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Abstract

Signal shadowing and multipath fading are two challenging phenomena in wireless com-

munications. The goal of this thesis is to improve the statistical models and the mathemat-

ical tools required for description and analysis of some specific fading scenarios, namely

lognormal shadowing, two-wave with diffuse power fading and diffuse Nakagami-m with

line-of-sight fading. For lognormal shadowing, a novel method is proposed to derive ap-

proximations to the lognormal characteristic function. For two-wave with diffuse power

fading, new expressions are derived for its probability density function, cumulative distri-

bution function and moments. Finally, a novel fading model is introduced which combines

a line-of-sight with a Nakagami-m diffuse scatter. The new fading model is justified and ex-

pressions are derived for its statistics. The new fading distribution is compared to the Rice,

Nakagami-m and two-wave with diffuse power distributions. Application of the results in

performance analysis of wireless systems operating in Nakagami-m with line-of-sight fad-

ing is investigated.
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Chapter 1

Introduction

Wireless communications is a rapidly growing technology which aims to transfer infor-

mation between sources and destinations, across the wireless channels linking them to-

gether. Real world communication channels suffer from various channel impairments that

can severely degrade the communications performance. Some of these phenomena have

random nature. Thermal noise, cochannel interference, multipath fading and signal shad-

owing are examples of such phenomena. In order to design and analyze the performance of

wireless systems operating in such channels, it is necessary to construct mathematical mod-

els that reflect the physical characteristics of the transmission medium [1, 2]. Because of

the random nature of many of these characteristics, statistical models must be used for their

description. Multipath fading and shadowing are two challenging phenomena in wireless

communications and their statistical modeling has been an essential field of research in the

wireless communications literature over the last decades [2]. Due to the huge effort devoted

to modeling and analysis of fading and shadowing systems, numerous mathematical models

have been proposed to describe them, and they have been used to analyze the behavior and

the performance of various communications schemes affected by these phenomena. In the

remainder of this chapter, we provide a brief review on shadowing and multipath fading.

Then, we briefly summarize the contributions of this dissertation on improving the mathe-

matical and statistical tools for modeling and analysis of shadowing and fading systems.

1.1 Lognormal Shadowing

Buildings, terrain and trees commonly exist in wireless channels, both in urban and rural

areas. In such channels, the level of the transmitted signal shadows successively as it passes

through the obstacles in the propagation medium. As a result, the signal level captured

by the receiver can be viewed as a product of the transmitted signal level and a number
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of random attenuation coefficients. This leads to random variations in the received signal

level at the receiver. Due to the central limit theorem (CLT) , the distribution of a product

of independent and identically distributed (i.i.d.) random variables approaches a lognor-

mal distribution [3, Theorem 7.2]. So, the shadowing effect is commonly modeled by a

lognormal random variable. Performance analysis of many wireless shadowing systems

requires evaluation of the distribution of sums of independent lognormal random variables.

However, no exact closed-form solution is available for the lognormal sum distribution.

A standard technique that can be used to evaluate the distribution of sums of independent

random variables is to evaluate the product of their characteristic functions (CFs) and then

take the inverse fourier transform of the result. However, evaluation of the lognormal CF is

not straightforward as there is no closed-form expression available for it either. Moreover,

the infinite series solution for the lognormal CF is divergent and can be used for its evalu-

ation over a very limited range of parameters. Numerical evaluation of the lognormal CF

using its defining integral form is also tedious because of the slow decay rate and the highly

oscillatory nature of the integrand.

Various methods are proposed in the literature either to facilitate numerical evaluation

of the lognormal CF or to provide approximate solutions for it [4–12]. Most of the proposed

solutions have tried to solve this problem based on numerical techniques for computation

of the integral form of the lognormal CF, and they have been successful to facilitate the re-

quired computations to different computational complexity levels. In this thesis, however,

we follow a novel approach to derive approximate solutions to the lognormal characteristic

function. Instead of numerical methods, we use the CLT as a means to achieve limiting

expressions for the lognormal characteristic function. In addition to their theoretical impor-

tance, the limiting expressions can be used to approximate the lognormal CF. As the basic

idea of our contributions toward this problem, we used the fact that the distribution of a

product of i.i.d. random variables approaches a lognormal distribution when the number

of random variables increases. So, the CF of a product of i.i.d. random variables also ap-

proaches the lognormal CF in the limit; i.e., when the number of random variables tends to

infinity. The proposed method provides a framework to derive approximate solutions for

the lognormal CF. This framework leads to a general infinite series in terms of the mean,

variance and moment generating function of an appropriate random variable. Selection of

any random variable in the derived series expression leads to an specific approximate solu-

tion for the lognormal CF. Examples of such solutions are also provided in this thesis, and

their advantages and shortcomings are discussed.
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1.2 Two-Wave with Diffuse Power Fading

Another significant phenomenon in wireless channels is multipath fading. Multipath fad-

ing results from reception of the transmitted signal through different propagation paths as

a result of reflection, scattering or diffraction. The resulting signal components at the re-

ceiver may add destructively or constructively, which causes relatively fast variations in the

signal level captured by the receiver [2]. The behavior of the received signal in multipath

fading is highly dependent on the physical characteristics of the wireless channel, and it is

not possible to describe the multipath effect by a general mathematical model, regardless of

the specific characteristics of each fading channel. As a result, numerous statistical models

have been proposed for multipath fading, each one suitable for a wireless channel with cer-

tain specifications. The Rayleigh distribution is one of the commonly used fading models,

which can accurately describe the behavior of the received signal envelope when a rela-

tively large number of multipath components are captured by the receiver, and none of them

is dominant. The signal components with comparable strength are called the non-specular

components of the received signal [13]. The combination of non-specular components at

the receiver forms the diffuse part of the received signal. The presence of a line-of-sight

(LOS) between the transmitter and the receiver creates a signal component at the receiver

with a relatively strong power. Such a component is referred to as a specular component

of the received signal [13]. When there is a LOS between the communication points, the

Rayleigh distribution is no longer a valid model for the envelope of the received signal. The

presence of LOS component in addition to a Rayleigh distributed diffuse component leads

to the Rice model for the distribution of the received signal envelope.

A more recent model for the multipath effect, which considers a more complicated sce-

nario, is the two-wave with diffuse power (TWDP) fading model [13]. This model assumes

that the received signal consists of two LOS components and a Rayleigh distributed diffuse

component. Analysis of TWDP fading systems has attracted much attention in the recent

years. This is first because TWDP fading can behave very differently from the other fad-

ing models. For example, it is shown that the signal level in TWDP fading can reach low

levels, even more often than the signal level in Rayleigh fading with comparable average

power [13]. The second reason for investigating TWDP fading is its capability in modeling

of many real world wireless channels. One can find many examples and scenarios which

lead to TWDP fading in [13, 14]. Analysis of TWDP fading systems requires the TWDP

fading PDF. The only available expression for the TWDP fading PDF is the approximate
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expression given in [13, eq. (17)]. Although the approximate solution in [13, eq. (17)] has

been used in the analysis of many wireless fading systems, we believe that it is worthwhile

to search for other expressions for the TWDP fading PDF, which may be easier to evaluate

and can lead to simpler expressions for the performance metrics of TWDP fading systems.

In our attempt to fulfill this goal, we derive a new expression for the TWDP fading PDF in

Chapter 3 of this thesis. The derived PDF expression is an infinite series which can be eval-

uated recursively using basic mathematical operations; i.e., summation and multiplication,

with a low-complexity algorithm. The derived expressions makes fast and accurate evalua-

tion of the TWDP fading PDF possible, over the practical range of TWDP fading parameters.

Using the derived expression for the TWDP fading PDF, we also find new expressions for the

TWDP cumulative distribution function (CDF) and moments. It is also shown that applica-

tion of the derived PDF expression in performance analysis of some TWDP fading systems

is straightforward. This is shown by evaluation of the integral of the complementary error

function against the TWDP fading PDF, which is a building block for evaluating the bit error

rate (BER) and the symbol error rate (SER) of fading systems. The derived expression for

this integral is used for evaluating the BER of a BPSK system operating in TWDP fading.

1.3 Diffuse Nakagami-m with LOS Fading

The Nakagami-m distribution is another widely-used statistical model for multipath fad-

ing. According to many experimental measurements, the Nakagami-m distribution shows a

better fit to the empirical data, compared to Rayleigh and Rice distributions [15, 16]. As a

result, analysis of the performance of wireless systems operating in Nakagami-m fading has

been thoroughly investigated in the literature. In some references, it is conjectured that the

Nakagami-m fading can model the received signal envelope both in the presence and in the

absence of a LOS component [16]. To the best of the author’s knowledge, the behavior of

combination of Nakagami-m diffuse fading and a LOS component has not yet been directly

investigated in the literature.

In the last part of this thesis, we investigate diffuse Nakagami-m with LOS fading as a

new fading model. We show that this model can behave significantly different from both

the Rice and Nakagami-m fading models. We have also compared the new fading model to

TWDP fading. It is shown that although TWDP fading shows a closer behavior to diffuse

Nakagami-m with LOS fading, its behavior does not always match the diffuse Nakagami-

m with LOS fading behavior. In our contributions regarding the diffuse Nakagami-m with
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LOS fading model, we derive expressions for its PDF, CDF, moment generating function

and moments. We develop efficient numerical algorithms for the low-complexity evalua-

tion of the derived expressions. Application of the results for the performance analysis of

fading systems is investigated. In particular, the BER of a BPSK system operating in diffuse

Nakagami-m with LOS fading is derived and is compared to the BER of the same system

operating in the TWDP and Nakagami-m fading environments.

1.4 Organization of the Thesis

The remainder of this thesis is organized in four chapters. Our contributions on the problem

of calculating the lognormal CF are presented in Chapter 2. This chapter consists of two

parts. The first part includes our paper, “New approximations to the lognormal characteris-

tic function” [17], which was accepted and published in the proceedings of the IEEE GC’12

conference. This paper contains our main contributions regarding the derivation of new ap-

proximate solutions for the lognormal CF. In the second part of Chapter 2, we provide a

brief supplementary discussion about the paper and we explain our future work regarding

this problem. Chapter 3 of this dissertation presents our contributions on the derivation

of new expressions for the TWDP fading statistics. This chapter includes our paper “New

Expressions for TWDP Statistics” [18] which has been published in IEEE Wireless Commu-

nications Letters. Chapter 3 also includes a brief supplementary discussion about some of

the results obtained in the paper and proposes some the future research directions. Investi-

gation of the diffuse Nakagami-m with LOS fading model is presented in Chapter 4 of this

dissertation. This chapter presents our paper “A Novel Line-of-Sight Plus Diffuse Fading

Model” [19] which was submitted to IEEE Transactions on Information Theory. Chapter 5

concludes the dissertation.

As the final point regarding the organization of this thesis, note that this thesis is paper-

based and therefore the references used in each chapter are presented in the bibliography at

the end of that chapter. So, the bibliography numbers given in each chapter of the disserta-

tion are local to that chapter and are not preserved in the other chapters of the manuscript.
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Chapter 2

Approximation of the Lognormal

Characteristic Function

In this chapter, we present our results on proposing new approximations to the lognormal

CF. Sec. 2.1 covers our main contributions regarding this problem and includes our paper

“New approximations to the lognormal characteristic function”. Sec. 2.2 provides a supple-

mentary discussion about the results obtained in Sec. 2.1, and briefly introduces our future

research directions regarding the problem of approximating the lognormal CF.

2.1 New Approximations to the Lognormal Characteristic Func-

tion1

Authors: S. A. Saberali and N. C. Beaulieu

Published in the proceedings of IEEE GC’12

2.1.1 Introduction

Lognormal random variables (RVs) are used to describe a variety of phenomena in vari-

ous fields of science and technology, such as biology, medicine, finance and communica-

tions [1]. As a result of the central limit theorem (CLT), a product of independent identically

distributed (i.i.d.) positive RVs approaches a lognormal RV in distribution, as the number

of RVs increases [2, Ch. 7]. This fact causes the lognormal distribution to arise widely

in practice. In particular, the lognormal distribution appears in numerous problems in the

modeling and analysis of communication systems. For instance, the effect of shadowing on

the received signal in wireless communications is described by a lognormal RV. Further-

more, a sum of lognormal RVs is used to model cochannel interference in cellular networks

and to evaluate outage probabilities [3].

1A version of this chapter has been published in the Proceedings of the IEEE GLOBECOM 2012 Confer-

ence, pp. 2168 - 2172, Anaheim, CA, Dec. 2012. Digital Object Identifier: 10.1109/GLOCOM.2012.6503436.
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Throughout this paper we will denote by Z , a lognormal RV, with Z ∼ LN(µ, σ2)

where µ and σ2 are the mean and the variance of the corresponding normal RV. The proba-

bility density function (PDF) of Z is given by [2]

fZ(z) =
1√
2πσz

e−
(ln(z)−µ)2

2σ2 , z > 0. (2.1)

The CF of a RV is a powerful tool in analysis involving RVs as it completely defines the

PDF of the RV and often provides an effective way to analyze systems involving random

parameters. As a significant case, one can calculate the CF of a sum of independent RVs

by calculating the product of the summands’ CFs [2]. Since lognormal RVs and their sums

arise in many problems in wireless and optical communication systems, calculation of the

lognormal CF is an essential element in the analysis of these systems. Unfortunately, this

task is not straightforward as there exists no closed-form relationship for the lognormal

CF [4]. Much effort has been devoted in the literature to find convenient methods for the

evaluation of the lognormal CF [5–11].

Direct calculation of the lognormal CF through the defining integral

φZ(ω) = E(ejωZ) =

∫ ∞

0

1√
2πσz

e−
(ln(z)−µ)2

2σ2 ejωzdz (2.2)

is difficult as the integrand is highly oscillatory and the tail of the lognormal PDF decays

very slowly [12]. Therefore, the integral (2.2) is not suitable for the common quadrature

techniques [12]. Numerous integral representations and integration techniques have been

proposed in the literature to facilitate calculation of the lognormal CF through numerical

integration [6–9]. A standard approach for evaluating the lognormal CF would be to exploit

infinite series representations. Divergence or poor convergence is the main drawback of

this approach as usually the terms in such a series either diverge, or oscillate widely and

grow to inordinate amplitude before “settling down” to decreasing amplitude. Nonetheless,

various infinite series for evaluation of the lognormal CF were derived in [5, 10] which are

convergent for specific ranges of parameters.

In this paper, we derive two novel approximations in terms of well-known mathematical

functions to evaluate the lognormal CF. Each approximation is accurate and convenient for

calculation over a specific range of lognormal RV parameters. Note that the ranges of

parameters of lognormal RVs vary in different applications. In optical communications, for

instance, σ is typically small and ranges from 10−2 to 1 [13]. In wireless communication

applications, σ typically ranges from 2 dB to 13 dB (0.46 to 3) [14, 15].

