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Abstract

Electrons interacting with the ions in a solid, or polarons, are some of

the most basic condensed matter quasi-particles. They influence the electric

conductivity in normal metals, but perhaps most fascinatingly, they mediate

the formation of Cooper pairs in low temperature superconductors.

The details of this phonon mediation are poorly understood at the level

of a microscopic Hamiltonian. The Hamiltonian for basic polaron models has

only recently been solved for the single electron, and seems to predict that the

polarons in low temperature superconductors would have very large effective

masses. This is at odds with the measured small effective masses of many low

temperature superconductors in the normal state.

In this thesis we examine extensions to the basic Holstein polaron Hamil-

tonian that provide a more realistic model of what happens in real materials.

We also look at the BLF-SSH model, which is the appropriate Hamiltonian for

superconductors without optical phonons such as the elemental superconduc-

tors.

We found that extending the Holstein model to include next nearest neigh-

bour electron hopping and nearest neighbour electron-phonon interactions changed

the effective mass slightly, but nowhere near enough to account for the low ef-
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fective masses that must be present in real materials. The BLF-SSH model was

examined in the adiabatic limit and with weak-coupling perturbation theory,

but an exact solution was not found. It seems likely that the effective mass for

this model is also very large, but an improved algorithm is necessary to prove

this. A potential path forward is presented in the appendix.
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Chapter 1

Introduction

The polaron, an electron coupled to ionic distortions or phonons, was first pos-

tulated by Landau in 1933 and was one of the first problems addressed by

Feynman after his invention of the path integral formulation of quantum me-

chanics. Despite this pedigree, only the most basic model Hamiltonians have

been solved for the single electron ground state and a proper understanding

of the interaction between two polarons and other few electron systems is still

lacking. Even in systems that are unambiguously governed by electron-phonon

coupling, the theory has not reached the point of predictive power. Improve-

ments in these materials have come more from experimental intuition than a

comprehensive theory.

The early work on polarons in the 50’s and 60’s did not attempt a complete

solution of the quantum mechanical model on the lattice but instead often used

a continuum approximation for the electron or ions or both. The continuum

model for ions was justified by the idea that each electron would influence many

lattice sites through the long range Coulomb interaction, and the continuum

electron model was justified for materials with small electron filling in each band

such as doped semiconductors. The Fröhlich model is the prototypical model

of this, a continuum electron, independent simple harmonic oscillators for ionic

degrees of freedom, and an extended range dipole r−3 interaction. This model
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was solved with path integrals by Feynman in the limit of weak electron-phonon

coupling.[1][2] Others did calculations in the adiabatic continuum limit which

treats the phonons classically. [3] The success of these models was explaining

the larger effective mass of electrons in semiconductors.

Another avenue pursued was the thermally activated polaron, which is still

considered today for some higher temperature applications. This assumes that

the electron has become locally trapped by the conspiring of an impurity and

large effective mass from the electron-phonon interaction. Then only at non-

zero temperature may the electron move from site to site, producing a system

similar to a tunneling problem. [4]

Later, as numerical computations became possible, much of the focus changed

to small lattice polarons. Here a tight-binding model is used for the electrons

and the ions are described by individual or collective quantum degrees of free-

dom which are coupled to the electrons in some way. The Holstein model is

the prototypical example of these[5], with others including the BLF-SSH[6][7]

and modifications to include Jahn-Teller interactions[8] . Work has continued

on the Fröhlich model as well, with numerical solutions giving good approxi-

mations to the ground state energy. [9]

Accurate numerical methods for the single electron Holstein and Fröhlich

models have been developed [10][9] but the materials of interest are far more

complex than dilute semiconductors, almost always involving electron-electron

interactions. Both low and high temperature superconductors, Manganites ex-

hibiting colossal magnetoresistance and organic conductors are the new targets

and are still poorly understood.

The paths to improving the situation are to either improve the realism of

individual polaron models, include electron-electron interactions, or eventually

to do both. None of these are simple tasks: even a single electron polaron is

a difficult quantum many-body problem since there are many ions with which

the electron may interact.
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Improving the polaron models can be simply adding more terms to model

magnetic interactions as in Jahn-Teller Hamiltonians or refining the existing

terms such as improving the electron-phonon coupling to have a linear and

quadratic component. [11] Each of these modifications is generally tuned to

examine a particular physical phenomenon since including an ever growing

number of corrections would quickly become computationally intractable. By

examining each correction individually, it is hopefully possible to tease out what

is essential to model a polaron. In the words of Albert Einstein: ”Everything

should be made as simple as possible, but not simpler.”

The other avenue of including many-electron effects has been to use dynam-

ical mean field theory (DMFT) or quantum Monte Carlo (QMC) along with

a single polaron model. Here the Hamiltonian is modified with a Hubbard

U electron-electron interaction. Work has been done on a spinless electron

Holstein-Hubbard model with Monte Carlo simulations for finite electron fill-

ing in a band[12, 13, 14, 15, 16], but the sign problem limits the accuracy even

with very sophisticated sampling methods. There have also been studies of

real materials using Dynamical Mean Field Theory (DMFT) and local den-

sity approximation (LDA) [17] which have had a good deal of success. These

models have been able to successfully reproduce Tc and other experimentally

observed quantities and are an important part of the tool kit. Unfortunately,

the methods used to deal with the complex many-body wavefunction obscure

the microscopic details in the results, so there is still a gap in our understanding

of real materials.

An accurate single electron solution will not solve all the mysteries of the

electron-phonon coupling in real materials, but it will greatly improve our un-

derstandings of the microscopic actors. With the basic building blocks under-

stood, cluster DMFT and other many-electron methods may be applied more

intelligently. It also gives a good opportunity to examine the many-body wave-

function in a more tractable situation and develop techniques that may be
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useful for other many-body problems.

With these goals in mind this thesis will present novel research of the single

electron polaron models beyond the standard well-studied Holstein model. The

Holstein model is the obvious place to start since the single electron problem

is well understood, even near the adiabatic limit, which is importantly the

physically relevant regime. [18] [10] The model is completely solved in 1,2, and

3 dimensions, yet still exhibits an effective mass far larger than that which can

be reconciled with mobile Cooper pairs in bulk superconductors.

In the second chapter the effect of next nearest neighbour hopping is dis-

cussed. This is a relatively simple modification to the standard model and

realistic since many real material band structures can be approximated with

a tight-binding model that includes significant next nearest neighbour and be-

yond hopping amplitudes. [19] We use the same new algorithm as in the first

chapter to confirm previous results in one dimension, and then expand to two

and three dimensions again with the ability to choose realistic near adiabatic

parameters. We also found an interesting heuristic scaling that allows one

to predict the effect of next nearest neighbour hopping on the effective mass.

These were previously published in Ref. 20.

In the third chapter we look into the single electron Fröhlich model which

includes the effect of the long range coulumb interaction between the electron

and the ions, going beyond the simple on-site iteration of the Holstein model.

We present a modification of the full extended Fröhlich model including only the

nearest neighbour ions, which, given the exponential decay of the interaction in

the full Fröhlich model, should dominate the results. We confirm previous two

dimensional work done with Quantum Monte Carlo with a Krylov space exact

diagonalization method. This new algorithm also allowed us to look at the

three dimensional case, which is the most relevant for bulk superconductors,

and to do it in the near adiabatic limit, which is the most physically relevant.

These results were previously published in Ref. 21.
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In the fourth chapter we switch from improvements to the Holstein model

to the BLF-SSH model. While the Holstein model is well suited to materials

that have a dominating optical phonon mode, this is only a subset of the known

bulk superconductors. The elemental superconductors, for instance, have only

acoustic phonon modes. While Eliashberg theory can be used to understand

these materials, the Holstein model is often implicit in these calculations, cast-

ing some doubt onto their trustworthiness. Unfortunately treating the acoustic

phonons in the BLF-SSH model is much more difficult than the Holstein model

so we start with a study of the semi-classical adiabatic model. We perform the

calculations in one, two, and three dimensions and correct previous inaccurate

calculations of the two dimensional. The true shape of the ionic distortion is

presented and simple analytic calculations for the strong-coupling regime are

included as well. These were previously published in Ref. 22.

The appendix includes research results of a variational wavefunction for the

fully quantum BLF-SSH model. A derivation is presented in detail to benefit

future research and the variational ground state energies are also included.
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Chapter 2

Holstein Model with Next

Nearest Neighbour Hopping

In the realm of BCS theory, it is well known that electron-phonon interactions

in solid materials are integral to the emergence of superconductivity, as they

are responsible for the effective attraction that leads to the formation of Cooper

pairs.[24] On the other hand, the importance of electron-phonon interactions

in high temperature superconductivity is not yet clear.[25] Since polarons are

simply quasiparticles consisting of electrons dressed with the net effect of these

electron-phonon interactions, it is important to understand this basic building

block, and the related bipolaron problem of the attraction between polarons.

This will allow a full understanding of conventional superconductivity, and

possible extensions to nonconventional superconductors.[26] To this end, the

problem of a single electron in the conduction band of a crystal lattice has

been extensively studied.[27] Specifically, a numerically exact algorithm for

solving the Holstein model with tight-binding electron bands in the thermody-

namic limit was formulated in Ref. 28, and now that problem is effectively

solved. Several extensions were subsequently reported, including ones to bet-

ter manage disparate electron (t) and phonon (ωE) energy scales (in particular,

ωE << t),[10, 29], higher dimensionality,[30, 31, 32] extended interaction range
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[18, 21] and inclusion of next-nearest neighbour (NNN) single-particle hopping

amplitude.[33] In this last study it was found that including NNN hopping in

the one dimensional Holstein model altered significantly the electron’s effective

mass in strong-coupling.

The purpose of this chapter is to follow up on this study. Thus far stud-

ies of polaron properties within the Holstein model have revealed that the

effective mass becomes very large with rather modest electron-phonon cou-

pling strength. This is incompatible with experiment, specifically with the

evidence that some conventional superconductors have a large electron-phonon

coupling strength, and yet show almost no sign of single-electron polaronic

behaviour.[34] Chakraborty et al. [33] found that including NNN hopping in

the one-dimensional Holstein model could decrease the polaron effective mass

significantly, particularly at strong-coupling. This is potentially very impor-

tant since this is a means for lowering the polaron effective mass to a realistic

level, such that an Eliashberg treatment [35, 36, 37, 38, 39] makes sense.

To more fully understand the effects due to NNN electron hopping we will

first present our perturbation theory calculations for the energy and effective

mass of the NNN Holstein model in one, two, and three dimensions. We use

square and simple cubic lattices for two and three dimensions, respectively.

These results agree for sufficiently low coupling strength with our exact nu-

merical calculations using our previously refined algorithm for the Holstein

model [21] extended to include NNN interactions. We note that quantitative

agreement with perturbation theory extends over a surprisingly limited range

of electron-phonon interaction strength, even in three dimensions, which is the

most applicable to bulk superconductors. A low phonon frequency approx-

imation to the perturbation theory results suggests a scaling of the phonon

frequency with the low energy effective bandwidth, which explains the results

obtained as a function of NNN electron hopping. We also note an additional

scaling factor that accounts for the results with non-zero NNN hopping with
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respect to those with nearest-neighbour hopping only, over a more extended

coupling strength range.

Since including NNN electron hopping also modifies the ‘effective’ electronic

bandwidth (to be defined more precisely below), we should account for this in

using the appropriate phonon frequency. That is, since altering the adiabatic

ratio ωE/t, even in the case with NN hopping only, is known to lead to changes

in the polaronic effective mass for the same coupling strength, then we should

be careful to use an appropriately scaled phonon frequency.

After a brief introduction we use perturbation theory to determine the po-

laron effective mass in weak-coupling. Since these expressions are analytical,

they are well-suited to examine the various scaling factors. We then present

exact solutions, in one, two, and three dimensions, to examine the effect on

polaron mass over the entire coupling range. We also note a heuristic scal-

ing, found numerically, that very accurately maps the parameters with NNN

hopping back to the original Holstein Model.

2.1 Model & Methods

2.1.1 Holstein Model

The Holstein model [5] is perhaps the simplest model for describing electron-

phonon interactions; it treats (optical) phonons as local ion vibrations, and

assumes that each atomic site oscillates with the same characteristic frequency

ωE. With NNN hopping included, the Hamiltonian that describes such a system

is:

8



Ĥ =− t
∑

j,δ

(ĉ†j ĉj+δ + ĉ†j+δ ĉj)− t2
∑

j,γ

(ĉ†j ĉj+γ + ĉ†j+γ ĉj)

+ ~ωE

∑

j

â†j âj + ~ωEg
∑

j

(âj + â†j)ĉ
†
j ĉj. (2.1)

Here, t and t2 are the nearest neighbour and NNN hopping integrals respec-

tively with δ and γ being the vectors to the nearest neighbour and NNN sites,

respectively. The sum over the vector of site positions j covers all sites. The

electron creation and phonon creation operators at site j are ĉ†j and â
†
j , respec-

tively, and g ≡
√

α2

2~Mω3
E

is a dimensionless measure of the electron-phonon

coupling strength, with M being the atomic mass and α being the coupling

strength as defined in real space.

In order to diagonalize this Hamiltonian, we transform into k-space, accord-

ing to the equation:

ĉj =
1√
N

∑

k

ei
~k· ~Rj ĉk (2.2)

where ~Rj points to lattice site j, and ~k is a wave vector summed over the

First Brillouin Zone (FBZ). The relation for ĉ†j may be obtained simply by

taking the Hermitian conjugate of the above expression, and the bosonic Fourier

transforms are defined almost identically. In the FBZ there are N distinct k

values within (−π/a, π/a) in each direction. The transformed Hamiltonian

then becomes

Ĥ =
∑

k

ε(~k)ĉ†kĉk + ~ωE

∑

k

â†kâk

+ ~gωE

∑

k,q

(âq + â†−q)ĉ
†
k+q ĉk, (2.3)
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Dim. ε(~k)
1D −2t cos ka− 2t2 cos 2ka
2D −2t(cos kxa+ cos kya)− 4t2 cos kxa cos kya
3D −2t(cos kxa+ cos kya+ cos kza)

− 4t2(cos kxa cos kya+ cos kxa cos kza+ cos kya cos kza)

Table 2.1: Electron dispersion relations for the Holstein model, allowing for
next-nearest neighbour hopping.

and holds for all dimensions with dispersion relations ε(~k) given in Table 2.1.

In this chapter, we will examine various properties of the ground state,

which for t′

t
> −1

4
is at zero total crystal momentum p. For all dimensions this

results in a low energy dispersion Ep quadratic in p = |p|, so that the ground

state effective mass of the electron is given by:

1

m∗
=

1

~2

∂2Ep

∂p2

∣

∣

∣

∣

p=0

. (2.4)

2.1.2 Weak-coupling Perturbation Theory

Beginning with the perturbative approach (in the weak-coupling regime), we

consider the electron-phonon interaction to be the perturbation, so that the

unperturbed energy is simply E
(0)
p = ε(~p) ≡ εp. The unperturbed ground state

for arbitrary p is therefore

|φ(0)
p 〉 = ĉ†p |0〉 . (2.5)

Here, |0〉 is simply the electron-phonon vacuum state. Unperturbed excited

states include all states with a single electron and any number of phonons

such that the total crystal momentum still adds to p. It is easy to check that

given these definitions, E
(1)
p = 0, independent of the choice of total crystal

momentum. Under these conditions, the energy correction to second order (in

α or g) is:
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E(2)
p =

∑

k,q

∣

∣

∣
〈φ(0)

p | V̂pertĉ†kâ†q |0〉
∣

∣

∣

2

εp − (εk + ~ωE)
(2.6)

In this case, V̂pert is the electron-phonon interaction term of the Hamiltonian

in Eq. 2.3. Note that only one phonon is considered in the unperturbed excited

states because V̂pert only creates (annihilates) one phonon. Upon evaluating

this sum, we may apply Eq. 2.4 to find the effective mass. In order to do so, we

convert the sum in Eq. 2.6 to an integral over k-values, since the thermodynamic

limit (N →∞) implies a continuum of k values between −π/a and π/a.

