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Abstract

An asteroidal triple is an independent set of three vertices such that each pair
is joined by some path that does not pass through the neighbourhood of the
third. A graph is AT-free if it does not contain any asteroidal triple. The
class of AT-free graphs contains various subclasses that each manifest some
linearity that has been exploited algorithmically.

Given an AT-free graph, two sweeps of a lexicographic breadth-first search
(LBFS) will find a dominating pair and transitively orient the complement of
the square. We show how a 2-sweep LBFS orientation of the complement of
the square orders every minimal triangulation of an AT-free graph. We also
show that if there is a transitive orientation of the complement, then there is
such an orientation that agrees with a given 2-sweep LBFS orientation of the
complement of the square. Motivated by these results, we show that a graph is
cocomparability if and only if there is a particular partial order of its minimal

separators.
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Chapter 1

Preliminaries

1.1 Introduction

All permutation, interval, trapezoid, and cocomparability graphs are AT-free.
These graph classes have models (i.e. partial orders or geometric intersec-
tion models or both) with a linearity that is exploited in efficient algorithms
to restricted problems that are NP-complete in general. Although AT-free
graphs have linear properties, such as dominating pairs, there is no known
characterization of this graph class with an explicit linearity.

A recent algorithm [5] which uses 2 sweeps of a lexicographic breadth-first
search (LBF'S) to find a dominating pair of an AT-free graph also transitively
orients the complement of the square [3]. Our motivating question is, “What
is ordered by this transitive orientation of the complement of the square?” For
AT-free graphs, we show that a given 2-sweep LBF'S orientation of the comple-
ment of the square orders every minimal triangulation. For cocomparability
graphs, we show that some transitive orientation of the complement will agree
with a given 2-sweep LBFS orientation of the complement of the square. We
develop a new characterization of cocomparability graphs to interpret these
results: a graph is cocomparability if and only if it has a particular partial
order of its minimal separators. Finally, we conjecture that 2-sweep LBFS
orientations of the square generalize transitive orientations of the complement

the same way that AT-free graphs generalize cocomparability graphs.



In Chapter 1, we review basic definitions and we survey relevant graph
classes. The focus of Chapter 2 is how minimal separators relate to chordal
graphs, minimal triangulations, and AT-free graphs. In Chapter 3, we show
how transitive orientations of the complement and 2-sweep LBF'S orientations
of the complement of the square have the same properties with respect to
minimal separators. The topic of Chapter 4 is a further examination of the
relationship between transitive orientations of the complement and 2-sweep
LBFS orientations of the complement of the square. Chapter 5 concludes this
thesis with an analysis our main result and a proof of our new characterization

of cocomparability graphs.

1.2 Terminology

We shall restrict our attention to simple, undirected, finite graphs. Simple
graphs are those with no loops or multiple edges. The vertex set and edge
set of a graph G are denoted V(G) and E(G) respectively. We shall write
uv € F(G) whenever u,v € V(G) are adjacent in G. Two sets 5,7 C V(G)
are completely adjacentin G, denoted SxT C E(QG), if s # t implies st € E(G),
for s € S and t € T. Conversely, S and T are completely non-adjacent in G,
denoted S x TN E(G) = 0, if st € E(G), for s € S and t € T. The set of
vertices adjacent to a vertex u, denoted N(u), is the neighbourhood of u. We
say that a set S C V(G) is close to a vertex u if S C N(u).

A u,v-pathin G is an ordered sequence of vertices 7 = (u = g, 21, ..., Tk =
v) such that consecutive vertices are adjacent and no vertex is repeated. The
length of 7 is the number of edges connecting consecutive vertices. A chord
of 7 is an edge between non-consecutive vertices of 7. We say that = is an
induced path or a chordless path if m has no chords in G. Note that every
shortest u,v-path is induced. Let 7; be a u,v-path and 75 be a v, w-path.
Some subsequence of the concatenation of 1 and 75 is a u, w-path. We denote

such a resulting u, w-path as m; - 1. Every path that we refer to is induced



unless otherwise noted.

Two vertices u and v are connected if there is some u, v-path in G. We say
that a subset of V(G) is connected if it is pairwise connected. A component
of G is an inclusion maximal connected subset of V(G), i.e. the subset is not
properly contained in any other connected subset of V(G). Whenever V(G)
is a component we say that G is connected. The distance between two vertices
u and v, denoted dg(u,v), is the length of the shortest u, v-path or oo if no
u, v-path exists. The diameter of a connected graph G, denoted diam(G), is
the maximum of all distances between pairs of vertices in G.

A cycle of G is a path C = (zg, 21, .. ., zx) such that zozx € F(G). Alterna-
tively, the vertices of C as ordered form ring such that consecutive vertices are
adjacent. With this definition, the length of C' is the number of edges connect-
ing consecutive vertices, and a chord of C is an edge between non-consecutive
vertices. A cycle is long if it has a length greater than 3, and it is induced or
chordless if it has no chords. Cy is the graph consisting of a chordless cycle of
length k. Every cycle that we refer to is chordless unless otherwise noted.

For S C V(G), the subgraph of G induced by S, denoted G[S], is the result of
restricting G to S. More precisely, V(G[S]) = S and E(G[S]) = {uv € E(G):
u,v € S}. A graph class is a set of all graphs with a particular property. We
say the that the class C is hereditary if for G € C, every induced subgraph of
G is in C. We shall restrict our attention to hereditary graph classes. If H
is an induced subgraph of G then the difference G \ H is G[V(G) \ V(H)].
Analogously, if S C V(G) then the difference G \ S is G[V(G) \ S].

Sometimes we shall relax the condition that a subgraph be induced. A
graph H is a subgraph (resp. supergraph) of G whenever V(H) = V(G) and
E(H) C E(G) (resp. E(H) 2 E(G)). H is a proper subgraph or supergraph

when the inclusion between the edge sets is strict.



1.3 Graph Classes

What follows is a brief survey of graph classes discussed in this thesis.

1.3.1 Chordal Graphs
Definition. A graph is chordal or triangulated if every long cycle has a chord.

We say that a graph G is complete if its vertices are pairwise adjacent. A
clique is a subset of vertices that induces a complete subgraph. Every graph
has a chordal supergraph, which is called a triangulation, because the complete
graph with n vertices is chordal. A triangulation H of G is minimal if every
proper subgraph of H is not a triangulation of G.

Dirac discovered an alternate characterization of chordal graphs in terms

of minimal separators that is essential to our understanding of chordal graphs.

Definition. Let G be a connected graph and S be a subset of V(G). We say
that S is a u, v-separator if uw and v are in different components of G \ S. We
call S a separator if there are some u,v € V such that S is a u, v-separator.
Trivially, if uv ¢ E(G) then N(u) is a u,v-separator close to u. We say that
S is a minimal u, v-separator if no proper subset of S separates u and v. We
call S a minimal separator if there are some u,v € V such that S is a minimal
u, v-separator. A minimal separator is close to a vertex wu if it is contained
in the neighbourhood of u. Finally, we say that minimal separator S is a

C-minimal separator if every proper subset of S is not a minimal separator.

Observation. Let G be a connected graph. If uv ¢ E(G) then the minimal

u, v-separator close to u is unique, for u,v € V(G).

Proof. Suppose not and let S,7 C N(u) be two different minimal u,v-
separators close to u. Consider for contradiction s € S\ 7. There is some
u, v-path 7 such that 7 NS = {s} because S is minimal. 7 NT # () because T
separates 4 and v. Let ¢ € 7 NT be closest to v along 7. Now t & S because

s# tand 7N S = {s}. If sis closer to u along 7 than ¢ then S is not a

4



u, v-separator because tu € E(G). If t is closer to u along 7 than s then T is

not a u, v-separator because su € E(G). O
Notation. Ag is the set of all minimal separators of a connected graph G.

Example. Consider the graph in Figure 1.1. {b,¢, e} is a d, f-separator but
not a minimal d, f-separator because {b,e} is also a d, f-separator. Even
though {b,e} is a minimal separator, it is not C-minimal because {b} is a

minimal separator as well.

Oe

C d

Figure 1.1: A chordal graph with minimal separators {b}, {b,d}, and {b,¢e}.

Theorem 1.3.1. [6] A connected graph G is chordal if and only if every min-

imal separator is a clique.

1.3.2 Interval Graphs

A graph has an intersection representation if we can assign sets to vertices such
that two vertices are adjacent if and only their corresponding sets have a non-
empty intersection. Every graph has an intersection representation: associate
with each vertex the set of all the edges incident with it; then two vertices are
adjacent if and only if their corresponding sets have a non-empty intersection.

An intersection representation of a graph is also called an intersection model.

Definition. A graph is an interval graph if it can be represented by the in-

tersection of closed intervals of the real number line.



This graph class has been studied extensively because of its immediate ap-
plicability to problems. For example, consider the problem of assigning class-
rooms to classes such that concurrent classes are assigned different classrooms.
The period of time when a class occurs maps directly to a closed interval of
real numbers. Two classes are adjacent in the corresponding interval graph
whenever their times conflict. If different colours represent different class-
rooms, the classroom assignment problem reduces to colouring the vertices
in the corresponding interval graph such that adjacent vertices have different
colours. For any interval graph, there is an efficient algorithm to find such a
colouring using the least number of colours. For arbitrary graphs, finding such

a colouring using the least number of colours is NP-complete.
Observation 1.3.2. [10] Every interval graph is chordal.

Proof. Let G be an interval graph and Z be an intersection model of closed in-
tervals corresponding to G. For v € V(G), I, denotes the interval of 7 assigned
to v. Consider for contradiction a long chordless cycle (vg, vy, .. ., Vg2, Uks3) in
G. As vury2 € E(G) 1, is either to the left or to the right of I, , on the real
number line. We can reflect every interval of Z about a point on the real line
and still have a valid intersection representation. So without loss of generality
Let I,, = [a,b] and I, , = [z,y]. If
I,, N [b,z] = 0 then a straightforward inductive argument shows that [z, y] is
wrs 2 |0, ] because voupis € E(G)
and v, 2Ukr3 € E(G). Therefore viup3 € E(G), which contradicts that the

assume that [, is to the left of I,

Vk42"

left of [a,b], a contradiction. Moreover, I,

cycle is chordless. O

Some chordal graphs are not interval as demonstrated by the chordal graphs

in Figure 1.2.

1.3.3 Comparability and Cocomparability Graphs

An orientation of a graph is an assignment of direction to all of its edges.

Orientations will always be denoted with an arrow such as =, —, and ~.

6



We only allow edges to be oriented one way: for uv € E(G), either u — v
or v — u but not both. An orientation — is transitive if u — v and v — w

implies u — w, for every u,v,w € V(G).
Definition. A graph is a comparability graph if it has a transitive orientation.

The complement of a graph, denoted G, has the same vertex set as G but

u # v are adjacent in the complement if and only if they are not adjacent in
G. So E(G)NE(G) =0 and GUG = (V(G), E(G) U E(G)) is complete.

Definition. A graph is a cocomparability graph if it is the complement of a

comparability graph.

We are interested in cocomparability graphs because they generalize inter-

val graphs.
Observation 1.3.3. [8] Every interval graph is a cocomparability graph.

Proof. Let G be an interval graph. We can create a transitive orientation of
G by taking an interval model Z and directing u — v if and only if I, is to the
left of I,. O

By Observations 1.3.2 and 1.3.3, chordal and cocomparability are necessary
conditions for a graph to be interval. Gilmore and Hoffman proved that chordal

and cocomparability are also sufficient conditions for a graph to be interval.

Theorem 1.3.4. [9] A graph is interval if and only if it is chordal and co-

comparability.

Let G be a cocomparability graph and — be a transitive orientation of G.
A topological sort of — is a total order < of V(G) such that v — v implies
u < v. Consider any topological sort < of —. If u < v < w and uv, vw ¢ E(G)
then uw ¢ E(G) by the transitivity of —. We shall call this type of order a
cocomparability order because a graph is cocomparability if and only if it has
this type of vertex order. A cocomparability order arranges the components

of a separator:



Observation 1.3.5. Let G be a connected graph and < be a cocomparability
order of G. For every separator S in G, the vertices of a component of G\ S

occur contiguously in < restricted to V(G)\ S.

In [7], Gallai provides an alternative characterization of comparability

graphs in terms of wreaths.

Definition. If a vertex u is not adjacent to any vertex of a path n then u
misses ™ . Alternatively, if u is adjacent to a vertex of 7 then u intercepts
7. Two edges uv,vw € E(G) are tied if there is a u, w-path missing v in G.
When uv and vw are tied either v — v and w — v or v — u and v — w, for
every transitive orientation — of G. A wreath is a cycle where each pair of

consecutive edges along the cycle are tied.

A simple example of a wreath is a long chordless cycle. Consider a graph GG
and a transitive orientation — of G. Let W = (vy, v, ... vg) be a wreath of G.
Label each v; either in (resp. out) if the tied consecutive edges of the wreath are
directed towards (resp. away) from v;. No two consecutive vertices of W are
both labelled in or both labelled out. Hence, the length of W must be even.
Gallai showed that this condition was not only necessary of comparability

graphs but also sufficient.

Theorem 1.3.6. [7] A graph is a comparability graph if and only if it has no
odd wreath.

1.3.4 AT-Free Graphs

NEROFN

Figure 1.2: Some asteroidal triples. The solid vertices denote the triples.



Definition. A set of pairwise non-adjacent vertices is called an independent
set. An asteroidal triple is a independent set of three vertices such that there

is a path between any two missing the third.
Definition. A graph is AT-free if it has no asteroidal triple.

Notice that an asteroidal triple is a 3-wreath in the complement and vice
versa. So every cocomparability graph is AT-free by Theorem 1.3.6. Thus,
chordal and AT-free are necessary conditions for a graph to be interval by

Theorem 1.3.4. Lekkerkerker and Boland proved that chordal and AT-free are

also sufficient conditions for a graph to be interval.

Theorem 1.3.7. [11] A graph is interval if and only if it is chordal and AT-

free.

Not only do AT-free graphs characterize interval graphs, but interval graphs

also characterize AT-free graphs:

Theorem. [1] A graph is AT-free if and only if every minimal triangulation

is an interval graph.

We shall now explain our earlier statement that one linear property of

AT-free graphs is the existence of dominating pairs.

Definition. Let G be a connected graph. A set S C V(G) is called a domi-
nating set if every vertex in V(G) \ S is adjacent to some vertex in S. A pair
of vertices (u,v) is a dominating pair in G if every u,v-path is a dominating
set. Occasionally we will want to talk about the set of vertices dominated by a
pair, denoted Dg(u,v). By Dg(u,v) we mean the vertices that intercept every

u,v-path in G. So (u,v) is a dominating pair whenever Dg(u,v) = V(G).
In Chapter 2, we will prove the following:

Observation. Let G be a connected graph. The pair (z,y) is a dominating pair

in G if and only if (x,y) is a dominating pair in every minimal triangulation.

