J

The final $tep is to normalize both equations to the

maximum convergence ratex which occurs.-at the face (Egn 4.5)

.. ~ ‘ ~
: ’ — 2Q2V 2Q2V 4 y - .
Crax = 25" O+ B A1 @i (e Ban 4
f }7 .
The magnitude can be factored ohé of this equation as
\ o K
follows: '
~. -f . 2Q2v | 2Q2V * _" - '*. . A' .',‘ .
Chnax _,Cxw[“ X X 5 C%(Ff)'+ Q2 Cz(tf?]. :
= me‘* [N] _— o : : - Egn 4.va;
‘ . F
) - B . »
where: A*ﬁgﬂcg ;. and. 3
o TRe . L o :
. : . E ..2~ 2 :‘V x . :,‘ iR o . L
It o . N = LQ\Q;{Y + Q;{ -NVAU Cz(tf) S+ Q1A Cz(tf)] . - : »'-

,Normalizingﬁeqbations 4.4 and 4.5 to Eqn'4.? Yiéid$=¥f



e Pre-face equation:

B
Clt)  _ Qif . ¥
T N—[cp (v) + Cpf(t_)A cyzﬂ(t) * Cpf(t)A Co(t)]
ma x ' o
Eqn 4.8
® Post-face equation
o . S—[c (£) + € (t)ACo(t) + C\(£)a%C, ()
Cax : / .
Qip*c o 1
+ Q}A C.(t)] / . Egn 4.9

It is important to te that Egns 4.8 and 4.9 are
independent of the magnitude of. the ultimate convergence
(C,.) and the maximum/convergence rate, because these two
guantities are proportional, as can be seen in Egn 4.7./ The
number of paramebers_in'the solution has now been redpced
‘from fogr to three: X, T, and A* Although these equatlons
‘have beeri normalized to émax’ the convergence rate at
.anytime could have been. used, and it would still be
tindependent of magnitude. This is an important result, as it
introduces a degree of flex1b111ty to the 1nterpretatlon of
.convergence measurements. It 1s no longer necessary to
prosess_the entlre_convergence curve to use the Convergence
Solution, If the convergence measurements do not commence
- until a dlstance after_the‘face, the data- can be normalized
to the initial rate}measured and the correspondlng time can

~ be 1nput 1nto Egn 4.9. “This was oﬂe of the main factors that

ul1m1ted-the application of_the“orlglnal eqpetlon by Guenot
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et al. (1985), because’ the convergence right at the face is
often difficult to obtain in actunneling environment.

The form of the Convergence Solution that includes the
- s

effect of a tunnel eupport_(Eqns‘3.8, 3.9 and 3711) may be
cbnverted to“éive normalized‘converoence ratee in a .manner
srm1lar to that presented here. The derxvat1on is summarized
in Appendix G ThlS form of the Convergence Solut1on is not
rappllcable to the .model test, which simulates an unsupported
tunnel. The altered form of these equations,. expre351ng
normalized»convergence rate for a supported tunnel, are not

comg}etely independent of magnitude. The last equation, that

gives convergence‘after the support is installed, requires

an eétamace of Cmm.‘ -

The computer program, CONRATE, in addition to

calculating convergence, also calculates- the normalized

convergente rate curves..A listing of this program is given

%

in Appendlx C, together w1th a descrlptlon of its

capabllltles and an example run.
4.5 Fitting Tne ConvergenCef$olution to Laboratory Results

4. 5 1 Example Fit e = “ '.'f
. The process of f1tt1ng the Convergence Solut1on to the";
.data w111 be demonstrated Wlth the measurements from test
;MC-6 02, Statxon 81 1t waS'necessary to make some .
'assumptlons regardxng the process1ng and 1nterpretatlon of

the data as out11ned b?#etg#

My



The extensometers did not seem to accurately portray

the response of the coal in the latter portion of the test,

where the stfains are very small. Instead of recording a
continuous i crease‘in'strain, they recorded discrete-jnmps
in strain, f lloned by periods of no movement at all. ThéS'

.

resulted in wild flqctuations in the strain rate curve,
making it diffioult to analyze. Thisris illustrated. in the
normalized cOn;érgence rate versus time diagram in |
F%g. 4.16, where the actual data is representeo’by’the
dashed line. . It‘wae aesumed'that‘the true strain'behavior is’
continuous‘xso a smoothing routine has been’ ‘used to average
out these fluCtuatlons in the straln rates. Thls smooth1ng
routine ellmlnates all the strain rateS'of_zero.through'an'
averaging brocess that has been proposed by Cruden {1871),

An example of data that has been smoothed - by thlS process.ls'>
.shown in Fagure 4. O where it 1s compared to the actual

- ‘data. ThlS ed1m1nates the fluctuatlons, and glves a curve
that is more representat1ve of the true straln behav1or
Both of the statlons in MC-6. 02 have been smoothed Test.f
MC-7.13 dld not requlre smoothlng - ‘? L
The other assumptlon that has been employed pertalns to‘a

the . p051t10n of the advanc1ng facer Fzgure 4 10 shows that-

the maxzmum convergence rate occurs before the face paSSes

'fthe statlonﬁ(lndlcated by the solld vertlcal l1ne)v Th1s

,,",

dlffers from the Convergence Solutlon, wglch predlo;s that

nthe max1mum§¢ate c01nc1des w1th the pa551ng of the ace.

e

'Whlle 1n a real excavathn the max1mum convergence rate

4 : i _. . . | TN . . \
. . . \ . .
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v
.

couldfoccur ahead of the' face due’ to yielding ahead of the

~face, the cause of thiS'apparent discrepancy arises from the
‘ : o '

~limitations of the testing facility. The bottom'boundary of

the sample was prepared in a manner that produces very low

[

shear stresses In contrast, a real tunnel excavated in a

contlnuous rock mass would not posess a low shear Stress

2

boundary in a plane perpendlcular to the tunnel axis.
Consequently, the rock—ahead of the tunnel face in the model -

test prov1des less support than it would in a cont1nuous'
. .

roek“mass. Th1s skews the“convergence curve, caus;ng the

coaljto {espond,as if’ tﬂ% face was ahead of its actual
posltion \}herefore,iin‘the-analysls of these curvesfthe
.effect1ve p051t10n of the face w1ll ‘be taken at the‘locatlon
Vof the maxlmum,rate, ahead of the actual face. This 1nvo}ves
an element/of.jUdgement as the max1mum rate is sometimes‘ |
'poorly defined ergh, Flgure 4 8. The:effective_position otp
~dthe face that has been adopted for MC- 6 02 Station-eljls
1nd1cated in Flg .10 by”the vertlcal dashed 1lne.fz ‘

-

7 The process of f1tt1ng the Convergence Solutlon to the

‘o

a'straln rate data con51sts of determ1n1ng the values of the

three parameters that fit the data‘the best. Ae will be~
tﬁdemonstrated in the followlng, 1t ‘is actually p0551b1e to

_obtaln 1ndependent estlmates of ‘the parameters, because each

' parameter 1nf1uences a dlfferent port1on of the convergence

G.
1 a

'rate curve. Th1s wlll be demonstrated be}ow in an outllne of
'the step by step f1tt1ng procedure. All oﬁ the Conwergence

Solutlon curves for each of the cases below have" been_

/.
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generated using the computer program CONRATE (Appendix Cc).

First, determine the value of X that best describes the
initial portion—of'the‘curve. The curvesﬁproaucea by a range
ih values of X, together with rea@bnable estimates of A* and
T, are* compared to theudata_in,Fig. 4.11. In this figure,
X=0.03 provides the best fit.of>the cases shown. The fit of
the portion of the curve before the face (Zone'l)'is
.neglected for reasons that will be explained in the next
section. Time is portrayed on an arithmetic scale in this
figure .to empha51ze the near face behavior. The initial

’ _ - :

nportlon of the curve, that is in the vicinity of the face,
is dominated by the time-independent response of the rock.
The paraneter X has a dominant influence on this portion of
the curve'because it reflects the time- 1ndependent behavior

of the rock IR contrast T and A* have virtually no

influence'over this portlon'of the curve. This is

demonstrated in Figures‘4.12 and 4.13, /where a range of

values for T and A*iwere used. Thus, a value of 0. 03 has

and A ‘ based.on

. been determined for X, independentvof
f1tt1ng the initial portlon of the cu ve.
‘The next step 1s to determlne the value of T that best

"descrlbes the shape of the f1nal portion of the curve. The

"parameter T alone governs the shape of thzs pog ‘on'of~thea'

curve, because it 1s beyond the 1nfluence ofgﬂ e face, where

s

only t1me degenaent convergence occurs. T 1s determlned by
plott1ng the curVes produced by a xange 1n T together w1th

_the value of x found in the prev1ous step, and a reasongble

. . . . e e . i . . . ‘ N
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estimate of A . These curves are shown in Fig. 4.72. A ranhge

in T from 700 to 1000 best reflects the shape of the final
portion of the curve. Zone II is negiected for reasons that
will be explained later. A

The final step is to_determine the Qalue-of a*. This
.parameter contrOISMhhe'vertical position of the final
portion‘of the curve. Figure 4.13 shows the curves produced .
by the values of X and .T determined above, andya,range in
A*.>A value of A* = 0.5 appears to giye the best fit.¢ntf the.
cases shonn. | | | '

The final fit that is produced by the set of parameters
determlned above, is compared to the data*ln F1g 4.14. The'

s

semi-logarithmic plot ‘Fig. 4.14A, 1is 1ncluded to better'

portray the 1n1t1a1 portlon of the curve.

4.5.2 Discussion of Example Fit.
The Convergence Solutlon prov1des a. close f1t to the - .
strain rate data, shown in Flg' 4] 14 w1th‘the‘except10n of

two dlscrepanc1es. The SOlUthﬂ does not accurately pred1ct

» v

the behav1or of the &ample jUSt ahead of the effectwe face
'(Zone I, Fig. 4. 14A) and 1mmed1ately after the drill exlts

M*the sample (Zone I1). These two d1s€bepanc1es are caused by
certaln aspects of the 1aboratory tests that areloutllned
hseparat;iy below..‘,- g » |

The Convergence Solutlon predlcts a sharp p01nt of

1nf1ect10n as the face passes the measurlng sectlon (Zome

-) The extensometers however, recorded a more gradual “(’

. - N 1.
e -
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~rounded peak at the location of the effectlve face The
major cause of thxs rounded peak probably arises from a’
ba51c.d1fference between’ rad1a1 straln and tunnel wall

cchvergence; radial strain is measured a distance away ‘from
; s 7 ' ) o ’ ) '
, the tunnel wall, whereas the convergmnce is measured rtjight
4 . . . A . K

at the wall. The distance between the extensometers and the
@ S BN
tunnel wall likely moderates‘the abruptness of-the stress

change, assoqz%ted w1th the passing of the face. A true
convergence measurement, right at the tunnel wall would
' . . V , ' . B
undoubtedly reqord a much,sharper peak In addltlon, this

rounded’ peak could also be caused by y1eld1ng in the‘- o
- o, ] » , N
v1c1n1ty of tHe-face .in responée\to the stress ' *

- @ [N

concehtratloqa that occur #here. Thls would cause a more
gradual tran51tlon from the 1nt%ct cqre of und1sturbed rock

ahead of the face, tozthe excavated cavrtyoafter the face
i ' © . —

paSses. o . : A Co e
. ) - n»'» ;
The dlscrepancy in Zone II reveals a llmltatlon of th&
},ay’

Convergence SolUtlon that was discussed in Chap%en 2. It was

8

£

o

Stated there that the Convergence Solut1on was derlved ﬁor

L

tunnels excava{ed at a constant rate. The time- dependenna

4 v

LY

component, C, (t) w%s formulated on the ba51s of the

' continuous stress change that resglts from a constant.\
\ N L

*excavatlon Veloc1ty’ When ‘the- veloc1ty decreases, the

ey

solutlon underpredlqts the convergence rate. Conversely,

[

'when the veloc1ty ancreases, the solutlon overpredlcts the

-

conv%rgence rate. In the laboratory test the ex1t of the -

drlll 1s analogous to a sudden 1ncrease to an 1nf1n1te
- & & 2 : SR :
P TR : ~".:," + .» . s

oo
4

o 4
3 v ) -
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velocity, foliowed ny alyelocity of zero. This i1s reflected
in the Convergence Solution, shevn in Fig. 4.14, where the
.rate increases suddenly, overpredicting the measured,rate as
the drill exits the sample. The rate'then decreases_suddeniy
’after the drill exits the sample, giving an uﬁderpreéiction
of the actual rate. However, the aifference between the
solution and the measured rates in this.case is much worse
than what would ‘be observed in the.field. wheh the drill«
exits the sample, the supporting effect of the rock at'the
face vanishes_insrantanebusly.'This abrupt increase in

stress is peculiar to the test‘conditionsr and would not

'oCcur'in'the field. Any chandge in velocity in a tfea Qunnei
‘would 5?0du¢e a'deviation from the solution that would be
3

less severe than “that observed in Flg 14, In addition,

., the magn1tude of the drop in rate pred1cted by the solut17n
j}s\aCtually corrept,.even thoughllt was not reached :
 » immediately“but only after about 40 minlv ) - 4/'

N .,
T : . ) -
with varlable excavation rate, with the caution that abrupt

<0

.-changes in. convergence rate assoc1ated w1th fate changes

" Thus, the Convergence Soiutiqn can be used for tunnels

w1ll,not be reflected 1mmed1ately“1n the data.

Y
5 . L4
3 .
Ay

4.5, 3 Fit of Solut1on to Convergence MeaSurements

At the beq1nn1ng of this chapter it was assumed that
. \
the averaged radlal strain could be substltuted for tunnel

wall convergence, u51ng the factor —35. Thls was a necessary
ot 2r
,assumptlon, bBecause the convergence measurements were only

s
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commenced after tunnel excavation was complete,‘whenéﬁépthe

radial strain was measured over the entire duration of the

0
-

tests. The final check on the validity of this assumption is
whether or not the‘parameters that fit the radial straint
measurements give a good prediction of the convergence
measurements. Figure 4.15 shows the measured convergence
raﬁes compared to the ‘convergence rate curve that was fit to
the radial strain data of Test MC-6.02, Station 81, in the
preceding section. It was not possible to normalize the "
convergence measurements to the maximum convergence rate,
because 1.t wasn'f measured. Consequently, both the
Converé@nce Solution, and conver'gence measurements have been
normallzed Lo the convergence rate at t=105 min, when the
convef%énce measurements commenced. As shown in Fig. 4.15,
the Convergence Solution prediction is very close to the
actual convergénqe behavior over the region that it was

Q

measured,

4.5.4 Presentation of Curve Fitting Results

TEST MC-6.02

| The curve pfoduced by the final'fif of the Convérgence”
vSolutiohvtd the data f;oh'Station 106 isvshown in,Fng)4.16._
The choice of thé effective position of the face isgeved E
m;re ambiguous here, than with Station 81. This is‘céused by’
a distinct‘separaﬁion in tihé betwéenkthe responses of the |

‘ _ , AR

various gauges'at this station{ illustratid in Figs 4.2 and

o~
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4.3. This was prdbably caused by heterogeneities in the
sample. The result of this behavior is the two peaked
maximum rate observed in Fig. 4.16, which ie difficult to
fit with one curve.‘The effective face has been placed
between these two peaks, and the resulting fit is only
approximate. The Convergence Solution parameters that

characterize the two stations of.MC-6.02 are summarized

below:
X-{m) T (min) At
Station 81 0.03 © 700 - 1000 0.5
StatiOn 106 0.03 300 : 0.2
TEST MC-7.13

‘'The final fit of the Convergence Solutioh to each of'
the‘stations of Test.Mt-7.13 are shown in-Figures 4.17 to
4.19. The effective position of the‘face; 1nd1cated by the
dashed lihe, was placed at the max imum rate Th1s

cons1stently occured- 10 to 25 mm. ahead of the -actual -face,

-Indlcated by the solid 11ne The exceptlon to thlS is
"'Station 81, where the maximum rate occurred at the actual
'face._Thls however is a spurlous max1mum as 1t 1s caused by
"a jump 1n only one of the e1ght ‘gauges in the ring.