In the one-dimensional case, the corrected energy according to second order

perturbation theory (in g) is

E1D
p =− 2t (cos (pa) + β cos (2pa))

−(~gωE)
2

4W

1
√

(ωE

2
− β + 1 + cos pa+ β cos 2pa)b2

×





4β − 1 + b
√

3β + ωE

2
+ cos pa+ β cos 2pa+ b

− 4β − 1− b
√

3β + ωE

2
+ cos pa+ β cos 2pa− b



 (2.7)

where we have defined dimensionless parameters ωE ≡ ~ωE

t
, β = t2/t1, and

b ≡
√

1 + 8β(β +
ωE

2
+ cos pa+ β cos 2pa)

The above result, substituted into Eq. (2.4), gives an expression for the

effective ground-state electron mass m∗ at p = 0:
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(mb

m∗

)

1D
= 1− λωE

{

8β2 + 12β + 4βωE + 1
2

((4 + ωE)b2)
3

2

×
[

4β − 1 + b√
8β + 2 + ωE + 2b

− 4β − 1− b√
8β + 2 + ωE − 2b

]

+
1

√

(4 + ωE)b2

[−2β
b

(

1√
8β + 2 + ωE + 2b

+
1√

8β + 2 + ωE − 2b

)

+
4β − 1 + b√

2(8β + 2 + ωE + 2b)
3

2

(

4β

b
+ 1

)

+
4β − 1− b√

2(8β + 2 + ωE − 2b)
3

2

(

4β

b
− 1

)

]}

(2.8)

where b is evaluated at p = 0, and with λ ≡ 2g2ωE

W
, whereW is the electronic

bandwidth. This definition for λ applies for three dimensions as well, though in

two dimensions, λ ≡ g2ωE

2πt
is used.1 Note that in the above equation, we have

normalized by the inverse of the electron band mass (unperturbed effective

mass):

1

mb

=
1

~2

∂2εp
∂p2

∣

∣

∣

∣

p=0

=
(2t+ 8t2)a

2

~2
. (2.9)

More generally, evaluating for the second-order energy correction in two or

three dimensions proves tedious, and has a cumbersome, unenlightening answer

(as in eq. (2.8)). For these cases, we have also integrated the result numerically

to check our analytical results. In the figures that follow, these are referred to

as “numerically integrated perturbation theory.”

For an approximate analytical result, we observe that the integrand in the

energy correction expression decays more or less to 0 by some k0 < π for most

small values of the parameters β and ωE. Cutting the integral off at this k0

1This definition is preferred by the authors since it captures better the density of states

for a single electron in the band, and only differs by an integral multiple of π/2 anyway.
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Dim. Eff. Mass Ratio:
mb

m∗

mb

m∗
(as a function of g)

1D 1− 1

2

λ√
1 + 4β

1√
ωE

1−
√

ωE

(1 + 4β)

g2

4

2D 1− 1

2

λ

(1 + 2β)
1− ωE

(1 + 2β)

g2

4π

3D 1− 3

4π

λ

(1 + 4β)
3

2

√
ωE 1− ω

3

2

E

(1 + 4β)
3

2

g2

8π

Table 2.2: Approximate ground state effective mass for small ω̄E ≡ ωE/t and
small β ≡ t2/t, from weak-coupling perturbation theory.

and making the approximation that k � 1 for k ≤ k0, we achieve the analytic

approximations shown in Table 2.2. Unfortunately, these approximations prove

to be rather crude in two and three dimensions, which limits their usefulness.

Regardless, we present them alongside our numerically integrated results for

completeness in Figs. (2.1 - 2.3). The approximations do work better for smaller

ωE; however we have tested them in a reasonably physically representative

regime of small ωE [21] and even here the agreement is poor.

Secondly, it is important to note that even without approximations, the

range of coupling strengths over which the numerical perturbation theory is

valid is very small. This feature is similar to our results for the standard Hol-

stein model [21] so we do not recommend using the perturbation calculations

for physical predictions but only as a check on more powerful numerical calcu-

lations such as the Trugman Method.

2.1.3 Modified Trugman Method for Exact Numerical

Solutions

The single polaron problem is solved here with the variational exact diagonal-

ization method described in Bonc̆a et al. [28] and revised by the authors as

described in [10, 21] to account for a rapidly growing Hilbert space from the

additional terms in the Hamiltonian. For the data included in these plots 20 -
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neighbour bandwidth to be:

(

W
NNN

W
NN

)

1D

≈ (1 + 4β) ≈
(

W
NNN

W
NN

)

3D

(2.10)

and:
(

W
NNN

W
NN

)

2D

≈ (1 + 2β). (2.11)

This suggests the the phonon energy scale ~ ·ωE also should be rescaled by

the same factors to keep the ratio of phonon energy to effective bandwidth con-

stant. The interaction strength parameter g is dimensionless and thus remains

unchanged, though the electron-phonon interaction term in the Hamiltonian

is rescaled since it is proportional not simply to g, but to g~ωE. It can be

seen from the result in table 2.2 that rescaling ωE by the effective bandwidth

change would transform the NNN approximate effective mass onto that for NN

hopping only. In other words, if we use a renormalized phonon frequency with

the same value with respect to the effective electronic bandwidth, then the

addition of next nearest neighbour hopping has no effect on the effective mass

(according to Table 2.2). However these are only approximate perturbation

calculations and the exact results show that the NNN effective mass is sub-

stantially different from the NN effective mass even when the proper scalings

have been taken into account.

On the other hand, this rescaling of ωE (which was not done by Chakraborty

et al. [33]), definitely reduces the effect of the NNN hopping on the polaron

effective mass.

In Fig. 2.4 we compare the data with and without the scaling of ωE to the

original Holstein model in one dimension with t2/t = ±0.1. The one dimen-

sional case has no crossover coupling strength in the standard Holstein model,

where the polaron effective mass suddenly begins to increase exponentially with

coupling strength, and while t2 > 0 did decrease the effective mass somewhat,
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While our approximate perturbation theory suggests that the scalings of

ωE/t given in Table 2.2 would map the NNN effective masses onto the NN

effective mass, Figs. 2.4, 2.5, and 2.6 make it clear that this scaling does not

work very well except in the two dimensional case. The approximate pertur-

bation theory only agrees exactly with the numerical perturbation theory in

one dimension and there is no reason to trust even the numerical perturbation

theory for the effective mass outside of very small coupling strength as we have

remarked on other occasions.[21] In two dimensions the approximate ωE scaling

suggested in Table 2.2 mapped the effective masses back close to that obtained

with no NNN hopping, but in one and three dimensions it over-corrected the

change in the effective mass. Also, not surprisingly, in all three dimensions a

simple scaling does not work well in the very strong-coupling regime. So in

agreement with Chakraborty et al., [33] NNN hopping does introduce changes

in the properties of the polaron, and leads to a decreased effective mass for

some additional (positive) t2 hopping if no phonon frequency scaling is intro-

duced. But NNN hopping leads to an increased effective mass if the phonon

frequency is also increased to account for the increase in the ‘local’ bandwidth.

Most importantly for our understanding of the conventional framework for su-

perconductivity, the inclusion of NNN hopping changes the critical coupling

strength in three dimensions at which the effective mass increases sharply to-

wards infinity (see the large coupling regime of Fig. 2.6).

2.1.4 Heuristic Scaling

In the course of our investigations we further found a heuristic scaling of

the coupling strength that, combined with the bandwidth-inspired scaling,

works very well; however, the underlying physical motivation is still rather

unclear. We introduce a scaling factor in the dimensionless interaction param-
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t2 impacts the coupling strength at which the (sharp) crossover occurs for pola-

ronic behaviour. For small values of t2/t the crossover remains in the regime of

moderate electron-phonon coupling. Therefore it remains difficult to reconcile

the fairly strong-coupling attributed to some real metals/superconductors with

the diverging effective mass predicted for a single polaron at the same coupling

strength.
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Chapter 3

The Holstein Model with

Extended Range

Electron-Phonon Interactions

We present numerically exact solutions to the problem of a single electron inter-

acting through an extended interaction with optical phonons in two and three

dimensions. This is another possible avenue to reconciling the large electron

effective mass at strong coupling to the mobile Cooper pairs or superconduc-

tors. Comparisons are made with results for the standard Holstein model, and

with perturbative approaches from both the weak-coupling and strong cou-

pling sides. We find, in agreement with earlier work, that the polaron effective

mass increases (decreases) in the weak (strong) coupling regime, respectively.

However, in two dimensions, the decrease in effective mass still results in too

large an effective mass to be relevant in realistic models of normal metals. In

three dimensions the decrease can be more relevant, but exists only over a very

limited range of coupling strengths.
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3.1 Introduction

The standard theoretical framework for superconductivity is known as BCS-

Eliashberg theory,[24, 35, 36, 37, 38, 39] and, as catalogued in the cited reviews,

accurately describes many experimentally known properties of the so-called

conventional superconductors, like Pb. BCS theory itself is almost univer-

sal, and confirmation of this theory, achieved with unprecedented accuracy for

weak-coupling superconductors like Aluminium, serves to vindicate the“pairing

formalism”, utilized to construct BCS theory, but does little to confirm the

mechanism.[40]

The mechanism for pairing in conventional superconductors is believed to be

virtual phonon exchange, in complete analogy to the virtual photon exchange

which is responsible for the direct Coulomb interaction between two charged

particles. The primary evidence for this belief comes from the isotope effect

and a comparison of tunnelling data with the deviations from BCS theory

captured in Eliashberg theory, and again, a considerable body of evidence that

confirms the virtual phonon exchange mechanism for pairing is described in

Refs. [24, 35, 36, 37, 38, 39].

At a more microscopic level, for the past several decades the Holstein

model[5, 27] has served as the chief paradigm to describe electron-phonon inter-

actions in solids. In part this paradigm choice has been driven by the physics,

and the realization that in the single polaron problem the interaction can be

very local and the (optical) phonons are well-described by Einstein oscillators.

In addition, however, computational techniques for understanding the proper-

ties of a polaron have evolved in a manner conducive to lattice models with

local interactions; this has led to an abundance of studies of the properties of

this particular model. Many of these properties are at odds with the Eliashberg

description; early work[14, 15] using Quantum Monte Carlo (QMC) methods

suggested a dominance of charge ordering phenomena in lieu of superconductiv-
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ity, while more recent work relying on hybrid Migdal-Eliashberg and Dynamical

Mean Field Theory (DMFT) [41] provided some reconciliation, though the com-

petitive charge-ordered phase was not included. In any event we currently lack

a microscopic description of the many-body Fermi sea of electrons interacting

with phonons with an intermediate to strong coupling strength, in terms of

the basic building block, i.e. a single electron coupled to phonons. The prob-

lem is that, in this same coupling strength regime, a single electron is highly

polaronic,[42, 43, 28, 44] particularly when the phonon frequency is small com-

pared to the electronic bandwidth.[10, 29, 45] In other words, either we have

to understand how electrons become less polaronic as many of them assemble

to form a a degenerate Fermi sea, or we have to understand how weakly inter-

acting (non-polaronic) electrons, when assembled to form a Fermi sea, become

more strongly interacting, presumably through phonon renormalization.

Alongside these developments the Fröhlich model[46, 47, 48] for electron-

phonon interactions describes a screened but long-range interaction between

an electron and the (positively charged) ions in a crystal. In fact, it is for this

model that much of the early analytical work on the polaron was done.[1, 49,

50, 51, 52] This model has only one energy scale, the phonon frequency, which

makes a comparison with the Holstein model, for example, difficult. In the

Holstein model and other lattice models like it, there are two energy scales,

one corresponding to the phonon frequency and the other corresponding to the

(bare) electron bandwidth. Polaronic effects depend significantly on the ratio of

these two energy scales, ωph/t, sometimes known as the adiabatic ratio. Here,

t is the bare electron hopping amplitude. Until recently,[10, 29] much of the

work done on microscopic models used an adiabatic ratio close to unity; the

more physical regime, and the one required by the Migdal approximation when

many electrons are considered, is ωph/t << 1.

In an effort to draw comparisons between the short-range Holstein model

and the longer-range Fröhlich model, Alexandrov and Kornilovitch[53] defined
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a Fröhlich polaron problem on a discrete lattice. They examined the behaviour

of the effective mass as a function of coupling strength, primarily on one and two

dimensional lattices. They concluded that with extended range interactions,

the effective mass can be much smaller than for the Holstein polaron. Thus,

a microscopic model with long-range electron-phonon interactions is a possible

means of reconciling exact single electron “building-block” calculations with

the Migdal approximation that underlies the Eliashberg theory of electron-

phonon-mediated superconductivity.

However, as mentioned earlier, the single electron longer-range interaction

studies were carried out with an adiabatic ratio of order unity. Here we wish

to re-examine this problem with more physical values of the adiabatic ratio,

and extend their calculations[53] to three dimensions. We will also adopt the

truncated (in range) interaction subsequently adopted by a number of authors

— see e.g. Refs. 18, 32 — and include nearest neighbour interactions only,

in addition to the on-site interaction included in the standard Holstein model.

Following these latter two papers we will refer to this is as the extended Holstein

model. In fact this interaction better represents the expected screening in a

real metal; this effect has been studied in, for example, Ref. 54. We find

that while the conclusion of Ref. 53 that the effective mass can be much

smaller for the extended than for the Holstein model is correct, this statement

applies for a very restrictive range of the coupling strength. We also note that

the behaviour in two dimensions is not representative of what occurs in either

one or three dimensions. In fact, even in what is normally considered the

perturbative regime, low-order perturbation theory is not very accurate. Their

initial conclusions are actually more representative for the three dimensional

case.

The rest of the chapter proceeds as follows. First, following Ref. [53], we

define the model, and we outline the method of solution. We have exact results

for all our calculations, based on refinements of the method introduced by
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Bonča et al.[28] This controlled method of solution becomes somewhat more

difficult for three dimensions, but we present converged results for phonon

frequencies as low as ωE/t = 0.3. Considering that this is achieved in three

dimensions, where the electronic bandwidth is W ≡ 12t, this phonon energy

scale represents 2.5% of the electronic bandwidth.

Results are first presented in two dimensions. We first re-assess some older

results,[10] and note that, even for the standard Holstein model, perturbative

calculations, either in weak or strong coupling, are actually not very accurate.

In weak-coupling for example, multi-phonon excitations lead to a significantly

enhanced effective mass. This phenomenon is amplified when extended inter-

actions are included, so in fact we find the conclusions of Ref. [53] somewhat

misleading. The effective mass does decrease due to longer range interactions in

the strong coupling regime, but in two dimensions, the resulting effective mass

is still much too high to be relevant for normal (i.e. non-polaronic) metals.

The following section treats the three dimensional case, where we find that a

lower effective mass, to realistic values, is indeed achieved by including extended

interactions. However, even here the range of coupling strengths over which

this is achieved is very narrow; in terms of the dimensionless coupling constant

λ (to be defined below), this range is very close to unity, and not in the range

associated with so-called Eliashberg strong coupling superconductors.

3.2 Model and Method

The lattice Fröhlich (“extended Holstein”) model is defined as[53]

H = − t
∑

i,δ

[

c†ici+δ + c†i+δci
]

− gωE

∑

〈i,j〉

f(j)ni(ai+j + a†i+j)

+ ωE

∑

i

a†iai, (3.1)
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where the range of the interaction is given by

f(j) =
1

(|j|2 + 1)3/2
. (3.2)

In Eq. (3.1) t is the electron hopping parameter, ωE is the characteristic phonon

frequency, taken to be a constant here, and gωEf(j) is the coupling strength

between an electron at a particular site and a phonon at a site a distance a0|j|
away, where a0 is the lattice spacing (taken to be unity hereafter) and j is the

vector connecting the electron and phonon. The case f(j) = δj,0 reduces to

the usual Holstein model. The other symbols are defined as follows: c†i (ci)

creates (annihilates) an electron at site i, and a†i (ai) creates (annihilates) a

phonon at site i. The electron number operator is given by ni ≡ c†ici, and the

spin index has been suppressed since we are dealing with only one electron.

