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ABSTRACT

In this thesis, we consider three classes of épaces.
The first of these is the class of semimetric spaces, which are
generalizations of metric spaces. The next two kinds of spaces
we consider are symmetric spaces and semistratifiable spaces,
which are non-first countable generalizations of semimetric
spaces. Throughout this thesis, all spaces will be assumed to
be Ty » unless the contrary.is explicitiy stated. Also, all

terms which are undefined, will be defined as in [W].

Chapter I is devoted to semimetric spaces. Section 1
provides some elementary results. In section 2, we give a use-
ful characterizatidn of semimetric spaces due to R. Heath. 1In
section 3, we examine semimetric spaces to see to what extent
various standard properties of metric spaces hold true in
semimetric spaces. Chapter I in concludea with some results

on countability properties of semimetric spaces.

Symmetrizable and semistratifiable spaces are con-
sidered in Chapter II. We give various properties and charac-
terizations of symmetrizable and semistratifiable spaces. Much
of our work on symmetrizable spaces relies on the work of A.
Arkhangel'skii and much of our work on semistratifiable spaces
relies on the work of G.D. Creede. 1In section 3, we compare

symmetric and semistratifiable spaces.

Having introduced semimetric, symmetric, and semi-

stratifiable spaces in the first two chapters, in Chapter III,
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we examine under what conditions a topological space is
semimetrizable, developable, or”hetrizable. In varticular,
in section 1, four theorems are given, each of which give
necessary and sufficient conditions for topological space to
be semimetrizable, developable, or metrizable. In section 3,
we prove that compact symmetrizable spaces are metrizable, a
result due to A. Arkhangel'skii. 1In that section, we also
show that compact semistratifiable spaces are metrizable. In
section 4, we give necessary and sufficient conditions for
semimetrizable, symmetrizable, or semistratifiable spaces to
be developable. We conclude this thesis with two results, one
on the developability of semimetric spaces, and the other on

the metrizability of semimetric spaces.
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LIST OF SYMBOLS

The following symbols will be used in this thesis:

SYMBOL MEANING
Sr(x) sphere of radius r around
X
Sg(x) sphere of radius r with

respect to the distance
function d around x

CluA closure of the set A in the
usual topology in Euclidean

n - space

t the collection of open sets
on a set X .



CHAPTER I

SEMIMETRIC SPACES

1. INTRODUCTION. A metric on a set X is a non-negative

function d : XxX ~ satisfying for all 'x,y , and 2z € X :

Il

(a) d(x,y) 0 iff x =y
(b) d(XIY) = d(er)

(c) d(x,z) < d(x,y) + d(y,z) .

When provided with such a metric, X is called a metric space.

Every metric space has, of course, an associated topology,

defined by requiring that the open spheres
Sr(x) = {Y e X : d(x,y) < r} , r >0

form a neighborhood base at each x ¢ X .

The topological spaces which are metrizable enjoy
many interesting properties; to mention but two, every metri-
zable space is first countable, and in a metrizable space,
separability, second countability, and the Lindelof property
are equivalent.‘ It is reasonable to ask whether any of these
properties will remain true in space admitting a "distance
function" which satisfies some, but not all of the properties
(a), (b), and (c) of a metric. The boldest attempt to gener-
alize metric geometry in this way eliminates the most power-

ful axiom, the triangle inequality _ property (c) . The result



is the theory of semimetric spaées and their associated topol-

ogies.

1.1 Definition. Let X be any set. A non-negative function

d : XXX * R is said to be a semimetric iff for all x,y € X ,

0 iff x =y and

(a) d(x,y)

(b) da(x,y) d(y,x) .

The pair (X,d) is then a semimetric space, sometimes abbrevi-

ated "X is a semimetric space" when usage of convention pro-

vide d .

1.2 Examples.

(a) Any metric space is, of course, a semimetric space.

(b) We can equip the real line with the distance function

Hxl -yl if |x] # |y
d_(x,y) =

Ix - vl if x| - [yl .
Easily, (R,do) is a semimetric space; of course,

do is not, in this case, a metric.
(c) Again consider the real line, this time with the
distance f{unction

n if x=0 and y = %

for some n € N or vice versa,
d, (x,y)

|x-y| otherwise.



Then (R,di) is another example of a semimetric

space, and again, dl is not a metric.

2

(d) Now consider the real plane, R“ , equipped with

the distance function

d,(x,y) = [x-y| + a(x,y)

where |[x-y| is the usual Euclidean distance in the
‘Plane and a(x,y) is the smallest non-negative
. angle (in radians) formed by the line which contains
X and y and the line y =0 . Hereafter, a(x,y)
will refer to the function described in the previous
sentence. Clearly d2 is a semimetric which is not

a metric.

(e) Again consider the real line, this time equipped
with the distance function

| x-y| if x#y + % for any m ¢ 2

dy(x,y) =
1l otherwise.

Then d3 is certainly a non-metric, semimetric

function.

1.3 Remark. Just as a metric can be used to define a topol-
Ogy on a set X , so can a semimetric. Basically, there are

two methods to define a topology using a semimetric d ,



which are equivalent if d is a metric. They are

(a) x 1is a limit point of A ¢ X iff d4d(x,A) =0 ,

and

(b) A ¢ X is closed iff for all x ¢ A , d(x,A) > 0 .

1.4 Example. The two ways of assigning a topology using d
as given in 1.3 are not necessarily equivalent in general.

Define a semimetric d on the real line R as follows:

|x-y| if %,y € Q or x,y £ 0Q

d(x,y) =
[1x]-1y]] otherwise.

Let A =0n[1,2] . Then A = AuvA' = [1,2]u[-2,-1] n O by
1.3 (a) and A = AVA' = [1,2]u[-2,—l] , again by (a). Thus
we find that describing a topology by limit points leads to
a contradiction, while assigning a topology by a semimetric
d using closed sets as in 1.3 (b), clearly always leads to.
a valid topology. Therefore, 1.3 (a) and 1.3 (b) are not
equivalent; in fact 1.3 (a) may not always yield a valid

topology.

Developments thus raise the question "when does
assignment of a topology using 1.3 (a) yield a valid topology?",

to which we now turn our attention.



1.5 Remark. The real line with the topology generated by
using the semimetric function d described in 1.4 and assign-
ing closed sets using 1.3 (b) will be referred to throughout

this thesis as the Cairns space.

1.6 Lemma [D]. The assignment to each subset A c X a set

of "limit points" leads to a valid topology iff

(a) ¢' =9
(b) (A')' < AuA!
(c) (AuB)' = A'"uB'

(d) for all x ¢ X , x £ {x}'

1.7 Theorem [Bennet & Hall]. If d is a semimetric satisfy-
ing the following condition * , then specifications of limit

points using 1.3 (a) yields a valid topology.

*: If for all k N , there exists a sequence
{xi} and a point ¥ in X such that
lim d(xk,xk) = 0 and furthermore there is a
n--o n
. . .~ . ...k
point p in X such that %ig dx",p) =0,
then there is a sequence {oa(k)} in N such

, ' X _
that iig d(xa(k),p) =0 .

Proof: Clearly the assignment of limit points by any semi-
metric function d satisfies a,c and d of 1.6. Assume

that d satisfies * . Let A c X and let pe (A'")' - A .



We have to show that p ¢ A' . Since p ¢ (A')' , there is a
sequence {xk} in A' such that 1lim d(xk,p) = 0 . Since

each xk is in A' , there exists a sequence {xi} in A

such that lim d(xk,xk) =0 . Since x £ A , using * ,
n--o h
x € A" .
1.8 Definition. A semimetric space (symmetric space) is an

ordered triple (X,t,d) where X is a set, t a topology
on X and d a semimetric, such that limit points (respec-
tively, closed sets) in the topology are given by 1.3 (a)

(respectively, 1.3 (b)).

The Cairns space considered in 1.4 shows that a
symmetric space is not necessarily a semimetric space. But
certainly every semimetric space is a symmetric space. The
question then arises, "When is a symmetric space a semimetric
space?". One criterion (Bennet & Hall) is given in the next

theorem. Another will be given in 2.3.

1.9 Theorem [B&H]. If (X,t,d) is a symmetric space and d

satisfies 1.7, then (X,t,d) is a semimetric space.

Proof. , We have two topologies on X , the t' topology
generated by defining limit points and the t topology gener-
ated by defining the closed sets. We must show that they are
equal. Let A c X be t closed, i.e. d(x,A) > 0 for all

X ¢ A, therefore, if d(x,A) =0 , x ¢ A , so A contains



its t' 1limit points and so A is t' closed.

Suppose on the other hand that A is t' closed
and d(x,A) =0 . Then x ¢ A , so for all y £ A,

d(y,A) >0 and A 1is t closed. Therefore, t = t' .

2. SEMIMETRIZABILITY. If we are given any topological space

X , a natural question is "Under what conditions does there
exist a semimetric d on X such that the topology can be
recovered using d 2". In this section, two necessary and

sufficient conditions will be giVen for a topological space
X to be a semimetrizable space. The first condition is due

to Heath, the second is due to Pareek.

2.1 Lemma. If X is a semimetric space, then the interior
'of_a sphere of radius r around a point x has nonempty

interior.

Proof. Consider Sr(x) , the sphere of radius r around X .
Then d(x,X—Sr(x) > r , so that x is not a limit point of
X-Sr(x) , which in turn implies that x ¢ X—Sr(x) .  There-

fore, X e Int(sr(x)).

2.2 Theorem [Heal]. A Tl space X is a semimetric space

iff there exists a function g : NxX > t such that the follow-

ing holds true:



(a) for all x € X, gn(x) is a,nonincreasing local

base at X

(p) if y is a point in X and x 1s a point sequence
in X such that for all n € N , ¥ € gn(xn) , then

X converges to Yy .

Proof. Assume X is a semimetric space. Define g as

follows:

gn(x) = Int(Sl/n(x)) .

Then by 2.1, gn(x) # ¢ for any pair (n,x) and clearly ¢

satisfies the conditions (a) and (b) of the theorem.

Assume there exists a g satisfying (a) and (b)

of the theorem. Define a function m : XXX » N as follows:

m(x,y) = inf{p : y ¢ gp(x)} .

Define a distance function d for X as follows:

0 if x =y

d(x,y) =
min {1/m(x,y) , l/m(y,x)} if x #Y

Then clearly d is a semimetric. It remains to show that the
original topology t is the same as the topology t' genera-
ted by d . It is enough to show that limit points in the t
and t' topologies are the same. Since X is first countable

with either topology, x is a limit points of A in either



sense iff there exists a sequence {xn} ¢ A such that X, * X
in the appropriate topology. Assume that X is a limit point
of A in the t topology. We may assume that X ? A ; Let
{xn} be a sequence contained in A which converges to X .
Then by construction of d , d(x,xn) < % , for all n , and
therefore d(x,A) = 0 and x is a t' limit point of A .
Conversely, suppose that x is a t' limit point of A,

x £ A . Choose a sequence {xn} by letting X, be any ele-

ment of A 0 Sl/i(x) . If there exists i such that

An Sl/i(x) = ¢ , then d(x,A) > % , a contradiction to the
fact that x is a limit point of A iff d(x,A) =0 .
Clearly X, T X . Therefore x is a t 1limit point of A

and t = t' .