This paper is organized as follows. In Sec. 2.1.2, we derive a novel closed-form approxi-

mation to the lognormal CF based on applying a Taylor series expansion in a nontraditional

9



place. The resulting approximation is accurate only for values of σ smaller than 0.3. In

Sec. 2.1.3, we follow a new approach based on the CLT to approximate the lognormal CF

with an infinite series. The infinite series is in terms of the moment generating function

(MGF) of an appropriate ancillary RV. In Sec. 2.1.4, we propose an ancillary RV whose

MGF leads to a finite series approximation to the lognormal CF which is given in terms of

the generalized hypergeometric functions. These functions are available in most mathemat-

ical and engineering algebraic systems including MATLAB, Mathematica and Maple. The

new approximation is accurate and convenient for calculating the CF for values of σ up to

10 dB. The theoretical results are tested by computer simulations in Sec. 2.1.5. Sec. 2.1.6

concludes the paper.

2.1.2 A Closed-Form Approximation to the Lognormal CF for Small Values

of σ

In this section, we derive a simple approximation to the lognormal CF when σ is small

(σ < 0.3). With no loss of generality we assume µ = 0 in this section since it can easily be

shown that the CF of a RV W ∼ LN(µ, σ2) is related to the CF of Z ∼ (0, σ2) by [6]

φW (ω) = φZ (eµω) . (2.3)

Following the definition of the lognormal CF in (2.2) and then changing the dummy

variable of integration to z = eσu, we can rewrite the lognormal CF in the form

φZ(ω) =

∫ ∞

−∞

1√
2π

e−
u2

2 exp (jωeσu) du. (2.4)

For small values of σ, one can approximate eσu with the first three terms of the Taylor

expansion of the exponential function; i.e. eσu ≈ 1+σu+ 1
2 (σ

2u2). Although this approx-

imation is not accurate when u gets large, because e−u
2/2 decays very fast, the magnitude

of the integrand for large u is close to zero, and therefore the approximation of the integral

remains accurate. Using this approximation in (2.4) leads to

φZ(ω) ≃
∫ ∞

−∞

1√
2π

e−
u2

2 exp

[

jω

(

1 + σu+
1

2
σ2u2

)]

du

=
ejω√
2π

∫ ∞

−∞
e−

1
2
(1−jωσ2)u2+jωσu du

=
ejω

√

1− jσ2ω
exp

(

− σ2ω2

2(1− jσ2ω)

)

(2.5)

where we have used [16, eq. (3.323.2)]
∫ ∞

−∞
e−px

2±qx dx = exp

(
q2

4p

)√
π

p
, ℜ{p} > 0 (2.6)
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to solve the last integral. Eq. (2.5) gives an approximate formula for evaluation of the

lognormal CF. This approximation has a simple form and its calculation is easy and fast.

Empirically, we have found that this approximation reaches visual precision for σ < 0.3.

Thus, this new approximation will be useful for some applications in optical communication

systems [13].

2.1.3 A General Series Approximation to the Lognormal CF

The approximation derived in the previous section is accurate for a limited range of param-

eters of the lognormal RV. So, we require another way to approximate the lognormal CF for

larger values of σ. In this section, we derive a general infinite series for the lognormal CF

based on the CLT for RVs. Using the results of this section, we will derive an approximation

to the lognormal CF in Section IV which remains accurate for a wider range of values of σ.

Let {Yi}ni=1 be a set of n positive i.i.d. random variables. Define

Xi = lnYi, i = 1, 2, ..., n (2.7)

as a set of n new random variables with common means µx and common variances σ2x.

Also define the RV

pn = Y1Y2...Yn (2.8)

as the product of the Yis. According to the CLT for the product of positive i.i.d. RVs,

as n gets large the distribution of pn approaches a lognormal distribution with parameters

(nµx, nσ
2
x) [2, p. 284]; i.e.

fpn(z) ≃
1√

2nπσxz
e
− (ln(z)−nµx)2

2nσ2
x , z > 0. (2.9)

If we normalize the product in (2.8) as

Pn = p
σ

σx
√

n
n exp

(

−σ
√
n

σx
µx + µ

)

(2.10)

then

Pn = (Y1Y2...Yn)
σ

σx
√

n exp

(

−σ
√
n

σx
µx + µ

)

= exp

[
σ

σx
√
n
(X1 +X2 + ...+Xn − nµx) + µ

]

. (2.11)

As n gets large, the term in the exponent approaches a normal distribution with mean µ and

variance σ2. Therefore Pn approaches Z ∼ LN(µ, σ2) in its distribution. For n sufficiently

large, one can approximate the CF of Z with the CF of Pn; i.e.

φZ(ω) = E
(
ejωZ

)
≃ E

(
ejωPn

)
= φPn(ω). (2.12)
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To fulfill this goal we have to derive a relationship for the CF of Pn. Following the definition

of the CF, we can write

φPn(ω) =E(ejωPn) = E

[ ∞∑

k=0

(jωPn)
k

k!

]

=

∞∑

k=0

(jω)k

k!
E

{[

(Y1Y2...Yn)
σ

σx
√

n exp(−σ
√
n

σx
µx + µ)

]k
}

=

∞∑

k=0

[

jω exp(−σ
√
n

σx
µx + µ)

]k

k!
E
[

(Y1Y2...Yn)
σk

σx
√

n

]

=

∞∑

k=0

[

jω exp(−σ
√
n

σx
µx + µ)

]k

k!

[

E(Y
σk

σx
√

n

i )

]n

=

∞∑

k=0

[

jω exp(−σ
√
n

σx
µx + µ)

]k

k!

[

E(e
σ

σx
√

n
kXi)

]n

=

∞∑

k=0

[

jω exp(−σ
√
n

σx
µx + µ)

]k

k!

[

MX(
σk

σx
√
n
)

]n

(2.13)

where MX(s) is the MGF of Xi defined as [2]

MX(s) = E
(
esXi

)
=

∫ ∞

−∞
fXi(x)e

sxdx. (2.14)

Eq. (2.13) gives a general relationship between the CF of the product of n i.i.d RVs and the

MGF of the logarithm of each RV. For different choices of the RV Y (or equivalently X),

eq. (2.13) results in different approximations to the lognormal CF.

We have two considerations in the selection of X. First, since s admits values from

0 to ∞ in (2.13), the region of convergence of MX(s), which is the Laplace transform

of fXi(x), should include the non-negative real line. As a result, the family of gamma-

distributed RVs (exponential, chi-square and gamma) are not good choices for X as their

MGFs are not defined over the entire non-negative real line. The second consideration is the

convergence of the infinite series in (2.13). Substitution of some RVs in (2.13) may result

in a divergent infinite series. As a special example, suppose we select X to be a normal RV

with mean 0 and variance 1. Then, the MGF of X will be MX(s) = exp(12s
2) [2]. Now

consider n = 1. In this case, we will have Y ∼ LN(0, 1) and Pn ∼ LN(µ, σ2). Thus,
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(2.13) leads to an exact relationship for the lognormal CF as

φZ(ω) = φPn(ω) =

∞∑

k=0

(jωeµ)k

k!
e

1
2
(σk)2

=

∞∑

k=0

(jω)k

k!
eµk+

1
2
σ2k2 (2.15)

which is the well-known divergent infinite series representation of the lognormal CF. The

terms in this series grow exponentially as k2 − k ln k. So, for any value of µ, the series

rapidly diverges.

By taking these considerations in account, we will derive a new approximation to the

lognormal CF using (2.13), in the next section.

2.1.4 A finite series approximation2 to the lognormal CF for larger values of

σ

Let X be a uniform random variable in the interval [a, b]; i.e. X ∼ U(a, b). The mean,

variance and MGF of a uniform RV are given by [2]

E(X) =
a+ b

2
(2.16)

V ar(X) =
(b− a)2

12
(2.17)

MX(s) =







exp(sb)− exp(sa)

s(b− a)
, s 6= 0

1 , s = 0

. (2.18)

Observe that the MGF is defined over the entire non-negative real line. Substitution of

(2.16)-(2.18) in (2.13) leads to

φPn(ω) = 1 +

∞∑

k=1

(

jωe−
√
3n b+a

b−a
σ
)k

k!




e

√

12
n

b
b−a

σk − e

√

12
n

a
b−a

σk

√
12
n σ k





n

(2.19)

2It is not an accurate statement to call (2.22) a finite series approximation as the generalized hypergeometric

functions are themselves defined by infinite series expressions [25, Sec. 9.14]. So, we modify this title to “A

finite sum approximation to the lognormal CF in terms of the generalized hypergeometric functions for larger

values of σ. (This footnote is added to the thesis and was not included in the paper.)
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where we assumed that µ = 0 as justified in Sec. 2.1.2. By using the binomial expansion

of (x+ y)n we can rewrite (2.19) as

φPn(ω) =1 +
( n

12σ2

)n
2

∞∑

k=1







[

jωe−
√
3n b+a

b−a
σ
]k

k! kn

×
n∑

l=0

(
n

l

)

(−1)le

√

12
n

b
b−a

σk(n−l)
e

√

12
n

a
b−a

σkl

}

=1 +
( n

12σ2

)n
2

n∑

l=0

(
n

l

)

(−1)l
∞∑

k=1

[

jωe
(
√
3n−

√

12
n
l)σ
]k

k! kn
. (2.20)

The infinite series in (2.20) can be represented in closed-form3 as

∞∑

k=1

xk

k! kn
= x

∞∑

k=1

xk−1

k!kn
= x

∞∑

k=0

xk

k! (k + 1)n+1

= x n+1Fn+1 (1, ..., 1; 2, ..., 2;x) (2.21)

where n+1Fn+1(1, ..., 1; 2, ..., 2;x) is the generalized hypergeometric function. We have

used its infinite series representation given in [17] in the derivation of (2.21). Using (2.21),

we can rewrite (2.20) as

φPn(ω) = 1 + jωe
√
3nσ

( n

12σ2

)n
2 ×

n∑

l=0

{(
n

l

)

(−1)le
−
√

12
n
σ l

n+1Fn+1

(

1, ..., 1; 2, ..., 2; jωe
(
√
3n−

√

12
n
l)σ
)}

. (2.22)

Eq. (2.22) gives an approximate finite series representation for the lognormal CF in terms

of the generalized hypergeometric functions. As n increases, the approximation in (2.22)

rapidly converges to the true CF since the distribution of a sum of uniform RVs rapidly

converges to a normal distribution [2,18]. Consequently, the product RV in (2.8) is approx-

imately lognormally distributed even for small values of n (n ≥ 3).

To evaluate the CF for 0 ≤ ω ≤ ωm, we have to calculate the generalized hypergeo-

metric function for values of the argument as large as jωme
√
3nσ. This argument grows

exponentially with
√
n. One should note that the calculation of the generalized hypergeo-

metric function gets more difficult as the argument gets larger. So the value of n cannot be

3According to some definitions for a closed-form expression, a generalized hypergeometric function cannot

generally be considered as a closed-form expression, as it cannot be converted into an expression containing

only elementary functions, combined by a finite amount of rational operations and compositions. So, we

modify our statement here by removing the word “closed-form”. (This footnote is added to the thesis and was

not included in the paper.)
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selected arbitrarily large. On one hand, selecting a large value for n leads to a more precise

CF, while on the other hand, the computational complexity increases as n gets large. Thus

there is a tradeoff in the selection of n between the accuracy of the approximation and the

computational complexity. Also note that the term in the exponent of the argument of the

hypergeometric function is linearly proportional to σ. Thus computation of (2.22) becomes

more difficult as σ gets larger. A more detailed discussion about this issue will follow in

Sec. 2.1.5.

2.1.5 Simulation Results

In this section, we present some examples for evaluation of the lognormal CF using the

derived formulas in (2.5) and (2.22). Results obtained from computer simulations are also

presented to test the accuracy of the theoretical results. In the simulations, µ = 0 is assumed

without loss of generality according to (2.3).

The first three examples are motivated by optical communication applications where σ

ranges from 10−2 to 1. Figs. 2.1-2.3 show the calculated lognormal CFs for σ = 0.05, 0.3

and 0.7, respectively. For the first two cases, the values of σ are small and we can use both

the formulas in (2.5) and (2.22) to approximate the CF. Empirically, we have found that

the approximation in (2.5) is accurate only for σ < 0.3. The CFs obtained from computer

simulations are also presented in the figures. For each case, computer simulation results are

achieved by generating Ns = 107 samples of a lognormal RV with the specified parameters.

By denoting the set of samples as {zk}Ns
k=1, we can evaluate the CF empirically by

φZ(ω) ≈
1

Ns

Ns∑

k=1

ejωzk . (2.23)

The figures illustrate excellent agreement between the approximation curves and the

simulation results. As we see, small values of σ result in oscillatory CFs for the lognormal

RV. To track the oscillations of the CF for small values of σ, we need to use more terms in

the summation in (2.22). Empirically, we have found that for σ < 0.5 it suffices to set n

equal to 5 or 6 to achieve accurate results. Figs. 2.1 and 2.2 are plotted for n = 5. Note that

to calculate the CF when σ < 0.3, it is preferred to use (2.5) instead of (2.22) since (2.5)

provides more accurate results with less computational complexity.

In Fig. 2.3, we use only (2.22) to approximate the CF since (2.5) is not accurate for

σ > 0.3. To achieve the approximate curve in Fig. 2.3 we set n = 5 in (2.22). We see that

the real and imaginary parts of the CF are less oscillatory. As a result, the match between
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Figure 2.1. Approximation and simulation CFs for a lognormal RV with σ = 0.05. Six

terms are used (n = 5) for the approximation in (2.22).
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Figure 2.2. Approximation and simulation CFs for a lognormal RV with σ = 0.3. Six terms

are used (n = 5) for the approximation in (2.22).
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the simulation CF and the approximation CF using (2.22) is better in Fig. 2.3 compared to

Figs. 2.1 and 2.2.

0 5 10 15
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ω

 

 

Approx. CF by (2.22) (Re)

Approx. CF by (2.22) (Im)

Simulation CF (Re)

Simulation CF (Im)

Figure 2.3. Approximation and simulation CFs for a lognormal RV with σ = 0.7. Six terms

are used (n = 5) for the approximation in (2.22).

The remaining examples are selected as lognormal CFs with parameters that arise in

wireless communication applications. Figs. 2.4 and 2.5 show the CFs for lognormal RVs

with σdB equal to 6 dB (σ = 1.382) and 10 dB (σ = 2.3), respectively. Note that σdB and

σ are related by σ = 0.1 ln 10 × σdB [19]. We observe that as σ increases, the CF decays

slower and shows less oscillatory behavior.
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Figure 2.4. Approximation and simulation CFs for a lognormal RV with σdB = 6 dB

(σ = 1.382). Five terms are used (n = 4) for the approximation in (2.22).
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Figure 2.5. Approximation and simulation CFs for a lognormal RV with σdB = 10 dB

(σ = 2.3). Four terms are used (n = 3) for the approximation in (2.22).