Therefore, the effect1ve face has been placed at the max1mum

rate that occurred before the.actual face, con51stent w1th
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the other stations.
The parameters determined in the fitting process are

summarized below:

X (m) T (min) A
Station 56 0.05 1000 0.35
Station 81 0.09 1000 0.80
Station 106 0.06 700 0.40 '

4.631nterpreta(i9n of Results

The validity of the parameters that have béen
determined by fitting the Convergence Solution to §he test
data will noQ be discussed. This will be accomplished by
relating the physicél meaning of the parameters to the”
~experimental observations. In addit?on, the results will be =
compared té two p:ojgcpé; the Fréjus tunngl, and the Las
Planas tunnel, where the oriéinal form of this approach.haé
-been applied. These were analyzed by Sulem(1983)‘with the
form of"thevconvérgence equétionvdéQeloped by Guenot et al?

Q

‘ (1985). s ‘: . ] P
1 j.
TEST MC-6.02
Ve ~ , B
" A completely consistent set of paramecers was not
obtained in this}teSt. The value of X was the same for both

stations, but ‘A* and T for Station 81 were more.thén 100



. '95
pencent greater than those for Station 106. The difference
H%tween tHese two is a result of the poor qualiiy of the
data from Station 106. The extensometers at this staticn
were 86 mm.away from the tunnel wall, compared'té 35 mm for
Station 81. This increased distance maKes the gauges less

responsive to movement. The initial part of the curve,

"“described by X, was similar to Station 81 in shape, because

the strains in this region were well within the range of the

instruments. The latter part of the &urve however, deviated -

from that of Station 81, because the straiééuwérg close to
fthe Sen§itivity of the instruments. These strains- wer€ two
ordefs of magnitude smaller than the_strains a£ Station 81.
Hence; the results from Station 81 Qill be adopted as more
dgepreéentat;ve of the actual behavigr. "\

The value of X, determined ipf the analysts is 0.03.

Panet and Guenot (1982) defined X as:

X = kR 7 ) ’ Eqn4.10

where: R Radius of plastic, or yielded zone; and

k_ = constant. e
P ) , . .

They found that kp=0.84 gave\the best fit to the range

of cases they modelled with finite element analyses. In Test

MC=6.02, there was little, of no observed yielding which
suggesté that §=a§0.054 m (no yield case). On the basis of

%

‘this‘no yiéld case, and.x=0{03, the value of kp for Test

¥
{

.

v



-

96
5 .

MC-6.02 is 0.6, which 1s lower th@ﬂ the value k=0.84
determined by Panet and Guenot (1982). This discrepancy
resafts from the limitation of the laboratory test that it
is not infiglte'in'extent,“as a rock mass 1is. When‘é tunnel
is excavated in%a rock mass the stress transfex associated
with excavation/is felt over s distance of approximately two
tunnel diameters on either side of the face. In the |

¢
1abor?fory tests however, the samples are only 1.4 and 1.9

tunnel>diameters thick for Tests MC-6.02 and MC-7.13

_ respectively. Conseqguently, all of the stress transfer must

take place within this reduced disﬁapce. This produces
. /' . A
steeper stress gradients, and hence steeper convergence
. g "
gradients. This is reflected in a lower value of kp' Thus, a

k of 0.6 will be used to interpret the laboratory results,

but kp=0.84-will be used for the Enasan Tunnel; analyzed in
N

Chapter 5. ‘ \\\\ \ | A

The value of the/parameter T foﬁnd in the analysis 1is
bn average -about SOO.'This is well within the range of 140
to 5000 found by Suiem (1983)vfor both of the tUnnels/ye
analyzed. - o - N

The vaiue of a%=0.5, determined'from this test, is‘
sigdiéicéntly,léss.than the range of .2 to‘5;6, obtained by
Sulem. A differenée of this order suggests that the coal, .
used in,fhe labdratory test dispiayed much le§$

time—depgndentnbehavior'thét either the sChiét'at the Fréju§

tunnel, or the,marlvat.the Las Planas tunnel. This is

‘un}ikely; since coal is a material that displays'signifiCAnt///\

BT
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time-dependent behavior. The major reason for this

discrepancy arises from the difference between the

convergence equation of Guenot et al. (1985) used by Sulem,

and the new Convergence Solution, presented in this study.

I3

The original eguation did not account for convergence ahead
) : x ” . ;

of the face. Thus, their value of A 1s the ratio of the

ultimate time-dependent to timevindependeht convergence that

occured after the face (A[Cx me after the face is

)

appréximately 70 percent of the total C__, but almost all of
\;r .

B

‘the ulggmate time-dependent convergence, A, occurs atfter the

ratio A* is'a smaller number. In addition, the laboratory -
test ;ecordéd‘the entire range of movement, but in a real
tunnel project, the convergence is seldom measﬁ}ed starting
right from the face. When é portion of the near face
pehavior is neglected, at increases significantly. This

increase is caused by .a proportionally larger reduction in

me than A, because the time-independent convergence occurs

near the face. Consequently, ‘the value of a* becomes .larger

i@

the further back the convergence measurements are commenced.

TRus, the range in a* found by Sulem (1985) likely"
ovérestimates the true A*, as a portion of the near face ‘.
. . . K o - . . . . g;;,e_" . . ;

a4 - .
cdnvergence was likely missed.

MC-7.13
’ ] . . - [ ; . . . . - . .
A relatively consistent set of parameters-was obtained

from-the thrée statibns.anélyzed'fEOm tQSt MC-7.13. The

o

face. Thus, when'the pre-face convergence is included, the - .

¢
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parameters X and A% from Station 81 Qere,higher than either
of tﬂevother two stations, but this difference is likely due
to local variations in ‘rock properties or the amount of
local yiglding.

The values of X determined in this test correspond to
plaétic radii predictions that are supported by the
éxperimental observations. It 1s not possible to determine
t%e exact shape, and extent of tﬁe plastic zone from the ‘
extensometers, but they do give an approximate indication of
‘the ;xtent of yielding. Figure 4.20 contains the estimated
yield zones at each of the three measuring stations of Tést
MC-7.13, based on the extensometer response. The open
circles represent the extensometers that recorded large
strains that indicafé.yiglding,of the coal. The étrain a&
the end of excavation at each of these gauges is given ié
the figure as'wellﬁfThe solid circies indicate the position
of extensometers thét did,not record any yielding. The

predictions, of R are based on kp, established in Test

., MC-6.02. The values of R given by the Cénvergence Solution

for each of the stations are: ,41) B - B
R/a
Station 56 1.1
- Station 81 2.0

Station 106 = 1.3



Although 1t 1s difficult to relate the localized
. ylelding behavior observed in this test to the uniform
annulus of yielded materiél assted‘in'the Convergence
Solution, an imporfan@ trénd has been identified\ The
station that displayed the least amount of yielding in
Fig. 4.26 (Station.56), cbrresponded.lo the lowest R; and as
the predicted value of R ;ncreased, the observed yielding

also increased. Thus, while it was not possible to validate

numerically the yield zone predictions, the relative amount =

1

of yielding between the stations was correctly ihdicagéd by

the Convergence Solution. (ij:
A cénsistent set of values of the parametef I was

obtained, that éorrespond to the range found for Test

MC-6.02, which are within the range found by Sulem (1983).

s

Even though there was a'diﬁfefeqbe in excavation rate of one
. - . o S - -

order of magnitude between these two tests, the ;ange;ih T
- was identical (e#cludang ;C~6;02, Station 106).g?his',w5 ,\\
suggests that’the‘dggghdénée of the parameter T on §51# ﬂ-
exéavatiqg;ig;ef expi%%ﬁéd in Chapter 2, is’yery‘mintf,f ;{;%7'»

'Tgﬁ_véiueg.of'A% Sbtained in this test are very\cieié v

A
S

to the value of A% found for Test MC-6.02.( Station 81 had as-

" higher value of a* than any of the other sffations, but thig .

could. be a'resuithbf the a nption oﬁithe max imum rate. The
‘choice of maximum rate, and hehce the location of the

effective face,‘qu somewhat ambiguous for thisfstption,iAn
error in selecting the maximum raté shifts the entire curve

TR ‘ e C ok
vertically up or down. This shift has a direct impact on A",

»,

[
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which reflects the vertical position of the)latter portion
of the curve. Thus, theVA* values determined at Stations 56

and 106 are likely more representative of the\true behavior.

Y

In summary, a consistent set of parameterk has been
. obtained from the application of the Convergencé Solution to
' oA

the data from two laboratory tests. These parameters
characterize the response of the coal qalthe excavation of a’
tunnel. The two tests that were analyzedhyielded remarkably

similar parameters, despite the difference in excavXtion

9

history. MC-6.02 was an initial excavation, but MC—7&13
involved the w1den1ng of an ex1st1ng tunnel. \

The 51m11ar1ty between the virgin excavation and\khe
\

tunnel widening suggests that the main dlfference betwe

‘\
\

'the response of - a’fock mass to tunnel w1den1ng versus a\
A
virgin excavation, is the magnitude of the convergence. |

\
Thus, when the results are analyzed in the format presented
in this chapter wh1ch gives independerice from magnltude,
these two excavatlon cases may be treated 1dent1cally. This
has 1mportant.1mplications for sequential»stage exCavations,
sUch as the Enasan Tunnel that w1ll be analyzed in the"
follow1ng chapter. It implies that ‘each excavatlon stage can.

be treated separately as a v1tgln'excavatlon and the results

of each stage superimposed.
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5. APPLICATION OF CONVERGENCE SOLUTION TO ENASAN TUNNEL

(JAPAN)

5.1 Introduction - A . ‘ !

The Convergence Solution will now be applied to

measurements taken from the Enasan tunnel project in Japan
(Ito, 1983). This data was received by Kaiser (1984) during
site visits in Japan. The thotooghness of the
iﬁstrumentation program in this project make;lt particularly
amenable .to analysis psing the Convergence‘Solution. The
tunnel'was excavated in three‘sequential stages; The‘top‘
portion, or heading, was.encavated first, followed by a
bench and invert excavation. For the analysis,:each
excavation stage was treated as a completely separate~
excavation, and the results of the each stage were
superlmposed based on the conc1u51ons of Chaptem 4. lhis’

\

nece551tated certain assumptlons that are outllned in detail

in Section 5.3.. E— _ .

5 2 Descr1pt1on of Enasan Tunnel PrOJect _
Two parallel hlghway tunnels were constructed through -~
A

‘c't

= Mount Enasan as a part of the Chuo expressway that traverses

the central Alps of the Honshu Island in Japan The two. 8. d ff
km long tunhels are spaced at 60 m center to center, and the.
f.max1mum depth of cover 1s approx1mately 1000 m These N
»tunnels are located in granlte in the v1c1n1ty of the actxve“

-

Andera fault. The rpck is folded faulted and heav11y

C e e



118

fractured. The New Auétrian Tunheling Method (ﬁATM) was used
for a 350 m long 'section of the north tunnel where the rock
was heavily overstressed (Takino et al., 1983?. The location
of.this section is indicated on the plan view of the east
e hdlf of the Enasan tunnel project in Figure 5.1. The
response of the rock mass in this 350 m sectioc‘will be
investigated in this chapter. ".=
: ' 4 ,
5.2.1 Excavation and Support Placement Procedure
The‘tuhnel was excavated by drilling and‘blasting in.

three sequential stages. The portion of the cross section

o

. excavated in each stage is ‘indicated in Figure 5.2. The
. temporary scpport ¢ystem was ‘installed following the

- procedure outlined below: s ‘ .

. Heading‘Excavation~ | ‘ . L : v- 
1. 5 cm of shotcrete was applied to the face and
'-upper arch exposed by the headlng exqﬁv&%gon

Longitudinal- slots we:e left in. the shotcrete on

the,walls.and roof, to prevent buckllng of the .

o
shotcrete. - :

Z.‘Steel'Sets were pléced-at 1.0 ﬁ-epacing."

43; A secona layer of shotcrete was applled 5 cm onh
kthe face, and 20 cm-on- the upper atch (w1th -
slots) ‘ A |

4. prllng w1th 2 5 m long bolts was useg'té control

\%the'tunnel-face.

.
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5. Rock bolts were installea 1.5 m behind the leading

‘'steel set.

® Bench Excavation:

Identical procedure to heading excavation without ,Step
o

#4.

e Invert Bxcgvation:
1. 10 cm of concréte was placed with steel ngt..
reinforcing.
2. Rock bolts were installed.

- ‘ )
3. An additional 10 cm of cohcrete was placed.

The purpose of this temporary support system was to
sgfengthen and maintain the iﬁﬁegrity of the rock mass,
rather than to apply preésurq agqinst the rock to limit
deformatién. Consequently, the components of the‘supporp -
system wérekdesighéd to reinforce the rock mass, while
ailowing deformation_tq'occur, This was accompliéhed by
Vusing yielding steel sets, and by,leéving iongitudinal slots
in the sho;crete. Theée tﬁo features allowed deforma;ionvto;
occur. without caﬁsing failuré of the subporting elements.
| The conf&guration of the rock bolfs that were installed
at.thé two measufing-stations that "are analyzed later -
| x(Stétions‘A and B:in Fig. 5.1),‘are,iﬁdicatgd in Figurés 5?3

éﬁd 5.4 reépéétiyély{ Tﬁe solid lines indicéte the positiph"

of rock bolts installed according to the above procedure.
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N

The rock bths are either 6.0, 9.0, or 13.5 n long as
1llustrated in Figs 5.3 and 5.4. The bolts in the heading
and bench are fully grouted, whereas tnfse in the invert are
selt‘boring spiral rock bolts. Also shown in Figs 5.3 and
5.4 is ‘the position of the spiling, and‘the slots that were
left open in tne shotcrete to allow deformation to occur.
Additional rock bolts were installed at a later stage to
iimit the'unexpectedly large deformations. The position of
these bolts at Stations A and B édre indicated in Figs 5.3
and 5.4, respectively, by the dashed  lines. ’ a
‘The final support consisted of a 450 mm thick cast 1in
“place relnforced concrete liner that was 1nstalled over 300

days after excavation, and does not enter into this

analysisﬁ

5.2.2 Instrumentation

The section of the north’ tunnel that was excavated
'using the NATM contained three main and 13 supplementary
measuring stations. The two.stations tnat are analyzeo in
this chapter are main measuring Stations A and B; indicated
on therplanvview in-Figure 5.1. As in most Japaneée
tnnneling projects, these monitoring sections were‘heavily:
instrumented with a'network of convetQ%nce anchots and load
-cells to measure both'earth and lininngressure. For the |

L4

purpose of this thesis, only the convergence of the tunnel
walls was analyzed The convergence "?5 obtained by .
measurlng the change in dlstance~oetween the varlou5‘anchof

k!
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points placed around the circumference‘of the tunnel wall.
The configuration of the various convergence measurements
for Stations A and B is shown in Fig. 5.5.

