
SIX PROBLEMS IN "TRANSLATIONAL EQUIVALENCE"

I wish to first formulate a criterion according to which two systems
of logic might be said to be "really the same system
- i n  s p i t e  o f  
t h e i r
having different vocabulary — especially where the difference is in the
logical operators each has. One way of doing this might be to show
that the theorems of the two systems are validated by precisely the
same structures ; but I am here interested in a more "syntactic" test
for this. On an intuitive level, my desires could be expressed by saying
that I  want to  be able to  translate one system in to  the other,
preserving theoremhood. Fo r this reason I  ca ll i t  "translational
equivalence" between the two systems.

It is often said that a standard formulation P, of propositional logic
using ; 8 0  as connectives (plus some rule o f  inference) and a
formulation P2 using {
— ,  ; — ; }  
( p l u s  
p e r h a p
s  
M o d
u s  
P o n
e n s )  
a r
e

"merely notational variants of one another", or "are the same logic",
or (in my terminology) are "translationally equivalent." Why is this?
Isn't it because the two translations

I. (p &q ) - - 1 q )
2. (p—>q) =  —,(p&

by
Francis Jeffry PELLETIER

preserve all the theorems of the two logics, and furthermore, 3 and 4
are true?

3 The rule of inference chosen for '8z: is, when the '8L's are replaced
by i n  accordance with I ,  a derivable rule in P2

4. The rule of inference chosen for i s ,  when the a r e  replaced
by '8L's in accordance with 2, a derivable rule in P
l
.At least this is what is said in many textbook discussions. In theory,

though, one should say something further; namely that the transla-
tions do not introduce any disturbance into the systems. For, so far,
all that has been said is that the translations have to map theorems
onto theorems. But we would also like to see that non-theorems get
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mapped onto statements that " say the same thing in  the other
language" preserve equivalance ; th a t  is ,  take  a  non-theorem,
translate it into the other language and then translate the result back
into the first language. The result of this should be equivalent to the
original formula.

Let's make this a bit more precise for our logics P, and P2. We say
that P, and P, are translationally equivalent just because there are two
functions f ,  and f ,  which will accomplish the required translations
from P, to P2 and from P2 to P
i
,  r e s p e c t i v e l y ,  
f ,  
i s  
f u n c t i o
n  
f r o
m  
t h
e

language P
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"Given P2 I  can express the language P
i
" ,  a n d  f ,  
s a y s  
" G i v e n  
t h e

language P, I can express P2
" T h e y  a r e  
d e f i n e d  
a s  
f o l l o w
s  
:

t i (A) =  A ,  if  A is atomic f ,  (A) =  A ,  if  A is atomic
f, (—,A) =  —if, (A) t 2  =  - -
1 t 2  ( A )f, ((A & B)) =  ( A ) - - >  J O )  t 2  (A B )  =  - -
1 ( f
2  ( A )  &  ( B ) )Now to guarantee that P, and P2 are in fact translationally equivalent,
the translation functions must meet certain criteria, to wit

A. I f  A is an axiom of P, the f, (A) is a theorem of P2
B. I f  A is an axiom of P2 the f, (A) is a theorem of PI
C. I f  R is a rule of inference in P, then f, applied to each premise of R

and to the conclusion of R must be a derivable rule of P,
D. I f  R is a rule of inference in P
2 t h e n  f ,  
a p p l i e d  
t o  
e a c h  
p r e m i s
e  
o f  
R

and to the conclusion of R must be a derivable rule of P,
E. [ f ,  (f, (A)) — A] is a theorem of P2
F. [ f ,  (f, (A)) — A] is a theorem of P,

This is to say, after translation from one system to the other, the
original axioms are still provable, the rule of inference are derivable,
and the translation functions themselves introduce nothing new.

More generally, two systems o f  logic S, and S2 are said to  be
translationally equivalent if  there are translation functions f, and f,
which obey A through F.

PROBLEM 1: Is this notion of translational equivalence reasonable?
That is, does it  capture the intended force of "really the same
system" ? Is it in any sense trival ?
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In fact my interests concerning translational equivalence have to do
with modal logics. I  am interested in  determining whether certain
well-known modal logics are translationally equivalent to one another.
For this purpose I  shall consider only translation functions that map
non-modal vocabulary into themselves. And I shall assume that each
modal logic has the same set o f  atomic propositions, the same
propositional connectives I  & ,  v,—), •
,
--)1 ,  t h e  s a m e  
p r o p o s i t i o n a l

rules of inference, and the same class of modal-free wffs. In fact, the
only difference to be encountered is that system i has the modal
operators D
i a n d  
O
i  
w h e
r e  
s y
s t
e m  
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h
a
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E
l
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a
n
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functions are the identity function on everything except the modal
operators. So the question amounts to: can we find systems i and k for
which there are f, and f, obeying A through F?

