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ABSTRACT 

As a critical member of infrastructural lifeline, pipelines fulfill a vital role in energy delivery 

across long distances from source to market. Pipelines at service can be exposed to a wide variety 

of loads depending on the environment and the area of application. Internal pressure and ground 

movements, which are two typical loads respectively controlled by force and displacement, are of 

great concern in pipeline integrity. Internal pressure is the primary load exerted on the pipe wall 

for the duration of operation; ground movements induced by geohazards are significant threats to 

long-distance transmission pipelines. This research carries on the reliability-based analysis of 

pipes subjected to internal pressure and ground movements regarding the respective industry 

concerns. 

For pipes subjected to internal pressure, a comprehensive reliability assessment is performed 

towards intact and defected pipes based on the CSA Z662:19. Various limit states related to the 

pipe design, pre-commission hydrostatic testing, and operation are studied. Specifically, both 

corrosion and crack defects are considered for pipeline integrity assessment based on different 

defect scenarios. The probabilities of failure (PoFs), are reported with respect to design factors, 

hydrostatic test pressure factors, and safety factors, which can be used in designing new pipes, 

determining the applied pressure in hydrostatic tests, and operation pressure control of defected 

pipes, respectively. The effects of pipe grade, pipe dimensions (i.e., diameter and wall thickness), 

corrosion or crack defect sizes (e.g., length and depth), and internal pressure on PoFs for different 

limit states are also investigated. 

In light of the limitations that existing models are not applicable for reliability calculation, a 

novel model is developed to predict the pipe response to ground movements based on the finite 

difference method (FDM-based model). The pipe is modeled as an Euler-Bernoulli beam with 
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large deformations, and the governing differential equations are formulated as functions of 

displacements of the deformed pipe in the axial and lateral directions at each grid node. The 

nonlinearities arising from the pipe material and the pipe-soil interaction are accommodated within 

the finite difference formulation. The initial thermal axial strains and biaxial state of stress due to 

internal pressure can be appropriately incorporated into the stress-strain relationship of the material 

based on the flow rule of plasticity. Results of the FDM-based model are in good agreement with 

those derived from the finite element method (FEM). 

The strain-based limit state function is established where the FDM-based model is used to 

calculate the results of strain demands. The PoFs of pipes at a given magnitude of ground 

movements are calculated using the Monte Carlo Simulation (MCS). The calculation code is 

equipped with computational optimization functions to enhance computational efficiency. At last, 

calculator-like tools are established respectively for assessment of the integrity of pipelines 

subjected to ground movements, using the developed codes of the FDM-based model and the 

related reliability calculation. Furthermore, considering the probability of ground movement 

initiation, the formula of calculating the cumulative PoFs of pipes is developed for decision-

making on the maintenance plan for pipes buried across landslide-prone zones.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

As a critical member of infrastructural lifeline, pipelines fulfill a vital role in energy delivery; 

networks of large transmission pipelines are akin to energy highways. Pipelines are generally 

constructed underground and extend over vast distances transmitting major crude oil and natural 

gas from often-remote locations to the populated areas where the products are needed. Compared 

to ship, truck or train, pipeline transport is safer, more efficient, and creates fewer greenhouse gas 

emissions. However, damages of pipelines may lead to major catastrophic consequences including 

environmental effects and disruptions to essential services for human needs. 

For the design of pipelines, two criteria, stress-based design and strain-based design, can be 

used dependent on the load type. In conventional stress-based design, the equivalent resultant 

stress is not allowed to be greater than the permissible stress (usually the product of design factor 

and yield stress) essentially restraining the pipe to operate within the elastic limit [1]. Stress-based 

design is primarily used in the case of force-controlled loads, such as internal pressure, thermal 

expansion and contraction. On the other hand, strain-based design recognizes that a pipe retains a 

large portion of its structural capacity even after being deformed beyond its elastic limit. In strain-

based design, the amount of strain occurring under the load (referred to as strain demand) is limited 

by the level of strain that would lead to a severe failure such as rupture (referred to as strain 

capacity). Strain-based design is most appropriate in the case of displacement-controlled load 

which can easily cause stresses exceeding the yield strength of the pipe material without fear of 

loss of containment [2][3]. 

The most common and prominent force-controlled pipeline loading is the internal pressure 

of the contained fluid. As described in the code for oil and gas pipeline systems published by the 

Canadian Standard Association (referred to as CSA Z662:19 hereafter), internal pressure plays a 

significant role in the lifecycle of pipelines. In the design and integrity assessment stages, internal 

pressure can serve as an independent or a companion load in various limit states, and several limit 

states are internal pressure-related [4]. On the other hand, ground movement, usually induced by 
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geohazards, epitomizes displacement-controlled loading that a buried pipe may encounter during 

its operational life. In the route selection, avoiding these geohazard areas would be the safest way 

for pipeline alignment, but this option may not be practically possible especially for long-distance 

pipelines. Particularly in Canada, the common geologic processes that could potentially affect 

pipeline systems include landslides, slow slope movement in mountain areas, frost heave, and thaw 

settlement seasonally occurring in permafrost regions in the North of Canada [5][6]. Landslides 

can be initiated in slopes when forces acting down-slope (mainly due to gravity) exceed the 

strength of the earth materials that compose the slope due to some natural factors or human 

activities. In the summer season, thawing of permafrost would occur due to global warming at the 

higher latitudes. Melting of the ice-rich soil layers can reduce ice volume and cause the settlement 

of the ground. When the winter season comes, the metled water is froszen in the soil and heave up 

the ground [7]. Those geotechnical activities are predisposed to cause significant deformation-

induced strains on the pipe, which could result in possible local buckling and rupture of the pipe 

wall. Field observations have highlighted the deleterious consequences of geotechnical movement 

of the surrounding soil medium on the structural integrity of buried pipelines. According to the 

statistical data in Pipeline Industry Performance Report 2016 by Canadian Energy Pipeline 

Association (CEPA), geohazard-induced damage accounted for 7.4% of the causes of pipeline 

incidents in the years from 2011 to 2015 [8]. While geotechnical threats are not the leading cause 

reflected in the survey, they deserve adequate attention due to the associated high consequence.  

Pipeline structural safety is traditionally assessed by comparing the stress or strain-based 

demand with the respective capacity. To account for uncertainties relevant to loads, materials, and 

used models, traditional design involves a deterministic approach relying on the use of a reasonable 

global safety factor that provides a lower bound to the ratio of the actual strength to the required 

strength. However, due to the high uncertainties associated with loads, materials, and 

measurements, a deterministic approach is considered oversimplified; it cannot appropriately 

consider the effect of the individual parameters’ variability on the design safety [9]. On the other 

hand, reliability-based analysis developed based on a probability concept is able to account for 

pertinent uncertainties, while offering a precise estimate of the probability of failure (PoF, i.e., the 

occurrence of undesired events) to the problem. Developments in design codes based on reliability-
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based analysis are actively occurring in various parts of the world today. Some well-known 

international standards associations, e.g., the American Society of Mechanical Engineers (ASME), 

the American Society of Civil Engineers (ASCE), the Canadian Standards Association, the Det 

Norske Veritas (DNV), and the International Organization for Standardization (ISO), have 

incorporated reliability-based analysis in the design and assessment of engineering structures. 

Especially for the pipeline industry, some recognized codes, i.e., ISO 16708 and CSA Z662 

(Annex O), are widely accepted by Europe and North America respectively among peers. 

This doctoral research is in the pursuit of two objectives concerning the current demands in 

the pipeline industry particularly in North America: (1) in the case of internal pressure, to 

investigate the inherent connection between the factor of safety (utilized in the deterministic 

assessment) and reliability (or PoF, used in the probabilistic evaluation) along with every stage in 

the lifecycle of the pipeline, which aims to provide a direct reference to safety control for design 

office and engineers in the field; (2) as for the pipeline subjected to ground movements, to develop 

a practical method for calculating the reliability of pipes at given magnitudes of ground movement. 

The method is expected to provide a fast and accurate result for screening and assessing steel 

pipelines subjected to a variety of geohazard conditions, and to be used in the overall maintenance 

plan based on reliability assessment of pipes buried through geohazards zones which possess the 

potential to induce ground movements. 

 

1.2 Literature review  

1.2.1 Pipes subjected to internal pressure 

1.2.1.1 Failure pressure of intact pipes 

When subjected to internal pressure loading, pipelines’ failure pressure is the paramount and 

necessary parameter for establishing various limit state functions. Pipe material failure is generally 

associated with the steel yield or ultimate stresses which respectively denote the forthcoming of 

plastic deformation and plastic collapse. Yielding occurs when the yield strength ( y ) is exceeded 

by the corresponding equivalent stress. Plastic collapse is pertinent to the impossibility of the 

remaining wall thickness to resist the ultimate strength, i.e., pipe burst due to the operating 
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pressure. The limit state of yielding is considered during the pipeline design for the determination 

of design pressure ( dP ) which is calculated based on Barlow’s formula with consideration of the 

materials and locations (characterized as a design factor (F)) (see Eq. (1-1)) [10].  

 
2 y

d

t
P F

D


=  (1-1) 

where D and t are the pipe diameter and wall thickness respectively. Considering the ultimate 

strength of pipes, Jiao et al. [11] proposed the concept of flow stress which is defined as a portion 

of the tensile strength ( t ) to replace 
y  in Eq. (1-1) to estimate the burst pressure, which has 

been adopted to present the stress capacity in the burst limit state in CSA Z662 [4]. 

 

1.2.1.2 Failure pressure of pipes with corrosion or crack 

Reliability studies on purely flawless pipes are scarce. Extensive research has been 

conducted on estimating the burst pressure of pipes with corrosion or crack defects. Corrosion is 

a common threat causing metal loss due to environmental exposure; cracks in a pipeline can have 

various origins such as manufacturing defects, welding defects, and external damage. The 

development of failure pressure models requires idealizing the flaws into primarily regular shapes 

as depicted in Figure 1-1. 

Existing burst pressure models of corroded pipes consider the material property, the pipe 

dimension, and the defect size and shape. These models can be generally categorized into three 

types: NG-18 equation and its derivations, semi-regression models based on finite element results, 

and other models defined specifically which are not in the format of the former two. 

 

Figure 1-1: Schematic view of corrosion profiles with shape idealization on the pipe wall 
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NG-18 equation assumes that failure occurs due to a stress-dependent mechanism, and it is 

derived from the expression of the hoop stress for intact pipes with considerations of the 

dimensions of the corrosion defect. The expression for the NG-18 equation contains a term, 

referred to as a bulging factor or Folias factor [12], representing the correction due to the expected 

difference in the stress distribution between a cracked plate and a cylindrical vessel. The NG-18 

equation and NG-18-based equations to calculate the burst pressure ( bP ) can be generalized as a 

function of pipe geometry (
geometryf ), material property (

flow ), corrosion shape idealization (
shapef

), and Folias factor (M) (see Eq. (1-2)). These models are summarized in Table A-1 in APPENDIX 

A. 
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 (1-2) 

Semi-regression models are basically developed based on the Barlow equation with a 

modifier representing the effect of corrosion flaws. This type of model can be generalized as Eq. 

(1-3) where the regression factor (
regressionf ) is a fitted function of corrosion dimensions and pipe 

geometries. Usually, the training data for regression is obtained from finite element models. Some 

published semi-regression models are listed in Table A-2 in APPENDIX A.  

 b geometry flow regressionP f f=  (1-3) 

CSA Z662 model [4] and CPS model [13] are two exceptions from the conventional format 

of Eqs. (1-2) and (1-3). The CSA criterion [4] incorporates the model errors to describe the pressure 

necessary to reach a plastic collapse with respect to high-grade steels and low-grade steels; the 

model error factors (e1, e2, e3, e4) were obtained by calibration against burst tests. Corroded Pipe 

Strength (CPS) model [13] uses interpolation between the burst pressures derived from a plain 

pipe ( PPP , upper limit) and a pipe with a longitudinal groove ( LGP , lower limit) using a geometric 

parameter (g). The calculation flow of the two methods is stated in APPENDIX A. 

Failure pressure models of cracked pipes are developed based on the criteria of plastic 

collapse and fracture toughness. The interaction between the two failure modes is taken into 
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account in the failure assessment diagram (FAD), which is constructed by the brittle fracture 

parameter ( rK ) and plastic collapse parameter ( rL ) as shown in Figure 1-2. The pipe is supposed 

to be safe if the state point lies below the FAD envelope. The failure pressure is the pressure 

leading to the assessment point falling on the cut-off line. This method is suggested by BS7910 

[14], API 579 [15], and R6 [16]. Equations of the NG-18 model (also known as the Battelle model) 

[17] and the algorithm built-in CorLAS application [18] consider the two failure criteria 

simultaneously but independently. The calculation procedure of the two models is given in 

APPENDIX A. 

 

 

Figure 1-2: Illustration of the FAD model 

 

Considerable studies have been conducted on the reliability assessment of pipelines based 

on the developed failure pressure models. Rafael et al. [19] conducted a thorough comparison of 

the failure criteria, metal loss acceptability, failure probability, mean time to failure, and prediction 

errors of available burst pressure prediction models of corroded pipes from academic publications 

and recognized codes. Teixeira et al. [20] developed the limit state function of burst for intact and 

corroded pipes based on experimental and numerical results conducted by Netto et al. [21], and a 

sensitivity analysis was performed with the conclusion that corrosion depth and internal pressure 

are the most important variables for the burst of pipes. Using the Monte Carlo Simulation (MSC), 
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the study offered a set of simple reliability-based evaluation tools for pipeline safety assessment. 

Hasan et al. [22][23] examined a number of code/standard-based models predicting the burst 

pressure for corroded pipes. The study found the PoF of burst models suggested by codes/standards 

significantly varies for the same defect size, and comprehensive suggestions were accordingly 

offered for industrial use.  

Bai et al. [24] proposed a fracture reliability model of dented pipes with cracks considering 

the uncertainty of random variables and model error, then the safety factor was calibrated based 

on the probabilistic study by MCS. Lee et al. [25] formulated the limit state function based on the 

stress intensity factor, and the PoF was assessed based on an X65 pipe with an external semi-

elliptical crack. Guillal et al. [26] analyzed the effect of the shape factor (the ratio between crack 

depth and length) on the reliability, in which the limit state function was established based on 

fracture toughness. The massive and comprehensive study on burst capacity of defected pipes 

contributes to the model error evaluation on well-known failure pressure prediction equations, 

such as the study on corroded pipes by Zhou et al. [27] and cracked pipes by Yan et al. [28]. The 

comparison demonstrated that RSTRENG and CorLAS are of the highest accuracy for corroded 

pipes and cracked pipes, respectively.  

Though a large amount of reliability research towards corroded and cracked pipes exists in 

the literature, the majority of studies neglected to investigate the reliability of pipelines during the 

design operation stages. To be specific, the relationship between the reliability of pipes and the 

factor indicating safety needs to be developed. These relationships would guide pipeline designers 

and operators for crucial field-related decision making. 

 

1.2.2 Pipes buried through geohazard zones related to ground movements 

Onshore pipelines are generally required to be constructed over considerably long distances. 

In many instances, pipe segments are inevitably installed through geotechnically unstable 

environments which are typically associated with unfavorable geological actions. Some specific 

geohazards, such as landslides, mining-induced subsidence, liquefaction-induced lateral 

spreading, and fault displacement, can generate permanent ground displacement (PGD), typically 
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represent credible threats to pipeline integrity [29] and are the focus of this research. 

(“geohazard(s)” hereafter denote(s) those possessing potential to induce ground movements).  

Current probabilistic studies on pipes buried across geohazard zones are mostly related to 

risk analysis. Risk is generally defined as the product of the probability of occurrence of an event 

( eventP )and the consequences of the event ( eventC ) (see Eq. (1-4)). For a particular case where a 

pipeline is buried across ground movement-related geohazard zones, the risk equation is often 

subdivided to incorporate several more terms. Usually, the probability of pipe failure due to 

geohazard is related to the annual probability of the geohazard occurring (
geohazardP ), a conditional 

probability to assess the likelihood frequency of the geohazard impacting the pipeline in space (

 impact pipeS ), and a vulnerability factor to assess the likelihood of the pipeline fail once the geohazard 

has touched the pipeline (
pipeV ). Thus, the risk associated with pipeline failure from a geohazard 

can be represented by Eq. (1-5) [30].  

 event eventRisk P C=  (1-4) 

   geohazard impact pipe pipe pipe failureRisk P S V C=  (1-5) 

Vulnerability factor (
pipeV ) is the likelihood of pipeline failure given that ground movement 

occurs and induces a strain on the pipeline. Estimation of the vulnerability factor in the risk 

analysis is frequently processed in a simplified manner based on expert judgement supported by 

statistics or empirical probabilities [29][30][31][32]. However, the results are subjected to 

substantial uncertainties and are less rigorous than the physical modelling method. The likelihood 

of pipe failure given the specific ground movement condition, which can be understood as the PoF 

of the pipe subjected to given magnitudes of ground movement, can be estimated more accurately 

through reliability-based analysis by considering the uncertainties of the influencing factors of 

both the pipe resistance and demand. To conduct the reliability assessment, the strain demand 

caused by ground movements is essential for developing the limit state function. To date, three 

major approaches have been developed to estimate the behavior of pipes subjected to ground 

movements. 
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1.2.2.1 Analytical method 

Based on cable theory, Newmark and Hall [33] pioneered the study of pipes subjected to 

ground movements by introducing an analytical method to solve the pipe’s response to a tectonic 

fault. The soil slip friction on the pipe was directly related to the earth pressure, and the passive 

soil resistance was not considered. The pipeline elongation was investigated through the small 

deflection theory. This study was further refined by Kennedy et al. [34] where the uniform passive 

soil pressure was considered and the large deflection theory was applied to the pipe segment 

immediately adjacent to the fault. This model was developed for pipes subjected to large fault 

displacement in which the pipe section was entirely yielded so it behaved essentially like a flexible 

cable deforming into a single constant curvature approaching asymptotically to the undeformed 

portion of the pipeline as shown in Figure 1-3. At the point of inflection B, the axial tensile force 

was only considered for equilibrium. Wang and Yeh [35][36] proposed a beam-based model where 

the pipe was partitioned into four segments as depicted in Figure 1-4: two in the high curvature 

zone on both sides of the fault trace (AB and AD) which were assumed as circular arcs; and another 

two at some distance away from the fault zone (BC and DE) which were modeled as beams-on-

elastic-foundation. The flexural rigidity (bending stiffness), omitted in Kennedy et al. [34], was 

taken into account in equilibrium equations, which enables the model to be applicable to 

compression-dominated strike-slip faults.  
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Figure 1-3: Schematic diagram of deformation of the buried pipe subjected to fault displacement 

in Kennedy et al. [34] 

 

 

Figure 1-4: Schematic diagram of deformation of the buried pipe subjected to strike-slip fault 

displacement in Wang and Yeh [35][36] 

 

Analytical studies in recent decades is devoted to improving the model accuracy on the basis 

of the developed models. Based on the existing analytical methods [34][35][36], Karamitros et al 

[37][38] introduced a number of refinements, i.e., analyzing the curved segment with the aid of 

elastic-beam theory to locate the critical combination of axial and bending strains, considering the 

actual stress distribution on the pipe cross-section to account for the effect of curvature on axial 

strains. This model was demonstrated to possess fair accuracy for a wide range of applications in 

practice after comparison with a series of finite element models. Subsequent studies, Trifonov and 

Cherniy [39][40], optimized the calculation to different extents based on the refinement of the pipe 

modeling, inspection of the longitudinal deformation effects, and consideration of the pressure and 

temperature variation. More recently, Vazouras et al. [41] and Sarvanis et al [42] proposed a 

closed-form solution to pipes’ strain subjected to ground movements based on assuming the shape 

function for the deformed pipeline shape. 

Literature review manifests that most of the published analytical models are established 

based on the tectonic fault movements, that is, the observation on the pipe is around the intersection 

between the pipe and the fault trace, where two pipe segments are simulated and the two ends are 
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anchored. As for some other geohazards, typically such like landslides which are one of the most 

geohazard concerns in North America [31][32] and two ground discontinuities should be 

considered, three pipe segments are required for the analysis thus the analytical algorithm designed 

for tectonic faults cannot be employed.  

O’Rourke [43] developed an analytical procedure to approximate the adequacy of the pipe 

restricted to transverse ground movement induced by landslides. The magnitude of PGD (δ) and 

the length of PGD area (W) were key geotechnical parameters for pipes’ response (see Figure 1-5). 

With a larger length of PGD area, the pipeline was characterized as a cable, called flexure pipe, 

where the pipe displacement closely followed the ground movement. Otherwise, the pipeline was 

modelled as a fixed-fixed beam, named stiff pipe, where the soil would flow over and under the 

pipeline. The critical length of PGD of the two pipe models was investigated according to the local 

buckling failure. The critical length of PGD area for flexible pipe (pipe moves with the landslide) 

and stiff pipe (soil flows over and under the pipe) were discriminated based upon local buckling 

stress capacity. Taking after the bending prediction model from O’Rourke [43], Liu et al. [44] 

developed an analytical model to study the elastic pipe response to transverse PGD in which the 

resistance of pipe due to flexural (beam-like) and axial (cable-like) behaviors was considered in 

parallel. 

 

 

(a) Pipeline (b) Abrupt ground movement (c) Distributed ground movement 

Figure 1-5: Pipeline subject to transverse ground movement 
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Similarly, the idea in [43] was employed to investigate the response of steel pipes subjected 

to longitudinal ground movements induced by landslides [45]. Two modes, i.e., PGD length 

control and PGD displacement control, were respectively studied according to the interaction 

between the magnitude of PGD (δ) and the length of PGD margin (W). With a small length of PGD 

margin, the pipe displacement was substantially smaller than the magnitude of PGD, which caused 

the “noncompliant pipe” that behaved more or less like a beam subject to soil-structure interaction 

forces due to soil flow. Otherwise, the pipe displacement was essentially identical to the magnitude 

of PGD, that is, the pipe conformed to the imposed soil deformation, which was called the 

“compliant pipe”. 

Based on the assumption of Euler-Bernoulli beam, Yoosef-Ghodsi et al. [46] proposed an 

analytical method for estimating the pipes’ response to longitudinal ground movements induced 

by slope in which the effects of internal pressure and temperature change were concerned. The 

stress-strain relationship of the pipe material was considered bilinear, and the inelastic pipe 

behavior was approximated based on the flow rule in plasticity. Recently, Zahid et al. [47] 

developed a simplified analytical formulation for axial strain calculation of pipes withstanding the 

longitudinal ground movements, whereas it only focused on the elastic behavior of the pipe. 

The existing analytical models provide simplified methodical design approaches for solving 

the pipes’ response to methods under landslides. However, the substantial assumptions sacrificed 

the accuracy of predictions and confined the methods to a tight applicable range. The ignorance of 

inelasticity of the pipe material in the most current analytical methods would lead to 

unconservative strain demands. Besides, in most engineering practice, the ground movement does 

not always happen parallel to the pipe or perpendicular to the pipe, which restraints the application 

of the models in practice. 

 

1.2.2.2 Numerical method 

With the rapid advancement of computational technologies, the finite element method 

(FEM) has been a widely adopted numerical tool for pipeline analysis, e.g., using the general-
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purpose commercial finite element software Abaqus and Ansys. Numerical modelling of the pipe’s 

performance under the ground movement has experienced a spike in recent decades. In the 

simulation of a pipe subjected to ground displacements, three critical issues arise: element 

selection for the pipe, constitutive modeling of soil, and representation of pipe-soil interactions. 

For instance, Takada et al. [48] used shell elements to simulate the pipe segment near the fault 

plane for accurately capturing the flexural behavior under fault displacement, while they used 

beam elements to model the pipe segment to obtain the axial elongation. This model is sketched 

in Figure 1-6 and the fault displacement was applied as a static loading at the pipe-fault crossing 

point in the direction of the fault (no consideration of the pipe-soil interaction). Similarly, Liu et 

al. [49] proposed the pipe-elbow hybrid model to simulate pipes’ behavior under compression and 

bending at strike-slip faults. Pipe elements were used to model the pipe segment far away from the 

fault trace; elbow elements, essentially shell elements capable of accounting for the ovality of the 

pipe cross-section, were employed to simulate the pipe segment near the fault trace. The pipe-soil 

interaction was simulated by soil springs and the fault displacement was exerted on the soil nodes 

on the right side of the model as illustrated in Figure 1-7. Liu et al. [50][51] modified Takada’s 

model by replacing the beam element with an equivalent boundary condition which was essentially 

a bilinear soil spring element as shown in Figure 1-8. The property of the equivalent boundary 

condition (soil spring) was developed based on the assumption that the pipe segment far away 

from the fault trace was elastic. Vazouras et al. [52] dealt with the soil by using continuous solid 

elements and the pipe-soil interaction was modelled by the contact surface approach. The pipe was 

simulated by shell elements as shown in Figure 1-9. 

 

 

Figure 1-6: Beam-shell hybrid finite element model used in Takada et al. [48] 
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Figure 1-7: Pipe-elbow hybrid model subjected to a compression-dominated strike-slip fault in 

Liu et al. [49] 

 

 

Figure 1-8: Shell element model with equilibrium boundary conditions in Liu et al. [50][51] 
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Figure 1-9: Finite element model of the (a) soil formulation, (b) soil cross-section, and (c) steel 

pipe in Vazouras et al. [52] 

 

Karamanos et al. [53] generalized the existing finite element models into two levels from the 

perspective of accuracy for engineering practice: level 1 denoted to the one-dimensional beam 

(pipe)-type finite element models, and the pipe-soil interaction was represented by soil 

recommended by ALA guideline [54], which was adequate for regular design purposes; level 2 

was the three-dimensional shell-type finite element models, and the surrounding soil was modeled 

by solid elements, which offered a rigorous numerical tool but requires more computational 

expertise. Vasseghi et al. [55] conducted the failure analysis of a natural gas pipeline undergoing 

the ground movements induced by landslides based on the practice of level 1 model using Ansys. 

For a more accurate inspection of pipeline-soil interaction behavior, Liu et al. [56] examined the 

mechanism of the natural gas pipeline under the deflection due to mud-rock flow using the level 2 

model.  

Some new prediction models have been established based on FEM-derived results in recent 

years. Shokouhi et al. [57] proposed a FEM-ANN hybrid approach for the seismic strain of high-

density polyethylene pipelines subjected to an active fault. The artificial neural network (ANN) 

trained by FEM-based strain gave a fairly good prediction, which made the strain prediction much 
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easier. Liu et al. [49] developed a regression equation to estimate the strain demand of X80 pipes 

under fault displacements based on finite element results. For the sake of extending the predictive 

investigation, Liu et al. [58] further proposed a comprehensive model using the ANN in which the 

training database was collected based on systematic parametric calculations in Abaqus. Similarly, 

Xie et al. [59] made use of the Support Vector Machine (SVM) to surrogate the ANN in Liu et al. 

[58], which demonstrated a great agreement with the actual results. 

The finite element model is a powerful way to achieve accurate pipes’ reaction to ground 

movements by using the shell element to simulate the pipe segment under large deformation. While 

it is a challenge of time when the pipeline is long and fine mesh is required. This makes the 

reliability calculation prohibitively expensive by employing MCS in which a large number of 

simulations is required. Efficiency of the strain prediction model is a significant consideration for 

reliability assessment. 

 

1.2.2.3 Experimental method 

Notable experimental research studies on the effects of ground movements on buried pipes 

have been reported in the literature. However, compared with the above-mentioned approaches, 

experimental verification of the predicted behavior of buried pipelines subjected to ground 

movements is, at best, sparse. It is unrealistic to employ experimental approaches in reliability 

calculation. Instead, the test data is the most effective proof to benchmark or validate the 

applicability of analytical and numerical assumptions. 

O’Rourke et al. [60] firstly conducted a small-scale experiment using the centrifuge machine 

at Rensselaer Polytechnic Institute. The axial strain and bending strain along the pipe at different 

fault offsets were collected. Ha et al. [61][62] extended this experiment by using an upgraded split-

box container (used to simulate the fault displacement) to examine the differences in behavior of 

buried high-density polyethylene pipelines subjected to normal and strike-slip faults. The 

experimental equipment is shown in Figure 1-10. Demofonti et al. [63] proposed an elaborate 

procedure for testing the strain of pipes under horizontal ground-induced deformation based on a 

full-scale experiment system in Perdasdefogu (Sadinia, Italy) as shown in Figure 1-11, which 
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provided a better understanding of pipe-soil interaction and calibration of the numerical models. 

Feng et al. [64] conducted a field experiment (full-scaled model) to monitor the stress and strain 

on the pipeline against the landslide deformation. The model test followed practical pipeline 

operations, actual deformation, and failure of the landslide. The full view of the model is displayed 

in Figure 1-12. 

 

 

Figure 1-10: Experimental equipment in Ha et al. [62] 

 

 

(a) Axial pull-out test (b) Transverse pipe-soil interaction test 

Figure 1-11: Full-scale test facility in Demofonti et al. [63] 
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Figure 1-12: Full view of the landslide and pipeline model in Feng et al. [64] 

 

Reliability assessment on pipes subjected to ground movements is limited. Zhou [65] 

analyzed the pressurized pipes under the ground displacement induced by slope instability, and the 

strain demand is estimated based on the model proposed by Yoosef-Ghodsi et al. [46] which was 

only applicable to pipes deforming in the longitudinal direction. And the analytical model [46] was 

also employed in the semi-quantitative method proposed by Sen et al. [66] for assessing the 

reliability of the pipes buried under slope areas with the potential of generating ground movement. 

Zheng et al. [67] assessed the reliability of the pipeline buried across Bo-A fault in China where 

the strain demand in the limit state function was represented by the trained BP neural network as 

developed by Liu et al. [58]. Nevertheless, the collection of strain demand datasets was time-

consuming based on a large number of calculations by Abaqus.  

 

1.3 Statement of the Problem 

Internal pressure and ground movements are two significant representatives of force-

controlled and displacement-controlled pipeline loadings respectively. In the case of pipes under 

internal pressure, the literature review presents a lack of systematic reliability evaluation of 

pipelines in the span of lifecycle, starting from the pipe design, pre-commission hydrostatic tests, 

to operation management (e.g., defect scenario-based integrity assessment). Furthermore, existing 

studies rarely link the PoF to all these factors (e.g., design factors, hydrostatic test pressure factors, 

safety factors) used in the design code. In addition, MCS has been mostly used but it is inefficient 

or inaccurate when the PoF is significantly low. Another widely used method, the first-order 
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reliability method (FORM), is efficient but the accuracy highly depends on the problems. A more 

advanced reliability calculation technique should be applied in practice in pipeline engineering, 

e.g., the method proposed by Rashki [68]. 

With regards to pipes subjected to ground movements induced by geohazards, extensive 

research effort has been made on deterministic analysis by strain prediction modelling; relevant 

probabilistic analysis is not commonly available. To the author’s knowledge, there is currently a 

gap in pipeline integrity literature in terms of available methods for reliability assessment which 

are applicable to field practice for pipes withstanding ground displacements. For the reliability-

based assessment, a brand-new strain demand prediction model is required as the two conventional 

approaches, analytical method and FEM-based numerical simulation, are unsuitable for reliability 

analysis due to the inherent restrictive assumptions of the analytical solutions and the inefficient 

computation of finite element models. 

 

1.4 Research objectives and methodologies 

The overall objective of this research is to conduct a comprehensive reliability investigation 

of pipes subjected to internal pressure (force-controlled loading) and ground movements 

(displacement-controlled loading), which aims to fill the gap in the research and provide a practical 

reference to the pipeline industry. To this end, the research work is mainly coordinated with the 

following two sub-objectives.  

Objective 1: To investigate the PoF of pipes subjected to internal pressure in the stage of design, 

hydrostatic test, and operation based on CSA Z662:19. 

a) Investigate the relationship between the design factor and the corresponding PoF of intact 

pipes under internal pressure for use in the design stage. 

b) Evaluate the PoF at different values of hydrostatic test pressure factor based upon intact 

pipes for use in the pre-commissioning stage (hydrostatic test). 

c) Investigate the relationship between the safety factor and the corresponding PoF of 

defected pipes under internal pressure for use in the operation stage. 
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Objective 2: To develop a reliability assessment method for pipes buried across geohazard zones 

prone to ground movements. 

a) Establish a model based on moderate deformation coupled Euler-Bernoulli beam for 

predicting the strain demand of pipelines subjected to ground movement via the finite 

difference method. 

b) Propose a highly efficient calculation scheme for the reliability assessment of pipelines 

subjected to a given ground movement. 

c) Develop an online platform for response analysis and reliability calculation for industry 

use. 

d) Propose a method to estimate the cumulative PoF of pipelines buried across the 

geohazard-prone zones considering the probability of ground movement initiation.  

 

1.5 Organization of Thesis 

Details of this research have been thoroughly documented in the form of this thesis, 

consisting of eight chapters as briefly outlined as follows. 

Chapter 1 provides the background of this research and highlights the research gaps through 

an overall literature review. Potential difficulties of the research are presented, and the 

corresponding objective and methodologies are outlined. 

Chapter 2 reveals the relationship between the design factor (or safety factor) used in the 

deterministic method and PoFs adopted in reliability-based analysis for intact pipes in the design 

and hydrostatic stages, as well as the defected pipes in operation. Limit state functions are 

established based on the instruction in CSA Z662:19. An advanced reliability method is practiced 

for obtaining the PoFs.  

Chapter 3 proposes a novel model to estimate the strain demand of the pipe under ground 

movements based on the finite difference method. This chapter restrains the attention on elastic 

behavior of pipes under ground movements. Comparison between the results derived by the 

proposed method and the benchmark FEM is conducted. 

Chapter 4 extends the method in Chapter 3 by considering the inelastic behavior of the pipe. 

The mechanical property of the material is idealized as bilinear curves, and the explicit formulas 
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of axial force and bending moment, which are required for the finite difference method, are 

deducted. The proposed method is also applied to predict the pipes response to tectonic faults. 

Comparisons among the existing analytical models, finite element models, and the developed finite 

difference model are performed.  

Chapter 5 implements the reliability-based calculation based on the established model in 

Chapter 4. Some computational optimization methods are utilized to equip the code to improve 

the calculation efficiency. The reliability results are calculated based on MCS and the advanced 

reliability method. 

Chapter 6 establishes two calculation tools for assessing the integrity of pipe under ground 

movements respectively in deterministic and probabilistic ways based on a website. The programs 

developed in Chapter 4 and Chapter 5 are employed for developing the tools. Workability of the 

tools is tested using study cases.  

Chapter 7 further develops the predictive model in Chapter 4 by considering the effects of 

internal pressure and temperature change into the finite difference model. The formula of 

calculating cumulative PoFs of pipes buried across geohazard-prone zones are proposed by taking 

into consideration the probability of ground movement initiation.  

Chapter 8 summarizes the research work and states the conclusions, contributions, and 

highlights. The limitations of the current work and recommendations for future work are provided.  
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CHAPTER 2: RELIABILITY ANALYSIS OF INTACT AND DEFECTED PIPES FOR 

INTERNAL PRESSURE RELATED LIMIT STATES SPECIFIED IN 

CSA Z622:19 

 

This chapter is derived from the published paper: 

Q. Zheng, A. K. Abdelmoety, Y. Li, M. Kainat, N. Yoosef-Ghodsi, S. Adeeb, 2021. Reliability 

analysis of intact and defected pipes for internal pressure related limit states specified in CSA Z622: 

19, Int. J. Press. Vessels Pip. 192, 104411. 

 

Abstract 

The importance of reliability-based design and assessment has been widely recognized by 

the pipeline industry. Thus, this paper aims at providing comprehensive reliability assessment of 

intact and defected pipes subjected to internal pressure based on the CSA Z662:19. Various limit 

states related the pipe design, pre-commission hydrostatic testing, and operation are studied. 

Specifically, both corrosion and crack defects are considered for pipeline integrity assessment 

based on different defect scenarios. Reliability results, or probabilities of failure, are reported with 

respect to design factors, hydrostatic test pressure factors, and safety factors, which can be used in 

designing new pipes, determining the applied pressure in hydrostatic tests, and operation pressure 

control of defected pipes, respectively. The effects of pipe grade, pipe dimensions (i.e., diameter 

and wall thickness), corrosion or crack defect sizes (e.g., length and depth), and internal pressure 

on PoFs for different limit states are also investigated. 