In Sec. 2.1.4 we argued that the argument of the generalized hypergeometric function,

i.e. jωe
√
3nσ, grows more rapidly as σ increases. This makes evaluation of the generalized

hypergeometric function more complex for large values of σ, and therefore increases the

calculation time of the CF using (2.22). On the other hand, for large values of σ, the CF

is less oscillatory and the approximate relationship in (2.22) converges more rapidly to the

true CF. Therefore, in order to decrease the rate of growth of the argument, we can select a

smaller value for n, compared to the case of small σ. In Figs. 2.4 and 2.5 we used n = 4

and n = 3 to achieve the approximate curves, respectively. Unfortunately, we find that for

values of σ larger than 10 dB, the evaluation of (2.22) becomes very time consuming. This

constrains the use of (2.22) to approximate the lognormal CF to values of σ not larger than

10 dB.

2.1.6 Conclusion

In this paper we derived two approximations for the lognormal CF, each one useful for a

specific range of values of σ. One approximation is in terms of elementary mathematical
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functions and is valid for small values of σ. Calculation of this approximate formula is

simple and fast. The other approximate formula for the lognormal CF is in terms of the

generalized hypergeometric functions and gives accurate results over a much larger range

of values of σ. Calculation of the latter approximation is fast for small values of σ, but

becomes slow as σ becomes large. The accuracy of the theoretical results was demonstrated

by computer simulations.
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2.2 Supplementary Discussion

In this section, we derive another limiting expression for the lognormal CF using the method

proposed in Sec. 2.1.3. Then, we discuss our future works.

2.2.1 Another Limiting Expression for the Lognormal CF

As was discussed in the paper, one can derive approximate solutions other than (2.22) by

choosing X in (2.13) to have a distribution other than the uniform distribution. For example,

let X = −W , where W ∼ G(α, λ), be a gamma RV with parameters α > 0 and λ > 0 and

the MGF [2]

MW (s) =
1

(1− s
λ)
α
, ℜ{s} < λ. (2.24)

Note that the region of convergence of MW (s) does not include the entire non-negative real

line. So, to use (2.13), we defined X as −W to have MX(s) = MW (−s). The region of

convergence of MX(s) is ℜ{s} > −λ which includes the non-negative real line. Also note

that µX = −α
λ and σX =

√
α
λ [2]. Substitution of these parameters in (2.13) yields

φ
P

(2)
n

(ω) =

∞∑

k=0

[

jωeσ
√
αn+µ

]k

k!(1 + σk√
αn

)αn
=

∞∑

k=0

[

jωeσ
√
m+µ

]k

k!(1 + σk√
m
)m

(2.25)

where m , αn. Note that since a gamma distribution with α = 1 is an exponential

distribution, (2.28) can be seen as the resulting series obtained by choosing Xis to bem i.i.d.

negative-exponential RVs, instead of n i.i.d. negative-gamma RVs. Following the standard

series convergence tests, one can easily show that (2.25) is convergent. For example, for

the real part of (2.25), we have

ℜ
{

φ
P

(2)
n

(ω)
}

=

∞∑

k=0

(−1)k
[

ωeσ
√
m+µ

]2k

(2k)!(1 + 2σk√
m
)m

︸ ︷︷ ︸

,ak

. (2.26)

Applying the ratio test for the convergence of the infinite series to (2.26) yields

lim
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=
ω2

4
exp(2σ

√
m+ 2µ) lim

k→∞

1

(k + 1)(k + 1/2)

(

1− 2σ√
m+ 2σk + 2σ

)

= 0 < 1

(2.27)

which shows that the series is convergent. Similarly, one can show that the imaginary part

of (2.25) is convergent. Although the ratio test in (2.27) shows that (2.25) is convergent,

the constant value behind the second limit in (2.27) shows that the ratio of successive coef-

ficients in the series grows exponentially with σ, µ and
√
m, and therefore the series needs
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more terms to settle as these parameters increase. This means that to evaluate the infinite

series approximation in (2.25), a larger truncation order must be selected as σ, µ and
√
m

increase. As was the case for the infinite series in (2.20), the evaluation of (2.25) with a

large truncation order is not straightforward. So we express (2.25) in terms of known math-

ematical functions, as their efficient evaluation is more investigated. Fortunately, when m

is an integer, the series (2.25) can be expressed as a generalized hypergeometric function

as [16]

φ
P

(2)
n

(ω) = mFm

(√
m

σ
, ...,

√
m

σ
; 1 +

√
m

σ
, ..., 1 +

√
m

σ
; jωeσ

√
m+µ

)

. (2.28)

Unfortunately, (2.28) converges only slowly to the lognormal CF, and overly large values of

m must be selected to obtain an accurate approximation. Note that as m increases the order

of the hypergeometric function and the values of its arguments increase. So evaluation of

(2.28) becomes extremely time consuming to the extent that it becomes useless in practice.

Since (2.28) gives the lognormal CF as a limiting case of the generalized hypergeometric

function, it can be important from a theoretical point of view.

2.2.2 Future Work

In this chapter, we proposed a framework to derive limiting expressions for the lognormal

CF. Using this framework, we derived two limiting expressions for the lognormal CF in

eqs. (2.22) and (2.28), in terms of generalized hypergeometric functions. Eq. (2.28) was

shown to converge slowly to the lognormal CF, and therefore was not useful in practice.

However, it can be important from an academic point of view, as it represents the lognormal

CF as a limiting case of a generalized hypergeometric function. The other expression in

(2.22) is more suitable for practical applications as it converges to the lognormal CF very

fast. Note that improvements in calculation of the hypergeometric function qFq(·; ·; ·) can

facilitate evaluation of (2.22), and therefore, make it possible to increase the accuracy of

the approximation in (2.22) by selecting larger values of n.

The use of the proposed framework for finding limiting expressions for the lognormal

CF is not limited to our results in this chapter. In fact, we only examined some well-known

random variables for substitution as the ancillary random variable in (2.13), and among

them we selected two cases for which we could represent the resulting expressions in terms

of well-known mathematical functions. One could select other random variables whose

sums approach to the normal distribution faster than uniform random variables, or select a

random variable in which substitution of its mean, variance and moment generating function
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in (2.13) leads to a more rapidly converging infinite series. Although finding such random

variable may not be straightforward, a more thorough search for them should be performed.
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Chapter 3

Improved Mathematical Tools for

Analysis of TWDP Fading Systems

This chapter includes our contributions on the derivation of new expressions for the TWDP

fading statistics, and their application in the analysis of wireless fading systems. This

chapter is organized in two sections. Sec. 3.1 includes our paper “New expressions for

TWDP fading statistics” which has been published in IEEE Wireless Communications Let-

ters. Sec. 3.2 provides some supplementary materials regarding the results in Sec. 3.1. In

this section, a brief comparison is also made between the results obtained in the paper and

the results available in the TWDP literature for the performance analysis of BPSK fading

systems. Sec. 3.2 also explains our future research directions regarding the analysis of

TWDP systems.

3.1 New Expressions for TWDP Fading Statistics1

Authors: S. A. Saberali and N. C. Beaulieu

Published in IEEE Wireless Communications Letters

3.1.1 Introduction

Two-wave with diffuse power (TWDP) is a useful fading model introduced in [1]. This

model has attracted much attention as it can behave very differently from the previously

studied fading distributions and it models many practical wireless communication systems

[1, 2]. The model assumes that the received signal has two relatively strong multipath

components and numerous low power diffuse components. The mathematical TWDP fading

1A version of this chapter has been published in the IEEE Wireless Communication Letters and is available

in IEEE early access articles. Digital Object Identifier: 10.1109/WCL.2013.090313.130541.
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model is

Ṽ = V1e
jψ1 + V2e

jψ2 + Ṽdif (3.1)

where Ṽ is the received baseband signal and V1, V2, ψ1 and ψ2 represent the magnitudes

and phases of two specular components, respectively. The phases are independent and

uniformly distributed in [0, 2π]. The contribution of nonspecular components is reflected in

Ṽdif as a diffuse component whose mean-squared voltage is 2σ2, and its real and imaginary

parts follow a normal distribution [1].

Knowledge of the probability density function (PDF) of TWDP fading, which is the PDF

of the envelope of Ṽ , is required in the performance analysis of TWDP fading systems. This

PDF was shown to have the integral form [1]

fR(r) = r

∫ ∞

0
exp

(

−σ
2ν2

2

)

J0(rν)J0(V1ν)J0(V2ν)νdν (3.2)

where R represents the envelope of Ṽ . Eq. (3.2) can be expressed as [3, Sec. 8.7]

fR(r) = rσ2Ψ
(3)
2

(

1; 1, 1, 1;−σ
2

2
V 2
1 ,−

σ2

2
V 2
2 ,−

σ2

2
r2
)

(3.3)

where Ψ
(n)
2 (·; ·; ·) is the confluent Lauricella function [3, Sec. 2.1.1], [4, eq. (36)]. However,

confluent Lauricella functions must be calculated numerically using their integral form or

their three-fold infinite series form [3–5]. Moreover, integration of confluent Lauricella

functions against other mathematical functions is not well studied. Therefore, (3.3) is not

useful in the performance analysis of TWDP systems. Defining

K =
V 2
1 + V 2

2

2σ2
(3.4)

∆ =
2V1V2
V 2
1 + V 2

2

(3.5)

the right side of (3.2) was approximated in [1] by

fR(r) ≈
r

σ2
exp

(

− r2

2σ2
−K

) M∑

i=1

aiD

(
r

σ
;K,∆cos

π(i− 1)

2M − 1

)

(3.6a)

where

D (x;K;α) =
eαK

2
I0

(

x
√

2K(1− α)
)

+
e−αK

2
I0

(

x
√

2K(1 + α)
)

. (3.6b)

I0(·) is the zeroth-order Bessel function of the second kind and

ai =
2(−1)i

(2M − 1)(2M − i)!(i − 1)!

∫ 2M−1

0

2M∏

k=1
k 6=i

(u− k + 1)du. (3.6c)
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M is the order of the approximation in (3.6) and M ≥ 1
2K∆ is suggested in [1] as a

rule of thumb. Eq. (3.6) has been used in the analysis of many TWDP wireless fading

systems [5–11]. Note that (3.6) deviates from the exact PDF when K is large and ∆ is close

to one [1]. To keep the approximation precise, M must be increased. However, choosing

large M is limited as both the order of the polynomials and the upper limit of the integral

in (3.6c) increase with M . This makes numerical evaluation of (3.6c) difficult.

In this paper, we derive convergent infinite series expressions for the TWDP fading

PDF and cumulative distribution function (CDF). The derived series are in terms of well

known mathematical functions. An efficient algorithm is proposed for the evaluation of

these series. The proposed algorithm only requires basic mathematical operations and one

evaluation of the exponential function. The only source of error in evaluation of the derived

series is the truncation error and higher accuracy can always be achieved by simply calcu-

lating more terms. It was found that only 110 terms are enough for the truncated series to

be precise, even for values of K as large as 12 dB and values of ∆ close to one. Infinite

series expressions are also derived for the TWDP moments and the integral of fR(r) against

the complementary error function. This series is used to derive the BER of a BPSK system

operating in TWDP fading.

The remainder of this paper is organized as follows. New expressions for the TWDP

statistics are derived in Sec. 3.1.2 and an efficient algorithm is proposed for their evalu-

ation. The convergence behaviors of the derived series are discussed in Sec. 3.1.3. The

performance analysis of TWDP fading systems is investigated in Sec. 3.1.4. Sec. 3.1.5 con-

cludes the paper.

3.1.2 New Expressions for the TWDP Fading Statistics

In this section, we introduce infinite series expressions for the TWDP fading PDF, CDF and

moments, and we propose an efficient algorithm for their evaluation.

In Appendix 3.A, it is shown that the TWDP fading PDF can be expressed as

fR(r) =
r

σ2
e−

r2

2σ2

︸ ︷︷ ︸

Rayleigh PDF

∞∑

k=0

γkLk

(
r2

2σ2

)

(3.7a)

where

γk ,

(

−K
√
1−∆2

)k

k!
Pk

(
1√

1−∆2

)

. (3.7b)
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In (3.7), Pk(·) and Lk(·) represent the kth order Legendre and Laguerre polynomials, re-

spectively [12, Secs. 8.91 and 8.97]. One can integrate (3.7) to derive the CDF of R by

using the change of variable x = r2

2σ2 and [12, eq. 7.414.1]. This yields

FR(r) = 1− e−
r2

2σ2
︸ ︷︷ ︸

Rayleigh CCDF

∞∑

k=0

γk

[

Lk

(
r2

2σ2

)

− Lk−1

(
r2

2σ2

)]

(3.8)

where L−1(x) , 0. The Rayleigh PDF and complementary CDF (CCDF) are factored out

of the summations in (3.7) and (3.8), respectively.

For accurate and efficient evaluation of (3.7) and (3.8) we develop a recursive numerical

algorithm. Defining αk = (−K)k/k!, pk(x) = xkPk(
1
x) and lk(y) = Lk(y), we use the

recursive relations for both the Legendre polynomials [12, eqs. 8.914.1 and 8.912.1] and

the Laguerre polynomials [12, eqs. 8.971.8 and 8.970.3] to write

pk+1(x) =
2k + 1

k + 1
pk(x)−

k

k + 1
x2pk−1(x), p0(x) = 1 (3.9)

lk+1(x) =
2k + 1− x

k + 1
lk(x)−

k

k + 1
lk−1(x), l0(x) = 1. (3.10)

Using (3.7)-(3.10), we propose Algorithm 3.1 for the evaluation of the TWDP fading PDF

and CDF. In this algorithm, N is the truncation order for the evaluation of the series in (3.7)

Algorithm 3.1 Evaluation of the TWDP fading PDF and CDF

Require: K ≥ 0, 0 ≤ ∆ ≤ 1, σ > 0, N ≥ 0, r ≥ 0

p′′ ← 0, p′ ← 1
l′′ ← 0, l′ ← 1
a← 1
f ← 1, F← 1
for k = 1 to N do

a ← −K
k
× a

p←
(

2− 1
k

)

p′ −
(

1− 1
k

)

(1−∆2)p′′

l←
(

2− 1+r2/(2σ2)
k

)

l′ −
(

1− 1
k

)

l′′

f ← f + a× p× l, F ← F + a× p× (l − l′)
p′′ ← p′, p′ ← p
l′′ ← l′, l′ ← l

end for

β = exp
(

− r2

2σ2

)

f ← r
σ2 β × f , F ← 1− β × F

return f, F

and (3.8). The proposed algorithm only requires basic mathematical operations and involves

one evaluation of the exponential function. The number of required summations and multi-

plications grows asO(N). Therefore, one can select large values ofN to calculate (3.7) and

(3.8) fast and accurately. Figs. 3.1 and 3.2 show the TWDP fading PDF and CDF curves eval-

uated using Algorithm 3.1 with N = 100. Fig. 3.1 also shows the approximate PDF using
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Figure 3.1. The TWDP fading PDF for ∆ = 1 and K = 11 dB.
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Figure 3.2. The TWDP fading CDF for various choices of parameters. The markers represent

the simulation points and the solid curves are obtained by the theoretical expression in (3.8).
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Table 3.1. TWDP MOMENTS EVALUATED USING (3.11) TRUNCATED AFTER 100 TERMS

AND COMPUTER SIMULATIONS

First moment Second moment Third moment

K(dB) ∆ µ1 µ̃1 µ2 µ̃2 µ3 µ̃3

0 0.2 1.81 1.81 4.00 4.00 10.08 10.08

0 1 1.78 1.78 4.00 4.00 10.37 10.37

6 0.2 3.00 3.00 9.96 9.96 35.71 35.71

6 1 2.85 2.85 9.96 9.96 39.15 39.14

12 0.2 5.71 5.71 33.70 33.70 205.28 205.29

12 1 5.25 5.25 33.70 33.70 237.47 237.45

(3.6) for M = 7, 8 > 1
2∆K = 6.2946, the PDF evaluated by numerical integration of (3.2),

and the PDF curve obtained by Monte Carlo computer simulation. We observe full agree-

ment between the derived theoretical results, numerical results and computer simulation

results. Note that it is possible to increase the accuracy of (3.6) by increasing M . However,

as was formerly discussed, this is at the expense of higher computational complexity for nu-

merical evaluation of the required integrals in (3.6c). For instance, MATLAB’s quadrature

integration command, quad, cannot evaluate the integrals in (3.6c) precisely for M > 8,

K = 11 dB and ∆ = 1. Note that forK = 11 dB and ∆ = 1, evaluation of the PDF at points

r = 0 : 0.02 : 15 by Algorithm 3.1, eq. (3.6) and numerical integration took 3.8× 10−3,

4.17 and 27.67 seconds, respectively. Fig. 3.2, shows the TWDP fading CDF obtained for

various choices of parameters using (3.7) and computer simulation. To achieve the simula-

tion curves in Figs. 3.1 and 3.2, Ns = 108 samples of the TWDP distribution were gener-

ated. Then, the PDF and CDF are approximated by f simR (r) ≈ No. of samples in (r−h/2,r+h/2)
Nsh

for small h (here h = 10−2) and F simR (r) ≈ No. of samples in (0,r)
Ns

, respectively.