2.3 Corollary. A topological space X is semimetric iff

X is first countable and symmetric.

Proof. Clear. ' f

2.4 Corol;arz. Subspaces of semimetric space are semimetric.
ggggg. Clear.

2.5 Definition. Let P be a collection of ordered pairs of

subsets of X , P = (P;,P,) with P for all P e B .

1< P2
Then P is a paired network iff for all x ¢ X and any arbi-

trary neighborhood U of x , there exists a P ¢ P such
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that x ¢ Py < P, < U . P is called a cushioned paired net-

work in X iff for each R' < B , U(Py : PepP') cu(P,:

P e P') . Finally, B is called a o-cushioned paired net-

work iff P is a paired network for X which can be written

as a countable union of cushioned paired collections.

2.6 Theorem [P]. If X is a semimetric space with semimetric

d , then X has a O-cushioned paired network.
Proof. For all x ¢ X and any n € N , define

V. = {Sl/n(x) : x € X}
S#(x;l/n,l/m) = {z e X : Sl/m(x) f Sl/n(x)}

Yn,m = {s#(x;l/n,l/m) , Sl/n(x) . x ¢ X}

for m > n . It will now be shown that for fixed n and any

m , the collection yn @ is cushioned; i.e., we want to show
’ L

that for arbitrary A < X ,

U(S#(x;l/n,l/m) : x € A) © u(Sl/n(x) : X € A) .

Let t Dbe in the left hand side of above. Then Sl/m(t) has

nonempty intersection with M(A;n,m) = U(S#(x;l/n,l/m) : XedA) .
= 1] i « 3 1] 3

If x' ¢ M(A;n,m) qn Sl/m(t) , then t ¢ Sl/m(x ) since

vV € Sr(x) implies X ¢ Sr(y) for any X,y € X . Since

Sl/m(x') c Sl/n(x') , we find that t «¢ U(Sl/n(x) : X € A) .
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{
=]

It remains to show that V = U 1] yn is a paired net
n=1 m>n '

work for X .

Let U be any open set containing x . Since X
is a semimetric space, there exists n({x) such that

X € S (Xx) ¢ U . Now for all m > n(x) , we have

n(x)

X € S#(x;l/n,l/m) c S )(x) c U .

1/n(x
Pareek has given an interesting characterization of
regular semimetric spaces in terms of O-cushioned paired net-

works, as follows. -

2.7 Theorem [P]. A regular space X is semimetric iff it

is first countable and has a o-cushioned paired network.

Proof. Necessity is clear. To prove sufficiency, let

Vn(x) be a countable decreasing base at each point x ¢ X .

©

Let W = Ul En be a o-cushioned paired network for X ,

n=

_ n .n ., . . . . _
where ¥ = {(Wal’waz) : Q€ An} is a paired cushioned collec

tion for each n . Let us now define

k

= n . ol
Mx = U(Wal :n <k, ac¢ An and x £ W_,)

a2
- _ wk
Uk(x) = Vk(x) MX

N(x,y) = max{n : Un(x) n U (y) n ({x}ulyD)} # ¢

and
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a(x,y) = %(x,y) for all x,y € X .

Clearly then d is a semimetric function. It remains to
show that the topology generated by 4 is the same as the
‘given topology. Let M be a subset of X and X, any point
of X such that x £ M . We wish to show that d(x_,M) > 0
Since X 1is regular, there exists an ng iuCh tﬁat

1 2

Vn nM=¢. Chooee ny such that x € W,] © Waz cX-M.

o
If vy T , then U_ (x) <V_ (y) €« X-Mc x-{y} and on the
~ n o ny
Lev Wilcv () - {x}
-— — C - -
other hand 'Unl(Y) c an(y) M.yo € nl(y) 1 n, y X

Hence, for n' > Max {no,nl},(Un,(y) n Un,(xo)) n ({xo}u{y}) c

(Uno(xo) n Unl(y)) n (Ix_ luly}) = ¢ . Therefore, N(x,,¥) ¢

max{no,nl} , which proves that d(xo,ﬁ) >0

On the other hand, assume that M is a subset of X
and x is a point of X such that d(x,M) > 0 . We must show
that x € M . Let us assume that d(x,M) = e and let us
choose n € N such that n > % . Then the set Mz is a closed
set not containing x . There exists a neighborhood Vh.(x)
disjoint from Mz since X is regular. Then for n">max{n,n'},
we have Vﬁn(x) c Vn(x) - Mz = Un(x) . But if y € Un(x) , then

N(x,y) > n and d(x,y) = %(x,y) < % < e, so that Mn U, (x)= ¢
o

Therefore, d 1is a semimetric for the topology on X .
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3. PROPERTIES OF SEMIMETRIC SPACES. In this section,

various properties of metric spaces will be examined to see if
they hold true in semimetric spaces. In general, as expected,
we find that those properties of metric spaces which depend
upon the triangle inequality no longer necessarily hold true
in semimetric spaces, while those properties of metric spaces

which do not depend upon the triangle inequality do remain true.

3.1 Example. It is well-known that every metric space is
normal; unfortunately, the same thing is not true in semimetric
spaces. In fact, very little can be said about the separability

of semimetric spaces other than every semimetric space if T, .

(a) A T non - T2 semimetric space. Example 1.2 (b).

l 14

(b) A T, , non - T semimetric space. Example 1.2 (c).
2 3

If A= {%.: n ¢ N} , then A is clearly closed and

cannot be separated from 0 by disjoint open sets.

(c) A T4 , nON - T, semimetric space. Example 1.2 (d).
Regularity is clear. Non-normality follows from

Lemma 15.2 in [W].

An interesting open question is "Is every T, semi-

metric space a T3% semimetric space?".

In a metric space, every sphere is an open set. The
guestion then arises as to whether or not every semimetric space
can be resymitrized so that every sphere is open. The following

theorm of Heath answers the question in the negative.
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3.2 Theorem [Hea4]. There exists a regular semimetrizable
space for which there is no compatible semimetric such that

all spheres are open.

Proof. Let X = RXR with a basis made up of

(1) all open discs that donot intersect the x-axis or
are centered on rational points of the x-~axis
or
(2) all "bow-tie" regionsvcentered on irrational points
of the x-axis, i.e. for each irrational point =x
and each ¢ > 0 , every set of the form
{y : |x~y| + a(x,y) <c} ! .
Tben regularity is clear and the fact that x is a semimetric
space follows from the characterization given in 2.2. Assume
then that d is any semimetric for the space. If r is any
rétional point on the axis, then the distance between r and
tpe line x =r is clearly 0 with respect to the distance
fpnction d , since if not, then the line x = r 1is closed, a
contradiction. There exists a second category subset M of
tpe irrationals (relative to the topology of the x-~axis) and
a‘ c > 0 such that if x ¢ M , then Sg(x) must be contained
in a bow-tie region of radius 1 about x . Then if

P, € M, p, >t ¢ Q , and g has the same abscissa as r ,

! see 1.2 (d) for appropriate interpretation of al(x,y) .
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then Sg/z(q) must contain r , but no more than a finite
number of the P, - There must be such a sequence, therefore

. d .
by 10.5 in [W], Sc/2(q) is not open.

If we alter the topology in the space considered
above by defining the topology onéall lines parallel to the X=
axis and intersecting the y-axis in rational points as was
done on the x-axis abovefand leaving all other neighborhoods
fixed, then if d is a compatible semimetric, the set
{x : Sg(x) is not open for some € > 0} is dense in the

space.

3.3 Theorem. A nonempty product space I M, is semimetri-
' o.eA '

zable iff each M, is semimetrizable and Ma is a single point

for all but a countable set of indices.

Proof. The proof of this theorem follows essentially the same

lines as that of 22.3 in [W].

=> : Each Ma is homeomorphic to a subspace of a
semimetrizable space and is therefore semimetrizable.
Since a product of first countable spaces if first
countable iff each factor space is first countable
and there are only countably many factor spaces,
then there must be only countably many non-trivial

Ma .
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Let Ml’M be semimetrizable spaces with

2'00:

semimetric di , which we can assume is bounded by

1. Define 4 on Mi as follows for x = (xi)

I = 8

i=1

and y = (Yi) ’

alx,y) = a4 xy20 .
i=1

Clearly d is a semimetric.

Let U be a basic neighborhood of x in the product

topology. We can assume that U = s (x,) x s° (x,) X eoe
€1 1 €, 2
X S: (xn) X 7r{Mk : k = n+l,n+2,...} . Choose
n
€ € €
e = min —2i r —22- ’ s ’ -IEI.-
2 2

Now clearly d(x,y) < ¢ implies that d; (x;,y;) for

each i=1,2,...,n , so that Si(x) cU.

On the other hand, given ¢ > 0 , there exists an N

[>s}

such that ) ;% < % , So that s© (xl)'x s© (xz) X oee
i=N+1 2 £ £_
2N 2N
o
X SiL (xn) X ﬂ{Mk : k = N+1,N+2,...} ¢ S?(d) . We can
2N

conclude therefore, that the topology generated by d

is the same as the product topology.
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4. THE COUNTABILITY PROPERTIES IN SEMIMETRIC SPACES. In a

metric space X , it is well-known that the following are

equivalent:

(a) X 1is second countable
(b) X is Lindelof

(c) X 1is separable.

The question then naturally arises as to whether or not this
is true in a semimetric space. The answer, unfortunately, is

no, as the following two examples show.

4.1 Example. The space X considered in 1.2 (d) is an exam-
ple of a T3 ,'separable non-Lindelof (therefore non-second
countable) semimetric space. That X is non-Lindelof follows
since any vertical line has the discrete topology and there-
fore, by 15.2 in [W], X is non-normal. Then X is non-
Lindeldf since any regular, Lindelof space is normal. The
other properties are clear. Therefore, a separable semimetric

space is not necessarily either Lindeldf or second countable.

4.2 Example. The following space is an example of a Lindelof,
separable, non-second countable space. Consider the real line

equipped with the semimetric d defined as follows:

Sl

|x~y| if x#y + for any n ¢ 2
d(x,y) =

for some n ¢ Z .

Sl

n if x =y +
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for some n € %2} , a local

Sl

Then if A, = {ly st y=x +
. _ au _ .

base at x € X 1is gn(x) = Sl/n(x) Ay . Then X 1is clearly

Lindeldf and separable. The fact that x 1is not second coun-

table follows from the fact that if x # y , then A, n A can

Y
contain at most two terms.

We know that in any space, second countable implies
Lindelof and separable. The following theorem gives the equiva-
lence stated in the introduction to this section as it applies

to semimetric spaces.

4.3 Theorem. A Lindelof semimetric space is separable.

Proof. Let U, = X. U dg.(x) ‘where g.(x) - is the function
—_ i 1gex 1 i

given in 2.2. Let U; = {g, (x; j)} be the countable subcover
14

of u; - Then D= u {xi j} is a countable dense subset of
i,3 !

x L]
We therefore have the following diagram in any semi-
metric space:
second countable
Y

Lindelof
¥

separable

with none of the implications necessarily reversible.
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4.4 Definition. A collection B of (not necessarily open)
subsets of X is said to be a network for the topology on X
iff given any point p and any open set U containing p .,

then there exists a b € B such that p ¢ b < U . A network

is said to be a countable network iff it has countably many

elements. X is gquasi second countable iff X has a countable

network. A network is said to be o-discrete iff it is the
countable union of discrete collections of subsets of X . (A
collection P of sets in X is discrete iff each point of X

has a neighborhood meeting at most one element of P .)

