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Abstract

Electrons interacting with the ions in a solid, or polarons, are some of
the most basic condensed matter quasi-particles. They influence the electric
conductivity in normal metals, but perhaps most fascinatingly, they mediate
the formation of Cooper pairs in low temperature superconductors.

The details of this phonon mediation are poorly understood at the level
of a microscopic Hamiltonian. The Hamiltonian for basic polaron models has
only recently been solved for the single electron, and seems to predict that the
polarons in low temperature superconductors would have very large effective
masses. This is at odds with the measured small effective masses of many low
temperature superconductors in the normal state.

In this thesis we examine extensions to the basic Holstein polaron Hamil-
tonian that provide a more realistic model of what happens in real materials.
We also look at the BLF-SSH model, which is the appropriate Hamiltonian for
superconductors without optical phonons such as the elemental superconduc-
tors.

We found that extending the Holstein model to include next nearest neigh-
bour electron hopping and nearest neighbour electron-phonon interactions changed

the effective mass slightly, but nowhere near enough to account for the low ef-
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fective masses that must be present in real materials. The BLF-SSH model was
examined in the adiabatic limit and with weak-coupling perturbation theory,
but an exact solution was not found. It seems likely that the effective mass for
this model is also very large, but an improved algorithm is necessary to prove

this. A potential path forward is presented in the appendix.
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Chapter 1

Introduction

The polaron, an electron coupled to ionic distortions or phonons, was first pos-
tulated by Landau in 1933 and was one of the first problems addressed by
Feynman after his invention of the path integral formulation of quantum me-
chanics. Despite this pedigree, only the most basic model Hamiltonians have
been solved for the single electron ground state and a proper understanding
of the interaction between two polarons and other few electron systems is still
lacking. Even in systems that are unambiguously governed by electron-phonon
coupling, the theory has not reached the point of predictive power. Improve-
ments in these materials have come more from experimental intuition than a
comprehensive theory.

The early work on polarons in the 50’s and 60’s did not attempt a complete
solution of the quantum mechanical model on the lattice but instead often used
a continuum approximation for the electron or ions or both. The continuum
model for ions was justified by the idea that each electron would influence many
lattice sites through the long range Coulomb interaction, and the continuum
electron model was justified for materials with small electron filling in each band
such as doped semiconductors. The Frohlich model is the prototypical model
of this, a continuum electron, independent simple harmonic oscillators for ionic

degrees of freedom, and an extended range dipole r—2 interaction. This model



was solved with path integrals by Feynman in the limit of weak electron-phonon
coupling.[1][2] Others did calculations in the adiabatic continuum limit which
treats the phonons classically. [3] The success of these models was explaining
the larger effective mass of electrons in semiconductors.

Another avenue pursued was the thermally activated polaron, which is still
considered today for some higher temperature applications. This assumes that
the electron has become locally trapped by the conspiring of an impurity and
large effective mass from the electron-phonon interaction. Then only at non-
zero temperature may the electron move from site to site, producing a system
similar to a tunneling problem. [4]

Later, as numerical computations became possible, much of the focus changed
to small lattice polarons. Here a tight-binding model is used for the electrons
and the ions are described by individual or collective quantum degrees of free-
dom which are coupled to the electrons in some way. The Holstein model is
the prototypical example of these[5], with others including the BLF-SSH[6][7]
and modifications to include Jahn-Teller interactions[8] . Work has continued
on the Frohlich model as well, with numerical solutions giving good approxi-
mations to the ground state energy. [9]

Accurate numerical methods for the single electron Holstein and Frohlich
models have been developed [10][9] but the materials of interest are far more
complex than dilute semiconductors, almost always involving electron-electron
interactions. Both low and high temperature superconductors, Manganites ex-
hibiting colossal magnetoresistance and organic conductors are the new targets
and are still poorly understood.

The paths to improving the situation are to either improve the realism of
individual polaron models, include electron-electron interactions, or eventually
to do both. None of these are simple tasks: even a single electron polaron is
a difficult quantum many-body problem since there are many ions with which

the electron may interact.