Note that the sum over δ in the electron hopping part of the Hamiltonian is

over nearest-neighbour sites on the positive side only, to avoid double counting,

whereas the sum over j in the interaction term in principle includes the on-site

term (j = 0) along with neighbouring sites in all directions. As mentioned

earlier, we will follow Refs. [18, 32], and we will terminate the sum at nearest

neighbour interactions.

We will use Eq. (3.2) for all dimensions, but, with interactions truncated

to nearest neighbour distances. In reality this form is motivated by the three

dimensional case, where the long range interaction follows a 1/r3 decay. At

short distances a potential divergence is cut off by the constant ‘1’ in the

denominator of Eq. (3.2); this corresponds to a characteristic decay length

of the lattice spacing, and in principle this can be varied as well. Here, for

simplicity, we keep the constant fixed at unity. This Hamiltonian contains a

dimensionless coupling constant, namely g, which becomes most important in

the strong coupling regime. In practice we also define another dimensionless

coupling constant, λ, which becomes important in the weak-coupling regime.
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Specifically for the coupling of the electron to the phonons at the same site

we use, following Li et al.,[10] λc ≡ ωEg
2/(W/2) in one and three dimensions,

whereW is the bare electron bandwidth,W = 4t in one dimension andW = 12t

in three dimensions for the tight-binding model on a linear or cubic lattice with

nearest neighbour hopping, respectively. In two dimensions we use a definition

where the electron density of states at the bottom of the bare band is used

[≡ 1(4πt)] instead of the average value of the density of states across the entire

band [≡ 1/(8t)], so λc ≡ ωEg
2/(2πt). For the Holstein model the entire coupling

would be that of the on-site coupling.

To define the coupling strength for the extended model, λtot, we follow the

definitions of Alexandrov and Kornilovitch,[53] with the total coupling being

the sum of the couplings to the different sites. This definition is physically

based on the ratio of the polaronic shift to the electron kinetic energy. For

example, in two dimensions we obtain the on-site contribution along with four

equally weighted nearest neighbour contributions, reduced by [1/23/2]2 = 1/8

compared to the on-site value:

λtot =
∑

j

λcf
2(j) = λc

(

1 + 4
1

8

)

. (3.3)

The single polaron problem is solved here with the variational exact di-

agonalization method described in Bonča et al[28] with the same refinements

for low frequency calculations as developed by Li et al.[10] The modifications

required for the extended model fit nicely into this computational framework,

with the cost of a denser Hamiltonian matrix, and a Hilbert space that grows

faster with each application of Hamiltonian, compared to similar calculations

for the standard (i.e. on-site) Holstein model. This rapid growth makes it

difficult to converge results using an extended version of the adaptive method

of Li et al.

We therefore further refined the method by producing a list of the most
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important basis states for each point in parameter space. Starting with a list

of basis states from a nearby parameter point previously diagonalized, or a

truncated coherent state from the strong coupling Lang-Firsov solution[55, 56,

10] we diagonalized the Hamiltonian in this basis. These basis states in turn

were ranked according to the magnitude of their contribution to the ground

state, and the top N1 contributions were kept. We then acted on these N1

states with the Hamiltonian to produce more basis states and diagonalized the

Hamiltonian in this new space. The resulting eigenvector was then sorted, the

top N1 contributions were kept, and the process repeated. Once this procedure

converged, we sorted one last time, and kept the top N2 states ( N2 > N1) and

did the final diagonalization. While this was a time-consuming calculation, it

allowed for much better results with a finite amount of computer memory since

it selected out the basis states that were the most important for describing the

ground state.

Using this method at small λ should reduce to weak-coupling 2nd order

perturbation theory. Using straightforward Rayleigh-Schrödinger perturbation

theory in two dimensions with on-site and nearest-neighbour interactions only

results in a second-order correction to the ground state energy,

E(2)(kx, ky) = −
2πλtottωE

1 + 4f 2(1)

1

N

∑

k′

(

1− f(1)
t
εk′−k

)2

εk′ + ωE − εk
, (3.4)

where εk ≡ −2t[cos(kxa0) + cos(kya0)] is the bare energy for the nearest-

neighbour tight-binding model. This expression can be evaluated in terms

of complete elliptic integrals — for example [f1 ≡ f(1)],

E(2)(0, 0) =

−λtotωE

{

(1 + 4zf1)
2

1 + 4f 2
1

1

z
K
[ 1

z2
]

− 4πf1
1 + 2zf1
1 + 4f 2

1

}

, (3.5)

where z ≡ 1+ωE/(4t), but for most of our perturbation results we have simply
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expanded into multiple coherent components:

|ψ〉 ≈ b0e
−g2

0
/2 1√

N

∑

`

eikR`eg0â
†
` ĉ†`|0〉

+ b1e
−g2

1
/2 1√

4N

∑

`,δ

eikR`eg1â
†
`+δ ĉ†`|0〉

+ b2e
−g2

2
/2 1√

4N

∑

`,δ

eikR`eg2â
†
` â†`+δ ĉ

†
`|0〉+ ..., (3.7)

where δ designates neighbouring sites in all directions. Based on how orderly

Fig. 3.3 looks one could imagine using a variational approach with these co-

herent states as well. For this paper, however, we kept with the simple Bloch

states which, though far more numerous, are easier to handle as they are guar-

anteed to be orthogonal. We express the exact wavefunction |ψ〉 in terms of

those states:

|ψ〉 =
∑

n

dn

(

1√
N

∑

`

eikR` |φn`〉
)

(3.8)

where the |φn`〉 are orthonormal product states consisting of an electron at

site ` and product states of phonons at all sites ` + δ. For example, for the

Lang-Firsov state given by Eq. (3.6), dn = e−g2/2gn/
√
n!.

The main message of this is that while the standard Holstein model may be

the simplest polaron model, its solution is still a fairly complicated many-body

wavefunction, even in the weak and strong coupling limits. Without accurate

characterization of this wavefunction, it may still be possible to calculate some

expectation values, like the ground state energy, accurately, but others, such

as the effective mass, need a more precise wavefunction. When measuring

expectation values with any numerical method, it is important to converge

these values on their own as they may need a much larger basis space than, for

example, the ground state energy, to be accurately described.

The first qualitative difference found between the extended and on-site Hol-

stein models is at weak-coupling. In the standard model, we find a very slight
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increase of the effective mass with increasing phonon frequency (see Fig. 3.4),

while in the extended model, we find the opposite; the effective mass decreases

as a function of increasing frequency. Note that the analytical result for the

effective mass in the adiabatic limit is obtained from perturbation theory, and

not from the semi-classical adiabatic calculations.[57] The adiabatic calcula-

tion reveals in weak-coupling a regime in which there are no ion deformations,

which one might possibly interpret as indicating an effective mass equal to the

non-interacting electron mass. However, this is not what is obtained when the

full quantum calculation is performed in the limit of vanishingly small phonon

frequency. Moreover, perturbation theory calculations correctly yield an ef-

fective mass ratio equal to (1 + λ/2) for the standard Holstein model in two

dimensions, in agreement with the full quantum calculations.

For the extended model used here, one can show that the perturbative

effective mass is given by

m∗/m = 1 +
λtot
2

[1 + 4f(1)]2

1 + 4f 2(1)
. (3.9)

This agrees with the limiting value as ωE → 0, obtained through numerical

integration in Fig. 3.4.

Since the exact results and perturbation theory agree for the effective mass

in very weak-coupling, the latter calculations can be trusted in this regime.

Therefore we plot in Fig. 3.4 only the perturbation theory results for the ef-

fective mass vs. ωE/t to highlight the differences between the extended and

standard models (for definiteness, we use λtot = 0.1). At low values of ωE/t

the extended model’s effective mass decreases monotonically with increasing

ωE/t while the on-site model has a peak near ωE/t = 1 . Both models have an

effective mass ratio of unity (m∗/m = 1) in the anti-adiabatic limit, ωE →∞.

Quantitatively, the extended Holstein model has a larger effective mass

at weak-coupling, and a smaller effective mass at strong coupling compared
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the crossover is much better delineated for low phonon frequencies, as is clear

in Fig. 3.5a. The point made in Ref. [53], that the extended model results

in a lower effective mass is also clear, for λ values beyond some intermediate

coupling strength. At high phonon frequency (Fig. 3.5b) this means a reduction

from m∗/m ≈ 30 to m∗/m ≈ 7, for example. By any measure this reduction is

significant, but somewhat irrelevant, since the effective masses involved, even

after reduction, are too high to describe normal state properties. However,

for more realistic (lower) phonon frequencies (Fig. 3.5a), both crossovers are

sharpened as a function of coupling strength, although less so for the extended

model, with the net result that a regime of effective mass reduction remains,

and the reduction is enormous, but now the mass is ‘lowered’ to values of 40 or

higher. In fact, the clear effect of extended interactions is to raise the effective

mass for most of the parameter regime that is physically relevant.[59]

To summarize this subsection, the extended Holstein model is more realistic

than the standard model insofar as it includes interactions extended beyond

on-site. This does give rise to a coupling regime where the effective mass is

lowered, compared to the standard model, but we argue that lowering the

effective mass ratio from 100 to 40 is not so relevant. Instead, the clear result

of increasing the range of interaction is to enhance the effective mass so that

in the so-called weak-coupling regime the effective mass is increased due to the

longer range interactions. Extended range interactions is therefore not seen as

a means to lower the electron effective mass to reasonable levels in the two

dimensional polaron problem. However, the effect of long range interactions

can be different in three dimensions, and we turn to that question next.

3.4 Results in Three Dimensions

We applied the same technique to an extended Holstein model in three dimen-

sions. We limited ourselves again to nearest neighbour and on site electron-
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tion theory, semi-classical adiabatic calculations[57] and limiting trends from

exact diagonalization all agree that for small λ, the effective mass ratio ap-

proaches unity, i.e. m∗/m → 1 as ωE → 0, and there is no polaron formation

in this limit. In Fig. 3.4 it is clear from the three dimensional results that the

behaviour of the effective mass ratio for the extended model is quite similar

to that for the standard Holstein model. Quantitatively, the effective mass is

somewhat larger for the extended model, but not enormously so. The results

in Fig. 3.6 are both representative of the adiabatic limit, which has no polaron

formation.

In Fig. 3.7 we show the so-called perturbative regime to illustrate that also

in three dimensions this regime is confined to very small values of λ only. The

crossover region, shown for the effective mass in Fig. 3.8, becomes very sharp as

the phonon frequency is decreased[30, 31], to coincide with the point in semi-

classical calculations where the ground state abruptly becomes polaronic, after

being free-electron-like up to that point. The impact of extended interactions

is clear from the figure; the crossover region is definitely moved to higher cou-

pling strengths as the range and strength of the nearest neighbour interaction

increases. An obvious limiting case is where the interaction becomes infinitely

long ranged, with the same strength independent of distance from the electron.

In this case the electron will remain free-electron-like for all coupling strengths.

Note that for realistic nearest neighbour interactions there is now a small range

of coupling strengths where the effective mass is indeed reduced to realistic val-

ues through extended interactions, consistent with the original conclusions of

Ref. [53]. That is, in contrast to the two-dimensional case, extended range in-

teractions seem to shift the regime of coupling strengths wherein the effective

mass is low, without at the same time increasing significantly the effective mass

in this regime.
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3.5 Summary

We have presented exact and perturbative results for the extended Holstein

model. This model was conceived[53] in an effort to realize the Fröhlich model

on a lattice. Our primary purpose was to re-assess the conclusions of Ref.

[53] when a smaller and more realistic adiabatic ratio, ωE/t, is used. We

found that, in two dimensions, the effective mass in the so-called weak-coupling

regime is enhanced by extended interactions, while the effective mass in strong

coupling is suppressed. This is in agreement with the results of Ref. [53],

but we nonetheless find this assessment misleading. In particular, in strong

coupling, being able to achieve an effective mass reduction from 100 to 40 is

wonderful, but does not serve to reconcile the qualitative results of the Migdal

description with the single polaron results. It still remains that, over most

of the range of coupling strengths, the effective mass is increased by longer

range interactions. Moreover, it is clear that a perturbative description, which,

for a single electron problem actually coincides (in a technical sense) with the

Migdal approximation, is woefully inaccurate when it comes to describing the

details (wavefunction, electron effective mass, etc.) of the solution, even for

much weaker coupling strengths. In three dimensions this problem is slightly

ameliorated, in that, at least for a very limited range of coupling strengths, the

effective mass can be vastly reduced by many orders of magnitude by longer

range interactions (see Fig. 3.8, just to the right of the standard Holstein results,

i.e. the left-most almost vertical line). Even in three dimensions, however, the

perturbative weak-coupling regime seems to require considerably more phonon

excitations than second order perturbation theory would suggest.

Further attempts to reconcile Migdal-based approximations vs. exact single

electron calculations can proceed along a number of paths, several of which are

currently under investigation. For example, one can attempt to develop con-

trolled approximations for more than one electron (the bipolaron, for example,
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has been already investigated).[18, 32] One would expect phonon and coupling

strength renormalization to occur as the increasing number of electrons will

have a more significant impact on the phonons. Another direction involves

more sophisticated electron-phonon couplings, and the possible importance of

acoustic modes.
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Chapter 4

The BLF-SSH Model in the

Adiabatic Limit

We surveyed polaron formation in the BLF-SSH model using acoustic phonons

in the adiabatic limit. Multiple different numerical optimization routines and

strong-coupling analytical calculations are used to find a robust ground state

energy for a wide range of coupling strengths. The electronic configuration

and accompanying ionic distortions of the polaron were determined, as well as

a non-zero critical coupling strength for polaron formation in two and three

dimensions.

4.1 Introduction

Many-body calculations of electrons coupled to acoustic phonon modes were

first proposed by Barisić, Labbé, and Friedel (BLF)[6] in the context of un-

derstanding transition metal superconductivity in 1970. The same coupling

was subsequently reintroduced by Su, Schrieffer, and Heeger (SSH)[60, 7] 10

years later to model soliton modes in long polyacetylene chains. More recently

there has been a revival of interest in these types of models to describe su-

perconductivity in the cuprate materials, though typically only the so-called
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BLF-SSH form of the coupling is adopted. For both physical and technical

reasons, the acoustic phonons are usually modeled as Einstein oscillators, i.e.

optical modes. We refer to this modification as the Capone, Stephan, Grilli

(CGS) model to avoid confusion.[61] The BLF-SSH model has also been used

recently in problems concerning conducting polymers for electronic and solar-

cell applications,[62] as well as problems in biophysics.[63]

The BLF-SSH model differs from the commonly used Holstein model[5] in

two main ways. First, as already mentioned, it uses acoustic phonon modes,

thus maintaining relevance for materials without optical modes. This includes

all elemental metals. Most significantly, superconductivity in elemental metals

occurs via interactions between electrons and acoustic phonons, so the basic

building block in this case is the BLF-SSH polaron. Moreover, in the case of

the Holstein model, polaronic effects were most pronounced for low frequency

phonons; since the BLF-SSH model has a dispersive phonon mode that ap-

proaches zero frequency in the long wavelength limit, we expect that these

modes could alter the polaron characteristics. In other words, the Holstein

spectrum is gapped whereas the acoustic spectrum is not.

Second, the electron-phonon interaction in the BLF-SSH model modifies the

electron hopping term, not the on-site energy as in the Holstein model. Both

these modifications makes the BLF-SSH model technically more difficult, but

they also potentially alter the physics somewhat, as the lowering of energy due

to the electron-phonon coupling is associated with movement of the electron,

and not with the (Coulombic) potential energy between the electron and the

displaced ionic charge. The so-called CSG model[61] shows somewhat unusual

properties, even for the single polaron, presumably due to the optical mode

simplification.

Much of the work done on this model is in the one dimensional adiabatic ap-

proximation, i.e. the phonons are treated classically.[60, 7] Barisić, Labbé, and

Friedel[6] used BCS and diagrammatic methods to address superconductivity,
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but after the SSH revival, the effects of quantum fluctuations were examined

through quantum Monte Carlo and renormalization group studies,[12, 13] and

these authors focused on half-filling. They found that the lattice ordering (in

one dimension) was reduced by quantum fluctuations.