The convergence measurements that are considered inl
this‘analysis are plotted against time in Figures 5.6 and
5.7, respectively. These figures show that the excavation
history of the three stagesNis extremely variable{.dhe to
mahy changes in rate of advance, and work stoppages. The
irreqgular naturevof the convergence curves in Figs 5.6 and
5.7 reﬁlects this variability in excavation history. Thé'
time- at which additional rock bolts were 1nstalled is also

'1nd1cated in both Figs 5.6 and 5.7. _ %‘

5.3 Application of Convergence Solution ‘to Sequentially

Staged Excavations

1

The Convergence Solution has been developed on the .:

g

basis of full face excavations. ThemextenSion'of this
solution to mode} sequentially stagedfexcavations requires
-some sxmplifying assumptions, as outlined below

It was demonstrated in Chapter 4 that the Convergence

Solut1on could be applied to the measurements ‘from tunnel

A
\

w1den1ng by‘treatinggithes a full,face_excavation of the - -

* same size. The ;hdggrof_the}convergence curves proddced by
these two cases ie tne'éame, but,they differ in.magnitude of
convergence. Since the convergence measurements are
normalized to make them 1ndependent of magnltude, these two
,cases may be treated 1d%nt1cally On thlS ba51s, it Ads

v : ce o,
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proposed that the Enésah\Tunnel be;mGdéiied as three
separate excavations of steSSiQely lafger diametef, and the
results shpefimposed. This superposition is 1llustrated
schematically 1n Figure 5.8, where the convergence curves
produced by each separate excavation are shown together with
the éurye produced by their sum. In the case shown in
Fig. 5.8, the stress redistribution associated with the -
egcavation:has-&auséd yielding of the rock surrbunding‘the
tunnel. If the strength of the rock (c and ¢) is assumed .
coﬁstant, the_ratio R/a would also be constant, Hencé, the
yielding iliustrafed ag\Fhe bottom of Fig. 5.8 corresponds
to a constant R/a rafio %f é.O._Thgs, as the éunnel radius
increases with eac exciﬁation stage, the plastic zone o
propagaﬁes to g;intain 4 constanﬁ R/a ratio. |

In Chaptér 4 it was demonstrated that normalizing

convergence rates to the maximum rate at the face achieved

¢

independence from the magnitude of convergence. Fbr a
- sequentially staged excavation ho&eyer, each stage has its
éwn peak conyergénéé-rate, and“ultimqté yélué.of |
convergence. It is most coFVenient for practicai'purpgses'to' 
normalize tﬁé entire coniérgencé réte chr&e'to_the maXimum,
rate produced by the héadinélexégyation. éonsequéhtly, the'
‘bench and in&éft'ex;ayaﬁions~will not betnormaliied~t6 their
Sﬁnvmaximum,ratg,,and will the;efore.hot detrease from an
initiai_&aluej0£flldiét their:facelloéations. HQQévef,‘Qhen
eéch!excévétion stage‘is'modelled,éeparafeiyvby the -

Convergence Solution, three rate-curves,are produced that
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‘each decrease from an initial value of 1.0 at their
respective faces. It is therefore necessary to multiply the
convergence rate curves produced by the bench and invert

excavations by the ratios:

-

Cmax(benCh) Cmax(invert)
; and

Crnax {heading) Crax (heading)

respectively. Since the maximum convergence rate 1is

_ . O
proportional to the ultimate tdime-independent convergence
(me), the above ratios can be expressed as:

C..(bench) _me(invert) v

Qp = me(heading); and Q, B me(heading)

‘respectively.
These ratios have been determined by simulating the
AEXCavation with a two dimensional Boundary Integral Equation
Method (Bg?M) program:(Hoek and Brown, 1980, modified by
,Simmoﬂé, 1983). The material behavior has been modelled as
“_linearqelasflc even thoﬂgh'obsernations indicateiextensiye
‘y1e1d1ng completery surroundlng the excavat1on © This
d51mp11f1cat1on is justified because both the elastlc, and
Y1elded case would produce similar flnal deformed shapes of-
.the tunnel walls. Since the ratlos Qb and Q reflect the
_deformed shapes,-rather than the magnitude of convergence
the elastic'analysis would'produce'comparaple resulrs~to a
more elaborate elasto plastlc analy51s. z'v' ‘f : 3f~
The BIEM program was - used to determlne the ultlmate
time 1ndependent convergence of the tunnel walls in response

to the following three.cases:
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1) Heading #xcavation.
'2) Combined:heading and bench excavation;
'$“ 3) All three excavatiou‘stages combined (full face
excavatibn).

The convergedce caused by the bench excavation was
determined by subtracting case one from case two; ﬁhd the
convergence causedsby the ihvert excavation was'determ;ned
by subtracting case two from case three. |

The distribtion of convergence along the cross section
of the tunnel given by the BIEM program for the above;three
cases are shoWn'in"Fig. 5.9. The position of the uarieus
convergence measurements is also shown-.in this figure. The
ultimate values of conVergeh e (me) given by the BIEM
progfam caused by each ef the ewxcavation stages includes the
cbnvebgence that occurs both before and after'each face.
Houever it is-only the portion of-Cch that oecurs after the
face tha;-ls proportlonal to C ax® It has been. assumed for
this analy51s that half of C occurs . before the face and
half after the face (Q1 = Q2 = 0 5) because of the'.

;51gn1f1cant amount of y1eld1ng that was observed Thus, the

values of C » 9iven by the BIEM for each excavation stage

S must be mu}tlplled by 0.50.

The follow1ng ratlos have been calculated on the ba51s

/o

of these results: _?%
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_ me(bench) me(invert)
ggz?ggégg Qp - me(heading) Q; = me(heading)
H1 ‘ 0.629 : ‘ 0.050
2 o 1.187 0.085
’ﬁqf | 0.074 0.061
D1 0.500 0.047

D2 0.500 ’ ) 0.047

These ratios. represent the amount of convergence
produced by the‘bench and invert ekcavat&ons, respectively,
relative to the convergence produced by the heading
excavation. These rat1os are dlfferent for each measuring
position because thF measurements are taken at varying
orlentatlons. Each point around the c1rcumference will
reSpond in a dlfferent manner to the varlous“excavat1on
stages.-For example, Postlon,HZ,ushown in Flgure 5.5, is
much more sensitive to the excavation of the bench‘than.the
roof‘measurement is, due‘to'their relative locations:withr
respect to. the bench This dmfference is reflected in the:,
dh1gher value of Qb for P051t10n H2 l »
| " 1n summary, the’ Convergence Solutlon has been adapted
and 51mp11f1ed to model the seqpentlally staged excavatlons-
of the Enasan Tunnel by modelllng the three excavatxon
,stages separately and super1mp051ng the results. The

normallzed convergence rate curves produced by all three
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o

excavations will be normalized to the maximum convergence
rate produced Ry the heading excavation. The convergence
rate curves produced by the bench and invert excavations are
"then multiplied by the ratioS~Qb and Qi’ reSpectively. It
was demonstrated earlier that a¥independence from the |
magnitude of convergence is attained when the data is
analyzed in the normalized convergence rate format. Since
the ratios Qp and Q. express only the relative magnitude of
convergence-associated with each excavation stage, the
method remains independent of the absolute maonitude of

\
. . convergence.

TheseImodification%,enable the Convergence Solution to
be fitted to thebdata measured in the Enasan Tunnel, as will
be shown in the following‘section.
5r4vFit of Convergence Solution to Measurements

The appllcatlon of the Convergence Solutlon to the

v‘Enasan Tunnel data dlffers from the prev1ous appllcatlon of
the.Solut1on to the experimental data in Chapter 4, because
:thefEnasan’Tunnei is supported. As mentioned earlier, thev
‘f1na1 concrete llner does not enter 1nto thls analysis, but
both the temporary support 5ystem and the addltional rock
kbolts that were lnstalled at a later stage are‘supportingh

elements that - need to be con51dered Since: the temporary

5_support system was 1nstalled 1mmed1ate1y upon the excavatlon

'.of each stage, and was 1ntended te re1nforce rather than‘

apply pressure_on the rock mass,.lt w;ll.not be‘con51dered

)
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i

as a true support. Insteéd,(the Convergence Solution will
model the Enasan Tunnel as an unsupported, reinforced rock
mass. Thus, the parameters will not be characteristic of the
reck mass itself, but of the rock-mass reinforced by the
temporary support system. Howe;er the additional rock bolts
that were 1nstalled at various intervals after excavatlon t@
arrest further convergence, must be consxdered separately as,
a support. Since the supporting effect of these additional
bolts is difficult to‘ouantify, they will be neglected ;
initially as the Convergence Solution will model an
unsupported'reinforced rock mass. After this first step, the
influence of th‘additional rock bolts will be assessed
separately. |

The procedure that has been adopted for fitting the
Convergence Solution to the field measurements (from the
"reinforceé" rock mass) is similar ‘to the procedure followedb
in Chapter 4. There, each parameter was varied separateLx to
obtain a unlque set of parameters that characterlzed the
behavior of-the rock mass, It was p0551ble‘to obtaln'
independentleetimetes_of the parameters becauSe each
'parameter‘affectedlthe QUrde’in a different manner. The
. parameter X controiled the initial (time—independent)
| portlon of the curve, whzle T and a* controlled the of the
latter (t1me dependent) port1on of the curve. 'Even though a*
'and’T had an overlapplng 1nfluence an the latter portion of

‘the curve, they could still. be determ1ned 1ndependently.

Both T and A* affected the vertical translation of the

i
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curve, but only T controlled the shape. Consequently, T was
chosen to match the shape of the curve, i1gnoring the effect
. } . . ' *

it had on vertical translation, and A was chosen to match

the vertical translation of the data,‘given the choice of T.

At the-Enasan Tunnel, howevgr, the extremely slow excavation

progress caused an overlap of the time—indepenaent and

tlme dependent behavior which rende?s paraffeter evaluatlon
s teef
mofe ambiguous. Nevertheless, a fitting proCedure similar to

the one described in Chapter 4 was adopted, even though 1t
1s not possible to obtain completely independent estimates
of the‘parameters'for each set of mea5urements.

The data frqm ‘each of the measuring p051t10ns has been

smoothed w1th ?ﬁ% technlque discussed in Chapter 4. This

eliminates the zero convergence rates observed in the latter

portion of these curves.

. -
AN

outlined below for the mgasurements from Position H2, at
L4 : . . . .

Station A (see Fig. 5.5).

'5.4.1 Example Fit

The first step is to determine the set of three

{

. parameteérs that fits 4 data that corresponds to the

heading excevation»(betﬁeen 0 end 45 days). It is necessary

to limit the scope of this first step to the 1n1t1al

(headlng) excavatlon because of the complex1ty of the

multistage excavat1on.

’

\\\ The step by step fitting procedure that was followe® is .
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First, the value of X is investigated by plotting the
Convergeénce Solution for a range in X values, and initial
. * . )
estimates of T and A . Figure 5.10 shows the convergence

rate data measured at Position H2 compared to ‘the curves

‘produced by a range of X (=0.84 R/a) from R/a=1.0 to

R/a=3.0, and an initial estimate of A*=1.0 and T=1.0 days.

These convergence rate curves have been produced by the

program computer CONRATE, described 1in Appenﬁxx\GT\?he
portion of 'th #curve that is 1nfluenced,by the advance {and
hence R/a) is labelled Zone 1. Zone II corresponds to an_
excavation stoppage and therefore does not'display any

-

time-independent behavior. From Fig. 5.10 it appears that

R/a=2.5 gives a reasonable fit of the data in Zone I.

The‘efﬁect of the parameter T on the~Convergence

_Solution is illustrated in Figure 5.-11, where a range‘of T

o

hetween 0.1 and 10.0 days is combined with R/a=é.5 and~the
estimate of A*=1 0. AS‘was noted earlﬁer T 1s determlned by
the shape of the time-dependent portlon of- the convergence
rate curve. Unfortunately, the” extremely varlable excavatlon
history at the Enasan Tunnel has not produced a 1ong enouqh

centinuous section that is exclusively controlled by

time-dependent material behaviorﬁ(free from the influence of

the»face'advance) Thus, T must be determlned from short

excavatlon stoppages such as Zone II in. Flg Thls

©two orders magnltude does

‘not even affect the- shape of the S\rve - in- Zone II

51gn1f1cantly A comparlson of the i fluencq‘of this rangeb

’
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in T 1n Fxgure 5§@3K and the influence of A shown in

\

Figure 5.1 ievealx that these two parameters have a
virtually identical etfect on the cohvergence rate curve.
Thus, a range in a* and‘T pairs, as opposed to two
independent values can be fit to the data Rather than
expresglng a range of At T pairs, the value T=1.0 days will
be chosen as-a representative‘though not unique quantity.
Erom Flgure 5. it canlbe seen that a value of A*=1 0
gives the best fit of the cases shown to the data in Zone
11, hased on a T=1.0 days. Whﬁle this A -T pair 1is not
untque both parameters are w1€h1n théxrange of values
‘determlned in other apgijcatloné ot this method, such as
,that found -in Chapter 4, and the analy51s of the Frers
._é?unnel (Sulem; 1983). ' \\; A
. | The f1hal fit of the head1ng excav€t1on bhat is ~ <:>
achleved with the parameters R/a 2.5, T= { 0 déys and Aﬁ-I 0,
‘determ1ned in thlS fashion, is shown 4n Fféu 5.13 together
with- the data from Statlon A, Postion H2. It\can ge seen in
“this flgure that the Convergence Solutlon'provides a very
lclose f1t of the COnvergence rate curve up to the tlme when'
'the bench reaches the measurlng sectlon. The value of R/a is
aun1que,'as 1t has been determlned 1ndependent1y of A and. T. ‘
However, the values of A and Tag&e not 1ndependent put
:they prov1de a good representatlon of the reSponse of{the ' .
‘relnforced rock mass.v . |

a

The next step is to examlne the portlon of the '

7convergence rate curve 1nfluenced by the bench and 1nvert



e

deviation is likely caused by a more than proportjonal

“this propagat;on,‘som

130

excavations. Figure 5.13 shows that “the .solution deviates

[N

. . . . - f\ .
from the bench excavation on (t>45.day$§. The convergence

rate 1is generally underpredicted and the slope»of-the‘rate -

plot is steeper than the data from 45 to 90udays.”This
propagation in the yield zone. The almost constant rate-
between the bench and invert excavation is indicative of

yielding behaVior, Without additional yielding, the.rate

would have to drop more rapidly duripg-excavation advance.

