
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, som e thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality o f this reproduction is dependent upon the quality o f the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Analysis and Design o f Ring-Based Transport Networks

by

George David Morley

A thesis submitted to the Faculty o f Graduate Studies and Research in partial fulfillment
o f the

requirements for the degree o f Doctor o f Philosophy

Department o f Electrical and Computer Engineering

Edmonton, Alberta

Spring 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1+1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference

Our file Notre reference

The author has granted a non­
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-60329-6

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name o f Author: George David Morley

Title o f Thesis: Analysis and Design o f Ring-Based Transport Networks

Degree: Doctor o f Philosophy

Year this Degree Granted: 2001

Permission is hereby granted to the University o f Alberta Library to reproduce
single copies o f this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in
any material form w hatever without the author's prior written permission.

5-7 Whistler Drive, Freehold
New Jersey, USA 07728

Date: April 6, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled Analysis and Design o f Ring-Based Transport Net­
works submitted by George David Morley in partial fulfillment of the requirements for the degree
of Doctor o f Philosophy.

Dr. Wayne D. Grover (Supervisor)
Dept. Elec. and Comp. Eng., Univ. o f Alberta

JL ttj Otuuy (sroif'i /* / • d)
Dr. Henry Owen (University External Examiner)
Elec. & Comp. Eng., Georgia Institute o f Tech.

Dr. ’EhaBFlm^faKiUejH^Externnl Examiner)
Dept. Cqn^p. Science, Unjry o f Aflberta

I)

Dr. Bruce Cockbum (Committee Member)
Dept. Elec. and Comp. Eng., Univ. o f Alberta

Dr. Ivan Fair (Committee Member)
Dept. Elec. and Comp. Eng., Univ. o f Alberta

February 23, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To Marilyn, Alyssa and Eric.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
We introduce several new methods for the design of near-optimal telecommunication transport

networks based on survivable ring architectures. Network survivability is an increasingly impor­

tant issue for customers and network operators alike due to increased reliance on telecommunica­

tions services and the deployment of ultra-high capacity transmission systems. Survivable ring

architectures provide a robust and cost-effective means to maintain service availability in the pres­

ence of network faults such as cable cuts, equipment failure and human error. For these reasons,

they have already been widely deployed in current SONET transport networks and are a promising

candidate for providing network survivability in emerging optical transport networks based on

wavelength-division multiplexing.

The design of ring-based transport networks, however, is a notoriously difficult combinatorial

optimization problem. For networks of any real practical size, the number o f possible designs is

virtually infinite and network construction costs can vary substantially from one design to another.

Yet surprisingly, much this design work is still done using manual approaches that can take months

to generate a single solution. Although several automated design methods have been proposed in

the literature, none of these methods guarantees optimal solutions. With typical constructions costs

in the range of billions of dollars, even modest improvements of only a few percent can translate

into millions of dollars in savings.

We develop several improvement heuristics for a greedy heuristic that constructs a design one

ring at a time. These improvement heuristics include a balanced ring loading heuristic that opti­

mizes the routing of demands around a ring, a demand packing algorithm that routes unserved

demands within the slack capacity available at each iteration, and a dithered sequencing approach

that randomizes the constructive process to yield several alternative designs. We also introduce

three new mathematical programming formulations of the design problem as well as a new Tabu

Search meta-heuristic that explores alternative solutions by guiding a local search method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The performance of these methods is compared using a defined set of study network models.

Results show that these methods provide significant improvements in the design optimality relative

to benchmark solutions. In one test case, for example, the best solution was 38% lower in cost than

the previous benchmark solution. A novel lower bounding procedure and statistical inference are

also used to quantify the gap from optimality of the design results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements
I will be forever grateful to my wife, Marilyn, for her continual support and encouragement

throughout this endeavor. I am also deeply indebted to our children, Alyssa and Eric, for their

patience and understanding during the many evening and weekends that I spent writing this thesis.

I would also like to express my sincere gratitude to Dr. Wayne D. Grover for giving me the

opportunity to pursue this work and for many of the basic ideas that were pursued in depth in this

thesis. His numerous hours as a supervisor and advisor are greatly appreciated. The management

and staff at TRLabs were instrumental in making the necessary funding and resources available to

conduct this work and for providing a forum to test its relevancy with leading industrial sponsors

such as Telus, Nortel Networks, MCiWorldcom and Sasktel. Special thanks to Linda Richens for

her help in printing and distributing thesis materials. Jim Slevinsky of Telus is thanked for sharing

his knowledge of the ring network design problem with me and bringing the relevant literature on

the topic to my attention. John Hopkins of Nortel Networks evaluated initial versions of the soft­

ware developed herein and provided valuable feedback on its features and performance. Marcia

Jeremiah devoted two undergraduate co-op work terms as my assistant and contributed greatly to

the implementation, testing and debugging of the software tools. Marni Mishna also made impor­

tant contributions to the initial development of the software during one eight month work term

with TRLabs. Marcia’s and Mami’s dedication and hard work are very much appreciated. I would

also like to thank Demetrios Stamatelakis for many helpful discussions and for writing many of the

Perl and Python scripts used to evaluate the results of the work. I am also grateful to the other

members o f my supervisory committee: Dr. B. Cockbum, and Dr. I. Fair; the external examiner.

Dr. H. Owen; and the department external examiner, Dr. E. Elmallah, all of whom suggested many

clarifications and corrections to the thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1. Introduction..I

1.1 Thesis Organization ...3

2. Definitions and Notation.. 6

2.1 Introduction... 6

2.2 Mathematical Notation...6

2.2.1 Sets and Sequences... 6

2.3 Graph Theory..7

2.4 Combinatorial Optimization ..12

2.5 Mathematical Programming.. 12

2.6 Heuristics .. 14

2.7 Computational Complexity..15

2.7.1 Classes P and NP ... 17

3. Transport Networks ... 18

3.1 Introduction... 18

3.2 Transport Networking Technology... 18

3.3 Generic Functional Architecture...23

3.4 Plesiochronous Digital Hierarchy...25

3.5 Synchronous Optical Network (SONET) .. 27

3.5.1 Terminal M ultiplexer.. 30

3.5.2 Add/Drop M ultiplexer.. 31

3.5.3 Digital Cross-Connect System..32

3.6 Network Survivability... 33

3.7 Survivable Ring Architectures..36

3.7.1 Unidirectional Path-Switched Ring ... 37

3.7.2 Bidirectional Line-Switched R in g ..38

3.8 Sum m ary.. 41

4. Capacity Analysis of Survivable Ring Architectures .. 42

4.1 Introduction.. 42

4.2 Background.. 42

4.3 The Ring Sizing Problem ..44

4.3.1 Capacity Requirements for Idealized Demand Patterns 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents (cont’d)

4.3.2 Capacity Requirements for General Demand Patterns .. 47

4.4 The Ring Loading Problem...49

4.4.1 Loading Problem Formulations ...51

4.4.2 Study M ethod.. 53

4.4.3 Results & Discussion.. 55

4.5 Sum m ary...59

5. The Ring Network Design Problem .. 61

5.1 Introduction.. 61

5.2 Problem Description.. 61

5.2.1 Network Topology..62

5.2.2 Demand M atrix... 62

5.2.3 Ring Technologies ..62

5.2.4 Design Objective... 63

5.2.5 Decision Variables..64

5.3 An Assessment of Problem Complexity.. 64

5.4 Other Design Considerations.. 66

5.4.1 Decision Environment..67

5.4.2 Demand Grooming and Hubbing.. 68

5.4.3 Topology Optimization.. 69

5.4.4 Dual Ring Interconnect.. 71

5.5 Sum m ary.. 76

6. Related W o rk ...77

6.1 Introduction..77

6.2 The Single Ring Network Design Problem ...80

6.2.1 Gendreau et al...80

6.2.2 F inketa l...81

6.2.3 Lee, Ro and T cha..81

6.2.4 Xu, Chui and G lover.. 82

6.2.5 Chamberland and Sans6... 82

6.2.6 Chung et al... 82

6.3 The Multi-Ring Network Design Problem .. 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents (cont’d)

6.3.1 RingBuilder (Grover et a l .) .. 83

6.3.2 Roberts ...86

6.3.3 Eulerian Ring Covers (Gardner et al.) ...88

6.3.4 Kennington et al..90

6.3.5 INDT (Doshi et a l .) ...91

6.3.6 Net-Solver (Gardner et al.) .. 92

6.3.7 Bortolon et al.. 94

6.3.8 Shi and Fonseka.. 94

6.3.9 Goldschmidt, Laugier and Olinick... 97

6.3.10 Strategic Options (Wasem, Wu and Cardwell)... 98

6.3.11 SONET Toolkit (Cosares et a l.) ... 101

6.3.12 Cox et al.. 102

6.4 Summary..103

7. Research Methodology... 105

7.1 Introduction..105

7.2 Test Networks..105

7.3 Modeling Assumptions ..110

7.3.1 Ring Technologies ..110

7.3.2 Cost Model...I l l

7.4 Test Cases ... 112

7.5 Method of Analysis... 113

7.5.1 Performance M etrics.. 113

7.6 Performance Evaluation... 114

7.6.1 Empirical Testing.. 114

7.6.2 Lower Bounding Procedure...114

7.6.3 Statistical Inference.. 119

7.7 Summary.. 121

8. Advances on the RingBuilder Approach: RingBuilder Interactive....................................... 122

8.1 Introduction... 122

8.2 Software Architecture...122

8.3 Design Synthesis Algorithm ..126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents (cont’d)

8.3.1 Basic Overview..126

8.3.2 Overview of Main Improvements..128

8.3.3 Demand Routing.. 128

8.3.4- Candidate Generation ..129

8.3.5 Candidate Ring Evaluation... 130

8.3.6 Ring Loading for Candidate Evaluation... 131

8.3.7 Candidate Ring Selection.. 140

8.4 Improvement Heuristics............................ 141

8.4.1 Demand Packing.. 142

8.4.2 Dithered Sequencing... 146

8.5 Summary... 148

9. Results of RingBuilder Improvements..149

9.1 Introduction... 149

9.2 Comparative Study M ethod.. 149

9.2.1 Ring Loading Algorithms ...149

9.2.2 Demand Packing...150

9.2.3 Dithered Sequencing... 150

9.3 Results... 151

9.3.1 Ring Loading Algorithms... 151

9.3.2 Demand Packing... 156

9.3.3 Dithered Sequencing.. 159

9.4 Summary... 165

10. Research on Mathematical Programming applied to Multi-Ring Network D esign............ 171

10.1 Introduction.. 171

10.2 Notation..171

10.3 Multi-Modular Pure Span Coverage (SCIP).. 172

10.4 Fixed Charge and Routing (FCRIP)... 173

10.5 Foundation Design (FDIP)... 175

10.6 Comparative Study M ethod..176

10.7 Results... 179

10.8 Sum m ary..183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents (cont’d)

11. A Tabu Search Meta-Heuristic for Multi-Ring Network Design.. 190

11.1 Introduction...190

11.2 Neighborhood Structure.. 192

11.3 Memory Structures... 192

11.4 Search Procedure ..195

11.5 Search Diversification Strategy .. 197

11.6 Comparative Study M ethod.. 198

11.7 Results... 199

11.8 Summary .. 206

12. Comparative Discussion and Interpretation...209

12.1 Introduction.. 209

12.2 Solution Quality... 209

12.3 Runtimes ...210

12.4 Significance of Design Attributes...212

12.5 Lower Bounds.. 213

12.6 Statistical Inference.. 214

12.7 Summary .. 221

13. Concluding Discussion... 227

13.1 Introduction.. 227

13.2 Review of Thesis.. 227

13.3 Summary of Main Contributions ..229

13.3.1 Publications.. 230

13.4 Topics for Further Research.. 230

13.4.1 Advanced Tabu Search Procedures...230

13.4.2 Comparison of Demand Packing Algorithm..231

13.4.3 Comparison of Balanced Ring Loading Algorithm... 232

13.4.4 Further Research on Topology Optimization.. 232

13.4.5 Multi-Period Planning Enhancements.. 233

13.4.6 Sensitivity Analysis of Design Results... 234

Bibliography...235

Appendix A: Ring Loading Formulations.. 243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents (cont’d)

A. 1 EP3: Channel Interchange, with Demand Splitting... 243

A.2 IP4: Channel Assignment, without Demand Splitting... 243

Appendix B: Optimal Ring Loading Algorithm For Hubbed Demand Patterns.........................245

Appendix C: Demand Patterns for Metropolitan Test Networks.. 248

Appendix D: Procedure for Estimating Optimal Solution Values.. 249

Appendix E: Cycle Finding Algorithm... 252

Appendix F: Extensions to FCRIP Formulation... 255

F .l ADM Locations ... 255

F.2 UPSR Rings ... 256

Appendix G: AMPL Formulations..257

G .l SCIP Formulation .. 257

G.2 FCRIP Formulation... 257

G.3 FDIP Formulation.. 258

G.4 LBIP Formulation.. 259

G.5 LBRIP Formulation ... 260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

Table: 3.1 North American Plesiochronous Digital Hierarchy...26

Table: 3.2 SONET Digital Signal Hierarchy... 29

Table: 4.1 Gain in loading efficiency by splitting (with channel interchange) 57

Table: 6.1 Comparison of Prior Work on Multi-Ring Network Design M ethods..................... 104

Table: 7.1 Test Network Topology Statistics .. 107

Table: 7.2 Test Network Demand Statistics ... 107

Table: 7.3 Ring Technologies..I l l

Table: 7.4 Equipment and Facility Costs.. 112

Table: 7.5 Main Test C ases..112

Table: 9.1 Design Statistics for Unbalanced Ring Loading Algorithm..................................... 166

Table: 9.2 Design Statistics for Balanced Ring Loading Algorithm... 167

Table: 9.3 Design Statistics for Unbalanced Ring Loading Algorithm with Demand Packing 168

Table: 9.4 Design Statistics for Balanced Ring Loading Algorithm with Demand Packing 169

Table: 9.5 Design Statistics for Balanced Ring Loading Algorithm with Dithered

Sequencing.. 170

Table: 10.1 SCIP & FCRIP Design Parameters ... 177

Table: 10.2 FDIP Data Set Statistics ...178

Table: 10.3 Summary of Results..179

Table: 10.4 Comparative Summary of IP Formulations.. 183

Table: 10.5 Computational Results for SCIP Formulation.. 184

Table: 10.6 Computational Results for FCRIP Formulation...185

Table: 10.7 Computational Results for FDIP Formulation.. 186

Table: 10.8 Design Statistics for SCIP Formulation...187

Table: 10.9 Design Statistics for FCRIP Formulation ..188

Table: lO.lODesign Statistics for FDIP Formulation..189

Table: 11.1 Test Parameters Settings...198

Table: 11.2 Total Design Cost for Several Add and Drop Tenures.. 204

Table: 11.3 Detailed Computational Results for Tabu Search Meta-Heuristic207

Table: 11.4 Design Statistics for Tabu Search Meta-Heuristic ...208

Table: 12.1 Point and Interval Estimates of Global Optimal Solutions.. 215

Table: 12.2 Summary of Total Design Cost Results ... 222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables (cont’d)

Table: 12.3 Summary of Runtime Results (sec.) .. 223

Table: 12.4 Correlation between Design Attributes and Total Design Cost 224

Table: 12.5 Lower Bounds based on Shortest Path Routing ... 225

Table: 12.6 Lower Bounds with Route Optimization...226

Table: D. 1 Solution Data for Test Case 12..249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1. Set notation.. 7

Figure 2.2. Diagrams of undirected and directed graphs... 8

Figure 2.3. Examples of (a) walk, (b) trail and (c) path.. 9

Figure 2.4. Examples of Eulerian and Hamiltonian graphs.. 9

Figure 2.5. Examples of a (a) two-vertex connected graph and (b) two-edge connected

graph... 10

Figure 2.6. Examples of a tree, forest, spanning tree and spanning fo res t................................ 10

Figure 2.7. An example of a fundamental set of cycles... 11

Figure 3.1. Layering of service and transport networks.. 19

Figure 3.2. Classification of transport networks.. 20

Figure 3.3. Layered view of a transport network (client/server association)...............................24

Figure 3.4. Partitioned view of a transport network... 25

Figure 3.5. SONET STS-1 frame... 28

Figure 3.6. SONET section, line and path equipment...30

Figure 3.7. Functional block diagram of a TM.. 30

Figure 3.8. Functional block diagram of an ADM.. 31

Figure 3.7. Functional block diagram of a B-DCS.. 32

Figure 3.8. Classification o f survivable network architectures..34

Figure 3.9. Two-fibre UPSR protection switching operation.. 37

Figure 3.10. Four-fibre BLSR protection switching operation.. 38

Figure 3.11. Two-fibre BLSR protection switching operation... 39

Figure 3.12. An example of BLSR ring loading... 41

Figure 4.1. An example of channel assignment in a BLSR... 44

Figure 4.2. Idealized demand patterns... 45

Figure 4.3. Relative BLSR demand carrying capacity for idealized demand patterns................ 47

Figure 4.4. Gain in loading efficiency due to channel interchange...56

Figure 4.5. Scatter plot of loading efficiency vs. demand pool size for the 5 node/48 channel con­

figuration, with a mesh demand pattern and channel interchange............................ 58

Figure 4.6. Scatter plot of loading efficiency vs. demand pool size for the 10 node/48 channel

configuration, with a mesh demand pattern and channel interchange...................... 58

Figure 5.1 Functional diagram of multi-ring network design problem...................................... 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures (cont’d)

Figure 5.2. Upper bound on the number of possible designs...66

Figure 5.3. An example of demand routing in multi-ring networks..70

Figure 5.4. Matched node drop & continue inter-ring transfer arrangement for BLSRs 72

Figure 5.5. Matched node drop & continue inter-ring transfer arrangement for UPSRs 73

Figure 5.6. Dual feeding inter-ring transfer arrangement.. 74

Figure 5.7. An example ring connectivity graph.. 75

Figure 6.1. Classification of Ring Network Design Problems...77

Figure 6.2. Effect of ring modularity on transmission capacity requirments...............................78

Figure 6.3. Effect of topological layout on transmission capacity requirments.......................... 79

Figure 6.4. Simulated Annealing generate operations.. 87

Figure 6.5. Decomposing an Eulerian graph into cycles.. 88

Figure 6.6. Converting a non-Eulerian graph to an Eulerian graph.. 89

Figure 6.7. Net-Solver iteration strategies... 93

Figure 6.8. An example of a hierarchical ring network..95

Figure 6.9. Strategic Options: An example of a multi-period demand bundling choices..........99

Figure 6.10. Strategic Options: An example of ring selection... 100

Figure 6.11. Strategic Options: An example of the design alternatives for a potential ring 100

Figure 6.12 Strategic Options: An example of a multi-period multiplex cost algorithm 101

Figure 7.1. Topology of the metropolitan test networks.. 106

Figure 7.2. Topology of the long-haul test networks... 106

Figure 7.3. Demand distribution for Netl5.. 108

Figure 7.4. Demand distribution for Net20.. 108

Figure 7.5. Demand distribution for Net32.. 109

Figure 7.6. Demand distribution for Net43.. 109

Figure 7.7. Ring parity condition: (a) working span loads, (b) possible ring cover............... 115

Figure 7.8. Ring balance condition, (a) working span loads, (b) possible ring cover 117

Figure 7.9. Distribution of suboptimal solutions relative to the optimal solution......................120

Figure 8.1. RingBuilder Interactive software architecture.. 123

Figure 8.2. RingBuilder Interactive screen capture.. 123

Figure 8.3. Diagram of main classes in RingBuilder Interactive... 124

Figure 8.4. Flow chart of the basic RingBuilder algorithm... 127

with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures (cont’d)

Figure 8.5. Main steps in unbalanced ring loading procedure.. 133

Figure 8.6. Example of the unbalanced ring loading procedure... 134

Figure 8.7. Example of the balanced ring loading procedure... 139

Figure 8.8. Effect of exponents on the selection probability..141

Figure 8.9. Simplified the demand packing algorithm.. 143

Figure 8.10. An example of a ring connectivity graph.. 144

Figure 8.11. Illustration of the basic Dithered Sequencing meta-heuristic................................. 147

Figure 9.1. Results for unbalanced and balanced ring loading algorithms............................... 152

Figure 9.2. Network design for test case 2 (NetlS, 4B48) using the unbalanced ring loading

algorithm.. 153

Figure 9.3. Network design for test case 2 (Netl5,4B48) using the balanced ring loading

algorithm.. 153

Figure 9.4. Effect of the ADM discount factor on total design cost for test case 5

(Net20,4B48) and test case 6 (Net20,4B48 & 4B192) using the balanced ring

loading algorithm.. 155

Figure 9.5. Effect of the adjusted transport efficiency exponent on total design cost for

test case 5 (Net20,4B48) and test case 6 (Net20, 4B12 & 4B48) for Net20

using the balanced ring loading algorithm... 156

Figure 9.6. Results for unbalanced and balanced ring loading algorithms with demand

packing... 157

Figure 9.7. Total design cost versus demand packing ADM discount factor for test case 5

(Net20,4B48) and 6 (Net20,4B12 & 4B48)..158

Figure 9.8. Total design cost versus greedy selection threshold for test case 5........................ 159

Figure 9.9. Design cost versus probabilistic selection exponent for test case 5 with a

greedy selection threshold.. 160

Figure 9.10. Plot of the (a) absolute and (b) relative minimum, maximum and mean

transport efficiencies of the elite candidate rings as a function of design

iteration.. 161

Figure 9.11. Probability distribution of the the top ten candidate rings as a function of

the probabilistic selection exponent x for the (a) first and (b) final iterations 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures (cont’d)

Figure 9.12. Relative frequency histogram of the total design cost (relative to the baseline

greedy soluton) for test cases 1-9 using the probabilistic selection method and

the balanced ring loading algorithm.. 162

Figure 9.13. Design sequences for test case 5 using parameter settings (3,3,3)...................... 163

Figure 9.14. Effect of different Dithered sequencing parameter settings on total design cost. 163

Figure 9.15. Effect of no. of branches per elite sequence on total design cost........................ 164

Figure 9.16. Total design cost versus greedy selection threshold for test case 5

(Net20,4B48).. 164

Figure 10.1. Effect of the number of paths on FCRIP total design cost for test case 1

(Netl5,4B12).. 182

Figure 11.1. A graphical illustration of the Tabu Search meta-heuristic................................... 190

Figure 11.2. Basic version of Tabu Search meta-heuristic... 191

Figure 11.3. Flow chart of basic Tabu Search meta-heuristic.. 195

Figure 11.4 Results for Tabu Search meta-heuristic.. 199

Figure 11.5 Example of TS search trajectory... 200

Figure 11.6 Initial starting solution for Net20.. 201

Figure 11.7 Tabu Search solution forNet20.. 201

Figure 11.8 Span utilization (working load/capacity) in DS3s for Net20................................. 202

Figure 11.9 Histogram of the slack capacity for Net20... 203

Figure 11.10. Plot of total design cost vs. (a) drop depth and (b) restart window........................ 205

Figure 11.11. Plot of total design cost vs. (a) restart penalty and (b) ADM discount factor. 205

Figure 12.1. Relative Performance of design methods (% gap) relative to the best solution

for all test cases.. 209

Figure 12.2. Plot of runtime vs. problem size for baseline RingBuilder heuristic and

Tabu Search meta-heuristic..211

Figure 12.3 Plot of runtime vs. problem size for SCIP formulation..211

Figure 12.4 Star plot of the correlation squared between several design attributes and total design

cost for test cases 5 and 7 ...212

Figure 12.5. Histogram of total design cost for test case 1 (N etl5 ,4B 12)................................. 215

Figure 12.6 Histogram of total design cost for test case 2 (Netl5,4B48)................................ 216

Figure 12.7 Histogram of total design cost for test case 3 (N etl5 ,4B 12 + 4B48)....................216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures (cont’d)

Figure 12.8. Histogram of total design cost for test case 4 (Net20,4B12)................................. 217

Figure 12.9. Histogram of total design cost for test case 5 (Net20,4B48)................................. 217

Figure 12.10. Histogram of total design cost for test case 6 (Net20,4B12 + 4B48)....................218

Figure 12.11. Histogram of total design cost for test case 7 (Net32,4B48)..................................218

Figure 12.12. Histogram of total design cost for test case 8 (Net32,4B192)............................... 219

Figure 12.13. Histogram of total design cost for test case 9 (Net32,4B48 + 4B192)..................219

Figure 12.14. Histogram of total design cost for test case 10 (Net43,4B48).............................. 220

Figure 12.15. Histogram of total design cost for test case 11 (Net43, 4B192)........................... 220

Figure 12.16. Histogram of total design cost for test case 12 (Net43, 4B48 + 4B192).............. 221

Figure B. 1. Ring loading algorithm for pure hubbed demand pattern... 246

Figure D. 1 Probability plot for test case 12..250

Figure D.2 Correlation squared vs. location parameter... 251

Figure E. 1. The recursive depth-first search procedure for finding cycles.................................253

Figure E.2 The main procedure for finding all cycles in a graph... 254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction
Telecommunications services form an integral part of our information-centric society and play

a significant, if not vital, role in our local, national and global economies. At the core of today’s tel­

ecommunications infrastructure are high-capacity transport networks that convey virtually all tele­

communications services (e.g., voice, video, data and Internet services) at some point or another

along their journey from origin to destination. These “backbone” networks are usually composed of

fibre optic transmission systems that concentrate traffic onto a surprisingly small number of high-

capacity routes. For example, state-of-the-art Synchronous Optical Network (SONET) transmission

systems operating at 10 Gbps can carry the equivalent of more than 120,000 voice conversations on

a single pair of fibres. When combined with recent wavelength-division multiplexing (WDM) tech­

niques, the aggregate capacity of a single fibre pair can be as high as 400 Gbps — the equivalent of

more than S million simultaneous voice calls. With some cables containing upwards of 48 fibre

pairs, a single cable cut can have disastrous and far-reaching effects. Although cable cuts are by far

the most prevalent form of failure, transport networks are also susceptible to several other types of

failures including human error, software bugs, fires, earthquakes and flooding. The FCC has report­

ed that in the United States network outages affecting more than 30,000 customers occur every one

to two days and take five to ten hours on average to repair [JHV99]. The social and economic impact

of these outages can be substantial.

For these reasons, network survivability has become an important issue for customers and net­

work operators alike. Many customers are now demanding 100% service availability from their net­

work operator. In response, special precautions (e.g., duplicate equipment, reinforced cables, fire

suppression equipment, etc.) are usually taken to help avoid network failures. Protection and resto­

ration mechanisms have also been developed to reroute traffic around network failures using spare

transmission resources. Two basic approaches for protecting transport networks are under study to­

day. These are mesh restoration and survivable ring architectures [Gro97c]. In mesh restoration, the

traffic affected by a failure is restored by establishing alternate paths through a layer of spare capac­

ity that is shared by all services. In contrast, survivable rings rely on dedicated transmission facilities

to protect only those sites served by the ring. While mesh restoration achieves the lowest redundan­

cy in transmission capacity needed for 100% restorability, ring architectures are often preferred in

practice because of their simpler and faster switching mechanism (SO ~1S0 milliseconds). Also, de­

spite their greater capacity requirements, rings can be more economical than mesh networks, partic­

ularly in metropolitan area networks where nodal costs usually dominate over distance-dependent

costs for fibre and regenerators. For these reasons, SONET-based rings have already been widely

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deployed and the same logical architectures are promising and obvious candidates for the emerging

all-optical network.

Although the basic protection mechanism is relatively simple, the design of transport networks

using survivable rings is an extremely difficult optimization problem. Solving this problem is espe­

cially difficult because it involves simultaneously finding an optimal routing pattern and a set of

rings that satisfies all network demands at minimum cost Furthermore, for each ring in the solution

the following decision variables must be specified: the nodes to include in the ring, the fibre routing

between the nodes, the ring type and capacity, the assignment of demands, and the nodes at which

demands transit from one ring to another enroute from origin to destination. For networks o f any

real practical size, the number of possible designs is virtually infinite and network construction costs

can vary substantially from one design to another. Yet surprisingly, much this design work is still

done using manual approaches that can take months to generate a single solution. Although several

automated design methods have been proposed in the literature, none of these methods guarantees

optimal solutions. With typical constructions costs typically in the range of billions of dollars, even

modest improvements of only a few percent can translate into millions in savings.

This provides the basic motivation for the research presented in this thesis. The primary goal of

this work is to better understand the factors that influence the design of ring-based transport net­

works and to develop improved methods and algorithms for automating the design process. As part

of this work, we investigate several policy and technology alternatives related to the demand load­

ing on bidirectional line-switched rings. We also develop several improvement heuristics for a

greedy heuristic that constructs a network design one ring at a time. These improvement heuristics

include a balanced ring loading heuristic that optimizes the routing of demands around a ring, a

demand packing algorithm that routes unserved demands within the slack capacity available at

each iteration, and a dithered sequencing approach that randomizes the constructive process to

yield several alternative designs. We also introduce three new mathematical programming formu­

lations of the design problem and a new Tabu Search meta-heuristic that explores alternative solu­

tions by guiding a local search method.

The performance of these methods is compared using a defined set of study network models.

Results show that these methods provide significant improvements in the design optimality relative

to benchmark solutions. In one test case, for example, the best solution was 38% lower in cost than

the previous benchmark solution. A novel lower bounding procedure and statistical inference are

also used to quantify the optimality of the design results.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 begins by introducing basic no­

tation, concepts and terminology from several areas of study that are used throughout this thesis.

This includes relevant concepts and results from graph theory, combinatorial optimization, mathe­

matical programming and complexity theory.

Chapter 3 contains additional background information on transport network technology, equip­

ment and networks. The chapter begins by discussing the different classes of transport networks

with particular emphasis on the functional characteristics of circuit-switched transport networks,

which are the main focus o f this work. Two current transport networking technologies, the Plesio-

chronous Digital Hierarchy (PDH) and Synchronous Optical Networks (SONET) are then described

in detail. This is followed by an overview of the three main protection and restoration methods and

a detailed description of the two most common types of survivable ring architectures: the unidirec­

tional path-switched ring (UPSR) and the bidirectional line-switched ring (BLSR).

In Chapter 4, we consider capacity-related aspects of survivable ring architectures and introduce

two important subproblems in the design of multi-ring networks: the Ring Sizing Problem, which

involves finding the minimum size (capacity) ring for a specified set of demands, and the Ring

Loading Problem, which involves finding the best subset of demands to load onto a ring of fixed

size (capacity). Analytical models for the Ring Sizing Problem are presented for a variety of ideal­

ized demand patterns. This is followed by a survey of prior work on the much-studied generalized

Ring Sizing Problem. We then introduce the Ring Loading Problem and develop mathematical pro­

gramming formulations for several variations of the problem. Simulations using realistic demand

patterns are then used to quantify the effects of two policy and technology choices (i.e., demand

splitting and time-slot interchange) on ring loading efficiency. The findings of this study have im­

portant implications on the work in subsequent chapters.

Chapter 5 provides a formal definition of the multi-ring design problem and discusses several

aspects of the problem inputs and basic design assumptions. This is followed by an analysis of the

computational complexity of the problem and a derivation of an upper bound on the number of pos­

sible designs. Several other related design considerations, such as topology optimization and dual

ring interconnection issues, are also discussed at length.

Chapter 6 surveys the prior work on ring-related network design problems. We begin by iden­

tifying the main classes of ring design problems and the basic solution techniques proposed to date.

This survey covers work on both the single and multi-ring network design problems. In total, some

eighteen different methods are described. This chapter concludes with a summary of the differences

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between these design methods and the work conducted in this thesis.

In Chapter 7, we describe the study method used to evaluate the performance of the design

methods developed in this thesis. First, the characteristics of the test networks and their demand pat­

terns are described in detail. This is followed by a description of the basic modeling assumptions,

ring types, cost model and test scenarios that were used to obtain the results. The metrics used to

quantify the performance of the design methods are then presented along with a description of the

techniques used to assess both relative and absolute solution quality.

Chapters 8 through 11 describe the three main design approaches that were proposed, imple­

mented and tested in this thesis. Chapter 8 provides a detailed description of a sophisticated network

planning tool, called RingBuilder Interactive, that was developed to support this work. The chapter

begins with a brief overview of the software architecture and the main features and capabilities of

RingBuilder Interactive. This is followed by a description of the basic algorithmic framework used

to synthesize network designs. A detailed description is then provided for each of the main algo­

rithms that comprise the design method as well as two proposed improvement heuristics. In Chapter

9, the main algorithms and improvement heuristics are tested over a range of parameter values and

the study method and results are presented.

In Chapter 10, we develop three mathematical programming formulations for the multi-ring net­

work design problem. Each of these formulations represents a different tradeoff along the continu­

um between model detail and tractability. While these formulations have certain claims to

optimality within their logical problem models, computational constraints usually prevent finding

strictly optimal solutions. Nonetheless, they do provide relatively good solutions that serve as useful

benchmarks for the other design methods.

In Chapter 11, we develop a novel Tabu Search procedure for the multi-ring network design

problem. Tabu Search is a meta-heuristic that guides a local search procedure to explore regions in

the solution space beyond a local optimum. The chapter begins with an overview of the basic pro­

cedure, followed by a description of the problem specific memory structures and operations devel­

oped here. The procedure is tested over a range of parameter settings and the results are presented

at the end of the chapter.

Chapter 12 provides a comparative discussion of the three design methods presented in Chap­

ters 8 through 11 and an interpretation of the main findings. The design methods are compared in

terms of solution quality and runtime. A lower bounding procedure and statistical inference are also

used to quantify the absolute performance of the design methods.

Chapter 13 concludes with a review of the thesis, a summary of the research results and some

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recommendations for further work on this topic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Definitions and Notation

2.1 Introduction
This chapter introduces basic notation, concepts and terminology that are relevant to the work

presented in this thesis. This material is provided primarily for review and reference. We start by

defining the mathematical notation used in this thesis. This is followed by an overview of some ba­

sic concepts and results from several related areas of study. These include graph theory, combina­

torial optimization, mathematical programming, algorithm analysis and complexity theory.

2.2 Mathematical Notation
This section introduces some basic mathematical definitions and symbols used in this thesis. In

general, we try to use each symbol to denote only one quantity but, because there are only 26 Latin

letters, this is not always possible. We will usually define symbols where they are first used. The

two most common mathematical concepts that are used are sets and sequences. Definitions and no­

tations for sets and sequences are provided in the following subsections.

2.2.1 Sets and Sequences
The concept of a set arises frequently in formulating and solving network planning problems.

A set is an unordered ensemble or collection of objects [AKL84]. The objects that form a set are

called elements. A set is completely specified by the elements that belong to it, without regard to the

relations between the elements. For example, a set containing five objects arranged in circle is the

same as a set containing the same five objects arranged in a line. Thus, there is no concept of order

in a set. The elements of a set are drawn from a population known as a base type. Each element of

a set is either a primitive element of the base type or is a set. There is also no concept of duplication

in a set; all elements in the same set are distinct from one another and an element either belongs to

the set or not The symbols used here to express sets and their relationships are shown in Figure 2.1.

To illustrate the use of this notation, consider two sets M = {a, b, c } and A = {b, e , f g } .

Because M has three elements, \M\ = 3 . Likewise, | A| = 4 because A has four elements. The un­

ion of M and A is M u A = {a, b, c, e,f, g }. The intersection of M and A is the set of elements that

appear in both M and A, which is M r \ N — { b } . The set difference of M and A is

M — N = {a,c }. The symmetric difference of M and A is the set of elements appearing in M and

A but not in both, which is M © A = {a, c, e,f, g } .

A concept that is closely related to sets is that of a sequence. A finite sequence o f length n is an

ordered set containing n objects. A finite sequence will also be denoted using braces, e.g.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{ x l tx2, . . . ,x n} . Unlike a set, a sequence may contain duplicates that are distinct elements, e.g.

x2 = xn . Both sets and sequences are used extensively in the following subsections.

2.3 Graph Theory
It is often convenient to represent transport networks graphically by a set of points and a set of

lines connecting pairs of points. Typically, the points represent network nodes (e.g., switching lo­

cations or equipment enclosures) and the lines between them represent network spans (e.g., trans­

mission facilities or cable ducts). An abstraction of this concept is a graph.

A graph G = (V, E) consists of a finite set of vertices V = (v y, v2, ...} and a set o f edges

E = { ex, e2, - } such that each edge in E joins a pair of vertices in V [BoM76]. Two vertices,

u € V and v e are adjacent if they are joined by an edge e = {«, v} s E . Such an edge is said

to be incident on the vertices u and v, which are also called the end vertices of e. Two edges are said

to be adjacent if they are incident on a common vertex and parallel if they are incident on the same

pair of end vertices. An edge that begins and ends on the same vertex is called a self-loop. A graph

is simple if it has no parallel edges or self-loops. Whereas, a graph with parallel edges is called a

multigraph.

In some graphs, a number wuv may be associated with every edge { u, v }. Such a graph is called

M = {a , b , c } set M composed of elements a, b and c.

a is an element of set M .

n is not an element of set M .

for each element m in set M .

the null or empty set.

the cardinality or number of elements in set M .

set former: e.g. all x such that x is a positive integer,

set A is a subset of set B , set B is a superset of set A .

union: all elements in either A or B .

intersection: all elements in both A and B .

difference: all elements in A that are not in set B .

symmetric difference: all elements in either A o r B , ex­

cluding those elements in both A and B , i.e.

{x \x e A u B , x € A r\ B }.

a € M

n e M

Vm e M

0

\M\

{ x \ x is a positive integer}

A c i J , f l2 A

A u B

A n f l

A — B

A ® B

Figure 2.1. Set notation (adapted from [Sha98]).

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a weighted graph and the number wuv is called the weight of edge { u, v }. In transport networks

these weights are typically used to represent such things as cost, distance, utilization or capacity.

When these weights are used to represents capacities, the graph is usually called a capacitated

graph. Capacitated graphs are often used for solving problems that involve the flow of commodities

through a network.

An edge is directed if its vertices {«, v} are an ordered pair. A directed edge is drawn by a line

segment with an arrowhead indicating the direction. A graph with directed edges is called a directed

graph or digraph. A graph is undirected if all its edges are not directed. Unless otherwise stated, we

represent transport networks as undirected graphs or, equivalently, as networks in which transmis­

sion capacity is assumed to be bidirectional and symmetric. A diagram of an undirected graph and

a directed graph are shown Fig. 2.2(a) and 2.2(b), respectively.

self-loop

parallel edges

(a) An undirected graph. (b) A directed graph.

Figure 2.2. Diagrams of undirected and directed graphs.

The number of vertices and edges in graph G = (V,E) is denoted by | V\ and \E\ , respectively.

The number of edges incident on a vertex is called the degree of the vertex. For example, in Fig.

2.2(a) vertex v2 has a degree of three and vertex v3 has a degree of five.

A walk in G is a sequence of adjacent edges

W = {(v,,v2), (v2,v3) , ..., (vk_2,vk_ ,), (v*. 1,vit)} . The vertices v, and vk are called the origin

and destination of the walk, respectively. The number of edges in the walk, k - 1, is called the

length of the walk. A trail is a walk in which the edges are distinct. If the vertices in a trail are also

distinct, it is called a path. Mote that the term “path” is also used to denote connections in transport

networks. In most cases, however, the intended meaning should be clear from the context. Examples

of a walk, trail and path are shown in Fig. 2.3.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Walk. (a) Trail. (a) Path.

Figure 2.3. Examples of (a) walk, (b) trail and (c) path.

A walk is closed if its origin and destination are the same. A closed trail is called a tour. A tour

that traverses all edges in a graph is known as an Eulerian tour. A graph containing an Eulerian tour

is called an Eulerian graph. It can be shown that a connected undirected graph has an Eulerian tour

if and only if it has no vertices of odd degree [AKL84J. If the vertices in a tour are distinct it is called

a cycle. A cycle that connects all of the vertices in a graph is called a Hamiltonian cycle. If a graph

contains an Hamiltonian cycle it is called an Hamiltonian graph. Unlike an Eulerian graph, there is

no easy test to determine whether a graph contains a Hamiltonian cycle. Examples of Eulerian and

Hamiltonian graphs are shown in Fig. 2.4.

(a) Eulerian Graph (b) Hamiltonian graph

Figure 2.4. Examples of Eulerian and Hamiltonian graphs.

Note that the Eulerian graph in Fig. 2.4(a) does not contain a Hamiltonian cycle. Similarly, the

Hamiltonian cycle in Fig. 2.4(b) does not contain an Eulerian tour because it has two vertices of odd

degree. In general, however, a graph may be both Eulerian and Hamiltonian because these proper­

ties are not mutually exclusive.

A graph G = (V, E) is a subgraph of G if V £ V and E Q E . Two vertices in G are said to

be connected if there exists a path between them in G . An undirected graph G is connected if there

exists at least one path between every pair of vertices in G . A subgraph G = (V, E) of G is called

a connected component of G if it is connected and there is no other connected subgraph of G that

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains G . A graph is two-edge connected if it has at least two edge-disjoint paths between every

pair of vertices. Two paths are edge disjoint if no edge is a member of both paths. A graph is two-

vertex connected or biconnected if it has at least two vertex-disjoint paths between every pair of

nodes. Figure 2.5 shows an example of a two-vertex connected and two-edge connected graph.

Connectivity is an important aspect in the study of survivable transport networks. Two-edge

connectivity, for example, is a necessary condition for a network to be able to survive any single

edge (span) failure. Likewise, two-vertex connectivity is required to able to survive any single span

and vertex (node) failure.

An acyclic graph is one that contains no cycles. A tree is a connected acyclic graph. A forest is

a set of trees. Examples of a tree and forest are shown in Fig. 2.6(a) and Fig. 2.6(b), respectively.

(a) Two-vertex-connected Graph (b) Two-edge-connected Graph

Figure 2.5. Examples of a (a) two-vertex connected graph and (b) two-edge
connected graph.

o
(a) Tree (b) Forest

(c) Spanning tree in a graph (d) Spanning forest in a graph

Figure 2.6. Examples of a tree, forest, spanning tree and spanning forest.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a connected, undirected graph there is at least one path between every pair o f vertices. The

absence of a cycle in a connected, undirected graph implies that there is exactly one path between

every pair of vertices. A spanning tree is a subgraph of G that contains every vertex in G . If G is

not connected, the set of trees for each connected component is called a spanning forest. Examples

of a spanning tree and spanning forest are shown in Fig. 2.6(c) and Fig. 2.6(d), respectively.

An important problem in the design of ring-based transport networks is finding the set of cycles

within a network graph. This is because each cycle represents a node-disjoint (and span-disjoint)

fibre route over which a ring can be created. Note that if the fibre route is not node-disjoint, then

there is at least one single point of failure in the ring. An interesting property o f an undirected graph

is that the entire set of all cycles can be constructed from a fundamental set o f cycles of the graph.

That is, a fundamental set of cycles completely determines the cycle structure of a graph because

every cycle can be created from a combination of fundamental cycles. A set o f fundamental cycles

can be found from a spanning tree {V, 7} of a connected undirected graph G = (V , E) . Any edge

in E but not in T will create exactly one cycle when added to T . Because every spanning tree of

G has |V] — 1 edges, the number of fundamental cycles is |F! - (V) + 1 [MaD76]. Let

F = {C,, C2, . -, C|£| _ |v] + i) be a fundamental cycle set of G . Then any cycle in G can be written

as ((Ci(© Ci2) © ...) © Cf-f, where © is the symmetric difference operation. For example, Fig 2.7

shows a graph and the set of fundamental cycles obtained from the spanning tree o f the graph (in

boldface).

g

C

(a) (b) (c)

Figure 2.7. An example of a fundamental set o f cycles, (a) A graph G and spanning tree T
(in boldface), (b) the fundamental cycle set from T, (c) generating another
cycle from two fundamental cycles (adapted from [RND77]).

The cycle in Fig. 2.7(c) is formed by the symmetric difference of cycles C i and C2, i.e.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ct © C2 - Note that not every combination o f fundamental cycles forms a cycle. For example, the

symmetric difference of cycles C\ and C4 comprises two disjoint cycles. The fact that all cycles can

be represented from any basis set of fundamental cycles is exploited by some ring design methods.

2.4 Combinatorial Optimization
The majority of problems considered in this thesis belong to a class of problems known as com­

binatorial optimization problems. A combinatorial optimization problem is a decision problem that

involves selecting discrete alternatives, i.e. where the solution is a set or a sequence of integers or

other discrete objects [Kno89]. Two properties of combinatorial optimization problems are:

(i) the number of feasible solutions usually increases rapidly as the size of the input increases.

(ii) it is easy to construct a feasible solution.

A classic example of a combinatorial optimization problem is the Travelling Salesman Problem

(TSP). This problem involves finding a tour that visits n cities where the travel time between each

of the pairs of cities is known and the objective is to minimize the total travel time. Like many com­

binatorial optimization problems, TSP is easy to state but difficult to solve because there are so

many alternatives to consider. A naive approach to solving an instance of this problem is to list all

possible solutions, evaluate their objective functions and pick the best solution. If n is large, how­

ever, evaluating all possible solutions quickly becomes impractical because the number of possible

tours is (n — 1)!. For example, a TSP with only 20 cities has more than 1017 possible tours. Even if

one could evaluate a million tours per second it would take over 3.8 millennia to enumerate all pos­

sible tours. And this is a relatively small TSP problem!

Another classic combinatorial optimization problem is the Knapsack Problem. Here a set of

items is available to be packed into a knapsack with capacity c units. Each item i has a utility u -t and

requires w{ units of capacity. The problem is to determine the subset of items I that maximizes the

total utility without exceeding the capacity of the knapsack. Both the TSP and the Knapsack prob­

lem are closely related to several subproblems in ring network design that are discussed in subse­

quent chapters.

2.5 Mathematical Programming
Combinatorial optimization problems belong to broader class of problems known as mathemat­

ical programming problems. The term “programming” is used here to describe the planning or

scheduling of activities in a large organization and is not to be confused with “computer program­

ming.” Mathematical programming problems consist of three main components: a set of unknowns

or decision variables, an objective function and a set of constraints. A decision variable is the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amount or level of each activity to t 3 determined. The objectivejunction is a function of the decision

variables (e.g., cost, profit) that we want to either minimize or maximize. And the constraints are a

set of equations that restrict the decision variables to values that would be considered an acceptable

or feasible solution to the problem. Mathematical programming problems can be expressed in alge­

braic form as follows:

Minimize: f(x) (2.1)

Subject to: g f x) > b i , z = 1, m (2.2)

hjix) = cj, ; = (2.3)

where x is a vector of decision variables, fix) is the objective function and gfx) and hpc) together

with b4- and cy-, respectively, form the system o f constraints. Here the sense o f optimization is min­

imization but it could just as easily have been maximization with obvious changes to the objective

function and constraints. Similarly, the inequality in any of the constraints in Eq. (2.2) can be re­

versed simply by multiplying both sides of the equation by minus one.

If the objective function and constraints are restricted to linear functions and the decision vari­

ables are allowed to take fractional (continuous) values, the problem is called a linear program (LP)

and the process of solving it is called linear programming. In this case, the coefficients on the left-

hand side of the system of constraints is called the coefficient matrix. Many combinatorial optimi­

zation problems can be formulated as LPs in which some or all of the decision variables are restrict­

ed to whole number, or integral, values. An LP with all integer decision variables is called an integer

program (IP). An LP problem with a combination of linear and continuous decision variables is

called a mixed integer program (MIP). The Knapsack Problem can be expressed by the following

IP:

Maximize: £ zz(• Xt (2.4)
i e /

Subject to: ^ wf ■ Xt <c (2.5)
ie I
X(<= {0, 1}, Vz € / (2.6)

where Xi is a binary decision variable that equals one if item z is packed into the knapsack and zero

otherwise. In the above formulation, we use lower case letters with and without a subscript for mod­

el parameters such as utility, weights and capacity and an upper case letter with subscript for the

decision variables. An upper case letter is also used to denote the set of items but it is easy to dis­

tinguish between the two from the context This convention for labelling decision variables, sets and

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameters is used throughout the remainder of this thesis.

The formulation of the Knapsack Problem is a fairly straight-forward. Formulating some com­

binatorial optimization problems as IP models, however, requires a fair bit of ingenuity. One disad­

vantage of IP models is that the time required to find the optimal solution may become excessive as

the problem size increases. In some special cases, however, the optimal solution to an IP problem

can be found from the LP version (or LP-relaxation) of the problem in which the integrality con­

straints on decision variables are relaxed. This is significant because LP problems can be solved

much more quickly than IP problems. It can be shown that if the coefficient matrix of an IP problem

is totally unimodular, the decision variables of its LP-relaxation always take on integer values

[NeW99]. A matrix is totally unimodular if the determinant of each square submatrix of the coeffi­

cient matrix is equal to 0 ,1 , or -1. If the coefficient matrix is not totally unimodular, LP-relaxations

can sometimes provide tight lower bounds on the optimal solution. Either way, IP (and LP) models

are quite significant for practical problems and research use because of the availability of commer­

cial optimization software. The formulation of planning problems as LP/EP models also provides a

compact and precise way of representing and understanding the nature of many problems of interest.

2.6 Heuristics
In many real-world situations, mathematical programming techniques may require such a long

time that they cannot be used in practice. For example, in large-scale network planning problems it

may be necessary to solve some subproblems many thousands of times and it may not be practical

to find optimal solutions for each instance of the subproblem. In these cases, a heuristic is often used

to find an approximate solution. A heuristic is a method that usually finds a good solution quickly

but doesn’t necessarily guarantee that the solution found is optimal, or even feasible. In addition,

many heuristics do not state how close a particular solution is to an optimal one. Most heuristics are

problem-specific and are ineffective for other problems. A meta-heuristic is a method that controls

or guides several simpler heuristics to produce a solution for a large-scale problem. In general, the

basic structure of a meta-heuristic can usually be applied to several classes of problems by changing

some of the underlying heuristics.

Heuristic methods can be classified into several broad categories. Two common heuristic ap­

proaches are the greedy constructive method and the local neighbourhood search. A greedy con­

structive heuristic (or greedy heuristic) is an iterative procedure that creates a solution one element

at a time. At each iteration, the locally best choice of element is added to the solution. In general,

making the locally best choice at each iteration does not guarantee that an optimum solution will be

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found. Consider, for example, the game of chess where the optimal solution is to capture your op­

ponent’s king. A simple heuristic is to capture as many pieces as possible. In this context, capturing

a pawn is like winning a battle but such a move may cause you to lose the war. In fact, a common

strategy is to sacrifice a pawn in order to capture the other player’s king. This example, taken from

[Hu82], is a clear case where a greedy heuristic is not optimal.

There are, however, other examples where the greedy approach is optimal. One example, is

Prim’s algorithm [Hu82], which produces a minimum weight spanning tree by adding at each iter­

ation the edge of least weight that does not create a cycle. It can be shown that a greedy heuristic is

optimal in those cases where the solution space is convex. Roughly speaking, a set is convex if all

line segments joining pairs o f its points are in the set. Most greedy heuristics, however, are based

on human intuition and are not so easily analysed.

A local neighbourhood search begins with an initial solution and searches a defined neighbour­

hood for a better solution. A neighbourhood is a set of solutions that can be reached from the current

solution by a simple operation called a move. Examples of a move include adding a new element to

the solution or removing an existing element from the solution. A move may also involve swapping

an object in the solution with one that isn’t or changing the order of the objects within the solution

(e.g., in a scheduling problem). If a better solution is found within the neighbourhood of the current

solution, the process starts again at the new solution. This continues until no further improvement

can be found. The final solution is a local optimum with respect to its neighbourhood but may not

be a globally optimum solution.

One disadvantage of the local neighbourhood search is it may get “stuck” in a local optimum.

Some alternatives for escaping a local optimum are to expand the local neighbourhood by consid­

ering more involved moves o r to start the whole process from a different initial solution. Another

alternative is to allow “uphill moves”, which allow the search to escape a local optimum in the so­

lution space. There has to be some restrictions on such moves otherwise the entire solution space

may be explored. Two popular methods that adopt this approach are Simulated Annealing and Tabu

Search. These methods are discussed in further detail in subsequent chapters.

2.7 Computational Com plexity
When comparing both optimal and heuristic algorithms it is often useful to consider their com­

putational complexity in terms of two critical resources: time and memory space. The time complex­

ity of an algorithm measures the rate at which its running time grows as a function of the problem

size. The “size” of a problem is generally the number of inputs processed. For example, the size of

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a TSP is typically measured by the number of cities in the tour. Although running time is usually

the most important constraint, the memory space requirements (e.g. main memory and disk space)

may also be of concern. The rate at which an algorithm’s memory space grows as a function of the

problem size is called its space complexity.

There are many factors that influence the running time (and memory requirements) of an algo­

rithm. These include the speed of the computer, the programming language and the skill of the pro­

grammer. The input data can also have an impact on the running time. Consider, for example, the

problem of sequentially searching a list of length n for a particular value x. In the best case, the value

x is in the first position in the list and only one value is examined. In the worst case, the value x is

in the last position in the list and all n values must be examined. If we run the search on many dif­

ferent problem instances, the average number of values examined will converge to nJ2. We call this

the average case performance of the algorithm.

O f primary concern when estimating the run-time performance is the number of basic opera­

tions performed. A basic operation is an operation whose cost does not depend on the value of the

operands. For example, the addition of two integers is a basic operation. Complexity can be deter­

mined empirically or theoretically. Empirical analysis is used to predict the average-case behaviour

of the algorithm by running it on a suitable number of problem instances and observing the running

time. Theoretical analysis is frequently used to determine worst-case behaviour. The complexity of

an algorithm is often expressed using a special notation, called big-Oh notation. This notation ex­

presses an upper bound on the algorithm’s mnning time within a multiplicative constant. For exam­

ple, if the upper bound on an algorithm’s worst-case running time is f (n) , then we would say that

the time complexity of the algorithm is “in the set 0(f(ri)) in the worst case” [Ree98]. If the actual

running time of an algorithm is denoted by g{n) and f(n) is some expression for the upper bound,

then the complexity of the algorithm can be expressed mathematically as follows:

g(n) = 0(f (n)) (2.7)

if and only if there exists positive constants c and n0 such that

|g(n)| < c * /(n), Vn > nQ (2.8)

Constant hq is the threshold value for the problem size beyond which equations (2.7) and (2.8)

are valid. For example, if the time complexity of an algorithm is either experimentally or theoreti­

cally observed to quadruple when the problem size doubles, then we would say the complexity of

the algorithm is 0(n). An algorithm is said to be efficient if the upper bound on running time f (n)

is a polynomial function of n. Such an algorithm is also called a polynomial algorithm. Prim’s al-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gorithm for the minimum weight spanning tree problem is an example of an efficient algorithm be­

cause the computing effort grows as a low-order polynomial of the problem size. For the TSP,

however, the time complexity is an exponential function of the problem size, even for the best

known algorithms. Such algorithms are called exponential algorithms.

2.7.1 Classes PandNP
An important question in the development of any algorithm is whether the problem at hand can

be solved in polynomial time. In complexity theory, a problem for which a polynomial time algo­

rithm is known to exist is said to be in class P. The problems in class P also belong to a broader class

of problems called NP problems. NP is an abbreviation for non-deterministic polynomial. Techni­

cally, NP is the class of all problems that can be solved in polynomial time on a non-deterministic

computer [GaJ79]. A non-deterministic computer is a hypothetical computer that can evaluate an

unbounded number of “guesses”, each of which can be checked in polynomial time. Strictly speak­

ing, problems in class NP are decision problems only. The answer to a decision problem is either

“yes” or “no”. For example, the “decision version” of the TSP asks whether there is a tour of length

L, rather than asking “what is the length of the optimal tour?” The later question is referred to as the

“optimization” version of the problem. Note that we can convert an optimization problem to a de­

cision problem and solve it using a binary search method.

A problem Px is reducible to problem Pi if it can be transformed into Pi in polynomial time.

Because the class of instances of P2 contains Pj, P2 is at least as hard to solve as Pj. An NP-com-

plete problem is a problem that is in NP and every other problem in NP can be reduced to it. If

is NP-complete and Lj can be reduced to L^, then L2 is also vVP-complete. An optimization problem

is NP-hard if its decision version is NP-complete.

An open question that has eluded computer scientists for over thirty years is whether P = NP.

To date, the answer is still not known but it has been shown that if there is a polynomial algorithm

for at least one NP-complete problem, then every NP-complete problem is solvable in polynomial

time. Because all attempts to prove that P = NP have failed and no exact polynomial algorithm has

yet been found for any NP-complete problem, the evidence strongly suggests that no such algorithm

exists. From a practical point of view, if a particular problem is known to be NP-complete (or NP-

hard), the use of a heuristic algorithm is strongly justified because it is unlikely that an exact algo­

rithm can be found for the problem. This practical implication is what motivates the use o f heuristics

in this thesis.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Transport Networks

3.1 Introduction
This chapter provides a tutorial introduction to transport network technology, concepts, termi­

nology and other background information that are relevant to the research presented in this thesis.

The chapter opens with a broad definition of a transport network and a classification of the various

types of transport networking technology. Two of these technologies are then described in detail

with emphasis on the most relevant attributes and concepts. The remainder of the chapter discusses

survivable network architectures and, in particular, survivable ring architectures.

3.2 Transport Networking Technology
A transport network is a collection of high-capacity transmission, multiplexing and switching

facilities that conveys a set of demands between nodes in a telecommunications network. A

demand is defined here as the transmission capacity required between a pair of nodes in a network.

Like Wu [Wu92], we use the general term demand rather than traffic because traffic is often asso­

ciated with the volume of calls in a telephone network (e.g., measured in erlangs). A transport net­

work may also transfer network control information used for operations, maintenance and

provisioning purposes. The nodes in the network are usually located at telephone switching offices,

commercial buildings or other locations where demands originate and terminate. In general,

demands (and network control information) may be either analog or digital signals and may require

either unidirectional, bidirectional or asymmetric transmission, depending on the type of service

supported. Point-to-multipoint transmission may also be required for some types of services (e.g.,

broadcast video). Unless otherwise noted, all demands are assumed to be point-to-point and bidi­

rectional throughout the remainder of this thesis.

Historically, transport networks were designed to carry telephone traffic between switching

centres in the Public Switched Telephone Network (PSTN). Over the years, these networks have

evolved to support a broad range of services (e.g., voice, data, video). These services may be

served either directly or indirectly through service layer networks. Direct services are usually pro­

visioned on a dedicated (or leased-line) basis and are typically used for applications such as broad­

cast video, high-speed computer-to-computer communications and private networks. Services that

are supported indirectly through service layer networks include plain old telephone, cellular tele­

phone, paging, video conferencing and data communications. Service layer networks differ from

transport networks in that they are usually designed for a specific type o f service and typically con­

tain user signalling and control functions for setting up and tearing down calls or connections.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Examples of service layer networks include the PSTN, X.25, Frame Relay, the Internet and Asyn­
chronous Transfer Mode (ATM). In contrast, transport networks provide bulk transmission and

routing of individual and aggregate information streams independent of the type of end-user serv­

ices supported. For this reason, they are sometimes referred to as “backbone” networks.

Conceptually, transport networks may be further divided into logical and physical layers

[Wu92]. The logical layer is responsible for end-to-end routing of information streams and the

physical layer consists of fibre optic cables, active and passive photonic devices, signal regenera­

tors, terminal electronics and other equipment that provides the foundation for the higher network

layers. Figure 3.1 shows a layered view of the service and transport networks. Note that this view

should not be confused with the seven-layer reference model of Open Systems Interconnect (OSI)

developed by the International Standards Organization (ISO) [BeG92].

Service Layer

Logical Layer

Physical Layer

Transport Network

Figure 3.1. Layering of service and transport networks.

As traditional transport network and data communications technologies converge, the distinc­

tion between transport and service layer networks is blurring. For example, the Internet backbone

network is now rivalling traditional transport technology in terms of switching capacity and trans­

mission rates. Backbone Internet Protocol (IP) routers with Terabit/second switching fabrics and

high-speed optical interfaces are now commercially available, making it possible to construct

multi-service networks without traditional transport technology [Cis99]. Similarly, signalling and

control functions have been proposed for transport networks to allow high data-rate connections to

be established and dropped as demand dictates [Mac91].

Transport networking technology can also be classified according to the type of switching,

multiplexing and transmission used within the network. As shown in Fig. 3.2, there are two basic

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

types of switching that may be used in transport networks: packet-switching and circuit-switching.

TDM

Digital DigitalAnalog

Circuit-Switching

FDM/TDM/WDMStatistical Multiplexing

Packet-Switching

Transport Network Technology

Figure 3.2. Classification of transport networks.