It is often easy to find one of the required two functions which will
obey the restrictions A and C. But finding a pair of functions so as to
also satisfy B, D, E, and F is much more difficult, and in fact I can
give only an "artif icia l"  example of it (below).

I give first three examples of the case where the "translation" can
be effected in one direction. Logic K is generated from the propositio-
nal logic together with these rules and axioms (the notation follows
Chetlas)( t)

[RE] i f  H (A B )  then ( E
k  A  —  B )[RN] i f  H A then 1
— E l k  A[Def 01 H  k k A
[M] O k  (A & B) —) (E
k A  &  E l k  
B )
[C] H  Elk (A & B )  O k  (A & B)

System T is generated in the same way (with E
t  r e p l a c i n g  E l k  
t o g e t h e r
with the axiom

[T] A

Consider now f, (from T to K  ; that is, which says "given K, I  can
express T" )

(O, A) =  (E l
k f ,  
( A )  
&  
f ,  
( A )
)

It is easy to see that f, obeys A and C — that the translation of all T
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axioms are theorems of K, and the translations of the rules of T are
derivable in K. For example,

H El, (A & B) ( E
T
A  &  
L I ,  
B )

H 0, A A

are axioms of T whose translations are, respectively

(Elk (A & B) &  (A & B)) ( ( E k  A & A) & (El
k B  &  B ) )1 —

(E l
k 
A  
&  
A
)  
—
)  
A

One can easily see that, since [M] is already present in K,  the first
must be a theorem of K. And the second is propositionally a theorem
of K. The translation of the rules, e.g., [RN], yields

if  HA then H(E l
k A  &  
A )which is obviously in K, since [RN] is in K.

Thus f, satisfies A and C, and so in some sense T is definable or
modelable within K. The next task would be to find an f
2  s u c h  t h a t  f
2
(El
k 
A
)  
=  
X
,  
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function which will obey B and D, and such that E and F are true.
There are various other examples, perhaps more interesting, of this

kind o f  —
o n e -
w a y  
m o d e
l l i n g
-
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,

KD45, is defined as K  above (with Ed45 replacing E l
k
) p l u s  t h e s e
axioms

[D]
[4]
[
5
]

I
— 
0
.
2
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4
5 
A 
—
›  
<
>
c
1
4
5 
A

H 0
c 1
4 .
5  
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—
)  
0
1
1
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d
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5  
A

0
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5  
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—
)  
L
I
0
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5  
A

The system S
a
, ,  o n e  
o f  
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t e m
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o f
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is the system T above (with 1E4
.
2 r e p l a c i n g  
0 , ,  
p l u s  
[ 4 ]  
a b o v e  
( w i t
h

1114.2 replacing Lic145)
, p l u s  
t h e  
" G e a c
h  
f o r m
u l a "

[G] I
- -  
E
1 .
2  
A  
- -
- )
•  
0
4
.
2  
A

Consider now the translation function f, (from KD45 to S4.2, i.e.
"given S4
.
2 I  
c a n  
d e f
i n e  
K D
4 5
—
)

fi (0d45 A) — 0 1 7
4 . 2  f i  
( A )A quick check will yield the result that the translation of all KD45
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[5] becomes
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EK>
4 .2  
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0
4
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A

[D] becomes
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S4.2•

It is  easy t o  check that a ll o f  these are theorems o f  S4
.
2 .  T h e
translation of the rules also is straightforward. [RN] of KD45 becomes

if A  then F- 0 0
4 . 2
Awhich is obviously derivable in S4

.
2, s i n c e  i t  
h a s  i t s  
o w n  
[ R N ]  
a n d  
[ T ] .

[RE] of KD45 becomes

if HA  B )  then F--(01-1 A, - 4
.
2  
0
0
4
.
2
B
)

which is also derivable. (In the presence of propositional logic and
[Def 01, the rule

if  H (A — B) then H(O A  O B )

is equivalent to [RE]. So given H (A —B), the rule [RE] of S4
.
2 w o u l d
yield I— A  — E4.2B), and then the modified [RE] would yield the

— 0
E
1
4 .
2  
B
) -
)

desired H(071 AN - A g a i n  I have not been able to find an
t2 which wil l  translate 04.2 A into some formula o f  KD45 while
satisfying B, D, E and F.