4.5 Remark. Certainly the concept of countable network is
weaker than that of second countable. The questions that
arises as to what relationships exist among the properties:

(a) X has a countable network,

(b) X 4is Lindeldf, and

(c) X 1is separable.

The following theorem generalizes the fact that in

any space, second countable implies separable and Lindelof.

4.6 Theorem. If a semimetric space X has a countable net-

work, then X is Lindeldf (and thus X is separable).

Proof. Essentially the same as 16.11 of [W].
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4.7 Example. The space considered in 1.2 (d) is an example
of a regular, separable, non-Lindeldf (therefore non-quasi
second countable) semimetric space; We therefore have the
same diagram as was given in 4.3 if we substitute quasi second

countable, for second countable.

4.8 Definition. A cosmic space is a T; Space with a counta-

ble network. It has been shown [Mi] that X 1is a cosmic
space iff X is the continuous, image of a separable metric
space. An interesting question that has been open for several
years is "Is every Ty 4 Lindelodf, Semimetri? space a cosmic
space?". It will be the purpose of the next few sections to

give a partial solution to this guestion.

4.9 Remark. One might suspect that a first countable, Ty
Lindeldf space is cosmic, but the Sorgenfrey line provides an
easy counterexample. For any first countable cosmic space is
semimetrizable [Hea5] and the Sorgenfrey line is not semimetri-

zable.

4.10 Conjecture. The following space, if Lindeldf provides
an example of a Ty o+ Lindeld6f, semimetric space which does not

have a o-discrete network.

Let the space X be the real line with a basis at

each point X consisting of all sets of the form



- 21 -

= g4 - = . xm 1 1
Sy mX) = S) ) - B, where A = {y : |x-y| ¢ [§ 2n+1 , 7 2n]
for some n € N} . Assume that X has a o-discrete network,

say {p_} . Denote by C1"F the closure of F in the

n - n=1
usual topology on R . Define Bn ={x : x e pxep c Sl/m(x) c
Sl/m(x) for some p ¢ P, and me N . Each B, 1is nowhere
dense in the usual topology, for if not, then, for some n ,
[a,b] < CluBn - Therefore, for every open interval I < [a,b] ,
there exists Yy € In An . Consider x ¢ [a,b] . Clearly
Sl/m(x) 1s open. By the definition of Sl/m(x) ’ Sl/m(x)
contains countably many elements from B and must intersect
at least two distinct elements p,p' ¢ B, + a contradiction to
the fact that Pn is o-discrete. Therefore, each Bn is no-

where dense in the usual topology. But R is not the countable

union of nowhere dense subsets, so X is not o-discrete.
Clearly X is T, . The fact that X is semimetri-

zable follows from 2.2.

4.11 Theorem [Ber]. Assuming the continuum hypothesis and the
axiom of choice, there exists a T3 » Lindeldf semimetric space

which does not have a countable network.

Proof. The following lemma will be essential in the proof of

the main theorem.

Lemma. There exists a subset V of I such that:
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: X
(1) If U is an open subset of I , then card (UnV) = 2 ©

(2) There exists no pair £ and D such that:
(i) DcV and card D = 2 ° ’

(ii) £ : D>V,

(iii) either £ is strictly increasing and
{(x,£(x)) : x ¢ D} is bounded away from A , the

diagonal in {xI} , or f is strictly decreasing.

Proof of Lemma. Denote by C the set of all closed subsets of

I and if A ¢ C , let F(A) denote the set of all monotone
functions from A into I such that point inverses are at

most countable. Let

F=vu{F@) : A e C} .

X
Since I is second countable, there can be at most 2 © open

X
subsets of I , and therefore, at most 2 ° closed subsets of
. Xo
I . Since each closed subset A of I can have at most 2
monotone functions from A into I , there can be at most

Xo = Xo X

2 X 2 =2 ° elements of I . Let U denote the set of all

open subsets of I . Well order ( and F by U = {Ua : a< T}

and F ='{Fa : o < '} respectively, where T 1is the first

X
ordinal of cardinal 2 © . We will now define the V in the

lemma inductively. Pick any point Xy from U, - If X, has
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been choosen for all o < B , choose xB to be some point in

U such that

§

xg # [U{f;l(xT) : 0<B,T<B} u {x_ ¢ T<B} v {f (x)) : a<B,T<B}] .

Then let V = {Xa : o <T} . Then V satisfies condition 1
since each interval U contains an uncountable number of inter-
vals and each interval contained in U contains some element of
V . It remains to show that V satisfies condition 2. To show
that it does, assume not. Then there exists a pair £ and D
satisfying 2(i), 2(ii), and 2(iii). Assume that £ is strictly
decreasing (the afgument is similar if f is strictly increas-
ing and {(x,£(x)) : x ¢ D} is bounded away from A ). £ can

be extended to D by £ in the following manner:

[ £(t) if t e D

if t is a limit

. lub £(x) ; x t,xeD { point of D from

£7 () = ﬁ above and t £ D
if t 4is not a

limit point of D
from above and

glb f(x) ; x t,xeD {

\ t e D .
* *
Then clearly £ € F . Consequently, £ = fa for some
ordinal o . Since D <c V , D is well ordered by the well-

ordering of V . Since fa is strictly decreasing, there
exists at most one Xq such that fa(xe) = Xg - (If fa is
strictly increasing and {(x,£(x)) : X ¢ D} is bounded away

from the diagonal, then for all x , X # £(x) . Then there
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exists X, 1 g € D such that v,B8 > max{6,a} , vy # B , and

fu(xy) = xg . Since if not, fa is a one-to-one correspon-

dence between {x 1> max(6,a)} and {x_ : T < max(8,a)}

T

which is a contradiction since the cardinality of the first set
is clearly greater than the cardinality of the second set. But
then y < B is impossible since D c V and by the definition

of V , X, ¢ V implies there does not exist a,y < B such that

g
£,(%) = xg , since xg g lf (x) : 0 <8 P TS B} . But y > B

is impossible since x_ € f-l(xB) , which is impossible since

Y

) : @ < B, 1< Bl by the definition of V .

-1
X, 4 u{fa (%,

Since D is well-ordered, we must have that Y .= B , and that

fa(xB) = Xg which is impossible since B > 6 .

Proof of Theorem. Let V be as in the preceding lemma.

Choose M to be a subset of VXV = A such that:

X
(1) if U 4is open in IXI , then card(UnM) = 2 ©

and
(2) if pl' and P, denote the two projection maps of

IXI onto I , pi(m) £ pi(M—{m}) , i=1,2 and

meM, i.e. if me M , m = (a,b) , then there
does not exist m' € M such that m' = (a,x) or
m' = (y,b) . M can be constructed in the following

manner. Let U = {Ua : o ¢ '} be a well-ordering
of all the open subsets of IxI . Then choose
m, € U1 . Assume that m, has been choosen for all

o < B . Choose mB e‘U6 such that

—
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mg 4 {pi(ma) : 0 <B,i=1,2} . Then the preceding

two properties are clearly satisfied by M

Let d denote the usual Euclidean metric of IXI . Define

*
d on MxM as follows: if (a,b),(c,d) ¢ M , then

df(a,b), (c,d)] if a<c and b:d
* .
d [(a,b),(c,d)] = or vice versa

1 otherwise.

Then clearly d* generates a regular semimetric on M , which
will be denoted by M(d*) . We will show that every uncounta-
ble subset of M contains an accumulation point of itself, so
that assuming the continuum hypothesis, M is Lindelof. Assume
there exists a subset A of M such that caxd A = 2XO , and

A is discrete in itself. Then there exist A' < A and a

X

positive number ¢ such that card A' = 2 °© and m,m' ¢ A'

implies d*(m,m') > 8 . Now let (p,g) ¢ A' such that for
each Euclidean disc 0 about (p,q) ., card (SnpA') = 2X° . In
particular, consider the Euclidean disc S of radius % . HNow
if (a,b),(c,d) € SnA' , then a < c¢ implies b >d , for
otherwise a < c and b < d implies d*[(a,b),(c,d)] < 6 , a
contradiction. If we define a function £ : pl(SnV) ~ V by
f(a) = b , where (a,b) ¢ SnV , then £ 1is strictly decreasing,
which is impossible by the lemma. Therefore, assuming the

continuum hypothesis, M is Lindelof. It remains to show that

M has no o-discrete network. Assume that it does, say
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X
A = n{Bi :1=1,2,...} . Then card Bi < 2™ , since if not

choose a ba ‘from each element of Bi . Then B = 3 {ba}
is an uncountable set, and thereof has an accumulation point,

a contradiction to the assumption that Bj 1is a discrete

collection of subsets of M . Since card By < 2XO for all
i, card A <2XO . Denote by N(x,y) the d* sphere of
radius % about (x,y) . Since A is countable, there
exists an M' <M of an A € A such that card M' = 2’0

and (a,b) ¢ M' implies (a,b) € A < N(a,b) . Let (p,g)e M’

such that, if S is an Euclidean disc about (p,q) , then

Xo

card(s M') = 2 Choose r such that

d [(p,q),0]} and denote by S the &

N e

0<r<min{-3f,
sphere of radius r about (p,q) . Let (a,b),{(c,d) e SnM' .
If a<c¢, then b < d , for if not, (c,d) £ N(a,b) , but
(c,d) € A < N(a,b) , which is a contradiction. Thus if we
define a function £ : Pl(SnM') >V by £f(a) = b where

(a,b) € SaM' we have a strictly increasing function on an
uncountable subset of V into V , a contradiction to the
definition of V . Therefore, M(d*) has no o-discrete net-

work.

It is well known that the product of two Lindelof
spaces may not be Lindeldf, and that the product of two normal
spaces need not be normal. If we put more restrictions on the
two spaces by requiring both spaces to be semimetric spaces,
does the last statement still hold true? A construction closely

related to that found in the proof of 4.11 gives a negative
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answer.

4.12 Theorem. Assuming the continuum hypothesis, there is a
regular, Lindelof semimetric space X such that XxX - is not

normal (therefore not Lindeldf).
Proof. Let M be as in 4.11. Define d4d' on MXM by

dl{(a,b),(c,d)] if a<c and b>d
or vice versa
d'[(a,b),(c,d) =

1 otherwise,

where d is the usual Euclidean metric in the plane. Then as
in 4.11, we have a regular semimetric space which has no

countable network. We note that this introduces the continuun
hypothesis. Denote by M(d') M with the d' topology. Let
£
the free union [D] of X, and X, , i.e. X = {(i,z) : z e M,

*
denote M(d ) and let X2 denote M(d') . Let X Dbe

i = 1,2} with a base for the topology consisting of

{{i} x U : U 1is open in X, i =1,2} . Then clearly X is

a regular, Lindelof space which has no countable network. We

will show XXX is not normal by producing an uncountable

closed, relatively discrete set R (by 15.2 in [W], this is

sufficient to show that XxX is not normal

Set R = {(1,z),(2,2) + z ¢ M} is clearly closed in XxX and
Xo

R certainly has cardinality 2 . It remains to prove that

R is relatively discrete. Let 2z ¢ M . Let S, denote the
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a* semimetric sphere of radius % about 2z , let 82 denote

the d' semimetric sphere of radius % about z , let

1 1 _ _
1 1 5 = 2 * Assume z = (x,y) .
!