In a packet-switched network, the information flowing from one node to another is broken

down into a sequence of packets (or cells) at the originating node before being transmitted over the

network to the destination node(s). When a packet arrives at an intermediate node, it waits in a

queue to be transmitted over the next transmission system enroute to its destination. At the destina­

tion node, the packets are reassembled to reconstruct the original information stream. Because the

packets occupy the full capacity on a transmission system only while they are being transmitted,

the transmission capacity can be shared over time with many other connections (or sessions). This

is referred to as statistical multiplexing [BeG92]. Packet switching is particularly well suited for

data sessions that are characterized by short bursts of high activity followed by long periods of

inactivity. One disadvantage of packet switching is that queuing delays at the switching nodes are

difficult to control. This can result in buffer overflow and loss of data.

The other basic type of switching that may be used in transport networks is circuit-switching.

Circuit-switching is the primary method of switching used in traditional transport networks. For

example, SONET and WDM optical networks (discussed later) are “circuit-switched” in the strict

sense. In a circuit-switched network, each connection is allocated a given amount of transmission

capacity (usually in both directions) between the origin and destination node. That is, on each

transmission (and switching) facility along the path from the origin to the destination node, a por­

tion of the capacity is dedicated to the connection. Therefore, once the path (or circuit) has been

established, the connection has a guaranteed transmission capacity through the network for its

entire duration. Unlike packet-switched networks, the capacity allocated to individual connections

cannot be used by other connections during inactive periods. Furthermore, the sum of the capacity

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allocated to all paths on a given transmission facility cannot exceed its total capacity. Thus, if a

transmission facility is fully allocated it cannot accommodate any new connections. If no other

paths with the required capacity can be found through the network, a new connection request must

be rejected or blocked. In contrast, an overload situation in a packet-switched networks results in

an increase in queuing delays and potential loss of data due to buffer overflows.

Circuit-switched transport networks usually differ from circuit-switched (service-layer) net­

works such as the PSTN in several important ways. First, the duration (i.e., holding time) of a

transport network connection is generally on the order months or years, as opposed to minutes for

a typical PSTN call. For this reason, transport network connections are often referred to as “semi­

permanent” or “nailed-up” connections. In addition, the data rate of transport network connections

typically ranges from 1.5 Mbps up to 155 Mbps or more, whereas the data rate for a PSTN call is

64 kbps. In fact, because the term “circuit” is usually associated with a 64 kbps PSTN call, trans­

port networks are sometimes referred to as “channel-switched” networks to distinguish them

[Min91]. Lastly, PSTN circuit switches contain sophisticated call processing hardware and soft­

ware, whereas switching facilities in transport networks are usually much more rudimentary.

Often, they consist of nothing more than manual patch panels or, at best, electronic versions with

simple cross connection management capabilities.

The most common forms of multiplexing used in circuit-switched transport networks are fre-

quency-division multiplexing (FDM), time-division multiplexing (TDM) and wavelength-division

multiplexing (WDM). In FDM, several message signals share the same physical channel by divid­

ing the available channel bandwidth (in Hz) into non-overlapping frequency bands and assigning a

separate band to each message signal. Analog FDM transmission systems were widely used in the

PSTN until about the early 1980s. The North American FDM hierarchy (also known as the Bell

System) used a modular FDM structure where up to 13,200 voice (or voiceband data) channels

could be multiplexed for transmission over coaxial cable. Using a system of multiple tube pairs,

the L5E carrier system (circa 1978) could carry up to 10 such FDM signals for a composite capac­

ity of 132,000 voice channels [Min91, pp. 3]. Even today, the capacity this system is impressive.

Since the 1980s, analog FDM transmission systems have been largely replaced by digital TDM

transmission systems using fibre optic technology. Fibre optics offers a number of advantages over

other media such as metallic cables and microwave radio. These include higher capacity, higher

reliability, longer repeater spacing, smaller size, less weight, immunity to electro-magnetic inter­

ference and lower system costs [Min91, pp. 334]. In a TDM system, several message signals are

transmitted over the same channel by dividing the time frame into separate time-slots, one time-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slot per message signal. In comparison with analog FDM systems, digital TDM systems require

much simpler circuitry and are immune to crosstalk due to intermodulation distortion. They can

also operate at lower signal-to-noise ratios because the digital signals can be regenerated at each

repeater site, unlike analog signals, which accumulate noise along the entire path from origin to

destination. Although digital signals are subject to other transmission impairments such as jitter

and wander, digital transmission systems are much easier to design and maintain than their analog

counterparts and, therefore, have become the predominant mode of transmission in telecommuni­

cations networks today. The two most common TDM standards for transport networking are the

plesiochronous digital hierarchy (PDH) and the synchronous optical network (SONET) standard.

These standards, particularly the SONET standard, are most relevant to this thesis and are

described in detail in Sections 3.4 and 3.5.

WDM technology is now being deployed in transport networks to satisfy growing demand for

transport capacity, due largely to the exponential growth in Internet traffic. In WDM systems, sev­

eral optical carrier signals share the same fibre by dividing the optical bandwidth into non-overlap­

ping channels and assigning each channel to a particular optical carrier signal. This is essentially

the same as FDM, except at optical frequencies (i.e., wavelengths in the 1330 - 1550 nm range).

For this reason, WDM is sometimes called optical frequency-division multiplexing [Kam93]. In

the literature, the optical carrier signals are usually referred to as wavelengths (or Xs). The main

drivers for the deployment o f WDM systems are the rapid depletion of fibre capacity in long-haul

networks (due to demand growth) and the favourable economics of WDM systems relative to other

alternatives, such as installing new fibre plant or replacing existing TDM systems with new higher

data rate TDM systems.

Although the capacity of early point-to-point WDM systems was limited to 2 or 4 Xs, systems

capable of carrying up to 80 Xs are now commercially available and systems with over 1,000 Xs

have been demonstrated. While the majority of WDM systems that have been deployed thus far are

point-to-point WDM systems, optical ADMs (OADMs) and optical cross-connects (OXCs) are in

field trials and the early stages of deployment. These network elements are now being used to cre­

ate fully optical networks in which wavelengths are routed and switched in much the same way as

time-slots are in SONET networks.

Today packet-switching is mostly used in service layer networks whose “logical bit pipe” con­

nections are provided by circuit-switched transport networks such as SONET. With data now

exceeding voice as the dominant form of traffic [Rya98], packet-switching is likely to play a more

prominent role in future transport networks. For example, several proposals have been made to

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

carry ATM or IP traffic directly over optical networks, thereby eliminating the need for an inter­

mediate SONET layer [DPW99]. Although packet-switched optical network elements have been

proposed [CCR99], evolving optical transport network standards are circuit-switched and closely

resemble SONET network architectures. Indeed, there may always be a need or an advantage for

circuit-like logical constructs in the transport layer. See [McB98] for a discussion of optical trans­

port network architectures and emerging standards.

3 3 Generic Functional Architecture
Although different multiplexing and transmission technologies are used to implement the cir­

cuit-switched technologies described in the previous section, the basic routing and switching func­

tions that they provide are essentially the same. The main difference is the basic unit used for

measuring and allocating capacity. In SONET, for example, the basic unit of allocation is a time­

slot or STS-n channel, whereas in optical networking it is a wavelength (or to be precise, an optical

channel with a specified bandwidth). Of course, there are other important differences between

these technologies. For example, SONET networking involves digital transmission engineering,

whereas optical networking involves analog transmission engineering. But from a functional per­

spective, these networking technologies can be modelled in a generic fashion using the same

abstract concepts [ITU95]. This has several implications. First, because the basic functions are

equivalent in nature, the same types of network elements and architectures have been implemented

across the range of technologies. For example, survivable ring architectures that where first imple­

mented in SONET, are now being considered for the optical network layer [McB98]. Second, the

design methods discussed in following sections of this thesis are broadly applicable across all net­

work layers. For convenience, SONET terminology is used throughout the remainder of this thesis,

unless otherwise noted.

In practice, transport networks are laige and complex and usually consist of several different

networking technologies. This is due in part to the evolutionary process through which new trans­

port technologies are introduced and older ones are phased out. It also reflects the fact that differ­

ent technologies may be required to best fulfil the wide range of service requirements. For

planning and administrative reasons, it is usually convenient to decompose transport networks into

separate hierarchical layers by the type of transport technology. Figure 3.3 illustrates this layered

view of the transport network.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IP

ATM

PDH

SONET/SDH

WDM

Fibre

Figure 3.3. Layered view of a transport network (client/server association).

The adjacent layers in the network form client-server relationships, in which server layers per­

form signal multiplexing, transport and routing functions for one or more client layers. For exam­

ple, the SONET layer can accept payloads directly from either the PDH, ATM or IP layers with the

appropriate tributary interfaces. In turn, the resource requirements from the SONET layer become

payloads for the WDM or fibre layers.

Each network layer can also be partitioned horizontally into tiers or subnetworks according to

geographic and/or administrative boundaries, as illustrated in Figure 3.4. This further facilitates

design and operation and allows for different survivability schemes to be implemented autono­

mously. In practice, this partitioning usually reflects the differences in demand distribution, cost

structures and topological layout within a network layer. For example, it is common practice to

partition a network layer into separate access, metropolitan inter-office (or metro) and core (or

long-haul) subnetworks. In an access subnetwork, most demands originate at remote switching

offices and customer premises and terminate at one or more main switching offices (or hubs). A

metro subnetwork connects main switching offices (or other points o f concentration) within a met­

ropolitan area and demands are typically more uniformly distributed. Because span distances in

access and metro subnetworks are typically less than 25 to 50 km, nodal equipment costs (e.g.,

ADMs, DCSs) usually dominate total network costs. Long-haul subnetworks, on the other hand,

usually connect metropolitan areas on a national or international scale. In these networks, distance

related costs such as fibre material and installation, amplifier and regenerator costs typically domi­

nate the total cost because span distances are so much greater.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

City CCity B
City A

CityE

City FLong-haul

Office 1 Office 2

Office 3

Office 5.
Metropolitan

Site 1

Office 5Site 2 Site 3

Site 4 Site 5Access

Figure 3.4. Partitioned view of a transport network.

Although the concepts of layering and partitioning are not the main focus of this thesis, it is

important to mention them here because they simplify the design process. That is, it is simpler to

design (and operate) each subnetwork within a layer than to design the entire network as a single

entity. The multi-layer design is an important area of research but is beyond the scope of this the­

sis. For a discussion of multi-layer design issues see [Dem99].

3.4 Plesiochronous Digital Hierarchy
The first TDM system to achieve widespread use was the T-l carrier system, developed at Bell

Labs in 1962 [Min91]. Initially, these systems were deployed in metropolitan areas to support tele­

phone trunks between switching offices. T-l carrier systems use pulse code modulation (PCM) to

convert speech from analog to digital form. In this process, the voice signal is first passed through

a 3.4 kHz lowpass filter and sampled at 8 kHz. Then each sample is quantized into one of 256 lev­

els using a logarithmic scale and encoded into an 8-bit codeword. The resulting 64 kbps digital sig­

nal is called a Digital Signal-0 (DSO) in the plesiochronous digital hierarchy (PDH). A T-l

multiplexer (or channel bank) combines twenty-four DSOs by byte-interleaving the 8-bit code­

words from all 24 voice channels every 12S ^seconds. A single framing bit is also added to each

frame of 24 coded voice signals (192 bits). The combined transmission rate of the aggregate signal

is 193 bits every 125 jiseconds or 1.544 Mbps. This signal is called a Digital Signal-1 (DS1).

A similar PCM transmission system, known as E-l carrier, was also developed in Europe. In

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an E-l carrier system, the basic signal rate is also 64 kbps but a different method is used to convert

each voice sample to an 8-bit codeword. Thirty voice channels (i.e., EOs) are multiplexed by byte-

interleaving the 8-bit samples from each channel and an additional 16 bits of overhead are then

added for framing and signalling. Because the duration of each 256-bit frame is 125 ^seconds (i.e.,

8,000 samples per second), the data rate of the aggregate “E -l” signal is 2.048 Mbps.

As higher digital transmission rates became possible, a set of standard signal rates were devel­

oped in North America and Europe for digital signal multiplexing. Table 3.1 lists the standard sig­

nal rates and multiplexing ratios for the North American PDH. The multiplexing ratio defines the

number of lower-speed tributary signals that can be multiplexed into each digital signal. For exam­

ple, a DS2 signal is constructed by byte-interleaving four DS1 tributary signals and adding some

additional overhead bits. Seven DS2 signals are then multiplexed to form a DS3 signal and so on.

Initially, these signals were carried over twisted copper pairs, coaxial cable and microwave radio.

Interfaces for early fibre optic transmission systems were developed later.

Table 3.1: North Am erican Plesiochronous Digital Hierarchy

Signal
Level

Data Rate
(Mbps) Composition

DSO 0.064 -

DS1 1.544 24 DSOs

DS2 6.312 4 D S ls

DS3 44.736 7 DS2s

DS4 274.176 6D S3s

DS5 560.160 2 DS4s

In both PDH hierarchies, pulse-stuffing is used at the second multiplexing stage (e.g., DS2)

and higher, to accommodate differences in the clock frequency and phase of tributary signals.

Pulse-stulfing works by inserting additional bits (some fixed, some inserted adaptively to match

average payload clock to the plesiochronous carrier signal clock) into the aggregate signal to meet

its nominal signal rate. These bits are then removed at the far end when demultiplexing the tribu­

tary signals. Because the pulse-stuffing mechanism can tolerate only slight deviations from the

nominal tributary rate, the clock frequency of these tributaries are plesiochronous, which means

“almost synchronous.” The term asynchronous is also used to describe both digital hierarchies but

is less precise. One disadvantage of pulse-stuffing is that the aggregate signal must be completely

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demultiplexed to access (i.e., add or drop) individual tributary signals. For example, to drop a DS1

from a DS3, the entire DS3 signal must undetgo two stages of demultiplexing, first to the DS2 rate

and then to the DS1 rate. Once the desired signal has been dropped, the remaining DSls must be

re-multiplexed back up to the DS3 level. This adds to the complexity and cost of multiplexing

equipment Another limitation is the lack of a uniform set of functions for network performance

monitoring, fault detection, provisioning and other network management features and capabilities.

These limitations were among the motivating factors for the development of the new SONET

standard, discussed in the next section.

3.5 Synchronous Optical Network (SONET)
The Synchronous Optical Network (SONET) standard was developed in the late 1980s in

North America to address limitations of earlier PDH systems, realize higher data rates possible

with fibre optic transmission media and provide a standard optical interface signal specification to

facilitate interconnection of equipment from different vendors [Min91]. The international equiva­

lent of SONET is the Synchronous Digital Hierarchy (SDH), which is specified by the ITU-T

[ITU93]. For simplicity, SONET terminology is used in the remainder of this thesis.

The basic building block in the SONET signal hierarchy is the synchronous transport signal -

level 1 (STS-1) [ANS95a]. The STS-1 frame is usually depicted as a matrix of nine rows by 90 col­

umns of 8-bit bytes, as shown in Fig. 3.5. The bytes are transmitted in order from left to right

beginning with the first row. The entire frame is transmitted in 125 ps. With a total of 810 bytes

(6480 bits) and a frame duration of 125 ps, the STS-1 data rate is 51.840 Mbps. The STS-1 frame

is divided into two portions: transport overhead and a synchronous payload envelope (SPE). Trans­

port overhead occupies the first three columns of the frame and is further divided into line and sec­

tion overheads, which provide signal framing, line identification, performance monitoring, and

voice and data channels (used for provisioning and maintenance). The SPE occupies the remaining

87 columns by nine rows (783 bytes). The first column (9 bytes) of the SPE is used for path over­

head functions such as end-to-end performance monitoring and path identification. The other 86

columns (6192 bits) are allocated to the payload signal(s). The maximum data rate of the payload

signal(s) is 49.536 Mbps.

Unlike earlier PDH systems that use pulse stuffing for synchronization, SONET uses a pointer

mechanism to identify the start of the SPE within the STS-1 frame. The STS-1 pointer is contained

in the transport overhead and indicates the offset between the position of the transport overhead

and the SPE. This approach provides the ability to adjust for slight variations in the frequency of

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STS-1 payloads and to access the STS-1 payload directly from a higher rate signal without demul­

tiplexing the entire signal. A similar pointer mechanism is used to access virtual tributaries (dis­

cussed below) within an STS-1 SPE. Single-step multiplexing reduces the number of components

in an end-to-end path, which improves reliability and reduces the complexity and cost of multi­

plexing equipment It also allows efficient and cost effective implementation o f survivable ring

architectures, which are discussed in detail in Section 3.7.

3 columns — I

90 columns

87 columns

3 x 9 bytes 87 x 9 bytes
(27 bytes) (783 bytes)

9
rows

Transport
Overhead

Synchronous Payload Envelope (SPE)

Figure 3.5. SONET STS-1 frame.

An STS-1 SPE can be used to carry a single DS3 (44.736 Mbps) o r it may be subdivided

into smaller envelopes to provide backwards compatibility with lower bit rate PDH signals. For

example, a DS1 signal can be carried within an STS-1 SPE by mapping it into a SONET

unit called a virtual tributary-1.5 (VT1.5). An STS-1 SPE can carry up to 28 VT1.5s. Several

VT mappings have also been defined for other sub-DS3 signals.

Higher rate SONET signals are obtained by byte-interleaving a whole number of STS-ls.

Services that require multiples of the STS-1 rate (e.g., ATM) can be transported as a unit by con­

catenating several STS-1 signals together. Higher rate signals can be comprised of any combina­

tion of lower rate individual STS-ls or concatenated STS-Nc signals. For example, an STS-12

signal can be created from 12 STS-1 signals or 4 STS-3c signals or any other combination of STS-

1 and STS-3c signals that equals STS-12. Prior to transmission, the STS-N signal is scrambled and

converted to a corresponding optical carrier signal (OC-N) via electrical-to-optical conversion.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2 lists the most common SONET signal levels and their data rates.

Table 3.2: SONET Digital Signal Hierarchy

Signal
Level

Optical
Signal

Data Rate
(Mbps)

STS-1 OC-1 51.84

STS-3 OC-3 155.25

STS-12 OC-12 622.08

STS-24 OC-24 1244.16

STS-48 OC-48 2488.32

STS-192 OC-192 9953.28

As shown in Figure 3.6, SONET overhead and transport functions are divided into three lay­

ers: section, line and path. The section overhead provides framing and performance monitoring for

the STS-n signal and local voice and data communications channels. Network equipment that ter­

minates the section overhead is called section terminating equipment. This includes regenerators,

terminal multiplexers, add/drop multiplexers and digital cross-connect systems.

Regenerators are used at intermediate points along the line to extend the transmission distance.

This is done by converting the optical signal to the electrical domain, retiming and reshaping the

STS-N signal, and then retransmitting it in the optical domain. Optical amplifiers may also be used

between regenerators to increase the power level of the optical signal without optical-to-electrical

(O/E) conversion and further extend transmission distance. Terminal multiplexers, add/drop multi­

plexers and digital cross-connect systems are described in detail below.

The line overhead provides performance monitoring of individual STS-ls, SPE pointer adjust­

ment, and voice and data communications channels for OAM&P. Network equipment that termi­

nates the line overhead is called line terminating equipment. The path overhead is transported

along with the SPE until it is demultiplexed. A SONET path is a network connection at a given

data rate between the point where the SPE is assembled and the point where it is disassembled.

SONET equipment that originates/terminates the SPE and the path overhead is called path termi­

nating equipment. Line and path terminating equipment can be any SONET equipment except a

regenerator. The three basic types of SONET equipment are described in the following sections.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Path

Line Line

Section Section Section Section

1 II 1 1 II 1

eg. TM
ADM
DCS

PTE
STE-1

<--- ► LTE
STE-2

< ---------------H X H ---------------► PTE

eg. ADM
DCS

eg. TM
ADM
DCS

ADM Add/Drop Multiplexer
LTE Line terminating equipment
PTE Path terminating equipment

R egenerator
STE Section terminating equipment
TM Terminal Multiplexer

Figure 3.6. SONET section, line and path equipment.

3.5.1 Terminal Multiplexer
A terminal multiplexer (TM) is a device that terminates several tributary signals (e.g., DS1,

DS3), assembles them into one or more SPEs, and converts the resultant electrical STS-N signal

into an optical carrier OC-N signal for transmission. A functional block diagram of a TM is shown

in Figure 3.7.

SONETTM

STS-1/DS3

STS-1/DS3 OC-N
MUX/
DMUX O/E

STS-1/DS3

Figure 3.7. Functional block diagram of a TM.

Most TMs support a range of electrical and optical tributary types and either single or pro­

tected (e.g., 1+1) line interfaces (e.g., OC-3, OC-12, etc.). Terminal multiplexers may be used in

traditional point-to-point systems or as part of linear add/drop chains, as depicted in Figure 3.6.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because these multiplexers terminate the entire optical line signal, they are sometimes referred to

as line terminating equipment (LTE).

3.5.2 Add/Drop Multiplexer
An Add/drop multiplexer (ADM) is similar to a TM except there are two line interfaces. A

functional block diagram of an ADM is shown in Fig. 3.8. The line (or high-speed) interfaces are

usually called the East and West line interfaces. ADMs are used at intermediate sites along linear

add/drop chains (like the one depicted in Figure 3.6) to allow tributary signals to be added or

dropped from the line signal or to pass-through enroute to their final destinations. ADMs may also

be used in survivable ring architectures, which are discussed in detail in Section 3.7. Like TMs,

most ADMs also accept a variety of electrical and optical tributary (or low-speed) interfaces.

SONET ADM

OC-48 OC-48
DMUX MUX

16(East) (West)

MUX DMUX
OC-48 OC-48O T Q . ^

MUX/DMUX
16

e T Q - Q

MUX/DMUX

Interface cards

STS-1/DS3

Figure 3.8. Functional block diagram of an ADM (adapted from [Wu92]).

In a SONET ADM, signals that pass-through the site do not need to be demultiplexed and then

multiplexed back into the line signal. In comparison with back-to-back TM arrangements, this pro­

vides cost savings and improved reliability. ADMs are sometimes equipped with time-slot inter­

change capability to allow flexible assignment of any tributary signal to any east bound or west

bound SPE. The implications of this feature in survivable rings architectures are discussed in

Chapter 4.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.3 Digital Cross-Connect System
A digital cross-connect system (DCS) is a SONET network element that accepts various elec­

trical and optical carrier signals, accesses the individual tributary signals (e.g., VTs, STS-1, STS-

Nc) and switches them from incoming to outgoing facilities. In addition to this switching function,

most DCSs also provide signal add/drop and multiplexing/demultiplexing. There are two common

types of DCSs: broadband DCSs and wideband DCSs. A broadband DCS (B-DCS) accepts OC-N

and DS3 signals and cross-connects them internally at the DS3, STS-1 and/or STS-Nc rates. A

functional block diagram of a B-DCS is shown in Figure 3.9.

SONET DCS

Controller/Processor

STS-1 STS-1
OC-N OC-N

STS Cross-connect

OC-N OC-N

OC-N OC-N

STS-1/DS3 STS-1/DS3

Figure 3.9. Functional block diagram of a B-DCS (adapted from [Wu92]).

A wideband DCS (W-DCS) is similar to a B-DCS except that switching is done at the DS1 or

VT-1.5 rate. One advantage of W-DCS is that less demultiplexing is required because only the

required tributaries are accessed and switched. A major difference between a DCS and an ADM,

which has only two high-speed interfaces, is that a DCS usually has much more capacity. For

example, a typical B-DCS can cross-connect up to 2048 DS3/STS-1 (or equivalent) ports. One of

the main uses of DCSs in transport networks is signal grooming. Grooming allows efficient use of

incoming and outgoing facilities by consolidating demands into outgoing trunks and segregating

demand by service type, destination or protection category. Consolidating demands improves the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

utlization of transmission facilities by combining tributaries from partially-filled incoming facili­

ties into a smaller number of outgoing facilities. Segregation is also useful for simplifying mainte­

nance and restoral procedures [BelI93]. One of the major advantages of DCSs, compared with

manual cross-connect frames, is remote provisioning, maintenance and performance monitoring.

This is made possible by the integrated multiplexing and cross-connect functions and SONET’s

embedded data communications channels, which allow DCSs and other network elements to be

controlled remotely.

In addition to providing access for testing and maintenance, DCSs can also be used to provide

service restoration by re-routing end-to-end paths onto spare facilities in the event of a failure. This

is the basis for mesh restoration, which is discussed in the next section. Unlike PSTN switches,

DCSs of any type are required to be fully non-blocking (to non-multicast demands) and conse­

quently are often built upon multi-stage (3, 5 ,7 stage) CIos non-blocking switch design principles.

3.6 Network Survivability
The survivability of transport networks to faults, such as cable cuts and equipment failures, is

an increasingly important issue for customers and service providers alike. The need for enhanced

network survivability in today’s transport networks is well documented [Gro94]. Some of the key

drivers for enhanced network survivability include increased reliance on telecommunications serv­

ices, rapid growth in demand, higher transmission capacity and a greater concentration of network

traffic onto fewer fibre spans.

The term network survivability is defined as the general (often qualitative) assessment of the

capability of a network to continue to provide service in the event of network-related failures. Sev­

eral metrics may, however, be used to quantify network survivability [Bel93]. One measure of net­

work survivability is conditional survivability, which measures the fraction of services that

continue to satisfy their quality o f service (QoS) objectives for a specified type of network fail­

ure^). Because the likelihood of multiple failures is typically quite low, conditional survivability is

usually evaluated for all single span and node failures only. The conditional survivability o f a sin­

gle span failure is known as the restorability of a span [Gro94]. The restorability of a network is

the total fraction of services that are protected over all single span failures. The worst case surviv­

ability measures the lowest fraction of services that survive all possible single-point failures. For

example, a transport network that can sustain any single-point failure without the loss of service

would have a worst case survivability of 100%. Unless otherwise noted, the term survivability will

refer to a worst case survivability of 100% throughout the remainder of this thesis.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in Figure 3.10, there are two generic strategies for making any network layer surviv­

able: protection and mesh restoration. Protection techniques use preassigned spare facilities to pro­

tect against different possible failures. Protection schemes provide excellent survivability but

require a large increase in network capacity relative to an unprotected network. Two protection

schemes are automatic protection switching (APS) and survivable rings [Wu92]. APS is the sim­

plest protection mechanism. In a 1+1 APS system, each working fibre is protected by a dedicated

protection fibre. Tributary signals are bridged at the transmitting end and the receiver selects the

better of the two signals. Equipment failures are protected against by using duplicate transmitter/

receiver pairs for each working system. Span failures (e.g., cable cuts) are protected against by

diversely routing the protection and working fibres through the duct topology. A 1:1 APS system is

similar to 1+1 APS, except the transmitted signal is not continuously bridged to the protection

facility. Instead, switching is performed at both the transmitting and receiving end in the event of a

failure. There are also 1:N APS systems that protect N working fibre systems with a single protec­

tion fibre but they do not provide 100% survivability against span failures. APS has been adopted

in the SONET standard as one of a few basic methods of facility protection [ANS95b]. According

to this standard, protecting switching must be completed within 50 msec, after detecting signal fail­

ure. Transport networks using APS protection have a worst case survivability of 100% but require

twice the transmission capacity (i.e., 100% redundancy) relative to a non-survivable design.

APS Path RestorationSpan Restoration

Protection Mesh Restoration

Survivable Network Architectures

Figure 3.10. Classification of survivable network architectures.

Although traditional APS operates at the physical fibre layer, the same basic principle of dual

feeding can be applied at other logical layers. For example, duplicate, physically diverse paths can

be provisioned in the SONET layer for the same demand to provide end-to-end path protection.

This is sometimes referred to as subnetwork connection protection (SNCP). Similar schemes have

also been proposed for survivability at the ATM and IP layers [Wu92].

Survivable ring architectures can be viewed as an extension of 1+1 or 1:N APS systems. In a

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

survivable ring, the nodes belonging to the ring are connected by working and protection fibres (or

fibre pairs) to form a closed loop or cycle. In a path-switched ring, each demand is transmitted in

opposite directions around the ring on both the working and protection fibres and, like 1+1 APS,

the receiving node selects the better o f the two signals. A line-switched ring protects demands by

looping the working line signal back onto the protection fibre pair at the nodes adjacent to a failure.

This is analogous to 1:N APS because the protection facility must be coordinated at both ends of

the failure. Unlike 1:N APS, however, line-switched rings are 100% restorable. Although the pro­

tection switching speed of survivable rings is comparable to APS, they can be more economical

because the facilities (e.g., ADMs, regenerators) are shared amongst several origin-destination

(O-D) pairs. Survivable ring architectures are discussed in further detail in Section 3.7.

In mesh restoration, survivability is provided via the switching capabilities of DCSs in combi­

nation with spare network capacity. During failures, DCSs reroute disrupted demands around fail­

ures by temporarily forming paths over routes in the set of spare (or idle) capacity resources within

the network. There are two common types of mesh restoration: span restoration and path restora­

tion. In span restoration, the replacement paths are found for all disrupted demands between the

end nodes of the failed span. In path restoration, the replacement paths are found between the ori­

gin and destination nodes of the disrupted demands. The main advantage of mesh restoration is that

the spare capacity resources can be used to recover from several (non-simultaneous) failures.

Although line-switched rings also share protection (or spare) capacity, the extent and generality of

the sharing is greater in mesh restoration. As result, mesh restoration is usually much more capac­

ity-efficient than APS or survivable rings. This efficiency, however, usually comes at the cost of

increased complexity (e.g., managing the reconfiguration of spare channels into restoration paths)

and historically slower restoration speeds (in the range of seconds to minutes). New mesh restora­

tion schemes are, however, currently under development that promise restoration speeds compara­

ble to physical layer alternatives [StGOO]. Although several proprietary mesh restoration have been

deployed, there are currently no standards for mesh restoration. See [Gro94] for a survey of cen­

tralized and distributed mesh restoration schemes.

While mesh restorable networks achieve the lowest redundancy in transmission capacity

needed for 100% restorability, ring architectures are often preferred in practice because of their

simpler and faster switching mechanism (50 -150 milliseconds). Despite their greater capacity

requirements, rings can also be more economical than mesh networks, particularly in metropolitan

area networks, where nodal costs usually dominate over distance-dependent costs for fibre and

regenerators. For these reasons, SONET-based rings have already been widely deployed and the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same logical architectures are promising and obvious candidates for optical networks.

An important issue in the design of survivable transport networks is deciding which layer or

layers within the network should provide survivability against network failures. Recovery at the

lowest layer (e.g., SONET, WDM layer) offers a number of benefits. It provides universal protec­

tion for all higher client layers against certain types of failures such as cable cuts, which are the

most frequent source of failure. This may be especially important for those client layers without

any built-in restoration mechanisms of their own. It also requires less equipment and fewer actions

to effect recovery at the lowest layer because the aggregate switching granularity is much coarser

than in client layers and fewer logical connections are affected and need to be rerouted.

To recover from node losses within the respective client layers, however, some form of recov­

ery must be provided at those layers as well. In the PSTN, for example, survivability can be pro­

vided by multi-hosting, multi-homing or dynamic routing [Min91, WCY99]. A multi-hosting

configuration splits the traffic originating from a local telephone office and routes it to two differ­

ent central telephone offices. In the event of a single link or central office failure, this configuration

maintains partial communications to and from the local telephone office. Blocking levels increase

but service is not disconnected. A multi-homing configuration is similar to multi-hosting except

rather than splitting the traffic, a multi-homing configuration simply switches the traffic to a

backup central office during a failure. Dynamic routing is also used within the PSTN to provide

service survivability by automatically routing call traffic around failed spans and nodes. One dis­

advantage o f relying solely on multi-homing, multi-hosting, and dynamic routing for restoration is

that calls that are in progress when a failure occurs will be dropped and only new calls will be suc­

cessfully rerouted. This can result in exceptionally high transient levels of blocking for some time

after a failure, as callers attempt to re-establish dropped connections [Gro94]. Some service layer

networks recover from node or span failures by dynamically updating the routing tables stored in

switching nodes. In the Internet, for example, backbone routers (or packet switches) update their

routing tables using the Open Shortest Path First (OSPF) protocol [Moy98].

The planning and coordination of recovery processes in different layers is an important issue

but is beyond the scope of this thesis. For an introduction to multi-layer recovery issues see

[Dem99].

3.7 Survivable Ring Architectures
A survivable ring is a collection of nodes connected by transmission systems to form a cycle in

the network graph. At each node, tributary signals may be added (multiplexed) or dropped (demul-

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tiplexed) from the composite line signal via ADMs. Tributary signals enroute to other nodes may

also pass through an ADM, usually bypassing the demultiplexing and multiplexing stages. A ring

may also contain passive (or glassthrough) nodes through which the transmission facility (e.g.

fibre optic cable) passes but does not terminate on an ADM. Logical glassthrough nodes are often

equipped with a signal amplifier or regenerator to meet optical link budget requirements. In this

case, they are sometimes called “passthrough” nodes. Because there are two node-disjoint (and

span-disjoint) routes between every pair of nodes on a ring, demands are protected against all sin-

gle-point failures such as cable cuts or nodes failures.

There are two types of ring defined in the SONET standards. These are the unidirectional

path-switched ring (UPSR) and the bidirectional line-switched ring (BLSR). These ring architec­

tures are described in further detail below.

3.7.1 Unidirectional Path-Switched Ring
In a UPSR, the nodes are connected by a working and protection fibre, each of which transmits

the line signal in the opposite direction. Figure 3.11 illustrates the basic operation of a UPSR.

W orking fibre

C a b le cu t
P ro tec tio n fibre

(a) Normal Operation (before failure) b) Protection Operation (after failure)

Figure 3.11. Two-fibre UPSR protection switching operation.

Under normal conditions, the demand between pairs of nodes in the ring is transmitted on the

working fibre in one direction around the ring. A copy of each demand is also transmitted on the

protection fibre in the opposite direction. At the receiving node, a path selector continuously mon­

itors both signals and switches from the working to the protection fibre when the working signal is

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lost or degraded. Note that protection switching decisions are made individually for each path

rather than for the entire line. According to the SONET standard [Bel95a] for UPSRs, the protec­

tion switching time for a UPSR must be less than SO milliseconds after detection of signal loss or

degradation. Because each bidirectional demand carried on the working (and protection) fibre

traverses the entire ring, the total demand carried cannot exceed the number of channels (i.e., time­

slots) in the ring. In other words, the cap acity of the working (and protection) fibre must be equal

to or greater than the sum of all demands carried by the ring.

3.7.2 Bidirectional Line-Switched Ring
In a four-fibre BLSR, the nodes are connected by a working and a protection fibre pair, as

depicted in Figure 3.12. Unlike a UPSR, a bidirectional demand does not traverse the entire ring,

instead it is routed over the same (typically shortest) path between the origin and destination nodes

on the working fibre pair.

Cable cut

(a) Normal Operation (before failure) (b) Protection Operation (after failure)

Figure 3.12. Four-fibre BLSR protection switching operation.

In the event of a cable cut or node failure, a BLSR restores working demands by looping them

back onto the protection fibres at the nodes adjacent to the failed segment, which may contain one

or more spans or nodes. Since protection switching is performed at both nodes adjacent to a failed

segment, communications is required between these nodes to coordinate the protection switch. The

two-byte Automatic Protection Switching (APS) message channel (bytes K1 and K2) in the

SONET line overhead channel performs this function. Because the protection fibre may pass

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through one or more intermediate nodes before reaching its destination, addressing is also required

to ensure that the APS message is recognized by the proper node and protection switching is initi­

ated at the right pair of nodes. For this purpose, the SONET BLSR standard reserves four bits in

the K1 byte for the destination node’s ID and four bits in the K2 byte for the originating node’s ID.

Thus, the maximum number of nodes in a BLSR is limited to 16. According to the SONET stand­

ard for BLSRs [Bel95b], protection switching must be completed within 150 milliseconds after

detecting signal loss or degradation.

A two-fibre BLSR, operates in logically the same way except the capacity on each fibre is di­

vided into working and protection channel groups, as illustrated in Fig. 3.13. In the event of a fail­

ure, the working channel group is looped back onto the protection channel group at each node

adjacent to the failure. In an OC-12 system, for example, a loop back is accomplished by mapping

working STS-1 time slots 1 through 6 to protection STS-1 time slots 7 through 12 on the reverse

direction fibre. The time slots for working demands at intermediate nodes are not affected by the

fault.

Cable cut

Working channel group
Protection channel group

Working channel group (in use)
Protection channel group (in use)

(a) Normal Operation (before failure) (b) Protection Operation (after failure)

Figure 3.13. Two-fibre BLSR protection switching operation.

One advantage of BLSRs over UPSRs is that the working channels (time-slots) can be reused

around the ring. That is, because a demand occupies an STS-1 time-slot only between its respective

entry and exit nodes, the same time-slot can be reused for other demands once it reaches its desti­

nation. Therefore, depending on the demand pattern and the routing choices for each demand pair,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a BLSR can sometimes cany significantly more demand than a UPSR with the same working

capacity. Another advantage of BLSRs is that the protection capacity is shared amongst all work­

ing fibre spans belonging to the ring. For this reason, BLSRs are sometimes called shared protec­

tion rings [Fla90]. Note that the protection capacity must equal or exceed the maximum working

load on any span to ensure complete protection. Because the capacity (line rate) o f a BLSR is the

same on all spans, the required capacity zr of both the working and protection fibres (or fibre in the

case of a two-fibre BLSR) must be

zr ̂ m a x(w t) , fo r i = 1 , (3 . 1)

where wt- is the working load on span i. Or, in other words, the working load on any span cannot

exceed the working capacity of the ring. Note that the total capacity (working + protection) per span

is 2-zr In a four-fibre BLSR, the working (and protection) capacity is the same as the line rate. In a

two-fibre BLSR, the working (and protection) capacity is half the line rate because half of the ca­

pacity is reserved for protection. For example, a four-fibre OC-12 BLSR has a working capacity of

12 working STS-ls per span, whereas an two-fibre OC-12 BLSR has a capacity of only 6 STS-ls

per span.

Because the working load on any span is equal to the sum of all demands that traverse it, the

required capacity (or demand serving capability) is dependent on the routing choices for all

demands. This can be illustrated with the aid of Figure 3.14, which shows a demand matrix and

two possible BLSR loading plans. In Figure 3.14(a), each demand is routed over the shortest path

between the origin and destination. This results in a maximum working load of 13 STS-ls on span

1-5 (e.g., 4+9=13 STS-ls). Therefore, a BLSR with a working capacity o f at least 13 STS-ls is

required to serve all demands. Because SONET BLSRs are only available in standard sizes (typi­

cally in multiples of OC-12 x n), either a four-fibre OC-24 BLSR or a two-fibre OC-48 BLSR

would likely be required for this routing arrangement. In Figure 3.14(b), the demands are first

sorted in descending order of size and then routed over the path that results in the smallest change

in required ring capacity. This routing procedure results a maximum load of only 10 STS-ls. In

this case, either a two-four fibre OC-12 BLSR or a two-fibre OC-24 BLSR would be sufficient to

serve all demands. This example clearly shows that demand routing has a direct impact on the

either the size of BLSR required to serve all demands or the subset of available demands that can

be carried on a BLSR of fixed size. These two subproblems are subject of Chapter 4.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Demand Matrix (in STS-1 s)
From

Node

To OC-12

OC-12

(b)

Figure 3.14. An example of BLSR ring loading.

3.8 Summary
In this chapter we provided an overview of the basic concepts and terminology of transport

networks. We also described the generic functions of transport networks and discussed two of the

more common digital signal hierarchies (i.e., PDH and SONET) in use today. The typical network

elements (or equipment) that comprise SONET networks were also discussed. Next, we defined

network survivability in precise terms and described several survivable network architectures, with

particular emphasis on survivable rings. This material serves primarily as background information

for the work presented in subsequent chapters.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Capacity Analysis of Survivable Ring Architectures

4.1 Introduction
This chapter considers capacity-related aspects of survivable ring architectures. In particular, it

explores two common subproblems in the design of ring-based transport networks: the Ring Sizing

Problem and the Ring Loading Problem. The Ring Sizing Problem arises in situations where it is

necessary to find the minimum capacity ring required to serve a stipulated set of demands. This

may occur, for example, when a single ring is needed to connect a set of nodes in a metropolitan

area network. The Ring Loading Problem, one the other hand, involves finding the subset of

demands to load onto a ring of fixed capacity such that the total benefit (e.g., revenue) is maxi­

mized. This problem is motivated by a particular class of ring-network design algorithm, such as

the one described in Chapter 8 of this thesis.

The chapter begins by discussing several factors that lead to different variations of these two

problems. This is followed by a survey of prior work on the Ring Sizing Problem. The Ring Load­

ing Problem, which has not been addressed in the literature, is then discussed and Integer Program­

ming (IP) formulations are presented for four variants of the problem. Each variant represents

different technology and policy choices for the deployment and use of BLSRs. The remainder of

the chapter compares the ring loading efficiency of BLSRs under these choices in a series o f statis­

tical trials. The results of these trials are presented in Section 4.4, followed by some concluding

remarks in Section 4.5.

4.2 Background
In practice, there are several variants of the Ring Sizing and Ring Loading Problems. These

depend on the assumptions one makes about the demand model, loading policy and the ring tech­

nology attributes. The two most common demand models used in the literature are a static and

dynamic demand model. In a static (or off-line) demand model, it is assumed that the entire set of

origin-destination demands are known (or forecast) in advance and the (sizing or loading) problem

is solved for all demands at once. A dynamic (or on-line) demand model is one in which the com­

plete set of demands is not known in advance and routing and loading decisions must be made one

at a time as new demands arrive (and possibly depart), without rearranging existing demands.

While dynamic demand models are useful for evaluating on-line performance (e.g., probability of

blocking), they involve additional complexities that are difficult to cope with in large-scale net­

work optimization problems. Therefore, the majority of work surveyed here assumes a static

demand model, as is usually the case in network design problems.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is also a matter of operational policy as to whether demand bundles may be split or parti­

tioned for provisioning. A demand bundle is the complete set of unit-demand bearing carrier sig­

nals (e.g., STS-ls or wavelengths) to be provisioned between a pair of nodes. There are two senses

in which one may mean that demand bundles are split. One is in terms of the fraction of the com­

plete demand bundle that may be selected for loading into a ring. This is sometimes required in

SONET networks when the an entire group of carrier signals (e.g., DS-3s) need to have the same

propagation delay from origin to destination, for example in inverse multiplexing applications.

Unless otherwise noted, it is assumed here that each demand bundle is either loaded in its entirety

into a given ring or not at all. The other sense of “splitting” has to do with whether the demand

bundle may be split directionally around a BLSR. While directional splitting maximizes the load­

ing flexibility for BLSRs, it is sometimes not preferred in practice for administrative, maintenance,

and provisioning reasons. For example, some provisioning systems, such as the Bellcore (“Tirks”)

system [WuL90], do not allow demand bundles for the same origin-destination pair to be split

around a ring. That is, all of the demand between a pair of nodes must be routed in only one direc­

tion within any ring. One of the objectives of the study in Section 4.4 is to assess the possible pen­

alty of this simplifying operational policy in terms of its impact on the theoretically achievable ring

loading efficiency.

Another issue in sizing and loading BLSRs is whether the ADMs are equipped for channel

interchange. In a SONET ring, channel interchange (or time-slot interchange) allows the payload

in one STS-1 time-slot on the incoming fiber to be mapped to a different STS-1 time-slot on the

outgoing fiber. The equivalent functionality in WDM rings is wavelength conversion. In rings

without channel interchange, each demand occupies the same channel (time-slot or wavelength) all

the way around the ring from origin to destination. This mode of operation is known as channel

assignment. With channel assignment, any two demands that traverse the same span cannot be

assigned to the same channel. This has been called the colour clash constraint in the WDM context

[EBC98]. When channel assignment is used, it is not always possible to utilize the full capacity of

a BLSR, due to fixed channel assignment conflicts. To illustrate this, consider the channel assign­

ment example in Figure 4.1.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 STS-1

STS-1 # 1
^ STS-1 # 2

^ STS-1 # 3

2 STS-1

Figure 4.1. An example of channel assignment in a BLSR.

In this example, a SONET BLSR has one STS-1 of slack (or unused) capacity on span 3-4 in

time-slot #2 and another on span 4-5 in time-slot #1. If the ADM at node 4 is not equipped for

channel interchange, however, one STS-1 o f demand between nodes 3 and 5 cannot be accommo­

dated onto the ring because the slack capacity does not fall within the same time slot from origin to

destination. In fact, there is no feasible routing and channel assignment plan for this example that

allows the entire demand to be served.

Channel interchange eliminates this restriction, of course, but with added cost and complexity.

Specifically, channel interchange complicates the APS protocol in a BLSR because channel map­

ping information has to be transmitted to intermediate nodes in the event of a failure. For this rea­

son, the SONET standard for BLSRs [Bel95b] specifies that ADMs use channel (time-slot)

assignment rather than channel (time-slot) interchange.

4.3 Ring Sizing Problem
Previous work on capacity-related aspects of survivable ring architectures has focused almost

exclusively on the Ring Sizing Problem, which involves finding a set of routes for all demands that

minimizes the required capacity of a ring. We prefer to use the term sizing here to describe this

minimum size determination problem, although some literature refers to it as a loading problem.

For UPSRs, the problem is trivial because there are no routing (or channel assignment) decisions to

be made — each (bidirectional) demand circumnavigates the entire ring and, therefore, the

required capacity is simply the sum of all demands on the ring. For BLSRs, the problem is more

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

difficult because the required capacity depends on the direction in which each unit demand is

routed around the ring, as explained in Section 3.7.2. The underlying demand pattern also has a

bearing on the capacity requirements because it determines the degree to which ring capacity can

be reused. The Ring Sizing Problem under idealized and general demand patterns is now discussed

in the following sections.

4.3.1 Capacity Requirements for Idealized Demand Patterns
The capacity requirements of UPSR and BLSR rings under idealized demand patterns was

studied by Chemg [Che91] for the case where demands may be split between the two directions

around the ring. Closed-form expressions were derived for the four idealized demand patterns

shown in Figure 4.2, which are representative of typical network applications.

Node-to-Adjacent Node Uniform Single Hub Double Hub

Demand
Q Hub

Figure 4.2. Idealized demand patterns (adapted from [Che91]).

In the node-to-adjacent node demand pattern, demands exist only between adjacent nodes

around the ring. This demand pattern is typical of express rings that interconnect major cities in an

inter-exchange subnetwork. The total number of demand pairs is equal to the number of nodes n

in the ring. Therefore, the required capacity of a UPSR is

Cu = n - d (4.1)

where d is the amount of demand between node pairs. In a BLSR, the entire line section capacity

can be completely reused from span-to-span, provided all demands are routed directly between

adjacent nodes. In this case, the required (working + protection) capacity is

Cb = 2 • d (4.2)

A uniform demand pattern is one in which demand is uniformly distributed between all node

pairs. This is common in core metropolitan and some long-haul subnetworks. The total number of

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demand pairs in a uniform demand pattern is and hence

(4.3)

In a BLSR, the minimum capacity occurs when demands are routed over the shortest path

between each node pair. When the number of nodes in the ring is even, this involves splitting the

demand between opposite node pairs and routing it in both directions around the ring. The required

capacity of a BLSR with an even and odd number of nodes is

Compared with the node-to-adjacent node demand pattern, the capacity requirements for a

BLSR are greater because the average number of hops per demand increases and proportionally

more capacity is required per demand. Or in other words, the opportunity for reusing capacity is

diminished.

In the hub demand pattern, all demands are routed to a single hub node. Single hub demand

patterns are typically found in access subnetworks. In this situation, the capacity requirements of a

BLSR are the same as a UPSR because the working load on both spans incident to the hub node is

equal to half the total demand. Here the total number of demand pairs is (n — 1) and the required

capacity for both UPSRs and BLSRs is

Because the demand in a single hub arrangement is susceptible to hub failure, two hubs are

sometimes used for added survivability. In the double hub demand pattern, all demands are routed

to two hub nodes and there is also demand between the two hubs. In the event of a hub failure,

demand from the failed hub may be routed to the surviving hub. Here, the working load on the

spans incident the hub nodes is equal to half the demand and therefore the capacity requirements of

BLSRs and UPSRs are the same. Because the total number of demand pairs is (n - 2) , the

required capacity for both UPSRs and BLSRs is

Figure 4.3 shows the capacity advantage of a BLSR relative to a UPSR for the four idealized

demand patterns. The capacity advantage is the ratio of the demand carrying capacity of the BLSR

to that of the UPSR.

2
Cb = (n / 4) ' d , n is ever

Cb = (n 2/ 4) • d + d / 2 , n is odd

n is even

(4.5)

(4.4)

Cu = Cb = (n - l) d (4.6)

C« = Cb = (n - 2) - d (4.7)

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

600%

500%
&
o 400%
CD Q.
° 300%
J
J2 200%
£

100%

0%

Figure 4.3.

In practice, most demand patterns usually lie somewhere between these idealized demand pat­
terns. For typical distributed mesh patterns, for example, a two-fibre BLSR usually provides up to

300% more demand carrying capacity relative to a UPSR with the identical line rate [Nor96].
However, cost must also be considered when comparing BLSRs and UPSRs for a particular net­

work application. Generally speaking, UPSRs have lower equipment costs than BLSRs due to their
simpler protection switching mechanism. For this reason, UPSRs are usually preferred in access

subnetworks where demands are typically hubbed and BLSRs are preferred in core metropolitan
and long-haul subnetworks where demands are more evenly distributed [OwW93].

4.3.2 Capacity Requirements for General Demand Patterns
The Ring Sizing Problem for BLSRs under general demand patterns has been extensively stud­

ied. In these studies, it is generally assumed that the ring has full channel interchange at all nodes.

For the case where demand bundles cannot be split between the two directions around the ring, the

IP formulation of the Ring Sizing Problem can be expressed as follows:

Minimize: Z (4.8)

Subject to:

X <**•-£ + £ dt x ;sz , / = i « («>
i e K,(l) * e K20)

47

’̂ ^ 'd istribu ted mesh pattern

Uniform

Single and double hub

32 4 5 76 8 109
no. of nodes

Relative BLSR demand carrying capacity for idealized demand pauems
(adapted from [Nor96]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i .

xk, xkG {0, 1} .

Vifce D

V l e D

(4-10)

(4.11)

0 < Z , integer (4.12)

where Z is an integer decision variable for the capacity (size) of the ring, D = {dk} is the set of

demands and dk is the total quantity of demand (i.e., the size of the demand bundle) between nodes

ik andy* and ik < j k. Note that the nodes in the ring are indexed from 1 to n around the ring and

span i connects node i to node (i + 1)mod n . Xk is a binary decision variable that equals 1 if

demand bundle k is routed in the clockwise direction and 0 otherwise, Xk is a binary decision var­

iable that equals 1 if demand bundle k is routed in the counter-clockwise direction and 0 otherwise.

K X(J) = {k\ik < l < j k} is the subset of demands that traverse span I when routed in the clockwise

direction and Kz(l) = {k\ ik >l or j k<l} is the subset of demands that traverse span I when

routed in the counter-clockwise direction.

The objective function (4.8) is to minimize the line capacity Z of the ring. Constraint set (4.9)

ensures that the sum of demands routed over each span (in both directions) does not exceed the line

capacity. Constraint set (4.10) ensures that each demand bundle k is routed in either the clockwise

or counter-clockwise direction. Constraint sets (4.11) and (4.12) assert that the routing decision

variables are binary and the line capacity is an integer. Note that full channel interchange is

implicit in this formulation simply by virtue of there being no constraints on the channels on which

the individual demands may be routed around the ring. In other words if the capacity is adequate, a

suitable channel interchange can always be found that accesses the required capacity in each span

for each demand.

Cosares and Saniee [CoS94] showed that this IP problem is NP-hard by reduction from the

partition problem [GaJ79]. They also developed several heuristic algorithms, including a weight-

based, dual-ascent solution approach that is bounded above by twice the optimal solution [HJN96].

Since then several other heuristic algorithms have been proposed. For example, Schrijver et al.

[SSW98] developed an efficient algorithm that exceeds the optimum by at most 1.5dmax, where

dmax is the largest demand. Building on this work, Khanna [Kha97] showed that, for any e , a pol­

ynomial time algorithm exists that computes a solution within (1 + e) times the optimum.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the case where directional splitting is allowed, Vachani et al. [VSK96] developed an effi­

cient algorithm to compute optimal solutions in 0 (/i3) time, where n is the number of nodes in

the ring. Other efficient algorithms have been proposed by Lee and Chang [LeC97] and Myung et

al. [MKT97]. The algorithm proposed by Myung et al. has a reported time complexity of 0(n\K \),

where K is the set of demands.

Other work on the Ring Sizing Problem has considered the case where the rings have limited

or non-existent channel interchange capability and the routing of demands is prescribed in advance

(typically by shortest-path routing). In these studies, the problem is to find a fixed channel assign­

ment that minimizes ring size, while satisfying the channel uniqueness (i.e., colour clash) con­

straint. The pure channel assignment problem (i.e., with no channel interchange) is equivalent to

the problem of colouring circular arcs, which Garey et al. [GJM80] have shown to be ^VP-com­

plete. Other work on this classical colouring problem by Tucker [Tuc75], shows that the upper

bound on ring capacity (colours) is (2wmajt- 1) , where wmax is the maximum number of unit

demands (arcs) crossing any span. Note that with full channel interchange, the ring size is always

w m a x • An efficient algorithm for finding the optimal channel assignment for a uniform full mesh

demand pattern (i.e., where each node requires a single wavelength to every other node) was pro­

posed by Ellinas et al. [EBC98]. The channel assignment problem for rings (and other networks)

with limited channel interchange capability is also considered by Ramaswami and Sasaki [RaS97],

again for the case where demand routing is given in advance. They prove that a ring with channel

interchange at only one node requires the same number of channels as a ring with full channel

interchange. Other ring architectures with even more limited channel interchange are proposed that

require at most wmax + 1 channels, i.e. only one more channel than would be required with full

channel interchange.

Other variants of routing and channel assignment problems for optical networks are studied in

[GSL98] and [RaS95]. An algorithm for dynamic channel assignment has also been proposed by

Gerstel and Kutten in [GeK97]. A worst-case analysis of this algorithm shows that a ring without

channel interchange may require as much as six times the capacity as one with full channel inter­

change for the same non-blocking performance. However, that result is for the case where shortest-

demand routing is stipulated in advance for all demands.

4.4 The Ring Loading Problem
The nature of the Ring Loading Problem is to find a subset of demands to load onto a ring to

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximize the total benefit (e.g., revenue) from the ring. For UPSRs, the problem is trivial and may

be solved by loading demands in descending order of benefit per unit capacity until the ring is full.

If demands cannot be split in loading the ring, the problem is equivalent to a 0-1 Knapsack Prob­

lem, which is known to be iVP-hard [GaJ79]. For BLSRs, the problem is even more difficult

because the demand carrying capacity depends not only on the ring’s channel capacity but also on

the routing and, where applicable, the channel assignment for all demands loaded into the ring.

Thus, the problem not only involves the selection of demands to be loaded but also their respective

routing and channel assignment choices within a ring that has a finite capacity.

To more fully appreciate the distinct orientation and motivation of this work from prior studies

on the Ring Sizing Problem, it is helpful to consider that the loading problem, as defined above,

arises in a particular class of approaches to the multi-ring network design problem. This approach,

detailed more fully in Chapter 8, involves the iterative trial loading of a large number of ring can­

didate systems in each step of adding one ring to a growing multi-ring network design. Finding the

best candidate ring (size, type, location, etc.) is crucially dependant on how well the ring is loaded

from the pool of remaining unserved demands before it is assessed as a candidate ring in competi­

tion with all other candidates in that iteration. It is this design orientation that largely defines the

present problem and gives it its relevance. The joint problem of specifying both the routing and

channel assignment is also considered for this problem, where applicable. Unlike the Ring Sizing

Problem, the Ring Loading problem has not been addressed in the literature.

One aim of this study is to assess the trade-off between technology cost versus loading effi­

ciency in rings with and without channel interchange. Specifically, the question is: what loading

penalty is incurred with channel assignment, relative to channel interchange, when optimal loading

techniques are employed? The point is to quantify the theoretical benefit in loading efficiency that

may be forfeited by the use of channel assignment only. This is a particularly relevant, and timely,

question for WDM rings, for which standards are still under development. Specifying wavelength

conversion could be an expensive requirement that may be of marginal practical benefit if optimal

loading policies are adopted instead.

The second goal of the work is to quantify the effect of demand bundle splitting and channel

interchange as a policy issue on loading efficiency, rather than to develop new algorithms for ring

routing and/or channel assignment. To the best of our knowledge, this is the first systematic study

of these aspects of the Ring Loading Problem, as defined herein and as distinct from the Ring Siz­

ing Problem.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.1 Loading Problem Formulations
This section presents IP formulations for optimal ring loading under the four ring loading dis­

ciplines. Formulations for two of the cases follow with only slight differences from their nearest

corresponding cases so, for conciseness, the latter two of the detailed formulations are placed in

Appendix A. These four loading disciplines or scenarios represent all combinations of loading pol­

icy (i.e., split versus non-split) and channel interchange capability (i.e., full channel interchange

versus channel assignment).

By definition, for a non-trivial loading problem it is axiomatic for these purposes that the total

demand in D exceeds that which can be completely served by any one ring. Because the ring is

bidirectional, demands may be routed in either direction around the ring provided that the total

load on any span does not exceed the ring line capacity c. For simplicity, we refer to the directions

as “clockwise” and “counter-clockwise.” The IP formulation for the Ring Loading Problem in

which the nodes of the ring have channel interchange capability and demand bundles are not per­

mitted to be split between the two directions around the ring, is as follows:

IP1 - Channel Interchange without demand splitting
Maximize:

£ d f (K +Xt) (4.13)
k e D

Subject to:

£ dk - X k < c , l = l , . . . , n (4.14)

k e K,(l) k e K,(l)

Xk + X k < 1, V k e D (4.15)

Xk, X k e {0,1} , V k e D (4.16)

where Xk is a binary decision variable that equals 1 if demand bundle k is routed in the clockwise

direction and 0 otherwise. Likewise, X k is a binary decision variable that equals 1 if demand bun­

dle k is routed in the counter-clockwise direction and 0 otherwise.

The objective function (4.13) is the sum of demands routed in either the clockwise (Xk = 1)

or the counter-clockwise (Xk = 1) directions, i.e., this is the total demand served by the ring. Con­

straint set (4.14) ensures that the sum of demands routed over each span (in both directions) does

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not exceed its line capacity. Constraint set (4.15) ensures that each demand bundle k is routed in

either the clockwise or counter-clockwise direction or not at all. That is, demand bundles are not

split between the two directions. Note the last implication: if Xk = Xk = 0 , it means that demand

bundle k has simply not been selected from the demand pool for involvement in the loading of this

ring. (In a complete network design it is implicit, however, that as the demand pool is depleted,

eventually every demand bundle is served by some ring on each segment of its end-to-end route).

Lasdy, (4.16) asserts that the routing decision variables are binary.

The formulation for the Ring Loading Problem with channel assignment and demand bundle

splitting can be written as follows:

IP2 - Channel Assignment with demand splitting
Maximize:

c

X X V k t + f k ') (4.17)
jfce D t= 1

Subject to:

x / * : + x fix - 1 ’ / = i , . . . , w , t = i , . . . , c (4.i8)
ke. Ki(l) k 6 K2(l)

c

£ (/£ + /* ',) = «** • X*. V (:e D (4.19)
t = 1

f k t ' f k t > x k G {°> 1} , V fce D , t = 1, . .. , c (4.20)

where = 1 for a unit demand from bundle k that is routed over channel t in the clockwise direc­

tion and 0 otherwise. Fkt = 1 for a unit demand from bundle k that is routed over channel t in the

counter-clockwise direction and 0 otherwise. Xk is a binary decision variable that indicates

whether demand bundle k is selected for loading onto the given ring or not.

In this case, the objective function (4.17) is the sum, over all demand pairs, of the demands

routed in both directions around the ring, recognizing that each channel number (time-slot or

wavelength) exists in both the clockwise and counter-clockwise directions. This is the total

demand served by the ring. Constraint set (4.18) specifies that each channel t can serve at most one

demand on each span of the ring. By assigning separate f kt variables for each combination of

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demand, channel, and direction, v.e are explicitly modelling the lack of a channel interchange

functionality in this formulation. Note that the number of channels, indexed by t, is equal to the

line capacity o f the ring. Constraint set (4.19) ensures that for each demand bundle k, the sum of

demands carried in both directions is either equal to its total demand dk, (Xk = 1), or zero,

(Xk = 0) (i.e., demand not selected for loading in this ring). As mentioned, there are actually four

IP formulations which we consider for the ring loading problem. The other two IP formulations

(i.e., channel assignment without splitting and channel interchange with splitting) are listed in

Appendix A.

