

MINT 709, Capstone Project

Market Survey, Selection, and Evaluation, of a Single Board
Computer for an Underwater Sensor Net Node

Written by, Stephen W. Hosier
May, 2006

1st Reader: Professor M. MacGregor

2nd Reader: Professor J. Harms

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 2 of 53

Abstract

In 2001 glass sponge reefs were discovered in the Straight of Georgia off the coast of
British Columbia. Very little was known about why theses sponges grew where they did
so a sensor net was needed to gather long-term data about the environmental conditions
in areas where these glass sponge reefs were found. An underwater network called
VENUS that became operational 8 February 2006 was located in close proximity to the
area so it was possible to deploy a sensor net that connected to the VENUS system. This
paper is concerned with a market survey, selection and evaluation of a single board
computer (SBC) for use as a node for the glass sponge reef sensor net.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 3 of 53

Table of Contents

1. Introduction ..4
1.1. Glass Sponge Reefs ...4
1.2. VENUS..5
1.3. Embedded Computing and Sensor Nets...7

2. Related Research ...8
3. SBC for a Sensor Net Node ...10

3.1. SBC Features..10
3.1.1. VENUS Compatibility ...11
3.1.2. Power, Size and Cost (Smaller is Better).......................................11
3.1.3. Memory, I/O, and Expansion (Bigger is Better)12
3.1.4. Open Design and RTC (Should Have)...12
3.1.5. Operating Systems ..13
3.1.6. C Compiler and IDE ...17

3.2. SBC Comparison ..17
3.2.1. Digi, DigiConnect EM...18
3.2.2. Ethernut 2.1 ...19
3.2.3. Micro/Sys, SBC1491..19
3.2.4. Modtronix SBC65EC..20
3.2.5. Netburner Mod5270 ...20
3.2.6. Olimex, LPC-E2124 ...21
3.2.7. Olimex, MSP430-easyWeb3..21
3.2.8. Rabbit Semiconductor, RCM3750 Rabbit Core22
3.2.9. SoftBaugh, TCP430 ...22
3.2.10. Technologic Systems, TS-7260 ...23

3.3. SBC Selection ...24
4. Evaluation of the Modtronix SBC65EC ..28

4.1. Modtronix and Initial Impressions..28
4.2. Programming the SBC65EC ...29

4.2.1. ICSP...29
4.2.2. Integrated Development Environment ...30
4.2.3. C Compiler ...30
4.2.4. Web Pages ..32

4.3. Expansion Board...33
4.4. Power Consumption..35

4.4.1. Test Setup..36
4.4.2. 40MHz Clock Speed ..37
4.4.3. 10MHz Clock Speed ..38
4.4.4. Supply Voltage Reduction..40
4.4.5. Ethernet Controller...41

5. Conclusions ..42
6. Recommendations ...43
7. References ..44

Appendix A. Single Board Computers Surveyed ...45
Appendix B. Microcontroller Pricing Sources...48
Appendix C. Schematics ..50
Appendix D. Clockspeed Code Modifications ..52

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 4 of 53

1. Introduction

1.1. Glass Sponge Reefs

Glass sponge reefs were discovered in 2001 off the coast of British Columbia. The
following article by Gitai Yahel �[26] explains what glass sponge reefs are and how they
were discovered.

The Strait of Georgia Glass Sponge Reefs
by Gitai Yahel (Yahel@UVic.ca)

During a multibeam bathymetric survey in 2001, Kim Conway along with a
group of geologists from the Pacific Geosciences Center (PGC), discovered
two glass sponge reefs in the Strait of Georgia. The presence of these
spectacularly dense populations of giant sponge in the turbid water off the
Fraser River pro-delta located just a few km from Vancouver came as a
complete surprise. The known glass sponge reefs, discovered in the Hecate
Strait in the early 90s, occur in a relatively low sedimentation setting. The
Fraser Ridge reef consists of several interconnected mounds that are up to 14
m high and form an ~1km long belt. The reef lies on the crest of a resistant
glacial till remnant that rises about 60 m above the pro-delta slope.

Figure 1: In situ sampling of the
water inhaled and exhaled by a
glass sponge (A.vastus) using
ROPOS robotic manipulator and
the SIP water sampler.

Figure 2: The Fraser Ridge glass sponge
reef, ROPOS dive November 2004. The reef
is composed mainly of two sponge species,
Aphrocallistes vastus and Heterochone
calyx that form densely packed stands.

Glass sponges are unique animals. Most of their tissue is made of giant,
multinucleated cells called a syncytium. This body organization allows the
sponge to transmit electrical signals over its nerveless body perhaps in the
style of its metazoan ancestors. The sponge soft tissue forms a thin veneer
over a rigid skeleton made of glass spicules that accounts for ~85% of the
sponge mass. Interestingly, these "biological glass fibers" are similar to
commercial optical fibers. The reef forming glass sponges are large animals
reaching over 1.5 m high and a few metres wide. Their glass spicules are
fused together so that when the sponge dies, its skeleton remains to form the

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 5 of 53

foundation for the settlement of new sponges. The growth of new generations
over the skeletons of their progenitors is the process that creates the glass
sponge reef in a similar fashion to the formation of a coral reef.

Like other sponges, glass sponges are probably suspension feeders feeding
by pumping large quantities of seawater via a specialized filtration system.
Study of the diet composition, pumping activity and metabolism of glass
sponge has so far been hampered by their deep, remote and inaccessible
habitat. A group of scientists from PGC and the Universities of Alberta,
Victoria and Washington, led by Dr. Sally Leys (U. Alberta), are gearing up
to conduct the first in situ biological study of glass sponge reefs.

…

In the Jurassic period, glass sponge reefs covered substantial parts of the
ancient Tethys Sea seafloor forming a 7000 long km reef system. This reef
system is the largest known biological structures ever built on earth. Thought
to be extinct with the dinosaurs, the discovery of extant glass sponge reefs in
BC waters has opened up an exciting opportunity to look into the functioning
of an ancient benthic community and its interaction with the surrounding
ecosystem. The Strait of Georgia reefs include the high turbidity site at
Fraser Ridge and the McCall Bank setting which resembles the northern
reefs complex. These reefs are located in close vicinity to many of BC's major
research facilities. VENUS instruments may be able to reach this site,
depending on the final routing of the Strait of Georgia crossing.

1.2. VENUS

The Victoria Environmental Network Under the Sea (VENUS) went operational on 8
February 2006. Some VENUS access points (nodes) were located in close proximity to
the area where the glass sponge reefs were found so the plan was to deploy a sensor net
on the reef and to connect to it via a VENUS node making it part of the VENUS system.
The following extract from the VENUS project web site �[27] provides a good overview
of the VENUS project:

VENUS will be a network of instruments in the ocean to observe the
marine waters around southern Vancouver Island in both Saanich Inlet
and the Strait of Georgia. Measurements, images, and sound will be
delivered to scientists, managers, the public, and a data archive via fibre-
optic cables laid from two landfall sites. The cables will also deliver
power for instruments, lights, and remotely operated vehicles. For the first
time, we will not have to wait for data from periodically recovered
instruments - it will be delivered immediately to researchers as events in
the ocean unfold. The innovation of this array lies in three areas:

� scientists will now be able to interact with the ocean through their
instruments in real-time

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 6 of 53

� instruments will no longer be limited by power limitations, thus
new designs can be supported

� a centralized data management and archive facility will interact
with the researcher and the public, allowing data mining of long-
term observations.

 The Straits of Georgia and ajoining waters around southern Vancouver
Island are among the most heavily used bodies of water in Canada. Our
network of sensors will return information on the behaviour of the marine
environment and the seafloor. The 4 km array into Saanich Inlet from the
Institute of Ocean Sciences in Pat Bay will focus on inlet renewal, ocean
chemistry, biological interactions among species, and system design
development of seafloor observatory components. A major line will cross
the Strait of Georgia from near the Iona Causeway and will support
instruments across the Strait to measure water properties, river dynamics,
whale acoustics, fish migrations, plankton distributions, among other
studies. A spur line along the Fraser Delta front will support a major
project to monitor the stability of the Delta sediments, which are prone to
collapse events.

The VENUS project will have a series of nodes located on the ocean floor. Individual
instruments will either connect directly to a node or to an intermediate “Scientific
Instrument Interface Module” (SIIM).

Figure 3: VENUS Architecture �[26]

The node connection provides power and communication via a wet-mateable connector.
The communication is 10/100 BaseT Ethernet and the power is 400VDC. Both power
and communication is provided by a single connector. The connectors are wet-mateable
so they can be connected to the node by an ROV. All connections on the SIIM and/or
individual instruments will be dry-mateable. An instrument package will be completely
assembled on the surface, deployed as a system and connected to the node by a single
connector.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 7 of 53

Figure 4: VENUS Node, Concept �[26] Figure 5: VENUS Node, Actual Device �[26]

Figure 6: VENUS SIIM �[26]

1.3. Embedded Computing and Sensor Nets

The ability to easily embed significant computing power is changing the way designers
are approaching many problems. Tasks once considered too costly or simply not possible
due to size, cost, or power restraints are now achievable and tremendously practicable

An embedded system is a special-purpose system in which the computer is
completely encapsulated by the device it controls. As opposed to a
general-purpose computer, such as a personal computer, an embedded
system performs pre-defined tasks, usually with very specific
requirements. In an application where the system is dedicated to a specific
task, design engineers are able to optimize the system extensively, thus
considerably reducing the size and cost of the end product. �[31]

Embedded computing is a broad domain that encompasses both large and small systems.
There are large general-purpose embedded systems with the processing power of

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 8 of 53

personal computers and small application-specific embedded systems with comparatively
little processing power.