9



If G is a connected cocomparability graph and < is a cocomparability order
then the first and last vertex of < are never in the same component of G\ S by
Observation 1.3.5. So intuitively dominating pairs correspond to extremities

of an order. This next result supports this interpretation.

Theorem 1.3.8. [{] Fvery AT-free graph has a dominating pair (u,v) such

that the distance between u and v is equal to the diameter of the graph.

10



Chapter 2

Minimal Separators

In this chapter, we define the crossing and parallel relations between minimal
separators. Then we use these relations to describe chordal graphs, minimal
triangulations, and AT-free graphs. Sections 2.1 and 2.2 closely follow Chapter
3 of [1].

2.1 Minimal Separators

Definition. Let S be a separator in a connected graph G and C be a com-
ponent of G\ S. Then C is a full component of G\ S if every vertex of S is

adjacent to some vertex of C.

Notation. Let (¢ be a connected graph and S be a separator in G. Then
C(S) denotes the set of components of G \ S, C&(S) denotes the set of full
components of G \ S, and C&(S) denotes the component of G \ S containing

the vertex v.

The next property of minimal separators follows directly from the defini-

tions.

Lemma 2.1.1. Let S be a separator in a connected graph G and C, D be two

components of G\ S. Then the following are equivalent:

(i) C and D are full components of G\ S.

11



(i1) For every c € C and d € D, S is a minimal c, d-separator.
(11i) There exist c € C and d € D such that S is a minimal c, d-separator.

By this next result, if a minimal separator S has a component that is not

full, then S is not C-minimal.

Lemma 2.1.2. [1] Let S be a minimal separator in a connected graph G. If
C is a component of G\ S that is not full, then Sc = {s € S : s is adjacent to
some vertex of C} € Ag and C is a full component of G \ Sc.

Example. Consider the connected graph G in Figure 2.1 and the minimal
separator {b, e}. The components of G\ {b, e} are {a}, {f}, and {c,d}. Clearly
{¢,d} is a full component of G \ {b, e} but {a} is not. By Lemmas 2.1.1 and
2.1.2, S{ay = {b} is a minimal u, v-separator for v € {a} and v € {c, d}.

¢ d

Figure 2.1: Ag = {{b}, {b,d},{b,e},{c;e}, {c, [}, {d, F}}

Now we introduce and examine the crossing and parallel relations.

Definition. Let 5,7 € Ag. We say that S crosses T, denoted S#T , if there
are two components C, D of G \ T such that S intersects both C and D.

Lemma 2.1.3. [1] Let S,T € Aqg. If S#T then T#S.
A deeper characterization of the crossing relation is:

Lemma 2.1.4. [1] Let S,T € Ag. The following are equivalent:
(1) S#T.

12



(ii) SN C # 0 for every full component C of G\ T.
(11i) There are some s,s' € S such that T is a minimal s, s'-separator.

Definition. Let 5,7 € Ag. We say that S is parallel to T, denoted S || T,
if S does not cross 7. By our definition of crossing, this is equivalent to the

existence of a component C of G\ T such that S C T UC.

The next Lemma is an immediate consequence of the previous definition

of parallel and Lemma 2.1.3.
Lemma 2.1.5. [1] Let S,T € Ag.
(i) If S||T then T || S.
(i) If S C T then S || T.
Close separators are always parallel in this sense:

Observation 2.1.6. Let A € Ag be the minimal a, b-separator close to a and

B € Ag be the minimal a,b-separator close to b. Then A || B.

Proof. Suppose for contradiction that A#B. By Lemma 2.1.4, A intersects
the full component of G \ B containing b. So consider s, € AN C%(B). Note
that as, € F(G) because A is close to a, and a ¢ B because B is close to b.
Let 7 be a s,, b-path avoiding B. Then 7 can be extended to make a a, b-path

avoiding B, which contradicts that B is a a, b-separator. O

In Figure 2.1 we see that {b,e} | {b,d} and {b,d} | {d,f} but
{b,e}#{d, f}. This example shows that || is not necessarily transitive. How-

ever, || has the following restricted form of transitivity.

Lemma 2.1.7. [1] Let S,T,U € Aq. If there are two different components
Cs,Cy of G\'T such that SCTUCs and U CTUCy then S || U.

When separators are parallel we can say the following about their full

components.

13



Lemma 2.1.8. Let §,T € Ag be parallel minimal separators in G. Let C' be
the component of G\ S such that T C SUC and let D be the component of
G\ T such that SCTUD. If T'Z S then the full components of G\T other

than D are contained in C.

Proof. Let E be a full component of G \ T other than D. Consider t € T'\ S.
For every e € E there is a e, t-path in G[{t} U E] that does not pass through
S. Thus e € C' and consequently £ C C. O

Consider two parallel separators S and 7. Let C and D be different full
components of G\ S and G\ T such that TNC =0 and SN D = Q. Then S
and T are u, v-separators, for each v € C' and v € D. This leads naturally to

the next notion of strongly parallel separators.

Definition. Let 5,7 € Ay be parallel. We say that S and T are strongly

parallel if they are both minimal a, b-separators for some a,b € V(G).

When two separators are strongly parallel a, b-separators the components

containing ¢ and b have an inclusion ordering as follows.

Note: The next two Lemmas are a more precise statement of Lemma 3.1.10
in [1]. Although our proof is essentially the same as Parra’s proof, we have

included it because we changed the statement of the result.

Lemma 2.1.9. [1] Let S,T € Ag. If S and T are strongly parallel minimal
a, b-separators then either C&(S) C C&(T) and C&(S) D C&(T) or C4(S) D
C&(T) and C&L(S) C C4(T). The inclusions are strict if S # T

Proof. If S = T then the Lemma, is trivially true so suppose that S # 7. Both
S and T are minimal a, b-separators s0 S ¢ T and S p T. By Lemma 2.1.1,
Ca(9), C&(T), CL(S), and C%(T) are full components. As S || T, either
TNCLS)=0or TNCYL(S) = 0. We will consider the two cases in turn.

1. TNCLS) =10
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Clearly C&(S) C C&(T) because every path in G\ S between vertices
of C4(S) does not pass through T. Moreover, every vertex s € S\ T
is in C&(T") because there is a a, s-path in G[{s} U C&(S)] avoiding T
Therefore C&(S) C C&(T) and S N C&(T) # §. Consequently S N
C%(T) = 0. By the same arguments we find that C%(S) D C&(T).

2. TNCL(S) =0

By the previous lines of reasoning we see that S N C%(T) # 0 and
C%(S) C C&L(T). As a result we find that T N C&4(S) # 0 and
C&(S) D C&(T).

O

Alternatively, if two separators have full components with the same type

of inclusion ordering then they are strongly parallel.

Lemma 2.1.10. [1] Let S,T € Ag. If there are Cy,Cy € C&(S) and Dy, Dy, €
Ce(T) such that Cy C Dy and Cy D Dy then S and T are strongly parallel

minimal a, b-separators for every a € Cy and b € Ds.
With respect to close separators we know that:

Lemma 2.1.11. Let A, B € Ag be strongly parallel minimal a,b-separators.
If A is close to a in G then C&4(A) C C4(B), C4(A) D C&4(B), and B C
AUCEL(A).

Proof. If A = B then this Lemma is trivially true. So suppose A # B and
consider s, € A\ B. By Lemma 2.1.9, either

C%(A) € C%(B) and C(A) > C%(B)

C%(A) D C%(B) and C%(A) c C4(B)
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Since A is close to a in G, as, € E(G). Then s, € BUC%(B). But s, ¢ B so
5, € C&(B)\ C&(A) and the former must be true. Therefore, C&(A) C C&(B)
and CL(A) D CY%(B).

Consider s, € B\ A. There is a s, b-path in G[{s;} U C&(B)]. This is also
a path in G[{sp} UCL(A)]. So s, € C%(A). Therefore, BC AUCEL(A4). O

2.2 Chordal Graphs and Minimal Triangula-
tions

Now we shall characterize chordal graphs and minimal triangulations in terms
of the parallel relation. By definition, a minimal separator S is not a clique if
and only if there exist u,v € S such that u and v are not adjacent. Whenever

such a u and v exists, every minimal u, v-separator crosses S by Lemma 2.1.4.

Lemma 2.2.1. [1] Let S € Ag. Then S is parallel to every minimal separator
in G if and only if S is clique in G.

Theorem 1.3.1, Dirac’s characterization of chordal graphs, can now be

rewritten as:

Corollary 2.2.2. [1] A graph G is chordal if and only if the minimal separators

of G are pairwise parallel.

By definition, a triangulation must add chords to every induced long cy-
cle of the original graph. What follows relates this observation to minimal

separators.

Observation 2.2.3. For § € Ag, every non-adjacent pair of vertices in S are
end points of a chord of some long induced cycle. Conversely, the end points of

every chord of a long induced cycle are contained in some minimal separator.

Proof. Let S € Ag and consider z,y € S such that zy ¢ E(G). Let C,D
be full components of G\ S. Let m¢ be a shortest x, y-path in G[{z,y} UC].
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Similarly, let 7p be a shortest z,y-path contained in G[{z,y} U D]. Then
¢ Ump induces a Cy>4 with the chord wy.

Alternatively, let zy € E(G) be the chord of some induced Cy>4. Denote
the vertices of this cycle C. Now {z,y} separates G[C]. Let u,v be vertices
of different components of G[C] \ {z,y}. Notice that (V(G) \ C) U {z,y} is
a u,v-separator. Let S C (V(G)\ C) U {z,y} be a minimal u, v-separator.
Clearly u,v € S. O

Corollary 2.2.2 and Lemma 2.1.4 suggest that the edges of a minimal tri-
angulation either complete the separators or destroy them by joining full com-

ponents.

Notation. For S € Ag, let Gg denote the graph obtained by joining every
non-adjacent pair in S. For § C Ag, let Gs denote the graph obtained by

joining every non-adjacent pair of every separator of S.

We may be able to triangulate a graph by making some of its minimal
separators cliques. When we do this, what minimal separators of the original

graph are preserved?

Lemma 2.2.4. [1] Let S C Ag and H = Gs. Then a minimal a,b-separator
T in G that is parallel in G to every S € S is also a minimal a, b-separator in

the intermediate graph H', for every G C H' C H.

The converse question is: what separators of the resulting graph are sepa-

rators in the original graph?

Lemma 2.2.5. [1] Let S C Ag be a set of pairwise parallel minimal separators
in G and H = Gs. Then a minimal a, b-separator T in H is also a minimal

a, b-separator in G and T || S in G, for every S € S.

Not only is every minimal separator of H a minimal separator of G, but
the components of a minimal separator in H are the same as the components

of that minimal separator in G.
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Corollary 2.2.6. Let S C Ag be a set of pairwise parallel minimal separators
in G and H = Gs. For every T € Ay it holds that T € Ag, Cy(T) = Ca(T),
and Cy(T) = C&(T). Moreover, for C € Cgx(T) the vertices of T that are

adjacent to some verter in C are the same in H as in G.

Proof. This Corollary follows from Lemmas 2.2.5 and 2.1.1 for minimal sepa-
rators of size 1. So suppose that this Corollary holds for minimal separators
of H with size < k.

Consider T' € Ag such that |T| =k + 1. Then T € Agand T || S in G,
for S € & by Lemma 2.2.5. Clearly, C&(T) C C%(T) because any u, v-path in
G[C&(T)] connects v and v in H. Suppose that C&(T) # C4(T') and consider
z € CH{(TY\ C&(T). Let 7 be a a, z-path in H[C%(T)]. Let v be the vertex
closest to a along w that is not in C&(T'). Let u be the vertex closest to a along
7 adjacent to v. Then u € C&(T) and uv € E(G). So consider S € S such that
u,v € S. By definition S#T in G, a contradiction. Hence Cg(T) = Cg(T).
Lemmas 2.1.1 and 2.2.5 imply that C&(T) = Cy(T).

Consider a component C of G\ T that is not full. By Lemma 2.1.2, T¢ =
{s € T : s is adjacent to some vertex of C in H} is a minimal separator
of H with C as a full component. Note that |T¢| < |T|. By our induction
hypothesis, C is a full component of G \ T¢. O

This next characterization of minimal triangulations follows directly from

the other results in this section.
Theorem 2.2.7. [1] Let G = (V, E) be a graph.

(i) Let S be a mazimal set of pairwise parallel minimal separators in G.

Then H = Gs is a minimal triangulation of G, and Ay = S.

(i1) Let H be a minimal triangulation of G. Then Ay is a mazimal set of

patrwise parallel minimal separators in G, and H = Ga,,.
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2.3 AT-Free Graphs

AT-free graphs can also be characterized by minimal separators and the par-

allel relation.

Theorem 2.3.1. [1] Let G be a connected graph. Then G is AT-free if and
only if among any three pairwise strongly parallel minimal separators in G,
there is a separator S such that the other two intersect different components

of G\ S.

Corollary 2.3.2. Let G be a connected AT-free graph and S C Ag be a set
of pairwise parallel separators of G. Then Gg s AT-free.

Proof. Follows directly from Theorem 2.3.1 and Corollary 2.2.6. O

Theorem 2.3.3. [1] Let G be a connected graph. Then G is AT-free if and

only if every minimal triangulation H s interval.
Dominating pairs can be characterized in terms of minimal separators:

Lemma 2.3.4. Let G be a connected graph. Then (u,v) is a dominating pair
in G if and only if v and v are never in the same component of G \ S, for

S e Ag.

Proof. Suppose that (u,v) is not a dominating pair in G. Then there is some
u, v-path 7 missing a vertex w. Let S be the minimal u, w-separator close to
w. Then v and v are in the same component of G \ S because 7 does not pass
through S.

Suppose that u and v are in the same component C of G\ S for some
minimal separator S. Let w be an element of a different component. Then

every u, v-path in G[C] misses w. O

Observation. Let G be a connected graph. The pair (x,y) is a dominating pair

in G if and only if (x,y) is a dominating pair in every minimal triangulation.
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Proof. Let G be AT-free and let H be a minimal triangulation of G. Then
H = Gp, and Ay C Ag by Theorem 2.2.7. By Lemma 2.3.4, if (z,y) is a
dominating pair in G then z and y are never in the same component of G\ S,
for S € Ag. By Corollary 2.2.6, x and y are never in the same component of
H\S, for S € Ag. Therefore, (z,y) is a dominating pair in H by Lemma 2.3.4.

Suppose that (z,y) is not a dominating pair in G. There there is some
S € Ag such that z and y are in the same component of G\ S. Some maximal
set & C Ag of pairwise parallel separators contains S. By Theorem 2.2.7,
H = G is a minimal triangulation of G. Corollary 2.2.6 indicates that S € Ay
and that z and y are in the same component of H \ S. Therefore, (z,y) is not

a dominating pair in H by Lemma 2.3.4. Ol
Later we will need this in a more general setting:

Corollary 2.3.5. Let § C Ag be a set of pairwise parallel minimal separators.

