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Abstract 

Microwave planar resonators have been widely used in material 

characterization, environmental monitoring, proximity sensing, mechanical motion 

detection, etc. In general, non-contact sensing, real-time measurement, and CMOS 

compatibility, makes them interesting for chemical sensing, especially in harsh 

environments. However, the planar nature leaves them vulnerable to the ambient 

changes with potential impact on the perception of the material under test. 

Temperature, as one of the most important factors that affects the sensor response, 

is considered an undesired environmental impact and relevant methods are 

introduced to tackle it. Even though many types of human- or environment-centric 

errors such as material displacement, uncontrolled pressure, and relative humidity 

could be easily removed from the sensor response using conventional methods; 

compensation of temperature is complicated enough to look for machine learning 

algorithms as the main focus of this thesis.  

In this study, a split ring resonator (SRR) operating @ 1 GHz is designed to 

measure methanol/acetone content level in water. The planar sensor holding the 

material inside a tube and a commercial temperature sensor are located inside a 

chamber. LabView is employed to record scattering parameters during a 

temperature cycle from room temperature up to 50 ℃. 

Simulation results suggest the dependency of both material- and sensor-

properties on the temperature. It is also shown that an uncontrolled environmental 

situation can deviate the sensor response into incorrect or meaningless results, 

based on which our decision is made in industrial application. 

Transmission/Reflection response of the sensor with all features including 

resonance frequency, magnitude, and quality factor are examined with the aim of 

reliable network input data.  

Various machine learning algorithms, including Decision Tree, KNN, Logistic 

Regression, and MLP are examined to remove the effect of temperature on sensor 

response, whose performance comparison for classifying 10 materials concluded 

MLP as the best classifier with 100 % accuracy. 
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But for all that, eliciting environmental status, besides recognizing the material 

type, is lucrative information to be utilized in further data-processing. Temperature 

of the measurement, imbued in the recorded transmission profiles, is extracted 

using a novel technique of cascading a primary classifier with linear regression. 

Finally, in pursuit of improving the limit of detection in the microwave sensor, 

MLP algorithm is significantly scrutinized with the help of hyperparameter 

optimization, wherein concentrations of methanol-in-water are discriminated with 

increments as low as 1 % with accuracy of >95%. 
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Chapter 1  

Introduction 

 

1.1 Motivation 

 

Microwave planar sensors obtained profound importance in recent decades due 

to their capability in non-contact sensing, which enables many applications [1]–[8]. 

Among many features of these sensors, miniaturization is of great importance as 

the inspiration from metamaterial inclusion brings about reduced size at the 

frequency of interest [9]–[11]. Also, these sensors are found to be highly sensitive 

in detecting small quantities of contamination or solutes in air/aqueous solutions 

[3], [4], [12]–[19]. On top of all, radiation of microwaves into the air enables this 

type of sensors to reach out further distances compared with their competitive 

candidates including piezoelectric resonators (Surface/Balk Acoustic Wave 

resonators [20]–[22]), electrochemical sensors [23], [24], waveguide-based 

microwave sensors [25]–[28], dielectric probe measurements [7], [29]–[33], etc.  

It is noteworthy that the very efficacious feature of planar microwave sensors, 

non-contact sensing, can be viewed as their Achilles heel since this makes the 

sensor vulnerable to unwanted environmental variations. The way microwave 

sensors operate is to be affected either capacitively or resistively by environmental 

materials under test. This is done using a gap as the split of the ring resonators, 

which is found to be extremely receptive of small capacitance loadings from the 

environment [1], [34]–[42]. Having said that, perturbation theory used behind the 

theory of microwave sensors incorporates change in the effective 

electrical/magnetic energy in the environment and then converts that into a change 
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in either frequency of resonance or quality factor degradation [43]–[45]. It is then 

evident that the sensor has no selectivity over the sources of capacitance change. 

For instance, if the sensor is devised to keep track of environment relative humidity 

using a sensitive polymer layer on top of the resonator, it is expected to observe the 

changes in the adsorption/desorption of water molecules. But for all that, the sensor 

is exposed to variable temperature in the environment as well. This is an inevitable 

condition for most industrial sensory applications. It can be shown that the 

temperature also impacts the effective electrical properties of the substrate that 

holds the microwave resonator [46]. One immediate implication of unknown 

temperature variation is a drift in the sensor response only due to the temperature. 

Depending on the significance of these variations, the observation of relative 

humidity might be deviated or even overridden, which in many cases can be 

extremely troublesome and expensive to compensate.  

There are many other examples where the sensor is under ambient sources that 

are not exact parameter under study [47], [48]. In biomedical studies, for example, 

the glucose level in human blood is crucially important for diabetes since any 

disorder in its level, whether higher or lower than normal, could lead to significant 

health issues, and even death in some cases. Conventional method of pricking the 

finger in the hope of a blood sample is not convenient for the children and the 

elderly. Yet, this process is often sought to be continuous to improve the patients’ 

well-being. Microwave sensing has shown promising results to replace the current 

time-consuming and expensive check-up procedure since GHz frequencies can 

travel through human skin and flesh and reach the vessels at some parts of body 

such as fingertips. However, glucose content in human blood combined with many 

other parameters including proteins, ions, gases, wastes, etc. inside the plasma and 

red blood cells can affect the sensor response. This shows a potential challenge in 

attributing the sensor response to only desired parameter. Therefore, we are after 

new methodologies to marry microwave sensing platforms to enhance their 

capabilities.  
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1.2 Objectives 

As of the first decades of 2020, industries and many research teams have 

endorsed the role of artificial intelligence (AI) in human life. AI simulates the real 

conditions with respect to a learning curve, which is highly dependent on the 

number of examples one can feed the learning system with. This technology has 

potential to discern linear and nonlinear patterns in the natural behavior of human 

beings or oven man-made appliances. As a result, one can train a network to 

manipulate the operation of a real system. The benefit of this entire scheme is to 

improve the functionality of present systems with the intelligence and confidence 

of an unsupervised machine that yields predictions of system responses with the 

goal of optimizing the output. In recent years, the weather forecast, for instance, 

has been privileged from years of input data into predicting new patterns in the 

upcoming daily weather [49], [50]. It has the potential to provide suggestions to 

customers what to choose when they are shopping online. AI can also customize 

presentation of social media information to individuals based on their interests, 

according to their previous likelihood patterns. Moreover, today’s world seeks 

harmony between various devices and platforms within a broad spectrum of 

technologies called Internet of Things. AI has tremendous potential to support this 

process with smart solutions including connectivity, energy harvesting [51]–[56], 

etc. 

This technology with such vast range of potential application is also targeted 

in this thesis to aid microwave sensors. The way it is expected to work is to learn 

the patterns of sensor responses in correlation with many parameters. The complex 

interconnections of neural network, for one, can interpret large datasets and resolve 

the relationship between the final outcome and features of sensor response. In the 

proposed thesis, this capability is examined using several algorithms and a 

comprehensive study of the various techniques is performed with the goal of 

optimum outcome.  
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1.3 Thesis Outline 

This thesis is outlined as follows:  

Chapter 1 starts with WHY this study has been initiated, with posing the 

questions that have been raised in microwave sensor technology with respect to 

complex environmental sensing platforms. This chapter also suggests the objective 

of the effort put into this thesis.  

Literature review of possible techniques to remove external unwanted noisy 

sources is given in chapter 2. It shows that with the recent achievements according 

to the reported literature, there is still room for improvement in this area. Also, the 

recent developments in AI that might be helpful for our needs are also discussed.  

Chapter 3 describes the type of microwave sensor used in this work and the 

applications that this type of planar sensor can fit into. This chapter starts with the 

basic discussions on the sensor response and meaningful interpretation of its 

features. Then, the problem with this sensor is elaborated when exposed to 

uncontrolled environmental variations, in this case temperature, with analytical 

expressions. This chapter ends with experimental preparations including the 

materials used in this study.  

Datasets from experiment need to be prepared in order to be fed into the 

network. Proper steps for combining the test data and avoiding possible anomalies 

in data gathering are explained in chapter 4. 

Chapter 5 includes several machine learning algorithms that are used in this 

study including Decision Tree, K-neighborhood, and Multilayer Perceptron. 

Analyzing all input dataset with various learning algorithms lead us to neural 

network as the most versatile and effective method of resolving issues of 

environmental interference. Moreover, this study links a linear regression with 

neural network in a unique scheme to predict the temperature of environment, 

beside removing its impact on the sensor response for possible further post 

processing of data.  

In-depth analysis and comprehensive study of neural network with deciphering 

all its internal functions and parameters are presented in Chapter 6. The use of 

neural network led to optimal design of temperature compensation with accuracy 
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of 95 % in confusion matrix for classifying the materials under test and 100 % 

temperature reporting accuracy.  

This thesis concludes with chapter 7 with information regarding possible 

challenges in present microwave sensors that are resolvable using AI in future 

research work. 
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Chapter 2  

Literature Review and Background 

In modern sensing, access to inaccessible materials in industrial environment, 

flexibility in material type to monitor, and longevity of the sensor under use have 

been the moot points to discuss for a long time. It, then, became extremely attractive 

era for microwave community to find split-ring resonator designs quite easy to use 

when it comes into measuring wide varieties of materials at various environmental 

conditions. These sensors are privileged with the non-contact features of sensing 

that allow them to be used ubiquitously [57]–[61]. Treating microwave sensors has 

yet become predominantly challenging due to their vulnerability to undesired 

effective impact from the environment, beside desired effects. Among them, 

relative humidity is an easy example to follow [62], [63]. Imagine a planar sensor 

with full access to the surrounding environment that is set up to measure the 

temporal behavior of a given solution inside a tubing/microfluidic channel mounted 

directly on the sensor. This, beside providing us with benefit of remote sensing, has 

drawbacks of being sensitive to the level of relative humidity (RH) in the air 

surrounding the sensor since the air with RH has effectively higher dielectric 

constant compared with dry air. Therefore, the impact on the sensor's output is 

accumulation of material and ambient RH, which results in erroneous outcome.  

The effective factors on the sensor's result depends on the detection 

methodology and the principle of operation, which in the case of microwave planar 

sensors this includes relative humidity, temperature, pressure, material proximity, 

and displacement. Among these, temperature impact on the planar sensors is the 

main focus of this thesis, where detrimental implications of extra temperature are 

shown to develop anomalies in the characterization stage. This effect can be as large 

as confusing a decision-making system in discerning the type of material. Also, this 
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may be quite troublesome in distinguishing mixing ratios when it comes into known 

mixtures.  

In this section, it is instructive to review some methodologies in microwave 

domain that are potent in resolving this issue. Through this, our proposed machine 

learning algorithm is explained with respect to all additional and comprehensive 

benefits compared with the bulky and complex designs. With this in mind, the 

following sections elaborate reference-sensor based technique, which intuitively 

controls the sensor's behavior using an additional reference sensor.  

2.1 Dumbbell-Shaped Defect Ground Structure 

Another type of calibration method as a referencing method for microwave 

planar sensor design is given in [64] using dumbbell-shaped defect ground 

structures. This sensor, apparently different in the preface, is similar to the previous 

MCSRR example in the way it compensates for external effects using a reference 

sensor besides a measurement sensor. This sensor, however, uses a dumbbell-

shaped resonator, again etched out of the ground plane that has sensitive regions at 

the two end patches, as shown in Figure 2.1. Moreover, the inference technique in 

this setup is computing the cross-transmission feature of the combined system that 

is ideally null in case of full symmetry between the two sides, including the 

channels and materials inside. In contrast, with a change in the material type, the 

symmetry breaks and the sensor output demonstrates a non-zero result of the 

following computation: 

 

 |𝑆21𝑐𝑟𝑜𝑠𝑠−𝑚𝑜𝑑𝑒| =
1

2
|𝑆21 − 𝑆43| 2.1 
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Figure 2.1 (a) Dumbbell-shaped resonator design with two sensing regions for measurement 

and reference sensors, (b) Microfluidic channels mounted on the planar resonator, all excerpt 

from [64] 

2.2 Transmission Lines Terminated with LC Resonators 

This resonator is based on the series RLC [65] that is materialized with a patch 

(as capacitance), via (inductance), and chip resistor (as a resistor), as shown in 

Figure 2.2(a). The resonator is repeated identically to result in two adjacent 

resonators. One is used to measure the dielectric constant of solid pads with fixed 

thicknesses that are directly placed on the resonator's patch as the most sensitive 

capacitive region. The reference sensor is also covered with TMM4 (𝜀𝑟−1 = 4.7) a 

default dielectric slab while the other resonator is to sense dielectric constant values 

within the range of 𝜀𝑟−2 = 1.88 –  11.28.  The sensor outputs two resonance 

frequencies corresponding to each resonator as shown in Figure 2.2(c) where the 

𝑓𝑟1 represents the reference frequency and 𝑓𝑟2 is monitoring the materials on the 

sensing resonator. Also shown in Figure 2.2(c) is the sensitivity of the sensor,  

defined as follows:  

 

 𝑆 =
Δ𝑓𝑟2
Δ𝜀𝑟2

 2.2 

 

 

 

(a) (b) 
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and represented with respect to differential permittivity values of 𝜀𝑟𝑑 = 𝜀𝑟2 − 𝜀𝑟1. 

2.2 

This method considers the level of variation from a reference slab. It reports 

the variation as the sensor value, which includes all environmental changes as well. 

Yet, these variations might be different for various slab dielectric constants. 