Sensor nets are at the very small end of the embedded computing range. Sensor nets are
comprised of small independent battery-operated devices that contain all the functional
components needed to gather data about their local environment and to process, store,
and form a network with other devices to communicate that data to some central location.

Several names are being used to refer to the individual sensor net devices and there is no
universally accepted term. The term “node” is a very general term for any device on a
network and applies to sensor nets as well. The term “mote” is often used to refer to
sensor net nodes but it is used exclusively to refer to sensor net nodes that use radio-
frequency (RF) to communicate. The devices used to monitor glass sponge reefs must
function underwater and RF will not work underwater. Mote is therefore an
inappropriate term and the more generic term of node will be used in this paper.

A Sensor net node is a single board computer. “Single board computers (SBCs) are
complete computers built on a single circuit board.” �[31] The term SBC can mean large
boards, such as those used in typical desktop PCs, but large boards are more often called
“mother boards” and the term SBC is usually reserved for smaller boards intended for
embedded applications. Large SBC’s generally use separate chips for the central
processing unit (CPU), memory and input/output (I/O), but the small SBCs used for
sensor net nodes are powered by microcontrollers (uC’s).

A uC is a single chip that contains a CPU, memory for both program and data storage,
and I/O. The processing speeds, memory sizes, and I/O capacity of uC’s vary
tremendously. Twenty-three different manufacturers �[31] are producing microcontrollers
that continue to get smaller, cheaper and include more features. The Freescale
Semiconductor, ColdFire 5270 microcontroller, is an example of the rapidly increasing
level of integration. Along with all the other features found on most other
microcontrollers the 5270 also includes a 10/100 Ethernet controller. The range of
products currently available is both a blessing and a curse. It gives the design engineer
tremendous freedom to select the device that best suits the application, but it also requires
knowledge of a wide range of products with very different features that, as will be shown,
makes comparison a complex task.

The glass sponge reef sensor net must operate underwater. Two possible underwater
communication mediums are sound and light; acoustical and optical. Because of
concerns that sound may adversely affect local marine life optical communications was
chosen. The optical communications system was in development by others so no details
were available.

2. Related Research

Several underwater sensor network projects had been completed or were ongoing but
(like VENUS) they all used very large nodes that were connected to, and often powered
by, cable tethers to surface buoys. �[1]�[2]�[20]�[27].

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 9 of 53

The wireless RF land-based sensor networks were much closer to the type of platform
needed. The RUNES paper on “Existing Architectures and Components” �[7] identified
that the smallest platform was probably “Smart Dust” (shown below), and the most
popular platforms were the “mote” series developed at UC Berkeley.

Figure 7: Smart Dust �[7]

It should be mentioned that the reason for singling out the MOTE platform in
particular lies mainly in its huge popularity. It is by far the most commonly
used sensor network building block, and thus the baseline other platforms are
compared to, and which should be used for early prototyping to make the
results comparable with other research initiatives all around the world. �[7]

They also did a comparative summary of the key features of each of the Berkeley mote
versions as shown below.

Figure 8: The Berkeley Motes �[7]

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 10 of 53

The most recent mote, the Telos, is an open design and it is available (in slightly different
flavours) from two different manufacturers:

� From Crossbow as the “TelosB”
� From Moteiv as the “Tmote Sky”

Both of these products were surveyed to evaluate their suitability and were rejected for
two main reasons:

� They were intended for land-based applications using RF communication
and the RF circuits were a major part of the platform.

� They did not have any Ethernet capability.*

Without the RF circuits the Telos mote was basically the MSP430 uC and memory. As
will be seen in the next section, the MSP430 was available on more suitable platforms.

The investigation of the Telos motes was very helpful in establishing a reference for how
small the uC and memory could be. If the Telos was a fully functioning node for a RF-
based sensor net, then all that was needed, in principle, for an optical sensor net was to
replace the RF circuits with optical circuits.

3. SBC for a Sensor Net Node

The required SBC features were identified then the market was surveyed for suitable
candidates. The specific features of ten of the most suitable SBC’s were compared and
the most suitable SBC was selected for detailed evaluation.

3.1. SBC Features

The investigation of the Telos motes established that a microcontroller with the
processing and memory capacity of the MSP430 would work but the specific features
needed for an SBC that would be used to create an underwater sensor net node were not
well defined.

We begin by discussing various criteria, based on which EmNet solutions
can be compared and evaluated. Naturally, very little absolutes exist in
terms of these criteria. A solution completely inappropriate for one
application can be very practicable for another. �[7]

Two must-have features and several should-have features were identified.

The candidate SBC’s had to have the following features:

� Ethernet Interface
� HTTP, TCP/IP support

The most suitable SBC had to have the best combination of:
� Smallest: Power, Size, and Cost
� Biggest: Memory, Analog and Digital I/O, Serial Interfaces

* This was considered an essential feature as explained in the next section.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 11 of 53

� Expansion Capability
� Open Design and Real-Time Clock
� OS, C Compiler and Integrated Development Environment

3.1.1. VENUS Compatibility

The sensor net had to be able to become part of the VENUS system. A key aspect of the
VENUS concept was that all instruments would be manageable, and the data they
collected would be available, via a web interface. The VENUS system was also Ethernet
based, and since some sensor net nodes had to connect to the VENUS system, either a
special node with Ethernet capability was required or all nodes needed to have it. One
node type was the simpler approach and because Ethernet capability was relatively
common and inexpensive a single node type with an Ethernet interface was not only
preferable but quite practicable. The selected SBC therefore had to have an Ethernet
interface and support for TCP/IP and HTTP.

The VENUS system used PC104 products so they were investigated to see if any existed
that might suit this application. These boards had a great deal of capacity but they were
also larger, more power hungry, and more expensive than any of the competing SBC’s.
The Technologic Systems, TS-7260 was one of the very few exceptions as the
comparison data showed. Most PC104 boards were more like the Micro/Sys SBC1491
(announced on 19 April 2006, �[15]) which had a power consumption of 12,000mW;
several orders of magnitude greater than the other devices considered. These products
were generally not suitable for embedded very low-power battery-operated applications
but they were included in the survey and two were included in the comparison for
reference.

3.1.2. Power, Size and Cost (Smaller is Better)

Power consumption was a critical selection factor. The sensor net nodes would be
battery powered and deployed on the ocean floor. Retrieval to change batteries would be
a difficult and costly operation. The entire node needed to be small and low cost so large
battery packs were not an option. SBC’s with lower power consumption were not only
preferable but a priority.

There were numerous factors that affected power consumption: most SBC’s had LED
status indicators that could be disconnected or disabled; many uC’s and Ethernet
controllers had low power modes; most uC’s could operate at different clock speeds.
Because SBC power consumption included many things that could be disabled SBC
power by itself was not a sufficient indicator of suitability. A key factor in SBC power
consumption was the uC that it used. To get a better sense of which SBC had better
power consumption ratings two power consumption values were identified:

� The power consumed by just the microcontroller running at the speed
specified for the SBC.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 12 of 53

� The power consumption for the entire SBC*.

Not all of the surveyed SBC’s ran at 5V and the on-board voltage regulation allowed a
range of supply voltages. To provide meaningful comparisons all SBC power ratings
were calculated using the supply current and the system voltage not the supply voltage.
If, for example, an SBC actually ran at 5V but was supplied by a 10V source and the
current rating was 100mA the power would appear to be 1000mW when it was really
500mW. Similarly all uC power ratings were calculated using the typical current of the
uC at 5V. To further simplify comparison the power values were listed in mW not as
separate voltages and currents.

Physical size and cost were issues and SBC’s that were smaller and less expensive were
preferable. These two factors tended to change in proportion with power so, in most
cases, the lower power device was also the smaller and less expensive.

Because most products had lower costs for higher volumes only the cost of purchasing
one unit was used.

3.1.3. Memory, I/O, and Expansion (Bigger is Better)

The SBC needed enough memory available to support the essential functions and leave
space for future development. The Telos mote provided a reference to how small
memory could be but bigger was better. Several products had both Flash and EEPROM
and each was used for different purposes so they were listed separately. Some systems
had the ability to add memory so, for comparison, only the base memory capacity was
used.

There were several unknown interfacing requirements. The node needed to interface
with environmental sensor(s) and the (yet to be defined) optical communication system.
Sensor interfaces were typically analog or digital and the optical communications
interface would likely be digital (parallel) or serial.

In addition the SBC needed to be expandable so that connecting to different peripheral
devices was not just possible but relatively simple. Some SBC’s had connectors that
made connection to expansion devices easy, others did not.

In summary SBC’s with more memory, analog and digital I/O, serial interfaces and
expansion capability were preferable.

3.1.4. Open Design and RTC (Should Have)

Two criteria were that were considered nice to have, or should have features were an
open design and a real-time clock.