If (z,y) is a dominating pair of G then (z,y) is a dominating pair of Gs.
Proof. Follows immediately from Corollary 2.2.6 and Lemma 2.3.4. O

We also know the following about the structure of a minimal separator

separating a dominating pair.

Lemma 2.3.6. [1] If (z,y) is a dominating pair in o graph G, then every

minimal x, y-separator in G is C-minimal.
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Chapter 3
The Square of AT-free Graphs

Corneil et al. published a linear time algorithm to find a dominating pair in
an AT-free graph that uses two sweeps of a lexicographic breadth-first search
(LBFS) [5]. Chang et al. noticed that the order produced by this algorithm
is a cocomparability order of the square of the graph [3]. In this chapter, we
start with a survey of these results. Then we show how a transitive orientation
of the complement orders a component of a minimal separator relative to that
separator and the other components of that separator. We conclude by showing
that a 2-sweep LBFS cocomparability order of the complement of the square
has the same ordering properties. This similarity is a cornerstone of the next

two chapters.

3.1 Lexicographic Breadth-First Search

The lexicographic breadth-first search (LBFS) [13] algorithm is a variant of the
standard breadth-first search where ties are broken with a labelling scheme.
Given an arbitrary connected G graph and a start vertex x as input, the LBFS
algorithm in Figure 3.1 returns a total vertex order ¢ as output.

LBFS orders are completely characterized as follows:
Lemma 3.1.1. [2] Every LBEFS order o of graph G has the following property:

P1: Leta,b,c € V(G) be vertices such that o(a) < o(b) < o(c). If ac € E(G)
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PROCEDURE LBFS(G,z).
{ Input: a connected graph G = (V, E) and a distinguished vertex z of G
Output: a numbering o of the vertices of G }
begin
label(z) « |V|;
for each vertex v in V' \ {z} do
label(v) « 0;
for i « |V| downto 1 do
begin
pick an unnumbered vertex v with the (lexicographically) largest label;
o(v) « i
for each unnumbered vertex u in N(v) do
append ¢ to label(u);
end;
end; {LBFS}

Figure 3.1: The LBFS algorithm as presented by Corneil et al. [5].

and be ¢ E(G) then there exists d € V(G) such that o(c) < o(d), ad ¢
E(G), and bd € E(G).

Moreover, every total order o with property P1 is the result of some LBFS.

Definition. In a graph G, vertices u, v are said to be unrelated with respect to
a vertex z if and only if u & Dg(v,z) and v & Dg(u,z). If u, v are unrelated

with respect to z and z & Dg(u,v), then {u,v, z} is an asteroidal triple.

In proving the correctness of their 2-sweep LBFS algorithm, Corneil et al.
demonstrate two important properties of LBFS orders of connected AT-free

graphs.

Theorem 3.1.2. [5] Let G be a connected AT-free graph, o be a LBFS order
of V(G), and z be a vertex of G. Then the subgraph of G induced by {v €
V(G) : o(v) > o(z)} does not contain any vertices that are unrelated with

respect to .
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So the vertex that is labelled 1 by an LBFS order of a connected AT-free

has no unrelated vertices with respect to it by Theorem 3.1.2.

Theorem 3.1.3. [5] Let G be a connected AT-free graph, and consider x €
V(G) such that G contains no vertices that are unrelated with respect to x. Let
o be the result of LBFS(G,z). Then o(u) < o(v) implies that v € Dg(u, x),
for allu,v € V(G).

Let = be the vertex labelled 1 by a LBFS order of a connected AT-free G.
If y is the vertex labelled 1 by an order produced by LBFS(G,x) then (z,y) is
a dominating pair in G by Theorem 3.1.3.

Definition. We call the vertex order resulting from two such LBFS sweeps of

a connected AT-free graph a 2-sweep LBFS order.

3.2 The Square of AT-Free Graphs

Definition. G* is the result of taking the k" power of the adjacency matrix of
G. Equivalently, V(G*) = V(G) and u,v € E(G*) if and only if dg(u,v) < k.

Theorem 3.2.1. [12] If G* is AT-free then G**1 is AT-free.

If G is AT-free then the largest induced cycle of G is a C5. Even though
every long cycle of G has a chord in G?, G* is not necessarily interval because,

as illustrated by Figure 3.2, new long cycles may occur.

Example. In Figure 3.2 the graph on the left is AT-free and the graph on the

right is its square. The solid vertices on the right are a Cy of the square.

As we shall soon see, the square of a connected AT-free graph is a cocom-
parability graph [3]. Before proving this, we shall first prove a more general

result.

Lemma 3.2.2. Let G be a connected AT-free graph and o be a 2-sweep LBFS
order of G. Consider u,v,w € V(G) such that o(u) < o(v) < o(w). If there

s a u, w-path missing v, then v and w have a common neighbour.
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Figure 3.2: Demonstrates that the square of an AT-free graph need not be
interval.

Proof. Let z be the last vertex of o and let 7 be a u, w-path missing v. By the
existence of 7, uv ¢ E(G) and vw ¢ E(G). v € Dg(u, z) by Theorem 3.1.3. If
w = z then 7 is u, z-path missing v, a contradiction. Note that v € Dg(w, 2)
because 7 misses v.

Let = be rightmost neighbour of w with respect to ¢. v is not adjacent to
any vertex greater than z in o by Lemma 3.1.1. Suppose that vz ¢ E(G).
Then we can extend a z, z-path using vertices greater than z by w to create a

w, z-path missing v, a contradiction. Thus vz € E(G) and vw € E(G?). O

Now we are ready to show that the square of an AT-free graph is cocom-

parability.

Theorem 3.2.3. [3] Let G be a connected AT-free free graph and o be a 2-
sweep LBFS order of G. Then o is a cocomparability order of G2.

Proof. Consider for contradiction vertices u,v,w € V(@) such that o(u) <
o(v) < o(w), ww & E(G?), vw ¢ E(G?), but uw € E(G?). Trivially uv ¢ E(G)
and vw ¢ F(G). If uw € E(G) then v and w have a common neighbour by
Lemma 3.2.2, a contradiction. So let d be a common neighbour of v and w in
G. Then (u,d,w) is a u, w-path missing v. Again by Lemma 3.2.2, it follows

that v and w have a common neighbour, a contradiction. O

Definition. Let G be a connected AT-free graph and ¢ be a 2-sweep LBFS
order of G. Let = be the orientation of G2 such that u = v implies o(u) <
o(v). By Theorem 3.2.3, = is transitive. We say that = is the orientation of

G2 resulting from o.
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3.3 Minimal Separators and Cocomparability
Graphs

A transitive orientation of the complement orders a component of a minimal
separator relative to that separator and the other components of that separator

in the following sense:

Lemma 3.3.1. Let G be a connected cocomparability graph and S be a min-
imal separator of G. Every transitive orientation — of G has the following

properties:

(1) — orients all edges of G between every two components of G\ S in one

direction.

(2) — orients all edges of G between a component of G\ S and S in one

direction.

(8) If — orients an edge of G from a component C of G\ S to S then —
orients all edges of G between C and different full components away from

C.

(4) If — orients an edge of G from S to a component C' of G\ S then —
orients all edges of G between C and different full components towards

C.
Proof.

(1) Let C, D be components of G\ S. Consider for contradiction ¢, c; € C
and dq,dy; € D such that ¢; — dy and dy — ¢5. Let 7o be a ¢y, co-path
in G[C]. Then d; misses m¢. Walking from ¢; to ¢z along 7 we see that
— orients every vertex of 7o towards d; in G because ¢; — d;. Thus
co — di. Let wp be a di,ds path in G[D]. By the same argument we

find that co — ds, a contradiction.
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(2)

Let C be a component of G\ S. Consider for contradiction s, s, € S and
c1,co € C such that s; — ¢; and ¢y — s9. Let D be a full component of
G\ S such that D # C. As D is a full component there exist dq,dy € D
such that disy € F(G) and dysy; € E(G).

Clearly ¢1d; € E(G) and codp ¢ E(G). By (1), either d; — ¢; and dp —
¢y or ¢; — dy and ¢g — dy. Suppose the former. Then dy — ¢ — s,
contradicting that dyse € E(G). Suppose the latter. Then s; — ¢; — dy,
contradicting that dys; € E(G).

Let C be a component of G\ S with ¢, € C and s € S such that ¢; — s.
Let D be a full component of G \ S such that D # C. Consider for
contradiction d, € D and ¢4 € C such that d, — ¢4q. As D is a full
component of G\ S, there exists d; € D such that dys € E(G). So
ds — ¢s because d, — ¢4 by (1). Then dy; — ¢; — s, contradicting that
dss € E(G).

Let C be a component of G\ S with ¢; € C and s € S such that s — c;.
Let D be a full component of G \ S such that D # C. Consider for
contradiction ¢; € C and d, € D such that ¢y — d.. There exists d, € D
such that dss € E(G) as D is a full component. By (1), ¢, — d; because
cqg = do. S0 s — ¢; — d, contradicting that dys € E(G).

O

Example. The graph G on the left in Figure 3.3 demonstrates that the order

specified in (3) and (4) of Lemma 3.3.1 must be restricted to full components.

To the right is a transitive orientation — of G. Now {f} is a component of
G\ {a,d} such that — directs {f} to {a,d}. But — directs {e} to {f}. So

the statement of (3) in Lemma 3.3.1 must be restricted to full components.

When — is reversed, it follows that (4) must be restricted to full components

as well.
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Figure 3.3: Both (3) and (4) of Lemma 3.3.1 are sharp.

Example. The dashed arrows in Figure 3.4 are an orientation of the comple-

ment that is not transitive. The solid vertex is the only minimal separator.
Clearly, this orientation satisfies Lemma 3.3.1.

Figure 3.4: An orientation satisfying Lemma 3.3.1 need not be transitive.

Given that the properties of Lemma 3.3.1 are not sufficient for an orienta-
tion to be transitive, why is it relevant? If G is a connected AT-free graph,
the cocomparability orientation = of G? resulting from a 2-sweep LBFS order

very has similar properties. But first we need the following Observation.

Observation 3.3.2. Let G be a connected AT-free graph and S be a minimal
separator of G. Then wv € E(G?), for every u,v € S.

Proof. Let C and D be full components of G \ S. Consider for contradiction
u,v € S such that uv ¢ E(G?). Let m¢ be a u,v-path in G[{u,v} U C] and
7p be a u,v-path in G[{u,v} U D]. As S separates C and D, n¢c U mp induces

a chordless cycle in G. However, as uv ¢ E(G?) the length of this cycle is at

least 6 which contradicts that ¢ is AT-free. D
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Lemma 3.3.3. Let G be a connected AT-free graph, S be a minimal separator
of G, and = be the transitive orientation of G? resulting from a 2-sweep LBFS

order <. FEvery such = has the following properties:

(1) = orients all edges of G2 between every two components of G\ S in one

direction.

(2) = orients all edges of G® between a component of G\ S and S in one

direction.

(8) If = orients an edge of G2 from a component C of G\ S to S then =
orients all edges of G2 between C and different full components away

from C.

(4) If = orients an edge of GZ from S to component C of G\ S then =
orients all edges of G? between C and different full components towards

C.
Proof.

(1) Let C and D be components of G\ S. Consider for contradiction ¢;, ¢y €
C and di,dy € D such that ¢; = d; and dy = c¢3. The remaining

argument proceeds by cases:

(a) ¢; < ds
Then ¢; < ds < ¢y. There is a ¢y, co-path through G[C] that misses
d,. By Lemma 3.2.2, cody € E(G?), a contradiction.

(b) dy < ¢
Then dy < ¢; < dy. There is a ds, d;-path through G[D] that misses
c1- By Lemma 3.2.2, ¢;d; € E(G?), a contradiction.

(2) Let C be a component of G\ S and D # C be a full component of G\ S.
Consider for contradiction s1,s, € S and ¢;,cs € C such that s; = ¢

and c; = 8o.
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Suppose that c1sq € E(G?). If ¢; = s, then 57 = ¢; = s9, contradicting
Observation 3.3.2. If s, = ¢; then ¢ = sy = ¢;. By Lemma 3.2.2, s
must intercept the shortest ¢y, ¢; path  in G[C]. D is a full component
so consider d € D such that ds; € E(G). Then 7 U {sq,d} induces an
AT of G, a contradiction. So ¢;s; € E(G?), ¢; # co, and s; # s5.

Suppose that cos; & E(GQ). If sy = ¢y then $7 = ¢ = 59, contradicting
Observation 3.3.2. If ¢ = s; then ¢ = s; = ¢;. By Lemma 3.2.2, s;
must intercept the shortest ¢y, ¢; path 7 in G[C]. D is a full component
so consider d € D adjacent to s;. Then n U {s1,d} induces an AT of G,
a contradiction. Thus ¢;s; € E(G?).

The remaining proof proceeds by cases:

(a) ce € E(G)
Then c2s1 ¢ E(G) and ¢85 & E(G). If s; < ¢o then 87 < ¢y <
s3. There is a sq, s path through G[{s1,s2} U D] missing c,. By
Lemma 3.2.2 cy80 € E(G?), a contradiction. If ¢; < s; then ¢y <
sy < ¢;. There is a ¢, co-path missing s; because cico € E(G).
Again by Lemma 3.2.2, s;¢; € E(G?), a contradiction.

(b) cics & E(G)
Earlier we observed that cp8; € E(G2). Let m; be a shortest cg, $1-
path in G. ¢; misses m; because d(cs, 51) < 2, ¢151 € E(G?), and
cic2 & E(G). We also observed that c¢;ss € E(G?). Let m be a
shortest ¢y, so-path in G. Similarly, ¢, misses 7, because d(cy, $3) <
2, c251 & E(G?), and cac; € E(G).
Let d be a vertex of D. Any ¢, ¢y path in C misses d. There is a
d, s;-path missing ¢; in G[{s1} U D] because D is a full component
of G\ S. This can be extended by 7; to get a d, co-path missing ¢;.
By symmetry there is a d, ¢;-path missing ¢o. Therefore {d, ¢1, 2}

is an AT, a contradiction.
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(3)

(4)

Let C be a component of G\ S with ¢, € C and s € S such that
¢s = s. Consider for contradiction a full component D # C of G\ S
with ¢4 € C and d. € D such that d. = ¢4. If ¢, < d. then ¢; < d.; < ¢4.
There is a c,, ¢g-path through G[C] missing D. Thus csd. € E(G?) by
Lemma 3.2.2, a contradiction. If d, < ¢; then d. < ¢; < s. There is
a d., s-path missing ¢, in G[{s} U D] because D is a full component of
G\ S. Thus c,s € E(G?) by Lemma 3.2.2, a contradiction.

Let C be a component of G\ S with ¢, € C and s € S such that s = c,.
Consider for contradiction a full component D # C of G\ S with ¢; € C
and d,. € D such that ¢; = d,.