It is straightforward to derive the n-th moment of R using (3.7) and [13, eq. 2.13.2.3]

as

µn =

∫ ∞

0
rnfR(r) dr =

(
2σ2
)n

2 Γ
(n

2
+1
) ∞∑

k=0

γk
k!

(

−n
2

)

k
. (3.11)

Table 3.1 shows µ1, µ2 and µ3 evaluated using (3.11). These values are verified by simula-

tion moments, µ̃n, achieved by averaging the n-th powers of 108 TWDP samples.

3.1.3 Convergence Analysis

In this section, we investigate the convergence behavior of (3.7) and (3.8). To prove that

these series are convergent, we use the ratio test for convergence of infinite series [12,
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Table 3.2. NUMBER OF TERMS REQUIRED FOR THE ACCURATE EVALUATION OF (3.7)

AND (3.8)

K(dB)/∆ 0 0.2 0.4 0.6 0.8 1

-3 10, 11 11, 11 11, 12 12, 12 12, 13 13, 13
0 13, 14 14, 14 15, 15 15, 16 16, 17 17, 18
3 18, 18 19, 19 20, 21 21, 22 22, 23 24, 25
6 25, 26 27, 28 29, 30 31, 32 33, 35 36, 37
9 37, 39 41, 42 45, 47 49, 51 54, 55 58, 60
12 60, 62 67, 69 76, 78 84, 86 93, 95 101, 103

Sec. 0.222]. Denote the kth term of the series in (3.7) with ck. Both Pk(·) and Lk(·) are kth

order polynomials where Pk(x) =
1
2k

(2k)!
(k!)2

xk +O(xk−1) and Lk(y) =
(−1)k

k! yk +O(yk−1)

[12, eqs. 8.911.1 and 8.970.1]. Note that in (3.7), x = 1√
1−∆2

≥ 1. So, the behavior of

Pk(x) is dominated by 1
2k

(2k)!
(k!)2

xk as k → ∞. The behavior of Lk(y) with y = r2/2σ2 is

dominated by
(−1)k

k! yk when y > 1 and by 1 when y < 1 as k → ∞. So, the ratio test

yields

lim
k→∞

∣
∣
∣
∣

ck+1

ck

∣
∣
∣
∣
=







r2K

σ2
lim
k→∞

k + 1/2

(k + 1)3
, r2 > 2σ2

2K lim
k→∞

k + 1/2

(k + 1)2
, r2 < 2σ2

= 0 < 1. (3.12)

From (3.12), it is clear that the series in (3.7) is convergent. Similarly, the convergence

of (3.8) can be proved by using Lk(y)− Lk−1(y) =
(−1)k

k! yk +O(yk−1) and by following

almost the same steps. Asymptotically, the terms in the series decay with a rate proportional

to 1/k2 and 1/k when r2 > 2σ2 and r2 < 2σ2, respectively. From (3.12) one expects that

the series needs more terms to converge for larger K.

Table 3.2 shows the number of terms required for the series in (3.7) and (3.8) to con-

verge. To obtain these numbers, we defined F
(n)
R (r) as the CDF evaluated using (3.8) with

the series truncated after summation of its first n terms. Then, we define

Nset. , minn : max
0<r<rmax

∣
∣
∣F

(n)
R (r)− F

(5n)
R (r)

∣
∣
∣ < 10−12. (3.13)

To find Nset., we ran Algorithm 1 for 1000 uniformly spaced values of r in [0, 15] for

n = 1 to n = 1000 and we saved the resulting CDF vectors. Then, we found Nset. using

criterion (3.13). A similar approach is followed to findNset. for evaluation of the PDF using

(3.7). We observe that both series converge fast and evaluation of 105 terms is enough to

reach high numerical precision over the practical range of TWDP fading parameters. We

also observe that the series in (3.7) and (3.8) require more terms to converge as K or ∆

increases.
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3.1.4 Integration of the PDF Against the Complementary Error Function

Analysis of wireless fading systems involves integration of the fading PDF against other

mathematical functions. Calculation of the BER and the SER of communication systems

requires integrations of the form PE =
∫
fR(r)pe(r)dr, where pe(r) is the probability of

error when the received signal amplitude is r. In many cases, pe(r) is given in terms of

the complementary error function [6, 7] defined as erfc(x) = 2√
π

∫∞
x e−t

2
dt [12]. So, one

needs to evaluate

I(α) ,
∫ ∞

0
fR(r) erfc

(√
α r
)
dr. (3.14)

In Appendix 3.B, it is shown that

I(α) =
(
1 + 1

2σ2α

)− 3
2

4σ2α

∞∑

k=0

γk F

(
3

2
, 1− k; 2;

1

1 + 2σ2α

)

(3.15)

where γk is given by (3.7b). Defining gk(x) , F
(
3
2 , 1− k; 2;x

)
, the hypergeometric

function in (3.15) can be evaluated recursively by

gk+1(x) =
2k − (k + 1

2)x

k + 1
gk(x) +

k − 1

k + 1
(x− 1)gk−1(x), k > 0 (3.16a)

g0(x) =
2

x

(
1√
1− x

− 1

)

, g1(x) = 1 (3.16b)

where we have used [12, eqs. 9.137.3 and 9.100] and [13, eq. 7.3.2.156]. So, (3.15) can be

calculated efficiently by an algorithm similar to Algorithm 1 using the recursive relation-

ships for the Legendre and the hypergeometric functions given by (3.9) and (3.16).

An immediate application of (3.15) is the calculation of the BER of a BPSK communi-

cation system considered in [6]. Using [6, eq. (2)], Q(x) = 1
2erfc

(
x/

√
2
)

and (3.15) with

α = Eb/N0 the exact BER of a BPSK system results as

PE,BPSK (Eb/N0) =
1

2
I (Eb/N0) (3.17)

where N0/2 is the power spectral density of additive white Gaussian noise and r2Eb is the

instantaneous energy received per bit [6]. Fig. 3.3 shows BER curves obtained by evalu-

ating eq. (3.17) and by computer simulations. One observes full agreement between the

theoretical and simulation results.
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Table 3.3. NUMBER OF TERMS REQUIRED FOR THE ACCURATE COMPUTATION OF(3.17)

K(dB)/∆ 0 0.2 0.4 0.6 0.8 1

-3 10 10 10 11 12 12
0 13 13 14 15 15 16
3 17 18 19 20 21 23
6 24 25 28 30 32 34
9 36 39 44 48 52 56

12 58 65 74 82 91 99
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Figure 3.3. The BER of a BPSK system operating in TWDP fading. N = 100 terms are

used in the summation in (3.17). The markers represent the simulation points and the solid

curves are obtained by the theoretical expression in (3.17).

Table 3.3 shows the number of terms required for the series in (3.17) to converge. These

numbers are obtained using the criterion in (3.13) with F
(n)
R (r) replaced with P

(n)
E,BPSK(α)

and for −20 dB < αdB < 20 dB. Note that αdB=10 log10 α. We observe that evaluation

of the first 100 terms of the series in (3.17) is sufficient to reach a numerical precision of

10−12 for practical TWDP fading parameters.
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3.1.5 Conclusion

The PDF and CDF of TWDP fading were expressed as convergent infinite series and a low-

complexity algorithm was developed for their evaluation. Efficient infinite series were also

given for the TWDP moments and the integral of the TWDP fading PDF against the com-

plementary error function for the performance analysis of wireless systems. The BER of a

BPSK system operating in TWDP fading was evaluated.

Appendix 3.A

In this appendix, we prove that (3.7) is equal to (3.2). In (3.2), we use the identity [12,

eq. 8.442.2]

J0 (V1ν)J0(V2ν) =
∞∑

k=0

(−1)k
(
V1ν
2

)2k

(k!)2
F
(

−k,−k; 1; (V2/V1)2
)

(3.18)

where F (·, ·; ·; ·) is the Gauss hypergeometric function [12, Sec. 9.10]. This yields

fR(r) = r

∞∑

k=0

(−1)k
(
V1
2

)2k

(k!)2
F
(
−k,−k; 1; (V2/V1)2

)
∫ ∞

0
ν2k+1exp

(

−σ
2ν2

2

)

J0(rν)dν

︸ ︷︷ ︸

I1

.

(3.19)

Substitution of the solution of the integral I1 [12, eq. 6.631.1] in (3.19) gives

fR(r) =
r

σ2

∞∑

k=0

(−1)k
(
V 2
1

2σ2

)k

k!
F
(

−k,−k; 1; (V2/V1)2
)

M

(

k + 1, 1,− r2

2σ2

)

(3.20)

where M(·, ·, ·) is the confluent hypergeometric function [12, Sec. 9.2]. To express (3.20) in

terms of K and ∆ and to extract the Rayleigh PDF out of the series, we use identities [12,

eqs. 8.820.4, 9.212.1 and 8.972.1]

F
(

−k,−k; 1; (V2/V1)2
)

=

(
V 2
1 − V 2

2

V 2
1

)k

Pk

(
V 2
1 + V 2

2

V 2
1 − V 2

2

)

(3.21)

M(a, b, z) = ezM(b− a, b,−z) (3.22)

Lk(z) = M(−k, 1, z) (3.23)

respectively. Substitution of (3.21)-(3.23) in (3.20) gives (3.7).
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Appendix 3.B

To evaluate (3.14), we replace fR(r) in (3.14) with (3.7). This yields

I(α) =
∞∑

k=0

(

−K
√
1−∆2

)k

k!
Pk

(
1√

1−∆2

)∫ ∞

0

re−
r2

2σ2

σ2
erfc(

√
α r)Lk

(
r2

2σ2

)

dr

︸ ︷︷ ︸

I2

.

(3.24)

The integral I2 has the solution [13, eq. 2.13.8.2]

1

4σ2α
3F2

(

1,
3

2
, k + 1; 1, 2;− 1

2σ2α

)

=
1

4σ2α
F

(
3

2
, k + 1; 2;− 1

2σ2α

)

(3.25)

where 3F2(·, ·, ·; ·, ·; ·) is the generalized hypergeometric function and we have used [12,

eqs. 9.14.1 and 9.14.2 ] to write (3.25). Substituting (3.25) in (3.24) and using the transfor-

mation [12, eq. 9.131.1] for the hypergeometric function produces (3.15).
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3.2 Supplementary Discussion

In this section, we first propose an efficient algorithm for the evaluation of (3.17). Then

we compare the expression in (3.17) for the BER of BPSK systems in TWDP fading, with

the BER expressions in [6, eqs. (5) and (6)]. Finally, we will discuss the potential future

research based on our contributions in this chapter.

3.2.1 An Algorithm for the Efficient Evaluation of (3.17)

As was discussed in the paper in Sec. (3.1), one can evaluate the BER expression in (3.17)

efficiently using basic mathematical operations with no need to evaluate the hypergeometric

functions. This can be done using the recursive relationship (3.16) for the Gauss hyperge-

ometric function. The algorithm for evaluation of the BER expression in (3.17) is given

below. Note that in this algorithm α = Eb/N0 is the SNR value.

Algorithm 3.2 Evaluation of the BPSK BER operating in TWDP fading using eq. (3.17).

Require: K ≥ 0, 0 ≤ ∆ ≤ 1, σ > 0, N ≥ 0, α ≥ 0

p′′ ← 0, p′ ← 1
x = 1/(1 + 2σ2α)
g′′ ← 2/x × (1/

√
1− x− 1), g′ ← 1

a← −K
P ← p′′ × g′′ + a× p′ × g′

for k = 2 to N do

a ← −K
k
× a

p← (2− 1
k
)p′ − (1− 1

k
)(1−∆2)p′′

g ← (2− 2
k
− (1− 1

2k
)x)g′ + (1− 1

2k
)(x− 1)g′′

P ← P + a× p× g
p′′ ← p′, p′ ← p
g′′ ← g′, g′ ← g

end for

P ← 1
2
× (1+1/(2σ2α))−1.5

4σ2α
× P

return P

Note that the number of summations and multiplications in Algorithm 3.2 grows linearly

with the truncation order N . So one can evaluate (3.17) precisely by selecting large values

of N without making the computations lengthy or difficult.

3.2.2 Comparison of (3.17) with the Existing BER Expressions for BPSK Sys-

tems Operating in TWDP Fading

As was mentioned in Sec. 3.1, the new expressions derived for TWDP statistics may lead to

simpler results in the performance analysis of wireless systems. In this section, we compare

the BER expression in (3.17) which is derived using the new PDF expression in (3.7), with
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the BER expression for the same system given in [6, eqs. (5) and (6)]. [6, eq. (5)] is

PE =
1

2π

M∑

i=0

ai

{

e−K(1−αi)

∫ π
2

0

sin2 θ

sin2 θ+sσ2Eb/N0
exp

(

K(1−αi)
sin2 θ

sin2 θ+sσ2Eb/N0

)

dθ

+e−K(1+αi)

∫ π
2

0

sin2 θ

sin2 θ + sσ2Eb/N0
exp

(

K(1 + αi)
sin2 θ

sin2 θ + sσ2Eb/N0

)

dθ

}

(3.26)

where M is the approximation order in (3.6), coefficients ai are defined in (3.6c) and αi =

∆cos(π(i− 1)/(2M − 1)). [6, eq. (6)] is

PE =
1

2

M∑

i=0

ai

{

e−K(1−αi)
∞∑

n=0

Hn+1

(
K(1− αi); 2σ

2Eb/N0

)

+e−K(1+αi)
∞∑

n=0

Hn+1

(
K(1 + αi); 2σ

2Eb/N0

)

}

(3.27)

where

Hn+1(b; c) =
bn

n!