Some SBC’s were proprietary designs and some were open designs. An open design
meant that development could be done with the SBC and a custom board could also be

* If available, as some power consumption values were not available.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 13 of 53

created, if desired, that used some or all of the same circuits and software. The open
design was clearly preferable.

The requirement to operate independently and gather data even when not connected
implied that each node should have a real time clock (RTC). This function could be
added to any of the SBC’s but if already present would have made the product a better
choice.

3.1.5. Operating Systems

An OS was not mandatory. Many small low-power embedded devices run simple
cooperative multitasking such as the TCP/IP stacks from Texas Instruments and
Microchip.

Embedded computing in general and sensor net nodes in particular require a different
approach than general-purpose computing.

The principal role of embedded software is interaction with the physical
world. Consequently, the designer of that software should be the person
who best understands that physical world. The challenge to computer
scientists, should they choose to accept it, is to invent better abstractions
for that domain expert to do her job.

…The fact is that the best-of-class methods offered by computer scientists
today are, for the most part, a poor match to the requirements of
embedded systems. �[13]

A recent survey of operating system use in embedded systems �[29], identified that about
36% either use no OS or use an internally developed one.

Figure 9: OS Use in Embedded Systems �[29]

Low-power embedded systems have very specific tasks to perform. An OS is often not
used because the convenience offered by an operating system is not needed and because
very tight resource restrictions, such as memory and power, usually preclude it.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 14 of 53

However an OS may be desired and development may be easier with an OS, so the
availability of suitable OS’s was investigated. Many OS’s were available but most were
not suitable for very low-power applications. Three that were specifically developed for
low-power embedded applications were TinyOS, FreeRTOS, and SALVO. The first two
were open, the third was proprietary.

A group at UC Berkeley, in collaboration with Crossbow Technology Inc., developed
TinyOS.

TinyOS is an open-source operating system designed for wireless
embedded sensor networks. It features a component-based architecture
which enables rapid innovation and implementation while minimizing
code size as required by the severe memory constraints inherent in sensor
networks. TinyOS's component library includes network protocols,
distributed services, sensor drivers, and data acquisition tools – all of
which can be used as-is or be further refined for a custom application.
TinyOS's event-driven execution model enables fine-grained power
management yet allows the scheduling flexibility made necessary by the
unpredictable nature of wireless communication and physical world
interfaces. �[28]

TinyOS was downloaded and installed in a Windows XP environment. The overall
initial impression was not very positive. There does not seem to be much current
development. There were numerous bugs. The installation was complex with several
warnings about required versions of TinyOS and Cygwin, and required the use of an
installation manual to ensure correct options were chosen at each step. The download
and installation took several hours; partly because of difficulty resolving what needed to
be installed and where to get it; and partly because of poorly written documentation. The
specified post-installation check indicated potential errors as shown in the screen capture
below.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 15 of 53

Figure 10: TinyOS Installation

TinyOS did seem to have numerous research projects ongoing and the negative
impression created by difficulty downloading and installing TinyOS may not be
reflective of the product in general. However two additional factors did strongly indicate
that it was not a good solution:

� The programming language required by TinyOS was a non-standard variant of C
called Nes-C (Nested C) �[10]�[14] and it only worked with TinyOS.

� The only hardware platforms listed were those from Crossbow that use the
MSP430 uC. The general impression was that this product was more of a
proprietary product created for Crossbow.

The second OS specifically developed for low-power embedded use was FreeRTOS.
This was an open source, pre-emptive and cooperative, real-time* operating system. This
was a more active product. The platform-independent source code with demos was a
folder that downloaded and installed quite easily in a few minutes. It had been ported to
many systems and demos were available for all of them as shown in the screen capture
below. The top two uC’s identified by the survey, the MSP430 and the PIC18, were both
supported by this OS.

* Real-time is actually a very bad term. Analog devices are real-time, uC’s are not. The term
refers more to the ability to respond in a predictable and acceptable time frame.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 16 of 53

Figure 11: FreeRTOS Demo Folder

Salvo was the third low-power embedded OS. A commercial offering that retailed for
$1250US*.

Salvo™ is the first Real-Time Operating System (RTOS) designed
expressly for very-low-cost embedded systems with severely limited ROM
and RAM. Typical applications use 1-2K ROM and 50-100 bytes of RAM.
By bringing real-time multitasking to the highest-volume end of the
embedded processor market, Salvo gives you the power to quickly create
low-cost, smart and sophisticated products for the Internet-enabled post-
PC age. Pumpkin™ has currently certified Salvo for use with:

� 8051 family and its derivatives
� ARClite microRISC synthesizeable 8-bit core
� ARM® ARM7TDMI®
� Atmel® AVR® and MegaAVR™
� Motorola M68HC11
� TI's MSP430 Ultra-Low Power Microcontroller
� Microchip PIC12|14000|16|17|18 PICmicro® MCUs
� Microchip PIC24 MCUs and dsPIC® DSCs

* Educational pricing was only available on request.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 17 of 53

� TI's TMS320C2000 DSPs

A free demo version was available but there were separate demo downloads for each
target platform. The demo for the PIC18 was downloaded and installed easily in a few
minutes. Overall impression was very positive. If the educational pricing is reasonable
this may be a good choice.

As stated previously an OS was not mandatory, but it may be desirable and may facilitate
development, so SBC’s that had OS’s available were considered preferable and more so
if both proprietary and open OS’s were available.

3.1.6. C Compiler and IDE

While there were many possible languages the two main ones were Java and C. There
were many varieties of Java for small real-time embedded systems including JITS, JINI,
TINY, and J2ME. Java had many aspects that could make it a much nicer programming
language than C but Java was not the best choice for real-time applications and definitely
not for very low-power real-time embedded systems. The severely limited resources
demanded by the low power requirement made the use of C preferable over Java.

…their skepticism is well warranted. They see Java programs stalling for
one third of a second to perform garbage collection and update the user
interface, and they envision airplanes falling out of the sky. The fact is
that the best-of-class methods offered by computer scientists today are,
for the most part, a poor match to the requirements of embedded systems.
�[13]

C was the most appropriate language; TinyOS, FreeRTOS, Salvo and the TI and
Microchip TCP/IP stacks were all written in C. SBC’s that had both free and commercial
versions of standard C compilers available were more preferable.

The development environment was an important factor, but it was not possible to
quantify it so the criterion was that there should have been an integrated development
environment (IDE) available and preferably it should have been free.

3.2. SBC Comparison

Many different products were surveyed. Ten SBC’s were chosen that were representative
of the range of available products. All of the chosen products had all of the required
features and a variety of the optional features. All of the manufacturers represented in the
comparison produce many other similar products. Only one product was selected per
manufacturer with the exception of Olimex which had two products in the comparison
because they were from different uC families.

Appendix A contains the complete list of products surveyed.

The ten SBC’s selected for comparison, in alphabetical order, were:
� Digi, DigiConnect EM
� Ethernut, 2.1

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 18 of 53

� Micro/Sys, SBC1491
� Modtronix, SBC65EC
� Netburner, Mod5270
� Olimex, LPC-E2124
� Olimex, MSP430-easyWeb3
� Rabbit Semiconductor, RCM3750 Rabbit Core
� SoftBaugh, TCP430
� Technologic Systems, TS-7260

3.2.1. Digi, DigiConnect EM �[4]

uC: Net Silicon NS7520
System Power: 1,350mW
uC Power: 508mW
RAM: 8,000KB
Flash: 4,000KB
EEPROM: none
Serial: RS232, SPI
RTC: No
Analog I/O: 8
Digital I/O: same 8 (lines can be either)
Expansion: No
Size: 49 x 40mm, 1960mm2
Open design: No
OS’s: Proprietary (ThreadX)
C Compilers: Proprietary
IDE’s: Proprietary (Microcross)
Cost: $100 US

Figure 12: DigiConnect EM

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 19 of 53

3.2.2. Ethernut 2.1 �[8]

uC: Atmel ATmega128
System Power: 1,500mW
uC Power: 250mW
RAM: 512KB
Flash: 640KB
EEPROM: 4KB
Serial: RS232, RS485
RTC: No
Analog I/O: 8
Digital I/O: 22
Expansion: Yes
Size: 98 x 78mm, 7644mm2
Open Design: No
OS’s: Proprietary (NutOS)
C Compiler’s: Proprietary and Open
IDE’s: Proprietary (ImageCraft)
Cost: $200 US

Figure 13: Ethernut 2.1

3.2.3. Micro/Sys, SBC1491 �[16]

uC: ST Microelectronics, Atlas
System Power: 9,500mW
uC Power: 2,000mW
RAM: 64,000KB
Flash: 1,000KB
EEPROM: none
Serial: RS232 (x2)
RTC: Optional
Analog I/O: none (PC104 expansion module)
Digital I/O: none (PC104 expansion module)
Expansion: Yes (PC104 standard)
Size: 90 x 96mm, 8640mm2
Open design: No
OS’s: DOS, Linux, CE, NT, RTOS
C Compilers: Proprietary and Open
IDE’s: Numerous for PC104
Cost: $455 US �[15]