Therefore, this scheme would be quite confusing if the exact environmental 

variations are not studied in advance on the default resonator and its default slab. 

Although this method is presented for solids, it has the potential to be employed for 

liquids as well. In both cases, the sensor, as well as the materials, are all impacted 

by temperature variations, which can obscure the absolute impact on the material 

under test. In other words, there might be a case where the reference material 

impacted by the temperature causes reference frequency to change slower than the 

material under test due to different temperature expansion coefficient. As a result, 

this method also has complications regarding accurate temperature-based 

recognition. 
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Figure 2.2 (a) Schematic of transmission line terminated with LC resonator, (b) electrical 

circuit equivalence of the resonator, (c) Frequency changes in the sensing resonator with 

sensitivities; all excerpt from [65] 

 

 

 

 

 

(a) (b) 

 

(c) 
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2.3 Rat-race based differential Sensor 

This method of sensing is more recent in microwave sensing algorithms that 

are based on the constructive and destructive summation of power in one port as in 

[66]. The incoming power into the output port is differential between the reflections 

from two resonators: one reference and one measurement resonator. In simpler 

words, the input power of port-2 (Δ) to the rat-race is designed to reflect from port 

3 (𝜌3) and 4 (𝜌4) and combined in port-1(Σ) as articulated below (see Figure 2.3(a)): 

 

 𝑆12 = −
𝑗

2
(𝜌3 − 𝜌4) 2.3 

 

The two resonators are separated from the main rat-race circle with 

transmission lines in order to avoid unnecessary interference between them. Similar 

to previous structures, two sensing and reference channels are mounted on top of 

the sensing regions (resonators). The fabricated sensor is shown in Figure 2.3(b). 

The sensor is injected with IPA mixed with DI water with various ratios 

between 0 – 100 % with 10% increments. The sensor output demonstrates the 

lowest transmission from port 2 to port 1 (𝑆12) when the two reflections from ports 

3 and 4 are identical, which means the material under test is the same as the 

reference, which is DI water in this case. The higher the IPA ratio, the more 

different 𝜌3 and 𝜌4 become.  

The sensing mechanism described in this paper, although different from the 

previous resonator-based sensors, is still impacted by the temperature variations of 

the reference liquid as well as other potential problems mentioned with the previous 

sensors. Thus, if the temperature expansion coefficient of the material under test 

and the reference material are not quite similar, the sensor would be detuned, and 

the outcome cannot be compensated for temperature.  
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Figure 2.3 (a) Schematic of rat-race based reflective-mode differential sensor, 

(b) Measurement scenario, (c) Output of the senor in discriminating various concentrations of 

IPA in DI water; all excerpt from [66]. 

 

 

 

(a) 

 

(b) 

 

(c) 
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2.4 SRR-based relative humidity compensation scheme 

This method is introduced to make a real and impactful potential application 

using microwave SRR-based resonators in removing the impact of relative 

humidity (RH) of sand. High levels of RH in the medium might severely attenuate 

the transmission signal such that the resonance profile might die out completely. 

The authors in [48] used an efficient technique to recover possible lost resolution 

in transmission profile using positive feedback. In this method, SRR acts as the 

frequency selective unit of a feedback system with a high gain amplifier that is set 

with proper phase aggregation through the loop to reconstruct the lost power. This 

allows for the sensor to operate in highly lossy medium without being impacted by 

uncontrollable variations of the RH in the environment.  

In this specific example, two identical microwave planar sensors at ~ 1 GHz 

and ~1.15 GHz are designed in parallel. One resonator is mounted with a tubing to 

cover the sensitive region, which holds the material under test. The other resonator 

is left in direct contact with the environment. Next, the whole sensor system is 

covered with 10 cm of sand, where the tube holding MUT is at 1 cm above the 

sensor surface, as shown in Figure 2.4(a). It is shown in Figure 2.4(b) that the 

sensing (𝑓1) and reference (𝑓2) frequencies are both impacted by RH, although not 

quite the same. The relationship between downshifts of 𝑓1 𝑎𝑛𝑑 𝑓2 is extracted for 

known RH levels of 20%, 40%, 60%, and 80% with material inside the tube 

(permittivity values of 10, 20, and 30) using HFSS simulations as shown in Figure 

2.4(c). Then, the whole system is analyzed with samples of water/ethanol/methanol 

inside the tube and the sand is wetted using uniformly dispensed water droplets as 

a means to increase its RH level. It is shown that, with a proper compensation 

algorithm, one can restore the sensor's response to given materials without 

dependence on ambient RH.  

This method, even though really applicable to RH, seems to face drawbacks 

when it comes to measuring material change with temperature impact since 

materials themselves change their dielectric constants and this change is not 

compensated in any way. 
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Figure 2.4 (a) Schematic of double loss-compensated SRR sensor covered with sand, (b) Both 

reference and sensing resonator are impacted by the RH, (c) Sensor is covered with sand 

experimentally and methanol/ethanol/water are calibrated to recover regardless of the applied 

RH; all excerpt from [48]. 

 

 

 

 

 

(a) (b) 

 

(c) 
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2.5 Dual-mode SRR to eliminate RH 

An innovative method of sensing without being influenced by environmental 

RH impact is introduced in [47] with a design change in the topology of the SRR 

as shown in Figure 2.5. The idea lies in using the first (𝑓1 = 552 𝑀𝐻𝑧) and second 

(𝑓2 = 2𝑓1 ~ 1.1 𝐺𝐻𝑧) harmonic of the SRR. The HFSS simulation results at first 

harmonic (left) and second harmonic (right) are shown in Figure 2.5(a). The 

location labeled C is an important feature, because it is highly insensitive with 

respect to the 2nd harmonic (since it lies exactly at 𝜆/8 from each end of SRR 

making this location as a null for the second harmonic) and sensitive to the 1st  

harmonic (since it is away from the middle of SRR that acts as a null for 1st 

harmonic). This location is engineered to hold both features of affecting 1st 

harmonic and not affecting 2nd harmonic simultaneously. Therefore, it seems an 

ideal location to monitor only MUT using 1st harmonic while being impacted by 

RH on 1st harmonic and compensating for the excessive RH impact by properly 

monitoring the modified 2nd harmonic that is unaffected by MUT but changes only 

due to RH. In this example, it is shown in Figure 2.5(b) how various sensor's 

response with materials inside the tube is impacted by RH level varying between 5 

% – 70 %. The resonator shows no considerable change in resonance frequency due 

to the material inside tube without RH in Figure 2.5(c). However, these variations 

become strongly modified when the sensor is exposed to high RH levels, where the 

absolute shifts of resonance frequency for sensor holding specific MUT is given in 

Figure 2.5(b).  

Although this method has an innovative and compact design for compensating 

RH at low frequencies, it is not invincible when it comes to compensation for 

temperature. This is because the MUT's dielectric properties also change with 

temperature and the produced error is not resolved.  
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Figure 2.5 (a) Dual-mode microwave planar sensor, (b) variation in sensor response when 

various MUT are injected into sensor with varying RH, (c) Sensor response to permittivity 

range of 1-80 without RH; all excerpt from [47]. 

 

 

 

 

 

 

 

(a) 

 

(b) (c) 
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2.6 Dual Mode Microwave Microfluidic Sensor 

This study has attempted to employ a reference resonator to monitor the 

temperature of the environment in [67]. The resonator is an open-ended half-

wavelength resonator that is enclosed by metallic packaging. The resonator is 

mounted with a capillary tube on one resonator to allow liquid passage on the 

sensing resonator. Both resonators are designed at close-by frequencies ~ 2.5 GHz 

(see Figure 2.6(a)). The principle of operation of this sensor is to record the 

frequency/quality factor variation in the reference sensor with empty capillary as 

follows:  

 

 

( ) ( ) (25 )

( ) ( ) (25 )

ref

ref

f T f T f

Q T Q T Q

 = − 

 = − 
 

2.4 

 

The corrected values for the measured frequency and quality factor will then 

be the subtraction of the measured frequency from resonator holding the material 

under test and the corresponding variation in the reference resonator (Δ𝑓𝑟𝑒𝑓/Δ𝑄𝑟𝑒𝑓) 

as below: 

 

 
( )

( )

corrected measured

corrected measured

f f f T

Q Q Q T

= −

= −
 2.5 

 

This results in correction of the extraneous impact caused by the sensor and 

capillary only since these are embedded in Δ𝑓𝑟𝑒𝑓/Δ𝑄𝑟𝑒𝑓. As shown in Figure 

2.6(b-c), the change in resonance frequency and quality factor is not removed and 

not even decreased. However, is recovered and corrected to a case where the sensor 

reports the exact variation in the response only related to the material under test.  

It is interesting to note that this article has claimed a method of removing only 

the sensor's response, yet the problem with the erroneous impact of temperature on 

incorrect recognitions is still present. In other words, imagine a case when the 

material inside the tube is unknown, or it can be selected among the few known 
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cases, even when the main material is mixed with another solute. Then, this method 

fails to properly recognize the type of material since the resonance frequency and 

also the quality factors of different materials may overlap when they are observed 

at various temperatures. This leads to inaccuracy in either material selection and 

also the temperature of the environment since the referencing method is not potent 

in removing the change in dielectric constant of material due to temperature. 

Therefore, the corrected results in resonator due to referencing still hold the 

unwanted sensor response due to temperature.   

 

Figure 2.6 Dual-mode resonator design, (b) Chloroform corrected resonant frequency and (c) 

quality factor with respect to temperature; all excerpt from [67] 

(a) 

 

(b) 

 

(c) 
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This theme of studying the microwave sensors is also shown in a similar 

paper [68], wherein water is used as the sample. Again, a reference resonator is 

used to monitor the temporal behavior of sensor response for temperature variation 

within 20-40C. However, the corrected dielectric constants still convey a trend 

inferred from the sensor that is varying with respect to the temperature, as shown 

in Figure 2.7.  

 

 

Figure 2.7 (a) Real and (b) imaginary part of the permittivity of water when measured and 

corrected with respect to temperature change; all excerpt from [68] 

 

This is the main problem with microwave sensors that hold the impact of 

temperature since it impacts directly on the dielectric constant. It will be deeply 

discussed in the next chapter regarding the potential problem of planar sensors to 

discriminate between different materials at varying temperatures, while the 

presented methodologies are not successful in resolving the problem.   
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2.7  Symmetric CPW Sensor with IDC for permittivity 

characterization 

 This article represents a method to extract the complex permittivity of 

unknown material using an interdigital capacitor (IDC) based symmetric coplanar 

waveguide (CPW) sensor [69]. As shown in Figure 2.8(a-b), the sensor is composed 

of two IDC units that are engraved from the central conductor (signal line) of the 

CPW. The sensor is designed to work in the operational resonance frequency at 4.5 

GHz. Since the system is symmetric, two 3 dB power dividers are used to transfer 

the power to both IDCs. In this work, both resonance frequency shift ∆𝑓 and 

amplitude of S21 are fed as input data to the neural network (shown in Figure 2.8(c)) 

trained using backpropagation (BP) algorithm. The structure of the network is 

composed of two neurons as input layer (one for  ∆𝑓𝑟  and one for ∆|𝑆21|), followed 

by one hidden layer towards an output layer (with one neuron).   

 

 

Figure 2.8 (a) Photo of the fabricated sensor, (b) Experimental setup, (c) Artificial neural 

network structure for permittivity extraction; all excerpt from [69] 

 

 
(c)  
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The BP algorithm runs two times, first, to provide the real part of the 

dielectric constant, and next to extract its imaginary part. Both resonance frequency 

and amplitude of S21 are highly dependant on the real and imaginary part of the 

dielectric constant as shown in Figure 2.9. Thus, it is a wise decision to consider 

these two features as the most critical to feed the network. However, the data are 

collected in a completely controlled and ideal environment, i.e. there is no type of 

error source. Each possible error (such as temperature and relative humidity 

changes, material displacement on top of the sensor, etc.) results in considerable 

changes in both  ∆𝑓𝑟 , and ∆|𝑆21|. Therefore, there is a massive deviation on their 

values such that the overlap of data makes the training very poor.  

 

 

Figure 2.9 The measured frequency shift and amplitude value change for various materials; 

excerpt from [69]. 
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2.8 Material Identification Using CSRR Array and 

Machine Learning 

 In this study, an array of split ring resonators, each with a specific resonance 

frequency, is used to classify three types of materials, including cardboard, wood, 

and plastic samples with the aid of machine learning algorithms, as shown in Figure 

2.10(a) [70]. Changes in dielectric constant are covered over a wide range of 

frequencies from 1 GHz to 10 GHz due to the combination of different resonators 

as array. The resonance frequency notches occur at 1 GHz, 3 GHz, 5 GHz, 7 GHz, 

and 9 GHz. Thus, change in dielectric constant results in the downshift of these 

resonance frequencies, as shown in Figure 2.10(b). 

These five resonance frequencies and their combinations, meaning resonance 

sift from (sensors 1 and 2) or (sensors 2, 3, and 4) result in 31 combinations, are 

considered as input data to the network.  

 

 

Figure 2.10 (a) Array of CSRRs with frequencies of 1.36 GHz, 3.09 GHz, 5 GHz, 6.82 GHz, 

and 8.91 GHz, (b) Resonance frequencies of the array; all excerpt from [70] 

(a) 

 

(b) 
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Six different algorithms are studied to classify the materials as follows: Decision 

tree (DT), Decision-tree-based support vector machine (DSVM), k-nearest neighbors 

(KNN), Random Forest (RF), Gaussian naive Bayes (GNB), and Multilayer 

Perceptron (MLP). Here, the two procedures of Leave-one-out (LOO) and stratified 

k-fold class validation (SKF) are used to evaluate the performance of the algorithms. 