4.4.2 Study Method
By solving many trial instances of the previous formulations, we compared the performance of

each of the four loading disciplines in terms of the total demand served for a variety of randomly

generated trial cases. Each loading discipline was tested in four different ring configurations: (i) a

5 node ring with 12 channels, (ii) a 5 node ring with 48 channels, (iii) a 10 node ring with 12 chan­

nels, and (iv) a 10 node ring with 48 channels. For each ring configuration we generated 2000 ran­

dom demand patterns, each of which served as the complete pool of available demands for one trial

of all four IP problems. Half of the demand patterns were based on a random mesh demand model

and the other half on a random hubbed demand model.

In the mesh demand model, the number of node pairs to have a non-zero demand was drawn

from a binomial distribution with the probability of a non-zero demand being Vi. For each non-zero

demand bundle, the quantity of demand, d*, was drawn from a discretized normal distribution with

a mean of lA the line capacity, c, and a standard deviation of V* c. In the event that a non-positive

value was drawn from this distribution, it was discarded and another value drawn in its place. Like­

wise, any values greater than the line capacity of the ring were set to the line capacity for the

respective loading trial. This represents that the ring under consideration can handle at most c of

the larger prospective demand. The hubbed demand patterns were generated in a similar manner

except that there were no demands directly between non-hub nodes. The quantity of demand

between the hub node and all other nodes was also drawn from a normal distribution with the mean

and standard deviation set to Vi c and Vi c, respectively.

In most cases, these demand models generate a pool with enough total demand to permit a

valid comparison of the competing loading disciplines. This is required for a meaningful study of

the policy and technology issues at hand because one cannot assess the relative performance of

loading disciplines when each of them is able to serve the entire pool of demand. Likewise, if the

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average size o f demand bundles were arbitrarily large, then a subset of demands would frequently

be found for each loading discipline that completely fills the ring, again obscuring any differences

in loading efficiency that are truly due to the policy and technology choices involved. The model

parameters were therefore chosen to produce random demand patterns in a range between these

two extremes to enhance understanding of the effects attributable to loading policy. Within this

range, the demand models produce a wide variety of demand patterns, in terms of the number of

non-zero demand pairs and the bundle sizes. They also frequently generate demand patterns with a

few very large demands, as in real networks. In summary, the statistical centering of the stochastic

demand patterns reflects realistic patterns that we have seen in design studies, but is also legiti­

mately set as a matter of experimental design so as to illuminate the intended phenomenon rather

than try to study it in regimes where there really would be no policy or technology choices to make

because rings were never fully loaded or always fully loaded.

For each ring configuration and random demand pattern we solved the optimal loading prob­

lems (IP1-IP4) using a parallel version of the CPLEX MIP Solver [CPL98] on a Sun UltraSparc

HPC-450 with four processors, each running at 250 MHz. Typical run times were in the sub-sec­

ond to second range, although some (primarily channel assignment) problems required a few min­

utes of ran time.

In total, 8,000 random demand patterns (2,000 per ring configuration) were generated and the

corresponding loading problems were solved for each of the four loading disciplines. As it turned

out, 14% of the random demand patterns could be completely served by all four loading disci­

plines. To avoid an unintended source of bias, these results were excluded from the comparative

results. In a further 1.2% of trial cases, an optimal solution could not be found for at least one of

the loading disciplines within a five minute limit on execution time. These trials were also

excluded from the results. To verify the accuracy of the results, sample solutions were drawn from

the results and the feasibility of the routing and channel assignments were manually validated.

For each trial case, we used total demand served and loading efficiency as figures of merit to

compare performance of each loading discipline in those cases (as mentioned above) where com­

parison is meaningful. Loading efficiency is defined as the total demand served normalized by the

ring’s “circumferential” capacity, i.e. the product of the ring’s line capacity, c, and the number of

spans in the ring, n. For example, a 10 node/48 channel ring has a circumferential capacity of 480

span-channels. Thus the relevant expressions for the loading efficiency for the split, , and non­

split 11 n/s cases with channel interchange are:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4-21)

nrt/5 = S *fix:+x-k) / n .c>
n,s keD (422)

This is a relevant measure of how effectively the ring resources (i.e., span-channels) are used

to serve available demands. A loading efficiency of 1.0 would imply (and require) that all demands

are served over a single span from origin to destination, as in the ideal “node-to-adjacent node”

demand pattern. The higher the loading efficiency, the greater the quantity of (end-to-end) demand

served per span-channel resource. Note that the loading efficiency, as defined, is not the same as

the usual channel utilization (or fill). For example, a loading efficiency of Vz does not mean that

50% of the channels are being used. On the contrary, the corresponding channel utilization would

generally be higher than 50% because demands typically traverse more than one span enroute from

origin to destination.

The relative demand pool size was also used in assessing the performance of each loading dis­

cipline. Its relevance for characterization of these schemes is that it provides a measure of the pool

size from which demands may be selected, relative to the ring’s circumferential capacity. If a

larger number of demands are available for loading a given ring then a higher loading efficiency

should generally be attainable but this may vary for the different loading disciplines. Hence we

record the relative demand pool size to inspect the results for this dependency. The relative

demand pool size is the sum of all available demands in the demand pattern normalized by the

ring’s circumferential capacity, as follows:

To illustrate, a relative demand pool size of 1.0 means that the sum of all unit demands in the

based on the random hubbed demand model, there were actually no instances in which channel

ke D
(4.23)

demand pattern is just equal to the circumferential capacity of the ring. To achieve a loading effi­

ciency of 1.0 with this set of demands would require that all demands be adjacent node demands.

4.4.3 Results & Discussion
The most unexpected and significant finding in the results is that there is virtually no differ­

ence in the loading efficiency achieved with and without channel interchange. In the 3,431 trials

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interchange permitted more demand to be served than did an optimal channel assignment solution

working from the same demand pool. And in the remaining 3,372 trials involving the random mesh

demand model, an increase in loading efficiency due to channel interchange was observed in only

15 trials. A histogram of the (log) frequency versus the percentage increase (or gain) in loading

efficiency, g = (1 — , for these cases is shown in Figure 4.4 for the random mesh

demand model results. The histogram merges data for both the split and non-split trials. We return

to discuss this interesting finding in Section 4.5.

10000 3357

_ 1000 - -

0
§
1 1 0 0 - -
&

0% 5% 10% 15%
% Increase in Loading Efficiency

Figure 4.4. Gain in loading efficiency due to channel interchange (for random mesh
demand pattern).

Next, to characterize the effect of demand bundle splitting we present the average gain in load­

ing efficiency, g , with and without splitting in Table 4.1. This table gives the average gain in load­

ing efficiency due to splitting for each ring configuration and demand pattern model. Because the

results for the trial cases with and without channel interchange were virtually identical, only the

results for channel interchange cases are presented in detail. For the loading trials on the 5 node

ring, Table 4.1 shows that demand splitting provided an average gain in loading efficiency of up to

14.8% relative to the non-split case. One-tenth of all test cases actually experienced gains in excess

of 33% (the “90th percentile” results). In specific individual trials, the increase due to splitting was

observed to be as high as 85%.

For the 10-node ring configurations, the gain due to splitting was less pronounced. The aver­

age gains in loading efficiency ranged between 1.3% and 2.8% for all cases. The 90th percentile of

all test cases ranged from 4.3% to 7.3%. This reduction in gain with more nodes on the ring is

attributable to two factors. First, the number of potential demand pairs increases as the square of

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of nodes in the ring. Consequently, there are simply more demand pairs from which to

choose when loading the larger ring. This benefits the non-split loading more than the split loading

discipline because the latter has a higher loading efficiency to begin with and thus has less margin

for improvement Second, the average-case difference in distance between the clockwise and coun­

ter-clockwise directions around the ring is more pronounced as the ring size increases. Conse­

quently, proportionally fewer demand pairs can benefit from split routing because of the capacity

penalty associated with routing demands the long way around the ring.

Table 4.1: Gain in loading efficiency by splitting (with channel interchange^

Mesh Demand Pattern Hubbed Demand Pattern

Nodes Channels g 90th Percent* g 90th Percent.*

5 12 11.7% 33.3% 13.7% 33.3%

5 48 13.6% 33.3% 14.8% 33.3%

10 12 1.9% 6.5% 1.3% 4.3%

10 48 2.8% 7.3% 2.7% 6.7%

*i.e., (g * |P (g < g *) = 0.90)
t results without channel interchange are negligibly different.

For further insight into the results and to address possible issues of the experimental design

vis-a-vis the centering of the stochastic demand patterns, scatter plots of the loading efficiency ver­

sus the demand pool size (normalized by ring capacity) are shown in Figure 4.5 and Figure 4.6 for

the 5 node/48 channel and 10 node/48 channel ring configurations, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.9

0.8

0.7

g 0.60
£ 0.5
"5
g> 0.4

1 0.3
0.2

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

relative dem and pool size

Figure 4.5. Scatter plot o f loading efficiency vs. demand pool size for the 5 node/48
channel configuration, with a mesh demand pattern and channel interchange.

■ Split
• Non-split
— Split Trendline
— Non-split Trendlrie

0.7

0.6

>.
g 0.5
® cj
To 0.4
o>c
« 0.3 o

0.2 -

0.1

Split
Non-split
Split Trendline
Non-split Trendline

0.5 0.75 1 1.25 1.5 1.75

relative dem and pool size

Figure 4.6. Scatter plot o f loading efficiency vs. demand pool size for the 10 node/48
channel configuration, with a mesh demand pattern and channel interchange.

In these figures, the split and non-split loading efficiency for a given demand pattern is repre­

sented by a pair of data points on the vertical axis. As expected, the trend lines show that the aver­

age loading efficiency increases with larger demand pool sizes. However, the large variation about

the mean indicates that the actual loading efficiency has significant detailed dependence on the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specific demand pattern presented to the ring.

We also observe a significant drop in absolute loading efficiency as number o f nodes on the

ring increases, for the same relative size of demand pool to work from. For example, at a relative

demand pool size of 0.8, the average loading efficiency (with splitting) for the 5 and 10 node rings

is 0.56 and 0.36, respectively. This result is consistent with previous work [Fla90] that reports that

larger rings are generally less efficient because, on average, demands must travel over a greater

number of spans from origin to destination. They therefore consume proportionally more channel

resources than those in a smaller ring per demand served between end nodes. In other words, in a

large ring the propensity to have adjacent node demands is diminished relative to a smaller ring.

4.5 Summary
The potential benefits of demand splitting and channel interchange on ring loading efficiency

are examined in this chapter. IP formulations were developed for four variants of the ring loading

problem and used to assess the demand-serving implications associated with these policy and tech­

nology choices. Perhaps the most remarkable finding in the above results is that, when optimally

planned, a ring with channel interchange provides a negligible advantage over one with no channel

interchange in terms of the loading efficiency obtainable in a given demand environment. The

complete absence of any cases where loading efficiency gains were seen in the trials involving a

hubbed demand model also suggests that there may be some theoretical principle or generality

underlying these results. Indeed, we show in Appendix B that when bundles may be split, a fixed

channel assignment always exists that is equivalent to the best solution involving channel inter­

change.

Although channel interchange may allow proportionally more demands to be loaded in a

dynamic (or on-line) loading environment, this has not been studied for the case where both rout­

ing and channel assignment are jointly determined. Nonetheless, it is a valuable insight for ring

network design to know that channel interchange gives almost no advantage over an optimally

planned channel assignment solution. This finding is particularly relevant to the ring network

design method developed in Chapters 8. Specifically, it means that we don’t need to solve the more

complex channel assignment problem to evaluate the fitness of candidate rings because the channel

interchange problem provides a suitably accurate estimate of loading efficiency for both cases.

Actual channel assignment decisions, if required, can always be made off-line after the design is

complete. This significantly reduces the time required to evaluate candidate rings and develop a

complete multi-ring network design. This finding may also help telcos and standards oiganizations

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decide if the added cost and complexity of channel interchange is warranted. This may be espe­

cially relevant to WDM ring equipment development where wavelength conversion is a costly

proposition.

On the other hand, the results show a significant benefit from a policy of permitting demand

bundle splitting, especially in rings with relatively few nodes. Average-case gains in demand-serv­

ing capability up to 14.8% were observed for the five-node ring configurations, under the subset of

test cases where the demand pool was not trivially satisfied by each ring and the demand pool was

also not so high as to yield 100% loading efficiency in both cases. In other words, we believe this

finding indicates generally significant benefits due to splitting in a range of realistic demand pools

and demand patterns. Although the increase in demand served is dependent on the ring size and

demand pattern, global increases in network efficiency may clearly be realized by permitting

demand splitting.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 The Multi-Ring Network Design Problem

5.1 Introduction
We now move from the problem of loading or sizing a single survivable ring to that of designing

an entire network using survivable rings as the basic building block. We refer to this problem as the

multi-ring network design problem. The chapter begins by defining the multi-ring network design

problem and discussing its basic inputs, constraints and outputs. In Section 5.3, we consider the

computational complexity of the basic problem and develop an approximate upper bound on the

number of possible network designs. This is followed by a detailed discussion of several other im­

portant design considerations.

This chapter and the previous one together introduce the basic problems and issues in the multi­

ring network design problem and set the stage for the main literature review that follows in

Chapter 6. Some other literature on ancillary problems such as topology and dual-ring interconnec­

tion, however, is conveniently reviewed in this chapter. It is the most appropriate location to do so

below because we do not return to these topics until much later.

5.2 Problem Description
The ring network design problem can be stated as follows: given a network graph G = (NS) ,

a set of demands K, and a set of candidate ring technologies T, find a set of rings and a routing for

all demands that minimizes the total design cost A functional diagram of the overall multi-ring net­

work design problem is shown in Fig. 5.1.

Outputs
• Rings

* Type
* O C -nsize
* Topological layout
* Glassthrough locations

• Routing
* Ring assignm ent
* Inter-ring transit locations

Constraints
• Max. ADMs per ring
• Max. ring circumference
• Add/drop constraints
• Demand splitting

Figure 5.1. Functional diagram of multi-ring network design problem.

In practice, there are several variants of this basic problem depending on the assumptions that

61

Inputs
• Demand pattern
• Network topology Ring Design Method
• Ring types
• Cost model

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one makes about the problem inputs, design objective and problem constraints. These factors are

discussed in detail below.

5.2.1 Network Topology
The network graph G consists of a set of nodes N and a set o f fibre spans S connecting the

nodes. At a minimum, the network graph must be two-edge connected for a feasible ring design to

exist. A two-edge connected graph has at least two edge (span) disjoint paths between every pair of

nodes and, therefore, can potentially survive all single span failures. To protect against single node

failures, the network graph must also be two-vertex connected. A two-vertex connected graph has

at least two vertex (node) disjoint paths between every pair of vertices. Typically, the network graph

is specified in advance based on existing or planned fibre spans (e.g., cable plant, duct structures or

right-of-ways). Occasionally, however, the network planner may want to examine the impact of

adding or deleting fibre spans from the network topology. Topology optimization is discussed in

further detail in Section 5.4.3.

5.2.2 Demand Matrix
The set of demands or demand matrix specifies the amount of transmission capacity required

between pairs of nodes in the network. These requirements may be measured in any one of a number

of different demand units (e.g., DS1, DS3, STS-Nc). In some cases, there may also be constraints

on whether the demand bundle may be split for routing purposes.Typically, the demand matrix is

obtained by aggregating the demands from all client layers and converting them to the appropriate

demand unit. Sometimes, this involves grooming and hubbing client layer demands to improve net­

work utilization and realize economies of scale in the current network layer. Two types of grooming

and hubbing in SONET networks are discussed in Section 5.4.2.

5.2.3 Ring Technologies
The candidate set of ring technologies specifies the types of rings that may be used to construct

a design. Each candidate ring technology usually consists of a logical type (e.g., UPSR, BLSR) and

a discrete modular line capacity (e.g., OC-I2, OC-48). Clearly, the total flow on each ring cannot

exceed its capacity, as described in Section 3.7. There may also be constraints on ring circumfer­

ence, the maximum number of ADMs in the ring (e.g., 16) and the amount of capacity (or number

of tributary signals) that can be added/dropped by each ADM. In some cases, only a single ring tech­

nology is considered in a network design. But in general it is usually advantageous to consider mul­

tiple ring technologies in the same design. These are called multi-technology designs. Considering

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiple ring technologies, however, generally makes the problem more difficult to solve.

5.2.4 Design Objective
In practice, there are many attributes that determine the overall merit of a particular network de­

sign. Some of the more common attributes include total cost, ease of maintenance and administra­

tion, profitability, and growth potential. Thus, depending on the nature of the specific problem, the

objective may be to minimize (or maximize) one or more of these (and other) design attributes.

Problems that seek to optimize a collection of problem attributes are called multi-objective optimi­

zation problems [HeS82]. In most cases, however, a single design objective is chosen for simplicity.

In the multi-ring network design problem, the design objective is usually to minimize total de­

sign cost. The total design cost generally includes material costs such as fibre optic cable, regener­

ators, and ADM equipment and installation costs. These costs can be divided into fixed and variable

costs [HoF91]. A fixed cost (or charge) is a cost that does not change with changes in a cost driver

such as demand or distance. Fixed costs may include right-of-way costs, and ADM (and DCS) com­

mon equipment costs. Usually, fixed costs have a relevant range over which the relationship be­

tween the cost and the cost driver remains constant For example, when the capacity of a ring is

exceeded, additional fixed costs must be incurred. Thus, the fixed costs increase in steps as the de­

mand (or distance) increases. A variable cost is a cost that changes in direct proportion to a cost

driver. Variable costs may include fibre optic cable material and installation and ADM and DCS

port costs.

An alternative approach is to use average costs to approximate the total design cost. Average

costs are obtained by adding a portion of the fixed cost of the common equipment to the variable

costs. Average costs are often referred to as unit costs, fully-allocated costs or pro-rated costs. The

two typical cost drivers used for calculating average costs are demand and distance. Demand-related

costs include ADM common equipment and port costs and, where applicable, DCS common equip­

ment and port costs. Distance-related costs include fibre optic cable, signal regenerators, right-of-

way costs, cable structures, and associated installation costs. In metropolitan networks, demand is

generally a good predictor of total design cost because the cost of fibre and other distance-related

costs are usually insignificant. In contrast, distance-related costs typically dominate the total design

cost in long-haul networks. In intermediate or mixed networks, neither of these cost models alone

is likely to accurately reflect the true cost of the network. An obvious alternative is to model cost as

a linear function of both demand and distance. The main problem with using average costs, howev­

er, is that they ignore the step-wise increase in cost that occurs when the relevant range is exceeded

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e.g., when the capacity of a ring is exceeded). As a result, the total design cost may be grossly un­

derestimated when, for example, a ring serves relatively few demands.

It is also possible to approximate cost by using some other design metric that is closely corre­

lated with cost. Capacity efficiency and demand capture are two such metrics. Capacity efficiency

(or its inverse, network redundancy) is a measure of how efficiently ring capacity is being used with­

in the network. Roughly speaking, the higher (lower) the overall capacity efficiency (redundancy),

the lower the overall transmission related costs such as fibre and ADM-related costs. Capture effi­

ciency is a measure of how well rings contain the demands that originate and terminate on them. The

higher the capture efficiency, the greater the proportion of demand that is contained in the rings, and

the lower the cost of managing inter-ring demand (e.g., DCS common equipment and ports). The

effectiveness of any surrogate for cost depends on the degree of correlation between that surrogate

and overall network cost

5.2.5 Decision Variables
For each ring in the final design, the network planner must usually specify its logical type (e.g.,

BLSR, UPSR), capacity, topological layout and the locations of ADMs and glassthroughs. In addi­

tion, the routing pattern must specify the assignment of demands to rings, the direction in which

each demand is routed within each (BLSR) ring, and the location at which demands transit from one

ring to another when more than one ring is traversed from origin to destination. In general, however,

the number and type of decision variables (or outputs) depends on the assumptions about the prob­

lem inputs and design objectives discussed above.

5.3 An Assessment of Problem Complexity
Clearly, the basic ring network design problem is a very difficult combinatorial optimization

problem because solving it involves simultaneously finding the optimal ring set and routing pattern.

This is particularly difficult because the two are highly interdependent on one another. That is, the

ring set determines the feasible set of paths over which demands can be carried, while the routing

pattern determines the spans (and their associated working capacity) that must be covered by the

ring set. For this reason, the problem is usually decomposed into several subproblems. But in most

(if not all) cases, these subproblems are AP-hard. For example, even if the optimal set of topological

rings is specified in advance, the problem of finding the optimal routing pattern corresponds to solv­

ing an instance of a multicommodity capacitated network design problem, which is known to be NP-

hard [GCF99]. Furthermore, the problem of finding the best cycle to connect the ADMs within each

ring is equivalent to solving an instance of the TSP, which is also AP-hard.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further insight into the combinatorial nature of the ring network design problem can be ob­

tained by deriving an upper bound on the number of possible network designs. To do this we make

the following simplifying assumptions. First, we assume that every node in the network originates/

terminates at least one demand. We define a network design as a set of rings only, and ignore, for

the moment, the pattern used to route the demand over the rings. We also assume that the design

consists of only one type of ring (e.g., BLSR) and the capacity of each ring is unlimited relative to

any aggregation demands routed over it (i.e., uncapacitated). Under these simplifying assumptions,

a feasible network design is a set of rings which together cover every node in the network at least

once.

The starting point for establishing an upper bound on the number of possible designs is to de­

termine the number of candidate rings in the network graph. Here we define a candidate rings as a

subset of active nodes (i.e., nodes equipped with an ADM) to be connected to form a ring. There­

fore, the number of candidate rings is bounded above by the number of combinations of two or more

active nodes within the network graph and is given by

Q < 2W - \ N \ - l (5.1)

where |N| is the number of nodes in the network. For any combination of active nodes to correspond

to a feasible ring, there must be at least one cycle within the network graph that connects the nodes.

If the network has a Hamiltonian cycle, then every combination of active nodes is a feasible ring.

This is because a Hamiltonian cycle visits every node in the network and, therefore, can connect any

subset of active nodes within the network. Otherwise, the number of ring candidates will be less than

the upper bound.

Next, to determine an upper bound on the number of possible network designs, we need a limit

on the number o f ring candidates in a network design. We note that when the rings are uncapacitat­

ed, the maximum number of topological rings required to cover every node in the network is

|N| - 1. To prove this, consider the limiting case where every ring contains only two active nodes.

To obtain maximum coverage while still meeting the connectivity requirement (i.e., that a path ex­

ists between every pair of nodes for inter-ring demands), every ring must have at least one node in

common and one node disjoint from the other rings in the ring cover. In this situation, the first ring

covers two nodes and the remaining |N| — 2 rings cover one additional node, for a total of \N\ — 1

rings. From a connectivity point of view, any additional rings placed on the network beyond this

point are redundant because all nodes are already covered and the network is fully connected. Based

on this argument, the upper bound on the number of possible network designs is

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IM-1

£ (?) (5-2)
1 = 1

A graph of the number of possible designs as a function of the number of network nodes is

shown in Fig. 5.2. This figure shows that the number of possible network designs is grows very

quickly for networks with more than a handful o f nodes. Consider, for example, a Hamiltonian net­

work with ten nodes. From Eqs. (5.1) and (5.2), the number of candidate rings and the number of

possible network designs are roughly 1013 and 1021, respectively. Even if we could evaluate a mil­

lion designs per second, it would take nearly 100 million years to evaluate every possible network

design. Admittedly, this includes the evaluation of network designs that are not feasible. But it is

not clear how to End the globally optimal solution without evaluating all network designs because

the problem is AP-hard, so this bound is still quite relevant

70

60

CO

CO

-8
JSJO
%oa.

40
10

3010
o
oc

20

10

10

no.ofnodes

Figure S.2. Upper bound on the number of possible designs.

5.4 Other Design Considerations
In the preceding sections we considered a basic definition of the ring network design problem

without discussing some of the underlying assumptions and other pertinent design considerations.

These other considerations are discussed in detail below and will later serve as a framework for

evaluating the design methods discussed in Chapters 8 through 10.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1 Decision Environment
An important aspect of any network planning exercise is understanding the environment in

which decisions are being made. A key characteristic of this environment is whether the problem is

being evaluated for a single period or multiple periods. In a single-period or static decision environ­

ment, all decisions are made for the current period only, independent of any future periods. The def­

inition of the ring network design problem in Section 5.2, implicitly assumes a static decision
environment.

In many practical network planning applications, however, decisions about where and when to

deploy network capacity may be considered over multiple time periods. In these situations, the goal

is to find the optimal sequence of decisions over the planning horizon (i.e., the duration of the prob­

lem). This is referred to as a multi-period or dynamic decision environment. In the context o f the

ring network design problem, for example, the deployment of rings in one period usually has an im­

pact on the timing, capacity and cost of any rings deployed in future periods. Quite often, the ring

network design problem may also involve augmenting the capacity of an existing network (some­

times within a fixed capital budget) to accommodate growing demand. This is called transition

planning. Although a multi-period model may more accurately reflect the actual decision environ­

ment in which network planners operate, the introduction of temporal dependence usually compli­

cates a model’s optimization. That is, the optimization of an n-period model usually requires even

more time and computer storage than n separate single-period problems.

In some cases, a multi-period problem can be transformed so that the consequences of present

decisions can be safely ignored in future periods. Under these circumstances, the optimal solution

is obtained by solving a series of static problems, one for each time period. Problems that possess

this property are called myopic optimum problems. Whether the multi-period ring network design

can be transformed to a myopic optimum problem is an open question.

Another characteristic of the decision environment is whether it is deterministic or probabilistic.

A deterministic decision environment is one in which the uncertainty surrounding the outcome of

any one decision is so small that it can be ignored. In the context of the multi-ring design problem,

this means that important design information such as the demand pattern, equipment costs, and tech­

nological advances are known or can be forecast with little uncertainty and that any variations in

these factors do not seriously affect the outcome. If this is not the case, then a probabilistic model

may be more appropriate for comparing alternative decisions. A probabilistic model accounts for

the probability of achieving specific outcomes for a given set of decision alternatives. But including

uncertainty in a model makes the model more complex. Consequently, most (if not all) methods for

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the ring network design problem assume a deterministic decision environment. As a practical alter­

native, sensitivity analysis may be used to evaluate the effect of forecast errors on prospective de­

signs.

5.4.2 Demand Grooming and Hubbing
When the volume of demand between two nodes is sufficient to fill or almost fill an entire

STS-1 time slot, a direct STS-1 is usually assigned to the node pair. In a UPSR, this means that the

STS-1 time slot is not accessed by any other nodes on the ring. In a BLSR, a direct STS-1 time slot

cannot be accessed at intermediate nodes enroute to the destination, but can be reused once the de­

mand reaches its destination. When the demand between a pair of nodes is relatively small (e.g.,

only a few DSls), however, a direct STS-1 is not very efficient because most of its capacity is un­

used.

An alternative is to consolidate or groom the demand to achieve better utilization. Grooming

involves rearranging and repacking client layer demands (e.g., DS Is) into STS-1 time slots to obtain

high utilization or rill ratios. Grooming allows demand from various destinations to be combined

together over a single transport facility. In ring-based networks there are two ways to groom de­

mand: centralized demand management; and distributed demand management. In centralized de­

mand management, also known as hubbing, all DS1 demand, for example, originating from a node

is packed into one or more STS-ls and transported to a central hub node. At the hub node, the in­

coming STS-Is are dropped from the ring and connected to a digital cross-connect system (DCS).

Within the DCS, the individual DS Is with the same destination are groomed into outgoing STS-ls,

which are added back to another ring and transported to their common final destination.

One disadvantage of hubbing is the difficulty in accommodating growth because there is a pro­

pensity to continue hubbing demands even after they reach direct STS-1 levels. The reason for this

is services must be interrupted to switch from hubbing to direct STS-ls. In addition, hubbing intro­

duces a single point of failure (i.e., the hub node). This situation can be improved immensely by

introducing a second hub node and splitting demand between the two hub nodes. Studies by Owen

and Wulf-Mathies [OwW93] show that in hierarchical UPSR networks, dual hubbing requires very

high capacity rings at the upper levels. Although less capacity is required if BLSRs are used at the

upper levels, the general hubbed nature of the demand pattern limits the capacity advantage of

BLSRs relative to UPSRs (as described in Chapter 4).

An alternative to hubbing is distributed demand management. In distributed demand manage­

ment, DS 1 demands are routed directly within the ring over a shared or collector STS-1. A collector

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STS-1 is an STS-1 time slot that is accessible by more than one pair of nodes. In order to access a

collector STS-1, however, an ADM must be capable of time slot assignment (TSA) at the VT1.5

level. Unlike for hubbing, distributed demand management does not have a single point of failure

and also does not incur a capacity penalty due to back-hauling. ADMs with VT1.5 accessibility,

however, are generally more costly than those without this feature.

A hybrid demand management scheme using direct STS-1 and grooming is also a possibility.

In a hybrid scheme, demands above a certain DS1 threshold are routed over direct STS-ls, whereas

demands below the threshold are groomed using either centralized or decentralized demand man­

agement techniques.

Clearly, the type of demand management scheme and the capabilities of the ADMs have a direct

impact on ring capacity and ring loading. For example, if direct and collector STS-ls are used in a

BLSR, the ring loading subproblem must be solved using multiple transport signal units (e.g., DS1

and STS-1 units) to find the optimal routing for each STS-1 and DS1 demand. Ring loading with

multiple transport signal units is also applicable to the problem of finding the optimal routing of sin­

gle and concatenated STS-1 payloads (e.g., STS-3c, STS-12c). If the total demand (i.e., all of the

demand entries) between a pair of nodes cannot be split, these problems can be solved using single

transport signal unit algorithms by expressing each demand in the smallest unit For example, if a

node pair has a total of two STS-ls and four DSls of demand, the aggregate demand can be ex­

pressed as 60 DS 1 s. If each demand entry between a pair of nodes can be split a practical alternative

is to bundle these demands up to the largest unit and solve the problem for the single larger unit only.

For the previous example, the aggregate demand would be expressed as 3 STS-ls. The bundling

procedure, however, would in general degrade loading efficiency due to the larger granularity.

5.4.3 Topology Optimization
The complexity analysis in Section S.3 assumes that the underlying network topology is already

given. More generally, it may be desirable to identify the combination of new and existing spans

that minimize the total network costs. This is referred to as topology optimization. The optimal to­

pology for ring-based designs depends strongly on the demand pattern and the cost structure of the

problem.

To illustrate this consider the demand pattern, network graph and two alternative network de­

signs shown in Fig. 5.3. The aggregate demand on each span in Fig. 5.3(a) was obtained by routing

each demand over the shortest path between the origin and destination nodes. Typically, route

length is usually measured in terms of its hop count (i.e., the number of spans in the route), cumu-

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Iative geographical distance, or the sum of some other weight (e.g., cost) associated with each of its

spans. Routing demands over the shortest or least-cost route is a reasonable approach because it gen­

erally consumes the least amount of transmission capacity. There are cases, however, where shortest

path routing leads to sub-optimal results if some ring systems are already in place or are committed

to an evolving design. In Fig. 5.3(a), shortest path routing results in every span in the network graph

being assigned some working demand. If we assume that 4B12 rings are being considered, a min-

cost design requires two rings and nine Add/Drop Multiplexers (ADMs) to cover every span in the

network graph, as shown in Fig. 5.3(b). Note that other min-cost span coverage designs exist with

the same number of rings and ADMs.

From

Demand Matrix (in STS-1 s)
To

Node 1 2 3 4 5 ■ 6 ;

1 X 3 6 0 4 1

2 X 2 5 0 0

3 X 0 0 1

4 X 1 2

5 X 7 (a) Aggregate demands using
shortest path routing.

(b) A ring design based on
shortest path routing.

(c) A ring design based on
alternate routing.

Figure 5.3. An example of demand routing in multi-ring networks.

If we reroute the demand on spans 2-3 and 2-5 (i.e., demands 1-5 and 2-3) around the periphery

of the network, however, we can eliminate the need to cover spans 2-3 and 2-5. In this situation, a

single ring with six ADMs is sufficient to carry all network demands, as shown in Fig. 5.3(c). Re­

routing working demands to avoid having to cover a span is called span elimination.

Several approaches for span elimination were recently studied by Lee et al. [LGM99], [LeeOO].

In total, four span elimination heuristics were developed and tested. Two of the heuristics attempt

to optimize network topology (and the resulting multi-ring network design) using a variant of short­

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

est path routing in which the effective distance (or cost) of each span is a function of its working

load and the ring module size. Demands are routed one at-a-dme and at each iteration the span costs

are updated based on their working load. By discounting the cost of spans that are lightly loaded

(relative to the ring module size), the algorithm tends to aggregate demands onto fewer spans. After

all demands have been routed, the cost of the topology is evaluated by creating a multi-ring network

design using the SCIP formulation described in Section 9.3 of this thesis. One heuristic, called mod­

ular aggregated pre-routing, uses a fixed cost function and, as a result, creates only one network

topology. In the other heuristic, called iterative modular aggregated pre-routing, uses a family of

cost functions to create several network topologies, the best of which is selected as the solution.

The other two heuristics begin by routing the demands over the shortest path and then evaluat­

ing several possible span elimination combinations. The first heuristic, called iterated routing and

elimination, uses a breadth-first search procedure to successively eliminate spans from the initial

topology. At each iteration, the heuristic evaluates all possible span elimination candidates by tem­

porarily eliminating the span, rerouting the affected demands and determining the cost using the

SCIP formulation. The span elimination candidate with the lowest cost is selected and permanently

eliminated from the topology. This process continues until no further spans can be eliminated from

the topology without violating the two-edge connectivity requirement, as discussed in Section 5.2.1.

The second heuristic, called post inspection and rerouting, works in a similar manner except the

SCIP formulation is not used at every iteration to evaluate span elimination candidates. Instead, it

begins by creating a multi-ring network design for the initial topology using the SCIP formulation.

It then attempts to reroute demands to minimize the number of supermodular spans. A supermodu-

lar span is one on which the working load exceeds the capacity of the largest modular ring placed

on that span. At each iteration, the span elimination candidate that results in the fewest number of

supermodular spans is eliminated from the topology. This process continues until no span can be

eliminated without increasing the number of supermodular spans or violating the two-edge connect­

ed requirement.

The results showed that the iterated routing and elimination heuristic consistently generated the

best solutions (with savings of up to 26% relative to the initial network topologies) but with much

longer runtimes. Overall, the post inspection and rerouting heuristic provided the best tradeoff be­

tween solution quality (with savings up to 18%) and runtime.

5.4.4 Dual Ring Interconnect
In multi-ring networks, intra-ring demands are protected against single node and span failures

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the protection switching mechanism of the ring. Inter-ring demands, however, are susceptible to

failures at nodes where the demand transits from one ring to another. This may be acceptable for the

majority of demand since the probability of transit node failures is relatively low. For certain classes

of demand (e.g., military applications, common channel signalling), however, single points of fail­

ure may not be acceptable due to high availability requirements. To meet these requirements, a

matched node arrangement has been adopted as a SONET standard [Bel95a], [Bel95b]. The

matched node arrangement for BLSRs is shown below in Fig. 5.4.

(primary)

IA 3A

2a <secondary> ^ 4x

Figure 5.4. Matched node drop & continue inter-ring transfer arrangement for
BLSRs (shown for one signal direction only).

In this arrangement, an inter-ring demand is protected by establishing redundant signal paths

between the adjacent rings that serve the demand, as shown in Fig. 5.4. The redundant signal paths

are made between a pair of primary and secondary inter-ring gateways (i.e., ADMs) in each ring.

The drop and continue feature of SONET ADMs is used to drop a copy of the tributary signal (e.g.,

STS-1) at the primary gateway Cj in ring rj as it passes through enroute to the secondary gateway

C2. At C2, the tributary signal is dropped from the line signal and passed to its adjacent gateway C4

in ring r2. Here it is added to the line signal in ring r2 and routed to Cj. At C3, a service selector is

used to switch from the primary to the secondary signal in the event a signal failure or degradation.

In some ADMs, the drop and continue signal between the primary and secondary gateway may be

carried on protection capacity. This conserves working capacity for demands. For simplicity, only

one signal direction is shown in Fig. 5.4. The same arrangement protects the other signal direction.

Note that because the protection switching in a matched node arrangement is performed on a

path (e.g., STS-1) basis, each inter-ring demand has its own pair of primary and secondary gate-

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ways. Thus, the primary gateway for one demand may be the secondary gateway for another de­

mand and vice versa. In addition, the protection switching mechanism in one ring is completely

independent from the other ring. As a result, a primary gateway in one ring may feed either a pri­

mary or a secondary gateway in the adjacent ring. Typically, these adjacent gateways are located

within the same central office building. However, when two adjacent gateways are not co-located,

linear systems and/or other intermediate rings may be used to carry the inter-ring demand. This is

called an extended matched node. The primary and secondary gateways within the same ring may

also be separated by one or more intermediate nodes. It is usually more capacity efficient, however,

if the two nodes are adjacent [DDH97].

In a UPSR, the matched node arrangement operates in a slightly different manner, as shown in

Fig. 5.5.

working fibre working fibre

\ . r
j (primary) ^ r + p

(secondary)

protection fibre protection fibre

Figure 5.5. Matched node drop & continue inter-ring transfer arrangement for
UPSRs (shown for one signal direction only).

Here the drop and continue feature is used at both the primary and secondary gateways. Be­

cause the working and protection signals are normally routed all the way around a UPSR, no addi­

tional capacity is required for the arrangement. At the primary gateway Cj in ring rj, the incoming

signal on the working fibre is dropped as it passes through to the secondary gateway C2. Likewise,

the incoming signal on the protection fibre at C2 is dropped and then continued to C/. At both gate­

ways, a path selector is used to select between the working and protection signals, as required. The

selected signal is then routed to the adjacent gateway on ring r2 where it is routed over the protection

or working fibres to its final destination. For simplicity, only one signal direction is shown in

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 5.5. The miiror image arrangement protects the other signal direction.

Like the BLSR matched node arrangement, a primary gateway in one ring may feed either a pri­

mary or a secondary gateway in the adjacent ring. In addition, hybrid BLSR/UPSR matched node

arrangements are also possible because each ring in a matched node arrangement acts autonomously

from its adjacent ring. When inter-ring demands travel over more than two rings, matched nodes are

required between all intermediate rings along the path to provide end-to-end protection against sin­

gle-point failures.

An alternative, recently considered, arrangement for protecting inter-ring demand from transit

node failures is the dual-feeding arrangement [Gro97a] shown in Fig. 5.6.

(primary)C l

1A 3A
ringl ring2

C2 C4
^ (secondary)

4A

“B

Figure 5.6. Dual feeding inter-ring transfer arrangement.

In the dual feeding arrangement, the tributary signal is simply duplicated and sent in both direc­

tions around the ring to two separate gateway nodes. Note that dual feeding is completely compat­

ible with the matched node arrangement because inter-ring interface for both arrangements is the

same (i.e., two separate signal feeds) and protection switching actions are made independently by

each ring. In fact, any combination of matched node and dual feeding sections may be used to pro­

tect end-to-end demands against single-point failures.

Clearly, the dual feeding and matched node arrangements consume more capacity than an un­

protected inter-ring transition. The trade-offs between dual feeding and matched nodes has been

studied by Grover [Gro96], [Gro97a]. These studies show that the worst-case survivability of both

approaches is comparable. In terms of capacity efficiency, the matched node arrangement is usually

more efficient when distance between the primary and secondary gateways is small in comparison

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the maximum distance from either node to the origin. Otherwise, the dual-feeding arrangement

tends to be more capacity efficient. The problem of finding high-availability paths in ring-based net­

works using combinations o f dual-feeding and matched node arrangements has also been studied by

Grover [Gro99] and Sui [Sui99].

Both arrangements also introduce the added constraint that every ring requiring matched nodes

must be connected to at least one other ring at a minimum of two nodes. Two rings are said to be

connected at a node if they are both equipped with an ADM at that node. The connectivity require­

ment can be verified for a given ring cover R by representing it as an undirected ring connectivity

graph G ‘. In a ring connectivity graph G \ each ring r{ is represented by a vertex and each node (e.g.,

central office) at which two rings are connected is represented by an edge. Since two rings may be

connected at more than one node, G ’ may have multiple parallel edges between vertices. To satisfy

the ring connectivity constraint for all possible demand pairs, G’ must be biconnected. That is, there

must be at least two edge-disjoint paths between every pair of vertices in G \ An example of a ring

connectivity graph is shown in Fig. S.7.

© ©

(a) Network graph (b) Ring design

(c) Ring connectivity graph

Figure 5.7. An example ring connectivity graph.

An example of a network graph and corresponding ring design is shown in Figs. 5.7(a) and

5.7(b), respectively. The ring design consists of four rings: rh r2, r3, and r4. Note that two of the

rings, r2 and r3, contain glassthroughs at nodes n4 and n3, respectively. The connectivity between

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rings is represented by the ring connectivity graph shown in Fig. 5.7(c). In Fig. 5.7(c), each of the

rings is represented by a vertex and the nodes at which they overlap are represented by edges be­

tween the vertices. For example, in Fig. 5.7(b) we note that ring rj is connected to ring r2 via node

rtj. This is represented in Fig. 5.7(c) by a single edge n/ between vertices r]y and r2. Similarly, ring

rj and ring r4 are connected via nodes n j and n4. This is represented in Fig. 5.7(c) by two parallel

edges n3 and n4 between vertices 17, and r4. From the ring connectivity graph it is easy to see that

the ring cover is not biconnected. That is, if node n7 fails, ring r3 will be isolated from the rest of

the network.

5.5 Summary
This chapter provided a generic definition of the ring network design problem, assessed its com­

putational complexity and discussed several other relevant factors. In the next chapter, the material

covered in this chapter serves as a framework for reviewing the prior work on the ring network de­

sign problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

6 Related Work

6.1 Introduction
This chapter surveys of prior work on the single and multi-ring network design problems. These

problems have been studied extensively in recent years and a large and growing body of research

already exists on this topic. This is due in part to the wide variety of ring network planning scenarios

that exist in the real world and an abundance of solution techniques for addressing these types of

problems. Because a comprehensive survey of all work in this area is beyond the scope of this thesis,

we provide a representative sample of the major variants of the problem and solution techniques that

have been studied to date. For a description of other work on this research topic see [MoG98b],

[SWS99].

As shown in Figure 6.1, ring network design problems can be divided into two main classes:

single ring network design problems and multi-ring network design problems. The single ring net­

work design problem involves finding a single ring to connect a set (or subset) of nodes in a net­

work. This type of problem occurs most frequently in the context of a metropolitan area network

design. Generally, the objective o f this problem is to maximize revenue (or profit) or to minimize

total construction cost. Five methods for the single ring network design problem are covered in Sec­

tion 6.2.

Single Ring Multiple Rings

Logical
Rings

Span
CoverageHierarchical

Ring Network Design Problem

Figure 6.1. Classification of Ring Network Design Problems.

A second class of problems occurs when the network design consists of multiple rings overlying

different topological cycles. These problems can be further subdivided based on a number o f other

attributes of the problem or decision environment including network equipment constraints, net­

work application, company operating policy and other considerations (e.g., planning horizon, ca­

pacitated vs. uncapacitated, metro vs. long-haul, etc.) discussed in Chapter S. Here we classify them

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to the approach used to decompose the main problem into more tractable subproblems.

As discussed in Chapter 5, some form of decomposition or relaxation of the main problem is usually

necessary due to the complexity of the problem. One approach is to divide the design into two or

more hierarchical layers and solve each layer independently. Two of the methods surveyed in Sec­

tion 6.3 fall into this category.

Another popular approach is to first route the demands over the network topology and then

select an optimal set of rings that covers (or carries) the working load assigned to each span in the

network graph. Generally, the objective in this case is to minimize total design cost or network

redundancy. We refer to this problem as the span coverage problem. A property of the span cover­

age approach is that the resultant design cost may depend heavily on the pre-determined demand

routing pattern. There are two reasons for this dependence. The first is that rings are usually avail­

able in a discrete set of modular capacities only. As a result, small changes in the routing pattern

can cause a step-wise increase in the design cost when ring system capacity is exceeded or when

very lightly loaded spans arise, each of which may trigger the placement of a new ring to satisfy

the coverage imperative. To illustrate, consider the example in Figure 6.2.

0-

12

&

12

o
(a)

(c)

12

12

0

12/12

12/12

24/24

13/24

12/12 ~ 12/12
(b)

11/24 12/12
(d)

12/12

13/24

12/12

Figure 6.2. Effect of ring modularity on transmission capacity requirements.

Figures 6.2(a) and 6.2(c) show two possible routing patterns for a six node network with four

demand pairs: a-d, a-f, c-d, and c-f. Each demand pair requires 12 DS3s between its end nodes. In

Figure 6.2(a), the demands are routed over the shortest path (measured in hops) between the origin

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and destination nodes. If the ring capacity is also 12 DS3s, it is easy to see that only two rings are

required to cover the routing pattern, as shown in Figure 6.2(b). The capacity utilization (working

load aggregate capacity) for each span is also shown in Figure 6.2(b). In this case, the aggregate

capacity is completely utilized on all spans. The routing pattern in Figure 6.2(c) is identical to that

shown in Figure 6.2(a) except one DS3 from demand pair c-d is rerouted around the perimeter of

the network graph on spans a-d, a-b and b-c. Although the total length of this new route is the same

as the original route, the total load on spans a-b and a-d now exceeds the modular capacity of the

ring by one DS3. In this case, the minimum number of rings required to cover the routing pattern

increases from two to three. As a result, the total installed capacity goes from 96 DS3-hops to 144

DS3-hops and the average utilization (or fill) drops from 100% to only 66.67%. This example

demonstrates inefficiencies that can occur due to ring modularity effects alone.

Even when the working load on each span is a multiple of the ring’s capacity, however, there

still may not be an efficient way to cover the spans with rings. That is, the topology may not sup­

port a ring set that closely matches the span usage and capacity requirements of the routing pattern.

To illustrate consider the routing patterns and ring covers shown in Figure 6.3.

12
G>

0

< ----------------
12

12 12

-------------- ► '

(a)

0

o

_ 24/24 ^ 12/12 _© ■ (S) Q

24/24

0

12/12

■ o -0/24 12/12
(b)

12/12

■0

12 12 12

0 -0
(c)

0

12

< b

36/36

12/12

12/12

12/12

Figure 6.3. Effect of topological layout on transmission capacity requirements.

Here, the network graph and demand matrix are the same as in Figure 6.2 but the routing pat­

terns are modified slightly. In Figure 6.3(a), all of the demand between demand pair c-d is routed

around the perimeter of the network. Although the load on each span is an even multiple of the ring

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

capacity, there is no set o f rings whose aggregate capacity exactly matches the span loads. And al­

though the spans can still be covered by two rings, the total installed transmission capacity increases

from 96 DS3-hops to 120 DS3-hops. A similar situation is depicted in Figures 6.3(c) and 6.3(d) ex­

cept the inefficiencies are even more pronounced. Note that in all examples shown above, demands

are routed over the shortest path. Although these examples are somewhat contrived, they clearly

demonstrate the effect that demand routing can have on a network’s total capacity requirements and

ultimately its total design cost Four of the twelve methods surveyed in Section 6.3 use this ap­

proach.

A third approach is to establish clusters of nodes to be connected by a set of rings and then find

the optimal fibre routing and demand assignment (and routing) for each cluster. We refer to these

clusters as logical rings. Several heuristics have been proposed using this approach. In general, the

logical rings may be specified in advance or determined by evaluating the community o f interest be­

tween the nodes in the network. The community of interest between any two nodes is high if there

is a large volume of demand between the two nodes and they are in close proximity to one another.

Rings with high community of interest are desirable because they minimize the amount of inter-ring

demand. Three of the methods discussed in Section 6.3 decompose the problem along these lines.

Three other methods that do not fit these broad categories are also discussed at the end of Section

6.3. The chapter concludes with a summary of the design methods and a comparison of this prior

work with the methods developed in Chapters 8 through 11 of this thesis.

6.2 The Single Ring Network Design Problem
This section discusses prior work on the single ring network design problem. In total, we survey

six different methods that have been proposed in the literature for several variants of the problem.

The first two methods consider the case where a subset of nodes are selected to form a ring that max­

imizes profit or revenue. The other three consider hybrid architectures where the nodes that are not

included in the single ring are connected via point-to-point systems.

6.2.1 GendreauetaL
Gendreau et al. [GLL95] consider the problem of constructing a single ring that connects a sub­

set of nodes in a metropolitan area network. Specifically, the problem is to determine the subset of

nodes and the fibre routing between nodes that maximizes the profit derived from the ring subject

to a budget constraint. The profit is equal to the sum of revenues between all node pairs served by

the ring minus the total fixed cost of all spans on the ring. The revenue derived from each node pair

is assumed to be a direct function of the traffic between them. Although the authors considered the

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem in the context of a packet-switched ring network, the results are applicable to the equivalent

circuit-switched ring network design problem where ring capacity is not a constraint (i.e., the unca­

pacitated version of the problem). When the revenues are large relative to construction costs, it pays

to include all nodes in the ring and the problem is equivalent to the Travelling Salesman Problem

(TSP), which is known to be iVP-complete. Because it is unlikely that large problems can be solved

to optimality, the authors propose three greedy constructive heuristics and three post-optimization

heuristics. The basic idea behind all three greedy heuristics is to start by choosing the pair of nodes

with the maximum profit and then successively enlarging the ring at each iteration by adding the

node yielding the maximum increase in profit. The post-optimization procedures are based on sim­

ilar techniques developed by the authors for the TSP. The heuristics and post-optimization proce­

dures are compared on randomly generated problem instances with up to 400 nodes.

6.2.2 FinketaL
The same problem addressed by Gendreau et al. is also studied by Fink, Schneidereit and VoP

[FSV98], [FSV99], who develop two greedy heuristics for the problem. The two heuristics are sim­

ilar to those by Gendreau et al. except one includes a finite look-ahead procedure. They also propose

two improvement procedures: one based on Simulated Annealing (SA) and the other on Tabu

Search (TS). The initial starting solutions for the S A and TS improvement procedures are obtained

from either of the greedy heuristics. The various methods were tested on randomly generated in­

stances of the problem with up to 120 nodes. On average, the results showed that the Tabu Search

procedure combined with the greedy heuristic with finite look-ahead provided the best overall re­

sults.

6.2.3 Lee, Ro and Tcha
Lee, Ro and Tcha [LRT93] consider the problem of constructing a single ring through a set of

hub nodes and linking the hub nodes to a set of non-hub nodes via point-to-point systems. In this

case, the hub ring is a unidirectional ring and both the ring and point-to-point systems not restricted

to a discrete set of capacities (i.e., uncapacitated). They call this a ring-star architecture. The objec­

tive of the problem is to minimize the total construction cost of the unidirectional ring and the point-

to-point systems. The proposed cost model contains three cost elements: variable flow costs, fixed

hub node costs, and fixed span costs. The min-cost solution for this problem must specify the loca­

tion of the hub ring as well as the hub node to which each non-hub site is connected. Specifying the

location of the hub ring involves two inter-related subproblems: (1) determining the subset of can­

didate hub nodes to include in the ring, and (2) finding the min-cost fibre route that connects the hub

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes in a ring. Both of these subproblems are known to be ̂ VP-complete. To solve this problem the

authors develop an IP formulation for the problem, which is then used to construct a dual-ascent

heuristic for finding the near-optimal solution quickly. A heuristic procedure was also developed to

provide an upper bound on the solution. Computational experiments were conducted on a variety of

randomly generated networks with up to 20 candidate hub nodes and 50 non-hub nodes. Results

showed that the gap between the dual-ascent and primal heuristic solutions was less than 12% for

all test cases. The worst-case run time for the largest problem was 321 seconds for the dual-ascent

procedure running on an HP-9000 workstation.

6.2.4 Xu, Chui and Glover
Xu, Chui and Glover [XCG99] study a logically equivalent problem to that of Lee et al. but in

the context of a Digital Data Service (DDS) network. They develop an exact branch-and-cut algo­

rithm and a Tabu Search procedure for the problem. The performance of these methods is tested on

a set of randomly generated problems instances with up to 600 nodes. The results show that for

smaller test problems of up to 100 nodes, the Tabu Search procedure finds the optimal solution in

all cases but requires only a fraction of the time needed by the branch-and cut algorithm. On larger

problem instances for which optimal solutions are not available, the TS procedure consistently out­

performs the best previous local search methods.

6.2.5 Chamberland and Sanso
A slightly different version of the problem addressed by Xu et al. is also considered by Cham­

berland and Sans6 [ChS97]. In this case, there are capacity constraints on the selected hub sites. The

authors present a greedy heuristic and a Tabu Search algorithm and compare the performance of

both approaches on problem instances with up to 20 candidate hub sites and 200 non-hub sites. On

average, the TS procedure finds solutions that are within 0.18% of the lower bound and in 7 out of

the 12 test cases it finds the optimal solution.

6.2.6 Chung et al.
Chung et al. [CKY96] study a variant of the problem in which the non-hub nodes are connected

to a single ring using diversely routed 1+1 APS systems. Here the 1+1 APS systems may be con­

nected to either one or two nodes in the ring. The problem involves determining the subset of nodes

to include in the ring, the spans used to connect the ring, and the diverse routes used to connect

nodes not included in the ring. The authors formulated this problem as an integer program and also

develop an alternative heuristic that quickly generates near-optimal results. The heuristic decom-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

poses the problem into three separate subproblems: determining the subset of nodes included in the

ring, finding the min-cost ring route that connects the ring nodes, and finding the shortest pairs of

span-disjoint routes between non-ring nodes and the ring. The algorithm begins by generating an

initial feasible solution and then tries to refine it using several improvement heuristics. A compari­

son between the heuristic and IP approach shows that results obtained with the heuristic method are

within 1 % of the optimal solution (obtained using CPLEX) for a number of small random networks.

The computation time for the heuristic method is also a small fraction (approx. 1/3000 - 1/10000)

of that required for the optimal solution.

6 3 The M ulti-Ring Network Design Problem
This section discusses twelve methods proposed in the literature for the multi-ring network de­

sign problem. In Section 6.3.1 through Section 6.3.4 we provide an overview of four methods pro­

posed for the span coverage problem. This is followed by a description of three other methods in

Sections 6.3.5 through 6.3.7 that consider the single period design problem but do not fall into the

categories discussed earlier. In Section 6.3.8 and 6.3.9 we discuss two methods that adopt a hierar­

chical decomposition of the problem. The final three subsections cover methods that consider the

multi-period design problem using a logical ring decomposition.

6.3.1 RingBuilder (Grover etaL)
One of the first methods proposed for the multi-ring network design problem is by Slevinsky,

Grover and MacGregor [SGM93], [GSM95], [Sle99]. The authors consider the single-period ver­

sion of the problem and decompose it into what we now call the span coverage problem. The basic

design method, known as RingBuilder, uses a greedy heuristic approach that divides the ring design

problem into four steps: ring candidate generation, demand routing, candidate ring loading and ring

selection. Although several versions of the basic approach have been implemented over the years,

we discuss only the most recent versions [GSM95], [Sle99] for the sake of brevity.

In the first step of the approach, a set of candidate rings are generated by finding the cycles with­

in the network graph and instantiating a ring candidate for each combination of cycle and ring tech­

nology under consideration. The set of candidate rings is then saved for subsequent use in the

candidate ring loading and selection stages. The candidate generation routine also includes a option

to limit the maximum number of nodes or the circumference of the candidate rings.

In the second step, the point-to-point demands are routed over the network graph using a short-

est-path routing algorithm. Several options are available for routing demands. One option allows all

demand between a specific pair of nodes to be handled either as a single entity or separately for each

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unit of demand (e.g., DS3). Anoth;r option permits demand to be distributed as evenly as possible

over all shortest routes between the origin and destination nodes. This is referred to as the k-way

splitting option. The rationale for splitting demands among equally short routes is that it should, on

average, distribute demands more uniformly over the underlying network topology. The route

length may also be based on either the number of hops (spans) in the route or geographical distance.

After the candidate rings have been generated and demands have been routed, an iterative

greedy process is used to construct a feasible solution one ring at a time. At each iteration, each can­

didate ring is temporarily loaded with demands whose routes intersect the ring. RingBuilder sup­

ports two kinds of ring loading for BLSRs: balance-biased loading and capture-biased loading. In

both types of loading, unit demands are sorted in non-increasing order of the number of spans that

the demand’s route has in common with the cycle of the candidate ring. These demands are then

loaded onto the candidate ring in order from longest to shortest. When the capacity on a span is ex­

hausted, the balance-biased loading routine will continue to load demands that intersect the exhaust­

ed span but only on segments of the route that are not yet exhausted. In contrast, the capture-biased

loading routine will reject demands that cannot be entirely loaded onto the ring. Balance-biased

loading improves ring fill at the expense of higher inter-ring transition costs. Capture-biased loading

has the opposite effect.

Once all candidate rings have been loaded, the efficiency of the ring candidates is calculated

based on the set of demands loaded onto the ring. Two measures of efficiency are proposed by the

authors. The first efficiency measure takes the weighted sum of two other metrics known as balance

efficiency and capture efficiency [GSM95], as follows:

r\BC - a rig + (l —a) -nc , 0 < a < 1 (6 .1)

where r\B is the balance efficiency, t |c is the capture efficiency of the design, and a is called the

balance bias factor. Balance efficiency (or capacity efficiency) is a measure of how effectively the

capacity of the ring cover R is used and is given by

(n \ (n " ^
r\B = 2 wi ■K / 2 */ \ + 2 Pi ' ^ i

II o r ii o

s©ii

where wt is the number of working links on span /, is the length of span I, S[is the number of

slack or unused links on span /, and p t is the number of protection links on span /. Balance efficien­

cy is inversely proportional to transmission-related costs (e.g., fibre, ADM common equipment and

tributaiy ports, etc.) because the higher the balance efficiency the less transmission capacity (and

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equipment) required for a given demand routing pattern. High-balance efficiency is important in

long-haul networks where transmission costs outweigh inter-ring transition costs (e.g., DCS com­

mon equipment and tributary ports).

Capture efficiency is a measure of how well the demands are contained (i.e., originate and ter­

minate) within the rings and is given by:

(2 - L - T)<lc = 2 . L 1 (6.3)

where L is the total number of links (or route segments) loaded onto the ring, and T is the total

number of inter-ring transitions. Capture efficiency is inversely proportional to inter-ring transition

costs. That is, the higher the capture efficiency, the lower the inter-ring interface costs for a given

network design problem. High capture efficiency is desirable in metropolitan networks where inter­

ring transition costs typically dominate the total cost of the network. Note that by sweeping the bal­

ance bias factor, several designs can be generated for comparative purposes and sensitivity testing.

In the most recent version of RingBuilder [SIe99], the ring efficiency is measured by specific

progress. Specific progress is the ratio of the progress made in completing the design to the cost of

constructing the candidate ring. The amount of progress is taken as the sum of the demand-distance

product for all demands served by the ring. The construction cost includes the fibre, ADM common

equipment, ADM tributary interface cards and inter-ring transition costs. The advantage of the spe­

cific progress metric is that it provides a technology-independent means of comparing candidate

rings, which makes multi-technology designs possible.

At each iteration after all ring candidates have been evaluated, the ring with the highest efficien­

cy is selected. The demands (or portions thereof) served by this ring are then removed from the pool

of unserved demand and the ring loading and ring selection steps are repeated until all demands have

been satisfied.

The authors compare the performance of the various program options for several real test net­

works. For demand routing, the results show that treating each demand unit separately rather than

as a bundle during demand routing (and ring loading) reduces design costs by up to 10% in some

test cases. The k-way splitting option, on the other hand, does not always result in lower cost designs

relative to the single shortest path routing. In metropolitan networks, the costs of designs generated

with the shortest-hop routing option are roughly 5% lower than those generated with the shortest-

distance option. In contrast, the shortest-distance option provided marginally better results in long-

haul networks. The lowest cost designs for single-technology designs are obtained using the weight­

ed balance/capture metric by sweeping the balance bias factor over the interval [0,1]. However, in

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all cases the specific cost metric provided designs within a few percent of the best solution and only

required a single run.