Assume that there exists ((1,c),(2,¢) € Rn (Si X 52

s = {1} x s and S {2} x 8§

. If
c = (a,b) then a <x and y < b or vice versa since (1,c)

€ Sl Since (1,c¢c) € Sé  we must have that a < x and

1 -
b <y or vice versa. Therefore x =a and y =b . Since

XxX 1is regular and non-normal, XxX cannot be Lindeldf.
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CHAPTER IT

SYMMETRIZABLE AND SEMIMISTRATIFIABLE SPACES

1.0 - In the previous chapter, we considered a semimetric
function as a weakening of a metric function and examined some
of the characteristics of semimetric spaces. In this chapter,
we shall examine tﬁo kinds of spaces that are weakenings of
semimetric spaces. 1In the first, we will‘use a semimetric
function 4 +to determine a topology on a set X by requiring
a set A to be closed iff for all X £A, d(x,A) >0 . This
is.in contrast to using a semimetric function 4 to determine
a topology be defining a set of limit points. 1In general, we
say in the first chapter that the former always leads to a
vlid topology, while the second may not. In the second space
we will consider in this chapter, we will examine what happens
if we weaker Heath's characterization of semimetric spaces
(Chapter I, 2.2) to requiring only the existence of functions
9 ¢ X*>t , for n = 1,2,... , such that the following holds

true:

(1) for all XeX,ng (x)={x} ,
n n

(2) y e gn(xn} for all n implies {xn} > {y} .

One obtains Heath's characterization of semimetric spaces from
the above by replacing (1) with the condition that {gn(x)}:_l

forms a local base at x and n gnfx) = {x} .
n



- 30 -

1.1 Remark. Recall that a symmetric space is an ordered

triple (X,t,d) where X is a set, t a topology on X , and
d is a semimetric function, such that t is obtained from d
defining a subset A of X to be closed iff for all x Z A ,

d(x,a) > 0 .

1.2 In a metric space, every open sphere is an open set.
When we weakened the requirements of the distance function by
eliminating the triangle ineéuality, we found that while the
open sphere may not be an open set, it nontheless has nonempty
interior. It is natural to ask then, if we weaken a semimetric
space to a symmetric space is the interior of an open sphere

nonempty. The answer is no, as the following theorem shows.

Theorem. There exists a Ty » Lindeldf symmetric space such
that the interior of every open sphere around every point is

empty.

Proof. Let X be the Cairns space of example 1.4 in Chapter I.
Let us denote (a,b) v (-b,-a) by (a,b)* and [-b,-a] u [a,b]
by [a,b]* . We note that X is separable since the rationals

are clearly dense in X .

(i) We claim that an open set A in X is the countable
union of disjoint open intervals, In . The proof is analogous
to that given in 2.7 [W]. Define x ~ y iff there exists an

open interval (a,b) such that {x,y} < (a,b)cA. We show
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that "~" is an equivalence relation on X . If there exists
x ¢ A such that there exist {Xn}§=l in A such that X, > X
in the usual topology (i.e. x is not in any open interval),
then d(xn,x) + 0 which implies A is not closed, which is a
contradiction. It is now easily shown that "~" is an equiva-
lence relation on A . The resulting equivalence classes are
disjoint, open intervals. The fact that there can be only
countably many follows since each interval must contain a
rational number. Therefofe, since R with the usual topology

is Lindeldf, so is X .

(ii) We claim thatbif F is a closed set with [a,b]cF ,
then [a,b]* c F . Let x e [-b,-a] . Assume that X is
rational (the argument is clearly similar if x is irrational).
Also assume that x ¢ F . Then by (i), there exists m ¢ N,
such that (-x,-1/m , =-x,+1/m) c F . But then there exists
{pi}:=l c la,bl such that P; £ Q for all i . Then
d%(-x;,-x) + 0 which implies d(x;,;X) »> 0 which implies F

is not closed.

(iii) X 1is Ty + but not T, . X 1is Tl since each
point is a closed set. X is not Ty since by (ii) if x# 0,

x and -x cannot be separated by disjoint open sets.
(iv) For each x ¢ X , let Bx be a collection of sub-
sets of X , where Bx is defined as follows:

(a) if X=0, By = {(=€,e) = € > 0}
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(b) if X #0 , B, = {(x-¢,x+e)* - E = > 0} and
E 1is any countable subsets of (-x-¢,-x+e)
such that all points of CluE are of the same

rationality as x . Let B = {B, : X ¢ Xt .

Proof of (iv). Clearly B is a base for some topology on X .

It remains to show that B is a base for the given topology on
X. At x =0, it is clear. Let us assume that x > 0

(x < 0 is similar). Assume that x is of rationality T .

We now prove that Int U, # ¢ Aif U, B . Assume

Ux = (—x—e,—x+e)* - E . That is, if y € UX , we must show
that d(y,ax) >0 . If y e (x-e,x+e) , then since if y is
also of rationality T , d(y,E) = 0 is impossible, and if vy
is not of rationality T , then since y is not a limit point

of E Dby construction, d(y,E) = 0 1is impossible, and thus

d(y,E) » 0 . Similarly y € (-x-e,-x+€) .

We have to prove that if x e¢ U' for some open U' ,
then there exists Ue B such that x € U< U' . Again, let
X be of rationality T . By (i), there exists r >0 such
that (x-r',x+r') < U' . There exists «r" > 0 such that if
Y 1is not of rationality T y ¢ (-x-r",-x+r") , then y ¢ U' ,
since if not, there exists {yn}o:l=l contained in (-x-r',-x+r')
such that Y, > X in the usual topology, which implies that
d(yn,x) + 0 , which implies that U' is not open, a contradic-
tion. Let r = min {r',r"} and let U = U' N (x-r,x+r)~ .

Then x e Uc U' . Let E = (-x-r,-x+r) - U . By construction
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and the definition of closed sets, all limit points of E are

of rationality T . The cardinality of E is clear.

The proof of the main theorem is now clear. Let
Y = X - {0} . It is easily shown that Y satisfies the condi-

tions of the theorem.

1.3 We have seen that the countable product of semimetric
space was semimetric. The question naturally then arises as to
whether or not the countable product of symmetric spaces is

symmetric? The answer is yes, as the next theorem shows.

Theorem. Let (Xi’di) be a symmetric space for all i e N .

Then I X, is a symmetric space.
i

Proof. Define d on X by d{(x,y) = Z di(xi,yi)/zi . Then
- i

U is open in X implies that U = U xU,xeeeeXxy X o x .
L2 =n+1 k

Where U, is open in X, rxeU implies X; € Ui for
i=1,2,...,n , which implies, since d(xi,ﬁi) > 0 for

i=1,2,...,n that d(x,ﬁ) >0 for x £ U.

Assume on the othér hand that d(x,A) > 0 for all

x not in A . If A is not open, then if A= T A; , some
i

Ai not open, then there exists X; e Ai such that
o o o

di (xi 'Ai ) = 0 . Choose X to be any element of A; if
o o “o
i # iO . Then d(x,A) = 0 where x = (xl,xz,...,xio,...) .
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Therefore each A; is open. The fact that there can be only

finitely many A; # X follows from the fact that we can assume

that each di is bounded by 1 . Then given e , there exists
N such that ) % i < € . Then there exists n such tha
i=N+1

1 ; =
n>=. Given x ¢ A, choose y = (xl,xz,...) where X; € A;

~

for i=1,2,...,n and X; € Ai for i1 > n (we can assume
that A, # Xy for any i) . Then clearly, y, € A for all
n and. d(yn,x) < % for all n , which implies that d(x,A) =20

a contradiction.

1.4 In metric and semimetric space, we saw the distance func-
tion was invariant with regard to subspaces. In general, in
symmetric spaces this will no longer hold true. However, in
gymmetric spaces, we will find that the distance function is

invariant with regard to open or closed subspaces.

Theorem. If (X,d) is a symmetric space, then the distance
function is invariant with respect to open or closed subspaces
of X , i.e. the restriction of the distance function to the

subspace will yield the subspace topology.

Proof. Obvious.

In the past, there has been much work on finding out

which spaces have a metric generating their topology. In Chapter

I, two characterizations of semimetric spaces were given which

depend only upon knowing their topology. The question
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then arises as to which spaces are symmetrizable, given only
their topology. Unfortunately, not too much is known in this
area. In 1.7, the majbr theorem in this area will be given,

but first we introduce several concepts.

1.5 Definition. Consider a collection T, of subsets of

X for all x € X such that x € T for all T T, and all
finite intersections of elements from T, are in Ty - Define
a topology on X using Ty by P c X is closed iff for all

x £ P, there exists T ¢ Ty such that T n P = ¢ .

T, = U {Tx} is called a weak base for the topology and
xeX

members of T, are called weak neighborhoods. A topological

space X is said to satisfy the weak first axiom of counta-

bility (briefly, the gf axiom of countability) iff its

topology can be given by a weak base T = {r, = x ¢ X}

where each Tx is countable.

1.6 Example. Certainly any base is a weak base, but the
converse is not necessarily true. In féct if T € T, then
Int T = ¢ is possible as the following example shows. Let

X = {(i,3) | 1,3 ¢ N} . That is, X is countably many
columns of natural numbers. Define U < X to be open iff U
contains all but a finite number of elements in each column.
Then a weak base for the topology at (m,n) ¢ X can clearly
be given by g, (m,n) = {(mmn)} v {(i,3) : 1 < i <m¥l,

j > n+k} . Then certainly the g, (m,n) are not open. Also,
k
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this space is certainly an example of a space which is gf -
countable, but not first countable. The fact that X is gf -
countable is clear. To show that X is not first countable,
assume that it is, say bk(m,n) is a base at (m,n) . Then
choose U to be a set which does not contain 1 element contained
in the kth column of gk(m,n) . Then U 1is clearly open and

there does not exist k such that bk(m,n) c U

1.7 Theorem. If X is a o0 - discrete space, then X is

gf - countable iff X is symmetrizable.

Proof. By letting Tn(x) = Sl/n(x) if X is symmetrizable,

the fact that X 1is gf - countable is clear.

Assume then that X 1is gf ~ countable. We may assume
that the members, Qk(x) , of each system T, are decreasing.

By hypothesis, the network can be put in the form Yy = u ¥y
neN

n ’

where Yy, = {Sg T o€ Ln} are discrete systems of sets

Sg < X ; the last can be regarded as closed. We make the follow-

ing definitions:

k o o
M, = u{Sn :n<k,acL and x¢ Sn}

S (x) =g (x) - M, k=1,2,...

N(x,y) = max{n : (6n(x) n ﬁn(y)) n {x}n{y}) # o}

and



- 37 -

1

for all X,y € X .

Then clearly d is a semimetric function on XXX . It remains

to show that d is compatible with the topology on X .

Let x ¢ X-P , where P 1is a closed subset of X .