Further studies were performed for a single polaron, based on variational

calculations,[50] for the Fröhlich Hamiltonian in the continuum with acoustic

phonons and with a wave vector cutoff to mimic lattice effects. These authors

generally found a phase transition to a “self-trapping” state, as a function of

coupling strength.

For the BLF-SSH model, however, very little work has been done in the

quantum regime for a single electron. We have studied the BLF-SSH polaron

using perturbation theory, and were unable to find, for example, a perturba-

tive regime in one dimension where polaron effects are absent.[23] In Ref. 64

the properties of a single polaron in the BLF-SSH model have been studied in

one and two dimensions, using the adiabatic approximation. Unfortunately, we

believe this two dimensional study has serious errors, and their results display

unphysical emergent phenomena (see below). Here we will present a compre-

hensive survey of the adiabatic BLF-SSH model in one, two and three dimen-

sions.

In the adiabatic limit the electrons are treated quantum mechanically, while

the ions are treated semi-classically. The ions are considered to have no ki-

netic energy and their displacements from equilibrium are treated as input

parameters to the Hamiltonian. Since the electronic bandwidth in real ma-

terials is often very large compared to the phonon energy scale, this limit is

expected to be physically relevant. On the other hand certain pathologies have

come to be associated with the adiabatic limit. For example, as will be re-

ported below, we found a critical coupling strength in dimensions higher than

one, beyond which the electron forms a polaron-like ground state, and below

which the electron is decoupled from the lattice. From studies of the Holstein
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model,[57, 28, 44, 10, 65] the existence of a critical coupling strength is ex-

pected to not survive away from the adiabatic limit. Nonetheless, studies of

the adiabatic limit give a good picture of what will occur in the near-adiabatic

limit, particularly in the strong-coupling limit.

This chapter is organized as follows: in the next section we define the

model and the adiabatic approximation, and follow this with a short discussion

concerning our methods. We then display some analytical results, and follow

up with numerical results in the ensuing section. In the final section we provide

a brief summary.

4.2 The Model

We begin by writing down the Hamiltonian for a two dimensional system -

this is readily generalized to the one and three dimensional cases that are also

treated in this chapter:

H = −
∑

〈i,j〉

tij

(

c†iσcjσ + h.c.

)

+
∑

i

[

p2xi
2M

+
p2yi
2M

]

+
1

2
K
∑

〈i,j〉

[

(

uxi − uxj
)2

+
(

uyi − uyj
)2
]

, (4.1)

where angular brackets denote nearest neighbours only without double count-

ing, and the i and j indices are written in boldface to emphasize that for the

D-dimensional case they are D-dimensional vectors. The operators and pa-

rameters are as follows: c†iσ (ciσ) creates (annihilates) an electron at site i with

spin σ. The x-components for the ion momentum and displacement are given

by pxi, and displacement uxi, respectively (similarly for the y-components), and

the ions have mass M and spring constant K connecting nearest neighbours
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Figure 4.1: A one dimensional depiction of the variables used to describe ionic
motion. The full blue circles are ions at their equilibrium positions, and the
grey dotted circles are ions displaced from their equilibrium positions. The
uxi variables are then seen to be the displacements from equilibrium and x̃0 =
ux0−ux1 so x̃x0 can be thought of as the distance change between the two ions
after subtracting the equilibrium distance spacing.

only. Furthermore,

tij = t− α(uxi − uxj)δi,j±âx
− α(uyi − uyj)δi,j±ây

. (4.2)

Note that the parameter α (the bare interaction strength) can be written as

a derivative of the hopping amplitude with respect to displacement. Here it

is simply treated as a parameter. Moreover, the electron hopping is modified

only by ionic motions in the same direction, i.e. longitudinal coupling only,

consistent with an expansion of the coupling term to linear order only in the

displacements.[66] The adiabatic approximation is achieved by dropping the

kinetic energy term for the ions:

H = −
∑

〈i,j〉

tij

(

c†iσcjσ + h.c.

)

+
1

2
K
∑

〈i,j〉

[

(

uxi − uxj
)2

+
(

uyi − uyj
)2
]

. (4.3)

This means that we can treat the ionic displacements as c-numbers, and the

electronic part of the Hamiltonian remains as an eigenvalue problem. We

change variables for the ions, since the Hamiltonian depends only on the separa-

tion between the ion sites. Thus we define x̃i = uxj−ui+δx and ỹi = uyi−uyi+δy .

This simplifies the calculations and somewhat changes the nature of the
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boundary conditions. We will use periodic boundary conditions; in the original

uxi and uyi variables, this would mean that if a disruption occurred somewhere

in the lattice (say, near the electron), then this ‘disruption’ would have to ‘heal’

itself at the boundary. By switching to the x̃ and ỹ variables this is no longer

true. A separation of ions near the electron would simply ‘push’ the remaining

ions further out. We have effectively eliminated the mode that corresponds to

uniform translation of all the ions and introduced a stretching mode that allows

the entire lattice to expand or contract (this is not possible with conventional

periodic boundary conditions). In the thermodynamic limit this choice of vari-

able and boundary conditions does not effect the physical result (an electron

distorting the ions in its vicinity), but use of the x̃i and ỹi variables greatly

reduces finite size effects for systems smaller than the thermodynamic limit.

It is advantageous to rescale the ion displacement parameters as dimension-

less variables. To this end we define

x̃i =
α

K
xi (4.4)

ỹi =
α

K
yi (4.5)

As is customary we define a dimensionless electron-phonon coupling strength

λ:

λ =
α2

ω2
0MW

, (4.6)

whereW ≡ 4Dt is the electronic bandwidth for a ‘cubic’ lattice inD-dimensions,

and

ω0 =

√

4K

M
. (4.7)
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Thus the adiabatic Hamiltonian becomes:

H =
∑

i

[−t+ 4λWxi][c
†
i ci+δx + h.c.]

+
∑

i

[−t+ 4λWyi][c
†
i ci+δy + h.c.]

+
∑

i

2λW (x2i + y2i ). (4.8)

Consideration of only longitudinal modes keeps the directions independent

of each other, consistent with what is generally done in the fully quantum

mechanical treatment.[23] This also neglects changes in y-distances that could

come from changing nearby x-distances through triangulation. This is justifi-

able since the change in the hopping due to the electron-phonon interaction is

itself a linear approximation and these definitions are consistently linear in the

changes in bond length.

The adiabatic BLF-SSH model (with coupling to longitudinal modes as de-

scribed here) has been studied in one dimension[60] and two dimensions.[64]

More recent studies are motivated by biophysical and polymer applications and

are generally done in one dimension.[67, 63, 62] Calculations in the adiabatic

limit are useful since they allow us to understand the physical structure of a po-

laron, both electronically, and through the accompanying ionic displacements.

4.3 Methods

With the Hamiltonian defined in Eq. (4.8), for a given electronic wave function

the ground state energy can be determined and minimized with respect to the

ionic displacements. Solving the semi-classical adiabatic model is therefore a

problem of function minimization. In this formulation, the bond length pa-

rameters are the variational input parameters. Given their values, the electron

energy can be evaluated by evaluating the tight-binding electronic Hamiltonian
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matrix elements with the ti values calculated from the bond lengths. The ionic

energy is a simple classical sum of the bond lengths squared and together these

terms give the binding energy of the polaron. The number of parameters then

scales as the number of ion sites and also dimension.

The multivariable minimization problem is in general much easier than the

full quantum many-body problem, but remains a very difficult problem in its

own right. Finding a solution with a low energy is not particularly difficult,

but knowing that one has the lowest possible solution is virtually impossible.

This is at the root of the confusion in the field — there is no good way to

distinguish whether one has found the global minimum, or simply a low local

minimum. For many applications, such as the traveling salesman problem,

finding a solution that is quite close to the absolute minimum is acceptable.

However, for the polaron, two solutions with similar energies may have a very

different physical structure; thus finding the global minimum is important for

a proper physical understanding.

There are many different algorithms for multivariable minimization, and to

establish confidence in our results we have implemented several different ones,

verifying that we have the correct answer. Each has its own strengths and

weaknesses and by combining them we have a much better understanding of

the energy landscape.

The state of the art in multivariable minimization with no a priori knowl-

edge is the genetic algorithm. [68] This algorithm is very effective at searching

through the entire space for low energy solutions, but is rather slow for large

numbers of parameters and has a hard time “fine tuning” a solution. The basic

method is to create a population of points in the N-dimensional space, then al-

low them to breed, where they swap coordinates, and small random variations

are introduced. These new points are then ranked by evaluating their ener-

gies, and the best half are allowed to breed and compose the next iteration’s

population.
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Alternatively, one may use minimization algorithms using the gradient. By

using the Hellman-Feynman theorem, the gradient can be computed as a func-

tion of the bond lengths and the eigenvector of the tight-binding Hamiltonian

can be constructed by using those bond lengths. We have

∂E

∂yi
= 〈ψ|∂Helec

∂yi
|ψ〉+ 4λWyi. (4.9)

and similarly for the xi parameters. There are two ways to use this information.

First, one can set up a self-consistent set of equations and iterate through these.

Second, one can use a conjugate gradient optimization routine. Both of these

methods run much faster than the genetic algorithm, but they do not sample

more than one point in configuration space at a time. This makes them more

prone to falling into local minima.

We implemented all of these algorithms and found the best performance

from the conjugate gradient method. It found the same configuration as the

genetic algorithm on small systems given random initial conditions, and could

handle larger systems with ease. It was, however, more sensitive to errors in

the eigenvalue and eigenvector of the diagonalization routine than the iterative

method.

Preliminary calculations showed that the polaron would be very small at

strong-coupling, so we first performed searches of the solution for strong-

coupling parameters on small clusters. We used both the differential algorithm

and conjugate gradient algorithm using random starting conditions. This gen-

erally produced a few low energy configurations. We then used these configu-

rations as starting conditions for a sweep towards zero coupling strength. We

would find the lowest energy configuration for a given λ, and then use that

configuration as the starting point for the next lower λ calculation. This pre-

vented getting lost in multi-dimensional phase space. We did other surveys for

starting configurations that were not low energy solutions at strong-coupling,
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but in these cases only the trivial solution of a free electron immersed in a

lattice of unstretched bonds was found.

4.4 Analytical Results

Before we present data from our numerical simulations, it is instructive to

examine analytically the case of strong-coupling. Here the polaron is very

small, and thus we can perform a simple analytical calculation to obtain the

optimum solution.

In one dimension, instead of following the numerical procedure of periodic

boundary conditions, we adopt open boundary conditions, since we are antic-

ipating a very small polaron. There is a general distinction between chains

with an even or odd number of sites. For example, in the two-site model the

electron wave function is expected to be a symmetric linear combination of

the electron on both sites, i.e. |ψ2〉 = (c†0|0〉 + c†1|0〉)/
√
2. The subscript 0

(1) refers to the left (right) site. The problem is immediately diagonal, and

the electronic energy from the electronic Hamiltonian is εel = −(t − 4λWx),

where x represents the dimensionless ‘stretch’ of the one bond in the problem.

Combined with the ionic part of the Hamiltonian we obtain a total energy of

E = −t+4λWx+2λWx2. Minimization gives x = −1 and Emin = −t− 2λW .

For three sites there are two independent normalized wave functions,

|φ0〉 = c†0|0〉

|φ1〉 =
1√
2

(

c†−1 + c†1
)

|0〉, (4.10)

where −1, 0 and 1 represent the site indices, and the electron wave function

|ψ3〉 is given in terms of these two basis states:

|ψ3〉 = a0|φ0〉+ a1|φ1〉 (4.11)
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We therefore have an eigenvalue problem for the two coefficients and the elec-

tronic energy, εel, as





0 −
√
2(t− 4λWx0)

−
√
2(t− 4λWx0) 0









a0

a1



 = ε





a0

a1



 , (4.12)

where, due to the symmetry of the problem, the dimensionless bond stretches

on the left and on the right will be equal (denoted here by x0). The eigenvalues

are readily determined, with the electronic ground state energy given by εel =

−
√
2(t− 4λWx0); then the total energy

Etot = −
√
2(t− 4λWx0) + 4λWx20 (4.13)

is minimized by x0 = −1/
√
2; this gives

EGS = −
√
2t− 2λW. (4.14)

This represents a lower energy than the two-site model, and in general the

solution with an odd number of sites partially occupied by the electron will

have a lower energy than that with an even number of sites. The eigenvector

corresponding to this energy is

|φGS〉 =
1

2
c†−1|0〉+

1√
2
c†0|0〉+

1

2
c†1|0〉, (4.15)

and corresponds to a central maximum electron amplitude with two smaller

amplitudes on either side. One relative ion displacement is required, with x0 =

−1/
√
2. This corresponds to the ions on either side of the central maximum

moving closer to the centre, with all other ions on either side following suit,

meaning that there are no further relative displacements. For reasons further

explained in the final section, we expect this solution to properly represent

the strong-coupling solution, even for the quantum case. To verify this for the
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adiabatic limit, at least, we expand the Hilbert space.

With five sites, we use an additional electron basis state,

|φ2〉 =
1√
2

(

c†−2 + c†2
)

|0〉, (4.16)

and an additional stretch denoted by x1, between site 1 and site 2 (or site -1

and site -2). The equations are slightly more complicated, as a 3 × 3 matrix

must be diagonalized,











0 −
√
2t0 0

−
√
2t0 0 −t1
0 −t1 0





















a0

a1

a2











= ε











a0

a1

a2











, (4.17)

where a0 and a1 are amplitudes of the two basis states in Eq. (4.10) as before

and a2 is the amplitude for the basis state |φ2〉, and tk ≡ t−4λWxk for k = 0, 1.

A straightforward diagonalization gives

εel = −
√

2(t− 4λWx0)2 + (t− 4λWx1)2, (4.18)

so that the total energy is well-defined in terms of x0 and x1. Taking partial

derivatives with respect to these two parameters and setting them to zero

then gives two equations that cannot be solved in closed form. However, an

expansion in increasing powers of t/(λW ) gives a minimum energy

E = −2λW −
√
2t− t2

4λW
+

√
2t3

8(λW )2
+ O(

t

λW
)3. (4.19)

Note that the corresponding eigenvector is given by Eq. (4.15), plus corrections

of order O(1/λ), including the amplitude on the two sites furthest from the

centre. Furthermore x1 = O(1/λ), and x0 = −1/
√
2 + O(1/λ). This confirms

Eqs. (4.15) and (4.14) as the strong-coupling solutions. Figure 4.2 shows these

solutions along with our numerical solution for the thermodynamic limit, and
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Figure 4.3: The two possible configurations for stretched bonds in the two
dimensional strong-coupling limit. The square has the electron amplitude equal
on all four sites while the star configuration has half of the electron probability
on the centre site and one eighth on each of the four surrounding sites.

sites. In one dimension these configurations were the cases with an odd or even

number of sites with significant amplitude, respectively. Some details along the

lines given above for the one dimensional case are given in the final section.

Here we simply present the final energies and configurations. The calculations

are straightforward; numerical results are obtained by diagonalization of finite

systems until convergence is achieved, and analytical results can be done very

quickly with the help of a computer algebra system like Mathematica.

In two dimensions a curious degeneracy occurs — the two potential config-

urations ( Fig. 4.3) have the same energy in the extreme strong coupling limit

(see final section),

E = −2λW − 2t (4.20)

However, it should be noted that this degeneracy is really a special case

applicable to the simple square lattice. For example, the two dimensional hon-

eycomb lattice also has two analogous solutions, but they are not degenerate

(see final section). For the two dimensional square lattice this degeneracy re-

mains for all coupling strengths, as our numerical results showed no discernible

difference once converged for finite size effects. This appears to come from
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the fact that both solutions have the same number of bonds stretched on the

square lattice so the energy cost is the same, and they have the same electron

energy even though they have different electron configurations in real space.