6.3.2 Roberts
The single-period span coverage problem is also studied by Roberts [Rob94a], [Rob94b] who

considers the uncapacitated version of the problem for BLSR ring designs only. The author presents

a solution technique based on Simulated Annealing (S A). SA is heuristic approach for solving com­

binatorial optimization problems that is based on a computational analogy to the physical process

of annealing in metals. The proposed heuristic is similar to the original version of RingBuilder ex­

cept the method by which ring candidates are chosen is based on S A rather than a greedy selection

process. Because the rings are not restricted to a discrete set of capacities, the author assumes that

the objective is to minimize total network redundancy

X X Pir = —r M / e r (6 4)
v y* w,

r e R l e r

Note that this objective function is identical to that of the original version of RingBuilder

[GSM93]. The first step in this approach is to find a set of candidate rings for the given network

graph G. A depth-first search is used for this purpose, as in RingBuilder. Then, the SA algorithm is

run using the cycle set as input The SA algorithm begins by placing the first cycle in the cycle set

onto the network graph to form a ring. The capacity of this ring is determined by the working de­

mand assigned to each span of the ring. Once the ring is in place, the working demands are then

removed from the spans and the next cycle in the set is placed onto the network. The algorithm con­

tinues placing cycles in order until every span that has been assigned working demands is covered

by a ring. The subset of cycles placed on the network represents the design solution. Therefore, it is

the sequence of the cycle set that uniquely determines the final solution.

Next, the initial solution is modified using a "Generate” function that randomly changes the or­

der of the entire cycle set. The Generate function uses two operations to modify the order of the cy­

cle set: a choose and insert operation, and a reverse segment operation. These operations are

illustrated in Fig. 6.4

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*LL!55 *6
1 1 4 5 | 2 3 6 1 2 | 5 4 3 | 6

(b) Reverse segment operation

1 2 | 3 4 5 | 6

(a) Choose and insert operation

Figure 6.4. Simulated Annealing generate operations.

The choose and insert operation, shown in Figure 6.4(a), changes the original order of the cycle

set (i.e., 1 2 3 4 5 6) by randomly selecting a segment of the cycle set and inserting it between two

elements not in the segment. The reverse segment operation, on the other hand, changes the order

of the cycle set by randomly selecting a segment of the cycle set and reversing its order, as shown

in Figure 6.4(b).

The redundancy of the new solution is then computed and compared with that of the current so­

lution (or incumbent). If the redundancy of the new solution is less than that of the incumbent, the

new solution is saved. If it is greater than the incumbent, it may still be saved depending on the out­

come of a random draw. The decision to accept or reject a higher redundancy solution at iteration k

is made by comparing a random number generated from a uniform distribution on the interval [0,1]

with the value of

where r(k') is the redundancy of the new solution, r(k) is the redundancy o f the current solution, and

c is a control constant. If the random number is less than the value returned by Eq. (6.5), the inferior

solution is accepted; otherwise it is rejected. As the algorithm progresses, the control constant c de­

creases, thus lower the probability of accepting a higher cost solution. The S A algorithm continues

until no further improvements in cost can be made. The primary advantage of the (S A) approach is

that it can escape local minima and more effectively search the solution space to find the global min­

imum.

Roberts compared the performance of the simulated annealing algorithm with the first version

of RingBuilder [SGM93] for a number of test networks. In each case, the entire cycle set was used

by both heuristics.The results showed that for relatively small networks (6 to 10 nodes), simulated

annealing solutions were as good as or better than those generated by RingBuilder. For larger net­

works, however, the simulated annealing results were inferior to RingBuilder results and required

up to an order of magnitude more run time.

e [/-(*)-r (* ')] /c (6.5)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.3 Eulerian Ring Covers (Gardner etaL)
Another design method for the span coverage problem is proposed by Gardner et al. [GHS94].

Here, separate heuristic algorithms are presented for uncapacitated UPSR and BLSR designs. For

UPSR designs, it is assumed that cost is a linear function of the working load on each span. That is,

the total cost of the network design is

cost ©e ^ ^ vj\ (6.6)
r e R l e r

where R is the set of rings in the cover and wr(is the working load on span I in ring r. In other words,

the total cost of the ring cover is proportional to the sum, over all rings r in ring cover R, of the sum

of working demand carried by each span in r. Note that the cost per ring, as defined in Eq. (6.6), is

not necessarily proportional to the ring’s required capacity. This is because the required capacity

depends on the sum of demand served by the ring and not the working load on each span. Only when

a node-to-adjacent node demand pattern exists is the cost per ring proportional to the required ca­

pacity.

In this situation, the problem is similar to the well-known Chinese Postman Problem [EdJ73],

which involves finding a minimum weight tour that traverses each edge of the graph at least once.

It can be shown that if the degree of every vertex in a graph is even, there is an Euler tour that

traverses each edge in the graph exactly once. An Euler tour is an optimal solution for the Chinese

Postman Problem because each edge of the graph is traversed only once. Recall that a graph that

contains an Euler tour is called an Eulerian graph.

The authors show that if a network graph is Eulerian, the minimum cost ring cover can be ob­

tained by decomposing any Eulerian tour into a ring cover. Such a ring cover is an optimal solution

for the present problem because each span is covered only once. An example of a weighted Eulerian

graph and an Eulerian tour for this graph are shown in Figures 6.5(a) and 6.5(b), respectively.

(a) (c)(b)

Figure 6.5. Decomposing an Eulerian graph into cycles.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Eulerian tour can be decomposed into rings (cycles) by traversing its edges in order and

partitioning off a ring whenever a node (vertex) is revisited. The resultant ring cover is shown in

Figure 6.5(c). Note that none of the rings in the ring cover overlaps another ring and that each span

is covered only once. The total weight of the ring cover in Figure 6.5(c) is 39.

If a graph is not Eulerian, it can be converted to a Eulerian graph by duplicating some of its edg­

es (i.e., by adding parallel edges to the graph). This is equivalent to traversing each (duplicated)

edge in the original graph more than once. For the Chinese Postman Problem, the optimal solution

is obtained by finding a least cost matching of the vertices of odd degree using shortest paths

[EdJ73]. A pair of vertices are matched by adding parallel edges along the shortest path between the

vertices. Note that the number of vertices of odd degree is always even and the parity (even or odd)

of the vertices along the path is unchanged by any such augmentation.

This same basic procedure can also be used to produce a minimum cost ring cover. An example

of how a non-Eulerian graph is converted to an Eulerian graph is shown in Figure 6.6 .

Note that the graph in Figure 6 .6(a) is a non-Eulerian graph because nodes 3 and 5 are of odd

degree. The graph is converted to a Eulerian graph by adding parallel edges between 2-3 and 2-5,

as shown in Figure 6.6(b). This represents the minimum cost augmentation of the graph for connect­

ing nodes 3 and 5 and making them of even degree. The resultant min-cost ring cover is shown in

Fig. 6.6(c). Because spans 2-3 and 2-5 are traversed twice, the total cost of the ring cover is 2 + 4 +

39 =45. Under certain circumstances, however, it may not be possible to decompose the augmented

graph into a ring cover because some of the rings may include parallel edges. The authors state the

conditions for a feasible ring cover.

For BLSR technology, the cost of the ring cover is given by

Links Added

3 6

(a) (b) (c)

Figure 6.6 . Converting a non-Eulerian graph to an Eulerian graph.

(6.7)
r e R

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Or in words, the cost of the rfng cover is proportional to the sum, over all rings r in the ring

cover R, of the maximum working demand carried by any span in r. The authors show that the prob­

lem of finding the minimum cost ring cover using BLSRs is /VP-complete by transformation from

the undirected Hamiltonian circuit problem, which is known to be ̂ VP-complete. They present three

heuristic methods for finding min-cost ring covers: the Greedy method, the Longest Feasible Ring

method, and the Maximally Separated Rings method. All three heuristics use a depth-first search to

locate candidate rings (i.e., cycles) in the network graph which are then selected iteratively to con­

struct a ring cover. A priority is also assigned to each node to determine where to start the depth-

first search. The heuristics differ only in the manner in which rings (cycles) are selected.

The Greedy heuristic starts at the node with the highest priority and selects rings according to

the order in which cycles are found using the depth-first search. The procedure continues until all

spans in the graph are covered by a ring. The Longest Feasible Ring heuristic enumerates all of the

cycles in the network graph and selects the one with the maximum number of spans (up to the max­

imum of sixteen nodes) to be the first ring. This process continues until all spans are covered by a

ring. In the Maximally Separated Rings heuristic, rings are selected based on the amount of overlap

between each candidate ring and the other rings previously placed on the graph, if any. That is, it

tries to find a ring cover that minimizes the number of times a span is covered by a ring.

These heuristics are tested on several example networks and the Longest Feasible Ring heuris­

tics and the Maximally Separated Rings heuristic generally perform the best.

6.3.4 Kennington et aL
An integer programming formulation of the single period span coverage problem is proposed

by Kennington et al. [KNR97]. Here, the authors consider only uncapacitated BLSR network de­

signs. The authors divide the problem into two steps. The first step involves enumerating a subset

of cycles in the network graph. This is done by generating combinations of the fundamental cycle

set and eliminating those combinations that are not valid cycles. For small network problems the

entire set of cycles is generated; whereas for larger network problems the number of cycles is lim­

ited to 1,000 for computational reasons. In the later case, three different methods are proposed for

populating the cycle set. The first method populates the cycle set in the order that cycles are found.

The other two methods populate the cycle set based on either the redundancy or the cost of the gen­

erated cycles.

The second step uses integer programming to find the minimum cost subset of ring candidates

that covers all spans. The IP formulation is

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Minimize: (6-8)

Vre 5

n

Subject to: £ a r/ *8r > l , for 1=1,... ,n, (6.9)

V re S

8 r = 0 or 1 , V r e 5 , (6.10)

a r/ = 0 o r 1 , V r e S , /= / n, (6.11)

where c r is the fixed cost (redundancy) associated with ring candidate r, 8 r is 1 if candidate ring r

is included in the ring cover and 0 otherwise, a rl is 1 if ring r covers span I and 0 otherwise, and S

working capacity assigned to each span on the ring. The authors test the performance of this ap­

proach on a number of problems from the literature with up to 70 nodes and 175 edges. Optimal

solutions are obtained for smaller network examples within about 5 minutes of CPU time. For larger

tion methods that use cost and redundancy measures to populate the cycle set.

6.3.5 INDT (Doshi e ta l)
Integrated Network Design Tools (INDT) is a comprehensive suite of network planning tools

developed by Doshi et al. [DDH95], [Dos97] at Bell Labs. In addition to ring design capabilities,

INDT also has design modules for mesh and hybrid ring/mesh designs using PDH or SONET/SDH

technologies. For the sake of brevity, only the INDT ring network design module is described here.

The ring network design module addresses the single-period design problem where discrete capac­

ity UPSR and BLSR rings are used. The authors decompose the multi-ring network design problem

into five subproblems or stages: ring generation, ring selection, inter-ring routing, intra-ring routing

and load balancing and ring deloading. The design method begins by generating a large set of can­

didate topological rings. Although the details o f the algorithm are not disclosed, some factors that

are considered by the ring generation module include constraints on ring circumference, physical

route diversity, ring connectivity (for dual ring interconnect) and the mix of intra-ring and inter-ring

demand. Next, the ring selection heuristic chooses the best subset of topological rings that minimiz­

es transport costs while satisfying the ring connectivity requirements. The first step in this procedure

is to select a subset of topological rings that maximizes the utilization of the underlying WDM and

fibre layers. This is done by routing the demand over the underlying mesh network topology. The

is the set of ring candidates. The redundancy of each ring candidate is calculated from the initial

networks with a limited cycle set, the best results are consistently obtained using the cycle genera-

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

routing is then optimized by eliminating lightly loaded spans and rerouting demands on the slack

capacity on the remaining spans. This results in a reduced subset of topological rings that meet the

connectivity requirements. The final set of topological rings is chosen from this subset, taking many

of the same factors in ring generation into account.

The inter-ring routing stage then assigns the inter-ring demands to topological rings at the origin

and destination nodes and determines the end-to-end routing of these demands over the topological

ring set. Once this is complete, the total demand on each topological ring is completely specified

and the ring sizing problem is solved to determine the routing of demands around the ring. This step

is referred to as intra-ring routing and load balancing. Next, the topological rings are partitioned into

discrete capacity rings taking care to optimize the placement of ADMs and the assignment of de­

mands to individual rings. The last stage of the method involves removing rings with low utilization

and packing the affected demand into the slack capacity in existing rings.

6.3.6 Net-Solver (Gardner et aL)
A local search heuristic for the single-period problem is developed by Gardner et al. [GST95].

This method, called Net-Solver, uses a four step iterative approach to generate designs composed

of discrete capacity UPSR and BLSR rings. The four steps are ring cover generation, demand rout­

ing, costing and ring cover selection. In the first iteration, the user is required to enter an initial ring

cover for the network. The authors explain that the initial ring design does not need to be particularly

efficient and may be generated manually or by some other simple method (e.g., depth-first search).

Once the initial ring cover is specified, the program routes demands over the initial ring design using

one of the following routing heuristics: (1) shortest path routing; (2) minimum ring transition rout­

ing; or (3) minimum congestion routing.

After all demands have been routed, the total cost of the initial ring cover is computed based on

a user-defined cost model. The authors observe that the total cost is generally a function of the

length of fibre spans, the number of ADMs placed at nodes and the number of ADM port cards.

The heuristic then generates a set of alternative solutions using one or more of the operations

(or moves) illustrated in Figure 6.7. These include a split operation, merge operation and an enlarge­

ments operation.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Split operation

(b) Merge operation

►

(c) Enlargement operation

Figure 6.7. Net-Solver iteration strategies (adapted from [GST95])

The split operation, Figure 6.7(a), splits an existing ring into two rings. If this strategy is select­

ed, all possible splits are tried for each ring in the ring cover. The merge operation. Figure 6.7(b),

merges two node disjoint rings into a single ring via a bridge. A bridge is a pair of spans that connect

one ring to another. A similar merge operation also exists for merging two rings that share a single

node. The enlargement operation, enlarges an existing ring to include a new node, as shown in Fig­

ure 6.7(c). These iteration strategies are then used to generate new ring covers (solutions) by select­

ing various combinations of existing and modified rings.

For each new ring cover, the program reroutes the existing demands and recomputes the total

cost. The ring cover with the lowest cost is then selected as the current design and the iteration pro­

cedure begins again. The process repeats itself until no further improvement in cost is achieved, at

which point the program terminates. Using the above method, the authors report that equipment

costs are often reduced by more than 50% relative to the initial starting solution.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.7 Bortolon et aL
The single period, multi-ring network design problem is also considered by Bortolon et al.

[BTR96] for a two-level network consisting of an access and a metropolitan backbone subnetwork.

In both subnetworks, the designs may contain BLSR, UPSR or point-to-point systems. The authors

divide the problem into four separate phases: hub-node identification, backbone network design, ac­

cess network design and routing optimization. The purpose of the first step is to identify a subset of

nodes in the network to be connected by the backbone network. Here the planner identifies clusters

of nodes that have a strong community of interest with the goal of minimizing inter-cluster demand.

Note that one node may belong to two different clusters.

The authors formulate the backbone network design subproblem as a fixed charge, multi-com­

modity network flow problem. The problem inputs include a set of candidate rings, a set of paths

for each demand pair and the fixed cost and capacity of each ring candidate. The candidate rings

(and point-to-point) systems are input by the user and alternate paths are generated using a shortest

path algorithm. A traditional arc-chain (edge-path) formulation [Mur92a] is then used to represent

the problem as a mixed integer program. The objective is to minimize the total fixed cost of the UP­

SR, BLSR and point-to-point systems subject to the following constraint sets: (1) the sum of flows

over all paths associated with a demand pair equals the total demand between the nodes, and (2) the

cumulative capacity on any link equals or exceeds the total flow over that span. The decision vari­

ables include integer variables for the number o f each candidate ring and continuous (fractional)

variables for the flow over each path. This formulation is similar to the one presented in Section 8.3

except it does not capture the variable cost associated with inter-ring transitions.

The access network design is performed using essentially the same formulation except all nodes

(i.e., non-hub and hub nodes) are considered. After the access network design is complete, the last

step is routing optimization. The objective of this step is to first minimize capacity utilization and

then minimize the number of inter-ring transitions. This problem is also modelled as a linear pro­

gram that is very similar to the one used in the network design steps except there are only continuous

flow variables. The authors present results for a metropolitan area network consisting of 14 hub

nodes, 77 non-hub nodes, 65 candidate rings and over 16,000 flow variables. They report that sev­

eral solutions were obtained for this problem after only a few minutes of processing.

6.3.8 Shi and Fonseka
Shi and Foneska [ShF94], [ShF96], [Shi95] consider the single-period design problem for

UPSR and BLSR rings separately. For both problems, they decompose the problem by dividing the

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design into two or more hierarchical layers and then use a greedy heuristic to generate rings at each

hierarchical layer as follows. First, the network nodes at the lowest layer are partitioned into clusters

with each node belonging to exactly one cluster. These rings are then interconnected by one or more

rings at the next layer in the hierarchy to provide end-to-end routing for inter-ring demands. An ex­

ample of a two-level hierarchical ring network is shown in Figure 6.8.

Level-1
SHR

Level-2 SHR
Level-1
SHR

Level-1
SHR

Figure 6.8. An example of a hierarchical ring network.

Depending on the number of nodes in the network, additional layers in the hierarchy may be

required to provide end-to-end connectivity. In a the above example, each ring is interconnected to

the next higher level ring via a single transit node. The authors also propose an algorithm in [ShF96]

for generating designs with two transit nodes (i.e., matched nodes) per ring. Since the algorithms

for single and dual transit nodes are similar, we restrict our discussion to the algorithm for dual tran­

sit nodes. In this algorithm, cost is assumed to be a linear function of the span distance and the net­

work demands. The cost function is

Cost = £ (a • Xj + b ■ \jr d{) (6.12)
le r

where a and b are constants, is the length of span I in ring r, \jr is a capacity-to-demand ratio,

and dl is the demand routed over span I. For UPSR designs, the capacity-to-demand ratio \|f equals

one because ring capacity is equal to the sum of all demands on the ring. For BLSR designs, how­

ever, v is typically less than one because the required ring transmission capacity is generally a frac­

tion of the total demand carried by the ring (due to the bandwidth reuse capability of BLSRs). In

this case, the authors suggest setting \jr = 1 for the initial design run, calculating the value of \|t in

the resultant design, and continuing to iterate in this manner until a min-cost design is achieved.

The algorithm begins by constructing all level-1 rings using the following iterative approach.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, the node pair with the strongest "community of interest" is identified. The community of in­

terest between two nodes is determined by their physical proximity and mutual demand. The func­

tion for selecting the first node pair is

argmin(a ' "̂ij b ‘^ y)’ V i j s V , i < j (6.13)an
where, is the distance between nodes i and j , b' — 2b • 'F • m and m is the number of nodes in

the ring, d tj is the demand between nodes i and j , and argminQ returns an (iJ) pair that minimizes

the expression inside the brackets, and V is the set of all nodes in the network graph. After the first

node pair is identified, the nodes and their adjoining span are added to a list that represents a partial

ring r*. The partial ring r* is then extended by adding another node k that has the strongest commu­

nity of interest with the partial ring. The function for selecting the second and subsequent nodes is

argmin
k

a - \ ik- b '• 7*
y e r ' '

\

V /e (h,t), V k e r* (6.14)

where h is the head and t is the tail of the partial ring r*. Subsequent nodes are added to the partial

ring until either the maximum number of nodes in a ring is reached or all nodes in the network graph

have been included in a ring. The head and tail of the partial ring are then connected to form a com­

plete ring r. Note that in this method, the maximum number of nodes is predefined and is the same

for all rings. Next, the algorithm selects two adjacent nodes in r to be the transit nodes for that ring.

Once again, the two transit nodes are selected on the basis of their community of interest with all

other nodes that are not a member of the ring. The function for selecting transit nodes is

argmini X (a ’ O-ik + ^jk) ~ b ’ (dik + > ^ i j S r (6.15)
(h j) k e r

After a ring is complete and the transit nodes have been identified, the algorithm continues as­

sembling level-1 rings until all nodes in the network are covered by a ring.

Level-2 rings are constructed in a similar fashion by connecting the level-1 transit nodes into a

ring. If more than one level-2 ring is required to cover all level-1 transit nodes, then at least one ad­

ditional level will be required. The number of levels required to completely connect the network de­

pends on the number of nodes in the network and the predetermined limit on the number of nodes

in a ring. In the final step, shortest path routing is used to route demands and determine the capacity

of all rings. The authors do not discuss how BLSR demands are routed within a ring.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To improve the solutions provided by the heuristic algorithm, the authors also investigate the

use of simulated annealing (SA) in [ShF96]. The results show that SA achieves a 5-15% reduction

in cost over the heuristic algorithm but requires 3 to 4 orders of magnitude longer execution times

than the heuristic algorithm.

The performance of the heuristic algorithm is tested in [MoG98b] by comparing the hierarchical

design given in [ShF96] with a manual design for the same network. The sample network consisted

of sixteen nodes with a randomly-generated demand pattern. The hierarchical design consisted of

four level-1 rings and one level-2 ring (all BLSRs), each of which had a maximum of five nodes per

ring. In contrast, the manual design consists of a single, sixteen-node BLSR. The results show that

the cost of the manual design is 18-39% lower than the hierarchical design, depending on the ratio

of distance to demand costs.

6.3.9 Goldschmidt, Laugier and Olinick
The problem of designing a two-level hierarchical ring network is also studied by Goldschmidt,

Laugier and Olinick [GL098]. In this case, however, only UPSRs are considered and all rings are

assumed to have the same capacity. Here the problem is divided into two subproblems. The first

subproblem involves partitioning the set of network nodes into logical level-1 rings or clusters that

satisfy the ring capacity constraint. The second subproblem is then to create a physical ring from

each logical ring by finding the shortest fibre route that connects the nodes in the logical ring. So­

lution techniques originally developed for the Travelling Salesman Problem are used to solve the

latter subproblem.

The authors consider two variants of the subproblem of creating the logical rings. In one of

these, the objective is simply to minimize the number of logical rings in the design. The authors de­

velop an Integer Programming formulation for this variant and present two heuristic solution meth­

ods: an edge-based heuristic and a cut-based heuristic. Both heuristics start by assigning each node

to its own ring. The edge-based heuristic examines the demand pairs in decreasing (non-increasing)

order of size. If the end nodes of the demand pair are in different rings, it merges the two rings sub­

ject to the ring capacity constraint. In the cut-based heuristic, the two rings with the maximum inter­

ring demand are merged at each iteration. The authors show that the maximum number of rings

placed by any heuristic is at most twice that of the optimal solution. Note, however, that neither of

these heuristics guarantees that a feasible solution will be found because the capacity of the level-2

ring is not considered.

In the other variant of the logical ring subproblem, the maximum number of rings K is specified

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in advance and the objective is to minimize the demand served by the level-2 ring. The authors show

that the problem is NP-complete by reduction from the Graph Bisection Problem. They also formu­

late this problem as an Integer Programming problem and present a node-based heuristic solution

method. In the node-based heuristic, the user starts by selecting the number of rings to construct.

One node is then randomly assigned to each ring. The remaining nodes are assigned one by one. At

each iteration, the heuristic selects the ring with the greatest slack capacity and adds to this ring the

unassigned node that has the greatest amount of demand in common with the current ring. Using a

binary search, this method can also be used to find the optimal value of K that minimizes the number

o f rings. Again, this heuristic does not guarantee that a feasible solution will be found.

The three heuristics are tested on eight random networks with up to 50 nodes as well as two real-

world networks. The results show that the node-based heuristics found an optimal solutions for sev­

en of eleven feasible problems instances but failed to find a feasible solution in two problem instanc­

es.

6.3.10 Strategic Options (Wasem, Wu and Cardwell)
Some of the earliest work on the multi-ring network design problem is by Wasem, Wu and

Cardwell [WuC91], [Was91a], [Was91b], [WWC94] at Bellcore. This work resulted in a design

method known as Strategic Options, one of three methods surveyed here that models a multi-period

planning environment. It also considers network designs with a mix of UPSR, BLSR and diversely-

routed 1+1 APS systems. A key assumption of Strategic Options is that the clusters of nodes that

must be connected in a ring are specified in advance by the planner. Presumably, these network clus­

ters are chosen based on either community o f interest or the existing network architecture. In addi­

tion, for each network cluster, the hub node or nodes are already predefined. The objective is to

minimize the total (discounted) cost of all UPSR, BLSR and diversely-routed 1+1 APS systems de­

ployed over the planning period.

Strategic Options divides the optimization problem into three separate steps: demand bundling,

ring selection, and topology optimization. The purpose of the demand bundling step is to determine

the most efficient strategy for grooming DS1 demands into STS-1 containers. Two bundling alter­

natives are considered for each demand pain direct routing and hubbing. In direct routing, the DS1

demand is converted into an equivalent number of STS-1 demands between the O-D pair. In the

hubbing alternative, the DS1 demand at each end is routed (in STS-1 containers) to a pre-defined

hub node first and then between the hub nodes serving the O-D pair. The decision to use either direct

routing or hubbing may be based on either percentage fill or cost, as specified by the user. When the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decision is based on percentage fill, a direct STS-1 is used whenever the demand (measured in

D Sls) exceeds a given threshold. Otherwise, the demand is routed at each end to a designated hub

node and aggregated with other demands. When the decision is based on cost, the average cost per

DS1 is used to compare the direct routing and hubbing alternatives and the alternative with the low­

est average cost is selected. The average cost for the hubbing alternative is calculated assuming 100

percent fill, whereas the actual cost is used for the direct routing alternative. The decision to use hub­

bing or direct routing is evaluated once for every planning period. It is assumed, however, that once

hubbing has been chosen in any period it will continue to be used until the end o f the planning ho­

rizon. If direct routing is chosen, however, it will be used until the capacity is exhausted, at which

time both options will be evaluated again. Figure 6.9 shows an example of different sequences of

demand bundling choices and their impact on total cost.

Direct

H ub

H ubCost
H ub

D irect

Fill

H ub

^ Period

Figure 6.9. Strategic Options: An example of a multi-period demand bundling
choices (adapted from [WuC91]).

Dynamic programming is used to find the sequence of demand bundling decisions with the low­

est total cost. Note that the result at this stage is just the demand matrix that other methods start with.

In a sense, this preprocessing step to determine the demand matrix could be used with any other

method.

After demand bundling is complete, the ring selection step compares the cost o f rings and di­

versely routed 1+1 APS systems for each network cluster. To make this comparison, the ring selec­

tion heuristic identifies all logical rings that contain the hub node (or nodes if dual homing is used).

The heuristic does this by first finding all of the cycles in the network graph containing the hub

node(s). Then for each cycle, it lists all possible combinations of active nodes (i.e., nodes equipped

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with an ADM). An example of thL procedure is illustrated using the network graph in Figure 6.10.

Hub

Figure 6.10. Strategic Options: An example of ring selection (from [WuC91]).

In this figure, there are two cycles: 12345 and 1235. In cycle 12345, the logical rings are 123,

124,125, 134, 135, 145,1234, 1245, 1345, 12345. For each logical ring, dynamic programming is

used to determine the optimal choice of ring (i.e., either UPSR, BLSR, and 1+1 APS) to deploy in

each period. An example of the design alternatives for candidate ring 145 is shown in Figure 6.11.

H u b

Ring

(a) Ring alternative

Hub
T

(1+1/DP #1 J

Hub
T

[1+1/DP #2 J

(b) 1+I/DP alternative

Figure 6.11. Strategic Options: An example of the design alternatives for a potential ring.

The above procedure assumes that once an 1+1 APS system is placed, 1+1 APS systems will be

used until the end of the planning horizon. On the other hand, if a ring is placed it is used until ex-

hausted at which time all options are evaluated again. Figure 6.12 shows an example of different

sequences of ring choices. The logical ring with the lowest total cost is selected and any other can­

didate rings containing the same non-hub nodes are then deleted from the list of candidate rings. For

example, if ring 145 is chosen, then ring candidates 124, 125, 134, 135, 145, 1234, 1245, 1345,

12345 are removed. Only ring candidate 123 remains for future consideration. This process repeats

until all nodes have been covered by a cycle.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.12. Strategic Options: An example o f a multi-period multiplex cost algorithm
(adapted from [WuC91]).

After all logical rings have been selected, a fibre routing heuristic is used to find a span-disjoint

fibre route to connect the active ring nodes. The fibre routing algorithm uses a two-stage approach.

The first stage attempts to build a ring by finding the two shortest span-disjoint paths (i.e., the short­

est cycle) between two active nodes: an arbitrary active node (the hub) and the active node that is

farthest from the hub. I f the shortest cycle does not contain all active nodes, a more in-depth search

is performed. This second search finds all shortest paths between active nodes and concatenates

combinations of these paths together to build a ring that includes all active nodes. This process is

repeated until all nodes in the cluster have been covered.

Once the ring selection step is complete, a topology optimization heuristic explores alternative

fibre routing for all rings and APS systems with the goal of minimizing the total topology-related

costs of the network. Topology costs include such items as route mileage (installation), fibre (ma­

terial and splicing) and regenerator costs. A greedy heuristic is used here to construct a feasible two-

connected sub-network within the network. Next, spans contained in the initial rings (from the ring

selection step), but not in the two-connected sub-network, are added to the current solution to ensure

that the topology contains the initial ring routings. Two improvement heuristics are then used to im­

prove the solution by selectively adding and removing spans to minimize the overall topology costs.

6.3.11 SONET Toolkit (Cosares et al.)
SONET Toolkit [CSW92], [CDS95] is a multi-period planning tool for designing hybrid SON­

ET networks using survivable rings (e.g., UPSR and BLSR) and other SONET architectures. The

toolkit is based, in part, on Strategic Options and other transport planning tools developed at Bell-

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

core. The ring design module divides the design problem into four steps.

The design method begins by selecting a set o f hub nodes for aggregating demands that do not

require protection or that are too small to warrant direct connections. This is done by comparing the

cost of adding new hubs to the cost of transporting the affected demands to smaller set of hub nodes.

Once the hub locations are determined and the demand matrix is modified accordingly, the network

nodes are partitioned into clusters (logical rings) using a greedy heuristic. The heuristic starts by se­

lecting a pair of nodes that share a significant amount o f demand and physically close to one another

(i.e., with a strong community of interest). Additional nodes are then added one at a time by evalu­

ating the community o f interest between the candidate nodes and the current cluster. This process

continues until user-defined limits are met. Next, the fibre routing heuristic used in Strategic Op­

tions (Section 6.3.10) is used to find a suitable cycle for connecting the nodes to form a ring. If a

suitable cycle is found, a ring is created and included in the final design. Otherwise, the cluster is

rejected. Once a ring is identified, the algorithm determines the type and number of ADMs required

for the proposed ring. The cost of the ring is then compared to an equivalent configuration using

diversely-routed 1+1 APS systems (like Strategic Options) or a combination of point-to-point sys­

tems and a ring. The algorithm then selects the appropriate architectures. The final step determines

the appropriate size of the rings and 1+1 APS systems that were selected and the corresponding mul­

tiplexer equipment, fibre cable and other support structures.

6.3.12 CoxetaL
The multi-period, multi-ring network design problem is also considered by Cox, Yuping, Tegan

and Lu [CQT96]. The authors decompose the problem into three main steps: logical ring design,

physical ring design and routing optimization. The purpose of the logical ring design step is to find

the set of logical rings to deploy in each period such that all demands are served at the minimum

total (discounted) cost. Each logical ring is specified by the subset of nodes that are to be equipped

with ADMs and connected to form a ring. The authors formulate this subproblem as an Integer Pro­

gram. The objective is to minimize the (discounted) fixed ADM costs and electrical and optical in-

ter-ring transition costs subject to constraints on ring capacity, the number of ADMs per ring and

transit node capacity. The decision variables include, for each time period, the nodes assigned to

each logical ring and the intra-ring and inter-ring demand flows. A heuristic procedure is also pre­

sented for networks with a large number of nodes. The heuristic begins by assigning the two nodes

from the largest unserved demand pair to a logical ring. The ring is then enlarged by adding a neigh­

bouring node with the greatest unserved demand in common with the nodes on the ring. Additional

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes are added until the ring capacity is exhausted. This process repeats until all demand is served.

After the logical rings are defined, physical fibre links are assigned to connect the nodes in the

logical rings. This physical ring design step is performed manually by the user who must determine

the most efficient placement of physical rings.

The last step in the design procedure determines the (near) optimal routing of demands through

the established rings. The authors formulate this subproblem as an Integer Program, where the ob­

jective is to maximize the demand served minus the inter-ring transition costs. Aside from the ob­

jective function, the formulation is almost identical to that for the logical ring design subproblem.

A heuristic procedure is not proposed for the routing optimization step.

6.4 Summary
A summary of the attributes of the design methods described in the preceding sections is pre­

sented in Table 6.1. In Chapters 8 through 11, we develop several alternative methods for the multi­

ring network design problem. All of these methods consider the single-period version of the prob­

lem where the design consists of a set of discrete-capacity rings. With the exception of one method,

they may all be used (or modified) to generate designs containing both UPSR and BLSR rings. At

a high-level, most of these methods are similar in some respects to those surveyed here but differ

significantly in the details. For example, in Chapter 8 we develop a greedy heuristic approach based

on the RingBuilder framework to serve as a benchmark for the other design results. In the process,

we have implemented a number of enhancements and improvements to the basic approach. These

are discussed in detail in Chapter 8.

In Chapter 10, we develop three IP formulations for the multi-ring network design problem. One

of these is similar to the IP proposed by Kennington except it considers the capacitated version of

the problem. The second IP models the problem as a multi-commodity flow problem using the aic-

chain formulation. This is similar to the formulation proposed by Bortolon et al. except the cost of

inter-ring transitions is modelled in the current formulation. The third IP formulation is a novel ap­

proach that has not been considered previously in the literature. In Chapter 11, we develop local

search procedure based on Tabu Search. To the best o f our knowledge, this is the first application

of Tabu Search to the version of the multi-ring network design problem discussed here.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 6.1: Comparison of Prior Work on Multi-Ring Network Design

Method Optimization
Technique Decomposition Periods Capacitated Technologies

RingBuilder Heuristic Span Coverage Single Y UPSR+BLSR

Roberts SA Span Coverage Single N BLSR

Eulerian Rings Heuristic Span Coverage Single N UPSR,BLSR

Kennington et al. IP Span Coverage Single N BLSR

INDT Heuristic Topological Rings Single Y USPR+BLSR

Net-Solver Heuristic Local Search Single Y UPSR,BLSR

Bortolon et al. MIP MCF Relaxation Single Y UPSR+BLSR

Shi & Fonseka Heuristic Logical Rings Single Y UPSR,BLSR

Goldschmidt et al. IP/Heuristic Logical Rings Single Y UPSR

Strategic Options Heuristic Logical Rings Multiple Y UPSR+BLSR

SONET Toolkit Heuristic Logical Rings Multiple Y UPSR+BLSR

Cox et al. IP/Heuristic Logical Rings Multiple Y UPSR

2

7. Research Methodology

7.1 Introduction
This thesis introduces and characterizes several new aspects and approaches to the multi-ring

design. This chapter defines our methodology and approach to the research. For instance, how will

we judge when a new idea leads to an improvement or not? How can we know how close a design

result is to the optimum? This chapter presents the test networks and experimental methods used to

assess the performance of the design methods developed later. To compare the performance of these

design methods we conduct a series of controlled tests. The main set of tests are conducted using

four test networks under three different technology scenarios. By testing these methods across a

wide range of problem instances, we hope to gain a general idea of how well each method performs

and under what circumstances. For each design method, we also conduct several other tests to assess

the specific performance of individual methods for a range of parameter settings. These specific

tests are performed over a narrower range of problem instances using the same problem data and are

described in subsequent chapters. The following subsections describe in detail the test networks,

modeling assumptions and test cases used to evaluate design method performance. We also describe

the metrics and evaluation procedures used to assess the relative and absolute performance of each

design method.

7.2 Test Networks
To ensure that the findings of the work are representative of real problems, the test networks are

based on data from actual transport networks. In total, four test networks were used to assess the

performance of the proposed design methods. The size of the test networks range from IS nodes, 28

spans for the smallest network up to 43 nodes, 84 spans for the largest. Two of the networks are

based on data from metropolitan area networks. The topologies of the metropolitan area networks

are shown in Figure 7.1. The network in Fig. 7.1(a), Netl5, is from a study published in [Bel93] and

contains 15 nodes and 28 spans. The network in Fig. 7.1(b), Net 20, is from [SGM93] and contains

20 nodes and 31 spans.

The other two test networks are based on data from long-haul transport networks. The topolo­

gies of these networks are shown in Figure 7.2. The network in Fig. 7.2(a), Net32, contains 32 nodes

and 45 spans and is from an actual network study. The network shown in Fig. 7.2(b), Net45, con­

tains 45 nodes and 83 spans and is based on data from a continental-scale network. The source for

these networks is not disclosed here to respect an agreement with an industrial collaborator. A sum­

mary of the topology statistics for all four networks appears in Table 7.1.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Netl5 (b) Net20

Figure 7.1. Topology of the metropolitan test networks

(a) Net32 (b) Net43

Figure 7.2. Topology of the long-haul test networks

As shown in Table 7.1, the average nodal degree (i.e., the average number of spans incident on

each node) of the test networks ranges from 2.8 for Net32 up to 3.9 for Net43. The average span

length of the metropolitan areas networks is only 4.0 and 6.5 kilometers, for Netl5 and Net20, re­

spectively. As a result, the majority of the cost in metropolitan networks is due to terminal equip­

ment costs rather than distance-dependent costs such as fibre material and installation and

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

regenerators. In contrast, the average span length in long-haul networks is in the order of a couple

hundred kilometers and, therefore, distance is the main cost driver. Note this is why long-haul net­

works generally have higher average nodal degrees (i.e., connectivity), which keeps distance-relat­

ed costs to a minimum. With the advent dense WDM systems, however, total network costs are

becoming less sensitive to distance in long-haul networks.

Table 7.1: Test Network Topology Statistics

Network Type Nodes Spans
Avg. Nodal

Degree
Avg. Span

Length (km)

Netl5 Metro 15 28 3.7 4.0

Net20 Metro 20 31 3.1 6.5

Net32 Long-haul 32 45 2.8 352.0

Net43 Long-haul 43 84 3.9 153.7

Table 7.2 provides a summary of the demand statistics for all four networks. In some cases, the

original network data was given in D Sls but for testing purposes all demands are scaled to DS3

units. The demand patterns for the metropolitan test networks are also listed in Appendix C.

Table 7.2: Test Network Demand Statistics

Network

Demand (in DS3s) O-D Pairs

Total AvgTNode Peak-to-Avg Total AvgVNode Peak-to-Avg.

Netl5 206 13.7 3.5 67 3.08 1.57

Net20 348 17.4 6.1 126 2.76 1.35

Net32 354 11.1 7.2 72 4.92 5.56

Net43 2525 58.7 1.2 903 2.80 1.00

In Table 7.2, the Peak-to-Average columns are calculated by dividing the maximum demand

(number of O-D pairs) for any node in the network by the average demand (number of O-D pairs)

over all nodes. These peak-to-average values provide additional insight into the demand pattern for

each network. For example, a high O-D pairs peak-to-average value indicates that at least one node

has a higher than average number o f demand pairs, as would be expected in a hubbed demand pat­

tern. A low value, on the other hand, indicates that demand pairs are more evenly distributed, as in

a mesh demand pattern. Similarly, the demand peak-to-average value gives an indication of the con­

centration of demand among the nodes. For example, in NetlS we see that at least one node origi­

nates/terminates three and a half times as much demand as the average node. The O-D pairs peak-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to-average value, one the other hand, is moderately low. This suggests that while the demand pattern

in Netl5 is primarily mesh-like, there is at least one primary node (e.g., a toll-office) that originates/

terminates a large majority of the overall demand. A similar pattern is observed in the case of Net20,

except that the demand peak-to-average value is even higher.

These observations are supported by Figures 7.3 and 7.4, which show the distribution of de­

mand and demand pairs for networks Netl5 and Net20, respectively. The histograms in Figures

7.3(a) and 7.4(a) shows the total quantity of demand (in DS3s) originating from each node in net­

works Netl5 and Net20, respectively.

100 j
80 -

S3a 60
*o

i 40
2 2 0 -

n . [a id
5 7 9 11 13 15

Node ID

aa.

14 - - - -
12 ■ n
10 ■ n
8 - - - ;• * r-1 »
6 - - - c - : a f-

f- r.

4 — n j.
2 1 V

n - 1:
'

1 3 5 7 9 11 13 15

Node ID

(a) (b)

Figure 7.3. Demand distribution for Netl5: (a) total demand per node (in DS3s), (b) total number of
demand pairs per node.

250

«co
•oe

2
100 - -

50

0

............................ n

Timlinn pDnnnl Jdw
1 3 5 7 9 11 13 15 17 19

Node ID

2

11 13 15 17 19

Node ID

(a) (b)
Figure 7.4. Demand distribution for Net20: (a) total demand per node (in DS3s), (b) total number of

demand pairs per node.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, the histograms in Figures 7.3(b) and 7.4(b) shows the total number of demand pairs

originating at each node in networks Netl5 and Net20, respectively. These figures show that there

is one node in both Netl5 and Net20 that handles a large proportion of the overall demand. This

demand pattern is characteristic of metro area networks, where one or two nodes serve as a toll of­

fice or gateway to a long-haul network.

The demand and demand pair distributions for Net32 and Net43 are shown in Figures 7.5 and

7.6, respectively.

180

E
8 40

20
0

- - U ..
. . . - - - - - - -

. . .

■ • ' - - - - - - -
n

ap i U d U c rj nntfl fl I L
5 9 13 17 21 25 29

Node ID

<oa.T3
C
CO
E«Q
oz rarom jmm

13 17 21 25 29
Node ID

(a) (b)

Figure 7.5. Demand distribution for Net32: (a) total demand per node (in DS3s), (b) total number o f

demand pairs per node.

<0
E
8

160
140 4
120
100
80
60
40
20
0

1 5 9 13 17 21 25 2933 37 41

Node ID

45
40

« 35
■5 30
% 25
g 20

1 15Q 10
5

1 5 9 13 17 21 25 29 33 37 41

Node ID

(a) (b)

Figure 7.6. Demand distribution for Net43: (a) total demand per node (in DS3s), (b) total number o f

demand pairs per node.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

07162061

41628266

In Figure 7.5, we see that all of the demand in Net32 originates/terminates at one of three hub

nodes. This demand pattern is not typically found in long-haul transport networks and suggests that

perhaps the network is designed for a specific application (e.g., Internet backbone). In contrast. Fig­

ure 7.6 shows that Net43 has a uniform mesh demand pattern. That is, there is demand between eve­

ry pair of nodes in the network. The total demand originating/terminating at each node is also very

evenly distributed. These distributions give rise to the low peak-to-average values in Table 7.1.

7 3 M odeling Assumptions
This section describes the basic modeling assumptions that were adopted for the main test cases

described in Section 7.4. Unless otherwise noted, these modeling assumptions also apply to any spe­

cific tests conducted on each of the proposed design methods.

All tests conducted herein assume a single period (or static) planning environment, in keeping

with the demand data for the test networks. For comparative purposes, the demands are routed over

the shortest geographical distance in all test cases. We also assume that there are no restrictions on

demand routing aside from those due to ring and DCS capacity constraints. That is, demands may

be split on an integer basis over any number of routes between their respective origin and destination

nodes. The demand on any given route may also be carried by more than one ring and, in the case

of a BLSR, may be further split between the two directions around the ring as required. All nodes

are equipped with a DCS for provisioning speed and flexibility. Demands that transit from one ring

to another are routed through the DCS at the transit node. Therefore, a DS3 demand consumes two

ADM add-drop ports and two DCS add-drop ports per inter-ring transition. At origin and destination

nodes, however, demands are terminated directly on the client layer equipment rather than passing

through the co-located DCS. In all cases, there are no constraints on total DCS capacity. It is also

assumed that there are no constraints on fiber capacity on any network spans.

The subsequent subsections describe the ring types and cost model used in these studies.

7.3.1 Ring Technologies
To limit the number o f tests performed in this study, we consider network designs comprised of

BLSRs only, even though most of the design methods developed in the subsequent chapters support

both BLSRs and UPSRs. Table 7.3 lists the attributes of the BLSR technologies used in the test cas­

es. In all test cases, 4-fibre BLSRs are considered operating at either OC-12 (4B12), OC-48 (4B48)

or OC-192 (4B192) line rates, which are typical of commercially available SONET equipment.

These line capacities (or multiplexing ratios) are also representative of current WDM ring technol­

ogy. In all cases, there are no constraints on the number of demands added/dropped at each ADM

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other than those implied by the ring capacity. For example, the maximum add-drop capacity of the

4B12 and 4B48 rings are 24 and 96 DS3s, respectively. There are also no limits on the number of

nodes per ring. However, the maximum number of ADMs in any ring is limited to 16, in keeping

with SONET standards [Bel95a], [Bel95b].

Table 7 3 : Ring Technologies

Name Fibres Type Line Rate
Add-Drop
Capacity

Max.#
ADMs

Max.
Circum. (km)

Regenerator
Spacing (km)

4B12 4 BLSR OC-12 24 DS3s 16 4,000 80

4B48 4 BLSR OC-48 96 DS3s 16 4,000 80

4B192 4 BLSR OC-192 384 DS3s 16 4.000 80

Unless otherwise noted, the maximum circumference is also limited to 4,000 km to meet the

protection switching times specified in the SONET standards. In some test cases, however, it is nec­

essary to restrict the ring circumference further to limit the number of ring candidates under consid­

eration. The regenerator spacing for all ring technologies is 80 kilometres. In practice, optical

amplifiers are sometimes used to increase regenerator spacing but, for simplicity, we assume that

regenerators only are used to meet transmission link budgets on optical power, dispersion and other

transmission impairments. It is also assumed that regenerators are used at all glassthrough nodes.

7.3.2 Cost Model
For comparative purposes, the total design cost is modelled using a fixed plus variable cost

model. The fixed costs are those costs that must be incurred before any demand can be served. These

costs include the cost of common ADM equipment, regenerators and fibre facilities. Variable costs

are costs that vary in proportion to the amount of demand served. These costs include the cost of

ADM and DCS add-drop interfaces. Although actual equipment and facility costing may be more

elaborate (e.g., 2-stage multiplexing), this model is sufficiently accurate for comparison purposes

and little would be gained in terms of solution fidelity by using a more complicated (and less trac­

table) cost model. The relative costs used in this study for ADM common equipment, add/drop in­

terfaces and other network elements and facilities are shown in Table 7.4. These values are

representative of typical of transport network equipment and facility costs, however, actual planning

costs may vary substantially depending on volume discounts, incentive pricing and technology life­

cycle factors.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7.4: Equipment and Facility Costs

Ring
Technology

ADM
Common

Equipment

ADM
Add-Drop
interface

DCS
Add-Drop
Interface Regenerator

Fibre
(pair-km)

4B12 IX 0.025X 0.025X 0.2X 0.005X

4B48 2X 0.025X 0.025X 0.2X 0.005X

4B192 4X 0.025X 0.025X 0.2X 0.05X

Based on this cost model and the preceding assumptions, the total cost of a network design using

4B48 ring technology, for example, is given by:

total cost = (2A + 0.05D + 0.1T + 0.2R + 0.01 F) ■ X (7.1)

where A is the number of ADMs, D is the total demand, T is the number of inter-ring transitions and

F is the total fibre mileage. Note the second term on the right-hand side of Eq. (7.1) represents the

total cost of adding/dropping all demands at their respective origin and destination (O-D) nodes,

which requires two ADM add/drop interfaces per unit of demand. The third term is the total cost of

all inter-ring transitions, each of which requires two ADM add/drop interfaces and two DCS add/

drop interfaces.

7.4 Test Cases
For the main set of results, three different ring technology scenarios are considered for each of

the four test networks. These include two single-technology scenarios and one multi-technology

scenario per test network. Table 7.5 lists the combinations of test network and technology scenario

for each of the main test cases.

Table 7.5: Main Test Cases

Metro-Area Networks Long-Haul Networks

Test Case Network Technologies Test Case Network Technologies

1 Netl5 4B12 7 Net32 4B48

2 Netl5 4B48 8 Net32 4B192

3 NetlS 4B12.4B48 9 Net32 4B48.4B192

4 Net20 4B12 10 Net43 4B48

5 Net20 4B48 11 Net43 4B192

6 Net20 4B12.4B48 12 Net43 4B48.4B192

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the two metro area networks, Netl5 and Net20, both single and multi-technology designs

are considered using 4B12 and 4B48 ring technologies. For the long-haul networks, Net32 and

Net43, the 4B48 and 4B 192 ring technologies are considered.

For each combination of test network and technology scenario, nine network designs were gen­

erated using the design methods developed in Chapters 8 through 11. These include the greedy heu­

ristic algorithm described in Chapter 8, the three mathematical programming approaches outlined

in Chapter 10 and the Tabu Search algorithm discussed in Chapter 11. In total some 108 network

designs were produced in the main set of test results. Numerous other tests were also conducted for

each design method to assess the impact of various parameter settings and other method-specific

considerations. These test cases are described in their respective chapters.

7.5 Method o f Analysis

7 .5 .1 P e r fo r m a n c e M e tr ic s
The two primary metrics used to compare the performance of the design methods are total de­

sign cost and runtime. The total design cost for each test case is calculated using the cost model in

Section 7.3.2. Because the mathematical programming formulations described in Chapter 10 do not

model all details of the network design, it is not possible to make direct comparisons using their ob­

jective values. Therefore, the solutions generated by these methods are first completed before cal­

culating the total design cost. The procedure used to complete these designs is described in detail in

Chapter 11.

The mntime results for the mathematical programming methods are recorded directly from the

commercial optimization software used for solving problem instances. These runtimes represent the

actual CPU time consumed by the optimization software. These tests were run on a Sun UltraSparc

450 equipped with 512 MBytes of RAM and four processors, each operating at 250 MHz.

For the greedy heuristic and Tabu Search algorithms, however, the CPU time was not directly

available so the user (or clock) time is recorded instead for each problem instance. This is because

these design methods were written in the Java programming language, which does not have access

to the actual CPU time usage. Because the user time is highly dependent on the current load on the

computer, these test cases were ran on a dedicated ATX-class personal computer equipped with 256

MBytes of RAM and an AMD Athalon processor operating at 750 MHz. Thus, the runtime results

provide only a rough comparison of the runtime performance between the mathematical program­

ming and heuristic design methods.

In addition to total design cost and runtime, several other design statistics were recorded for

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each test case. These include the following:

(a) Number of rings.

(b) Number of ADMs.

(c) Number of regenerators.

(d) Total fibre mileage.

(e) Average ring utilization (or fill).

(f) Number of inter-ring transitions.

(g) Average number of hops per demand.

(h) Number of unused network spans.

(i) Total working capacity (in DS3-hops).

0) Total capacity (in DS3-hops).

7.6 Performance Evaluation
Three ways were used to estimate the performance of the design methods: empirical testing, a

lower bounding procedure and statistical inference.

7 .6 .1 E m p ir ic a l T e s tin g

The most direct means of assessing the performance of each method is by comparing the results

from all methods. Ideally, empirical testing would be performed over a wide range of problem in­

stances to measure the overall performance and to determine the circumstances where one method

performs better than another. Given the large size of the parameter space and the range of design

methods developed here, it is not feasible to comprehensively test all values of the problem param­

eters across a large sample of problem instances. Instead, we focus on the four representative test

networks and conduct a series of tests for each method across a relevant range of the parameter

space. While not conclusive, these results show broad performance characteristics of the design

methods developed here.

7 .6 .2 L o w e r B o u n d in g P ro c e d u re
Because none of the design methods actually guarantees optimality for the complete problem,

some indication of their absolute performance relative to the optimal solution is clearly of interest.

To address this question we adopt two approaches: a lower bounding procedure (discussed in this

section), and statistical inference (discussed in Section 7.6.3). For some heuristics it is possible to

analyse their operation and derive bounds on worst-case and/or average performance. Given the

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity of the heuristics developed here, however, it is unlikely that bounds can be found ana­

lytically. It has been shown, for example, that Tabu Search and other local search methods have no

performance bounds for the TSP, even in exponential time [Ree93].

Lower bounds on a design consisting entirely o f BLSR rings, however, can be obtained by some

conditioning arguments. For example, a lower bound on transmission capacity can be derived based

on the necessary (but not sufficient) condition that the cumulative capacity of all rings incident on

a span (i,j) equals or exceeds its working load w(y . If the ring capacity (or modularity) is denoted by

m , then the number Z/y- of ring modules on span (i,J) must satisfy the following inequality:

^11
m

V(i,y) e S (7.2)

A ring module represents the modular capacity of a ring on a single span. Thus, a lower bound on

the total transmission capacity is given by

z
Vii e 5

?J1
m

(7.3)

where S is the set of spans in the network graph. This lower bound can be refined further by observ­

ing that each ring that passes through a node covers exactly two incident spans. Therefore, the total

number of ring modules on all spans incident on the same node must be even. This is called the ring

parity condition and can be expressed mathematically as:

V ie Adi(i)
Vi e N (7.4)

where Adj(i) is the set of nodes adjacent to node i, Y{ is the number of rings passing through node

i and N is the set of nodes in the network graph. If the total number of ring modules is odd, then at

least one additional ring module is required in a feasible ring cover. To illustrate this point consider

the example in Figure 7.7.

wl2 = 15

(a) (b)

Figure 7.7. Ring parity condition: (a) working span loads, (b) possible ring cover.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.7(a) shows the working load on the spans incident on a given node. For simplicity, only

the spans incident on node 2 are shown Fig.7.7. If we assume that the ring capacity is 12 units, at

least two rings are required to cover spans {1,2) and (2,3), while three rings are required to cover

span (3,4). Because the total number of ring modules required is odd, however, a minimum of four

rings is needed to cover the incident spans. This means that at least one excess ring module must be

allocated to one of the spans. That is, the entire transmission capacity of one ring is completely un­

used on one of the incident spans. Figure 7.7(b) shows one possible ring cover. Note that three rings

cover span (1,2), although only two rings are required purely from a capacity point of view.

Another necessary condition for a feasible ring cover is that the number of ring modules on any

one span incident on a node must not exceed the total number of modules on all other spans incident

on the same node. This condition is called the ring balance condition and ensures that all tings in­

cident on a given node are span-diverse. The ring balance condition can be expressed mathemati­

cally as:

Zu < X Zik, V /e N , V /e Adj(i) (7.5)
V£e Adj(i), k*j

or, by rearranging terms as:

2 -Zij< £ z /*’ V ie N , V /e Adj(i) (7.6)
V*e Adj(i)

To illustrate the ring balance condition, consider the example in Figure 7.8. The working load

on the spans incident on node 2 are shown in Figure 7.8(a). Again, if we assume that the ring capac­

ity is 12 units, the number of rings required on span (1,2) is five, while the total number of rings

required on spans (2,3) and (2,4) is only three. Therefore, although the total number of ring modules

required is even, at least two excess modules are required in a feasible ring cover. Otherwise, at least

one ring would have to traverse span (1,2) twice, thereby violating the constraint on span diversity.

One possible ring cover for this example is shown in Figure 7.8(b). Here, one excess ring module is

allocated to spans (2,3) and (2,4).

If we let Zmax(i) denote the maximum number of ring modules required on any span incident

on node i, then the minimum number of rings Ymin(i) passing through node i, due to the ring bal­

ance condition alone, must satisfy the following inequality:

Ymi„ (0 * Z max(i), V /e N (7.7)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= 20

wn = 53

(b)(a)

Figure 7.8. Ring balance condition, (a) working span loads, (b) possible ring cover.

Combining Eq. (7.7) with Eq. (7.4), the minimum number of rings at each node that satisfies

both conditioning arguments is

YmmiO = max

r
z ii

Zmax(i), V /e Adj{i) m
2

V y

and the number of excess ring modules Et at node / is given by

V /e N (7.8)

m
V /e N (7.9)= 2 • ynlin(i) - X

VjSAdjO)
If the number of excess modules is less than two at all network nodes, obtaining a lower bound

on the total transmission capacity is equivalent to solving an instance of the Chinese Postman Prob­

lem, as described in Section 6.3.3. Otherwise, a lower bound can be obtained by solving the follow­

ing IP:

LBIP
Minimize:

Subject to:

Z z 0
Vij e S

m ’ Zij — Wij

X Zu = 2 - Y it
Vj e AdjU)

z </£ £ z « f
V/fce Adj(i), k*j

Ztj > 0 , integer,

(7.10)

V(ty) e S (7.11)

V /e N (7.12)

V/ e N , Vj e Adj(i) (7.13)

V/ e N , Vj e Adj(i) (7.14)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yir> 0 , integer. V /e N (7.15)

The objective (7.10) is to minimize the number of ring modules. Note that the objective can also

be weighted by span distance, for example, to yield a lower bound on total fibre mileage. Constraint

set (7.11) ensures that the aggregate capacity on any span equals or exceeds its working load. Con­

straint sets (7.12) and (7.13) ensure that the ring parity and ring balance conditions are satisfied, re­

spectively. The AMPL model for this formulation is listed in Appendix E.

A lower bound on the number of ADMs in any network can also be found by taking the total

demand originating/terminating at any node, dividing by the ADM add-drop capacity and rounding

up to the nearest whole number. If there are no constraints on the ADM add-drop capacity, the lower

bound on the number of ADMs Alb is given by

where d/y- is the demand between nodes i and j. For multi-technology designs, the minimum number

of ADMs for each technology can be calculated by dividing the originating/terminating demand by

the largest module size first. If the demand served by the last ADM consumes less than V* of its ca­

pacity, it is removed and replaced by the next size ADM. This takes into account the economy of

scale effects in the cost model described in Section 7.3.2. That is, because a 4B48 ADM costs only

twice as much as a 4B12 ADM, the break-even point for placing a 4B48 ADM occurs when the load

equals or exceeds 24 STS- Is. Similarly, the break-even point between 4B48 and 4B192 ADMs oc­

curs at 96 STS-Is of demand.

The total number of line regenerators can be found by dividing the span length /,y by the regen­

erator spacing lr , as follows:

Vy e S

The number o f regenerators required at glassthroughs locations can be determined by subtract­

ing the total number of ADMs from the total number of ring modules. Therefore, the total number

of regenerators is given by

Note that because the lower bounding procedure described above does not actually determine

the number or placement of rings, the lower bound on the number of transitions must be zero. Using

these conditioning arguments and by solving either IP, a lower bound on the total design cost can

118

ieN jeN
(7.16)

2 IVM (7.17)

* = 2 [h / l r V s Zu - A lb (7.18)
Vy e S Vy e S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be calculated using Eq. (7.1).

This procedure is used in Chapter 12 to calculate a lower bound on total design cost for each

test case. The actual usefulness of these bounds depends on how close they lie to the optimal solu­

tion. In addition, note that these lower bounds apply for the case where demands are routed in ad­

vance and, therefore, do not represent an absolute lower bound for the general case where routing

is part of the decision space. To address this more general case, we reformulate the lower bounding

IP to simultaneously optimize the routing of demands. This is done by generating a set of paths

P(k) for each demand k and adding decision variables for the flow over each path Fp . The formu­

lation of this lower bounding procedure (with route optimization) is as follows:

LBRIP
Minimize:

Subject to:

2
v/y e s

m 2 FP
P e PGj)

2
pG P(k)

?P = dk

2 ZiJ = 2 -Y i ,
VjG Adj(i)

Z.ik'
V ie Adj(i),k*j

Zjj > 0 , integer,

Yt > 0 , integer.

(7.19)

V(iy) e S (7.20)

V Jte jf (7.21)

Vi 6 N (7.22)

Vi e N , V/ e Adj(i) (7.23)

Vi € N , V/ e Adj(i) (7.24)

Vi € N (7.25)

where P(ij) is the subset of paths that intersect span (ij) and dk is the quantity of demand k. Like

the LBIP formulation, the objective (7.19) is to minimize the number of ring modules. Constraint

set (7.20) ensures that the aggregate capacity equals or exceeds the total flow over any span. Con­

straint set (7.21) ensures that the total flow over all paths for a demand equals the its quantity. Con­

straint sets (7.22) and (7.23) ensure that the ring parity and ring balance conditions are satisfied,

respectively. The AMPL model for this formulation is listed in Appendix E. This general formula­

tion is also used in Chapter 12 to calculate lower bounds on the total design cost.

7 .6 .3 S ta tis tic a l In fe r e n c e
To assess the absolute performance of the design methods, we can also use statistical inference

to derive point estimates of the optimal solution values for each test case, which - on the problems

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size m, are taken from a population whose minimum value is y . It has been shown that if the mini­

mum value in sample i is v ,, the distribution of v(. approaches a 3-parameter Weibull distribution

as m —» oo [FiT28]. Strictly speaking, this result applies to continuous distributions only. Because

the solution space for combinatorial optimization problems is typically quite large, however, it is

reasonable to assume that the distribution of solution values is almost continuous. In addition, em­

pirical results for the TSP show that there is no reason to reject the hypothesis that solutions obtained

from repeated application of a heuristic are independent [Ree93]. In other words, each time a heu­

ristic is used we implicitly sample a large number of possible solutions. Empirical studies suggest

that this assumption can be applied to discrete combinatorial problems with a high degree of confi­

dence [GoA79].