[

1

2
− 1

2

√
c

1 + c

n∑

k=0

(
2k

k

)
1

[4(1 + c)]k

]

. (3.28)

We believe that the BER expression in (3.17) is superior to the BER expressions in (3.26)

and (3.27). The expression in (3.26) requires numerical integration while the solution in

eq. (3.17) just requires basic mathematical operations. Although there are no issues with

numerical integration, a solution which only requires basic mathematical operations with

linear computational complexity is preferred. Similarly, (3.27) requires evaluation of the

function Hn+1(·, ·) defined in (3.28). There is no recursive relation proposed for evaluation

of Hn+1(·, ·) from Hn(·, ·). Therefore, evaluation of the nth term of the infinite series

in (3.27) requires evaluation of a finite sum with n + 1 terms. By truncating the infinite

series (3.27) to N terms, the total number of operations required for evaluation of (3.27) is

N2

2 + cN , where c is a constant. So the number of operations required grows as O(N2)

for evaluation of (3.27), while this number grows as O(N) for the solution in eq. (3.17)

using Algorithm 2. Also note that the BER solutions in (3.26) and (3.27) require evaluation

of the coefficients ak in eq. (3.6c) of our paper. As is discussed in Secs. 3.1.1 and 3.1.2,

this requires numerical integration of polynomials which is not straightforward when high

accuracy is needed and therefore large values of M are selected.

Table 3.4 shows the average time required for the evaluation of the BER of a BPSK

system operating in TWDP fading for SNR values -20 dB:1 dB:20 dB using (3.26), (3.27)

and (3.17). In this table, N1 and N2 are the truncation orders of the infinite series in (3.27)
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Table 3.4. COMPARISON OF EVALUATION TIMES FOR (3.26), (3.27) AND EQ. (3.17)

∆ K(dB) N1 N2 t1 t2 t3 t1/t3 t2/t3
0.2 0 12 10 22 ms 196 µs 16 µs 1.375 × 103 12.25

0.2 6 22 21 33 ms 364 µs 20 µs 1.650 × 103 18.2

0.2 12 47 60 215 ms 901 µs 30 µs 7.167 × 103 30

0.6 0 12 12 23 ms 195 µs 16 µs 1.437 × 103 12.18

0.6 6 22 26 35 ms 363 µs 20 µs 1.75× 103 18.15

0.6 12 47 76 320 ms 919 µs 39 µs 8.205 × 103 23.5

1 0 12 13 24 ms 197 µs 17 µs 1.411 × 103 11.58

1 6 22 37 38 ms 370 µs 22 µs 1.727 × 103 16.8

1 12 47 93 519 ms 1232 µs 37 µs 14.027 × 103 33.29

and (3.17), respectively. Both N1 and N2 are selected such that the evaluated BER values

reach numerical precision of order 10−9 using the criterion in eq. (3.13) of the paper. For

efficient evaluation of (3.27), the number of summations and multiplications is reduced as

much as possible. Numerical integrations are performed using MATLAB’s quad function

with its tolerance parameter set to 10−9. In Table 3.4, t1, t2 and t3 show the evaluation times

of (3.26), (3.27) and eq. (3.17), respectively. As we observe, the fastest way to compute

the BER is evaluation of eq. (3.17) which is as expected from the discussion above. This

discussion shows that although evaluation of (3.26), (3.27) is not a problem, evaluation

eq. (3.17) is the easiest way to compute the BER of a BPSK systems operating in TWDP

fading.

3.2.3 Future Work

As was discussed in Sec. 3.2.2, the new expressions derived for the TWDP fading statistics

can be applied in the analysis of fading systems. Compared to the expressions for the per-

formance metrics of TWDP systems available in the literature, the new expressions can be

mathematically more tractable and simpler to be evaluated. An example is the performance

of BPSK systems operating in TWDP fading, which was investigated in Secs. 3.1.4 and 3.2.

In this example, we observed that the new expressions were easier to evaluate compared to

the solutions previously proposed in the literature. So, a potential research project for future

is to apply the results of Sec. 3.1 to analyze the performance of various TWDP systems.
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Chapter 4

Modeling and Analysis of Diffuse

Nakagami-m with Line-of-Sight

Fading

In this chapter, we introduce and analyze diffuse Nakagami-m with LOS fading as a new

fading model in wireless systems. This chapter includes our paper “A novel line-of-sight

plus diffuse fading model” which is submitted to IEEE Transaction on Information Theory.

4.1 A Novel Line-of-Sight Plus Diffuse Fading Model1

Authors: N. C. Beaulieu and S. A. Saberali

Submitted to IEEE Transactions on Information Theory

4.1.1 Introduction

Multipath propagation in wireless transmission channels gives rise to signal amplitude (and

power) fading as the multiple wave components add constructively and destructively. A

Rayleigh distribution arises when the number of multipath components is large and none

of them is dominant. Based on a central limit theorem argument, the receiver captures a

diffuse signal whose envelope is Rayleigh distributed. In the case where there is also a line-

of-sight (LOS) component between the transmitter and the receiver, the Rice distribution

models the envelope of the received signal [1, 2].

The Nakagami-m distribution is a generalized flexible fading model which can char-

acterize various fading environments. The Nakagami-m distribution has been shown to fit

experimental data in urban multipath channels better than the Rayleigh and Rice distribu-

tions [3–5]. The performances of various wireless communication systems operating in

Nakagami-m fading has been intensively investigated in the literature [6–17].

1A version of this chapter has been submitted to the IEEE Transactions on Information Theory, Sep. 2013.
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In this paper, we propose the diffuse Nakagami-m with LOS fading model. We derive

the probability density function (PDF), the cumulative distribution function (CDF) and the

characteristic function (CF) of a Nakagami-m with LOS distribution. We compare the new

fading distribution with Rice, Nakagami-m and TWDP fading distributions and find that

the new fading model can behave substantially different from Nakagami-m fading. It is

shown that compared to the Rice and Nakagami-m models, TWDP fading shows a closer

behavior to the Nakagami-m with LOS fading. We also derive an expression for the integral

of the product of the Nakagami-m with LOS fading PDF, and the complementary error

function. This integral is a building block for performance evaluation of many wireless

systems operating in diffuse Nakagami-m with LOS fading environments. Evaluation of the

bit error rate (BER) of an uncoded BPSK wireless system operating in Nakagami-m with

LOS fading is considered as an example. It is shown that when the LOS wave is strong,

the new model leads to diversity orders different from the diversity orders that characterize

the Nakagami-m and Rice PDFs. We also show that the BER of BPSK systems operating in

Nakagami-m with LOS fading approaches the BER of a BPSK system operating in TWDP

fading for moderate and high power LOS components.

The remainder of this paper is organized as follows. We review the diffuse Nakagami-

m distribution in Sec. 4.1.2, and discuss heuristically why it does not represent a fading

environment with a LOS component. In Sec. 4.1.3, we introduce the Nakagami-m with LOS

fading model and we derive expressions for its PDF. Derivations of expressions for the CDF,

moments and moment generating function of the new fading distribution are presented in

Sec. 4.1.4. Secs. 4.1.5 and 4.1.6 present numerical results and discussions about the PDF,

CDF and CF of the proposed fading model. These sections also include comparison of the

new fading model with the Rice and Nakagami-m fading models. In Sec. 4.1.7, the diffuse

Nakagami-m with LOS fading model is compared to the TWDP fading model. Evaluation

of the integral of the Nakagami-m with LOS fading PDF against the complementary error

function is considered in Sec. 4.1.8. In this section, the BER of a BPSK system operating

in Nakagami-m with LOS fading is also derived, and it is compared to the BER of BPSK

systems operating in Nakagami-m and TWDP fading channels. Sec. 4.1.9 concludes the

paper.

4.1.2 Diffuse Nakagami-m Fading

The Nakagami-m distribution has been used to model different fading channels. The distri-

bution of a Nakagami-m random variable is determined by the parameters m and Ω, which
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are the fading severity and the power, respectively. The Nakagami-m PDF is [3]

f (Nakagami)(r) =
2

Γ(m)

(m

Ω

)m
r2m−1e−mr

2/Ω, ,m ≥ 0.5, r ≥ 0 (4.1)

where Γ (·) is the gamma function. In order to justify our new proposed fading distribution,

we need to provide some context for the three common fading models, Nakagami-m, Rice,

and Rayleigh. A heuristic discussion follows.

The Rayleigh distribution model is derived from physical principles starting from a

diffuse scatter propagation environment. The Rice distribution model is derived also start-

ing from physical principles based on a diffuse scatter signal component and a single LOS

specular component. The Nakagami-m distribution model has only been justified as an am-

plitude fading model and only by its suitable match to empirical data. The Nakagami-m

distribution covers a wide range of amplitude fading conditions which are less severe than

Rayleigh fading. At the same time, the Rice distribution also covers a wide range of am-

plitude fading conditions that are less severe than Rayleigh fading [1]. In Nakagami’s cele-

brated paper [3], the author proposes an equivalency between Nakagami-m fading and Rice

fading. This equivalency has received acceptance in the communications research commu-

nity [4, 5]. Yet, the basis for such an equivalency seems to be only that Rice channels and

Nakagami-m channels represent better channels than the Rayleigh channel, without regard

to the physical nature of the channel and the presence or absence of a LOS component. We

argue here that the Nakagami-m channel represents exclusively a diffuse scatter channel.

The central chi-distribution arises when a number of squared, zero-mean Gaussian ran-

dom variables are summed. As the number increases, the mode moves out, in the direction

of larger argument, and the height of the mode of the distribution decreases at the same

time. There exists a normalization that identically transforms the central chi-square dis-

tribution into the Nakagami-m distribution. Effectively, the normalization slows down and

stabilizes the location of the mode while the height of the mode grows without bound. This

insight into the Nakagami-m distribution implies that there is no specular component in

the Nakagami-m distribution corresponding to the fact that it derives from a particular nor-

malization of the central chi-square distribution which is derived from zero-mean Gaussian

random variables (as opposed to the noncentral chi-distribution and the Rice distribution).

This mathematical argument that the Nakagami-m distribution cannot represent fading with

a specular component can be stated in a different, physical way.

The distribution of the signal amplitude in maximal ratio combining diversity (MRC)

operating on Rayleigh channels can be identically transformed into the Nakagami-m dis-
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tribution by the proper equivalency between the diversity order and the Nakagami m pa-

rameter for integer and half-integer values of m. Since the Rayleigh channels have no LOS

component, the resulting Nakagami-m distribution represents a fading channel without LOS

component. Finally, it is worth pointing out that the tails of the Nakagami-m distribution

decay with diversity order m, whereas the tail of the Rice distribution always decays with

diversity order 1, the same as for the Rayleigh distribution regardless of the value of the Rice

K factor. Hence, a Nakagami-m Rice distribution equivalency is flawed, for as wireless en-

gineers and researchers, we work in the tails of the distribution. Hence, one cannot simply

transform a Rice distribution, which represents a LOS and a Rayleigh diffuse component,

to an equivalent Nakagami-m distribution. Nor can a Nakagami-m distribution represent a

diffuse Nakagami-m scatter plus a LOS component.

To recap, the Nakagami-m distribution is just a normalized version of the central chi-

distribution, so both distributions characterize the same phenomena. The central chi distri-

bution arises when squared zero-mean Gaussian random variables are summed, where none

of them is a specular component (which is a diffuse scatter), so the Nakagami-m distribu-

tion also models a diffuse scatter. Studying the behavior of the modes of these distributions

reinforces further our thesis. The mode of a cental chi-distribution moves out which is a

characteristic of the PDF of any sum of random variables. The mode of the Nakagami-

m distribution, however, does not behave like the mode of a sum of random variables (or

a diffuse component) as its mode stabilizes as the parameter m increases. However, this

does not mean that the Nakagami-m distribution characterizes a phenomena different from

the central chi-distribution; it represents a normalized distribution with a special normal-

ization. Hence, the Nakagami-m distribution also characterizes a sum of random variables

with no specular component, and there is no contradiction in the behavior of the mode of a

Nakagami-m distribution and the behavior of the mode of a distribution of a sum of random

variables with no specular component. In Secs. 4.1.5 and 4.1.6, we will show in another

way that the Nakagami-m distribution cannot model the envelope of the received signal

when there is a LOS component in the received signal.

The diffuse Nakagami plus LOS fading model is easily justified. In any propagation

environment that is well modeled by a suitable Nakagami-m distribution, we need only to

add a specular wave.
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4.1.3 Diffuse Nakagami-m with LOS Fading Model

In this section, we introduce the diffuse Nakagami-m with LOS fading model and we derive

its PDF.

The baseband voltage of the multipath received signal with one LOS component can be

modeled as [2, 18]

V = Rejφ = V0e
jφ0

︸ ︷︷ ︸

LOS component

+ Vde
jφd

︸ ︷︷ ︸

diffuse component

(4.2)

where V is the received baseband signal with envelope R and phase φ. V0 is the con-

stant magnitude of the LOS component and φ0 is its corresponding random phase, which is

uniformly distributed in [0, 2π]. This assumption is well justified by the discussion in [2,

Sec. I]. Following the terminology proposed in [2], the LOS voltage is the specular com-

ponent of the received signal, while Vd and φd represent the random magnitude and the

random phase of the diffuse component of the received baseband signal, respectively. The

diffuse component results from reception of various multipath reflections of the transmitted

signal, that have comparable strength. In diffuse Nakagami-m with LOS fading, we assume

that the magnitude of the diffuse voltage has a Nakagami-m distribution with parameters

m and Ω, and that the phase φd is uniformly distributed in [0, 2π]. Note that in both the

Rayleigh and Rice fading models, Vd is Rayleigh distributed. In Rayleigh fading V0 = 0,

while V0 > 0 in Rice fading.

The components X = R cosφ and Y = R sinφ in (4.2) are jointly spherically sym-

metric random variables and their joint characteristic function, ΦXY (ω1, ω2), is a function

of ν =
√

ω2
1 + ω2

2 [18]. In other words, ΦXY (ω1, ω2) = Φ(ν). Moreover, the PDF of R,

fR(r), and Φ(ν) are Hankel transform pairs; i.e., [2, 18]

Φ(ν) =

∫ ∞

0
fR(r)J0(νr)dr (4.3)

fR(r) = r

∫ ∞

0
Φ(ν)J0(rν)νdν. (4.4)

To find Φ(ν) we use [18]

Φ(ν) = EV0,Vd
[J0 (V0ν)J0(Vdν)] (4.5)

whereE [·] is the expectation operator. Since V0 is deterministic, Φ(ν)=J0(V0ν)EVd
[J0(Vdν)].