Suppose that no vertex of C is adjacent to s in G. If s < ¢4 then
§ < ¢g < d.. Moreover, D is a full component of G \ S so there is some
d., s-path in G[{s} U D] missing ¢;. So by Lemma 3.2.2 c4d. € E(G?),
a contradiction. If ¢4 < s then ¢4 < s < ¢,. By our assumption, any
¢4, cs-path in G[C] misses s. Again by Lemma 3.2.2 ¢;s € E(G?), a

contradiction. Therefore some vertex of C' is adjacent to s in G.

Now we will show that csd. € E(G?). If d, < ¢, then c,d, € E(G?) by
(1) because ¢y = d.. If ¢; < d, then s < ¢; < d.. There is a s,d.-path
missing ¢s in G[D U {s}] because D is a full component of G \ S. Thus
csd. € E(G?) and ¢g # ¢4 by Lemma 3.2.2.

Clearly ¢ d. ¢ E(G) because they are in different components of G\ S.
So ¢, and d, have a common neighbour ¢t € S. ¢4t ¢ E(G) because
cad. & E(G?). Similarly, st ¢ E(G) because ¢ss € E(G?). lf d.s ¢ E(G)
then {c,s,d.} is an AT of G because C' and D have a vertex adjacent
to s in G. Hence d.s € F(G) and consequently c;s € E(G).

If s < ¢q then s < ¢4 < d.. Furthermore, (s,d.) is a s, d.-path missing
cq. By Lemma 3.2.2, cqd, € E(G?), a contradiction. So ¢; < s and
ca < 8 < cs. As sc, € E(G?), s intercepts every cg,cs-path in G by
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Lemma 3.2.2. Thus cyc; ¢ E(G). Let 7 be a shortest ¢y, c-path in
G[C]. We claim that {c, c4,d.} is an AT of G because:

e T 1S a c,, cg-path missing d,
e (cg,t,d.) is a ¢, d.~path missing ¢4

e Let z be the vertex closest to ¢, along 7 that adjacent to s in G.
Since ¢;s ¢ E(G?), csz ¢ E(G). So there is a cg, s-path missing ¢;.
There is also a s, d-path missing ¢, in G[{s} U D]. Hence there is

a ¢y, d-path missing c,.
O

Definition. Let G be a connected graph. We will call a transitive orientation
= of G? with the properties of Lemma 3.3.3 an eztendable orientation of G=2.
We call this type of orientation extendable because we shall extend it into

other orientations in Chapter 4.

Corollary 3.3.4. Every connected AT-free graph has an extendable orienta-

tion of the complement of its square.

Observation 3.3.5. The reversal of every extendable orientation is again an

extendable orientation.

Proof. By the symmetry of the properties of Lemma 3.3.3 with respect to

reversal of orientation. O

Example. The graph given by the solid edges in Figure 3.5 is connected and
AT-free. The dashed arrows are a transitive orientation of the complement
of its square. The solid vertices are a minimal separator that the two arrows

cross in opposite directions. Therefore this orientation is not extendable.
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Figure 3.5: Not every transitive orientation of the complement of the square
is extendable.
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Chapter 4

Extendable Orientations

Lemmas 3.3.1 and 3.3.3 show that an extendable orientation is a weak form
of a transitive orientation of the complement with respect to ordering com-
ponents and minimal separators. In this chapter, we identify instances where
an extendable orientation can be extended into a transitive orientation of the

complement.

Definition. Let GG be a connected graph, S C Ag be a set of pairwise parallel
minimal separators in G, and H = Gs. We call H a partial minimal triangula-
tion (PMT) of G because there is always some minimal triangulation H' of G
such that E(H) C E(H') by Theorem 2.2.7. As evidenced by Corollary 2.2.6,
the separator structure of a PMT is a restriction of the separator structure of
the original graph. If a PMT is a cocomparability graph then we say that it

is a cocomparability partial minimal triangulation (CPMT).
A PMT of a given graph G is a subgraph of the square of G.

Observation 4.0.6. Let G be a connected AT-free graph and H be a PMT of
G. Then E(H) C E(G?).

Proof. Let S C Ag be a set of pairwise parallel minimal separators such that
H = Gg. Consider uv € E(H). If uv € E(G) then uv € E(G?). If uv ¢ E(G)
then there is some S € & such that u,v € S. By Corollary 2.2.6, S is a
minimal separator of G. It follows that uv € F(G?) by Observation 3.3.2. [
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If G is a connected AT-free graph, this observation hints that an extendable
orientation of G2 is orienting something common to every CPMT of G. The

main result of this chapter is the Extendable Orientation Theorem:

Theorem (Extendable Orientation Theorem). Let G be a connected AT-
free graph and = be an extendable orientation of G2. If H is a CPMT of G
then there ezists a transitive orientation — of H such that if u = v then

U — .

Observation. Let G be a connected AT-free graph. Then any minimal trian-

gulation of G is o CPMT of G.
Proof. Follows immediately from Theorems 1.3.4 and 2.2.7. (]

As every minimal triangulation of an AT-free graph is a CPMT, one con-
sequence of the Extendable Orientation Theorem is that an extendable orien-

tation orders every minimal triangulation:

Corollary 4.0.7. Let G be a connected AT-free graph and = be an extendable
orientation of G2. If H is a minimal triangulation of G then there ezists a

transitive orientation — of H such that if u = v then u — v.

When we restrict our attention to cocomparability graphs, every PMT is

a CPMT:

Observation 4.0.8. Let G be a connected cocomparability graph and H be a
PMT of G. Then H is a CPMT of G. In particular, any transitive orientation

— of G restricted to H is still transitive.

Proof. Let S C Ag be a set of pairwise parallel minimal separator in G such
that H = Gs. Consider for contradiction u,v,w € V(H) such that u — v,
v — w, but uw € E(H). Now — is a transitive orientation of G so uw €
E(H)\ E(G). Thus there is some S € S such that u,w € S but v ¢ S. This
contradicts (2) of Lemma 3.3.1 which states that — orients all edges of E(G)

from a component of G\ S to S the same way. O
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As a result, an extendable orientation orients every PMT of a cocompara-

bility graph:

Corollary 4.0.9. Let G be a connected cocomparability graph and = be an
extendable orientation of G2. Then there ezists a transitive orientation — of

G such that if u = v then u — v.

Example. The opposite of the Extendable Orientation Theorem is not true
in general as illustrated by Figure 4.1. The solid edges on the left represent an
AT-free graph G. When we add the dashed edge we get minimal triangulation
H, which as we observed earlier is a CPMT of G. On the right is a transitive
orientation of H. The solid edges on the right are the edges of G2. This

orientation of G2 is not transitive and therefore not extendable.

Figure 4.1: The contrary of the Extendable Orientation Theorem is not true
in general.

4.1 End Pairs

The proof of the Extendable Orientation Theorem is inductive on the size of
the graph. At the beginning of this section, we show that a particular type of
dominating pair always exists in a connected AT-free graph. Then we identify
how certain parts of the graph which correspond to this dominating pair have
the same separator structure and the same complement of the square as the

original graph. Finally, in the proof of the Extendable Orientation Theorem,
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we combine transitive orientations of the complement of various parts of the

graph to get a transitive orientation of the complement of the whole.

Lemma 4.1.1. Let G be a connected AT-free graph and H be a PMT of G.
Suppose that (z,y) is a dominating pair in G such that xy ¢ E(H). Let S

be the minimal x,y-separator close to x in H. Then there exists a vertex

a € C%(S) such that:
(i) (a,y) is a dominating pair in G

(ii) the minimal a,y-separator A close to a in H is completely adjacent to
C4(A) in H

(1ii) a =z or ax € E(H)

Proof. Let A = {a € C%(S) : (a,y) is a dominating pair in G}. Suppose for

contradiction that:

Al: for every a € A the minimal a, y-separator A close to a in H has a vertex

that is not adjacent to some vertex of C§(A).

We will create sequences (aj,as,...,ar) and (A, Ag, ..., Ag) of arbitrary

length k such that:
(a) a; € A and A; is the minimal a;, y-separator close to a; in H
(b) if i < j then Cf(A;) D CF (4;).

Note that (a; = z) and (A; = S) are sequences of length 1 with properties (a)
and (b).

Suppose that we have sequences of length &£ > 1 with the above properties.
Then (ax,y) is a dominating pair in G and C3f (A4x) C CF(S). By assumption
Al, there is a vertex u; € Cg(Ax) and s € Ay such that su; ¢ E(H).

Claim 4.1. There is a vertez u € Cyf (Ax) such that (u,y) is a dominating
pair in G and su & E(H).
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Proof. Assume for contradiction that:

A2: for every u € Cif(Ax), if su ¢ E(H) then (u,y) is not a dominating

pair in GG

We will construct a non-repeating sequence (uy,us,...,u;) of vertices of

C# (Ax) with arbitrary length [ having these properties:

(
(
(
(

1
2
3

)

) if 7 # j then uu; ¢ E(G)

) if i < j then u; € Dg(u;, y)
)

4) i1 € De(ui, y).

Note that (u;) has these properties.

Claim 4.2. If (uy, us,...,w;) satisfies properties (1) to (4) then there
erists w1 € CH(Ax) such that wp # w1, swp € E(H), wuws €
E(G), w € Dg(ui1,y), and upr & Do(w, ).

Proof. Note that CgF(Ap) = Cg(Ax), C4(Ax) = C3(Ag), and
CeF(Ax), C&(Ag) € C&(Ag) by Lemma 2.1.1 and Corollary 2.2.6.

From property (1) and assumption A2 it follows that (u;, y) is not a
dominating pair in G. So consider u;11 € Dg(u;,y) and let 7 be a u;, y-
path missing w1 in G. Suppose that w3 & Cyf (Ax). If up € Ay
then {uj, w41,y} is an AT in G, a contradiction. Hence, w1 ¢ Ay.
Since w41 & CgF(Ag) U Ay, there is some a, wi-path 7' missing w41
in G. Then 7’ - 7w is a ag, y-path in G missing u;41, a contradiction
because a; € A. Therefore u;; € Cg(Ag). By choice of w1, we know
that u; # w41 and wu & E(G). Moreover, u; € Dg(u41,y) because
otherwise {u;, u41,y} is an AT in G.

Suppose for contradiction that su;4; € E(H). We will show that

there is some uy;.1, s-path 7 in G missing u;. If su;,; € E(G) then this is
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obviously true. Let & C Ag be set pairwise parallel minimal separators
in G such that H = Gs. If su;y; ¢ E(G) then there is some minimal
separator T € 8 such that s,u;1q € T. As su; ¢ E(H) it follows that
u € T. Let C be a full component of G \ T that does not contain
u;. There is some w1, s-path missing u; in G[{w;41, s} U C]. Since
CY%(Ax) € Ca(Ay), there is a s, y-path 7' in G{{s} U C%(Ax)] missing
w;. Thus 7 - 7' is a w41, y-path in G missing u;, which contradicts that

u € D (tr1,y). O

Consider up with the properties of Claim 4.2. Then the sequence
{u1,u9) satisfies properties (1) to (4). Suppose that we have a sequence
(uy,ug, ..., u;) with properties (1) to (4) where | > 2. We will show how

to extend it to a sequence (u1,ug, ..., U 1) and maintain these properties.

By Claim 4.2, consider w11 € Cif(Ax) such that w # w1, supr &
E(H), wui € E(G), w € De(tiy1,y), and w1 & Da(w, y)-

Suppose for contradiction that our extended sequence repeats. Let i be
the largest i < [ such that u; = u;.1. By property (3), we get uj4; = u; €

Dg(uy,y), a contradiction.

Suppose for contradiction that our extended sequence violates property
(2) or (3). Let i < [ be the largest such that uw,u11n € E(G) or u; ¢
Da(us1,y). Now uipiuyy & E(G) and uiqy € De(w41,y) because ¢ < .
By property (4), u;y1 & Dg(ug,y). If wu, € E(G) then we can extend
any u;, y-path missing u;,; in G to get a uyy1, y-path missing u; 41 in G, a
contradiction. So u;u;; € E(G) and u; &€ Dg(uis1,y). Let 7 be a w41, y-
path in G missing u;. As u;y1 € Dg(uy1,y), uipq must intercept 7 in G.
Because uu;.1 ¢ FE(G) we get an u;;;,y-path that misses u; in G. But

this contradicts property (3).

Therefore (uy,us, ..., 1) maintains properties (1) to (4). By induc-
tion, there is a non-repeating sequence of size |C3 (Ax)| + 1 contained in

CH (Ag), a contradiction. O
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By Claim 4.1, consider a1 € Cy (Ag) such that (agi1,y) is a dominating
pair in G and saxy1 & F(H). Let Agyy be the minimal ag;, y-separator close
to axy1 in H. Both Ay and Ag,; are minimal ag,q,y-separators in H. As
ar+1 € CH(Ag) it follows that Agyy C Ay U Cyf (Ar). Hence Ay and Ay
are parallel by Lemma 2.1.4. So Ay and Ay, are strongly parallel agiq,y-

separators. By Lemma 2.1.9, either
Cg*' (Ar) C Oyt (Arsr) and C(Ax) D Ch(Akn)

or
Cr*' (Ar) D Cy* (Arr) and Cf(Ax) C Ch(Agta)

There is a s, y-path missing ay; in H[{s} U C%(Ax)] because C¥(Ax) is a full
component of H \ A;. So s € C¥(Ags1) but s & C¥(A;). So the latter must
be true and Cgt'(4x) D Cy™ (Aks1). By transitivity, the new sequences
(a1,ag,...,0541) and {(Ay, Ay, ..., Apyq) of length & + 1 satisfy properties (a)
and (b).

By induction, we can create sequences of length |C%(S)| + 1 where each
CH(A;) € C{(S). Thus a; € C{(S). Moreover, the a; are unique by the
strict set inclusion of property (b), a contradiction. So our initial assumption
A1 was incorrect and there exists a € C%(S) satisfying conditions (i) and (ii).
If C%(S) is completely adjacent to S in H then a = z satisfies this Lemma.
So suppose not and consider any a € C§(S) satisfying properties (i) and (ii).
If a is adjacent to every s € S in H then A = S, a contradiction. So ¢ is
not adjacent to some s € S in H. As C%(S) is a full component of H \ S
there is a s,y-path in H[{s} U C%(S)] that misses a. Suppose ax ¢ E(H).
Since as ¢ F(H) and zs € E(H), this s,y-path can be extended to create a
z,y-path in H missing a. However, (z,y) is also a dominating pair in H by

Corollary 2.3.5, so we have a contradiction. Therefore az € E(H). O

Example. The shaded box in Figure 4.2 represents a clique. Now u3 < uy <

up < a; < 8 < 81 < 8§ < 83 < y is a cocomparability order of this graph G.
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Hence, G is AT-free by Theorem 1.3.6. If we let H = G then G as labelled

shows the necessity of the induction in Claim 4.1.

Ay

2
1
O

1 I

Figure 4.2: The induction in Claim 4.1 is necessary.

Example. The shaded boxes in the graph G of Figure 4.3 represent cliques.
Clearly, G can be partitioned into two cliques K and S U {y}. Therefore, the
graph is trivially AT-free because there is no independent set of three vertices.
If H = G then this graph as labelled shows the necessity of the last induction

in Lemma 4.1.1.