The basic idea here is that the distribution of feasible suboptimal solutions can only be one-sid­

ed with respect to the optimal solution and, therefore, must be truncated to zero at the optimal solu­

tion, as illustrated in Fig. 7.9.

The cumulative distribution function for the 3-parameter Weibull distribution is given by the

expression:

where a is the scale parameter, (3 is the shape parameter and y is the location parameter of the dis­

tribution. For each test case, we estimate these parameters using the procedure described in [Sta99].

This procedure involves rank-ordering the observations (i.e., solution values) and computing the

median rank for each solution using the following expression:

pdf

optimal solution -I suboptimal solutions ► COST

Figure 7.9. Distribution of suboptimal solutions relative to the optimal solution.

optimal solution

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fit) = (J — 0.3) / (n + 0.4) (7.27)

where t = x — y , j denotes the solution order and n is the total number of solutions. The cumulative

-distribution function Eq. (7.26) is then converted to a linear equation y = m -x ' + c , where

y = ln (I n (l / (l - F (r)))) (7.28)

= ln(r) (7.29)

m = P (7.30)

c = P - l n (a) (7.31)

The Weibull scale a and shape P parameters can be estimated for a given value of the location

parameter y by fitting a regression line to the empirical data. Here, the quality of the linear fit is
2

expressed by the correlation squared R . An estimate of the optimal solution value can be obtained

by finding the value of the location parameter y that maximizes R . For each test case, the optimal

value of the location parameter is found using the “Goal Seek” function in Microsoft Excel™. This

procedure is described in further detail in Appendix D.

A confidence interval (1 - 0 1 0 0 % for the optimal solution can also be obtained using the fol­

lowing expression [Ree93]:

w - cl/ T < y < w (7.32)

where;

T = { - n / I n (0 } ,/P (7.33)

w = min v . (7.34)
(

To improve the accuracy of the point estimate, intermediate solutions from the Tabu Search al­

gorithm are also used in the sample. Point and interval estimates for the optimal solution for specific

test cases are reported along with the other results in Chapter 12.

7.7 Summary
In this Chapter, we have described the test networks and modelling assumptions used to evalu­

ate the design methods developed in the next four chapters. We have also established the metrics

used to quantify the results and the methods for assessing the relative and absolute performance of

each design method. These methods include a new lower bounding procedure and statistical tech­

niques for obtaining estimates of the optimal solution.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Advances on the RingBuilder Approach: RingBuilder Interactive

8.1 Introduction
In this chapter we describe the software architecture and algorithmic details of RingBuilder

Interactive, a complete network design tool developed to support current and on-going research on

the multi-ring network design problem. The baseline heuristic algorithm implemented in Ring­

Builder Interactive arose in an immediately preceding M.Sc. thesis on RingBuilder by Slevinsky

[Sle99], as described in Chapter 6 . RingBuilder Interactive also embodies a number of new meth­

ods arising from this work.

The chapter begins with an overview of the software architecture and its main elements of

RingBuilder Interactive. The heuristic algorithm used to synthesize designs is then described in

Section 8.3 along with a detailed discussion of each of its main steps. In Section 8.4, we propose

two new improvement heuristics to the baseline algorithm, followed by a brief summary in Section

8.5.

8.2 Software Architecture
This section provides an overview of the software architecture and data model for RingBuilder

Interactive as of the end of this thesis work. This version we call RingBuilder Interactive or

RBI 1.0. The development of this application represents the single largest breadth-type contribu­

tion of this thesis with over four person-years of effort The application is written entirely in the

Java™ programming language [JoyOO]. Although Java is an interpreted language and is not as fast

as compiled languages such as C/C++, it provides an object-oriented programming environment

that is well-suited for rapid prototyping and also offers platform independence. These were two

key requirements in the development of the application. Moreover it can now be compiled to

native code for a variety of widely used target machines.

An architectural overview of RingBuilder Interactive is shown in Figure 8.1. The software

architecture can be divided into five main components: the graphical user interface, the design

algorithms, a report generator, file import/export utilities and the data model. The graphical user

interface is used to visualize the input data and design results and control the design synthesis

process. A screen capture of the graphical user interface is shown in Figure 8.2.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Graphical User
Interface

Report
GeneratorDesign Algorithms r ^ Data Model

File Import/Export

Figure 8.1. RingBuilder Interactive software architecture.

...
Hh Etat View enart Toots Reports Wndow Hea>

Id 5 |B T |5Jff pfp e \0

System 1/10 Route 1/128
0:4B48 154/192

15 13
8 4 :1 D S 3

17

1 :4B48 147/240 8 5 :1 DS3

1 18

2:4B48 109/192

9 .3 4
13

8 6 :3 DS3

3. 4B48 70/288
13

8 7 :1 DS3

4 :4B48 135/528 8 8 :1 DS3

t-0.2,3.5) | Zoomed to fit. Demand Served: 100%

Figure 8.2. RingBuilder Interactive screen capture.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The report generator provides a selection of standard reports including design summary infor­

mation, detail routing information and various other useful reports. The file import/export utilities

allow design input data and results to be imported and exported in several standard file formats.

This provides backwards compatibility with previous versions of RingBuilder and Nortel’s

SONET Planner, a computer-aided ring design tool with no synthesis capabilities.

At the core of the tool is the data model used to represent the problem inputs (e.g., network

topology, demand matrix and candidate ring types) and the ring network design output. A simpli­

fied diagram of the main data classes and their relationships is shown in Figure 8.3.

Ring
Technology

Candidate
Ring

Route Span/Node Ring

Demand
Matrix

Demand

Network
Topology

Figure 8.3. Diagram of main classes in RingBuilder Interactive.

The data model contains nine main classes. In Fig. 8.3, the lines with a single arrowhead indi­

cate one-to-many relationships and the lines with two arrowheads indicate many-to-many relation­

ships. For example, a one-to-many relationship exists between a Demand Matrix and a Demand

because a demand matrix has many demands but each demand can belong to only one demand

matrix. Similarly, a many-to-many relationship exists between a Route and a Ring because each

Route may be carried by many rings and each ring may also carry many routes. For simplicity, the

Span and Node classes are shown in a single box because they have similar relationships with

other the classes.

The demand matrix contains a list of demands between origin-destination pairs. Each demand

(or demand bundle to be precise) contains a reference to the origin and destination nodes, the data

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rate (e.g., DS3, STS-3c, etc.), the number of connections required at the specified data rate and a

boolean flag for indicating whether the bundle may be split (or bifurcated) for routing purposes.

Non-bifurcated routing is sometimes required in applications where the delay for all connections

must be nominally the same (e.g., inverse multiplexing), or as a way of handling concatenated

multi STS-1 SONET signals. The boolean flag along with the data rate and number of connections

determine the demand’s minimum bundle size. The minimum bundle size is the smallest amount of

capacity by which the demand bundle can be divided. For example, the minimum bundle size of a

demand of eight DS3s is either one DS3, if the route may be bifurcated, or eight DS3s (or 224 DSI

equivalents), if it cannot. Unlike all earlier versions of RingBuilder [Sle99], the current implemen­

tation supports both bifurcated routing for aggregate demands as well as multiple data rates (multi­

ple demand unit capacities) in the same demand matrix. To support multiple data rates, all

quantities are converted to DSls within the application. For each demand, several routes may exist

between the specified origin and destination nodes. A route contains a reference to its demand, a

list of spans that it traverses and the flow (the number of DS3s, for example) that it carries. Note

that the sum of flows over all routes for a given demand must equal the total demand. For example,

if the demand between nodes A and Z is 17 DS3s, then the total flow over all routes between A and

Z must also be 17 DS3s.

The network topology consists of a set of nodes and a set of fibre spans connecting the nodes.

Each fibre span contains a reference to its two end nodes along with the distance (in kms) between

the nodes. The current implementation supports parallel, physically separate spans between a pair

of nodes. Each node contains a name, a pair of x-y coordinates and a reference to the cross-connect

(or DCS), if any, located at the node. For simplicity, each node is equipped with at most one cross-

connect, which is selected from a user-defined list of available cross-connect types. The cross-con­

nect parameters include the total switching capacity (in DS1 equivalents), the fixed cost of the

common equipment and the unit cost for each data rate supported by the cross-connect. The cross-

connect and related classes are not shown in Figure 8.3. Note that if a node is not equipped with a

cross-connect or the capacity of its cross-connect is exhausted, demands are not permitted to transit

from one ring to another at the node.

Each network design problem also contains a user-defined list of ring technologies that may be

included in the final design. Each ring technology is defined by its type (e.g., UPSR, BLSR) and

line rate (e.g., OC-3, OC-12, OC-48, etc.). This may include 1+1 APS as a special type of two-

node ring technology. Other ring technology parameters include the maximum number of ADMs

in the ring, the maximum permitted ring circumference (in hops and kms) and a reference to the

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type of regenerator and ADM associated with the ring. The regenerator parameters include the

maximum spacing (in kms) between adjacent regenerators and their fixed cost. The ADM parame­

ters include the total add-drop capacity (in DS1 equivalents), the fixed cost of common equipment

and the unit cost for each data rate supported by the ADM. Again for simplicity, the regenerator

and ADM classes are also not shown in Figure 8.3. The combination of a ring technology and top­

ological cycle represents a candidate ring from which actual rings may be instantiated. Each ring

contains a reference to the ring type, line rate and the spans that it covers along with the set of

routes served on each span of the ring. The portion (i.e., spans) of each route served by a ring is

called a route segment.

In addition to the main classes described here, there are over ISO other classes used to encapsu­

late the behaviour of the graphical user interface, report generator, file/import export routines, and

the design algorithms. Clearly, a complete description of all of these classes is beyond the scope of

this thesis. A complete specification of all classes is contained in the RingBuilder Interactive API

[TRLOOa]. In the remainder of this chapter we focus on the algorithmic details of the heuristic

algorithm used to generate multi-ring network designs. Further information about the other appli­

cation features and options can be found in the TRLabs RingBuilder Interactive Users Guide also

prepared by the author as part of this project [TRLOOb].

8.3 Design Synthesis Algorithm
This section describes the basic heuristic algorithm used to synthesize network designs. The

starting point for this algorithm was available on completion of the M.Sc. thesis by Slevinsky

[Sle99]. Several new features and algorithmic enhancements are described in detail below.

8 .3 .1 B a s ic O v e rv ie w
Like the original RingBuilder algorithm, the current algorithm consists of four main steps: (1)

demand routing, (2) candidate ring generation, (3) candidate ring evaluation and (4) candidate ring

selection. A flow chart outlining the basic procedure is shown in Figure 8.4.

The main inputs to planning problem are the demand matrix, network topology and the ring

technologies under consideration. This data may be input via the graphical user interface or

imported from plain text files. The first step in the basic procedure is to route the demands over the

network topology. This is a critical step in the design process because it determines the spans

within the network topology that must be covered the set of rings. Next, a set o f candidate rings is

generated from the network topology and the set of ring technologies. In practice, these first two

steps may be performed independently.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Demand Network Ring
Matrix Topology Technologies

s

* —
y f

Route Demands Generate Candidates

Select Next Ring

Remove Served Demand

No All Demani
. Served?

Yes

Network Cost

Figure 8.4. Flow chart of the basic RingBuilder algorithm.

After the candidate rings have been generated and all demands have been routed, an iterative

process is used to create a feasible solution one ring at a time. At each iteration of this process, the

set of candidate rings is evaluated and the “best” candidate ring is selected and added to the design.

An important subproblem of the evaluation process is determining the subset of routes that may be

loaded onto each candidate ring. This step, known as ring loading, is described in detailed in Sec­

tion 8.3.6. After the best candidate has been added to the design, the routes served by the ring are

removed from the pool of (unserved) demand. The evaluation and selection process continues until

all demands are served end-to-end. At the end of this process, the total design cost and other rele­

vant design statistics are computed using the report generator.

In some cases, the design process can stall if none of the candidate rings is able to serve the

remaining demand. This can occur when the candidate ring set does not cover the entire network

graph and some nodes are isolated. Stalling can also occur when the DCS capacity at a node is

exhausted and inter-ring routes cannot be connected to the remainder of the network.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 .3 .2 O v e rv ie w o f M a in Im p ro v e m e n ts
In previous versions o f RingBuilder, ring loading is performed for the entire set of candidate

rings at every iteration. This can be quite inefficient because the figure of merit for many of the

candidate rings may not be affected by the previous ring selection. That is, if none of the route seg­

ments that were loaded onto a candidate ring is served by the selected ring, there is no need to re­

evaluate the candidate ring because it will be faced with the same ring loading problem and its fig­

ure of merit will be unchanged. Candidate rings that serve no demand at all can also be removed

from consideration for the remainder of the synthesis process. By selectively updating (i.e., re­

loading) only those candidates affected by the previous selection and removing candidates that

serve no demand, substantial reductions in runtime may be achieved. Normally this would involve

storing the subset of route segments loaded onto each candidate ring and then finding the intersec­

tion between them. Because this requires a considerable amount of memory, a simpler approach is

adopted in the current implementation. This simplification is based on the observation that two

candidate rings can only contend for the same route segments if they share at least one common

span. Thus, by re-evaluating only those candidates that intersect (i.e., share a common span with)

the previously selected ring, we avoid the burden of having to store the route segments loaded onto

all candidate rings. While slightly more rings may be evaluated than absolutely necessary, experi­

ence shows that this heuristic significantly reduces the amount of processing done at each iteration

and greatly reduces total run-time.

The following subsections describe each of these design steps in detail.

8.3.3 Demand Routing
The purpose of the demand routing step is to assign demands to specified routes through the

network topology. Like the previous versions of RingBuilder, the current procedure routes

demands over the shortest path between the origin-destination demand pair using a min-heap

implementation of Dijsktra’s algorithm. The time complexity of this algorithm is 0(|N | • log|JV|),

where \N\ is the number o f nodes in the network [MaG93], [Sha98]. In previous versions of Ring­

Builder, the demand routing procedure calls Dijkstra’s algorithm once for each demand pair. This

results in a worst-case time complexity of 0(|N |3 • log|jV|) for a full mesh demand pattern. In the

current implementation, the demand routing procedure has been optimized to limit the number of

calls to Dijkstra’s algorithm. This relies on the fact that Dijkstra’s algorithm actually computes the

distance and (with some modification) the shortest path tree from the origin to all other nodes in

the network. Therefore, the route for all demands containing the origin node can be enumerated

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the shortest path tree. Using this approach, Dijkstra’s algorithm is called (|A| — 1) times at

most and the worst-case time complexity of the revised demand routing procedure is

0 (M 2 -io g M).

Several routing options are also included in the current demand routing procedure. Demands

may be routed based on either the number of hops in the path or geographical distance. In addition,

the procedure may return either a single or multiple shortest paths between the origin and destina­

tion nodes. The latter option divides each demand bundle as evenly as possible between the k

equally-shortest routes from the origin to the destination.

8 .3 .4 C a n d id a te G e n e r a tio n

The purpose of the candidate generation step is to assemble a set of candidate rings from which

the design is constructed. The candidate generation procedure begins by enumerating all cycles

within the network topology. Several different algorithms have been proposed in the literature for

enumerating all cycles in a network graph [MaD76]. Some of these work by generating all combi­

nations of the fundamental cycle set and eliminating those combinations that do not form a cycle.

In general, these methods are not very efficient because there are 2 ^ “ ̂ + 1 such combinations,

where |5| is the number o f spans in the network and |A| is the number of nodes, and there is no

apparent way to avoid generating all combinations.

Instead, we develop an efficient algorithm for enumerating all cycles in an undirected graph

using a depth-first search. This cycle finding algorithm is particularly efficient because, unlike the

algorithm used in previous versions of RingBuilder, each cycle is enumerated only once. The algo­

rithm has a worst case time complexity of 0{(|N | + |S|) • (|Cj + 1)}, where |Cl is the number of

cycles in the graph. Because the number of cycles may be exponentially large, the algorithm also

contains an option to limit the number of hops and/or circumference of the cycles. In most cases,

this results in a dramatic reduction in runtime because large portions of the search tree need not be

explored. This is a significant practical advantage of using a depth-first search for cycle enumera­

tion. A detailed description of this algorithm is given in Appendix E.

For each combination of topological cycle and ring technology (i.e., the ring type and line

rate), a candidate ring is formed. Thus, the total number o f candidate rings is equal to the product

of the number of cycles and the number of ring technologies under consideration. Each candidate

ring represents a template (or blueprint) from which an actual ring may be instantiated. Note that

the locations of ADMs and glassthroughs are not defined in the candidate ring. Instead these

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

details are determined by the ring loading process described in the next section.

8 ,3 .5 C a n d id a te R in g E v a lu a tio n

In the candidate ring evaluation and selection step, the candidate rings are evaluated and the

“best” one is selected for inclusion in the design. Defining the best candidate ring to add at each

iteration is difficult because there are many factors that influence a ring’s overall merit as part of a

complete design. Furthermore, the greedy strategy of selecting the locally best candidate ring at

each iteration does not guarantee a globally optimal solution.

In prior versions of RingBuilder, two metrics were proposed for evaluating candidate rings.

The first [GSM9S] uses a weighted sum of capacity utilization (balance) and the proportion of

inter-ring transitions (capture) to assess the relative transport efficiency of ring candidates. One

disadvantage of this approach is that the best balance-capture weighting depends heavily on the

cost structure of the design problem. For example, in long-haul networks where distance is the

dominant cost driver, the lowest cost designs are usually achieved with a high balance/capture

weighting. Conversely, in metropolitan area networks a low balance/capture weighting is usually

best because inter-ring transitions are an important cost element in the total design cost. This

requires a rather intensive and time-consuming process o f sweeping the weighting factor to find

the best design. Even more importantly, the weighted balance-capture metric is not extensible to

multi-technology designs because it does not account for differences in the cost of competing ring

technologies and, in particular, economy-of-scale effects.

The second metric [Sle99] assesses the efficiency of a candidate ring by computing a “benefit-

to-cost” ratio (also variously called a transport utility or specific cost measure). The benefit (in the

numerator) is taken to be the sum of the flow-distance product of all routes that would be served by

the candidate ring. This is a measure of the amount o f the contribution that the candidate ring

makes to completing the network design. The cost (in the denominator) of the candidate ring

includes all costs associated with constructing the rings and serving the routes that it carries. The

cost may be an arbitrarily detailed, highly realistic, assessment of the project cost of constructing

the candidate ring including all specific circuit packs required at each node and so on. In general,

this includes the cost of fibre, ADM common equipment, add/drop interfaces and inter-ring transi­

tions. We refer, henceforth, to this benefit-to-cost ratio as the transport efficiency of candidate

rin g / This ratio can be expressed mathematically as

1 ; = / 2 ‘„ f , <s-‘>
1 Vi e /(/')

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where Cj is the cost of the candidate ring j , F, is the flow (in DS1 equivalents) carried on route i,

ltj is the distance (in either hops or physical distance) along route i between its entry and exit

nodes on candidate ring j , and /(/) is the subset of routes served by ring 7 . Note that the inverse of

the transport efficiency is the cost per DS1-km (orDSl-hop) of demand served. Intuitively, this is

an attractive measure of the utility of a candidate ring because it corresponds with the objective of

the design problem, i.e. to minimize the total cost of the design subject to serving all demands from

end-to-end. It also has a relevant economic interpretation. That is, the revenue from a transport

service is usually a function of its data rate and the distance over which the service is provided.

Therefore, the transport efficiency can be interpreted as the ratio of total revenue to total cost

Results show that single technology designs generated using this metric are typically as good or

better and much more rapidly obtained than those generated using the balance-capture metric

[Sle99]. For this reason, transport efficiency is adopted as a baseline in the current implementation

of the basic algorithm.

We also introduce a new metric for ranking the candidate rings. This metric is similar to the

transport efficiency metric given in Equation (8.1), except that the sum of the flow-distance prod­

uct is raised to the power of an exponent, a > 1 , as follows:

The effect of this metric is to give higher priority to candidate rings with larger flow-distance prod­

ucts. This is intended to compensate for the observed tendency of the previous metric to select sev­

eral low capacity rings that are highly efficient in the local sense but not as efficient as a single,

high-capacity ring in the long-run (due to economy-of-scale effects). We refer to this new metric as

the biased transport efficiency.

8 .3 .6 R in g L o a d in g f o r C a n d id a te E v a lu a tio n
An important subproblem in the candidate ring evaluation and selection process is determining

the subset of routes (or route segments) to load onto candidate rings. By a route segment we mean

a subset of the spans in the route. In this section we develop two heuristic algorithms that find the

subset of routes that maximizes the transport efficiency of each candidate ring within the given

environment of currently unserved demands or demand segments. This is similar to the Ring Load­

ing Problem defined in Section 4.4, except the current problem also involves finding the subset of

nodes to equip with ADMs and the total flow over each route (or route segment) along with its

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entry and exit nodes. In addition, the problem environment includes several other practical details

such as capacity constraints on ADMs and DCSs, demand splitting options and multiple data rates.

These are details that were not addressed in Section 4.4, which touched mainly on the theory for

strictly optimal loading. As a result, the IP formulations developed in that section are not directly

applicable to the current problem. In fact, the objective for the current problem (i.e., maximizing

the transport efficiency) is a non-linear function because the actual ring cost cy- (in the denomina­

tor) depends on the subset of nodes equipped with ADMs. Therefore, finding the strictly optimal

solution using integer programming would involve solving each combination of ADM and glass-

through nodes separately. Clearly this is not a practical approach because the number of combina­

tions increases rapidly with ring size (i.e., number of nodes) and each IP subproblem may take

several minutes to solve. Because thousands of candidate rings may need to be evaluated at each

iteration of the synthesis process, heuristic algorithms were developed as they represented the only

practical alternative. The two ring loading algorithms are now described in detail below.

8.3.6.1 U nbalanced R in g L o a d in g A lgorithm
The first ring loading algorithm is motivated by a simple, yet effective, heuristic for the one­

dimensional Bin-Packing Problem. This problem involves packing a set of objects of different

sizes into the least number of bins of fixed capacity. The basic idea of the heuristic, known as first-

f i t decreasing (FFD) algorithm, is to sort the objects in decreasing order of size and to pack them

into the first bin with sufficient slack capacity [Mur92]. The current ring loading problem is similar

to the Bin-Packing Problem except that only one copy of each candidate ring (i.e., bin) needs to be

loaded per iteration. This is because the set of routes available for loading in each subsequent iter­

ation depends on the ring selected in the current iteration. Therefore, it would be premature to load

more than one copy of each candidate ring. For BLSR rings, the ring loading problem also includes

more than one dimension because each span has its own capacity. Despite these differences, the

basic FDD algorithm seems to be a reasonable approach. In the current context, the “size” of the

objects (i.e., routes) is taken as the flow-distance product for each route. Thus, the basic loading

rule is to load the “large, long” routes first and then fill the gaps with the “smaller, shorter” routes.

The main steps of the unbalanced ring loading procedure are listed in Figure 8.5. The first step

in this procedure is to find the routes that intersect the ring. To facilitate this a hashtable is main­

tained that maps each span to a list of routes that intersect the span. The flow-distance product is

computed by traversing each route to find the segments of the route that intersect the candidate

ring and are not already carried by another ring. At the same time, the maximum flow through the

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ring is determined by checking the add-drop capacity on the ADMs and DCSs at the entry and exit

nodes and the slack capacity on each span of the ring for BLSRs (or the slack capacity on the entire

ring for UPSRs).

Step 1. Find the subset of routes that intersect the spans covered by the candidate ring and

identify the associated route segments.

Step 2. Calculate the flow-distance product for each intersecting route and insert it into a

maximum heap. Ties are broken in favour of the one with the longer route length.

Step 3. Remove the next route from the top of the heap and attempt to load it onto the

ring.

Step 4. Repeat step 3 until the all possible routes have been loaded (i.e., the heap is

empty) or the capacity of the entire ring is exhausted.

Figure 8.5. Main steps in the unbalanced ring loading procedure.

Once the flow-distance product for a route is calculated, it is inserted into a maximum heap.

The routes are then removed from the heap in decreasing order of flow-distance product and an

attempt is made to load them onto the ring. This is done by traversing the segment of the route that

intersects the ring and determining the maximum amount of flow through the ring. If the maximum

flow equals or exceeds the route’s flow, then the route segment is loaded onto the ring and the

ring’s working and slack capacities are adjusted accordingly. Otherwise, the route segment may

either be partially loaded onto the ring or removed from consideration. If the maximum flow is

greater than the route’s minimum bundle size, then the original route is split in two routes, one that

is loaded onto the ring and the other that is re-inserted into the heap after updating its flow-distance

product. Otherwise, if the capacity at either of the end nodes or intervening spans is completely

exhausted, alternate entry and exit nodes are identified and the entire route is re-inserted into the

heap after updating its flow-distance product. Lastly, if the capacity along the entire route is com­

pletely exhausted, the route is removed from consideration. Note that this procedure does not

attempt to balance the load around a BLSR by rerouting demands in the alternate direction around

the ring, hence the name unbalanced ring loading algorithm.

At each iteration of this process, it takes O(logm) time to remove the next route from the heap

and up to 0 (|M) time to traverse it, where m is the number of routes that intersect the ring and \N\

is the number of nodes in the network. In the worst case, all m routes may be evaluated up to \N\

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Demand Matrix (in DS3s)

a b c d e f

a X 6
b X

c X 8 4

d 18 X 1

e 16 1 X

f 12 X

OC-12

(a) (b)

oc-12

4
/

J

OC-12

\
4

(d)

/

(c)

Figure 8.6. Example of the unbalanced ring loading procedure,

times, so the computational complexity of the algorithm is 0 (m • |iV| • (|iV| + logm)) .

To illustrate the ring loading procedure, consider the example in Figure 8.6. Here four routes

intersect a 4-fibre OC-12 BLSR (4B12) with six nodes. The demand matrix is shown in Figure

8.6(a) and all demands are assumed to be routed in the clock-wise direction. For convenience, the

quantity of demand (in DS3s) is given in the upper right half of the matrix and the flow-distance

product is given in the lower left half. Assuming that there are no ADM or DCS capacity con­

straints at any of the nodes on the ring and that all routes may be split, the loading algorithm pro­

ceeds as follows. First, the route with the highest flow-distance product, route (a,d), is selected and

all 6 DS3s are loaded onto the ring. Then route (c,e) is selected for loading. Because the capacity

remaining on span (c,d) is only 6 DS3s, route (c,e) is split into two routes, one with a flow equal to
134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 DS3s and the other with a flow equal to 2 DS3s. The former is then loaded onto the ring and the

latter is re-inserted into the heap. Because the latter route cannot be loaded onto span (c,d) due to

capacity exhaustion, span (c,d) is removed from the route segment and its flow-distance product is

reduced to 2 DS3-hops. The routes loaded onto the ring up to this point are shown in Figure 8.6(b).

Next, route (c,f) with a flow-distance product of 12 DS3-hops is removed from the heap. Because

it cannot be loaded on span (c,d), its flow-distance product is reduced to 8 DS3-hops and is re­

inserted into the heap. Because route (c,f) still has the highest flow-distance product of the remain­

ing routes, it is once again removed from the heap and then loaded onto spans (d-e) and (e-f) on the

ring, as shown in Figure 8.6(c). At this point, only two routes remain in the heap, route (d,e) with a

flow-distance product of 1 DS3-hop and the remaining portion of route (c,e) also with a flow-dis­

tance product of 2 DS3-hops. The latter route is removed from the heap and loaded onto ring, as

shown in Figure 8.6(d). Because the capacity on span (d,e) is now exhausted, the remaining route

(d,e) is removed from consideration and the ring loading procedure terminates.

Using this loading procedure, the total flow-distance product served by the ring is 40 DS3-

hops. A total of five ADMs, 36 add-drop ports and 6 inter-ring transitions are required. Based on

the cost model in Chapter 7, the total cost of the ring is 6.2* (excluding cost of fibre and regenera­

tors) and its transport efficiency is

I) = 40 /6 .2* = ^ (8.3)

Note that the locations of the ADMs are determined by the subset of routes that are loaded onto

the ring. That is, for every route that is loaded an ADM must exist (or be added) at the entry and

exit nodes. For the example shown in Figure 8.6(d), ADMs are required at nodes a, c, d, e and f.

Node b, on the other hand, does not require an ADM because none of the routes that were loaded

enter or exit the ring at that node. While this eliminates the combinatorial problem of considering

every combination of two or more ADMs on each candidate ring, there is nothing to suggest that

the present procedure chooses the optimal set of ADMs. For example, the current procedure may

add an ADM to a ring that adds or drops only a single DS3. This may be particularly inefficient if

another ring is placed in a subsequent iteration that would be better suited to handling the load.

There are two important differences between the current ring loading procedure and those

implemented in previous versions of RingBuilder. In previous versions of RingBuilder, routes are

either treated as a single bundle or divided by the minimum bundle size and handled as individual

routes. Although handling each route as a single bundle reduces the number of routes to consider

during the ring loading process, it can be grossly inefficient if the demand is large relative to the

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ring capacity. Conversely, dividing each route into individual routes improves capacity efficiency

but at the cost of increased computation time. Therefore, the strategy adopted here is to keep routes

bundled as long as possible and split them only as required. This reduces the number of routes in

total, yet retains the capacity efficiency of handling each unit o f demand separately. The current

ring loading algorithm also re-evaluates the capacity-distance product of each route prior to load­

ing. This reflects the fact that the preferred order in which routes are loaded may be affected by

prior loading decisions. Thus, the hypothesis is that dynamically updating the order in which the

routes are loaded should improve the quality of loading decisions. In previous implementations,

the order in which routes are loaded is not dynamically updated.

One limitation of the basic ring loading procedure for BLSR rings is that it does not consider

routing demands in the alternate direction around the ring (i.e., load balancing). Preliminary results

show that the lack of loading balancing can results in up to half the ring capacity remaining

unused. In addition, routes that intersect the ring at two or more nodes but do not share the same

sequence of spans are not loaded onto the ring. Generally, this results in more rings being placed

than absolutely necessary. Although these deficiencies are mitigated to a large degree by the

demand packing procedure described in Section 8.4.1, we also develop a balanced ring loading

procedure in the next section that more directly addresses these issues.

8 .3 .6 .2 B a la n ced R in g L oading A lg o rith m
The balanced ring loading procedure described in this section was developed primarily for

BLSR rings but the basic procedure can also be adapted to UPSR rings. At a high level, the bal­

anced ring loading procedure is almost identical to the basic ringloading procedure, as described in

Fig. 8.5. The main difference lies in the definition of an intersecting route. Here, we define an

intersecting route as any route that has at least two nodes in common with the ring. This allows

routes that straddle the ring to also be considered during the ring loading process.

After the intersecting routes have been identified, each one is traversed to find the first and last

nodes where the route may enter and exit the ring. This involves checking the add-drop capacity on

the ADMs and DCSs at intersecting nodes along the route. The entry and exit nodes are also cho­

sen so that they do not fall within a portion of the route that is already carried by another ring.

Although technically feasible, this would involve verifying that the route could be dropped from

the other ring at the same node and would greatly complicate the ring loading procedure. The entry

and exit nodes are, however, allowed to completely surround an already served portion (or por­

tions) of the route. Technically, this represents a duplication of effort because capacity is already

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allocated for the route in the previc as ring. However, it is generally desirable because it reduces the

number of inter-ring transitions.

Once the entry and exit nodes have been determined, a separate route segment is created for

each direction around the ring between the entry and exit nodes. The route segments contains a ref­

erence to the original route and the spans on the ring between the entry and exit nodes. Note that

the sequence o f spans in at least one of the route segments will be different from those in the origi­

nal route. In effect, this represents an alternate path for the route between the entry and exit node.

To determine the priority order in which route segments are loaded onto the ring, we take the

flow-distance product of the route’s original path between the entry and exit nodes (less any por­

tions that have already been served) and divide it by the cost of the resources consumed along the

ring. The priority p y of loading route segment i on ring7 can be expressed mathematically as:

Pij = Uij'FiVCij (8.4)

where ly is the distance along route segment’s i original path (less any portions that have already

been served) between the entry and exit nodes on ring 7, Fi is the flow on route segment 1 and Cy

is the cost of the resources consumed on ring 7 by route segment i. Ties are broken by giving prior­

ity to route segments with the largest flow. The cost cVj includes the cost of the transmission

capacity, inter-ring transitions and a fraction of the fixed cost of the ADMs, if required at the entry

and exit nodes. The cost of the transmission capacity is taken as the product of the flow-distance

product along the ring multiplied by an average cost per unit flow-distance. This recognizes that

the resources (i.e., capacity) consumed in both directions around the ring may be significantly dif­

ferent and gives preference to the shorter of the two directions. The inter-ring transition cost is

equal to the number of inter-ring transitions multiplied by the cost of the add-drop interface at the

corresponding DCS(s). If an ADM is not present at the entry or exit node, a specified fraction of

the ADM fixed cost is also added to the cost estimate. We refer to this fraction as the ADM dis­

count factor. This has the effect that route segments that require additional ADMs will have a

lower priority than those that do not, all other things being equal. Note also that route segments do

not get credit for those portions between the entry and exit nodes that are already served. There­

fore, routes that are not already served between the entry and exit nodes will also have a higher pri­

ority, all other things being equal.

Once the priority of the route segments is calculated, they are inserted into a maximum heap.

The routes are then removed from the heap in decreasing order of priority and an attempt is made

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to load them onto the ring. At this time, the maximum flow along the ring is determined by check­

ing the slack capacity at the entry and exit nodes and on each span of the BLSR. If the maximum

flow along the ring is greater than the route’s minimum bundle size, the spans in the route between

the entry and exit node are replaced by those in the route segment and the flow is set to the maxi­

mum flow or the route’s flow, whichever is less. The route is then allocated to the ring and the

capacity along the ring and at the entry and exit nodes is updated accordingly. If all of the flow is

satisfied, the corresponding route segment in the alternate direction is discarded. Otherwise, it is

retained and the flow is set to the remaining unserved flow. Each time an ADM is placed during

the loading procedure, the heap is reordered to reflect possible changes in the relative priority of

the remaining route segments. This loading procedure continues until the ring capacity is

exhausted or the heap is empty. It is easy to show that the computational complexity of this loading

algorithm is also 0 (m • |N| • (|N| + logm)). In the current algorithm, however, the number of

intersecting routes is typically much larger than in the basic ring loading algorithm.

Figure 8.7 illustrates the balanced ring loading procedure for the previous example given in

Figure 8.6. For simplicity, we assume that all route segments originate and terminate on the ring

and that the original routes traverse the spans on the ring (i.e., they do not straddle the ring). The

cost of adding a new ADM (i.e., ADM discount factor) is also set to l/10th of its fixed cost. Based

on these assumptions, the loading priority, , of the route segments for each iteration of the load­

ing procedure is shown in Figure 8.7(a). Assuming that there are no ADM or DCS capacity con­

straints at any of the nodes on the ring and that all routes may be split, the loading algorithm

proceeds as follows:

In the first iteration, route segments (a,d) and (d,a) have the highest priority. Therefore, route

segment (a,d) is selected arbitrarily and all 6 DS3s are loaded onto the ring. Because this com­

pletely satisfies the flow on route (a,d), the alternate route segment (d,a) is set to zero and removed

from the heap. Note that to load this route segment onto the ring, ADMs are required at nodes a

and d. The placement of these ADMs and, in particular, the one at node d, reduces the number of

ADMs required for route segments (d,e) and (e,d) and increases their priority in the next iteration.

Because the other route segments do not share a node with route segment (a,d), their priorities

remain the same. Next, route segment (c,e) with the second highest priority is selected for loading

in iteration 2. Because 6 DS3s of capacity are already allocated on span (c,d), the flow on route

segment (c,e) is reduced from 8 DS3s to 6 DS3s and the flow on the alternate route segment (e,c) is

set to 2 DS3s. Because this adds another two ADMs to the ring at nodes c and e, the priority of the

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remaining route segments are adjusted accordingly. The routes loaded onto the ring up to this point

are shown in Figure 8.7(b). In the third iteration, route segment (d,e) with a flow of 1 DS3 is added

to the ring and its corresponding route segment (e,d) is removed from the heap. At this point, route

segments (c,f) and (f,c) have the highest priority. Because the capacity is exhausted on span (c,d),

however, route segment (c,f) cannot be loaded and is therefore discarded. Instead, route segment

(f,c) with a flow of 4 DS3s is loaded onto the ring, as shown in Figure 8.7(c). Because 2 DS3s of

capacity are still available from node e to node c, route segment (e,c) is loaded in its entirety in the

last iteration. The final loading pattern is shown in Figure 8.7(d).

Route Segment Loading Priority, pij

R oute
S e g m en t

Iteration
1 2 3 4 5

(a .d) 10.6
(d ,a) 10 .6
(c .e) 10 .4 10 .4
(e .c) 5 .6 5 .6 6.0 6 .0 6.0
(c .f) 10 .0 10 .0 10.9 10.9
(t.c) 10 .0 10 .0 10.9 10.9
(d .e) 3 .5 5 .5 12.0
(e .d) 1 .6 1.9 2.4

(a) (b)

4

/

(d)

Figure 8.7. Example of the balanced ring loading procedure.

Using the balanced ring loading procedure, the total flow-distance product served by the ring

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is 47 DS3-hops. A total of five ADMs and 38 add-drop ports are required. Unlike the unbalanced

ring loading procedure, all of the demand is served and there are no inter-ring transitions. Based on

the cost model in Chapter 7, the total cost of the ring is 5.95X (excluding cost o f fibre and regener­
ators) and its transport efficiency is

T| = 47/5.95X = 1 .9 /X (85)

The transport efficiency in this case is 22% higher than that attained by the unbalanced load­
ing procedure.

8 .3 .7 C a n d id a te R in g S e le c tio n

We also developed two approaches for choosing the candidate ring to add at each iteration.

The first approach simply selects the candidate ring with the highest (biased) transport efficiency.

We refer to this approach as the greedy selection method. One disadvantage of this approach is that

only one design can be generated for a given design problem. This limits the exploration of the

solution space to a single point Furthermore, selecting the best candidate at each iteration of the

design process does not guarantee a globally optimal solution.

As an alternative, we propose a probabilistic selection method to randomize the choice of can­

didate ring at each iteration. To do this we sort the candidate rings in decreasing order of transport

efficiency and assign a probability distribution Pt for selecting the k?h ranked candidate ring. To

allow the probability distribution to be calculated quickly, it is defined over a limited number of

top ranked (or elite) candidate rings. This simplification is based on the high probability of choos­

ing one of the elite candidates. The probability distribution is also biased to account for differences

in the transport efficiency of the elite candidates. For example, when the transport efficiencies of

the top-ranked candidates are closely clustered, the probability of selecting any given candidate is

roughly the same. Conversely, when there is a wide spread in the efficiency of the elite candidates,

the probability distribution is biased to favour those candidates with higher efficiencies. The

rationale for this approach is that the probability of selecting a candidate should be tied to its rela­

tive efficiency. The function adopted for this purpose is

toSno*
P k = --- (8.6)

X 01/Tl,)*
I = 1

where r\i is the transport utility of the ilh ring, n is the number of elite candidates and x > 0 is an

exponent used to control the “greediness” of the selection. The effect o f the exponent x on the

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

probability distribution is illustrated in Fig. 8.8. In this figure, the transport efficiency of the top

ranked rings decreases linearly as a function of k. When the exponent x = 0 the probability of

selecting any of the top ranked rings is the same. As the exponent increases, the probability distri­

bution becomes skewed to the higher ranked rings.

0.4

co 0.3
2X3
CO

02.>»
x =a-O

S 0.1
Q.

6 7 8 9 101 2 3 54

k th ranked ring

Figure 8.8. Effect of exponent x on the selection probability distribution.

Note that when the transport efficiency is the same for all n candidate rings, the probability

distribution is uniform regardless of the exponent value, as desired.

Using this selection method, a number of solutions can be generated for the same design prob­

lem. Randomizing the selection also helps to combat “noise” inherent to the candidate evaluation

process. Initial results using this selection method show that as the design approaches completion it

is usually advantageous to revert to the greedy selection method. Therefore, a second parameter

was added to determine the point at which to switch from the probabilistic to greedy selection

method based on the percentage demand served. This selection method is an integral part of the

Dithered Sequencing design approach described in Section 8.4.2.

8.4 Improvement Heuristics
This section proposes two new heuristics for improving the quality of solutions generated by

the basic algorithm. The first is a demand packing algorithm that attempts to route additional

demand within the existing rings at intermediate stages in the design process. This algorithm is

similar in purpose to one developed by Owen [Owe96] but differs significantly in the details. The

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second improvement heuristic, called dithered sequencing, explores multiple design sequences to

diversify the basic search procedure. The demand packing and dithered sequencing heuristic algo­

rithms are described in detail below.

8 .4 .1 D e m a n d P a c k in g

The purpose of the demand packing algorithm is to route (or pack) unserved demands within

the slack (or unused) capacity that arises as rings are added to a design. This slack occurs when the

rings added to the design are not completely filled due to static demand routing and/or ring loading

inefficiencies. Because the amount of slack within a partially complete design can be quite signifi­

cant, demand packing offers the prospect of serving additional demand at little or no extra cost It

may also eliminate the need for additional rings as a design nears completion and only a few

demands remain unserved.

The demand packing problem is a special case of the multicommodity maximum flow problem

[Hu82] in which the flow variables are integer. The objective is to route the maximum amount of

demand through the network without exceeding the ring capacities. Traditional methods for solv­

ing multi-commodity flow problems are based on linear-programming models, which can be

solved in polynomial time using ellipsoid or interior point methods [GOP98]. Because the coeffi­

cient matrix for the multi-commodity maximum flow problem is not totally unimodular, however,

it may not have an integer optimum solution even if the data are all integral [Mur92a]. Further­

more, because the demand packing algorithm may be called frequently by the main procedure, the

run-time of the algorithm is a key consideration. For these reasons, a heuristic algorithm based on

k-shortest path routing of all demands was used for demand packing. Prior work by Dunn et al.

[DGM94] on the two-terminal multicommodity maximum flow problem for span restorable mesh

networks found this approach to be quite successful. The main steps of the present algorithm is

listed in Figure 8.9.

In the first step of the demand packing algorithm, an undirected graph is constructed that repre­

sents the connectivity and capacity constraints of the existing network facilities (i.e., rings and

DCSs). This is done by explicitly modeling all the network elements and the connections between

them. We begin by adding the existing ring set to the graph. For each ring, we add to the graph a

set of vertices that correspond to the ADMs and glassthroughs in the ring and a set of edges that

correspond to the spans between them. Associated with each edge is a capacity and a cost. The

capacity is determined by the utilization of the underlying ring. If it is a BLSR, the edge capacity is

equal to the slack on the corresponding span. If it is a UPSR, the capacity is equal to the slack

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

capacity for the entire ring. A cost per DS1 is also computed for each edge based on the fixed cost

and total capacity of the ring. This cost represents the cost of consuming ring capacity. These ver­

tices and edges represent the intra-ring connectivity and capacity constraints.

Step 1. Construct an undirected graph that represents the intra-ring and inter-ring connectiv­
ity.

Step 2. Sort the demand bundles in decreasing order of the amount of demand (or flow) that

remains unearned.

Step 3. (a) Select the demand bundle with the highest outstanding flow and find the shortest

(i.e., least-cost or min-hop) path from the origin to the destination node whose maxi­

mum flow exceeds the minimum bundle size.

(b) Route as much of the demand as possible over the shortest path.

(c) Repeat steps 3(a) and 3(b) until either all of the demand is served or there is no

path that meets the minimum bundle size requirement.

(d) If all remaining demand is served, remove the original routes that were not served

from end-to-end. Otherwise, distribute the remaining demand as evenly as possible

amongst the original incomplete routes.

Step 4. Repeat Step 3 for all demand bundles.

Figure 8.9. Simplified the demand packing algorithm.

Next, for each DCS in the network another vertex is added to the graph. These vertices are then

connected to the vertices representing co-located ADMs and glassthroughs (i.e., ADMs and glass-

through that share the same node as the DCS). The edges that connect these network elements also

have a capacity and cost associated with them. The capacity of an ADM-DCS edge is equal to the

slack add-drop capacity on either the DCS or its adjacent ADM, whichever is less. The cost of the

ADM-DCS edges is equal to the sum of the add/drop interface costs on the ADM and DCS. Note

that this cost depends on the data rate of the demand being served. The capacity of glassthrough-

DCS edges is equal to the capacity of an ADM for the given ring type or the slack add/drop capac­

ity of the DCS, whichever is less. These edges are included to allow glassthroughs to be replaced

with ADMs when economically viable. The cost of a glassthrough-DCS edge is the same as an

ADM-DCS edge, except there is an additional charge for placing the ADM. As in the balanced

ring loading algorithm, this additional charge is a specified fraction of the fixed cost of an ADM.

Therefore, if the least-cost path traverses a glassthrough-DCS edge, the glassthrough will be

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replaced by an ADM, provided the maximum number of ADMs for the ring is not exceeded. Oth­

erwise, the cost of the glassthrough-DCS edge is set to infinity. The working assumption here is

that all inter-ring demands pass through a DCS. Thus, the vertices and edges added in this step rep­

resent the inter-ring connectivity and associated capacity constraints.

The last step involves adding a vertex to the graph for each network node. These vertices rep­

resent the sources/sinks of demand at the origin and destination nodes for each demand pair. To

prevent inter-ring transitions from occurring through these vertices, they remain unconnected from

the rest of the graph until the shortest path between an O-D pair is requested. At that point, the ver­

tices for the origin and destination nodes are connected to their co-located ADMs and glass­

throughs. The capacity on each of these source/sink-ADM edges is equal to the slack on the

adjacent ADM and the cost is equal to the cost of an add/drop interface on the ADM. This is based

on the assumption that the sources/sinks of demand are connected directly to an ADM rather than

being connected via a DCS. Otherwise, the vertices representing these nodes could have been con­

nected directly to the co-located DCSs. Once the shortest path(s) for an O-D pair have been found,

these edges are removed from the graph. This approach also allows demands to be added/dropped

at nodes (locations) that are not equipped with a DCS.

Figure 8.10 provides an example of a ring set and its corresponding ring connectivity graph.

The original network topology and ring set (shaded) is shown in Figure 8.10(a) and the corre­

sponding ring connectivity graph for demand pair (b,f) is shown in Figure 8.10(b). Note that the

other network nodes are omitted from the ring connectivity graph in Figure 8.10(b) mainly for

illustrative purposes but also because they are not connected to the rest of the graph.

A ADM

(a) (b)

Figure 8.10. An example of a ring connectivity graph used in demand packing of existing rings.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second step in the demand packing algorithm is to sort the demand bundles in decreasing

order of the unserved demand. By an unserved demand, we mean the amount of demand (in DS1

equivalents) that is not currently carried by a ring(s) from end-to-end. The rationale for sorting the

demands in this order is that it should improve packing efficiency if the larger demands are packed

before smaller ones.

Next, for each O-D demand pair, a variant of Dijkstra’s algorithm is used to find the shortest

path between the end nodes. The path length may be measured in terms of cost or the number of

hops. The cost of a path is equal to the sum of the cost of all edges traversed along the path. This

cost model is based on the principle that there is an opportunity cost associated with consuming

network facilities. That is, by allocating capacity to a particular demand pair, we forego the oppor­

tunity of using it for other purposes (e.g., leasing).

If the slack capacity on a given edge is less than the minimum bundle size of the demand being

routed, the cost of the edge is set to infinity. If a shortest path is found that satisfies the minimum

bundle size requirement, as much demand as possible is routed over this path and the slack capac­

ity is adjusted accordingly. If some of the demand remains unserved, the shortest path between the

O-D pair is re-computed using the updated slack values. This process continues until either all of

the demand for the given O-D pair is served or no further paths exist If all of the demand for the

O-D pair is served, the original (incomplete) routes for this demand pair are permanently removed

from the route table, having been completely replaced by the new routes. This frees up additional

capacity for routing subsequent demands, either in the current or future demand packing intervals.

If none of the demand is served, the original routes for this OD-pair are left intact. Otherwise, if

some fraction of the demand is served, the flows on the original routes are decreased by the amount

served. This is done by reducing the flow on the original routes in proportion to the original distri­

bution so that the total reduction equals the total flow on the new routes that were created via the

packing process. Because the amount on each route must be a whole number, the proportion of

demand allocated to each route is adjusted slightly to account for rounding errors. The method

used guarantees that the total demand is reduced by the correct amount and that the reduction in

demand is spread as evenly as possible amongst the original routes.

An alternative to the above approach, is to remove all of the incomplete routes prior to starting

the demand packing process. This makes additional capacity available for demand packing and

should, in theory, make it possible to pack more demand in total. But it also makes it necessary to

reconstruct the original routes if only a fraction (or none) of a demand pair can be served. Due to

the complexities involved in doing this, we opted for the simpler approach described above. To

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

take full advantage o f the capacity released after each demand is packed, however, we place the

demand packing procedure in a loop that continues to iterate until no further demand can be

packed. This increases the amount of demand served at each packing interval, while avoiding the

complexities of reconstructing routes.

To automate the demand packing process, an option was added to the basic RingBuilder algo­

rithm to initiate demand packing at specified intervals during the design process. The demand

packing interval may be based on either the number of iterations (i.e., rings placed) or the percent­

age of demand served.

It should also be noted that the demand packing algorithm described above has several other

possible uses in the context of ring network planning. For example, it can be used in a multi-period

planning problem to utilize the slack in existing rings (placed in prior periods) before adding new

rings to accommodate demands in the current and subsequent periods. It can also be used to deter­

mine a routing pattern in situations where only a set of rings is specified (e.g., in manual ring plan­

ning). Lastly, the demand packing algorithm is used in the Tabu Search algorithm described in

Chapter 11.

8 .4 .2 D ith e r e d S e q u e n c in g

The purpose of the dithered sequencing heuristic is to diversify the search procedure of the

basic RingBuilder algorithm by simultaneously exploring several design sequences (or trajecto­

ries) through the design space. A design sequence is simply the sequence of ring choices made in

constructing the solution. By randomizing (i.e., dithering) the ring selected at each iteration of the

design process, we can construct several solutions to the same design problem. This overcomes an

inherent limitation o f the basic greedy algorithm, which generates only a single solution for each

design problem. To randomize the choice of ring at each iteration we use the probabilistic selection

method described in Section 8.3.7. For each design problem, we explore several design sequences

and compare their progress at regular intervals during the design process. At the end of each inter­

val, the least promising of the design sequences are abandoned and several new design sequences

are spawned from those that survive the “pruning” process. This process of design sequence prun­

ing and branching continues until each of the remaining design sequences serves all of the offered

demand. The basic procedure is illustrated graphically in Figure 8.11.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CO

100%dem and served

Figure 8.11. Illustration of the basic Dithered Sequencing meta-heuristic.

In the current implementation, the points at which pruning and branching occur are demarcated

by the percentage of demand served. That is, each design sequence continues adding rings until the

percentage of demand served for the next interval is reached. These branching points occur at reg­

ular intervals during the design process. For example, if the design is separated into four stages,

pruning and branching occur when the percentage of demand served reaches the 25%, 50% and

75% levels. The number of branching points, n, the number of elite sequences per branching point,

r, and the number of branches per elite solution, k, are user-defined parameters. In Figure 8.11, for

example, n = 3, r = 2 and k = 2. Note that at any stage of the design process, the number of design

sequences is r • k .

Because there is a step-wise increase in the amount of demand served with each ring added to

the design sequence, the percentage of demand actually served by a design sequence usually

exceeds the desired amount by some margin at the branching point. Therefore, to compare the rel­

ative efficiency of the design sequences, the cost of each design sequence is divided by the per­

centage of demand that it serves. For example, if a design sequence that serves 25% of the demand

has a total cost of 100X, its efficiency is 400X. This means that given the current rate of progress

the total cost of the design would be 400X. The effect of different parameter settings on solution

quality is considered in the experimental results.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.5 Summary
In this chapter, we described the software architecture and algorithmic details of RingBuilder

Interactive. We also introduced two new heuristics designed to improve the performance of the

baseline approach. In the next chapter, we present the study method used to compare the perform­

ance of these heuristics along with the detailed results.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Results of RingBuilder Improvements

9.1 Introduction
The previous chapter described the baseline RingBuilder algorithm and proposed several

improvement heuristics. In this chapter, we compare the performance of these improvement heu­

ristics (relative to the baseline algorithm) for the test cases outlined in Chapter 7. This chapter

begins by describing the study method used to characterize the performance. The results are pre­

sented in Section 9.3, followed by a summary and conclusion in Section 9.4.

9.2 Comparative Study Method
This section describes the experimental methods used to evaluate the performance of each

improvement heuristic relative to the baseline algorithm. Unlike the comparative study methods

described in Chapter 7, these methods are specific to the RingBuilder algorithm. All tests are per­

formed using the RingBuilder Interactive software described in Chapter 8. To validate the results

from these tests, an independent test method is used to check the consistency of all design data and

ensure that all design constraints are satisfied. For example, this program ensures that the flow on

each ring does not exceed its capacity and is consistent with the flow implied by the route set This

program was instrumental in debugging all aspects of the design software. All tests are run on a PC

equipped with 250 MBytes of RAM and an AMD Athalon processor running at 750 MHz.

The study is divided into three main subsections: (1) the unbalanced and balanced ring loading

algorithms, (2) the demand packing heuristic and (3) the dithered sequencing heuristic. Note that

the results for the unbalanced ring loading algorithm without demand packing or dithered sequenc­

ing are considered the baseline results throughout the remainder of this thesis. The specific test

methods for each of these subsections is described in detail below.

9 .2 .1 R in g L o a d in g A lg o r ith m s
The performance of the unbalanced and balanced ring loading algorithms are compared by

generating network designs for all twelve combinations of test network and technology scenario

described in Chapter 7. In the case of the balanced ring loading algorithm, the ADM discount fac­

tor and probabilistic selection exponent are set to 0.1 and 1.6, respectively. In addition to the total

design cost and runtimes, a detailed list of design statistics is also presented for each network

design.

We also characterize the effect of the ADM discount factor and the biased transport efficiency

exponent on total design cost for the balanced ring loading algorithm. This is done by generating

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network designs for test cases 1 through 9 from Chapter 7 for a wide range of parameter values. In

one set of tests, the ADM discount factor is swept over the range [0,1] in 0.1 increments, while

holding the biased transport efficiency exponent constant at 1.6. Similarly, the biased transport

efficiency exponent is tested for values ranging from 1.0 to 2.4 in 0.2 increments, while holding

the ADM discount factor constant at 0.1. The results of these tests are presented in Section 9.3.1.

9 .2 .2 D e m a n d P a c k in g

To examine the effect of demand packing on total design cost, we generate network designs for

all twelve test cases using both the unbalanced and balanced ring loading algorithms. In all cases,

the demand packing ADM discount factor is set to 0.1 and demand packing is performed after each

iteration. For the results using the balanced ring loading algorithm, the biased transport efficiency

exponent is set to 1.6 and the (balanced ring loading) ADM discount factor is also set to 0.1.

We also examine the effect of the ADM discount factor (for demand packing) on the total

design cost by generating a series of network designs for test cases 1 through 9. In these tests, the

ADM discount factor is swept over the range [0,1] in 0.1 increments. The results of these tests are

summarized in Section 9.3.2

9 .2 .3 D ith e re d S e q u e n c in g

Similar tests are also conducted for the Dithered Sequencing improvement heuristic. In all test

cases, the distribution for the probabilistic selection method is limited to the top 10 ranked candi­

date rings. To obtain insights into the effect of the probabilistic selection method on total design

cost, nine independent network designs are generated for test cases 1 through 9 using the probabil­

istic selection method and the balanced ring loading algorithm. In this suite of tests, the greedy

selection threshold is set to 0.5 and the probabilistic selection exponent is set to 3.0. For the bal­

anced ring loading algorithm, the ADM discount factor and the biased transport efficiency expo­

nent parameters are set to 0.1 and 1.6, respectively.

Two sets of tests are also conducted using the unbalanced ring loading algorithm for a wide

variety of parameters settings. The first set o f tests considers the effect of the number of branching

points, n, elite design sequences per branch, r, and branches per elite design sequence, k, on solu­

tion quality. For convenience, we denote these parameters by the 3-tuple (n,r,k). Parameters n and

r are swept over the range [2,4] while holding the other parameters constant at n.r,k = 3. Similarly,

parameter k is swept over the range [2,5] while holding the other two parameters n.r = 3. In these

tests, the probabilistic selection exponent and greedy selection threshold were held constant at 3.0

and 0.9, respectively.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second set of tests evaluates the effect of the probabilistic selection method parameters on

the dithered sequencing solution quality for test case 5 (Net20, 4B192). First, the probabilistic

selection exponent is held constant at 3.0 and the greedy selection threshold is swept over the range

from 0.0 to 1.0, in 0.1 increments. Then the greedy selection threshold is set to 0.9 and the probabi­

listic selection exponent is tested for integer values ranging from 0 to 10. Both of these tests are

conducted for two parameter settings: (3,3,3) and (1,9,1). Note that parameter setting (1,9,1) is

equivalent to nine independent network designs because there is only one branching point The

results of all dithered sequencing tests are presented in Section 9.3.3.

9 3 Results

9 .3 .1 R in g L o a d in g A lg o r ith m s

The results of the unbalanced and balanced ring loading algorithms are summarized in Fig. 9.1.

Detailed statistics for the designs generated by these algorithms are also provided in Tables 9.1 and

9.2 at the end of this chapter. These results show that in all test cases the balanced ring loading

algorithm generates the lowest cost design. The cost improvement ranges from less than 1% for

test case 8 (Net32, 4B192) to up to 32% for test case 2 (NetlS, 4B48). With the exception of

Net32, the improvement due to the balanced ring loading algorithm actually increases with laiger

ring capacities. In general, this is because there is more slack available, on average, in rings with

larger capacities. This improves the chances of successfully rerouting demands in the alternate

direction around the ring, thereby reducing the number of rings and ADMs required in the design.

In contrast, the unbalanced ring loading algorithm cannot take advantage of these opportunities.

This is particularly noticeable in the metropolitan area networks (i.e., Netl5 and Net20) where the

total design costs for the 4B48 and the 4B48, 4B192 designs are either the same or higher than the

4B12 designs.

In the long-haul networks (i.e., Net32 and Net43), the total design costs for both ring loading

algorithms decrease with larger ring capacities. The majority of this decrease is due to the reduc­

tion in the amount of fibre and regenerators required with larger ring capacities. For example, in

Net32 the amount of fibre and regenerators drops by about 30-50% as the ring capacity quadruples

from 4B48 to 4B192. Because the cost o f the regenerators and fibre accounts for roughly 80% of

the total, the decrease in total design cost is significant. Although the same reductions in the

amount of fibre and regenerators occur in the metropolitan area networks, the effect is less signifi­

cant because the distance dependent costs account for only 10% of the total.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
□ Unbalanced

4B12 4B48 4B12,4B48

(a) Netl5

140

120 ■ -r—

to 100 •■ -
u
c-2 > 80 • -

■o 60 ■. .

2o 40 -
it
M

20 i!
0 -

m,
■M
■%'//
W

i

m

it''fM
m
p .
w
i,
i

4B12 4B48 4B12,4B48

(b) Net20

1000

800 -

600 -

° 400 •

200

1600

4B48 4B192 4B48,
4B192

- 1200

4B48 4B192 4B48,
4B192

(c) Net32 (d) Net43

Figure 9.1. Results for unbalanced and balanced ring loading algorithms.

The results in Tables 9.1 and 9.2 also show that runtimes increase dramatically with problem

size (i.e., the number of candidates and demand pairs). For example, the runtimes for Netl5 are in

the range of 1/2 a minute to 2 minutes, whereas the runtimes for Net43 range from 1/2 to 2 hours.

These results also show that the runtimes for the balanced ring loading algorithm are typically

much longer than those for the unbalanced ring loading algorithm. For example, the runtimes for

the balanced ring loading algorithm are up to 4 times longer than the unbalanced ring loading algo­

rithm for Net43. The main reason for this difference is that the balanced ring loading algorithm

handles many more routes in loading each candidate ring.

Examples of the network designs generated for test case 2 (i.e., Netl5,4B48) using the unbal­

anced and balanced ring loading algorithms are shown in Fig. 9.2 and Fig. 9.3, respectively.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.2. Network design for test case 2 (Netl5, 4B48) using the
unbalanced ring loading algorithm.

Figure 9.3. Network design for test case 2 (Netl5, 4B48) using the
balanced ring loading algorithm.

These examples illustrate typical differences in the network designs generated using the two

ring loading algorithms. The first and most obvious difference is the number of rings in each

design. The designs generated using the balanced ring loading algorithm generally require about

half the number of rings as those generated using the unbalanced ring loading algorithm. This is

due primarily to the ability of the balanced ring loading algorithm to alter the routing of demands

during the loading process.