After classification with a different algorithm, results for cardboard classification 

show that DSVM has better performance with both LOO (Figure 2.11(a)) and SKF 

(Figure 2.11(b)) cross-validation (86.4% of accuracy at best) when using the resonance 

frequency shift of sensors 1, 2, and 5 as selected features. This paper indeed introduces 

a similar method to [71], which is broadband spectroscopy of materials with a more 

sensitive approach using split-ring resonators. Besides its capability in classifying 

various solid slabs, all of the presented resonators are prone to deviating impact of 

unwanted environmental sources. 

 

 

Figure 2.11 Total classification accuracy versus combination index for classifying cardboard 

using (a) LOO- and (b) SKF-cross-validation, all excerpt from [70] 

 

 

 

 
 

(a) (b) 
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2.9 Microstrip Complementary Split-Ring Resonator 

(MCSRR) 

Complementary structures are etched designs from the ground layer of the 

planar sensor that holds the resonant structure's complimentary, as shown in Figure 

2.12 as given in  [72]. The interrogating microstrip line lies at the other side of the 

substrate to only couple input power and elicit the output power through the 

coupling.  

In this sensor, one of the two resonators are used for measuring materials inside 

the microfluidic channel on the resonator, while the other resonator is used as a 

reference. The operation principle for the sensor is to measure the reflection 

coefficient (𝑆11) from each resonator, comparing which would result in an effective 

presence of the material inside sensing microfluidic channel. The two ports are 

connected to the resonators from one side only, while the second ports are 

terminated with 50-Ohm resistances in the middle of the design (see Figure 

2.12(a)). The sensing resonator is tested with dielectric constant values ranging 

from 1-80 at two different loss-tangent parameter values of 𝑡𝑎𝑛 𝛿 = 0, 0.2. The 

sensing resonator depicts a frequency variation from 1.6 GHz down to 1 GHz and 

amplitude change from ~-22 dB up to ~-10 dB (see Figure 2.12(b)). On the contrary, 

the reference sensor stays still even with holding similar microfluidic channel on 

top since the two sensors are completely uncoupled (see Figure 2.12(c)).  
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Figure 2.12 Microstrip Complementary Split-Ring Resonator loaded with microfluidic 

channels, (b) Variation in the first resonator when the material inside varies, (c) Stability of 

reference resonator regardless of the material variation on sensing resonator; all from [72] 

 

This sensor has the following approach towards dielectric constant assessment. 

First, in order to extract the real permittivity (𝜖𝑟
′ ), the relative frequency shift is used 

for characterizing the liquid under test (LUT) as follows: 

 𝑓𝑟 = 
𝑓𝑟𝑒𝑓 − 𝑓0 

𝑓𝑟𝑒𝑓
 2.6 

 
𝜖𝑟
′ =  𝛼𝑒𝑓𝑟 − 𝐶 

 
2.7 

 

(a) 

  

(b) (c) 
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where 𝑓0, 𝑓𝑟𝑒𝑓 , and 𝑓𝑟 are resonance frequency of sensing resonator, reference 

resonator, and relative change in resonance frequencies. Next, a backpropagation 

neural network (BP-NN) with three layers (one hidden layer) is used to provide the 

loss tangent that accepts real permittivity value of 𝜖𝑟
′ , and the normalized quality 

factor 𝑄𝑛𝑜𝑟 =
𝑄𝑟𝑒𝑓

𝑄0
 as input, see Figure 2.13. 

 

 

Figure 2.13 Structure diagram of the BP-NN, [Excerpt from [72]] 

 

 Differential sensors are commonly used to remove the environmental effect 

on sensors. Environmental errors such as relative humidity, displacement of 

materials under test, pressure, etc., do not change the properties of materials, but 

only the sensory setup.  It is worth to note that temperature as an error, however, is 

exceptionally different from other types of error sources since it affects the material 

properties directly and changes the dielectric constant of the material. Here to 

clarify this claim, let us consider the following schematic of the proposed sensor. 

The resonance frequency of reference resonator, as shown in Figure 2.12 and Figure 

2.14 with microfluidic channel is 𝑓𝑟𝑒𝑓, and the sensing resonator with microfluidic 

channel and material is 𝑓0 = 𝑓𝑟𝑒𝑓 + 𝑓𝑚, where 𝑓𝑚 denotes only the extraneous effect 

of the material. If the temperature changes during the experiment, each resonance 

frequency is shifted to  𝑓𝑟𝑒𝑓
′  , and  𝑓𝑟𝑒𝑓

′ + 𝑓𝑚
′ . It can be inferred from this paper [72] 

that the temperature impact could be removed by subtracting the updated sensing 

and reference resonance frequencies at a given new temperature. However, it will 
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be shown during the thesis that 𝑓𝑚
′  is not equal to the 𝑓𝑚 while the effect of 

temperature, originated from the sensor by itself, is omitted.  

 

 

 

Figure 2.14 Schematic of the sensor exposed to MUT in varying temperature 

 

 
 

2.8 

 
 

2.9 

 
 

2.10 

 

In other words, even though the reference sensor changes due to temperature 

as well as the measurement sensor, this doesn't help to create a new reference since 

the material inside the measurement microfluidic channel changes into something 

new. That's why the problem with incorrect recognition of the material type still 

holds true with this level of sensor design.

𝑓𝑟𝑒𝑓 +  𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝑓𝑟𝑒𝑓 = 𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

𝑓′𝑟𝑒𝑓 +  𝑓′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝑓′𝑟𝑒𝑓 =   𝑓′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ≠ 𝑓′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

𝑓𝑟𝑒𝑓 𝑓𝑟𝑒𝑓 +  𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙   

Reference resonator Sensing resonator 

𝑓′𝑟𝑒𝑓  𝑓′𝑟𝑒𝑓 +  𝑓′𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙   
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Chapter 3  

Microwave Sensor Design 

3.1 Scattering Parameters of the Sensor 

The proposed microwave sensor is a split-ring resonator, which is the core of 

the sensing platform. The dimensions of the sensor are given in Figure 3.1, where 

it is noteworthy that the design of the coupler between input/output transmission 

lines and the SRR is narrow to increase the inductance of the resonator and hence 

reduce the frequency of operation that means the design is miniaturized.  

 

 

Figure 3.1 Schematic of SRR with all dimensions in [mm]. 
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Figure 3.2 Schematic of microwave sensor and measurement setup 
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The design is simulated in Ansys Electronics (HFSS), where the sensor as a 

two-port network is stimulated with the input signal and the scattering matrix is 

computed based on the reflected (S11 /S22) and transmitted signal (S21/S12) as 

follows: 

 

Typically, the system is comprised of the sensor (see Figure 3.2) as the main 

two-port network with the following scattering parameters: 
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These parameters can be further simplified into the following due to symmetry 

(S11=S22) and reciprocity in nonlinear loss-less networks (S21 = S12): 
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The reflection and transmission parameters of the proposed sensor are plotted 

below: 

𝑠
11= 

𝑏1
𝑎1
⁄

 

𝑠
21= 

𝑏2
𝑎1
⁄

 

𝑠
12= 

𝑏1
𝑎2
⁄

 

 

Figure 3.3 Scattering matrix in two-port network 
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Figure 3.4 S-parameters of the sensor 

 

The simulation result shows SRR holding sensitive regions to dielectric 

material (top-right section of Figure 3.2) where the warmer the color the higher its 

interaction with the material under test. The electric field is distributed unevenly, 

with a maximum value at the gap location and minimum at the opposite center of 

the SRR. This is a generic guide where to place material under test to have utmost 

interaction with the microwave field produced by the sensor. The tube on top of the 

resonator is placed right across the line of SRR that exhibits largest electric field 

concentration around itself. The cross-section of the tube shows how the field can 

penetrate into the environment, not far though. Therefore, the tube needs to sit as 

close to the sensor as possible.  

The sensor is fabricated on Rogers 5880 substrate with dielectric properties of 

𝜀𝑟 = 2.2, tan 𝛿 = 0.0009. In order to measure the scattering parameters, S5065 

Copper Mountain vector network analyzer is connected to the sensor with a pair of 

phase-compensated cables. This configuration is shown in Figure 3.2, with the 

peripheral details on the injection side. Since MUT is still in this experiment, it is 

injected inside the tube with conventional syringes. The relevant fittings for proper 

connection of the syringe and the PTFE tubing are shown in Figure 3.2. As long as 

the injected MUT covers the whole sensor, it is left untouched to undergo a 

temperature cycle. In the next section, the importance of temperature on the final 

results of the measurement is elaborated. 
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3.2 Problem Statement 

Measuring dielectric properties of materials is a method of recognizing the 

variations in the environment matrix that is enabled with the direct accessibility of 

microwave power with the MUT. This non-contact feature of the planar sensors 

brings about disadvantages among easy accessibility to the desired MUT since its 

effect extends to consider all undesired impacts as well. This includes the effective 

variation in the relative humidity, proximity of external third-party elements, 

couplings, change in the effective dielectric constant of the MUT/substrate. This 

thesis is more oriented on the last item, which has an undeniable reason of 

temperature variations in the environment. The main idea arises from the fact that 

the permittivity of dielectric material depends on the temperature as follows [73]: 
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where 𝑀 is molecular weight, 𝜌 is density, 𝛼 is molecular polarizability, 𝑁A is 

Avogadro's number, 𝜇 is dipole moment of the molecule, 𝑘 is Boltzmann's constant, 

and g is a correlation factor that characterizes the relative orientation between 

neighboring molecules. This expression explains the inverse relationship between 

temperature and the dielectric constant of materials. 

It is evident that this makes it more complicated for the sensor to characterize 

the materials (to which category they belong to) when their effective permittivity 

changes due to unpredictable and uncontrollable temperature variations in the 

environment. In order to demonstrate the importance and severity of this problem, 

a set of simulations are conducted in HFSS with the various dielectric constants for 

each material according to the ambient temperature. For this purpose, several 

concentrations of methanol and acetone in water are made, mixed with volumetric 

ratios of 20 %, 40 %, 60 %, and 80 % methanol/acetone in water. The resultant 

binary mixture has an effective permittivity between methanol/acetone and water 

according to the following expression [74]: 
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where 𝜀𝑚 denotes the host medium with volume fraction 𝑣𝑚 filled with the second 

liquid of permittivity 𝜀𝑓 with volume fraction 𝑣𝑓 = 1 − 𝑣𝑚. This expression is 

called Maxwell-Garnett equation [75]–[79] that relates the resultant permittivity to 

the constituent components. It is crucial to note that permittivity values of the input 

MUT of the previous equation (𝜀𝑚, 𝜀𝑣) are frequency and temperature dependent 

and can be described by single Debye model for each material (water, methanol, 

and acetone) as follows [74]: 
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where ( ) ( ) ( )0 , ,T T T   are static (low frequency) permittivity, high frequency 

permittivity, and relaxation time, respectively, that are all temperature dependent 

inherently.  

The goal here is to obtain the permittivity of water, methanol, and acetone plus 

binary mixtures of methanol-in-water and acetone-in-water at various temperatures. 

The idea is to obtain the temperature dependent permittivity values for bulk 

materials at the frequency of interest and use Maxwell-Garnett expression to deduce 

dielectric constants of the intermediate concentrations.  

The input parameters of the materials under test, ( ( ) ( ) ( )0 , ,T T T   ) are found 

in the literature (water [80], acetone [81], and methanol [82]). The input parameters 

are given into single Debye expression to obtain the following characteristic graphs 

for each material: 
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Figure 3.5 Dielectric spectrum of (a) Acetone, (b) Methanol, (c) Water at various temperatures 

based on single Debye model 

The entire process is visualized in the following graph where the output of 

Debye model at the frequency of interest is rearranged differently in order to have 

a table consisting of permittivity values for each material at certain temperatures 

(middle graph in Figure 3.6). Then, Maxwell-Garnett is applied with respect to the 
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binary mixture ratios of interest and the final permittivity values for all used 

solutions are extracted even for mixtures of bulk medium.  

The resultant table including all permittivity values for all materials are shown 

in Table 3.1. These values are given as the material properties of the liquid inside 

the tube when running HFSS simulations.  