Keywords: intact pipe; crack; corrosion; internal pressure; reliability analysis; CSA Z662:19 
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List of Symbols 

A = Average defect depth in CorLas 

Aeff = Effective flaw area 

A0 = Reference area 

D = Pipe diameter 

Dn = Nominal dimeter 

E = Young’s modulus 

F = Design factor 

Fsf = Free surface factor 

F3 = Shih-Hutchinson solution 

I = Failure indicating function 

Jc = Critical J-integral 

K = Hydrostatic test pressure factor 

L = Defect total length 

M = Folias (bulging) factor 

N = Total number of samples in Monte Carlo Simulation 

P = Internal pressure 

Pbi = Burst pressure of intact pipes 

Pi = Calculated pressure resistance in Kiefner & Shannon model 

Pi = Calculated pressure resistance of intact pipes in Kiefner & Shannon model 

Pf(corrosion) = Failure pressure of corroded pipes 

Pf(flow) = Failure pressure based on flow stress in CorLas 

Pf(toughness) = Failure pressure based on toughness in CorLas 

Pr = Pressure resistance 

Qf = Shape factor 

RD = Dimensionless variable of diameter 

Rp = Dimensionless variable of internal pressure 

Rt = Dimensionless variable of wall thickness 

Rσt = Dimensionless variable of tensile strength 

Rσy = Dimensionless variable of yield strength 
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Wi = Weight of the ith sample vector 

X = Basic random variable vector in Weighted Monte Carlo Simulation 

Xi = Vector composed by the generated basic random variable Xi 

Xl = The vector composed by lower bounds of each basic random variable 

Xu = The vector composed by upper bounds of each basic random variable 

Xj = The jth basic random variable in Weighted Monte Carlo Simulation 

Xjl = The lower bound of variable Xj in Weighted Monte Carlo Simulation 

Xju = The upper bound of variable Xj in Weighted Monte Carlo Simulation 

c = Model error factor accounting for flow stress definition in burst of intact pipes 

d = Defect depth 

e1, e2, e3, e4 = Model error factors 

fij = The value of probability density function for random variable xij 

fj = The value of probability density function for random variable Xj 

g1 = Limit state function of yielding of defect-free pipes 

g2
operation = Limit state function of burst of defect-free pipes during operation 

g2
hydrotest = Limit state function of burst of defect-free pipes during hydrostatic test 

g3 = Limit state function of defected pipes 

g3
corrosion = Limit state function of burst of corroded pipes 

g3
crack = Limit state function of burst of cracked pipes 

n = Total number of basic random variables 

ne = Strain hardening exponent 

nf = Number of samples fall into the failure domain in sampling method 

t = Wall thickness of the pipe 

tn = Nominal wall thickness 

x = Random vector of random variables 

xi = Component of vector x, the ith random variable in a general format 

xij = The jth component in the random vector Xi 

y = Indicator of D/2t 

σ = Solved stress in the equation of critical J-integra 

σf = Failure stress 

σh = Hoop stress 
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σfl = Flow stress 

σn = Failure normal stress 

σt = Tensile strength 

σy = Yield strength 

 

Glossary of Terms 

CoV = Coefficient of Variation 

CSA = Canadian Standard Association 

CVN = Charpy Impact Energy 

FORM = First-Order Reliability Method 

LLS = Leakage Limit State 

MCS = Monte Carlo Simulation 

MAP = Maximum Annual Pressure 

MOP = Maximum Operating Pressure 

PDF = Probability Density Function 

PoF = Probability of Failure 

SF = Safety Factor 

SLS = Serviceability Limit State 

SMYS = Specified Minimum Yield Strength 

SMTS = Specified Minimum Tensile Strength 

 Strength ULS = Ultimate Limit State 

WMCS = Weighted Monte Carlo Simulation 

 

2.1 Introduction 

Pipelines are the most widely used means for transmitting oil and gas due to low cost and 

high efficiency. However, the safety and integrity of pipelines have received increasing attention 

in recent years. Among numerous threats that affect the safety of pipelines, internal pressure is the 

most common and prominent one in the pipeline operational lifespan [1]. As described in the code 

for oil and gas pipeline system published by the Canadian Standard Association (referred to as 
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CSA Z662:19 hereafter), internal pressure plays a significant role in the lifecycle of pipelines. In 

the design and integrity assessment stages, internal pressure can serve as an independent or a 

companion load in various limit states, and several limit states are internal pressure-related. For 

example, in the design of new pipes, the maximum operating pressure (MOP) is determined based 

on pipes’ yielding strength and a design factor, which aims to achieve a certain safety margin. 

Before putting pipes into commission, a hydrostatic test needs to be performed for checking the 

strength and leakage with the intended minimum pressure defined based on a specific factor K 

multiplied by the MOP. Similarly, in integrity assessment during the operational period of in-

service pipes, safety factors are utilized to adjust the operating pressure to accommodate the 

reduced capacity due to defects in pipes. All these decision-making processes involve certain 

levels of conservatism or risk due to the use of various factors in a deterministic format to 

implicitly account for various sources of uncertainties. 

In contrast to deterministic analysis, reliability assessment is a probabilistic approach for 

safety and integrity evaluation of structures. It explicitly accounts for uncertainties inherent the 

real-world problems, so that rational decision-making can be achieved based on an estimate of the 

probability of failure (i.e., the occurrence of undesired events). As such, in the CSA Z662:19, 

reliability-based design and assessment is included as an informative appendix (Annex O). In the 

literature, extensive endeavors have been devoted to the probabilistic analysis of pipelines. Rafael 

et al. [2] conducted a thorough comparison on the reliability of corroded pipes based on available 

models from academic publications and recognized codes, and the sensitivity of each model with 

the corrosion defect was evaluated. Teixeira et al. [3] developed the limit state function of burst 

for intact and corroded pipes based on experimental and numerical results conducted by Netto et 

al. [4], and the sensitivity analysis was performed with the conclusion that corrosion depth and 

internal pressure are the most important variables for the burst of pipes. Similarly, based on the 

burst pressure formulation proposed by Netto et al. [4], Wang et al. [5] established the burst 

pressure prediction model of corroded pipes by regression analysis on the finite element-based 

results and experimental data. Using the Monte Carlo Simulation (MSC), the study offered a set 

of simple reliability-based evaluation tools for pipeline safety assessment. Hasan et al. [6][7] 

examined a number of code/standard-based models predicting the burst pressure for corroded 
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pipes. The study found the probability of failure (PoF) of burst models suggested by 

codes/standards significantly varies for the same defect size, and comprehensive suggestions were 

accordingly offered for industrial use. 

As for cracked pipes, Bai et al. [8] proposed a fracture reliability model of dented pipes with 

cracks considering the uncertainty of random variables and model error, then the safety factor was 

calibrated based on probabilistic study by MCS. Lee et al. [9] formulated the limit state function 

based on the stress intensity factor, and the PoF was assessed based on an X65 pipe with an external 

semi-elliptical crack. Guillal et al. [10] conducted the analysis on the effect of the shape factor (the 

ratio between crack depth and length) on the reliability, in which the limit state function was 

established based on fracture toughness. The massive and comprehensive study on burst capacity 

of defected pipes contributes to the model error evaluation on well-known failure pressure 

prediction equations, such as the study on corroded pipes by Zhou. et al. [11] and cracked pipes 

by Yan et al. [12]. The comparison demonstrated that RSTRENG and CorLAS are of highest 

accuracy for corroded pipes and cracked pipes, respectively.  

Although these studies contributed to the development of reliability-based assessment of 

pipelines to various degrees, there is a lack of a comprehensive reliability evaluation of pipelines 

from the perspective of pipeline lifecycle, starting from the pipe design, pre-commission 

hydrostatic tests, to operation management (e.g., defect scenario-based integrity assessment). 

Furthermore, existing studies rarely link the probability of failure to all these factors (e.g., design 

factors, hydrostatic test pressure factors, safety factors) used in the design code. Note that in these 

studies [2][3][4][5][6][7][9][10], Monte Carlo Simulation (MCS) was mostly used for its 

simplicity but it is inefficient or inaccurate when the probability of failure is significantly low. 

Another widely used method, the first order reliability method (FORM) [3][4][6][7][9][10], is 

efficient but the accuracy highly depends on the problems. 

Recognizing the importance of reliability assessment, this study aims to provide a 

comprehensive reliability analysis for pipelines focusing on internal pressure related limit states 

as specified by CSA Z662:19, covering the pipe design, hydrostatic testing, and defect scenario-

based integrity assessment. Reliability results, or probabilities of failure, are presented with respect 

to design factors, hydrostatic test pressure factors, and safety factors used in designing new pipes, 
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pre-commission test, and operation pressure control of defected pipes, respectively. Results of this 

paper can be directly referred to for safety control of pipelines during its life cycle, which is of 

significant value for industrial use. It is worth noting that an innovative reliability method, 

Weighted Monte Carlo Simulation (WMCS), is utilized to facilitate reliability calculation for its 

high efficiency particularly for reliable estimate of low probabilities of failure. The workability of 

WMCS can be tested by the engineering practice in this study, and its simplicity and robustness 

make it worth to be applied by industry. 

 

2.2 Weighted Monte Carlo Simulation (WMCS) 

Generally, PoF can be calculated by various reliability methods, including the approximate 

analytical method (e.g., FORM) and stochastic sampling methods (e.g., MCS) with different levels 

of sophistication. However, results based on FORM can be inaccurate when the limit state function 

is nonlinear or when the distribution is significantly different from Gaussian. MCS can give 

sufficiently accurate results by sampling the design space based on the full probabilistic 

characterization of random variables. However, this method is inefficient when it comes to low 

PoF problems since a large number of samples are required to achieve a relatively accurate 

estimate of the PoF. This is because the PoF is estimated as the ratio between the number of 

samples in the failure domain (
fn ) and the total number of samples ( N ) in MCS as shown in Eq. 

(2-1). 

 PoF
fn

N
=  (2-1) 

To ensure reliable estimation of the probability of failure for pipes, this paper chose a readily 

used and efficient reliability method instead. This method, denoted as WMCS hereafter, was 

inspired by the traditional MCS. It was proposed by introducing weight indices to each sample and 

validated well through various benchmark problems [13]. The main idea behind WMCS is to 

replace the number of simulations in the MCS (see Eq. (2-1)) by a weighted sum, as expressed in 

Eq. (2-2). 
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m
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W
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=
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



x x

x
 (2-2) 

where the weight of the ith sample ix  (i = 1, 2, …, m and m is the sample size) ( iW ) is defined as 

the product of probabilities density function (PDFs) evaluated at the sampled value for each 

random variable; the indicator function ( ( )iI x ) is equal to 1 if ix falls in the failure domain 

characterized by ( ) 0ig x , and 0 otherwise. The theoretical aspect of WMCS was detailed in [13], 

but the procedure utilized in this paper is presented as follows. 

Step 1: stipulating an appropriate range of each basic random variable 

MSC can be employed to simply get an appropriate range for basic variables. The minimum 

and maximum values for each variable 
jX  (j = 1, 2, …, n where n is the number of basic random 

variables) are regarded as the appropriate lower bound 
jlX  and upper bound 

juX . Thus, the range 

of basic variable vector X  can be expressed as  ,  
l u

X X X , where 1 2[ , , , ]nX X X=
l l l l

X  and 

1 2[ , , , ]u u u nuX X X=X . 

Step 2: generating samples of basic random variables 

Within the range obtained in Step 1, random samples for each basic variable (e.g., 
jX ) are 

generated through a uniform random variable generator. 

Step 3: assigning weights to the generated samples 

For each sample of the random vector, ( )1 2, , ,i i i inx x x=X , the value of the PDF for 

random variable 
jX , ( )1,2, ,jf j n=  is evaluated at ( )1,2, ,ijx j n= , yielding

( ) ( ), 1,2, ,ij j ijf f x j n= = . The weight of the sample iX can then be calculated as the product of 

( )1,2, ,ijf j n= , see Eq. (2-3). 

   

1

, 1,2, , ,   1,2, ,
n

i ij

j

W f i m j n
=

= = =  (2-3) 

Step 4: identifying samples in safety or failure domains 
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Plugging every sample ( )1 2, , ,i i i inx x x=X into the limit state function, Eq. (2-4) can be 

used to evaluate the indicator function: 1 for samples located in the failure domain and 0 for those 

that fall in the safe domain (g > 0). 

 ( )
( )

( )

1,    0

0,    0

i

i

i

g
I

g


= 



X
X

X
 (2-4) 

Step 5: computing PoF 

PoF can be obtained based on Eq. (2-2). 

 

2.3 Internal pressure-related limit states for pipelines in CSA Z662:19 

Limit states, which are used to define the undesirable events, shall be classified into ultimate 

(ULS), leakage (LLS), and serviceability (SLS) limit states for pipes, depending on the loss of 

containment as per CSA Z662:19. The ULS refers to a loss of containment that represents a safety 

hazard; the LLS is associated with limited loss of containment that results in a limited potential for 

safety or environmental consequences; and finally, the SLS is related to a deviation of the design 

or service requirements of the pipeline without producing any loss of containment. 

In the case of internal pressure, the yielding (belonging to SLS) and burst (belonging to ULS) 

are two main limit states of primary concerns for design and integrity assessment of pipelines. The 

yielding limit state is the criterion for new pipeline design. The burst limit state is used as a 

criterion in pipes’ hydrostatic test for newly designed pipes and integrity assessment for defected 

pipes with a given defect scenario. The burst limit state is frequently considered in the operation 

for integrity management, which suggests that the operating pressure should be temporarily turned 

down in compliance with the pressure capacity decreased by defects to provide an additional safety 

margin [1][14]. As such, all these limit states will be considered in this paper by relating the PoFs 

with various deterministic factors as mentioned earlier.  
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2.4 Reliability analysis of intact pipes 

In this paper, different pipe grades are considered, including low-strength types (X42, X52), 

mid-strength types (X60, X65), and high-strength types (X70, X80). Their corresponding material 

properties, such as specified minimum yield strength (SMYS), specified minimum tensile strength 

(SMTS), and the yield-to-tensile ratio (Y/T = SMYS/SMTS), are provided in Table 2-1 as per 

prescribed values in API 5L-2018 [15]. 

 

Table 2-1: Specified material properties for each steel grade for pipes 

Pipe grade SMYS (MPa) SMTS (MPa) Y/T 

Low-strength X42 290 414 0.700 

X52 359 455 0.788 

Mid-strength X60 414 517 0.800 

X65 448 531 0.844 

High-strength X70 483 565 0.854 

X80 552 621 0.899 

 

2.4.1 Serviceability limit state (SLS): yielding 

Stress-based pipe design for serviceability is achieved by limiting the circumferential stress, 

or hoop stress ( h ) induced by internal pressure (Figure 2-1), to be less than the pipe yield strength 

stress (
y ). Thus, the limit state function ( 1g ) can be formulated based on Barlow’s equation as 

Eq. (2-5). 

 
1

2 yt
g P

D


= −  (2-5) 
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Figure 2-1: Hoop stress for intact pipes due to internal pressure 

 

The internal pressure (P) is considered as the maximum annual pressure (MAP) in this paper. In 

reliability analysis presented later to determine the probability of yielding, the uncertainty in 
y , 

D , t , and P are characterized by dimensionless random variables 
y

R , DR , tR , and 
pR , 

respectively (see Table 2-2). As stipulated by CSA Z662:19, the MOP can be calculated based on 

the nominal values of pipe diameter ( nD ) and wall thickness ( nt ), SMYS , and the design factor 

(F), according to Eq. (2-6). 

 
2 SMYS

MOP n

n

t
F

D
=  (2-6) 

The aforementioned random variables are probabilistically characterized with the distribution type, 

the mean value, the coefficient of variation (CoV) as summarized in Table 2-2. Note that all 

random variables are assumed to be statistically independent and their statistics are primarily based 

on the guideline from CSA Z662:19.  

 

Table 2-2: Probabilistic characteristics for pipe geometry, material properties, and internal 

pressure 

Variable Description Distribution Mean CoV Source 
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DR  Dimensionless of pipe 

diameter, nD D  
Normal 1.00 0.0006 

Zimmerman et 

al. [16] 

tR  Dimensionless of wall 

thickness, nt t  
Normal 1.01 0.01 

Zimmerman et 

al. [16] 

y
R  Dimensionless of yield 

strength, SMYSy   
Normal 1.10 0.036 Jiao et al. [17] 

t
R  Dimensionless of 

tensile strength, 

SMTSt   

Normal 1.12 0.035 Jiao et al. [17] 

pR  Dimensionless of 

internal pressure, 

MAP/MOP 

Gumbel 1.07 0.02 Jiao et al. [17] 

 

Using the dimensionless random variables introduced, the limit state function expressed in Eq. 

(2-5) can be rewritten readily as Eq. (2-7). 

 1

2
2

yt

p

D

R R
g F R

R


= −  (2-7) 

As observed in Eq. (2-7), the limit state function is independent of the nominal or specified values 

for yield strength, internal pressure, pipe diameter, and wall thickness. By contrast, only the 

dimensionless variables are involved, which implies risk-consistent design since the reliability 

level achieved in the design will be independent of the pipe grade and pipe dimensions. As such, 

the safety level is determined by the design factor (F), which is used in the design of new pipes. 

The safety margin is well controlled by design factors, and a larger design factor leads to a 

narrower safety margin due to higher MOP according to Eq. (2-7). 

PoFs with respect to various design factors are presented in Figure 2-2. The PoF increases 

exponentially with the increase of (F). For example, the PoF (i.e., probability of yielding) is 

2.81×10-7 at F=0.8 and 1.13×10-11 for F=0.72. Note these two design factors are used in class 

location 1 for division 1 and 2, respectively, as per CSA Z662:19. 
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Figure 2-2: PoFs for the yielding limit state of intact pipes designed using different design 

factors 

 

2.4.2 Ultimate limit state (ULS): burst 

For safety concerns, an ULS, such as plastic collapse, needs to be checked to prevent 

overpressure. As per CSA Z662, plastic collapse is the event of the internal pressure reaching the 

pressure capacity or burst pressure of the intact pipe ( biP ). It can occur during the operation of 

pipes and a hydrostatic test, which is required by different codes of practice before a pipe is put 

into operation. In such a test, a predetermined pressure higher than MOP is applied to the pipe, 

and thus the hoop stress can be beyond the yield strength and possibly exceed the ultimate tensile 

strength of the pipe. To perform reliability assessment for the burst pressure limit state during 

operation and a hydrostatic test, two limit state functions are given in Eqs. (2-8) and (2-9), 

respectively.  

 2 MAPoperation

big P= −  (2-8) 

 2 MOPhydrotest

big P K= −  (2-9) 



 

41 

 

 

The hydrostatic test pressure factor (K) prescribed in CSA Z662:19 is different based on the test 

purpose (e.g., strength or leak) and location class. Note that the uncertainty of internal pressure is 

not considered since the testing pressure is predefined and controlled by the operators during the 

hydrostatic test. As recommended by CSA Z662:19, the resistance biP  is determined based on the 

“flow stress” (
fl ) as shown in Eq. (2-10). 

 2bi flP c t D=  (2-10) 

It is important to note that the “flow stress”, as the name implies, is a measure of the stress at which 

the metallic material yields or flows. The “flow stress” is typically taken as a value between the 

yield strength and the ultimate strength of the metallic material. Jiao et al. [18] suggested a flow 

stress 0.953 t  ( t  is the tensile strength) with a model error coefficient ( c ) accounting for 

uncertainty regarding the definition of the flow stress, which follows a normal distribution with a 

mean of 1.0 and a CoV of 4%. Similar to the yielding SLS, the limit state functions as expressed 

in Eqs. (2-8) and (2-9) can be rearranged as equivalent limit state functions shown in Eqs. (2-11) 

and (2-12) for pipes in operation and a hydrostatic test, respectively. 

 2 1.906 MAP 1.906 2
Y T

toperation D
t p

t

R R
g c t D c F R

R


= − = −  (2-11) 

 2 1.906 MOP 1.906 2
Y T

thydrotest D
t

t

R R
g c t K D c K F

R


= − = −  (2-12) 

where the uncertainty in t is characterized by a dimensionless random variable 
t

R  (see Table 

2-2) whose statistics are included in Table 2-2. In addition to the design factor (F) and the 

hydrostatic test pressure factor (K), the reliability of intact pipes against burst failure is affected by 

the pipe grades since the yield-to-tensile ratio (Y/T) in the limit state function varies for different 

pipe grades. This factor is less than 1.0 and known to increase with pipe grades as shown in Table 

2-1. Note that the two limit state functions are independent of the nominal values for pipe diameter 

and wall thickness; thus, the reliability level against burst failure is independent of the pipe design 

dimensions. 

PoFs for the burst limit state (i.e., the probability of burst) of pipes in operation and in the 

hydrostatic test are respectively depicted in Figure 2-3 (a) and (b). As shown in Figure 2-3 (a), the 
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PoFs increase with design factors resulted from the reduction in the safety margin due to higher 

MOP (see Eq. (2-8)). Higher-grade pipes show higher PoFs (i.e., burst probabilities) because of 

higher Y/T ratios, which implies that higher pipe grades are more vulnerable to burst if the same 

design factor is used. For a risk-consistent design aiming at a constant PoF across different pipe 

grades, lower design factors should be used for higher-grade pipes. For comparison, the PoF curve 

for the yielding limit state is also included in Figure 2-3 (a). As observed, PoFs for the yielding 

limit state (SLS) are generally higher than those for the burst limit state (ULS), except when the 

design factor is lower than 0.72 for the X80 pipes. This is mainly due to the increasing Y/T ratios 

for high-grade steel in the limit state function shown in Eq. (2-11). In CSA Z662:19, the 

permissible PoF for SLS is 10-1 per km-year. The target PoF for ULS is a function of population 

density, pipe diameter, and internal pressure. For example, for class location 1 where the design 

factor 0.80 and 0.72 should be employed, the target PoF is estimated between 10-4 and 10-3. Hence, 

PoFs in Figure 2-3 (a) are satisfying the prescribed requirements. The burst probability for pipes 

during a hydrostatic test is shown in Figure 2-3 (b) as a function of KF, which is the product of the 

design factor (F) and the hydrostatic test pressure factor (K). A similar trend is observed: the PoF 

increases with the increase of the KF factor, and the PoF associated with a given KF factor is 

higher for a higher pipe grade.  

Note that in these two burst limit state functions for pipes in operation and a hydrostatic test, 

the uncertain burst pressure is the same, but the applied pressure considered is different. 

Specifically, in 
2

operationg  for pipe in operation, the random applied pressure ( MAP MOPpR= ) is 

considered, while in 
2

hydrotestg  for the hydrostatic test, the deterministic applied pressured ( MOPK

) is considered. Consequently, when K = 1, F is equal to KF but they lead to different PoF values. 

Taking X65 for an example, F = 0.9 is associated with PoF = 4.56×10-6 for pipes in operation 

while KF = 0.9 is associated with PoF =1.07×10-9 for pipes during a hydrostatic test. On the other 

hand, the same PoF corresponds to different values for F and KF. For example, PoF = 10-9 for X65 

is associated with a design factor F = 0.80 for pipes in operation; by contrast, PoF = 10-9 is 

associated with KF = 0.9. This implies that a factor of K = 0.9/0.80 can be used for the hydrostatic 

test to ensure the same PoF as the design.  
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Figure 2-3: PoFs for burst limit state of intact pipes under internal pressure: (a) PoFs versus 

design factors F for design; and (b) PoFs versus KF for a hydrostatic test 

 

2.5 Reliability assessment of defected pipes 

Integrity assessment of in-service pipes is of significant value for the pipeline industry, as 

defects in pipes, such as cracks and corrosions, make pipelines more susceptible to failure under 

internal pressure. As illustrated in Figure 2-4, irregular crack-like and corrosion defects are 

typically idealized to regular shapes such as rectangles or semi-ellipses for failure pressure 

prediction and further integrity assessment [2]. For corroded pipes, only wall reduction-typed 

defects are considered, and pit corrosion or interactive defect is beyond the research scope of this 

study. However, the probabilistic approach taken here can also be applied to pipes with pitting 

corrosion or interactive defects. 
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Figure 2-4: Schematic view of crack and corrosion profiles with shape idealization on a pipe 

 

With the predicted failure pressure, or pressure resistance of defected pipes ( rP ), the pipe 

failure under internal pressure can be mathematically expressed using the limit state function 3g  

as displayed in Eq. (2-13).  

 3 MAPrg P= −  (2-13) 

In the presence of injurious defects of a given scenario (e.g., defect length (L) and depth (d)), the 

reduction of operating pressure is expected to provide an additional margin of safety. Similar to 

the design factor (F) used in the design of new pipes as discussed in the section 2.4, the safety 

factor (SF) can be used to control the pressure reduction by using SF >1, where SF is defined as 

the ratio of the pressure resistance ( rP ) to the MAP (Eq. (2-14)). 

 SF
MAP

rP
=  (2-14) 

 

2.5.1 Burst of cracked pipes (ULS) 

The burst pressure of cracked pipes can be predicted using CorLAS which was developed to 

assess the integrity of pipes with crack-like defects. The built-in algorithm has demonstrated great 
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accuracy on burst pressure estimation [12] comparing with other peer models. Therefore, it is 

employed as the pressure resistance term in the burst limit state for cracked pipes. This 

methodology is based on two evaluation criteria: flow strength, and fracture toughness, which are 

briefly summarized as follows [19]. 

• Flow strength-based failure pressure 

The flow strength-based failure pressure (
( )f flowP ) is computed according to Eq. (2-15).  

 ( )

2

f

f flowP
D

y
t


=

−

 
(2-15) 

where the pipe geometry indicator (y) is defined by Eq. (2-16).  

 
0.4,   when / 2 10

0,      when / 2 10

D t
y

D t


= 


 (2-16) 

Burst stress (
f ) is defined as the flow stress (

fl ) multiplied by a magnification factor that 

accounts for the tendency of the crack area to bulge outwards under the effect of internal pressure, 

as shown in Eq. (2-17). 

 
0

0

1

1

eff

f fl
eff

A

A

A

MA

 

 
− 

 =
 

− 
 

 (2-17) 

where the reference area 0A L t= ; the flow stress (
fl ) is defined as Eq. (2-18); the effective flaw 

area (
effA ) can be calculated by Eq. (2-19); and the Folias factor (M) is expressed as Eq. (2-20). 

 

68.94 (in MPa),  for pipe grade < X70

,        for pipe grade X70
2

y

fl y t



  

+


=  +




 (2-18) 

 

,       for rectangular flaw

,   for semi-elliptical flaw
4

eff

Ld

A Ld




= 



 (2-19) 
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 (2-20) 

• Fracture toughness-dependent failure pressure 

Fracture toughness-dependent failure pressure (
( )f toughnessP ) can be computed by Eq. (2-21) 

for both internal and external flaws.  

 ( )

,  for internal flaw

0.5
4

2
,            for external flaw

n

f toughness

n

t

A
D

P

t

D










+
= 





 (2-21) 

where the average defect depth (A) is defined in Eq. (2-22) depending on defect shapes. 

 

,          for rectangualr flaw
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eff

d
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
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 (2-22) 

The failure normal stress ( n ) is obtained per Eq. (2-23). 
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 

−

=
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 (2-23) 

where   is the stress solved for in Eq. (2-24) using an iterative procedure such as Newton-

Raphson. 
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 (2-24) 

Here, the critical J-integral ( cJ ) is related to Charpy impact energy (CVN) as shown in Eq. (2-25); 

the shape factor (
fQ ) can be calculated based on a fitted equation Eq. (2-26); the free surface 
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factor (
sfF ) depends on the crack depth, which is given in Eq. (2-27); the strain hardening exponent 

( en ) is offered as Eq. (2-28); and the Shih-Hutchinson solution ( 3F ) can be estimated based on 

Eq. (2-29). 

 
12CVN

0.124
cJ =  (2-25) 
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 (2-29) 

After determining 
( )f flowP  and 

( )f toughnessP , the failure pressure is taken as the smaller one per 

Eq. (2-30).  

 ( )( ) ( ) ( )min ,   f crack f flow f toughnessP P P=  (2-30) 

As such, burst limit state function for cracked pipes under internal pressure can be written 

as Eq. (2-31). 

 3 ( ) MAPcrack

f crackg P= −  (2-31) 

With the limit state function defined above, a wide spectrum of defected pipes is assessed to 

quantify the PoFs with respect to the safety factors. Table 2-3 summarizes the defected pipe cases 

considered in this study, including pipes with different grades, pipe dimensions (i.e., in terms of 
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diameter and wall thickness), and defect sizes (i.e., in terms of defect depth-to-wall thickness ratio 

and defect length-to-depth ratio). To minimize the number of cases considered here, all these 

configuration parameters are varied one at a time compared to the reference defected pipe (i.e., 

grade = X42, Dn= 711 mm, tn = 8.74 mm, d/t= 0.5, and L/d = 20). The same statistical data provided 

in the section 2.4 is used together with the statistical data for CVN provided in Table 2-4. Note 

that the minimum CVN prescribed in API 5L-2018 is adopted as the mean of CVN, and a CoV of 

14% is assumed based on the range given by CSA Z662:19 for all pipes. Additionally, the Young’s 

modulus (E), as suggested by Sotberg et al. [22], yields a normal distribution with a mean of 

2.10×105 MPa and a CoV of 0.04. For the cases considered, the deterministic allowable operational 

pressure is calculated based on the deterministic burst pressure estimated considering different 

safety factors. Thus, the safety margin is expected to be greater when adopting a higher safety 

factor as revealed later in the reliability analysis results. 

 

Table 2-3: Defected pipe cases used in the reliability assessment  

Configuration parameters Unit Range 

Pipe grade - X42; X52; X60; X65; X70; X80 

Diameter (Dn) mm 711; 813; 914; 1016 

Wall thickness (tn) mm 8.74; 11.91; 17.48; 25.40 

Defect depth-to-wall thickness ratio, d/t - 0.1; 0.3; 0.5; 0.7 

Defect length-to-depth ratio, L/d - 10; 15; 20; 25 

 

Table 2-4: Probabilistic characteristics of Charpy impact energy 

Diameter (mm) Distribution 
Mean (unit: J) 

CoV 
X42 X52 X60 X65 X70 X80 

D ≤ 508 Lognormal 41 41 41 41 56 80 14% 

508 ≤ D ≤ 610 Lognormal 41 41 41 45 60 84 14% 

610 ≤ D ≤ 711 Lognormal 41 41 43 49 65 94 14% 

711 ≤ D ≤ 813 Lognormal 41 41 47 52 68 102 14% 
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813 ≤ D ≤ 610 Lognormal 41 41 49 56 73 110 14% 

610 ≤ D ≤ 1016 Lognormal 41 42 52 58 77 118 14% 

1016 ≤ D ≤ 1118 Lognormal 41 43 54 61 81 125 14% 

1118 ≤ D ≤ 1219 Lognormal 41 46 56 64 84 133 14% 

1219 ≤ D ≤ 1422 Lognormal 42 49 61 69 91 148 14% 

 

Reliability analyses are performed for cracked pipes considered and the PoFs with respect 

to safety factors are presented in Figure 2-5. Overall, the PoFs decrease with safety factors because 

of greater pressure reduction applied for defected pipes. It is important to note that pipe grades, 

pipe dimensions, and crack sizes considered here have negligible influence on reliability when the 

operating pressure is adjusted based on the defected pipe configuration using a certain safety 

factor. This implies very small variability in the reliability levels of cracked pipes with different 

pipe or defect configurations, if a certain safety factor is adopted.  
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Figure 2-5: PoFs for the burst limit state of cracked pipes with respect to safety factors under 

internal pressure considering different (a) pipe grades; (b) diameters; (c) wall thicknesses; (d) 

crack depth-to-wall thickness ratios; and (e) crack length-to-depth ratios 

 

Based on CSA Z662:19, model errors should be considered in developing limit state 

functions (e.g., for corroded pipes as presented later), but no such information is provided or 

recommended in CSA Z662:19. As such, the CorLAS model error factors studied by Yan et al. 

[12], i.e., test-to-prediction ratio 
(CorLAS)tpR  following a normal distribution with a mean of 0.96 and 

CoV of 22.8%, is used here for a case study using pipes (grade = X80, Dn = 711 mm, tn = 8.74 

mm, d/t= 0.5, and L/d = 20). Figure 2-6 shows the relationship between the PoFs and the design 

factors using the CorLAS with and without considering the model error. It shows that the PoFs are 

increased significantly, and this is attributed to the large model error (i.e., CoV = 22.8%). The 

authors believe that the accuracy of the CorLAS model is worthy of further investigation or more 

accurate models are needed.  
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Figure 2-6: The PoFs versus safety factors with and without considering the model error 

proposed by Zijian Yan et al. [12] 

 

2.5.2 Burst of corroded pipes (ULS) 

The adopted pressure resistance model for corroded pipes [20] by CSA Z662:19 is used in 

this study. The model developed was calibrated with burst tests of corroded pipe segments 

removed from service [21], and the model error factors were obtained based on 25 burst test data 

points for high-grade steels and 38 points for low-grade steels. The estimated failure pressure of 

burst (
( )f corrosionP ) including model error is defined in Eq. (2-32)[1]. 

 
( )

( )

1 1 2

( )

3 3 4

1 ,    SMYS 241 MPa

1 ,   SMYS 241 MPa

c i t

f corrosion

c i y

e P e P e
P

e P e P e





+ − − 
= 

+ − − 

 (2-32) 

where the model error factors 1e  = 1.04 and 3e  = 1.17 are deterministic multiplicative model error 

terms, while 2e  and 4e  are additive model error terms yielding the normal distribution. The mean 

and standard deviation of e2 are respectively -0.00056 and 0.001469, the two stochastic properties 

for e4 are -0.007655 and 0.006506; cP  denotes the calculated pressure of intact pipes using Eq. 

(2-33) and iP  represents pressure capacity of intact pipes calculated by Eq. (2-34). 
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Hence, the limit state function (
3

corrosiong ) for burst failure of pipes with corrosion defects can 

be written as Eq. (2-35). 

 3 ( ) MAPcorrosion

f corrosiong P= −  (2-35) 

Using this limit state function, the same group of defected pipes (i.e., with the same corrosion 

defect size as the crack defect size considered earlier) are assessed through reliability analysis to 

quantify the PoF with respect to the safety factors (see in Figure 2-7). Pipe grade shows no impact 

on the curve of PoF versus safety factors, which is similar to the situation in cracked pipes. 

However, pipe dimensions (i.e., diameter and wall thickness) and corrosion defect sizes (defect 

depth and length) influence PoFs more than cracked pipes. Corroded pipes with larger diameters 

and smaller thicknesses lead to higher PoFs, which means corroded pipes with larger diameter-to-

wall thickness ratios (Dn/tn) will be less safe by reducing pressure using a specific safety factor. In 

addition, pipes with the deeper and longer corrosion defects show relatively higher PoF values. 

This implies that, for risk-consistent decision-making on integrity management of corroded pipes, 

different safety factors should be recommended for different pipes with different corrosion defects. 
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Figure 2-7: PoFs for the burst limit state of corroded pipes with respect to safety factors under 

internal pressure considering different (a) pipe grades; (b) diameters; (c) wall thicknesses; (d) 

corrosion depth-to-wall thickness ratios; and (e) corrosion length-to-depth ratios 

 

2.6 Chapter conclusions 

This paper assessed the reliability levels of intact and defected pipes (cracked and corroded) 

under internal pressure designed and operated according to CSA Z662:19. Using the Weighted 

Monte Carlo Simulation, the probabilities of failure for yielding (serviceability limit state) and 

burst (ultimate limit state) of intact pipes can be efficiently calculated with respect to design factors 

used in the design of new pipes. Similarly, probabilities of failure for burst failure are also reported 

for the pipes considering different hydrostatic test pressure factors during the hydrostatic tests. For 

defected pipes with cracks and corrosions, probabilities of burst are studied with respect to safety 

factors to provide guidance in pressure control in operation of defected pipes. This study presents 

the significance of CSA Z662:19 in the reliability-based assessment on pipes, and in particular, 

the obtained results when model uncertainty is considered, can be employed in engineering for 

safety control for higher level of confidence. 

The reliability assessment of intact pipes shows probabilities of failure for yielding limit 

state are independent of yield strength, internal pressure, pipe diameter, and wall thickness. The 

probability of failure exponentially increases with the increase of design factor. Specifically, for 
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design factors 0.80 (division 1) and 0.72 (division 2) used in class location 1, probabilities of 

failure for yielding limit state are 2.81×10-7 and 1.13×10-11 respectively. Probabilities of failure 

for burst limit state (ultimate limit state) are generally lower than those for yielding limit state 

(serviceability limit state). Study on the probability of failure for burst limit state of pipes during 

hydrostatic tests can assist determining the applied pressure reliably based on the hydrostatic test 

factor and intended maximum operating pressure. It is found that higher-grade pipes are more 

vulnerable to burst as their higher yield-to-tensile ratios lower the capacity. 

Higher safety factor corresponds to a higher reliability level (lower probabilities of failure) 

based on the investigation on defected pipes. For cracked pipes, grade, dimensions (i.e., diameter 

and wall thickness), and crack sizes (i.e., crack length and depth) have negligible influence on 

probabilities of failure for burst limit state when adjusting operating pressure based on a particular 

safety factor, when no model error is considered. The published model error of CorLAS is so large 

leading to a considerable increase in the associated probabilities of failure and thus reliable burst 

pressure predictions models are needed for cracked pipes. As for corroded pipes, grade shows no 

impact on the curve of probability of failure versus safety factors. However, pipe dimensions and 

corrosion defect sizes influence probabilities of failure more than cracked pipes. Besides, pipes 

with the deeper and longer corrosion defects show relatively higher probabilities of failure. 
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CHAPTER 3: STRAIN DEMAND OF ELASTIC PIPES SUBJECTED TO 

PERMANENT GROUND DISPLACEMENTS USING THE FINITE 

DIFFERENCE METHOD 

 

This chapter is derived from the published paper: 

Q. Zheng, L. Graf-Alexiou, Y. Li, N. Yoosef-Ghodsi, M. Fowler, M. Kainat, S. Adeeb, Strain 

demand of elastic pipes subjected to permanent ground displacements using the finite difference 

method, J. Pipeline. Sci. Eng. 1 (2021) 176-186. 