K
3, (O

7
i
a

Q

QA

Q@ Q§ B D

(@

Figure 4.3: The induction at the end of Lemma 4.1.1 is necessary.



Theorem 4.1.2. Let G be a connected AT-free graph and H be a PMT of G.
If diam(G) > 2 then there exist vertices a,b and x,y such that:

(i) dg(z,y) > 2 and ab ¢ E(H)
(ir) (z,y), (a,b), (a,y), and (z,b) are dominating pairs in G
(iti) a =z orax € E(H) and b=y or by € E(H)

(iv) The minimal a,b-separator A in H close to a is completely adjacent to

C3(A) in H.

(v) The minimal a,b-separator B in H close to b is completely adjacent to

C%(B) in H.

Proof. By Theorem 1.3.8, let (z,y) be a diameter dominating pair in G. So
zy ¢ E(H) by Observation 4.0.6. Let S be the minimal z, y-separator close to
z in H. Let T be the minimal z, y-separator close to y in H. By Lemma 4.1.1
consider a € C%(S) such that (a,y) is a dominating pair in G, the minimal a, y-
separator A close to a in H is completely adjacent to C%(A) in H, and a =z
or ax € E(H). Similarly, consider b € C%(T) such that (z,b) is a dominating
pair of G, the minimal z, b-separator B close to b in H is completely adjacent
to C4(B) in H, and b =y or by € E(H).

Suppose a € C%(B). Then ax € E(H) because a # z. Thus a € B which
implies that ab € E(H). But a € C§(S) so b € SUCH(S). If b € C§{(S5)
then there is a z, b-path missing y in G[CE(S)] because C%(S) = CZ(S) by
Corollary 2.2.6, a contradiction. If b € S then bz € E(H) which contradicts
that z and b are in different components of H \ T. Therefore, a € C%(B) and
B is the minimal a, b-separator close to b in H. Consequently ab ¢ E(H). By
symmetry, b € C%(A) and A is the minimal a, b-separator close to a in H.

All that remains to be shown is that (a,b) is a dominating pair in G.
Suppose not and let v be a vertex that misses some a,b-path 7 in G. Note

that A € Ag and Cy(4) = C&(A) by Corollary 2.2.6. Now, if v ¢ AU CL(A)

41



then we can extend 7 to get a a, y-path in G missing v because y € C4(4), a
contradiction. So v € AU CY%(A). There is a v, b-path missing a in G[{v} U
C%(A)] because av ¢ E(G) and C%(A) is a full component. By symmetry
there is also a v, a-path missing b in G. Therefore, {v,a, b} is an AT in G, a

contradiction. O

Example. The dashed lines in Figure 4.4 are edges added by PMTs. On the
left and right are connected AT-free graphs that show why the choice of a and
b in Theorem 4.1.2 depends on the particular PMT.

Figure 4.4: a and b in Theorem 4.1.2 depend on the particular PMT.

Observation 4.1.3. Let G be a connected AT-free graph, T be a minimal
separator of G, and C be a full component of G\ T. Then Gr[T UC] is a
connected AT-free graph as well.

Proof. By Corollary 2.3.2, G is connected and AT-free. By Lemma 2.2.5, T is
a minimal separator of Gy. Corollary 2.2.6 indicates that C' is full component
of Gp \ T. Therefore, Gr[T'U C] is connected and AT-free because the class
of AT-free graphs is hereditary. OJ

By this Observation, the ends G 4[C%(A) U A] and Gg[C%(B) U B] of The-
orem 4.1.2 are candidates for decomposition. The next two Lemmas are prop-

erties used in our proof of the Extendable Orientation Theorem.

Lemma 4.1.4. Let G be a connected graph, H be a CPMT of G, and T be an
C-minimal separator in H. If a component C of H\T is completely adjacent
to T in H then Hp[T UC] is a CPMT of Gy[T U C].

42



Proof. Since H is a PMT of G, let & C Ag be a set of pairwise parallel
separators in G such that H = Gg. As a minimal separator of H, T is parallel
in G to every S € § by Lemma 2.2.5. It follows immediately that & is a set of
minimal separators of Gr by Lemma 2.2.4. Applying Corollary 2.2.6, S must
be pairwise parallel in G because it is pairwise parallel in G. Therefore, Hr
is a PMT of Gr because Hy = (G7)s.

Let &' ={S€S8:SCTUC and S € T}. Whenever S € S contains a
vertex of C', S € 8 because S || T'in G. As aresult, Hp[TUC| = (Gr[TUC))s:.

Let S € &'. Consider for contradiction ¢t € 7'\ S. By case analysis, we will
prove that there is always an u, t-path in Gp \ S, for u &€ S.

l.ueC\S

Then ut € E(Hr) because C is completely adjacent to 7 in H. If
ut € E(Gr) then u to t is such a path. So suppose not and consider
U € & such that u,t € U. Since S || U in Gr, there is a full component
D of Gy \ U such that DN S = () by Lemma 2.1.4. Every u, t-path in
Grl{u,t} U D] is a u, t-path in Gp \ S.

2.ueT\S

(u,t) is such a path because T is a clique in Gr.

3. u€ D\ S where D # C is a component of H\ T

By Lemma 2.1.2, D is a full component of H\T because 7" is C-minimal
in H. Then D € Cy, (T) by Lemmas 2.2.4 and 2.1.1. Applying Corol-
lary 2.2.6 reveals that D € Cg,_(T') because Hr is a PMT of Gr. So
every u,t-path through Gr[{t} U D] is such a path.

Hence, S is not a separator in Gr, a contradiction. Therefore, T C S. Consider
s € S\ T and a full component D of Gy \ T. For d € D, there is a s,d-
path in Gp[{s} U D] that avoids T. Consequently, the full components of
Gt \ S are contained in C. By Lemma 2.1.1, S is a minimal separator of

Gr[T U C]. Moreover, &' is pairwise parallel in Gr[T U C] by Lemma 2.1.4
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because &' is pairwise parallel in Gr. So Hy[T U C] is a PMT of G¢[T U C].
By Observation 4.0.8, Hr is a cocomparability graph. As that is a hereditary
graph class, Hp[T'U C] is a CPMT of G[T U C]. O

Example. The solid edges in Figure 4.5 form a cocomparability graph G
as certified by the cocomparability order of the vertex labels. Hence G is
AT-free by Theorem 1.3.6. The minimal 2, 3-separator in G is {1,6,7}. By
Observation 4.0.8, the graph H formed by adding the dashed edges is a CPMT
of G. Let T be the solid vertices and C be the vertices to the left of 7. Now
{1,6,7} is the minimal 2, 3-separator in G¢[T'U C]. Hence, Hy[T U C] is a
PMT of Gp[TUC). The orientation — of Hp[T U C] resulting from the vertex
labels is transitive. So Hy[1'UC] is a CPMT of G¢[T U C].

Figure 4.5: Hlustrates Lemmas 4.1.4 and 4.1.5.

Lemma 4.1.5. Let G be a connected AT-free graph and = be an extendable
orientation of G2. Let H be a PMT of G and T be a minimal separator of H.
If a component C of H\T is completely adjacent to T in H then = restricted
to TUC is an extendable orientation of Gp[T U CJ?

Proof. First we will show that dg(u,v) > 2 if and only if dg,fruc)(u,v) > 2,
for all u,v € TUC. Note that if u,v € C then the neighbourhoods of v and v
are exactly the same in G as they are in G7[T'UC). Hence, dg(u,v) > 2 if and
only if dg,ruc)(u, v) > 2. So without loss of generality suppose that u € T
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l.veC

Then uwv € E(H) and dg(u,v) < 2 by Observation 4.0.6. If dg(u,v) =1
then dg pruc)(u,v) = 1. So suppose not and consider z € V(G) such

that uz, vz € E(G). As vz € E(H) it follows that x € T U C. Hence,

dapruc)(u,v) = 2.

2.veT

Then dg(u,v) < 2 by Observation 3.3.2 and dg,.[ruc)(u, v) = 1.

Therefore, = restricted to T'U C'is a transitive orientation of Gp[T U C]?.

Claim 4.3. Let S be a minimal separator in Gp[T' U C]. Then there is a
u, v-path in Gp[T U C|\ S if and only if there is a u,v-path in Gp \ S, for
u,v € TUC.

Proof. Any u,v-path in Gp[T U C]\ S is a u,v-path in G \ S.

Let m be a shortest u,v-path in Gp \ S. Now, C € C&(T) by Corol-
lary 2.2.6 because H is a PMT of G. So by Lemmas 2.2.4 and 2.1.1,
C € Cg (T). If 7 is not contained in G¢[T'UC] it must pass through some
component D # C of Gy \ T. Let t, resp. t, be the vertex of T' closest to
u resp. v along w. Clearly, t, and ¢, are not consecutive in 7w because 7
passes through D. But ¢,t, € E(Gr) which contradicts that 7 is a shortest
u, v-path in G¢ \ S. So 7 is a u, v-path in Gy[T UC]\ S. 0

From Lemma 2.1.1 and Claim 4.3 we know that Ag,ruc; € Agy- By
Corollary 2.2.6, Ag, C Ag and Cg,.(T) = Ce(T'). Hence, Ag,ruc) € Ag.
Furthermore, Claim 4.3 implies that there is a w,v-path in Gp[T U C]\ S
if and only if there is a w,v-path in G \ S, for S € Ag.ruc) and u,v €
T UC. Therefore, it is routine to verify that if = restricted to T U C' is not an
extendable orientation of Gz[T U C]? then = is not an extendable orientation

of G2. O
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Example. As we saw earlier, the solid edges in Figure 4.5 form an AT-free
graph G and the graph H that includes the dashed edges is a CPMT of G.
Note that E(G?) = {1 5,1 8}. As such, there is only one transitive orientation
of G2 up to reversal. So {1 = 5,1 = 8} is an extendable orientation of G2 by
Corollary 3.3.4 and Observation 3.3.5. If we take T to be the solid vertices and
C to be the vertices to the left of 7', then {1 = 5} is an extendable orientation
of Gr[T U CT.

4.2 Extendable Orientation Theorem

We are now ready to prove the main result of this chapter:

Theorem 4.2.1 (Extendable Orientation Theorem). Let G be a con-
nected AT-free graph and = be an extendable orientation of G2. If H is a
CPMT of G then there ezists a transitive orientation — of H such that if

u = v then u — v.

Proof. The proof proceeds by induction on the number of vertices n of G. If
G has a single vertex then the theorem is trivially true. So suppose that this
theorem holds for connected AT-free graphs with fewer than n vertices.

If diam(G) < 2 then this theorem is true because any transitive orientation
of H will suffice. So assume that diam(G) > 2. Consider vertices z,y and a, b
of G with the properties described in Theorem 4.1.2. By the symmetry of

Theorem 4.1.2, we can assume without loss of generality that z = y.

Claim 4.4. Let S be a minimal a, b-separator in H. For every u € C%(S)
and v € C%(S) such that wv & E(G?) it holds that u = v.

Proof. Now z € S U C%(S) because a = z or axr € E(H). Similarly,
y € SUCY%(S) because b =y orby € E(H). Since HisaPMT of G, S € Ag
and C%(9),C%(S) € C&(S) by Corollary 2.2.6. By Observation 3.3.2,
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either z & S or y ¢ S because zy ¢ E(G?). So consider the following

cases:

1. z € C%(S) and y € CY%(S)
Then u = v because z = y and all edges of G? are oriented the same
way between C%(S) and C%(S) by (1) of Lemma 3.3.3.

2. z €S and y € C4(9)
Then u = v by (4) of Lemma 3.3.3 because £ = y is an edge in G?
oriented from S to C%(S).

3. z€Cy(S)and y € S.
Then u = v by (3) of Lemma 3.3.3 because z = y is an edge in G2
oriented from C%(S) to S.

O

Let A be the minimal a, b-separator close to ¢ in H and B be the minimal
a, b-separator close to b in H. By Theorem 4.1.2, A x C%(A) C E(H) and
B x C%(B) C E(H). By Observation 2.1.6 and Lemma 2.1.11, A || B in H.
and C%(A) C C%(B) and C%(A) D C%(B). Consequently, C%(A)NCY(B) =
0.

Claim 4.5. Hyapy s a PMT of H. Moreover, it is also a PMT of G.

Proof. Hyapy is a PMT of H because A || Bin H. As H is a PMT of G,
let S C Ag be a set of pairwise parallel separators in ¢ such that H = Gs.
By Lemma 2.2.5, both A and B are minimal separators in G and both are
parallel to every S € § in G. Earlier we proved that A || B in H. Hence
A || B in G by Corollary 2.2.6. So S U {4, B} is pairwise parallel set of
minimal separators in GG. Therefore, Hy4 gy is a PMT of G. O

Let H{, p, denote Hiap) \ (C§(4) U Cx(B)).

47



Claim 4.6. Let S C V(G). There is a u,v-path in Hy4 5y \ S if and only
if there is a u,v-path in Hyapy \ S, for u,v & C4(A) U CY(B).

Proof. Any u,v-path in Hi, \ Sis a u,v-path in Hyspy \ S.

Consider a shortest u,v-path 7 in Hys gy \ S where u,v ¢ CH(A) U
C%(B). Suppose that m contains some vertex w of C%(A). Let s be the
first vertex of A in « and ¢ be the last vertex of A in w. We know that
s and t are not consecutive in m because s occurs before w and ¢ occurs
after w. But A is a clique in Hy, gy which contradicts that 7 is a shortest
u,v-path in Hyg gy \ S. Thus 7 contains no vertex of C%(A4). Analogously,

7 contains no vertex of C%(B). Hence 7 is a u, v-path in Hi,p;m\S O

As H is a CPMT, let — be a transitive orientation of H. We can assume
without loss of generality that ¢ — b because the reversal of a transitive

orientation is still transitive. The following claim is central to this theorem:

Claim 4.7. Ifu = v then u — v, for all u,v & C%(A) U CY%(B).

Proof. Consider u,v ¢ C%(A) U C%(B) such that v = v. By Observa-
tion 4.0.6 and Claim 4.5, uv ¢ E(H{a py) because uv ¢ E(G?) and Ha gy
is a PMT of G. By Claim 4.6, H 2 A,B} is connected because H4 py is con-
nected. So let S be a minimal u, v-separator in H i A,B}- Again by Claim 4.6,
S is a minimal u, v-separator in H4 py. Both A and B are parallel to S in
H4 gy by Lemma 2.2.1. By Corollary 2.2.6 and Claim 4.5, S € Ay and S
is parallel to both A and B in H because H4 gy is a PMT of H. Clearly,
a,b ¢ S. Note that (a,b) is a dominating pair of H by Corollary 2.3.5
because H is PMT of (G. Hence, ¢ and b are in different components of

H\ S by Observation 2.3.4. Let

S, = {s€S: some vertex of C§(S) is adjacent to s in H}

Sy, = {s€S: some vertex of C%(S) is adjacent to s in H}
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By Lemma 2.1.2 we know that S,,S, € Ag, C(S) € Cy(S,), and
C%(S) € C4(Sy). Notice that C%(S) = C%(S,), C4(S) C C%(S.),
CY%(S) = C%(S), and C4(S) C C4(S,). To prove that u — v we consider

the following cases:

(1) u € CH(S)
By (1) of Lemma 3.3.1, if v € C%(S) then u — v because a — b.
So suppose v & C%(S). Now C%(S,) € Cy(Sy) because C%(S) C
C4%(Sy) and Cg(S) € Cy(S). So by Lemma 2.1.1, S; is a minimal
a, b-separator in H such that u € C%(S;) and v & C%(Ss).