Improving the polaron models can be simply adding more terms to model
magnetic interactions as in Jahn-Teller Hamiltonians or refining the existing
terms such as improving the electron-phonon coupling to have a linear and
quadratic component. [11] Each of these modifications is generally tuned to
examine a particular physical phenomenon since including an ever growing
number of corrections would quickly become computationally intractable. By
examining each correction individually, it is hopefully possible to tease out what
is essential to model a polaron. In the words of Albert Einstein: ”Everything
should be made as simple as possible, but not simpler.”

The other avenue of including many-electron effects has been to use dynam-
ical mean field theory (DMFT) or quantum Monte Carlo (QMC) along with
a single polaron model. Here the Hamiltonian is modified with a Hubbard
U electron-electron interaction. Work has been done on a spinless electron
Holstein-Hubbard model with Monte Carlo simulations for finite electron fill-
ing in a band[12, 13, 14, 15, 16], but the sign problem limits the accuracy even
with very sophisticated sampling methods. There have also been studies of
real materials using Dynamical Mean Field Theory (DMFT) and local den-
sity approximation (LDA) [17] which have had a good deal of success. These
models have been able to successfully reproduce 7, and other experimentally
observed quantities and are an important part of the tool kit. Unfortunately,
the methods used to deal with the complex many-body wavefunction obscure
the microscopic details in the results, so there is still a gap in our understanding
of real materials.

An accurate single electron solution will not solve all the mysteries of the
electron-phonon coupling in real materials, but it will greatly improve our un-
derstandings of the microscopic actors. With the basic building blocks under-
stood, cluster DMFT and other many-electron methods may be applied more
intelligently. It also gives a good opportunity to examine the many-body wave-

function in a more tractable situation and develop techniques that may be



useful for other many-body problems.

With these goals in mind this thesis will present novel research of the single
electron polaron models beyond the standard well-studied Holstein model. The
Holstein model is the obvious place to start since the single electron problem
is well understood, even near the adiabatic limit, which is importantly the
physically relevant regime. [18] [10] The model is completely solved in 1,2, and
3 dimensions, yet still exhibits an effective mass far larger than that which can
be reconciled with mobile Cooper pairs in bulk superconductors.

In the second chapter the effect of next nearest neighbour hopping is dis-
cussed. This is a relatively simple modification to the standard model and
realistic since many real material band structures can be approximated with
a tight-binding model that includes significant next nearest neighbour and be-
yond hopping amplitudes. [19] We use the same new algorithm as in the first
chapter to confirm previous results in one dimension, and then expand to two
and three dimensions again with the ability to choose realistic near adiabatic
parameters. We also found an interesting heuristic scaling that allows one
to predict the effect of next nearest neighbour hopping on the effective mass.
These were previously published in Ref. 20.

In the third chapter we look into the single electron Frohlich model which
includes the effect of the long range coulumb interaction between the electron
and the ions, going beyond the simple on-site iteration of the Holstein model.
We present a modification of the full extended Frohlich model including only the
nearest neighbour ions, which, given the exponential decay of the interaction in
the full Frohlich model, should dominate the results. We confirm previous two
dimensional work done with Quantum Monte Carlo with a Krylov space exact
diagonalization method. This new algorithm also allowed us to look at the
three dimensional case, which is the most relevant for bulk superconductors,
and to do it in the near adiabatic limit, which is the most physically relevant.

These results were previously published in Ref. 21.



In the fourth chapter we switch from improvements to the Holstein model
to the BLF-SSH model. While the Holstein model is well suited to materials
that have a dominating optical phonon mode, this is only a subset of the known
bulk superconductors. The elemental superconductors, for instance, have only
acoustic phonon modes. While Eliashberg theory can be used to understand
these materials, the Holstein model is often implicit in these calculations, cast-
ing some doubt onto their trustworthiness. Unfortunately treating the acoustic
phonons in the BLF-SSH model is much more difficult than the Holstein model
so we start with a study of the semi-classical adiabatic model. We perform the
calculations in one, two, and three dimensions and correct previous inaccurate
calculations of the two dimensional. The true shape of the ionic distortion is
presented and simple analytic calculations for the strong-coupling regime are
included as well. These were previously published in Ref. 22.

The appendix includes research results of a variational wavefunction for the
fully quantum BLF-SSH model. A derivation is presented in detail to benefit

future research and the variational ground state energies are also included.