In Summary, the fitting exercise to this point has

characterized the response of the rock mass to the heading
P4 .

excavation, and has indicated the existence of a yield- zone
’

v
.

with a radiua_(R)'of aboot 2.5a. In addition, the
propagatfon 6f this initial yield”zonehhas.been identified;"
to.a larger yield zone of unknown extent (R/a>2.5a) whenithé
.bench excpvatfbn passes the measuring section

3

In order to estimate the 51ze ‘of the yield zone after

add1t10nal s1mpl1fy1ng assumptlons

have been made that enaple the Convergence Solut1on to

-’

simulate this propagation-behav1or These assumpt1ons are’
outlined in detail in. Appendix H. Both the 1n1t1al f1t
determlned above, and the fit w1th propagat1on modelled are

compared tolthe data in Flg S 14 An. adequate f1t of the.

LA
;c:‘.‘ .

"'entlre range of data is furnlshed by the Convergence_’
:Solutlon when a propagatlon in the yleld zone from R/a 2. 5
to R/a=4. 5 at t= 40 days is modelled as shown 1n~Flg. 5;1£,ig

2he effect of yleld zone propagatlon shlfts the curve up
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" vertically and produtes a much flatter slope from 45 to 90

!
days.
[
The final step in the fitting process is to consider
the effect of the additional bolts that were added at the

times indicated in Fig. 5.5 for Station A. This will be

~approached by first.modelling the excavation, combined with

a range of support cases, with the Convergence Solu?ion The
influence that these support cases have on the convergence
rate curve will then be comparedAto the data to see 1f the
additional rock_bolts provided any support.

The excavation history of the Enasan'Tunnel has been
idealiaed to a constant eXcavation-velocity of 1. Om/day, in
order to e11m1nateuthe obscurlty ‘that_ is caused ‘by the
extremely varlable excavat1on rates. The separatlon between
the three advanc1ng faces was assumed to remain constant at

20»m each, and all three excavatlons now proceed

simultaneously.-The selected rate of advance is close to ‘the

* actUal average rate of excavation, if longer stoppages are

eliminated. R o - L%

The parameters that have been used as 1nput 1nto the

Convergence Solut1on for thlS ana1y51s are tabulated below.

[
These 1nclude the parameters determlned above, that

1 Q ’

'ptcharacter1ze the response of. the relnforced rock mass ‘to the.

3

' excavatlom, as well as add1t1onal parameters requ1red to

model tpe vargous supportwcases. -

-~
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Table 5.1. Input Parameters for Convergencé Solution; ,/>
Support Analysis. . -

Id

Parameters for tunnel in reinforced rock mass: -
'R/a=2.5; =+ T=1.0 dayst A'=1.0; .. .
Qb=1.187; Q;=0.085

(heading)¥555 mm (estimate from Fig. 5.5, based on
: aA*=1.0, and t=190 dpys)

C
X

Liner Parameters for Parametric Study:

Concrete ThHickness: . 50 mm 200 mm 500 mm
K L 0.0019/mm  0.0078/mm  0.G200,/mm
Ok (heading)’ 0.01 0.04 0.10
Ok (bench)” ' 0.04 0.10 0.18
Ok (invert)” 0.08 0.18 0.24

+ Extrapolated from Figure 3.18.

-

R Y
%

Additional rock bolts were installed at Station A
according to the schedule tabulated Below. Also shown is the
éorfesponding schedule for the idealized excavation.

- -

—— T Idealized |

Time =~ # Bolts Lengéh, Time [ . # Bolts
(days) - (m) (days) | :
514 9.0 N g
g2 8 9.0 | -
‘ - , ‘ 54" . 19
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The bolts installed at 82 and 98 days correspond to 54
days in the 1dealized (constant rate) excavéﬁion, because
both iustallations occured in one long excavation stoppage.

The major episode of additional bolting (at t=54 days)

f T . . »
has been modelled as an equivalent concrete;}iner with the
Convergence Solution. The 1mpact that concrete liners,
varying in thickness from 50 to 500 hm, have on’ the
convergence rate curve of the idealized excavation is‘shown.
in Figure 5.15, This figure shows that a support reduces the
convergence rate curve.\Figure 5.&5 also indicates that lf a
support is to have a noticable impact on the convergence
rate curve, it must provide the equivalent support of
between 50 to 200 mm concret’:&?llner.

The points at whlch additional bolts were installed at
Station A are indicated On the measured convergence rate |
curve in Fig. 5.14. No clear deviation from the
"unsupported” Convergencensolution curve can be detected at
any of the support installacion points. It is possible that
some deviation 1n the - convergence rate curve may have been.
caused by these support measures but 1t 1s obscured by the
n01se in the data (caused by the stop-go excavatlon
h1story) ‘but.there»xs no ev1dence that,the extra rock'bolrﬁ

had any 1mpact on- the conVergence of the tunnel walls. Thls

‘»‘f1nd1ng is consigtent’ wrth the est1mate of a large y1e1d S

‘zone (approXimatéTy 4 0 a;—dr 24 m) because 9 m rock bolts
-1nstalled 1n51de an already ylelded zone of thlS 51ze would

not be expected to prov1de a 51gn1f1cant amount’ of
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reinforcement, or supoort.

Since the additional rock bolts do not have a
noticeable impact on the conmergence rate curve, they may be
neglected'in the fitting process. Thus, the final.fit of the
Convergence Solution to this example case is shown in |
Figure 5;&4 where the tunnel was modelled as ‘an unsupported
tunnel in a reinforced rock maes.

This fitting procedure has also been used for the data
from the,remainjno measnring positions at Stations A and B,
pfesented belon.

. -

5.4.2 Presentation of Curve Fitting Results

The Convergence Solution curves that have been fitted
in this manner to the remaining>measurino:positions at
. Station A are presented'in Figu:es 5.16 to 5.19. Again, the
computer program - CONRATE (Appendix C) has been used to
‘generate all of the Convergence Solution curves. As
demonstrated by these flgures, all of the measurlng
p051t10ns at Station A displayed the yield zone propagatlon
benev1or that was shown by Position H2 in thL example fit
(Flg~ 5. 15) A summary of the parameters that were

~determ1ned for each of the measurlng pos1t10ns in Statlon A

‘15 g1ven below:
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Measuring T . A ‘ R/a | R/a
Position (days) (t=0-40 days) (t=40-200 days)
H1 ' 1.0 0.5 g_.o'k , 4.0 -
H2 1.0 1.0 2.5 4.5

' Roof 1.0 0.4 s 4.0
D1 C1.0 0.6 1.0 | 2.5
D2 1.0 0.4 2.0 ‘ 3.5

Average 1.0 - 0.6 . 1.8 . 3.7

"+ Roof displ#CEment was measured, rather than convergence,
P . . . ) .
but 1t 1s treated in the same manner as the convergence
measurements, because it becomes independent of magnitude

when normalized.

. On average the plastic zone must have propagated from
1.8 to 3 7a during bench excavation at Statlon A.
The f1tt1ng procedure that. was followed for Statlon A

was also followed Statlon B A comparlson of the f1t of the

Convergence Solutlon and the data from the Position H1
Statign B is shown in Flgures 5. 20 The 1n1t1a1 portlon of

’f v the dataufor posltlon H1 is portrayed on an-expanded t1me

scale in. F1g 5,21 to glve ‘a- better representatlon of - the
rap1d11y fluctuatlng behav1or in thls region( As - for
Statlon A the Convergence Solutlon prov1des a very close

f1t of the measurements up. to a certaln po1nt (t 51 days)
espec;ally;consgderlng the extremely varlable excavatlon
"history. From thi$ point on, the Solution again under .

-,
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predicts the results. When the yield zone is modelléd as
propégéting from 1.6 to 4.0a, shown by the dashed line in
Figs 5.20'and 5.21, a remarkable fit is achieved.

The additional rock bolts that were installed at
stétion B are indicated in FigureYS.ZO. The mai /épisode of
extra bolting occured from 130 to 155 days,'whezf19 9.0m,
and 15 13.5m bolts were installed. This additional bolting
did not %ave a noticeable impact on the convergéhce rate '
* curve }n Fig. 5.20 that can be oﬁserved beyond the'noise of
the daté. Thus, it-is'also VAlid to model‘the tunnel at
Station B.as aﬁ unsupported.tunnel iﬁ a reinforced rock
ﬁass; )
| The 'data ffom-tbe.remaining measuring pésitiohs at
.,Station-Biare fit.po the Convergence Solution in Figs 5.22
ﬁo'5.25. These figures demonstrate that the same propagatiog 
behaviof is observed at all locations. A.5ummaryrof the

’

. parameters that were obtained from Station B -age tabulated

#

-

below: : . IR . ‘ e
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Measuring T A : R/a R/a

Position (days) - (t=0-51 days) (t=51-200 days)
H1 1.0 1.0 1.6 4.0
H2 1.0 1.0 2.0 4.0
Roof . 1.0 1.4 1.9 5.0
D1 1.0 1.0 ~ 1.4 ' 3.0
D2 1.0 1.4 R 4.5

Average - 1.0 1.2 1.8 , 4,1

+ Displacement rather than convergence.
On average the predlcted yield zone @ropagated from 1.8

to 4.1a at Station B during the bench excavation.

[y
\

Remarkably consistent sets of parameters have been
ufound to characterize the response of the rock mass to'the o
tunnel excavetion at both stetiohs. a* ranged from'0.4 to
1.4, for T= 1 0 days, and R/a ranged from 1.0 to 2. 5 (average
= 1.8) before propagatlon and 2.5 to 5.0 (average = 3 9)
after propagat1on thle extensometer measurements were. not
‘ avéileble‘at-eﬁther station there are several 1n§1rect
indicatOrs thabeSUQgest the presehce of a very.large yield
_zone. F{rsr,rif’the rock was elastic; the predicteésradialv
.'udlsplacement would be about 190 mm, for the conditions af
‘the the Enasan Tunnel Since the rock mass dlsplays creep,
qnd-an;average a* of 0 9 was found for the two stat1ons
anal&zed, the ultrmate'radlal d1splacement would be expected'A

as:
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Yult
&

The measured roof displacement at 195 days was 710 mm

= 190mm + 0.9(190mm)} = 361mm.

n
at Station A and 920 mm at Station B. The measured .roof
displacements exceea the elaetic prediction by at least 100
percent, which‘suggests that significant plastic deformation
occurred that could only berroduced by a large yield zone.

' Secondly, the convergence-tate at both stations is sensitive
to activities at the tunnel face at locations well removed
from the tunnel face. For example, at Station A there is a
jnmp in rate measured at Postion H?i(Fig.h5¢TS) in response
to the advance of the heading 58 m (5 tunnel diamete}s)
~away. In"eiastic rock, the edvance of the face should noti
cause a significant rate increase+ for more than two
dlameters past the face. Thus, this observation also
suggests the existence of a large zone of yielded . rock. In
add1t1on to these two p01nts, the dec151ons made by‘the |
englneers on the pro;ect reflect a concern for excesszve
yleldlng They/lncreased the length of the rock bolts from'
the. or1g1nal 6.0 and 9.0m ‘lengths, to 13. 5m (at Station B)
when the convergence exceeded thezr expectatlons They also
'_1nsta11ed splllng (ahead of the advanc1ng face) whichnfsﬂ
usually only adopted” to stablllze ‘the face in heav1ly

{ylelded ground.

N
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5.5 Summary and Conclusions kS

The -application of the Convergence Solution to the
measured convergence from the Enasan Tunnel has revealed
several important flndlngs. First, the radius of thL zone of

|
yielded material surrounding the tunnel was predicted to

range initially from 1.0 to 2.5 a. Once the bench a:g‘invert{
were excavated, it is spggested that the yield zone
propagatea to from 2.5 to 5.6 a. The existence of a very
~large yield zone is supported by the enormous magnitude of
ultimate convergence that vas measured, yhich exceeds the
elastic predictions by 100 percent. Also, the influencg that’
///the excavation has on the convergence curve is felt as far
aé five or more tunnel diameters behind the face. This far
exceede the commonly assumed limit of .two diameters for
elastic rock. ¢
' The effeCtiveness of remedial eupporting measures in
-inhibitﬁng convergence was also investigated using the
Convergence Solutlon. Th1s revealed that the extra support
that was 1ntroduced to control dlsplacements ‘had little .
‘1mpact on the convergence curve.,Furthermore, a support
Mpressure equ1va1ent to the pressure generated by a concrete

liner of 50 to 200 mm thlckness wof have‘been requ1red to

cause a noticeable reduction-in th& convergence rate. )
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Figure 5.2 Cross Section of Enasan Tunnel.
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6. CONCLUSIONS AND PRACTICAL IMPL.ICATIO?S
/-

6.1 Introduction ‘ . : _ ‘ -

Tunnel wall Convergence is routinely monitored_ in
almost every tunneling project, but unfortunatelv the
results are extremely under—utilized. 1f interpreted
properly, convergence measurements can give important’
information regarding:yielding of the rock mass:'tbe
validitv of désign*assumptions, and the effectiveness of
support measures. Valuable guldance can also be galned for
support dec1s1ons, such as when remedial support measures
should be introduéed to check excessive deformation[ﬁand
when thevfinal llner can be installed. At"present,_these
decislons are often based on.experience} or on simplistic
interpretations of themconVergenoe:measurements.tFor,
‘exam%le at the Arlberg Tunnel iﬁ Austria;‘a makimum‘
convergence rate 11m1t was def1ned (1 t0q2 mm/hr) beyond~
whlch add1t10nal rock bolts were requ1red and a 1ower'limit,
was def1ned (0. 2 to 0 3 mm/day) beyond which the‘final“
llner could\oe 1nstalled (John 1977)}-In“the,énasan Tunnel'
in Japan, the~1nterpretatlon of the convergence measurements

v

was based‘on‘anvéitrgpolatloq of the convergence measured ‘in
.a smaller vent11at1on tunnel When the measured convergénce ;1_{
exceeded expectatlons, .rock” bolts were added -to 11m1t the ﬁ/ifa?vj
.exCessr¢% deformat1on. Wh1le these two approachs do prov1de ‘
a much needed framework for the 1nterpretat19n of the data

from the1r respect1ve tunnels, they 1gnore the effect th&t L
N . o o L —5;?& . ﬂ



’ ﬂf_kevealed the 1mpact that a support has on, the convergence-

S

excavation history afd supporting elements have on the
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1,

convergence. Furthermore, there is no rational’approach to
date that incorporates these two effects,
An approach has been proposed in this thesis that

~

"provides a rationdl” framework for the interpretation of
convergence measurements, accountin‘ for the effects that
both the excavation sequence, and‘ignnel supports have on
convergence: This approach, termed the Convergence Solutaon,
is an extension of the approaoh by Guenot et al. (1985) to
model more realistic tunneling conditions. The conclusions
‘that follow from the application of the Convergence Solution -

to the results of a finite element analysis, agd to

laboratory and field data are summarized below. . A
6.2 Suﬂhary of Conclusions s

6.2.1 Finite Element Analyses -

'The simulation of a variety of'supported tunnels with
finite element'analySes provided important information,for

the exten51on of the Convergence Solution to model the

feffect of a tunnel support. These analyses confirmed th:F

validity of the proposed Convergence Solution for'modelling

. v, ‘

f};the effect of a support after the p01nt of . 1nstallation and_ -

[ &

'curve before 1ts 1nsta11ation pOlnt. It has been shown‘that
® i

the 1ntroduction of a support causes a dev1ation in the ‘if"'

K3

fconvergence curve (frpm the unsupported case) that startS'r

oy
R ' ‘e

PO [—

T v PP . . . N . b T e N M
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well before the point of support installation. The magnitude
of this deviation depend;‘on the stiffness of tne support,
and the length of the gap between the face, and the point\of
support installation (Ld). Figure 3.18 shows the

relationship between this deviation (Qk), the support
: ] ; Rl

stiffness (§) and Ly- The parameter Qs determined from this

.chart, is a new parameter used as input for the Convergence

‘S$&lution.