 

 

 

Table 3.1 Dielectric constant values for various materials at different temperatures 

MUT 𝜺𝒓
′ , 𝐭𝐚𝐧𝛅 20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 

Water 𝜀𝑟
′  69.8 71.4 73.0 74.7 76.4 78.1 79.9 

tanδ 0.028 0.031 0.034 0.038 0.042 0.048 0.054 

Acetone 

(20%) 

𝜀𝑟
′  61.3 62.8 64.3 65.7 67.1 68.7 70.2 

tanδ 0.030 0.033 0.036 0.039 0.044 0.049 0.055 

Acetone 

(40%) 

𝜀𝑟
′  53.5 54.8 56.2 57.4 58.6 59.9 61.3 

tanδ 0.032 0.036 0.039 0.042 0.046 0.051 0.057 

Acetone 

(60%) 

𝜀𝑟
′  46.2 47.4 48.7 49.7 50.7 51.8 53.0 

tanδ 0.035 0.038 0.041 0.044 0.048 0.053 0.058 

Acetone 

(80%) 

𝜀𝑟
′  39.5 40.6 41.7 42.5 43.39 44.4 45.4 

tanδ 0.039 0.042 0.044 0.047 0.050 0.055 0.060 

Acetone 

(100%) 

𝜀𝑟
′  33.2 34.2 35.2 35.9 36.5 37.4 38.2 

tanδ 0.043 0.046 0.048 0.051 0.053 0.058 0.062 

Methanol

(20%) 

𝜀𝑟
′  59.7 61.0 62.4 63.9 65.2 66.7 68.1 

tanδ 0.044 0.049 0.054 0.060 0.067 0.075 0.080 

Methanol

(40%) 

𝜀𝑟
′  50.5 51.6 52.8 54.0 55.1 56.3 57.4 

tanδ 0.064 0.070 0.078 0.086 0.096 0.107 0.110 

Methanol

(60%) 

𝜀𝑟
′  42.1 43.0 44.0 45.0 45.9 46.8 47.6 

tanδ 0.087 0.096 0.106 0.117 0.130 0.145 0.146 

Methanol

(80%) 

𝜀𝑟
′  34.4 35.1 35.9 36.7 37.4 38.1 38.7 

tanδ 0.116 0.128 0.142 0.157 0.174 0.193 0.193 

Methanol

(100%) 

𝜀𝑟
′  27.3 27.9 28.5 29.1 29.6 30.1 30.5 

tanδ 0.156 0.190 0.211 0.211 0.233 0.259 0.256 
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Figure 3.6 Flow graph for generation of dielectric constant values for various concentrations 

on materials in water at different temperatures 
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HFSS helps understanding the variations in the scattering parameters due to 

temperature. To this end, the material inside a PTFE tubing right on the sensor has 

dielectric constant properties of Table 3.1.  

The simulation over all temperatures for all materials under test results in the 

complex and intertwined graph as shown below. This is an embodiment of what 

happens when different materials are exposed to temperature variation in the 

environment from room temperature ~25C – 50C. This adds ambiguity to the 

material characterization scheme due to the imposed deviation from temperature on 

the dielectric properties of either MUT or substrate. Assume that the sensor reports 

a frequency of resonance, this is the most frequently used parameter from 

conventional microwave sensors. With the change in the temperature, resonance 

frequency is impacted by the environmental variation as well as the amplitude and 

quality factor of the sensor. It is quite misleading to rely only on the reported 

resonance frequency.  

 

Figure 3.7 Simulating all materials inside tubing of sensor at various temperatures in HFSS, 

the inset focuses on a narrow bandwidth to demonstrate the complexity in selecting the correct 

graph with respect to the resonance frequency 
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3.3 MUT Preparation  
 

 In order to demonstrate this impact on the fabricated sensor, an experiment is 

conducted with acetone, methanol, and their binary mixtures in water. The required 

volume fraction of each material is taken with pipette to have high accuracy and 

combined to have the total volume of 5 ml. This mixture is shaken well for 20 

seconds to achieve a decent homogeneity in solution. Then, the solution is injected 

inside the PTFE tubing using a syringe and proper fittings as shown in Figure 3.2. 

The liquid is left inside the tube for 5 minutes to let it rest and reach an equilibrium 

between the ambient temperature and the solution temperature inside tubing. Next, 

a temperature cycle is applied using a heater to the sealed chamber. Following 

graphs shows how the resonance frequency of the sensor changes in line with the 

temperature variation over two successive cycles, which confirms the repeatability 

of the sensor.   

 

 

Figure 3.8 Repeatable and reproducible temperature cycle in frequency of operation and its 

coincidence with the temperature 
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Along with the change in the bare sensor's characteristics, this trend is observed 

when the sensor is filled with various materials as well. First, acetone with volume 

fractions of 0.2, 0.4, 0.6, and 0.8 is mixed with water and experimentally verified 

the variations in each material as shown below. The first few minutes of the 

experiment is spent to stablize the sening platform with the environmental 

temperature for the purpose of consistency. Next, the heater is turned on and a 

commercial sensor inside the chamber demonstrating the temperature helps when 

to stop the heater. The high end of the temperature cycle is obtained when the 

commercial temperature sensor reads  ~ 50C. This also helps consistency between 

difference materials. Upon turning off the heat source and removing the lid off of 

the sealed chamber, the temperature drops naturally as a result of heat dissipation 

and the resonance frequeny also decreases towards the original value of the one at 

the room temperature.  

This temperature cycle is applied for methanol and its binary mixtures as well. 

It is instructive to learn that the resonance frequencies have huge overlap regions 

when analyzed exclusively. This is the main drawback for the planar sensors that 

in case of, say acetone, 𝑓0 = 1.195 𝐺𝐻𝑧 can be attributed to either acetone 40%, 

acetone 20%, or water each at different ambient temperatures. The same issue exists 

for the methanol as well.  

To make this problem more complicated, let us assume the sensor is assumed 

to measure wider variety of materials including both acetone and methanol plus 

their binary mixtures in water. In this case, the following graphs illustrates how 

intermingled frequencies are supposed to contain information about the properties 

of the materials inside the tube. This circumstance brings about more confusion 

when considering the same frequency of 𝑓0 = 1.195 𝐺𝐻𝑧 to correlate with a single 

MUT whereas in this experiment it is evident that all water, methanol/acetone 20% 

and methanol/acetone 40% are among the candidates to exhibit the same resonance 

frequency at different temperatures. The real problem in industry lies where the 

temperature of the environment changes unpredictably and the sensor is expected 

to response accurately and quickly.  
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Figure 3.9 Frequency of resonance change in (a) acetone-water and (b) methanol-water 

solutions with volumetric ratio of 0 : 20% : 100 % over temperature cycle, (c) Mixture of the 

acetone-in-water and methanol-in-water 
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(c) 
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The measured results are post-processed to extract not only frequency of 

resonance, both also the quality factor and amplitude of resonance. The quality 

factor is a measure of sharpness of the bell-shaped resonance profiles and is defined 

as: 

 𝑄 =
𝑓

Δ𝑓3−𝑑𝐵
 3.6 

 

Where f is the resonance frequency, and Δ𝑓3−𝑑𝐵 is the 3-dB bandwidth of the 

transmission profile as shown in the following graph. 

 

 

Figure 3.10 Quality factor definition based on resonance frequency and 3-dB bandwidth 

 

The three components of each measured profile are sketched with respect to 

each other as shown below. It is evident that even these projection of the 3D graph 

composed of amplitude, frequency, and quality factor intersect at some 

temperatures, which elaborates how the measurements are mixed and can be 

confusing the a sensor considering an error bar on the data when the sensor is 

employed in industrial noisy environment.  
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Figure 3.11 (a) 3D representation of recorded frequency, quality factor, and amplitude of 

various concentrations of methanol/acetone in water, which is projected in (b) amplitude vs. 

quality factor, (c) quality factor vs. frequency, and (d) amplitude vs. frequency 

 

The simulation of the proposed design is performed in HFSS and evolutionary 

steps are taken to make sure the final result matches with that of the measurement. 

This process is quite informative from MW point of view, since the temperature of 

environment impacts on two major components of the sensor. First, the substrate 

contains a considerable capacitance part of the resonator, hence slightest change in 

its properties would result in the final resonance frequency quite extensively. The 

temperature dependency of the substrate is shown in [46] where its dielectric 
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constant reduces from 2.15 down to 2.1. Its impact is simulated only while the PTFE 

tubing holds the material under test, whereas no variation is applied on their 

permittivity value over the temperature cycle. Figure 3.12 shows how small is the 

contribution of the substrate and that it is not enough to match with the 

measurement. In the next step, the substrate is assumed to have no variation effect 

on the dielectric constant, but this time the dielectric constant of the materials is 

varied according to Table 3.1. Figure 3.12 demonstrates how much improvement 

we can gain considering the material variation that is considerably more than the 

substrate alone. Finally, the impact of temperature on dielectric constant is 

considered for both substrate and the material inside the tubing. Figure 3.12 

showcases that this combination reveals the closest result to the actual measure 

values for the major bulk medium of water, acetone, and methanol.  

 

Figure 3.12 Temperature dependency of measured results is studied in simulation, 

considering the impact of substrate and MUT for water, methanol, and acetone. 
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Chapter 4  

Data Preparation  

 

To make a reasonable data set in terms of network input, the output data of the 

sensor should be post-processed. Here, the process is explained step by step as 

follows: 

1. Recording the data as .s2p format  

2. Extracting S21 to make classes 

3. Making a huge matrix containing all the classes as a dataset 

4. Feature extraction 

An experiment is performed to acquire knowledge about the temperature effect 

on the microwave sensor. The sensor is connected to the VNA to monitor the 

scattering parameters. With the aid of LabView, which is an inevitable part of a 

time-based experiment, data is recorded every ten seconds as shown in Figure 3.2. 

Two types of data are recorded during the experiment, the temperature of the 

environment as well as S-parameters of the sensor. The combination of VNA and 

LabView records S-parameters, and the complementary commercial temperature 

logger (EL-WIFI-TH from EasyLog) located next to the SRR provides the 

temperature of the environment. 

4.1 Data set preparation 

4.1.1 Data as .s2p file 

At the end of every experiment for each material, on average, 300 data points 

with S-parameters of the sensor are obtained. Frequency of interest combined with 

amplitude and phase of four scattering parameters (S11, S21, S12, S22) are embedded 
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in one s2p file (see Figure 4.1). Data points have s2p format, which consists of 9 

columns and 5001 rows. There is no need to consider all nine columns of S-

parameter as output data since S21 has enough information to train the network. In 

the following chapters, more details are provided to justify this claim.   

 

Figure 4.1 Snapshot of the scattering parameter for single temperature 

4.1.2 Extracting S21 as dataset  

Since the sensor under study is passive and symmetric, reflections from either 

port is the same, thus:  
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On the other hand, since the reflected power and transmitted power add up to 

1, then one can only stick to 𝑆21 (transmission from port 1 to port 2) since 𝑆11 

(reflection of inserted power from port 1) can be immediately generated using well-

known microwave expression (with loss-less assumption of the system) as follows:  
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Therefore, logging 𝑆11 would only provide redundant information. 

Among all parameters in s2p, S21 is selected as the output data of the sensor. 

Let us consider methanol as material under test (MUT). The temperature of the 

ambient changes from 22°C to 50°C; recording of these measurements yields 300 

columns of S21. These columns are transposed and concatenated to form a class 
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related to methanol. This very primitive dataset consisting of 300 rows and 5001 

columns and one extra column which belongs to the type of material. In the 

proposed machine learning system, these columns represent classes of the learner 

(e.g. neural network). 

4.1.3 Constructing a Mega-Matrix containing all the classes 

Until here, each material has its own dataset. Different matrices, related to 

individual materials, are concatenated vertically to form a dataset containing all 

needed classes. In the end, a mega-matrix of data is obtained consisting of 3403 

rows and 5002 columns that represent S21 profiles related to each material and its 

class. Another column is added next to the class column, which contains the 

corresponding temperature of each S21 profile, all shown in Figure 4.2.  

 

Figure 4.2 Scattering parameters stacked into single mega dataset including classes and 

temperature each recorded row belongs to 

 

In addition, there is another method of preparing a dataset using electrical 

features of the sensor. Working with the s2p profile has its advantages and 

disadvantages. S2p contains all the information, including amplitude, resonance 

frequency, quality factor, and also the phase of the system. Thus, there is no missing 

information regarding the sensor's output. Moreover, feature extraction from the 

s2p profile takes a long time to make a dataset since one needs to do extra post-

processing of the data. However, working with a massive amount of data can be 

considered a disadvantage for datasets based on s2p profile. In fact, there is a trade-

off between speed and accuracy.  
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4.1.4 Feature Extraction 

To have a dataset with a lower dimension and making the training process of 

the network faster, another type of dataset is introduced here.  

The resonance frequency (F), amplitude (A), bandwidth (BW), and quality 

factor (Q) of a single S21 profile is shown in Figure 3.10. As it is mentioned earlier, 

for each material (let us consider methanol), around 300 data points are recorded. 

For each S21 profile, features (F, A, Q) should be extracted. The bandwidth's 

information is embedded in  the  quality factor. Thus, that is enough to consider these 

three columns (F, A, Q) as the feature of the profile. Now, 5001 data points of every 

S21 profile are summarized into three columns. 

All in all, a matrix consisting of 300 rows (Figure 4.3), where each row has 5 

columns, three for (F, A, Q), one for the corresponding class, and one for the 

temperature represents methanol's matrix. Matrices related to all materials are 

concatenated vertically to provide a dataset including 3404 rows and five columns 

containing all classes.  

 

Figure 4.3 Representation of stacked frequency, amplitude, and quality factor (F,A,Q) with 

respect to the classes, labels, and temperatures 

4.2 Input of the Network 

 There are many factors that must be considered during network training, with 

input data playing the most important role. Among them, the following items have 

more importance in our current analysis:   
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4.2.1 Satisfactory S21 Profile 

The sensor's output can be affected by environmental changes. These changes 

originate from the ambient and humans around the sensor. Temperature, pressure, 

and relative humidity variations can be considered environmental variations. On 

the other hand, human proximity to the sensor or displacing materials at different 

locations in front of the sensor are human errors. As errors are inevitable, it is 

necessary to find whether the affected output data is still meaningful or not. The 

following example supports this claim.   