Although the re-routing of demands tends to increase the average route length and the average

working load per span, the total network capacity in the balanced ring loading designs is actually

lower in most cases. The results in Tables 9.1 and 9.2 also show that the balanced ring loading

designs require half as many inter-ring transitions, on average, as the unbalanced ring loading

designs. This is due in part to the dynamic routing capability of the balanced ring loading algo­

rithm, which forces the route to be carried along on each ring between the farthest entry and exit

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes. In contrast, the unbalanced ring loading algorithm only carries the route along the spans that

intersect the ring. As a result, the a single route can enter and exit the same ring more than once.

Furthermore, the order in which route segments are loaded by the balanced ring loading algorithm

depends on the number of inter-ring transitions. That is, all other things being equal, the route seg­

ments with fewer inter-ring transitions are loaded first. The unbalanced ring loading algorithm

does not account for this during the loading process. Another factor that influences the number of

inter-ring transitions is the length of the rings in the design. The average number of nodes in the

balanced ring loading designs is generally much higher than in the unbalanced ring loading

designs. In test case 2, for example, the average number of nodes per ring for the unbalanced ring

loading design is only 3.17, whereas the average number of nodes per ring for the balanced ring

loading design is 8. Clearly, larger rings (i.e., with more nodes) have a greater potential to carry

demands farther along their route from origin to destination, thereby minimizing the number of

inter-ring transitions.

Another difference in the designs generated with the two loading algorithms is the number

spans covered by the ring set. In general, the designs generated with the balanced ring loading

cover fewer spans in the network topology. In test case 2, for example, the balanced ring loading

design covers only 21 of 28 spans. The unbalanced ring loading design, on the other hand, covers

all 28 spans because the initial working load on these spans is greater than zero. Thus, the dynamic

routing capabilities of the balanced ring loading algorithm overcomes an inherent disadvantage of

the basic span coverage approach by allowing spontaneous span eliminations to occur as a result of

the ring loading process. It is well known that span eliminations can significantly reduce total net­

work design costs [Fla90], [LeeOO]. All of the methods proposed to date for span elimination, how­

ever, rely on topology reduction techniques. Therefore, the balanced ring loading algorithm

represents an alternative to these more direct approaches.

For the balanced ring loading algorithm, the effect o f the ADM discount factor on the total

design cost for test cases 5 (Net20, 4B48) and 6 (Net20, 4B48 & 4B192) is shown in Fig. 9.4. In

general, this figure shows that the best designs are obtained with an ADM discount factor in the

range from 0.4 to 0.7 and at 0.1. These results are representative of the other test cases, except test

cases 8 (Net32, 4B192) and 9 (Net32, 4B48 & 4B192) where the total design cost is insensitive to

changes in the ADM discount factor. This is due to the hubbed demand pattern in Net32. With a

hubbed demand pattern, every route segment that may be loaded onto a candidate ring after the

first iteration requires exactly one ADM to be placed. Therefore, the ADM discount factor has no

effect on the order in which route segments are loaded.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

4B48
4B12 + 4B48100 -

tno
° 95cO)C0®•a 90«o

85 •

80 4— 1-------- 1--------,--------1-------- ,--------,-------- 1 ■ - i— i-------
0.0 0.1 02. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ADM discount factor

Figure 9.4. Effect of the ADM discount factor on total design cost for test case 5
(Net20, 4B48) and test case 6 (Net20, 4B48 & 4B192) using the bal­
anced ring loading algorithm.

The effect of the biased transport efficiency exponent on total design cost for test cases 5

(Net20, 4B48) and 6 (Net20, 4B12 & 4B48) is shown in Fig. 9.5. Note that an exponent value

a = 1.0 is equivalent to the baseline case in which rings are selected purely on the transport effi­

ciency metric. For the multi-technology design (test case 6), this figure shows that the optimum

exponent value lies within the range a = [1.6,1.8]. Within this range, the total design cost is

roughly 14% lower than the baseline case. The main reason for this cost improvement is a marked

reduction in the number of 4B12 rings. In the baseline design (generated with an exponent value

equal to 1.0), there are nine 4B12 rings and two 4B48 rings. In contrast, the design generated with

an exponent value of 1.6 has only one 4B12 ring and three 4B48 rings. Similar results are obtained

for the other multi-technology test cases. This demonstrates the advantage of biasing the selection

metric to favour rings with larger flow-distance products in multi-technology designs.

The best designs for the single technology design (test case 5) are also obtained with an expo­

nent value within the range a = [1.6, 1.8] , however, the results are only marginally better than the

baseline. These results can be explained by the fact that there are no economy-of-scale effects to

leverage in single technology designs. Therefore, the only advantage that biasing the selection met­

ric offers is the possibility of placing fewer rings in total. For example, in the baseline design for

test case 5 there are five 4B48 rings, whereas in the design generated with an exponent value of 1.6

there are only four 4B48 rings. The results for the other single technology test cases are similar.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

100
to r |O 11
° 95 X*ca>toa>■o 90 -
&o -4B 48

-4B12+4B48
85

1.0 1.2 1.4 1.6 2.0 2.21.8 2.4

e l e m e n t , a

Figure 9.5. Effect of the biased transport efficiency exponent on total design cost
for test case 5 (Net20, 4B48) and test case 6 (Net20, 4B 12 & 4B48)
for Net20 using the balanced ring loading algorithm.

9 .3 .2 D e m a n d P a c k in g

Results for unbalanced and balanced ring loading algorithms with demand packing are sum­

marized in Fig. 9.6. The total design costs without demand packing are also indicated in Fig. 9.6 by

the vertical error bars. Detailed statistics for the designs generated by these algorithms are also pro­

vided in Tables 9.3 and 9.4 at the end of this chapter.

The results show that demand packing provides a significant improvement in design cost for

the unbalanced ring loading algorithm. The improvement in design costs is from 5% for test case 4

(Net20,4B12) to up to 18% for test case 9 (Net32,4B48 & 4B192). On average, the demand pack­

ing algorithm provides a 10% reduction in total design cost for the unbalanced ring loading algo­

rithm. In three of the test cases, the cost of the unbalanced ring loading algorithm solutions (with

demand packing) are actually lower than those obtained with the balanced ring loading algorithm.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

□ Unbalanced
□ Balanced80

CO

8 60c a
CO

1 40 i5 o

20

4B12 4B48 4B12,4B43

140

120

100
c_a>
toa>•o 60
«o 40

20

4B12 4B48 4B12,4B48

(a) NetlS (b) Net20

1000

800 -

600 -

2 4 0 0 -

200 -

1600

- 1200 to
8c
•5 800
■o

2 400

T
■ -m.m T T•><r- _L

i
1 %«

'Wi-

8
’0^
%v//.

"M
It! wiVSS//, W%.m

4B48 4B192 4B48,
4B192

4B48 4B192 4B48,
4B192

(c) Net32 (d) Net43

Figure 9.6. Results for unbalanced and balanced ring loading algorithms with demand packing.

The demand packing results for the balanced ring loading algorithm are somewhat mixed. In

more than half of the test cases, the total design cost actually increases (by up to 1.8%) as a result

of demand packing. In the remaining test cases, the improvement ranges from a couple percent up

to 7%. One explanation for these results is that the average ring fill in the balanced ring loading

solutions is generally much higher in the first place, so there is less slack in which to pack unserved

demands. In addition, in those cases where the cost increases the designs are generally quite similar

except the designs generated with demand packing contain slightly more ADMs. This suggests that

better results may be obtained with a higher (demand packing) ADM discount factor.

In almost all test cases, the total runtime is also reduced by demand packing. This is because

fewer rings are generally required with demand packing and the time required for demand packing

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is small in comparison with the time required to evaluate and select additional candidate rings.

Figure 9.7 shows the effect of the (demand packing) ADM discount factor on total design cost

for test cases 5 and 6 (Net20). These results are representative of the other test cases. In almost all

test cases, the total design cost decreases with increasing values of ADM discount factor up to a

value of 0.3. Beyond this point, the total design cost remains unchanged in all test cases. In two test

cases for Net32, the total design cost is completely insensitive to changes in the ADM discount

factor. A closer inspection of the results showed that none of the demands that were packed

required an ADM to be placed along the route. In this situation, the ADM discount factor does not

have an effect on the outcome.

112

108

104c.S*s■o 100 •

96

92 -I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ADM discount factor

Figure 9.7. Total design cost versus demand packing ADM discount factor for test
case 5 (Net20,4B48) and 6 (Net20,4B12 & 4B48).

Overall, the results show that the best designs are obtained when there is a large cost penalty

(i.e., ADM discount factor) associated with placing an ADM during demand packing. This sug­

gests that relatively few other demands actually benefit from the placement of an ADM during

demand packing. Therefore, the fixed cost of placing an ADM is incurred primarily by the current

demand being packed. In this situation, it becomes more attractive (economically) to route

demands over longer routes that do not require additional ADMs. While this increases the average

number of hops per demand, the results show that the total design cost is marginally lower.

An alternative to using an ADM discount factor would be to establish a flow threshold for

placing an ADM. That is, if the maximum flow on a route exceeds a given threshold, the cost of

placing an ADM is set to zero, otherwise the full cost of the ADM is used in finding the least-cost

1S8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path. This alternative is left as an item for future research.

9 .3 .3 D ith e r e d S e q u e n c in g

The effect of the greedy selection threshold on total design cost for test case 5 (Net20,4B48) is

summarized in Fig. 9.8. For each value of the greedy selection threshold, nine designs are gener­

ated using the probabilistic selection method with an exponent value x = 3.0. The minimum,

maximum and mean costs for these designs are plotted in Fig. 9.8.

135
— Max.
- Mean
-M n .

130 •
at

125

115 -

1 1 0

0 0.4 0.60.2 0.8 1
greedyselec tion threshold, g

Figure 9.8. Total design cost versus greedy selection threshold for test case 5.

Note that a greedy selection threshold g = 0 corresponds to the basic greedy selection

method and, hence, all nine designs are identical. At the other extreme, a value g = 1 represents

the case where all ring choices are made using the probabilistic selection method. These results

show that the best solution is obtained with a greedy selection threshold g = 0.5. At progressively

higher values, the total design costs tend to rise. This occurs because comparatively poor ring

choices are made at the end of the design, despite the adaptive behaviour of the selection method.

Figure 9.9 shows the total design cost as a function of the probability selection exponent for

test case 5 with the greedy selection threshold held constant at g = 0 .5 . This figure shows that the

minimum design cost is achieved with an exponent value x = 3. Note that an exponent value of

x = 0 corresponds to a uniform probability distribution, i.e. there is an equal probability of select­

ing any one of the top ten candidate rings. As the exponent value increases, it becomes increas­

ingly likely that the top ranked candidate will be selected. The results indicate, however, that there

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is still a large degree of variability in the total design costs even at higher exponent values.

135
Max.
Mean
Mn.

130
COo
c 125 -
o> } E ca ©
2 120 - <u
o

115

110
0.0 2.0 4.0 6.0 10.08.0

probabilistic selection exponent, x

Figure 9.9. Design cost versus probabilistic selection exponent for test case 5 with a
greedy selection threshold g = 0.5.

For further insight into this outcome, we plot the transport efficiencies for the top ten candidate

rings for each iteration is the design process in Fig. 9.10. Figure 9.10(a) shows the minimum, max­

imum and mean transport efficiencies for the elite candidate rings at each iteration. Figure 9.10(b)

shows the range in transport efficiencies relative to the mean. These plots show that while there is

an order of magnitude difference in the mean transport efficiency (of the elite candidate rings)

between the first and final iterations, there is only a small difference in the range between the min­

imum and maximum transport efficiencies relative to the mean.

As a result, the probability distribution for the elite candidate rings is not significantly differ­

ent between the first and final iterations, as shown in Fig. 9.11 and Fig. 9.12. These figures show

the probability of selecting the k?h ranked candidate ring for several exponent values. Even with

higher exponent values, there is still a high probability of selecting a lower ranked candidate ring.

For example, in the final iteration there is a 63% chance that the highest ranked ring will not be

selected with an exponent value x = 10 .

The relatively small difference in the transport efficiencies amongst the top-ranked candidate

rings also helps to explain the results of the previous tests on the greedy selection threshold (i.e.,

the benefit of reverting to the greedy selection method after a certain percentage of the demand is

served). An alternative to this would be to introduce a simulated annealing (SA)-Iike “cooling

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schedule” into the probabilistic selection method that gradually increases the greediness of the

selection process. This is a possible item for future research.

300

*=- 250
s*| 200 <Pa
% 150
o
Q . 100mc
5- 50

1 2 3 4 5 6 7
iteration

(a)

8 9 10

1.3
S-
Skuc
o
3=<D
-coQ.
COc
2
©
©
£

0.8
1 2 3 4 5 6 7 8 9 10

itera tion

(b)

Figure 9.10. Plot of the (a) absolute and (b) relative minimum, maximum and mean transport effi­
ciencies of the elite candidate rings as a function of design iteration.

0.19

x = 10
x =8

0.17 •

x =6
x = 4

0.15

 x =2S 0.13 ■

0.11 ■

0.09

0.07
1 2 3 4 5 6 7 8 9 10

0.4

 x = 10
 X = 8

 X = 6

 x = 4
 x = 2

0.3

5 0.2 -

0.0
1 2 3 4 5 6 7 8 9 10

ca n d id a te ring, k ca n d id a te ring, k

Figure 9.11. Probability distribution of the top ten candidate rings as a function of the probabilistic
selection exponent x for the (a) first and (b) final iterations.

The results for all designs generated with the probabilistic selection method and balanced ring

loading are summarized by the histogram in Fig. 9.12. This histogram shows the relative frequency

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution of the total design cost (relative to the greedy solution) for all 81 designs generated in

this suite of tests. These results show that while the majority of designs generated with the probabi­

listic selection method have a total design cost greater than the baseline solution, improvements of

up to 10% are attainable by simply generating multiple designs for the same planning problem.

Indirectly, these results also suggest that the greedy selection method produces solutions that are

generally within about 10% to 12% of the best solutions that can be obtained using the balanced

ring loading method.

Oc
3O'o
s

0.30

0.25 -

0.20 -

0.15 -

« 0.10 -
2

0.05 -

0.00 [I n
-12 -8 -4 0 4 8 12 16 20 24

variation in total d es ig n c o s t from baseline (%)

Figure 9.12. Relative frequency histogram of the total design cost (relative to the
baseline greedy solution) for test cases 1-9 using the probabilistic
selection method and the balanced ring loading algorithm.

Up to this point, the results have focused on the efficacy of the probabilistic selection method

on independent designs. We now present the results for the dithered sequencing meta-heuristic. A

plot of the progress of a typical dithered sequencing design is shown in Fig. 9.13. Note that at each

branching point, three new design sequences are spawned from each of three of the design

sequences. This figure also shows that the percentage of demand served by each design sequence

varies substantially at each branching point

The effect of different dithered sequencing parameter settings on total design cost are shown in

Fig. 9.14 and 9.15. These figures show the range in the solution values for all design generated

with each parameter setting, not just the minimum values. Figures 9.14(a) and 9.14(b) show that

the minimum, mean and maximum solution values all decrease when either the number of elite

sequences per branching point, r, or the number o f branches per elite sequence, k, increases. This

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be explained by the fact that more design sequences are generated in total as value of these

parameters increase. Because there are more design sequences to choose from at each branching

point, the subset of elite design sequences are likely to have lower solution values in general.

140

120 -

100 -CO
8

80 -c
J O
toto■o
(0o

40 -

0% 20% 40% 60% 80% 100%

demand served

Figure 9.13.Design sequences for test case 5 using parameter settings (3,3,3).

126 .
*S5
8

124 -
COBCO

122 -
0)T5
15

120 -

o 118 -

116 -
2 3 4

elite seq. / branching point, r

(a)

130
CO
8
ca>COa>■o 115
08O

105
2 43
branches / elite seq., k

(b)

Figure 9.14. Effect o f different Dithered sequencing parameter settings on total design cost (a)
no. of branching points and (b) no. of elite sequences per branching point.

In contrast, the minimum, maximum and mean solution values do not decrease monotonically

with increases in the number of branching points, as shown in Fig. 9.15. The range between the

minimum and maximum values decreases significantly, however, when the number of branching

points is set to five. This occurs because there may be only one or two rings added between branch-

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing points and, therefore, there is less opportunity for the design sequences to deviate from the best

solutions at each branching point.

130

1 125
S 120
VS
■g 115
2§ 110

105

branching points, n

Figure 9. IS. Effect of no. of branches per elite sequence on total design cost.

Because multiple design sequences are evaluated at each stage of the design process, the total

runtime for each dithered sequencing run is roughly proportional to the number of design

sequences times the runtime of the a single greedy solution. For example, the runtime for the

default parameter setting (3,3,3) is about nine times longer than the runtime for the basic greedy

solution.

A surprising outcome o f these tests is that the best (i.e., lowest cost) design is actually obtained

when each design sequence is completely independent This outcome can be explained with the aid

of Fig. 9.8 and Fig. 9.16, which shows the total design cost as a function of the greedy selection

threshold for test case 5 for parameter settings (3,3,3).

135
♦ - Max.

Mean
—e -----Mn.

130
CO

" 125 -

Hfr •*(0
o X

115 -

110
0.2 0.6 0.80 0.4 1

greedy selection threshold , g

Figure 9.16. Total design cost versus greedy selection threshold for test case S with
parameter setting (3,3,3).

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.16 shows that for the case where Dithered Sequencing is used, the solution costs are

tightly clustered about the mean over the entire range in the greedy selection threshold. In contrast.

Fig. 9.8 shows that the deviation in total design cost for the independent solutions is much greater

both above and below the mean. This observation can be explained by the fact that the pruning pro­

cedure limits the search to a subset of elite design sequences at each branching point Because the

mean values are roughly the same over the entire range, however, it is more likely that a lower cost

solution will be found by generating several independent designs using the probabilistic selection

method. These results indicate that the measure used to prune design sequences at each branching

point is not always a good predictor of the actual merit o f the design sequence. While it clearly

excludes consideration of inferior design sequences (as evidenced by the higher maximum values

in the independent results), it also abandons the search of design sequences that eventually prove

worthwhile.

9.4 Summary
Overall the experimental results in this chapter show that significant savings in total design

cost can be achieved relative to the basic greedy solution using several of the improvement heuris­

tics developed in this chapter. Of these heuristics, both the balanced ring loading and demand

packing algorithms provide the greatest improvement with savings of up to 32% relative to the

benchmark solutions. The results from the dithered sequencing heuristic were less encouraging.

Nonetheless, the probabilistic selection method provides a useful means of generating several

alternative solutions for the same design problem and may be used with any of the improvement

heuristics proposed here.

In the next chapter, we consider Mathematical Programming formulations for the same prob­

lems that offer further evidence that the solutions generated by these heuristics are very good

indeed.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 9.1: Design Statistics for Unbalanced Ring Loading Algorithm

Test
Case

Net-
worlc

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg,
Fill
<%)

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4BI92 4BI2 4B48 4BI92

I NetlS 12 - - 47 - - 11 902.0 53.7 47 1.82 0 374 696 68.71 45

2 «« - 9 - - 32 - 6 591.8 20.5 94 1.82 0 374 1,824 87.86 26

3 •• 12 0 - 47 0 - II 902.0 53.7 47 1.82 0 374 696 68.71 78

4 Net20 19 - - 71 - - 22 2,333 62.0 143 1.99 0 692 1,116 118.77 69

5 - 10 • • 38 - 9 1,182 30.7 182 1.99 0 692 2,256 119.31 37

6 •• IS 3 - 46 12 - 20 1,928 50.6 167 1.99 0 692 1,368 117.74 105

7 Nel32 13 - - 6S - 377 126,444 43.1 548 5.32 1 1,882 4368 910.12 23

8 •«
- 10 - - 47 199 70,616 20.0 621 5.32 2 1,882 9,408 660.68 15

9 •4 7 4 - 25 24 215 75,316 30.4 621 5.32 2 1,882 6,192 645.38 26

10 Ncl43 47 - • 223 - 214 94,764 65.7 2,692 3.52 4 8,890 13,536 1,358.1 1,610

II 44
- 26 - - 110 89 42,160 35.6 3,025 3.52 5 8,890 24,960 1,097.4 758

12 44 22 8 - 83 56 96 49,176 56.6 2,927 3.52 5 8,890 15,696 1,074.0 1,607

■
9

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 9.2: Design Statistics for Balanced Ring Loading Algorithm

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
(%)

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

ToUl
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4B12 4B48 4BI92 4B12 4B48 4B192

1 NctlS 6 - 46 - 8 895.6 69.9 42 2.20 0 453 648 66.58 106

2 tt - 3 - 22 2 373.4 44.3 33 2.48 7 510 1,152 59.87 so

3 3 1 18 9 3 449.7 69.9 34 2.32 4 478 684 52.26 104

4 Net20 10 77 - 32 2,819 73.5 23 2.76 1 961 1,308 117.20 130

5 4 - 29 II 1,066 59,7 35 3.30 3 1,147 1,920 86.43 51

6 •I 1 3 2 27 II 1,066 64.6 35 3.30 3 1,147 1,776 84.43 99

7 Net32 - 8 - 53 345 115,396 55.8 172 5.91 2 2,091 3,744 786.88 24

8 it - - 6 - - 45 226 77,596 18.2 250 5.63 3 1,993 10,944 655.88 19

9 tt - 6 I - 31 16 234 80,480 40.3 250 6.23 3 2,207 5,472 617.90 31

10 Net43 - 32 - - 220 - 230 99,732 72.6 2,127 3.71 1 9,374 12,912 1,288.7 6,552

11 tt - - 13 - - 92 70 35,920 53.7 2,193 4.04 12 10,200 19,008 907.15 2,932

12 tt - 5 8 - 21 71 77 37,160 64.2 2,237 3.98 13 10,042 15,648 877.15 5,484

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission

Table 9.3: Design Statistics for Unbalanced Ring Loading Algorithm with Demand Packing

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
< %)

Inter­
ring

Transit.

Avg,
Hops/
Route

Spans
Elim.

Tout
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4B12 4B48 4B192 4BI2 4B48 4BI92

1 NetlS 10 - - 41 - 8 770.6 71.4 67 2.04 2 420 588 63.45 40

2 44 7 - - 27 2 443.3 32.2 113 2.17 3 448 1,392 78.23 26

3 10 0 - 41 0 8 770.6 71.4 67 2.04 2 420 588 63.45 72

4 Net20 17 - - 66 - IS 1,960 79.0 168 2.21 1 768 972 113.00 63

5 «• 6 - - 29 5 827.2 45.6 193 2.14 4 745 1,632 98.04 28

6
«« 10 3 - 39 12 8 1,341 67.4 174 2.21 2 768 1,140 106.11 78

7 Net32 10 - - 38 325 110,224 54.0 537 5.57 ! 1,971 3,648 803.52 26

8 *1
- 9 - - 42 161 57,604 23.8 628 5.67 5 2,008 8,448 568.72 25

9 (1 5 4 - 18 24 161 57,604 35.4 628 5.71 5 2,020 5,712 532,72 31

10 Net43 39 - - 209 - 163 81,364 80.9 3,007 3.69 5 9,321 11,520 1,283.6 1,655

11 44 - 21 - - 94 69 34,028 50.7 3,331 4.13 16 10,425 20,544 1,019.1 659

12 I t
- IS 8 - 38 36 74 39,228 69.5 2,965 3.90 to 9,839 14,160 985.97 1,408

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 9.4: Design Statistics for Balanced Ring Loading Algorithm with Demand Packing

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
<%>

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4BI92 4BI2 4B48 4BI92

1 Net 15 6 - 44 - - 5 841.9 71.3 49 2.03 0 419 588 62.41 87

2 M - 3 - 20 I 308.2 50.9 34 2.49 9 513 1,008 55.44 46

3 •4 3 1 18 9 3 449.7 70.3 36 2.33 4 481 684 52.75 100

4 Net20 10 78 - 26 2,561 79.8 55 2.86 1 996 1,248 118.90 124

5 •« 3 - 27 9 1,022 69 41 3.43 5 1,192 1,728 82.41 49

6 44 3 0 27 9 1,022 69 41 3.43 5 1,192 1,728 82.41 90

7 Net32 - 9 - 53 346 115,464 55.2 171 5.92 2 2,094 3,792 787.32 27

8 44
- - 7 - - 45 234 79,572 17.6 251 5.62 3 1,989 11,328 667.46 18

9 44
- 7 1 - 31 16 242 82,456 39.5 251 6.22 3 2,202 5,568 629.48 32

10 Net43 - 27 - - 210 - 188 88,684 83,5 2,171 3.81 3 9,619 11,520 1,244.37 6,520

II •• - - 12 - - 88 78 36,416 56.0 2,334 4.17 14 10,540 18,816 909.33 2,980

12 44
- 7 7 - 24 65 76 35,644 73.7 2,318 4.25 14 10,721 14,544 859.47 5,478

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 9.5: Design Statistics for Balanced Ring Loading Algorithm with Dithered Sequencing

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
(%)

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Him.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4BI92 4BI2 4B48 4BI92

1 NetlS 6 - 42 - - 7 816.0 70.9 37 2.02 1 417 588 61.48 954

2 H - 3 - 22 - 1 322.8 50,5 23 2.71 9 558 1,104 58.41 450

3 •• 2 1 14 10 - 4 382.1 72.8 31 2.46 6 507 696 50.11 936

4 Net20 12 - 74 - - 28 2,562 74.0 41 2.60 0 906 1,224 113.91 1,170

5 •• - 4 - 30 - 11 1,091 60.0 19 3.39 4 1,180 1,968 86.% 459

6 is 3 2 10 22 - 19 1,315 69.4 19 3.16 1 1,099 1,584 83.68 891

7 Net32 - 9 - 54 - 293 99,788 62.3 264 6.08 2 2,152 3,456 709.64 216

8 •• - - 5 - - 37 219 73,792 22,5 171 6.47 4 2,290 10,176 595.56 171

9 ll - 6 1 - 22 16 238 78,844 39.1 159 6.57 5 2,326 5,952 583.42 279

10 Net43 - 33 - - 220 - 241 101,384 71.0 2,192 3.74 1 9,436 13,296 1,340.6 58,968

11 ii - - 12 - - 89 74 35,924 52.7 2,148 3.89 11 9,824 18,624 891.47 26,388

12 ll - 7 8 - 25 74 89 41,024 61.1 2,253 4.12 12 10,406 17,040 920.47 49,356

o

10 Research on M athematical Programming applied to M ulti-Ring
Network Design

10.1 Introduction
The heuristic algorithms developed in the previous chapter provide approximate and appar­

ently quite efficient (i.e., near-optimal) solutions for a relatively accurate model of the multi-ring

network design problem that captures many of the finer details in the real-world planning problem.

In this chapter, we present three mathematical programming formulations that offer optimal solu­

tions (within computational constraints) but for more approximate models of the problem. That is,

the formulations presented here adopt several simplifying assumptions that make the problem

more tractable for optimal solution methods. Each of these formulations represents a different

trade-off between model detail and tractability. Each, however, provides certain utility and insight

into the overall problem in its full detail.

All three formulations developed here are expressed as integer (linear) programs (IPs). These

formulations differ from the work in [KNR97], [BTR96] and [CQT96] (previously surveyed in

Chapter 6) by modelling aspects such as modularity, inter-ring routing costs and, in some cases,

glass-through locations. While the proposed formulations have certain claims to optimality within

the logical problem model, computational constraints may prohibit finding strictly optimal solu­

tions for large problems. Nonetheless, even when solved with relaxed tolerances on optimality,

they can provide very good, feasible, designs of significant real-world size that also serve as

benchmarks for heuristic solutions.

The remainder of this chapter is organized as follows. We begin by introducing the mathemat­

ical notation used to express the IP formulations. The formulations are then developed in Sections

10.3 through 10.3. Section 10.6 describes the study method used to evaluate the performance of

these formulations and the results are given in Section 10.7. This is followed by a summary and

interpretation of the findings in Section 10.8.

10.2 Notation
The notation used in subsequent sections is defined below.

Sets:

— J : set of candidate rings.
— I: set of routes.
— K: set of demands.
- / (*) : subset of routes available for demand k.
- I (s) : subset of routes that intersect span s.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— J (i) : subset of ring candidates that intersect route /.
— J (s) : subset of ring candidates that cover span s.
— 5 (/) : subset of spans in route z.
— S (j) : subset of spans in candidate ring 7.

Design Parameters:

— a.jk: equals one if demand k is carried (in part or whole) by ring j and zero otherwise
(used in section 10.4 only).

— bjj-. unit ADM and cross-connect add-drop interface costs associated with carrying route
i on ring j.

— Cj: fixed cost of ring j .
— dk: size (quantity) of demand bundle k.
— ntj: capacity of ring candidate /.
— ws : working load on span s.

Decision Variables:

— X j : integer number of ring candidate j to instantiate.
— G-tj : quantity of demand on route i carried by ring candidate j .

— F i : quantity of demand carried on route i.

10.3 M ulti-M odular Pure £pan Coverage (SCIP)
In the first formulation, we assume that the demands have already been routed over the net­

work topology and the working load on each span ws is given along with a set of candidate BLSR

rings J. Associated with each candidate j e J is a capacity ntj and a list of spans S(J) that it

traverses. It is also assumed that all nodes in each candidate ring are equipped with an ADM and

there are no constraints on where inter-ring transitions occur. Based on these simplifying assump­

tions, the objective of the problem is to find a min-cost set of rings whose aggregate capacity cov­

ers the working load assigned on all spans. This is a special case of the Span Coverage problem

described in Chapter 6. The problem can be stated algebraically as:

SCIP
Minimize: £ Cj ■ X (10.1)

6 J

Subject to: £ m.j • X j > w, V s e S (10.2)
syw
X j> 0 , integer, V/ e / (10.3)

In the above formulation, the cost Cj of candidate ring j includes all fixed costs involved in

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

establishing the ring (e.g., fibre an i ADM common equipment) but excludes variable costs such as

add-drop interfaces and inter-ring transitions. The set o f ring candidates, / , is generated by enu­

merating all cycles in the network graph and instantiating a candidate ring for each combination of

cycle and ring capacity under consideration. In practice, the number of candidate rings can be

restricted by imposing a limit on the number of nodes in the ring or on its physical distance. The

objective function (10.1) is to minimize the total facility cost over all rings. Constraint set (10.2)

ensures that the aggregate span capacity of all rings that intersect span s is greater than or equal to

the working load assigned to that span from the initial demand routing. The total number of varia­

bles in this formulation is equal to the number of ring candidates and the total number of con­

straints is equal to the number of spans.

Note that this formulation is suitable for BLSR rings only because the capacity of an UPSR

ring is shared amongst all its spans and, therefore, cannot be modelled on a per-span basis, as in

constraint set (10.2). In addition, because each node in a ring is assumed to be equipped with an

ADM, any real-world constraints on the number of ADMs in a ring may be violated by the solu­

tion. Another property of the span coverage approach is that the resultant design cost may depend

heavily on the pre-determined demand routing pattern, as discussed in Chapter 6 . Nonetheless, the

SCIP formulation is a highly useful formulation for several purposes. In particular, it has been used

extensively by Lee et al. [LGM99], [LeeOO] for characterizing the comparative effects of various

topology changes. This work shows that design costs can vary by up to 28% in this class of design

by eliminating some spans from the network topology and making the necessary alterations to the

routing pattern. The results of that work also show a very strong correlation (0.93) between the

SCO* solutions and those obtained by the RingBuilder algorithm described in [Sle99]. High corre­

lation with RingBuilder (though not the same high absolute accuracy in predicting design cost)

means that SCIP can be conveniently used as a surrogate for more detailed design solutions in

comparative studies.

1 0 .4 F ix e d C h a rg e a n d R o u tin g (F C R IP)
The next formulation aims to simultaneously determine both the ring set and the demand rout­

ing pattern and include the costs of ring-to-ring transitions. This is intended to address the limita­

tions associated with fixed demand routing, as noted in the previous section. Like the previous

formulation, we assume that a set of candidate BLSR rings J is given. Associated with each candi­

date j € J is a capacity m,- and a list of spans S(j) that it traverses. It is also assumed that all nodes

in each candidate ring are equipped with an ADM and there are also no constraints on where inter-

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ring transitions occur. A demand matrix is given along with a set of routes for each demand bundle.

Based on these assumptions, the problem is to find a set o f rings, the flow along each route and the

assignment of flows to rings that minimizes the total cost of the design. We refer to this as the

Fixed Charge and Routing problem, which can be stated algebraically as:

FCRIP
Minimize: X cj ‘ + X X bij Gij d0-4)

je J i e i j e /(/)

Subject to: £ F, = dk , VkG K (10.5)
<e /(*)

£ Gu > Ff , Vi e /, Vs e S(i) (10.6)
JeJfr)

2 Gij<mJ Xj, Vy 6 / , V i 6 5(/‘) (10.7)
<6 /(,)

Xj >0, integer, Vy e 7 (10.8)

Ff > 0 , integer, Vi e / (10.9)

G(j > 0 , integer, Vi € / , Vy € /(/) (10.10)

In the above formulation, the total cost is modelled by both a fixed ring establishment cost

(e.g., ADM chassis) and variable routing cost, such as add-drop interfaces for inter-ring transitions.

As in the previous formulation, the set of candidate rings J is generated by finding all cycles in the

network graph and instantiating a candidate ring for all combinations of cycle and ring capacity

under consideration. The routes l(k) for each demand k are also generated by finding a subset of

routes between the origin and destination nodes of the demand. In practice, it is usually necessary

to limit the number of routes per demand by considering some number of shortest routes only. Oth­

erwise, the number of decision variables becomes too large to be solved. The objective (10.4) is to

minimize the sum of the fixed ring costs and the incremental inter-ring routing costs. Constraint

(10.5) ensures that for each demand bundle k, the sum of the flow on the routes I(k) equals the

total demand dk. Constraint (10.6) ensures that on each span s e S(i) in route /, the sum of

demand carried by the rings J(s) that intersect span s is equal to the total flow F{ on route /. Con­

straint (10.7) states that the total demand G(j carried on each span s of ring candidate s 6 J(s)

does not exceed the aggregate capacity of all copies of ring candidate y. The total number of varia­

bles in this formulation is |7| + 1/| + |/(i) | and the total number of constraints is
16/ 174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1+ £15(01+ £ U (/)I .
i e l j eJ

The main advantage of this formulation is that it jointly solves for the ring set and the routing

pattern in a way that does not implicitly assume full span coverage. Therefore, it directly addresses

the topology optimization (span elimination) problem. Although the formulation above models

BLSR rings only, it can be extended to model UPSR rings with some modification. Similarly, deci­

sion variables for the location of ADMs in each candidate ring can also be added. These extensions

are detailed in Appendix F but are not pursued here because of the large number of variables

required to solve such problems. Even with the current formulation, the number of variables and

constraints in moderately-sized problems can easily exceed the capability of modem optimization

software. Nonetheless, this formulation has been used here to find feasible, but not provably opti­

mal, solutions for networks with up to 32 nodes and 45 spans.

1 0 .5 F o u n d a tio n D e s ig n (F D IP)
Up to this point, we have defined a ring candidate in terms of its type, topological layout and

capacity only, and have formulated the design problem so as to select a subset of these rings that

serves all demands. In this last formulation, we extend our definition of a ring candidate to include

a specification of the active and glass-through node locations and the subset of demands carried by

each ring. Clearly, the number of all such candidates, even in relatively small networks, can be

enormous. Therefore, the basic idea here is to restrict attention to a subset of elite candidates that

have been frequently selected by other designs methods and are known to have high individual fig­

ures of merit by one or more different criteria (e.g., perfect capture, capacity utilization or cost/

demand-served, etc.). In this situation, the problem is to select from this collection of elite candi­

dates, a subset of rings that carries each demand at least once. In effect the logic of this approach is

to present the combinatorial solver with an array of interesting or promising ring-type building

blocks and simply let it handle the ‘‘final selection and assembly” aspect of arriving at a completed

network design. The formulation for the Foundation Design IP (FDIP), is as follows:

FDIP
Minimize: X c/ '* , (10.11)

e J

Subject to: £ ajk • * } > ! , Vk e K (10.12)
i e J

Xj(= {0 ,1} , Yj e J (10.13)

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The objective function (10.11) is to minimize the total design cost of fully specified rings

selected from the elite ring set. Here the cost cy- is the actual cost of ring candidate j as specified by

the location of active and glass-through nodes and the subset o f demands carried by the ring. Con­

straint set (10.12) ensures that each demand is handled by at least one ring. Strictly speaking, this

will not guarantee that all demands are served end-to-end but it is o f research interest because the

set of rings that are chosen may constitute a large, collectively optimized foundation upon which a

complete design may be constructed. Moreover, the existing RingBuilder heuristic is ideally suited

to identify a vocabulary of elite ring candidates. The total number of variables in this formulation

is equal to the number of ring candidates and the total number of constraints is equal to the number

of demands.

It is recognized apriori that the performance of FDIP will be the most difficult to assess com­

paratively because its aim is not even to produce a complete design and in producing a partial

foundation design, its performance is the most dependent on the set of ring candidates presented

for its consideration. Another way to put it is that FDIP will be highly dependent for its perform­

ance on both the pre-processing tactic to populate its vocabulary of elite ring candidates and on

some second process to complete the resultant design working from the foundation FDIP contrib­

uted.

10.6 Comparative Study M ethod
To evaluate the performance of each formulation, we generate network designs for all twelve

test cases outlined in Chapter 7 using the proposed formulations. All formulations are implemented

in the AMPL mathematical programming language [Com97] and solved with the CPLEX linear

optimization software [CPL96]. The AMPL models for these formulations are provided in Appen­

dix G. The AMPL data for each problem instance are generated using several custom Perl, Python

and Java programs. Each problem instance is solved using a parallel version of the CPLEX MIP

Solver (Version 6.2) on a Sun UltraSparc HPC-450 equipped with 1 Gbytes o f RAM and four

processors, each running at 250 MHz. For comparative purposes, the runtime for all problem

instances is limited to one hour of user-time. In those cases where the runtime is exceeded, the best

feasible integer solution is reported. Note that the runtime for these cases varies because the actual

CPU time consumed in one hour of user-time depends on the load on the computer. This is an

unfortunate side-effect of using the parallel version of the CPLEX MIP. The variation in CPU time

is not all that critical, however, because experience shows that doubling or tripling the runtime

rarely improves the solution quality in such cases. Lastly, a tolerance on optimality was also set to

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.005. That is, problem instances ‘hat completed normally are guaranteed to be within 1/2 a per­

cent from the optimal solution.

Because each formulation adopts a different objective or cost model, the objective values for

each formulation are not directly comparable. Therefore, to calculate the cost o f each solution for

comparison, the ring sets were imported into RingBuilder Interactive and the demands were routed

using the demand packing algorithm described in Chapter 8. This approach ensures that a uniform

costing procedure is applied to all test cases. It also ensures independently that all demands are sat­

isfied (i.e., routable) and the designs are feasible. The procedures for generating network designs

using each formulation are discussed in detail below.

For the SCIP formulation, the working load on each span, ws , is determined by routing the

demand over the network topology using the shortest path algorithm described in Chapter 8 . In all

cases, route lengths are measured by geographical distance. The set of ring candidates J is gener­

ated using the candidate generation procedure described in Chapter 8. Due to the large number of

nodes and spans in Net43 and its high average nodal degree, the entire cycle set is too large to enu­

merate completely. Therefore, a subset of cycles is enumerated by limiting the cycle circumference

to 10 hops. The hop limit and the number of cycles for each test network are listed in Table 10.1.

The cost of each candidate ring Cj is obtained by taking the sum of the fibre and ADM common

equipment costs, assuming that an ADM is required at every node on the ring. After the solution

(i.e., ring set) is imported into RingBuilder Interactive, the actual required number of ADMs, add-

drop interfaces and inter-ring transitions are determined from the routing data.

Table 10.1: SCIP & FCRIP Design Parameters

Parameter

Net 15 Net20 Net32 Net43

SCIP FCRIP SCIP FCRIP SCIP FCRIP SCIP FCRIP

Hop Limit 15 8 20 10 32 18 10 6

Cycles 976 203 428 119 224 166 3,748 244

The same candidate set and (fixed) ring cost data are also used for the FCRIP data sets. The

unit cost by associated with carrying route / on ring j, is equal to the cost of two ADM add-drop

interfaces and two DCS add-drop interfaces. This assumes that inter-ring transitions are cross-con­

nected via a co-located DCS. The route set, /, is generated by finding the two shortest routes for

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each demand. The number of routes per demand is limited to restrict the number of variables in the

integer program. In addition, the number of candidate rings is also reduced by limiting the cycle

circumference (in hops). Even with these restrictions, the number of variables in the integer pro­

gram can be enormous. For example, there are over 30,000 variables in the integer program for

Net20 with a hop limit of 10 and only two routes per demand. The hop limit and the number of

cycles for the FCRIP data set are listed in Table 10.1.

Given the large number of integer variables in the FCRIP data sets, the route flow F i and ring

flow Gtj variables were changed (or relaxed) to continuous variables to improve runtime. In prac­

tice, the relaxation of the flow variables is not a significant concern because they often take on

integer values when solved. In addition, there is usually sufficient slack in the solution (i.e., ring

set) to accommodate any rounding errors due to fractional flow values. Because the flow values

may be fractional, however, the actual routing is determined by the demand packing algorithm.

To study the effect of the number of routes per demand in the FCRIP formulation on the total

design cost, we also generate several network designs for Net32 by varying the number of routes

per demand from 1 to 5.

For the FDIP formulation, the set of elite candidate rings and their respective route sets and

costs for each test case are obtained from the network designs generated using the other design

methods developed here. A Java program was written to extract the AMPL data from all network

designs generated for each test case. The total number of designs and candidate rings for each test

case is listed in Table 10.2.

Table 10.2: FDIP Data Set Statistics

Test Case Network Tech. # Designs
Candidate

Rings

1 Netl5 4B12 16 113

2 i t 4B48 16 59

3 i t 4B12.4B48 16 77

4 Net20 4B12 16 175

5 it 4B48 16 82

6 U 4B12.4B48 16 101

7 Net32 4B48 16 131

8 <« 4B192 16 105

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10.2: FDIP Data Set Statistics

Test Case Network Tech. # Designs
Candidate

Rings

9 “ 4B48.4B192 16 109

10 Net43 4B48 15 470

11 “ 4B192 15 215

12 u 4B48,4B192 15 241

In the FDIP formulation the cost, cy-, represents the cost of the actual ring in its parent design,

as specified by the location of active and glassthrough nodes and the subset of demands served.

Because the designs obtained using this method do not generally serve all demands, the foundation

designs are completed by generating an incremental design for the remaining unserved demand

using RingBuilder Interactive with the balanced ring loading algorithm.

10.7 Results
A summary of the total design cost and CPU time results for each formulation and test case are

presented in Table 10.3. In some cases, the optimal solution to the IP formulations are not found by

the CPLEX MIP Solver within the one-hour time limit. These instances are indicated by an asterisk

in Table 10.3.

Table 10.3: Summary of Results

Test
Case Network Tech.

SCIP FCRIP FDIP

Cost
Runtime

(sec.) Cost
Runtime

(sec.) Cost
Runtime

(sec.)

1 Netl5 4B12 67.45 71.3 55.35* 5,452 70.00 0.5

2 u 4B48 82.11 522.3 77.12* 6,433 63.62 0.02

3 «s 4B12,4B48 65.73 308.9 81.27* 6,471 55.77 0.19

4 Net20 4B12 120.36 0.53 105.79* 7,864 126.85 70.4

5 u 4B48 104.46 28.63 92.56* 8,333 111.01 0.10

6 i t 4B12,4B48 100.06 186.7 110.19* 6,402 99.46 0.16

7 Net32 4B48 876.72 0.10 912.46* 8,284 1,044.2 0.07

8 “ 4B192 608.42 0.15 693.80* 8,642 928.9 0.01

9 “ 4B48,4B192 581.72 1.63 727.32* 8,265 847.6 0.02

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10.3: Summary of Results

Test
Case Network Tech.

SCIP FCRIP FDIP

Cost
Runtime

(sec.) Cost
Runtime

(sec.) Cost
Runtime

(sec.)

10 Net43 4B48 1,272.8* 4,508 - - 1,488.8* 14,342

11 u 4B192 961.29* 6,464 - - 96733 7.15

12 u 4B48.4B192 941.33* 5,424 - - 945.93 952

* runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for

all four processors.

A breakdown of the results for the initial IP solution and the final design for each formulation

are also provided in Tables 10.5 through 10.7 at the end of this chapter. In these tables, the “objec­

tive” column lists the objective value for the best integer solution found by CPLEX within the

runtime limit. The “lower bound” column gives a lower bound (from CPLEX) on the IP optimal

solution and the “gap” is the percentage difference between the best integer solution and the lower

bound. Also at the end of the chapter are the detailed statistics for all designs generated by these

formulations.These results show that, despite a number of simplifying assumptions, the SCIP for­

mulation provides the best solution (in terms of cost) in 8 out of 12 test cases. As a general out­

come, however, this will be dependent on the relative cost/savings of a glassthrough node

compared to typical line-distance costs in the solution because the SCIP formulation cannot

resolve glassthrough locations. For example, in full metro contexts where there is zero line cost the

solution could be much farther off the true minimum because getting the glassthroughs right may

be “over half the battle.” Table 10.5 shows that in all test cases, except those involving test net­

work Net43, integer optimal solutions are found for the SCIP formulation within the runtime limit.

In addition, in all test cases the final design satisfies all of the demands (i.e., all of the demands are

packed or routed within the ring set). There is also a very high correlation (0.981) between the

objective value of the IP solution and the total design cost. This means that even with the several

simplifying assumptions, the objective function of the SCIP formulation provides a very good esti­

mate of the total design cost. This result, however, is best suited to cases where the line costs dom­

inate the total design cost.

The FCRIP formulation provides the best solution in the remaining four test cases. These

include the single technology designs for test networks Netl5 and Net20. The total design costs for

these test cases are up to 18% lower than the corresponding SCIP designs. This demonstrates the

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potential savings from optimizing the ring set and demand routing simultaneously. Solutions are

not available for test network Net43 because the data set for the problem instances cannot be gen­

erated, much less solved, within the available memory on the computer. And this is with a cycle

circumference limit of only 6 hops!

As shown in Table 10.6, the runtime limit is exceeded in all test cases before an integer opti­

mal solution is found. Furthermore, the “gap” between the objective value of the best integer solu­

tion and the lower bound increases with problem size (i.e., the number of variables). This is to be

expected because it takes significantly longer to solve each LP relaxation in the CPLEX branch-

and-bound tree as the problem size increases. As a result, fewer integer feasible solutions are

explored within the runtime limit. This explains, in part, the inferior performance of the FCRIP

formulation relative to the SCIP formulation on the larger problem instances (e.g. multi-technol­

ogy designs). Another possible explanation for the relatively poor performance of the FCRIP

method on larger problem instances is the low hop limit imposed on all designs to restrict the

number o f variables. This is supported by the observation that on Net20, the largest ring in the

optimal SCIP solution has a circumference of only 8 hops; two less than the hop limit used for the

FCRIP formulation. In all other test cases, however, the circumference of the largest ring in the

SCIP solution is greater than the FCRIP hop limit.

The results in Table 10.6 also show that there is an extremely high correlation (0.9989)

between the objective value of the IP solution and the total design cost. This is to be expected

because the objective function for the FCRIP formulation models both the fixed ring costs and the

inter-ring transition costs.

Note that in the final design for test case 4 (Net20, 4B12) only 98.1% of the demand can be

packed into the ring set. An examination of the IP solution for this test case reveals that some of the

flow variables take on fractional values. Therefore, there may not be a feasible (integer) demand

routing for this test case. In practice, this may not be an issue because the demand matrix is typi­

cally based on forecasted data, which may vary substantially from the actual future demand. In all

other test cases, the flow variables take on integer values and 100% of the demand is packed in the

final design.

The effect of the number of routes per demand on the total design cost for test case 1 (Netl5,

4B12) is shown in Figure 10.1. This figure also shows the integer objective value and the best

bound from the IP solutions for each test case. The best bound is the objective value of the best

unexplored node in the branch-and-bound tree for the problem, where each node represents an LP

relaxation of the original problem. In all test cases, the runtime limit is exceeded before an optimal

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solution can be found.

8 70m •O o
« 60 -

50
1 2 3 54

•D esgnCose
- O b y c t i e

- B e s t B o isx l

nurrfcer of routes/demand

Figure 10.1. Effect o f the number of routes/demand on FCRIP
total design cost for test case 1 (Net 15,4B12).

These results show that although the best bound continues to decrease as the number of routes

per demand increases, the lowest cost design occurs when there are only two routes per demand.

This is because the number of decision variables increases dramatically as the number of routes per

demand increases. For example, with only one route per demand there are 6,126 decision variables,

whereas with five routes per demand there are 38,116 decision variables. Thus, a smaller portion of

the solution space can be explored within the runtime limit when there are five routes per demand.

This is also evidenced by the widening gap between the integer objective and the best bound at

larger parameter values.

As shown in Table 10.3, the solution times for the FDIP formulation are generally an order of

magnitude lower than the other formulations. Note that these times do not include the preprocess­

ing required to generate the elite ring candidate set, which can be significant In three test cases, the

FDIP formulation also provides the lowest cost solution but in some cases the total design cost

(including the incremental systems) is significantly higher than the other two methods. One possi­

ble cause for the high design costs becomes evident upon examination of the foundation designs

for those test cases involving Net32. In this network, all demands terminate at one of three hub

nodes. As a result, the rings in the foundation design are clustered about the three hub nodes, leav­

ing a large portion of the network uncovered. Consequently, when the design is imported into

RingBuilder Interactive and the demand is packed, only a small fraction of the demands are served

from end-to-end. For example, in test case 8 (4B48) only 15.5% of the demand is actually served

by the foundation design. Thus, the final design is generated primarily by the greedy heuristic

algorithm (with demand packing). As a result, the correlation between the objective values from

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the IP solution and the final network designs is much lower than the other two formulations (i.e.,
0.905).

One possible approach for improving performance is to reformulate the problem to include

some measure of the degree to which a demand is satisfied from end-to-end. For example, if the

variable <xjk represented the fraction of the distance that demand k is carried from end-to-end

along ring j , then constraint (10.12) may provide a better indication of the demand served. Another

tactic would be to considered only those demands in the candidate rings that are fully captured by

the ring, i.e., that originate and terminate on the ring. These and other tactics along with the effect

of the size and composition of the elite candidate ring set remain topics for future study.

10.8 Summary
We have discussed three new or recent approaches that are based on formal mathematical pro­

gramming methods, for the multi-ring design problem. A summary of their respective features and

advantages is given in Table 10.4.

Table 10.4: Comparative Summary of IP Formulations

Model Attribute SCIP FCRIP FDIP

Glass-through N N Y

Multi-modularity Y Y Y

Span Elimination N Y Y

Inter-ring transitions N N Y

Ring Types BLSR BLSR/UPSR BLSR/UPSR

Relative Run Times Moderate Slow Fast

Design Completeness Complete Complete Incomplete

Pre-processing Minimal Moderate Greatest

The results indicate that these approaches can provide useful solutions to a difficult optimiza­

tion problem. Like many approaches based on integer programming, however, there are inherent

limitations in the scalability of these techniques to larger network designs, as illustrated by the

results presented here. Nonetheless, these formulations can generate good solutions for relatively

small networks and serve as useful benchmarks for other methods. Future work in this area may

involve characterizing the various trade-offs between solution quality, candidate set size and com­

position, and model fidelity as well as exploring advanced combinatorial optimization techniques

such as column generation.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.5: Computational Results for SCIP Formulation

Test
Case Network Tech. Objective

Lower
Bound Gap(%)

Runtime
(sec.)

Demand
Served

(%)

Total
Design
Cost

1 Net IS 4B12 70.606 70.323 0.4 71.3 100 67.452

2 l i 4B48 53.852 53.626 0.4 522.3 100 82.106

3 I I 4B12,4B48 49.032 48.789 0.5 308.9 100 65.732

4 Net20 4B12 100.264 100.120 0.1 0.53 100 120.36

5 «« 4B48 84.964 84.545 0.5 28.63 100 104.46

6 (I 4B12.4B48 73.550 73.187 0.5 186.7 100 100.06

7 Net32 4B48 790.22 790.22 0.0 0.10 100 876.72

8 « 4B192 525.82 523.55 0.4 0,15 100 608.42

9 <l 4B48,4BI92 493.82 493.82 0.0 1.63 100 581.72

10 Net43 4B48 913.46* 890.12 2.6 4,508 100 1,272.8*

11 I I 4B192 621.84* 557.86 11.5 6,464 100 961.29*

12 *l 4B48,4B192 611.18* 483.19 26.5 5,424 100 941. .33*

’"runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

2

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.6: Computational Results for FCRIP Formulation

Test
Case Network Tech. Objective

Lower
Bound Gap (%)

Runtime
(sec.)

Demand
Served

(%)

Total
Design
Cost

1 Net 15 4B12 77.650* 63.516 22.3 5,452 100 55.350*

2 44 4B48 98.919* 46.969 110.6 6,433 100 77.119*

3 41 4B12.4B48 105.168* 46.969 123.9 6,471 100 81.268*

4 Net20 4B12 142.14* 131.919 7.8 7,864 98.9 105.79*

5 44 4B48 127.562* 92.978 37.2 8,333 100 92.562*

6 41 4B12.4B48 148.686* 92.372 61.0 6,402 100 110.19*

7 Net32 4B48 908.210* 631.734 43.8 8,284 100 912.46*

8 44 4BI92 721.300* 252.257 185.9 8,642 100 693.80*

9 44 4B48,4B192 784.020* 252.071 211.0 8,265 100 727.32*

10 Net43 4B48 - - - - -

11 44 4B192 - - - - -

12 44 4B48,4B192 - - - - -

r̂untime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

s

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.7: Computational Results for FDIP Formulation

Test
Case Network Tech. Objective

Lower
Bound Gap (%)

Runtime
(sec.)

Demand
Served

<%)

Total
Design
Cost

1 Net 15 4B12 46.794 46.794 0.0 0.5 73.3 70.00

2 i t 4B48 50.437 50.437 0.0 0.02 96.6 63.62

3 <« 4B12,4B48 45.01 45.01 0.0 0.19 90.29 55.77

4 Net20 4B12 91.875 91.432 4.9 70.4 73.3 126.85

5 44 4B48 80.480 80.480 0.0 0.10 95.1 1 1 1 . 0 1

6 44 4B12.4B48 73.950 73.950 0.0 0.16 80.2 99.46

7 Net32 4B48 452.78 451.17 0.4 0.07 51.7 1,044.2

8 “ 4B192 336.09 336.09 0.0 0.01 15.5 928.9

9 H 4B48,4B192 279.13 279.13 0.0 0.02 14.1 847.6

10 Net43 4B48 1,112.36 847.58 31.2 14,342 84.2 1,488.83*

1 1
«« 4B192 797.28 796.00 1.6 7.15 97.7 967.53

12 44 4B48,4BI92 763.21 763.21 0.0 9.52 95.1 945.93

''‘runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.8: Design Statistics for SCIP Formulation

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
(%)

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4B192 4B12 4B48 4BI92

1 NetlS 9 - - 50 - - 0 770.5 65.0 33 1.89 0 390 600 67.452 71.3

2 •• - 5 - - 33 - 1 521.3 28.1 30 2.22 0 458 1,632 82.106 522.3

3 4* 5 2 - 30 8 - 0 606.4 57.5 64 2.08 0 428 744 65.732 308.9

4 Nel20 18 - - 81 - - 8 2,252 68.7 91 2.11 0 734 1,068 120.36 0.53

5 •• - 7 - - 38 - 2 992,8 45.2 58 2.49 0 867 1,920 104.46 28.63

6 “ 4 5 - 17 24 - 3 1,110 51.1 120 2.04 0 711 1,392 100.06 186.7

7 Net32 - 12 - - 75 - 353 122,444 45.7 262 5.51 1 1,951 4,272 876.72 0.10

8 41 - 7 - - 45 190 67,564 21.8 349 5.55 3 1,966 9,024 608.42 0.15

9 44 4 4 - 13 30 192 67,564 28.7 418 5.45 3 1,929 6,720 581.72 1.63

10 Net43 37 - - 243 - 144 84,292 79.7 2,103 3.73 4 9,413 11,808 1.272.8* 4,508

11 44 - 15 - - 109 62 37,168 48.3 2,008 4.01 4 10,118 20,928 961.29* 6,464

12 •• 8 13 - 24 87 75 40,236 55.9 2,029 4.03 4 10,178 18,192 941.33* 5,424

"‘runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.9: Design Statistics for FCRIP Formulation

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
(%)

Inter­
ring

Transit.

Avg,
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4B192 4BI2 4B48 4BI92

1 NetlS 6 - 39 - - 1 689.9 83.8 24 1,95 3 402 480 55,350* 5,452

2 •• - 5 - 31 - 0 483.8 26.0 24 1,88 3 387 1,488 77.119* 6,433

3 <«
0 5 0 33 - 1 553.6 23.1 20 1.83 4 377 1,632 81.268* 6,471

4 Net20 14 - 69 - - 3 1,858 82.2 97 2.04 0 710 864 105.79* 7,864

5 •• - 6 - 30 - 0 772.4 50.2 113 2.08 6 723 1,440 92.562* 8,333

6 i t 0 8 0 39 - 2 977,2 37.3 95 2.11 2 734 1,968 110.19* 6,402

7 Net32 - 12 69 - 381 129,572 45.3 327 5.41 0 1,915 4,224 912.46* 8,284

8 - - 8 - 48 238 82,460 17.7 242 5.39 0 1,907 10,752 693.80* 8,642

9 •• - 2 6 7 37 276 92,304 19.7 309 5,89 1 2,084 10,560 727.32* 8,265

10 Net43 - - -

II •• - - -

12 44
-

^runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 10.10: Design Statistics for FDIP Formulation

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
(%)

Inter­
ring

Transit.

Avg.
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Total
Capacity

(DS3-hops)
Total
Cost

Runtime
(sec.)4BI2 4B48 4B192 4B12 4B48 4BI92

1 NetlS 9 - 49 - - 8 960.3 63.7 43 2.12 2 436 684 70.00 0.5

2 ««
- 4 - 24 - 9 484.0 30.0 11 2.31 4 475 1,584 63.62 0.02

3 44 4 1 18 11 - 8 514.3 66.4 13 2.71 6 558 840 55.77 0.19

4 Net20 12 - 85 - - 32 2,810 80.3 40 3.24 2 1,127 1,404 126.85 70.4

5 " - 6 - 41 - 9 1,262 46.1 35 3.18 3 1,107 2,400 111.01 0.10

6 “ 3 3 8 31 - II 1,253 64.7 36 3.73 4 1,297 2,004 99.46 0.16

7 Nel32 16 - 87 - 430 147,364 41.5 297 6.19 2 2,192 5,280 1,044.2 0,07

8 " - 10 - - 63 333 113,528 12.8 250 5.64 2 1,996 15,552 928.9 0.01

9 44 7 4 - 35 29 323 110,860 24.6 250 6.24 1 2,210 8,976 847.6 0.02

10 Net43 40 - - 286 - 230 114,016 61.4 1,745 3.70 4 9,341 15,216 1,488.8" 14,342

11 I t
- 14 - - 102 105 45,696 41.7 1,838 3,93 17 9,922 23,808 967.53 7.15

12 «« 8 7 - 52 67 99 48,476 67.4 1,855 4.26 14 10,748 15,936 945.93 9.52

’"runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

11 A Tabu Search Meta-Heuristic for Multi-Ring Network Design

11.1 Introduction
In this chapter, we develop a novel Tabu Search meta-heuristic for the multi-ring network

design problem. Tabu Search (TS) is a meta-heuristic that guides a local neighbourhood search to

explore regions in the solution space beyond a local optimum [GIL97]. A local neighbourhood

search begins with an initial (sub-optimal) solution for a given problem and searches its immediate

neighbourhood for a better solution. A solution’s neighbourhood is defined as the set of adjacent

solutions that can be reached directly by an operation called a move. Generally, a move involves

changing some of the attributes of the current solution. In a Knapsack Problem, for example, a typ­

ical move is to swap an element already in the solution with one that is not. Aside from Tabu con­

siderations (to follow), when a better solution is found, the current best solution is replaced and the

search begins again from the better solution. This process continues until no improvement can be

made to the current solution. This type of search is sometimes called a steepest-descent search.