The existence of two solutions may be more important in many-electron calcu-

lations since they have different physical sizes, but for single electron studies

they seem to be interchangeable.

In three dimensions there are again two types of solutions, those centred

on an actual site of the lattice (so-called ‘star’ configuration) and and those

centred on a point which would be the centre of a cube of eight sites. We found

the ’star’ configuration to always have the lowest energy; in strong-coupling

the two energies are given by Eqs. (4.29):

Estar = −2λW −
√
6t (3D)

Ecube = −3

2
λW − 3t, (3D) (4.21)

and clearly the first is lower for large values of λ. As we see in the next section,

this remains true for all coupling strengths for which a polaronic solution exists.

4.5 Numerical Results

While the small polaron corresponding to the strong-coupling limit can be

solved analytically, as the coupling strength decreases the electron spreads out

over many lattice sites. Many different bonds are stretched or compressed to

form the accompanying lattice distortion and this necessitates numerical cal-

culations to find the lowest energy solution away from strong-coupling. The

important question at weak-coupling is to determine if there is a critical cou-

pling strength needed for polaron formation. To answer this we started with

a calculation at strong-coupling and then slowly lowered the coupling strength

in small increments, calculating the low energy ion configuration at each step.
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Each subsequent minimization was seeded with the previous slightly higher

lambda configuration and we repeated the process for many cluster sizes to

converge finite size effects. Even in situations where the polaron configura-

tion remains a local minimum in the energy landscape, if the polaron energy

is higher than the electronic energy in the presence of an undistorted lattice,

this signals the presence of a critical coupling strength below which the electron

prefers to reside in a Bloch wave state surrounded by an undistorted ion lattice.

In one dimension, as shown in Fig. (4.2), we found that there was no critical

coupling for polaron formation, i.e. the polaron energy remains lower than the

bare tight-binding energy (for k = 0) for all coupling strengths down to λ = 0.

Note that we used several lattice sizes, and for sizes beyond 30 or so, finite size

effects have disappeared.

The two dimensional results are shown in Fig. (4.4) for a variety of lat-

tice sizes, as indicated. Here there is no question that a critical point occurs,

at λc = 0.045. Note that the energies for the two configurations (‘star’ and

‘square’) remain degenerate down to this critical coupling strength. This criti-

cal point therefore occurs for both polaron configurations discussed above (and

in the final section). A snapshot of the electron and ion configuration for a mod-

est coupling strength (λ = 0.1) is shown in Fig. (4.5)(a)and (b) for the ‘star’

and ‘square’ configuration, respectively. Even though these configurations have

the same energy, they represent quite different electron and ion distortion pat-

terns. Note, however, that both these solutions have the full symmetry of the

underlying lattice, and differ considerably from the solution reported in Ref. (

64).

There are significant finite size effects but we were able to model large

enough clusters to eliminate these. When the cluster size is small a notable

distortion remains, even in the weak-coupling limit. This can be understood

by using the following energy, written for the case where all the bonds in the

cluster are slightly stretched by the same amount (written as y in dimensionless
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The function optimization required here, with many parameters, is quite a

difficult problem, more difficult than was the case with the Holstein problem,

which we have also solved. We have taken a number of important steps to

obtain the true global minimum solutions, and have found lower energy config-

urations than previous works.[64] Hopefully these precise solutions will help to

inform further quantum mechanical studies of the BLF-SSH model and many-

electron calculations in the adiabatic limit. The small polaron formation in

three dimensions is particularly interesting since many studies in semiconduc-

tors have used large polarons and Fröhlich-like models. However, for atomic

semiconductors such as silicon, the Einstein oscillators or optical phonons used

in most of the Fröhlich-like models simply do not exist. Further research and

full quantum mechanical solutions are necessary to resolve the role of small vs

large polarons, to see if the ‘sharpness’ of the crossover from weak to strong-

coupling present in the Holstein model[23] remains for the BLF-SSH model.

In any event, we fully expect the strong-coupling solutions obtained here to

faithfully reflect the fully quantum mechanical solutions in strong-coupling,

via coherent states.

4.7 Supplemental Calculations for the adia-

batic strong coupling limit in two and three

dimensions

In two dimensions the possible configurations are as shown in Fig. (4.5). For

the first (star), the electronic wave function is given as a linear combination of

the central site and the symmetric combination of the four surrounding sites,

|φstar〉 = a0c
†
00|0〉+ a1

1

2
(c†10 + c†−10 + c†01 + c†0−1)|0〉. (4.24)
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Evaluating the relevant matrix elements results in a 2× 2 eigenvalue problem,





0 −2(t− 4λWu0)

−2(t− 4λWu0) 0









a0

a1



 = εel





a0

a1



 , (4.25)

where, due to the symmetry of the problem, the dimensionless stretches on the

left and right of the centre will be equal to the stretches above and below the

centre (denoted here by u0). The eigenvalues are readily determined, and when

combined with the ionic energy, results in u0 = −1/2, so that the total energy

is

Estar = −2λW − 2t (2D) (4.26)

This constitutes the strong-coupling solution for the star configuration in two

dimensions. We now turn to the ‘competing’ symmetry, the so-called ‘square’

configuration, as depicted also in Fig. (4.5). Here symmetry dictates that there

is only one electronic wave function, a linear combination of the electron located

at each of the four corners:

|φsquare〉 =
1

2
(c†00 + c†10 + c†11 + c†01)|0〉. (4.27)

Where the hopping is modulated by an longitudinal ionic distortion which we

will denote by v0 and which is the same in all directions. We find an electronic

energy εel = −2(t−4λWv0). When combined with the ion energy, minimization

leads to v0 = −1/2 and

Esquare = −2λW − 2t (2D) (4.28)

This is in complete agreement with the energy of the star configuration. One

can proceed further with bond distortions in either case extending further from

the central region, but neither configuration can be solved in closed form. Re-

markably, numerical diagonalization leads to results that are numerically in-
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distinguishable nonetheless.

A similar exercise for the honeycomb lattice, however, results in a strong-

coupling solution of Estar = −2λW −
√
3t and Ehex = −4

3
λW − 2t, where

the ‘star’ configuration, with one centrally located electron amplitude (like the

‘star’ configuration noted above), has a lower energy than the ‘hexagonal’ con-

figuration, which has six sites occupied by the electron with equal amplitude.

Once again, these strong-coupling solutions can be further developed as a power

series in 1/λ by including more sites.

Finally, the same exercise can be performed in three dimensions, for a cubic

system; the two competing configurations are the ‘star’ configuration with one

central electron amplitude surrounded by six nearest neighbour amplitudes, and

the ‘cube’ configuration, consisting of the eight sites constituting the corners

of the cube having an equal amplitude for the electron (so, as in the two

dimensional ‘square’ and ‘hexagonal’ configurations, the centre of the polaron

is not a lattice site). One finds, for three dimensions in the strong-coupling

limit,

Estar = −2λW −
√
6t (3D)

Ecube = −3

2
λW − 3t, (3D) (4.29)

so, in the strong-coupling limit the ‘star’ configuration has lower energy than

the ‘cube’ configuration. As described in the text, by solving the problem

numerically, we have found that this remains true over all coupling strengths

for which a polaronic configuration with accompanying lattice distortions is the

ground state.
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Chapter 5

Weak Coupling Perturbation

Theory for the BLF-SSH Model

We used both a perturbative Green’s function analysis and standard perturba-

tive quantum mechanics to calculate the decrease in energy and the effective

mass for an electron interacting with acoustic phonons. The interaction is be-

tween the difference in lattice displacements for neighbouring ions, and the

hopping amplitude for an electron between those two sites. The calculations

where performed in one, two, and three dimensions, and comparisons are made

with results from other electron-phonon models. We also computed the spec-

tral function and quasiparticle residue, as a function of characteristic phonon

frequency. There are strong indications that this model is always polaronic in

one dimension, where an unusual relation between the effective mass and the

quasiparticle residue is also found.

5.1 Introduction

When electrons interact strongly with phonons, the electrons acquire a pola-

ronic character. That is, they move around the lattice much more sluggishly

than non-interacting electrons would, because a phonon cloud must accompany
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them as they move. A measure of the strength of the coupling between the

electron and the phonons is the degree to which the ground state energy is low-

ered. For example, previous studies for the Holstein model[5] have indicated

that the decrease in energy is proportional to the bare coupling strength (λ) in

strong-coupling,[43] independent of the value of the phonon frequency. On the

other hand, in weak-coupling, while the proportionality to λ remains, there is

some dependence on phonon frequency, and the decrease in energy is greater

for higher phonon frequency.[43, 10]

A much more indicative measure of the polaronic character of an electron

is the effective mass. In the Holstein model, a glimpse of polaronic tendencies,

even within perturbation theory, can be attained by examining the effective

mass, particularly in one dimension. Usually an increasing effective mass is

accompanied by a decrease in quasiparticle residue, although this is not always

the case, as described below.

The Holstein model describes electrons interacting with optical phonons;

the coupling is via the electron charge density, and, in this sense, the Holstein

model is the simplest model for electron-phonon interactions just like the cele-

brated Hubbard model [69, 70] is the simplest description of electron-electron

interactions. Many of the basic features of this model are now fairly well un-

derstood — see Ref. [44, 27] along with more recent work in Ref. [10, 29].

However, just as important is the electron interaction with acoustic phonons;

typically the ionic motions couple to the electron motion, as opposed to its

charge density. A very simple model to describe this kind of electron-phonon

interaction within a tight-binding framework is given by

H = −
∑

〈i,j〉

tij

(

c†iσcjσ + h.c.

)

+
∑

i

[ p2xi
2M

+
p2yi
2M

]

+
1

2
K
∑

〈i,j〉

[

(

uxi − uxj
)2

+
(

uyi − uyj
)2
]

, (5.1)
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where angular brackets denote nearest neighbours only, and

tij = t− α(uxi − uxj)δi,j±âx − α(uyi − uyj)δi,j±ây . (5.2)

This Hamiltonian has been written specifically for two dimensions, but the

generalization to three dimensions (or back to one dimension) is evident from

Eqs. (5.1) and (5.2). The operators and parameters are as follows: c†iσ (ciσ)

creates (annihilates) an electron at site i with spin σ. The x-components for

the ion momentum and displacement are given by pxi, and displacement uxi,

respectively (similarly for the y-components), and the ions have mass M and

spring constant K connecting nearest neighbours only. The electron-ion cou-

pling is linearized in the components of the displacement, and we choose to

include only longitudinal coupling.

This Hamiltonian is commonly known as the Su-Schrieffer-Heeger (SSH)

model, [60, 7] because it was used for seminal work describing excitations in

polyacetylene by these authors. However, it was also introduced and studied a

decade earlier by Barĭsić, Labbé, and Friedel [6] to describe superconductivity

in transition metals, so we will refer to it as the BLF-SSH model. Much of the

work done on this model is in the adiabatic approximation, i.e. the phonons

are treated classically.[60, 7] This was followed by an examination of quan-

tum fluctuations through quantum Monte Carlo and renormalization group

studies,[12, 13] and these authors focused on half-filling. They found that the

lattice ordering (in one dimension) was reduced by quantum fluctuations.

Very little work has been done, however, in the quantum regime for a single

electron. Capone and coworkers studied a model similar to this one, except

that they utilized optical phonons instead of acoustic ones.[71, 72, 73, 74] We

will refer to this model as the Capone-Stephan-Grilli (CGS) model to avoid

confusion with the model with acoustic phonons. This leads to some significant

differences, about which we will comment below.
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In the past decade Zoli has studied the BLF-SSH polaron using perturba-

tion theory, and found, for example, a perturbative regime in one dimension

where polaron effects are absent.[75, 76, 77] This result happened to agree with

the conclusions of Capone et al.[71] in the perturbative regime of the CSG

model.[74] In this chapter we focus on 2nd order perturbation theory, and find

results in disagreement with Ref. 75, 76, 77. These results also disagree qual-

itatively with the results from the CSG model. That is, in one dimension,

for example, perturbation theory breaks down as the characteristic phonon

frequency decreases. In two dimensions there is a modest mass enhancement

for all characteristic phonon frequencies, while in three dimensions the mass

enhancement approaches unity in the adiabatic limit. We also note that the

quasiparticle residue does not necessarily follow the trend of the inverse effective

mass, as the characteristic phonon frequency varies.

This chapter is organized as follows: in the first section we outline the cal-

culation, both using perturbation theory, and using Green function techniques.

For some of our work (especially in one dimension), the calculation can be

done analytically, and we derive these results where applicable. We then show

some numerical results and compare our results with previous work and other

electron-phonon models. We close in the final section with a summary.

The main conclusion is that, as far as one can tell from weak-coupling

perturbation theory, the BLF-SSH model has a stronger tendency to form a

polaronic state than is the case with the Holstein model. In one dimension this

is most evident in the effective mass, and not at all evident in the quasiparticle

residue.
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5.2 Perturbation Theory

5.2.1 Hamiltonian

The Hamiltonian Eq. (5.1), Fourier-transformed to wavevector space, and uti-

lizing phonon creation and annihilation operators, is written (again in two

dimensions),

H =
∑

kσ

εkσc
†
kσckσ

+
∑

q

~ω(q)
[

a†xqaxq + a†yqayq
]

+
∑

kk′

σ

gx(k, k
′)
[

ax(k−k′) + a†x(−k+k′)

]

c†kσck′σ

+
∑

kk′

σ

gy(k, k
′)
[

ay(k−k′) + a†y(−k+k′)

]

c†kσck′σ. (5.3)

Here,

εk ≡ ε(kx, ky) = −2t[cos (kx) + cos (ky)] (5.4)

is the dispersion relation for non-interacting electrons with nearest neighbour

hopping, and

ω(q) ≡ ω0

√

sin2 (qx/2) + sin2 (qy/2) (5.5)

is the phonon dispersion for acoustic phonons with nearest neighbour spring

constants K, and ω0 ≡
√

4K/M is the characteristic phonon frequency. The

phonon creation and annihilation operators are given by a†xq and axq, respec-

tively, and similarly for those in the y-direction. The coupling constants are

given by

gx(k, k
′) ≡ iα

√

2

MNω(k − k′)

[

sin (k′x)− sin (kx)

]

, (5.6)

with a similar expression for the y direction, and M is the mass of the ion and

N is the number of lattice sites.
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5.2.2 Green’s function analysis

We carried out a Green’s function analysis using the free electron and phonon

parts of the Hamiltonian as the unperturbed part. The self energy of a single

electron to lowest (2nd) order in the coupling α gives,

Σ(k, ω + iδ) =

−
∑

k′

[

|gx(k, k′)|2 + |gy(k, k′)|2
]

G0(k
′, ω + iδ − ω(k − k′)),

(5.7)

where G0(k, ω + iδ) ≡
[

ω + iδ − εk
]−1

is the non-interacting electron retarded

propagator.

One way to determine the effect of interactions on the electron dispersion is

to compute the renormalized energy for the ground state (here, kx = ky = 0),

and the effective mass. The effective mass has long been used as the primary

indicator for polaronic behaviour [44, 27], and though within 2nd order pertur-

bation we can only get an indication of this crossover, we use it here nonetheless.

The renormalized energy is given by the solution for the pole location in the

interacting electron Green’s function, G(k, ω+iδ) ≡
[

ω+iδ−εk−Σ(k, ω+iδ)
]−1

,

Ek = εk + ReΣ(k,Ek). (5.8)

To determine the effective mass, defined by the expectation that Ek ≡ ~
2k2/(2m∗),

we take two derivatives[78] of Eq. (5.8), and, using the fact that (dEk/dk)|k=0 =

0, we obtain

m∗

m
=

1− ∂Σ(k,ω)
∂ω
|ω=Ek

1 + 1
2t

∂2Σ(k,ω)
∂k2

|ω=Ek

= 1− ∂Σ(k, ω)

∂ω
|ω=Ek

− 1

2t

∂2Σ(k, ω)

∂k2
|ω=Ek

. (5.9)
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Here we have used the fact that the band mass given by the electron dispersion

in Eq. (5.4) is m = 1/(2t). Note that it is common (and advisable) to replace

the substitutions for ω required in Eq. (5.9) with εk, rather than with Ek. This

is due to the fact that the former substitution keeps the evaluation for every

term at O(α2), whereas the latter substitution includes some (inconsistently)

higher order contributions. The former substitution is known as Rayleigh-

Schrödinger perturbation theory while the latter is known as Brillouin-Wigner

perturbation theory.[79] This means that we will use the following equation,

m∗

m
= 1− ∂Σ(k, ω)

∂ω
|ω=εk −

1

2t

∂2Σ(k, ω)

∂k2
|ω=εk , (5.10)

to define the effective mass.