Moreover,

EVd
[J0(Vdν)] =

2

Γ(m)

(m

Ω

)m
∫ ∞

0
x2m−1e−

m
Ω
x2J0(νx)dx (4.6)

=M

(

m, 1,− Ω

4m
ν2
)

(4.7)
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where M(·, ·, ·) is the confluent hypergeometric function and we evaluated the last integral

using [25, eq. 6.631.1]. Using (4.4)-(4.7), one obtains,

fR(r) = r

∫ ∞

0
M

(

m, 1,− Ω

4m
ν2
)

J0(V0ν)J0(rν)νdν. (4.8)

In Appendix 4.A, it is shown that (4.8) can be expressed as

fR(r) =
2

Γ(m)

(m

Ω

)m (
V2
0 + r2

)m−1
re−

m
Ω (V2

0+r
2)×

1

π

m−1∑

i=0

(
m− 1

i

)(

− 2V0r

V2
0 + r2

)i

Gf (r; i) (4.9a)

where

Gf (r; i) ,

∞∑

k=0
k+i even

B

(
k + i+ 1

2
,
1

2

) (
2mΩ V0r

)k

k!
(4.9b)

=







B

(
i

2
+

1

2
,
1

2

)

1F2

(
i

2
+

1

2
;
1

2
,
i

2
+ 1;

(m

Ω
V0r

)2
)

,i even

2
m

Ω
V0rB

(
i

2
+ 1,

1

2

)

1F2

(
i

2
+ 1;

3

2
,
i

2
+

3

2
;
(m

Ω
V0r

)2
)

,i odd

. (4.9c)

In eq. (4.9), B(·, ·) and 1F2(·; ·, ·; ·) represent the beta function [23, Sec. 8.38] and the

generalized hypergeometric function [20, Sec. 7.14], respectively. Note that Gf (r; i) =
∑∞

k=0 B(k+i+1
2 ,

1
2)

(2m
Ω
V0r)2k

(2k)! when i is even, and Gf (r; i)=
∑∞

k=0 B(k+ i
2+1,

1
2)

(2m
Ω
V0r)2k+1

(2k+1)!

when i is odd. Denoting the kth terms of these series with ak and bk, respectively, their

successive terms can be computed recursively as

ak+1 =
(k + i+1

2 )

(k + 1
2)(k + 1)(k + i+2

2 )

(m

Ω
V0r
)2
ak (4.10a)

bk+1 =
(k + i

2 + 1)

(k + 1)(k + 3
2 )(k +

i+3
2 )

(m

Ω
V0r
)2
bk (4.10b)

where we have used B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and Γ(k + 1) = k! [25]. Using (4.10)

and the ratio test for convergence of infinite series [25, Sec. 0.22], one can show that (4.9b)

is convergent as

lim
k→∞

ak+1

ak
= lim

k→∞
bk+1

bk
=
(m

Ω
V0r
)2

lim
k→∞

1

k2
= 0. (4.11)

A recursive algorithm is proposed in Appendix 4.B, for fast and efficient evaluation of the

infinite series in (4.9b). Eq. (4.9c) expresses the Nakagami-m with LOS fading PDF in terms

of the hypergeometric function 1F2(·; ·, ·; ·), which is implemented efficiently in mathemat-

ical software packages like Mathematica, Matlab and Maple. Note that performance anal-

ysis of wireless fading systems often requires integration of the fading PDF against other

47



mathematical functions; the derived infinite series PDF expression is more amenable to fur-

ther analysis than (4.9c) in many of these applications. This is because integration of the

hypergeometric function 1F2(·; ·, ·; ·) against other mathematical functions may be difficult.

4.1.4 Properties of the New Probability Distribution

In this section, we investigate the properties of the diffuse Nakagami-m with LOS fading

distribution. In particular, we derive expressions for its CDF, its moments and its moment

generating function.

To facilitate derivation of the Nakagami-m with LOS statistics, we use the binomial

expansion of (x+ y)n [25, eq. 1.111] to express (4.9) as

fR(r) =
2
(
m
Ω V0

2
)m

πΓ(m)V0
2 e

−m
Ω

V2
0

m−1∑

i=0

m−1−i∑

j=0

(
m− 1

i

)(
m− 1− i

j

)

×

(− 2
V0

)i

V0
2j

∞∑

k=0
k+i even

B
(
k+i+1

2 , 12
) (

2mΩ V0

)k

k!
ri+2j+k+1e−

m
Ω
r2 . (4.12)

One notes that each term of the summation in (4.12) is a combination of powers and ex-

ponentials of r. This facilitates integration of (4.12) against other mathematical functions.

Using (4.12) and [25, eq. 3.381.4], we evaluate the moments of R as

E [Rµ] =

∫ ∞

0
rµfR(r)dr

=

(
m
Ω V2

0

)m−1
e−

m
Ω

V2
0

πΓ(m)
(
m
Ω

)µ
2

m−1∑

i=0

m−1−i∑

j=0

(
m− 1

i

)(
m− 1− i

j

)

×

(−2)i

(mΩ V0
2)j+

i
2

∞∑

k=0
k+i even

B
(
k+i+1

2 , 12
)
Γ(k+i+µ2 +j+1)

k!

(
4m

Ω
V0

2

) k
2

. (4.13)

Substitution of µ = 1 in (4.13) gives the mean of R. To evaluate the second moment

of R, we can find an expression simpler than (4.13) with µ = 2. Since φ0 and φd are

modeled in (4.2) as independent and uniformly distributed random variables in [0, 2π], it is

straightforward to show

E
[
R2
]
= E

[
V0

2 + 2V0Vd (cosφ0 cosφd + sinφ0 sinφd) + Vd
2
]
= V0

2 +Ω (4.14)

where we used E
[
V 2
d

]
= Ω [24]. The CDF of R can also be derived by integration of
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(4.12), which yields

FR(r) =

∫ r

0
fR(x)dx =

(
m
Ω V0

2
)m−1

e−
m
Ω

V2
0

πΓ(m)
×

m−1∑

i=0

m−1−i∑

j=0

(
m− 1

i

)(
m− 1− i

j

)
(−2)i

(mΩ V0
2)j+

i
2

GF (r; i, j) (4.15a)

GF (r; i, j) =

∞∑

k=0
k+i even

B
(
k+i+1

2 , 12
) (

2
√

m
Ω V0

)k

k!
γ

(
i+ k

2
+ j + 1,

m

Ω
r2
)

(4.15b)

where γ(·) is the incomplete gamma function [25, Sec. 8.35], and we used
∫ r
0 x

ν−1e−µxdx =

µ−νγ(ν, µr) [25, eq. 3.381.3]. Direct evaluation of the incomplete gamma function in each

term of the series is not required as it can be evaluated recursively by [25, 8.356.1]

γ(n+ 1, x) = nγ(n, x)− xne−x. (4.16)

Note that the exponential term in (4.16) is independent of n, and therefore it needs to be

evaluated only one time. In Appendix 4.B, we propose a recursive algorithm for the efficient

evaluation of (4.15b). Note that the beta function and the incomplete gamma function

are each computed only once, for k = 0 or k = 1, to initialize the algorithm. After

initialization, the infinite series can be evaluated using basic mathematical operations; i.e.,

summation and multiplication. The number of required operations grows linearly as O(N),

where N is the series truncation order.

One can also derive an expression for the moment generating function of R as

Φ(s) =

∫ ∞

0
fR(r)e

srdr

=
2
(
m
Ω V0

2
)m

πΓ(m)

e−
m
Ω

V2
0

V0
2

m−1∑

i=0

m−1−i∑

j=0

(
m− 1

i

)(
m− 1− i

j

)

×

(− 2
V0

)i

V0
2j

∞∑

k=0
k+i even

B
(
k+i+1

2 , 12
) (

2mΩ V0

)k

k!

∫ ∞

0
ri+2j+k+1e−

m
Ω
r2+srdr. (4.17)

The integral in (4.17) can be solved using [25, eq. 3.462.1]

∫ ∞

0
xν−1e−βx

2−λxdx = (2β)−ν/2Γ(ν)e
λ2

8βD−ν

(
λ√
2β

)

, ℜ{β} > 0, ℜ{ν} > 0

(4.18)
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where Dp(·) is the parabolic cylinder function [25, Sec. 9.24]. Substitution of (4.18) in

(4.17) gives

Φ(s) =

(
m
Ω V0

2
)m−1

πΓ(m)
exp

(

−m
Ω

V2
0 +

s2

8mΩ

)

×

m−1∑

i=0

m−1−i∑

j=0

(
m− 1

i

)(
m− 1− i

j

)
(−1)i2

i
2
−j

(mΩ V0
2)

i
2
+j
GΦ(s; i, j) (4.19a)

GΦ(s; i, j) =

∞∑

k=0
k+i even

B
(
k+i+1

2 , 12
) (

2mΩ V0
2
)k

2

k!
Γ (2j + i+ k + 2)D−(2j+i+k+2)

(

−s
√

2mΩ

)

.

(4.19b)

The characteristic function of R, Φ(jω), is given by (4.19) with s replaced by jω, namely

by noting that the parabolic cylinder function can be expressed in terms of the Whittaker m-

function [25, Sec. 9.24] which is implemented in common mathematical software packages.

However, it is not required to evaluate the parabolic cylinder function directly in each term

of the series in (4.19b). The parabolic cylinder function can be evaluated recursively by [25,

eqs. 9.247.1, 8.250.1 and Sec. 9.254]

D−n(z) = − 1

(n− 1)

[
zD−(n−1)(z)−D−(n−2)(z)

]
(4.20a)

D−2(z) = e−
z2

4 − zD−1(z) (4.20b)

D−1(z) = e
z2

4

√
π

2

[

1− erf

(
z√
2

)]

. (4.20c)

One can evaluate (4.19b) fast and efficiently using (4.20). In Appendix 4.B, we propose an

algorithm for the recursive evaluation of (4.19b) using (4.20). The proposed algorithm only

requires basic mathematical operations, and it does not require computation of any special

function in each term of the series. In fact, it is required to evaluate the error function only

one time to initialize the algorithm. The computational complexity of the algorithm grows

linearly with the series truncation order, N .

4.1.5 Numerical Examples and Discussion: PDF

In this section, we provide numerical examples to illustrate the application of the Nakagami-

m with LOS fading PDF using (4.9). We also compare the exact Nakagami-m with LOS

fading PDF with the Rice and Nakagami-m PDFs.

Fig. 4.1 shows the Nakagami-m with LOS fading PDF for m = 3, Ω = 1 and four

different LOS magnitudes. Note that the PDF reduces to the Nakagami-m PDF when V0 = 0.
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Figure 4.1. The Nakagami-m with LOS fading PDF for m = 3, Ω = 1 and different choices

of the LOS magnitude V0.

We observe that as the LOS component gets stronger, the PDF gets more different from the

Nakagami-m PDF. In fact, when the LOS power is on the order of the diffuse power Ω,

the PDF becomes bimodal. From Fig. 4.1, one can realize that in general, the Nakagami-m

distribution cannot model or approximate the behavior of the received signal envelope when

there is a LOS component in the received signal. Such an approximation can be valid only

when the LOS power is negligible compared to the diffuse power. This is consistent with

our model in (4.2), where the non-specular multipath waves were absorbed in the diffuse

component of the received signal.

To show that the Rice and Nakagami-m distributions cannot model the envelope of the

received signal in (4.2), we compare their PDFs with the diffuse Nakagami-m with LOS

PDF in Fig. 4.2. In this figure, the black curves show the Nakagami-m with LOS PDF

with parameters m = 4, Ω = 1 and V0 = 2. We compare this distribution with three

approximate distributions for the envelope of the received signal in model (4.2). The first

candidate is the Rice distribution RR ∼ Rice(VR, σ
2
R). The PDF of RR is [24]

f (Rice)(r) =
r

σ2R
e
− r2+V 2

R
2σ2

R I0

(
VR
σ2R

r

)

(4.21)

51



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

P
D
F

Nakagami-m with LOS fading with m = 4, Ω = 1, V0 = 2
Rice fading with VR = 2, σ2

R
= 1

2

Nakagami-m fading with m
(1)
N

= 2.78, Ω
(1)
N

= 5

Nakagami-m fading with m
(2)
N

= 2.5, Ω
(2)
N

= 5

(a) Linear scaling
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(b) Logarithmic scaling

Figure 4.2. Comparison of the Nakagami-m with LOS PDF with the Rice and Nakagami-m

PDFs with the equivalency parameters in (4.22)-(4.24).
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where I0(·) is the zeroth-order modified Bessel function of the first kind, VR is the mag-

nitude of the LOS component and 2σ2R is the mean-squared voltage of the diffuse com-

ponent [24]. So, the parameters of the Rice distribution corresponding to model (4.2) are

VR = V0 (4.22a)

σ2R =
Ω

2
. (4.22b)

For the Nakagami-m with LOS distribution with parameters m = 4, Ω = 1 and V0 = 2, the

equivalency Rice parameters are VR = 2 and σ2R = 1
2 . The blue curves in Fig. 4.2 show

this PDF. The second candidate for comparison is the Nakagami-m distribution R
(1)
N ∼

Nakagami(m
(1)
N ,Ω

(1)
N ) corresponding to the Rice distribution with the parameters in (4.22).

The parameters of this distribution are determined by the widely used Rice to Nakagami-m

parameter transformation [3, 5, 24]

m
(1)
N =

(
V 2
R

2σ2R
+ 1
)2

(
V 2
R

σ2R
+ 1
) (4.23a)

Ω
(1)
N = V 2

R + 2σ2R (4.23b)

which gives Ω
(1)
N = 5 and m

(1)
N ≈ 2.78. The resulting PDF is shown in Fig. 4.2 with red

color. The last candidate is also a Nakagami-m distribution, R
(2)
N ∼ Nakagami(m

(2)
N ,Ω

(2)
N ),

whose parameters are chosen such that its first and second moments match the first and

second moments of the Nakagami-m with LOS distribution. The first and second moments

of the latter are given by (4.13) and (4.14). Equating these moments with the first and

second moments of the Nakagami-m distribution gives [3]

Ω
(2)
N = Ω+ V 2

0 (4.24a)

Γ
(

m
(2)
N + 1

2

)

Γ
(

m
(2)
N

)

√
√
√
√

Ω
(2)
N

m
(2)
N

= E [R] . (4.24b)

By solving (4.24) for m
(2)
N and Ω

(2)
N , we obtain the Nakagami-m equivalency parameters. In

our example, solving (4.24) yields m
(2)
N = 2.50 and Ω

(2)
N = 5. The purple curves in Fig. 4.2

correspond to this PDF. Note that unlike the Rice fading and the Nakagami-m fading models

with parameters in (4.22) and (4.23), the parameters of the last Nakagami-m fading model

given by (4.24), are sensitive to parameter m of the Nakagami-m with LOS fading model.