The SRR sensor is loaded with a series of water-methanol mixtures ranging 

from 0%-100% of methanol with a step of 10% increment. Measured transmission 

response of the SRR is recorded when the sensor is loaded with different 

concentrations of methanol while the temperature changes from 22℃ to 60℃ . The 

resonator in this study is a loss-compensated microwave sensor with tunable mode 

of operation with passive mode (no loss-compensation), active resonator mode 

(slightly loss-compensated), and oscillator mode (fully loss-compensated). The 

sensor under study is supposed to operate at active resonator mode, yet, because of 

compositional variations in the materials, it is possible for the sensor to experience 

transitions between modes of operation, which in any case is harmful to the sensing 

scheme and machine learning analysis.  

The horizontal axis of S21 profiles are always fixed frequencies that the system 

is measured at. Because the frequencies are equidistant, the indices are sufficient to 

describe the relative relationship between each S21 profile. For each material, two 

hundred frequencies (points on horizontal axis) are chosen to be shown in each S21 

profile for a better visibility (see Figure 4.4 for the extreme temperature on 

methanol and water). In this figure, it is evident that water causes the S21 profile 

shift downwards more due to its higher dielectric constant and the methanol has 

lower amplitude of transmission due to its higher loss, both at room temperature. 

As the temperature increases, both curves shift upwards with their quality factor 

recovered. Figure 4.5 demonstrates this for all classes involved: in each plot, as 

temperature increases, the S21 comes closer to the oscillation mode, which is 

undesirable. Quality factor and amplitude are two of the three features that are 
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important to us. In oscillation mode, there is no definition for quality factor since 

this is only a concept to describe the sharpness of a resonance profile. It is also well-

known that amplitude remains relatively constant in oscillation mode since the 

output waveform of the transistor expands in amplitude until saturation regardless 

of environmental variations. 

 

 

 

Figure 4.4 S21 for water and methanol at two extreme temperatures 
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Figure 4.5 Various concentration of methanol in water with irregular and nonlinear sensor 

output 

   
(a)  (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

  

(j) (k) 
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Figure 4.6 (a) Time-based description of defected amplitude performance in sensor, (b) Ideal 

amplitude response from the sensor 

 

As the concentration of methanol increases, the S21 profile moves away from 

oscillation since methanol is more lossy than water (see Figure 4.5). If the network 

is fed with these types of data, the output result at the prediction stage would be 

irrelevant. The lower the concentration of methanol, the more mixed the data and 

the worse the predictions, as shown in Figure 4.7. 
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Figure 4.7 Confusion matrix for material characterization with poor sensor stability showing 

worse prediction at lower concentrations of methanol in water due to lower loss leading to 

instability in sensor 

 

4.2.2 Connection between input and output 

Inappropriate labeling, with labels (classes) incorrectly allocated to 

corresponding S21 profiles, may result in poor network training. If one or few input 

S21 profiles are mapped to incorrect classes, the network performance becomes poor 

due to incorrect recognition of the corresponding S21 profiles. It is necessary to 

check a few input samples that they are connected to the correct labels, and also 

repeat the same procedure after shuffling the data. 

4.2.3 Shuffling the Dataset 

In machine learning, not all data is introduced to the network at the same time. 

To describe the proper procedure, we need to introduce the following three terms: 

batch size, iterations, and epochs. 

 As mentioned earlier, the entire dataset is not passed through the network 

simultaneously. Rather, the dataset is split into batches. The number of training 

input data exemplars in each batch is defined as batch size.   
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An epoch refers to the cycle that an entire dataset is passed through the network 

with enough iterations to cover all batches, where the number of iterations is the 

quotient of training data size divided by the batch size. 

To avoid similar data in each batch during network training, the dataset should 

be shuffled (otherwise, the learning process may be negatively affected). While 

shuffling the input data (i.e. presenting them in no particular order w.r.t label in the 

dataset), corresponding labels must be shuffled accordingly.  

 

Figure 4.8 Shuffled dataset 

 

4.2.4 Imbalanced data 

Another point in the dataset preparation stage is that the number of input data 

rows in each class should be comparable to that of other classes. In other words, if 

there is a significantly low/high number of input data for a specific class compared 

to the other classes, then the network can not sufficiently learn to discriminate the 

classes with lower input rows. For example, let us consider 2000 input rows for 

water and 100 for methanol. The ratio for training vs. total is 0.7, then the network 

has roughly 1400 rows for training water samples and only ~70 for methanol 

samples (please note that due to the random selection of training dataset from a 

shuffled total dataset, the numbers 1400 and 70 are approximate under uniform 

random selection). As shown in the following Figure 4.9, the number of data in 

each class should be similar to each other and in the same range. For training the 

network, the number of input rows should be sufficient for each class.  
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Figure 4.9 Distribution of measured data of various methanol concentrations in water 

 

The following python code is to assign X_train and X_test with corresponding 

y_train and y_test values. Detailed information about this code is presented next. 

 

Code 4.1 Python code for data preparation 

4.2.5 Standard Scalar 

It is important to ensure that the dataset is standardized to mean value of 0 and 

variance of 1 (line 9 of the code 4.1). Having the properties of standard normal 

1. X = dataset.iloc[:, 0:5000].values 

2. y = dataset.iloc[:, 5003] 

3. y_class = np.zeros((np.size(y),10)) 

4. for i in range(np.size(y)): 

y_class[i,y[i]] = 1 

5. classes=["1","2","3","4","5","6","7","8","9","10"] 

6. from sklearn.model_selection import train_test_split 

7. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,  

random_state = 1) 

8. from sklearn.preprocessing import StandardScaler 

9. sc = StandardScaler() 

10. X_train = sc.fit_transform(X_train) 

11. X_test = sc.transform(X_test) 

12. y_train =np.asarray(y_train) 

13. y_test = np.asarray(y_test) 
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distribution is a crucial requirement for machine learning algorithm. It is presumed 

in the objective function of a learning algorithm that the features are centered 

around zero with a variance of one. The feature that has a larger variance with 

respect to other features might affect the objective function more and make the 

estimator unable to learn from other features correctly. In other words, with features 

being on different scales, certain weights may update faster than others since the 

feature values with a larger variance play a role in the weight updates. 

4.2.6 Assigning X and y data 

The dataset consists of input data points and output targets. Input data points 

include S21 profiles, with 5000 columns, in each row, which is shown with 'X' in 

code 4.1 and in the following analysis.  

The network is expected to report material types as classes (with temperature 

compensation removing environmental errors) and the instantaneous material 

temperature. These values are regarded as two different output types denoted by 'y' 

in this analysis. Thus, the problem is divided into two separates, yet connected, 

stages. In the first stage, data is categorized into different classes with label 

assignment. For instance, water samples at different temperatures are all assigned 

to a single class label "Water," and similarly, all methanol samples are mapped to 

label "Methanol." In the second stage, since each row demonstrates the recorded 

data points at a specific temperature, each row is assigned to the corresponding 

temperature. Then, the network has two output types. The first includes text labels, 

while the second is comprised of numerical values.  

The input data is divided into training and validation sets. The training set is 

used to train the network that is to map input data points to desired and defined 

output targets. In contrast, the validation set is an unseen set for the network from 

input data points that are used to evaluate the accuracy of the network after training.   

4.3 Conclusion 

This section is designated to how dataset is generated from sensor 

measurements using VNA. This is to help understand what the building 
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blocks of the system under study in terms of input data and their 

categorization into classes are. The section also describes possible 

discrepancies in measured data due to imperfection of the sensor design. 

It also considers the possibility of post processing data to reach a more 

concise format involving only frequency, amplitude, and quality factor 

rather than whole transmission parameters. Then, possible precautions are 

mentioned to apply on the dataset including shuffling, standardization, 

and balanced number of inputs. Finally, the recorded input data is divided 

into training and test sets.  
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Chapter 5  

Machine Learning Algorithms to 

Characterize Materials with Varying 

Temperature 

 

In this chapter, we describe that temperature cycles are expected to affect the 

sensor response that perturbs the correct classification of materials due to their 

cross-correlated dielectric constant patterns with respect to various temperatures. 

This problem becomes more challenging when the material under test is more than 

one and their signatures are intermingled when viewed at different temperatures. In 

this study, two materials of methanol and acetone are selected as a proof of concept 

to demonstrate the feasibility of the proposed machine learning system in 

classifying their various concentrations in water. It has already been shown how 

intertwined the scattering parameters of the sensor become when all concentrations 

of both methanol and acetone are exposed to a temperature cycle. However, in this 

section, several well-known algorithms including decision tree, K-nearest 

neighbors, and multilayer perceptron (neural network) are studied with the same 

given input dataset.  

Upon performing classification, input materials are prepared with various 

concentrations of methanol/acetone in water within 0 – 100 % range, incremented 

by 20 %. This leaves us with 5 classes for methanol-in-water, 5 classes for acetone-

in-water, all combined into 10 classes in total.  

Each class of data holds temperature cycle on the materials inside the tube from 

22C up to 50C. The first task for the machine learning system is to identify which 

class each data point belongs to. This is important to effectively remove the effect 
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of temperature and to recognize the material regardless of uncontrolled, variable 

environmental changes. It would also be interesting to elicit the temperature of 

operation at each data point, since this can be valuable information for applications 

in industry to know what happens at each temperature. Therefore, a methodology 

is devised to circumvent the effect of temperature, and to decipher its value at each 

measured data point for further post-processing. This chapter addresses both these 

challenges with machine learning algorithms. 

 

5.1 Classification Algorithms 

5.1.1 KNN 

K-nearest-neighbors is a simple algorithm that uses the entire dataset in its 

training phase. Whenever a prediction is required for unseen data, it searches for K 

similar instances. The data with the most similar instance is finally returned as the 

prediction. 

K denotes the number of nearest neighbors, which are used to vote the class of 

the new data (testing data). For example, if K = 1, then the testing data is given the 

same label as the closest known data point. Similarly, if K = 3, the labels of three 

closest classes are checked and the most common label is assigned to the testing 

data point. For illustration, let us consider two classes A and B, as shown in Figure 

5.1. 
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Figure 5.1 KNN prediction scheme 

 

The new point (unseen data) is considered as a question mark in the graph. The 

KNN has to predict whether the new point belongs to class A or B. This process is 

also referred to as "voting." As mentioned earlier, K in the KNN algorithm refers 

to the number of nearest neighbors that to select. In Figure 5.1, there are two values 

for K. When K = 3, three points are chosen, which have the least distance to the 

new test point. Since the majority of points in the blue circle are blue (class B), the 

new data point is assigned to class B. Moving to higher number of neighbors, say 

K = 7, changes the prediction to class A as the majority of data neighborhood points 

belong to class A (red).  

After splitting the data set into training and testing, the distance between every 

two data points should be calculated to check their similarity: the shorter the 

distance, the more similar the data points are. Then, K neighbors are selected such 

that they have the least distance from the new point. Once these neighbors are 

determined, the voting response for these K-neighbors is generated. Afterward, the 

algorithm determines to which classes the new points belong. Finally, the accuracy 

function provides more information on how accurate the algorithm is in its 

predictions. Few points should be considered to set the number of neighbors, K:  

• For binary classifications, an odd value K must be chosen,  

• When working with multi-class classification problems, the number of K 

must NOT be a multiple of the number of classes.   
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Program related to the KNN algorithm is shown in Code 5.1. The number of k 

(n_neighbors) sets to 7, which results in the best answer for the output. The 

confusion matrix, shown in Figure 5.2, confirms that all test data are assigned 

correct labels (classes). A minimum error is computed for different numbers of K, 

ranging from [1, 40]. The best K values should be chosen from 1 to 10. To obey the 

second rule in determining the value of K, which refrains us from setting this 

number equal to the number of classes, K = 10 has been removed.   

 

 

Code 5.1 Python code for KNN algorithm 

  

 

Figure 5.2 (a) Error rate for various K values in KNN, (b) Confusion matrix for K = 7 

5.1.2 Decision Tree  

The simplest method to perform classification is the decision tree algorithm.  

This algorithm is used for supervised learning, including two main types. One for 

1. knn = KNeighborsClassifier(n_neighbors=7) 

2. knn.fit(X_train, y_train) 

3. prediction = knn.predict(X_test) 

4. X_new = X_test[ : , 0 : 5001]  

5. prediction = knn.predict(X_new) 

6. error = [] 

7.  

8. # Calculating error for K values between 1 and 40 

9. for i in range(1, 40): 

10.     knn = KNeighborsClassifier(n_neighbors=i) 

11.     knn.fit(X_train, y_train) 

12.     pred_i = knn.predict(X_test) 

13.     error.append(np.mean(pred_i != y_test)) 

 

 

(a) (b) 
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classification wherein the input data is categorical or discrete, and the other one for 

regression in that variable takes continuous values. In this study, the first algorithm 

is used to classify the types of material.  

The outcome of the classification tree is Yes/No, which means the input data 

fed to the tree belongs to this class or not. Such a tree splits the data into partitions 

in each iteration through a process known as “binary recursive partitioning” to reach 

the desired output (here the type of material). In the decision tree algorithm, to reach 

the largest information gain, we start from the root and split the data based on the 

important features. In each iteration, data at each node is split until the samples at 

each leaf all belong to the same single class. This algorithm is easy to construct for 

simple datasets, and there is a high chance for overfitting. In the following, there is 

a simple algorithm to construct the model, fit the model using a train set and, finally, 

to predict the classes using "model.predict".  The score from confusion matrix (see 

Figure 5.3) is about 0.992, which is very good and reasonable in this case.    