Figure 14: SBC1491

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 20 of 53

3.2.4. Modtronix SBC65EC �[18]

uC: PIC18F6621
System Power: 290mW
uC Power: 20mW
RAM: 4KB
Flash: 98KB
EEPROM: 64KB
Serial: RS323, SPI, I2C
RTC: No
Analog I/O: 12
Digital I/O: 32
Expansion: Yes
Size: 59 x 54mm, 3186mm2
Open design: Yes
OS’s: Proprietary and Open
C Compilers: Proprietary and Open
IDE’s: Proprietary and Open
Cost: $70 US

Figure 15: SBC65EC

3.2.5. Netburner Mod5270 �[19]

uC: ColdFire 5270
System Power: 2,255mW
uC Power: Not specified
RAM: 2000KB
Flash: 512KB
EEPROM: none
Serial: RS323 (x3), I2C
RTC: No
Analog I/O: None
Digital I/O: 47
Expansion: Yes
Size: 51 x 66mm, 3366mm2
Open design: No
OS’s: Proprietary (Netburner RTOS)
C Compilers: Proprietary (Netburner)
IDE’s: Proprietary (Netburner)
Cost: $150 US

Figure 16: Mod5270

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 21 of 53

3.2.6. Olimex, LPC-E2124 �[21]

uC: ARM7TDMI-S
System Power: Not Specified
uC Power: 280mW
RAM: 16KB
Flash: 320KB
EEPROM: none
Serial: RS232 (x2), SPI, I2C
RTC: Yes
Analog I/O: 4
Digital I/O: 10
Expansion: Yes
Size: 80 x 90mm, 7200mm2
Open design: Yes
OS’s: Proprietary and Open
C Compilers: Proprietary and Open
IDE’s: Proprietary and Open
Cost: $100 US

Figure 17: LPC-E2124

3.2.7. Olimex, MSP430-easyWeb3 �[21]

uC: MSP430F149
System Power: Not Specified
uC Power: 30mW
RAM: 2KB
Flash: 60KB
EEPROM: none
Serial: RS232
RTC: No
Analog I/O: 10
Digital I/O: 48
Expansion: Yes
Size: 76 x 60mm, 4560mm2
Open design: Yes
OS’s: Proprietary and Open
C Compilers: Proprietary and Open
IDE’s: Proprietary and Open
Cost: $70 US

Figure 18: MSP430-easyWeb3

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 22 of 53

3.2.8. Rabbit Semiconductor, RCM3750 Rabbit Core �[23]

uC: Rabbit 3000
System Power: 875mW
uC Power: Not Specified
RAM: 512KB
Flash: 1,512KB
EEPROM: none
Serial: RS232, IrDA, SPI
RTC: Yes
Analog I/O: None
Digital I/O: 33
Expansion: Yes (connector on bottom of board)
Size: 75 x 30mm, 2250mm2
Open design: No
OS’s: Proprietary
C Compilers: No
IDE’s: Proprietary
Cost: $75

Figure 19: RCM3750

3.2.9. SoftBaugh, TCP430 �[24]

uC: MSP430F1611
System Power: Not specified
uC Power: 30mW
RAM: 10KB
Flash: 48KB
EEPROM: none
Serial: RS232
RTC: No
Analog I/O: 1
Digital I/O: 48
Expansion: Yes
Size: Not Specified
Open design: No
OS’s: Proprietary and Open
C Compilers: Proprietary and Open
IDE’s: Proprietary and Open
Cost: $250 US

Figure 20: TCP430

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 23 of 53

3.2.10. Technologic Systems, TS-7260 �[25]

uC: ARM920-200MHz
System Power: 1000mW
uC Power: 160mW
RAM: 32000KB
Flash: 32000KB
EEPROM: none
Serial: RS232 (x3), SPI, USB (x2)
RTC: Optional
Analog I/O: 2
Digital I/O: 30
Expansion: Yes
Size: 97 x 115mm, 11155mm2
Open design: No
OS’s: DOS, Linux
C Compilers: Proprietary and Open
IDE’s: Proprietary and Open
Cost: $179 US

Figure 21: TS-7260

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 24 of 53

3.3. SBC Selection

Power consumption had been identified as a critical factor for this application. The table
below shows the ten SBC’s ranked in approximate order of lowest to highest power
consumption. Power consumption tended to correlate with memory size with the notable
exception of the TS-7260.

Table 1: Power Consumption Ranking

SBC SBC Power
(mW)

uC Power
(mW)

RAM
(KB)

Flash
(KB)

EEPROM
(KB)

Cost
($US)

SBC65EC 290 20 4 98 64 $70
TCP430 N.S. 30 10 48 None $250
MSP430 N.S. 30 2 60 None $70
RCM3750 875 N.S. 512 1,512 None $75
TS-7260 1,000 160 32,000 32,000 None $179
LPC-E2124 N.S. 280 16 320 None $100
Ethernut 2.1 1,500 250 512 640 4 $200
Digi EM 1,350 508 8,000 4,000 None $100
Mod5270 2,255 N.S. 2,000 512 None $150
SBC1491 9,500 2,000 64,000 1,000 None $455

If power consumption had not been a major factor the Technologic Systems, TS-7260
would have been a excellent choice. It had very low power consumption considering the
tremendous amount of memory available. It could run Linux, it had excellent
development support, an onboard RTC, PC104 compatibility and all of this at a very
good price. This board was not chosen as the most suitable for this application but may
be a good candidate for others.

As power consumption was a major factor the Modtronix SBC65EC, SoftBaugh TCP430,
and Olimex MSP430-easyWeb3 were better choices than any of the others. All three had
much lower power consumption but the price on the TCP430 was much too high so it
was eliminated leaving only the SBC65EC and MSP430.

The top two SBC’s were compared in terms of the other selection parameters in the table
below. As shown, there were no noticeable differences regarding these factors; the two
boards were essentially the same.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 25 of 53

Table 2: SBC65EC and MSP430 Comparison

 SBC65EC MSP430
Serial RS232 (x2), SPI, I2C RS232 (x2), SPI
RTC No. No
Analog I/O 12 13
Digital I/O 32 48
Expansion Yes Yes
Size 3,186mm2 4,560mm2
Open Design Yes Yes
OS’s Proprietary and Open Proprietary and Open
C Compilers Proprietary and Open Proprietary and Open
IDE’s Proprietary and Open Proprietary and Open

Since microcontroller performance was a key factor, the detailed ratings for the uC’s used
on these two boards were compared. The MSP430 board uses the Texas Instruments
MSP430F149 and the Modtronix SBC65EC board uses the Microchip 18F6621. As
shown in the table below, these two devices were amazingly close in all parameters.

Table 3: MSP430F149 and PIC18F6621 Comparison

 MSP430F149 PIC18F6621
Manufacturer Texas Instruments Microchip

I Running 4mA 4mA
I Sleeping 1uA 1uA
Modes Yes Yes

Power *

Supply Voltage 2.7 to 3.6V 2 to 5.5V
Flash 60 KB 64KB
RAM 2KB 4KB†

Memory

EEPROM None 1KB
A/D 8 x 12bit 13 x 10Bit
Comparators 1 2
Timers 2 x 16bit 3 x 16bit
Digital I/O 48 32

I/O

Serial USART, SPI USART, SPI, I2C
Range DC to 8 MHz DC to 40 MHz CLK
Used on SBC 8 MHz 20 MHz

ICSP‡ Yes Yes
Cost§ $10.11US $8.31US

* Power consumption varied greatly and depended on many factors. It will be analyzed more
completely in the next section. The values listed are representative of typical ranges.
† The PIC18F actually has 3936 bytes of SRAM but for consistency it is rounded to 4KB
‡ ICSP = In-Circuit Serial Programming
§ See Appendix B for pricing references.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 26 of 53

Most of the values used in the above table were extracted directly from the respective
data sheets but supply current was more difficult. Supply current varies with many
different parameters and two major ones were supply voltage and frequency. A problem
in comparing the two devices was that they had different voltage and frequency ranges.
The PIC18F6621 went from DC to 40MHz and ran at 40MHz on the SBC65EC board.
The MSP430F149 went from DC to 8MHz and ran at 8MHz on the MSP430 board.
There was no good way to decide what voltage or frequency to use. The MSP430 may
have performed the same number of tasks per second at 3V and 8MHz as the
PIC18F6621 did at 4V and 40MHz. For simplicity the comparison was done with both
devices operating at the same voltage and clock speed. They both operated at 8MHz so
that was used as the frequency parameter, and both devices operated at 3V so that was
used for the voltage parameter.

Figure 22: MSP430F149 Power Consumption

The screen copy of the MSP430F149 data sheet above shows, that at 3V and 1MHz, the
MSP430F149 has a nominal active supply current of 420uA and a maximum of 560uA.
As shown by the equation at the bottom of the page, the current is linearly proportional to
frequency so the current at 8 MHz = 8 x the current at 1 MHz. The active current at 8

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 27 of 53

MHz is therefore 3.36mA nominal and 4.48mA maximum; an approximate value of 4mA
was used for the comparison.

Figure 23: PIC18F6621 Typical Supply Current [From device datasheet.]

The PIC18F6621 power graphs show the supply current was about 4mA when operating
at 8MHz and 3V.

The MSP430 and SBC65EC were both very good options. Neither product was clearly
superior but the various comparisons gave the SBC65EC with the PIC18F6621 a very
slight edge so it was chosen for the more detailed evaluation.