In contrast, the quasiparticle residue is defined as the weight that remains

in the δ-function-like portion of the spectral weight. The spectral weight is

defined as

A(k, ω) ≡ − 1

π
ImG(k, ω + iδ)

= − 1

π
Im

1

ω + iδ − εk − Σ(k, ω + iδ)
. (5.11)

For a given momentum, as the energy of the pole given by Eq. (5.8) is ap-

proached, the imaginary part of the self energy tends towards zero; this pro-

duces a δ-function contribution in Eq. (5.11) , at the pole energy, but with

weight zk defined by

zk =
1

1− ∂Σ(k,ω)
∂ω
|ω=Ek

. (5.12)

The relationship amongst these various quantities — effective mass in Eq. (5.9),

effective mass in Eq. (5.10), and quasiparticle residue in Eq. (5.12) — is

discussed further in the last section.
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5.2.3 Standard Perturbation Theory

Eq. (5.10) (or Eq. (5.9)) requires a numerical evaluation of Eq. (5.7), and

then the required derivatives can be (numerically) determined. Because the

positions of the singularities in Eq. (5.7) are difficult to determine in advance,

it is customary to introduce a small (numerical) imaginary part corresponding

to the infinitesimal δ, and then the numerical integration is more stable. This

trick remains problematic, as we discuss further below. Alternatively, we can

simply perform a 2nd order perturbation theory expansion, as outlined in every

undergraduate quantum mechanics textbook. The result is

E
(2)
k =

2α2

M

1

N

∑

k′

(

sin k′x − sin kx
)2

+
(

sin k′y − sin ky
)2

ω(k − k′) [εk − εk′ − ω(k − k′)]
, (5.13)

where we remember that the first order (in α) contribution is zero, and the su-

perscript (2) indicates the 2nd order contribution. Comparison with Eq. (5.7)

shows that this corresponds to Rayleigh-Schrödinger perturbation theory with

the self energy, evaluated at ω = εk corresponding to the 2nd order energy

correction. Eq. (5.13) can be evaluated numerically, and then two derivatives

with respect to k are required. However, the same numerical problems men-

tioned above will arise; fortunately, at least in one dimension, Eq. (5.13) can

be evaluated analytically, whereas we were unable to do the same with Eq.

(5.7).

5.3 Results and Discussion

5.3.1 Analytical Results in One Dimension

The result of an analytical evaluation[80] of Eq. (5.13) is, in one dimension,

E(2)(k) = −32t

π
λBLFω̃0

{

−2 cos k + πω̃0 + Ck(ω̃0)

}

, (5.14)
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where ω̃0 ≡ ω0/(4t), and a dimensionless coupling parameter λBLF is defined, in

analogy to the dimensionless coupling parameter defined in the Holstein model,

as

λBLF ≡
α2

Mω2
0

1

W
, (5.15)

where here the bandwidth W = 4t for one dimension. Note that this coupling

parameter has nothing to do physically with the coupling parameter defined in

the Holstein model, so we will treat them as completely independent.[81] The

function Ck(ω̃0) must be evaluated separately in the two regimes:

Ck(ω̃0) = 2
√

ω̃2
0 − 1

(

h(k) + h(−k)− 2h(π/2)

)

, ω̃0 > 1, (5.16)

where

h(k) = tan−1

(

ω̃0tan
k
2
+ 1

√

ω̃2
0 − 1

)

(5.17)

and

Ck(ω̃0) =
√

1− ω̃2
0

(

s(k) + s(−k)− 2s(π/2)

)

, ω̃0 < 1, (5.18)

where

s(k) = log

(

ω̃0tan
k
2
+ 1 +

√

1− ω̃2
0

ω̃0tan
k
2
+ 1−

√

1− ω̃2
0

)

. (5.19)

Eq. (5.14) is readily evaluated at k = 0 to determine the ground state en-

ergy. Evaluating the second derivative with respect to wavevector k is equally

straightforward, and determination at k = 0 yields the rather simple result for

the effective mass,
m∗

m
= 1 +

32

π

λBLF

ω̃0

, (5.20)

valid for all values of ω̃0.[82]
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5.3.2 Comparison with other models

An analytical result is readily available for the Holstein model; there, the

ground state energy (in one dimension) was given by[43]

EH = −2t
(

1 + λH

√

ω̃E

ω̃E + 1

)

, (5.21)

where ω̃E ≡ ωE/(4t) is the Einstein phonon frequency normalized to the band-

width, and, as explained earlier, the dimensionless coupling constant λH cannot

be compared directly to the corresponding quantity for the BLF-SSH model.

The effective mass is given by

(

m∗

m

)

H

= 1 +
λH

4
√
ω̃E

1 + 2ω̃E
(

1 + ω̃E

)3/2
. (5.22)

In both cases, as the phonon frequency approaches zero (adiabatic limit) the

ground state energy approaches the non-interacting value; however, the ef-

fective mass diverges in this same limit. So, while the first statement would

appear to justify perturbation theory in this limit, the second statement clearly

indicates a breakdown in the adiabatic limit. It is known in both cases that

the adiabatic approximation leads to a polaron-like solution for all coupling

constants,[57, 22] and clearly these two observations are consistent with one

another. In fact, the divergence is stronger in the BLF-SSH model, and goes

beyond the inverse square-root behaviour observed for the Holstein model and

attributed to the diverging electron density of states in one dimension;[71] this

indicates that the BLF-SSH model, at least in the adiabatic limit in one dimen-

sion, has a stronger tendency for polaron formation than the Holstein model.

In the model studied by Capone et al.[71], where optical phonons were used,

the opposite behaviour was obtained; they found that the effective mass ratio

approached unity as the phonon energy approached zero.[83] In the opposite

limit Capone et al.[71] found an effective mass ratio that did not approach
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unity as the phonon frequency increased (anti-adiabatic limit). In the BLF-

SSH model, however, this ratio does approach unity as the phonon frequency

increases beyond the electron bandwidth, in one dimension, in agreement with

the Holstein result in all dimensions. As we will see below, however, in the

BLF-SSH model in two and three dimensions the effective mass ratio remains

above unity in the anti-adiabatic limit. This is not surprising, since here the

interaction modulates the hopping, and we expect a non-zero correction in this

limit.[83] In the adiabatic limit, the BLF-SSH mass ratio approaches a constant

value in two dimensions, and falls to unity in three dimensions, similar to the

behaviour of the Holstein model.

Our results disagree with those of Zoli[75, 76, 77] for reasons that are not

entirely clear. We have utilized both the straightforward perturbation theory

method (analytically and numerically), and the Green’s function formalism

(numerically). In the latter case we required a numerically small imaginary

part for the frequency significantly smaller than the value quoted in Ref. (

75, 76, 77) (we used δ = 10−9 whereas he used δ = 10−4. However, as is

clear from our analytical result, Eq. (5.20), our effective mass diverges at

low phonon frequency, and decreases monotonically to unity as the phonon

frequency increases. The result in Ref. (75, 76, 77) peaks sharply near ω̃0 ≈ 1,

and, as noted above, decreases to unity at low phonon frequency.

5.3.3 Numerical Results

In Fig. 5.1 we plot the reduction in the ground state energy due to the second

order correction (for the BLF-SSH model, this is given by Eq. (5.13)), normal-

ized to λBLF (or λH). This is also written as Σ(k = 0, ω = εk)/λ, where the self

energy is given by the expression in Eq. (5.7). Also plotted for comparison are

the corresponding quantities for the Holstein model. Note that both models

share a few features in common: (i) they both go to zero as the characteristic

phonon energy decreases to zero, regardless of the dimensionality, (ii) they all
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Figure 5.1: Electron self energy for the ground state (k = 0), normalized to
λ (or λH) vs. characteristic phonon frequency ω0 (this is ωE for the Holstein
model), for both the BLF-SSH and Holstein models, in one, two, and three
dimensions, as indicated. Alternatively, the ordinate is simply the second or-
der (in g) correction to the ground state energy within Rayleigh-Schrödinger
perturbation theory. In all cases the magnitude of the correction increases
with increasing ω0. At low ω0 the magnitudes of the the results are ordered
three, two, and one dimensions (lowest to highest) whereas at high frequency
the ordering is just the opposite. All six cases have non-zero limiting values as
ω0 →∞, given in Table 1.
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approach a non-zero negative (and finite) value as the characteristic phonon

frequency grows, and (iii) they cross one another in strength as a function of

dimensionality as ω0 increases, i.e. at low phonon frequencies the self energy

has the highest magnitude for one dimension, whereas for high phonon fre-

quency the highest magnitude is achieved in both models for three dimensional

systems. Also note that the BLF-SSH results are well separated from Hol-

stein results. In particular, there appears to be more ’bang for the buck’ with

the BLF-SSH model, i.e. for a given value of λBLF and the same character-

istic phonon frequency, the energy reduction is almost an order of magnitude

higher for the BLF-SSH model as compared with the Holstein model. Again,

we remind the reader that the value of λH in the Holstein model has nothing

to do with the value of λBLF in the BLF-SSH model, so this comparison is

unwarranted.

For this reason we will use the value for the self energy, in weak-coupling,

as the phonon frequency increases to infinity, as the energy scale that provides

a measure of the energy lowering expected for a given model and a given di-

mensionality. These numbers, mostly determined analytically, are provided in

Table 5.1.

Table 5.1: Self energy in the anti-adiabatic limit divided by coupling strength
or: limω0→∞ Σ(k = 0, ω = εk)/(λt)

Dim. BLF-SSH Holstein
1D -16 -2
2D -23.3 -4
3D -30.2 -6

In Fig. 5.2 we plot the effective mass ratio (minus unity), normalized to

the self energy evaluated for infinite characteristic phonon frequency. This

normalization is important to divide out enhancements that are solely due to

definitions. Moreover, in this way, we are determining the mass enhancement

for a given ’coupling strength’, where this strength is now a measure of the
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Figure 5.2: The electron effective mass, normalized to the 2nd order correction
to the energy for the anti-adiabatic limit, vs. characteristic phonon frequency,
ω0, for both the BLF-SSH and Holstein models, in one, two, and three di-
mensions, as indicated. In one dimension the effective mass diverges for both
models, though the divergence is stronger for the BLF-SSH model, as indicated
by Eq. (5.20). In two dimensions the effective mass approaches a constant as
ω0 → 0 for both models, while in three dimensions the effective mass ratio ap-
proaches unity in the same limit. At the opposite extreme, both one dimension
results give m∗/m→ 1 as ω0 →∞, while in both two and three dimensions the
effective mass remains above unity in this limit. Note that in all three dimen-
sions, for a given reduction in energy as given by the 2nd order correction to
the energy, the BLF-SSH model results in significantly higher effective masses.
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Figure 5.3: Spectral function for the BLF-SSH model, for λBLF = 0.2 for three
different characteristic phonon frequencies, as a function of frequency. All three
spectra are similar as one would find for the Holstein model, and consist of
quasiparticle peak with weight z0 = 0.766, 0.727, 0.724, for ω0/t = 0.1, 0.5, 2.0,
respectively, followed by an incoherent piece.

energy lowering caused by a certain amount of coupling to phonons, regardless

of the origin of that coupling. This plot now makes clear that the BLF-SSH

model, within weak-coupling perturbation theory, has more ’polaronic’ ten-

dency than the Holstein model. Note in particular that the divergence (in one

dimension) at low characteristic phonon frequency is much stronger for the

BLF-SSH model, as Eq. (5.20) already indicated. Thus, as discussed above,

we predict that in the one dimension adiabatic approximation, the system will

always be polaronic, regardless of the coupling strength. This is borne out in by

the full adiabatic calculations for the BLF-SSH model in the previous chapter.

This is similar to the Holstein model,[57] and in disagreement with the result

from the hybrid model defined in Ref. 71.

Otherwise, the behaviour of the effective mass in the two models is very
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Figure 5.4: Quasiparticle residue, z0 vs. ω0/t for both the BLF-SSH and Hol-
stein models in all three dimensions. Note that while the result for the Holstein
model tends to be inversely proportional to the effective mass, this is not the
case for the BLF-SSH model at low phonon frequency in one and two dimen-
sions. In one dimension in particular, the effective mass diverges, while z0 also
turns upward.

similar, as a function of characteristic phonon frequency, for the various di-

mensions shown. The effective mass can be made arbitrarily close to unity, for

any non-zero phonon frequency, for sufficiently weak-coupling. Numerical cal-

culations indicate a free electron-like to polaron crossover,[22] similar to what

was found for the Holstein model at least in the adiabatic limit.

5.3.4 Spectral function

It is interesting to examine the spectral function, defined by Eq. (5.11) (see

also the discussion in the last section). For simplicity we show the result in one

dimension, in Fig. 5.3, for the ground state (k = 0) as a function of frequency.

The results for two or three dimensions do not differ in any significant

way from these results. The results for three different characteristic phonon

frequencies are shown. In each case a quasiparticle δ-function is present (here
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artificially broadened so as to be visible), followed by an incoherent piece; the

incoherent part has energies ranging approximately from −2t < ω < +2t+ ω0.

The quasiparticle residue, z0 must be determined numerically, and is given in

the figure caption for each of the cases considered (see also Fig. 5.4 ). We have

verified that the remaining weight (the spectral functions each have weight

unity) is present in the incoherent part. The result shown is not too different

from what is found in the Holstein model;[58] the singularities from the one

dimensional electron density of states are now smeared out in the incoherent

piece, as a result of the coupling and phonon energy having some frequency

dependence. Note that because we use perturbation theory, a gap appears

between the quasiparticle part and the incoherent part. This is due to the

fact that the incoherent part is entirely perturbative; hence, it starts at the

unperturbed ground state energy, −2t, while the actual ground state energy

(the location of the quasiparticle peak), within 2nd order perturbation theory,

is pushed to a lower value (see also Fig. 5.1). This would be the case even in

the Holstein model, where the spectral function shows a gap exceeding ωE in

that case. In Fig. 3 of Ref. 58 the gap is precisely ωE, in agreement with

the exact result (shown in Fig. 2 of that reference), because that calculation is

for self-consistent perturbation theory, where the interacting Green’s function

is used in the expression for the self-energy (in contrast, in our Eq. (5.7) we

use the non-interacting Green’s function in the expression for the self-energy).

So in the BLF-SSH model, the exact result is expected to not have a gap

between the coherent and incoherent parts of the spectral function, as the

phonon frequencies in this model cover a range starting at zero energy. Note

however, that the coupling goes to zero as the phonon frequency goes to zero,

a sufficient condition to maintain a robust quasiparticle peak.

In Fig. 5.4 we show the quasiparticle residue as a function of ω0 for both the

Holstein and BLF-SSH models. The Holstein results tend to follow the inverse

of the result for the inverse effective mass; this is as expected. This is not the
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Figure 5.5: Comparison of the quasiparticle residue (upper panel) with the elec-
tron effective mass (lower panel) as a function of ω0/t, for the BLF-SSH model
in one dimension. The behaviour noted in Fig. 5.4 is clear here. Moreover, note
the scales; while the effective mass ratio is very large (≈ 4) for λBLF = 0.01
and small values of ω0/t, the quasiparticle residue remains within 15% of unity.
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case with the BLF-SSH, but for more subtle reasons than the fact that the

self energy is now momentum dependent. The more important effect, which

shows up in both one and two dimensional results, is that the quasiparticle

weight requires an evaluation of the frequency derivative of the self energy

at the energy of the pole, whereas the effective mass in Rayleigh-Schrödinger

perturbation theory requires the same derivative at the non-interacting ground

state energy. Most noteworthy is that the quasiparticle residue shows a clear

upturn at low characteristic phonon frequencies, while the inverse effective mass

clearly approaches zero (see Fig. 5.2) as this characteristic frequency is taken

to zero.