6.2.2 Laboratory Test Results o ‘ /
¢ The application of the Convergence Solution to data :"
from tunnel simulation tests (Kaiser et al., 1983a) p?oduoea

a condistent set of parameters that characterized the
$

response of coal samples to small dlameter excavations.

There was very llttle variation in the parameters T and a*

‘eyen though'the Solutlon was applled_to data from five

s

separate monitoring stations, in two-different samples, with
different excavat1on hlstor1es and tunnel d1ameters. More

var;atlon was observed 1n4€;e parameter X\Y ¢. 84R/a) causeq
by different amounts of yleldlmg at 1nd1v1duél statlons/)The

amount of y1e1d1ng 1ndlcated by the Convergence Solutlon was

| 1n agreement w1th the observed y1eld1ng The con51stency of '

these phys1cally meanlngful parameters shows that the Vp

'<

Convergence Solut1on was able to delfheate the

Acharacterlstlc response of tﬂ'.coal samples bec!@%e the

) correctly modelled 1; :‘--" tvf

dlfferences 1n geomelry and excavatxon hlstory were

N4

[ 4
-

-
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Both laboratory simulation tests coiyéfhed changes 1in
excavation rate that produced abrupt changes in the measured
convergence rates. As stated in Chapter 2, the Convergence

Solution was developed on the basis of a constant excavation
4 \ . S
rate, and is therefore not applicable to a tunnel excavated

Ay

at variable rates. However, when. the Cohvergence Solution
was applied to these tests it correctly predicted the
magnitude of these changes in rate, but it predicted a

gradpai transition froms one rate to the other, rathér -than

the abrupt transitions that actually occured. Thus, with
¥ . , .

'thiss limitation, the Convergence Solution may be used to

AN

model tunneleWith variable excavation nates.

6.2.3 Enasan Tunnel

The Convergence Solution was successfully applied to

P

convergence data. from the Enasan Tunnel 1n,Japan (Ito, 1983)
which was excavated in three Sequentlal stages. The
parameters determlned from various sets of data predlcted a

‘propagatron of the annular‘y1eld zone from anﬂaverageuradlus'n

~

of 1. 8a to 3.9a durlng the excavat1on of the secqnd stage ‘

"

(bench) The ex1stence of such a. large yleld zone: 1s

n .y A ..

,_supportedcby the obserVed e<;e531ve convergence, Wh1¢h ]‘}
':exceeﬂed elastlc predlctlons by more than 100 percent (at

P

theyroof). Also,_the-lnfluenc' of act1v1t1es at.the face

8

'1ameters past the face.;ln'7
» .
elast1c rock, ;he 1nfluence of the face usuaLly extends only

<

' about two. dlameters past the face. Th:s has 1mportant

/”



\)§.3 Practical. Implications

e, g,
6.3.1 Data Collecéion and Presentation

" DATA COLLECTION
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-
s T
X‘;’ ] .
implications £or the installation of the final liner, ‘as it_
is desirable to install it beyond the infiuence of the face,
to limit the amount of_deformatron and hence pressure that

the liner 1incurres.

Once parameters had been determjned that charatterized
the response of the rbck the Convergenceg Solution was used

to demonstrate that the remedial support measures that Were
{
adopted to limit the excessive convergence had little or no

noticeable effect.

' LN -

\\ R . . N ‘.
( R ‘ ;
iy > ' “ "
) i

o o ,
The application of the Convergence Solution to a

i

tunneling project requires that the convergence measurements

be colleéted and presented in a certain manner.-The’specific

-

- requirements for a given tunneling”project,depend on the

purpose. of the monltorzng program. A monltorlng program that

prov1des/;pformatlon for support decisions should be much '

more 1nten51ve than a program that 15 prov1d1ng information

. -~

for a back.analysis. The following recommendat1ons are basedl

ey P

_on the back analy51s of the Enasan Tunnel in Chapter 5 and

:sshould be consxdered -as the’ m1n1mum requ;rementﬁ for the

:appllcatlon of thzs method ‘ "-' 4 "' : o IR

. . ; . . v . . B )
g ot . v . Do S e

1) A minimum oftsix rate determinations should be taken for

LA 7 : _ R o
. . o . . .
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each Q§ameter advance of the tunnel within the first five
diameters after. the face passes the monitoring station.

o ] . ' . "
2} After the face is more than five diameters away, one

" measurement ®every four days is sufficient. .

{

i -® ro“ass. ‘Al.so,v readings should, always be taken ]ust: ‘before

;o

. maximum rate of deformation.

agalnst time. If the tunnel 15‘excavated»1n.sequent1al;, >

R - . .
3) Frequent measurements should be made during excavation

-

stoppagee to i1denfify the time-de endent.behavior of the
PP P
e A .

»

4

\
and after a change in advance .rate (or stoppage)
ok .
4) The frrst:measurement.should}be,taken as close to the

face as possible; and repeated freqhentl} to establish the

&

- B) The excavat1on hlstory must be recorded 1in detail

4

6) It is de51rable to measure convergence in a minimum of

two dlfferent or;Fntatlonsq to have more than one set of
measdremenns to base the 1nterprerat10n on.

[ ) )

DATA PRESEWTATION - : N A » r

S,
Y

1) Plot convergence rate,'norma11zed to the max1mum rate LS

~a

_ stages, normaiize~%he'%ntire'range'df aata-to'thexmaidmuh

an arlthmetlc scale. If the range in e1ther.qeant1ty is t@o“

LS

convergence rate assoc1ated w1th the f1rst excavatlon.

2) Present both the norhallzed conVergence*rate and time . on

~
.-

~ . o

large 1£§may be necessary to use a logar1thm1c scale, but .
thlS should be av01ded 1f 90551b1e, as 1t is dlfflcult to

assess a: V1sua1 f1t on logar1thm1c scales.

P . . N ’ S \

-
s
.

S

"""

ai
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'from the flrst few. readlngs (w1th1n one tunnel d1ameter frem_

.
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6.3.2 Applications of the Convergence Solution
Five proposed applications of the Convergence Solution
to the observational design of 'a tunnel are discussed” below,

and 1llustrated with the analz}is of the data from the

“Enasan Tunnel (see Chapter 5).

YIELD ZONE )

The Convergence solution cad~be used torgain

informatiqn ébout the extent of the yield zoqe'%urrounding a -

tunnel. The parameter X is proport10na1 to the rad1us or.

‘extent of the Annluar yield zone, R, (X/R is 0. 845 It must

be noted that R 1s not necessar11y the rad#us of a zone of

éylelded material but it ngeS“the extent &f a ylefa related

¢ stress redistribuqion zone. For this reason it is called
. ) . . 8

'equivalent’' yield zone radius. The value of X can be

' determlned from the 1n1t1al measurements because it

,,characterlzes the time- 1ndependent response of the rock mass

/

to excavat;én, whlch domlnates the readings close to the

face. The parameters T ang A_, which characterzze the

| time—dependent response Jof the rock mass have little

»

' 1nfluence on. this 1n1t1al portlon of the curve. Thus,

3

l'lnformatlon on. the extent ofethe yleld zone can be obtalned

\

»

~ “the face). | A ; R : E _ e

“The'predictioﬁ of the size of the equivélent'yield zone

"(R) is a valuable component for the selection-of rock bolt

‘type end length. For exemple, if the yieiﬁ;zonefis very
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large, fully grouted rock bolts could be installed to

provide fr1ct1onal resistance. Conversely, 1f the yield zone

1s not large, end grouted or mechan1ca1 rock bolts Gould be °

®
1nstalled with- a length capable of * anchorlngilnto the

-unylelded rock
The use of the Convergence Solution to estlmate the
extent of the yield zone is illustrated now on an example
from the Enasan Tunnel. = a :
Converngence data, measured at Statdon.A,of the Enasan
Tu;nel, dsjshown in the normalized convergence rate tormat
in Figure 6.1, together with the best'fit of the Convergence
Solution. The portion of th® data from O’to 11 daﬁs‘wgs
~sufficient to identify the parameter X'as.7'6m (or R/a-1 Q}

|, s
.

The range in R/a was.1.0’ to 2.5 for all of the sets of

measurements taken at Statlon A " This represents a yleld

-

zone ~depth of up to 9.0m frOm tbe tunnel wall Thus, to

*

'relnforce the entlre yleld'zone, bolts of at least 9 Om

would be needed The fact that the y1eld zone propagated

later (see below) clearly demonstrates the need fo:

mlnstallatlon (neat" the face).

'4FRAMEQDRK FOR INTERPRETATION’OF DATA

1

Once all three parameters (R/a, v, and T) of the i;f

COnvergence Solutlon have been determlne
Y \
“to the’fleld‘measuremencs; the Solutzon can be used to-

by curve f1tt1ng

c A

forecast subsequent behav1or. This’ forecaSt then pvovzdes a

LY

basis for the 1nterpretatlon A@ convergence measurements

&

.
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'taken after.that point. Thls 1s’extremely‘valuable as it
enables the d1scernment of - Jumps in convergence rate that
are .caused by the excavation act1v1t}es, from those caused
by other processes such as»the.propagation of*a yield zone.

. The'convergence data that 1is shown.in'Fig. 6.1'provides
aldemonstration of this application of the Convergence |
Solutlon. The three parameters were all determlned on the
ba51s of the convergence measurements from 0 to 38 days. The
SOlld curve past 38 days is the forecast of the subsequent
convergence rate based on these 1n1t1a1 parameters.'On the
basls of thlS forecast it was possjple to 1dent1fy a change
v1n the characterlstlc response of the - rock mass from the
1n1t1al behavior . over the flrst 38 days. ‘As can be seen in
. Flg. 6.1 the slope of : the convergence rate curve ‘past thevf
bench excavation is much more shallow than the predrcted

slope, and the convergence rates are h1gher than pred1cted.
ThlS dev1at10n 1nd1cates ‘that a change has occurred 1n the
rock mass. A var1at10n of th1s type can be matched by the
Convergence Solutlon w1th a varlatlon in R/a, which suggests
that the size of the yleld zone has changed The dashed
curVeﬂ1n Flg 6.1 vas calculated for & h1gher ‘value of R/a

past t 41 days, wh)ch represents the propagation of the
atlal yleld zdne’ from R/a~1 5”to R/a=4. O at 41 days.
The above dev1at1on would ‘have been very difficult to
dlst1ngu1sh from the Jumps in the data caused by the’ |

varlable excavatlon hlstory thh0ut the basis: prov1ded by

. the Convergence Solutlon. Furthermore, the 1umps in the . data
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at 110 and 126 days could have been interpretted as yield
aone propagation} but were clearly a'resuit of the atop—go
excavation of the bench, when exam;ned together with the
Convergence Solution forecast. These two §umps were measured
wnem the oencn was more tnan three tunnel diameters beyond
the monitoring station and nould not likely have been
attrlbuted .to the excavatlon activity without the aid of the
Convergence Solytion. ThlS clearly demonstrates the
1nadequacy of the convergence rate limit as cr1ter1a for
support decisions (e. g., Arlberg Tunnel) as will be
discussed in_Section 6.4. | .

It there 1s more than “one monitoring location in the
same rock type along a tunnel, the‘parameters determined, at
the first location could be used to forecast'the,convergence
 curve anticipated at subsequent locations before any
- measurements are tanen. Thus, a change in behavior from

previous locations could be identified within the first few

measurements,

\ -
ULTIMATE CONVERGENCE

The ultimate Convergence can be'estimated once all
tnree parameters (X, T and A *)- have been‘determlned Thls is
the ultimate convergence that would occur if no add1t10nal
 supports‘were added to the tunnel. It can be estimateq with
the three curve f1tt1ng parameters, and the latest
convergence measurement. For the data shown 1n Fig. 6.1'the
extrapolation of the'ultlmate roof dlsplacement is 790mm,
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based on %ﬁ? spldcement of 720mm at 191 days. The
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. i . . : .
calculatm@%g to obtain this estimate are given below. In

£

. y .
this example, it 1s roof diﬁplacement,_raﬁhér than

convergence that will be calculated, but it is calculated in:
. . . /

the same manner as convergence.

i

Example calculation: -

- From Fig. 5.6, the roof displacement. at 191 days 1is
720mm.
- Average distance of three faces from station-at 191

days is 60m,

—\Pa;ameters for roof data, Station A, are:

R/a=4.0 (after propagatioh);JA*f0.4; and T¥1.Q days.
- The convergence after the face for an unsupporfed

tunrel is described by -EBqn 3.2 as follows:

Clx,t) = [Qy + ;. Ci(x)IC [1+aCa(t)] - Egn 3.2

‘Substituting the ab?ve guantities in Egn 3.2 yields:

720mm = [0.50 * 0.50(0.94)1¢__[1 + 0.4(0.79)]
, C,. = 564mm/ | .
Hence; -/

.C o1, = C _ + (ah)cC

ult X Xo —
564mm + (0.4 fy64mm

79Qmm

ult
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GUIDANCE FOR “SUPPORT DECISIONS

The Convergence Solution can also be'usea to guide
decxslons regarding the type of support that should be
1nstalled and the opt imum 1nstallatlon locatlon. This can be
accompllshed by examining the impact that variations in
support type, and location have‘on the convergence, once the
parameters that characterize the response of the rock‘mass\

have been determined. The  effect that concrete liners of

~various thicknesses have on both the convergence and

‘an excellent indicator of support effectiveness.