Note: The unit initially purchased (Dec 2005) came with the PIC18F6621 which has
64KB of Flash. Current versions of the SBC65EC now ship (as of May 2006) with the
PIC18F6627 which has 96KB of Flash. All other parameters are essentially the same.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 28 of 53

4. Evaluation of the Modtronix SBC65EC

4.1. Modtronix and Initial Impressions

One SBC65EC and two expansion (daughter) boards were ordered from Modtronix using
their online ordering system. The parts arrived in about a week (Modtronix was located
in Australia.) with no problems. The web site was well laid out and manuals, schematics
and all source code was available online and easy to find. The manuals were clearly
written and easy to follow. Overall, the organization and support provided by Modtronix
gave a positive impression.

Figure 24: SBC65EC Top View (Approximately Full Size)

The SBC65EC board is shown in the above photograph. It was very well made, came
properly packaged and worked correctly straight out of the box. The flashing red LED
(center-top of photo) was a comfortable indication to a new user that the board was
functioning.

The SBC65EC came loaded with the version 2.04 demo which included a web interface.
All pages and functions available via the web interface were tested and no problems were
found. The demo web pages provided a means of turning outputs on and off and reading
the state of digital and analog inputs. These were all tested by connecting various analog
and digital signals and everything worked correctly. Some of the web pages were a bit
confusing but they were only provided as a demo of functionality not as a working
application. Aside from a small issue with pings, which will be discussed next,
everything worked fine and the initial impression was very positive.

An unusual characteristic, that was not a serious problem but should be addressed in
future upgrades, was discovered by accident during the very initial testing. After
connecting power and Ethernet to the device it was pinged from a Cisco 2621 router on
the same network. It did not reply. The first assumption, as the device was new, was that
it was malfunctioning but it was not. Subsequent investigation revealed that it did not
accept ping packets above a certain size. Cisco devices used a larger default ping size

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 29 of 53

than DOS/Windows. The size values used by Cisco were different that DOS/Windows;
Cisco used a “datagram” size of 100 and DOS/Windows used a “bytes” size of 32.
Cisco’s datagram size of 60 was equivalent to a DOS/Windows’ “bytes” size of 32. The
SBC65EC would only work with Cisco sizes of 36 to 60 which was equivalent to
DOS/Windows’ bytes sizes of 0 to 32.

4.2. Programming the SBC65EC

4.2.1. ICSP

The compiler, which will be discussed shortly, produced executable binary code that was
packaged into a format for transmission. This packaged code was displayed in
hexadecimal format and had a “.hex” file extension so it was generally referred to as “hex
code”.

The SBC65EC used a PIC18F6621 uC and the executable code was stored in the on-chip
flash. An in-circuit serial programmer (ICSP) was required to transfer the hex code to the
chip and the SBC65EC had a connector (Figure 24, lower-right corner) specifically for
this purpose. To evaluate the easy of making software changes and reprogramming the
device a small inexpensive ($10) ICSP with a USB interface was purchased. It was a
poor decision as it was difficult to use and there were many problems with the USB
drivers for it. A better quality programmer, the MACH-X, was purchased from Custom
Computing Services (CCS) for $199 US. Installation and use were easy and the user
interface was simple and intuitive. A screen copy of the user interface is shown below.

Figure 25: MACH-X User Interface

The MACH-X had an RJ11 output connector and the SBC65EC had an 8-pin 2mm male
header. Both Modtronix and CCS provided pinout information so adaptor cables could

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 30 of 53

be fabricated. The programmer, adaptor cable, and SBC65EC are shown in the photos
below. All schematics are included for reference in Appendix C.

Figure 26: MACH-X Programmer
and ICSP Adaptor Cable

Figure 27: ICSP Adaptor Cable and
SBC65EC Close-up

According to the PIC18F6621 data sheet the flash can typically be reprogrammed
100,000 times.

4.2.2. Integrated Development Environment

The Integrated Development Environment (IDE) from Microchip was called MPLAB. It
was free, well supported and very complete. Version 7.30, a 34MB zip file, was
downloaded from the Microchip site. Installation was simple and took only a few
minutes. The IDE was very complete and had many advanced features for debugging
and simulation. Because of the power and complexity of the IDE it did take a couple of
days to get comfortable with the environment, but the documentation was clear and well
written and there were several online tutorials to help get over the initial learning curve.
It took about three days in total to set up and get familiar with the IDE, load the demo
project for the SBC65EC, compile the code and reprogram the uC (using the ICSP
previously discussed). Subsequent program changes were very straight forward. The
overall impression of MPLAB, Microchip’s IDE, was very positive.

4.2.3. C Compiler

There were several free and commercial C compilers available for the PIC18 uC’s. The
demo program for the SBC65EC was written for both Microchip’s own compiler (C18)
and the Hi-Tech compiler. Both compliers retailed for around $1,000US but the
Microchip C18 compiler was also available in a free student version so that seemed the
best option.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 31 of 53

The MPLAB® C18 compiler is a full-featured ANSI compliant C
compiler for the PIC18 family of PICmicro® 8-bit MCUs. MPLAB C18 is
a 32-bit Windows® console application as well as a fully integrated
component of Microchip’s MPLAB Integrated Development Environment
(IDE), allowing source level debugging with the MPLAB ICE In-Circuit
Emulator, the MPLAB ICD 2 In-Circuit Debugger, and the MPLAB SIM
simulator.
…

Student Edition/Demo

The Student Edition is free! It has all the features of the full compiler and
libraries. After 60 days, the optimizations related to procedural
abstraction and to the extended instruction set of the newer PIC18XXXX
devices will be disabled. Code compiled after the expiration date will
function but may occupy more memory space. �[17]

The full-featured trial version was downloaded and installed with no problems. The full-
featured version was used for the initial tests with the IDE then the trial period was
allowed to elapse and the student version was used. Both compiled with no problems.
The hex code generated by each compiler was used to reprogram the PIC18F6621 uC and
everything worked exactly the same. As stated by Microchip, the only difference was the
size of the executable code.

The file size could not be used directly to determine to size of the executable code. The
hex code could be viewed directly but it was difficult to decipher. The MACH-X had a
“display program memory” option to see the executable code and it was used to generate
the two screen captures shown below. The first code listing, generated by the full-feature
commercial (60 day trial) version, ended at 0x5BF7 = 23,543 and the second code listing
generated by the student version ended at 0x6FA7 = 28,583. The difference was 5,040
bytes or about 25%. If smaller code size is needed the commercial version can be
purchased otherwise the student version is fine.

Figure 28: C18 Compiler Code, Full-Feature Left, Student Version Right

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 32 of 53

4.2.4. Web Pages

The SBC65EC stored web pages in the external EEPROM. The device came with a
64KB EEPROM (24LC512) chip in a socket so it could be replaced with a larger device
if more space was needed. The Modtronix demo used about half of the available space.

To optimize the use of limited memory Microchip had developed a special file system
(MPFS) and a compression method for standard HTML web pages. Details are available
on page 83 of AN833 �[17]. The Modtronix manuals gave clear instructions on how to
compress web pages and they provided a batch file to ease the process. A sample output
from that batch file is shown below.

Figure 29: Sample “doall.bat” Output

Compressed web pages were uploaded to the SBC65EC by FTP. WS_FTP LE (Limited
Edition) was used with some minor problems. The FTP code on the SBC65EC was a
very minimal implementation to save space so it did not support all functions. It
generally took two to three attempts to transfer the file. When the transfer failed it would
hang and take several minutes time out. Sometimes power cycling the SBC65EC was the
quickest way to clear the problem. Version 2.04 was used for this evaluation and current
products were shipping with version 3.04 so some of these problems may have already
been fixed.

To evaluate the ease or difficulty of creating and editing web pages, new pages were
created for this project. The manual for creating and modifying web pages had very clear
and easy to follow instructions but modifications of existing pages and creation of new
pages was done with a text editor directly in HTML to keep the pages small and simple.
The new web pages were not complex but coding directly in HTML was definitely
tedious. The demo web pages had a lot of functionality but all html functions were not
supported. As stated in the manual, file names could not have any of the following non-
alphanumeric characters or pages would become inaccessible (lock up) with no warning:

� single or double quotes (‘ and “)
� left or right angle brackets (< and >)
� pound sign (#)

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 33 of 53

� percent sign (%)
� left or right brackets or braces ([,{,] and })
� pipe symbol (|)
� backslash (\)
� caret (^)
� tilde (~)

Only *.htm, *.cgi and *.jpg files were used in the modified pages but the manual stated
that the server also supported: *.txt, *.gif, *.cla, and *.wav files.

The “SBC65EC” page includes a 43KB photo of the SBC65EC and was configured to
automatically reload every 3 seconds so it could be used for testing.

4.3. Expansion Board

Subsequent development of a sensor net node would be facilitated by simple expansion
capability. In particular it would likely be necessary to add circuits like an RTC, optical
communications, and possibly special interfaces for environmental sensors.