We know that Sy, ¢ A because A is a minimal a, b-separator in H.
Moreover, S, # A because u € C§(Sy) but u € CH(A). So consider
s € Sy \ A. Suppose for contradiction that sv ¢ E(H). There is
a a, s-path in H[{s} U C%(S)] missing v. There is also a s, b-path in
H[{s}UC%(S,)] missing v. This contradicts that (a, b) is a dominating
pair in H.

Now, A and S, are parallel minimal a, b-separators in H because

Al S in H. So either
Ci(A) C C}(Sh) and Cpy(A) D C(Sh)

or
CH(4) D C}(Sy) and C(A) C Cy(Sh)
by Lemma 2.1.9. The former must be true as u ¢ C§(A) and u €
C%(Sp).
C%(S,) is a full component so there is a b, s-path in H[{s} U
C%(Sy)]. This is also a b, s-path in H[{s} U C%(A)]. It follows that
s € C%(A) because s ¢ A. Hence, v € AUCY(A) because sv € E(H).

We know that av ¢ E(H) because a and v are in different components

of H\ S. Earlier we chose A close to a in H. So v € C%(A). By (1)
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of Lemma 3.3.1, a — v because @ — b. Again by (1) of Lemma 3.3.1,
u — v because a = v, u € C%(S), and v & CE(S5).

v € CH(S)

In this case C%(S;) € Cy(Sp) because CH(S) C C4(Sy) and CH(S) €
Cy(S). By Claim 4.4, u € C%(S) because u = v. Consequently, Sy is
a minimal a, b-separator in H such that v € C%(Sy) and u & C%(S,).

Consider for contradiction s € S, such that su & E(G). As S is
a minimal a, u-separator in H it is also a minimal a, u-separator in G
by Lemma 2.2.5 because H is a PMT of G. There is a a, s-path in
G[{s}UC&(S)] missing u. Note that Sy is a minimal b, u-separator in
H because C¥(S) C C¥(Sy) and C%(S) € Cy(S). By the preceding
argument, there is a s, b-path in G[{s} U C%(S;)] missing u. Yet this
contradicts that (a,b) is a dominating pair in G.

C%(Sy) € Cg(Sy) so consider b, € C%(Sy) and s € Sp such that
bgs € E(G). Now, v is completely non-adjacent to Sy in G because
u is completely adjacent to S, in G. Consequently, bv ¢ FE(G?).
So v = b by Claim 4.4 because v € C%(Sy). Thus u = v = b,
contradicting that su € E(G).

u € C4(9)

Please note that this case is symmetric to case 2. As the symmetry
18 non-obvious, the same proof is included with the necessary substi-
tutions.

In this case C%(S,) € Cy(S,) because C%(S) C C%(S,) and
C%(S) € Cy(S). By Claim 4.4, v € C%(S) because u = v. Con-
sequently, S, is a minimal a, b-separator in H such that u € C%(S,)
and v & C%(S,).

Cousider for contradiction s € S, such that sv ¢ E(G). As S is

a minimal b, v-separator in H it is also a minimal b, v-separator in G

by Lemma 2.2.5 because H is a PMT of G. There is a b, s-path in
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G[{s} UCL(S)] missing v. Note that S, is a minimal a, v-separator in
H because C}(S) C Cy(S,) and C¥(S) € Cy(S). By the preceding
argument, there is a s, a-path in G[{s} U C&(S,)] missing v. This
contradicts that (a,b) is a dominating pair in G.

C&(S,) € C&(S,) so consider a, € C&(S,) and s € S, such that
ass € F(G). Now, u is completely non-adjacent to S, in G because
v is completely adjacent to S, in (. Consequently, a,u ¢ E(G?).
So a; = u by Claim 4.4 because u € C¥%(S,). Thus a; = u = v,
contradicting that sv € E(G).

v € C4%(9)
This case is symmetric to case 1. The same proof is included with the
necessary substitutions because the symmetry is non-trivial.

By (1) of Lemma 3.3.1, if u € C%(S) then u — v because a — b.
So suppose u & C%(S). Now C%(S,) € Cy(S,) because C4(S) C
C%(S,) and C%(S) € Cy(S). So by Lemma 2.1.1, S, is a minimal
a, b-separator in H such that v € C%(S,) and u & C%(S,).

We know that S, ¢ B because B is a minimal a, b-separator in H.
Moreover, S, # B because v € C%(S,) but v € C%(B). So consider
s € S, \ B. Suppose for contradiction that su ¢ E(H). There is
a b, s-path in H[{s} U C%(S)] missing u. There is also a s, a-path in
H[{s}UC%(S,)] missing u. This contradicts that (a, b) is a dominating
pair in H.

Now, B and S, are parallel minimal a, b-separators in H because

B || S in H. So either
Ch(B) C Cy(Sa) and CF(B) D Ck(Sa)

or
Cy(B) D Cy(Sa) and C{(B) C Cg(Sa)

by Lemma 2.1.9. The former must be true as v ¢ C%(B) and v €

Ch(Sa)-
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C%(S,) is a full component so there is a a, s-path in H[{s} U
C%(S,)]. This is also a a, s-path in H[{s} U C%(B)]. It follows that
s € C%(B) because s ¢ B. Hence, u € BUC%(B) because su € E(H).
We know that bu ¢ F(H) because b and u are in different components
of H\ S. Earlier we chose B close to bin H. So u € C%(B). By (1)
of Lemma 3.3.1, u — b because a — b. Again by (1) of Lemma 3.3.1,
u — v because u — b, v € C%(S), and u ¢ C%(S).

u,v ¢ O3(5) U Ch(S)

Assume for contradiction that S, NS, # @ and cousider s € S, N Sp.
Suppose that su ¢ E(G). Earlier we observed that S, € Ay and
C%(S) € C3(S,). By Corollary 2.2.6, S, € Ag and C&(S) € C&(S,)
because H is a PMT of G. Hence, there is a a, s-path in G[{s} U
C&(S,)] missing u. Analogously, there is a s, b-path in G[{s}UCE(Sh)]
missing u. This contradicts that (a,b) is a dominating pair in G.
Therefore, su € F(G). By symmetry, sv € E(G) which contradicts
that uv ¢ E(G?). Thus, S, N S, = 0.

Suppose for contradiction that there exist s, € S, and s, € S
such that s,u € E(G) and syu € E(G). There is a a, s,-path through
G[{s.} U C&(S,)] missing u. By Lemma 2.2.5, S is a minimal u, v-
separator in G because H is a PMT of G. So there is a sg, sp-path
missing u in G[{s4, sp} U C&(S)]. Finally, there is a s, b-path in
Gl{ss} U C%(S,)] that misses u. Therefore, there is a a,b-path in
G that misses u, a contradiction.

What this means is that u is completely adjacent to S, or Sy in
G. Again by symmetry, v is completely adjacent to S, or S,. As

uv € E(G?) there are two cases to consider.

(a) {u} xS, C E(G), {u} xSp)NE(G) =0, ({v}xS,)NE(G) =0,
and {v} x Sy C E(G)

Consider s, € S, and s, € Sy. We know that as, ¢ F(H) because
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S.NSy = 0. There is a b, sp-path in H[S,UC%(S)] by definition of
Sp. Hence, s, € C%(S,). Now, S, is a a, b-separator in H because
b C%(S) and C4(S) = C%(S,). So by (1) of Lemma 3.3.1, a —
sp because a — b. There is a u, s,-path in H{S, UCY%(S)] because
CH(S) € C3(S). Moreover, there is a s4, a-path in H[S,UC%(S)]
by definition of S,. Thus, u € C{(Sy). By (2) of Lemma 3.3.1,
u — S, because a — $,. Suppose that v — u. Then v — s, by
transitivity, which contradicts that vs, € E(G).

(b) ({u} x So)NE(G) =0, {u} xS, C E(G), {v} xS, C E(G), and
({v} xS, NEG) =0
ab ¢ E(G?) because S, N Sy = §. By Claim 4.4, a = b.

Consider a; € C&(S) and s, € S, such that ays, € E(G)
because C&(S) € C&(S,). Clearly, a;u ¢ E(G?) because S, is a
a, u-separator in G and ({u} x S,) N E(G) = 0. Consider s, € S,
There is a s, b-path in G[S, U C%(S)] because C%(S) € C&(Ss).
So sy € C4(S,). Since usy € E(G) and u ¢ S, we know that
u € CY%(S,). By (1) of Lemma 3.3.3, a; = u because a = b. By
transitivity, a; = v which contradicts that vs, € E(G).

O

By Observation 4.1.3, G, = G4[A U C%(A)] is connected and AT-free. By
Lemma 4.1.4, H, = HyJAU C%(A)] is a CPMT of G,. Lemma 4.1.5 tells us
that = restricted to G, is an extendable orientation of G2. By our induction
hypothesis, let = be a transitive orientation of H, such that for u,v € V(G,),
if u = v then v = v. Define G, and H, analogously. Then let % be a
transitive orientation of Hy such that for u,v € V(Gy), if u = v then u L

At this point we are ready to construct an orientation ~» of H in a piecewise

fashion. Consider the following conditions:

(1) if u,v € C%(A) then u ~» v if and only if u = v
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(2) if u,v € C%(B) then u~» v if and only if u = v

(3) if u,v & C%(A) U CY(B) then u~ v if and only if u = v

(4) ifu € C%(A) and v € C%(B) then u~ v if uv ¢ E(H)

(5) ifu € C%(A) and v g€ C%(A) U C4(B) then u~ v if uv ¢ E(H)
(6) if u g C4(A)UCY%(B) and v € C4%(B) then v~ v if uv ¢ E(H)

Since C%(A) N CY%(B) = 0, ~» is well defined because the cases partition
the vertex set. In conditions (1)-(3), if u = v then v ~ v.

Suppose that condition (4) holds and uv € E(G?). Just after we proved
that A || B in H we demonstrated that C%(A) C C%(B) and C%4(A) 2 C%(B).
Therefore, u = v by Claim 4.4.

Suppose that condition (5) holds and uv € E(G?). By Observation 4.0.6,
v € A because A is completely adjacent to C&%(A) in H. If v € C%(A) then
u = v by Claim 4.4. So assume that v ¢ AU C%(A). By Corollary 2.2.6,
A€ Ag and C%(A),CY(A) € C&(A). Consider for contradiction s, € A such
that s,v ¢ E(G). Then there is an a, s,-path in G[{s,} U C%(A)] missing
v. There is also a s,, b-path in G[{s,} U C%(A)] missing v. However, this
contradicts that (a,b) is a dominating pair in G. Hence, {v} x A C E(G) and
({u} x A) N E(G) = . Therefore, ub ¢ E(G?). By Claim 4.4, u = b. Let U
be the u, v-separator close to u in G. Clearly, U C AUC&(A) and A € U. By
Lemma 2.1.8, b € C&(U). By (1) of Lemma 3.3.3, u = v because u = b.

This case follows by symmetry as well. It is included with the necessary
substitutions for completeness. Suppose that condition (6) holds and uv ¢
E(G?). By Observation 4.0.6, v ¢ B because B is completely adjacent to
C%(B) in H. If u € C%(B) then v = v by Claim 4.4. So assume that
uw ¢ BUC%(B). By Corollary 2.2.6, B € Ag and C4(B),C%(B) € Cg(A).
Consider for contradiction s, € B such that syu & E(G). Then there is a a, sp-
path in G[{s; }UC%(B)] missing u. There is also a s, b-path in G[{s, }UCY(B)]

missing u. However, this contradicts that (a,b) is a dominating pair in G.
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Hence, {u} x B C E(G) and ({v} x B) N E(G) = 0. Therefore, av ¢ E(G?).
By Claim 4.4, a = v. Let W be the u,v-separator close to v in G. Clearly,
W C BUCYLB) and B ¢ W. By Lemma 2.1.8, a € C4(W). By (1) of
Lemma 3.3.3, u = v because a = v.

So we have demonstrated that v = v implies u ~ v. Hence, all that

remains to be shown is that ~» is transitive.

Claim 4.8. For all u ¢ C4(A) and s, € A such that squ ¢ E(H) it holds

that s, — u.

Proof. Clearly u ¢ A because A is a clique in H. So u &€ AU C¥%(A).
Suppose that u & C%(A). Then there is a a, s,-path missing u in H[{s,}U
C%(A)]. There is also a s,,b-path missing u in H[{s,} U C%(A)]. This
contradicts that (a,b) is a dominating pair in H.

So u € C%(A). By (1) of Lemma 3.3.1, a — u because a — b. If

u — 8, then a — s, by transitivity, a contradiction because A is close to a

in H. 1

Claim 4.9. For allu & C%(B) and s, € B such that syu ¢ E(H) it holds

that u — sp.

Proof. By reasoning similar to the previous Claim, v € C%(B). So by
(1) of Lemma 3.3.1, u — b because ¢ — b. If s, — u then s, — b by

transitivity, a contradiction because B is close to b in H. (I

Consider for contradiction u,v,w € V(G) such that u ~ v, v ~ w, and
U w.

One possibility is that w ~ u. Perhaps {u,v,w} N C%(A) # . Then
without loss of generality assume that u € C§(A). Then w € CH(A) because
w ~» u. Similarly, v € C4(A) because v ~ w. However, this contradicts the

transitivity of . Therefore, u, v, w ¢ C%(A). By symmetry, u,v, w & C%(B).
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So, u,v,w & C%(A) U C%(B) which contradicts the transitivity of —. Hence,
Therefore, w +% w.

The other possibility is that uw ¢ E(H). Let us consider when w € C%(4).
Then v € C%(A) because v ~ w. Similarly, u € C%(A) because u ~ v. But
this contradicts the transitivity of . Therefore, w ¢ C%(A). Again for
contradiction, suppose that u € C%(B). Then v € C%(B) because u ~» v.
So w € CY%(B) because v ~ w. But this contradicts the transitivity of 4.
Hence, u & C%(B).

Earlier we demonstrated that C%(A) C C%(B) and C%(A) 2 C%(B).
Suppose u € C%(A). Then w € AU C%(A) because uw € E(H). Since
w ¢ C4(A), w € A. This means that w ¢ C%(B) because C%(A4) D CY4(B).
Thus, v ¢ C%(B) because v ~» w. Moreover, v & C%(A) because vw ¢ E(H)
and Ax C%(A) C E(H). Sov ¢ C4(A)UCY%(B). By Claim 4.8, w — v which
contradicts that v ~» w. Therefore, u & C%(A).