 

Abstract 

Long-distance pipelines are one of the primary means of oil and gas transportation. During 

the construction process, long-distance pipelines are inevitably buried across geohazard zones, 

which potentially generate permanent ground displacements. These ground displacements can 

potentially induce excessive strains in the pipe posing a great threat to the pipe’s safety and 

integrity. In this study, a new numerical methodology for the response analysis of pipes subjected 

to ground displacements is proposed based on the finite difference method. Simulating the pipeline 

as a large deformation Euler-Bernoulli beam, the finite difference method is used to solve the two 

interacting nonlinear differential equations of equilibrium in the longitudinal and lateral directions 

considering the nonlinear pipe-soil interaction induced by the ground displacement. Implemented 

using the nonlinear equation solver of FindRoot by Mathematica for solving nonlinear equations, 

the longitudinal strain along the pipeline can be subsequently derived, and the tensile and 

compressive strain demands can be therefore determined for engineering reference. Finally, the 

applicability of this method is validated based on two hypothetical study cases involving 

symmetric and non-symmetric soil resistance on the lateral direction of the pipe. Comparing the 
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results with the finite element analysis solver Abaqus, we demonstrate that this present 

methodology has excellent predictive capabilities. Our study is carried out for elastic response 

calculation, but the proposed method shows a great promise for further development involving 

material nonlinearity, which is appropriate for the preliminary safety evaluation for the design of 

new pipelines or for risk pre-screening of existing pipelines. 

Keywords: strain demand; buried pipes; permanent ground displacement; finite difference 

method; elastic response 

 

3.1 Introduction 

Pipelines are the most commonly used means for transporting oil and gas from the sources 

to the end users. Generally, pipelines constructed underground traverse long distances and 

inevitably pass through a wide variety of soils, geological zones, and regions of varying seismicity, 

which have the potential to cause surficial soil cracks and offsets, namely, permanent ground 

displacements. Large ground displacement is considered as one of the most important extreme 

events for buried pipes inducing considerably high strain levels as a result of excessive bending 

and axial elongation. Excessive strain demand can lead to leakage of the oil and gas, which in turn 

can cause secondary damage to the surroundings. Therefore, calculating the strain demand of the 

pipe subjected to ground displacements is of great importance to the design and maintenance of 

pipelines. 

Damage to pipelines due to permanent ground displacement is the subject of extensive 

research. In their pioneering work, Newmark and Hall [1] studied pipes’ response subjected to 

seismic faults in 1975, in which simplified analytical techniques were developed based on cable 

theory. Kennedy et al. [2] extended the cable-based method proposed by Newmark and Hall by 

incorporating the bending of the pipeline near the pipe-fault intersection point considering lateral 

soil forces. Wang and Yeh [3] subsequently proposed a refined model to predict the elongation of 

the pipeline buried across strike-slip faults and reverse faults. Takada et al. [4] developed a 

simplified model for calculating the strain demand in steel pipes buried at fault crossings 
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considering the cross-sectional deformation of the pipe. A variety of analytical and semi-analytical 

methods were also developed by Karamitros et al. [5] and Trifonov et al. [6][7]. Yoosef-Ghodsi et 

al. [8] proposed a simplified model to predict strain demands of pipes undergoing uniform 

longitudinal slides with consideration of internal pressure and temperature changes. More recently, 

Sarvanis and Karamanos [9] proposed a systematic approach for strain analysis of continuous 

pipelines buried in geohazard areas, including seismic fault movement, slope instability, 

liquefaction-induced lateral spreading, and soil subsidence. This work enhanced the analytical 

approach proposed by Vazouras et al. [10], which was only applicable to the case of symmetric 

soil resistance and neglected the zero-curvature condition at the two ends of the deformed pipe 

segment. Liu et al. [11] developed an enhanced analytical approach to calculate the longitudinal 

strain of buried pipe under strike-slip faults with intersection angle less than 90°, in which an 

equivalent modulus model was proposed to account for the decreased pipe stiffness due to material 

nonlinearity. These analytical methods adopt a bilinear stress-strain relationship for pipe material, 

which introduces errors to outcomes. In addition, a solid structural background is needed to 

implement a relatively accurate analytical model such as the systematic work by Sarvanis and 

Karamanos [9] which cannot be easily implemented by pipeline practitioners and researchers. 

With the rapid advancement of computational technologies, the finite element method has 

been a widely adopted numerical tool for pipeline analysis (e.g., using the general-purpose 

commercial finite element software Abaqus and Ansys). In the simulation of a pipe subjected to 

ground displacements, three critical issues arise: element selection for the pipe, constitutive 

modeling of soil, and representation of pipe-soil interactions. For example, Takada et al. [4] used 

shell elements to simulate the pipe segment near the fault plane for accurately capturing the 

flexural behavior under fault displacement, while they used beam elements to model the pipe 

segment to obtain the axial elongation. This beam-shell hybrid model has higher computational 

efficiency and accuracy compared with some other peer models, such as the pipe-element model, 

fixed boundary shell-element model, and equivalent-spring-boundary model [12]. Similarly, the 

pipe-elbow hybrid model, in which the pipe segment near the fault plane is modelled by elbow 

elements, was developed to obtain the combined effect of compression and bending on the pipe 

[13][14][15]. Liu et al. [16][17] modified Takada’s model by applying equivalent boundary 
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conditions to the far end of the pipe, which can represent the effect of imposed boundary 

conditions. Based on this type of model, Liu et al. [18] analyzed the effects of the yield strength 

and the strain hardening parameter on the buckling behavior of high-strength pipes. As for the 

model of soil and pipe-soil interaction, solid elements were utilized to simulate the soil in some 

publications [10][19][20], together with contact defined for the pipe-soil interface. For the sake of 

simplification, soil springs are recommended by ALA Guidelines [21] instead of modeling the soil 

domain and the pipe-soil interface explicitly. Properties of the interaction between the pipe and 

soil are characterized by a bilinear relationship of resistance against displacement based on 

properties of the soil, burial depth, pipe diameter and coating. These relationships are widely used 

in the response analysis on pipes withstanding displacement-based loads [13][14][15][16][17][18]. 

However, the issue of computational efficiency arises with the finer mesh, longer model of pipe, 

and greater loading of ground displacement. Besides, the acquisition of the commercial software 

brings about a higher cost to the engineering project. 

In addition to analytical methods and numerical simulation mentioned above, a number of 

experimental investigations, e.g. small-scale experiments based on the shaking table [21] and 

centrifuge machines [22][23], and full-scale tests with soil boxes [24] and field model [25], were 

conducted in order to obtain the actual response of pipes subjected to ground displacement. Those 

achievements in analytical, numerical and experimental studies all contribute to the development 

of performance analysis of buried pipes subjected to ground movements.  

For practical use in the pipeline industry, a simple model is preferred for engineers to 

determine the strain demand of steel pipes subjected to ground movements. A substantial amount 

of research has been conducted to assist pipeline design by offering application tools based on 

empirical fitting formulas for strain demand. However, a simplified numerical model based on 

mechanics is equally attractive to engineers. This paper presents a novel and simple numerical 

model in which the finite difference method is used to predict strain demands of pipelines subjected 

to general ground movement. To this end, a system of finite difference equations is constructed 

based on the governing equations for a large deformation Euler-Bernoulli beam considering the 

nonlinearity in the pipe-soil interaction. To reduce the complexity of the systems of equations, we 

only restrict our work to the elastic response. The resulting set of nonlinear finite difference 



 

61 

 

 

equations can be solved iteratively by the built-in nonlinear solver in Mathematica (the code is 

provided as supplementary material). Two hypothetical cases are studied to test the accuracy and 

efficiency of this model, by comparing the results derived from the proposed model and the 

counterparts from the finite element model developed using beam elements in Abaqus [26]. This 

study offers a valuable tool for response analysis of pipes buried across geohazard zones, which 

can be used for preliminary design of pipelines or safety pre-screening of existing pipelines. 

 

3.2 Proposed methodology 

The problem under consideration can be graphically described in Figure 3-1. The graph only 

depicts the pipe’s deformation in the horizontal plane (x - y plane) due to a prescribed geohazard 

which could represent a slope, landslide, and liquefaction-induced lateral spreading, but can be 

extended to the situation with vertical deformations in the vertical plane (x - z plane) triggered by 

geohazards in the form of ground heave and soil subsidence. For the sake of simplicity, the ground 

discontinuity induced by all the above-mentioned geohazards is referred to hereafter as “ground 

displacement” or “ground movement”. 
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Figure 3-1: Graphical representation of the pipe subjected to ground displacements induced by 

geohazards 

 

3.2.1 Governing equations 

The pipeline is modeled as a large deformation Euler-Bernoulli beam. Due to the differential 

ground displacement, a large rotation will occur on the discontinuity plane. Therefore, the Euler-

Bernoulli beam equations involving moderately large rotations are adopted to account for the 

deformation behavior of the pipe undergoing ground displacements. The deformed shape of the 

Euler-Bernoulli beam induced by the axial load f(u) and lateral load q(v) is depicted in Figure 3-2, 

and the governing equations are shown in Eq. (3-1) [13]. 
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Figure 3-2: Euler-Bernoulli beam under large deformation 
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 (3-1) 

where N and M are the axial internal force and internal bending moment on the cross-section of 

the beam respectively; u and v represent the axial deformation and lateral deformation of the pipe. 

As indicated, f and q are externally distributed loads in the longitudinal and lateral directions, 

which are represented by the nonlinear soil stiffness-displacement relationships of soil springs in 

the respective directions. gU  and gV  are respectively the ground movements in the longitudinal 

and lateral directions.  

3.2.2 Brief introduction to the finite difference method 

The finite difference method is a numerical tool to solve differential equations by 

approximating derivatives with finite differences. Compared with the finite element method which 

is based on the integral form or weak formulation, the finite difference method mainly works for 

structured spatial difference and is based on the differential form of the governing equations. In 

the finite difference method, a regular mesh is typically defined and the continuum representation 

of each node in space can be expressed by a set of discrete equations, named finite difference 

equations. Together with boundary (or initial) conditions, the large algebraic system of equations 

is to be solved in place of the differential equation [27]. Commonly, for the problem with a regular-
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shaped body and boundary conditions, the finite difference method is quite easy to implement and 

gives very efficient and high-quality results, which inspired the development of this study 

involving the line-shaped pipeline object. 

From a geometric perspective, the first-order derivative of the function at the point ix  is the 

slope of the tangent to the function at that point. As for a smooth curve, this derivative can be 

expressed in three ways as shown in Figure 3-3. Where, the ( )if x−
  and ( )if x+

  are one-sided 

approximations to ( )if x , called the backward finite difference and the forward finite difference 

respectively. Another possibility is using the values on both sides of ( )if x  to estimate the 

derivative, which can provide a better estimation at the specific point, called the central finite 

differences. It is simply the average of the one-sided results when 1 1i i i ix x x x+ −− = − . These 

approximations will be accurate enough when 0h → . Naturally, the principle for the first 

derivative can be extended accordingly to higher-order derivatives. 

 

 

Figure 3-3: Various approximations to f’(x) interpreted as the slope of secant lines 

 

3.2.3 Consideration of finite differences towards governing equations 

The derivatives in Eq. (3-1), e.g., 
dN

dx
, 

2

2

d M

dx
, and ( )

d dv
N

dx dx
, can be represented based on 

finite differences as stated in section 3.2.2. In order to calculate the strains, the finite difference 

equation set should be constructed based on the deformation functions u and v. To do this, the axial 
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internal force N and bending moment M in Eq. (3-1) should be expressed by u and v. By restricting 

the treatment in this work to elastic deformation, the general distribution of the longitudinal strain 

and stress in the cross-section of pipes is sketched in Figure 3-4 on account of the assumption of 

“plane sections remain plane”. 

 

 

Figure 3-4: Strain and stress distribution on the pipe’s cross-section 

 

As illustrated in Figure 3-4, the axial strain axial  induced by stretching and the bending strain 

bending  under the flexural behavior contribute to the longitudinal strain l  (the subscript z denotes 

the vertical position on the cross-section). Based on the large deformation theory, pipe’s 

deformation in the x-direction xu , in the y-direction 
yu , and in the z-direction zu  can be written 

as Eqs. (3-2) to (3-4) (see Figure 3-2). 

 
xu u zv= −  (3-2) 

 0yu =  (3-3) 

 zu v=  (3-4) 

Using the definition of the Lagrangian Green strain, the longitudinal strain l  for the beam that is 

valid for large rotations but small strains can be derived as Eq. (3-5). 
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 ( )2 2 21

2
l xx xx xx yx zxu u u u = =  +  +  +   (3-5) 

Plugging the derivatives of xu , 
yu , and zu  as shown in Eqs. (3-6) to (3-8) to Eq. (3-5) and ignoring 

the higher-order derivatives, the formulation of longitudinal strain l  can be simplified as Eq. 

(3-9). 

 x
xx

u
u u zv

x


  = = −


 (3-6) 

 0
y

yx

u
u

x


 = =


 (3-7) 

 z
zx

u
u v

x


 = =


 (3-8) 

 ( )
2 2 21 1

2 2
l u zv u zv v u v zv         = − + − + = + +

 
 (3-9) 

Hence, the expression of axial  and 
bending  can be written as Eqs. (3-10) and (3-11). 

 
2

2
axial

v
u


= +  (3-10) 

 bending v z =  (3-11) 

Under the assumption of elastic deformation, the longitudinal stress l  is linearly distributed 

in the cross-section and accordingly the tensile and compressive areas can be obviously 

distinguished. According to the definition of axial internal force and bending moment, N and M 

can be expressed using Eqs. (3-12) and (3-13) respectively. The integrand term of 
bending  and axial  

to the area in the expression of N and M are cancelled based on the principle of odd function 

integration in a symmetric interval. 

 ( )l l axial bending axial
A A A A

N dA E dA E dA E dA    = = = + =     (3-12) 

 ( )l l axial bending bending
A A A A

M zdA E zdA E zdA E zdA    = = = + =     (3-13) 

where z is the vertical coordinate of the concerned point in the pipe’s cross-section as depicted in 

Figure 3-4; A is the cross-sectional area of the pipe; E is Young’s modulus of the pipe steel. 
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Substituting the Eqs. (3-10) and (3-11) into Eqs. (3-12) and (3-13), the formulation of N and M 

can be rearranged as Eqs. (3-14) and (3-15) as functions of u and v.  

 
21

2
axial

A
N E dA EA u v

 
 = = + 

 
  (3-14) 

 bending
A

M E zdA EIv = =  (3-15) 

where I is the area moment of inertia. Therefore, the governing equations Eq. (3-1) can be modified 

as Eq. (3-16) by plugging Eqs. (3-14) and (3-15) into the original version Eq. (3-1). 

 

( )

( ) 2

( ) 0

1
( ) 0

2

g

g

EA u v v f U u

EIv EA u v v v EA u v v q V v

  + + − =

  

       − + − + − − =  
 

 (3-16) 

 

3.2.4 Representative of the pipe-soil interaction 

This paper considers the soil as distributed nonlinear springs as recommended by ALA 

Guidelines [21]. As stated in ALA Guidelines, the soil spring property can be characterized as a 

bilinear curve of soil force on pipe against the displacement, which is plotted as the dashed lines 

in Figure 3-5, where Tu, Pu, Qu, and Qd represent the soil resistance in the axial, lateral, vertical 

upward (uplift) and vertical downward (bearing) directions, in N/m. t , p , uq , and dq  are 

the corresponding displacements with the unit of m. The values for these parameters depend on 

the properties of the surrounding soil, pipe diameter, burial depth, and coating of the pipe. 
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Figure 3-5: Soil spring properties in each direction 

 

The pipe-soil interaction is considered as the external force term in the governing equation 

Eq. (3-16). Consider the case that the middle segment of a pipe is subjected to a ground 

displacement of magnitudes gU  and gV  in the longitudinal and lateral directions respectively. The 

external distributed force f(u) and q(v) can be respectively represented by the soil spring properties 

in axial and lateral directions, which are shown as Eqs. (3-17) and (3-18) respectively. 

 ( )

,

/ ,

,

u g

u g g g

u g

T u U t

f T t U u U t u U t

T u U t

  − 


=  − −    + 


−  + 

 (3-17) 

 ( )

,

/ ,

,

u g

u g g g

u g

P v V p

q P p V v V p v V p

P v V p

  − 


=  − −    + 


−  + 

 (3-18) 

For the middle section as depicted in Figure 3-1, the ground axial and lateral displacements 

induced by the geohazards are denoted by gU  and gV  respectively. As the external force acting on 

the pipe is a function of the relative displacement between the ground and the pipe, the governing 

equations in the middle section can be written as Eq. (3-19) where u and v respectively denote the 

pipe deformation in the axial and lateral directions. For the pipe segments connected to both ends 

of the middle pipe, and where the ground displacements are assumed to be equal to zero, the 

governing equations are represented by Eq. (3-20). 

 

( )

( ) 2

( ) 0

1
( ) 0

2

g

g

EA u v v f U u

EIv EA u v v v EA u v v q V v

  + + − =

  

       − + − + − − =  
 

 (3-19) 

 

( )

( ) 2

( ) 0

1
( ) 0

2

EA u v v f u

EIv EA u v v v EA u v v q v

  + − =

  

       − + − + + = 
 

 (3-20) 
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3.2.5 Implementation procedure of the proposed methodology 

The implementation of the finite difference method is described using the following steps. 

An auxiliary picture corresponding to the pipe deformation in Figure 3-1 is offered for each step 

to facilitate the understanding for readers. 

Step 1: pipeline mesh. 

In this step, each segment of the pipeline is meshed with the node IDs shown in the figure 

below. Generally, those nodes are equally spaced along each segment. The numbers of nodes for 

each segment, denoted as lL , mL  and rL , are respectively ln , mn , and rn  including the boundary 

points, which are in blue (the subscripts l, m, and r respectively indicate the right, middle, and right 

pipe segments).  

 

Step 2: derivatives calculation. 

The unknown ui and wi, respectively denote axial and lateral deformations for the ith node. 

u′i, u′′i, v′i, v′′i, v′′′i, and v′′′′i at each node (as shown in the figure below) represent the derivatives 

of ui and vi, which can be evaluated based on the finite difference method explained in section 

3.2.2. Note that the central finite difference is employed for the internal nodes. One-sided finite 

difference, either forward or backward finite difference depending on their respective location, is 

adopted for the boundary nodes. For example, the derivatives for left boundary node 1l  of segment 

lL should be represented based on forward finite differences. In contrast, the derivatives for the 

right boundary node lln  of segment lL  should be calculated by backward finite differences.  
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Step 3: governing equations in the finite-difference form. 

Step 3 aims at constructing the governing equations at each internal node (the red node) 

based on Eq. (3-19) for segment mL  and Eq. (3-20) for segments lL  and rL , where the derivative 

terms are evaluated by the finite differences defined in Step 2. For instance, the governing 

equations at node 3l  in segment lL , denoted as Eql3, can be written as Eq. (3-21). 

 

( )

( )

3 3 3 3

2

3 3 3 3 3 3 3 3 3

( ) 0

1
( ) 0

2

l l l l

l l l l l l l l l

EA u v v f u

EIv EA u v v v EA u v v q v

  + − =

  

       − + − + + = 
 

 (3-21) 

 

Step 4: boundary conditions in the finite-difference form. 

For the boundary nodes (the blue nodes), boundary conditions are imposed in terms of the 

finite difference equations. Both ends of the pipeline are fixed, and the pipeline is continuous. For 

example, the fixed boundary conditions for node 1l  can be expressed as Eq. (3-22). The continuity 

conditions for the nodes lln  and 1m  which connects segment lL  and mL  can be defined as Eq. 

(3-23). Similarly, the boundary conditions in Eqs. (3-22) and (3-23) can be respectively applied to 

node lln  and mmn  ( 1r ) due to symmetry. 
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
  =

 (3-23) 

 

Step 5: solving nonlinear finite difference equations. 

Gathering the functions established in Step 3 and Step 4, a set of simultaneous nonlinear 

finite difference equations can be built with the unknowns being the axial deformation iu  and 

lateral deformation iv  for each node, as illustrated in the figure below. Using a nonlinear solver, 

the unknown iu  and iv  can be found. Note that no specialized nonlinear solver is required, e.g., 

FindRoot in Mathematica, root or fslove in the optimize library of Python, fsolve or lsqnonlin in 

Matlab can all be used. For these nonlinear solvers, the initial guess of the unknown iu  and iv

should be provided as required. 

 

Step 6: strain demand calculation. 
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Step 6 calculates the longitudinal strains at the pipe top and bottom at each node based on 

Eq. (3-9). The tensile strain demand and compressive strain demand are respectively defined as 

the maximum value (a positive value) and minimum value (a negative value) of the obtained 

longitudinal strains along the pipe. 

 

Based on the above-elaborate procedure, the proposed methodology can be carried out based 

on any kind of programming language. In this study, the authors use Mathematica for the study 

cases in the section 3.3. 

 

3.3 Validation of the proposed methodology against finite element solutions 

The proposed methodology is validated comparing with results obtained using the finite 

element model described in section 3.3.1 based on two hypothetical study cases. One case with 

horizontal ground movements and the pipe subjected to symmetric pipe-soil interaction, which can 

be representative of geohazards like landslides in flat terrains and liquefaction-induced lateral 

spreading. The other investigates the applicability in vertical ground displacements and hence the 

non-symmetric soil loading applied on the pipe, which represents the circumstances like frost 

heave and ground subsidence. Due to the preliminary assumption of linear pipe material, the elastic 

responses arising from the present methodology (implemented based on Mathematica) and Abaqus 

are compared to validate the accuracy of the approach. 

 

3.3.1 Description of the beam-type finite element model 

The finite element solutions are utilized to validate our proposed methodology. The beam-

type finite element model, also referred to as “pipe element”, is a special-purpose beam element 

which has been widely utilized in the practice of preliminary design or pre-screening of pipes 

against geohazards. In the validation example, the pipe is simulated by PIPE32 elements (3-node 
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quadratic pipe in space). The interaction between the pipe and the surrounding soil is modelled 

using soil springs which are attached to the nodes of the pipe in three principal directions (see 

Figure 3-6). The PSI36 elements (3-dimensional 6-node pipe-soil interaction element) are 

employed to represent the action exerted by the ground to the pipe. As required in Abaqus, the 

nonlinear soil spring follows a bilinear law representing the load-deformation behavior of the pipe-

soil interaction, which was described in section 3.2.4. The pipe is meshed to have the same number 

of nodes as the counterpart implemented in the proposed methodology. 

 

 

Figure 3-6: Pipe finite elements and attached soil springs in three principal directions 

 

3.3.2 Case study 

This paper considers two study cases to illustrate and verify the proposed methodology. Case 

1 deals with an elastic pipeline crossing the ground movement, which happens in the horizontal 

plane (x-y plane) where the soil resistance is symmetric. Case 2 considers an elastic pipeline 

withstanding the ground heave occurring in the vertical plane (x-z plane) where the soil resistance 

is non-symmetric, i.e., resistances connected to the pipe top and pipe bottom are not equal. The 

prospective deformations of the pipe in case 1 and case 2 are depicted in Figure 3-7. 

The study cases tackle a 457-mm-diameter pipe with a wall thickness of 7.92 mm. Young’s 

modulus for the pipe material is taken as 199 GPa. Assuming the distance from the ground surface 

to the pipe centerline is 1.8 m, the pipe is backfilled with cohesionless sand having an internal 

friction angle of 34° and unit weight 1760 kg/m3. The axial friction factor is set as 0.6 [21]. Hence, 
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the required parameters of the soil springs can then be estimated based on the recommendations in 

ALA Guidelines [21] as listed in Table 3-1. 

 

 

Figure 3-7: Schematic representation of pipe’s deformation in case 1 and case 2 

 

Table 3-1: Soil spring parameters for case 1 and case 2 

Variable Case 1 Case 2 

Coefficient of pressure at rest, K0 0.44 0.44 

Axial soil spring resistance Tu (kN/m) 13 13 

Tu yield displacement Δt (mm) 5 5 

Horizontal bearing capacity factor, Nqh 12.5 12.5 

Lateral soil spring resistance Pu (kN/m) 200 - 

Pu yield displacement Δp (mm) 69 - 

Vertical uplift factor, Nqv 3.4 3.4 

Uplift soil spring resistance Qu (kN/m) - 55 

Qu yield displacement Δqu (mm) - 30 

Bearing capacity factor, Nc 42.2 42.2 
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Bearing capacity factor, Nq 29.4 29.4 

Bearing capacity factor, Nγ 37.3 37.3 

Bearing soil spring resistance Qd (kN/m) - 538 

Qd yield displacement Δqd (mm) - 46 

 

The middle span, representing the segment involved in the ground movements, is assumed 

as Lm = 10 m. The pipe span in the non-geohazard region is set as Ll = Lr = 100 m, which is long 

enough to eliminate the fixed boundary effect as verified using initial calculations with different 

Ll and Lr lengths. In case 1, the middle segment bears the load from the ground happening in the 

horizontal plane (x-y plane). As for case 2, segment Lm is subjected to the vertical ground heave. 

The middle pipe segment is evenly meshed by 41 nodes, and the two end segments are meshed 

with 101 nodes for each (the boundary nodes are counted in). Considering the different 

combinations of ground displacements d (up to 3 m) and ground-pipe intersection angle β (the 

angle between the direction of ground movement and pipe axis, considered as 30°, 60°, and 90°), 

a parametric comparison is conducted to examine the validity of this methodology in the case of 

symmetric soil resistance (case 1) and non-symmetric soil resistance (case 2).  

Figure 3-8 presents the investigated pipe’s strain demand in tension and compression arising 

from the proposed method (referred to as PM) and finite element method (referred to as FEM) at 

different ground-pipe intersection angles, 30°, 60° and 90°, for case 1 and case 2. Note that large 

movement is considered here for the hypothetical case studies to show the applicability of the 

proposed method to problems with large ground movement or deformations. For the sake of 

simplicity, the soil forces and deformations in the horizontal plane (x-y plane) in case 1 and in the 

vertical plane (x-z plane) in case 2 are generally referred to as lateral soil forces and lateral 

deformation. The comparison shows a very good agreement between the proposed methodology 

and the finite element method, which indicates that the proposed methodology has a great 

predictive capability to simulate the pipes’ response to different ground movements under the 

symmetric soil resistance conditions and non-symmetric soil resistance situations. As for case 1, 

the strain demand linearly increases with the ground displacement to its extreme value, e.g., 0.91% 

for the tensile strain demand and -0.75% for the compressive strain demand due to the yielding of 
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soil springs. In addition, compared with the results obtained based on smaller intersection angles, 

the strain demand (before the yielding of soil springs) is greater with larger intersection angles 

where the component of ground movements in the lateral direction increases, which indicates that 

the lateral soil springs have a more pronounced effect on the pipe’s response. Case 2 adopts 

different soil forces. In the concerned range of ground displacement, the extreme value of strain 

demand is not reached. Comparing the strain demand in a small ground movement (before the 

yielding of soil springs in case 1), the strain demand in case 2 is slightly smaller than that in case 

1, which demonstrated that the uplift soil springs acting on the non-geohazard pipe sections don’t 

give enough constraint as the lateral soil springs in case 1. 
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(a) Case 1: β=30° (b) Case 2: β=30° 
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(c) Case 1: β=60° (d) Case 2: β=60° 
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(e) Case 1: β=90° (f) Case 2: β=90° 

Figure 3-8: Comparison on strain demand between proposed methodology and FEM results for 

case 1 and case 2 

 

The pipe’s deformations calculated using the proposed method, including the axial 

displacement u and lateral deflection v at the ground movement of 1.0 m for both cases, are 

compared with those results obtained with the finite element method, see Figure 3-9 and Figure 

3-10. The location of tensile and compressive strain demands is respectively indicated by red and 

blue points, which aim to display the critical spots corresponding to the locations of the highest 

derivatives of the displacements. They are found to occur around the same location using the 

proposed method and finite element method. The predicted deformations of the pipe compare 

exceptionally well with the results from the finite element model. As observed, the extreme axial 

deformations happen around the boundary of the geohazard-involved segment, e.g., near the ends 

of segment Lm. On the contrary, the maximum lateral displacements occur at the middle location 

of segment Lm. In addition, the lateral deformations grow with the increase of the intersection 

angle, which demonstrates the observation that higher intersection angles lead to greater strain 

demands. 

The axial deformations in case 1 and case 2 are almost the same, and they are negligibly 

small as the force from axial soil springs is weak. While the lateral deformations in case 2 are 

higher than those in case 1. The discrepancy is induced by the different soil spring scenarios used 

in case 1 and case 2. In case 2, the bearing soil springs on the middle segment Lm are much stiffer 

than the uplift soil springs in segments Ll and Lr, which indicates a lesser constraint on segment Ll 
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and Lr thus the effect from soil springs on segment Lm is more pronounced (a greater lateral 

deformation in case 2).  
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(a) Case 1: β=30° (b) Case 2: β=30° 

 

0 30 60 90 120 150 180 210
-50

-40

-30

-20

-10

0

10

20

30

40

50

P
ip

e
 d

e
fo

rm
a
ti
o
n
 (

m
m

)

Pipe length (m)

 PM: u

 FEM: u

0 30 60 90 120 150 180 210
-50

-40

-30

-20

-10

0

10

20

30

40

50

P
ip

e
 d

e
fo

rm
a
ti
o
n
 (

m
m

)

Pipe length (m)

 PM: u

 FEM: u

 

(c) Case 1: β=60° (d) Case 2: β=60° 
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(e) Case 1: β=90° (f) Case 2: β=90° 

Figure 3-9: Comparison on axial deformation of the pipe between the proposed methodology and 

FEM results for case 1 and case 2 (ground movement is 1.0 m) 
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(a) Case 1: β=30° (b) Case 2: β=30° 
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(c) Case 1: β=60° (d) Case 2: β=60° 
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(e) Case 1: β=90° (f) Case 2: β=90° 

Figure 3-10: Comparison on lateral deformation of the pipe between the proposed methodology 

and FEM results for case 1 and case 2 (ground movement is 1.0 m) 

 

Based on the results of the above two study cases, the accuracy of the proposed methodology 

is demonstrated, which is quite excellent for this preliminary study on the application of the finite 

difference method to the response analysis of pipes subjected to large displacement-based ground 

loads. Moreover, this study lays a promising foundation for a future study involving the pipe 

elastic-plastic material nonlinearity. 

 

3.4 Chapter conclusions 

A new methodology is developed for predicting the pipe’s response to the ground movement 

triggered by geohazards based on the finite difference method. To do this, the pipeline is 

considered as an Euler-Bernoulli beam with large deformations, and the governing differential 

equations of the elastic response of the pipe are formulated as functions of the deformation 

variables u and v at each node. The loading, represented within the pipe-soil interaction, is 

considered as soil springs with a bilinear load-displacement property. A large set of nonlinear finite 

difference equations can be therefore established together with boundary conditions and the 

solution can be achieved based on the nonlinear equation solver in the programming language that 

the reader prefers. Here, we use the nonlinear equation solver of FindRoot in Mathematica. 
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Subsequently, the strain at each node can be derived and the tensile and compressive strain 

demands can be obtained. Finally, two study cases that the pipe is subjected to symmetric and non-

symmetric lateral soil stiffness respectively are introduced to test the workability of the present 

methodology. Our work shows that the proposed methodology is of great accuracy compared with 

the finite element method using Abaqus. The present work contributes a new methodology in this 

research field. However, further development involving material nonlinearity is required to enrich 

the existing prediction models for engineering practice. 
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CHAPTER 4: A FINITE DIFFERENCE-BASED APPROACH FOR STRAIN DEMAND 

PREDICTION OF INELASTIC PIPES SUBJECTED TO PERMANENT 

GROUND DISPLACEMENTS 

 

This chapter is derived from the published paper: 

Q. Zheng, Y. Li, N. Yoosef-Ghodsi, M. Fowler, M. Kainat, S. Adeeb, 2022. A finite difference-

based approach for strain demand prediction of inelastic pipes subjected to permanent ground 

displacements, Eng. Struct. 273, 115072. 

 

Abstract 

Permanent ground displacement triggered by geohazards constitutes a major threat to the 

integrity of long-distance pipelines. In this study, a novel and simple method is proposed to 

evaluate inelastic pipes’ behavior under ground movements considering soil-pipe interaction based 

on the finite difference method. The existing finite difference-based method previously proposed 

by the authors for strain analysis of buried pipelines subjected to ground movements excludes 

material nonlinearity in pipes, which limits its applicability in engineering practice. To remedy 

this situation, the method presented herein maintains the well-established concepts of the existing 

finite-difference-based method but also introduces the scheme to consider the inelastic material 

behavior of steel pipes. More specifically, the expressions of internal axial force and bending 

moment, required in the finite difference equations, are explicitly derived based on the actual stress 

distribution on the pipe cross-section. The proposed method is validated against the finite element 

method (one-dimensional beam model) in terms of the strain and deformation demands using two 

indicative case studies, referred to as symmetric and non-symmetric soil resistance conditions, 

respectively. The comparison between finite element analysis and the proposed method indicates 
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good agreement. Additionally, the proposed method is compared with four existing analytical 

methods for pipes subjected to strike-slip fault displacement. The proposed method is a simple but 

general technique to analyze pipes’ response under a wide range of geohazards, and thus can be 

potentially used as an alternative method for preliminary design, safety pre-screening, and 

reliability-based assessment of pipes against geohazards. 

Keywords: strain demand; inelastic pipe; soil-pipe interaction; permanent ground displacement; 

finite difference method 

 

4.1 Introduction 

As an essential component of energy infrastructure, pipelines serve to transport oil and gas 

from production areas to target consumers. Onshore pipelines are generally constructed over 

considerably long distances. In many instances, pipe segments are inevitably installed through 

geotechnically unstable environment, which is typically associated with unfavorable geological 

actions such as landslides, discontinuous permafrost (frost heave and thaw settlement), slope 

failures, ground subsidence, tectonic shifting, etc. Such activities can cause significant 

deformation-induced strains in pipes, which in turn result in local buckling and rupture of the pipe 

wall [1][2]. Field observations have highlighted the deleterious effects that soil movements have 

on the structural integrity of buried pipelines [3]. Thus, it is imperative to study response prediction 

of pipes subjected to geohazard-induced ground movements. 

Research on pipes’ behavior in response to ground movements can date back to the 1960s 

and 1970s when underground infrastructures were damaged by earthquakes, e.g., the Tokachi-Oki 

earthquake (Japan, 1968), the San Fernando earthquake (the USA, 1971), and the Managua 

earthquake (Nicaragua, 1972). Subsequently, analytical and finite element methods have been 

mainly developed to calculate pipes’ response to ground movements. In recent years, physical 

experimental studies, including small- and full-scale tests [4][5][6][7], have been conducted to 

validate the applicability of analytical procedures and finite element models, which also reveals 

the growing attention to buried pipelines subjected to geohazard-induced ground movements. 
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However, experimental tests are time-consuming and budget-demanding. Simple and efficient 

analysis techniques for pipe response prediction remains highly demanded for research and 

engineering practice. 

Newmark and Hall [8] pioneered the study of pipelines subjected to ground movements by 

introducing an analytical method to solve pipes’ response to a tectonic fault based on the small 

deflection assumption. Kennedy et al. [9] extended that analytical method considering large 

deflection of pipes, which were assumed to have a single constant curvature near the fault plane. 

In the two methods mentioned above, however, only the axial tensile force in the pipe at the 

inflection point was considered, i.e., without accounting for the flexural behavior. Based on the 

model proposed by Kennedy et al [9], Wang and Yeh [10][11] further examined pipes’ 

performance considering pipes’ bending rigidity, the shear force at the inflection point, and the 

boundary condition of a semi-infinite beam on an elastic foundation, which yielded more rational 

results. After the refinements in Kennedy et al. [9] and Wang and Yeh [10][11], Karamitros et al. 

[12] improved the analytical method further by appropriately considering the effect of axial tension 

on the pipeline bending stiffness. This method was later extended to normal fault crossings [13]. 