Figure 30: Unmodified SBC65EC Expansion Board

An expansion board was modified by adding a simple environmental sensor and circuits
to interconnect various I/O lines. The four separate circuits that were constructed were a:

1. light sensor that is enabled by output C0 and is measured by analog input A5
2. R2R ladder network that connects outputs B0, B1, B2 and B3 to analog input A0
3. circuit that connects output C1 to analog inputs A1, A2 & A3
4. circuit that connects output C2 to analog inputs F0 thru F6

The schematic is included for reference in Appendix C.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 34 of 53

Figure 31: Modified SBC65EC Expansion Board

The expansion board was well made, all of the I/O power and ground lines were available
and most* were clearly labeled.

The expansion connectors had 12 pairs of pins but the mating connector on the SBC65EC
had only 10 pairs of pins as can be seen in the photo below. It was a bit confusing at first
but pin 1 was labeled on both boards and when mated the two boards align so it was
quickly resolved.

The labeling errors and connector size differences implied this expansion board was
intended for use with more than one SBC.

Figure 32: Expansion Board Connector

* The labels for the “T” connection points across the bottom actually connected to port “F” pins.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 35 of 53

4.4. Power Consumption

Power consumption is a concern for any battery-operated device, a major concern for
sensor nets in general, and a critical issue for an underwater sensor net.

The power requirements specified in the SBC65EC manual are shown below. Because
all of the SBC’s use on-board voltage regulators the supply voltages were not used to
calculate the power ratings of the boards, as stated earlier. Like most of the other boards
the SBC65EC lists a supply voltage of 12V but it works with a range of supply voltages.
System power was calculated using the typical current of 58mA at the operating voltage
of the board which in this case is 5V, which gives 290mW.

Figure 33: SBC65EC Power Consumption

The actual power consumption of the SBC65EC was measured under three different
situations:

� With a 40MHz clock, 5V supply
� With a 10MHz clock and 5V supply
� With a reduced supply voltage

For the 40MHz and 10MHz clock speed measurements, the supply current was measured
with the device idling and when a large file was being transferred. The “SBC65EC” page
on the modified web site contained a large (43KB) image of the SBC65EC board
specifically for the test. The results are summarized in the table below.

A test with the Ethernet controller disabled was investigated but it was not practicable to
perform.

Table 4: Summary of Average Supply Current Tests

Test Condition Normal
Operation

Large
Download

40MHz, 5V 54.3mA 58.1mA
10MHz, 5V 36.6mA 39.3mA
40MHz, 2.5V 25mA N.A.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 36 of 53

4.4.1. Test Setup

A block diagram and photograph of the test setup are shown below.

Anatek 50-1S
Variable DC

Power Supply

Keithley 2000
Current Meter

Power Supply
Adaptor Board

SBC65EC

Wavetek 27XT
Voltmeter

Figure 34: Test Setup, Block Diagram

Figure 35: Test Setup, Photograph

The above photograph of the test setup shows the Wavetek 27XT voltmeter on the left,
the Keithley 2000 current meter center-back, the Anatek 50-1S variable power supply on
top of the Keithley 2000, and the SBC65EC with the power supply adaptor board in the
front. The MACH-X programmer on the left was not connected during testing.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 37 of 53

The small power supply adaptor board, shown connected to the SBC65EC with the
modified expansion board, was fabricated to provide a convenient connection point for
the voltage and current meters. A 470uF, 15V electrolytic capacitor was used to help
reduce noise and decouple any inductive effects from the cables to the adaptor board.

Figure 36: Power Supply Adaptor Board

For all tests the Kiethley 2000 was set to 100mA (fixed) current range, medium sampling
rate, and to average 100 readings. With these settings the display updated approximately
every 2 seconds.

With either supply lead disconnected the current meter read at or less than 0.0084mA.
To determine the combined effects of the adaptor board and DVM on the test results (due
to factors such as capacitor leakage and DVM loading) tests were done at 12V, 10V and
8V. For each test the DVM and SBC65EC were connected and running for at least 5
minutes to ensure stable operation, then the SBC65EC was unplugged from the power
supply and the current monitored for the next 5 minutes. At all three voltages the reading
was at or below 0.0097mA. An offset error of less than 0.01mA was acceptable as the
tests results were recorded to 0.1mA.

The Keithley 2000 must be set to the fixed 100mA range to determine offset errors.
When allowed to auto-range (which it does by default) it changed from the 100mA range
when reading the test currents to the 10mA range when measuring offset. The offset on
the 10mA range was below 0.0001mA; 2 orders of magnitude better than the range used
to make the test measurements.

Some current values fluctuated noticeably over a 5 to 10 second period. If this occurred
the test result was calculated by recording 10 successive current readings, which took
about 20 seconds, then averaging the results.

4.4.2. 40MHz Clock Speed

All of the these tests were done with:
� The modified daughter board connected
� 10V supply voltage
� Browser accessing Intro page (if Ethernet connected)

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 38 of 53

� I/O pins B0-3, B6, C0-2 set to output with B0-3 set low, C0-2 set high
� Heartbeat enabled (because B6 is set to output)
� A/D converter on for all 12 channels
� Clock frequency of 40MHz

Normal operating current was approximately 54mA and it increased to 58mA when
performing large file transfers.

The heartbeat LED and the Ethernet connector both account for small but measurable
amounts of total current. The SBC65EC has a red “heartbeat” LED; that flashes, when
enabled, to indicate the board is working. The LED is connected to pin B6 so it can be
easily disabled by setting the I/O direction on pin B6 to “input”. The average current
changed from 53.6mA when disabled, to 54.3mA when enabled.

The Ethernet connector has two LED’s, a green link-status and a yellow activity
indicator. The total average current was 53.6mA with the Ethernet connected and
52.1mA when disconnected. This test was done with the Ethernet connected and
working then disconnected, and when the board was power-on with no Ethernet
connected; the result was the same for both cases.

No measurable changes occurred when the A/D converter was on or off.

Only output lines B0-3, B6, and C0-2 were connected to external circuits. When all of
these lines were turned off (with the exception of B6 which controlled the heartbeat LED)
the average total current was 52.7mA when all lines were on the current was 55.1mA.

The most significant change in normal operating current occurred when the SBC65EC
was transferring large files; it increased from 54.3mA to 58.1mA. This test was done by
continuously refreshing the “SBC65EC” page with the large image that was added to the
server for this test.

4.4.3. 10MHz Clock Speed

The SBC65EC used a 10MHz resonator and the phase-lock loop (PLL) option on the
PIC18F6621 to get a clock speed of 40MHz.

The PIC18F6621 datasheet describes the options for the PLL:

The PLL can only be enabled when the oscillator configuration bits are
programmed for High-Speed Oscillator or External Clock mode. If they
are programmed for any other mode, the PLL is not enabled and the
system clock will come directly from OSC1. There are two types of PLL
modes: Software Controlled PLL and Configuration Bits Controlled PLL.
In Software Controlled PLL mode, PIC18F6525/6621/8525/8621
executes at regular clock frequency after all Reset conditions. During
execution, the application can enable PLL and switch to 4x clock
frequency operation by setting the PLLEN bit in the OSCCON register.
In Configuration Bits Controlled PLL, the PLL operation cannot be
changed “on-the-fly”.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 39 of 53

The Microchip programming manual for the C18 compiler specified the commands to set
the different oscillator modes for the PIC18F6621.

Figure 37: PIC18F6621 Oscillator Options [from C18 compiler manual]

The source code changes required for operation at 10MHz were complex and required
changes to five different sections. The USART code was hard-coded for a 40MHz clock
and there was no method of disabling it even though it was not being used. Numerous
changes were needed in the delay routines as they were not configured for operation at
different clock speeds.

The original and modified code sections are included for reference in Appendix D.

Because the version 2.04 code supplied with the SBC65EC was a modified version of the
original Microchip code it was not clear if the poorly structured code was due to
Microchip or Modtronix. The overall impression was that most of the source code was
very well structured and well commented but some sections and/or modifications of those
sections (the USART and delay portions in particular) had been written very poorly.

On the plus side it provided an in-depth and very positive exposure to the compiler and
IDE. The C18 compiler provided good diagnostic warning and error messages and the
MPLAB IDE made it easy to manage changes.

The same tests that were done for normal operation were repeated with the uC clock
running at 10MHz. Everything worked the same just a bit slower; the refresh speed of
the “SBC65EC” web page was the most noticeable.

The 10MHz tests were done with:
� The modified daughter board connected
� 10V supply voltage
� Browser accessing Intro page (if Ethernet connected)
� I/O pins B0-3, B6, C0-2 set to output with B0-3 set low, C0-2 set high
� Heartbeat enabled
� A/D converter on for all 12 channels
� Clock frequency of 10MHz

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 40 of 53

The average current with Ethernet connected and heartbeat enabled was:

� 54.3mA at 40MHz
� 36.6mA at 10MHz

When transferring large files the average current was:

� 58.1mA at 40MHz
� 39.3mA at 10MHz

The current vs. clockspeed curves for the PIC18F6621 [Figure 23] showed currents of
approximately 32mA at 40MHz and 12mA at 10MHz (a change of 20mA) which agreed
very well with the measured values.

4.4.4. Supply Voltage Reduction

The voltage on the SBC65EC (Vcc) is kept at a constant 5V by the onboard 78M05
voltage regulator as long as the supply voltage is at or above 7.25V. The current stays
constant at supply voltages above 7.5V but drops linearly with voltage as shown by the
graph below. Both the supply voltage (green, circles) and the SBC65EC Vcc voltage
(blue, squares) are shown overlaid with lines (red) indicating when the heartbeat (dashed)
was active and when the Ethernet access (solid) was working.