Suppose w € C%(B). Then v € B U C%(B) because uw € E(H). Since
u ¢ C%(B), u € B. If v e C4(A) then v ~» u because u ¢ C4(B) U CY(B), a
contradiction. If v € C%(B) the uv € E(H) because B x C%(B) C E(H), a
contradiction. So, v € C%(A)UCY(B). By Claim 4.9, v — u which contradicts
that u ~» v. Therefore, w & C%(B).

To recap, u,w € C%(A) U CY%(B). Thus v ¢ C%(A) because u ~ v.
Similarly, v ¢ C%(B) because v ~» w. But this contradicts the transitivity of
—. So there are not such u, v, w € V(G). Therefore ~» is transitive orientation

of H such that u = v implies that u ~» v. O

Example. The graph G in Figure 4.6 given by the solid edges illustrates
the necessity of the induction step in the proof of Theorem 4.2.1. The vertex
labels are a cocomparability order of G. Hence, G is AT-free by Theorem 1.3.6.
The minimal 2, 3-separator close to 2 is {1,6,7,9}. By Observation 4.0.8, the
supergraph H indicated by the dashed edges is a CPMT. In each successive
graph we have indicated what z, y, a, and b must be up to reversal. A is

indicated by the solid vertices in each graph. The rightmost graph is unlabelled
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because it is diameter 2.

Notice that F(G?) = {1 5,1 8,1 10}. In any extendable orientation = of
G2, either 1 is a source or a sink by transitivity. Let us suppose without loss
of generality that 1 is a source of =. Then the transitive orientation — of H

resulting from the vertex labelling satisfies Theorem 4.2.1.

Figure 4.6: Illustrates the necessity of the induction in Theorem 4.2.1. The
dashed edges are edges added to form a CPMT.

Example. The graph G in Figure 4.7 demonstrates the necessity of the dif-
ferent cases in Claim 4.7. To the right of it is an interval model proving that
G is an interval graph. By Theorem 1.3.7, G is AT-free.

If we take S = {s1, s3} we get (4) of Claim 4.7. If we take S = {s2, 54}
we get (1) of Claim 4.7. Finally, if we take S = {s1, 82} we get (5)(a) of
Claim 4.7. These are the only cases that can occur because all of the other

cases in Claim 4.7 lead to contradiction.
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Figure 4.7: Illustrates the various cases in Claim 4.7 of Theorem 4.2.1. To the
right is an interval model.
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Chapter 5

Cocomparability Graphs

In this chapter, we analyse the Extendable Orientation Theorem, which ex-
presses a relationship between transitive orientations of the complement and
extendable orientations of the complement of the square. Motivated by this
analysis, we present a new characterization of cocomparability graphs in terms
of minimal separators.

With respect to cocomparability graphs, one interpretation of Corol-
lary 4.0.9 is that an extendable orientation of the complement of the square is
ordering a subset of what a transitive orientation of the complement orders.

This next observation supports this interpretation.

Observation 5.0.2. Let G be a connected cocomparability graph and — be a
transitive orientation of G. Then — restricted to G2 is an extendable orien-

tation.

Proof. Let = be — restricted to G2. By Lemma 3.3.1, = has the necessary
properties with respect to Ag to be extendable. All that remains to be shown
is that = is transitive.

Suppose not and consider u,v,w € V(@) such that v = v, v = w, and
u # w. By the transitivity of —, u — w. So uw € E(G?) but uw ¢ E(G).
Then consider z € V(G) such that uz,wz € E(G). If va € E(G) then
uv € E(G?), a contradiction. So vz ¢ E(G). f v > z thenu - v — 1, a

contradiction because ux € E(G). If  — v then £ — v — w, a contradiction
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because zw € V(G). Therefore, = is transitive. O

Observation 5.0.2 and Corollary 4.0.9 raise two important questions: “If G
is a cocomparability graph, what does a transitive orientation of the comple-
ment order in G?7” and “What subset of that does an extendable orientation

of G2 order?”

5.1 Limitations

In an effort to answer the previous two questions, we shall examine two limita-
“tions of the Extendable Orientation Theorem. Each limitation demonstrates
an instance where an extendable orientation of the complement of the square

does not capture all of the ordering information that it could.

Observation 5.1.1. Let G be a connected AT-free graph, = be an extendable
orientation of G2, and H be a PMT of G. If F is a CPMT of H then there

exists a transitive orientation of — of F such that if u = v then u — v.

Proof. Repeated application of Corollary 2.2.6 indicates that F is a CPMT of
G. The rest follows from Theorem 4.2.1. O

Clearly, E(H?) C E(G?). So there may be less information an extendable
orientation of H? than in an extendable orientation of G2. However, both
extendable orientations can be used to order F. As in Corollary 2.2.6, the sep-
arator structure of H is a restriction of the separator structure of G. This hints
that an extendable orientation of G2 is orienting something in the separator
structure of H because it is still applicable to CPMTs of H. The Extendable
Orientation Theorem uses dg(u,v) > 2 as condition for orientation in a con-
nected AT-free graph. We conjecture that this condition for orientation can be
replaced with a condition directly related to separator structure which yields

more ordering information. This next limitation leads to the same conjecture.
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Definition. Let G be a graph. A different graph, denoted G x u, can be
derived by adding a new vertex u and making it adjacent to every vertex of

G. Observe that diam(G x u) < 2.
Observation 5.1.2. A graph G is AT-free if and only if G x u is AT-free.

Proof. If G has an AT then G x u also has an AT.

Suppose that {z,y, z} is an AT in G X u. Since u is adjacent every vertex
of V(@), we know that u & {z,y, z}. Let 7 be a z, y-path in G x u missing z.
Clearly, u is not a vertex of = because uz € F(G x u). So 7 is a z, y-path in

G missing z. By symmetry, {z,y, z} is an AT of G. O

Observation 5.1.3. Let GG be a graph. Then — is a transitive orientation of

E(G) if and only if — is a transitive orientation of E(G X u).
Proof. E(G) = E(G x u). O

We are interested in G X u because its separator structure is isomorphic to

the separator structure of G:

Lemma 5.1.4. Let G be a connected graph. Then for every S € Ag:
1. SU{u} € Agxu
2. Cg(S) = Caxu(S U {u})

8. {s € S : s is adjacent to some vertez of C in GyU{u} = {s € SU{u}:s
is adjacent to some vertex of C in G x u}, for C € Cg(S)

Moreover, for T € Agxy:
1. T\ {u} € A¢
2. Caxu(T) = Co(T \ {u})

8. {t € T : t is adjacent to some vertezx of C in Gxu}\{u} = {t € T\{u} : ¢
is adjacent to some vertez of C in G}, for C € Caxu(T)
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Proof. Suppose S € Ag. Then there is a s, t-path in G\ S if and only if there
is a s,t-path in G x u\ (S U {u}). So S U {u} is a separator in G x u and
Ce(S) = Caxu(SU{u}). The statement about the adjacency of S and SU{u}
to a component C' is clearly true. Therefore, S € Agy, by Lemma 2.1.1.
Suppose T' € Agxy. Then T is a minimal z, y-separator in G X u, for some
z,y € V(G x u). Now, u # z and u # y because u is adjacent to every other
vertex of G x u. Moreover, uz,uy € E(G x u) so u € T. There is a s, t-path in
(G xu)\T if and only if there is a s, t-path in G\ (T'\ {u}). By the arguments
above, the properties with respect to 7" and 7'\ {u} follow. O

Corollary 5.1.5. Let G be a connected graph. If H is a PMT of G then H xu
is a PMT of G x u. Similarly, if H is a PMT of G x u then H\{u} is a PMT
of G.

So the Extendable Orientation Theorem implies:

Corollary 5.1.6. Let G be a connected AT-free graph and = be an extendable
orientation of G2. Then for every CPMT H of G x u there is a transitive

orientation — of H such that u = v implies u — v.

Proof. An immediate consequence of Observation 5.1.3, Corollary 5.1.5, and

Theorem 4.2.1. 0

So G x u preserves the separator structure of G in such a way that
E((G x u)?) = 0. Yet an extendable orientation of G? is directly applicable to
G X u.

5.2 Alternate Characterizations

These results motivated a search for characterizations of AT-free and cocom-
parability graphs in terms of separator structure. As this next example shows,
the number of minimal separators in a cocomparability graph may be expo-

nential in the size of the graph.
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Example. The shaded boxes in Figure 5.1 represent cliques in a graph G. So
{s} U K; and {t} U K, are two disjoint cliques that partition G. If we direct
every edge in G from {s} U K, to {t} U K, we have a transitive orientation.
Thus, G is a cocomparability graph and hence is AT-free by Theorem 1.3.6.
If we choose a single end point from every edge between K; and K5 in G, we

get a minimal s, t-separator. Hence, if |K;| = k then |Ag| > 2F.

K, K
P
Q

s o O t
o9
bo—id

N/

Figure 5.1: The number of minimal separators is not polynomially bounded
by the size of the graph.

5.2.1 AT-Free Graphs

Theorem 2.3.1 characterizes AT-free graphs in terms of their separator struc-
ture. Since |Ag| can be quite large, Theorem 2.3.1 is not very interesting from

an algorithmic perspective. Fortunately, Parra’s proof can be readily modified.

Definition. Let G be a connected graph. When S € Ag is a minimal u, v-

separator close to u for some u,v € V(G), we call S a close minimal separator.

Observation. Let G be a connected graph. The number of close minimal

separators in G is O(n?).

Proof. The minimal u, v-separator close to u is unique. (|
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Notation. Let G be a connected graph. If uv ¢ E(G) then we denote the

minimal u, v-separator close to u as S,.

Corollary 5.2.1. Let G be a connected graph. Then G is AT-free if and only
if among any three pairwise strongly parallel close minimal separators in G,

there is a separator S such that the other two intersect different components

of G\ S.

Proof. Let {z,y,2z} be an AT in G. As there is a y, z-path in G missing
z we know that z € C%(,S,). So S, = ;S,. By symmetry, ,S; = ,S.
and ,S; = .S,. By Observation 2.1.6, ;S is strongly parallel to ,S; and ,S,.
Moreover, 4S5z, 2S5 C Sy UCE(4Sy) by Lemma 2.1.11. Therefore by symmetry
we have three pairwise strongly parallel close minimal separators ;5,, ,5;, and
2S5z such that for any one the other two intersect the same component. Suppose
without loss of generality that ,S, = ,S;. Then z € C&(,S,) and z € C%(,S;),
a contradiction. So the separators are distinct.

Let X,Y, Z be distinct pairwise strongly parallel close minimal separators
such that Y, Z C X UCx, X, Z C Y UCy, and X, Y C Z U Cy, for some
Cx € Cg(X), Cy € Cg(Y), and Cy € Cg(Z). Let x be a vertex of a full
component of G\ X other than Cx. Define y and z analogously. Note that
Y ¢ X because X and Y are strongly parallel. By Lemma 2.1.8, y € Cx
because Y C X U Cx. Similarly, z € Cx. Thus there is a y, z-path in G[Cx]
missing z. By symmetry, {z,y, z} is an AT in G. a

So AT-free graphs are characterized by the strongly parallel relation be-

tween (close) minimal separators. This motivates the following definition:

Definition. Let G be a connected graph. The separator graph of G, denoted
Y(G), has Ag as its vertices and ST € E(X(G)) if and only if S is strongly
parallel to T in G.

Example. As the separator graphs in Figure 5.2 illustrate, we need to keep

track of the intersection relationship with respect to components for the sep-
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arator graph to be useful in terms of Theorem 2.3.1 because the left graph is

an asteroidal triple and the right graph is AT-free.

-
@

O~
O=
O«
Os=

{bc} {t}

{b.e} fc.el {v} {u}

Figure 5.2: Some connected graphs and associated separator graphs.

Rather than introduce a complex labelling scheme, we do the following: Let
S be any minimal separator in G. Split the vertex of V/(2(G)) corresponding to
S into pieces, where each piece represents a component of G\ S that has a non-
empty intersection with some strongly parallel minimal separator. Suppose
that S,T € Ag are strongly parallel. Then consider C' € Cg(T), D € Cg(S)
such that S CTUC and T C SU D. In this case, we connect the piece of §

corresponding to D to the piece of T corresponding to C.

Definition. The resulting graph, denoted ¥'(G), will be called an augmented

separator graph.

Example. The graph on the left in Figure 5.3 is a connected AT-free graph.
To the right is its augmented separator graph.

Note that by Corollary 2.2.6, if H is a PMT of a connected graph G then
Y(H) = X' (G)[Ag]. Also observe that by Theorem 2.3.1, G is AT-free if and

only if no three pieces in ¥'(G) form a triangle.
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{ac} {a,d}
O Q

{ce}  {be}

Figure 5.3: A connected AT-free graph and its corresponding augmented sep-
arator graph.

Example. The dashed edges in Figure 5.4 are added in a PMT of the graph
represented by the solid edges. Observe that {b, e} is a close minimal separator

in the PMT but not the original graph.

Figure 5.4: A close minimal separator in a PMT is not necessarily a close
minimal separator in the original graph.

Observation 5.2.2. Let G be a connected AT-free graph and S be a minimal
separator in G. Then there are at most two full components of G\ S with a

vertez that is not adjacent to some vertex of S.

Proof. Suppose not and let C, D, E € C%(S) have a vertex that is not adjacent
to some vertex of S. Consider ¢ € C and s, € S such that cs. ¢ E(G). Define
d, e, 84, and s, analogously. Now, there is a d, s.-path in G[{s.} U D] missing
c. There is also a s, e-path in G[{s.} U E] missing c. By symmetry {c,d, e} is
an AT of G, a contradiction. O

Example. The top left graph in Figure 5.2 shows that this is not a sufficient
condition to be AT-free.
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Observation 5.2.3. Let G be a connected graph. If A, B € Ag are different
strongly parallel minimal separators then B C AU C where C is some full
component of G\ A. Moreover, some vertex of A is not adjacent to some

vertex of C.

Proof. Let A, B € Ag be strongly parallel minimal a, b-separators. With-
out loss of generality assume that C&(A) C C&(B) and C%(A) D C4(B) by
Lemma 2.1.9. Consider s, € B\ A. There is a b, sy-path in G[{sy} U C4%(B)]
which avoids A because C4(A4) D C%(B). So B C AU C4%(A). By symmetry
A C BUCE(B). Consider s, € A\ B. Then s, € C&(B) and bs, ¢ F(G). O

Observations 5.2.3 and 5.2.2 indicate that if G is AT-free then each vertex
in ¥/(G) will be split into at most 2 pieces.
5.2.2 Cocomparability Graphs

Definition. Let G be a connected graph and — be a transitive orientation
of ¥'(G). We call — a separator orientation of 3'(G) whenever the following

conditions hold:
(1) if S = T — U then S and U are adjacent to different pieces of T

(2) ifeither S > Uand T - U or U — S and U — T then S and T are

adjacent to the same piece of U.