Although the final solution is (locally) optimal with respect to its immediate neighbourhood, it is

unlikely to be a globally optimal solution unless the solution space is convex. One approach for

dealing with local optimality is to accept “uphill moves” to an inferior solution after reaching a

local optimum. Using this approach, the search can escape local minima and go on to explore other

promising regions in the solution space. This is the approach adopted in TS. A graphical illustra­

tion of this basic idea is shown in Fig. 11.1. Note that in combinatorial problems the solution space

consists of a large but finite set of discrete points in n-dimensional space and is not continuous as

suggested by Fig. 11.1.

S teep est-d escen t

Figure 11.1. A graphical illustration o f the Tabu Search meta-heuristic.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clearly, some restrictions need to be imposed on accepting uphill moves, otherwise the proce­

dure may search the entire solution space. In TS, data structures are used to control the search

process and the acceptance of uphill moves. These structures maintain a history of the states

encountered during the search and are used to determine the solutions that may be reached by a

move from the current solution. Using these structures, TS attempts to imitate an “intelligent”

search process [G1L97]. This differs from similar search procedures such as Monte Carlo search

and Simulated Annealing, which use a random process to select a neighboring solution and as a

means of leaving local optima [Ree93].

The basic TS procedure is quite straight forward. The important aspects of the method are the

way in which the history is kept, defined and updated and how the evaluation function is deter­

mined. In its simplest form, memory is used to record key attributes of prior moves to prevent the

search from revisiting previous solutions (i.e., cycling). The main mechanism for preventing

cycling is to restrict the neighbourhood of the current solution by forbidding (or penalizing) certain

tabu moves. Once a move is marked as tabu, it usually remains in that state for a specified number

of subsequent moves. This exclusion period is called the tabu tenure of a move.

Let X; be the solution at the current iteration i, xf be the best solution found so far, and Ti be

the set of tabu moves at iteration t. A basic version of TS may be expressed by the pseudo-code in

Fig. 11.2.

*
Step 1: / = 0 ; initialize x0; x0 = x0 ; T0 = 0 .

Step 2: Construct a list of candidate moves from the neighbourhood of x(-. Evaluate each can­
didate move.

Step 3: Select the highest ranked move that doesn’t belong to Tt , or is admissible by aspira­
tion. Perform the move and update x(.

* *
Step 4: If x t is better than x , , update x i .

Step 5: If the stopping criteria are satisfied, terminate with x*. Otherwise, i = / + 1; update

Tt ; go to Step 2.

Figure 11.2. Basic version of Tabu Search meta-heuristic (adapted from [GIL97]).

A common extension o f the basic TS procedure is to allow a move that is marked as tabu if it

leads to a highly desirable solution. Such a move is said to be admissible by aspiration. Another

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enhancement is to add a diversification procedure that restarts the search in a previously unex­

plored region of the solution space whenever the rate of improvement drops sufficiently or a pevi-

ous solution is revisited. Several other advanced strategies have been proposed for enhancing this

basic form of TS [G1L97], [Bat96], [Ree93]. TS has been applied to a variety of combinatorial

optimization problems with considerable success. It is this success that motivated us to develop

and test a TS design method for the multi-ring network design problem.

The remainder of this chapter is organized as follows. In Sections 11.2 and 11.3 we describe

the basic neighbourhood and memory structures used in the TS procedure developed here for the

multi-ring network design problem. This is followed by a description of the overall search proce­

dure in Section 11.4 and the search diversification strategy in Section 11.5. In Section 11.6, we

describe the study method used to evaluate the effect of TS parameters on the solution value. The

experimental results are given in Section 11.7 followed by some concluding remarks in Section

11.8 .

11.2. Neighbourhood Structure
For the purposes of the search procedure, we define a solution as a set of rings only and ignore

the routing pattern. This is similar to, and finds some justification as part of a practical design strat­

egy, from the concept of implicit routing in the widely used MENTOR algorithm for private-line

network design [KKG91]. For a given solution to be feasible, it must be able to serve all demands.

The rings in the solution are selected from a set of candidate rings, which are generated using the

procedure described in Chapter 8. The moves that define the local neighbourhood of a solution are:

(1) constructive move: copy a ring from the set of candidate rings and add it to the solution.

This increases the number of rings in the solution by one.

(2) destructive move: remove a ring from the current solution. This decreases the number of

rings in the solution by one.

Note that this definition of the local neighbourhood may include solutions that are not feasible.

That is, it may not be possible to serve all of the demand if a ring is dropped from the solution. All

feasible solutions in the solution space, however, can be reached by a sequence of constructive and

destructive moves.

113 M emory Structures
Tabu memory structures play an important role in the process that guides the local search proc­

ess. Two types of memory are used here to control the search process: short-term and long-term.

Short-term memory is used to prevent the search from being trapped in a local optimum, while

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

long-term memory is used to diversify the search process.

The short-term memory imposes restrictions to discourage the reversal of recently made

moves. For example, if ring candidate r l is added to the current solution, we discourage it from

being dropped from the solution for a specified number of iterations, called the tabu drop tenure.

Similarly, if a ring r2 is dropped from the solution, we discourage it from being added back to the

solution for the tabu add tenure. These restrictions are imposed by penalizing the evaluation metric

of moves that are in the tabu state. This simply discourages the search procedure from making tabu

moves rather than rejecting them outright, which could prevent a feasible solution from being con­

structed for example. For constructive moves, we use the transport efficiency of the network

design as a whole (i.e., the total demand served divided by the total cost) as the evaluation metric.

We refer to this as the global transport efficiency. The global transport efficiency is chosen for the

constructive moves because it is easily calculated and gives a better indication of the total contribu­

tion that a candidate ring makes to a design than the individual transport efficiency. In contrast, we

use the individual ring’s transport efficiency as the evaluation metric for destructive moves

because the demand packing algorithm would need to be called to properly calculate the global

transport efficiency. The candidate ring that provides the highest global transport efficiency is

selected for constructive moves and the ring with the lowest transport efficiency is selected for

destructive moves at each iteration.

In the current algorithm, separate tabu tenure parameters are provided for both types of move.

In general, the tabu tenure of destructive (drop) moves is set to a smaller value than the tabu tenure

for constructive (add) moves. This is because the set of candidate rings is usually much larger than

the number of rings in the solution. Therefore, using a single tabu tenure would be more restrictive

for drop moves than add moves. In addition we know from problem understanding that the desired

lower design cost usually lies in the direction of fewer rings in total, not towards a net addition of

rings from the starting design. The longer the tabu tenure, the less likely the search will revisit a

previous solution. Conversely, the shorter the tabu tenure the more likely it is that the search will

converge on the local optimum quickly. Therefore, a proper balance is required to achieve the best

performance.

We implement the short-term memory by storing the iteration number at which the add and

drop moves for each ring candidate are no longer tabu. Let tabu_add(r) and tabu_drop(r) be the

iteration number at which the tabu status for add and drop moves, respectively, expires for candi­

date ring r. Let i be the current iteration number and let add_tenure and dropjtenure be the param­

eters for the add and drop moves, respectively. Initially, the tabu_add(r) and tabu_drop{r) values

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are set to zero for all candidate rings. Each time an add move r is made we update the tabu_drop(r)

variable as follows:

tabu_drop(r) = i + drop_tenure (11.1)

Similarly, each time an drop move r is made we update the tabu_add(r) variable as follows:
tabu_add(r) = i + add_tenure (11.2)

Therefore, a move that involves dropping candidate ring r from the solution is tabu if and only

if i < tabu_drop(r). Similarly, a move that involves adding candidate ring r is tabu if and only if

i < tabu__add(r). Rather than rejecting tabu moves outright, we use a penalty structure to discour­

age tabu moves from being made. Add moves that are in the tabu state are penalized by dividing

their evaluation metric by a user-defined penalty factor, whereas drop moves are penalized by mul­

tiplying their evaluation metric by a penalty factor. Separate penalty factors are provided for both

types of move. Penalties are used in favour of outright rejection because there can be situations in

which there is no other alternative but to make a tabu move. This can occur, for example, when all

of the drop moves are in the tabu state (e.g., when the number of rings is less than the drop tenure).

It can also occur during an add move when only one candidate ring is able to serve a selected set of

demands (e.g., for topological reasons). The penalty on tabu moves is also temporarily lifted if the

move leads to a new best solution. That is, the evaluation metric of either move is not divided or

multiplied by a penalty factor when a new best solution is found. This is called an aspiration crite­

ria.

In addition to short-term memory, we also use long-term memory to implement a search diver­

sification strategy that encourages the search to explore unvisited regions of the solution space.

This is done by generating a new starting solution based on information contained in all previous

solutions. In doing so, it is desirable to choose a set of rings for the new solution that is signifi­

cantly different from those found in all previous solutions. This is to avoid being trapped in the

same attraction basin as the previous solutions.

In general, there are several factors that can be used to guide the selection of a new ring set

(i.e., solution). Two of these are the frequency with which a candidate ring has appeared in all pre­

vious solutions and its relative influence on those solutions. Here, we use the cumulative demand

served by each candidate ring by each candidate ring as a combined measure of both its frequency

and influence. That is, whenever a new solution is found we accumulate the amount of demand

served by each candidate ring in long-term memory.

Candidate rings that exhibit a relatively high degree of influence and appear frequently in the

previous solutions are likely candidates that should be eliminated from the new starting solution.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Candidate rings that have a relatively low degree of influence, but appear frequently in previous
solutions, are usually good “crack-fillers.”

11.4 Search Procedure
A flow chart of the overall TS procedure is shown in Figure 11.3. This procedure is based on

an advanced TS strategy known as Strategic Oscillation [G1L97]. The basic idea behind this proce­

dure is to alternate between the feasible and infeasible regions of the solution space by making ele­

mentary add and drop moves.

Start

Yes
demand
served?

No

Yes
Abort?

No

Restart?

No

Yes
demand
served?

No

No
Yes

demand
served?

Save solution

Save solution

Save solution

Drop ring

Add ring

Figure 11.3. Flow chart of basic Tabu Search meta-heuristic.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The procedure is broken down into four main phases: initialization, a destructive phase, a con­

structive phase and search diversification. In the first phase o f the procedure, an initial solution is

constructed using the RingBuilder algorithm described in Chapter 8. Note that the initial design

can be generated using any ring design method but for simplicity the RingBuilder algorithm was

used here. If the RingBuilder algorithm is not used to create the initial solution, a set of candidate

rings is generated using the same procedure as described in Chapter 8 . Otherwise, the set of candi­

date rings generated by the RingBuilder algorithm is reused. Each candidate ring is specified by its

type, capacity and topological layout. This set of candidates is the available pool of building blocks

from which new solutions are constructed. If the initial solution serves all demand, it is saved as

the current best solution and a hash code for the solution is computed and saved in a list. This list is

used to detect when a previous solution has been revisited. A hash code is used here rather than a

complete specification of the solution to conserve memory. The hash code is generated by taking

the sum of the hash codes of each ring in the solution. The hash code for each ring is derived from

Object.hashCode() method in the Java programming language.

Next, the procedure enters the Destructive Phase. In this phase, the transport efficiency of the

rings in the current solution is calculated and the ring with the lowest utilization (after applying

any tabu penalties) is dropped from the current solution. The demands formerly served by this ring

are then packed (to the extent possible) into the slack in the remaining rings. A modified version of

the Demand Packing algorithm described in Chapter 8 is used here to pack unserved demands. The

main difference is that the version used here removes all routes served by the deleted ring before

beginning the packing process. This is possible because it is not necessary in the current algorithm

to reconstruct any routes. Therefore, removing the routes prior to packing increases the likelihood

of successfully packing all demands. If all the demand are packed, the cost of the current (feasible)

solution is calculated. If the cost o f the current solution is lower than the previous best solution, the

previous best solution is replaced with the current solution. This process continues until the frac­

tion of demand served from end-to-end drops below a specified threshold, called the drop depth.

At this point, the search procedure enters the Constructive Phase. At each iteration in this

phase, the candidate rings are evaluated by temporarily adding them to the solution, calling the

demand packing algorithm and calculating the overall transport efficiency based on the total

demand served and the total ring cost. If the move is in the tabu state, the transport efficiency is

divided by a penalty factor. The candidate ring that yields the highest overall efficiency is then

selected and added to the solution. This process continues until a feasible solution is found (i.e., all

of the demand is served). At this point, the cost of the current solution is calculated and the best

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solution is updated if required. It is worth noting here that while the solution is in the infeasible

region the measure of transport efficiency applies, but any time the solution enters feasible region

it is the true design cost that is used to measure solution quality.

The procedure then returns to the Destructive Phase and the entire process continues until

either the search diversification or stopping conditions are met. Search diversification is initiated

when either a previous solution has been revisited or the rate of improvement in the solution cost

drops below a preferred level. Two ways are used to measure the rate of improvement: relative gap

and absolute gap. The relative gap is the relative change in the best solution cost over a given

number of prior iterations, known as the restart window. The absolute gap is the absolute change

in the best solution cost over some number o f prior iterations. For example, if the best solution cost

at the beginning and end of the restarting window were 100 and 95, respectively, the relative gap

would be (100 — 95)/100 = 0.05 and the absolute gap would be 100 — 95 = 5. The search

diversification strategy is described in detail in the next section. The stopping conditions include

limits on the number of drop/add iterations, memory usage, runtime and the relative or absolute

rate of improvement in the best solution cost.

11.5 Search Diversification Strategy
Whenever the diversification conditions are met, the RingBuilder heuristic is used to generate

a new starting solution. However, the candidate ring evaluation process is biased during the syn­

thesis process to penalize candidate rings according to their influence on all previous solutions.

The biased transport efficiency r\j for ringy is given by the following expression

f n n - I

Vj = TV • 1 + P - v / X v i
 ̂ i = l '

(11.3)

where r|y is the transport efficiency of candidate ring j, p is a constant restart penalty factor, vy- is

the cumulative (distance-weighted) demand served by candidate ring y in all prior solutions and n

is the number of candidates rings. The term V y /^"= v,- is the fraction of demand served by candi­

date ringy in all previous solutions. This provides a relative measure of a candidate ring’s influence

on past events. In general, the candidate rings with the highest influence will have occurred more

frequently in past solutions and served a large portion of the total demand within those solutions.

In some cases, they may have been part of the initial starting solution and were never dropped in

subsequent solutions. Such candidate rings are best avoided when generating a new starting solu­

tion to help ensure that the search procedure restarts in an unexplored region of the solution space.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Otherwise, the search may converge to the same solutions as seen previously. The biased transport

efficiency in Eq. (11.3) achieves the desired behaviour by reducing the transport efficiency of can­

didate rings by their relative influence on previous solutions.

11.6 Comparative Study Method
To assess the performance of TS we generate network designs for all twelve test cases in

Chapter 7. The initial starting solution for each test case is obtained from the RingBuilder heuristic

with balanced ring loading and no demand packing. For each test case, the number of iterations is

limited to 100 and the runtime is limited to one hour. The default tabu parameters listed (in bold­

face) in Table 11.1 are used in all test cases. The absolute restart gap and the relative and absolute

stop gap are set to infinity.

To evaluate the effect of various parameter settings on the total design cost, we generated a

series of network designs for test network Net20. Here, the initial starting solution for each test

case is obtained from the RingBuilder heuristic with unbalanced ring loading and no demand pack­

ing. In all cases, we limited ourselves to single technology designs consisting of 4 fibre, OC-48

BLSR (4B48) rings. In total, 55 network designs are generated for a variety of parameter setting. A

list of the parameters and the range over which they are tested is shown in Table 11.1.

Table 11.1: Test Parameters Settings (default values in boldface)

Parameter Test Values

Add Tenure 2,3,4, 6, 8, 10

Drop Tenure 2,3 ,4 ,6, 8, 10

Add Penalty 2,4,8,16

Drop Penalty 2, 4,8,16

Drop Depth 0.6,0.8,0.7,0.9,1.0

Restart Window 5,10,15, 20, 25

Restart Gap 0.05

Restart Penalty 2,5.10,15, 25

ADM Discount Factor 0.0, 0.05,0.1,0.15, 0.2

To limit the number of test cases, each parameter is tested over the specified range while hold­

ing the other parameters at their default values (in boldface). The only exceptions to this rule are

the add and drop tenures. Here, all combinations of the specified Add and Drop Tenures are evalu­

ated. This constitutes the majority of the test cases. In each case, the number of iterations is limited

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to 100 and the runtime is limited :o one hour. The Absolute Restart Gap and the Stop Gap and

Absolute Stop Gap were set to infinity.

11.7 Results
A summary of the results is provided in Fig. 11.4. Detailed statistics for each design generated

with the TS meta-heuristic are provided in Table 11.3 at the end of this chapter.

□ Initial

4B12 4B48 4B12,4B48

(a) Netl5

1000

8 600 -

9)
2 4003 o

□ Initial
. . . □ Best

-■ ■
;;\:X

f t
• - -

\

• V"
- ' -

'-v'.

xv; :&*■

' :.-v ^ ,

4B48 4B192 4B48,
4B192

160

140

120

flOO

t 80
CD

T3
15 60 §

40

20

0

1600

1200 -

15
8
• I 800

3o
400 -

4B48

□ Initial
□Best

. . .

1

Hi

\ . S "

i t

. .

l i t - -

XV.-'N -

- - H

4B12 4B48 4B12,4B48

(b) Net20

□ Initial
X-V * □ Best

.

x x ; .

H
-

- •

1
/ x ' . \

. - - - -

sis
V i -

4B192 4B48,
4B192

(c) Net32 (d) Net43

Figure 11.4. Results for Tabu Search meta-heuristic.

The results show that the TS meta-heuristic generates designs that are up to 20% lower than

the initial starting solution. On average, the TS meta-heuristic provides a 8.1% reduction in total

design cost relative to the initial starting solution. Average runtime per iteration, however,

increases dramatically for the larger problems, i.e. those involving Net43. For example, the aver-

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

age runtime per iteration (i.e., solution) for test case 1 (Netl5, 4B12) is 24.1 seconds, whereas the

average runtime per solution for test case 9 (Net43, 4B192) is 393 seconds. As a result, test case 9

only generates 39 solutions within the one hour time limit. Nonetheless, the TS meta-heuristic is

still significantly faster than the dithered sequencing approach, for example, which requires over

6,500 seconds to generate each solution.

A typical example of the progress of the TS algorithm for test case 5 (Net20, 4B48) is shown

in Figure 11.5. This figure plots the total design cost of the current and best solution as a function

of the iteration number. This plot demonstrates the ability of the TS meta-heuristic to escape local

minima in the solution space. For example, in Fig. 11.5 the search proceeds through several local

minima and is restarted twice before finding its best solution at iteration 41. In total, the search is

restarted seven times in one hundred iterations, once because a previous solution is revisited and

the remaining times because the restart gap is exceeded. Each time the search is restarted (i.e., a

new starting solution is generated), the total design cost returns to roughly the same level as the ini­

tial starting solution. This is not surprising because the RingBuilder algorithm is used to create

both the initial and the new starting solutions. At each subsequent iteration, the cost decreases

gradually at first as small, lightly loaded rings are removed from the solution and then more

abruptly as larger, more influential rings are removed. Eventually, the demand served drops below

the drop depth threshold and a ring is added to the solution to restore feasibility, causing the total

design cost to rise. In this test case, the search procedure alternates between the destructive (drop)

and constructive (add) phases a few times before the restarting gap is reached.

140

120
100

80

60
— Current Solution
 Best Solution

A Gap Exceeded
* Prev. Solution

40

20

100800 20 40 60
iteration

Figure 11.5. Example of TS search trajectory.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The network designs for the initial starting solution and the TS solution for test case 5 (Net20,

4B48) are shown in Figs. 11.6 and 11.7, respectively. In these figures ADMs are represented by

small squares overlaid on each ring. The initial starting solution, generated by the RingBuilder

algorithm, contains a total of four rings with a total fibre mileage of 1,066 km. The rings are num­

bered in the order that they were selected. There are a total of 29 ADMs, 11 glassthroughs and 35

inter-ring transitions in the initial design. Therefore, on average each ring is 10 hops in length and

contains 7.25 ADMs and 2.75 glassthroughs. Note that the rings that are selected last generally

have fewer hops than those selected in earlier iterations. This is because there are fewer fragments

of demand to be served as the design progresses and these fiagments are usually best served by

rings with the least number of hops.

In contrast, the Tabu Search design (evolved from this starting point) contains three rings with

a total fibre mileage of 794 km (26% lower than the initial design). The TS design has a total of 28

ADMs, 2 glassthroughs and 39 inter-ring transitions. The rings in this case also have an average

length of 10 hops but there are significantly fewer glassthroughs. As a result, there are a greater

number of ADMs per ring on average. Although there are fewer rings in the TS design, only four

more inter-ring transitions are required.

Figure 11.6. Initial starting solution for Net20.

Figure 11.7. Tabu Search solution for Net20.

A breakdown of the working load and capacity on each span of these designs is shown in Fig.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11.8. For the initial design, the sum of the working load on all spans is 1,147 DS3-hops and the

total capacity placed is 1,920 DS3-hops. This gives an average ring utilization (or fill) of 60%.

Because the total demand for Net20 is 348 DS3s, the average number of hops per demand is

1147/348 = 3.3 . For the Tabu Search solution, the sum of the working load on all spans is 1,065

DS3-hops and the total capacity placed is 1,440 DS3-hops. Although the average number of hops

per demand is only slightly less than in the initial design, the total capacity is a full 25% lower.

This results in an average ring fill of roughly 75%.

Figure 11.8 also shows that the initial solution results in three spontaneous span eliminations,

while the TS solution has five span eliminations. That is, five spans in the TS solution carry no

demands and are not covered by a ring.

8 I 35/48

39/48
48/48

■40/96-
12/4854/96

33/48.

-34/48-

48/48 35/48

-47/48--41/48-

16/48 42/96

40/48

48/4846/96 44/48

48/48
41/48 •41/48.

■0/ 0—

0/0 0/041/48 42/48

-41/48--46/48-

-59/96-
25/4855/96 0/0

13/48.

-50/96 ^ ^ 11/4

61/96 <

 38/48---- —) • -

45/48 35/48

40/96
61/144

85/96

48/4886/96 45/96

48/48
43/48 -43/48

-3/48-

0/043/48 38/48 3/48

-44/48- -39/48-

(a) ' (b)

Figure 11.8. Span utilization (working load/capacity) in DS3s for Net20 (a) initial solution
and (b) Tabu Search solution.

Based on the working load for the initial design, the lower bound on the required capacity is

1,680 DS3-hops, while the actual capacity is 1,920 DS3-hops. In fact at least 5 ring modules in the

initial design are completely empty. In contrast, the lower bound on the required capacity for the

TS design is 1,344 DS3-hops, seven ring modules fewer than the initial design. Furthermore, the

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actual capacity in the TS design is only 96 DS3-hops (or 2 ring modules) greater than the lower
bound.

A histogram of the slack capacity on each span in both designs is also shown in Fig. 11.9. The

slack (or unused) capacity is equal to the aggregate capacity on a span less its working load. The

histogram in Fig. 11.9 shows that roughly 30% percent of the spans in the initial design have a

slack capacity that equals or exceeds one ring module (i.e., 48 DS3s). This represents a significant

waste of transmission capacity. In contrast, roughly 80% percent of the spans in the TS solution

have a slack capacity of less than 20 DS3s. A detailed examination of the results shows that the ini­

tial solution has a total slack of 773 DS3s, while the the TS solution has a total slack of 375 DS3s

(less than half the initial solution).

10
9
8
7
6
5
4
3
2
1

0

□ Initial
U T abu Search

480 8 16 24 32 40 56 64

slack (DS3s)

Figure 11.9. Histogram o f the slack capacity for Net20.

The results for different Add and Drop Tenure parameter settings are listed in Table 11.2.

These results show that, with the exception of one test case, the total design cost is completely

insensitive to changes in the Add Tenure. An examination of the detailed log for each TS run

reveals that the solution quickly converges to a design containing only three rings. In this situation,

an Add Tenure of three or more has the same effect on the search trajectory because the drop

moves for all of the rings in the solution will be tabu, having just been added to the solution.

Although there are minor variations in some of the search trajectories, the same best solution is

found for almost all values of Add Tenure.

In contrast, changes in the Drop Tenure does have an effect on the total design cost. The lowest

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost designs are consistently achieved with a Drop Tenure of only two iterations. This suggests that

the simple search procedure developed here is relatively immune to cycling. One explanation for

this observation is as follows. When a ring is dropped from the solution and another ring(s) is

added in its place, the transport efficiency of the dropped ring will remain relatively low until the

ring(s) that displaced it are removed from the solution. This is because most, if not all, of the

demand served by the dropped ring is already served by the new ring(s). Thus, there is a natural

tendency for rings that are dropped from being added back to the solution. In this situation, a

shorter Drop Tenure can be helpful because it allows the search to converge more quickly on a

local optimum.

Table 11.2: Total Design Cost for Several Add and Drop Tenures

Drop Tenure

Add Tenure

2 3 4 6 8 10

2 83.43 83.43 83.43 83.43 83.43 83.43

3 93.28 93.28 93.28 93.28 93.28 9338

4 92.86 92.86 92.86 92.86 92.86 92.86

6 93.29 93.28 93.28 93.28 93.28 9338

8 9137 91.37 91.37 9137 91.37 9137

10 84.93 91.01 91.01 91.01 91.01 91.01

The results also show that changes in the penalty factor for add and drop moves had virtually

no effect on the search trajectory for the range of values tested. The effect of the drop depth param­

eter on the search is shown in Fig. 11.10(a). This figure shows that the lowest cost designs are

obtained with a drop depth in the range from 0.8 to 0.9. One explanation for this behaviour is that a

lower drop depth makes more demand available for packing into the next candidate ring that is

added during the Constructive Phase. This improves the likelihood that the next candidate ring will

be filled to capacity. If the drop depth is too low, however, more than one candidate ring may be

required and the combined efficiency of both rings may suffer. With even lower drop depths, the

search may not converge to a local minima because the solution may change too dramatically from

one iteration to the next. In other words, there would be no opportunity for fine tuning the design.

An interesting strategy would be to vary the drop depth during the search to alternate between peri­

ods of intensification and diversification. Figure 10.11(b) shows the best solution cost over a range

of different restart window sizes. These results show that a restart window of 15 iterations provides

the best solutions for the current problem.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

to 9 2 ^
8
§, 8 8 -
10 ID■o
to
O 80 -

84 -

76
5 10 2015 25

94

c.gi01ID■o
92 -

0.70.6 0.8 0.9 1

drop depth restart w indow

(a) (b)

Figure 11.10. Plot of total design cost vs. (a) drop depth and (b) restart window.

The effect of the restart penalty on the best solution cost is also shown in Fig. 11.11(a). Based

on this data, there does not appear to be a strong relationship between the restart penalty and the

best solution cost. The best solution cost is also shown as a function of the ADM discount factor

(for demand packing) in Fig. 11.11(b).

96

0 3a 88

84

80
2 5 10 15 20

96

o>
88

84

80
0.050 0.15 0.2

restart penalty ADM discount factor

(a) (b)

Figure 11.11. Plot of total design cost vs. (a) restart penalty and (b) ADM discount factor.

This figure indicates that the best solution is found when the ADM discount factor is set to

zero. This finding is contrary to the demand packing results presented in Chapter 8. One possible

explanation for this difference is that higher ADM discount factors generally reduce capacity effi­

ciency, making it more difficult to serve all demands during the destructive phase. As a result,

fewer rings may be dropped from the solution than would have otherwise been possible.

Although the above results give some indication of the best parameter settings for the present

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem, finding the empirically best parameter settings over a wide range of problem instances is

one of the aspects that deserves more study (as is normally the case with any meta-heuristic).

11.8 Summary
In this chapter, we developed a simple TS procedure for the multi-ring network design prob­

lem. Despite the relative simplicity o f this procedure, the it performs extremely well in the test

cases considered here. In the next chapter, we compare the performance of all tests methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

Table 11.3: Detailed Computational Results for Tabu Search Meta-Heuristic

Test
Case

Net­
work Tech.

Restart Events

Iterations
Runtime

(sec.)
Initial

Solution
Best

Solution
Gap

Exceeded
Previous
Solution

1 Netl5 4B12 8 0 100 2,471 7138 57.02

2 u 4B48 7 2 100 2,231 58.89 54.41

3 H 4B12, 4B48 7 1 93 7316 55.48 49.31

4 Net20 4B12 9 0 100 2384 117.20 108.77

5 *4 4B48 9 0 100 2.451 86.43 81.67

6 i t 4B12, 4B48 6 0 71 7,543 84.43 81.71

7 Net32 4B48 5 6 100 312 786.88 745.42

8 “ 4B192 6 4 100 369 655.88 593.92

9 i t 4B48. 4B192 8 0 100 595 617.90 525.14

10 Net43 4B48 1 0 39 15.340 1,323.6 1,240.0

11 i t 4B192 0 0 10 7,922 907.15 890.71

12 i t 4B48, 4B192 0 0 9 9376 877.71 835.99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 11.4: Design Statistics for Tabu Search Meta-Heuristic

Test
Case

Net­
work

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill
<%)

Inter­
ring

Transit.

Avg,
Hops/
Route

Spans
Elim.

Total
Working

(DS3-hops)

Tout
Capacity

(DS3-hops)
Tout
Cost

Runtime
(sec.)4BI2 4B48 4BI92 4BI2 4B48 4B192

1 NetlS 5 - - 41 - - 4 803.3 81.3 13 2.18 5 449 552 57.02 2,471

2 t i - 2 - - 21 - 0 401.2 59.5 I 3.74 9 771 1,296 54.41 2,231

3 - 2 1 - 14 10 - 1 342.3 82.0 31 2.63 6 541 660 49.31 7,316

4 Net20 10 - - 71 - - 22 2,374.4 79.9 41 2.56 0 892 1,116 108.77 2,284

5 3 - - 28 - 2 794.0 74.0 39 3.06 5 1,065 1,440 81.67 2,451

6 “ 0 3 - 0 27 - 9 1,022.0 69.1 34 3.43 5 1,194 1,728 81.71 7,543

7 Net32 - 7 - - 53 - 321 108,204 58.1 165 5.99 3 2,120 3,648 745.42 312

8 14
- - 6 - - 35 212 74,724 19.8 202 6.03 5 2,133 10,752 593.92 369

9 “ - 2 3 - 14 21 202 67,788 36.2 161 6.49 7 2,296 6,336 525.14 595

10 Net43 - 27 - - 201 - 207 91,176 82.2 2,148 3.75 1 9,471 11,520 1,240.0 15,340

II 44 - - 11 - - 89 71 35,912 56.4 2.147 4.21 19 10,620 18,816 890.71 7,922

12 “ - 2 9 - 7 71 74 37,668 64.1 2,086 4.40 17 11,111 17,328 835.99 9,576

12 Comparative Discussion and Interpretation

12.1 Introduction
This chapter compares the performance of the design methods presented in the preceding

chapters. We begin by comparing the relative performance of the design methods in terms of solu­

tion quality and runtime. The correlation between several design attributes and total design cost is

also calculated to draw insights into the most dominant factors affecting solution quality. In Sec­

tion 12.3 we consider the absolute performance of the methods by comparing the empirical results

with lower bounds established using the procedure described in Chapter 7. We also derive point

estimates and confidence intervals for the optimal solution values using the statistical techniques

described in Chapter 7.

12.2 Solution Quality
The relative performance of the design methods is summarized in Figure 12.1. For each design

method, this figure shows the minimum, maximum and mean “gap” between the current and best

solutions over all test cases. The “gap” is the percentage difference in the total design cost between

the current solution (i.e., the solution obtained by the indicated design method) and the best solu­

tion found by any of the methods. The total design cost for each test case and design method are

also listed in Table 12.2 at the end of this chapter.

70%

60%

50%

S- 40%CDo>
30%

20%

10%

0%
Tabu Dith. Bal. Bal. Unbal. SOP FCFUP FOP Unbal.

Seq. Rack. Pack.

Figure 12.1. Relative performance of design methods (% gap) relative to the
best solution for all test cases.

These results show that the Tabu Search (TS) meta-heuristic consistently produces network

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designs that are the best solutions, or are within a few percent of the best found solutions. The

detailed results in Table 12.2 also show that the TS meta-heuristic generates the best solution in 8

out of the 12 test cases. In the remaining test cases, the total design costs of the TS solutions are

within 3% o f the best solution. The next most successful method, in terms of total design cost, is

Dithered Sequencing (DS). On average, DS generates solutions that are within about 5% of the

min-cost solution. However, the runtime for DS is significantly longer than some of the other

methods.

Although the FCRIP formulation produces the best solution in two of the smaller test cases,

performance deteriorates quickly as the problem size increases (due entirely in practice to run-time

limits that curtail its ability to approach the optimum). This explains the large range in the gap val­

ues shown in Fig. 12.1. The poorest designs were produced by the baseline RingBuilder algorithm

with greedy (unbalanced) ring loading, which produces designs that are about 30% more costly, on

average, than the best solutions. In a few cases, the cost of the designs produced by the baseline

RingBuilder algorithm are up to 60% higher than the best solutions. The performance of the Ring­

Builder algorithm improves dramatically, however, when the demand packing improvement heu­

ristic is used.

12.3 Runtimes
The total runtimes for each design method and test case are listed in Table 12.3 at the end of

this chapter. Note that the runtime results for the mathematical programming approaches are not

directly comparable with those from the heuristic methods because they solve a simplified version

of the problem. Nonetheless, the results show that the runtimes for the heuristic methods scale best

with larger problem sizes. Here, the “problem size” is taken as the product of the number of

demand pairs and the number of candidate rings under consideration. This is based on an intuitive

appreciation that the product of the number o f demand pairs and candidate rings underlies the basic

complexity of the problem. Figure 12.2 shows a log-log plot of the runtimes for the baseline Ring­

Builder algorithm (i.e., unbalanced ring loading without demand packing or dithered sequencing)

and the Tabu Search meta-heuristic. A (linear) regression line is also fitted to the data from each

method and plotted in Fig. 12.2. From this plot, the relationship between the problem size, n, and

the runtimes, f(n), can be estimated by the following expression

/(n) = k • nm (1)

where m is equal to the slope of the regression line and A is a constant. Note that a slope m — 1

indicates a linear relationship between runtimes and problem size. The slope of the regression line

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the baseline RingBuilder algorithm is 0.77, which suggests that its runtime is roughly a linear

function of the problem size. Similar results are observed for the RingBuilder algorithm with bal­

anced ring loading and the Dithered Sequencing approach. The regression line for the Tabu Search

meta-heuristic also indicates that its runtime increases linearly with problem size. The runtimes for

the TS meta-heuristic are normalized to 100 iterations because the number of iterations performed

within the two hour time limit on execution is not the same for all test cases. Note that these run­

times also include the time required to generate the initial starting solution.

1 .000,000

100,000

10,000

1 .000

cs 100

X Tabu Search
+• Baseline

10

10 100 1,000 10,000

no. of d em an d pairs xno. ring cand ida tes (x 103)

Figure 12.2. Plot of runtime vs. problem size for baseline RingBuilder heuristic
and Tabu Search meta-heuristic.

In contrast, the runtimes for the SCIP formulation increases exponentially with problem size,

as shown in Figure 12.3. This is expected because the branch-and-bound technique used by the

CPLEX MIP solver can continue long after the best solution has been found [CPL98].

10000

1000 -

100 -oa>to
10 -«

e
c5

0.01
10,000100 1,000

n o .o f dem an d pairs xno.ring candidates (x 1 0 3)

Figure 12.3. Plot of runtime vs. problem size for SCIP formulation.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the worst case, the CPLEX MIP Solver may perform an exhaustive search of the branch-

and-bound tree. Even if all the decision variables are binary, the branch-and-bound tree may be as

large as 2n, where n is the number of variables.

Similar plots for the FCRIP formulation are not shown because the runtime limit was exceeded

in all test cases before a provably optimal solution could be found. Likewise, plots for the FDIP are

not shown because the size (i.e., number of variables) of the problems is almost the same in all test

cases. Although the FDIP formulation generally offers the lowest runtimes, these figures do not

include the time required to populate the candidate ring set, which can be significant

12.4 Significance of Design Attributes
For insights into the relative importance of various design attributes on solution quality, we

calculated the correlation coefficient between these attributes and the total design cost. These

results are listed in Table 12.4. The star plot in Figure 12.2 summarizes the results for two test

cases: test case 5 (net20,4B48) and test case 7 (net32,4B48).

Rings

Fill ADMs0.5 -

Net20,4B48
Net32,4B48

Spans Bim ^ Fibre

Transitions

Figure 12.4. Star plot of the correlation squared between several design
attributes and total design cost for test cases 5 and 7.

This figure shows the correlation squared between the total design cost and the number of

rings, number of ADMs, total fibre mileage, number of transitions, number of eliminated spans and

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the average network fill. For test case 5 (Net20, 4B48), this plot shows that the total design cost is

closely correlated with the number of rings, the average network fill and the number of ADMs.

The total fibre mileage, on the other hands, plays a less influential role in determining the total

design cost. This is to be expected because the distances in Net20 are relatively short and, there­

fore, the distance dependent costs account for a relatively small fraction (< 10%) of the total design

cost In contrast the total fibre mileage is strongly correlated with the total design cost in test case

7 (Net32,4B48). This is because the span distances in Net32 are much longer and, therefore, the

distance-dependent costs make up the majority (> 75%) of the total design cost. These results are

representative of the other test cases. One implication of these results is that for long-haul net­

works, design methods that focus primarily on minimizing the total fibre mileage are likely to pro­

duce superior results. Whereas, in metropolitan area networks, the design methods must take a

more balanced approach. Of course, these generalizations are sensitive to changes in the cost

model.

12.5 Lower Bounds
Lower bounds on the number of ADMs, ring modules, regenerators, fibre mileage and total

design cost are listed in Tables 12.5. These results are based on the lower bounding procedure

using shortest-path routing. Also listed in Table 12.5 is the total design cost for the best solution

cost and the gap (in percent) between the lower bound and the best solution. These results show

that in most cases there is a large gap (about 35% on average) between the lower bound and the

best solution but the results vary greatly. In test cases 11 (Net43, 4B192) and 12 (Net43, 4B48 +

4B192), for example, the cost of the best solution is roughly 75% higher than the lower bound.

Whereas, in test case 7 (Net32,4B48) the cost o f the best solution is within 5% of the lower bound

based on shortest-path routing.

A detailed comparison of the results reveals that the lower bounding procedure consistently

under estimates the number of ADMs required in the design. One reason for this is that the proce­

dure does not account for the ADMs and ADM add/drop interfaces required for inter-ring transi­

tions. However, the procedure does provide a fairly tight lower bound on the total fibre mileage for

those design methods that do not reroute demands during the design synthesis process (i.e., the

basic algorithm without demand packing and the SCIP formulation). For example, in five out of

twelve designs generated using the SCIP formulation, the actual fibre mileage is the same as the

lower bound. In the remaining seven test cases, the actual fibre mileage is roughly 8% higher than

the lower bound.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An examination of the detailed results for the other design methods that allow demands to be

rerouted during the synthesis process shows that in some cases the total fibre mileage is actually

lower than the lower bound based on shortest path routing. For example, in test case 2 (Netl5,

4B48), the total fibre mileage is 23% lower than that from the lower bounding procedure.

These results prompted the reformulation of the lower bounding procedure to simultaneously

optimize the routing of demands, as described in Chapter 7. To obtain lower bounds using this for­

mulation, we generate three shortest paths for each demand pair and solve the resulting problem

instance using the CPLEX MIP Solver (CPL98). The lower bounds from this formulation are given

in Table 12.6. Note that results are not presented for Net43 because the set of shortest paths could

not be generated. This is because the algorithm used here for finding the shortest paths is not par­

ticularly efficient and could not find the set of paths within the available computer memory. These

results show that the total number of ring modules and fibre mileage can be significantly less with

routing optimization, as expected. For example, in test case 2 (NetlS, 4B48) the lower bound on

the total fibre mileage is 34% lower than the bound obtained with shortest path routing. The differ­

ence in the bound on total design cost, however, is less remarkable. On average, the bounds on

total design cost obtained with route optimization are roughly 7% lower than those obtained with

shortest path routing. In any case, these bounds provide a rough indication of the quality of the

solutions generated by the design methods. For example, Table 12.6 shows that the best solution

for test case 8 (Net32,4B192) lies within at least 15.6% of the optimal solution. The results in the

next section indicate that the best solutions are actually much closer to the optimal solutions than

the lower bounds suggest

12.6 Statistical Inference
Histograms of the total design cost for all solutions are shown in Figures 12.5 through 12.6.

These histograms include results for all design methods including intermediate solutions obtained

from the Tabu Search and Dithered Sequencing methods. In most cases, the sample size is greater

than 100. For test network Net43, the sample size was smaller because of the long runtimes

required for each solution. This explains the relative coarseness of the histograms for these test

cases. A Weibull probability density function is also plotted in these figures based on estimates of

the Weibull shape, scale and location parameters. The point and 95% confidence interval estimates

of the global optimum solution are presented in Table 12.1. These results are obtained using the

statistical inference techniques outlined in Chapter 7. Table 12.1 also lists the correlation squared

(R2) and the gap (in percent) between the upper and lower values of the interval estimate. The cor-

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relation squared measures of the goodness-of-fit between the empirical results and the fitted

Weibull distribution from which the estimates are obtained. These results suggest that the best

solutions from the design methods developed here are within about 12% of the globally optimal

solution. These estimates, however, are based on the assumption that the solutions obtained by the

various methods are independent. Although this assumption requires further testing, the estimates

provided here offer at least some indication of the absolute solution quality.

Table 12.1: Point and Interval Estimates of Global Optimal Solutions

Network Tech.
Point

Estimate R2
Interval
Estimate Gap (%)

NetlS 4B12 51.2 .961 [48.9,545] 115

“ 4B48 52.9 .951 [52.0,54.4] 4.6

“ 4B12,4B48 49.0 .972 [48.7,49.0] 0.6

Net20 4BI2 104.3 .959 [101.7, 105.8] 4.0

“ 4B48 78.2 .989 [76.4,81.7] 6.9

- 4B12.4B48 81.4 .976 [80.3,81.7] 1.7

Net32 4B48 657.6 .961 [6265.680.6] 8.6
M 4B192 561.4 .988 [5485,568.7] 3.7

“ 4B48.4BI92 511.0 .949 [491.1,525.1] 6.9

Net43 4B48 1.228 .937 [1218, 1240] 1.8
u 4B192 831-5 .908 [807.3,852.4] 5.6
u 4B48.4B192 829.6 .964 [816.7,836.0] 2.4

25%

54 58 62 66 70 74 78 82 86
total design cost

Figure 12.5. Histogram of total design cost for test case 1 (N e tl5 ,4 B 12).

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25%

Figure 12.6. Histogram of total design cost for test case 2 (Netl5, 4B48).

25%

48 52 56 60 64 68 72 76 80 84
total design cost

Figure 12.7. Histogram of total design cost for test case 3 (NetlS, 4B12 +
4B48).

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20%

total design cost

Figure 12.8. Histogram of total design cost for test case 4 (Net20,4B12).

8 0 8 5 90 95 100 105 110 115 120 125 130 135

total design cost

Figure 12.9. Histogram of total design cost for test case 5 (Net20,4B48).

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20%
18% --

16% -- -

14% - - -oc
§ 12% - -

1 ” 10% • - -

£ 8% - - -

6% - - -£
4% - - -

2% .

11 ^ '| B i
130

0%
9 0 10080 110 120 140 150 160

total design cost

Figure 12.10. Histogram of total design cost for test case 6 (Net20, 4B12 +
4B48).

680 7 4 0 800 860 920 980 1 ,040 1,100 1 ,160 1,220

total design cost

Figure 12.11. Histogram of total design cost for test case 7 (Net32,4B48).

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12%

5 6 0 6 2 0 6 8 0 740 8 0 0 8 6 0 9 2 0 980 1,040 1,100
total design cost

Figure 12.12. Histogram of total design cost for test case 8 (Net32,4B192).

16%

14% - -

12% • -

5 10% --

u
520 580 640 700 760 820

total design cost
880 940 1,000

Figure 12.13. Histogram of total design cost for test case 9 (Net32, 4B48 +
4B192).

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20%

18%
16%

>• 14%

§ 12%

S 10%
a>
> 8%
5
S 6%

4%

2%

0%
1.240 1,280 1,320 1,360 1,400 1,440 1,480 1,520 1,560 1,600 1,640

total design co st

Figure 12.14. Histogram of total design cost for test case 10 (Net43, 4B48).

30% y-

25% - -

840 880 920 960 1,000 1,040 1,080 1,120
total design cost

Figure 12.15. Histogram of total design cost for test case 11 (Net43,4B192).

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25%

20%

>»U
§ 15%

<D> 10%w
£

5%

0%
820 860 900 940 980 1,020 1,060 1,100

total design co st

Figure 12.16. Histogram of total design cost for test case 12 (Net43, 4B48 +
4B192).

12.7 Summary
In this chapter, we compared the performance of the design methods in terms of solution qual­

ity and runtime. The results show that, overall, the Tabu Search meta-heuristic provides the best

solutions in the majority of test cases. Furthermore, the results also indicate that the runtime of the

Tabu Search meta-heuristic increases linearly with the product of the number of demand pairs and

candidate rings. Using statistical inference it has also been shown that the best solutions found

using the design methods developed here lie within about 12% of the estimated optimal solution.

Although further work is required to validate the independence assumptions, these estimates pro­

vide at least some indication of the absolute solution quality of the methods developed here. To the

best of our knowledge, this is the first application of statistical inference techniques to the multi­

ring network design problem.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 12.2: Summary of Total Design Cost Results

Network Tech. Unbal. Bal.
Basic

Packing
Bal.

Packing
Dith.
Seq. SCIP FCRIP FDIP Ihbu

NetlS 4BI2 68.71 66.38 63.45 62.41 61.48 67.45 55.35* 70.00 57.02
44 4B48 87.86 59.87 78.23 55.44 58.41 82.11 77.12* 63.62 54.41
44 4B12.4B48 68.71 52.26 63.45 52.75 50.11 65.73 81.27* 55.77 49.31

Net20 4BI2 118.77 117.20 113.00 118.90 113.91 120.36 105.79* 126.85 108.77
•• 4B48 119.31 86.43 98.04 82.41 86.96 104.46 92.56* 111.10 81.67
44 4B12.4B48 117.74 84.43 106.11 82.41 83.68 100.06 110.19* 99.46 81.71

Net32 4B48 910.12 786.88 803.52 787.32 709.64 876.72 912.46* 1,044.2 745.42
44 4B192 660.68 655.88 568.72 667.46 595.56 608.42 693.80* 928.94 593.92

4B48.4B192 643.38 617.90 532.72 629.48 583.42 581.72 727.32* 847.60 525.14

Net43 4B48 1,338.1 1,288.7 1,283.6 1,244.4 1,274.8 1,272.8* - 1,488.8* 1,240.3

•• 4BI92 1,097.4 907.15 1,019.1 909.33 891.47 961.29* - 967.53 890.71

•• 4B48.4B192 1.074.0 877.15 985.97 859.47 920.47 941.33* • 945.93 835.99

"'runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 12.3: Summary of Runtime Results (sec.)

Network Tech. Unbal. Bal.
Basic

Packing
Bal.

Packing
Dith.
Seq. SCIP FCRIP FDIP Tabu

NetlS 4B12 45 106 40 87 954 71.3 5,452* 0.5 2,471
4* 4B48 26 50 26 46 450 522.3 6,433* 0.02 2,231

•< 4B12,4B48 78 104 72 100 936 308.9 6,471* 0.19 7,316

Net20 4B12 69 130 63 124 1,170 0.53 7,864* 70.4 2,284
(1 4B48 37 51 28 49 459 28.63 8,333* 0.10 2,451
14 4BI2.4B48 105 99 78 90 891 186.7 6,402* 0.16 7,543

Nel32 4B48 23 24 26 27 216 0.10 8,284* 0.07 312
44 4BI92 15 19 25 18 171 0.15 8,642* 0.01 369
44 4B48,4B192 26 31 31 32 279 1.63 8,265* 0.02 595

Nel43 4B48 1,610 6,552 1,655 6,520 58,968 4,508* - 14,342* 15,340

" 4BI92 758 2,932 659 2,980 26,388 6,464* ■ 7.15 7,922
44 4B48.4B192 1,607 5,484 1,408 5,478 49,356 5,424* - 9.52 9,576

^runtime limit exceeded before an optimal solution was found. Runtimes include total CPU time for all four processors.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 12.4: Correlation between Design Attributes and Total Design Cost

Test
Case

Net­
work Samples

Number of Rings Number of ADMs

Regen.
Fibre
(km)

Avg.
Fill (%)

Inter­
ring

lYansit.
Spans
Elim.

Total
Working
(DS3-
hops)

Total
Capacity
(DS3-
hops)4B12 4B48 4BI92 4B12 4B48 4B192

1 NetlS 44 -0.2416 - 0.8460 - - 0.0594 0.7569 •0.2896 0.1818 -0.3441 0.5428 0.8889

2 l i 31 - 0.8345 - 0.9222 - 0.1066 0.7528 -0,8047 0.5572 -0.9236 -0.4967 0.7645

3 *« 26 .3869 0.3057 0.4819 0.0586 - 0.0740 0.7858 -0.6288 0.2781 -0.4912 -0.1679 0.5873

4 Net20 42 -0.0349 - 0.8494 - - 0.3184 0.6028 -0.7804 -0.1829 0.0077 0.2710 0.6200

5 H 39 - 0.9392 - 0.8917 - 0.5250 0.6673 •0.9288 0.7091 -0.8416 -0.7615 0.7445

6 24 0.6729 0.4791 0.6762 0.3787 - 0.1998 0.3116 -0.5966 0.8071 -0.4313 -0.7608 -0.4526

7 Net32 30 - 0.5552 - 0.7769 - 0.9288 0.9604 -0.7195 0.4097 -0.5127 -0.1115 0.8888

8 •• 26 - - 0.0434 - - 0.7323 0.7207 0.8348 -0.8089 -0.1247 -0.2687 -0.5040 0,7260

9 II 21 - 0.0976 0.0992 - 0.0883 0.1294 0.8761 0.9060 -0.3277 -0.0912 •0.6815 -0,0182 0.4255

10 Net43 18 - 0.4770 - - 0.7069 - 0.4313 0.8008 -0.8766 -0.2660 0.0109 -0.2399 0.9311

II II 16 - - 0.8336 - - 0.8066 0.4967 0.6148 -0.7708 0,6572 -0.5536 -0,3513 0.8391

12 M 16 - 0.8093 0.0596 - 0.7761 0.2706 0.5631 0.7658 -0.4859 0.6535 -0.6081 -0.6066 -0.0330

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Table 12.5: Lower Bounds based on Shortest Path Routing

Test
Case

Net­
work

Number of ADMs Number of Ring-Spans

Regen.
Fibre
(km) Total Cost

Best
Solution Gap (%)4B12 4B48 4B192 4B12 4B48 4B192

1 Netl5 24 - - 50 - - 26 770.5 43.35 55.35 27.7

2 •• - IS - - 34 - 19 521,3 46.71 54.41 16.5

3 “ 9 6 - 12 9 19 521.3 37.71 49.31 30.8

4 Nei20 38 - - 89 - SI 2,234 76.77 105.79 37.8

5 - 20 - - 40 20 992.8 66.36 81.67 23.1

6 «« 7 13 - 3 37 20 992.8 59.36 81.71 37.6

7 Nel32 - 29 - 83 343 106,968 679.14 709.64 4.5

8 “ - - 26 - 47 209 67,564 501.32 568.72 13.4

9 •• - 8 39 209 67,564 455.32 525.14 15.3

10 Net43 - 86 - 241 - 290 80,436 758.43 1,240.3 63.5

11 t«
- • 43 - 109 128 36,792 507.81 890.71 75.4

12 M
- 0 43 0 109 128 36,792 507.81 835,99 75,4

to
K

Ta
ble

12

.6:
 L

ow
er

Bo

un
ds

 w
ith

Ro

ut
e

O
pt

im
iz

at
io

n

Ga
p

(%
)

o

23
.6 ©

50
.1

32
.2

48
.1

20
.4

15
.6

18
.2 e*- e** e*-

Be
st

So
lut

ion

55
.35

54
.41

49
.31

10
5.7

9

81
.67 f-;

OO 70
9.6

4

56
8.7

2

52
5.1

4

1,2
40

.3

89
0.7

1

83
5.9

9

To
tal

 C
os

t

40
.40

44
.02

34
.82

70
.48

61
.77

55
.17

58
9.4

2

49
1.9

6

44
4.3

6

e*~ O*- ê*

Fib
re

(km
)

58
0.4

34
4.3

34
4.3

969*1 67
4.8

67
4.8

89
,82

4

65
,53

2

65
,53

2

e— e*-

Re
ge

n. © O' 33 32
3

21
3

20
5 c- ê- e**

Nu
mb

er
of

Ri
ng

-Sp
an

s

4B
I9

2

25 • e-

4B
48 • 25 IN • 25 27 sC • 26 ĉ* • c-

1
4B

I2 § • m r*- > o ■

Nu
mb

er
of

AD
M

s

1 4
B1

92 26 • m•** 43

4B
48 • sO • 20 m 29 •

98 ■ o

4B
I2 24 * 9s oo • r- 1 I I I i •

Ne
t­

wo
rk

Ne
tlS = s

OQu
Z

= r
IN<2u
Z

= *
co
u

Z
« 5

Te
st

Ca
se - Vi NO OO O' © CM

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 Concluding Discussion

13.1 Introduction
This chapter concludes the thesis with a review of the main developments, a summary of the

research contributions and recommendations for further research.

13.2 Review of Thesis
The primary goal of this work was to develop improved methods for solving the multi-ring

network design problem by better understanding the factors that influence the design problem and

by applying advanced heuristic and mathematical programming techniques. In Chapter 1 we saw

that network survivability is an increasingly important consideration in the design and operation of

transport networks. Growing demand, higher-capacity systems and an increased reliance on tele­

communications services are all contributing factors in the need for improved network survivabil­

ity. Survivable rings provide a robust and cost-effective means of protecting these networks

against cable cuts and other faults, but the design of ring-based transport networks is a difficult

optimization problem. To date, most methods proposed for this problem are either over-simplified

or offer no guarantees on optimality. Yet there is strong economic motivation for even modest

improvements in the performance of the current design methods given the large capital costs asso­

ciated with these networks. We have shown that significant improvements towards optimality can

be achieved with new optimization techniques.

Chapters 2 provided a tutorial overview of some basic concepts and terminology from several

related fields of study including graph theory, mathematical programming and complexity theory.

In Chapter 3 we introduced a generic view of transport networks and discussed the two most com­

mon transport technologies in use today: PDH and SONET. We also defined network survivability

in precise terms and described survivable rings in detail. These preliminary chapters provided

background information used throughout the remainder of the thesis.

In Chapter 4 we defined and developed IP formulations for several variants of the ring loading

problem — an important subproblem of the multi-ring network design problem. We also studied

the effect of different loading policies and technology choices on the loading efficiency of bidirec­

tional line-switched rings. The results of this study showed that channel interchange gives almost

no advantage in terms of loading efficiency over an optimally planned channel assignment solu­

tion. This is a particularly relevant finding for the multi-ring network design problem because it

means that full channel interchange can be assumed with little or no impact on the overall solution

quality. This greatly simplifies the multi-ring network design problem because actual channel

227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assignment decisions, if required, can always be made off-line after the design is complete. This

study also shows that significant gains in loading efficiency can also be obtained by allowing

demand bundles to be split between the two directions around the ring, even though this is gener­

ally not a common practice.

Chapter 5 provided a formal definition the multi-ring network design problem and assessed its

computational complexity. Several other design considerations were discussed. This material

served as framework for reviewing the prior work on the ring network design problems presented

in Chapter 6.

Chapter 7 presented the characteristics of real transport networks used later in specific studies.

The modelling assumptions used to evaluate the performance of the design methods developed in

subsequent chapters were also described in detail. Metrics were developed to quantify the results

and the methods for assessing the relative and absolute performance of each design method. These

methods included two new lower bounding procedures for the multi-ring network design problem

and statistical inference techniques for obtaining both point and interval estimates of the optimal

solution.

In Chapters 8 we describe the sophisticated network planning tool, called RingBuilder Interac­

tive, that was developed to support this work. In addition to a basic greedy heuristic algorithm, sev­

eral improvement heuristics were developed including a balanced ring loading algorithm, a

demand packing algorithm and a dithered sequencing meta-heuristic.

Chapter 9 describes the comparative study method and provides results for the basic Ring­

Builder algorithm and improvement heuristics developed in Chapter 8. Overall, the experimental

results showed that significant savings in total design cost can be achieved using several of the

improvement heuristics. Savings of up to 32% relative to the benchmark solution were obtained

using the balanced ring loading and demand packing algorithms.

In Chapter 10, we developed three new mathematical programming formulations for the multi­

ring network design problem. Each of these formulations represents a different tradeoff along the

continuum between model detail and tractability. Like many approaches based on integer program­

ming, however, there are inherent limitations in the scalability of these techniques to larger net­

work designs. Nonetheless, these formulations can generate good solutions for relatively small

networks and serve as useful benchmarks for other methods.

Chapter 11 developed a novel Tabu Search meta-heuristic for the multi-ring network design

problem, which guides a local search procedure to explore regions in the solution space beyond a

local optimum. Despite the relative simplicity of this procedure, it performed extremely well in all

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the test cases, providing solutions that were within 3% o f the best solutions found by any method.

Chapter 12 compared the performance of the design methods and improvement heuristics stud­

ied in Chapters 9 through 11. The two main performance criteria considered were solution quality

and runtime. The results showed that the Tabu Search meta-heuristic consistently provided the best

or second best solutions in all test cases. Overall, improvements of up to 32% relative to the bench­

mark solution were realized using the design methods proposed and implemented here. Lower

bounding procedures and statistical inference were also used for the first time on the multi-ring net­

work design problem to quantify solution quality. These results suggest that the best solutions for

each test case lie within about 12% of the estimated optimal solution.

133 Summary o f M ain Contributions
The major original contributions established by this work include the following:

1. Engineering design, development and testing of a software architecture, data model
and algorithms for a comprehensive planning tool and experimental platform for ring-
based transport network design (RingBuilder Interactive 1.0).

2. First formal presentation and development of the ring loading problem as distinct from
the ring sizing problem.

3. First mathematical programming formulation of the ring loading problem and system­
atic study of demand splitting and time-slot interchange on the loading efficiency in
bidirectional line-switched rings.

4. The conception, development and implementation of a demand packing algorithm for
ring-based transport networks.

5. Origination of three mathematical programming formulations of the multi-ring net­
work design problem.

6. The conception and development of two lower bounding procedures for the multi-ring
network design problem.

7. Conception, development and implementation of a Tabu Search meta-heuristic to the
multi-ring network design problem.

8. Development and implementation of an adaptive dithered sequencing meta-heuristic.

9. Development and implementation of a new balanced ring loading algorithm.

10. Systematic study of all design methods and improvement heuristics developed in
items 4 through 9 above.

11. Origination and implementation of an improved algorithm for finding all cycles in an
undirected graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 3 .3 .1 P u b lic a tio n s

Several papers and technical reports based on this work have either been published or are cur­

rently in review. These include the following:

1. G.D. Morley and W.D. Grover, “Loading efficiency of bidirectional rings under dif­
ferent routing and technology constraints,” Journal o f Network and Systems Manage­
ment,, accepted for publication.

2. G.D. Morley and W.D. Grover, “Comparison of Mathematical Programming
Approaches to Optical Ring Design,” Proc. Canadian Conf. on Broadband Research,
November 1999, pp. 173-184.

3. G.D.Morley and W.D. Grover, “Current Approaches in the Design of Ring-based
Optical Networks,” Proc. IEEE Canadian Conf. on Elec. and Comp. Eng. ‘99, May
1999, pp. 135-144.

4. G.D. Morley and W.D. Grover, “Optimal Loading of SONET BLSRs: Assessment of
Benefits o f Demand Splitting and Time-Slot Interchange,” Proc. Canadian Conf on
Broadband Research, 1998, pp. 135-144.

5. GX). Morley and W.D. Grover, “A Comparative Survey of Methods for Automated
Design of Ring-based Transport Networks,” Technical Report TR-97-04, TRLabs,
1998.

6. C.Y. Lee, W.D. Grover and G.D. Morley, “Heuristic Methods for the ‘Span Elimina­
tion’ Problem in Ring-Based Transport Network Design,” Proc. IEEE Canadian Conf.
on Elec. and Comp. Eng. ‘99, May 1999, pp. 232-237.

7. G.D. Morley and W.D. Grover, “RingBuilder SHR Design Study: SaskTel Metropoli­
tan Regina Network,” Technical Report TR-97-03(R), TRLabs, 1998.