Then there exists some n, such that Qn nP=2¢ . Since
o

X-P 1is open, there exists Sg, € Y such that x € Sz, c X-P .
Assume that y ¢ P . Then we have that
0, (x) = Q (%) ¢ X-PcXx-{y} .

n
(o} o

But on the other hand,

n' o

Q. (¥) = Q . (¥) - M, =Q. - S, e Q. (y) - {x} .

]

Therefore, if n > Max{no,n'} , then

(@, ()0, (x)) 0 ({x} {y}h = @, ), (¥)) o ({xlulyh) =¢
o )

Therefore, N(x,y) < n which implies that d(x,y) > n =

max{no,n'} for all y ¢ P . Therefore, d(x,P) > % >0 .

Assume that P satisfies the condition d4d(x,P) > 0
for all x ¢ P . We must show that P is closed in the origi-
nal topology on X . We will show that for any € > 0 , the
set S,(x) contains a weak neighborhood of x . Choose n
such that n > L . Then Mi is closed and does not contain

€
X . Therefore, there exists a weak neighborhood Qn,(x)
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disjoint from Mz . Then if n" > max{n,n'} , Qn“(X) < Qe(x) ’

since the weak neighborhoods decrease monotonically. Therefore

0, (x) € Qu(x) nQ (x) cQ(x)~M =0 (x) .

Then if vy ¢ 5n(x) , then clearly

< i<
— 1l

N(x,y) >n and d(x,y) = %7

Thus, a o - discrete space which is gf - countable is symmetri-

zable.

‘1.8 Remark. Not every symmetric space has a o - discrete
network, as I.4.10 shows. This answers a question of Arkhangel'

skii raised in [A].

1.9 In this and the next few sections, several of the proper-

ties of symmetric spaces will be examined.

In [A], Arkhangel'skii introduced the definition of
the gf - axiom of countability, by asserting, without proof

that a T topological space X satisfies the first axiom of

3%
countability iff X is Frechet-Urhyson and satisfies the gf -
axiom of countability. The following two examples show that

complete regularity is necessary.

(a) The example considered in 1.6.

(b) The space obtained from the real line by identifying
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the points {n}! and {%} .. This space is clearly
T2.
1.10 In 1.4, we saw that the symmetric is invariant with

respect to open or closed subspaces. If we consider the example
of the space given in 1.6 and construct a symmetric on X by
means of the construction of 1.7, then we find that X has a

symmetric function d defined by

0 if m=m' and n =n'
d((m,n), (m',n")) = { 1 if m<m'+l or vice versa
1 otherwise.

in-n'|

Then if we take the:éubspace consisting of every fifth column,
we arrive at a subspace whose topology is not generated by the

above semimetric function.

1.11 Definition. Every map £ : X » Y where (X,p) 1is a

metric space and Y any set induces a quotient distance d

defined by
. -1 -1
d(x,y) = inf {p(f “(x),£ “ (¥} .

We write d = p/f .

It is often of interest to know under what circum-
stances the topology induced by d agrees with the quotient

topology. 1In the next few sections, we answer that question.



S(il/n(y) = {y' & dly,y") < 3'—1} = {y' : p(£ ), ey < .Il;} ,
1

then U = {x : p(f—l(y),x) < %} is a neighborhood of £ *(y)

and since f is pseudo-open, y e Int f(U) c.Int S?/n(y) .

Conversely, given open V containing y € Y , there
exists U < X such that f-l(V) = U . Which implies for some

P _ d .
n, Sl/n(x) ¢ U where £f(x) =y . Then Sl/n(y) c V.

2.0 In the previous section, we consideréd what happens if
we weaken a semimetric space to symmétric‘space by using d ,
the distance funcﬁion to define closed sets, instead of limit
points. 1In this section we consider what happens if we weaken
the requirement that gn(x) form a base at x in Heath's
characterization of semimetric spaces (I,2.2) to merely requir-

ing that the gn(x) be open.

2.1 Definition. A topological space X is said to be semi-

étratifiable iff for all U ¢ t , there exists a sequence of

closed subsets of X such that

(a) v U =10
neN n

(b) U < VvV implies that Un < Vh

U ~» {Un} is called a semistratification for X . If instead

of condition (a) abave, we have

(a') v U =U and ﬁh c U ,
neN
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then any space X that fulfills conditions (a') and (b) is

called a stratifiable space.

We note that any countable T, space X 1is a semi~
stratifiable space. For if X = {xl,xz,...? and if U is open

in X , then U = {X_ <

lka’ODO} Where kl -<_ k2 i k3 < oo

1
Let U = {Xk > SNEERY2 N } . Then since X is T, , U, 18
1 2 n
closed.
That T is necessary is shown by the space

1
x = {a,b} with 1 = {¢,{a},xX} .

2.2 The next theorem is a characterization of semistratifi-
able spaces due to Creede. This characterization is often
very useful in deciding whether or not a-given space is semi-~
stratifiable. It also relates the concepts of semimetric

space and semistratifiable space.

Theorem [C;]. X 1is semistratifiable iff there exists {gi}i
of functions from X -+ t such that
(1) ng;(x) = Ccl{x} for all x e X
i

(ii) y e gi(xi) for all i implies (xi) >y .
Proof. For each i ¢ N and x ¢ X define

g;(x) = X - (x - clixl});

Then clearly gi(x) satisfies conditions (i) and (ii) of the
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theorem. Conversely, let {gi(x)} satisfy the conditions of

the theorem. For each n and each open set U , define

U, =X - u{gn(x) : X X-U} .

Then the corresponding U = {Un} is a semistratification for

X .

2.3 Corollary. A Tl space X 1is semimetrizable iff X

is semistratifiable and first countable.

In the next few sections, some of the basic proper-
ties of semistratifiable spaces will be given. As would be
expected, many of the properties enjoyed by semimetrizable

space will be enjoyed by semistratifiable spaces.

2.4 Theorem [Cl]. The countable product of semistratifiable

spaces is semistratifiable.

Proof. Assume that for each 1i , X, is a semistratifiable
space and {g,

1,373
Let X be the countable product of the Xi and denote the

is a sequence of functions satisfying 2.2.

ith projection map of X onto Xi by p; - For each pair

i,j and each x ¢ X , define

| nd

gi’j (Pl (x))

X otherwise.
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[oo]

Now defi . < b . = h. . £ h j
ine {gj(x)}J=l y gj(x) izl 1,3(X) or eac j
and x . Then clearly the sequence (gj(x)f§=l satisfies the

conditions of 2.2 and therefore X is semistratifiable.

2.5 As we saw in 1.4, symmetric spaces are not always "nice"
with respect to subspaces. Semistratifiable spaces, however,
enjoy pleasent subspace properties.

Theorem [Cl]. A semistratifiable space is hereditarily semi-
stratifiable.

Proof. The natural restriction of the semistratification for

X to any subspace Y < X is a semistratification for Y .

2.6 Theorem [Cl]. If Y is a closed subspace of a semistrat-
ifiable space X , then there exists a semistratification

v > V. for X such that (vnY)_ = (V_nY) .
n n n _

Proof. Assume that W - W, is any semistratification for X
and that U =~ Un is any semistratification for Y . Then let
v, = (VnY)n U (V—Y)n . The correspondence V = V_ is a semi-

stratification satisfying the conclusion of the theorem.

2.7 Theorem [Cl]. The union of two closed (in the union)

semistratifiable spaces is semistratifiable.

2.8 Definition. A topological space X 1is said to be Fyo-

screenable iff every open cover has a 0 - discrete closed

refinement which covers the space.
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2.9 Theorem [Cl]' A semistratifiable space if F, - screen-

able.
Proof. Let U = Un be a semistratification for X . Assume
that {0, : o € A} is an open cover and let A be well-

o

ordered. Define

Hl,n = (ol)n

and

Hy o = (040, - u{OB:BeA,B<u} for o >1.

Then for all n € N , define

Hn= Ha,n=a€A}'

Then clearly Hn is a discrete collection of closed sets and

by the well-ordering of A, fl = u Hn covers X .
: n

2.10 Theorem [Cl]. The closed, continuous image of a semi-

stratifiable space is semistratifiable.
Proof. Obvious.

Quite frequently, it is of interest to know whether
or not a given topological space is Lindel6f. We will conclude
this chapter with an equivalence relationship in semistratifi-
able spaces between Lindeldf, hereditarily separable, and xl—

compact spaces.
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2.11 Theorem [C1]. In a semistratifiable T space X , the

1

following are equivalent:

(1) X is Lindelof
{(2) X 1is hereditarily separable

(3) X is ﬁl - compact.

Proof. (1) —> (2). Assume X 1is a semistratifiable,

Lindelof T space. It is sufficient to prove that X is

1
separable since a Lindelof space in which open sets are F

is hereditarily Lindelof. (Since every open set is the counta-
ble union of closed sets and closed sets of Lindeldf spaces are
Lindelof, every open subset of a Lindelof space is Lindeldf,
which implies that every subset of a Lindeldf space is Lindeldf.)
Assume that {gi(x)} is a sequence of functions satisfyihg the
éonditions of 2.2. For each 1 , {gi(x) : x € X} is an open
cover of X , and since X is Lindeldf, there exists a counta-
ble set D; such that {gi(x) i X € Di} is an open cover.

Then D = Di is a countable dense subset of X .

y
i
(2) —> (3) If E 1is any subset of X , card E:’xo
and E has no accumulation point, then E is discrete in the
subset topology, which implies E is not separable (in the
subset topology), a contradiction to the fact that X 1is hered-

itarily separable.
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(3) —> (1) . Let X be an Bl - compact, T,
semistratifiable space. Assume that G is an open cover of
X which has no countable subcover. By 2.9, G has a closed
refinement H = {Hn} » where each H is a discrete collec-
tion of subsets of X . Since G has no countable subcover,
there exists an n such that’ H is countable. Then if X'
is a subset of X consisting of exactly one point from each
nonempty element of Ho then X' is uncountable and has no

accunulation point.

3.0 In this chapter, we have.examined‘two kinds of spaces
that are both weaker than semimetric spaces. Developments
thus raise the question, "What is the relationship between
semistratifiable spaces and symmetrizable spaces?". If X

is first countable, then clearly symmetrizable <=ﬁ>.semistrat;
ifiable. We will see that in general, a symmetrizable space
need not be a semistratifiable space and that semistratifiable

space need not be a symmetrizable space.

3.1 Example. The Cairns space, X , considered in I 1.4 is
an example of a symmetrizable space that is not semistrati-

fiable. We need only show X is not semistratifiable.

Assume, then, that X is semistratifiable. Consider
the open set (-2,-1) v (1,2) - E , where E is any set of

. Then

o] 3

rational points whose only accumulation point is -

there must exist some Un in the semistratification of X
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such that U contains points arbitrarily close to - % .

Therefore Un is not closed, a contradiction.

3.2 Example. There exists a countable semistratifiable

space X which is not symmetrizable. Let X be a copy of

I n Q with the usual topology. Let X be the disjoint union
of the X, with the point {0} from each X, identified.

Then there does not exist a semimetric function d generating
the topology. For if there were one, clearly d({O},Xn?{O}) =0
for all n , which implies'that the set u [0, %) is not open

n
in X, a contradiction.

3.3 The only result I have been able to attain in the direc-
tion of examining the relaticnship between symmetric and semistra-

tifiable spaces is the following theorem.