This is because E[R] in (4.24b) is a function of m.
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Figure 4.3. Comparison of the decay rate of the tail of the Nakagami-m with LOS fading

PDF with the decay rates of the tails of the Rice and Nakagami-m PDFs with the equivalency

parameters for m = 4, Ω = 1 and various LOS amplitudes.

In Fig. 4.2, we observe that the shape of the PDF of the new model is substantially dif-

ferent from all the proposed approximate PDFs. In particular, the PDF of R has two modes

while the approximate PDFs have just a single mode for the considered parameters. An-

other very significant observation is that in Fig. 4.2b, the tail of the Nakagami-m with LOS

fading PDF decays much faster than the other PDFs. This is significant as the performance

analysis of wireless fading systems involves integrations on the tail of the fading PDF. This

observation shows that for performance analysis, it is not always possible to approximate

the Nakagami-m with LOS fading PDF with Nakagami-m or Rice PDFs. This fact is more

clear in Fig. 4.3 which shows the tail of the Nakagami-m with LOS distribution and the

approximate distributions for different LOS magnitudes. As we observe in this figure, when

the LOS power is much smaller than the diffuse power, the Nakagami-m distribution with

parameters given by (4.24) can approximate the Nakagami-m with LOS distribution. How-

ever, the Rice and the Nakagami-m approximations with parameters in (4.22) and (4.23) are

not precise even for low-power LOS components. More significantly, none of the proposed

approximations remains useful for moderate and high-power LOS waves.
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Figure 4.4. The diffuse Nakagami-m with LOS fading CDF for m = 3,Ω = 1 and different

values of V0. The markers represent the Monte-Carlo simulation points and the solid curves

are obtained by the theoretical expression in (4.15).

4.1.6 Numerical Examples and Discussion: CDF and CF

The fading CDF is required for the evaluation of the outage probability of wireless fading

systems. In this section, we present numerical examples for the CDF of diffuse Nakagami-m

with LOS fading. We also provide the CF curves of the new distribution using eqs. (4.19)

and (4.20). The theoretical results are verified by computer simulations.

Fig. 4.4 shows the CDF of diffuse Nakagami-m with LOS fading obtained by evaluation

of eq. (4.15) and by computer simulations. The simulation results are obtained by generat-

ing Ns = 106 samples of the diffuse Nakagami-m with LOS distribution. The simulation

CDF at point r is evaluated as the ratio of the number of samples smaller than r to Ns. In

Fig. 4.4, we observe full agreement between the theoretical and computer simulation re-

sults. We also observe that for fixed values of m and Ω, the CDF increases to one more

slowly as the LOS component V0 gets stronger. This is consistent with our observation in

Fig. 4.1, where the modes of the PDF locate at larger values of r as V0 increases. In Fig. 4.5,

we look at the lower tails of the CDFs of the diffuse Nakagami-m with LOS distribution and

the corresponding Rice and Nakagami-m distributions derived in Sec. 4.1.5. Note that the
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Nakagami-m with LOS fading
Rice fading using parameters in (4.22)
Nakagami-m fading using parameters in (4.23)
Nakagami-m fading using parameters in (4.24)

Figure 4.5. Comparison of the of diffuse Nakagami-m with LOS fading CDF and the CDFs

of the corresponding Rice and Nakagami-m distributions for m = 4, Ω = 1 and various

LOS amplitudes.

behavior of the fading CDF in the lower tail is significant, as it is closely connected to the

outage probability of wireless fading systems. In this figure, the diffuse Nakagami-m with

LOS CDF is plotted for parameters m = 4, Ω = 1 and three LOS values 0.1, 0.5 and 1.

Fig. 4.5 also shows the Rice and Nakagami-m CDFs with the equivalency parameters in

(4.22)-(4.24). Note that the Rice and Nakagami-m CDF expressions corresponding to the

PDF expressions in (4.21) and (4.1) are [1, 24]

F (Rice)(r) = 1−Q

(
VR
σR

,
r

σR

)

(4.25)

F (Nakagami)(r) =
γ
(
m, mΩ r

2
)

Γ(m)
(4.26)

respectively, where Q(·, ·) is the Marcum Q function. We observe that, in general, the CDF

of none of these distributions can closely approximate the CDF of the Nakagami-m with

LOS distribution. Also note that when the LOS component is weak, the second Nakagami-

m distribution with parameters in (4.24), has the closest CDF curve to FR(r).
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(b) Imaginary part

Figure 4.6. The Nakagami-m with LOS fading CF for m = 3,Ω = 1 and different choices

of V0. The markers represent the Monte-Carlo simulation points and the solid curves are

obtained by the theoretical expression in (4.19).
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Fig. 4.6 shows the Nakagami-m with LOS fading CF evaluated both by using (4.19)

and by computer simulations. Using the recursive algorithm proposed in Appendix B, each

of the CF curves was evaluated in fractions of a second. As we observe, the Nakagami-m

with LOS CF becomes more oscillatory as the LOS component gets stronger. Moreover, the

envelopes of the real and imaginary parts of the CF are not always decreasing. This is clear

for the CF curves for V0 = 2,

4.1.7 Comparison to TWDP Fading

In this section, we compare the diffuse Nakagami-m with LOS and TWDP fading behaviors.

As was discussed in Sec. 4.1.3, the received signal in Nakagami-m with LOS fading has

one LOS component and a Nakagami-m distributed diffuse component. In TWDP fading,

however, the received signal has two LOS components and a Rayleigh distributed diffuse

component. The mathematical model for the received baseband signal in TWDP fading

is [2, 22]

Ṽ = V1e
jψ1 + V2e

jψ2 + Ṽde
jψd (4.27)

where V1, V2 and Vd are magnitudes of the two LOS components and the diffuse compo-

nent, respectively. ψ1, ψ2 and ψd are the corresponding phases which are independent and

uniformly distributed in [0, 2π]. The real and imaginary parts of the diffuse component are

normally distributed with zero mean and variance σ2. So, Ṽd is Rayleigh distributed and its

mean-squared voltage is 2σ2 [2, 21, 22]. Defining

K =
V 2
1 + V 2

2

2σ2
(4.28)

∆ =
2V1V2
V 2
1 + V 2

2

(4.29)

the TWDP PDF has the approximate solution [2]

fR(r)≈
r

σ2
exp

(

− r2

2σ2
−K

) M∑

i=1

aiD

(
r

σ
;K,∆cos

π(i−1)

2M−1

)

(4.30a)

where

D(x;K;α) =
eαK

2
I0

(

x
√

2K(1 − α)
)

+
e−αK

2
I0

(

x
√

2K(1 + α)
)

. (4.30b)

Another solution for the TWDP fading PDF is also available in [22], which gives the PDF

as an infinite series. As is clear from (4.27) and (4.30), TWDP fading is totally described

by three parameters V1, V2 and σ2, or equivalently, by parameters K, ∆ and σ2. So, com-

pared to the Rice and Nakagami-m distributions considered in Secs. 4.1.5 and 4.1.6, TWDP
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fading provides more degrees of freedom to behave similar to diffuse Nakagami-m with

LOS fading. To compare the TWDP statistics with the Nakagami-m with LOS statistics, we

follow two methods to derive the TWDP fading equivalency parameters. In the first method,

we approximate the distribution of the envelope of the diffuse Nakagami-m component in

(4.2) with Rice distribution Rice(V2, σ
2). Note that the resulting Rice distribution models

the envelope of the combination of a LOS component with magnitude V2 with a Rayleigh

distributed diffuse component with power 2σ2. Therefore, the Rice approximation for the

diffuse component in (4.2) can be used to approximate (4.2) with the TWDP fading model in

(4.27). To derive the equivalency parameters of the Rice distribution, we use the Nakagami-

m to Rice transformation [24, eq. (2.26)]

m =

(
V 2
2

2σ2
+ 1

)2

/

(
V 2
2

σ2
+ 1

)

(4.31a)

Ω = V 2
2 + 2σ2. (4.31b)

By solving (4.31), the Rice approximation for the diffuse Nakagami-m component gives the

TWDP equivalency parameters

V1 = V0 (4.32a)

V2 =

√
√

1− 1

m
Ω (4.32b)

σ2 =
Ω

2

(

1−
√

1− 1

m

)

. (4.32c)

An important benefit of the Rice approximation for the diffuse power is that it gives all

the equivalency parameters analytically. We insist that the resulting TWDP model with the

equivalency parameters in (4.32) is an approximate model for (4.2) as the Rice distribu-

tion obtained by the Nakagami-m to Rice transformation is an approximate model for the

Nakagami-m distribution.

A second approach we use to derive the TWDP parameters is the moment matching

method. Since the TWDP model is described by three parameters, we need to equate three

moments of the TWDP distribution with the corresponding three moments of the Nakagami-

m with LOS distribution. Infinite series expressions are given for the n-th moments of the

TWDP and Nakagami-m with LOS distributions in [22, eq. (11)] and (4.13), respectively.

Note that a simpler expression for the second moment of the Nakagami-m with LOS dis-

tribution was given in (4.14). The second moment of the TWDP distribution can also be

obtained as V 2
1 + V 2

2 + 2σ2, by following the same method we used to derive (4.14). Ex-

cept for the second moments, all the other moments are given by infinite series expressions,
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Table 4.1. TWDP EQUIVALENCY PARAMETERS.

Moments Matching

Nakagami-m TWDP Rice 1st, 2nd, 1st, 2nd, 1st, 2nd,

parameters parameters Approx. 3rd 10th 20th

Case I: m = 2, K(dB) 7.655 7.674 7.488 5.784

V0 = 1, Ω = 1
∆ 0.985 0.985 0.996 0.717

σ 0.383 0.382 0.389 0.457

Case II: m = 4, K(dB) 9.206 9.087 7.406 6.885

V0 = 1
2

, Ω = 1
∆ 0.834 0.829 0.672 0.493

σ 0.259 0.262 0.310 0.326

and therefore, the TWDP equivalency parameters must be evaluated numerically. Equating

the second moments gives

V 2
1 + V 2

2 + 2σ2 = V 2
0 +Ω. (4.33)

The other required identities are given by equating two other moments. Note that choosing

a high order moment increases the contribution of the upper tail of the distribution, and

therefore, the resulting PDF is more likely to match the diffuse Nakagami-m with LOS

fading PDF at its upper tail. However, this may lead to a looser match at the lower tail of

the distribution (near zero).

Table 4.1 shows the equivalency TWDP parameters for a Nakagami-m with LOS distri-

bution using the Rice approximation for the diffuse component and the moment matching

method. Note that the parameters obtained by the Rice approximation are very close to

the parameters obtained by matching the first, second and third moments. However, the

former values are given analytically while the latter values must be computed numerically.

Fig. 4.7 shows the TWDP PDFs with the parameters in Table 4.1, as well as the correspond-

ing Nakagami-m with LOS fading PDFs. We observe that the PDFs obtained by the Rice

approximation and the moments matching method behave almost the same, when low order

moments are matched. Moreover, the PDFs resulting from matching high order moments

show a loose fit at the lower tail of the PDF and a better fit at the upper tail, which is ex-

pected as was discussed before. Note that none of the derived TWDP fading PDFs coincides

the Nakagami-m with LOS fading PDF, specially near the modes of the distribution.
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Figure 4.7. Comparison between the diffuse Nakagami-m with LOS fading PDF and the

TWDP fading PDFs with the equivalency parameters in Table 4.1.
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Figure 4.8. Comparison between the diffuse Nakagami-m with LOS fading CDF and the

TWDP fading CDFs with the equivalency parameters in Table 4.1.
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Fig. 4.8 shows the CDFs of the distributions in Table 4.1. We observe that the CDFs of

the TWDP distributions obtained by the Rice approximation and by matching the low-order

moments, are close to the Nakagami-m with LOS fading CDF.

Moreover, the TWDP CDF obtained by the Rice approximation for the diffuse compo-

nent behaves not worse than the CDFs obtained by the moments matching method. Since

the parameters of the Rice approximation are given analytically it is worthy to investigate

its CDF behavior more thoroughly. Fig. 4.9 shows the CDFs of two Nakagami-m with LOS

distributions and the corresponding TWDP fading CDFs obtained by the Rice approximation

for the diffuse component. We observe that the resulting TWDP CDFs are very close to the

Nakagami-m with LOS CDFs for r > 0.1. However, for r < 0.1, they deviate from the

Nakagami-m with LOS CDFs, specially when the LOS power V 2
0 is much smaller than the

diffuse power, Ω.

As the last point, note that approximating diffuse Nakagami-m with LOS fading with

TWDP fading may lead to very large values of K. This can be shown clearly for TWDP

fading with parameters given by the Rice approximation in (4.32). Substitution of (4.32) in

(4.28) yields

K =

V 2
0
Ω +

√

1− 1
m

1−
√

1− 1
m

. (4.34)

From (4.34), it is clear that K gets larger either when m increases or when the ratio of the

LOS power to the diffuse power increases. When K is large, the TWDP approximate PDF

expression in (4.30) deviates from the true TWDP fading PDF [2]. Moreover, evaluation

of the coefficients ai in (4.30) gets very difficult for large values of K [22]. For example,

precise evaluation of the polynomial integrals required for computation of coefficients ai

are not straightforward for K > 12 dB and ∆ = 1 as it leads to M = 1
2∆K > 8 [22].

Similarly, evaluation of the TWDP fading PDF and CDF expressions given in [22] is not

straightforward for K > 12 dB [22]. To show how restrictive this fact is, we use (4.34) to

determine the range of values of V 2
0 which leads to K < 12 dB. For Ω = 1 and m = 5,

this range is (0, 0.778), which is very small and only covers low-power LOS components.

For the same value of Ω and m = 7, this range reduces to (0, 0.25). For m ≥ 9 and Ω = 1,

any positive value for V 2
0 leads to K > 12 dB. So, the use of the TWDP fading model to

approximate the Nakagami-m with LOS fading model is very restricted, particularly when

m is large.
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Figure 4.9. Comparison between the diffuse Nakagami-m with LOS fading CDF and the

TWDP fading CDFs with the equivalency parameters given by the Rice approximation in

(4.32) for different LOS powers.
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4.1.8 Integration of the PDF Against the Complementary Error Function

A significant application of the fading PDF is in calculation of performance metrics of

wireless communication systems. Evaluation of the symbol error rate (SER) of many com-

munication systems involve integrals of the form P(λ) =
∫∞
0 fR(r)erfc(ar)dr, where

erfc(x) = 2√
π

∫∞
x e−t

2
dt is the complementary error function [23]. In Appendix 4.C, it is

shown that

P(λ) =

(
m
Ω V2

0

)m−1
e−

m
Ω

V2
0

π
√
πΓ(m)

m−1∑

i=0

m−1−i∑

j=0

(
m−1
i

)(
m−1−i

j

)

(mΩ V
2
0 )

i
2
+j

(−2)iH(λ; i, j) (4.35a)

where

H(λ; i, j) =
∞∑

k=0
k+i even

(
2
√

m
Ω V0

)k

k!
B

(
k + i+ 1

2
,
1

2

)

Γ

(
i+ 2j + k + 3

2

)

× B 1

1+Ωλ2
m

(
i+ k

2
+ j + 1,

1

2

)

(4.35b)

and Bx(·, ·) is the incomplete beta function [25, Sec. 8.39]. Note that in (4.35b), the incom-

plete beta function can be computed recursively using

Bx (n, 1/2) =
1

n− 1
2

[
(n− 1)Bx (n− 1, 1/2) − xn−1

√
1− x

]
. (4.36)

In Appendix 4.B, we propose an efficient algorithm for evaluation of (4.35b) using (4.36).