8. M. Jeremiah, G.D. Morley, RingBuilder Interactive Users Guide, TRLabs, March
2000.

A patent application covering several aspects of the work presented in this thesis was also filed

in May 2000 by TRLabs. It is also worth noting that the software tools developed as part of this

thesis have also been licensed from TRLabs by Virtual Photonics Inc. for use in their commercial

transport network planning software. In addition, they have been transferred in various forms to

Nortel Networks, Telus, Sasktel, MCIWorldcom and TelOptica.

13.4 Topics for Further Research

1 3 .4 .1 A d v a n c e d T a b u S e a r c h P ro c e d u re s

Several ideas for enhancing the Tabu Search meta-heuristic were identified during the course

of this work. One would be to randomize move selections at each iteration to counteract the uncer­

tainty (or noise) inherent in the current move evaluation process. That is, the transport efficiency is

not always an accurate predictor of move quality and the search procedure may benefit from some

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form of move randomization. This technique has been successfully used in other applications of

Tabu Search. One alternative is to use a modified version of the probabilistic selection technique

developed in Chapter 8 .

A detailed analysis of the search trajectories also revealed that the majority of the runtime is

spent evaluating constructive (add) moves. Therefore, substantial improvements in runtime could

be realized if the procedure for evaluating add moves were to be improved. One approach would

be to consider only a subset of ring candidates based on the intersection with unserved demands

and/or possibly the existing ring set. This could also be combined with the probabilistic move

selection procedure described above.

The search results also show that in some cases certain rings are frequently swapped into and

out of the solution. This usually occurs in regions with limited connectivity where only a handful

of candidate rings may be able to serve the demand. As a result, the search may exhibit a tendency

to cycle through the available candidates, particularly when the utilization of the rings is low. This

suggest that improvements could be obtained by taking these factors into account during move

evaluation.

Consideration should also be given to incorporating other types of moves to allow the candi­

date ring set to evolve over time. This would be particularly beneficial in large design problems

where only a small fraction of the cycle set can be considered due to memory and runtime con­

straints. Additional moves could include, for example, the merge, split and enlargement operations

used in the local search procedure by Gardner et al. [GST95].

Several other refinements of the Tabu Search can be envisaged. For example, varying the drop

depth during the search procedure could be used to alternate between periods of search intensifica­

tion and diversification. That is, lower drop depths could be used to effect greater changes in the

solution from one iteration to the next. An alternative strategy would be to vary the tabu tenure of

moves based on their influence on the solution quality. This technique has been applied with some

success to other problems.

1 3 .4 .2 C o m p a r iso n o f D e m a n d P a c k in g A lg o r ith m
It would be of some interest to compare the quality of solutions generated with the heuristic

demand packing algorithm developed herein with the globally optimal solution. This would

involve formulating the problem as an IP and solving several small test cases using the CPLEX

MIP Solver, for example. Depending on the runtime results, more sophisticated techniques such as

column generation may be required to find the strictly optimal solution. Alternatively, the LP (or

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possibly Lagrangean) relaxation could also be used to establish lower bounds for larger problem

instances. Although optimal solutions are not a critical requirement in practice, it is clearly desira­

ble to know the quality of the solutions generated using the current demand packing algorithm to

assess whether further work is warranted on this problem.

1 3 .4 .3 C o m p a r iso n o f B a la n c e d R in g L o a d in g A lg o r ith m

Similarly, it would interesting to compare the quality o f solutions generated with the balanced

ring loading algorithm with optimal solutions from the IPs (or variants thereof) developed in Chap­

ter 4. This would likely involve reformulating the IP in Chapter 4 to capture additional problem

details such as ADM and inter-ring transition costs. Rather than solving explicitly for the location

of ADMs within the ring, a program could be written to simply enumerate all possible combina­

tions of ADM locations and then each subproblem could be solved independently using the

CPLEX MIP Solver, for example. Once again, optimal solutions are not a critical requirement in

practice but it would be useful to know the quality of the solutions generated using the current

algorithm to assess whether further work is warranted.

1 3 .4 .4 F u r th e r R e s e a r c h o n T o p o lo g y O p tim iza tio n
Several alternatives for topology optimization were also conceived during the course of this

work. In particular, the lower bounding procedure and IP (i.e., LBIP) developed in Chapter 7 could

be used directly as a replacement for the SCIP formulation in the span elimination work by Lee et

al. [LeeOO]. This would greatly improve the runtime performance of the algorithms developed by

Lee with little or no impact on the solution quality. Heuristics based on the same conditioning

arguments can also be contemplated. If the number of excess ring modules at each node is less than

two, a solution can be found using the heuristic procedure described in Section 6.3.3. Heuristics

similar to those developed for the multiple postman problem [Kno89] may also prove useful.

Another promising alternative would be to modify the lower bounding procedure with route

optimization (i.e., LBRIP) to directly address the span elimination problem. One distinct advantage

of this approach is that it not only determines which spans to eliminate but also optimizes the flow

over the remaining spans to minimize the total transport capacity required. It would also be worth

investigating whether column generation, which has been used extensively on other multi-com­

modity flow problems [Hu92], could be used to allow larger problem instances to be solved opti­

mally. Once solved, this procedure could form the basis for an entirely new network design

approach. This would involve developing an algorithm for assigning ring modules to individual

rings, such that no ring has repeated spans or nodes. Several example designs have already been

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constructed by hand from the LBRIP results from Chapter 11 but further work is required to

develop an algorithm for automating this process. These initial designs already show that, in gen­

eral, several different designs can be generated from a single (LBRIP) solution. For example, two

designs were generated based on the LBRIP solutions for test case 2 (Netl5,4B48). While the total

fibre mileage for both designs was the same, the number of inter-ring transitions was roughly five

times higher in one of the designs. This suggests that a second level of optimization would be use­

ful in constructing a ring set (i.e., design) from the initial solution.

1 3 .4 .5 M u lti-p e r io d P la n n in g E n h a n c e m e n ts

A naive approach to the multi-period planning problem involves generating independent

designs for each time period (starting from the most current time period) and packing as much

demand as possible into the existing rings between periods. Clearly, this approach is unlikely to

find the optimal solution.

Although not yet implemented or tested, a simple but intuitively attractive alternative was con­

ceived during the course of the work. This approach involves fairly minor changes to the current

ring loading and selection process in the current greedy heuristic algorithm. The basic idea is to

modify the transport efficiency metric of candidate rings to discount the value of any future

demands loaded onto a ring. This basic procedure works as follows:

At each iteration, candidate ring loading is performed in the usual manner except that the

demands are first sorted in order of the time period in which they originate. That is, demands in the

current period are loaded first, followed by demands in the second period and so on. After all

demands have been loaded, the transport efficiency metric is calculated by discounting the value of

demands loaded in future time periods. This is based on the notion that the revenue from future

demands must be discounted (in the economic sense) to reflect their present value. It also recog­

nizes the fact that the uncertainty surrounding a demand forecast increases with its distance into the

future. Put simply, a demand today is worth more than a demand tomorrow. Thus, a ring candidate

that carries demands originating exclusively in the current time period will have a higher transport

efficiency than one that carries demands originating in future periods, all other things being equal.

After all candidate rings have been evaluated, the candidate ring with the highest transport effi­

ciency is selected, but only the demands originating in the current period are actually loaded onto

the ring. This process continues until all demands in the current period are served. Then the

demand packing algorithm is used to pack demands from the next period into the rings selected in

the current period. The entire process repeats until the demand in all time periods has been served.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clearly, this approach is still in the early stages of development and requires further work to

fully implement and test the idea.

1 3 .4 .6 S e n s itiv ity A n a ly s is o f D e sig n R e s u lts
An underlying assumption of the design methods developed in this thesis is that the decision

environment is deterministic. That is, we assume that design inputs such as the demand pattern are

known in advance or can be forecasted with little uncertainty. Experience suggests, however, that

demand forecasts are not particularly accurate, especially in recent years. An appropriate question,

therefore, is how sensitive are the network designs generated herein to variations in the demand

pattern. A practical approach for addressing this question is to generate a number of demand pat­

terns for each design and then use the demand packing algorithm developed in Chapter 8 to deter­

mine the percentage of demand served for each pattern. The demand patterns could be generated

by randomly varying the demands in the orginal demand pattern according to some distribution.

The percentage of demand served gives an indication of how “brittle” the design is to changes. The

working load on each span could also be examined to determine which spans are most likely to be

overloaded due to changes in the demand pattern. This information could be used to create more

robust designs by reserving additional capacity on these spans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

[AKL84]

[ANS95a]

[ANS95b]

[Ant97]

[Bat96]

[BeG92]

[Bel88]

[Bel93]

[Bel95a]

[Bel95b]

[BGS94]

[BoM76]

[BTR96]

[CCR99]

[CDS95]

[Che91]

[Ch099]

[ChS97]

Bibliography
A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev, Mathematics: Its Content,
Methods and Meaning, 2nd Ed., translated by K. Hirsch, M.I.T. Press, Cambridge, MA,
1984.
ANSI, Synchronous Optical Network (SONET) - Basic Description including Multiplex
Structure, Rates and Formats, ANSI TI. 105-1995,1995.
ANSI, Synchronous Optical Network (SONET) - Automatic Protection Switching,
ANSI T l .105.01-1995, 1995.
A. Antonopoulos, “Planning Telecommunication Transport Networks: Metrication,
Analysis and Design,” Ph.D. Thesis, University College London, 1997.
R. Battiti, “Reactive Search: Toward Self-tuning Heuristics,” Modem Heuristic Search
Methods, Editors V.J. Rayward-Smith et al., Wiley, 1996, pp. 61-83.
D. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice All, Englewood Cliffs,
NJ, 1992, pp. 113.
Bellcore, Digital Cross-Connect System (DCS) Requirements and Objectives,
TR-TSY-000170, Issue 1, November 1988.
Bellcore Special Report SR-NWT-002514, Digital Cross-Connect Systems in Trans­
port Network Survivability, Issue 1, January 1993.
Bellcore, SONET Dual-Fed Unidirectional Path Switched Ring (UPSR) Equipment Ge­
neric Criteria, GR-1400-Core, Issue 1, Revision 1, October 1995.
Bellcore, SONET Bidirectional Line-Switched Ring Equipment Generic Criteria, GR-
1230-Core, Issue 2, November 1995.
G.N. Brown, W.D. Grover, J.B. Slevinsky and M.H. MacGregor, “Mesh/Arc Network­
ing: An Architecture for Efficient Survivable Self-Healing Networks,” Proc. o f the
1994 IEEE Intl. Conf. on Communications, Supercomm/ICC ‘94, Vol. 1, May 1994, pp.
471-477.
J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, New
York, 1976.
S. Bortolon, H.M.F. Tavares, R.V. Ribiero, E. Quaglia and A. Bergamaschi, “A Meth­
odology To SDH Network Design Using Optimization Tools,” Proc. o f IEEE Globe-
com ‘9 6 ,1996, pp. 1867-1871.
F.Callegati, M. Casoni, C. Rafaelli.and B. Bostica, “Packet Optical Networks for High-
Speed TCP-IP Backbones,” IEEE Communications Magazine, Vol. 37, No. 1,1999, pp.
124-129.
S. Cosares, D.N. Deutsch, I. Saniee and O. Wasem, “SONET Toolkit: A Decision Sup­
port System for Designing Robust and Cost-Effective Fiber-Optic Networks,” Interfac­
es, Vol. 25,1995, pp. 20-40.
P.-S. Chemg, “Comparison of Bidirectional and Unidirectional SDH Rings,” European
Telecommunications Standards Institute, ETSITM3/WT22, April 1991.
T.M. Chen and T.H. Oh, “Reliable Services in MPLS,” IEEE Communications Maga­
zine, Vol. 37, No. 12,1999, pp. 58-62.
S. Chamberland and B. Sans6, “Heuristics for Ring Network Design when Several

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Cis99]

[CKY96]

[Com97]
[CoS94]

[CPL98]
[CQT96]

[CSW92]

[DDH95]

[DDH97]

[Dem99]

[DGM94]

[Dij59]

[Dos97]

[DPW99]

[DWY99]

[EBC98]

[EdJ73]

[Fal90]

[FiT28]

Types o f Switches are Available,” in Proc. ICC ‘97, Vol. 2,1997, pp. 570-574.
Cisco Systems, Dynamic Packet Transport Solution, GSR 12000 OC-12c/STM-4c
Packet Ring Line Card, Data Sheet, San Jose, CA, 1999.
S.-H. Chung, H.-G. Kim, Y.-S. Yoon andD.-W. Tcha, "Cost-Minimizing Construction
of a Unidirectional SHR with Diverse Protection," IEEE/ACM Trans. Networking, Vol.
4, No. 6 , Dec. 1996, pp. 921-928.
Compass Modeling Solutions, Using AMPL, 1997.
5. Cosares and I.Saniee, "An optimization problem related to balancing loads on SON­
ET rings,” Telecommunications Systems, No. 3,1994, J.C. Baltzer AG, Science Pub­
lishers, pp. 165-181.
CPLEX Optimization Inc., Using the CPLEX Callable Library, Version 6.0, 1998.
L.A. Cox Jr., Y. Qui, G.E. Tegan and L. Lu, Method and System for Planning and In­
stalling Communication Networks,” U.S. Patent No. 5,515,367, May 7, 1996.
S. Cosares, I. Saniee and O. Wasem, "Network Planning with the SONET Toolkit,"
Bellcore Exchange, September/October 1992, pp. 8-13.
B.T. Doshi, S. Dravida and P. Harshavardhana, “Overview of INDT-A New Tool for
Next Generation Network Design,” Proc. IEEE Globecom, Singapore, November
1995.
B.T. Doshi, S. Dravida, P. Harshavardhana, P.K. Johri, and R. Nagarajan, “Dual (SON­
ET) Ring Interworking: High Penalty Cases And How To Avoid Them,” Proc. oflTC
15, Elsevier Science, 1997, pp. 361-370.
P. Demeester et al., “Resilence in Multilayer Networks,” IEEE Communications Mag­
azine, Vol. 37, No. 8,1999, pp. 70-75.
D.A. Dunn, W.D. Grover and M.H. MacGregor, “Comparison of k-Shortest Paths and
Maximum Flow Routing for Network Facilities Restoration,” IEEE J. on Selected Ar­
eas in Communications, Vol. 12, No. 1, 1994, pp. 88-99.
E.W. Dijkstra, “A note on two problems in connection with graphs,” Number Math.,
Vol. 1, 1959, pp. 269-271.
B.T. Doshi et al., “Integrated Network Design Tools (INDT): A Suite of Network De­
sign Tools for Current and Next Generation Networking Technologies,” Proc. o f IEEE
ISSC ‘97, Alexandria, Egypt, 1997, pp. 332-338.
R.D. Doverspike, S. Phillips and J.R. Westbrook, “Future Transport Network Architec­
tures,” IEEE Communications Magazine, Vol. 37, No. 8,1999, pp. 96-101.
P. Demeester, T.-H. Wu and N. Yoshikai, “Survivable Communication Networks,”
IEEE Communications Magazine, August 1999, pp. 40-42.
G. Ellinas, K. Bala and G.-K. Chang, “A Novel Wavelength Assignment Algorithm for
4-fiber WDM Self-Healing Rings,” in: Proc. o f ICC ‘9 8 ,1998, pp. 197-201.
J. Edmonds and E.L. Johnson, “Matching, Euler Tours and the Chinese Postman Prob­
lem,” Mathematical Programming, Vol. 5, 1973, pp. 88-124.
W.E. Falconer, “Service Assurance in Modem Telecommunication Networks,” IEEE
Communications Magazine, June 1990, pp. 32-39.
R. Fisher and L. Tippett, “Limiting forms of the frequency distribution of the largest or

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[F la90]

[FSV98]

[FSV99]

[GaJ79]

[GCF99]

[GeK97]

[GHS94]

[GJM80]

[G1L97]
[GLL95]

[GL098]

[GLS98]

[GoA79]

[GOP98]

[Gro92]

[Gro94]

smallest member of a sample,” Proc. Camb. Phil. Soc., 1928, Vol. 24, pp. 180-190.
T. Flanagan, “Fiber Network Survivability,” IEEE Communications Magazine, June
1990.
A. Fink, G. Schneidereit and S. Vop, “Ring network design for metropolitan area net­
works,” Technical Report, Technical University of Braunschweig, 1998, pp. 1-14.
A. Fink, G. Schneidereit and S. VoB, “Solving General Ring Network Design Problems
by Meta-Heuristics”, Computing Tools for Modeling, Optimization and Simulation (In­
terfaces in Computer Science and Operations Research), M. Laguna, J.L. Gonzilez
Velarde (Eds.), Kluwer, Boston, 1999, 91-113.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory o f
NP-Completeness, W.H. Freeman, New York, 1979.
B. Gendron, T.G. Crainic and A. Frangioni, “Multicommodity Capacitated Network
Design,” Telecommunications Network Planning, Editors B. Sansd and P. Soriano,
Kluwer Academic Publishers, 1999, pp. 1-19.
O. Gerstel and S. Kutten, “Dynamic Wavelength Allocation in All-Optical Ring Net­
works,” in: Proc. o f ICC ‘9 7 ,1997, pp. 432-436.
L.M. Gardner, M. Heydari, J. Shah, I.H. Sudborough, I.G. Tollis, and C. Xia, ‘Tech­
niques for Finding Ring Covers in Survivable Networks,” Proc. o f IEEE Globecom ‘94,
1994, pp. 1862-1866.
M.R. Garey, D.S. Johnson, G.L Miller and C.H. Papadimitriou, The Complexity of
Coloring Circular Arcs and Chords, SIAMJ. Alg. Disc. Math., Vol. 1, No. 2,1980, pp.
216-227.
F. Glover and M Laguna, Tabu Search, Kluwer Academic Press, 1997.
M. Gendreau, M. Labbe and G. Laporte, "Efficient heuristics for the design of ring net­
works," Telecommunication Systems, J.C. Baltzer AG, Vol. 4, 1995, pp. 177-188.
O. Goldschmidt, A. Laugier and E.V. Olinick, “SONET/SDH Ring Assignment with
Capacity Constraints,” INFORMS Meeting, Montreal, Canada, April 26-29,1998.
O. Gerstel, P. Lin, and G. Sasaki, “Wavelength Assignment In A WDM Ring To Min­
imize Cost O f Embedded SONET Rings,” in: Proc. o f IEEE Infocom '98,1998, Vol. 1,
pp. 94-101.
B.L. Golden and F.B. Alt, “Interval Estimation of A Global Optimum for Large Scale
Optimization,” Naval Research Logistics Quarterly, No. 26, 1979, pp. 69-77.
A.V. Goldberg, J.D. Oldham, S. Plotkin and C. Stein, “An Implementation of a Com­
binatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow,” Inte­
ger Programming and Combinatorial Optimization, 6th International IPCO Conf,
June 1998, Houston, Texas, pp. 338-352.
W.D. Grover, “Case Studies of Survivable Ring, Mesh and Mesh-Arc Hybrid Net­
works,” in Proc. IEEE Globecom ‘92, Vol. 1, pp. 633-638.
W.D. Grover, “Distributed Restoration of the Transport Network,” Telecommunica­
tions Network Management into the 21st Century - Techniques, Standards, Technolo­
gies and Applications, Editors S. Aidarous, T. Plevyak, IEEE, New York, NY, 1994,
pp. 337-417.

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Gro96]

[Gro97a]

[Gro97b]

[Gro97c]

[Gro99]

[GSM95]

[GST95]

[HeS82]

[HJN96]

[HoF91]

[Hu92]
[ITU93]

[ITU95]

[ITU96]

[JHV99]

[Joh75]

[JoyOO]
[KaC94]

[KaC97]

[Kam93]

[Ka099]

W.D. Grover, “Analysis of Unavailability and Resource Consumption for High Avail­
ability Paths in SONET Ring-based Networks,” TRLabs Technical Report TR-96-01,
February 1996.
W.D. Grover, "Matched Nodes and Dual Feeding: Options for High Availability Path
Provisioning in SONET Ring-Based Networks," Proc. o f Canadian Conference on
Broadband Research, Ottawa, Canda, April 16-17, 1997, pp. 160-171.
W.D. Grover, “Discussion Paper Methods for Design of Cost Effective Networks of
Self-Healing Rings,” TRLabs Internal Discussion Paper, Jan. 23,1997, pp. 1-14.
W.D. Grover, “Network Survivability: A Crucial Issue for the Information Society,”
IEEE Canadian Review, No. 27, 1997, pp. 16-21.
W.D. Grover, “High Availability Path Design in Ring-Based Optical Networks,” IEEE7
ACM Trans. Networking, Vol. 7, No. 4, 1999, pp. 558-574.
W.D. Grover, J.B. Slevinsky, M.H. MacGregor, “Optimized design of ring-based sur­
vivable networks,” Canadian J. Elect. & Comp. Eng., Vol. 20, No. 3,1995.
L.M. Gardner, I.H. Sudborough, I.G. Tollis, "Netsolven A Software Tool For the De­
sign of Survivable Networks," Proc. o f IEEE Globecom ‘9 5 ,1995, pp. 926-930.
D.P. Heyman and M.J. Sobel, Stochastic Models in Operations Research, McGraw-
Hill, New York, NY, 1982.
P. Harshavardhana, P.K. Johri and R. Nagarajan, “A note on weight-based load balanc­
ing on SONET rings,” Telecommunication Systems, Vol. 6,1996, pp. 237-239.
C.T. Homgren and G. Foster, Cost Accounting: A Managerial Emphasis, 7th ed., Pren­
tice Hall, Englewood Cliffs, NJ, 1991, pp. 29-34
T.C. Hu, Combinatorial Algorithms, Addison-Wesley, Reading, MA, 1992, pp. 40-83.
ITU-T, Network Node interfaces fo r the Synchronous Digital Hierarchy (SDH), ITU-T
Recommendation G.707, 1993.
ITU-T, Transmission and Multiplexing (TM): Generic Functional Architecture o f
Transport Networks, ITU-T Recommendation G.805, 1995.
ITU-T, Types and Characteristics o f SDH Network Protection Architectures, ITU-T
Recommendation G .841,1996.
D. Johnson, N. Hayman and P. Veitch, ‘The Evolution Of A Reliable Transport Net­
work,” IEEE Communications Magazine, Vol. 37, No. 8,1999, pp. 52-57.
D.B. Johnson, "Finding All the Elementary Circuits of a Directed Graph," SIAM J. on
Computing, Vol. 4, 1975, pp. 77-84.
B. Joy et al., The Java Language Specification, Second Edition, Addison-Wesley, 2000.
N. Karunanithi, T. Carpenter, “A Ring Loading Application of Genetic Algorithms,”
Proc. o f the ACM Symposium on Applied Computing, 1994, pp. 227-231.
N. Karunanithi and T. Carpenter, SONET ring sizing with genetic algorithms. Comput­
ers and Operations Research, Vol. 24, No. 6 , 1997, 581-591.
I.P. Kaminow, “Photonic Networks,” The Electrical Engineering Handbook, R.C.
Dorf, Editior-in-Chief, CRC Press, 1993, pp. 1439.
R. Kawamura and H. Ohta, “Archtectures for ATM Network Survivability and Their

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kar86]

[Kha97]

[KKG91]

[Kno89]

[KNR97]

[Law82]
[LeC97]

[LeeOO]

[LGM99]

[LRT93]

[Mac91]

[MaD76]

[MaG93]

[MBN99]

[McB98]

[MKT97]

[Min91]

[MoG98a]

[MoG98b]

Field Deployment,” IEEE Communications Magazine, Vol. 37, No. 8,1999, pp. 88-94.
R.M. Karp, "Combinatorics, Complexity, and Randomness," Communications o f the
ACM, Vol. 29, No. 2, February 1986, pp. 98-117.
S. Khanna, “A Polynomial Time Approximation Scheme for the SONET Ring Loading
Problem,” Bell Labs Technical Journal, 1997, pp. 36-41.
A. Kershenbaum, P. Kermani, G. Grover, "MENTOR: An Algorithm for Mesh Net­
work Topological Optimization and Routing," IEEE Trans, on Comm., No. 4,1991, pp.
503 - 513.
T.W. Knowles, Management Science: Building and Using Models, Irwin, Homewood
IL, 1989.
J.L. Kennington, V.S.S. Nair, M.H. Rahman, "Optimization Based Algorithms for
Finding Minimal Cost Ring Covers in Survivable Networks," Technical Report 97-CSE
-12, Southern Methodist University, Dallas, Texas, August 1997, pp. 1-26.
J.F. Lawless, Statistical Models and Methods fo r Lifetime Data, Wiley, 1992.
C.Y. Lee and S.G. Chang, Balancing loads on SONET rings with integer demand split­
ting, Computers and Operations Research, Vol. 24, No. 3, 1997, pp. 221-229.
C.Y. Lee, “Heuristic Methods for Sub-Graph Topology Enhancement in Ring-Based
Transport Network Design,” M.Sc. Thesis, University of Alberta, 2000.
C.Y. Lee, W.D. Grover and G.D. Morley, “Heuristic Methods for the ‘Span Elimina­
tion’ Problem in Ring-Based Transport Network Design,” Proc. IEEE Canadian Conf.
on Elec. and Comp. Eng. ‘99, May 1999, pp. 232-237.
C.-H. Lee, H.-B. Ro and D.-W. Tcha, "Topological Design of a Two-Level Network
with Ring-Star Configuration," Computer Ops. Res., Vol. 20, No. 6,1993, pp. 625-637.
M. MacGregor, “The Self Traffic-Engineering Network,” Ph.D. Thesis, University of
Alberta, 1991.
P. Mateti and N. Deo, "On algorithms for enumerating all circuits of a graph," SIAM J.
Comput., vol. 5, no. 1, Mar. 1976, pp. 90-99.
M. MacGregor, W.D. Grover, “Optimized Jt-shortest paths algorithm for facility resto­
ration,” Software Practice and Experience, 1993.
J. Manchester, P. Bonenfant and C. Newton, ‘T he Evolution Of Transport Network
Survivability,” IEEE Communications Magazine, Vol. 37, No. 8, 1999, pp. 44-51.
A. McGuire and P. Bonenfant, “Standards: The Blueprint for Optical Networking,”
IEEE Communications Magazine, Vol. 32, No. 2, 1998, pp. 68-78.
Y.-S. Myung, H.-G. Kim and D.-W. Tcha, Optimal Load Balancing on SONET Bidi­
rectional Rings, Operations Research, Vol. 45, No. 1, 1997,148-152.
D. Minoli, Telecommunications Technology Handbook, Artech House Inc., Boston,
Mass., 1991.
G.D. Morley, W.D. Grover, “Optimal Loading o f SONET BLSRs: Assessment of Ben­
efits of Demand Splitting and Time-slot Interchange,” Proc. 2nd Canadian Conference
on Broadband Research, Ottawa, Canada, June 22-24, 1998, pp. 135-144.
G.D. Morley and W.D. Grover, “A Comparative Survey of Methods for Automated De­
sign of Ring-based Transport Networks,” Technical Report TR-97-04, TRLabs, 1998.

239

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[MoG99a]

[MoG99b]

[Moy98]
[Mur92a]

[Mur92b]

[NeW99]

[Nor94]

[Nor96]
[OwW93]

[Owe96]

[RaS95]

[RaS97]

[RaS98]

[Ree93]

[RND77]

[Rob94a]

[Rob94b]

[Rya98]

[SGM93]

[Sha98]

G.D. Morley and W.D. Grover, “Comparison of Mathematical Programming Ap­
proaches to Optical Ring Design,” Proc. Canadian Conf. on Broadband Research, No­
vember 1999, pp. 173-184.
G.D.MorIey and W.D. Grover, “Current Approaches in the Design of Ring-based Op­
tical Networks,” Proc. IEEE Canadian Conf. on Elec. and Comp. Eng. ‘99, May 1999,
pp. 135-144.
J.T. Moy, OSPF: Anatomy o f an Internet Protocol, Addison-Wesley, 1998.
K. Murty, Network Programming, Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 365-
368.
K. Murty, Network Programming, Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 209-
222.

G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999,
pp. 540-546.
Northern Telecom, SONET 101: An Introduction to Basic Synchronous Optical Net­
works, Northern Telecom, 56118.11, Issue 3, October 1994.
Northern Telecom, Introduction to SONET Networking, 1996.
H.L. Owen, C. Wulf-Mathies, “Synchronous Digital Hierarchy Optical Metropolitan
Network Ring Traffic Analysis,” European Trans. Telecomm., Vol. 6, No. 4,1993, pp.
591-597.
H.L. Owen, “Ring-based bandwidth dimensioning in SDH networks,” submitted to
Computer Communications, Elsevier.
R. Ramaswami and K.N. Sivarajan, “Routing and Wavelength Assignment in All-Op­
tical Networks,” IEEE/ACM Trans, on Networking, Vol. 3, 1995, pp. 489-500.
R. Ramaswami and G. H. Sasaki. "Multiwavelength optical networks with limited
wavelength conversion," in: Proc. o f IEEE Infocom '97, 1997, Vol. 2, pp. 489-498.
R. Ramaswami and K.N. Sivarajan, Optical Networks: A Practical Perspective, Aca­
demic Press, 1998.
C.R. Reeves, Modem Heuristic Techniques fo r Combinatorial Problems, John Wiley
and Sons, New York, 1993.
E.M. Reingold, J. Nievergelt, N. Deo, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewoood Cliffs, NJ, 1977.
A. Roberts, "Graduate seminar on algorithms for survivable network design employing
self healing rings," Dept, of Electrical Engineering, U. of Colorado, Colorado Springs,
Colo., June 10, 1994.
A. Roberts, A. DeGuilio, "A Network Design Methodology," CS622 Project Report,
Dept, of Electrical Engineering, U. of Colorado, Colorado Springs, Colo., 1994.
J.P. Ryan, “WDM: North American Deployment Trends,” IEEE Communications
Magazine, Vol. 36, No. 2, 1998, pp. 40-44.
J.B. Slevinsky, W.D. Grover and M.H. MacGregor, “An algorithm for survivable net­
work design employing multiple self-healing rings,” in Proc. IEEE Globecom ‘93, Dec.
1993, pp. 1568-1573.
C. A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Java

240

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[S hF 94]

[ShF96]

[Shi95]

[SHS93]

[Sle99]

[SSW98]

[Sta99]

[StGOO]

[SWS99]

[Sui99]

[TRLOOa]
[TRLOOb]
[Tuc75]

[VSK96]

[Was91 a]

[Was91b]

[WCY99]

[Win94]

[WKL92]

Edition, Prentice Hall, Upper Saddle River, NJ, 1998.
J. Shi and J. Fonseka, “Design of Hierarchical Self-Healing Ring Networks,” Proc. o f
IEEE Intl. Conf. on Communications '94, 1994, pp. 478-482.
J. Shi and J. Fonseka, “Interconnection of Self-Healing Rings,” Proc. o f IEEE Intl.
Conf. on Communications ‘9 6 ,1996, pp. 1563-1567.
J. Shi, “Design and Analysis of Survivable Telecommunications Networks,” Ph.D.
Thesis, University of Texas at Dallas, 1995.
M.M. Slominski, S. Hasegawa, H. Sakauchi, H. Okazaki, “Multi-ring Approach for
ATM-VP Networks Survivability,” Proc. o f IEEE Intl. Conf. on Communications '93,
1993, pp. 245-249.
J.B. Slevinsky, “Synthesis of Ring-based Restorable Networks,” M.Sc. Thesis, Univer­
sity of Alberta, 1999.
A. Schrijver, P. Seymour and P. Winkler, “The Ring Loading Problem,” SIAM J. Dis­
crete Math., Vol. 11, No. 1, February 1998, pp. 1-14.
StatSoft Inc., Electronic Statistics Textbook, Tulsa, OK, 1999, WEB: http://
www.statsoft.com/textbook/stathome.html.
D. Stamatelakis, W.D. Grover, ‘Theoretical Underpinnings for the Efficiency of
Restorable Networks Using Preconfigured Cycles ("p-cycles"),” IEEE Trans. Comm.,
Vol. 48, No. 8, pp. 1262-1265.
P. Soriano, C. Wynants, R. S£guin, M. Labbd, M Gendreau and B. Fortz, “Design and
Dimensioning of Survivable SDH/SONET Networks,” Telecommunications Network
Planning, Editors B. Sansb and P. Soriano, Kluwer Academic Publishers, 1999, pp.
147-167.
E. Siu, “Methods and Issues in Path Provisioning on Ring-based Networks,” M.Sc.
Thesis, University of Alberta, Fall 1999
TRLabs, RingBuilder Interactive Application Programmers Interface, March 2000.
TRLabs, RingBuilder Interactive Users Guide, March 2000.
A. Tucker, “Coloring a Family of Circular Arcs,” SIAM J. Appl. Math., Vol. 29, No. 3,
1975, pp. 493-502.
R. Vachani, A. Shulman, P. Kubat, "Multicommodity Flows in Ring Networks," IN­
FORMS Journal on Computing, Vol. 8, No. 3, Summer 1996, INFORMS, pp. 235-242.
O.J. Wasem, “An Algorithm for Designing Rings for Survivable Fiber Networks,”
IEEE Trans, on Reliability, Vol. 40, No. 4, October 1991, pp. 425-432.
O.J. Wasem, “Optimal Topologies for Survivable Fiber Optic Networks using SONET
Self-Healing Rings,” Proc. o f IEEE Globecom '9 1 ,1991, pp. 2032-2038.
E.W.M. Wong, A.K.M. Chan and T.-S.P. Yum, “A Taxonomy of Rerouting in Circuit-
Switched Networks,” IEEE Communications Magazine, Vol. 37, No. 11, 1999, pp.
116-122.
W.L.Winston, Operations Research: Applications and Algorithms, 3rd Ed., Duxbury
Press, Belmont CA, 1994.
T.-H. Wu, D. Kong, R.C. Lau, “A Broadband Virtual Path SONET/ATM Self-Healing
Ring Architectures and Its Economic Feasibility Study,” TFF.F. Journal on Selected Ar-

241

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.statsoft.com/textbook/stathome.html

[Wol98]
[Wu92]

[Wu99]

[WuC91]

[WuL90]

[WWC94]

[XCG99]

eas of Communicatioro, Vol. 9, No. 9, December 1992, pp. 834-840.
L.A. Wolsey, Integer Programming, John Wiley & Sons, 1998.
T.-H. Wu, Fiber Network Service Survivability, Artech House Inc., Boston, Mass.,
1992.
T.-H. Wu, “Emerging Technologies for Fiber Network Survivability,” IEEE Commu­
nications Magazine, Vol. 33, No. 2,1999, pp. 70-75.
T.-H. Wu, R.H. Cardwell, “A Multi-period Design Model for Survivable Network Ar­
chitecture Selection for SONET Interoffice Networks,” IEEE Trans, on Reliability,
Vol. 40, No. 4, October 1991, pp. 417-427.
T.-H. Wu and R.C. Lau, A Class of Self-Healing Ring Architectures for SONET Net­
work Applications, in: Proc. o f Globecom '90, 1990, pp. 444-449.
O.J. Wasem, T.-H. Wu and R.H. Cardwell, “Survivable SONET Networks - Design
Methodology,” IEEE Journal on Selected Areas in Communications, Vol. 12, No. 1,
January 1994, pp. 205-212.
Xu, Chui and Glover, “Optimizing a Ring-Based Private Line Telecommunications
Network Using Tabu Search,” Management Science, Vol. 45, No. 3,1999, pp. 330-345.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

Appendix A: Ring Loading Formulations
The IP formulations for the two remaining problem variants are given in this section.

A .l IP3: Channel Interchange, with Demand Splitting
The IP formulation for ring loading with channel interchange and demand splitting can be

written as follows.

IP3 Maximize:

number of units of demand bundle k routed in the counter-clockwise direction, and xk is a binary

decision variable that indicates whether demand bundle k is selected for loading onto the given ring
or not.

The objective function (1) is to maximize the total demand carried in the clockwise and coun­

ter-clockwise directions. Constraint set (2) ensures that the portion of demand carried (in both

directions) over each span does not exceed its capacity. Constraint set (3) ensures that the sum of

clockwise and counter-clockwise flows for each demand k is either equal to the total demand dk or

zero. Constraint sets (4) and (5) ensure that the clockwise and counter-clockwise flows for each

demand bundle k do not exceed its size dk. Constraint set (6) asserts that the routing decision varia­

bles are binary.

A.2 IP4: Channel Assignment, no Demand Splitting
The IP formulation for ring loading with channel assignment but without demand splitting can

2 (f t + f k) (i)
fee D

Subject to:

I - 1, . . . , n (2)
€-,(/) fceAT2(0

fk +f k = d k - X k , V * e £> (3)

0 < f k < d k ,

0 < f k < d k ,

Xk e {0,1} ,

integer, V k e D

integer, V& e D

V k e D
(5)

(6)

(4)

where f k is the number o f units of demand bundle k routed in the clockwise direction, fk is the

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be written as follows.

IP4 Maximize:
c

£ £ < / * > / ; ,) m
k e D r= 1

Subject to:

^ fk t ^ _/jtr ~ ^ ^ — !»•••» t i , t — 1, . .. , c (8)
*£«,(/) k e K 2(l)

c

£ / * ! = d k - X * . V k e D (9)
r= 1

c

V fc e D (10)
r = I

X t + X ^ l . V i t e i) (11)

/*/’ /fct’ e {°>!} > V£ e Z>, r = 1, . . . , c (12)

where / t* = 1 if one unit of demand bundle k is routed over channel t in the clockwise direction and

0 otherwise. Similarly, f k] = l if one unit of demand bundle k is routed over channel t in the clock­

wise direction and 0 otherwise.

The IP formulation for channel assignment with no demand splitting is identical to IP2 in

Chapter 4 except that constraint set (16) is replaced by constraint sets (9) and (10), which ensure

that all demands in a demand bundle are routed in either the clockwise or counter-clockwise direc­

tion or not at all. Once again, the objective function (7) is to maximize the demand carried in both

directions around the ring over all channel positions. Constraint set (8) ensures that each channel t

carries at most one demand over each span. Constraint sets (11) and (12) assert that all variables

are binary.

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: Optimal Ring Loading Algorithm for Hubbed Demand Patterns

In this appendix we present a ring loading algorithm for finding the optimal routing and chan­

nel assignment for a pure hubbed demand pattern. We show that the solutions produced by this

algorithm serve the maximum possible demand with or without channel interchange. We begin by

observing that the maximum flow from any node on a ring is 2 c, i.e. the aggregate capacity of its

two incident spans. Because all demands in a pure hubbed demand pattern originate (or terminate)

at the hub node, the upper bound on demand served is also 2 c . When demand bundles must be

loaded in their entirety or not at all, as assumed in this work, the maximum demand that can be
served is

max { q (D’) I q { D ') < 2 - c } (1)D’cO
n

where D ' is a subset of the complete demand pattern D and q(D) = £ dXj. In other words, the
/ = 2

maximum demand that can be served under any circumstances is the maximal subset of demand

bundles that satisfies the maximum flow condition.

For any such subset, a routing and channel assignment solution can be constructed that serves

the entire subset of demands using the procedure given below (see Figure Bl).

1. Starting at the hub node k = l , proceed in the clockwise direction from node k to node

k = k+ I .

2. If the load on span 1, w, = c go to step 3. Otherwise, route as much demand as possible in

the clockwise direction from the hub node to node k. Let us denote this demand flow as

/,* , where f Xk = max(dlk, c - w l) . Get the next f*k available channel positions on span 1

and assign them to demand dlk on spans 1 through k. If all of the demand can be routed in

the clockwise direction, return to step 1. Otherwise, mark the current route node as the cut

node and route the residual demand, f[k = dlk- f*k , in the counter-clockwise direction.

Get the first f xk available channel positions on span n and assign them to demand dlk on

spans n through k+1. Return to step 1.

3. Route as much demand as possible in the counter-clockwise direction, such that the load

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on span n is less than or equal to its capacity, wn = £ /i} ^ c- Get the next f[k available
J = K

channel positions on span n and assign them to demand dlk on spans n through k+1.

Return to step 1.

Figure B .l. Ring loading algorithm for pure hubbed demand pattern.

At the conclusion of this procedure, all demands have been served and each unit of demand is

assigned a unique channel position along its entire route from the hub node to the destination node.

To show that the entire demand is served, note that the demands on either side of the cut node, kc,

are routed entirely in one direction. That is, demands from the hub node to nodes 1 <k<kc are

routed in the clockwise direction (i.e., f*k = dlk and f{k = 0) and demands from the hub node to

nodes kc<k<n are routed in the counter-clockwise direction (i.e., /,* = 0 and f{k

Demands from the hub node to the cut node kc are split between the two directions. Thus the total

demand flowing in the clockwise direction over span 1 is

j = 2
2 , du+f i l*c (2)

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the demand flowing in the counter-clockwise direction over span n is
n n

Wn - X f l j + f \ k c = X d l j + fliic ~ C' (3)
j = k c + i y=*c+1

Adding Eq.(2) and Eq.(3) and rewriting using algebra yields
n

Wl + W n = ' Z d lj W
y = 2

Thus, it has been shown that the entire demand has been served. It is also clear that wt < c for

1 <i<n and that the channels assigned to demands on each span are unique. For channel inter­

change, the only constraint is that the load on any span does not exceed its capacity. Because this

has been shown to be true for channel assignment, the same routing is also valid for channel inter­

change.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

247

Appendix C: Demand Matrices for Metropolitan Test Networks
The demand matrices for test networks Netl5 and Net20 are listed in Figures C.1 and C.2,

respectively.

To Node

F
r
o
m

N
o
d
e

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 2 1 1 1 1 2
2 - 4 3 1 1 2 1 1 1 2 3
3 - 2 1 1 1
4 - 1 1 1 1 1 2 2 4
5 - 3 2
6 - 2 2 13 1 1 2 4
7 - 2 2 8 1 1 2 4
8 - 6 4
9 - 3 10 2 4 3 7

1C - 10 1 1 1 4
11 - S 9 5 22
12 - 2 1
13 - 1
14 - 4

Figure C.l. Demand matrix for Netl5 (in DS3s).

To Node
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19

1 1 1 4 _ J 1 1 1 1 1 15 _ J 1 1 1 "71
- 1 1 __2 1 1 4 7 1 1 1

• 1 1 2 1 2 1 1 8 1 1 1
• 2 1 1 2 1 1 13 1 1 1

- ~T 1 1 1 1 13 1 1

_1 1 2 1 9 1 1 i
-

- 1 T 2 _ I ~~i
- 1 1 2 17 1 ^ 1 1 ~ 3

- 1 1 11 1 1 1
~ 1 1 8 1 ^ 7 1 1

- 2 15 4 1 1 ~ 2
- 38 2 3 2 1 1

- 16 __6 14 6 8

- ~~i " 7 i__
- 1 1

I__ - 1I---- ---- 1

Figure C.2. Demand matrix for Net20 (in DS3s).

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D: Procedure for Estimating Optimal Solution Values
This appendix describes in further detail the procedure used to derive point estimates of the op­

timal solution. As noted in Chapter 7, the basic approach draws on the statistical theory of extreme

values, which considers the case where n independent samples, each of size m, are taken from a pop­

ulation whose minimum value is y. It has been shown that if the minimum value in sample i is v,-,

the distribution of v(- approaches a 3-parameter Weibull distribution asm-4 « [FiT28]. The cumu­

lative distribution function for the 3-parameter Weibull distribution is given by the expression:

F(x) = P (X < x) = l - e x p j - p ^) PJ , a > 0 , P > 0 , Y < * (1)

where a is the scale parameter, P is the shape parameter and y is the location parameter o f the dis­

tribution.

For each test case, we estimate these parameters using the procedure described in [Sta99]. To

illustrate this procedure we use the design results for test case 12 (Net43,4B48 & 4B192). We begin

by rank-ordering the solutions according to cost and computing the median rank for each solution

using the following expression:

F{t) = (j — 0.3) / (n + 0.4) (2)

where t = x —y , j denotes the solution order and n is the total number of solutions. The rank order,

solution cost and median rank for all twenty-four solutions for test case 12 are shown in Table D.l.

Table D.l: Solution Data for Test Case 12

Rank./ Solution Cost Median Rank R ank./ Solution Cost Median Rank

1 835.99 0.0287 13 923.15 05205

2 842.09 0.0697 14 928.67 05615

3 854.05 0.1107 15 934.69 0.6025

4 858.03 0.1516 16 941.33 0.6434

5 859.47 0.1926 17 944.75 0.6844

6 859.71 0.2336 18 945.93 0.7254

7 860.31 0.2746 19 949.25 0.7664

8 870.23 0.3156 20 953.81 0.8074

9 877.15 0.3566 21 96251 0.8484

10 877.15 0.3975 22 96753 0.8893

11 878.23 0.4385 23 985.97 0.9303

12 920.47 0.4795 24 1074.03 0.9713

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using this data, we can construct a probability plot, as shown in Figure D.l, for any value of the

location parameter 0 < y < min v .. Note that the horizontal axis is scaled logarithmically and the

quantity l n (l n (l / (l -Fi t)))) is plotted about the vertical axis.

2

A

0

-1

-2

-3

33 16 3715

ln(t)

Figure D. 1. Probability plot for test case 12 (Net43,4B48 & 4B192).

The Weibull scale a and shape parameters can be estimated from this plot by fitting a re­

gression line to the empirical data. This is because the Weibull cumulative distribution can be re­

written in the form of a straight line y = m • x' + c , as follows:

ln (In (l / (l - F(t)))) = 3 • ln(r) - p • Incc (3)

Thus, the shape parameter, (3, is equal to the slope, m, of the regression line and the scale pa­

rameter, a , can be calculated as follows:

a = e~c/p (4)

The quality of the fit between the regression line and the empirical data in the probability plot

can be expressed by the common R measure (correlation squared). Therefore, an estimate of the

optimal solution value can be obtained by finding the value of the location parameter y that maxi­

mizes R2 . This is illustrated in Figure D.2, which plots the correlation squared for several values of

the location parameter. This plot shows that the best fit between the regression line and the empirical

data occurs when location parameter is roughly equal to 830. Consequently, this value is taken as

an estimate of optimal solution value for test case 12.

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 37

2- °S5cr co

fc 033

0 32
830 815 820 830825 835 840

Location Parameter, y

Figure D.2. Correlation squared, R2, vs. location parameter.

Rather than constructing similar plots for each test case, the “Goal Seek” function in Microsoft Ex

cel™ was used to find the best estimate of the location parameter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

Appendix E: Cycle Finding Algorithm
This appendix describes in detail the cycle finding algorithm mentioned in Chapter 8. The

cycle finding algorithm developed here uses a depth-first search to enumerate all cycles in an undi­

rected graph. For simplicity, we begin by describing the basic algorithm and then elaborate on the

changes made to improve its efficiency. The algorithm is based on a similar algorithm by Johnson

[Jon75] for directed graphs. Here, cycles are generated by adding edges to a path until either a

cycle is found or the cycle circumference limits (in hops or distance) have been exceeded. To avoid

exploring more paths than absolutely necessary, careful pruning is done to ensure that every cycle

is generated only once.

The search begins at an arbitrary vertex s and a path (j, v,, v2, ..., vk) is built using a depth-first

search. To ensure that each cycle is unique and not simply a permutation of a cycle found previ­

ously, we only consider cycles rooted at s. As vertices are added to the path, they are marked to

indicate that they are unavailable for extending the current path. The search continues adding

edges to the path until one of three conditions is met: (1) the path is blocked by a marked vertex

‘'t+i * s » (2) the cycle circumference limits are exceeded or (3) a cycle is found (i.e., vk+l = s) .

After all edges out of vk have been explored, we back up to the previous vertex. In doing so, we

unmark vk only if a cycle was found or the cycle circumference constraints were exceeded. Other­

wise, if all paths extending out of vfc are blocked, it remains marked (i.e., unavailable) even after

we back up past it. This prevents the algorithm from searching parts of the graph where previous

searches have been unsuccessful. For each vertex w, a record is also kept of the adjacent vertices

that are not in the current path but remain blocked by w. This set S(w) of adjacent vertices is

referred to as the predecessors of w. If w is unmarked when backing up to the previous vertex, then

all of its predecessors are also unmarked using a recursive call. The predecessors in turn unmark all

of their predecessors and so on. This makes w and its predecessors available again for extending

the path.

The above process continues until we back up to the root vertex s. At this point, all of the

cycles traversing the first edge (s, v ,) have been found so it is removed from the graph. This pre­

vents duplicate cycles from being generated in the opposite direction. Once all edges incident on

the root vertex have been explored, every cycle containing the root vertex will have been found.

Note that it is not necessary to explore the last incident edge because all other edges have been

removed and a cycle cannot be formed. Furthermore, all cycles containing the last edge will have

already been found. The pseudo-code for the basic cycle finding procedure is given in Figure E.l.

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure boolean Cycle(s,v) (
flag = false
avail(v) = false
for each vertex w adjacent to v {

if (w == s) C
output cycle = path + w
flag = true;

} else if (path + w exceeds circumference constraints) {
flag = true;

} else if (avail (w) == true) £
path = path + w
flag = flag OR Cycle (sfw)

}
}
if (flag == true) £

Unmark(v)
} else £

for vertex w adjacent to v £
B(w) = B(w) + v

}
}
path = path - v
return flag

procedure void Unmark(v) £
avail(v) = true
for each vertex v in B(w) £

Unmark(v)
}

Figure E. 1 The recursive depth-first search procedure for finding cycles.

After all cycles containing the root vertex s have been found, the vertex is removed from the

graph and the process begins again from the next vertex in the graph and so on. To complete the

algorithm we observe that every cycle must lie within a two-vertex connected (or biconnected)

component of the graph. Therefore, after the root vertex s is removed from the graph, we find the

biconnected components of the subgraph and then call the cycle finding procedure for each compo­

nent This is also done recursively until all vertices have been explored. The pseudo-code for the

main algorithm is given in Figure E.2.

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure void FindCycles(G) {
for each vertex v adjacent to s in G {

Cycle(s,v)
G = G - (s, v)

}
G = G - v
H = Biconnected(G)
for each h in H {

FindCycles(h)
}

}

Figure E.2 The main procedure for finding all cycles in a graph.

A description of the Biconnected() procedure for finding the biconnected components of an

undirected graph can be found in [MaD76].

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F: Extension to FCRIP Formulation
In Chapter 10, we developed the FCRIP formulation of the multi-ring network design problem

based on the assumption that there is an ADM at each node of a candidate ring and there are no

restrictions on the locations at which inter-ring transitions take place. In practice, the lowest cost

designs may include rings with glassthroughs at some nodes. In this appendix, we extend the basic

FCRIP formulation to include decision variables for the location of ADMs within each candidate

ring. We also discuss how the formulation can be extended to include UPSR rings.

F .l ADM Locations
To extend the problem formulation to include specification of the ADM locations we replace

the decision variables GtJ in Chapter 10 with decision variables for the quantity of demand on

route i that is carried on each span s of (stacked) ring j , Gi]S. We also introduce decision variables

vJn such that vJn - l if an ADM is present at node n on (stacked) ring / and 0 otherwise. Using this

notation, the IP formulation can be expressed as:

Minimize:

Subject to:

X W X S / j-v -2 X X V c<*
i e J i e j n e S (f)

Z =
iel(k)

Z Z G* = Fr
; e J(s) s 6 S(i. i)

Z G' j s - mJ - Xj '
i 6 Ks'i

V t e J f

Vi e /, Vi e S(i)

Vye y, V ie S(J)

(1)

(2)

(3)

(4)

G ijs ~ G ij(s + 1) — 'y ' n ' F i Vi e I, V/ e m , Vi e 5(i, j) (5)

Vi e I, vy e m , Vs e S(i, y) (6)

Vy e J (7)

Vi e l (8)

Vie I, Vye J(i) (9)

where spans s and (s+1) are incident on node n and are given in sequence from entry to exit node.

Constraints (5) and (6) ensure that no demand can be added or dropped at node n if vJn = o , i.e.

Gijs = Gij[S+1) • Note that if more than one copy of a candidate ring is required, there is still the

problem of deciding which rings required an ADM at the specified nodes.

G i K s + l) - G i j s - VJ n - F i '

Xj> 0 , integer,

F(> 0 , integer,

Gijs > 0, integer,

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F.2 UPSR Rings
To add UPSR rings to the FCRIP formulation, we denote the subset of candidate rings that are

UPSRs as JUPSr c J and those that are BLSRs as JBLSR̂ J . Constraint set (4) is then modified as

follows:

£ GVl$mr Xr V j e J BLSR, V s e S(J) (10)
1 6 l(s)

and an additional constraint is added to model the consumption of UPSR capacity, as follows:

y . G j js 5 rrij ■ X j , Vy e J y p s R (1 1)

re nn
Constraint (10) ensures that the total flow on each span of a (stacked) BLSR ring does not

exceed its aggregate capacity and constraint (11) ensures that the total flow on each (stacked)

UPSR ring does not exceed its aggregate capacity.

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix G: AMPL Formulations

G .l SCIP Formulation
This AMPL model finds the min-cost set of
rings (with a given module size) that covers
the working load assigned to each span in the
network graph.
#
By: G.D. Morley, May 1, 1998.
#

 # Sets--
set SPAN; # set of spans in the network,
set CYCLE; # set of cycles in the network.
set CYCLE_SPAN within {CYCLE, SPAN}; # subset of spans in each cycle,
set TECH; # ring technologies (modularities) under consideration,
set RING := {CYCLE, TECH}; # combinations of cycle and technology.
 # Parameters--
param moduleSize{TECH} >= 0; # the module size of each technology,
param cost{RING} >=0; # fixed cost of each ring,
param working {SPAN} >=0; # working load on each span
 # Decision variables--
var Number{RING} integer >=0, <=10; # number of copies of each ring.
 #-- Objective function --
minimize total_cost:

sum{(i,j) in RING} cost[i,j] * Number[i,j];
 # Constraints--
subject to span_coverage {j in SPAN}:

sum { (i, j) in CYCLE_SPAN, k in TECH: (i,k) in RING}
moduleSize[k] * Number[i,k] >= working[j];

G.2 FCRIP Formulation
This AMPL model finds a set of rings (with a given
module size) and a routing for each demand that minimizes
the total fixed charge and routing costs of the design.
#
By: G.D. Morley, May 1, 1998.
#

Sets--
set SPAN; # set of spans in the network,
set CYCLE; # set of cycles in the network.
set CYCLE_SPAN within {CYCLE,SPAN}; # subset of spams in each cycle,
set TECH; # ring technologies (modularities) under consideration,
set RING := {CYCLE, TECH}; # combinations of cycle and technology,
set DEMAND; # set of network demands,
set ROUTE; # a set of routes.
set ROUTE_SPAN within {ROUTE,SPAN} ; # subset of spams in each route.

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set DEMAND_ROUTE within (TEMAND,ROUTE} ;# routes assoc, with each demand,
set ROUTE_CYCLE : = {i in ROUTE, j in CYCLE: card({(i,l) in ROUTE_SPAN}
inter {(j,l) in CYCLE_SPAN}) > 0}; routes that intersect each cycle-
 #--- Parameters---
param moduleSize{TECH} >=0;
param costCRXNG} >=0;
param unitCost >= 0;
param termCost >= 0;
param quantity (DEMAND) >= 0;
 #--- Decision variables --
var Number(RING) integer >=0, <= 10;# number of copies of each ring,
var Flow{ROUTE} integer >=0, <= 100;# flow over each route.
var RingFlow{ROUTE_CYCLE,TECH} integer >=0, <= 100;# flow on each ring.
 #-- Objective function --
minimize total_cost:

sum {(j,h) in RING) cost[j,h] * Number[j,h] +
siim {(i,j) in ROUTE_CYCLE, h in TECH) unitCost * RingFlow[i, j ,h] +
sum (i in ROUTE) termCost * Flow[i];

 #-- Constraints --
subject to total_flow (k in DEMAND):

sum {(k,i) in DEMAND_ROUTE} Flow[i] = quantity[k] ;
subject to demand_served {(i,l) in ROUTE_SPAN) :

sum{ (j,1) in CYCLE_SPAN, h in TECH: (j,h) in RING)
RingFlow[i,j,h] >= Flow(i);

subject to capacity { (j, 1) in CYCLE_SPAN, k in TECH: (j,k) in RING):
sum {(i,l) in ROUTE_SPAN) RingFlowf i,j,k] <= moduleSize [k] *

Number[j,k];

G.3 FDIP Formulation
This AMPL model finds a min-cost set of rings (with a given
module size) that carries each demand at least once.
#
By: G.D. Morley, May 1, 1998.
#

 # S e t s--
set SPAN; # set of spans in the network graph,
set CYCLE; # set of cycles in the network graph.
set TECH; # ring technologies (modularities) under consideration,
set DEMAND; # set of network demands.
set CYCLE_SPAN within (CYCLE, SPAN) ; # subset of spans in each cycle,
set RING within (CYCLE,TECH); # combinations of cycle and technology,
set RING_DEMAND within (RING, DEMAND); # demands that intersect each ring.
 # Parameters--
param moduleSize(TECH) >= 0; # the module size of each technology.

258

the module size of each technology.
fixed cost of each ring.
cost per inter-ring transition.
termination cost per demand.
quantity for each demand pair.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

param cost {RING} >=0; # the fixed cost of each ring.
 # Decision variables--
var Number {RING} binary; # true if the ring is in the design.
 # Objective function--
minimize total_cost:

sum {(i,j) in. RING} cost[i,j] * Number [i, j] ;
 #--- Constraints --
subject to demand_served {k in DEMAND}:

sum {(i,j,k) in RING_DEMAND} Number{i,j] >= 1;

G.4 LBEP Formulation
AMPL Model for calculating the lower bound
on the total BLSR capacity (based on several
conditioning arguments) required to cover
the working load assigned to each span of the
network.
#
B y ; G.D. Morley, Jan. 21, 2000
#

 # S e t s --
set NODE; # nodes
set SPAN; # spans
set NODE_SPAN within {NODE, SPAN}; # spans incident on each node.
 # Parameters--
param moduleSize >= 0;
param working {SPAN} >= 0;
param distance {SPAN} >= 0;
 #-- Decision variables —
var Modules {SPAN} integer >=0;# the number of ring modules per span,
var Rings {NODE} integer >=0; # the number of rings at each node.
 # Objective function--
minimize total_modules:

sum{j in SPAN} Modules [j];
 #-- Constraints
subject to span_coverage {j in SPAN}:

moduleSize * Modulestj] >= workingEj];
subject to ring__balance {i in NODE, (i,j) in NODE SPAN} :

sum {(i,k) in N0DE_SPAN} Modules[k] >= 2 * Modules!j];
subject to ring_parity {i in NODE} :

sum { (i, j) in N0DE_SPAN} Modules [j] = 2 * Rings [i] ;

259

the working capacity of the ring.
the working load on each span.
the length of each span.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G.5 LBRIP Formulation
AMPL Model for calculating the lower bound
on the total BLSR capacity (based on several
conditioning arguments) required to cover
the working assigned to each span of the
network. This formulation also optimizes
the routing of demands.
#
By: G.D. Morley, Aug. 18, 2000
#

 # S e t s--
set NODE; # set of nodes in the network,
set SPAN; # set of spans in the network.
set NODE_SPAN within {NODE, SPAN}; # spans incident on each node,
set DEMAND; # set of network demands,
set ROUTE; # set of routes.
set ROUTE_SPAN within {ROUTE, SPAN}; # spans in each route.
set DEMAND_ROUTE within {DEMAND,ROUTE};# routes assoc, with each demand.
set TECH; # ring technologies (modularities) under consideration.
 # Parameters--
param moduleSize {TECH} >=0; # the working capacity of each technology.
param quantity{DEMAND} >=0; # the quantity
param distance{SPAN} >=0; # the length of each span.
 #-- Decision variables --
var Modules{SPAN,TECH} integer >=0;
var Rings{NODE,TECH} integer >=0;
var Flow{ROUTE} integer >=0;
 #-- Objective function --
minimize cost:

sum{j in SPAN, k in TECH} distance[j] * Modules[j,k];
 #-- Constraints --
subject to span_coverage {j in SPAN}:

sum {k in TECH} moduleSize[k] * Modules[j,k] >=
sum {(i, j) in ROUTE_SPAN} Flowfi];

subject to total_flow {k in DEMAND}:
sum {(k,i) in DEMAND_ROUTE} Flow[i] = quantity [k] ;

subject to ring_balance {i in NODE, (i,j) in NODE_SPAN, k in TECH}:
sum {(i,l) in NODE_SPAN} Modules[l,k] >= 2 * Modules[j,k] ;

subject to ring_parity {i in NODE, k in TECH} :
sum {{i,j) in NODE_SPAN} Modules[j,k] = 2 * Rings[i,k];

260

num. of ring modules on each span.
number of rings at each node.
the flow over each route.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