Theorem. If X is a 'I‘l , 0 - discrete Frechet-Uryhson, semi-
stratifiable space with a function g : NXX > t satisfying the
conditions of 1II, 2.2 and the further condition that Yy € gn(x)

implies x € gn(y) , then X 1is symmetrizable.

Proof. By 1.7, it is sufficient to show that X has a counta-
ble weak base for the topology. Let T, = {gn(x)} . We claim
that T, is a countable weak base at X . Countability is
clear. Remains to show that T, is a weak base. Let t' Dbe
the topology generated using TX . Then clearly t' ¢ t .

Assume then that G is t open. To prove that G is t°
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such that U, contains points arbitrarily close to - % .

Therefore Un is not closed, a contradiction.

3.2 Example. There exists a countable semistratifiable

space X which is not symmetrizable. Let X be a copy of

I nQ with the usual topology. Let X be the disjoint union
of the X, with the point {0} £from each X identified.

Then there does not exist a semimetric function d generating
the topology. For if there were one, clearly d({O},Xn—{O}) =0
for all n , which implies that the set v [0 , %) is not open'

n
in X, a contradiction.

3.3 The only result I have been able to attain in the direc-
tion of examining the relationship between symmetric and semistra-

tifiable spaces is the following theorem.

Theorem. If X 1is a Tl , 0 - discrete Frechet-Uryhson, semi-
stratifiable space with a function g : NXX > t satisfying the
conditions of II, 2.2 and the further condition that Yy € gn(x)

implies x € gn(y) , then X is symmetrizable.

Proof. By 1.7, it is sufficient to show that X has a counta-
ble weak base for the topology. Let T, = {gn(x)} . We claim
that T, is a countable weak base at X . Countability is
clear. Remains to show that T, is a weak base. Let t' be
the topology generated using T, - Then clearly t' ¢ t .

Assume then that G 1s t open. To prove that G is t!
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open. Assume that G is not. Then there exists x ¢ G such
that gn(x) n G # ¢ for all n . This implies there exists
Y, € gn(x) n G such that Yn # x . By hypothesis,

X € gn(y) , and therefore Yp 7 X - Since X 1is a Frechet-

=
Urhyson space, x ¢ G in t topology, a contradiction.

3.4 Remark. It is still an open question what the precise
relationship between semistratifiable spaces and symmetrizable

spaces is.
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CHAPTER IIXI

DEVELOPABILITY AND METRIZABILITY OF SEMIMETRIC,

SYMMETRIC, AND SEMISTRATIFIABLE SPACES

1. INTRCDUCTION. In this chapter the concept of developable

spaces is introduced. It will be shown that the class of
developable spaces lies between the class of semimetric spaces
and the class of metric spaces. In section 2, four theorems

are given which give necessary and sufficient conditions for a
given topological space X to be semimetrizable, developable,
or metrizable. In section 3, an interesting theorem of Arkhan-
gel'skii which states that every compact, symmetric space is
metrizable is given. In section 4, developability of semimetric
symmetric, and semistratifiable spaces is examined. We conclude
the thesis with two theorems on the developability and metriza-
bility of semimetric spaces in terms of conditions on the

original topology.

1.1 Definition. A topological space (X,t) is developable
iff there exists a sequence {Un};=1 of open covers of X
such that U, refines U _; and for all x e X,

{st(x,Un) tn=1,2,°°°} is a neighborhood base for x .

Eguivalently, X 1is developable iff there exists a sequence

of open coverings {fn} such that if x € U ¢ t , then there

exists an n such that st(X,Gn) < U . A Moore Space is a
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Ty » developable space.

1.2 Theorem. Every developable space has a semimetric with

respect to which all spherical neighborhoods are open.

Proof: Let {Gi} be a development for X . Define d as

follows:

d(x,y) = inf {% : xeg and y € g for some g ¢ Gn} .
Then the properties of d are clear.
1.3 Theorem. Every metric space X 1is developable.

Proof. Let U, be the cover of X by the % spheres

around each point x ¢ X . Then clearly X is developable.

1.4 Example [Mcl]. There exists a regular semimetric space
which is not a Moore space. Let X Dbe the space given in the
proof of I.3.2. Then X is a regular semimetric space, and by

I.3.2 and 1.2, X is not developable.
i

t

2. In this section, we consider four theorems, each of which
give necessary and sufficient conditions for a given space to
ﬁe seﬁimetrizable, developable, or metrizable. The first
theorem will give the conditions in terms of a distance func-
tion d , the second and third in terms of a function

g : NXN » t (c.f., Heath's characterization of semimetric

.
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spaces, I. 2.2), and the fourth in terms of the topology on

the space.

2.1 Theorem. In [Heaz], Heath quoted [A&N]

(i) A T space X 1is developable iff there exists a

3
semimetric function d such that whenever

lim d(xn,p) = lim d(yn,P) =0,
then
lim d(xn,yn) =0 .
(ii) A T

3 Space X 1is metrizable iff there exists a

semimetric d for X such that whenever

lim d(xn,p) = lim d(Xn:Yn) =0 ,
then

lim d(yn,p) =0 .

2.2 Theorem [Heal]. Consider the following three conditions

on a fuction g : NxX + t :

(1) For each point x € X , {gn(x)} is -a nonincreasing
sequence which forms a local base at x such that

if y € gm(xm) for all m e N , then X, 7Y .

(ii) If y ¢ X and x and 2z are point sequences
such that, for each m , (y+xm) c gm(zm) , then x

converges to y .
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(iii) If x,y ¢ X and n € N, then x ¢ gn(y) implies

that vy e gn(x) .

Then the following holds true:

(a) X is semimetric iff there exists a g satisfying

condition (1i).

(b) X is developable iff there exists a g satisfying

conditions (i) and (ii).

(¢) X is metrizable iff there exists a function g

satisfying conditions (i), (ii), and (iii).

Proof. Part (a). This is just Theorem 2.2 of Chapter I.

Part (b). Sufficiency. Let Gi = {gj(x)-: j> i
and x € X} . We claim that the coverings Gl’Gz"" consti-
tute a development. The fact that Gn+l refines Gn is
clear. It remains to show that {st(x,Gn) i n= 1,2,...} is
a neighborhood base at x . Let x ¢ U e t . Then there

exists n, such that x € 9, (x) < U . Assume that for all

o

n > n, , there exists y  such that y ¢ st(x,U,) - gno(x) .
Then there exists z, such that (x+yn) c gn(zn) for all
n>ng . Therefore, by hypothesis, Y, T X, 2 contradiction,

since for all n > n €
205 1 ¥y gno
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Assume that Gl’GZ"" is a development for

Necessity.
inductively as follows:

X . Then define g : NXX -+ t

any member of Gl which contains x

gl(x)

any member of Gn such that

9, (x)
X € gn(x) < gn_l(x) ; if n > 1.

Then clearly g satisfies conditions (i) and (ii).

Let g be defined

Part (c). Necessity is clear.

as follows:

gn(x) = Sl/n(x)

is a function satisfying

Sufficiency. Assume that g

conditions (i), (ii), and (iii). For each natural number n ,

define

Gn(x) = {gm(x) : X e X and m > n}

Assuming that X is not metrizable, there exist two points

P9 ¢ X and R ¢ t such that for each n , there exists
h,k ¢ Gn such that p e€ h , hnh # ¢ , and kn (X-(R-qQ)) # ¢

kn (X~R) # ¢ since X is Tl ) by Moore's Metriza-

(i.e.,
Therefore there exists a point p , a region

tion Theorem.
R and point sequences X,y , and 2z such that for all n ,

€ gn(p) , so, that, by condition (iii), p € gn(ym(n))

ym(n)

BUt  Znn) € Im(n) Yn@m)?) S Ynn) € Im(n) Pmn)’
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therefore Zm(n) € gn(y

m(n))

Therefore, for each n , (P+Zm(n)) € gn(ym(n)) !

and again by condition (ii) , {z } converges to p . Thus,

m(n)

there exists a subsequence r of m , such that for each natur-

al number n , zr(n) € gn(p) . thus p ¢ gn(zr(n)) . But by
assumption, there is a point sequence wu such that, for each

n, u ¢ X~R and u_ € gn(z , which implies that u

n n r(n))

converges to p , and therefore, p e (S-R) and pe Re t ’

a contradiction. Therefore X must be metrizable.

2.3 Theorem [Heal]. In [Heal], a somewhat different version
of 2.2, (b) is given. Consider a function g : NxX > t and

the following condition on g : -

(ii') If y e Re t and x is a point sequence such
that for each n , y «¢ gn(xn) and there is a k
such that gn+k(xn+k) € gn(xn) , then there is a

natural number n such that gm(xm) c R .

Theorem [Heal]. If there exists a function g satisfying (i)
of 2.2 and (ii') above, and if X is a T3 space, then X

is a Moore space.

Proof. Assume that G = {gm(x) : Xe X, me N} is a basis
for a regular semimetric space satisfying the hypothesis of

the theorem to be proved. Well-order X by o = {pl,pz,...} .
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We define, by induction, functions h : NXxX G, r: oxN » N,
and n : axN +- o as follows. If p, © X , let nl(pz) =

9, (1) = gl(pz) . If i >1
2

(Case 1). If there does not exist g ¢ (x-pz) and a

j ¢ N such that 'pz € hj(q) and hj(q) n [x—grz(i_l)+l(pz)] #
¢ , then let hi(pz) = grz(i)(pz) = grz(i-l)+1(pz) v d.e.

rz(l) = rz(i-l)+l ; Or

(Case 2) otherwise. For each such j < i, let p, (3)
z

be the first member q of a(q#pz) such that p, ¢ hj(q) and

hj(q) n [X—grz(i—l)+l(pz) #¢ ; let r (i) = inf{m : m e N ,

m > rz(i;l) , and gm(pzi cf\[hj(pn (3) : j <i and j is not
' z

covered by case 1] ; and let hi(pz) = grz(i)(Pz) .

Then the basis H = {hi(x) : x e X and 1 e N}
satisfies the hypothesis of the theorem since H is a subcol-
lection of G and since, if x € g € G , then there exists

h e H such that x ¢ h < g .

We claim that the basis H satisfies (ii) of 2.2,
for if not, then X 1is not developable, which implies that
there exists x € R € t such that, for each m ¢ N , there is

a point g ¢ X such that X ¢ hm(q) and hm(q) -R#F € .

Define a sequence Yy = {ym} requiring y,  to be the

first point in o such that x € hm(ym) and hm(ym) -R#9¢
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It is sufficient to prove that for each natural number i ,
there exists an m > i such that E;T?;T < h;(y;) , for then
by (ii'), there is a natural numbe; N such that if k > N ,
then hk(yk) c R , a contradiction to hkkyk) -R#F ¢ . We
now show that for each natural number i , there exists an

m > i , such that hm(ym) c hi(yi) .