Additionally, following the work done by Wang and Yeh [10][11] and Karamitros et al. [12], 

Trifonov and Cherniy [14] took into account the effect of internal pressure and temperature 

variation within the elastoplastic model using the plastic flow rule, and the method was 

subsequently extended to involve different soil conditions along the pipeline [15]. In light of the 

limitation in the abovementioned studies that axial force was not properly considered, Talebi and 

Kiyono [16][17] improved the analytical solution by incorporating the axial pipe-soil interaction 

and axial forces owing to geometrical nonlinearity into the governing differential equation; 

however, this method can only be applicable for elastic pipes. Furthermore, Sarvanis and 

Karamanos [18] presented a closed-form analytical formulation according to the assumed-shape 

of deformed pipes. Nevertheless, the formulation didn’t provide a clear explanation of the 

characterization of plastic material behavior; plus, the formulation can only be employed for 

geohazards including one ground discontinuity. More recently, based on the assumption of 

partitioning the pipeline into four segments in [10][11], Hu et al. [19] divided the largely-deformed 

pipe section (near the fault trace) into a finite number of segments and applied equilibrium 
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equations to each segment to estimate the internal force and moment on the cross-section; the 

required moment-strain relationship in the iterative calculation process was derived on the specific 

pipe case and material property.  

The majority of existing analytical approaches, as discussed above, were established 

regarding tectonic faults where only one ground discontinuity was considered. For some 

geotechnical hazards, such as landslides, liquefaction-induced lateral spreading, ground 

settlement, and heave due to seasonal temperature change in permafrost zones, the length of 

geohazard zone significantly affects the pipeline behavior [20]. As such, it is necessary to analyze 

the pipeline bearing two ground discontinuities, as shown in Yoosef-Ghodsi et al. [21] and Zahid 

et al. [22], whereas ground displacement was only considered in the longitudinal direction. Note 

that the method in [22] had treated well pipe self-weight and service loads, elastoplastic behavior 

of pipes was not properly described like [21] where the plastic flow rule was adopted to account 

for the portion after the onset of yielding. Acknowledging the fact that existing analytical 

approaches for buried pipeline response to tectonic faults (one ground discontinuity) appear 

adequate, researchers should devote more efforts to the study of pipeline response subjected to 

landslide-like geohazards (two ground discontinuities). 

In contrast to analytical methods, which are usually associated with various assumptions and 

the restriction on the geohazard condition, numerical modeling allows explicit consideration of 

nonlinearity in the problem. With several commercial software packages available, analysis of 

pipes subjected to ground movements currently relies heavily on numerical approaches (e.g., finite 

element simulation). A review of finite element models in the literature indicates that various 

models have been developed with different considerations of elements used for pipe modeling, 

interaction between the pipe and surrounding soils, and the boundary conditions per different 

purposes. The accuracy of finite element models is typically calibrated with available experimental 

data. Modeling the pipe body completely using shell elements for its entire length requires 

considerable computational resources and time. To mitigate the issue, Takada et al. [23] utilized 

beam elements to simulate pipe segments far away from the fault trace, namely beam-shell hybrid 

model. The beam-shell hybrid approach was used by Hu et al. [24] where the backfill was 

represented by soil spring elements, and analytically-derived nonlinear pipe-soil interaction 
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springs were added to model the boundary conditions representing the pipe further away from the 

fault trace, which shortened the length of pipe explicitly modeled without sacrificing the accuracy. 

Regarding soil modeling, Trifonov [25] represented the surrounding soil, including the trench 

backfill and native soil, by solid elements with appropriate constitutive models. The developed 

finite element models were commonly used for parametric analysis to offer suggestions for 

alleviating damage on pipes, or for data generation to develop empirical or surrogate models. For 

example, Liu et al. [26][27][28] developed a regression equation and an artificial neural network 

to estimate the strain demand of pipes under fault displacements based on data generated from 

finite element simulations. 

Endeavors towards these two classical approaches, i.e., analytical and finite element, have 

greatly contributed to the response analysis of pipes subjected to displacement-controlled loads in 

engineering practice. Specifically, the analytical methods proposed by Newmark and Hall [8] and 

Kennedy et al. [9] have been incorporated into guidelines for seismic design of oil and gas 

pipelines for the sake of their simplicity [29][30]. But both methods use the stress in the extreme 

fiber of pipe cross-sections for the axial force approximation, and the actual stress distribution on 

the pipe cross-section is ignored where the inelasticity of the pipe material is not considered 

properly. To account for the pipe material inelasticity, most refined analytical models 

[10][11][12][13] approximated the bending moment using a secant modulus, that is, the slope 

corresponding to the inelastic stress to the original point. Although substantial refinements have 

been made to attain higher prediction accuracy, applicability of those analytical methods is still 

limited. Finite element-based numerical simulations are much handier and more robust to find 

accurate solutions regardless of pipe behavior (i.e., elastic or inelastic). Nevertheless, they require 

familiarity with model development specific to commercial software and considerable 

computational resources. Moreover, high dependency on commercial software packages makes 

them less flexible, which can cause great inconvenience to extended studies, such as Monte Carlo 

simulation in reliability-based assessment where a large number of simulations is required. 

For common practice, it is desirable to use straightforward methods allowing reasonably 

accurate predictions of pipeline response. As such, this study presents a new approach using the 

finite difference method to analyze the strain demands of pipelines subjected to ground 
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movements. Some pilot studies, i.e., Al-Khafaji and Jacobs [31] and Zheng et al. [32], reported the 

feasibility of the finite difference method to solve the deformation of the beams/pipes under 

arbitrary force loadings or ground-induced displacement loadings assuming the elastic behavior of 

the pipe. However, under large ground movements, buried steel pipes can experience material 

nonlinearity. The assumption of elastic material in pipes causes a major limitation for their use in 

engineering practice. It is worth noting that considering material nonlinearity in pipes is non-trivial 

in the finite difference-based approach due to the interaction or coupling between the axial and 

bending behavior. Specifically, in Zheng et al. [32], the governing equation accounting for the 

elastic range can be explicitly derived in a finite-difference format, which is not true when 

concerning the material nonlinearity.  

To this end, this study extends the method developed by Zheng et al. [32] to take into account 

the material nonlinearity in pipes. Based on the bilinear stress-strain relationship assumed for steel 

material, the axial force and bending moment are derived respectively for straight segments 

(without flexure deformation) and curved segments (with flexure deformation). The obtained axial 

force and bending moment, as functions of the unknowns of the axial and lateral deformations, are 

incorporated into the governing equations of pipelines subjected to soil movements. The strain 

demands and pipe displacements derived from the proposed method are compared with the results 

of simplified finite element models based on two hypothetical study cases, referred to as symmetric 

and non-symmetric soil force conditions, respectively. Additionally, the proposed method is 

compared with four existing analytical methods for another case study of pipelines subjected to 

strike-slip fault displacements.  

 

4.2 Development of the proposed method 

The method proposed in this paper aims to solve the pipe response under ground movements 

in a horizontal or vertical plane as illustrated in Figure 4-1. Examples of such engineering problems 

are a buried pipeline subjected to a geohazard in which the soil moves either in the horizontal plane 

due to landslides (see Figure 4-1 (a)) or strike-slip seismic fault (see Figure 4-1 (c-1)), or in the 

vertical plane due to the uplifting force triggered by the frost heave (see Figure 4-1 (b)) or normal 

fault (see Figure 4-1 (c-2)). The proposed method is established based on the finite difference 
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approach to solve the underlying governing equations (i.e., coupled nonlinear partial differential 

equations) for the problems considered here. To the end, both the axial and flexural deformation 

fields along the pipe are obtained, and then the strain demand can be further derived.  

 

 

(a) Pipe’s deformation due to the landslide 

 

 

(b) Pipe’s deformation due to the frost heave 



 

91 

 

 

 

(c-1) Strike-slip fault (c-2) Normal fault 

(c) Pipe’s deformation due to tectonic faults 

Figure 4-1: Graphical representation of ground-induced deformations in a pipeline 

 

4.2.1 Governing equations 

The deformation of a pipeline under large ground movement can be considered as an Euler-

Bernoulli beam subjected to distributed loads induced by soil, as depicted in Figure 4-2. The 

distributed loads applied to the pipe consist of the exerted axial load density f and the lateral load 

density q, which depend on the difference between the axial displacement of pipe u(x) and the 

corresponding soil movement ( )gU x  along the pipe, and the difference between the lateral 

displacement of the pipe v(x) and the corresponding soil movement ( )gV x , respectively, as shown 

in Figure 4-2. As such, the governing equations of the pipe considering large deformation can be 

derived based on the equilibrium, as shown by Eq. (4-1).  
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Figure 4-2: Euler-Bernoulli beam under large deformation 
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where N(x) and M(x) are the internal axial force and internal bending moment on the cross-section, 

respectively.  

 

4.2.2 Calculation procedure for elastic pipes 

The application of the finite difference method to solve elastic pipe’s deformation has been 

reported by Zheng et al. [32]. To facilitate the discussion of the proposed method for inelastic 

pipes, the general idea of the elastic pipe analysis using the finite difference method is briefly 

summarized as follows. 

• Derivation of the axial force and bending moment 

According to the linear relationship between the stress and strain, the axial force N 

and bending moment M in the governing equation are derived based on the integration 

of the stress over the pipe cross-section. The obtained axial force and bending moment 

are functions of the axial and lateral displacements, i.e., u(x) and v(x), which are the 

unknowns in the governing equations (see Eq. (4-1)).  

• Formulation of the finite-difference equations 
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Incorporating the derived expressions of axial force and bending moment into the 

governing equations, the governing equations can be cast to equations with unknowns 

of pipe displacements (u and v), derivatives of the displacements ( u  and v ), second 

derivatives of the displacements ( u''  and v'' ), and fourth derivatives of the lateral 

displacements ( v'''' ). Based on the finite difference method, these derivatives are 

represented by the unknowns of displacements (u and v) at finite difference grid points, 

and thus the governing equations can be rearranged into the finite-difference format, a 

system of nonlinear equations. 

• Definition of the pipe-soil interactions 

The axial load density f and lateral load density q are used to represent the pipe-

soil interactions, which are described using elastic-perfectly plastic relationships 

between the pipe deformation and the soil force. In the finite difference equations, they 

are equivalently characterized with mechanical properties of discrete nonlinear soil 

springs connecting to the pipe in three principal directions. The ultimate soil spring 

resistance (per unit length) and the yield displacement are calculated based on the 

empirical equations in ALA Guideline Appendix B [33].  

• Calculation of the displacements and strains  

A large set of simultaneous finite-difference equations together with boundary 

conditions can be solved for the unknowns of axial and lateral deformations (u and v) at 

predefined grid points along the pipe using a nonlinear equation solver. Based on the 

calculated u and v at grid points, the longitudinal strain along the pipe can also be 

obtained.  

 

4.2.3 Derivations of N(x) and M(x) considering pipe material inelasticity 

With respect to the analysis procedure summarized in section 4.2.2 [32], this paper mainly 

focuses on its extension to inelastic pipes. Thus, this section aims to find the expressions of axial 

force N(x) and bending moment M(x), which can be explicitly expressed functions of u(x) and v(x) 

using the bilinear stress-strain relationship assumed for pipe steel.  
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Based on the assumption of “plane sections remain plane”, the axial strain  and bending 

strain (i.e., the normal strain caused by bending) 
bending  can be assumed to have three distribution 

patterns in the pipe cross-section for each as illustrated in Figure 4-3. It is noted that the pipe cross-

section is assumed to maintain the original circular hollow shape during deformation. Hence, the 

longitudinal strain l , as the summation of the axial strain and bending strain (see Eq. (4-2)) [32], 

can end up in eight major scenarios (excluding the combination of no axial strain and no bending 

strain). 

 

2

2
l axial bending

v
u v z  

 
 = + = + − 

 
 (4-2) 

where z is the position along the axis of z as shown in Figure 4-3. 

 

 

Figure 4-3: Axial strain and bending strain distribution on the pipe cross-section 

 

To simplify the derivation, this study groups the 8 scenarios into two cases: longitudinal 

strain without and with bending strain. 
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4.2.3.1 Longitudinal strain pattern without bending strain 

For the scenarios when the bending action does not exist (where 0v =  thus M = 0), the 

strain and stress distributions on the pipe cross-section can be illustrated by the two cases as 

depicted in Figure 4-4. The bilinear stress-strain relationship is employed to formulate the 

constitutive expression. Let 
y  and 

y  be the yield stress and strain, E and 
pE  the modulus of 

elastic and plastic regions, respectively. The formulation of the internal axial force N can be 

derived as follows: 

(1) When the pipe cross-section is elastic: 
y l axial y   −  =   

 

2

2
l l axial

A

v
N dA E A E A E u A  

 
= = = = + 

 
  (4-3) 

where A is the area of the pipe cross-section. 

(2) When the pipe cross-section is fully plastic 

For case 1 in Figure 4-4, 
l axial y  =   
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v
N dA E E u A  

  
= = + + −  

  
  (4-4) 

For case 2 in Figure 4-4: 
l axial y  =  −  

 

2

2
l y p y

A

v
N dA E E u A  

  
= = − + + +  

  
  (4-5) 

 

 

(a) Case 1 (b) Case 2 
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Figure 4-4: Longitudinal strain distribution without bending in the pipe cross-section 

 

4.2.3.2 Longitudinal strain pattern with bending strain 

The strain and stress distributions on the pipe cross-section with consideration of bending 

can be generalized as two significant situations as pictured in Figure 4-5, where the partially plastic 

pattern is shown. The difference between these two situations is the position of tensile and 

compressive actions: the pipe “top” is subjected to tension in case 1 and compression in case 2. 

Other potential patterns, which are not shown in Figure 4-5, will be considered within the 

derivation below.  

 

 

(a) Situation 1 (b) Situation 2 

Figure 4-5: Longitudinal strain distribution with bending in the pipe cross-section 

 

Based on Eq. (4-2), the longitudinal strain on the pipe top 
top  and bottom bot  can be 

rearranged as Eqs. (4-6) and (4-7), respectively. 

 

2

2 2
top

v D
u v

  
 = + −  

 
 (4-6) 

 

2

2 2
bot

v D
u v

  
 = + +  

 
 (4-7) 

where D is the outer diameter of the pipe. 
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Note that the positions of the yield points are used as the boundary between the elastic and 

plastic fields in the later calculation. The vertical coordinate (the origin is the pipe top, and the 

positive side points to the below) from the pipe top to the tensile yield point 
tyh  and compressive 

yield point 
cyh  can be derived on the geometric basis as shown in Eqs. (4-8) and (4-9) respectively. 

 

22 2

2

top y y

ty

top bot

u v v D
h D

v

  

 

  − + + −
= =

− −
 (4-8) 

 

22 2

2

top y y

cy

top bot

u v v D
h D

v

  

 

  + + + +
= =

− −
 (4-9) 

where the yield strain 
y  is mathematically positive. 

To distinguish the two situations of stress distributions shown in Figure 4-5, two auxiliary 

variables 1H  and 2H , representing the lower and the greater of 
tyh  and 

cyh  respectively, are 

introduced to facilitate the derivation of N and M. In addition, the corresponding intersection 

angles to 
tyh  and 

cyh , namely 1  and 2  as shown in Figure 4-5 ( 1 2   due to the relationship 

of 1 2H H ), can be defined as Eq. (4-10), which includes all the possible stress distribution 

patterns. For instance, when 
1 0tyH h=   and 

20 cyH h D =  , the corresponding stress pattern 

should be fully elastic of the pipe top subjected to tension and partially plastic of the pipe bottom 

subjected to compression. 
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 (4-10) 

In the cylinder coordinate system, the longitudinal strain l  (in rectangular coordinate) can 

be expressed as   (based on the cylinder coordinate, see Eq. (4-11)). The variation of strains in 

the radial direction can be neglected due to the thin-wall pipeline structure. 
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  
 = + −  

 
 (4-11) 

where   is the intersection angle between the axis z and the position vector corresponding to the 

material fiber position, ranging from 0 to π. The stress distribution can be therefore written as Eq. 

(4-12) based on the bilinear property of the stress-strain relationship. 
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where the sign function ( )cy tysign h h−  is to indicate the relative position between the tensile yield 

point and the compressive yield point. 

Based on the definition of the internal axial force and bending moment, the expressions of 

N and M are respectively derived as Eqs. (4-13) and (4-14). 
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 (4-14) 

where t is the wall thickness of the pipe. 
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4.2.4 Implementation procedure 

Considering the buried pipe subjected to a horizontal landslide as shown in Figure 4-1 (a), 

the governing equations for the interior grid points in the middle segment L2, which is in the soil 

movement zone, can be written as Eq. (4-15) based on the central finite difference method. 

Similarly, the finite difference equations for the pipe outside the soil movement zone, i.e., 

segments L1 and L3, can be written as Eq. (4-16). The grid points are equally-spaced in each 

segment in this study. λ is the interval distance of grid points, and the subscripts 1, 2, and 3 indicate 

the corresponding pipe segment. 
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 (4-16) 

where i is the index denoting the ID of a grid point. Note that the block pattern of ground 

displacement is considered here, where U and V are the magnitude of the axial and lateral 

components, respectively, of the ground movement for the middle segment L2; no ground 

displacement for the two end segments. Implementation of the proposed method to get the 

unknown displacements at all grid points along the pipe is elaborated as follows. 

Step 1 : meshing the pipe. 
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Meshing the pipe with equally-spaced grid points along the axial direction for each segment. 

The number of grid points for each pipe segment is n1, n2, and n3 including boundary nodes 

(pictured as solid points in Figure 4-6). 

Step 2 : approximating the derivative terms using finite difference. 

Writing the first-order derivatives of the axial displacement u  and the lateral displacement 

v , and the second-order derivatives of the lateral displacement v''  based on finite-difference(see 

Figure 4-6 (b)). The central finite difference is employed for interior grid points (hollow points in 

Figure 4-6), while the one-sided finite difference is employed for boundary grid points. 

Step 3 : calculating the axial force and bending moment. 

Computing internal axial forces N and internal bending moments M at interior grid points 

(see Figure 4-6 (c)). The formulation of N and M are expressed as functions of u , v , and v''  as 

calculated in Step 2. 

Step 4 : constructing the governing equation for each interior grid point. 

Establishing the equations for interior grid points in segment L2, and segments L1 and L3 

based on Eqs. (4-15) and (4-16), respectively. For the case in which the pipe is subjected to a 

horizontal landslide, the symmetric lateral soil resistance is assumed. Hence, in those equations, 

the external axial and lateral soil loads applied to pipes can be expressed as Eqs. (4-17) and (4-18), 

respectively, according to the elastic-perfectly plastic soil force described. 
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 (4-18) 

where u  and v  are the relative displacement between the soil and pipe respectively in the axial 

and lateral directions. 

Step 5 : imposing boundary conditions for each boundary grid point. 
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The three pipe segments are consecutive, and both ends of the pipe are assumed fixed. These 

boundary conditions are imposed in the finite difference equations. The simultaneous finite 

difference equations are finally established on each grid point as seen in Figure 4-6 (d), which is a 

large system of equations with unknown deformations along the pipe at all grid points. 

Step 6 : solving the simultaneous nonlinear equations. 

Using a nonlinear equation solver to solve for the unknowns in the finite difference equation 

set established in 0. Subsequently, the longitudinal strain along the pipe can be evaluated according 

to Eq. (4-2) in section 4.2.3. The maximum (and minimum) strain along the pipe and its 

corresponding location, referred to as the tensile (and compressive) strain demand and the critical 

spot in this paper respectively, can be then obtained. It is noteworthy that the loss of axial stiffness 

of pipe due to large strains is not considered within the method. Furthermore, the present method 

does not account for the effects of local buckling and section deformation. 

 

 

(a) Displacements at each grid point 

 

 

(b) Derivatives of the displacements at each grid point 

 

 

(c) Internal bending moment and axial force at each grid point 
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(d) Equations for each grid point 

Figure 4-6: Schematic view for the calculation procedure of the proposed method 

 

4.3 Validation of the proposed method 

The proposed method is validated using two study cases against the benchmark finite 

element model. These two study cases involve three pipe segments, and the middle segment is 

subjected to ground movements of block pattern, as illustrated in Figure 4-1. It should be noted 

that in Case 1, the pipe is subjected to symmetric soil forces in the horizontal plane as a result of 

horizontal landslide actions; in Case 2, the pipe is under non-symmetric soil forces in the vertical 

plane as a result of ground heave. 

 

4.3.1 Case 1 

The study case concerns a 559-mm-diameter X52 steel pipe with a wall thickness of 7.14 

mm. The properties of the pipe material include Young’s modulus E = 210 MPa, yield strength 

y = 359 MPa (hence yield strain 
y = 0.17%), ultimate strength u = 455 MPa, and ultimate strain 

u  = 3%.  

The buried depth, defined as the distance from the ground surface to the pipe centerline, is 

assumed as 1.5 m, and backfill soil is silt sand having an internal friction angle of 34° and unit 

weight of 1410 kg/m3. The coating dependent factor relating the internal friction angle of the soil 

to the friction angle at the pipe-soil interface is set as 0.6 which is used for calculating the yield 

force of axial soil springs. Based on the recommendations in ALA Guidelines [33], the parameters 

of bilinear soil springs are estimated as listed in Table 4-1. Note that the pipe considered in Case 

1 is subjected to horizontal ground movement and thus transverse horizontal soil springs are used 

to describe the lateral soil forces applied to the pipe. 
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Table 4-1: Parameters of soil springs 

Variable Value 

Axial yield force per unit length Tu (kN/m) 12 

Axial yield displacement Δt (mm) 3 

Transverse horizontal yield force per unit length Pu (kN/m) 153 

Transverse horizontal yield displacement Δp (mm) 70 

Uplift soil spring resistance Qu (kN/m) 34 

Qu yield displacement Δqu (mm) 20 

Bearing soil spring resistance Qd (kN/m) 485 

Qd yield displacement Δqd (mm) 60 

 

In Case 1, the action of the ground movement on the pipe is graphically illustrated in Figure 

4-1 (a). The middle segment in the soil movement zone is assumed as L2 = 10 m. The end segments 

connected to the middle span are L1 = L3 = 40 m. Different combinations of ground displacements 

δ (from 0 up to 2.5 m) and the intersection angle (the angle between the pipe axis and the direction 

of ground movement) β (= 0°, 30°, 60° and 90°) are considered.  

In the proposed method, the middle segment and the end segments are discretized to 20 and 

40 intervals, respectively. In the finite element method using the commercial software ABAQUS 

[34], the pipe is modeled with beam-type elements, namely PIPE32 (3-node quadratic pipe in 

space). The nonlinear soil springs are employed to simulate the pipe-soil interaction using PSI36 

elements (3-dimensional 6-node pipe-soil interaction element). The parameters of the soil spring 

properties (see Table 4-1) are calculated based on ALA-2001 Guidelines (Appendix B) [33], as 

summarized in Table 4-1. For a fair comparison, the same discretization is adopted for the pipe 

and soil springs in both the proposed method and the finite element method. 

Figure 4-7 presents the pipe’s strain demand and displacement predicted using the proposed 

method (referred to as PM) and finite element method (referred to as FEM) at different intersection 

angles, 0°, 30°, 60° and 90°, for Case 1. Note that for each intersection angle, both the transverse 

lateral and axial pipe displacements are reported for a specific ground displacement level. 

Particularly, at the intersection angle of 0° where the pipe only withstands axial soil force, a finer 
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interval of ground movement is applied. As observed from Figure 4-7 (a), the strain demand due 

to the axial soil force is tiny and the pipe stays elastic. The strain demand linearly increases with 

growth of the ground movement to its extreme value, i.e., 0.0023% for the tensile strain demand 

and -0.0023% for the compressive strain demand due to the yielding of axial soil springs. The 

induced pipe displacements are shown in Figure 4-7 (b), which indicates that the maximum 

displacement happens in the middle of the pipe and no lateral displacement is generated. The 

comparison indicates a very good agreement between the proposed method and the finite element 

method in terms of strain demands and pipe displacements. 

When the intersection angle is higher than 0° where the pipe is under the combined effect of 

axial and lateral soil forces, at small ground movements, the pipe is in the elastic stage in which 

the strain demand is smaller than the yield strain 
y , and the results derived from the proposed 

method are of great agreement with the results calculated by the simplified finite element model 

using one-dimensional beam elements. With the development of the ground movement, the pipe 

shows elastic-plastic behavior and the strain demand increases accordingly. In this stage, the strain 

demand and the displacement (e.g., at the ground movement of 1 m) predicted by the proposed 

method are in good agreement with finite element results, which indicates that the consideration 

of inelasticity in this study is correct and applicable in the proposed method. As the ground 

movement further grows, the soil spring proceeds to yield and the strain demand of the pipe reaches 

a constant level of around 2.5% for tension and 0.8% for compression. In addition, the effect of 

lateral soil springs is more prominent than that of axial soil springs since lateral soil springs impose 

greater force. The extreme value of strain demand occurs earlier with the increase of intersection 

angle, which implies that the pipe becomes more vulnerable at a greater intersection angle. At the 

same time, axial displacements are much lower than lateral displacements (see Figure 4-7 (d), (f), 

and (h)). To make a clear comparison, the pipe’s axial displacements are scaled up to 10 times in 

the plots. Generally, the comparison with FEM-based results indicates that the proposed method 

has a good predictive capability to capture the pipe’s response to the ground movement. 
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(a) Strain demand (β=0°) (b) Displacements (β=0°, δ = 0.01 m) 
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(c) Strain demand (β=30°) (d) Displacement (β=30°, δ = 1 m) 
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(e) Strain demand (β=60°) (f) Displacement (β=60°, δ = 1 m) 
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(g) Strain demand (β=90°) (h) Displacement (β=90°, δ = 1 m) 

Figure 4-7: Comparison between the proposed method and finite element method in terms of 

strain demand and pipe deformations for Case 1 

 

4.3.2 Case 2 

The same pipe considered as in Case 1 is studied in Case 2, but subjected to ground 

movement in the vertical plane. Specifically, for the transverse force, the ground movement is 

applied to the middle segment L2 in the vertical upward direction. The loads are characterized by 

the non-symmetric lateral soil forces from uplift soil springs and bearing soil springs (see 

properties summarized in Table 4-1). Other than different soil spring properties used here in Case 

2, the same finite difference models and finite element models as in Case 1 are developed to 

determine the strain demand and pipe displacement fields. 

The comparison of the results obtained using the proposed method and FEM for Case 2 are 

presented in Figure 4-8. The comparison demonstrates a fairly good agreement between the 

predications from the proposed method and finite element results. When the ground movement is 

not perpendicular to the pipe axis, with the increase of ground movement, the difference in the 

strain demand can be observed due to the two different algorithms of finite element method and 

finite difference method. In the finite element model, the load is applied incrementally and strains 

are calculated based on the deformed shape. Meanwhile, the ground displacement is exerted as a 

one-time load and strains are evaluated based on the undeformed pipes. When the ground 

movement is large, at the location near the connections of pipe segments where strain demands 
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occur, the pipe doesn’t deform as much as it does in the finite element model, which leads to a 

conservative strain demand. Under the non-symmetric soil forces in Case 2, the pipe reflects larger 

lateral displacements in the middle segment and its adjacent areas since the uplift soil force cannot 

present an equivalent strong force to resist the pipe displacement. The larger lateral pipe 

displacement causes greater stretch along the pipe, which leads to a larger axial pipe displacement. 
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(a) Strain demand (β = 30°) (b) Displacement (β = 30°, δ = 1.0 m) 
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(c) Strain demand (β = 60°) (d) Displacement (β = 60°, δ = 1.0 m) 
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(e) Strain demand (β = 90°) (f) Displacement (β = 90°, δ = 1.0 m) 

Figure 4-8: Comparison between the proposed method and finite element method in terms of 

strain demand and pipe deformations for Case 2 

 

To compare the computational efficiency of the proposed method and the finite element 

model in ABAQUS, computational time of each task in both Case 1 and Case 2 is recorded. Tasks 

are processed sequentially in both the proposed method and the finite element method in 

ABAQUS, and both calculations are conducted in a computer configurated by an Intel® Core™ 

i5-6500 CPU @3.20GHz and a memory of RAM 16 GB. Figure 4-9 shows the comparative results 

on the average calculation time with respect to different intersection angles in Case 1 and Case 2. 

It can be seen that the proposed method takes much less time than the corresponding finite element 

method in every task, which demonstrates that the proposed method outperforms the finite element 

method in efficiency for solving the one-dimensional beam problems. In addition, efficiency of 

the proposed method can be highly improved after employing the compiler in Numba library for 

Python, i.e., the average calculation time is around 0.5 second.  
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(a) Case 1 (b) Case 2 

Figure 4-9: Comparison between the proposed method and finite element method in terms of 

computational time for Case 1 and Case 2 

 

4.4 Comparison of the proposed method with existing analytical methods 

This section presents a case study of the classical problem of a pipe subjected to strike-slip 

faults, for which four existing analytical methods exist: the ones developed by Newmark and Hall 

[8] and Kennedy et al. [9] as written in the design guideline [29][30], the refined analytical method 

proposed by Karamitros et al. [12], and the closed-form solution developed by Sarvanis and 

Karamanos [18]. This allows to evaluate the applicability of the proposed method with comparison 

to those analytical methods; the finite element results are also presented as a reference. For this 

purpose, the pipe and the soil properties in Case 1 are considered. The total length of the pipe 

considered is 1,000 m, i.e., 500 m for the left and 500 m for the right segment. The tectonic fault 

movement is only exerted to the right pipe segment. The end node of the left pipe segment is fixed; 

for reasons of simplicity, the axial and lateral components decomposed by the fault displacement 

are applied as translations to the end node of the right pipe segment without rotation. The 

discretization size of the pipe in both the proposed method and the finite element model is 1 m. 

Note that the pipe is assumed to be subjected to the strike-slip fault where the ground movement 

is in the horizontal plane and thus the lateral soil resistance is symmetric.  

In this case study, three different strike-slip faults with pipe-fault intersection angles of β = 

30°, 60°, and 90° are considered, with different fault-related ground displacements (i.e., δ = 3 m 
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at maximum). Note that the model of Kennedy et al. [9] made use of Ramberg-Osgood stress-

strain curve where the strain   and corresponding stress   can be seen in Eq. (4-19). The fitted 

coefficients of X52 steel are α = 9 and r = 10. The difference from the bilinear elastoplastic 

behavior assumed in the proposed method is negligible. 

 1
1 yE r

 




   
= +    +    

 (4-19) 

The pipe is supposed to withstand the tension-dominated loading when the pipe-fault intersection 

angle is less than 90° [9]. Hence, the tensile strain demand, as the basis of pipeline design against 

this situation, is used for the evaluation of the proposed method and other different methods as 

illustrated in Figure 4-10. 

As observed, due to the assumptions associated with different analytical methods, their 

applicability ranges are different. Among the tested methods, a good overall agreement can be seen 

only between the predictions of the proposed method and finite element results. Additionally, by 

investigating the portion exceeding the pipe yield strain of 
y = 0.17%, it demonstrates that the 

proposed method is capable of predicting the inelastic behavior of the pipe. The ultimate state of 

the entire pipe-soil system due to the yielding of soil springs can be observed in Figure 4-10 (c) 

where the maximum strain demand stabilizes at about 2.4% when the fault displacement exceeds 

2 m. 

In contrast, the Newmark-Hall method shows the most conservative results. In the analysis 

of Newmark-Hall method, only the axial pipe-soil interaction is considered and the pipe near the 

fault zone deforms as a straight cable; neglection of the lateral pipe-soil interaction leads to 

conservative strain demands. The Newmark-Hall method gradually loses its workability with the 

increase of pipe-fault intersection angles where the bending effect gradually is pronounced. As 

seen from Figure 4-10 (c), the strain demand calculated by the Newmark-Hall method approaches 

zero. 

The Kennedy et al. method was developed to analyze the pipe’s behavior subjected to large 

fault displacement by assuming the pipe deforming like a flexible cable near the fault trace. This 

method seriously over-predicts the strain demand in the pipe for small fault displacements. The 
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trend of strain demand is reversed at intermediate levels of fault displacements. As expected, the 

Kennedy et al. method provides relatively accurate results in the region of large fault displacement 

which is the applicable range claimed in Kennedy et al. [9]. 

The refined model proposed by Karamitros et al. [12] introduces a number of improvements 

based upon the assumptions established in the existing analytical methods, which aims to achieve 

a wider range of applications. The comparative results in Figure 4-10 demonstrate that the 

Karamitros et al. method possesses the best predictability among the four analytical methods. 

However, it overestimates the strain demand at the larger fault displacements when the fault trace 

is perpendicular to the pipe (see Figure 4-10 (c)). The axial strain is neglected since the geometrical 

elongation of the pipe is zero in Karamitros et al. method so the bending strain is solely considered 

in the strain demand calculation. The obtained maximum bending strain almost linearly grows 

with the increase of the fault displacement. 

The closed-form expression in Sarvanis and Karamanos [18] was derived according to the 

assumed-shape function for pipe deformation under symmetric and non-symmetric soil resistance. 

The comparative results in Figure 4-10 demonstrate that the predicted strain demands calculated 

by this closed-form solution increase in a fairly linear manner with increasing fault displacements 

in all pipe-fault intersection angle cases. The calculated strain demand using the closed-form 

solution matches fairly well with the FEM results up to a certain critical displacement (around 1 

m). A similar phenomenon was observed for Case 2 as reported in [18] when the ground 

displacement is less than a critical fault value (i.e., 1.5 times the pipe diameter). When the fault 

displacement exceeds the critical value, results calculated by the closed-form solution show 

noticeable discrepancies from FEM results, which indicates that Sarvanis-Karamanos method is 

incapable of capturing the coupling effect due to the nonlinearities in pipe materials and soil 

springs. 
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(a) Pipe-fault intersection angle of 30° 
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(b) Pipe-fault intersection angle of 60° 
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(c) Pipe-fault intersection angle of 90° 

Figure 4-10: Comparison of the proposed method and four existing analytical methods as well as 

the finite element method in terms of tensile strain demand in a pipe subjected to strike-slip fault 

with different ground movement levels at different pipe-fault intersection angles 

 

4.5 Chapter conclusions 

A new method is developed to analyze pipes’ strain demand under permanent ground 

movements using the finite difference method, by extending the method proposed in Zheng et al. 

[32] to account for the inelastic behavior of the pipe material. To this end, the axial force and the 

bending moment in a pipe, as required in the finite difference equations, are derived as explicit 

functions of the deformations at each node after considering the stress distribution of the pipe 

cross-section based on the bilinear property of the stress-strain behavior and different strain 

distributions. Two indicative case studies of geohazards, including ground movement in the 

horizontal and vertical planes, respectively, are utilized to validate the proposed method against 

the finite element method. The comparison with finite element results has demonstrated that the 

proposed method has a great predictive capability for pipes’ strain demand and displacement fields 

when pipes are subjected to ground movements. Furthermore, based on the tensile strain demand 

prediction of pipes subjected to strike-slip fault displacements, the proposed method is compared 

with four existing analytical methods as well as the finite element method. It is demonstrated that 

the proposed method is applicable to a wider range of applications compared with the four 

analytical methods. The proposed method provides a unified approach to evaluate the pipe’s 

response to ground movements triggered by geohazards, such as landslides, ground heave and 

subsidence, tectonic fault, etc. The algorithm for the proposed method is straightforward and can 

be implemented in programming software packages without requiring solid expertise in structural 

mechanics. This method provides an alternative practical approach, which is acceptable for 

preliminary design, safety pre-screening, and extended studies such as reliability-based 

assessment.  

Note that the proposed method and the validation finite element model are on the basis of 

the one-dimension beam model, which cannot be applicable for solving the complex spatial 
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behavior of the pipe cross-section like local buckling. Detailed finite element analysis, i.e., full 3D 

models, is still necessary to investigate the pipe strength required for comprehensive analysis. 
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CHAPTER 5: RELIABILITY ASSESSMENT OF PIPES SUBJECTED TO GROUND 

DISPLACEMENTS BASED ON A NOVEL METHODOLOGY FOR 

STRAIN DEMAND PREDICTIONS 

 

This chapter is derived from the paper presented in a conference: 

Q. Zheng, W. Qiu, Y. Li, N. Yoosef-Ghodsi, M. Fowler, M. Kainat, S. Adeeb, Reliability 

assessment of pipes subjected to ground displacements based on a novel methodology for strain 

demand predictions, in: Technology for Future and Ageing Pipelines, Great Southern Press, Gent, 

2022. 

 

Abstract 

Long-distance pipelines are inevitably buried across geological zones potentially inducing 

permanent ground displacements. Under the effect of permanent ground displacements, the pipe 

material could potentially be subjected to large deleterious plastic strains that could precipitate 

failure. This paper aims to present a structural safety reliability assessment methodology for pipes 

subjected to ground displacements. To do this, a novel and comprehensive model for predicting 

the pipeline strain demand induced by ground displacements is proposed based on the finite 

difference method. A large set of nonlinear finite difference equations is established based on the 

nonlinear governing differential equations of the Euler-Bernoulli beam under the large deflections 

considering nonlinearities arising from geometrics, material response, and soil stiffness. The 

longitudinal strains along the pipe are then obtained solving the nonlinear equations. Subsequently, 

the strain-based limit state function can be established where the proposed model is built-in as the 

function for strain demand. For the sake of efficiency, the Weighted Monte Carlo simulation is 

employed to implement the reliability calculation, and the program is optimized by a 
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parallelization technique. The accuracy of the obtained probability of failure is validated 

comparing with the Monte Carlo simulation. The study indicates that the prediction model is a 

good alternative to calculate the pipes’ response to ground-induced movements for a rough 

estimation. Plus, the proposed reliability calculation method is reliable and efficient, which is 

appropriate for the preliminary safety evaluation for the design of new pipelines or for risk pre-

screening of existing pipelines. 