Chapter 2

Holstein Model with Next

Nearest Neighbour Hopping

In the realm of BCS theory, it is well known that electron-phonon interactions
in solid materials are integral to the emergence of superconductivity, as they
are responsible for the effective attraction that leads to the formation of Cooper
pairs.[24] On the other hand, the importance of electron-phonon interactions
in high temperature superconductivity is not yet clear.[25] Since polarons are
simply quasiparticles consisting of electrons dressed with the net effect of these
electron-phonon interactions, it is important to understand this basic building
block, and the related bipolaron problem of the attraction between polarons.
This will allow a full understanding of conventional superconductivity, and
possible extensions to nonconventional superconductors.[26] To this end, the
problem of a single electron in the conduction band of a crystal lattice has
been extensively studied.[27] Specifically, a numerically exact algorithm for
solving the Holstein model with tight-binding electron bands in the thermody-
namic limit was formulated in Ref. 28, and now that problem is effectively
solved. Several extensions were subsequently reported, including ones to bet-
ter manage disparate electron (¢) and phonon (wg) energy scales (in particular,

wp << t),[10, 29], higher dimensionality,[30, 31, 32] extended interaction range



[18, 21] and inclusion of next-nearest neighbour (NNN) single-particle hopping
amplitude.[33] In this last study it was found that including NNN hopping in
the one dimensional Holstein model altered significantly the electron’s effective
mass in strong-coupling.

The purpose of this chapter is to follow up on this study. Thus far stud-
ies of polaron properties within the Holstein model have revealed that the
effective mass becomes very large with rather modest electron-phonon cou-
pling strength. This is incompatible with experiment, specifically with the
evidence that some conventional superconductors have a large electron-phonon
coupling strength, and yet show almost no sign of single-electron polaronic
behaviour.[34] Chakraborty et al. [33] found that including NNN hopping in
the one-dimensional Holstein model could decrease the polaron effective mass
significantly, particularly at strong-coupling. This is potentially very impor-
tant since this is a means for lowering the polaron effective mass to a realistic
level, such that an Eliashberg treatment [35, 36, 37, 38, 39] makes sense.

To more fully understand the effects due to NNN electron hopping we will
first present our perturbation theory calculations for the energy and effective
mass of the NNN Holstein model in one, two, and three dimensions. We use
square and simple cubic lattices for two and three dimensions, respectively.
These results agree for sufficiently low coupling strength with our exact nu-
merical calculations using our previously refined algorithm for the Holstein
model [21] extended to include NNN interactions. We note that quantitative
agreement with perturbation theory extends over a surprisingly limited range
of electron-phonon interaction strength, even in three dimensions, which is the
most applicable to bulk superconductors. A low phonon frequency approx-
imation to the perturbation theory results suggests a scaling of the phonon
frequency with the low energy effective bandwidth, which explains the results
obtained as a function of NNN electron hopping. We also note an additional

scaling factor that accounts for the results with non-zero NNN hopping with



respect to those with nearest-neighbour hopping only, over a more extended
coupling strength range.

Since including NNN electron hopping also modifies the ‘effective’ electronic
bandwidth (to be defined more precisely below), we should account for this in
using the appropriate phonon frequency. That is, since altering the adiabatic
ratio wg/t, even in the case with NN hopping only, is known to lead to changes
in the polaronic effective mass for the same coupling strength, then we should
be careful to use an appropriately scaled phonon frequency.

After a brief introduction we use perturbation theory to determine the po-
laron effective mass in weak-coupling. Since these expressions are analytical,
they are well-suited to examine the various scaling factors. We then present
exact solutions, in one, two, and three dimensions, to examine the effect on
polaron mass over the entire coupling range. We also note a heuristic scal-
ing, found numerically, that very accurately maps the parameters with NNN

hopping back to the original Holstein Model.

2.1 Model & Methods

2.1.1 Holstein Model

The Holstein model [5] is perhaps the simplest model for describing electron-
phonon interactions; it treats (optical) phonons as local ion vibrations, and
assumes that each atomic site oscillates with the same characteristic frequency
wg. With NNN hopping included, the Hamiltonian that describes such a system

1S:
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