Reduced SBC Supply Voltage

0

10

20

30

40

50

60

0 2 4 6 8

Voltage (Volts)

C
ur

re
nt

 (m
A

)

Vcc

EthernetHeartbeat

Supply
On

Off

Figure 38: Reduced SBC Supply Voltage

The specification sheet for the Realtek RTL8019AS Ethernet controller guarantees
operation when Vcc is 5.0V +/- 5%. The device worked to well below 3V. The

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 41 of 53

PIC18F6621 is guaranteed to work to 2V and was operating almost all the way down to
1.5V.

4.4.5. Ethernet Controller

The data sheet for the Realtek RTL8019AS Ethernet controller stated that the device
supports three power-down modes:

1. Sleep
2. Power down with internal clock running
3. Power down with internal clock halted

The procedure specified in the data sheet to implement the power-down was straight
forward:

To set the device to lowest power consumption mode the clock must be
halted:

� Set COMMAND register (01h) to 11xxxxxx, to allow config
registers to be written.

� Set HLTCLK register (09h) to 01001000 (ascii letter “H”) to set
mode to “clock halted”

� Set CONFIG3 register (06h) to 11xxxxxx, to power-down device.

In this mode only CONFIG3 can be written to power device back on.

A detailed analysis of the version 2.04 source code indicated that many different sections
of code were dependant on responses from the Ethernet controller so code modifications
to power-down the RTL8019AS chip were not practicable.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 42 of 53

5. Conclusions

The market research and the subsequent evaluation of the SBC65EC support the
following conclusions:

5.1. There were many very good SBC’s on the market. Rabbit Semiconductor, Digi
and Netburner all had excellent products. If time was a major concern one of
these would have been the best option. The Rabbit Semiconductor RCM3750
SBC, had lots of memory, a real-time OS, and included a real-time clock (RTC).
All of them however were proprietary in terms of hardware and software, so they
were not good options for long-term collaborative development.

5.2. The most suitable products were based on two uC families; the Texas Instruments
MSP430 series and the Microchip PIC18 series. Both had very low power
requirements, similar features and memory, good development support, and open
designs. A sensor net node could be developed around either of these two product
families.

5.3. The Modtronix SBC65EC would be a good platform to use for development of an
underwater sensor net node. The product was well made, readily available, and
reasonably priced. Modtronix had a well-organized web site with all documents
and code easily accessible and freely available. The software and physical design
were both open. The Microchip PIC18F6621 used on the SBC65EC had
excellent support and development tools available from Microchip. The
Microchip C18 compiler was an ANSI-standard C-compiler, with both free and
commercial versions available. Microchip was continuing development of newer
products in the PIC18 family with more capacity that were code and hardware
compatible with existing products. (The SBC65EC had already migrated to the
PIC18F6627 with more memory.) Both open (FreeRTOS) and proprietary
(Salvo) OS’s were available for this platform.

5.4. The actual power consumption of the SBC65EC was slightly better than the
manufacturer’s specification. Software changes such as reducing the clock speed,
and putting the uC and Ethernet controller in standby when not used, could reduce
power consumption but the SBC65EC cannot operate at ultra-low power. The uC
needs only a few uA’s sleeping and the EEPROM even less (0.1uA standby) but
the RS232 chip (MAX202E) requires 8mA of operating current (15mA
maximum) and does not have a low power mode. Low voltage operation can
significantly reduce power for the uC but it is not a viable option with this SBC;
the uC and EEPROM chips are specified to operate at low voltage, but the
Ethernet controller and RS232 chips are not.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 43 of 53

6. Recommendations

The following recommendations are offered for further research and development:

6.1. Additional research is needed to evaluate real-time operating systems for use in
very-low power applications in general and sensor nets in particular. An
evaluation of TinyOS, FreeRTOS, and Salvo should be done before any decision
is made to use or not use an OS for the sensor net node development.

6.2. Initial development can be done using the SBC65EC, but rather than design an
expansion board to work with the SBC65EC a new board should be designed that
includes everything on one board. The SBC65EC design is both simple and open.
If a board needs to be designed and built for the optical-layer circuits and RTC
anyway, rather than design it as an expansion board, it would be simpler to just
build one board that includes all of the components and circuits of the SBC65EC
and the expansion.

Designing a new board would also allow component changes for ultra low-power
operation. Lower voltage was shown to significantly reduce power but not all
devices are rated to work at lower voltage. The PIC18F6627 operates from 2.0 to
5.5V and the 24LC512 (EEPROM) operates from 2.5 to 5.5V, but the MAX202E
serial interface chip, on the SBC65EC, that does not operate below 5V. If RS-
232 communication is not needed it could be removed entirely, but if it is needed
it could be replaced by a device like the MAX3218 which operates down to 1.8V
and includes a no activity auto shutdown that drops the supply current to 10uA.

The Realtek RTL8019AS Ethernet controller is not rated for operation below 5V*
but it is not needed for nodes with no Ethernet connection. The system could
detect the presence or absence of Ethernet, and if present run at 5V and if not
present place the Ethernet controller in sleep mode then drop the system voltage
to 2.5V.

6.3. The optical layer should be implemented using a second uC as the optical
controller. Keeping the communications controllers separate from the main
processing maintains the architecture already used for the Ethernet controller and
will facilitate development.

* The RTL8019AS did actually work properly at lower voltages so it may be just an oversight in the
datasheet.

Market Survey, Selection, and Evaluation, of a SBC for an Underwater Sensor Net Node

 Page 44 of 53

7. References

[1] Cui J., Kong J., Gerla M, Zhou S. , “Challenges: Building Scalable and Distributed
Underwater Wireless Sensor Networks (UWSNs) for Aquatic Applications, UbiNet-TR05-
02, 2005, http://www.cse.uconn.edu/~jcui/UWSN_papers/UCONN_CSE_UbiNet-TR05-
02.pdf

[2] Culler D, Hill J., Buonadonna P., Szewczyk R., Woo A. “A Network-Centric Approach to
Embedded Software for Tiny Devices”, 2001,
http://www.cs.berkeley.edu/~awoo/embedded.pdf

[3] Custom Computing Services (CCS), http://www.ccsinfo.com/

[4] Digi, http://www.digi.com/

[5] Dunkels A., “uIP“, http://www.sics.se/~adam/uip/

[6] Dunkels A, Feeney L., Grönvall B., Voigt T., “An integrated approach to developing sensor
network solutions”, 2004, http://www.sics.se/~adam/sanpa2004.pdf

[7] Dunkels A., Grönvall B., Johansson M., Mayer K., Oldewurtel F., Raivio O., Riihijärvi J.,
“Existing Architectures and Components”, RUNES D1.1, 2004, http://www.ist-
runes.org/public_deliverables.html,

[8] Ethernut, http://www.ethernut.de/en/index.html

[9] Free RTOS, http://www.freertos.org/

[10] Gay D., Levis P., Von Behren R., Welsh M., Brewer E., Culler D., “The nesC Language: A
Holistic Approach to Networked Embedded Systems”, 2003,
http://www.eecs.harvard.edu/~mdw/papers/nesc-pldi-2003.pdf

[11] Johansson M., Faulkner M., Oldewurtel F., Kannegiesser P., “Review of Existing
Technologies”, RUNES D3.2, 2005, http://www.ist-runes.org/public_deliverables.html,

[12] Jurdak R., Baldi P.,Lopes C., “State-Driven Energy Optimization in Wireless Sensor
Networks”, 2005, http://www.isr.uci.edu/~lopes/documents/senet%2005/senet05.pdf

[13] Lee E. “Embedded Software”, Advances in Computers Vol. 56, Academic Press, London,
2002, http://ptolemy.eecs.berkeley.edu/publications/papers/02/embsoft/embsoftwre.pdf

[14] Levis P., “TinyOS Programming”, 2006, http://csl.stanford.edu/~pal/pubs/tinyos-
programming-1-0.pdf

[15] Linux Devices, http://www.linuxdevices.com/news/NS5044199820.html

[16] Micro/Sys, http://www.embeddedsys.com/

[17] Microchip, http://www.microchip.com

[18] Modtronix, http://www.modtronix.com/

[19] Netburner, http://www.netburner.com/

[20] NOAA, ARGOS, http://noaasis.noaa.gov/ARGOS/

[21] Olimex, http://www.olimex.com/

[22] PICNIC, http://picnic.sourceforge.net/

[23] Rabbit Semiconductor, http://www.rabbitsemiconductor.com/

[24] SoftBaugh, http://www.softbaugh.com/

[25] Technologic Systems, http://www.embeddedarm.com/

[26] VENUS Documents, http://www.venus.uvic.ca/documents/index.html

[27] VENUS Home, http://www.venus.uvic.ca/index.html

[28] TinyOS, http://www.tinyos.net/

[29] Turley J. “Embedded systems survey; Operating systems up for grabs”, 2005,
http://www.embedded.com/showArticle.jhtml?articleID=163700590

[30] Stevenson R. “The Future of Embedded Systems”, SEA 2002,
http://www.cyberguard.com/download/white_paper/en_cg_embedded_systems.pdf