 

 

Figure 5.3 Confusion Matrix for Decision Tree 

 

5.1.3 MLP 

 

A multilayer perceptron (MLP) is a standard neural network model that 

combines many simple perceptrons to form a larger, more powerful network 
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[83], [84]. The following Figure 5.4 shows a simple example that represents a 

small MLP with an input layer, an output layer, and one hidden layer. There can 

be multi-hidden layers in MLP, but this section of the network is hidden from 

inputs/outputs. Neural networks are usually considered black boxes. This means 

that we provide input and output vectors and do not expect to fully understand 

what is going on in the potentially many hidden layers in between. In this 

section, though, those computations are analyzed to understand them.    

 

 

Figure 5.4 Simplified MLP structure 

 

Let us consider input signals x1, x2, and x3, …. that are transmitted to the next 

(hidden) layer via the links, as shown in Figure 5.4. The neuron values are 

calculated using a summation across the inputs and the activation function. Here is 

the formula for how these hidden layer neurons are calculated:  
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 ℎ𝑛 = 𝜎 (𝑏𝑚 + ∑(𝑥𝑖 ∗ 𝑤𝑖,𝑚)

3

𝑖=1

) 5.1 

 

where 𝜎,𝑤, and 𝑏 denote activation function, weight, and bias, respectively. The 

input values are multiplied by the corresponding weight values and summed up. 

Then bias value, one for each node, is added to the sum. Each neuron in the hidden 

layer has its own bias value, 𝑏𝑚. Subsequently, the activation function is applied to 

the latest sum. In general, there are different types of activation functions that can 

be applied to the network. Activation functions are also used with simple 

perceptrons, but that alone does not make them the powerful classification tools as 

multilayer perceptrons. However, it is vital to have more complex activation 

functions to accomplish difficult tasks such as classification and regression. Before 

moving on to demonstrate how the MLP algorithm is made, please note that the 

output layer neurons are treated similar to the hidden layer neurons in terms of 

biases and weights.   

The MLP algorithm is described in the following, and its essential parts are 

explained. After splitting the input data to training and testing, to initialize the 

network, the classifier (model) should be defined. To clarify the difference between 

an "algorithm" and a "model," we provide the following definitions.  

An "algorithm" in machine learning is a procedure that runs on the input data 

to create a machine learning "model." A "model", on the other hand, is the output 

of a machine learning algorithm. Their relationship can be defined as follows: 

Machine Learning Model = Model Data + Prediction Algorithm 

Here, we are after a machine learning "model," and the "algorithm" is only the 

path to follow to obtain the model. 

In Keras (Python deep learning API), models are defined as a sequence of 

layers. Therefore, at the first step, the sequential model is established to add layers 

one at a time and build the structure of the network. The dimension of the input data 

is given to the network using input_dim =5001 to avoid making a mistake in the 

first layer. Other internal parameters inside the code are explained in detail in 
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Chapter 6. Thus, here, the emphasis is on network building. In this study, a fully 

connected network with three layers is defined. Two hidden layers, consisting of 

100 and 40, respectively, and one output layer with ten neurons are added to the 

network using classifier.add(Dense). The parameter "Dense" is used since the 

layers are fully connected.  

Now, the model is defined, and it is time to compile it by calling compile() 

function. The compiler helps the model choose the best way for training and making 

predictions to run on the hardware (CPU, GPU) using efficient numerical libraries 

under a backend, such as TensorFlow.  

Now the model is defined and, after compilation, it is ready to train or "fit" on 

the loaded data by calling fit() on the model. X_train and y_train are also passed to 

the fit function as arguments, as are “epochs” and “batch size.” The number of 

epochs determines how many times the entire dataset is presented to the network; 

the batch size is a hyperparameter that defines the number of input data to introduce 

to the network in each iteration. 

To evaluate the performance of the network, function evaluate() is used after 

the model is fitted. This function returns a list with two values; the first one is the 

loss, and the second one is the accuracy of the model on the dataset. Since the 

accuracy is more important, the second value of this list accuracy[1] is chosen to 

print.  
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Code 5.2 Python code for MLP 

 

predict() function can be used to predict to which classes unseen data belongs. 

However, for simplicity and to predict classes directly, predict_classes() is used 

here. The piece of code related to the structure of the network is given in Code 5.2.  

The confusion matrix obtained for the network shows optimum prediction 

results with 100% accuracy in the prediction phase.  Figure 5.5  shows that, after 

13 epochs, the loss function converges well enough to provide the maximum 

accuracy.  

1. # Initialising the ANN 

2. classifier = Sequential() 

3. # Adding the input layer and the first hidden layer 

4. classifier.add(Dense(units = 100,kernel_initializer = 'uniform', activation = 'relu', input_dim 

=5001)) 

5. # Adding the second hidden layer 

6. classifier.add(Dense(units = 40,kernel_initializer = 'uniform', activation = 'relu')) 

7. # Adding the output layer 

8. classifier.add(Dense(units = 10,kernel_initializer = 'uniform', activation = 'softmax')) 

9. # Compiling the ANN 

10. classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) 

11. # Fitting the ANN to the Training set 

12. classifier.fit(X_train, y_train, batch_size = 10, epochs = 30) 

13. accuracy = classifier.evaluate(x=X_test, y=y_test) 

14. y_pred = np.zeros_like(y_test) 

15. y_pred_class = classifier.predict_classes(x=X_test) 

16. for i in range(len(y_pred_class)) : 

17. y_pred[i][y_pred_class[i]] = 1 

18. print("The prediction Accuracy is : ", accuracy[1]) 
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Figure 5.5 (a) Confusion matrix for MLP, (b) Convergence curve for MLP 

 

5.1.4 Logistic Regression & PCA 

The logistic regression algorithm is mainly used for binary classification, 

wherein one wants to know whether the unseen data belongs to a class or not (just 

like a yes/no question). For every class in the dataset, there is a scatter plot similar 

to Figure 3.11 based on S21 profiles. If a specific S21 belongs to the desired class, it 

takes the value of one. Otherwise, it maps to zero.  

                  

To develop a classification-algorithm, first, we need to fit a line to the data. 

After that boundaries are set such that the best fitting curve is achieved. One can 

assume that if the classifier output is greater than or equal to 0.5, it takes y =1, and 

conversely if it is less than 0.5, it takes y = 0. Therefore, everything to the right of 

the middle point (0.5) ends up being predicted as the positive class and vice versa, 

i.e. 

Threshold classifier ℎ𝜃(𝑥) output at 0.5: 

       If  ℎ𝜃(𝑥) ≥ 0.5 , predict “y = 1” 

If  ℎ𝜃(𝑥) ≤ 0.5 , predict “y = 0” 

  

(a) (b) 

 

𝑦 ∈   {0,1} output 

Negative Class Positive Class 
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 But there is a problem, if a data point far from other data points is added to the 

training step: the slope of the predictive line (see Figure 5.6(a)) rotates such that the 

one values are considered as zero which causes problems (see Figure 5.6(b)). That 

is why linear regression is not considered as a classifier.  

 

Figure 5.6 (a) Normal classification line for linear regression, (b) Deviation in predictive line 

of linear regression due to additional outlier 

   

Thus, we develop a hypothesis that satisfies the following condition: 

 

 0 ≤ ℎ𝜃(𝑥) ≤ 1 5.2 

  

To do so, the form of the linear function is modified to sigmoid or logistic 

function, and that is why the term logistic function is changed into the name logistic 

regression. Sigmoid function, as shown in Figure 5.7, asymptotes at one and zero 

as 𝑥 goes to +∞ and −∞ respectively.  Finally, given this hypothetical 

representation, the parameter 𝜃 must be fitted to our data. 

 

  

(a) (b) 
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Figure 5.7 Sigmoid function with expressions 

 

Here, the logistic regression is used for multi-class classification. Similar to 

binary classification using an idea called one vs. other classification, we can 

incorporate it in multi-class classification as well. More often, there is a learning 

problem due to having too many of features. These problems, including overfitting 

and underfitting, might occur while running different algorithms. Thus, it may be 

necessary to reduce the number of features. To do that, one can manually select 

which features to keep or use principle component analysis (PCA). In the case of 

microwave sensors, three features of the S21 profile that should be considered are 

resonance frequency, amplitude, and quality factor. In this study, as explained in 

Chapter 4, another dataset made of these features is considered  too. It is important 

to mention that by removing some features, some information is missing, which is 

undesired. The variability of PCA is set to 95%, which means that the algorithm  

reduces the features such that 95% of the information is still available in the 

transformed data. The code related to the logistic algorithm follows.  
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Code 5.3 Python code for PCA classification 

  

5.1.5 Comparative analysis 

In this chapter, we describe results of several algorithms that have been 

employed to classify the sensor data influenced by temperature information. An 

overview of the final accuracy of each approach is provided in Table 5.1, where MLP 

has the best performance. Decision tree with 99.2 % and KNN with 99.9% also 

performed well. However, logistic regression achieved only 89.3 % accuracy and, 

as such, it has not been further considered in this study. In the following section, 

another regression algorithm is used. However, rather than as a classifier, it is used 

as a regressor to map the input data to a continuous output of temperature.  

 

Table 5.1 Comparison between different algorithms 

Algorithm  Decision Tree KNN MLP LR+PCA 

Score 0.992 0.999 1.00 0.893 

 

 

 

 

5.2 Linear Regression Algorithm 

Linear regression (LR) is one of the most straightforward algorithms in 

machine learning. It is a statistical model representing a relationship between two 

1. pca = PCA(.95) 

2. pca.fit(X_train) 

3. pca.n_components_ 

4. X_train = pca.transform(X_train) 

5. X_test = pca.transform(X_test) 

6. logisticRegr = LogisticRegression(solver = 'lbfgs') 

7. logisticRegr.fit(X_train, y_train) 

8. score = logisticRegr.score(X_test, y_test) 
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variables using a linear equation. It involves graphing a line over a set of data points 

that most closely fits the overall shape of the data. The significant uses of regression 

analysis are in forecasting an effect, wherein the regression algorithm helps to 

understand how much the dependent variable changes with the change of one or 

more independent variables. In simple linear regression (y = mX+c), we are trying 

to find the correlation between X (as the input) and y (as the target/output) variable. 

It means every value of X has a corresponding value of y in the model. Thus, in 

contrast with classification algorithms, the output data in this algorithm is 

continuous (here, every S21 profile is assigned to a specific temperature). The data 

is modeled using a straight line. To optimize the regression model, each data point 

plays an important role. In this section, to predict the temperature for each material, 

a straight line is set to fit the input data. As is shown in Figure 5.8, the slope of the 

line is sensitive to the distribution of data. Two features that make this algorithm 

useful in many applications are: 

• it is computationally inexpensive 

• it is easily comprehended and can be represented using simple 

mathematical notation 

To understand LR better, the algorithm is explained with respect to our needs. Here 

the x- and y-axis represents the actual and predicted values of temperature, 

respectively.  First, a line is passed through the data; second, the distance from the 

line to the data is calculated. Third, each residual (the distance from a line to a data 

point) gets squared, and finally, they are added up. The same procedure is 

conducted for many lines with different slopes, as shown in Figure 5.8.   

A plot with the sum of squared residuals on the y-axis and different lines on the x-

axis is achieved after sweeping the slopes for a number of lines. Based on the 

outcome, the best line to fit the data has the least sum of squares. Least sum of 

squares estimates two parameters: y-axis intercept and slope. Each class has its 

fitting line. Figure 5.8 helps to understand that how much the predicted values are 

suitable for given problem. 
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Figure 5.8 Fitting diagram for linear regression 

 

The temperature data, shown in Figure 5.9, is read from a commercial 

temperature sensor (EL-Wifi-TH [85]) as located next to the sensor (see Figure 3.2). 

As mentioned in the data preparation section, besides the type of material (class), 

another column is considered in the dataset as a material temperature. Therefore, 

for each class, the temperature is increased continuously from 22°C to 50°C. 
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Figure 5.9 Temperature cycle during experiments 
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The following code uses linear regression as the core of the algorithm. Data is 

passed through the “fit” and “predict” functions to provide the temperature of 

unseen S21 profile.  

 

 

Code 5.4 Python code for linear regression, limited to only one class 

 

In the following figure, the result of the linear regression algorithm for all 

classes is shown, see Figure 5.10. 

1. X1 = dataset.iloc[0:238,0:5000].values 

2. y1 = dataset.iloc[0:238, 5003] 

3. y1 = y1.values.reshape(-1,1) 

4. X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size=0.2,                      

random_state=0) 

5. regressor1 = LinearRegression()   

6. regressor1.fit (X_train1, y_train1) #training the algorithm 

7. y_pred1 = regressor1.predict(X_test1) 
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Figure 5.10 Linear regression result for all classes 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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5.3 Material Classification followed by Temperature 

Reporting 

Two approaches are considered in this section: 

One, to remove the effect of temperature from the sensor response and to 

classify the type of material regardless of the temperature it has. With that, 

temperature as an error is removed perfectly. In contrast to differential sensors 

which ignore the effect of temperature on materials, this method allows to consider 

its erroneous effect.  

Reporting both material type and temperature of the material at the same time 

is the second approach that is the main focus of this study. The schematic diagram 

of the final algorithm is shown in Figure 5.11.  

 

Figure 5.11 Machine learning flow from input data at varying temperature to reporting 

classified material with temperature 

The S21 profiles are recorded while temperature changes as an environmental 

effect. A stack of S21 profiles, with respect to their labels, create the total dataset 

as explained in detail in Chapter 4 with a snapshot shown in Figure 5.12.  