.

convergence rate curves is shown in Figure 6.2. At first

sight it can be”seen‘that the hormalized.eonyergence rate is
The curues in Fig, 6.2 depict the response of the rock

mass at the Enasan Tunnel to an'"idealized" eXcavation, with

all of the stoppages e11m1nated (see Chapter 5).

expected Fig. 6.2 shows that an 1ncrease in liner thlckness

causes a downward translation of the convergence rate curve,

and hence a lower convergence. *he eiieef/that a varlatlon

"in the 1nstallat10n locaticon has on the convergence curves

from the same idealized excavation is shown in Flgure 6.3.

it

This f1gure shows the . 1nterest1ng fesult that all of the
convergence rate curves eventually merge 1nto one curve
irrelevant of their respective 1nstallat10n locatlons. This
has implications for the presshre build-up ‘in the liner, as

it is proportional to the deformation of the. 1iner.'The‘

:ultlmate rate of pressure 1ncrease in® the llner is

1dentﬁca1 1ndependent of 1nsta11at1on locatlon. Only the

N [y



initial load indrement depends on the . locatlon of the -
. \

1nstallatlon peint. Th1s shows that 11n1ng pressure

178

extrapglatlons, based on the initial load build up must be

erroneous.

The ultimate crlvergence and liping pressure caused by

eaci. of the & support cases shown in Figs 6.2 and 6.3 are

summarized'below:

Liner | o R

'ts* .xs+ Tnickness' Cult, Ci(ult)++ Pliner
(days) (m) (mm) (mm) ' (mm) (MPa)

54 12 50 937 s 1.3

54 12 200 889 214 187

54 12 . 500 . 873 s.1 " 2.05

41 - 500 © - 792 12,97 2.9 %

60 20 500 892 B2 . 1.85

80 40 500 - 932 C6.dT - 1.44

* Time of liner installation.
+ Distance between excavation 'and liner installation.
++ Ultimate convergence ‘of liner. o ’

Thus, when the Convergence Solutlon 1s used 1n the

~above manner, the ch01ce of support type, and 1nstallat10n

locatlon can be f1ne tuned to achdeve the desxred effect on

-

the convergence. In addltlon, the ultimate pressure that the:

support would experlence can be calculated to ensure that

the support has adequate strength At thlS time, the desired

v
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factor of safety for the'liner can Be evaluated an8 ensured.

EVALUATION OF SUPPORT PERFORMANCE -

.The predlctlon of the influence that a glven support
should have on 'the convergence (and convergence rate) curve
can be used as a ba51s to evaluate the performance of a

support after it is instalied. This can. be especially useful
. B ‘ ‘A‘,:\;\ , , ‘

for rock reinforcing supports such ds rock bogts,;wﬁere the

N . ." . . . ~ 0, l,“" . .

supporting effect is difficult to quantify Stherwise. An

example of this application of the»Convergence Solution was

given in Chapter 5, where the effectiveness of additional
~rockpbolts that were instailed in the Enasan Tunnel to .

combat the exce551ve convergence was examlned Most of the

- (

addltlonal rock bolts (23 of 27) were 1nstalled at 82 and 98
days-(see~Flg.‘ .1) which both correspond'to 54 days in the

"ideglized" extavation (as both times were in one long

excavation stoppage). The effect that concrete liners of
- - /‘g .

varving thickness, installed at.54_days,_vou1d have onvthe'

convergence rate curve is shown in Fig. 6.2, An‘examination

'5} Fig ‘6. 'reveals no notlceable change in the convergence

_rate curve after the add1t10na1 bolts have been 1nstalled

By compaglng Figs 6 1 and 6 2 it appears that ‘the net effect

that the addltlonal bolts had on the convergence rate curve

‘ was less fhan that produced by a 50mm concreﬁk llner. Any

L

dev1atlon from the convergence rate curve késs than that

produced by a 50mm concrete llner would be lost 1n the n01se
of the data caused by the varlable excavat1on hlstory
‘ : _ -
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6.4(Advantages of Convergence.Solution

There are seyeral distinct'advantages in using the
Convergence Solution instead of convergence rate criteria to
make support decisions. As-mentioneo earlier, atlthe Arlbergi
Tunnel a max1mum tolerable convergence rate was defined- that
indicated whether or not bolting was reguired,_and a_lover
‘rate limit was set. to andﬁcate when the final liner,could be
installed. |

The use of an absolute, rather than normalized
convergence rate,'is not- a goOd‘indicator of the behavior of
the rock,mass. The magnitnde of'the convergence rate 1is
inflnenced by both the geOmetry of the opening, and‘the
or&entation at which the,convergence measurements are taken,
as was demonstrated in Chapter 5.(Thus,~a section that
contained excessive yielding could produce convergen#e rates
that exceed the rate limit when measured in one orientation,
and rates that are below the 1imrﬁ'when measured in a
different orientation. The‘Convergence Solution:dealé with
normallzed convergence rates, that are 1ndependent of the
magn1tude of . convergence, which ellmlnates these 1nfluences.;
'The behav1or of the rock~mass is then characterazed by'the
shape of the convergence rate curvee’rather than thelr |

n

,'magnltude. T ~ - . ST

The other major problem w1th the convergence rate 11m1t
"crlterlon is that 1t 1gnores the effect that the excavatlon /
sequence»has onathe convergence.hlf the rate of exqavatlon"

wvaries, or the excavation is done in sequential stages,
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jumps and drops are produced in fhe~convergence'rate‘curvé
that render a convergence ra;e criterion ambiguousf'Tbe
max imum rate limit could ge exceeded due to an incrgase in
excgvation’rate, or the éxfavaéion 5f a suBséduenE stage,
rather than by ﬁnstable4béhavidr of ‘the rock mass that would
require additional support. Also; the lower rate criterion
.éould be met‘temporarily during a slower excavation rate and
then exceeded when the excavation réte.ﬁncreases. This would
suggeéf that.;he finai liner could be installed, when ip
would actually be too early. This is espécially true if the
influence of the ekca;ation face ekténds far from thé'face,
as with heavily yielding ground. However, the Cohvergence
Soluti&h fpliy;accounts for the excavation hiséory which
permits the identification of changes in the convergence

‘measurements . that’ actually merit concern.

e
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Flgure 6 2 Convergence Solutlon Curves Liner Thlckness

Var1ed
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Description of Computer Program SAFE.

SAFE (Soil Anélysis by Finite Element) is a computer
program developed at the University of Alberta to analyze
deformation of scil and (wéak) rock structures. The program
1s written in FORTRAN IV language and has ‘-been installed in
différent types of computer systems including the IBM
system, the Amdahl MTS system and the CDC Cyber 205 vector
computer system. The program has been applied in analyzing a
wide variety bf geotechnical problems such as excavation,
dam, shaft and tun6e1 constructioné; The initial development
of the program was to analyze £he post peak deformation of
strain soften}ng soil. . The program has now been extended td
include 2 and 3 dimensional analyses ﬁsing total and
éffective stress formulations for fully undrained and
drained conditions. A variety of non-linear elastic and

t “ “
plastic models with associated and non-associated flow rules
are also available. The following is a list of the main

’

features of thevprogram SAFE.

>

“

Basic Formulation
- Displacement finite element formulation assuming

small strain and small deformation.

( “’»
Element Types \\‘,“
- Two dimensional: 3 to 6 nodes triangulér,-é‘to 8

nodes rectangular
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- Three dimensional: 8 to 20 nodes solid elements

-

Type of Analysis
- Plane stress, plane strain, axisymmetric and three

"dimensional analysis.

Material Models
1. Linear elastic model.
2. Non-linear elastic hyperbolic.model.
3. Elastic perfectly or brittle plastic‘model using
von-Mises, Tresca, Drucker-Prager, and Mohr-Coulomb

yield criteria with associated or non-associated flow

g

rule.
4. Elastic plastic strain hardehing and softening
‘(weakening) model.

5. Elastic hyperbolic Softening‘model.

x Drainage Condition _ T "
l' ' 1. Total stress analysis. . ,

2. Fully undrained effective stress analygis.

3. Fully drained effective stress analysis.

o

4

Standard Features ‘ ' .
1. Prescribed concentrated point force or distributed
. pressure boundary condltlon.

2., Prescribed dlsplacement boundary condition.

3. Changlng material propertles at any stage of the
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analysis.

4. Pfqgram restart at any stage of the analysis.
5. Néwton Raphson and Modified Newton Raphson
iterative scheme for non-lihea analysisl

6. Choice of 2x2, 3x3, 2x2x2, and 3x3x3 inﬁegration

scheme.,

7. Load increment subdivision for non-linear ,

analysis.

Special Features
1. Element birth and death.option.

. 2. Automatic application of stress relief due to

excavation,
i
3. Skyline and extended skyline matrix equation

solver.,

4, Choice of stress calculation for non-linear
0.

analysis:

o

(i) Euler forward integration scheme;
(ii) Improved Euler scheme; and

(iii) Runge-Kutta scheme.
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Derivation of Equation 3.6.

The manipulations that were performed to obtain Egn 3.6

from Eqn 3.5 are presented here. Eqn:3.6 deécribes‘the

N

convergence that occurs 1in a tunnel after the installation

of a support.

Substituting ‘these components into Eqn 3.5, gives:

Clx,t) = [Q,+0:C, (x)-5=2-(Cx,t)=C_) J[C, _*AC;(t)]

¥

P (C(x,thH)

Clx,t) = [Q:+Q:C(x)- -2 JlC, *AC (1))
. . o 3,
. . Acy e
where: PS(C(x,t)) = K57§_7 !
; ACl = C(x,t) - CS; and
Cs = Convergence at time of liner ..
installation. ‘
v

-

< . K

2apo

. Collecting like terms:

©LQ1#QaC (x)+KC 1TC, _+AC; (£)]

C(x,t)

1+ K(‘CXOD*'ACth)) - ,\

'S

where: K =

-~
{

(@)

2ap T .

192 R

Egn 3.5

Egn B.1

Egn 3.6.

P
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Documentation of Computer Program CONRATE

The computer program CONRATE calculates convergence vs
-
time, and normalized convergence rate vs time curves

according to the final form of the Convergence Solution,

given by Eguations 3.8, 3.9 and 3,11. When there is no
tunnel support, the Converéence Solution reduces to the form
given b; Equations 3.1 and 3.2. The‘normélized convefgence
rate curves are calculated,wiﬁh Equationé 4.7 and 4.8 for
:the'no support case, and Equations G.6, G.7 and G.8 for the
sﬁpported case, '

Th55~program 1s gapable of modelliing the following
conditions:
- The behavior éhead 6f the tunnel f%ge.
- The effect of a tuhnel support.
o Sequthially staqu excavations.
- Variable exéavation rates. - .

- Yield zone propagation, according to the method outlined

in Appendix H.

S : 193
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C.1 Program Listing

L

' CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC‘

cce : cce
cce "CONRATE" " cce
cce CALCULATES CONVERGENCE VS TIME cce
cce 'AND NORMALIZED CONVERGENCE RATE cce
cce VS TIME CURVES ACCORDING TO THE cce
ccec . CONVERGENCE SOLUTION cce
cce \ cce

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'

3

\

DIMENSION VA(40,3),TI(40),TF(40),BIGT(20),CON(10,300),

* CONR(10,300), TT(300) ASTAR(ZO) TINC (4 0),

7, o Q1(5) Q2(5) Q(S) TFACE(S) XFACE(S)

* E } XBAR(5),A(5),BIGXP(40), RP(40) , CKF( 40) ,

s RPC (40),XSUP(5),CS(5),QK(5) B
Lo 4 |

List of Input Parameters . : l

NH - Number of headings .in sequential excavation.
NP - Number of parameter sets input.

NS - Number of constant velocity intetvals.

TOFF - Offset of initial time.

I

Q1,02 Parameters in Convergence Solution.
{0 - Ratio of time-independent convergence
of 1st to other headings.
Time at which face passes monitoring station.
Position of the monitoring station along
the tunnel axis.
A - Radius

'

TFACE
XFACE

va - Veloc1ty of excavatlon
TI - Time at beglnnlng of constant excavation
velocity section. ¥
TF - Time at end of constant excavatlon
v ' veloc1ty section,
W TINC - Time increment.
RP - Ratio of propagated to non- propagated A
o plastic radius. .
y RPC . - Ratio of propagated to no&»propagated CXF '
% BIGXR - R/a
BIGT ~- T Lol ; S
. ASTAR - A=x N

‘TNORM — Convergence rate. at - thlS time used to

normalize all othr rates.

FKS - .

F H\Numerlcal factor for supported tunnel
calculation: ,

10. for K<0,002

10.-30. for 0. 002<K<0 02

30. for K>0.02 . -

nnn

NONOOAANNANNNNANNANONOACO0AAOAAOANAAO

F
F
F
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. K s
Time of support installation.
Position along tunnel axis at which
support 1s installed. -
QK - Parameter Qk
CXF Ultima:é Time-independent Convergence.

TSUP
XSUP

/
Read Input Data/

READ(5, 100)NP NS,N&,TOFF
100 FORMAT(313,F8/.4)
. DO 2 K=1,NH
2 JREAD(5,101) Q1(K),Q2(K),Q(K), TFACE(K),
* 'XFACE(K),A(K),CXF(K)
101 FORMAT(7F8.4)
DO 3 1=1,NS

READ(5,102) (Vv (1 J),J=1,NH),TI(I),TF(1),TINC(I),
* . RpP IlLRPC(I)
Ti(I) = TI(1) - TOFF
TF(I) = TF(I1) - TOFF s
IF(TI(I).LT.0,) TI(I)=0
.3 IF(TF(1).LT.0.) TF(I)=0.
102 FORMAT(8F10. 4)
J =0
5.3 = J + 1 &
- I1 =0
CC = 0.
CSS = 0
CPR = 0.
READ(5, 103)BIGXR,BIGT(JJ), ASTAR(JJ) TNORM, FKS,F, TSUP
READ(S5, 104)(XSUP(K) ,OK(K), ,NH)

103.FORMAT(8F12 5)
104 FORMAT(2F12.5)
IF(FKS.GT.0.0) GO TO 6
TSUP = 1000000.
DO 4 K=1,NH ' é) _ B
QK(K) = 0.0 o

4.XSUP(K)_= 1000000.

6 J = J+1
CNORM = 1,
IFLAG = -1

7T = 0.
LL = 1

DO 58 M = 1,NS
'S = TI(M)

. DO 8 K=1,NH ‘ N .
SIXBAR(K) = 0. S o , ' \d
_ M-1 . '

IF(MM EQ.0)- GO TO 1,
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XBAR(K) = XBAR(K)+VA(I,K)*(TF(I)-TI(1))

IF(iFLAG.LT.1) GO TO 20

alculates, and Superimposes Convergence
. )

CNV = 0.