The two examples just given (of K and T, and of KD45 and S
4 . 2
)

illustrate different points. System K is included in system T (yet here
we find that all theorems of T can be interpreted as certain theorems
of K). System KD45 and system S
4
.
2  a r e  
i n d e p e n d e n t  
o f  
o n e  
a n o t h e
r

and yet a ll the theorems o f  KD45 can be interpreted as certain
theorems o f  S4
.
2 .  F o r  
f u l l  
c o v e
r a g e  
I  
s h
o u l
d  
f i
n
d  
a
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e x
a m
p l
e  
o
f

systems X and Y, where X is included in Y, and yet all theorems of X
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are theorems of Y. Well – the "change only the subscript of the box"
translation will do here. Thus between K and T for example we would
have

f2(Ek A) = n t  f'
2 ( A ) .Since system K  is included in system T,  this translation obeys the

restrictions of mapping axioms into theorems and primitive rules into
derivable rules. Of course, this f
2  t o g e t h e r  
w i t h  
t h e  
e a r l i e r  
f
i  
d o e s  
n o t

make K and T translationally equivalent in my sense because condi-
tions E and F are not satisfied. Of the two,

and
H f
2 
( f
i  
(
A
)
)  
—  
A

f
i 
(
f
2 
(
A
)
) 
A

only the first is correct. To  see this, let A  be D
i
p .  T h e n  f ,  ( A )  
=

(Elk P & p) and f2(f1 (A)) = (EiP & p). Sure enough, we have

(DiP & E d ) .

But now let A be Elk IL Then f2 (A) =  El
t p ,  a n d  f
i  ( f 2  ( A ) )  
=  ( E l k  
P  
&  
P ) •

But

(Elk P & P) 1
=
1
1 (  P

is not a theorem of K. The f
i a n d  f
2  g i v e n  
h e r e  
f o r  
s y s t e
m s  
K  
a n
d  
T  
d
o

satisfy conditions A through D, however. So, if X is a formula of T
and Y is a formula of K, then we have

H X if f  Hf
1  ( X )Y if f  H f

2 
( Y )What is required by conditions E and F, and what is missing from

these f, and f
2
,  i s  
t h a t :  
s t a r
t i n g  
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translating it into some formula of the other system, we can get back
to an equivalent formula of the original system by applying the other
translation function. It is not just that theorems can be translated into
theorems, but that the entire language can be translated back and forth
without introducing anything new. I  guess the moral o f  this last
example is that mutual modeling is  insufficient f o r translational
equivalence.The translation functions themselves have to be "inno-
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cuous" -  or perhaps one should say that if  one o f them introduces
some non-innocuity, then the other must be able to conteract it.

PROBLEM 2: Does this -
o n e - w a y  
m o d e l i n g "  
h a v e  
a n y  
s i g n i f
i c a n c e

at all ? Does it, for instance, show that deontic logic is a part of
tense logic (by modeling KD45 in S
4
.
2
) ?  D o e s  i t  
c l a r i f y  
a n y t h i n g  
?

For instance, if  K is intuitively clear, is the given interpretation of
T in K clarifying ? Is the interpretation of K in T clarifying ?

I now turn to my "art if icia l"  example of two systems which I can
show to be translationally equivalent. I  say that it  is an artificial
example because one o f  the systems has not independently been
discussed. I  developed it in the context of trying to write a logic for
vagueness(
2
) -  a  
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r e
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definite that" and 0  interpreted as " it  is indefinite (vague) whether".
I then considered certain intuitive principles about vagueness and
tried to express them as theorems of the logic. For example, I wanted
the usual interdefinability of E and 0 .  (I use a subscript 'v' for these
operators).

0 ,  A

And I  thought that a statement was vague if  and only if  it was not
definite.

<>, A 4-• —El, A

(
2
) 
I  
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i
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1981 as part of a commentary on John Heintz's "Might  There be Vague Objects ?" A
greatly espanded version was read at  a  conference "Foundations o f  Logic " in
waterloo. Ontario in 1982. what is more or less the present version was presented at a
Society for Exact Philosophy meeting in Athens, Georgia in 1984. In the course of this, I
have had a chance to discuss it with many people, of whom I should especially mention
Alistair Urquhart, Johan van Bentham, Michael Dunn, and Richard Routley. Routley
has pointed me to a series of papers by himself and Montgomery in the late 1960's in
Logique et Analyse wherein they are concerned to give a foundation for the usual modal
systems in terms of a contingency operator V and a non-contingency operator A, rather
than necessity (E) and possibility (0) operators. I f  one changes theirV to 0  and their A
to E. and treats their axioms and rules as defining a new system (rather than a new
definition of  an old system), one gets the results described here.