 

5.1 Introduction 

As a member in the lifeline infrastructure systems, pipelines play a vital role in the 

transmission of various gas and fluid substances. Generally, pipes are constructed underground to 

avoid the severe weather conditions, natural calamities, and several other forces that pipes may be 

exposed to when installed above ground. However, geohazards, e.g., geotechnical hazards 

including processes such as landslides, ground settlement and subsidence, and soil heave, and 

tectonic hazards like ground rupture and displacement, soil liquefaction, and lateral spreading, can 

potentially result in severe damage to underground structures. In general, the pipe is deformed due 

to the force exerted by the surrounding soils induced by ground displacements in geohazards. 

Therefore, investigations of the integrity and safety of pipelines buried in geohazard zones have 

witnessed growing interest among pipeline researchers and operators. 

There have been countless studies on pipes’ mechanical response to ground displacements 

since the pioneering study by Newmark and Hall [1] where an analytical model was introduced 

for calculating strains within a pipeline buried across a tectonic fault. This work [1] has been 

continued by various modifications [2][3] which aim to improve the applicability of the developed 

analytical models. Some published models [4][5][6][7][8] have been shown to be capable of 

predicting the pipes’ response with high accuracy. The rapid development of computer 

engineering, however, inspires alternate numerical approaches such as the finite element approach, 

which is the most commonly-used way to attain pipes’ response to external loads. A plethora of 

papers has appeared dealing with response analysis on buried pipes withstanding the ground 
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displacements based on finite element models. A wide range of models have been established 

towards different considerations on the element selection for the pipe, e.g., beam or shell elements 

[9], the constitutive modeling of soil, e.g., soil spring modeling [10] or solid-element soil modeling 

[11], the representation of pipe-soil interactions, e.g., resistance of soil springs [10] or contact 

surfaces specification [11], and the management on boundary conditions, e.g., actual or equivalent 

boundary conditions [12]. The experimental studies, usually conducted by small-scale tests based 

on the centrifuge machine [13][14], haven been performed to offer the validation data for the 

above-mentioned models.  

In the real word, uncertainties exist in almost all engineering applications. The uncertainties 

of designing parameters are usually described by random variables characterized by probability 

distributions, which lead to uncertain mechanical response in pipes that is to be solved by reliability 

analysis. The pipeline industry has recently shown a keen interest in reliability-based assessment 

methods. As for the pipeline buried in the geohazard zones, most researchers pay more attention 

to the risk against ground shaking induced by seismic wave [15][16][17], which can be categorized 

into the semiology dynamic domain. While the damage due to ground shaking is associated with 

lower damage rates compared to ground displacements that can be triggered by geohazards. Zhou 

[18] analyzed the pressurized pipes under the ground displacement induced by slope instability, 

and the strain demand is estimated based on the model proposed by Yoosef-Ghodsi et al. [19] 

which unfortunately is only applicable for pipes deforming in the longitudinal direction. Utilizing 

a probabilistic fault displacement hazard analysis, Zheng et al. [20] assessed the reliability of the 

pipeline buried across Bo-A fault in China where the strain demand in the limit state function was 

represented by the trained BP neural network as developed by Liu et al. [21]. Nevertheless, the 

collection of strain demand dataset was time-consuming based on a large number of calculations 

by Abaqus. 

This paper presents reliability assessment of pipes subjected to ground displacements due to 

geohazards. The strain demand, denoted by the maximum tensile and compressive strains along 

the pipe, is predicted by a novel and simple model proposed based on the finite difference method. 

The pipe is modelled as an Euler-Bernoulli beam, and a system of finite difference equations is 

constructed for each assigned node, in which the nonlinearity arising from the pipe material, 
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geometric deformation, and the pipe-soil contact are considered. The strain demand can be derived 

by solving the nonlinear system of equations. After validating the accuracy of the proposed method 

by finite element method using Abaqus, the developed strain demand model is employed as the 

function for strain demand in the limit state function, which is used in reliability analysis to 

describe the performance of the pipe. Subsequently, an innovative reliability method, Weighted 

Monte Carlo Simulation (WMCS) [22], is utilized to facilitate the reliability calculation for its high 

efficiency. It is worth noting that the code for strain demand prediction is parallelized for the loops 

in WMCS, which can highly enhance the calculation efficiency. The workability and applicability 

of the present reliability assessment is assessed based on study cases. The high computational 

efficiency makes it available for reference in the preliminary design and safety assessment of the 

pipe subjected to ground displacements. 

 

5.2 Strain demand prediction model based on finite difference 

The primary object of the model is to capture the pipes’ deformation with ground 

displacement triggered by geohazards, e.g., landslide, liquefaction-induced lateral spreading, soil 

settlement and heave, etc. The pipe’s deformation can be simply pictured as illustrated in Figure 

5-1. For the sake of simplicity, the present paper only discusses the situation that the pipe deforms 

in the horizontal plane, e.g., the x-y plane in Figure 5-1. But the methodology proposed can be 

certainly applicable to ground displacements in the vertical plane, e.g., the x-z plane in Figure 5-1. 
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Figure 5-1: Schematic representation of the pipe subjected to the ground displacement 

 

The finite difference method is widely used to solve (partial) differential equations. In the 

finite difference method, the continuum instance is replaced by the discrete nodes in the space of 

the instance, and a set of discrete equations, named finite difference equations, can be established 

towards those nodes to represent the status of the instance. The finite difference method is typically 

defined on a regular grid and this fact can be used for very efficient solution methods. In this study, 

the finite difference method is applied to the pipe which can be seen as a regular shaped instance 

in one dimension, and the finite difference equations are developed as functions of pipe 

displacements (the axial displacement u and lateral displacement v) of each node. 

 

5.2.1 Governing equations 

In the present paper, the pipeline is simulated as an Euler-Bernoulli beam considering large 

deformation. The governing equations are shown in Eq. (5-1) based on the sign conventions in 

Figure 5-2. 
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Figure 5-2: Euler-Bernoulli beam under deformation 
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 (5-1) 

where N and M are the axial internal force and internal bending moment on the cross section of 

the pipe respectively; u and w represent the axial and lateral deformation of the pipe respectively; 

f(u) and q(w) are externally distributed loads in the longitudinal and lateral directions.  

 

5.2.2 Representations of axial force N and bending moment M 

According to the assumption that “plane sections remain plane” in Euler-Bernoulli beam 

theory, the stress and strain distributions in the cross section can be depicted as shown in Figure 

5-3.  
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Figure 5-3: Strain and stress distribution on the cross section of the pipe 

 

The axial strain axial  is uniformly distributed on the pipe cross section, while the bending 

strain only accounts for the behavior induced by pure bending moment (Figure 5-3). The 

longitudinal strain z  is the summation of the axial and bending strain, and the stress distribution 

is given based on the stress-strain curve of the pipe material. In the present paper, the stress-strain 

curve is assumed to follow a bilinear relationship for pipe steel with the yielding stress 
y  

corresponding to the yielding strain 
y . The distance from the pipe top to the tensile yielding 

position is denoted as 
tyh , and the distance to the compressive yielding position is 

cyh .  

The expression of the longitudinal strain z  can be written as Eq. (5-2) based on the 

definition of the Lagrangian Green strain the large deformation theory (“Euler-Bernoulli beam 

theory”, 2021). 

 
21

2
z axial bending u w zw     = + = + +  (5-2) 

where z  denotes the position along the pipe cross section; ( )X   and ( )X   represent the first and 

second derivatives of X to the pipe axial direction.  

Hence, the strain in the extreme fibers, the strain at the top of the pipe 
top  and the strain at 

the bottom of the pipe bot  can be written as Eqs. (5-3) and (5-4) respectively. 
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top

OD
u w w

 
  = + +  

 
 (5-3) 

 
21

2 2
bot

OD
u w w

 
  = + −  

 
 (5-4) 

where OD is the outer diameter. 
tyh  and 

cyh  can be geometrically derived as Eqs. (5-5) and (5-6), 

respectively. 
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h OD

w

  

 
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2

top y y

cy

top bot

u w w OD
h OD

w

  

 

  + + + +
= =

−
 (5-6) 

It is worth noting that Figure 5-3 only shows the situation that the pipe top is in tension and 

the pipe bottom is in compression. To generally include all the potential schemes, two auxiliary 

variables 1H  and 2H  are used to represent the relative position of 
tyh  and 

cyh , which 

( )1 max ,ty cyH h h=  and ( )2 min ,ty cyH h h= . The corresponding intersection angles to 1  and 2  

can be defined as Eq. (5-7). 

 

1,2

1,2

1,2 1,2

1,2

0 , 0

2
arccos , 0

,

H

OD H
H OD

OD

H OD





 


− 
=    

 
 

 (5-7) 

Rewriting the equations of the strains in the cylinder coordinate, the strain   can be written 

as Eq. (5-8), and the corresponding stress   can be expressed as Eq. (5-9) considering the bilinear 

stress-strain relationship. 

 

2

cos
2 2

w OD
u w 

  
 = + +  

 
 (5-8) 
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 (5-9) 

where E is the Young’s modulus; hE  is the hardening modulus; I is the sign function indicating 

that the relative position between tensile yield point and compressive yield point, which is defined 

as ( )cy tyI sign h h= − . 

Based on the definition of internal force N and bending moment M, N and M can be derived 

as piecewise functions as Eqs. (5-10) to (5-13). 

When 0w = , 
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 0M =  (5-11) 

When 0w  , 
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 (5-13) 

where WT is the wall thickness of the pipe. 
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5.2.3 Interaction between pipe and soil 

This study adopts the soil springs recommended by ALA-2001 Guidelines [23] where the 

pipe-soil interactions are modeled as bilinear curves as shown in Figure 5-4. Tu, Pu, Qu and Qd  

respectively represent the soil spring resistances in the axial direction, the lateral direction, the 

vertical upward and the vertical downward directions in N/m, and t , p , uq and dq  are the 

corresponding displacements to Tu, Pu, Qu and Qd , in m. Those parameters can be calculated by 

the formulations given in ALA-2001 Guidelines based on the soil properties and burial information 

of the pipe. 

 

 

(a) Axial (b) Lateral (c) Vertical  

Figure 5-4: Soil spring properties in (a) axial, (b) lateral, and (c) vertical directions 

 

5.2.4 Calculation procedure for strain demand 

To solve the problem based on the finite difference method, the terms of derivatives in the 

governing equations, e.g., 
dN

dx
, 

2

2

d M

dx
, and ( )

d dw
N

dx dx
, should be written using finite differences. 

Since the internal force N and bending moment M are functions of u and w, the finite difference 

equations are composed of unknown of u and w of each node. The calculation flow is elaborated 

as follows: 

Step 1: meshing the pipe by defining nodes in the axial direction. 

Q

Qu

Qd

Δqu

Δqd q
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Step 2: assigning the initial guess (usually set as 0) of the pipe’s deformation at each node (ui and 

wi). 

Step 3: calculating derivatives of u and w based on finite difference method at each node (u′i, w′i 

and w′′i). 

Step 4: calculating the axial force N and bending moment M at each node (Ni and Mi). 

Step 5: representing the derivative items in the governing equation based on finite difference 

strategy at each node (N′i, M′′i and (Niw′i)′). 

Step 6: replacing the derivative items in the governing equation by those obtained in Step 4. 

Step 7: constructing the finite difference equations based on the formulations obtained in Step 6 

together with boundary conditions at each node (Eqi). 

Step 8: using a solver to get the convergent solutions of ui and wi. 

Step 9: calculating the longitudinal strain along the pipe based on Eq. (5-2), and recording the 

tensile strain demand t  (the maximum positive strain value) and the compressive strain 

demand c  (the minimum negative strain value). 

 

5.3 Reliability assessment 

5.3.1 Limit state functions 

As the basic format of the safety margin represented by the difference between the structural 

resistance and demand, the limit state function is established based on the strain as shown in Eq. 

(5-14). 

 
( ) ( )

( ) ( )

t rt t

c rc c

g x x

g x x

 

 

= −


= −

 (5-14) 

where tg  is the safety margin regarding tension; rt  and t  respectively denote the tensile strain 

capacity and demand. The formulation for the situation with respect to compression is in the same 

format, and the subscript “c” denotes the compressive strain. It should be mentioned that since the 

strain demands, t  and c , are calculated based on the model presented in section 5.2, so the t  

is always positive and c  is negative. In that case, the absolute sign is applied for the compressive 
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strain demand c  because strain capacity is employed as positive numbers in this study. Moreover, 

the pipe is considered to be in the safe domain when both tg  and cg  are simultaneously higher 

than 0, which defines a series-system reliability problem. Otherwise, the pipe is in the failure 

domain. 

 

5.3.2 Weighted Monte Carlo Simulation 

Monte Carlo Simulation is acknowledged as the most applicable method for reliability 

calculation, and it can give sufficiently reliable results by sampling the design space based on the 

full stochastic characterization of random variables. However, the Monte Carlo Simulation method 

requires a large number of samples to achieve an accurate result especially when the probability 

of failure (PoF) very small and therefore, in these situations the calculation will be inefficient. 

In this study, the Weighted Monte Carlo simulation is employed to overcome the inefficiency 

related to Monte Carlo Simulation. In this method, the weight indices of each sample are 

introduced and the expression of PoF is expressed as Eq. (5-15). Its accuracy and efficiency have 

been well validated through different benchmark problems [22], and it has been well practiced in 

Zheng et al. [24] to achieve PoFs of pipes in different limit states. 

 
1

1

( ) ( )
PoF

( )

m

ii

m

ii

I W

W

=

=

=




i i

i

x x

x
 (5-15) 

where ( )iI x  is the indicator function of the sample set i
x ; ( )iW

i
x  denotes the weight of the ith 

sample set, which is defined as the product of probabilities density function evaluated as the 

sampled value for each random variable; m represents the sample size. The background theory and 

computational scheme for this method are elaborated in Rashki et al. [22] and thus skipped in this 

paper.  
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5.3.3 Computational optimization 

Generally, implementing stochastic simulation using random samples within loops is 

supposed to be avoided as this will make the computation time-consuming. However, since the 

strain demand model developed in section 5.2 can only pass the result for one sample case at a 

time, it is inevitable to utilize loops for implementing the code of Monte Carlo simulation or 

Weighted Monte Carlo simulation. Solving a large size of nonlinear equations in the strain demand 

model is not a fast process compared with over-simplified analytical models, and therefore the 

reliability calculation will be prohibitively expensive for situations requiring a large number of 

samples. 

In this study, a computational optimization is employed to obtain the best performance from 

code. The code is parallelized based on the function of jit and njit in the Numba library for Python, 

which enables a Numba transformation pass that attempts to automatically parallelize and perform 

other optimizations on a function. This scheme can be well supported for explicit parallel loops, 

and thus is used for implementing the reliability calculation in this paper with highly improved 

efficiency. 

 

5.4 Case study 

This study concerns a 508-mm-diameter pipeline with wall thickness equal to 7.14 mm, 

subjected to the ground displacements in horizontal plane, with cohesionless soil conditions (see 

Figure 5-1). The middle span involved in the geohazard is set as 2L  = 10 m with 11 nodes, and the 

two segments connected to the middle span are determined as 1 3L L=  = 100 m with 51 nodes. The 

fixed boundary condition is applied to pipe ends. The pipe is made with X65 steel with a yield 

stress of 
y  = 450 MPa and the Young’s Modulus is E = 199 GPa. The ultimate strain and stress 

are respectively adopted as t  = 3% and t  = 663 MPa based on Vazouras et al. [25]. Since the 

pipe is under the load in the horizontal plane, the pipe-soil interaction in the vertical direction can 

be ignored. The axial soil spring resistance is set as uT  = 14 kN/m with a t  = 0.265 m, and the 

lateral soil spring is uP  = 204 kN/m with a p  = 0.029 m. A parametric study on the reliability is 
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performed with respect to different combinations of ground displacement d and pipe-ground 

intersection angle   (30°, 60° and 90°, see Figure 5-1). The tensile and compressive strain 

capacity are set as 2% and 1% respectively [26]. The statistical data of the random variables 

considered is tabulated in Table 5-1. 

 

Table 5-1: Stochastic properties of basic random variables 

Random Variable Distribution Unit Mean COV Source 

Pipe diameter Normal mm Dn 0.0006 Zimmerman et al. [27] 

Wall thickness Normal mm 1.01tn 0.01 Zimmerman et al. [27] 

Yield strength Normal MPa 1.10 SMYS 0.036 Jiao et al. [28] 

Tensile strength Normal MPa 1.12 SMTS 0.035 Jiao et al. [28] 

Young’s Modulus Normal MPa 2.10×105 0.04 Sotberg et al. [29] 

Note: Dn is the nominal diameter; tn is the nominal wall thickness; SMYS denotes the specified 

minimum yield strength; SMTS represents the specified minimum tensile strength. 

 

Figure 5-5 shows the comparison of the PoFs obtained based on the Monte Carlo simulation 

and the Weighted Monte Carlo simulation. It can be seen that the pipe is in the most vulnerable 

situation when the ground moves perpendicularly to its axis. The critical ground displacements at 

intersection angles 30°, 60°, and 90° are 1.19 m, 0.67 m, and 0.59m respectively. When the ground 

displacement approaches the critical value, the PoF increases abruptly. In addition, the results from 

Weighted Monte Carlo simulation are accurate compared with those obtained from the Monte 

Carlo simulation. Furthermore, the Weighted Monte Carlo can reach a lower level of PoF, e.g., 10-

6, 10-7, 10-8, based on its sample size 10,000. In that case, users can reach the precision with a 

smaller number of samples, which is supposed to use more samples based on the Monte Carlo 

simulation. Each case takes about 15 mins in a computer configurated by an Intel® Core™ i7-

8750H CPU @2.20GHz and a memory of 8 GB. 
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Figure 5-5: PoF versus ground displacements based on (a) Monte Carlo simulation and (b) 

Weighted Monte Carlo simulation 

 

5.5 Chapter conclusions 

This paper proposed a methodology to evaluate the reliability of pipes subjected to ground 

displacements where the strain demand is estimated based on a novel model developed based on 

finite difference method. Considering the nonlinearities arising from geometry due to large 

deformation, pipe material, and soil stiffness, the strain demand is obtained by solving a large set 

of nonlinear equations. An effective reliability analysis method, named Weighted Monte Carlo 

simulation, is utilized to facilitate the calculation of probabilities of failure (PoFs). The proposed 

approach is applied to an assumed study case where the parameters are given based on an example 

case study. For the studied case, the results show that the pipe is more vulnerable with the increase 

of the angle of intersection between the moving ground and the pipe longitudinal axis. The 

probability of failure rises sharply at the onset of the critical ground displacement. Moreover, the 

accuracy of the Weighted Monte Carlo simulation is validated in comparison with the Monte Carlo 

simulation, and a lower level of probability of failure can be reached with a smaller sample size, 

which demonstrates a higher efficiency of the strategy. The proposed method in the present paper 

is suitable for reliability estimation used for preliminary design and safety pre-screening. 
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CHAPTER 6: DEVELOPMENT OF AN ONLINE CALCULATION TOOL FOR 

SAFETY EVALUATION OF PIPES SUBJECTED TO GROUND 

MOVEMENTS 

 

This chapter is derived from the paper presented in a conference: 

Q. Zheng, W. Qiu, N. Ergezinger, Y. Li, N. Yoosef-Ghodsi, M. Fowler, S. Adeeb, Development 

of an online calculation tool for safety evaluation of pipes subjected to ground movements, in: 

International Pipeline Conference (IPC2022), American Society of Mechanical Engineers 

(ASME), Calgary, 2022, pp. V001T06A004. 

 

Abstract 

Underground pipelines are inevitably installed in unstable geohazard areas associated with 

the possible development of significant ground deformations. Under ground movement, excessive 

strains can be generated in the pipe wall, which poses a threat to pipeline integrity. This study aims 

to develop an industry-oriented calculation tool for safety evaluation of pipes subjected to ground 

movements induced by a variety of nature and construction-related hazards. The tool, comprised 

of deterministic and reliability-based analyses, is designed within MecSimCalc which is an 

innovative online platform for creating and sharing web-based Apps for individuals and groups. 

Calculation flow behind the tool is developed according to a novel method proposed based upon 

the finite difference method (FDM). Given grid nodes along the pipe, a large set of simultaneous 

finite-difference equations are constructed based on nonlinear governing differential equations of 

the Euler-Bernoulli beam under large deflections. The nonlinearities arising from pipe material, 

pipe-soil interaction, and geometry of the pipe are considered within the model. As unknowns of 

the finite-difference equations, the axial and lateral displacement of the pipe at each grid node can 



 

136 

 

 

be obtained using nonlinear equation solvers. This method is utilized to predict the strain demand 

in the limit state function for reliability-based assessment. Applying stochastic properties for each 

basic parameter, the probability of failure can be calculated using Monte Carlo Simulation. 

Meanwhile, the program is compiled using Numba in Python and then optimized by the 

parallelization technique to enhance computational efficiency. 

Keywords: pipeline; finite element method; finite difference method; geohazard; strain demand; 

reliability 

 

List of Symbols 

A = Cross-sectional area of pipes 

D = Outer diameter of pipes 

E = Young’s modulus 

Ep = Strain hardening slope 

I = Area moment of inertia 

Is = Signum function of hcy - hty 

M = Internal bending moment 

N = Internal axial force 

O = Imperfection of ovality 

Pint = Internal pressure 

Pu = Lateral soil resistance 

Qd = Vertical upward soil resistance 

Qu = Vertical downward soil resistance 

Tu = Axial soil resistance 

H1 = Lower value between hcy and hty 

H2 = Higher value between hcy and hty 

U = Axial ground movement 

V = Lateral ground movement 
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a = Flaw height 

c = Half of the flaw length 

e = Additional global strain 

f(·) = External longitudinal load per unit length of pipe 

g = Limit state function 

q(·) = External lateral load per unit length of pipe 

hcy = Vertical coordinate from the pipe top to the compressive yielding point  

hm = Girth weld high-low misalignment 

hty = Vertical coordinate from the pipe top to the tensile yielding point 

i = Identity of grid points 

n = Total number of grid points 

t = Wall thickness of pipes 

u = Axial displacement of pipes 

uEL = Pipe uniform elongation 

v = Lateral displacement of pipes 

z = Vertical position in the z-coordinate 

Δp = Yield displacement corresponding to Pu 

Δqd = Yield displacement corresponding to Qd 

Δqu = Yield displacement corresponding to Qu 

Δt = Yield displacement corresponding to Tu 

δA = Girth weld apparent CTOD toughness 

εaxial = Axial strain 

εbending = Component of longitudinal strain due to bending 

εbottom = Membrane longitudinal strain on the pipe bottom 

εl = Longitudinal strain 

εtop = Membrane longitudinal strain on the pipe top 

εy = Pipe yield strain 

εc
C = Compressive strain capacity 

εc
D = Compressive strain demand 

εt
C = Tensile strain capacity 

εt
D = Tensile strain demand 



 

138 

 

 

εc
buckle = Buckling strain capacity 

θ = Polar angle in the polar coordinate system 

σh = Hoop stress on the pipe 

σl = Longitudinal stress 

σu = Pipe ultimate tensile strength 

σy = Pipe yield stress 

σu
W = Weld metal tensile strength 

φ1 = Angle from the polar axis to tensile yield point 

φ2 = Angle from the polar axis to compressive yield point 

λseg = Interval distance between two adjacent grid points within a specific pipe 

segment  

Glossary of Terms 

CoV = Coefficient of Variation 

CVN = Charpy V-Notch Toughness 

FDM = Finite Difference Method 

FEM = Finite Element Method 

LB = Lower Bound 

PoF = Probability of Failure 

SD = Standard Deviation 

UP = Upper Bound 

 

6.1 Introduction 

As a critical member of infrastructural lifelines, pipelines fulfill a vital role in energy 

delivery; networks of large transmission pipelines are akin to energy highways. Pipelines are 

generally constructed underground and extend over vast distances transporting great amounts of 

crude oil and natural gas from often-remote locations to the populated areas where the products 

are needed. Due to natural restrictions, long-distance pipelines are inevitably buried across 

unstable geohazard areas. In Canada, pipelines are exposed to a wide range of geotechnical hazards 

(ground movement hazards), e.g., landslide, creep slope, frost heave, and thaw settlement [1]. 
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Under ground movement, the pipe material is potentially subjected to excessive strains that could 

precipitate failure, which may cause catastrophic consequences including environmental effects 

and disruptions to essential services for human needs. It is therefore imperative to conduct the 

safety evaluation on pipelines undergoing ground movements. 

To assess the pipeline fitness for service under the ground-induced displacement, the most 

commonly-used approach is to compare the resulting strain demand with the allowable strain 

capacity, which is a traditionally deterministic method. Two types of strain capacity, i.e., tensile 

and compressive strain capacity, are respectively investigated regarding tensile rupture at girth 

welds and local buckling. To date, multiple models have been developed and widely recognized 

by the pipeline industry, such as PRCI-CRES [2] and ExxonMobil [3] equations for estimating 

tensile strain capacities; UoA [4], C-FER [5], and CRES [6] equations for predicting compressive 

strain capacities. 

To obtain the strain demand induced by ground movements, generally, a sophisticated 

calculation based on analytical studies or numerical modeling is required with various 

considerations on the pipeline modelling, material nonlinearity, and characterization of pipe-soil 

interaction. Newmark and Hall [7] pioneered this study by introducing an analytical model where 

the pipe was simplified as a cable under a tectonic fault. This study has been further developed 

with various modifications, e.g., consideration of transverse soil loads [8], elaborate modelling of 

the pipe in different locations [9][10], and refinement of the pipe’s behavior near the fault trace 

[11], which aim to improve robustness and expand the applicable range of analytical models. Some 

published models, such as Karamitros et al. [12], Trifonov and Vladimir [13], Sarvanis [14], and 

Liu et al. [15], are capable of predicting strain demands with high accuracy against FEA. However, 

most of analytical models are implemented with complexity of algorithm programming especially 

for those where multiple enhancements are required for achieving more reliable results. Numerical 

simulations gradually become the alternative to analyze structural reactions to exerting loads with 

rapid development of computer engineering. Numerous models have been established based on 

finite element method (FEM). The existing models, typically, were constructed with three critical 

concerns: element selection for pipe, constitutive modeling of soil, and management of boundary 

conditions. Takada et al. [16] developed a hybrid model of pipes withstanding fault displacement 
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where shell and beam elements were respectively utilized to simulate pipe segments near and far 

from the fault trace, which was an inventive strategy to balance predictive resolution and 

computational efficiency. Gawande et al. [17] simulated the soil as solid blocks, and the force was 

transferred to the pipe through the surface contact between pipe and soil. To enhance 

computational efficiency, it is recommended to employ soil springs to represent the pipe-soil 

interaction [18]. Additionally, the model proposed by Liu et al. [19] considers equivalent boundary 

conditions for decreasing computational cost. For the same purpose, Liu et al. [19] reduced the 

length of pipe by proposing equivalent boundary conditions to replace the effect from the two pipe 

segments at the far ends. 

Reliability-based assessment recognizes explicitly the variability of both loads and 

resistances. It is an embodiment of probabilistic method. Provided that sufficient statistical data 

are available (usually provided by the industry-related codes or field inspections), structural 

adequacy can be quantified by reliability index or probability of failure (PoF), which is compared 

to the specific reliability target or allowable probability of failure. Reports of reliability-based 

assessment on pipes subjected to ground movements are scarce in the literature. Zhou [20] 

analyzed pressurized pipes under ground movement due to slope instability where the soil force 

was only applied to the longitudinal direction, and the strain demand was estimated based on the 

model proposed by Yoosef-Ghodsi et al. [21]. Utilizing a probabilistic fault displacement hazard 

analysis, Zheng et al. [22] assessed the reliability of the pipeline buried across Bo-A fault in China 

where the strain demand in the limit state function was described by a surrogate based on the 

trained back propagation neural network as developed by Liu et al. [23]. Nevertheless, the 

collection of strain demand datasets was time-consuming based on a large number of calculations 

by ABAQUS®. 

With its potentially wide range of applications, an integrated calculation tool would be highly 

welcomed by the pipeline industry. To the best of the authors’ knowledge, such tools or Apps 

specifically used for safety assessment of pipes buried across geohazard zones rarely exist in 

Canadian pipeline industry. To this end, this paper aims to bridge the gap by establishing the 

calculator-like tool to assess the safety of pipes subjected to ground movement incorporating both 

the deterministic and probabilistic analysis. Firstly, a novel strain demand prediction model is 
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developed using the finite difference method (FDM), which extends the research conducted by 

Zheng et al. [24] with further investigation on the pipe material nonlinearity. In the module of 

reliability-based assessment, the developed strain demand model is employed as the term of strain 

demand in the limit state function. Subsequently, the probability of failure is calculated using 

Monte Carlo Simulation. It is worth noting that computational techniques including parallelization 

and compiling are employed to optimize the calculation speed of developed programs. Finally, the 

developed programs are deployed on the platform of MecSimCalc [26] which is a website for 

creating and sharing online python Apps. 

 

6.2 FDM-based strain demand prediction model 

The general idea of the model development stems from the prior work performed by Zheng 

et al. [24] where the FDM is initially used to analyze pipes’ behavior under displacement-based 

loads. The primary function of this model is to predict the pipe’s response under ground movement. 

The generic layout of the deformed pipe is depicted in Figure 6-1 where the pipeline is buried 

across a geohazard where the middle segment is within moving ground such as a moving slope, 

landslide, or liquefaction-induced lateral spreading in which the induced ground movement is 

shown in the horizontal plane. But one should bear in mind that the proposed method is applicable 

to a wide range of geohazards, such as geotechnical activities of general soil settlement, frost heave 

and thaw settlement in which the displacement happens in the vertical plane, and tectonic faults 

where only one ground discontinuity is considered.  

FDM is widely used for approximating solutions to differential equations. Specifically, it 

finds a function (or some discrete approximation to this function) that satisfies a given relationship 

between derivatives on some given region of space and/or time, along with boundary conditions 

at the edges of this domain [25]. Generally, when there is a complicated problem and an analytic 

formula cannot be found for the solution, FDM can proceed by replacing the derivatives in the 

differential equations with finite difference approximations. This generates a large system of 

algebraic equations to be solved in lieu of the differential equation. The algebraic system of 

equations can be solved by programming on a computer. For the application in engineering, FDM 
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is usually used in the problem with regular-shaped objects where node assignment and governing 

equations should not be too complex. 

 

 

Figure 6-1: Schematic representation of the pipe subjected to ground displacement 

 

6.2.1 Overview of the model in Zheng et al. [24] 

This paper carries on the methodology developed by Zheng et al. [24] with further studying 

steel pipes subject to inelastic strains. To facilitate readers’ understanding, a brief outline of the 

method in Zheng et al. [24] is described below. 

 

(1) Governing equation 

The pipe under consideration in the study is simplified as an Euler-Bernoulli Beam under 

the distributed load exerted by the surrounding soil. Assuming the pipe is deformed in a two-

dimensional plane, the governing equation can be written as Eq. (6-1) considering the sign 

conventions in Figure 6-2. 
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Figure 6-2: Euler-Bernoulli beam under deformation 
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 (6-1) 

 

(2) Pipe-Soil Interaction 

The pipe-soil interaction, i.e., f(x) and q(x) in Eq. (6-1) representing external forces, are 

modelled by soil springs. The soil force per unit length and the relative displacement between the 

pipe and soil follow an elastic-perfectly plastic relationship (see Figure 6-3) where the soil 

resistance (Tu, Pu, Qu, and Qd) and corresponding yield displacement (Δt, Δp, Δqu, and Δqd) can be 

calculated based on the recommended equations in a guideline released by PRCI [18]. 

 

 

(a) Axial (b) Lateral (c) Vertical  

Q

Qu

Qd

Δqu

Δqd q
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Figure 6-3: Soil spring properties in three principal directions 

 

(3) Application of FDM 

To solve the problem based on FDM, the derivative terms in the governing equations, i.e., 

dN

dx
, 

2

2

d M

dx
, and ( )

d dv
N

dx dx
, should be rewritten as functions of u and v using finite differences. 

Since only the elastic stage is focused, the internal axial force N and bending moment M can be 

derived as Eqs. (6-2) and (6-3) respectively. 

 
21

2
N EA u v

 
 = + 

 
 (6-2) 

 M EIv=  (6-3) 

Substituting Eqs. (6-2) and (6-3) into the governing equation (Eq. (6-1)), and surrogating the 

pipe-soil interaction (f(x) and q(x)) by soil force properties, a finite-difference equation set can be 

obtained as Eq. (6-4) with boundary conditions of two fixed ends. 

 

( )

( ) ( )

( )

2

1 1 1

( ) 0

1
( ) 0   

2

0

1,2, , 1,

i i i i i

i i i i i i i i i

n n n

EA u v v f U u

EIv EA u v v v u v v q V v

u u v v v v

i n n

  + + − =

  

       − + + + − − =  
 

  = = = = = =

= −

 (6-4) 

Assigning grid points along the pipe and applying the central finite difference for derivatives, 

i.e., u , u , v , v , and v  in Eq. (6-4), a large set of simultaneous finite-difference equations 

can be established with unknowns of axial and lateral pipe displacement (u and v) at predefined 

gird points along the pipe. Essentially, the problem of solving the differential equations is 

transformed into a problem of solving a set of nonlinear equations, which can be carried out using 

a nonlinear equation solver. Subsequently, the strain demand at extreme fibers can be calculated 

based on the obtained nodal values of u and v, thus the strain demand (the maximum strain along 

the pipe) can be attained.  
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6.2.2 Consideration of Material Nonlinearity 

The above-mentioned procedure focuses on elastic behavior. However, under large ground 

movements, the stresses in steel pipes frequently exceed the yielding point and experience material 

nonlinearity. This study addresses the major limitation in Zheng et al. [24] by introducing the 

explicit expressions of axial force N and bending moment M. The stress-strain relationship is 

described as a bilinear curve. Considering whether the bending effect exists, the strain and stress 

distribution along the pipe cross-section can be generalized into two scenarios indicated in Figure 

6-4 according to the basic assumption of “plane sections remain plane”. Hence, the longitudinal 

strain εl can be written as the summation of the axial strain εaxial and component of longitudinal 

strain caused by bending εbending (see Eq. (6-5)). 

 

2

2
l axial bending

v
u v z  

 
 = + = + − 

 
 (6-5) 

 

 

(a) Strain and stress distribution without bending effect 
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(b) Strain and stress distribution with bending effect 

Figure 6-4: Longitudinal strain and stress distribution on the pipe cross-section 

 

It is noteworthy that, in the study, the pipe is in uniaxial stress state in the longitudinal 

direction under ground displacement. In case of pressurized pipes where hoop stress should be 

considered, the plasticity framework should be applied to describe the mechanical behavior. This 

is beyond the scope of this paper and will be addressed in a future publication. 

(1) Scenario 1 

The bending action does not exist in Scenario 1, which indicates that 0v =  and M = 0. 

According to the definition of axial force, the expression of axial force N can be derived as Eq. 

(6-6). 
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  (6-6) 

(2) Scenario 2 

When bending effect exists, the stress cannot be evenly distributed like in Scenario 1 

especially when the pipe material plastifies. In Figure 6-4 (b), plastic areas in the pipe cross-section 

due to tension and compression are respectively shaded in red and blue. In addition, two variables, 
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hty and hcy, are introduced to distinguish the elastic area and plastic areas of tension and 

compression. It is noteworthy that Figure 6-4 (b) only shows a unique pattern of strain and stress 

distribution when plasticity happens in both tensile and compressive areas. Therefore, to generalize 

all possible cases, two auxiliary variables H1 and H2 (see Eqs. (6-11) and (6-12)) are employed to 

denote the lower and higher values between hty and hcy with two corresponding angles φ1 and φ2 

depicted on the pipe cross-section (φ1 < φ2 because H1 < H2), respectively. Using the membrane 

strain on the pipe top εtop and bottom εbottom defined in Eqs. (6-7) and (6-8), the above-mentioned 

variables can be derived as Eqs. (6-9) to (6-13) in accordance with the geometric relationship. 