DO 30 K=1,NH

BIGX = BIGXR * 0.84 x A(K) *RP(M)
FT = 1./(1.+T/BIGT(JJ))
c2 = 1. - FT**0.3 -
Pre-Face Convergence
IF(T.GE TFACE(K))GO TO 21 4
FPX = 1./(1.+(XFACE(K)-(XBAR(K)+VA(M,K)*(T- TS)))/BIGX)
CPF = pr**1 2 »
FKP = 1./(1.+(XSUP(K) -(XBAR(K)+VA(M,K)*(T-TS)))/BIGX)
ALPHA = 1. + A(K)/(XSUP(K) -XFACE(K)) :
CPKP = FKP**ALPHA .
CXX = (Q1(K)*CPF -‘CPKP*QK(K)) * CXF(K)
CT = (Q1(K)*CPF - CPKP*QK(K))*CXF( K)*ASTAR(JJ)*C2
C =CXX + CT = »
GO TO 30 / o
Post-Face, Pre-Support Convergence - -
21 FX = 1./(1.+( (XBAR(K)+VA(M K)*(T TS).) - XFACE(K))/BIGX)
C1 = 1. - FX**2, _ W
F(T-TSUP) 23,28i22 . : et
22 IF(TPRE.GE.TSUP) G&’To 24 TR
T = TSUP . e . e S
GO TOI 10 . : “ \7 .
23 FKP = "1./(F. +(XSUP(K) (XBAR(K)+VA(M K)*(T- TS)))/EIG§
ALPHA = 1. + A(K)/( XSUP(K) -XFACE(K)) N e
CPKP ‘= FKP**ALPHA ' A A
, CXX = (Q1(K) + Q2(K)*C1 - CPKP*QK(K))*CXF( ) A

CT = CXX * ASTAR(JJ) * C2 : : S EUR SR
C = CXX + CT - , T

IF(T.NE.TSUP) GO TO 30 . ’

CSS = €SS + C ' ) ‘ S

CC = CC + C

GO TO 30

- Post- Support Cohwvergence * AN _
34 FKM = 1./(1.+((XBAR(K)+VA (M, K) % (T-TS) ) ~XSUP (K ) }/BI1GK)

*

ALPHA = 1., + A(K)/(XSUP(K) - XFACE(K)) L ,
CPKM = FKM**ALPHA - e
~(Q1(K) - CPKM*QK(K) + C1#Q2(K) - FKS*(CC -7C8s)) o
4*CXF(K)*(1 T+ ASTAR(JJ)*CZ)
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CNV = ,CNV + C #*RPC(M) - B .

F(T.LE.TSUP.OR.TPRE.LT.TSUP) GO TO 20

CD = CNV - CC .
IF(CD.GE.CDP) GO TO 20 ' - ’

CDP = CD

IF(CD.GT.-0.002.AND.CD.LT.0.002) GO TO 20 o
CC = CC+CD/F oo
GO TO 10

,Calculates, and Superimposes Convergence Rates

20

-

p

CTR = 0.

DO 35 K=1,NH ‘ )
S .

BIGX = BIGXR x 0. 84 * A(K) *RP(M)
FT = 1./(1.+T/BIGT(JJ)) .
c2 = 1, - FT**O.3 ’

C2P = 0.3/BIGT(JJ)*FT*%1.3
re-Face Convergence Rate

IF(T.GE.TFACE(K))GO TO 31

FPX = 1,/(1. +(XFACE(K) (XBAR(K)+VA(M K)*{(T- TS)))/BIGX
CPF = FPX**1 2 ,
CPFP = 1.2%xVA(M,K)/BIGX*FPX**2,2

" FKP = 1./( +(xsup(x) - (XBAR(K)+VA(M,K)*(T- TS)))/BIGX)

-3

32

‘33

ALPHA = 1. + A(K)/(XSUP(K) -XFACE(K)) '
CPKP = FKP#**ALPHA )
CPKPP = VA(M,K)/BIGX*ALPHA*FKP** (ALPHA+1.)
C = QU(K)*CPFP + Q1(K)*ASTAR(JJ)*CPFPx*C2
*. + Q1(K)*ASTAR(JJ)*CPF*C2P - QK(K)*CPKPP
* - QK(K)*ASTAR(JJ)*CPKPP*C2

x - QK(K)*ASTAR(JJ)*CPKP*CZP

GO TO 35

Post-Face, Pre-Support Convergénce‘Raté‘

FX = 1./(1.+((XBAR(K)+VA(M,K) *(T-TS))- XFACE(K))/BIGX
Cl = 1. - FX¥x2, -
C1P = 2.*VA(M, K)/BIGX*FX**3

IF(T-TSUP) 33,33,32

IF (TPRE.GE.TSUP) GO TO 34

T = TSUP
GO TO 20 -
"FKP = 1./(1. +(XSUP(K) —(XBAR(K)+VA(M K) % (T- TS)))/BIGX)

ALPHA =,1. + A(K)/(XSUP(K) XFACE(K))
CPKP = FKP**ALPHA :
cpxpp‘= VA(M, K)/BIGX*ALPHA*FKP**(ALPHA+1 )
Ql(K)*ASTAR(JJ)*C2P + Q2(K)*C1p
"+ Q2(K) *ASTAR(JJIf*C1P*C2 + Q2(K)*C1%C2P*ASTAR(JJ)
* - QK(K)*CPKPP - QK(K)*ASTAR(JJ)*CPKPP*CZ



34 FKM = 1./(1. +((XBAR(K)+VA(M,K)*(T-TS)

35 CTR

17

40

46

48

50

52

54

X

- QK(K)*ASTAR(JJ)*CPKP*C2P
GO TO 35

Post- Support Convergence Rate

ELEE K B

) -XSUP(K)
ALPHA = 1, + A(K)/(XSUP(K) - XfACE(K))
CPKM = FKM**ALPHA

CPKMP = VA(M,K)/BIGX*ALPHA*FKM#*x (ALPHA+1.)
C Q?(K)*ASTAR(JJ)*C2P + Q2(K)xC1P

.+ Q2(K)*C1%ASTAR(JJ) *C2P
Q2(K)*C1P*ASTAR(JJ)*C2 + QK(K)*CPKMP
QK (K)*CPKM*&ASTAR(JJ) *C2p-

OK (K) *CPRMP*ASTAR (JJF*C2 , -
FKS*CPR*CXF(K) - FKS*CNV#ASTAR(JJ) *C2P
FKS*CPR*CXF(K)*ASTAR(JJ)*C2
+ FKS*CSS*ASTAR(JJ)*CZP B

P+ o+

CTR + C/CNORM*Q(K)*RPC(M) o

IF(T.NE.TSUP) GO TO 17

CPR = CTR*CNORM

GO TO 40

IF(T.LE.TSUP.OR.TPRE,LT.TSUP) GO TO 40
CD = CPR - CTR*CNORM[
IF(CD.GE.CDD) GO TO 40 .
CDD = CD |,

© 198

) /BIGX)

IF(CD.GT.-0. oooooooow AND.CD.LT.O. 000000001) GO TO 40

CPR = CPR- CD/F

GO TO 20
CDD = 1000.
CDP = 1000.

IF(IFLAG) 50,46,48

IF(LL.EQ.2) GO TO 48

CON(J,I1) = CNV

CNORM
IFLAG =
GO TO 7 -

CTR
1

IT = -11+]
CONR(J,11) = CTR

‘O: :

TT(II) = T+TOFF
IF(LL.EQ.2) GO TO 58
TPRE = T

T= T+TINC(M)

IF(T.GT.TFACE(K) .AND.TPRE.LT. TFACE(K)) T TFACE(

IF(IFLAG) 52,54,54
IF(T LT. TNORM) GO TO 54

T = TNORM ' -

IFLAG = 0 : ,
IF(T.LT. TF(M)) GO TO- 11 .
LL = 2 '
T = TF(M)

)

o Ny
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GO .TO 11
58 LL = 1
‘ 0

OUTPUT FOR PLOTTING ON DEVICES #6 & #7

DEVICE #6 - CONVERGENCE VS TIME PLOT

DEVICE #7 - NORMALIZED CONVERGENCE RATE

VS TIME PLOT :
OUTPUT 1S IN THE FORMAT ACCEPTED BY
THE PLOTTING ROUTINE PLQTIT
NDATA = 11
WRITE(6,200) NDATA
200 FORMAT(13,',") :
WRITE(6,202) (TT(I) CON(J 1),1=1,NDATA)
202 FORMAT(F8.2,',',F11.6," ')
WRITE(7,200) NDATA .
WRITE(7,203) (TT(I),CONR(J,I),I=1,NDATA)
203 FORMAT(F8.2,',',F13.9,"',")
OUTPUT TABLE OF ALL VALUES
WRITE(8,500)BIGXR,BIGT(JJ),ASTAR(JJ)
.500 FORMAT('1‘/ Calculatlon of Convergence Solution'/
* for the follow1ng parameters //
“*' R/a = ',F5. 3 3x 'T = ',F5.3,3X,'Ax = ' ,F5.3//)
WRITE(S8, 501) '

501 FORMAT(' - Time Convergence - Normalized'/

* ! (days) (mm) - Convergence Rate'/)
DO 60 L=1,NDATA |, “

60 WRITE(8,503)TT(L),CON(J,L),CONR(J,L)

503 FORMAT(1X F8.3,2X, F11 5,5X,F11.7)

IF(J.LT.NP) GO TO 5

STOP
END
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C.2 Sample “Input
The sample input file listed below contains the

féllbwing conditions:

a = 5.0m; advancé velocity = 5.0m/day;

face at t=2.0 days; ' liner installed at 3.0 days;
. R/a{;'1.0;. ‘T=1.0 days; A*=1.0; me=100.0mm

Q, = 0.27; Q. = 0.73;

Supp?rt Stiffnéss,AK =.O;O10/mm;  Qk = 0.05;

Numerical Factor, F = 15.;
Converqgncé rates are normalized to é(faee);
Thére is no yield zone ,‘and there jg no yield
mzone propagation at a later stage.

.

&

The format required for input into Device ¥s 1s as folloQS:

]

1,1,1,0.0, .
0.27,0.73,1,0,2.0,10.0,5.0,100.0,
5.0,0.0,10.0,0.5,1.0,1.0,
1.0,1.0,1.6,2.0,0.0100,15.,3.0,
15.0,0.050,

\
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. TCK3 Sample Outp&t h o )

“§§~ The buLput table from Dev1ce #8 1s as follows:

: e
¥¥4galculation of Convergence Solution 5 ¢
%?é%r the followlng parameters
VYR/a = 1.000 T = 1.000 Ax - 1.000
$#;& , 4 ’ ‘ v
% Time Convergence Normalizéa
“ (days) f 3 (mm) Conyergence Rate
0.0 6201992 0.0193971 .
" 0.500 8.448@5 0.0253095 »
1.000 - .99578 0.0404739
1.500 5 18 32201, 0.0797523
- 2.000 .  33.24631 . 1.0000000
2.500 - ' 91,07471 . 0.2531484 " .
3.000 106593271 0.0455386 ” A
3,500 ° 112.80774 . 0 ' 0.0350459 l - '
4.000 - 115.78442 .+ , 040204822
" 4.500 117.65512 0.0138059 .
. 5..000, 118.97244 - 0.0101458 . & *°
5.500°  119.96948" - 0.0079007 s r
6.000 . 120.76233 0.0064107
t« 6.500 121.41557 0.0053621
. 7.000 121.96840 - 4 0.0045899
7.500 @ 122.44600 . 0.0040004
8.000 122.86530 0.0035373
8.500 123.23813 0.0031645
T °9.000 123,57349 0.0028586 s
©9.500 123.87769 0.0026032
110,000 124,15549 0.0023870

*
o«
T,

1":‘, . Ve

Devices 6 and 7 contain convergence and gﬁ%malizgd

convergencée rate vs time curves, respectively, that are in

'rthe format for the plotting routine "PLOTIT".
. ‘ . . .
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APPENDIX D

Excavation Steps in Finite Element Analyses

“Thé procedure that was fbllowed in the steps of each of
the finite element analyses presented in Chapter three are
‘summarized in this section. A diagram of the mesh is given
in Fig: D.1 to aid.in'the description_of the excavation
steps. This is an enlargement of a portion of the complete
mesh shown in Fig. 3.4. ' )

There‘ié.an end effect at the left side boundary that
hds an influence on the con@ergence results-up to Column 8,

o,

shown in Fig. D.1. Thus, only the convergence from Column 9

-

on -is valid. ThlS corresponds to a distance after the face
of three radii. It is desirable to extend the range of valid
, results to at least four radii aftér khe face;bto model as
ﬁuch of the near face behaviorAas possible. This can g%
accomplfshed by excaQating up fo column 19. However, the
optimgm'position of the face is at column 16f whére.the

- finest pqrtién of the mesh ﬁodels theﬂregioﬁ’immediately
after the face.

The procedure outlined below satiéfies these two
cr*terla, produc1ng valldgconvergence results up to a
dlstance of 4. 5 rad11 from the face, and positidning the
face at Column»16 (Station 0). -

"The final convergence results that have been used to

produce the convergence curves in Appendix E are composed of

the following componeﬂys: -
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® The convergence from ahead of the face to 3.0 radii

after the face is given by Columns 9 to 2! (not shown

in Fig B.1) when the face is at Station 0.

. ® The convergence from 3.0 to 3.5 radii after the

face 1s given by the convergence of Column 9 when

face 1s at Station -2.5.

® The convergence from 3.5 to 4.0 radii after the

face is given by the convergence of Column 9. when
face is at Station -5.0.

e The cohvergence from 4.0 to 4.5 radii after the
face is given by the convergence‘of Column 9 when

face is at Station -7.5.

the

t he

t-he

This procedure was followed for each of the analyses,

to extend the valid range of convergence results to 4.5

VO

radii after the face. The sequences of excavation and lining

placement for each of the cases analyzed are outlined

separately below.

A

Unlined Tunnel

:Stép 15

- Step 2:

Step 3:

Apply a pressure of 12.5 MPa to the top and left -

to 16.

side boundaries.
Change the ieftqude and ﬁop boundaries from no
diSplacement restrictions to no hbnizontél'
displacements pefmitted;"4

* .Eicavate elements within the-tunnel from Columns 1



205

Step 4: Excavate elements in Column 17.
Step 5: Excavate elements in Column 18. .
Step 6: Excavate elements in Column 19.

* The convergence results are derived from tpe position of
the face af this étep. |
" Lined Tunnel; Support Delay of 0.25 Radii. ‘
Step 1: Appl} a pressure of 15.5 MPa to,thé top and left
side bourdaries. -
Step 2: Change the left side and top boundaries from no
| displacement restrictions to no horizontal
displacements pérmitted. |
Step 3: Excavate elements in tolumn 1.
Step 4: Excavate elements in Column 2 and activate liner
- element in Column 1.

Step 5:  Excavate elements in Column 3 and activate liner

element in Column- 2.
and so on, until: Step 14: ’\ 
Excavate élementg in Column 12 and éétiyatga;@her
element 1in Coiumn 1. | )
Step 15: Excavate elements in Columns 13 and 54, and’
' éctivate‘liner-element in Column 12,
Step 16;* Excavate elements in Columns i5 ana 16, and
'éctivéte liner element in Columns 13 and 14.
Step }7: Excavate é;ements in Column 17 and activate liner

‘element in Columﬁs.15 and_16. , N
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.Step 18:+ Excavate elements in Column 18 and activate liner
element in Column 17,
Step 19: Excavate elements in Column 19 and activate liner

element in Column 18.