To see this more clearly we show in Fig. 5.5 a comparison of the residue

(upper panel) vs. effective mass (lower panel), as a function of ω0, for two

(weak) strengths of electron-phonon coupling. At high phonon frequency, as

the former decreases, the latter increases with decreasing phonon frequency,

but at low phonon frequency, the two properties no longer behave in inverse

fashion with respect to one another.

5.4 Summary

The BLF-SSH model appears to have very strong polaronic tendencies, stronger

than those of, say, the Holstein model, especially in one dimension. This con-

clusion is based on the 2nd order perturbative calculation performed in this

chapter, but also has corroborative evidence from calculations in the strong-

coupling regime. In one dimension we have been able to obtain an analytical

solution for the ground state energy and the effective mass. The conclusion

concerning polaronic behaviour is an important one, as much of what we know

about polarons arises from Holstein-like models.[84] In particular, for a cou-

pling strength that leads to a fixed amount of energy lowering (in 2nd order),

the effective mass can become an order of magnitude larger than the bare
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mass, a clear indicator that perturbation theory breaks down. This occurs in

the BLF-SSH model at much weaker coupling than in the Holstein model. We

have also noted that the relationship between effective mass and quasiparticle

residue breaks down in one and two dimensions for the BLF-SSH model, not

because of the momentum dependence in the self energy, but because the two

properties involve evaluation of the frequency derivative of the self energy at

different energies. Future work will address the strong-coupling regime and

these clarified calculations will assist in the develompent of algorithms for the

full BLF-SSH model.

5.5 Supplemental Perturbation Theory Cal-

culations

It is sometimes stated that for a momentum-independent self energy, the quasi-

particle residue is equal to the inverse of the effective mass. This follows simply

by comparing Eqs. (5.9) and (5.12). On the other hand, we have argued that

Eq. (5.10) is more appropriate for the effective mass, in which case this state-

ment appears not to be true. A resolution of this difficulty is straightforward

for the Holstein model, which we outline below, but, interestingly, not possible

for the BLF-SSH model, at least in one dimension. The essential difference

appears to be that in the Holstein model the (phonon) excitations are gapped,

whereas they are not in the BLF-SSH model because of the low-lying acoustic

modes at small momentum transfer. Here we focus attention on one dimension,

where some subtleties arise.

For the Holstein model the computation of the self energy in weak-coupling

is straightforward.[43] We obtain

ΣH(ω) =
2tωEλHsgn(ω − ωE)
√

(ω − ωE)2 − (2t)2
. (5.23)
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The location of the quasiparticle pole at zero momentum (ground state) is then

given by

ω + 2t = − 2tωEλH
√

(ω − ωE)2 − (2t)2
, (5.24)

which can readily be determined numerically. Denoting the solution by writing

ω ≡ −2t−Eb (so Eb is the ’binding’ energy below the bottom of the band), we

can then use this in the spectral function, Eq. (5.11), to determine the residue

z0 in the quasiparticle peak at ω = −2t− Eb:

A(k = 0, ω) = z0δ(ω + 2t+ Eb) + incoherent part. (5.25)

Straightforward calculation gives

z0 = 1/

(

1 +
2λH ω̃E

[

1 + 2ω̃E + 2Ẽb

]

[

(1 + 2ω̃E + 2Ẽb)2 − 1
]3/2

)

, (5.26)

which is not in agreement with the inverse of Eq. (5.22), except when λH is

truly very small. Here Ẽb ≡ Eb/(4t).

In particular, for arbitrarily small λH , ∂Σ(ω)/∂ω|ω=−2t, which is used in Eq.

(5.22), diverges as ωE → 0, leading to a divergent effective mass (and therefore

associated residue of zero). On the other hand, from Eq. (5.24) one readily

sees

lim
ωE→0

Eb = t
(

λωE/t
)2/3

, (5.27)

from which Eq. (5.26) yields the result

lim
ωE→0

z0 = 2/3, (5.28)

surprisingly a universal number. The actual weight in the quasiparticle peak of

the spectral function given by Eq. (5.11) for any given (even very small) value

of λH actually tracks Eq. (5.26), and not the inverse of Eq. (5.22).

Interestingly, for the Holstein model, one can take a different tack towards
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calculating the spectral function: using perturbation theory to compute the

perturbed wavefunction, which is then inserted into the calculation for the ma-

trix elements required in the definition of the spectral function,[85] one obtains

Apert(k = 0, ω) = zpert0 δ(ω + 2t+
λHωE

√

(1 + 2ω̃E)2)− 1
)

+
1

π

2tωEλH
(ω + 2t)2

θ(2t− |ω − ωE|)
√

(2t)2 − (ω − ωE)2
. (5.29)

Note that there is no difficulty in integrating over this function, as the diver-

gence in the denominator (1/(ω + 2t)2) is not within (or bordering) the range

of frequency given by the Heaviside function restriction in the numerator. This

is due to the finite phonon frequency, ωE. From this expression fulfillment of

the sum rule determines that

zpert0 = 1/

(

1 +
2λH ω̃E

[

1 + 2ω̃E

]

[

(1 + 2ω̃E)2 − 1
]3/2

)

, (5.30)

which is in agreement with the inverse of Eq. (5.22). The message is that, as

long as we use the expression given by Eq. (5.11) for the spectral function,

the area under the quasiparticle peak will correspond to Eq. (5.26), which is

not the inverse of the effective mass, even if the self energy is independent of

momentum.

In the BLF-SSH model, the self energy is evaluated numerically through

Eq. (5.7). An attempt to follow the procedure just outlined, which leads to

Eqs. (5.29) and (5.30) for this model fails; this is because the minimum phonon

frequency is zero, so the restriction corresponding to the Heaviside function in

Eq. (5.29) yields −2t < ω < 2t + ω0; this in turn makes the divergence at

ω = −2t non-integrable. One can only (in one dimension) define the spectral

function through Eq. (5.11), in which case the inverse of the effective mass

differs from the quasiparticle pole for two reasons: the usual reason that the

explicit momentum dependence now plays a role (see Eq. (5.10)), and, in
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addition, the derivative of the self energy with respect to frequency is evaluated

at ω = −2t for the effective mass, whereas it is evaluated at the frequency

corresponding to the pole for the quasiparticle residue.

Eq. (5.7) or Eq. (5.13) is written as a function of momentum k, and it is of

interest to estimate the range of validity of perturbation theory, as a function

of k. In the Holstein model, this is clear: we require that εk < εk=0 + ωE,

otherwise the unperturbed state (with momentum k) no longer has lower energy

than the perturbed state, also with total momentum k (but with an electron

part with zero momentum). This leads to the condition (in one dimension)

k < 2sin−1
√

ωE/4t, and this is verified, for example, in Fig. 5 of Ref. (10).

For the BLF-SSH model the same criterion is εk < εk=0 + ωk, which leads

to the condition k < 2sin−1(ω0/(4t), which is much more restrictive than for

the Holstein model, consistent with the results for the effective mass shown in

Fig. 5.2.
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Chapter 6

Conclusions

In this thesis various polaron models have been discussed in light of the po-

laron’s role in phonon-mediated superconductivity, concentrating on calculat-

ing the effective mass of a single electron. The large effective mass (practically

infinite, or immobile electrons) found in the Holstein model at strong-coupling

is disturbing, since many real phonon-mediated superconducters have a very

large electron-phonon coupling coefficient. Since the standard Holstein model

is still a rather crude approximation to the Hamiltonian of real materials, this

thesis comprises exploratory calculations for a number of more realistic and

complex models. A summary of these models and conclusions follows, along

with suggestions for future research directions.

6.1 Next Nearest Neighbour Hopping Hol-

stein Model

Adding next nearest neighbour hopping is the first step to producing a band

structure that matches real materials. The simple nearest neighbour tight-

binding model band structure is a far cry from the complex band structures

plotted in text books for even relatively simple materials such as silicon. With
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next nearest neighbor hopping and beyond we can produce any band structure

that we wish. This work shows that this is possible with our algorithms and is

not too computationally expensive, even for 3 dimensions.

On a more practical level, we followed up on a previous study [33] that

suggested that longer range hopping could dramatically reduce the effective

mass, and thus solve the apparent inconsistency between the Holstein model

at strong-coupling and real strong-coupling superconductors. We reproduced

their results for one dimension and then continued on to model two and three

dimensions. The effective mass does change, but when the proper scaling is

taken into account the effects are smaller and in the opposite direction than

initially reported by Chakraborty et al. With our heuristic scaling we see that

in three dimensions the effect at large lambda will not be strong enough to

reduce the effective mass to reasonable levels, thus this does not completely

solve the question of large effective masses.

The lack of a physical explanation for the heuristic scaling factor discovered

is intriguing, especially given it has excellent predictive power in three dimen-

sions. A further study that explained this would be most interesting, however

the main point remains that these longer range hoppings are not the unique

answer to the question of electron mobility at strong-coupling. In this light it

seems more profitable to concentrate on other aspects of the polaron model.

6.2 Extended Range Interaction Holstein Model

The standard Holstein model makes the assumption that the electron can only

influence the ion position of the ion that it is currently on. This is a simplifi-

cation, as even with shielding, the Coulomb interaction decays as the Yukawa

potential. We used an extended range interaction instead which included an

electron-phonon interaction with the next nearest neighbours. This model

again paves the way for realistic modeling of real materials from first prin-
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ciples since the interaction can be tuned to match that of any real material.

We followed up on a two dimensional calculation by Alexandrov and Ko-

rnilovitch [53] which examined this model and reproduced their results for two

dimensions as well as performing calculations in three dimensions. We were

also able to go to a smaller ion frequency, which is a more physical parameter

regime. This allowed us to draw different conclusions from their two dimen-

sional results. While the effective mass is decreased by the extended interaction

at strong-coupling it is not a large enough effect to lower the effective mass at

strong-coupling to reasonable levels. In three dimensions there is again a small

effect, but not large enough to allow for mobile electrons at a physical level of

strong-coupling.

Like the next nearest neighbour hopping, the Hamiltonian used here is

undoubtedly better than the standard model and important for the accurate

modeling of real materials. We have ruled it out as the solution to the problem

of immobile electrons at strong-coupling, but the algorithm and results here

can be used as a starting point for more realistic calculations.

6.3 Acoustic Phonons

The BLF-SSH model seems to us a much more promising model than the

extensions to the Holstein model, if only because it enables the modeling of

a polaron and Cooper pair in the simplest possible situation: an elemental

superconductor. Here there are only acoustic phonon modes so the Holstein

model is not relevant. Unfortunately, inclusion of acoustic phonons model

makes it much more difficult to solve than the Holstein model. While a great

deal of effort was put forth trying to apply the same elegant Krylov space exact

diagonalization techniques of the Holstein model to the BLF-SSH, we failed to

find a similar technique.

We were, however, able to clear up the erroneus literature on the weak-
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coupling perturbation theory and adiabatic limits for the BLF-SSH model

even without a full quantum mechanical algorithm for polarons with acous-

tic phonons. We applied state of the art optimization techniques to adiabatic

limit and found superior ground state energies for 1,2, and 3 dimensions. Since

we verified the strong-coupling solutions with analytical calculations we are

reasonably confident that we have found the true ground state solution. We

also corrected the previously published perturbation calculations again with

verification of our results by independent analytical means. Finally, the ap-

pendix contains some previously unpublished notes for a variational quantum

mechanical wavefunction for the near adiabatic BLF-SSH model.

The strong-coupling adiabatic limit seems to indicate that the BLF-SSH

model will also have a very large effective mass in this regime by analogy to

the adiabatic Holstein calculations by Kabanov and Mashtakov [57]. We cannot

say definitively that this is the case, but it would not be surprising that the

BLF-SSH model also is unable to explain the discrepancy of electron mobility

at strong-coupling. The BLF-SSH is still deserving of attention however, as the

most basic superconducting Hamiltonian. The non-local nature of the acoustic

polarons also means that algorithms developed for the BLF-SSH model may

also have wider applicability.

6.4 Common Misconceptions

Finally, there are a couple of themes throughout this thesis that warrant part-

ing remarks and which encompass all the models discussed. The first is the

importance of using a low ion frequency. Any real material normally has an

electron energy scale that is orders of magnitude larger than the phonon energy

scale. This means that the ion frequency should be very small compared to

the electron hopping term, and in general this makes numerical calculations

much more difficult. Even with the algorithms presented in this thesis, the
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low frequencies were always the hardest. Regardless of the difficultly, this is

the physical regime, and the polaron models can look very different when the

ion frequency is commensurate with the hopping t. The issue of large effective

masses and abrupt crossovers into a strong-coupling regime is all smoothed

away when large ion frequencies are used.

Secondly, perturbation theory is a very limited tool for the polaron problem.

The weak-coupling perturbation theory considers only states with one phonon

excitation which is a tiny sliver of the phase space at weak-coupling. As we have

shown in detail in chapter 2, this is a many-body problem from the very start

with many phonons needed even before the crossover into strong-coupling like

solutions. The BLF-SSH model also requires a very large number of phonons

which is part of the reason why the Krylov space methods were unsuccessful.

Strong coupling perturbation theory is even worse, providing a qualitatively

correct strong-coupling wavefunction, but with energies that differ from the

exact results by orders of magnitude in the Holstein model. The perturbation

theory calculations are still important and are invaluable for verifying new

exact methods, but cannot tell us much about the parameter regime of real

materials.

6.5 Final Remarks and Future Research Di-

rections

In this thesis we have examined several extensions to the Holstein model in

greater depth and have performed the groundwork for the quantum mechanical

solution to the BLF-SSH model. The smoking gun of why the effective mass

at strong-coupling is so high in these models compared to real materials was

not found, and it is the author’s opinion that this will not be solved until

calculations involving multi-polaron interactions are possible. Cluster DMFT

looks promising, as do many-electron adiabatic calculations, since the region

94



of parameter space of interest is close to the adiabatic limit.

The work in this thesis should provide a carefully checked starting point

for those calculations as we have corrected several previously published works,

particularity for the BLF-SSH model. We hope that this thesis will inspire more

research into the BLF-SSH model and acoustic polarons since this will pave the

way for true ab-initio calculations of the simplest elemental superconductors.
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difference is that in Fröhlich models interaction is simply long range.

[85] See, for example, Eq. (3.120) in Ref. 79.

[86] S. Sivakumar. International Journal of Theoretical Physics, (53):1697–

1709, 2014.

103



Appendix A

Variational Wavefunction for

BLF-SSH

Here we propose a fully quantum mechanical wavefuntion for the BLF-SSH

model using the adiabatic limit as a guide. The phonon part of the wavefunc-

tion has been treated with coherent states and the electron part treated as in

the Trugman method. A potential path towards an exact refinement of this

wavefunction is suggested.

A.1 Introduction

While unconventional, we will include in this last section a bit of unfinished

work on finding an exact solution to the BLF-SSH model. As discussed previ-

ously, the BLF-SSH model is important to our understanding of polarons as the

simplest acoustic polaron model, just as the original Holstein model was the

simplest model of optical polarons. Due to time constraints, we were unable

to solve the BLF-SSH model exactly. We did develop a functional framework

and a variational wavefunction that we think is important to document.
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A.2 Model

As we have previously discussed in chapters 4 and 5, the BLF-SSH model is

much more difficult to solve because the phonon modes are non-local. There is

no perturbative strong-coupling result, despite our best efforts to find one. The

weak-coupling perturbation theory is valid only at very weak-coupling strengths

if the Holstein model is any guide, so this is not super helpful in looking for

the full exact solution. Let us begin by examining the adiabatic Hamiltonian

since this is a problem we can solve. We will then use this as inspiration for

a variational wavefunction and look at ways of refining it even further. Recall

the Hamiltonian is

H =
∑

n

[c†ncn+1+c
†
n+1cn](−t+α(Xn+1−Xn))+

1

2
K(Xn+1−Xn)

2+
P 2
n

2M
. (A.1)

In the strong-coupling adiabatic limit, the wavefunction describes the elec-

tron spread out over three sites, and two bonds are compressed as discussed

in chapter 4. The first problem with creating a variational wavefunction arises

with periodic boundary conditions. In the adiabatic limit 〈Pn〉 is zero (the ions

have no kinetic energy) and one can use xn+1 − xn as a parameter, and all of

the xn are classical parameters not operators. We can’t do that once we step

into variational wavefunction territory since the ion displacements must be de-

scribed by k-space phonons, so we consider a cluster of N ions and N phonon

modes.