If i e N, then since y converges to x and
X € hi(yi) , there is a natural number Nl > i1 such that, if
> - i '
m Nl » then Yo € [hi(yi) yi] . There is a natural number

N

o  Such that, if m > N, , then gr(y_)(m—l)+l(ym) does not
' m

contain hi(yi) (otherwise, by condition (i), each point of
hi(yi) would be a sequential limit point of y , and hi(yi)»
contains at least two points, in particular x and a point
not in R , this is in contradiction to the fact that X is

T2 )i therefore, there exiSts m € N such that

\- -
Yo € [y (y3)-y;1 and hi(y;) n [X-g 1+1 W)l # ¢ .
There does not exist a point g in o such that g precedes
Yi in o and hm(ym) c hi(q) (from the definition of Y;
and the fact that hm(ym) c hi(q) implies that hi(q)n [X-R] #
¢ ); therefore, there is no point g such that q precedes

Y; in o and Y € hi(q) and hi(q) n [X—gr( )(m—l)+l(ym)] #
Y

¢ , since otherwise hi(q) would contain hm(ym) by the

definition of hm(ym) . Therefore, hm(ym)c:hi(yi) since yi#ym.
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2.4 The next theorem is one of the earliest results in
distinguishing between semimetrizable, developable, and metri-
zable spaces. This theorem is somewhat similar to 2.2, partic-

ularly part (i).

Consider now the following conditions A,B , and C
on a sequence {Hi} of collections of subsets of a topological

space X :

A. (a) for each 1i , Hi is a collection of open subsets

of X,

(b) if p 1is a point and U is an open set containing
P , then there exists an integer n such that Hn
contains exactly one element, g(p) , associated
with p such that p € g(p) <. U (cf. the function

g : NXN = t of I. 2.2),

(¢c) if n is an integer and {gi(pi)} is a sequence
such that for each i , gi(pi) belongs to Hn and

is associated with P; then U {pi} has no limit
i

point in X - z {g; ()}
B. If pe X and U is an open set containing p , then
there exists an integer n such that for all m > n , each
element g of H, which contains p has the property that

Ucg.
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C. For each i , the sum of closures of any subcollection of

H, is closed.

Theorem [Mcl].

(i) A topological space X is semimetric iff X

satisfies condition A.

(ii) A topological space X is developable iff X

satisfies conditions A and B.

(iii) A T3 topological space X 1is metrizable iff

X satisfies conditions A , B , and C .

Proof.

Part (i). Proof of this part is very similar to that
of I 2.2, but we give it for the sake of completeness. First
sufficiency will be shown. Define a semimetric function d

for X as follows:

0 if p=g4g
d(p,q) = L
' == {i,3} otherwise

where i is the least integer such that H, contains an
element g(p) associated with p but not containing g , and
similarly 3j is the least integer such that Hj contains an

element g(g) associated with ¢ , but not containing i .
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Then clearly d is a semimetric function for X .
By (a) and (b) of condition A, X 1is first countable. It
remains to show that limie points are unique. Assume that p
is a limit point of M < X in the given topology. If p is
not a distance limit point of M , then there exists a sequence
of points {pi} of M - {p} converging to p and an n € N
such that d(p,pi) > % for all i ; .Therefore there exists
me N suchithat either (i) p; # g, (pP) H (p) or (ii)
P £ gm(pi) € Hm(p) for infinitely many values of i , by the
construction of d . But since p; > P (i) is impossible,
and (ii) is impossible by (c) of condition A. By the construc-
tion of d and (b) of condition A , it readily follows that if
p is a distance limit point of M , then p 1is an open set

limit point of M . Therefore limit points are invariant with

respect to 4 .

Necessity. If p € X and h,k € N , denote by Rh k(p)

14
and open set, when it exists, such that Sl/h(p) > Ry 4 (P) 2
Sl/k(p) Let Gh,k = {Rh,k(p) : p e X} . There is a one-one

correspondence between NxN and N , say by £ . Define

Hy = Gf(h,k) Then clearly {Hi} satisfies condition A.
Part (ii). sufficiency. Let G, = u {g.(p) : g.(p) €

Hj} . Then {Gi} is a development for X . Both the refine-
ment property and the base property is clear.
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Necessity. Assume that {Gi} is a development for X .
Define a semimetric function on X as was done in 1.2. Define
{Hi} as was done in part (i) with the additional requirement
that Rh,k(p) lies in some open set g ¢ G - Then it readily

follows that {Hi} satisfies conditions A and B.

Part (iii). A proof of this readily follows from the
results in parts (i) and (ii) and Bing's theorem, [Bi, Theorem
4] that a T3 topological space X 1is metrizable iff there is

a sequence {Gi} such that:

(a) Gi is a collection of open subsets such that the sum
of the closures of any subcollection of Gi. is

closed for all i , and ‘

(b) if pe X, and p € U, U open, then there exists

n(p,U) such that there exists g ¢ Gn(p u) with
14
P € g , and further, p e g' € Gn(p,U) implies that
g' < U.
3. In this section we will prove that every T, , compact

symmetrizable space or semistratifiable space is metrizable.
Throughout this section, every topological space will be

assumed to be Tz .

3.1 Theorem [N]. A compact semimetrizable space is metrizable.
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Proof. By [23.1 of W], it suffices to show that X is second
countable, since a compact T, space is normal [W]. We will
show that X is second countable. If x e X and n e N,
there exists Vn(x) open such that X € Vn(x) c Sl/n(x) by
the regqularity of X . Consider the open cover Bn = {Vn(x) :

X € X} . By compactness there exists a finite subcover C/
k

— 1 2 .. n = .
where C_ = Vn(xn) ’ Vn(xn) ’ ’ Vn(xn ) . Let C {c.tcgcn

for some n} . Denote by G the set of all finite intersec-
tions of elements of C . Then C. is clearly countable. We

now show that G is a base.

Assume that G is not a base. Then there exists

an x ¢ X and a U € t such that there does not exist g < G

i
with x ¢ g and g-U = ¢ . But there exists xll such that

i i

1 _ 1
X € Vl(xl ) € Cl . Let Gl = Vl(xl )

- U . Then G, is a

closed set.which we can assume is not empty. Assume that
i.
Vj(xjj) and Gj have been defined for all j <n . Define
, i
G, in the following way: there exists xnn such that
in : n in
X € Vn(xn ) € Cn , set Gn =[j:l Vj(xn )] - U . We can agailn
assume that Gn is not empty, and it is clear that G is

k
closed. Certainly n Gl # ¢ , so by compactness,
=1 L

o8 B

G, #¢.
1 1

i

i
1 1
Assume that V ¢ G, . Then x,y e Vy(x; ) < Sl/l(xl ) for

1

o 8

=1

i
all & , which implies that {xll}+-x and y , and therefore

since X is Ty, X=Y , 8 contradiction.
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3.2 Lemma. If x is a G& subset of a compact space X ,
then x has a countable neighborhood base.

[e]

Proof. Assume that x = n Gn , wWhere the Gn are decreas-
n=1 '

ing. Then by regularity, there exists, for all n , Cn e t
such that x ¢ V_ and V£ < G, . Assume that U e t and

that Gn # U for any n . Then by compactness, there exists

o o0} (= 0

ye o V., -U. But n Vn -u<c n V. < n G =2x.
n=1 n=1

3.3 Theorem. A semistratifiable, compact space is metrizable.

Proof. It suffices to show first countability since any first
countable, semistratifiable space is semimetrizable. But this
is easy. By II. 2.2, any point x ¢ X is a 'Ga subset of X .

By the preceding lemma, X is first countable.

3.4 Theorem [A]. A compact symmetrizable space X 1is metriza-

ble.

Proof. It suffices to show that X is first countable. We
will show that any x € X is a Gg subset of X . Let

x'eX and let Yy = {Va} be a well-ordered covering of

X - |x'| , where x' ¢ V (v exists by the regularity of X).

Define
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D, =X- U V
o B<a ¢]

k _ . _ 1
Ja—{xévd.d(x,x vu) > i}
k _ -k

Pu = Ja n Da

for all k ¢ N and o . If Y = {Pg} , then clearly

U Y =X - {x'} and {Pg} are a disjoint system of sets.
k=1

If the set of non-empty members of Yy is countable for all
k , then ulg : g ¢ Y, for some n e N} = X - {x'} , which
implies that x' 1is a Gg subset of X . We now show that

the set of nonempty members of Yy is countable for any k .

k

Assume the contrary. Choose a point X6 . Py and set

Q = {xa} . There exists Q' < Q such that Q' is uncounta-
ble and d(x',Q') > e' > 0 for some e' . From the definition

Sincé X is
al a,

compact, Q' cannot be closed in X since if it were, there

of Y, if xy 4, xy, €Q' ,d(xy ,x ) 2 .
1 2

would be a point x_ € Q' such that d(xo,Q'—{xo}) =0, a

contradiction to the inequality d(x rx) 2 % if x # x, and

Xx € Q' . Since Q' is not closed, there exists x" € X

such that d(x",Q') =0 . x" # x' since d(x',Q') > e' > 0.

Let a" = minf{a : x" ¢ V e v} . Choose points X, € Q'
i
. . 1 '
(i-1,2) , ay < a, so that d(xai,x') < for and d(xui,x') <
d(x",X—Va"). Therefore xye Vy, and a; < a" from the
. i
definition of Vi - Thus oy < a" and x" ¢ Va. . Therefore,

1l
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% < d(x. ,X-V f < d(x. ,x") , a contradiction to the choice
- o o - o
1 1 1
of Xy ¢
1
4. In this section we will examine necessary and sufficient

conditions for a topological space X to be developable. The
main theorem of this section is: For a Tychanoff épace X
the following are equivalent:

(a) X 1is developable;

(b) X is a p - space and has a 0 - discrete network,

(c) X is a semimetrizable p - space,

(d) X 1is a symmetrizable p - space,

(e) X 1is a semistfatifiable” p - space,

(f) X is a wA , semistratifiable space, ahd

(g) X is a quasicomplete semistratifiable space.

The necessary definitions will be introduced in this section.
Unless otherwise stated, in this section, every space will be

assumed to be Tychonoff.

4.1 Definition. A topological space X 1is said to be a p -
~ space iff X is completely regﬁlar and if in its Stone-Cech
compaétification, BX , there exists a sequence of families
{Yn} ,» where each Y, is a collection of open subsets of

BX which covers X and satisfies the condition that for all
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x e X, n St(x,yn) c X . {Yn} 'is called a pluming for X  in
. n < . A 1n

RX 1.

4.2 Definition. A topological space X is said to be 0-

paracompact iff for any open covering U of X , there exists

a sequence {Un} of open covers of X such that for any
X ¢ X , there is a n(x) €« N and some U e U with

St(Xlun(x)) < U .

4.3 Lemma [B&S]. If X is a topological space with the
property that every open cover of X has a o0 - discrete

refinement, then X is o0 - paracompact.

Proof. Assume that U is any open cover of X with a 0 -
discrete refinement P = g Pn , with each Pn a discrete col-
lection. We may assume that the sets in P are closed. For
each P e P, let U(P) = any set in U which contains P ;

U(P) exists since P is a refinement of U . If X e P ¢ Pn’

define an open cover Un as follows:
u, (x) = U(P) n X = u{p' : p' e P, x¥{ P'}1 .

If x e ulP : P ¢ Pn} , define U _(X) by

! 1In [A], Arkhazelskii defined X +to be p - space iff a
pluming exists in any one (therefore in all, see [W], 41)

of its Hausdorff compactification.
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Un(x) =X ~-u{P : P ¢ Pn}

Then Un = {Un(x) : X € X is an open cover of X for each
n e N}. Clearly, if x ¢ P ¢ P, then St(x,U) c St(P,U) <

U(P) . Therefore X is o ~ paracompact.