 

2

2 2
top

v D
u v

  
 = + −  

 
 (6-7) 

 

2

2 2
bottom

v D
u v

  
 = + +  

 
 (6-8) 

 

22 2

2

top y y

ty

top bot

u v v D
h D

v

  

 

  − + + −
= =

− −
 (6-9) 

 

22 2

2

top y y

cy

top bot

u v v D
h D

v

  

 

  + + + +
= =

− −
 (6-10) 

 ( )1 min ,ty cyH h h=  (6-11) 
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Transformed into the polar coordinate system, the longitudinal strain εl (in the rectangular 

coordinate system) can be rearranged as εθ shown in Eq. (6-14). The stress distribution can be 

therefore written as Eq. (6-15) based on the bilinear property of the stress-strain relationship where 

sI  is the signum function (see Eq. (6-16)) to indicate the relative position between tensile yield 

point and the compressive yield point. 
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 ( )s cy tyI sign h h= −  (6-16) 

According to the definition of internal axial force and bending moment, the expressions of 

N and M are respectively derived as Eqs. (6-17) and (6-18). 
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Assigning n grid points in total and assuming they are equally-spaced in each concerned 

span, the finite-difference equation set can be rearranged as functions of the unknown nodal values 

of u and v with respect to each grid point as shown in Eq. (6-19) where N and M can be calculated 

by Eqs. (6-17) and (6-18) respectively. Subsequently, this simultaneous finite-difference equation 

set can be solved according to the procedure in Zheng et al. [24]. 
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6.3 Reliability-based assessment 

6.3.1 Limit state function 

In this study, failures of pipes due to tension and compression are considered individually, 

and the final limit state function is governed by the lower safety margin induced by the tensile 

strain and compressive strain. The formula of limit state function is given as Eq. (6-20) where the 

superscript “C” and “D” respectively denote the strain capacity and strain demand, and the 

subscript “t” and “c” are used to differentiate tensile strain and compressive strain. The pipe is in 

the safe domain when g(x) is higher than 0; otherwise, the pipe is in the failure domain.  

 ( ) ( ) ( ) ( ) ( )( )min ,  C D C D

t t c cg x x x x x   = − −  (6-20) 

 

6.3.2 Strain capacity 

In the limit state function, the strain demand is calculated using the established prediction 

model in section 6.2. Generally, it is considered that the tensile strain capacity is much lower at 

girth welds than that of the pipe body. In addition, given the high ductility at the pipe body, tensile 

overload at the pipe body is not expected. Hence, the tensile failure is expected to occur at a girth 

weld. In this paper, the tensile strain capacity is estimated by the model developed by PRCI-CRES 

with the coefficients related to the flux-cored arc welding [2]. 

Local wall buckle can be potentially induced under sufficient compressive strain. When the 

buckle occurs and ground movement continues, the pipe may crack at the buckle location resulting 
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in a leak. The buckle strain capacity of the pipe at each crossing is calculated using UoA equation 

[4]. However, the formation of buckle is a serviceability limit state. The ultimate limit state is 

considered that the circumferential crack is formed at the buckle. In this paper, the ultimate 

compressive strain capacity is assumed as the summation of the buckle strain capacity and an 

additional global compressive strain which is uniformly distributed between 2% to 3%. The basic 

concept here is that the loss of containment occurs as a result of excessive local pipe wall 

deformation following the local buckling initiation. The compressive strain causing loss of 

containment is not well characterized in the industry and is an area of active research. The above 

scheme is considered to be conservative and is based on the authors’ experience with experimental 

and field buckles. 

(1) Tensile strain capacity: PRCI-CRES model 

The PRCI-CRES equation is given as the function of normalized geometric and material 

parameters which are listed in Table 6-1.  

 

Table 6-1: Normalized parameters in PRCI-CRES model 

Parameter Definition 

fp = σh/ σy Pressure factor 

β = 2c/t Normalized flaw length 

φ = σu
W/σu Weld metal strength mismatch ratio 

η = a/t Normalized flaw depth 

ψ = hm/t Normalized weld high-low misalignment 

ξ = σy / σu Base metal Y/T ratio 

 

The tensile strain capacity is calculated based on the empirical equation given as Eq. (6-21). 

 ( )min , ( ) ( )C

t p puEL P f G t =  (6-21) 

P(fp) and G(t) respectively characterize the effect of internal pressure and wall thickness 

which are calculated according to Eqs. (6-22) and (6-23). 
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Function of εp in Eq. (6-21) is shown in Eq. (6-24) where the equation of F(δA) is shown in 

Eq. (6-25). 
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For flux-cored arc welding, the parameters A, B, C, and D in Eqs. (6-24) and (6-25) should 

be computed according to Eqs. (6-26) to (6-29) where the coefficients are organized in  

Table 6-2. 
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Table 6-2: Coefficients in Eqs. (6-26) to (6-29) 

Parameter Value Parameters Value 

a1 9.281×10-1 b1 -5.578×10-2 

a2 9.573×10-2 b2 1.112×10-2 

a3 -5.053×10-1 b3 -1.735×10-1 

a4 3.718×10-1 b4 1.675 

a5 -2.023 b5 2.603×10-1 
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a6 7.585×10-1 b6 1.106 

a7 6.299×10-1 b7 -1.073 

a8 5.168×10-1 b8 -1.519 

a9 7.168×10-1 b9 1.965 

a10 -9.815×10-1   

a11 2.909×10-1   

a12 -3.141×10-1   

c1 1.609 d1 6.822×10-3 

c2 1.138×10-1 d2 1.014 

c3 6.729×10-1 d3 1.746 

c4 2.357 d4 2.378 

c5 1.057 d5 9.434×10-1 

c6 -4.444 d6 -1.243 

c7 1.727×10-2 d7 3.579×101 

c8 -1.354×10-2 d8 7.500 

c9 -1.224×10-2 d9 6.294×101 

c10 8.128 d10 -6.930 

c11 2.007×10-1   

c12 -1.594   

 

(2) Compressive strain capacity: UoA model 

UoA model was reported by PRCI to be the most representative of actual compressive strain 

capacity based on full-scale buckling tests [6]. The equation of buckle strain capacity is described 

in Eq. (6-30).  

 
( ) ( )( )
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As defined before, the strain capacity for ultimate limit state used in this study can be 

expressed as Eq. (6-31) where e is an additive error yielding uniform distribution with bounds of 

[0.02, 0.03]. 

 
C buckle

c c e = +  (6-31) 

 

6.3.3 Computational optimization 

Monte Carlo Simulation is recognized as the most applicable method for reliability 

calculation when limit state function evaluations are not computationally intensive, and it can give 

sufficiently reliable results by sampling the design space based on the full stochastic 

characterization of random variables.  

Generally, implementing stochastic simulation using random samples within loops is 

expected to be avoided as this will make the computation time-consuming. However, since the 

strain demand prediction model developed in section 6.2 can only pass results of one sample case 

at a time, it is inevitable to utilize loops for implementing the code of Monte Carlo Simulation. In 

addition, solving a large size of nonlinear equations in the strain demand model is not a fast 

practice, and therefore the reliability calculation will be prohibitively expensive for situations 

requiring a large number of samples. 

In this study, computational optimization is employed to achieve the best performance of the 

code implemented in Python. Firstly, the code is compiled based on the function of jit and njit in 

the Numba library for Python, which enables the functions in Python to optimize machine code at 

runtime to accelerate the running speed. Secondly, parallel programming is utilized for each loop 

calculation, which means multiple sample cases generated by the stochastic simulation can be 

computed at the same time. This scheme can be well supported for explicit parallel loops, and thus 

is used for implementing the reliability calculation in this research with highly improved 

efficiency. 
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6.4 Establishment of calculation tool 

Based upon the established methodology of this study, the tool for estimating safety of pipes 

subjected to geohazard-induced ground movements is created under the platform of MecSimCalc 

[26]. MecSimCalc is a website that enables building and sharing computational tools or Apps using 

Python on the web. 

 

6.4.1 Tool for strain demand evaluation 

To evaluate safety of pipes in a deterministic way, the pipe capacity is seen as a threshold 

under the allowable load. However, that is not included in the tool established in MecSimCalc at 

present since safety inspectors or pipeline operators would have different determinations on the 

strain capacity. For a deterministic evaluation, a tool is designed for strain demand prediction 

under MecSimCalc [27]. Three segments of pipes are considered in the model where only the 

middle section is subjected to ground movement as pictured in Figure 6-1. Two ends of the pipeline 

are fixed. Length of the middle segment is the span of the pipeline buried across the geohazard 

zone, which is usually determined by geotechnical investigators. Length of the two side pipe 

segments should be properly decided to balance computational efficiency and result accuracy. 

Based on the proposed model in section 6.2, the tool is developed for predicting the response of 

the straight pipe under uniformly distributed ground movement where the spatial variability of soil 

is not considered. Effects of internal pressure and temperature change are not accounted for in the 

study. It is acceptable to use this tool for quick and crude estimation. But one should keep in mind 

that a detailed finite element analysis is necessary for rigorous investigations. 

For instance, given the necessary inputs listed in Table 6-3, the output of the case is shown 

in Figure 6-5 including the basic information of the calculation, e.g., strain demand and the 

corresponding location, and the displacement of the pipe after deformation and the strain along the 

pipe. The convergence condition is also reported to users to identify if the results are acceptable.  

 

Table 6-3: Inputs of the study case in section 6.4.1 
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Parameter Value Unit 

Outer diameter 508 mm 

Wall thickness 7.14 mm 

Young’s modulus 210000 MPa 

Yield strength 450 MPa 

Ultimate strength 663 MPa 

Ultimate strain 0.03 - 

Ground displacement 0.1 m 

Intersection angle 60 ° 

Axial soil spring resistance 14 kN/m 

Yield displacement of axial soil spring 5 mm 

Lateral soil spring resistance 204 kN/m 

Yield displacement of lateral soil spring 46 mm 

Length of the left pipe segment 100 m 

Length of the middle pipe segment 10 m 

Length of the right pipe segment 100 m 

Number of nodes in left pipe segment 51 - 

Number of nodes in middle pipe segment 21 - 

Number of nodes in left pipe segment 51 - 

 

 

(a) Strain demands and corresponding locations 
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(b) Figures of pipe displacement and strain distribution 

Figure 6-5: Outputs of the tool for strain demand prediction 

 

6.4.2 Tool for reliability-based assessment 

Two types of geohazards, i.e., steady-state creep and sudden mass landslide, are specifically 

considered in the reliability-based assessment as they are of great concern to the pipeline industry 

in Canada. Steady-state creep movement (hereafter referred to as slope creep) is what most 

commonly occurs at pipeline slope crossings whereby slope movements occur at relatively slow 

rates; sudden mass landslide (hereafter referred to as landslide) is the condition whereby the 

ground suddenly moves by a large magnitude. Therefore, in the calculation, ground movement is 

the summation of initial movement and the accumulated movement in the re-inspection interval.  

Monte Carlo Simulation is employed for the reliability calculation where uncertainties of 

both strain capacity and demand are incorporated. The random properties of pipe geometries are 

given in Table 6-4 according to Annex O of CSA Z662. For the convenience of users, some 

parameters are set as choices according to industrial codes or experimental data. To be specific, 

the pipe material-related variables, such as yield strength, ultimate strength, uniform strain, and 
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CTOD toughness, are all credited to the input of pipe grade and vintage, which can be seen in 

Table 6-5. The yield and tensile strength distributions are mainly based on the distributions 

proposed in the Annex O of CSA Z662 as well. Toughness distributions for different pipe grades 

and vintages are not well characterized in the industry at this point, and this remains an area of 

active research. The CTOD distributions in Table 6-5 are example distributions based on tentative 

CVN values and conversion to CTOD relationships. Young’s modulus is set as a constant, and the 

ratio of strain hardening slope to young’s modulus is 0.03, 0.02, and 0.01 for pipes manufactured 

before 1980, during 1980 to 1990, and after 1990, respectively. 

The soil spring resistances are inputs by users, but the yielding displacements are 

summarized in the soil class including six types, which are categorized into sand and clay in the 

background calculation. The definition of each soil class and category are tabulated in Table 6-6. 

Based on the geotechnical observations on the slope sites in Canada, the stochastic data for slope 

creep and mass landslide can be determined as Table 6-7, which shows the threshold of ground 

movements. The distributions in the table were established based on the input provided by 

geotechnical experts. The material flaws and imperfection distributions (see Table 6-8), which are 

used in the strain capacity models, are tentative distributions used here as a reasonable example 

based on field experience. 

 

Table 6-4: Stochastic properties of pipe geometries 

Parameter Distribution Mean CoV Unit 

Diameter Normal Nominal 0.0017 mm 

Wall thickness Normal Nominal 0.0235 mm 

 

Table 6-5: Stochastic properties of material tensile properties 

(a) Yield strength 

Grade 
Yield strength Ultimate strength 

Distribution Mean SD Unit Distribution Mean SD Unit 

X42 Normal 319 11 MPa Normal 463 6 MPa 

X46 Normal 352 12 MPa Normal 483 6 MPa 
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X48 Normal 364 13 MPa Normal 487 6 MPa 

X52 > 19801 Normal 393 19 MPa Normal 555 4 MPa 

X52 <= 19802 Normal 387 22 MPa Normal 548 14 MPa 

X56 Normal 425 15 MPa Normal 548 7 MPa 

X60 Normal 459 16 MPa Normal 582 8 MPa 

X65 Normal 483 16 MPa Normal 599 8 MPa 

X70 Normal 531 19 MPa Normal 638 8 MPa 

Note: 
1 X52 pipe manufactured after the year 1980; 2 X52 pipe manufactured before or in the year 

1980. 

 

(b) CTOD toughness 

Year Grade Distribution Mean SD Unit 

> 1980 X42 Normal 0.12 11 mm 

 X46 Normal 0.15 12 mm 

 X48 Normal 0.16 13 mm 

 X52 Normal 0.17 19 mm 

 X56 Normal 0.16 15 mm 

 X60 Normal 0.16 16 mm 

 X65 Normal 0.18 16 mm 

 X70 Normal 0.18 19 mm 

<= 1980 X42 Lognormal 0.08 0.05 mm 

 X46 Lognormal 0.10 0.06 mm 

 X48 Lognormal 0.10 0.06 mm 

 X52 Lognormal 0.11 0.07 mm 

 X56 Lognormal 0.10 0.06 mm 

 X60 Lognormal 0.10 0.06 mm 

 X65 Lognormal 0.11 0.07 mm 

 X70 Lognormal 0.12 0.07 mm 
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Table 6-6: Description of soil class  

Soil class Soil description Soil category 

CL Clay till Clay 

CL-CI Fine sand, silt, clay Clay 

CH Inorganic clay Clay 

CI Lean clay Clay 

ML Silt, and fine sand Sand 

SM Fine sand, and silt Sand 

 

Table 6-7: Stochastic properties of ground movement 

Parameter Distribution Mean/Mode SD LB UB Unit 

Initial movement for creep Uniform - - 200 400 mm 

Slope creep rate Lognormal 12.50 6.25 - - mm/yr 

Landslide movement Triangular 800 - 300 4000 mm 

 

Table 6-8: Stochastic properties of girth weld flaws 

Parameter Distribution Mean/Mode SD LB UB Unit 

Flaw length Lognormal 15 6.00 - - mm 

Flaw height Lognormal 1.00 0.40 - - mm 

Misalignment Triangular 0.1 - 0 1.43 mm 

Overmatch ratio Uniform -  1.00 1.30 - 

Ovality Triangular 0.08 - 0.07 1.07 %t 

 

A study case is implemented based on the established tool in MecSimCalc [28] which allows 

users to input the variables in Table 6-9. The length of the pipe segment in the two ends is two 

times the length of the middle segment. To demonstrate, a reliability calculation is implemented 

based on small number of runs (100 simulations) due to the limited memory in MecSimCalc 

currently. The output of reliability-based assessment is shown in Figure 6-6 which indicates that 

the PoF of this study case is 0.02. 
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Table 6-9: The study case in section 6.4.2 

Parameter Value Unit 

Outer diameter 559 mm 

Wall thickness 7.14 mm 

Pipe grade X46 - 

Young’s modulus 210000 MPa 

Year of mill run 1952  

Re-inspection interval 9 yrs 

Length of slope 34 m 

Pipe crossing angle 70 ° 

Soil class ML - 

Axial soil spring resistance 14 kN/m 

Lateral soil spring resistance 170 kN/m 

Type of geohazard Slope creep - 

 

 

Figure 6-6: Output of reliability calculation 

 

6.5 Chapter conclusions 

This study proposes calculator-like tools for safety evaluation of pipelines subjected to 

ground movements based on the finite difference method. Compared with implementing through 

the finite element method, the tools are more convenient as the process of modelling is eliminated. 

Furthermore, the efficiency of Monte Carlo Simulation is highly improved by employing the 

proposed FDM-based strain demand prediction method within the loops for reliability calculation. 
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This is a good alternative for crude estimations and appropriate to be used in industry for 

preliminary design and safety pre-screening. 
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CHAPTER 7: PROBABILISTIC ANALYSIS OF PIPELINES BURIED THROUGH 

GEOHAZARD-PRONE ZONES BASED ON A NOVEL APPROACH 

 

This chapter is derived from the paper in preparation: 

Q. Zheng, I. Allouche, W. Qiu, Y. Li, N. Yoosef-Ghodsi, M. Fowler, S. Adeeb, Probabilistic 

Analysis of Pipelines Buried Through Geohazard-Prone Zones based on a Novel Approach, 

Journal of Pipeline Systems Engineering and Practice. 

 

Abstract 

This paper presents a novel approach for probabilistic analysis of pipelines buried through 

geohazard-prone areas which induce permanent ground movements potentially. In this approach, 

an easy-to-implement response prediction tool based on the finite difference method is integrated 

with simple but robust Monte Carlo simulation methods. The probability of strain capacity 

exceedance is calculated when a pipeline is subjected to the ground movement of different 

magnitudes. In the strain-based limit state function, the strain capacity is determined using existing 

equations in the literature, and the strain demand is calculated using an accurate and efficient tool 

based on the finite difference method. After obtaining the conditional probabilities of failure of 

pipes at given magnitudes of ground movement, the probability of failure of pipes as a function of 

time is also calculated considering the probability of ground movement initiation. The proposed 

approach is demonstrated through a case study of pipelines subjected to landslides 

Keywords: reliability; pipeline; strain demand; ground movement; finite difference method; 

Monte Carlo method 
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7.1 Introduction 

As an essential part of the lifeline infrastructure systems, pipelines play a vital role in the 

transmission of various gas and fluid substances. Generally, pipes are constructed underground to 

avoid severe weather conditions, natural disasters, and several other loads that pipes may be 

exposed to when installed above ground. However, geohazard-related pipeline failures, which are 

dominated by landslides, are one of the major concerns in North America [1]. In general, the pipe 

is deformed due to the force exerted by the surrounding soils induced by ground displacements in 

geohazards. Therefore, integrity and safety of pipelines buried in geohazard zones have witnessed 

a growing interest among pipeline researchers and operators.  

Geohazard-related pipeline failures are typically associated with higher consequences. 

Increasingly, risk-based assessment is employed for proactive management by prudent operators 

to optimize the maintenance strategies of the pipes under geohazard-prone zones. For a pipe buried 

across geohazard-prone areas, the risk can be expressed quantitatively as the product of the annual 

probability of hazard occurrence, vulnerability of the pipe which determines the effect of the 

ground movement on the pipeline integrity, and the consequence associated with the ground 

movement occurrence. The vulnerability, recognized as the probability of failure (PoF), is 

frequently estimated in a simplified manner based on expert judgement supported by historical 

data and empirical relations [2][3][4][5]. However, the results are subjected to substantial 

uncertainties. Rigorous probabilistic analysis is more recognized for higher accuracy. To calculate 

the PoF, e.g., the probability of capacity exceedance by the strain demand imposed by geohazard, 

a computationally efficient and reliable model is required to calculate the strain demand.  

To date, a variety of models have been developed to analyze pipes’ behavior and strain 

demand underground movements. The analytical works pioneered by Newmark and Hall [6] and 

Kennedy et al. [7] respectively focused on the pipe response in longitudinal and lateral directions 

under fault displacements. However, the ignorance of lateral soil force in [6] and exaggerated 

curvature of deformed pipe in [7] sacrificed the accuracy of resultant strain demands. This model 

was further refined by Wang and Yeh [8][9] in which the pipe segments near the fault behaved 

like circular arcs, and the segments far from the fault were modeled as beams-on-elastic 

foundations. In recent decades, analytical models were devoted to improving the accuracy of 
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models mentioned above. Some representative studies, such as Karamitros et al. [10], Trifonov 

and Cherniy [11], and Liu et al. [12], had developed models, which are capable of predicting the 

pipes’ response to fault displacement with relatively high accuracy when only one ground 

discontinuity is required for analyzing pipeline subjected to tectonic faults  

As for some other geohazards, such as landslides, subsidence, and liquefaction-induced 

lateral spreading, where the pipes’ behavior is significantly influenced by the length of geohazard 

zone, two ground discontinuities at either side of the geohazard interface should be concerned. 

Typically for landslides, the pipes’ response to transverse and longitudinal ground displacements 

was examined in an approximate manner by O’Rourke et al. [13][14]. In the scenario of transverse 

ground movements (ground movement perpendicular to the pipeline axis), the pipeline was 

characterized as either a flexure pipe (modeled as a cable) closely following the ground movement 

or a stiff pipe (modeled as a fixed-fixed beam) which allowed the soil to flow over and around the 

pipeline [13]. The critical length of landslide span between the flexible pipe and stiff pipe was 

estimated based upon local buckling stress capacity. Similarly, pipes subjected to longitudinal 

displacement were classified as the “compliant pipe” and the “noncompliant pipe” based on the 

pipe’s response to the landslide [14]. The “compliant pipe” literally denoted the pipes conforming 

to the imposed soil deformation, so the pipe displacement was essentially identical to the 

magnitude of ground movement which was, on the contrary, substantially higher than the 

displacement of “noncompliant pipe”. In the analytical models developed by O’Rourke et al. 

[13][14], the length of landslide zones and the magnitude of ground movements were crucial 

factors for determining the performance of the pipe. In view of this, Liu et al. [15] proposed an 

analytical model to examine the elastic pipe response to transverse displacement at any arbitrary 

length of landslide by considering the combined effects of flexure (beam-like behavior) and axial 

tension (cable-like behavior). The aforementioned analytical methods provided simplified design 

approaches. However, the assumptions led to the lack of prediction accuracy and applicability. 

Although the recent analytical model proposed by Zahid et al. [16] refined this study by 

considering more physical factors, i.e., temperature change, internal pressure, and pipe self-weight, 

it only focused on the elastic pipe undergoing the longitudinal ground movement in the landslide. 
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In addition to the above-mentioned analytical models, current state of practice for assessing 

inelastic pipelines’ response to ground movements heavily relies on finite element modeling where 

the pipe and surrounding soil are simulated either by a rigorous continuum model or a shell/beam-

on-spring model recommended by pipeline design codes [17][18]. In addition, Liu et al. [19] 

proposed the hybrid model integrating shell and beam (pipe) elements, appropriately leveraging 

computational efficiency and accuracy. Furthermore, to reduce the computational cost, Liu et al. 

[20] proposed the equivalent boundary conditions applied to the ends of the pipeline represented 

by shell elements near fault crossings, which can highly reduce the computational cost, and this 

idea was adopted in [21] for generating the database of strain demand. Overall, finite element 

modeling serves as a reliable tool for analyzing pipes’ response subjected to ground movements.  

However, using finite element models in probabilistic analysis (e.g., PoF calculation) has 

been limited due to high computational costs. Moreover, the source code of commercial finite 

element software is generally not available, which prevents its use in the computing cloud due to 

license constraints. Thus, it is challenging for users of commercial software to take advantage of 

readily available computational resources for prohibitively expensive calculation tasks when 

Monte Carlo simulation (MCS) is used for probabilistic analysis. For this reason, simplified 

analytical models are preferred, which has been demonstrated by related publications. Zhou [22] 

analyzed the reliability of pressurized pipes under the ground displacement induced by slope 

instability, and the strain demand was estimated based on the model proposed by Yoosef-Ghodsi 

et al. [23]. Sen et al. [24] developed probabilistic approaches with different levels, i.e., qualitative, 

semi-quantitative, and full quantitative, to analyze the risk of pipes crossing potential moving 

slopes; the strain demand in [23] was also adopted in the strain-based limit state function for the 

semi-quantitative analysis. It is worth noting that the analytical method in [23] was only applicable 

to pipes deforming in the longitudinal direction. Alternatively, cheap-to-evaluate surrogate models 

for strain demand calculation, like the neural network developed by Liu et al. [19] and used by 

Zheng et al. [25] to assess the reliability of the pipeline buried across an active fault area, can be 

used in probabilistic analysis. Nevertheless, the collection of strain demand datasets for model 

training was time-consuming due to a large number of calculations based on the finite element 

method (e.g., using ABAQUS).  
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In contrast, analytical models are preferred for MCS-based probabilistic analysis for their 

efficiency and availability, but existing analytical approaches to estimate pipes’ behavior are either 

limited in their accuracy and/or applicability range. For instance, the approaches with reasonable 

accuracy are mainly for pipelines under fault displacements, which cannot be applied to other 

geohazards, such as landslides and subsidence. The use of simplified analytical models can raise 

issues about the relatively large model uncertainty arising from the prediction error and their 

negative impact on probabilistic analysis. All of these explain the fact that research works related 

to reliability-based assessment of pipelines buried under geohazard-prone zones are scarce in 

literature.  

To facilitate studies on probabilistic analysis or reliability-based assessment of pipes buried 

through geohazard-prone zones considering permanent ground movements, this paper presents a 

novel approach by integrating an easy-to-implement response prediction tool with simple but 

robust MCS methods. The probability of strain capacity exceedance is calculated when a pipeline 

is subjected to the ground movement of different magnitudes. The limit state function is defined 

based on the criterion of strain. The strain capacity is determined based on existing formulas in the 

literature; the strain demand, denoted by the maximum tensile and compressive strains along the 

pipe, is predicted by a new approach using the finite difference method developed by Zheng et al. 

[27][28]. The method is slightly modified to account for the effects due to internal pressure and 

temperature change according to the treatment in [23]. The conditional PoF of pipes at a given 

magnitude of ground movement is assessed using Monte Carlo Simulation. Meanwhile, the code 

is equipped with computational optimization methods to enhance the calculation efficiency. For a 

comprehensive evaluation, this study makes use of the landslide as an example, and the probability 

of the ground movement initiation is considered based on the published guideline [29]. The 

probability of failure over time is also derived. The proposed probabilistic assessment method is 

demonstrated based on a study case in this paper. 

 

7.2  Probabilistic analysis approach for pipelines subjected to ground movement 

For the pipeline design and assessment, two criteria including stress- and strain- based 

methods can be employed according to the load types. Stress-based method is a conventional 
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approach where the applied stress should be kept below the specified minimum yield stress 

(SMYS) by an amount controlled by a safety factor. Typically, since the SMYS for line pipe is 

defined as the stress measured at 0.5% total strain, the longitudinal strain is limited to a value less 

than 0.5%. Recognizing that a pipe retains its integrity even after being deformed plastically to 

some degree, the strain-based method is proposed in which the strain that would lead to failures 

such as rupture and buckling (termed the strain capacity) is not expected to be excessed by the 

amount of strain induced by external loads (termed the strain demand). Hence, the strain-based 

criterion is appropriate for situations in which the pipe’s resistance is governed by deformation 

capacity, e.g., the pipe is under the displacement-controlled load such as ground movements [30]. 

 

7.2.1 Strain capacity models 

Since most pipe ruptures induced by ground movements occur as the result of tension at girth 

welds rather than within the pipe body, the primary concern on the tensile strain capacity focuses 

on the highest tensile strain or weld can sustain without a leak or rupture. Existing models, such 

as PRCI-CRES [31], CSA Z552-07 equations [32], and ExxonMobil [33], show that the tensile 

strain capacity is significantly influenced by factors including pipe dimension, mechanical 

properties of pipe and welding consumables, girth weld profile, and welding imperfections. Some 

factors are generally known to pipeline operators; however, most other factors like weld flaws are 

acquired through further examination and testing. Experimental data have revealed that the tensile 

strain capacity can be as low as 0.2% to well over 2% even under the same normalized weld flaw 

dimension [34], which indicates that the tensile strain capacity can vary significantly. As such, 

determination of the tensile strain capacity requires careful consideration in selecting the model 

and detailed case-specific information for the best accuracy. 

The compressive strain capacity is usually defined as the strain corresponding to the point 

of the maximum bending moment in a lateral bending test where pipes have a minimal amount of 

bulging or wrinkle in most cases [29], which corresponds to the serviceability limit state. Several 

models, such as CSA Z662-07 equations [32], UoA model [35], C-FER [36], and CRES formulas 

[37], are most commonly used for predicting the compressive strain capacity. On the other hand, 

the immediate consequence of the formation of a wrinkle or buckle can vary from a benign 
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serviceability concern (no breach of the pipe wall occurs) to leaks due to the local high strain in 

the vicinity of the severe wrinkle or buckle. Specifically, further increase of strain in the vicinity 

of severe wrinkles and buckles may cause loss of contaminate in seam welds. However, this 

ultimate compressive strain causing loss of containment has been well-characterized in neither 

academic publication nor industrial practice. 

Responding to the complexity mentioned above, ALA Guideline [17] suggests the 

acceptance criteria of deformation and strain of pipelines under different ground-induced loads. 

For the condition of ground movement due to earthquakes, landslides, or mine subsidence, 

combined with thermal effects, the longitudinal strain capacity is given under the operable limit 

(serviceability limit state) and pressure integrity limits (ultimate limit state). The tensile strain 

capacities ( T

c ) corresponding to the two limit states are respectively 2% and 4%; the compressive 

strain capacities ( C

c ) corresponding to the two limit states are given as Eqs. (7-1) and (7-2), 

respectively. 

Operable limit: 

2

0.5 0.0025 3000
2

C

c

t PD

D Et


 
= − +  

 
 (7-1) 

Pressure integrity limit: 1.76C

c

t

D
 =  (7-2) 

Where D (mm) is the outer diameter of the pipeline; t (mm) is the pipe wall thickness; E (MPa) is 

Young’s modulus of pipe steel; P (MPa) is the internal pressure of the pipeline. 

 

7.2.2 Strain demand prediction model 

7.2.2.1 Recap of the model based on the finite difference method 

The finite difference-based model was initially developed by Zheng et al. [27][28] in which 

the effects of temperature change and internal pressure were ignored. The primary object of the 

model was to capture the pipes’ deformation with ground movements triggered by geohazards. 

The general layout of a pipe bearing the ground movement can be simply pictured as shown in 

Figure 7-1. This method takes advantage of the fact that the finite difference method is typically 
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defined on a regular grid. The pipe can be treated as a regular-shaped instance in one dimension, 

and the finite difference equations are developed as functions of pipe displacements (the axial 

displacement u and lateral displacement v) of each node. 

 

Figure 7-1: Schematic representation of the pipe subjected to the ground displacement 

 

The pipeline is modeled following the Euler-Bernoulli beam theory under large deformation. 

The governing equations are shown in Eq. (7-3) based on the sign conventions in Figure 7-2. 

 

( )

( )2

0

0

dN
f U u

dx

dM d dv
N q V v

dx dx dx


+ − =


  − − − = 

  

 (7-3) 

where N and M are the axial internal force and bending moment on the cross-section of the pipe 

respectively; u and v represent the axial and lateral deformation of the pipe respectively; U and V 

are respectively the axial and lateral ground displacements; f and q are externally distributed loads 

in the longitudinal and lateral directions, which are represented by soil springs as recommend by 

PRCI guidelines [18]. 
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Figure 7-2: Euler-Bernoulli beam under deformation 

 

To solve the problem based on the finite difference method, the terms of derivatives in the 

governing equations, e.g., 
dN

dx
, 

2

2

d M

dx
, and ( )

d dv
N

dx dx
, should be written using finite differences. 

The internal force N and bending moment M are functions of u and v, the finite difference equations 

are composed of unknowns of u and v of each node. Readers of interest about the details of this 

method are referred to [27][28], but for the sake of completeness here, the calculation flow is 

summarized as follows: 

Step 1: mesh the pipe by defining nodes (grid points) in the longitudinal direction. 

Step 2: assign the initial guess (usually set as 0) of the pipe’s deformation at each node i (ui 

and vi). 

Step 3: calculate derivatives of u and w based on finite difference method at each node (u′i, 

v′i and v′′i). 

Step 4: calculate the axial force N and bending moment M at each node (Ni and Mi). 

Step 5: represent the derivative items in the governing equation based on finite difference 

strategy at each node (N′i, M′′i and (Niv′i)′). 

Step 6: replace the derivative items in the governing equation by those obtained in step 4. 

Step 7: construct the finite difference equations based on the formulations obtained in Step 

6 together with boundary conditions at each node (Eqi). 

Step 8: use a solver to get the convergent solutions of ui and vi. 
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compute the longitudinal strain along the pipe based on the obtained solutions, and 

calculating the tensile strain demand T

d  (the maximum positive strain value) and the compressive 

strain demand C

d  (the minimum negative strain value). 

 

7.2.2.2 Consideration of effects due to operational loads 

The formulations of internal force N and bending moment M in Zheng et al. [28] are derived 

based on bilinear stress-strain relationship under uniaxial stress state (see Figure 7-3 (a)). To 

incorporate the effects of internal pressure and temperature differential, formulas of N and M 

should be updated based on the data of stress-strain curve considering the biaxial stress state as 

detailed below. This is necessitated when the effect of internal pressure on pipelines is taken into 

account, because the internal pressure causes stress in the hoop direction so that pipe is under the 

biaxial stress-strain state as shown in Figure 7-3 (b).  

 

 

(a) Uniaxial stress state (b) Biaxial stress state 

Figure 7-3: Stress state of pipe with and without internal pressure 

 

The stress-strain relationship used in Zheng et al. [27][28] is bilinear based on a uniaxial test 

in the longitudinal direction as shown in the black solid curve in Figure 7-4. The presence of 

internal pressure leads to a biaxial state of stress, requiring a more rigorous treatment of the 

material behavior than the direct use of the stress-strain relationship obtained based on uniaxial 

tests. Hence, a plasticity formulation should be developed based on a biaxial yield criterion and 

isotropic strain hardening for the pipeline material. This paper follows the work in Yoosef-Ghodsi 
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et al. [23] for attaining the longitudinal stress-strain relationship at specific hoop stress induced by 

internal pressure. 

According to the von Mises yield criterion, the effective stress  vM  in the biaxial state of 

stress with the longitudinal stress  l  and hoop stress h  shown in Figure 7-3 (b) can be expressed 

as Eq. (7-4). Hence, the equivalent longitudinal tensile and compressive stress upon the onset of 

yielding, respectively denoted by 
T

y  and 
C

y , can be obtained as Eqs. (7-5) and (7-6) by solving 

Eq. (7-4) for l
  in which the effective stress  vM  equals the yield stress  y

 in the uniaxial test. 

When the longitudinal stress is in the range of ,     
C T

y y
, the pipe material is elastic, and the 

longitudinal stress-strain relationship can be obtained according to Hooke's constitutive law. 

 2 2    = + −vM l h l h  (7-4) 

 ( )
2

21
4 3

2
   

 
= + − 

 

T

y h y h  (7-5) 

 ( )
2

21
4 3

2
   

 
= − − 

 

C

y h y h  (7-6) 

Response of the pipe material after the onset of yielding is calculated based on the flow rule 

of plasticity. The infinitesimal increment of longitudinal strain within the plastic deformation can 

be derived as Eq. (7-7) [23]. Strain in the inelastic range can be obtained after integrating the two 

sides of Eq. (7-7). Therefore, longitudinal strain in the biaxial stress state can be summarized as 

Eq. (7-8). 

 
( )

( )

2

2 2

21

4

 
 

   

 −
 = +
 + −
 

l h

l l

p l h l h

d d
E H

 (7-7) 
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 (7-8) 

where 
pH  is the plastic modulus equaling to 

−

h

h

EE

E E
. 

Figure 7-4 illustrates the longitudinal stress-strain relationships in the uniaxial and biaxial 

based on the same pipe material with properties next to the figure. It can be seen that stress in the 

plastic range in the biaxial stress state is approximately linear with the strain, which indicates that 

the hardening slopes in tension and compression, represented by T

hE  and C

hE  respectively, can be 

approximated as constant values. 
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Figure 7-4: Longitudinal stress-strain relationships in uniaxial and biaxial tests 

 

The hoop stress h  due to internal pressure can be calculated using Barlow’s formula, and 

the resultant longitudinal stress can be obtained according to the Poisson effect. The longitudinal 
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stress due to temperature change can be estimated based on the thermal effect. Hence, the initial 

longitudinal stress initial , applied prior to the ground movement, can be written as Eq. (7-9).  

 
( )2

2
initial h

P D t
E T E T

t


   

−
= −  = −   (7-9) 

where   is Poisson’s ratio; h  is the hoop stress induced by internal pressure; P is the internal 

pressure; D and t are respectively the outer diameter and wall thickness of the pipe;   denotes the 

thermal expansion coefficient of pipe material; T  represents the difference in temperature 

between the time when the ground movement is concerned and the time of pipeline tie-in. 

It is assumed that the pipe has no displacement or actual strain under the two operational 

loads due to the soil constraint. Nevertheless, from the perspective of material response, a pseudo 

initial strain initial  is supposed to be generated corresponding to the initial longitudinal stress as 

shown in Eq. (7-10). Therefore, the total longitudinal strain l  can be written as Eq. (7-11).  