430 F .  J. PELLETIER

This forces upon one the principle that i f  a statement is vague
(definite) then its negation must be also

0 ,  A 0 ,  A
D A  0 ,  --IA

Certain other principles also seemed plausible to me, for example that
if A and B were both definite, so must their conjunction be

H E ,  A & 0 ,  B) 0 ,  (A & B)

I f  some formula was provable, then it was definite
if  HA then [ - D
A

If  two formulae were provably equivalent, then it should be provable
that one was definite just in case the other was

if 1-(A B )  then H(01, A . 0 „  B)

Certain formulae are not true in this logic, for example

0 , A
D A  A
0 , A  .1710,A
0 ,  A -  D

V
A

0 ,  (A & B) ( 0 ,  A & El, B)
Dv (A B )  -> (El, A [11, B)

These invalid formulae will be recognized respectively as the analo-
gues of [D], [T], [4], [5], [NIL and an alternate foundation of logic K.
At least I took them to be invalid under the interpretation of Eh, as
"definite". A false sentence might be definite, so we don't have [T]; I
thought that borderline examples o f  definiteness (" it 's definite, but
not definitely so") showed against [4] and [5]; a conjuction might be
definite but neither conjuct be (as when they contradict each other);
and an implication might be definite, and its antecedent definite,
without its consequent being definite (as for example ((p & -13 ).p )).
Although the analogue of [M
] i s  n o t  
v a l i d ,  
a s  
c l o s e l y  
r e l a t
e d  
p r i n c
i p l e

does seem to be: (
3
) (
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Not-So-Strange Modal Logic of Indetermacy", Logique et Analyse 108, pp. 415422.
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H 0, (A & B) & (A & B)) -) (0 ,  A & 0 , B),

a principle I call [Mx ] (" i f  a conjunction is definitely true, then each
conjunct must be definite").

As i t  turns out, this logic can be axiomatized by the following,
added on top of propositional logic :

[RE] i f  H (A B )  then 1-(0, A — 0 ,  B)
[Def H  0 ,  A 0 ,  --IA
[RN] i f  A  then H 0, A
[C] H D ,  A & E, B) -) n ,  (A & B)
[Mx- ] H  El, (A & B) & (A & B)) -) (El, A & B )
[V] H  0, A — EJ„

(The last axiom stands for "vagueness"). This is an "anti-normal"
logic, since it neither includes nor is included in K -  it is not included
in K because it has principle [V] which K does not have, and it does
not include K  because it lacks principle [M] which K  has. Using the
Montague-Scott method, it is straightforward to give a "neighborhood
semantics" fo r this logic. In  the paper mentioned in  footnote 3, I
showed that it  is complete for the class o f  "contrary", "partia lly
supplemented" models that are "closed under intersections" and
"contain the unit"  (I  ignore the details here except to remark that
[RE] and [Def 01 are valid in any class of such models, that "con-
trary" models validate [V], that "partially supplemented
- m o d e l s  g e ttheir name from the fact that "supplemented models" validate [M]
and "partially supplemented" ones validate that subset fo r which
[Mx] holds, that "closed under intersections" models validate [C],
and "models which contain the un it"  validate [RN]. Fo r further
details see Chellas.)

Now I  cla im that this logic is translationally equivalent to  T.
Consider the translation functions

fi( D  A) =  (Elv fi (A) 84 fi (A))
f2( L I J
A )  
=  
( D
i  
f
2  
(
A
)  
v  
L
i  
-
-
1
f
2  
(
A
)
)

First, let us look at the axioms and rules of T, and replace L i
t  A  b y(DIA) throughout. We get (note that by f

l  ( 0 , A )  
t r a n s f o r m s  
i n t o

(0 , A  v A)

[RE'] i f  H (A — B) then H(A v  A & A) ( D v  B 84- B))
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[Def<>1 1--- -AK>, v  —  (0 , A  & A)
[C]  ( ( 0 , ,  A & A) &  (D, B & B) -> (0 „ (A & B) &  (A & B))

H (0, (A & B) & (A & B)) ( ( D
v  A  &  A )  
&  ( E
v  B  
&  
B ) )

[T'] H ( D ,  A & A) -) A

And finally, let us look at fl 2 (A ))  —A. In the only interesting case,
where A  = 0 ,  p: here f2(DvP) = (DtP v Et - -
i p ) ,  a n d  f ,  o f  
t h i s  i s
((Dv p & p) y (D
v &  
- -
-
1 0 ) ,  
h e n
c e  
w
e  
g
e t

[V1 ( ( C v  P & P) y (EN, &  —
1 1
3
) )  ' - '  E l y  P
It can easily be verified that these are all theorems of system V.