. el
! ~N

* The convergence results are derived from the position of

>
»

the face at this s:tep.

Lined Tunnel; Suppoft Delay of 0.75 Raéii.

Step 1: ‘ Apply a pressure of 12.5 MPa to the top and left
side boundariesl

Step 2: - Change the left side and top boundaries from no
displacement restrictions to no horizontal
displacements permitted.

Step 3: Excavate elements in Column 1.

Step 4:  Excavate elements invColumn 2 and activate liner
elgment’in>Columﬁ 1.

Step 5 Excavate elements in Column 3 and aétivate liner
élement‘in Column 2.

‘and so on, until: Step 132

Excavate elements in Column 12 and activate liner

~element in Column110. |

- Step 14: éxcavate eléments in Columns 13 and 14, and
activate liner‘élement in Column 11,

Step 15:* Excavate elements in Colﬁmns 15 ana 16; aQ§ 

»

activate liner element id Column 12.

Step 16: Excavate elements in Column 17 and activate liner



Step 17:

Step 18:

L/

207

element in Columns 13 and 14.

Excavate elements in Column 18 and activate liner
element in Columns 15 and 16. |
Excavate elements in Column .19 and activate liner

element -1in Column 17.

* The convergence results are derived from the position of

the face at this step.

Lined Tennel; Support Delay of 1.25 Radii. -

Step 1:
"Step 2:
Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

Apply a pressure of 12.5 MPa to the top and left

side boundaries.
Changé the left $ide and top boundaries from no
displacement restrictions to no horizontal

displacements permitted.

B
.

Excavate elements in Columns 1 and 2.
Excavate elements in Column 3 and activate liner
elemeht in Column 1.

Excavate elements in»ColumHS'4_and 5, and activate

liner element in Column 2.

Excavate elements in Column 6 and activate liner

€lement in Column-3.

Excavate elements-in Column 7 and attivate'liner,
. o . . - ) ) R ) , ’

element in Column 4. Coe T : <

.and so on} until: Step 12: f o

Excavate elements in Column 12 and activate liner

-

“element in Column 9‘f



- Step
Step
Step
‘Step

Step

13:

15:

16:

17:

208

Excavate elements 1in Columns 13 and 14, and
activate liner element in Column 10.
Excavate elementé in Columns 15 and 16, and
activate liner element in Column 11.

Excavate elements in Column 17 and activate liner

- element in Column 12,

-

Excavate elgments in Column 18 and activate liner
element in Columns 13 and 14,

Excavate elements in Column 19 and activate liner

element in Columns 15 and 16.

/

:

* The convergence results are derived from the position of

the face at this step.

Lined Tunnel; Support Delay of 1.75 Radii.

Step

te

vStép 2:

Step 3:

Step 4:

~ Step 5:

. Step 6:

Apply a pressure of 12.5 MPa to the top and left

~
-~

- 1
side boundaries.

’

Change the left side and top boundaries from no.

displacement restrictions to no horizontal

displacements permitted.

Excavate elements in Columns 1 and 2.

N

Excavate,élemenﬁs in Coluhn 3 and activate'iiner“
. , . ” ~ .

éleméntﬁin Column ft. a ' ~

Ekcavaté elemehts in Columns 4, 5 and 6, and

activate iiner elemen;'ih Column 2.';'

Excavate elementS'ih‘Column'7 and activate liner -

‘eiement in Column 3.
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Step 1: Excavate elements in Column 8 and activate liner
element in Column 4.

and so on, until: Step '11:

Excavate elements in Column 12 and activate liner

J

Step 12: Excavate elements in Columns 13 and 14, and

element in Column 8.

activate liner elément in Column 9. |

Sgep 13; Excavate elements in Columns 15 and 16, and
activate liner element in Column 10. . A
Stéﬁ'14:*,Exqa§ate elements . in Coluﬁn 17 and activate liner
4 element in Column 11. |
Step 15: Excavate elements in Column 18 and activate liner
| element in Column 12.

Step 16: Excavate elements in Column 19 and activate liner

element in Columns 13 and 14,

* The convergence results are derived from the position of

the face at this step.



~ APPENDIX E

Convergence Curves from Finite Element Anal¥ses

The convefgence curves produced by fhe finite element
analyses of the five linéd tunnel cases presented in Chapter
three are given in Figs E.1 to E.5. Each of these figures
shows the data points ‘cdnnected by the solid lines for the
unlined tunnel, and four different‘support'delays for the
“lined tunnel. The dashed curves are visﬁaliy fitted smoothed
curves that approximate each of the cases. Figures E.6 to
E.10 confain oniy the smoothed curves of the five lined

tunnel cases presented in Figs E.1! to E.5,

210 R !
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APPENDIX F
Plots of Radial Strain vs Time; Excavation Simulatioq

Test 7.13

The radial strain vs time plots fér two of the
measuring stations of Test MC—7.13,a;e’contained here.
Figuges F.1 and F.2 display the radial strain curves for the
extensometers of Statiorn 81. The results from station 106

are given in Figs F.3 and F.4.

#5
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APPENDIX §

Adaptation of Convergence Solultion for a Supported Tunnel.

The method of adapting the Convergence Solution for a
supported tunnel from expressing cbnvergence to expressing
normalized convergence rate is summarized below. The purpose
of this exercize is to adapt the Solution to fit data
presented 'in the normalized convergence rate format. A
similar manipultaion for an unsﬁpported tunnel 1is given in
‘Chapter four. The Convergence Solution for the supported
case is given by Egns 3. §%/3 9 and 3.11., There are three
steps involved in converting these‘eduations from predicting
convergence to pfedicting normalizedtconverQenceorate.

First, théy must be ex?reésed as‘a function of time
alone> This is accomplished by substituting vxt |
(velocity*time) for x. If the excavation does not proceed
with constant velocity,. it mﬁst be divided into a.series of
constant velocity intervals. In this case, the following

substitution would be required:

where: X = = L + vit

<
1}

velbcity of ith constant velocif§ interval.
| | th

-
]

‘time at end of i interval.

226 . L
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. TN
Y
: N : th
This gives™the pdsition of the face in the n constant

velocity interval as a -function of time.
Second, these equations must be converted from
convergence to convergence rates. This is accomplished by

taking tlge first derivitive with respect to time, as

follows:

e Pre-face equation: b
‘ ) \“ .
. 1&& 5
: dc(t) : N s N
Clt) = =3~ = QiCL M)C, "+ 0.C (t)AC,(t)
. . _\\\ . ' a
- \ - 63
+ Q,Cpf(t)ACz(t) Qkpk+(t)cx®\\\ QP (E)AC, (t) *o
, \ %
€ ~ QP (t)AC,(t) \ \ Eqn G.1
) o " - \\ ,\m
\ {\, «
® Post-face, pre-support equation: \\\ :
. . , ’ . x\ ¥
o \

b dC t o A . o )

C(t) = %t—) = Q:ACz(t) + Q.Cy(t)C \

+‘Q2c,'(t_)Ac?;(t) + Q,Cy (t)AC, (t) - ngk“‘k(t)C*‘w'

TPy, (B)AC(E) - 0P ()AC.(8) Ean G.2.
; ' - e \

.

e Post-support equation:

C(E) = QiAC,(£) + Q:Cy(t)C,

.,‘._"»“_ T
e, :

e
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[y N 4

+ 02C, (£)AC,(t) + 0.C, (t)AC, (t) +50,P, _(t)C,
- QP (tAC. (1) + 0P, _(£)AC:(t) - KC(1)C

—KC(t)AC.Iz(t‘) - rKé(t)ACz(t) + KAc.:z(t)Csf. i Egn G.3

where: C f(t) = [ : - ]1‘2
PL xf—(x+Vt)
1 +_[ X ]
. 1.2v 1 2.2
/ C (t) = - [ 4 ]
~ pf X xf—()_("‘\_lt)
1+ [ X ] '
P
Cile) = 1 - [ — ” ‘
: C (xrve)mxg
. \ 1 + [ % ]
&
Cx(t) = %Y_[ l ' ']3
. , (X"'Vt);xE .o
e . 0.3 1 . 411.3 .\ : -
1+ 5 -
_T p o
A '; \\ .
o 1 jad’ @
[ S
. A
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4 !
8
v 1 , at 1
Pra(t) = gal SCIe T
o [=2 ]
x.
[
" 1 a
pk~(t? =1 (x+vt)—xs .]
RN SR
v 1 atl
Pk—(t) = xe { (x+vt)-x ]
- 1o+ 2]
. X
“ AJ

The final step is to normalize both equations to the
maximum convérgence rate; the maximum rate occurs at the
face in the second equation. Substituting t=tg into Egn G.2:

~ L 20,V 20,V ' k: '

Chax = % Cxe * % Acz(tf) + Q4AC, (tg)

QP t)C, - QP (t)AC, (t))

- Qkpk+(tf)AC;(tf) DT ‘ Eqn G.4 

?
0
L]

The. magnitude can be factored out of this equation as
- _ .

\ follows:.

\



NormaliJing equations G

® pPre-f
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_ 2Q2V 2Q2V * - ' L 3
Chax = Cxel™% * =% A Calty) + QA Calty)
. 0, - ‘
__—Pk*‘(tf) - Epk

*
Lepatc, ()

_pk+

2

/

/

|
ace eguation:
i

(t) + Cpf(t)A*Cz(t)

{

/é(t) _ Q1 '
j g = M (Cpf
max
/ .- Q, . Q, .
/ L DO _ 7k _ “k *
+ C f(t)A Cz(tz g Pk+ () g FPk+ (1A Ca(t)
0 . o
/ k x°
/ —,5Tpk+(t)A Co(t)] , |

[ :
[ ‘ -
® Post-face, pre-support eguation:

A*C,(t) + Cy(t)

/ c(t) S Q2%

/ -C M "0,
j max - . 0
' + Cy(t)a*c,(t) + C,(0)a%c (t) - Xp, (t)
/ , ‘ Q2 k+

Q . Q .
k * k B
Py (t)ACa(t) - 5P, (t)A cz(t)]‘ -
' -

i . bad —
i Q2
’ -

."
(tf)A Cz‘(tf)
Egn G.5

1, G.2 and G.3 to Egn G.5 yields:

Egn G.6

Egn G.7
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® Post-support eguation:

ct) Q2(Q1,*, L
: f MZ[QZA C,(t) + C,(t)
Cnax .- ; . ' Q) -
+ Ch(t)A C(t) + C,(t)AC,(t) + ——Pk_(t)
v Q2
Q ‘ . Q )
k * K * _ K .
- Q—zpk_r(t)/‘:\ C‘z(t) + Q_zp (t)Aa Cz(t) QZC(L)CX@’
K " DK o, K %o
ch(t)A C.(t) Q:C(t)A C,(t) + QZA C‘(t)CS]

Egn G.8

It is 1mportant to note that Egns G.6 and G.7 are
independent of magnitude; both the magnitude of ultimate

convergence (me), and the magnitude of the maximum

-~

convergence rate. However, Egn G.8 is not independent of
magnitude, but requires at least an estimate of C

X

Although these equations have been normalized to Cmax’ the

convergence rate at anytime could have been used,'and it
woulé\gtlll be 1ndepenéenévef magnltude Also, the solution
of Egn G.8 involves 1teratlon as C(t) appears on both 51des
‘of the equation. It has been presented this way because when
the Convergence Solution is expanded in Chapter 5 to model .

sequentlally staged excavatlons it needs to be calculated

in thlS manner.



APPENDIX H
Extension of Convergence Solution to Model Yield Zone

Propagation.

- The Convergence Solution has been extended to model the
yield zone propagation that occurs in ehe Enasan lunnel case
history, analyzed ln Chapter 5. This extensicon, outllned
below, is only intended as a first approximation of
modelling this complex phenominon. ,

At present, the Convergence Solution models a
seqoentially excavated tunnel as haming a'constant R/a
ratio. This means that as the tunnel radius (a) increases
with thewbench and invert excavations, the yield zone ‘C
propagates to maimtain a constamt R/a ratio. This assumption
is discussed in Chapter 5, and illustrated 'in Fig. 5.8. The
"yield -zone propagation" that is to be modelled here is an
additional propagation to a higher ratio of R/a. The stages
of a seQUentially excavated tunnel would be modelled

/ .

"R/a at a, given time. These results would then bel

w

separately, each‘propagating from an initial R/a to a higher

superimposed )
The propagation to’'a higher R/a can be modelled by -

_ changlng the parameters X and C X The parameter x 1s
dlqectly proportional to R (x/R = 0.84) and would be altered
accordlng to the change in R. The ultimate time- 1ndependent
convergence,(C ) also increases . as the y1e1d zone
propagates, but it is not proport;onal to R. Note that
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eQenthough the Convergence Solutionis independent of me,

the fact that me changes requires a knowledge of:

C, lafter propagation)

me(before propagation
'

A
This ratio can be calculated based on the following

equation (Kaiser, 1980), that gives the tunnel wall

displacement for a tunnel in yieldiﬁg ground:

+a - 1] ‘ Egn H.1

ClC

(1]
+
&)

displacement of tunnel wall for elastic case;

£
=2
1V
i
14
c
I

a*= dilation factor of yielded ground; and

_ o N
v - . ] _ _c - ‘ T :
)\e = m(m 1 + p ) . . Egn H.2
o .
whe:é: 0 = uniaxial compressive strength of the ground;
' 'oo,= initial ground,stress} and |
_ Itsing |

1-s1n¢’

The fol;owiﬁg pafameters'have been used to reflect the

conditions at the Enasan Tunnel:

= 1.0. (no dilation of yielded ground);

QR

< :'0.25;. ¢ = 25 degrees;

Q
O

m= 2.5 A = 0.5,
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The substitution of these quantities into Egn H.1 yields:

u
e

|
TN

Egn H.3

C
NN

’
/

This ‘relationship has béen used 1in Chapter 5 to model
the yield zone propagation a the manner ghat is illustrated
below. In the example fit (Section 5.4.1) of the data from
Station A, Postion H2, thé.Convergence Solutipn indicated
that the yield zone propagated from an initial value Qf
R/a=2.5 to R/a=4.5 at t=40 days. This propagation was
modélled as follows: | |

The value of R/a was changed from 2.5 t§ 4.5 in the

Convergence Solution; and

The Convergence Solution was'multiplied by the ratio:

me(after’propagation)

me(before propagation

determined in thefollowing manner:

e

Y (before prop.) = %KZ;S)Z = 3.125
u e - ’

~‘Eg(after‘pr0p{) =i%(4.5)2 = 10.125
u . . . . ' R

Sipce,me-is_propoFtionéi ;thUnnel_wall

displacement, the ratio becomes:

‘C m(aftef pfopaéatibn) ‘ i o _ A
X® ‘ _ 10.125 _ 3.24

Cx;(befote'prqpagatiop:f.3.125



All of the cases presented in Chapter 5 were calculated in

this manner.

=]