 
( )2

2

initial
initial

P D t
T

E Et


 

−
= = −   (7-10) 

 ( ) 22 1

2 2

l initial axial bending

P D t
T u v zv

Et

   




= + +

−   
  = −  + + −   

  

 (7-11) 

where ( )x   and ( )x   are respectively the first and second derivative of x; z represents the radial 

location in the pipe cross-section, e.g., bending  would represent the bending strain on the pipe 

extreme fiber when z equals the pipe radius of 
2

D
. With updated formulation of the longitudinal 

strain, the internal axial force and bending moment can be reformulated, compared with those in 

[27][28], to consider the biaxial stress state in the following two scenarios. 

(1) Longitudinal strain pattern without bending effect 

Absence of bending action indicates that 0 =v  thus M = 0, and the stress is uniformly 

distributed on the pipe cross-section. The formulation of axial force N and M can be respectively 

expressed as Eqs. (7-12) and (7-13).  
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 (7-12) 

 M = 0 (7-13) 

(2) Longitudinal strain pattern with bending effect 

The distributions of longitudinal strain and stress distribution on the pipe cross-section are 

generalized as the two scenarios in Figure 7-5 when the bending effect exists. According to the 

geometric relationship, the vertical coordinate (the origin is the pipe top, and the positive side 

points to the downside) from the pipe top to the tensile yielding position 
tyh  and compressive 

yielding position 
cyh  can be expressed as Eqs. (7-14) and (7-15).  

 
( ) ( )22 2 2 2
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y
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P D t Et T u v Dv
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P D t Et T u v Dv
h
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    − −  − − + +
=

−
 (7-15) 

 

 

(a) Scenario 1 (b) Scenario 2 

Figure 7-5: Longitudinal strain and stress distribution on pipe cross-section 

 

The two auxiliary variables 1H  and 2H , utilized to distinguish the two scenarios in Figure 

7-5, can be obtained based on Eqs. (7-16) and (7-17) respectively. In addition, the angle 

corresponding to 1H  and 2H  on the pipe cross-section can be subsequently derived as Eq. (7-18). 
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 ( )1 min  ,  ty cyH h h=  (7-16) 

 ( )2 max  ,  ty cyH h h=  (7-17) 
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 (7-18) 

Formulations of axial force N and bending moment M can be derived based on their 

definitions as shown in Eqs. (7-19) and (7-20) respectively. 
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(7-20) 

The above formulations allow the strain demand calculation considering ground movement, 

internal pressure, and temperature effect simultaneously by extending the finite difference method 

developed earlier by the authors [27][28]. 

 

7.2.3 Probability estimation for strain capacity exceedance 

Aiming at estimating the probability of strain capacity exceeding strain demand in pipelines 

subjected to permanent ground movement, this study defines the following limit state function as 

Eq. (7-21).  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )min ,  min ,  T T C C

T C c d c dg g g     = = − −    
x x x x x x x  (7-21) 

where g is the safety margin, which is governed by the lower safety margin due to tension Tg  and 

compression Cg , meaning that pipe is considered to be in the safe domain when both Tg  and Cg  

are simultaneously higher than 0, and otherwise in the failure domain; x represents the random 

vector comprised of basic random variables that influence strain capacities and strain demands. 
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Thus, the event g(x) < 0 is deemed as failure and the probability of failure PoF = P[g(x) < 0] in 

this context. It should be mentioned that the strain demands are calculated based on the model 

presented in section 7.2.1, so T

d  is always positive and C

d  is negative. In that case, the absolute 

sign is applied for the compressive strain demand C

d  in Eq. (7-21) because strain capacity is 

employed as positive number in this study. 

Considering the fact that MCS is acknowledged as the most robust method for reliability 

calculation, the PoF can be calculated based on Eq. (7-22). 

 
( )( )0i

f

n g
p

N


=

x
 (7-22) 

where ( )( )0in g x  means the number of failure cases; N is the sample size, namely the total 

number of sampling cases in the design space according to the full stochastic characterization of 

random variables using MCS. 

Probabilistic analysis is computationally extensive, because solving a large size of nonlinear 

equations in the strain demand calculation is still a time-consuming process. To improve the 

efficiency further, the implementation is optimized in this study. The python code is compiled 

based on the Numba library, which translates the functions in Python to optimized machine code 

at runtime so that the speed of computation can be improved. In addition, calculation of strain 

demand is parallelized for each loop. The schemes can be well supported for explicit parallel loops, 

and thus are used for implementing the probability of failure calculation in this paper with highly 

improved efficiency. 

7.3 Probability of ground movement initiation 

Long-distance transmission pipelines unavoidably transverse over a number of land unstable 

zones along the right-of-way. From the geotechnical perspective, every piece of land exhibits the 

potential to initiate a ground movement under certain conditions. The induced ground movement 

can pose serious threats to the integrity of pipelines from the structural viewpoint. Knowledge of 

the two different engineering areas is required for a comprehensive failure rate calculation of pipes 

buried across geohazard zones. 
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As for landslides, the movement velocity is classified into different levels. Accordingly, the 

geohazard of landslides is generalized into steady-state creep movement and sudden mass 

landslides. Steady-state creep movement, customarily termed slope creep, has extremely slow 

movement such as a few millimeters per year. Sudden mass landslide (named landslide hereafter) 

is the case whereby the slope suddenly moves by a large magnitude within a short period of time. 

The velocity difference between slope creep and landslide should be identified by the pipeline 

operators based on the case-specific hazard analysis. 

Estimation of the probability of ground movement initiation is extremely difficult given the 

complexity of the land characteristics, limited information available from field observations, and 

uncertainty in future environmental conditions. PRCI Guideline [18] published the characteristics 

of slope creep and the associated probabilities depending on the relative likelihood (see Table 7-1). 

According to Sen et al. [24], landslides refer to ground movement with a larger magnitude than 

300 mm within one year, and the annual probabilities of landslide initiation are assumed to be less 

than (e.g., 1/50) that of the probability of slope creep, as considered in Table 7-1. 

 

Table 7-1: Probability of initiation of creep slope and landslide 

Classification of 

likelihood 

Probability of creep slope 

initiation (per year) 

Probability of landslide 

initiation (per year) 

Certain > 2 × 10-1 > 4 × 10-3 

Probable 1 × 10-1 ~ 2 × 10-1 2 × 10-3 ~ 4 × 10-3 

Possible 1 × 10-2 ~ 1 × 10-1 2 × 10-4 ~ 2 × 10-3 

Unlikely 1 × 10-3 ~ 1 × 10-2 2 × 10-5 ~ 2 × 10-4 

Remote 1 × 10-4 ~ 1 × 10-3 2 × 10-6 ~ 2 × 10-5 

Negligible < 1 × 10-4 < 2 × 10-6 
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7.3.1 PoF calculation of pipes buried across slope zones 

7.3.1.1 Calculation of PoF due to creep slope 

Regarding the situation with slope creep, the ground movement moves slowly so that the 

strain is accumulated in the pipe over years. As per instructions in CSA Z662:19 [38], the limit 

state of pipe undergoing slope creep is time-dependent where the strain demand increases with 

growing ground movement over elapsed time and the strain capacity is assumed to be constant. 

Provided that the ground movement initiation in each year is an independent event, and if it occurs, 

the PoF of the pipe subjected to slope creep at a specific site can be calculated using Eqs. (7-23) 

and (7-24). 
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where   is the elapsed time in years; ( )creep

fp n =  is the PoF of pipes subjected to slope creep at 

a specific site after n year(s); ( )|f creepp i =  is the PoF given the magnitude of slope creep 

accumulated after being initiated in i years, namely i times ; ( ),creepp i n denotes the probability of 

i occurrences of slope creep initiation over the n year(s), which can be calculated using Eq. (7-24) 

where   is the annual probability of creep slope initiation depending the site categorization in 

terms of likelihood as specified in Table 7-1.  

 

7.3.1.2 Calculation of PoF due to landslide 

Contrary to the situation in slope creep, pipes subjected to landslides can be treated as time-

independent events as the occurrence of ground movement is instantaneous and immediate action 

should be taken to avoid or alleviate pipeline failure. As such, failures of pipes due to each 

landslide occurrence in different years are independent. Likewise, the PoF of pipes subjected to 

landslide per year can be calculated using Eq. (7-25). 
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 |

landslide

f landslide f landslidep p p=  (7-25) 

where 
landslide

fp  is the PoF of pipes due to the landslide; 
landslidep  is the probability of landslide 

initiation per year; 
|f landslidep  represents the conditional probability of pipe failure under ground 

movements given landslide initiation. Within n years, the pipeline can fail due to landslides can be 

therefore written as Eq. (7-26). It should be noted that the distribution of landslides for each year 

is assumed to be the same.  

 ( ) ( )1 1
n

landslide landslide

f fp n p = = − −  (7-26) 

Assuming that the initiations of slope creep and landslide are independent, the total PoF of 

pipes buried across at a slope crossing can be calculated using Eq. (7-27) assuming the pipeline 

fails due to slope creep or landslide. 

 ( ) ( ) ( )1 1 1creep landslide

f f fp p p     = − − −     (7-27) 

In Eq. (7-27), the two terms ( )creep

fp   and ( )landslide

fp  can be estimated using the method 

introduced in section 7.2 based on the information related to slope creep and landslide provided in 

section 7.3. 

 

7.4 Application of the method to transmission pipelines in service 

7.4.1 Problem statement 

This study considers a 559-mm-diameter pipeline with a wall thickness equal to 7.14 mm, 

buried across a geohazard-prone zone where slope creep or landslide may happen. The length of 

span involved in the geohazard is 10 m. The vintage pipe is made with X52 steel with a nominal 

yield stress of y  = 359 MPa and nominal Young’s Modulus is E = 210 GPa. The strain hardening 

slope is Eh = 2.1 GPa (i.e., 1% of Young’s modulus). The properties of backfill are attributed to 

soil springs which have axial resistance uT  = 14 kN/m (yield displacement t  = 0.265 m) and 

lateral resistance uP  = 204 kN/m (yield displacement p  = 0.029 m), which are assumed to be 

deterministic due to the lack of stochastic data. The pipe is operated under the maximum operating 
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pressure of 7.3 MPa. For the strain demand calculation, the number of nodes for the span across 

geohazard is set as 21. The two segments connected to the geohazard-involved span are determined 

as 100 m with 51 nodes for each. The fixed boundary condition is applied to pipe ends. 

The tensile and compressive strains are considered simultaneously in the limit state function 

stated in Eq. (7-21). However, most existing tensile and compressive strain capacity models, as 

stated in section 7.2.1, correspond to different levels of limit states, which cannot be adopted 

together in the limit state function. In addition, the specified applicable parameter ranges of those 

models restrain their practice in MCS since the generated random data would be out of the range. 

For the above two reasons, the strain capacities specified in ALA Guideline [17], including the 

operable limit and integrity limit, are determined to be employed in the following calculation. 

The parametric calculation on the PoFs of the pipe is performed with respect to pipe-ground 

intersection angle   (30°, 60° and 90°) based on Monte Carlo Simulation with a sample size of 

10,000. Parameters considered as random variables are tabulated in Table 7-2 in which the 

stochastic properties are reasonably assumed based on CSA Z662:19 [38] and the relevant industry 

publication [24]. 

 

Table 7-2: Stochastic properties of pipe geometries 

Parameter Distribution Mean 
Standard 

deviation 
Mode 

Lower 

bound 

Upper 

bound 
Unit 

Diameter, D Normal 559 0.9503 - - - mm 

Wall thickness, t Normal 7.14 0.1678 - - - mm 

Yield strength, σy Normal 387 22 - -  MPa 

Temperature, ΔT Uniform - - - -25 45 ℃ 

Creep slope rate Lognormal 12.4 6.24 - - - mm/yr 

Landslide movement Triangular - - 796 298 3,980 mm 
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7.4.2 Results and discussions 

Results of PoF of pipes underground movements due to slope creep and sudden landslide 

are shown in Figure 7-6, in which the operable limit and integrity limit are referred to as SLS and 

ULS respectively. It can be seen that the PoFs for integrity limit (ULS) are lower than those for 

operable limit (SLS) since the ULS has greater strain capacity so a larger safety margin is induced. 

PoFs of the pipe under the ground movements due to slope creep are calculated over time (in 

years). Since the slope magnitude grows with the elapsed time, the cumulative strain on the pipe 

gradually increases. Hence, PoFs increase with time as shown in Figure 7-6 (a). Comparing the 

PoFs under different intersection angles, it can be observed that the higher the intersection angle 

is, the greater the PoF will be, which implies that the pipe is more vulnerable when undergoing a 

greater intersection angle. In addition, the effect of intersection angle on PoFs becomes weaker 

with the increase of the intersection angle as the PoFs with 60° are closer to those with 90°. This 

phenomenon can also be observed in Figure 7-6 (b), which describes the PoFs of the pipe subjected 

to ground movements induced by sudden landslides. 
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(a) PoF of pipes under creep slope (b) PoF of pipes under landslide 

Figure 7-6: PoF of the pipe subjected to two different geohazard scenarios 

 

A period of 40 years is considered to investigate the PoF of the pipe buried across the 

unstable ground zone considering different likelihoods of ground movement initiation. The 

calculated results are reported in Figure 7-7, including the permissible PoF of 10-1/year for 
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operable limits and 10-3/year for integrity limits (assuming population density is 0), which are 

transferred into the cumulative format with elapsed time as indicated by the red dashed line. The 

PoF corresponding to different likelihoods of ground movement initiation is highlighted by 

different colors. As observed, the higher the probability of ground movement initiation, the higher 

the resultant PoF is. The difference in PoF diminishes with the increase of the probability of ground 

movement initiation.  

The comparison between the resultant PoFs and the permissible PoF can be used for 

determining the re-inspection time and making the maintenance plan. Taking the results for SLS 

as an example, PoFs with a certain likelihood of ground movement initiation are higher than the 

permissible PoF over 40 years for all three pipe-ground intersection angle cases, which means that 

the pipe should be re-checked within a shorter period, e.g., less than one year. When the likelihood 

of ground movement initiation is probable, the permissible PoF is between the upper and lower 

bound of PoF when the pipe-ground intersection angle is 30°, and it approaches the lower bound 

of PoF with the increase of pipe-ground intersection angle. Hence, careful consideration of the 

exact probability of ground movement initiation is required for making a relatively comprehensive 

re-inspection plan. As for the lower likelihood of ground movement initiation, i.e., possible, 

unlikely, remote, and negligible, the PoFs are always below the permissible PoF, which indicates 

that the pipe is safe since the probability of ground movement occurrence is very low. In contrast, 

the PoFs for ULS are all within the permissible range for the likelihood of geohazard initiation is 

not certain, which indicates that the re-inspection period could be longer if ULS is used for 

decision-making. 

 



 

187 

 

 

1 5 10 15 20 25 30 35 40
10-5

10-4

10-3

10-2

10-1

100
p

f

Time (yr)

Negligible

Probable

Possible

Unlikely

Remote

Certain

1 5 10 15 20 25 30 35 40
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
f

Time (yr)

Negligible

Probable

Possible

Unlikely

Remote

Certain

 

(a) PoF of pipes for SLS (β = 30°) (b) PoF of pipes for ULS (β = 30°) 
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(c) PoF of pipes for SLS (β = 60°) (d) PoF of pipes for ULS (β = 60°) 
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(e) PoF of pipes for SLS (β = 90°) (f) PoF of pipes for ULS (β = 90°) 

Figure 7-7: PoF of pipes buried across geohazard zone over time 



 

188 

 

 

 

7.5 Chapter conclusions 

This paper presents a general procedure for an engineering practice of reliability-based 

assessment of pipes buried across geohazard-prone areas. The assessment is based on the criterion 

of strain: the strain capacity can be calculated using the published models, and the strain demand 

is estimated based on the finite difference method initially proposed by Zheng et al. [27][28]. To 

account for the effects of internal pressure and temperature change, the flow rule of plasticity is 

employed to investigate the response of the pipe material after the onset of yielding. The 

probability of failure (PoF) at a given magnitude of ground movement is calculated based on 

Monte Carlo Simulation. The total PoF is obtained by considering the probability of ground 

movement initiation. This study takes landslides as an example and the related stochastic 

properties are reasonably assumed based on published data.  

The proposed finite difference-based method for strain demand prediction is developed 

based upon the one-dimension beam model, which cannot account for complex spatial behavior 

like local buckling. Hence, this method is more suitable for preliminary design and safety pre-

screening where rigorous analysis is unnecessary. In addition, the probabilistic data related to 

geohazard used in the study case is assumed based on guidelines and publications, which involves 

a large amount of uncertainties and affects accuracy of the results. For better accuracy, a case with 

adequate site-specific information is required, and it is a better practice of the proposed method.  
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CHAPTER 8: CONCLUSIONS 

 

8.1 Summary of research work 

Pipelines are systems of connected pipes used to transport liquids and gases, namely oil and 

natural gas, across long distances from source to market. Since the middle of the last century, 

pipelines have been extensively used to transmit water, natural gas, and liquid fuels that are 

necessary for daily life. Internal pressure and ground movements are two typical loads that pipes 

encounter in service. Internal pressure is from the pumping stations and is the main drive to the 

flowing of the media in the pipeline. Ground movements are usually caused by geohazards, which 

become a significant threat to long-distance transmission pipelines. This research carries on the 

reliability-based analysis of pipes subjected to internal pressure and ground movements regarding 

the respective industry concerns.  

For pipes subjected to internal pressure, the relationship between the probabilities of failure 

(PoFs) of pipes and the factors indicating safety is investigated for intact pipes and defected pipes. 

For intact pipes, PoFs for yielding and burst are calculated with respect to design factors which 

are used for the designing stage; PoFs for burst are also reported for intact pipes considering 

different hydrostatic test pressure factors utilized for hydrostatic tests before the pipe commission. 

For defected pipes with cracks or corrosions, PoFs for burst are studied with respect to safety 

factors to provide guidance in pressure control in the operation of defected pipes.  

Given the limitations that existing models are not applicable for reliability calculation, a 

novel model (referred to as the FDM-based model), is developed to predict the pipe response to 

ground movements using the finite difference method. The pipeline is assumed as an Euler-

Bernoulli beam with large deformations, and the governing differential equations of the elastic 

response of the pipe are formulated as functions of displacements of the deformed pipe in the axial 

and lateral directions at each node. The pipe-soil interaction is represented by soil springs whose 

properties are calculated based on the published guideline. A large set of nonlinear finite difference 

equations can be therefore established together with boundary conditions and the solution can be 

achieved based on the nonlinear equation solver built in the programming language. 
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To account for the inelastic behavior of the pipe, the axial force and the bending moment in 

a pipe, as required in the finite difference equations, are derived as explicit functions of the 

deformations at each node after considering the stress distribution of the pipe cross-section based 

on the bilinear property of the stress-strain behavior. Two indicative case studies including ground 

movement in the horizontal and vertical planes are utilized to validate the proposed method against 

the finite element method (FEM). Furthermore, this FDM-based model is also adopted to predict 

the tensile strain demand of pipes subjected to strike-slip fault displacements. The results are 

compared with those derived from four existing analytical methods as well as the FEM.  

Substantially, the FDM-based model is incorporated into the limit state function for 

reliability-based assessment. The PoFs of pipes at the given magnitude of ground movements are 

calculated using MCS and the code is implemented through Python. To enhance the computational 

efficiency, the code is firstly compiled so that functions in the code can be transferred into machine 

code; in the meantime, the loop calculation in MCS is paralleled, which enables multiple sample 

cases generated by the stochastic simulation to be computed at the same time. In addition, an 

effective reliability analysis method, named Weighted Monte Carlo simulation (WMCS), is 

applied to calculate the PoFs using a smaller sample size compared with MCS. Efficiency and 

accuracy of WMCS are tested via comparison with MCS. Finally, based upon the developed codes 

in the research, two calculator-like tools are established respectively for deterministic analysis and 

reliability-based assessment of the integrity of pipelines subjected to ground movements. 

Moreover, a general procedure is presented for comprehensive probabilistic evaluation of 

pipes buried across geohazard-prone areas. To do this, the FDM-based model is further developed 

by taking into account the effects of internal pressure and temperature change based on the flow 

rule in plasticity. The probability of ground movement initiation is employed to obtain the total 

cumulative PoF. Besides, the formula of cumulative PoF over elapsed time is derived, which can 

be useful for making the maintenance plan and determining the re-inspection time. An indicative 

case is proposed to illustrate the application of the procedure. 
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8.2 Conclusions of research work 

Research on pipes subjected to internal pressure reveals the interrelationship between the 

design (and safety) factors in deterministic analysis and PoFs in probabilistic analysis, which 

provides a useful reference for safety control from the perspective of reliability-based assessment. 

The main conclusions about pipes subjected to internal pressure are summarized as follows. 

(1) For intact pipes, PoFs for yielding increase with the growth of design factors. 

Specifically, for design factors 0.80 (division 1) and 0.72 (division 2) used in class 

location 1, probabilities of failure for yielding limit state are 2.81×10-7 and 1.13×10-11 

respectively. However, PoFs for yielding limit state are independent of yield strength, 

internal pressure, pipe diameter, and wall thickness based on the stochastic properties 

recommended by CSA Z662: 19.  

(2) PoFs of intact pipes for burst (ultimate limit state) are generally lower than those for 

yielding (serviceability limit state). Additionally, higher-grade pipes are more vulnerable 

to burst since their higher yield-to-tensile ratios decrease the capacities in the limit state 

function. 

(3) As for defected pipes, a higher safety factor corresponds to a higher reliability level 

(lower PoF), and pipe grade shows little impact on the relationship between PoFs and 

safety factors. Pipe dimensions (i.e., diameter and wall thickness), and flaw sizes (i.e., 

flaw length and depth) have negligible influence on PoFs of cracked pipes but show 

significant impact on PoFs of corroded pipes. Corroded pipes with larger diameter-to-

wall thickness ratios and deeper and longer defects show higher PoFs under internal 

pressure. 

(4)  The published model error of CorLAS is large, which leads to a considerable increase 

in the associated PoFs. Hence, reliable burst pressure prediction models are needed for 

cracked pipes.  

(5) Compared with MCS, WMCS has a fairly good capability to calculate the PoFs in terms 

of accuracy and efficiency. 

On the other hand, this research implements the reliability-based assessment on pipes buried 

across geohazard-prone zones by developing the FDM-based model, which fills the gap in the 
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pipeline industry. The general conclusions about the FDM-based model and its application in the 

reliability-based assessment are summarized below: 

(1) The FDM-based model is of good accuracy for both elastic and inelastic behaviors of 

pipes under ground movements. It is a good alternative to one-dimensional beam finite 

element models for preliminary design and safety pre-screening.  

(2) The FDM-based model is applicable to predict pipes’ response to a wide range of 

geohazards, including landslides, ground heave and subsidence in which two ground 

discontinuities should be considered in analysis, as well as tectonic faults where one 

ground discontinuity is required.  

(3) Using the computational optimization methods, i.e., compiling and parallelization, it is 

practical to incorporate the FDM-based model into the limit state function for reliability 

calculation. The efficiency is acceptable based on the sample size of 10,000 in MCS. 

 

8.3 Research contributions and highlights 

The main contributions and highlights of this research work, which focuses on reliability-

based assessment on pipes subject to internal pressure and ground movements, are summarized as 

follows. 

(1) This research provides the quantitative design/safety factors-PoFs interrelationship for 

intact pipes which are used before the commission for design and hydrostatic test, as well 

as the defected pipes (cracked pipes and corroded pipes) which are concerned in service. 

The obtained results can be employed in engineering for safety control for a higher level 

of confidence. 

(2) This research proposed the FDM-based model to calculate the strain demand of pipes 

under ground movement, which contributes a brand-new method to the field of integrity 

analysis of pipes under ground-induced displacements. In particular, the FDM-based 

model provides a unified approach to evaluate the pipe’s response to ground movements 

triggered by geohazards, such as landslides, ground heave and subsidence, tectonic fault, 
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etc. In addition, the FDM-based model is feasible to be used for reliability-based 

assessment on pipes subject to ground movements. 

(3) The tools established for deterministic analysis and reliability-based assessment on pipes 

under ground movements provide the direct application of the methods proposed in this 

research. Especially, the formula for calculating the annual PoF of pipes buried through 

landslide-prone zones is presented, which provides an important reference to the decision 

on the maintenance plan. 

(4) This research brings the established reliability method, named Weighted Monte Carlo 

Simulation (WMCS), to the attention of the pipeline industry. The advantages on 

accuracy and efficiency of this method are demonstrated through extensive practice on 

case studies. It is an appropriate alternative to Monte Carlo Simulation (MCS) for the 

sake of efficiency. 

 

8.4 Limitations and recommendations 

Although this research work provides a number of contributions and significant 

enhancements to the objectives of the project, there are some limitations and challenges that need 

to be solved in order to establish a thorough methodology that could bring more realistic results to 

engineering practice. The limitations and recommendations are listed as follows. 

(1) The defected pipes under internal pressure only consider a single flaw, i.e., a crack or 

corrosion on the pipe. Multiple flaws and mixed flaws, which are common in the field, 

are not accounted for in the reliability calculation. Therefore, further reliability-based 

study can be conducted on pipes with multiple or mixed flaws. 

(2) The proposed FDM-based model is established on the basis of the one-dimension beam 

model, which cannot be applicable to solve the complex spatial behavior of the pipe 

cross-section like local buckling. Detailed finite element analysis, i.e., full 3D models, is 

still necessary to investigate the pipe strength required for comprehensive analysis. 

(3) Algorithm of the FDM-based model doesn’t always output the true results due to 

convergence issues. The effect becomes more pronounced with the increase of 

deformation in pipes. Besides, it is more appropriate to be used for the analysis on 
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relatively short pipe length. The longer the pipe length is, the more grid nodes are 

required, which caused a larger non-linear finite difference equation set. This is also a 

major reason leading to convergence issues. To minimize the problem, more robust 

solvers are demanded for solving large nonlinear finite difference equation sets.  

(4) There are some limitations which are not the main focuses but significant to the 

reliability-based assessment on pipes under geohazard-prone zones. Firstly, the existing 

predictive models of strain capacity have tight applicable ranges of input parameters, 

which restrains their practice in reliability calculation. Additionally, getting the 

probability of ground movement initiation is full of challenges from the perspective of 

geotechnical engineering. Collaborative efforts from a diverse array of industry expertise 

and experience are required. Currently, for higher accuracy, the reliability calculation 

can be implemented on case-specific analysis to reduce the uncertainties arising from the 

strain capacity and ground movements.   
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APPENDIX A: SUMMARY OF PREDICTIVE MODELS OF BURST PRESSURE 

 

Table A-1: Models for assessing failure pressure following the NG-18 equation 

Model 
Defect  

shape 
geometryf  

flowσ  

(MPa) 
shapef  Folias factor M 

ASME 

B31G [1] 
Parabolic 

2t

D
 1.1 y  

2

max

2

max

2 3,  0.8 and 20

1    ,  0.8 and 20

d t L Dt

d t L Dt

  


 

 

2
2

max

2

max

1 0.8 , 0.8 and 20

, 0.8 and 20

L
d t L Dt

Dt

d t L Dt

  
 +   
  


  

 

Modified 

B31G-0.85L 

[2] 

Mixed 
2t

D
 69y +  0.85 

2
2 2

2

max

2
2

max

1 0.6275 0.003375 ,  0.8 50

3.3 0.032                               ,  0.8 50

L L
d t L Dt

Dt Dt

L
d t L Dt

Dt


    + −     

    

  

+    
 

 

Modified 

B31G-

RSTRENG 

[3] 

Effective 

area 

2t

D
 69y +  maxeff Aeffd d  

2
2 2

2

max

2
2

max

1 0.6275 0.003375 ,  0.8 50

3.3 0.032                               ,  0.8 50

L L
d t L Dt

Dt Dt

L
d t L Dt

Dt


    + −     

    

  

+    
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RPA model 

[4] 
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D
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6
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    

  

+   
 
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D
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Table A-2: Semi-regression models for assessing burst pressure for corroded pipes 

Model Defect shape geometryf  
flowσ  (MPa) 

regressionf  

PCORRC 

[8] 
Rectangular 

2t

D
 t  

( )

max
max

max

0.157
1 1 exp ,  0.8 2

2

d L
d t L D

t D
t d

  
  

−  − −  
  

−  
  

 

Yeom et al. 

[9] 
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  
  
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−  
  
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
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*
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4C  are fitted parameters as a quadratic equation of 
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   − 
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Burst pressure models for corroded pressure 

1. CSA Z662 [13] 
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0.9

3 3 1
exp

2

RO
ro

n
n

y

PP

RO RO

i

RO

E t
P

n
R

n





− 
=  

 
   
  
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Burst pressure models for cracked pipes 

1. NG-18 [15] 
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
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− 
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 
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,      rectangular flaw
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
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 
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APPENDIX B: CODE OF RELIABILITY CALCULATION USING MONTE CARLO 

SIMULATION 

The following code is to calculate the reliability of pipes under ground movements in Chapter 7. 

1. Appendix_B_main 

# Title: Reliability calculation in Chapter 7 

# Author: Qian Zheng 

# Date: 20220715 

 

# # Clear Console 

try: 

    from IPython import get_ipython 

    get_ipython().magic('clear') 

    get_ipython().magic('reset -f') 

except: 

    pass 

 

# import os 

 

import numpy as np 

import time 

import concurrent.futures 

import pandas as pd 

from scipy.stats import truncnorm 
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from colorama import Fore 

import Appendix_B_fun_FDM_PT 

import os 

import warnings 

warnings.filterwarnings('ignore') 

 

if __name__ == "__main__": 

    timeStart = time.time() 

    #%% Independent variables (the same for all cases) 

    # Material property 

    Ee = 210.0e3  # Young's modulus, MPa 

    # Ground displacement 

    # Geohazard = 'Landslide'  # Slope or Landslide 

    Geohazard = 'Slope'  # Slope or Landslide 

    if Geohazard == 'Slope':  

        delta_mean, delta_SD = 12.5e-3, 6.25e-3  # Mean of creep rate, m/yr 

        InitialCreep_min, InitialCreep_max = 200.0e-3, 400.0e-3  # Initil creep, m 

        sto_InitialCreep = [InitialCreep_min, InitialCreep_max, 'Uniform'] 

        sto_delta = [delta_mean, delta_SD, 'Lognormal'] 

    elif Geohazard == 'Landslide': 

        delta_left, delta_mode, delta_right = 300.e-3, 800.e-3, 4000.e-3  # Lower bound of 

landslide, m/yr 

        InitialCreep_min, InitialCreep_max = 0, 0  # Initil creep, m 
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        sto_InitialCreep = [InitialCreep_min, InitialCreep_max, 'Uniform'] 

        sto_delta = [delta_left, delta_mode, delta_right, 'Triangular'] 

     

    ### Operation parameters 

    Delta_T_min = -25   # Unit: degree 

    Delta_T_max = 45   # Unit: degree 

    sto_Delta_T = [Delta_T_min, Delta_T_max, 'Uniform'] 

     

    # Soil type 

    Sand = ['ML', 'SM'] 

    Clay = ['CL', 'CL-CI', 'CH', 'CI'] 

     

    ### Pipe geometry 

    OD_nominal = 559  # Diameter, mm 

    WT_nominal = 7.14 # Wall thickness, mm 

     

    ### Material properties dependent on date of birth of the pipe 

    PipeGrade = 'X52' 

    DoB = 1952 

    if PipeGrade == 'X52' and DoB > 1980: 

        SMYS = 359.0  # Yield strength, MPa 

        sY_mean, sY_SD = 393.0, 19.  # Mean of yield strength, MPa 

        SMTS = 455.0  # Ultimate strength, MPa 
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        sU_mean, sU_SD = 555.0, 4.  # Mean of tensile strength, MPa 

        uEL_left, uEL_mode, uEL_right = 0.072, 0.101, 0.13  # Lower bound of uniform strain 

        CTOD_mean, CTOD_SD = 0.16, 0.02  # Mean of CTOD, mm 

        sto_CTOD = [CTOD_mean, CTOD_SD, 'Normal'] 

    elif PipeGrade == 'X52' and DoB <=1980: 

        SMYS = 359.0  # Yield strength, MPa 

        sY_mean, sY_SD = 387.0, 22.  # Mean of yield strength, MPa 

        SMTS = 455.0  # Ultimate strength, MPa 

        sU_mean, sU_SD = 548.0, 14.  # Mean of tensile strength, MPa 

        uEL_left, uEL_mode, uEL_right = 0.072, 0.101, 0.13  # Lower bound of uniform strain 

        CTOD_mean, CTOD_SD = 0.1, 0.06  # Mean of CTOD, mm 

        sto_CTOD = [CTOD_mean, CTOD_SD, 'Lognormal'] 

    elif PipeGrade == 'X70': 

        SMYS = 485.0  # Yield strength, MPa 

        sY_mean, sY_SD = 531., 19.  # Yield strength, MPa 

        SMTS = 570.0  # Ultimate strength, MPa 

        sU_mean, sU_SD = 638., 8.  # Ultimate strength, MPa 

        uEL_left, uEL_mode, uEL_right = 0.051, 0.07, 0.09  # Lower bound of uniform strain 

        if DoB > 1980: 

            CTOD_mean, CTOD_SD = 0.19, 0.03  # Mean of CTOD, mm 

            sto_CTOD = [CTOD_mean, CTOD_SD, 'Normal'] 

        elif DoB <= 1980: 

            CTOD_mean, CTOD_SD = 0.12, 0.07  # Mean of CTOD, mm 
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            sto_CTOD = [CTOD_mean, CTOD_SD, 'Lognormal'] 

    elif PipeGrade == 'X46': 

        sY_mean, sY_SD = 352., 12.  # Yield strength, MPa 

        sU_mean, sU_SD = 483., 6.  # Ultimate strength, MPa 

        uEL_left, uEL_mode, uEL_right = 0.072, 0.101, 0.13  # Lower bound of uniform strain 

        if DoB > 1980: 

            CTOD_mean, CTOD_SD = 0.16, 0.02  # Mean of CTOD, mm 

            sto_CTOD = [CTOD_mean, CTOD_SD, 'Normal'] 

        elif DoB <= 1980: 

            CTOD_mean, CTOD_SD = 0.10, 0.06  # Mean of CTOD, mm 

            sto_CTOD = [CTOD_mean, CTOD_SD, 'Lognormal'] 

    elif PipeGrade == 'X65': 

        sY_mean, sY_SD = 483., 16.  # Yield strength, MPa 

        sU_mean, sU_SD = 599., 8.  # Ultimate strength, MPa 

        uEL_left, uEL_mode, uEL_right = 0.054, 0.075, 0.09  # Lower bound of uniform strain 

        if DoB > 1980: 

            CTOD_mean, CTOD_SD = 0.19, 0.03  # Mean of CTOD, mm 

            sto_CTOD = [CTOD_mean, CTOD_SD, 'Normal'] 

        elif DoB <= 1980: 

            CTOD_mean, CTOD_SD = 0.12, 0.07  # Mean of CTOD, mm 

            sto_CTOD = [CTOD_mean, CTOD_SD, 'Lognormal'] 

    if DoB > 1990: 

        Ep = 0.03*Ee 
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    elif DoB >= 1980 and DoB < 1990: 

        Ep = 0.02*Ee 

    elif DoB < 1980: 

        Ep = 0.01*Ee 

 

    ### Geometry of pipe-ground movement data 

    InspectionInterval = 9  # Year 

    Beta = 70  # Intersection angle, degree 

     

    ### Pressure 

    MOP = np.minimum(round(0.8 * 2 * SMYS * WT_nominal/OD_nominal, 4), 12.)  # MOP, 

MPa 

     

    ### Pipe section length 

    soilM = 34  # Length of middle segment, m 

    soilL = 70  # Length of left segment, m 

    soilR = 70  # Length of right segment, m 

     

    ### Horizontal & vertical bi-linear force 

    SoilType = 'ML' 

    Tu = 14  # Axial soil spring resistance, N/mm 

    if SoilType in Sand: 

        dTu = 5 # Axial soil spring resistance, mm 
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    elif SoilType in Clay: 

        dTu = 10 # Axial soil spring resistance, mm 

    Qu = Qd = 170  # Lateral soil spring resistance, N/mm (symmetric soil force) 

    dQu = dQd = round(0.15 * OD_nominal, 1) # Lateral soil spring resistance, mm (symmetric 

soil force) 

     

    #%% Number of node on each segment 

    EleSize = 1 

    nodeL = int(soilL/EleSize) + 1 

    nodeM = int(soilM/EleSize) + 1 

    nodeR = int(soilR/EleSize) + 1 

    node = [] 

    for i in [nodeL, nodeM, nodeR]: 

        if i%2 == 0: 

            node.append(i+1) 

        else: 

            node.append(i) 

    [nodeL, nodeM, nodeR] = node 

    nodes = nodeL + nodeM + nodeR 

     