[31] Wikipedia, http://en.wikipedia.org/

 Page 45 of 53

Appendix A. Single Board Computers Surveyed

� Crossbow
o TelosB
o Mica2
o MicaZ
o Cricket

� Digi
o ConnectCore XP
o ConnectCore 9P
o ConnectCore 9C
o ConnectCore 9U
o ConnectCore 7U
o ConnectCore Wi-9C
o Digi Connect ME
o Digi Connect EM, (Included in comparison.)
o Digi Connect Wi-ME
o Digi Connect Wi-EM

� EDTP Electronics Inc.
o Easy Ethernet /W
o Easy Ethernet /AVR
o Easy Ethernet /CS8900
o Easy Ethernet /FT

� Ethernut
o Ethernut 1.3
o Ethernut 2.1 (Included in comparison.)
o Ethernut 3.0

� HWGroup
o Charon 1
o EZL-50
o EZL-60

� IPSil
o IPu8930
o IPu8932

� Lantronix
o XPort
o XPortAR
o Micro
o Micro 100
o Mini
o UDS10B
o UDS100B

� Moteiv
o Tmote Sky

Appendix A, Single Board Computers Surveyed

 Page 46 of 53

� Micro/Sys
o SBC1670
o SBC1625
o SBC1586
o SBC1495
o SBC1491 (Included in comparison.)
o SBC1486
o SBC1390
o SBC1386
o SBC1190
o SBC1188

� Modtronix
o SBC44B
o SBC44EC
o SBC45EC
o SBC65EC (Included in comparison.)
o SBC68EC

� NetBurner
o MOD5213
o MOD5270 (Included in comparison.)
o MOD5272
o MOD5282

� Olimex, ARM line
o LPC-H2103
o LPC-H2106
o LPC-H2124
o LPC-H2129
o LPC-H2138
o LPC-H2148
o LPC-H2214
o LPC-H2294
o LPC-P2103
o LPC-P2106
o LPC-P2124
o LPC-P2129
o LPC-P2138
o LPC-P2148
o LPC-MT-2106
o LPC-MT-2138
o LPC-E2124 (Included in comparison.)
o LPC-E2129
o LPC-E2214
o LPC-E2294

� Olimex, MSP430 Line
o MSP430-169LCD
o MSP430-1121STK2
o MSP430-169STK
o MSP430-413STK2
o MSP430-417STK2
o MSP430-449STK2
o MSP430-EasyWeb2
o MSP430-EasyWeb3 (Included in comparison.)

Appendix A, Single Board Computers Surveyed

 Page 47 of 53

� Rabbit Semiconductor
o RCM4100 RabbitCore
o RCM4000 RabbitCore
o RCM3750 RabbitCore
o RCM3600 RabbitCore
o RCM3365 RabbitCore
o RCM3200 RabbitCore
o RCM3000 RabbitCore
o RCM3700 RabbitCore (Included in comparison.)
o RCM3400 RabbitCore
o RCM3305 RabbitCore
o RCM3100 RabbitCore
o RCM2300 RabbitCore
o RCM2100 RabbitCore
o RCM2200 RabbitCore
o RCM2000 RabbitCore

� SoftBaugh
o USB430
o TCP430 (Included in comparison.)

� Systronix
o JStick Module

� Technologic Systems
o TS7300
o TS7200
o TS7250
o TS7260 (Included in comparison.)
o TS5700
o TS5600
o TS5500
o TS5400
o TS5300
o TS3400
o TS3300
o TS3200
o TS3100

� WIZnet
o EG-SR-7150MJ
o IIM7300

 Page 48 of 53

Appendix B. Microcontroller Pricing Sources

The following screen captures show pricing information for the Microchip PIC18F6621
and Texas Instruments MSP430F149 obtained on 9 May 2006. For each product the
lowest cost was used for comparison.

Figure 39: PIC18F6621 Pricing

Appendix B, Microcontroller Pricing Sources

 Page 49 of 53

Figure 40: MSP430F149 Avnet Pricing

Figure 41: MSP430F149 Newark Pricing

 Page 50 of 53

Appendix C. Schematics

1 2 3 4 5 6

1

28

7

RJ11
6 Position Plug

Tab

2mm Connector
Top View

RJ11
Connector

2 Black 2

3 Red 1

4 Green 3

5 Yellow 7 & 8

6 Blue 4

Stranded cable

2mm
Connector

30 - 35 cm

Clk, B6

Data, B7

Gnd

Vcc, +5V

MCLR

Figure 42: MACH-X to SBC65EC ICSP Adaptor Cable Schematic

Appendix D, Schematics

 Page 51 of 53

B0

B1

B2

B3

A0
2K

2K

2K

2K

2K

1K

1K

1K

GND

C0 A5
λ

4.7K

Photo Resistor

C2 F0 thru F6
1K

C1 A1 thru A3
1K

Figure 43: SBC65EC Expansion Board Schematic

 Page 52 of 53

Appendix D. Clockspeed Code Modifications

Code modifications of five different sections were required to run at a 10MHz clock
speed. Those portions of the original code that needed modification (edited for
readability) and the modified code are listed here for reference.

Original Code:
projdefs.h

#define CLOCK_FREQ (40000000) //Hz
//#define CLOCK_FREQ (20000000) // Hz
//#define CLOCK_FREQ (10000000) // Hz

mxwebsrvr.c
#if defined(__18CXX) //Microchip C18 compiler
 #pragma config OSC = HSPLL, OSCS = OFF
 #pragma config PWRT = ON
 #pragma config BOR = OFF, BORV = 42
 #pragma config WDT = OFF
 //#pragma config CCP2MX = OFF
 #pragma config LVP = OFF
 #pragma config DEBUG = OFF
#endif

delay.h
#elif defined(MCHP_C18)
 #define Delay10us(us) Delay10TCYx(((CLOCK_FREQ/4000000)*us))
 #if (CLOCK_FREQ == 40000000)
 #define DelayMs(ms) Delay10KTCYx((((CLOCK_FREQ/1000)*ms)/40000))
 #elif (CLOCK_FREQ == 20000000)
 #define DelayMs(ms) Delay1KTCYx((((CLOCK_FREQ/1000)*ms)/4000))
 #endif

delay.c
void Delay10us(unsigned char us)
 {
 unsigned char i;
 while (us--)
 {
 #if (CLOCK_FREQ == 40000000) i = 13;
 #elif (CLOCK_FREQ == 20000000) i = 6;
 #else
 #error "Delay does not support current Clock Frequency"
 #endif
 //Delay 10us. This takes 6 Instruction cycles per loop
 while (i != 0) {i--;}
 }
 }

appcgf.c
#if (CLOCK_FREQ == 40000000)
 //Get USART BAUD rate setting
 switch (AppConfig.USART1Cfg.baud)
(this section of code deleted)
#else
#error "appcfgUSART() does not support selected clock frequency"
#endif

Appendix D, Clockspeed Code Modifications

 Page 53 of 53

Modified Code:
projdefs.h

//#define CLOCK_FREQ (40000000) //Hz
//#define CLOCK_FREQ (20000000) // Hz
#define CLOCK_FREQ (10000000) // Hz

mxwebsrvr.c
#if defined(__18CXX) //Microchip C18 compiler
 //#pragma config OSC = HSPLL, OSCS = OFF
 #pragma config OSC = HS, OSCS = OFF // added to drop clock to 10MHz
 #pragma config PWRT = ON
 #pragma config BOR = OFF, BORV = 42
 #pragma config WDT = OFF
 //#pragma config CCP2MX = OFF
 #pragma config LVP = OFF
 #pragma config DEBUG = OFF
#endif

delay.h
#elif defined(MCHP_C18)
 #if (CLOCK_FREQ == 40000000)
 #define Delay10us(us) Delay10TCYx(((CLOCK_FREQ/4000000)*us))
 #define DelayMs(ms) Delay10KTCYx((((CLOCK_FREQ/1000)*ms)/40000))
 #elif (CLOCK_FREQ == 20000000)
 #define Delay10us(us) Delay10TCYx(((CLOCK_FREQ/2000000)*us))
 #define DelayMs(ms) Delay1KTCYx((((CLOCK_FREQ/1000)*ms)/20000))
 #elif (CLOCK_FREQ == 10000000)
 #define Delay10us(us) Delay10TCYx(((CLOCK_FREQ/1000000)*us))
 #define DelayMs(ms) Delay1KTCYx((((CLOCK_FREQ/1000)*ms)/10000))
 #endif

delay.c
void Delay10us(unsigned char us)
 {
 unsigned char i;
 while (us--)
 {
 #if (CLOCK_FREQ == 40000000) i = 13;
 #elif (CLOCK_FREQ == 20000000) i = 6;
 #elif (CLOCK_FREQ == 10000000) i = 3;
 #else
 #error "Delay does not support current Clock Frequency"
 #endif
 //Delay 10us. This takes 6 Instruction cycles per loop
 while (i != 0) {i--;}
 }
 }

appcgf.c
#define BAUD_RATE1 (57600) // bps
#define SPBRG1_VAL ((((CLOCK_FREQ/BAUD_RATE1)/4) - 1) & 0xff)
#define SPBRGH1_VAL (((((CLOCK_FREQ/BAUD_RATE1)/4) - 1) >> 8) & 0xff)