 

 



Chapter 5: ML Algorithms to Characterize Materials with Varying Temperature 

76 

 

 

Figure 5.12 Dataset snapshot from Python 

 

Then these recorded values are fed into a deep neural network, including two 

hidden layers, which classifies the type of each recorded S21 based on its features. 

The relevant python code is also given in Code 5.5 below.  

In order to report the measurement temperature, the following approach is 

devised to be combined with the classification. Since various materials (classes) 

react differently to temperature, it is much simpler to find a relationship between 

measurement temperature and profiles in each class rather than correlating the 

temperature to all recorded profiles. Therefore, a linear regression algorithm is 

trained based on each individual class, resulting in a total of 10 regression lines. 

Regression line of each class will be called to map input S21 to a specific 

temperature once the input S21 is found to belong to this class.  

As a result, when the classification neural network and the linear regression 

algorithm are cascaded, the output of the classifier, as shown in Figure 5.11, 

determines which regression expression, that has already been trained, needs to be 

applied on the input S21 profile to help predict proper temperature value.  

As an example, a few randomly selected input S21 profiles, which cover the 

whole classes, are tested with this cascaded scheme. The corresponding class of 

every individual input S21 as well as the predicted classes are shown in Error! R

eference source not found.. In addition, the corresponding predicted temperatures 

for each S21 are compared with the actual values as shown in Figure 5.14. 
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Code 5.5 Python code to feed output of classification algorithm into input of linear regression 

 

 

 

 

 

 

1. Xdata = dataset.iloc[ :, 0:5000].values 

2. ydata = dataset.iloc[ :, 5003] 

3. ydataclass = dataset.iloc[ :, 5004] 

 

4. print(Xdata.shape) 

5. yclass_actual = [] 

6. yclass_pred = [] 

 

7. Temp_pred = [] 

8. Temp_actual = [] 

9. ind = np.arange(1,3400,10) 

10. ind_arr = np.asarray(ind) 

11. for i in range(ind_arr.shape[0]): 

12. index = ind_arr[i] 

13. X_rand = Xdata[index].reshape(1, -1) 

14. Temp_actual.append(ydata[index]) 

15. X_input = sc.transform(X_rand) 

 

16. y_pred_class = classifier.predict_classes(x=X_input) 

17. # y_pred_class = classifier.predict_classes(X_test[1].reshape(1,-1)) 

18. y_list = y_pred_class.tolist() 

19. i = y_list[0] 

20. yclass_pred.append(y_list[0]) 

21. yclass_actual.append(ydataclass[index]) 

 

22. def sreg(i): 

switcher={ 

0: regressor1.predict(X_rand), 

1: regressor2.predict(X_rand), 

2: regressor3.predict(X_rand), 

3: regressor4.predict(X_rand), 

4: regressor5.predict(X_rand), 

5: regressor6.predict(X_rand), 

6: regressor7.predict(X_rand), 

7: regressor8.predict(X_rand), 

8: regressor9.predict(X_rand), 

9: regressor10.predict(X_rand), 

} 

return switcher.get(i,"Invalid Input") 

 

23. Temp_pred.append(sreg(i)) 
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Figure 5.13 Predicted vs. Actual classes of 10 classes in use 

 

 

Figure 5.14  Temperature prediction vs. actual values for 10 classes in use 

 

Combining all predictions made from the randomly selected S21 profiles as 

input data points and assessing their accuracy is given in the following confusion 

matrix that elaborates on the relationship between the target classes of 10 material 

types and the predicted classes. It is noteworthy that the class of all input data is 

correctly recognized. Also, their predicted temperature is plotted in accordance with 

their target temperature in Figure 5.15 that exhibits a high R2 correlation of 98%. 

This confirms that the proposed algorithm is able to discriminate the materials as 

 

Predicted classes 

 

Actual classes 

 

 

Predicted 

temperature 

 

Actual 

temperature 
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well as report the status of the environmental (here, temperature) with the use of 

cascaded Neural Network and Linear Regression.  

  

 

 

Figure 5.15 (a) Confusion matrix for classification of methanol/acetone in water samples, (b) 

Temperature reporting for randomly selected test materials within all classes  

 

 

5.4 Conclusion 

In this chapter, two important challenges in microwave sensor systems are 

addressed. At first, the environmental impacts are removed from the sensor 

response that enabled it to maintain correct interpretation of material regardless of 

the temperature of measurement. This is performed using various algorithms 

including decision tree, K-nearest neighbors, and neural network, each with specific 

advantages and disadvantages. All in all, neural network is chosen to work with, 

because it is versatile and provides higher accuracy rate compared with the other 

approaches. The outcome of the first step was the class of materials the measured 

materials belong to.  

  

 

(a) (b) 

 



Chapter 5: ML Algorithms to Characterize Materials with Varying Temperature 

80 

 

In the next step, the temperature of measurement was reported. Therefore, a 

unique interpretation system was designed that used the output of the first stage as 

the input of the second stage, wherein a linear regression line is used for each class 

that correlates each temperature with every single measured datapoint. This 

relationship is found to be linear for all classes.  

The combined system of classification (using neural network) and temperature 

reporting (using linear regression for dataset limited to each class) is uniquely 

suitable to infer the type of material, its concentration, and also the temperature of 

measurement, all using machine learning.  
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Chapter 6  

Hyperparameter Optimization  

This section describes improvements in the present system of machine learning 

with the aim of reducing the limit of detection in sensing using AI. It is always a 

point of discussion in all sensors to which degree the sensor is able to discriminate 

different materials or presence of any contaminant in a solution. With lower limit 

of detection, these sensors can be introduced as competetive replacement 

candidates for the prevailing costly and labor-intensive methods. In order to 

examine the level of discrimination of SRR sensor, an experiment similar to the one 

in chapter 5 is devised but with lower concentrations of methanol-in-water of 1-5 

% volume fraction for methanol. It is intrcutive to note that the level of methanol is 

significantly small and that the majority of samples are made up of water. This 

makes the sensor response to reside around high dielectric constant levels, close to 

that of water.  

In order to verify the effectiveness of machine learnign algorithms, decision 

tree is first chosen to classify measured data points into 6 classes of 0 % (pure 

water), 1%, 2%, 3%, 4%, and 5% methaonl-in-water. It has inconsistent mapping 

in many classes, as shown in Figure 6.1,  that all in all results in poor output of  79% 

accuracy for the low concentrations.  
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Figure 6.1 Confusion matrix for decision tree on low concentrations 

 

In an attempt to verify the effectiveness of K-nearest neighbors, it has been 

found that mean error function becomes minimum at a specfic K number as shown 

in Figure 6.2. The figure sows that the confusion matrix for this algorithm fails in 

proper assigning the measured samples since considerable number of inputs are 

mapped to Class 0 which is assumed to be pure water with 0% methanol in the 

solution. This means that the smaller the concentration, the harder it becomes for 

the decision tree to classify. All decisions are confused to be water samples, 

resulting in even lower overall accuracy rate of 66%.   

 

 

Figure 6.2 (a) Sweep on K number for optimum mean error, (b) Confusion matrix for K-

nearest neighbors in classifying 0-5 % methanol-in-water samples for K = 2 

 

 

 
 

(a) (b) 
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This is the pivotal reason for involving multilayer perceptron (neural network, NN) 

to increase the accurcy level for lower concentraion. The main reason is for this 

decision is the versatality of this NN embedded in its parameters. With this 

perspective, this chapter studies optimization on neural network in all its 

components. 

6.1 Hyperparameter optimization 

 

An essential part of deep learning is hyperparameter optimization, since neural 

networks have many parameters that need to be set. They include, but are not 

limited to:  

 

• Number of batch-size and epochs  

• Number of hidden layers 

• Number of neurons in each layer 

• Activation functions 

• Loss functions 

 

The performance, speed, and quality of the networks highly depend on these 

parameters. Therefore, it is necessary to optimize them. In order to optimize the 

network, an objective function should be considered. Validation accuracy, 

validation loss, f1 score, etc. can be considered as an objective function that should 

be either maximized or minimized during the optimization process. This process 

yields a set of  best parameters, which results in optimal model for the network.  
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Figure 6.3 Schematic view of the hyperparametric study 

 

 

 

In this study, models are built by Keras, and hyperparameter optimization is 

done using Talos as shown in Figure 6.3. To conduct the optimization, one must 

ensure that input data and parameters are passed into the argument of the defined 

function, see Code 6.1. A procedure similar to that used for building regular models 

is conducted except for the values in the model that will be chosen from the 

parameters’ dictionary as given in Code 6.2. 

Cost_function (Hyperparameters) = Score 
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Code 6.1 Python code for hyperparametric study in MLP 

 

 

After the keras model is built, initial parameters boundaries are set. Once the 

dictionary is fed to the model, a combination of parameters is picked from the 

dictionary in a single permutation and then excluded from next permutation, see 

Code 6.2. 

 

1. # first we have to make sure to input data and params into the function 

2. def classification_model(x, y, x_val, y_val, params): 

 

3. model = Sequential() 

4. model.add(Dense(units = params['first_neuron'], input_dim=X_train.shape[1], 

activation=params['activation'], 

kernel_initializer=params['kernel_initializer'])) 

5. model.add(Dropout(params['dropout'])) 

6. model.add(Dense(units = params['second_neuron'],  

activation=params['activation'], 

kernel_initializer=params['kernel_initializer'])) 

7. model.add(Dense(6, activation=params['last_activation'], 

kernel_initializer=params['kernel_initializer'])) 

8. model.compile(loss=params['losses'], 

optimizer=params['optimizer'], 

metrics=['acc', talos.utils.metrics.f1score]) 

9. history = model.fit(x, y,  

validation_data=[x_val, y_val], 

batch_size=params['batch_size'], 

callbacks=[talos.utils.live()], 

epochs=params['epochs'], 

verbose=0) 

 

10. return history, model 
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Code 6.2 Dictionary of MLP parameters 

 

Without adding any complexity to the code and learning new syntax, 

hyperparameter optimization can be done using Talos as shown in Code 6.3 

 

talos.Scan(x, y, model, params).predict(x_test, y_test)      

 

 

Code 6.3 Hyperparameter optimization scan using Talos  

 

There are over 280,000 permutations inside the dictionary. After all 

permutations are scanned by Talos, it is time to analyze the results to decide on how 

to confine and change the parameters in the model. To have a better visibility of the 

categorial dataset returned by Talos another tool is used, called seaborne. 

 

 

 

 

 

6.2 The Number of Neurons in the Hidden Layer 

 

1. # then we can go ahead and set the parameter space 

2. p = {'first_neuron':[75,100,300,500,600], 

3.       'second_neuron':[20,30,40,50], 

4.        'hidden_layers':[0,1, 2], 

5.        'batch_size': [4,8,16,32, 128, 256], 

6.        'epochs': [100,75,50,25,10], 

7.        'dropout': [0], 

8.        'kernel_initializer': ['uniform','normal'], 

9.        'optimizer': ['Nadam', 'Adam','SGD','RMSprop','Adadelta'], 

10.        'losses':['kullback_leibler_divergence','categorical_crossentropy', 

11.                     'binary_crossentropy','mean_squared_error'], 

12.        'activation':['relu', 'elu'], 

13.        'last_activation': ['softmax','sigmoid']} 

1. # and run the experiment 

2. t = talos.Scan(x=x, y=y, 

3. model=classification_model, 

4. params=p, experiment_name='classification_model') 
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The number of hidden layers and the number of neurons in each layer is an 

important parameter at least to have an outlook of the network. In this study, the 

number of neurons for three cases is examined, when there is zero, one, and two 

hidden layers. First of all, to understand the topology of the network better, the 

number of layers needs to be determined. One can consider both the validation 

accuracy and validation loss as criteria to evaluate the performance of the network 

during the optimization process. Two hidden layers can be a reasonable choice to 

begin with, since it leads to a lower validation loss as shown in Figure 6.4.  

 

 

Figure 6.4 Hyperparameter optimization study on the hidden layer 

 

 Afterwards, the number of neurons in each layer should be tuned. The 

boundaries for the number of neurons in the first and second layers are set to [75, 

100, 300, 500, 600] and [20, 30, 40, 50], respectively. 

 

 



Chapter 6: Hyperparameter Optimization 

88 

 

 

Figure 6.5 Hyperparameter optimization study with validation accuracy on neurons in the 

first and second layer 

 

According to Figure 6.5, the maximum accuracy is achieved for two sets of 

neurons combinations. The first point of the blue curve [75,  20],  and the third point 

of the orange curve [100, 40] both represent the best combination of neurons in 

each layer. One can choose either the first or the second combination. As shown in 

the Figure 6.6, the minimum value of the loss belongs to the same combination too.  

 

 

Figure 6.6 Hyperparameter optimization study on with validation loss on neurons in the first 

and second layer 

 

 

 

 

6.3 Tuning Batch Size and Number of Epochs 

The batch size is the number of data points that is shown to the network before 

any updates are applied to the weights. During training the network, this number is 
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one of the parameters that should be optimized. The number of times that the entire 

training dataset is introduced to the network is called epoch.  

Here, the boundaries for the batch size and number of epochs are set to [4, 8, 

16, 32, 128, 256] and [10, 25, 50, 75, 100], respectively, as shown in Figure 6.7. It 

is obvious that for the smaller batch sizes, the accuracy score is significantly higher 

than for the large batches. Also in terms of validation accuracy, from 8 to 32, the 

means are almost at the same level, see Figure 6.7 (b). At this step, the number of 

batch size is set to 8 or 16 because they proide good network performance.  