As an example of application of (4.35), we calculate the BER of a BPSK system op-

erating in diffuse Nakagami-m with LOS fading. In non-fading conditions, the BER of an

optimal detector for a BPSK signal is given by Pe(r) = 1
2erfc

(√
Eb
N0
r
)

, where Eb
N0

is the

signal-to-noise ratio per bit [1]. So, under diffuse Nakagami-m with LOS fading the BER is

given by

PBPSK
e

(√

Eb
N0

)

=

∫ ∞

0
fR(r)Pe(r)dr =

1

2

∫ ∞

0
fR(r)erfc

(√

Eb
N0

r

)

dr

=
1

2
P
(√

Eb
N0

)

(4.37)

where P(·) is defined in (4.35). The resulting BER curves are shown in Fig. 4.10 for dif-

ferent choices of Nakagami-m with LOS fading parameters. Also shown in this figure are

the BER curves of BPSK systems operating in Nakagami-m fading and TWDP fading, with

the equivalency parameters given by (4.24) and (4.32). As we observe, when V 2
0 ≪ Ω; i.e.,
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Figure 4.10. The BER of a BPSK system operating in Nakagami-m with LOS fading, and

Nakagami-m and TWDP fadings with the equivalency parameters in (4.24) and (4.32). The

markers represent the Monte-Carlo simulation points.
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when the LOS power is much smaller than the diffuse power, the BER curves of Nakagami-

m with LOS fading and Nakagami-m fading show a similar behavior. This is expected as

the presence of a LOS component is the only difference between these two fading models.

As the LOS gets stronger, the Nakagami-m fading curves deviate from the Nakagami-m

with LOS fading curves. We observe an exactly opposite trend in the behavior of the BER

curves in TWDP fading. As the LOS power increases, the BER curves in TWDP fading show

a closer fit to the BER curves in Nakagami-m with LOS fading. Also note that the slope

of the BER curves in diffuse Nakagami-m with LOS fading can be different from the BER

curves in Nakagami-m fading and TWDP fading. Among other things, this difference leads

to different predictions of diversity order.

4.1.9 Conclusion

A diffuse Nakagami-m with LOS fading model was introduced. Expressions were derived

for the PDF, CDF, moments and moment generating function of the new fading model.

The Nakagami-m with LOS fading was compared to Nakagami-m, Rice and TWDP fading

models. An expression was derived for the integral of the PDF of the new fading model

against the complementary error function. The BER of an BPSK wireless system operating

in TWDP fading was derived and its behavior was compared to the BER of BPSK systems

operating in Nakagami-m and TWDP fading channels.

Appendix 4.A

In this appendix, we prove that (4.9) is the solution of (4.8). Using (4.6)-(4.8), we write

fR(r) =
2

Γ(m)

(m

Ω

)m
r×

∫ ∞

0
x2m−1e−

m
Ω
x2
∫ ∞

0
J0(V0ν)J0(rν)J0(xν)νdν

︸ ︷︷ ︸

I1

dx. (4.38)

Substitution of the closed-form solution of I1 [19, eq. 2.12.42.16] in (4.38) gives

fR(r) =
2

πV0Γ(m)

(m

Ω

)m
∫ V0+r

|V0−r|

x2m−1e−
m
Ω
x2

√

1−
(
v20+r

2−x2
2V0r

)2
dx. (4.39)

The change of variable y = x2 − (V 2
0 + r2) simplifies (4.39) to

fR(r) =
2

πΓ(m)

(m

Ω

)m
re−

m
Ω (V

2
0 +r2)×

∫ 2V0r

−2V0r

(
y + V 2

0 + r2
)m−1

e−
m
Ω
y

√

4V 2
0 r

2 − y2
dy. (4.40)
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Using the binomial expansion of (x+ y)n [25] in (4.40) yields

fR(r) =
2

πΓ(m)

(m

Ω

)m
re−

m
Ω (V

2
0 +r2)×

m−1∑

i=0

(
m− 1

i

)

(V 2
0 + r2)m−i−1

∫ 2V0r

−2V0r

yie−
m
Ω
y

√

4V 2
0 r

2 − y2
dy

︸ ︷︷ ︸

I2

. (4.41)

We use [25, eq. 3.389.1] to solve the integral I2. This yields

∫ 2V0r

−2V0r

yie−
m
Ω
y

√

4V 2
0 r

2 − y2
dy

=
1

2
B

(
i

2
+

1

2
,
1

2

)

(2V0r)
i
1F2

(
i

2
+

1

2
;
1

2
,
i

2
+ 1; (

m

Ω
V0r)

2

)

− m

Ω
B

(
i

2
+ 1,

1

2

)

(2V0r)
i+1

1F2

(
i

2
+ 1;

3

2
,
i

2
+

3

2
; (
m

Ω
V0r)

2

)

. (4.42)

Substitution of (4.42) in (4.41) gives (4.9). To express the PDF as an infinite series, we

use [25, eq. 9.14.1]

1F2(a; b1, b2;x) =
∞∑

k=0

(a)k
(b1)k(b2)kk!

xk. (4.43)

By substituting (4.43) in (4.9c) and using the identities [25]

k! = Γ(k + 1) (4.44)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(4.45)

Γ(x)Γ(x+
1

2
) =

√
πΓ(2x)

22x−1
(4.46)

(a)kΓ(a) = Γ(a+ k) (4.47)

we can show that (4.9c) and (4.9b) are equal.

Appendix 4.B

In this appendix, we propose efficient algorithms for fast and accurate evaluation of the

infinite series in (4.9b), (4.15b), (4.19b) and (4.35b). These algorithms highly facilitate

evaluation of the derived expressions for the Nakagami-m with LOS fading PDF, CDF and

CF, and the BER of a BPSK system operating in diffuse Nakagami-m with LOS fading. To

derive Algorithms 4.1-4.4, we have used the recurrence relations in (4.10), (4.16), (4.20)

and (4.36), respectively.
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Algorithm 4.1 Efficient computation of the infinite series in (4.9b)

Require: m ≥ 0.5, Ω > 0, V0 ≥ 0, N ≥ 0, i ≥ 0, r ≥ 0

c← mod(i, 2)
z ← (m/Ω× V0 × r)2

a← B(i/2 + 1/2 + c/2, 1/2) × (4× z)c/2

Gf ← a
for k = 0 to N do

a ← k+i/2+1/2+c/2
(k+1/2+c/2)(k+1+c/2)(k+i/2+1+c/2)

× z × a
Gf ← Gf + a

end for

return Gf

Algorithm 4.2 Efficient computation of the infinite series in (4.15b)

Require: m ≥ 0.5, Ω > 0, V0 ≥ 0, N ≥ 0, i ≥ 0, j ≥ 0, r ≥ 0

c← mod(i, 2)
u← (m/Ω× V0)

2

z ← m/Ω× r2

w← zii/2+jj+c/2 × exp(−m/Ω× r2)
a← B(i/2 + 1/2 + c/2, 1/2) × (4× u)c/2

b← γ(i/2 + j + 1 + c/2, z)
GF← a× b
for k = 0 to N do

a ← k+i/2+1/2+c/2
(k+1/2+c/2)(k+1+c/2)(k+i/2+1+c/2)

× u× a
w← z × w
b← (ii/2 + jj + k + 1 + c/2) × b−w
GF ← GF + a× b

end for

return GF

In these algorithms, mod(·, ·) is the modulus after division function and is used to de-

termine whether i is even or odd. Note that evaluation of the initial values of some variables

in Algorithms 4.2, 4.3 and 4.4 requires computation of some special functions, namely, the

beta function, the incomplete gamma function and the incomplete beta function. These

functions are implemented in common mathematical softwares and they need to be evalu-

ated just once to initialize the algorithm. Once the initial values of the variables are com-

puted, they will update recursively. The updates only require basic mathematical operations.

The number of required operations grows linearly with the series truncation order, N , in all

the proposed algorithms. This allows calculating the series to high accuracy levels without

making the computations time consuming and difficult, by simply increasing N .
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Algorithm 4.3 Efficient computation of the infinite series in (4.19b)

Require: m ≥ 0.5, Ω > 0, V0 ≥ 0, N ≥ 0, i ≥ 0, j ≥ 0, r ≥ 0

c← mod(i, 2)
u← 2×m/Ω× V 2

0

z ← −s/
√

2×m/Ω

d′′ ← exp(z2/4)×
√

π/2× (1− erf(z/
√
2))

d′ ← exp(−z2/4) − z × d′′

d← d′

L← i+ 2j + 2 + c
a← B(i/2 + 1/2 + c/2, 1/2) × Γ(L)× uc/2

for l=3 to L do

d ← − 1
l−1

(z × d′ − d′′)

d′′ ← d′

d′ ← d
end for

GΦ← a× d
for k = 0 to N do

a ← (k+i/2+1/2+c/2)(k+i/2+j+1+c/2)(k+i/2+j+3/2+c/2)
(k+1/2+c/2)(k+1+c/2)(k+i/2+1+c/2)

× u× a

for l = (L+ 2× k + 1) to (L+ 2× k + 2) do

d ← − 1
l−1

(z × d′ − d′′)

d′′ ← d′

d′ ← d
end for

GΦ ← GΦ + a× d
end for

return GΦ

Algorithm 4.4 Efficient computation of the infinite series in (4.35b)

Require: m ≥ 0.5, Ω > 0, V0 ≥ 0, λ ≥ 0, N ≥ 0, i ≥ 0, j ≥ 0

c← mod(i, 2)
u← m/Ω× V 2

0

z ← 1/(1 + Ω/m × λ2)
n← i/2 + j + c/2
w← zn ×

√
1− z

a← B(i/2 + 1/2 + c/2, 1/2) × Γ(i/2 + j + 3/2 + c/2) × (4× u)c/2

b← Bz(i/2 + j + 1 + c/2, 1/2)
H← a× b
for k = 0 to N do

a ← (k+i/2+1/2+c/2)(k+i/2+j+3/2+c/2)
(k+1/2+c/2)(k+1+c/2)(k+i/2+1+c/2)

× u× a

w← z × w
n← n+ 1
b← 1

n− 1

2

((n− 1)× b−w)

H ← H + a× b
end for

return H
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Appendix 4.C

In this appendix, we derive an infinite series expression for the integral of the diffuse

Nakagami-m with LOS fading PDF against the complementary error function. Define

P(λ) =

∫ ∞

0
fR(r)erfc(λr)dr. (4.48)

Substitution of (4.9) with (4.9b) in (4.48) yields

P(λ) =
2

πΓ(m)

(m

Ω

)m
e−

m
Ω

V2
0

m−1∑

i=0

(
m− 1

i

)

(−2V0)
i×

∞∑

k=0
k+i even

(
2mΩ V0

)k

k!
B

(
i+ k + 1

2
,
1

2

)

×

∫ ∞

0
ri+k+1

(
V2
0 + r2

)m−1−i
e−

m
Ω
r2erfc(λr)dr

︸ ︷︷ ︸

I3

. (4.49)

By using the binomial expansion of (x+y)n and [19, eq. 2.8.5.7], we solve I3 as

I3 =
m−1−i∑

j=0

(
m− 1− i

j

)

V
2(m−1−i−j)
0

λ−α

α
√
π
Γ

(
α+ 1

2

)

×

2F1

(
α

2
,
α+ 1

2
;
α

2
+ 1;− m

Ωλ2

)

(4.50a)

where

α , i+ 2j + k + 2. (4.50b)

Moreover, we can express the hypergeometric function in (4.50a) in terms of the incomplete

beta function as

2F1

(
α

2
,
α+ 1

2
;
α

2
+ 1;− m

Ωλ2

)

=
(

1 +
m

Ωλ2

)− a+1
2

2F1

(

1,
α+ 1

2
;
α

2
+ 1;

1

1 + Ωλ2

m

)

(4.51)

=
a

2

( m

Ωλ2

)− a
2

B 1

1+Ωλ2
m

(
a

2
,
1

2

)

(4.52)

where we have used [20, eqs. 7.3.1.3 and 7.3.1.119] to write (4.51) and (4.52), respectively.
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Chapter 5

Conclusion

In this chapter, we summarize the contributions of this thesis. The main focus of this thesis

was to improve the existing mathematical tools for the statistical modeling and mathemati-

cal analysis of shadowing and multipath fading systems.

In Chapter 2, we investigated the problem of approximating the lognormal CF. We de-

veloped a novel method for deriving limiting expressions for the lognormal CF. Unlike most

of the previous work in the literature that has looked at this problem from a numerical anal-

ysis point of view, we looked at the problem from a statistical theory perspective, by means

of the CLT. Using the new framework, we derived two limiting expressions for the lognor-

mal CF. Among the derived expressions, one is only of theoretical significance, while the

other is also useful in practice for approximating the lognormal CF. Although we obtained

only two limiting expressions for the lognormal CF, application of the proposed framework

is not limited to our results in this thesis. An outline of our future research plans regarding

the materials in Chapter 2 was also sketched.

In Chapter 3 of this thesis, we focused on improving the mathematical tools for the anal-

ysis of TWDP fading systems. We derived an alternative expression for the TWDP fading

PDF. The new expression was used to derive new formulas for the TWDP fading CDF and

moments. It was shown that application of the proposed PDF expression in the performance

analysis of BPSK systems is straightforward. Algorithms were developed for fast, accurate

and efficient evaluation of the TWDP fading PDF and CDF as well as the BER of a BPSK

system operating in TWDP fading. It was shown that the new BER expression obtained

for BPSK systems in TWDP fading is superior to the existing BPSK BER expressions in the

TWDP literature. Potential future research directions were also discussed.

Finally, we investigated a novel multipath fading model in Chapter 4. The new model

combines a LOS component and a Nakagami-m diffuse component at the receiver. At the
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first part of our contributions in Chapter 4, we justified the new fading model and we derived

expressions for evaluating its PDF, CDF, CF and moments. We also proposed efficient al-

gorithms for evaluating the derived expressions with low computational complexity. Then,

we compared the new fading model with some of the existing fading models, namely the

Rice, Nakagami-m and TWDP fading models. We showed that TWDP fading exhibits a

closer behavior to diffuse Nakagami-m with LOS fading. However, none of the considered

models can perfectly represent the behavior of the new fading model. We also discussed

the application of the results in the performance analysis of fading systems and we derived

the BER of a BPSK system operating in diffuse Nakagami-m with LOS fading.
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