Now let's do it the other way: take the axioms and rules of V and
replace 1 2 A  in  accordance with  f
2  ( n o t e  t h a t  
f
2
( 0 ,  A )  
b e c o m e
s

( 0, A & —
A ) ) .[RE"]
[Def 0'1
[RN"]
[C"]

[Mx- "I

[B"]

if  H A  B )  then I - 0 0
1
A  y  O
t  -
-
1 A )  ( 0
1
B  
y  
0
1  
- - ,
B ) )

1 -
( (
0 t
A  
&  
-
1
0
=
4  
V  
E
t  
-
7
-
1
A
)
)

if  F-A then 1--(El
1 A  y  
D ,
H(E I , A  &  ( E
t  B  y  O
t  -
7 1 3 ) )  
( D i  
( A  
&  
B )

& B))
H Wilt(A  & B) y 0
1  &  
B ) )  
&  
( A  
&  
B )
)  
- -
- >  
( P
t  
A  
v

0
1  
& 
(
0
1
B 
v  
O
t

1-(El
1 
A  
y  
0
1  
—
,
A
)  
(
0
1  
E
t
—
A
)

And now we replace into the translation functions, using A = Et P.
So, f
l 
( A
)  
=  
(
O
v  
P  
&  
P
)
,  
a
n
d  
f
2  
o
f  
t
h
i
s  
i
s  
(
(
E
l
t  
p  
y  
O
t  
&  
P
)
,  
y
i
e
l
d
i
n
g

[T"]  H ( E t  P y L I I
1
— p )  &  
O t P

It is again easy to see that these are all theorems of T.

So V and T are translationally equivalent; and, I would claim, this
makes them the same logic, just as our earlier formulations o f  the
propositional logic are "really notational variants of each other". And
this is so despite the fact that looking at them in the abstract would
never allow one to determine this -  after all, V was even an -
a n t inormarlogic and its semantics could only be given via a neighbor-
hood method while T can be given a relational semantics on possible
worlds.

The fact that V and T appear to be so different on the surface and
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yet are translationally equivalent makes me wonder whether other
logics might have this feature. For example, perhaps S4 and T are
translationally equivalent? Perhaps they are really the same logic?
Maybe all modal logics (except S O
(
4
) a r e  r e a l l y  
t h e  
s a m e  
l o g i c ?

Wouldn't that make modal logic easy?
!
PROBLEM 3  : Fin d  translation functions f
l  a n d  f
2  w h i c h  
o b e y

restrictions A through F for pairs of the well-known modal logics.

PROBLEM :  Formulate a  criterion which will te ll whether two
arbitrary logics have such translation functions or not.

PROBLEM 5 : Would modal logic really become easier if  all systems
were translationally equivalent to one another?

PROBLEM 6 : How does all of this relate to Quinean indeterminacy of
translation and the intertranslatibility o f  alternate conceptual
schemes? For example, can a radical translator ever tell whether
he is talking with a native speaker of V as opposed to a native
speaker of T? (The native speaker of V has no single word for
"necessity" but can assert as a  theorem everything that the
native speaker of T can assert as a theorem. The native speaker
of T has no single word for "vagueness" but can assert as a
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system in which there are an infinite number of  distinct modalities (e.g., T) can be
translationally equivalent to it, because there are only a finite number of "things that
can be said" in S5 using only the variable p whereas there are an infinite number of
"things to be said" in T using only the variable p. All the other usual modal systems
have an infinite number of modal functions of one variable. In passing it should also be
remarked that the number of distinct modalities is no sure clue to whether two systems
are translationally equivalent, For example, if  one adds the [4] axiom to T. yielding S4v
the resulting system has 14 irreducible modalities. Yet it is translationally equivalent to
the system gotten by adding the [4] axiom (with appropriate subscript) to V, and this
system has only 6 irreducible modalties.
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theorem everything that the native speaker of V can assert as a
theorem.)(
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