    #%% Stocastic properties of all variables (non random variables: mean = varaible, sd = 0) 

    sto_CSC_ALA = {'OD': [OD_nominal, 0.0017 * OD_nominal, 'Normal'], 

               'WT': [WT_nominal, 0.0235 * WT_nominal, 'Normal'],} 
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    sto_FDM = {'OD': [OD_nominal, 0.0017 * OD_nominal, 'Normal'], 

               'WT': [WT_nominal, 0.0235 * WT_nominal, 'Normal'], 

               'sY': [sY_mean, sY_SD, 'Normal'], 

               'sU': [sU_mean, sU_SD, 'Normal'], 

               'InitialCreep': sto_InitialCreep, 

               'delta': sto_delta,  # Stochastic delta in Squash 

               'Delta_T': sto_Delta_T,} 

    #%% Generate random data 

    def data_generation(n_size, sto): 

        data_variables = [] 

        for item in sto.keys(): 

            if sto[item][-1] == 'Normal': 

                data_variables.append(np.random.normal(sto[item][0], sto[item][1], size = n_size)) 

            elif sto[item][-1] == 'Lognormal': 

                COV_item = sto[item][1]/sto[item][0] 

                lambda_item = np.log(sto[item][0])-0.5*np.log(1+COV_item**2) 

                xi_item = np.sqrt(np.log(1+COV_item**2)) 

                data_variables.append(np.random.lognormal(lambda_item, xi_item, size = n_size)) 

            elif sto[item][-1] == 'Uniform': 

                data_variables.append(np.random.uniform(sto[item][0], sto[item][1], size = n_size)) 

            elif sto[item][-1] == 'Triangular': 

                data_variables.append(np.random.triangular(sto[item][0], sto[item][1], sto[item][2], 

size = n_size)) 



 

227 

 

 

            elif sto[item][-1] == 'Truncated_Normal': 

                mu, sigma = sto[item][0], sto[item][1] 

                lower_bound, upper_bound = sto[item][2], sto[item][3] 

                a, b = (lower_bound-mu)/sigma, (upper_bound-mu)/sigma 

                data_truncnorm = truncnorm.rvs(a, b, loc = mu, scale = sigma, size = n_size) 

                data_variables.append(data_truncnorm) 

        data_variables = np.array(data_variables).T 

        return data_variables 

     

    ### Strain demand calculation data 

    def get_parameters_FDM(sto_data, Geohazard): 

        deterministic_data = [Geohazard, InspectionInterval, MOP, Ee, Ep, Beta, Tu, dTu, Qu, dQu, 

Qd, dQd,  

                        soilL, soilM, soilR, nodeL, nodeM, nodeR] 

        basic_data = list(sto_data) + deterministic_data 

        IG = np.zeros(2*nodes, dtype=np.float64) 

        basic_data.append(IG) 

        parameters = tuple(basic_data) 

        return parameters 

     

    #%% Monte Carlo Simulation 

    N_mc = 10000  # Data property: int 

    chunk_size_mc = 200 
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    data_CSC_ALA = data_generation(N_mc, sto_CSC_ALA) 

    data_FDM = data_generation(N_mc, sto_FDM) 

 

    ########### Compressive strain capacity - CSA_ALA 

    CSC_ALA = [] 

    for i in range(N_mc): 

        D = data_CSC_ALA[i, 0] 

        t = data_CSC_ALA[i, 1] 

        P = MOP 

        CSC_params = (D, t, Ee, P,) 

        CSC_ALA.append(Appendix_B_fun_FDM_PT.fun_CSC_ALA(CSC_params)) 

    CSC_ALA = np.array(CSC_ALA) 

    CSC_ALA1 = CSC_ALA[:, 0] 

    # CSC_ALA2 = CSC_ALA[:, 1] 

 

    #%% Strain demand calulation 

    ## Strain demand calculation: 1st round, using IG = 0 

    time1 = time.time() 

    conver_diver_collect_mc = [] 

    with concurrent.futures.ProcessPoolExecutor() as executor: 

        executor_outputs = executor.map(Appendix_B_fun_FDM_PT.fun_SD, 

[get_parameters_FDM(data_FDM[i, :], Geohazard) for i in range(N_mc)], chunksize = 

chunk_size_mc)  # Get the results of limit state function: convergence, safety margin, strain data 

along the pipe 
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    outputs_FDM = np.array(list(executor_outputs)) 

    if np.sum(outputs_FDM[:, 0]) == N_mc: 

        conver_num = N_mc 

        diver_num = 0 

        conver_diver_collect_mc.append(['FDM IG0', conver_num, diver_num]) 

        outputs_final = outputs_FDM  # root_success, eTmax, eCmin, TSC, CSC, data 

        print(Fore.BLUE + '\nAll cases are convergent based on FDM (IG = 0)') 

    else: 

        ## Strain demand calculation: 2nd round, using IG = incremental for divergent cases 

        conver_num = np.sum(outputs_FDM[:, 0] == 1) 

        diver_num = np.sum(outputs_FDM[:, 0] == 0) 

        conver_diver_collect_mc.append(['FDM IG0', conver_num, diver_num]) 

        index_diver = np.argwhere(outputs_FDM[:, 0] == 0) 

        index_diver = index_diver.reshape((len(index_diver), )) 

        with concurrent.futures.ProcessPoolExecutor() as executor: 

            output_diver = executor.map(Appendix_B_fun_FDM_PT.fun_SD_backup, 

[get_parameters_FDM(data_FDM[index, ], Geohazard) for index in index_diver], chunksize = 

10) 

        outputs_FDM[index_diver] = np.array(list(output_diver)) 

        if np.sum(outputs_FDM[:, 0]) == N_mc: 

            conver_num = N_mc 

            diver_num = 0 

            conver_diver_collect_mc.append(['FDM incre', conver_num, diver_num]) 

            print(Fore.BLUE + '\nAll cases are convergent based on FDM (Incremental)') 
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            outputs_final = outputs_FDM 

        else: 

            conver_num = np.sum(outputs_FDM[:, 0] == 1) 

            diver_num = np.sum(outputs_FDM[:, 0] == 0) 

            conver_diver_collect_mc.append(['FDM incre', conver_num, diver_num]) 

            pass 

    outputs_final = outputs_FDM 

     

    ########### Safety margin and PoF by MC 

    PoF_mc = [] 

    SafetyMargin_collect = {} 

    SafetyMargin_case_data = [] 

    # Include_divergent_case = True  # Including divergent case means using the divergent value 

as true value 

    Include_divergent_case = False 

    if Include_divergent_case: 

        ### Case TSC_ALA + Tension: Using 2% strain capacity to calculate safety margin, only 

tensile strain is considered 

        g_T1_mc = 0.02 - outputs_final[:, 1] 

        SafetyMargin_case_data.append(g_T1_mc) 

        failure_num = np.sum(g_T1_mc <= 0) 

        PoF_mc_T1 = failure_num/N_mc  # Use the total number  

        PoF_mc.append(PoF_mc_T1) 
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        ### Case CSC_ALA + Compression: Using CSC_ALA strain capacity to calculate safety 

margin, only compressive strain is considered 

        g_C1_mc = CSC_ALA1 - np.abs(outputs_final[:, 2]) 

        SafetyMargin_case_data.append(g_C1_mc) 

        failure_num = np.sum(g_C1_mc <= 0) 

        PoF_mc_C1 = failure_num/N_mc  # Use the total number  

        PoF_mc.append(PoF_mc_C1) 

         

        ### Case 2% Tension and Compression: tension and compressive strain are considered 

        g_TC1_mc = np.minimum(g_T1_mc, g_C1_mc) 

        SafetyMargin_case_data.append(g_TC1_mc) 

        failure_num = np.sum(g_TC1_mc <= 0) 

        PoF_mc_TC1 = failure_num/N_mc  # Use the total number  

        PoF_mc.append(PoF_mc_TC1) 

         

    #%% Excluding divergent cases 

    else: 

        N_mc_conver = np.sum(outputs_final[:, 0]) 

        index_conver = np.where(outputs_final[:, 0] == 1)[0] 

        ##### ALA 

        ### Case 2% + Tension: Using 2% strain capacity to calculate safety margin, only tensile 

strain is considered 

        g_T1_mc = 0.02 - outputs_final[index_conver, 1] 

        SafetyMargin_case_data.append(g_T1_mc) 
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        failure_num = np.sum(g_T1_mc <= 0) 

        PoF_mc_T1 = failure_num/N_mc_conver  # Use the convergent number 

        PoF_mc.append(PoF_mc_T1) 

         

        ### Case 1% + Compression: Using 1% strain capacity to calculate safety margin, only 

compressive strain is considered 

        g_C1_mc = CSC_ALA1[index_conver] - np.abs(outputs_final[index_conver, 2]) 

        SafetyMargin_case_data.append(g_C1_mc) 

        failure_num = np.sum(g_C1_mc <= 0) 

        PoF_mc_C1 = failure_num/N_mc_conver  # Use the convergent number 

        PoF_mc.append(PoF_mc_C1) 

         

        ### Case 2% Tension and 1% Compression: tension and compressive strain are considered 

        g_TC1_mc = np.minimum(g_T1_mc, g_C1_mc) 

        SafetyMargin_case_data.append(g_TC1_mc) 

        failure_num = np.sum(g_TC1_mc <= 0) 

        PoF_mc_TC1 = failure_num/N_mc_conver  # Use the convergent number 

        PoF_mc.append(PoF_mc_TC1) 

 

    durT_mc = time.time() - time1 

    print("\nMonte Carlo Simulation", 

          "\n2% Tension (ALA): PoF = ", round(PoF_mc_T1, 7), 

          "\nCompression (ALA1): PoF = ", round(PoF_mc_C1, 7), 
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          "\n2% Tension + Compression: PoF = ", round(PoF_mc_TC1, 7), 

          "\nTotal time = ", round(durT_mc / 3600, 5), " hrs") 

 

    #%% Calculation time 

    timeEnd = time.time() 

    duration = round((timeEnd - timeStart) / 3600, 3) 

    print("\n Program finished!  Duration = ", duration, " hrs") 

 

2. Appendix_B_fun_FDM_PT 

import math 

import numpy as np 

from scipy import optimize 

 

import warnings 

warnings.filterwarnings('ignore') 

 

# Optimazation libraries 

from numba import njit, jit 

#%% Soil resistance 

warnings.filterwarnings('ignore') 

@njit 

def Tu0(x, Tu, dTu): 

    if x <= -dTu: 
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        y = -Tu 

    elif x >= dTu: 

        y = Tu 

    else: 

        y = Tu/dTu*x 

    return y 

 

@njit 

def Pu0(x, Qu, dQu, Qd, dQd): 

    if x <= -dQd: 

        y = -Qd 

    elif (x > -dQd) * (x <= 0): 

        y = Qd/dQd*x 

    elif (x > 0) * (x < dQu): 

        y = Qu/dQu*x 

    else: 

        y = Qu 

    return y 

 

#%% Finite difference equation 

warnings.filterwarnings('ignore') 

@njit 

def firstD(a, c, h):  # a: the a(i-1); aii: a(i+1) 
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    p = (c - a) / (2 * h)  # ai: the a(i) 

    return p 

 

@njit 

def secondD(a, b, c, h): 

    pp = (c - 2 * b + a) / (h ** 2) 

    return pp 

 

#%% Equation for N and M 

warnings.filterwarnings('ignore') 

@njit 

def NMnon(du,dw,d2w, basic_params): 

    D, t, A, Ee, EpT, EpC, s_YT, s_YC, e_YT, e_YC, e_initial = basic_params 

    eA=du + 1/2*(dw)**2 + e_initial 

    eBmax=D/2*(d2w) 

    if np.abs(d2w)<= 1e-15: 

        M = 0. 

        if eA > e_YT: 

            N=A*(s_YT + EpT*(eA-e_YT)) 

        elif eA < e_YC: 

            N=A*(s_YC + EpC*(eA-e_YC)) 

        else: 

            N=A*Ee*eA 
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    else: 

        hty=D/2-(e_YT-eA)/(2*eBmax)*D 

        hcy=D/2+(-e_YC+eA)/(2*eBmax)*D 

        H1=min(hty,hcy) 

        H2=max(hty,hcy) 

        if H1>=D: 

            phi1=np.pi 

        elif H1<=0: 

            phi1=0 

        else: 

            phi1=np.arccos((D-2*H1)/D) 

        if H2>=D: 

            phi2=np.pi 

        elif H2<=0: 

            phi2=0 

        else: 

            phi2=np.arccos((D-2*H2)/D) 

        if hcy > hty: # Ii = 1 

            N = (D - t)*t*( 

                (EpC*np.pi + (Ee - EpC)*phi2)*eA  

                - ((Ee - EpT)*np.sin(phi1) - (Ee - EpC)*np.sin(phi2))*eBmax  

                - (Ee - EpT)*(eA - e_YT)*phi1  

                + (Ee - EpC)*(np.pi - phi2)*e_YC 
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                ) 

            M = 0.25*(D - t)**2*t*( 

                (EpC*np.pi - (Ee - EpT)*(phi1 + np.sin(phi1)*np.cos(phi1)) + (Ee - 

EpC)*(phi2+np.sin(phi2)*np.cos(phi2)))*eBmax 

                - 2*((Ee - EpT)*np.sin(phi1) - (Ee - EpC)*np.sin(phi2))*eA  

                + 2*np.sin(phi1)*e_YT*(Ee - EpT) - 2*np.sin(phi2)*e_YC*(Ee - EpC) 

                ) 

        else: 

            N = (D - t)*t*( 

                (EpT*np.pi + (Ee - EpT)*phi2)*eA  

                - ((Ee - EpC)*np.sin(phi1) - (Ee - EpT)*np.sin(phi2))*eBmax  

                - (Ee - EpC)*(eA - e_YC)*phi1  

                + (Ee - EpT)*(np.pi - phi2)*e_YT 

                ) 

            M = 0.25*(D - t)**2*t*( 

                (EpT*np.pi - (Ee - EpC)*(phi1 + np.sin(phi1)*np.cos(phi1)) + (Ee - 

EpT)*(phi2+np.sin(phi2)*np.cos(phi2)))*eBmax 

                - 2*((Ee - EpC)*np.sin(phi1) - (Ee - EpT)*np.sin(phi2))*eA  

                + 2*np.sin(phi1)*e_YC*(Ee - EpC) - 2*np.sin(phi2)*e_YT*(Ee - EpT) 

                ) 

    return [N,M] 

 

#%% Equation construction 

warnings.filterwarnings('ignore') 
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@njit 

def Equations(x, zero_arrays, Equations_params, soil_params, MNnon_params):    # Finite 

difference z is an array containing us followed by ws with length nodes. 

    (upL, wpL, wppL, NL, NwpL, ML, NpL, MpL, MppL, 

     upM, wpM, wppM, NM, MM, NpM, MpM, NwpM, MppM, 

     upR, wpR, wppR, NR, MR, NpR, MpR, NwpR, MppR) = zero_arrays 

    hL, hM, hR, nodeL, nodeM, nodeR, coordinate = Equations_params 

    Tu, dTu, U, Qu, dQu, Qd, dQd, W = soil_params 

    D, t, A, Ee, EpT, EpC, s_YT, s_YC, e_YT, e_YC, e_initial = MNnon_params 

     

    l=int(len(x)/2) 

    u=x[:l] 

    w=x[l:] 

    # Range function doesn't consider last value 

    # Forward 

    upL[0]=(u[1]-u[0])/hL 

    wpL[0]=(w[1]-w[0])/hL 

    wppL[0]=(w[2]-2*w[1]+w[0])/hL**2 

    [NL[0],ML[0]]=NMnon(upL[0],wpL[0],wppL[0], MNnon_params) 

    # Backward 

    upL[nodeL-1]=(u[nodeL-2]-u[nodeL-1])/(-hL) 

    wpL[nodeL-1]=(w[nodeL-2]-w[nodeL-1])/(-hL) 

    wppL[nodeL-1]=(w[nodeL-1]-2*w[nodeL-2]+w[nodeL-3])/hL**2 
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    [NL[nodeL-1],ML[nodeL-1]]=NMnon(upL[nodeL-1], wpL[nodeL-1], wppL[nodeL-1], 

MNnon_params) 

    for i in range(1, nodeL-1): #First derivatives and second derivatives start from second node to 

one before last 

        upL[i]=firstD(u[i-1],u[i+1],hL) 

        wpL[i]=firstD(w[i-1],w[i+1],hL) 

        wppL[i]=secondD(w[i-1],w[i],w[i+1],hL) 

        [NL[i],ML[i]]=NMnon(upL[i],wpL[i],wppL[i], MNnon_params) 

    for i in range(1, nodeL-1): #First derivatives and second derivatives start from second node to 

one before last 

        NpL[i]=firstD(NL[i-1],NL[i+1],hL) 

        MppL[i]=secondD(ML[i-1],ML[i],ML[i+1],hL) 

        NwpL[i]=firstD(NL[i-1]*wpL[i-1],NL[i+1]*wpL[i+1],hL) 

         

    # Forward 

    upM[0]=(u[nodeL+1]-u[nodeL+0])/hM 

    wpM[0]=(w[nodeL+1]-w[nodeL+0])/hM 

    wppM[0]=(w[nodeL+2]-2*w[nodeL+1]+w[nodeL+0])/hM**2 

    [NM[0],MM[0]]=NMnon(upM[0],wpM[0],wppM[0], MNnon_params) 

    # Backward 

    upM[nodeM-1]=(u[nodeL+nodeM-2]-u[nodeL+nodeM-1])/(-hM) 

    wpM[nodeM-1]=(w[nodeL+nodeM-2]-w[nodeL+nodeM-1])/(-hM) 

    wppM[nodeM-1]=(w[nodeL+nodeM-1]-2*w[nodeL+nodeM-2]+w[nodeL+nodeM-3])/hM**2 
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    [NM[nodeM-1],MM[nodeM-1]]=NMnon(upM[nodeM-1],wpM[nodeM-1],wppM[nodeM-1], 

MNnon_params) 

    for i in range(1, nodeM-1): 

        upM[i]=firstD(u[i-1+nodeL],u[i+1+nodeL],hM) 

        wpM[i]=firstD(w[i-1+nodeL],w[i+1+nodeL],hM) 

        wppM[i]=secondD(w[i-1+nodeL],w[i+nodeL],w[i+1+nodeL],hM) 

        [NM[i],MM[i]]=NMnon(upM[i],wpM[i],wppM[i], MNnon_params) 

    for i in range(1, nodeM-1): #First derivatives and second derivatives start from second node to 

one before last 

        NpM[i]=firstD(NM[i-1],NM[i+1],hM) 

        MppM[i]=secondD(MM[i-1],MM[i],MM[i+1],hM) 

        NwpM[i]=firstD(NM[i-1]*wpM[i-1],NM[i+1]*wpM[i+1],hM) 

         

    # Forward 

    upR[0]=(u[nodeL+nodeM+1]-u[nodeL+nodeM+0])/hR 

    wpR[0]=(w[nodeL+nodeM+1]-w[nodeL+nodeM+0])/hR 

    wppR[0]=(w[nodeL+nodeM+2]-2*w[nodeL+nodeM+1]+w[nodeL+nodeM+0])/hR**2 

    [NR[0],MR[0]]=NMnon(upR[0],wpR[0],wppR[0], MNnon_params) 

    # Backward 

    upR[nodeR-1]=(u[nodeL+nodeM+nodeR-1]-u[nodeL+nodeM+nodeR-2])/hR 

    wpR[nodeR-1]=(w[nodeL+nodeM+nodeR-1]-w[nodeL+nodeM+nodeR-2])/hR 

    wppR[nodeR-1]=(w[nodeL+nodeM+nodeR-1]-2*w[nodeL+nodeM+nodeR-

2]+w[nodeL+nodeM+nodeR-3])/hM**2 



 

241 

 

 

    [NR[nodeR-1],MR[nodeR-1]]=NMnon(upR[nodeR-1],wpR[nodeR-1],wppR[nodeR-1], 

MNnon_params) 

    for i in range(1, nodeR-1): 

        upR[i]=firstD(u[i-1+nodeL+nodeM],u[i+1+nodeL+nodeM],hR) 

        wpR[i]=firstD(w[i-1+nodeL+nodeM],w[i+1+nodeL+nodeM],hR) 

        wppR[i]=secondD(w[i-1+nodeL+nodeM],w[i+nodeL+nodeM],w[i+1+nodeL+nodeM],hR) 

        [NR[i],MR[i]]=NMnon(upR[i],wpR[i],wppR[i], MNnon_params) 

    for i in range(1, nodeR-1): #First derivatives and second derivatives start from second node to 

one before last 

        NpR[i]=firstD(NR[i-1],NR[i+1],hR) 

        MppR[i]=secondD(MR[i-1],MR[i],MR[i+1],hR) 

        NwpR[i]=firstD(NR[i-1]*wpR[i-1],NR[i+1]*wpR[i+1],hR) 

    # Establishing equations 

    ### New equations (change on soil springs) 

    EqsLu = np.array([NpL[i] + Tu0(0 - u[i], Tu, dTu) for i in range(1, nodeL - 1)]) 

    EqsLw = np.array([MppL[i] - NwpL[i] - Pu0(0- w[i], Qu, dQu, Qd, dQd) for i in range(2, 

nodeL - 2)]) 

    EqsMu = np.array([NpM[i] + Tu0(U - u[i + nodeL], Tu, dTu) for i in range(1, nodeM - 1)]) 

    EqsMw = np.array([MppM[i] - NwpM[i] - Pu0(W - w[i + nodeL], Qu, dQu, Qd, dQd) for i in 

range(2, nodeM - 2)]) 

    EqsRu = np.array([NpR[i] + Tu0(0 - u[i + nodeL + nodeM], Tu, dTu) for i in range(1, nodeR - 

1)]) 

    EqsRw = np.array([MppR[i] - NwpR[i] - Pu0(0 - w[i + nodeL + nodeM], Qu, dQu, Qd, dQd) 

for i in range(2, nodeR - 2)]) 
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    BCs=[] 

    BCs.append(u[0])#Fixed horizontal displacement end 1 

    BCs.append(u[nodeL+nodeM+nodeR-1])#Fixed horizontal displacement far end 

    BCs.append(w[0])#Fixed vertical displacement end 1 

    BCs.append(w[nodeL+nodeM+nodeR-1])#Fixed vertical displacement far end 

    BCs.append((w[1]-w[0])/hL)#Fixed rotation near end 

    BCs.append((w[nodeL+nodeM+nodeR-1]-w[nodeL+nodeM+nodeR-2])/hR)#Fixed rotation 

far end 

    # First connection 

    BCs.append(u[nodeL-1]-u[nodeL]) #connectivity of u 

    BCs.append(w[nodeL-1]-w[nodeL]) #connectivity of w 

    BCs.append((u[nodeL-1]-u[nodeL-2])/(coordinate[nodeL-1]-coordinate[nodeL-2])-

(u[nodeL+1]-u[nodeL])/(coordinate[nodeL+1]-coordinate[nodeL])) #connectivity of first slope 

of u 

    BCs.append((w[nodeL-1]-w[nodeL-2])/(coordinate[nodeL-1]-coordinate[nodeL-2])-

(w[nodeL+1]-w[nodeL])/(coordinate[nodeL+1]-coordinate[nodeL])) #next is connectivity of 

first slope of w 

    BCs.append((w[nodeL-3]-2*w[nodeL-2]+w[nodeL-1])/(hL**2)-(w[nodeL+2]-

2*w[nodeL+1]+w[nodeL])/(hM**2)) #connectivity of second derivative of w 

    BCs.append((w[nodeL-1]-3*w[nodeL-2]+3*w[nodeL-3]-w[nodeL-4])/(hL**3)-(w[nodeL+3]-

3*w[nodeL+2]+3*w[nodeL+1]-w[nodeL])/(hM**3)) #connectivity of third derivative of w 

    # Second connection 

    BCs.append(u[nodeM+nodeL-1]-u[nodeM+nodeL]) #connectivity of u 

    BCs.append(w[nodeM+nodeL-1]-w[nodeM+nodeL]) #connectivity of w 
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    BCs.append((u[nodeM+nodeL-1]-u[nodeM+nodeL-2])/(coordinate[nodeM+nodeL-1]-

coordinate[nodeM+nodeL-2])-(u[nodeM+nodeL+1]-

u[nodeM+nodeL])/(coordinate[nodeM+nodeL+1]-coordinate[nodeM+nodeL])) #connectivitify 

of first slope of u 

    BCs.append((w[nodeM+nodeL-1]-w[nodeM+nodeL-2])/(coordinate[nodeM+nodeL-1]-

coordinate[nodeM+nodeL-2])-(w[nodeM+nodeL+1]-

w[nodeM+nodeL])/(coordinate[nodeM+nodeL+1]-coordinate[nodeM+nodeL])) #next is 

connectivity of first slope of w 

    BCs.append((w[nodeM+nodeL-3]-2*w[nodeM+nodeL-2]+w[nodeM+nodeL-1])/(hM**2)-

(w[nodeM+nodeL+2]-2*w[nodeM+nodeL+1]+w[nodeM+nodeL])/(hR**2)) #connectivity of 

second derivative of w 

    BCs.append((w[nodeM+nodeL-1]-3*w[nodeM+nodeL-2]+3*w[nodeM+nodeL-3]-

w[nodeM+nodeL-4])/(hM**3)-(w[nodeM+nodeL+3]-

3*w[nodeM+nodeL+2]+3*w[nodeM+nodeL+1]-w[nodeM+nodeL])/(hR**3)) #connectivity of 

third derivative of w 

 

    BCs = np.array(BCs) 

    Eqs = np.concatenate((EqsLu, EqsLw, EqsMu, EqsMw, EqsRu, EqsRw, BCs)) 

    return Eqs 

 

#%% Calculate the compressive strain capacity 

warnings.filterwarnings('ignore') 

@njit 

def fun_CSC_ALA(CSC_params): 

    (D, t, Ee, P,) = CSC_params 

    epsilon_operate = 0.5*(t/D) - 0.0025 + 3000*(P*D/(2*Ee*t))**2 



 

244 

 

 

    epsilon_integrity = 1.76*t/D 

    return epsilon_operate, epsilon_integrity 

 

#%% Reliability calculation based on IG = 0 

warnings.filterwarnings('ignore') 

@njit 

def piecewise_material(x, Ee, Ep, eY, nv, s_2): 

    if np.abs(x) <= eY: 

        y = nv*s_2 - Ee*x 

    else: 

        y = nv*s_2 - (Ee*eY + Ep*(x-eY)) 

    return y 

 

warnings.filterwarnings('ignore') 

@jit 

def fun_SD(params): 

    (D, t, sY, sU,  

     InitialCreep,  

     delta_or_rate,  

     Delta_T,  

     Geohazard, year, 

     MOP, Ee, Ep, Beta, Tu, dTu, Qu, dQu, Qd, dQd,  

     soilL, soilM, soilR, nodeL, nodeM, nodeR,  
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     IG) = params 

    eY = sY / Ee 

     

    ########## Calculation of EpT and EpC 

    nv = 0.3  # Possion's ratio 

    alpha = 1.2e-5  # Coef. thermal expansion 

    s_2 = MOP*(D-2*t)/(2*t)  # hoop stress, MPa 

    x = alpha*Delta_T # Thermal strain 

    s_initial = piecewise_material(x, Ee, Ep, eY, nv, s_2) 

    e_initial = s_initial/Ee 

    if 4*sY**2 - 3*s_2**2 >= 0: 

        s_YT = 0.5 * (s_2 + np.sqrt(4*sY**2 - 3*s_2**2)) 

        s_YC = 0.5 * (s_2 - np.sqrt(4*sY**2 - 3*s_2**2)) 

    else: 

        s_YT = 0.5 * s_2 

        s_YC = 0.5 * s_2 

    e_YT = (s_YT-nv*s_2)/Ee 

    e_YC = (s_YC-nv*s_2)/Ee 

    h = (Ee*Ep)/(Ee-Ep) 

 

    ### Plastic stress-strain 

    ## Tensile state 

    n = 50 
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    incr = (1000 - s_YT)/(n-1) 

    s_p1T = np.arange(s_YT, 900 + incr, incr) 

    # e_p1T = np.zeros(len(s_p1T)) 

    inte = (-2*(-2*s_p1T+s_2)+2*np.sqrt(3)*s_2*np.arctan((-2*s_p1T+s_2)/(np.sqrt(3)*s_2))) - (-

2*(-2*s_YT+s_2)+2*np.sqrt(3)*s_2*np.arctan((-2*s_YT+s_2)/(np.sqrt(3)*s_2))) 

    e_p1T = e_YT + 1/Ee*(s_p1T - s_YT) + 1/(4*h) * inte 

    ## Compressive state 

    incr = (-1000 - s_YC)/(n-1) 

    s_p1C = np.arange(s_YC, -800 + incr, incr) 

    # e_p1C = np.zeros(len(s_p1C)) 

    inte = (-2*(-2*s_p1C+s_2)+2*np.sqrt(3)*s_2*np.arctan((-2*s_p1C+s_2)/(np.sqrt(3)*s_2))) - 

(-2*(-2*s_YC+s_2)+2*np.sqrt(3)*s_2*np.arctan((-2*s_YC+s_2)/(np.sqrt(3)*s_2))) 

    e_p1C = e_YC + 1/Ee*(s_p1C - s_YC) + 1/(4*h) * inte 

    ### Plastic slope 

    EpT = (s_p1T[-1]-s_p1T[0])/(e_p1T[-1]-e_p1T[0]) 

    EpC = (s_p1C[-1]-s_p1C[0])/(e_p1C[-1]-e_p1C[0]) 

     

    # Fixed variables 

    soilL = 1000 * soilL 

    soilM = 1000 * soilM 

    soilR = 1000 * soilL 

    hL = soilL / (nodeL - 1) 

    hM = soilM / (nodeM - 1) 

    hR = soilR / (nodeR - 1) 
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    coordinateL = np.array([i * hL for i in range(nodeL)]) 

    coordinateM = np.array([soilL + i * hM for i in range(nodeM)]) 

    coordinateR = np.array([soilL + soilM + i * hR for i in range(nodeR)]) 

    coordinate = np.concatenate((coordinateL, coordinateM, coordinateR)) 

 

    A = 1 / 4 * np.pi * (D ** 2 - (D - 2 * t) ** 2)  # Section area, mm^2 

    if Geohazard == 'Slope': 

        DeltaTotal = (InitialCreep + delta_or_rate*year) * 1000  # Total ground displacement, mm 

    elif Geohazard == 'Landslide': 

        DeltaTotal = (InitialCreep + delta_or_rate)* 1000  # Total ground displacement, mm 

    elif Geohazard == 'None': 

        DeltaTotal = delta_or_rate * 1000  # Total ground displacement, mm 

    U = round(DeltaTotal * math.cos(Beta * math.pi / 180), 5)  # Horizontal displacement, mm 

    W = round(DeltaTotal * math.sin(Beta * math.pi / 180), 5)  # Vertical displacement, mm 

 

    # Assign room for deformations and derivatives 

    upL = np.zeros(nodeL, dtype=np.float64) 

    wpL = np.zeros(nodeL, dtype=np.float64) 

    wppL = np.zeros(nodeL, dtype=np.float64) 

    NL = np.zeros(nodeL, dtype=np.float64) 

    NwpL = np.zeros(nodeL, dtype=np.float64) 

    ML = np.zeros(nodeL, dtype=np.float64) 

    NpL = np.zeros(nodeL, dtype=np.float64) 
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    MpL = np.zeros(nodeL, dtype=np.float64) 

    MppL = np.zeros(nodeL, dtype=np.float64) 

 

    upM = np.zeros(nodeM, dtype=np.float64) 

    wpM = np.zeros(nodeM, dtype=np.float64) 

    wppM = np.zeros(nodeM, dtype=np.float64) 

    NM = np.zeros(nodeM, dtype=np.float64) 

    MM = np.zeros(nodeM, dtype=np.float64) 

    NpM = np.zeros(nodeM, dtype=np.float64) 

    MpM = np.zeros(nodeM, dtype=np.float64) 

    NwpM = np.zeros(nodeM, dtype=np.float64) 

    MppM = np.zeros(nodeM, dtype=np.float64) 

 

    upR = np.zeros(nodeR, dtype=np.float64) 

    wpR = np.zeros(nodeR, dtype=np.float64) 

    wppR = np.zeros(nodeR, dtype=np.float64) 

    NR = np.zeros(nodeR, dtype=np.float64) 

    MR = np.zeros(nodeR, dtype=np.float64) 

    NpR = np.zeros(nodeR, dtype=np.float64) 

    MpR = np.zeros(nodeR, dtype=np.float64) 

    NwpR = np.zeros(nodeR, dtype=np.float64) 

    MppR = np.zeros(nodeR, dtype=np.float64) 
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    zero_arrays = (upL, wpL, wppL, NL, NwpL, ML, NpL, MpL, MppL, 

     upM, wpM, wppM, NM, MM, NpM, MpM, NwpM, MppM, 

     upR, wpR, wppR, NR, MR, NpR, MpR, NwpR, MppR) 

 

    # Equation params: x, zero_arrays, Equations_params, NMnon_params, other_params 

    root = optimize.root(Equations, 

        IG, 

        jac=False, 

        tol=1e-10, 

        args=(zero_arrays, 

            (hL, hM, hR, nodeL, nodeM, nodeR, coordinate), 

            (Tu, dTu, U, Qu, dQu, Qd, dQd, W), 

            (D, t, A, Ee, EpT, EpC, s_YT, s_YC, e_YT, e_YC, e_initial)))  # Be careful of the tol 

     

    root_success = root.success 

    loc = [round(i/1000., 2) for i in coordinate] 

    u = root.x[:nodeL+nodeM+nodeR]/1000. 

    w = root.x[nodeL+nodeM+nodeR:]/1000. 

    dudx = np.concatenate((upL, upM, upR)) 

    dwdx = np.concatenate((wpL, wpM, wpR)) 

    d2wdx2 = np.concatenate((wppL, wppM, wppR)) 

    eTop = dudx + 1 / 2 * dwdx ** 2 + D / 2 * d2wdx2 

    eBot = dudx + 1 / 2 * dwdx ** 2 - D / 2 * d2wdx2 
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    eL = np.concatenate((eTop, eBot)) 

    eTmax = np.max(eL) 

    eCmin = np.min(eL) 

    data = np.transpose(np.vstack((loc, u, w, eTop, eBot))) 

    return (root_success, eTmax, eCmin, data) 

 

#%% Backup reliability calculation based on IG = 0 

warnings.filterwarnings('ignore') 

@jit 

def fun_SD_backup(params): 

    (D, t, sY, sU, InitialCreep, delta_or_rate, Delta_T, Geohazard, year, 

     MOP, Ee, Ep, Beta, Tu, dTu, Qu, dQu, Qd, dQd, soilL, soilM, soilR, nodeL, nodeM, nodeR, 

IG) = params 

     

    root_success = 0 

    IncreNum = 5 

    while root_success == 0 and IncreNum <= 20: 

        InitialCreep_step = [round(i, 2) for i in np.linspace(InitialCreep/IncreNum, InitialCreep, 

IncreNum)] 

        delta_or_rate_step = [round(i, 2) for i in np.linspace(delta_or_rate/IncreNum, delta_or_rate, 

IncreNum)] 

         

        for i in range(IncreNum): 

            if i == 0: 
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                parameters = (D, t, sY, sU, InitialCreep_step[i], delta_or_rate_step[i], Delta_T, 

Geohazard, year, MOP, Ee, Ep, Beta, Tu, dTu, Qu, dQu, Qd, dQd, soilL, soilM, soilR, nodeL, 

nodeM, nodeR, IG) 

                ans = fun_SD(parameters) 

                root_success = ans[0] 

                if root_success:  # Calculate the first step and its results are used as IG for the next step 

                    last_ans = ans 

                else: 

                    last_ans = ans  # Using the divergent results as initial guess 

            else: 

                Factor = [1.0, 10., 100.,1000., 500., 2000., 10000.] 

                MaxCal = len(Factor) 

                sino = 0 

                root_success = 0 

                while root_success == 0 and sino < MaxCal: 

                    factor = Factor[sino] 

                    IG_u = last_ans[-1][:, 1] 

                    IG_v = last_ans[-1][:, 2] 

                    IG = np.concatenate((IG_u, IG_v)) * factor # Should *1000 to unit of mm 

                    parameters = (D, t, sY, sU, InitialCreep_step[i], delta_or_rate_step[i], Delta_T, 

Geohazard, year, MOP, Ee, Ep, Beta, Tu, dTu, Qu, dQu, Qd, dQd, soilL, soilM, soilR, nodeL, 

nodeM, nodeR, IG) 

                    ans = fun_SD(parameters) 

                    root_success = ans[0] 
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                    sino = sino + 1 

                    if root_success: 

                        last_ans = ans 

        IncreNum = IncreNum + 1 

         

    eTmax = last_ans[1] 

    eCmin = last_ans[2] 

    data = last_ans[3] 

    return (root_success, eTmax, eCmin, data) 