Example. The augmented separator graphs in Figure 5.5 correspond to the
graphs in Figure 5.2. The transitive orientation on the left is not a separator

orientation because {b,e} — {b,c} — {c, e} violates the first condition.

Theorem 5.2.4. Let G be a connected graph. Then G is cocomparability if

and only if ¥'(G) has a separator orientation.

Proof. Let GG be a connected cocomparability graph and — be a transitive
orientation of G. Suppose ST € E(X/(G)) and consider Cy € C(S) such that
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{bc} {t}

{be}l {c.e} {v} {ul

Figure 5.5: A transitive orientation is not necessarily a separator orientation.

T C SUCy. By Lemma 5.2.3, C; € C&(S) and some vertex of S is not adjacent
to some vertex of Cy. So consider s € S and ¢; € C such that cs & E(G).
Then let S~ T if s = ¢3 and T ~ S if ¢ — s. By (2) of Lemma 3.3.1, this
orientation is the same regardless of the particular s and c,.

To show that ~» is well defined consider Dy € Cg(T') such that S C TUD;.
By Lemma 5.2.3, Dy € C&(T) and some vertex of T is not adjacent to a vertex
of Dy. So consider ¢t € T and d; € D; such that dit € E(G). Let Cy be a
full component of G \ S other than Cy. Then C; C D; by Lemma 2.1.8.
Similarly, let Dy be a full component of G \ T other than D;. Then Cy D Dy
by Lemma 2.1.8. Finally, consider ¢; € C; and dy € D,. Suppose that s — c;.
Then ¢; — ¢; by (4) of Lemma 3.3.1. So ¢; — dy by (2) of Lemma 3.3.1
because dy € Cs. Since ¢; € Dy, dy — dp by (2) of Lemma 3.3.1. Therefore,
d; — t by (4) of Lemma 3.3.1. Suppose that ¢ — s. A similar argument
shows that dy — d;. Therefore t — d; by (3) of Lemma 3.3.1. Hence, ~ is
well defined. Moreover by Lemma, 3.3.1, the two additional requirements for
~» to be a separator orientation are true.

All that remains to be shown is that ~» is transitive. Consider S,T,U € Ag
such that S ~ T and T ~» U. As every piece is either a source or a sink of
~+, S and U must intersect different components of T'. Let Cs and Cy be
components of G\ T such that S CTUCs and U C TUCCy. Clearly, S € T,
TZ S, UZT,andT € U because S and U are both strongly parallel to
T. By Lemma 5.2.3, consider C,Cy € C&(S) of G\ S such that C; # C,
and T C S U Cy. Similarly, consider Dy, Dy € C&(U) such that Dy # D,
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and T C UUD;. Now C; C Cg by Lemma 2.1.8 because S € T. Similarly
Cs C D, because T' € U. So Cy; C D;. By symmetry, Cy D D;y. Therefore
S and U are strongly parallel by Lemma 2.1.10. Since U intersects the same
component of S as T, S~ U.

Now suppose that G is not a cocomparability graph. By Theorem 1.3.6, let

(v1, v, ..., Vx) be ashortest odd wreath in G. For convenience, the arithmetic
with respect to all indices is modulo k. By definition, ,,,,S,,,, is the minimal

Vit1, Uiro-Separator close to v;yq in G. The definition of a wreath indicates

that there is a v;, v -path missing v;4; in G. Therefore, v; € Cg** (4, Suis)

S, S

and Vite T Vg1

Vit

S

Yi+3 T Ui+

S, Sy..  Similarly,

Vi+3 T Ui

S

For contradiction, suppose that viss fOr some j. We

know that v, € Cg™(y,.,S

Vi3

Vj+2
) and

(v;4350;44) A0 o, Sy, = 0,34, So by assumption, vj4 €

Vi+2 Yi+2

Vi4-2

vj+a € Of
Uj+2 _ _ . — .

Cd ™ (042 5042) 30d o, 1,808 = vj,55u,,- I kK = 3 then v = v;,4 would

S, a contradiction. Thus, £ > b

be in two different components of i43)

Vj+2
and v;11V;44 € E(G). Now there is a v}, vj4o-path in G missing v,41. There
. . U4 . . .

is also a vjt9, vj4a-path in G[CF " (y,,,5,,,)] missing v;11. So there is some

vj, Vj44-path in G missing v;y;. There is a v;41, vjys-path in G[CF ™ (4;,,5,,,)]
missing vj;4. By the definition of a wreath there is some v; 3, vj5-path miss-

ing v44 in G. So there is some v; 1, v;45-path in G missing v;4. Therefore,

(Vj41, Ujrd, Ujgss - - -5 Virk = U;) is a shorter odd wreath of G, a contradiction.

Since 4,154 = v Sus wduy, is strongly parallel to o, 5,,, by
Lemma 2.1.6.  Consequently, ,,Sy,, C u.;S0. U Ce*?(ny,S,,) by
Lemma 2.1.11.  Similarly, ,,,S.,, = v;,,5;,, implies that . S, , is

Thus, 'Ui+QS’Ui+3 C vi+ISUi+2 U CZ;H (vz‘+1SUi+2) by
Lemma 2.1.11. S0 (4, Suy, 05y« - -5 vy Svgs v Swe) 18 an odd cycle (possibly
chorded) in ¥'(G). But .S, S Svivs UCa™ (4101 Su;.)- So, the

Vi+3 Vi-2 Vit2
consecutive edges along the cycle are connected to a common piece. Hence, the

strongly parallel to ,,,,S

viy3°

i+17 Vit2 g Vil Vi1

direction of consecutive edges along the cycle must alternate in any separator

orientation. This cannot happen because the cycle is odd. O
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Corollary 5.2.5. Let G be a connected graph. Then G is cocomparability if
and only if the augmented separator graph of G restricted to the close minimal

separators of G has a separator orientation.
Proof. Follows from the proof of Theorem 5.2.4. O

Example. (b,d, a, c, e) is an odd wreath in the complement of the graph in Fig-
ure 5.3. This corresponds to the odd cycle ({a,c}, {c, e}, {b, e}, {b,d}, {a,d})

in the augmented separator graph.

Example. In Figure 5.6, the graphs from left to right are a cocomparabil-
ity graph, a transitive orientation of the complement, and a corresponding

separator orientation.

Figure 5.6: An example of a cocomparability orientation and corresponding
separator orientation.

5.3 Summary

Earlier we asked two important questions: “If G is a cocomparability graph,
what does a transitive orientation of the complement order in G?7” and “What
subset of that does an extendable orientation of G? order?” Our new char-
acterization shows that a transitive orientation of the complement is ordering
strongly parallel minimal separators. It is only a partial order because two
minimal separators in a cocomparability graph may not be strongly parallel.

By Corollary 2.2.6 and Theorem 4.2.1, an extendable orientation orients the
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strongly parallel separators in the same way, but it does not order every pair
of strongly parallel minimal separators.

In this thesis we started with a review of graph classes. Then we surveyed
recent results with respect to minimal separators and the square of AT-free

graphs. Our significant contributions are:
1. a characterization of dominating pairs in terms of minimal separators

2. an identification of strong properties of transitive orientations of the

complement with respect to minimal separators

3. a demonstration that an extendable orientation is a generalization of a

transitive orientation of the complement
4. a proof that an extendable orientation orders every minimal triangulation

5. a new characterization of cocomparability graphs in terms of a partial

order of its minimal separators
6. an identification of limitations which suggest areas for further study

In a few words, these results are important because we have an alternative
interpretation of the linearity of cocomparability graphs. Moreover, AT-free
graphs clearly generalize this linearity. Finally, these results are not sharp and

we have identified how they may be strengthened.
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Appendix A

Partial Results

Observation 3.3.2 was used considerably in the results leading up to Theo-
rem 4.2.1; even the statement of Theorem 4.2.1 depends on this observation.
One potential generalization of Theorem 4.2.1 is to substitute G, for G* in
our definition of extendable orientation. This appendix contains results in this

direction.

Definition. Let G be a connected graph. Then G, is called the cycle com-
pletion of G because by Observation 2.2.3, Ga,, is the result of making every

long cycle in G a clique.

A.1 Cycle Completions

Lemma A.1.1. Let G be a connected graph. If there is a x,y-path missing z

in Ga, then there is a x,y-path missing z in G.

Proof. Our proof will be inductive on the length k£ of such a path in Ga,.
Suppose that & = 1. Then there exists some S € Ag such that x,y € S but
z & S. Consider C € C&(S) such that z ¢ C. Then any z,y-path through
G[{z,y} U C] misses z.

Assume that if there is a x, y-path missing z in G, of length < k then
there is a z, y-path missing z in G. Let (x = vp, v1,...,Uk41 = y) be a z, y-path

missing z in Ga,. So (z = vg, vy, ..., V) I8 a &, vg-path missing z in Ga,. By
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our induction hypothesis there is some z, v;-path 7; missing z in (. Similarly
{(Uk, Vg1 = Y) 1S & v, y-path missing z in Ga,. Again, there is some vy, y-path
m missing z in G. Hence, 7 - w5 is a x,y-path missing z in G. Therefore,

there is always a z, y-path missing z in G by induction. ]
Corollary A.1.2. Let G be a connected AT-free graph. Then Ga, s AT-free.

We have not determined whether being connected and AT-free is sufficient
for the cycle completion to be cocomparability. However, this next example
shows that connected and AT-free is not sufficient for the cycle completion to

be interval.

Example. The independent triples of the graph G in Figure A.1 are {a,d, e},
{a,d, f}, {c,b,9}, and {¢,b,h}. None of these form an AT in G. Since the
longest cycle of any AT-free graph is a Cs, ¢d does not chord any induced cycle
because ¢ and d have no common neighbour. Similarly, ab chords no induced

cycle. So (a,b,c,d) is an induced Cy of Ga,,.

Figure A.1: The cycle completion of an AT-free graph need not be interval.

Observation A.1.3. Let G be a connected graph and — be a transitive ori-

entation of G. Then — restricted to Ga, is transitive.
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Proof. Let = denote — restricted to G'a,,. Consider for contradiction u, v, w €
V(G) such that v = v, v = w, and u 7 w. Then there is some S € Ag such
that u,w € S but v ¢ S. This contradicts (2) of Lemma 3.3.1. O

Corollary A.1.4. Let G be a connected graph and ~» be a transitive orienta-
tion of G. Let = be ~» restricted to Ga,. Then for any CPMT H of G there

is a transitive orientation — of H such that u = v implies u — v.

Proof. Follows from Observations A.1.3 and 4.0.8. O

The previous result indicates that the equivalent of the Extendable Orien-
tation Theorem holds for cocomparability graphs when we substitute Ga,, for
G?. This next example shows that this is not true for all connected AT-free

graphs.

Example. The solid edges of the graph in the top left of Figure A.2 form a
connected AT-free graph G. Now, {c,e, f} is the minimal b, g-separator close
to b and {b,d, g} is the minimal ¢, f-separator close to c¢. Hence, the dashed
edges of the graphs in the left column are edges added in PMTs of G. To
the right of each PMT, we have given the only transitive orientations of each
complement. Observe that in the top row ad and de must always be oriented
in different directions with respect to d. Conversely, in the bottom row ad and
de must always be oriented in the same direction with respect to d.

Now, ad and de chord no long cycle of G. So ad,de ¢ E(Ga,). Let = be
any transitive orientation of Ga.. Suppose that => orients ad and de in the
same direction with respect to d. Then the top row is a CPMT H of & such
that for every transitive orientation — of H, = disagrees with —. Suppose
that = orients ad and de in different directions with respect to d. Then the
bottom row is a CPMT H of G such that for every transitive orientation —

of H, = disagrees with —.
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Figure A.2: Theorem 4.2.1 does not hold substituting G, for G?.
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Definition Index

C-minimal separator, see separator,
C-minimal

2-sweep LBFS order, 23

asteroidal triple, 9

AT-free, 9

augmented separator graph, see
separator  graph,  aug-
mented

chordal graph, see graph, chordal

chordless cycle, see cycle, chordless

chordless path, see path, chordless

clique, 4

close minimal separator, see sepa-
rator, close minimal

close to, 2

cocomparability, see graph, cocom-

parability
cocomparability order, 7
cocomparability partial minimal

triangulation, 33
comparability graph, see graph,

comparability

complement, 7
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complete graph, see graph, com-
plete
completely adjacent, 2
completely non-adjacent, 2
component, 3
full, 11
connected
graph, see graph, connected
set, 3
vertices, 3
CPMT, see cocomparability partial
minimal triangulation
crossing separators, see separator,
crossing
cycle, 3
chord, 3
chordless, 3
induced, 3
length, 3
long, 3

cycle completion, 74

diameter, 3
distance, 3

dominated by a pair, 9



dominating pair, 9

dominating set, 9
extendable orientation, 31
full component, see component, full

graph
chordal, 4
cocomparability, 7
comparability, 7
complete, 4
connected, 3
interval, 5
simple, 2
triangulated, 4

graph class, 3
hereditary, 3

hereditary, see graph class, heredi-

tary

independent set, 9

induced cycle, see cycle, induced

induced path, see path, induced

induced subgraph, see subgraph, in-
duced

intercept a path, see path, inter-
cepts

intersection model, 5

intersection representation, 5

interval graph, see graph, interval

LBFS, see lexicographic breadth-
first search

lexicographic breadth-first search,
21

long cycle, see cycle, long

minimal separator, see separator,
minimal

minimal triangulation, see triangu-
lation, minimal

miss a path, see path, misses
neighbourhood, 2

orientation, 6
transitive, 7

orientation resulting from, 24

parallel separators, see separator,
parallel
partial minimal triangulation, 33
path, 2
chord, 2
chordless, 2
concatenation, 2
induced, 2
intercepts, 8
length, 2
misses, &
PMT, see partial minimal triangu-
lation

power of a graph, 23



proper subgraph, see subgraph,
proper
proper supergraph, see supergraph,

proper

resulting from, see orientation re-

sulting from

separator, 4
C-minimal, 4
close minimal, 63
close to, 4
crossing, 12
minimal, 4
parallel, 13
strongly parallel, 14
separator graph, 64
augmented, 65
separator orientation, 67
square of a graph, see power of a
graph
strong parallel separators, see sepa-
rator, strongly parallel
subgraph, 3
induced, 3
proper, 3
supergraph, 3
proper, 3

tied, 8

topological sort, 7
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transitive orientation, see orienta-
tion, transitive

triangulated graph, see graph, tri-
angulated

triangulation, 4

minimal, 4

wreath, 8



Notation Index

C2(S), 11 ~, 6

CL(S), 11 C-minimal separator, 4
Cg(9), 11 dg(u,v), 3

C, 3 u, v-path, 2

Dg(u,v), 9 u, v-separator, 4

G\ H,3 uSy, 64

minimal u, v-separator, 4

(G), 65
2(G), 64

diam(G), 3
G, T

Ty - T, 2
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