4.4 Corollary. Any semistratifiable space (and therefore

semimetric space) is o - paracompact.
Proof. Definition II. 2.8 and Theorem II. 2.9.

4.5 Corollary. Any topological space with a ¢ - discrete

network is o0 ~ paracompact.

Proof. Clear.

4.6 Lemma [B&S]. If X is a p - space and x ¢ X has the
property that {x} is a Gs set, then x has a countable

neighborhood base.

Proof. Assume that {Yn} is a pluming for X in BX and
suppose that {x} = n Gn + Where each Gn is an open subset
n
in X . There exists a Gﬁ open in BX for all n such
= ' = 1
that G, = G} n X . Therefore {x} [g Gl1 n[nSt(x,v )] ,
which implies that {x} is a G@ set in BX . Since BX

is compact and {x} 1is a Gy set in BX , x must have a

countable base in BX , which implies that x has a countable
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. base in X (take the restriction of the base in BX to X ).

4.7 Corxollary. A semistratifiable p - space is semimetriza-

able.

Proof. Clear from II. 2.2 and above.

4.8 Lemma [B&S]. A symmetrizable p - space X is semimetri-
zable.

Proof. It is enough to show that X is first countable,
therefore by 4.6, it is sufficient to show that every one-point
set {x} is a Gg set in BX . There exists a pluming, say
{Yn} , for X in X . If n N, there exists an open neigh-
borhood, U (x) , of x in BX such that. 'U_n_(XT_C_St(x,Yn) .

———

Let C = 3 U, (x) ¢ n st(x,v,) < X . Then since closed subsets
of compact spaces are compact, C 1is compact in X . Since
closed subspaces of symmetrizable spaces are symmetrizable and
by the preceding lemma, compact symmetfizable spaces are metri-
zable, C 1is meﬁrizable. Therefore there exists a sequence
{Nn(x)} of open subsets of BX such that {C n Nn(x)} is a

neighborhood base at x , relative to C . Then clearly

{x} = [R Un(x)] n [3 Nn(x)] .

4.9 Lemma [B&S]. A p - space with a o0 - discrete network

is semimetrizable.
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Proof. For all x € X , it is clear that {x} is a G; set
since X has a 0 - discrete network. By 4.6 and III. 1.7,

X 1is semimetrizable.

4.10 Lemma [B&S]. A space with a development {Un} has a

0 = discrete network.

Proof. As we saw before, a developable space is semimetriza-

ble, therefore each Un has a o0- discrete closed refinement

[ee]

B by II. 2.10. Then u B is clearly a o - discrete

n n=1 n
network for X .
4.11 Lemma [B&S]. A symmetrizable p - space is developable.

Proof. X is semimetrizable by 4.8, so let d be a semimetric
for X . X is also 0- paracompact by 2.4. X also has a
pluming, séy {Yn} , in BX . Let Sé(x) be a neighborhood.
%n BX such that Sn(x) = SA(x) n X , where Sn(x) is taken
With respect to d4d . For all x € X , let Un(x) be a neigh-
borhood of x in BX such that U _(X) ¢ S (x) and such that
the family {ﬁ;T§T : x € X} refines Yy . Define U(n) =
{Un(x) n X :x e X} . By the o0 - paracompactness of X ,
there exists for each n € N a sequence {Um(n)};;l of open
covers of X such that for all x € X , there is a m(x) € N
and U e U(n) with St(x,Um(x)(n)) c U . We may assume that

um+l(n) refines Um(n) for each m e N . For each n ¢ N ,
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define Bn to be an open cover of X such that Bn refines
each Us(t) for s <n, t<n and Bn+l refines Bn . We
claim that {Bn} is a development for X . Let x ¢ X and
k ¢ N be fixed. Then there is some X, € X and n, e N
such that St(x,un (k)) < Uk(xk) n X , which implies that

k

) n X . We may assume that

st(x,B, ) < stlx, U, (k)) < U (xp
k

k
o0
{nk}k=1 is an increasing sequence, so that St(x,8 ) <

k+l

St(x,Bn ) . Let 0 be any open neighborhood of x and let
k

0' be an open set in BX such that 0 = 0' n X . It is

mo o
sufficient to prove that n U, (%) < 0' for some m , since

m m
then St(x,B_) < n sSt(x,B_) <[ n U (x)] nX<0'nX=
Py T k=1 g k=1 % ¥
0 , and therefore, x ¢ St(x,f ) < 0 . Assume that
m m m -
n U, (x.) £ 0' for any n e€ N . Then { U, (x,) - 0'} _
k=1 k*k k=1 k*7k m=1

is a decreasing sequence of closed sets in X , and hence by

the compactness of BX has nonempty intersection. But

=]

n GG s [ sty 0 [0 Sylx)]

[++)

k=1 k=1 k=1
o] «©
cXn[n S.(x)] = n S (%),
- k=1 F K k=1 KK
00 - o]
and therefore y e n U (x.) - 0' implies that y ¢ 0 S (x,)
_ kYk _- k'7k
k=1 k=1
and so since X 1is semimetrizable, X 7Y - But also, Xy >

x and so since X is Hausdorff, x =y , which is a contradic-

tion.
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4.12 Corollary I[A]. A collectionwise normal p - space with

a symmetric (or with a o0 - discrete network) is metrizable.

Proof. A collectionwise normal, developable space is metriza-
ble [Bi].

4.13 Definition. A T, space X is said to be gquasi-

1
complete provided that there exists a sequence {Bn} of open
covers of X such that if {An} is a decreasing sequence of
non-empty closed subsets of X and if there exists an element

x, for which for each n , there is a b, € B with

AU {xo} <b then g A, # ¢ .

1 space X is said to be a wA -

space iff there exists a sequence {Bn} of open covers of X

4.14 Definition. A T

such that if {An} is a decreasing sequence of nonempty closed
subsets of X and there exists X, € X for which

A

n © St(xo,Bn) for all n, then g An # ¢ .

4.15 Remark. Certainly a wA - space is a quasicomplete
space. - It is still an open guestion whether or not the reverse

implication holds true.

4.16 Lemma [Cl]. A topological space X is a Moore space

if it is a quasicomplete semistratifiable space.
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Proof. Let {Bﬁ} be a sequence satisfying the conditions

of 2.14 and let {hn} be a sequence of functions satisfying
the conditions of II. 2.2. If x ¢ X, let bn(x) be some

member of Bn(x) containing x . We define a functions

g : NXN * t inductively as follows:

gl(x) = some open set containing X such that

gl(x) c bl(x) n hl(x)

gn+l(x) = some open set such that

gml(x) € gppp(x) 0 h (%) 0 g (x) .

Then g fulfills the conditions of 2.3.

4.17 We are now in position to prove the theorem stated in

the introduction to this section.

Theorem. If X is a T31L2 topological space, then the fol-

lowing are equivalent:
(a) X is developabie,
(b) X is a p - space with a ¢ - discrete network,
(c) X 1is a semimetrizable p - space,
(d) X is a symmetrizable p - space,
(e) X is a semistratifiable p - space,
(f) X is a wA - semistratifiable space, and

(g) X 1is a quasicomplete semistratifiable space.



- 73 -

Proof.
(a) —> (b) By 4.10 X has a O- discrete network and

since every developable space is p - space,

we are done.

(b) —> (c) This was shown in 4.9.

(c) —> (d) This is clear.

(d) —> (a) This was shown in 4.1l.

(e) —> (c) This was shown in 4.7.

(c) —> (e) This is clear.

(£) —> (g) This is clear.

(g) —> (a) This was shown in 4.16.

(a) —> (e) The fact that‘ X - is semistratifiable is

clear.

That X is a wA space follows readily from the definition

of Moore spaces and wA spaces.

4.18 Corollary [Cl]. A locally compact, T, semistratifi-

able or symmetrizable space is a Moore space.

Proof. A locally compact, T, space is a p - space, which

follows from 19.2 of [wil.
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5. In this section, we introduce the concepts of a point-
countable base and a strongly complete semimetric space.
Developability and metrizability of semimetrizable spaces will

be discussed in terms of these concepts.

5.1 Definition. A base B for a topological space X 1is

said to be point countable iff each point of the space belongs

to only countably many elements 6f B .

5.2 In [HeaZ], Heath asserted, without proof, the following

theorem:

Theorem. A T semimetric space with a point-countable base

2

is developable.

5.3 Definition. A semimetric space X is said to be strongly
complete iff there is a semimetric d for X with respect to
which every nested sequence Ml’MZ"" of closed sets such

that for each n , there is some point Py for which Mn c
[ee]

{y : da(y,p.) < L } ., has the property that n M # ¢ .

n n n=1 n
5.4 Lemma [Heal]. Assume that X is a T, space with a
basis {g (x)} that satisfies condition (i) of 2.2 and the
further condition that if M is a nonincreasing sequence of

of X such that M, < gn(xn) for each n , and there is a
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natural number k such that g (x ) © gn(xn) , then

n+k ‘“n+k

nooM # ¢ , then {gn(x)} satisfies (ii') of 2.3.
n=1 :

Proof. If ye Ret and Yy € gn(xn) for all n , and
there exists k such that gn+k(xn+k)
there exists m such that gm(xm) c R . Assume the contrary.

c gn(xn) , we must show

This means that for all m , gm(xm) - R# ¢ . Therefore, there
® e m » 3 .
exists X _ € n gm(xm)— Rc gm(xm) , which implies that
m=k+1 n=1

{xm} > ¥iYg - Since X is T, , Y =y, , but this is impossible

since y € R and Yo £ R .

5.5 Theorem.[Heal]. A strongly complete, regular semimetric

space is a Moore space.

Proof. Clearly a strongly complete, regular semimetric space
satisfies the hypothesis of the last theorem. Therefore, X
has a basis which satisfies the hypothesis of theorem 2.3, and

by the conclusion of that theorem, X is a Moore space.

5.6 An even stronger theorem than 5.5 gives

Theorem.[HeaG]. A strongly complete, seperable, T5 , semimetric

space X 1is metrizable.

Proof. Since a Xy compact Moore space is metrizable [J]

and by the last theorem, X is a Moore space, it is sufficient
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to prove that X is Xy - compact. Assume that X is not
xi compact. Then there exists an uncountable subset M

without any accumulation points.

Assume that H is a countable dense subset of X .
We will define inductively a decreasing sequence {Mi} as

follows:

there exists some hl € H such that Ml = {x : x e M and
d(x,hl) < 1} is uncountable since H is countable and for
every point m ¢ M, Sl(m) must contain a point of H .
Similarly, for each n > 1 , there exists some point hn e H

- ) ‘ 1y
such that M = {x : x e M, , dlx/h)<< =} is uncountable.
I£ n Mn contains a point p (and n Mi can contain at most
one point, since X is T2 ), then for each n , d(hn,p) <
% . If M, not closed for some n ., then M, has an accum-
ulaion point, so therefore does M , in contradiction to the
assumption that X is Xl - compact. Thus for each n

(o]

M, - {p} = M- 121 Mo #0 and M, - {p} is closed, for if
not, then p is an accumulation point of Mn , and thus of
M . Thus, (M - {p}) < Sl/n(hn) and n (M - {ph) = ¢ ,

n
a contradiction to the assumption that X is strongly complete.
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