We do want to keep the electrons in real space though as this is at the heart

of the Trugman method using Bloch’s theorem which will be explained later.

To do this, we modify the Hamiltonian so that only the phonon part is
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written in k-space,

H =
∑

n

[c†ncn+1 + c†n+1cn]

{

−t+
√

λBLFω0W

2N

∑

k

(ak + a†−k)
eika(n+1) − eikan
| sin k/2|

}

+
∑

k

ωka
†
kak ,

(A.2)

where

ωk = ω0| sin k/2| (A.3)

and

λBLF ≡
α2

Mω2
0

1

W
. (A.4)

The adiabatic limit has classical ions with quantum mechanical electrons.

Since classical mechanics is simply a special case of quantum mechanics, we

can translate this solution into a wavefunction. The wavefunction for a clas-

sical simple harmonic oscillator is a coherent state, so the simplest possible

variational wavefunction will look like:

c†0
∏

k

egka
†
ke|gk|

2/2 , (A.5)

or

c†0e
∑

k gka
†
k
− 1

2
gkg

∗
k . (A.6)

The gk are the variational parameters, which define the expectation values

of the ion displacements and the electron is in real space at site 0. We’d like

to start with the gk values that correspond to the ion displacements that we

determined in the adiabatic limit, so we examine the expectation value of a

single ion site, n,

〈c0e
∑

k′ gk′ak′−
1

2
gk′g

∗
k′ |Xn|c†0e

∑
k′′ gk′′a

†

k′′
− 1

2
gk′′g

∗
k′′ 〉 . (A.7)
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This is in real space with the phonon modes in k-space, so to go back and

forth when using periodic boundary conditions we can use:

xn =
1√
N

∑

k

xke
ikan (A.8)

xk =
1√
N

∑

n

xne
−ikan (A.9)

xk =

√

~

2Mωk

(ak + a†−k) (A.10)

Here we let the lower case xn , xk refer to the classical adiabatic variational

parameters. Uppercase Xn and Xk will be reserved for operators, with n and

k referring to the real space and wavevector space respectively. We now can

consider what the expectation value of Xk is, and then use those to find the

expectation value of Xn.

〈Xk〉 = 〈c0e
∑

k′ gk′ak′−
1

2
gk′g

∗
k′ |Xk|c†0e

∑
k′′ gk′′a

†

k′′
− 1

2
gk′′g

∗
k′′ 〉 (A.11)

= 〈c0e
∑

k′ gk′ak′−
1

2
gk′g

∗
k′ |
√

~

2Mωk

(ak + a†−k)|c
†
0e

∑
k′′ gk′′a

†

k′′
− 1

2
gk′′g

∗
k′′ 〉 . (A.12)

We know that from the Baker-Campbell-Hausdorff theorem,

ake
gka

†
k
−|gk|

2/2 = gke
gka

†
k
−|gk|

2/2 . (A.13)

So we can simplify this to be:

〈Xk〉 = 〈c0e
∑

k′ gk′ak′−
1

2
gk′g

∗
k′ |
√

~

2Mωk

(gk + g†−k)|c
†
0e

∑
k′′ gk′′a

†

k′′
− 1

2
gk′′g

∗
k′′ 〉 (A.14)

To simplify our notation we define:

|c†0e
∑

k gka
†
k
− 1

2
gkg

∗
k〉 = |ψ〉 (A.15)
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which gives:

〈Xk〉 = 〈ψ|Xk|ψ〉 = 〈ψ|ψ〉
√

~

2Mωk

(gk + g∗−k) =

√

~

2Mωk

(gk + g∗−k) (A.16)

At this point we start making assumptions, namely, that gk is real and thus

gk = g∗k. This is reasonable since the imaginary part of a coherent state is

the momentum and in our adiabatic approximation we have said that ions are

stationary, i.e. have no kinetic energy or momentum.

xk
√

2Mωk = gk + g∗−k (A.17)

We set ~ = 1 from our choice of units so:

gk ∝
xk
√
2Mωk

2
(A.18)

We say proportional to, since this derivation has Mω0 in it which is infinite

in our adiabatic approximation. By trial and error we found an analytic form

which makes our wavefunction give the same energies as the adiabatic calcula-

tion for small ω0:

gk =
xk4
√
ωkλ2

ω0

(A.19)

We know that xk and xn are simply related as Fourier transforms presented

above. Thus to find xk for any k, we need to know all of the xn for every n. We

can take any adiabatic semi-classical arrangement of ions to find the xn values

and then find all of the gk for given parameters of λ and ω0.

However this only considers the electron at the origin. To make a varia-

tional wavefunction, it makes sense to use the Trugman Method idea of implicit

Bloch’s theorm. We will only consider wavefunctions with the electron at site

0 such as:

|ψ〉 = c†0|e
∑

k gka
†
k
− 1

2
gkg

∗
k〉 (A.20)
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This is implicitly short hand for the Bloch wavefunction:

|ψ〉 = 1√
N

∑

m

e−ikgamc†m|e
∑

k gka
†
k
− 1

2
gkg

∗
k〉 (A.21)

where kg is the total momentum of the polaron. Thus when we have an electron

hop and have a state such as:

c†1|e
∑

k gka
†
k
− 1

2
gkg

∗
k〉 (A.22)

we can write instead:

eikgac†0|e
∑

k gk,1a
†
k
− 1

2
gk,1g

∗
k,1〉 (A.23)

Here, since the electron was moved in the negative direction, the phonon dis-

tortion needs to be shifted plus one so that the distortion of ion 1 for the gk is

now the distortion of ion 2 for the gk,1. In general:

gk,m =
1√
N
(
∑

n

xn+me
ikan)4

√
2λωk

ω0

(A.24)

This means only states with the electron at site zero need to be considered.

With N states (N being the size of our finite cluster of ions), each using the

adiabatic ion positions shifted, we can reproduce exactly the same energy as

found with the semi-classical machinery with:

|φ〉 =
∑

m

cmc
†
0e

∑
k gk,ma†

k
− 1

2
gk,mg∗

k,m (A.25)

The cm can be determined independently by diagonalizing the basis space of

coherent states, but are also the electron wavefunction coefficients from the

adiabatic calculation.

The question is now how to improve the wavefunction for a larger ω0. While

we used the adiabatic ion positions to come up with this variational wavefunc-

tion, we can try different gk for other states to try to improve the wavefunction.
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One may think of the N xn or equivalently the xk parameters as the variational

parameters, and create many different basis states using different sets of xn or

xk. Complex xn are also permitted as these give states with a 〈p〉 6= 0 and 〈x〉
remains real.

Using coherent states means that there is no guarantee that basis states are

orthogonal. In fact, there is always a non-zero overlap between two coherent

states, but near the adiabatic limit basis states that represent very different ion

configurations have an overlap that is negligible for double precision floating

point calculations. States with very similar ion configurations, that is the xn

values are very close can have a large overlap approaching unity, so we need to

consider how to treat a non-orthogonal basis.

The eigenvalue problem is:

H|φ〉 = E|φ〉 (A.26)

Where |φ〉 is the unknown ground state wavefunction. Since the coherent states

form an overcomplete basis, we can expand in terms of those:

|φ〉 =
∑

n

cn|ψn〉 (A.27)

To obtain the energy we take the expectation value of the Hamiltonian:

〈φ|H|φ〉 = E〈φ|φ〉 = E
∑

n,m

cnc
∗
m〈ψm|ψn〉 (A.28)

S is the overlap matrix, where:

Sm,n = 〈ψm|ψn〉 (A.29)
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We can also write out H in matrix form:

Hm,n = 〈ψm|H|ψn〉 (A.30)

In the basis of |ψn〉 we have:

∑

n,m

c∗mcnHm,n = E
∑

n,m

c∗mSm,ncn (A.31)

This is the generalized eigenvalue problem:

∑

n

Hm,ncn = E
∑

n

Sm,ncn (A.32)

Thus once our basis of |ψn〉 has been decided on, H and S matrices can be cal-

culated, and the ground state energy found by using the appropriate algorithm

for the generalized eigenvalue problem.

To set up the Hamiltonian for use with coherent states, consider:

〈h|H|p〉 (A.33)

|p〉 = c†0e
∑

k pka
†
k
− 1

2
pkp

∗
k (A.34)

|h〉 = c†0e
∑

k hka
†
k
− 1

2
hkh

∗
k (A.35)

We break down the Hamiltonian into three parts for simplicity, first is the

ordinary electron hopping:

Ht = −t(c†ncn+1 + c†n+1cn) (A.36)
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The phonon mediated electron hopping:

Hinteraction = [c†ncn+1 + c†n+1cn]

{
√

λBLFω0W

2N

∑

k

(ak + a†−k)
eika(n+1) − eikan
| sin k/2|

}

(A.37)

The bare phonon hamiltonian:

Hphonon =
∑

k

ωka
†
kak (A.38)

These are quite complicated, so it helps to introduce:

〈h|αXn|p〉 = 8λ(xn,p + x∗n,h)〈h|p〉 (A.39)

The extra subscript on the xn is for determining which state it came from,

though the complex conjugate on the second hints that it came from the bra.

We set M = 1, ~ = 1 in these calculations, which gives a reasonable scale

to the expectation values for our parameters. Then Hinteraction can be viewed

as we initially introduced it:

Hinteraction = [c†ncn+1 + c†n+1cn](α(Xn+1 −Xn)) (A.40)

Also helpful to keep the equations tidy are the definitions of the coherent

states that are produced from the electron hopping.

|−→p 〉 = |c†0e
∑

k pk,+1a
†
k
− 1

2
pk,+1p

∗
k,+1〉 (A.41)

|←−p 〉 = |c†0e
∑

k pk,−1a
†
k
− 1

2
pk,−1p

∗
k,−1〉 (A.42)

Thus after some algebra one may obtain:

〈h|Ht|p〉 = −te−ikga〈h|−→p 〉+−teikga〈h|←−p 〉 (A.43)
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〈h|Hinteraction|p〉 = e−ikga8λ[(p1,+1 + h∗1)− (p0,+1 + h∗0)]〈h|−→p 〉+

eikga8λ[(p0,−1 + h∗0)− (p−1,−1 + h∗−1)]〈h|←−p 〉 (A.44)

Note that the pn values are taken from the original |p〉 state and thus after the

electron pushes and remapping the indices are not the same as for 〈h|.

〈h|Hphonon|p〉 =
∑

k

ωk(
∑

n

hng(k)n)(
∑

n′

pn′g(k)n′)〈h|p〉 (A.45)

The Trugman Method added basis states using a Krylov method where the

Hamiltonian acting on a given basis state produced new basis states which

where added to the basis space. With coherent states this is not so simple.

When the Hamiltonian produces a state like:

a†qc
†
0e

∑
n,k cng(n)ka

†
k (A.46)

There is no way to simplify in terms of coherent states. This has overlap with

every other coherent state due to their non-orthogonality. One can keep the

state un-simplified as what is called an Agarwal state or phonon-added state.

This makes dot products and expectation values complicated, but a system

along these lines was implemented by the author. A good explanation of these

states can be found in Ref. [86] .

The main problem with this is that the newly created phonon-added states

are very similar to the original state, and the overlap is very close to unity.

This means that the S matrix is almost singular and as the states are added

S quickly becomes intractable with standard floating point arithmetic. Thus

this approach did not lead to any improvement upon the original variational

wavefunction.

Instead of strictly following the Krylov space method for adding states, a
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different approach was tried to find new coherent state basis states. The ideal

coherent state is one that has a large overlap with the phonon-added state

discussed above but is also significantly different from the other states already

included in the basis space so that S remains invertible. S is never actually

inverted, a generalized eigensolver routine is used. This routine fails at about

the same point that inversion does and for the same reason; that S has off

diagonal elements very close to one.

New states are chosen then with a conjugate gradient optimization routine

that tries to maximize the overlap of the new state with the phonon-added state

previously discussed, while at the same time a penalty function is included to

keep the new state from having too much of an overlap with other states. This

is a variable that has to be adjusted heuristically. If the penalty is too severe

and the new state is very far from the phonon-added state, it will not improve

the wavefunction much. If the penalty is too small, all the problems of singular

S arise again.

Thus the optimization equation for electron-phonon interaction looks like:

O = |〈B|Hinteraction|C〉|+ P (|B〉) (A.47)

for

P (|B〉) = F
∑

n

f(|〈B|Cn〉|) (A.48)

v is the overlap limit, a parameter that needs to be adjusted for the optimum

basis space creation. F is a constant that is used to control the magnitude of

the penalty. This is another variable but generally the optimization is done

multiple times with F increasing each time so that optimizer is sure to avoid the

existing states |Cn〉. In practice, optimization routines are not super reliable as

noted in the previous discussion of the adiabatic BLF-SSH model. This means

that the overlap with other states is often larger than desired or that a poor

solution is found that is not close to what a full Krylov space would produce.

114





A.3 Future Directions

The uncertain nature of the variational process makes it hard to draw any firm

conclusions from these calculations. Their usefulness is limited to a starting

point for better exact approaches such as projector methods. One starts with a

good estimation of the ground state |θ〉 which could be the wavefunction from

the semi-classical adiabatic calculations or the product of the further optimiza-

tions discussed previously. In the (unknown) eigenbasis of the Hamiltonian,

this is:

|θ〉 =
∑

n

cn|φn〉 , (A.49)

where |φn〉 are the eigenvectors of the Hamiltonian and cn are the coefficients.

Since |ψ〉 is only a guess at the ground state, all of the eigenvectors will probably

contribute. The closer our guess however, the larger the c0 coefficient will be.

We then act on |θ〉 with D = −H −A where H is the Hamiltonian and A is a

constant:

D
∑

n

cn|φn〉 =
∑

n

cn · (−En − A)|φn〉 (A.50)

We pick A such that (−E0 −A) is the largest of all relevant (−En −A). Thus
acting with Dm progressively favours the ground state, and in the limit of large

m:

Dm
∑

n

cn|φn〉 ≈ c0(−E0 − A)m|φ0〉 (A.51)

With this approach the hard part is calculating 〈ψ|Hm|ψ〉 and the other

large powers of H. On may insert identities to transform it into a multi-

dimensional integral:

〈θ|Hm|θ〉 =
∫

· · ·
∫

dx1 . . . dxm〈θ|H|x1〉〈x1|H|x2〉 . . . 〈xm|θ〉 (A.52)

This can then in theory be solved using Monte Carlo integration in the basis

of one’s choice. There still exists a sign problem, but it may be tractable if
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the initial guess is good enough. In our implementation, we were unable to

find convergence. This does not mean that this is impossible, however, since

we are not Monte Carlo experts. However, it does mean that the variational

wavefunction must be very good to begin with. We thank Dr. Kevin Beach for

his help with the theory of Projector Monte Carlo.

A more straightforward, if time consuming, approach is to analytically write

out the expressions forH2 , H3 etc. using the commutation relations to simplify

their use with coherent states. Then a projector method can be used to find the

ground state energy, effective mass, and other observables. The Hamiltonian

has 5 basic parts: 2 t electron hopping parts, 2 interaction electron hopping

parts, and a phonon part. For Hm this is then an operator with 5m terms,

each of which needs to be simplified. This means that realistically a computer

algebra system would be needed to go beyond H2. It’s possible that then 10’s

of thousands of terms would be doable leading to perhaps H7 which might be

enough to converge the energy and effective mass. Unfortunately due to time

constraints this approach was not tried.
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