 

Figure 6.7 (a) Hyperparameter optimization study on the batch size with (a) validation loss 

and (b) accuracy loss 

 

 

The following analysis is performed to set the best number of epochs after the 

tuning process, as shown in Figure 6.8. The higher values for epoch count, the better 

validation accuracy and performance of the network. On the other hand, more 

epochs require more resources in terms of computation time and hardware for 

training the network. Since the reasonable values for accuracy and loss are achieved 

for epoch = 100, there is no need to tune the epochs' parameter to higher values. 

 

  

(a) (b) 
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Figure 6.8 Hyperparameter optimization study on the number of epochs with (a) validation 

loss and (b) accuracy loss 

 

6.4 Tunning the Kernel Initializer 

 

The neural networks need to start with a set of weights that are updated in each 

iteration to better values. Usually, the argument used for passing initializers to 

layers is Kernel_initializer. There are different types of statistical distributions or 

functions, such as RandomUniform, RandomNormal, TruncatedNormal, and other, 

that are used for weights initialization. Here, two types of statistical distributions 

are employed to generate numbers to be used as the starting weights. Neural 

network layers, as non-linear maps, transfer the data from a given input space to 

another space using kernel initializer. As shown in Figure 6.8, two parameters 

[uniform, normal] are considered to evaluate which Kernel_initializer works better. 

Since both initializers behave similarly, it is hard to say which one has better 

performance from the validation accuracy on the y-axis of Figure 6.9.. To gain more 

insight, let us take a look at the validation loss. With each parameter permutation, 

we are seeking smaller values for validation loss on the y-axis, see Figure 6.10. 

  

(a) (b) 
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Figure 6.9 Hyperparameter optimization study on Kernel initializer with validation accuracy 

 

Both uniform and normal kernel initializers are doing a great job in keeping 

the validation loss down throughout all epochs and more or less have the same 

behavior for different batch sizes. The validation loss is minimized if the number 

of epochs is set to 100, and the number of batch size equals 8, with either a uniform 

or normal as kernel initializers. There is an option to keep both of them to the final 

stage to find the best permutation. 
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Figure 6.10 Hyperparameter optimization study on Kernel initializer with validation loss 

 

 

6.5 Tuning the Training Optimization Algorithm 

Optimization is a core component of machine learning algorithms. In other 

words, most machine learning algorithms build an optimization model to find an 

extremum of an objective function. Optimizers update the weight parameters to 

minimize the loss function. This function provides feedback for the optimizer, 

whether it is moving in the right direction to reach the global minimum or not.  The 

optimization methods are split into three main categories:  

• First-order optimization method is most common, with stochastic gradient 

descent (SGD) and its variants used most often.  

• High- order optimization methods, such as Newton's method. 
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• Heuristic derivative-free optimization methods, e.g. methods that 

coordinate descent-based approaches. 

 

For neural networks, and many other machine learning algorithms, gradient 

descent is the best choice to optimize the network. Although Keras offers various 

optimization algorithms, but they often come as a black box with no direct access 

to the optimizers' parameters. If one needs to conduct a parametric sweep related to 

a specific optimizer, the optimizer should be defined as a function through the 

network. In this thesis, the network is optimized with different optimization 

algorithms, each with default parameters defined by Keras. However, a brief study 

is presented in this section to provide a better illustration of how optimizers work.  

In this regard, the following parameters are defined. To minimize an objective 

function 𝐽(𝜃), the model's parameters 𝜃 ∈  ℝd will be updated in the opposite 

direction of ∇𝜃𝐽(𝜃). The learning rate 𝜂 determines the size of the step of descent.  

 

6.5.1 Stochastic gradient descent 

Gradient descent approaches differ in the amount of data that the optimizer 

uses to calculate the gradient of the objective function [86]–[88]. These methods 

include batch gradient descent, mini-batch gradient descent, and stochastic gradient 

descent. Based on how much data the optimizer uses, there is a trade-off between 

the time and the accuracy to update the parameters. Although batch gradient descent 

guarantees convergence to the global minimum for a convex error-surface and a 

local minimum for a non-convex surface, it is too slow; since it needs to calculate 

gradients for the whole dataset to updates just once. Besides, the mini-batch size 

does not guarantee a good convergence. In contrast with batch gradient descent, 

stochastic gradient descent conducts a parameter update for each training example 

𝑥𝑖 and label 𝑦𝑖.  

 

 𝜃 =  𝜃 − 𝜂. 𝛻𝜃𝐽(𝜃; 𝑥
𝑖; 𝑦𝑖) 6.1 
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Thus, it is faster than batch gradient descent. Similar to batch gradient descent, 

there is no guarantee to reach the global minimum since it is difficult to choose an 

appropriate learning rate using the same value for all parameters. In the following, 

four algorithms that are used to address the aforementioned problem are introduced. 

 

6.5.2 Adadelta 

This optimization algorithm is similar to AdaGrad in its principles. The 

gradient descent is replaced with more concise notation of 𝒈𝒕,𝒊 as follows: 

 𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃𝑡,𝑖) 6.2 

  

where 𝑔𝑡,𝑖 is the partial derivative of the objective function at time step t. 

The parameter update for 𝜃𝑡,𝑖 is as follows, where the learning rate 𝜂 becomes 

modified as given in 6.4: 

 

 θt+1,i = θt,i − η. gt,i   6.3 

 𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+𝜖
. 𝑔𝑡,𝑖, 6.4 

 

where 𝐺𝑡,𝑖𝑖 ∈ ℝ
𝑑×𝑑 is a diagonal matrix whose elements are sum of the squares of 

the gradient, and 𝜖 is the smoothing parameter to avoid zero denominator. It is 

noteworthy that, in AdaGrad, the accumulated gradient (𝐺𝑡,𝑖𝑖) becomes larger and 

larger in the denominator as the training time increases (see 6.4). This results in a 

zero learning-rate, which makes further updates meaningless. However, Adadelta 

algorithm restricts the accumulation window of past gradients to a fixed value. 

Therefore, to prevent the accumulation sum from constantly growing during 

training, 𝐺𝑡,𝑖𝑖 is replaced with the decaying average over past squared gradients 

𝐸[𝑔2]𝑡 as follows: 

 ∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
. 𝑔𝑡,𝑖 6.5 
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The denominator of the above equation is the root mean square (RMS) error of 

the gradient descent as follows: 

 √𝐸[𝑔2]𝑡 + 𝜖 =  𝑅𝑀𝑆[𝑔]𝑡 6.6 

 ∆𝜃𝑡 = −
𝜂

𝑅𝑀𝑆[𝑔]𝑡
. 𝑔𝑡     6.7 

    

Similar to equation 6.6 we can define: 

 

 𝑅𝑀𝑆[∆𝜃]𝑡 = √𝐸[∆𝜃2]𝑡 + 𝜖 6.8 

  

Since the learning rate is an unknown quantity, it is replaced with the RMS of 

parameter updates until the previous time step (𝑅𝑀𝑆[∆𝜃]𝑡−1) as follows:  

 

 ∆𝜃𝑡 = −
𝑅𝑀𝑆[∆𝜃]𝑡−1
𝑅𝑀𝑆[𝑔]𝑡

. 𝑔𝑡 6.9 

 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 6.10 

    

According to equation 6.9, Adadelta does not need to set a default learning 

rate 𝜂. Also, it changes the trajectory of gradient accumulation towards an 

exponentially decaying average to avoid near extreme-zero 𝜂. 

6.5.3 RMSProp Gradient Descent  

Similar to Adadelta, RMSProp [89]–[91] tries to solve the same problem where 

AdaGrad suffers. Both Adadelta and RMSProp are suitable for non-stationary and 

non-convex problems. However, both methods have a poor performance in the late 

training stage since the update process may be repeated around the local minimum. 

Here, in order to evade the drastically diminishing learning rate, 𝐺𝑡,𝑖𝑖 is now 

replaced with another expression as follows:  

 ∆𝜃𝑡 = −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
. 𝑔𝑡,𝑖 6.11 

 



Chapter 6: Hyperparameter Optimization 

96 

 

 𝐸[𝑔2]𝑡 = (1 − 𝛾)𝑔𝑡−1
2 + 𝛾. 𝑔𝑡 6.12 

 

 
𝜃𝑡+1 = 𝜃𝑡 −

𝜂

√(1−𝛾)𝑔𝑡−1
2 +𝛾.𝑔𝑡+𝜖

. 𝑔𝑡,𝑖, 6.13 

 

where 𝛾 is suggested to be set to 0.9, while a reasonable default value for the 

learning rate is 0.001. In RMSProp, learning rate will be different for each 

parameter since it is adjusted automatically during the training time.  

6.5.4 Adam— Adaptive Moment Estimation 

Adam optimizer is one of the most popular gradient descent optimization 

algorithms [92]. It combines the adaptive learning rate and momentum methods 

simultaneously. Similar to Adadelta and RMSProp, Adam stores an exponentially 

decaying average of the past squared gradient (𝑣𝑡), and also similar to the 

momentum methods, keeps an exponentially decaying average of past gradients 

(𝑚𝑡) at the same time:  

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 6.14 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 6.15 

 

where 𝑚𝑡 and 𝑣𝑡 are the first- and second-moment of the gradients, respectively. 

The default values for hyperparameters 𝛽1 , 𝛽2 are suggested to be set to 0.9 and 

0.999, respectively. There is a potential problem with 𝑚𝑡 and 𝑣𝑡 updated values as 

they are biased towards zero with initial zero vector. To resolve this problem, bias-

corrected estimates are proposed as follows: 

 

 �̂�𝑡 = 
𝑚𝑡

1 − 𝛽1
𝑡 6.16 

 𝑣𝑡 = 
𝑣𝑡

1 − 𝛽2
𝑡 6.17 
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 𝜃𝑡+1 = 𝜃𝑡 −
𝜂�̂�𝑡

√𝑣𝑡 + 𝜖
 6.18 

 

where 𝜖 is suggested to be 10-8.  

 

6.5.5 Nadam - Nesterov-accelerated Adaptive Moment 

Estimation 

 

Similar to Adam, which is a combination of adaptive learning rate and 

momentum methods, Nadam is the combination of adam and Nesterov-accelerated 

gradients (NAG) [93]–[96]. Again, please recall that momentum methods keep an 

exponentially decaying average of past gradients (𝑚𝑡), and Adam stores an 

exponentially decaying average of the past squared gradient (𝑣𝑡).  In order to 

incorporate NAG into Adam, we need to modify its momentum term 𝑚𝑡.  

First, let us consider the expansion of the Adam update rule with inserting 6.14 

in 6.16, and plugging it in 6.18 as follows: 

  

 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
(
𝛽1𝑚𝑡−1
1 − 𝛽1

𝑡 +
(1 − 𝛽1)𝑔𝑡
1 − 𝛽1

𝑡 ) 6.19 

 

Please note that the problem with bias, explained in Adam, can be corrected 

within equation 6.19 if 
𝑚𝑡−1

1−𝛽1
𝑡 can be somehow replaced with �̂�𝑡−1 = 

𝑚𝑡−1

1−𝛽1
𝑡−1 

assuming that 𝛽1
𝑡−1 = 𝛽1

𝑡, which holds true in many practical cases. Now, we can 

add Nesterov momentum by replacing the bias-corrected estimate of the momentum 

vector of the previous time step (�̂�𝑡−1) with the bias-corrected estimate of the 

current momentum vector (�̂�𝑡), which results in Nadam update rule as follows [97]: 

 

 

 
𝜃𝑡+1 = 𝜃𝑡 −

𝜂

√𝑣𝑡 + 𝜖
(𝛽1�̂�𝑡−1 +

(1 − 𝛽1)𝑔𝑡
1 − 𝛽1

𝑡 ) 6.20 
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6.5.6 Comparison of Optimizers 

In this section, we present a more in-depth study of various optimizers in the 

neural network, including Nadam, SGD, Adadelta, Adam, and RMSProp. As shown 

in Figure 6.11, based on the discussion presented earlier around the performance of 

the above-mentioned optimizers, SGD in all combinations of epochs and batch sizes 

has a poor performance. The next four optimizers compete with each other, but 

Adam stands out from the rest.    

 

Figure 6.11 Hyperparameter optimization study on various optimizers, including Nadam, 

SGD, Adadelta, Adam, and RMSprop using validation accuracy. 

 

From the previous results of parametric sweep epoch = 100 and batch size = 8 

and 16 are of interest; therefore let us narrow the optimization processes to the last 

subplot in Figure 6.12. Adam and Nadam outperformed the others in batch size 

ranging from [4, 8, and 16].  To be more confident about the accuracy of our 
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optimization, another set of permutations for both epoch and these two optimizers 

has been performed.  

 

 

Figure 6.12 In-depth comparison of best optimizers, Adam vs. Adadelta, using validation 

accuracy in different number of epochs 

 

Figure 6.12 shows for epoch equals to 100, Adam works well; however, with 

the increase in the number of epochs, Adadelta gets closer to Adam. The trade-off 

between time and accuracy makes us decide which one is fit for our network. It is 

noteworthy to mention that the value of 0.98 is reasonably acceptable as a validation 

accuracy; thus, it does not worth going for a larger epoch number in Adadelta since 

it requires a significantly longer time to train the network.  

6.6 Choice of Loss Function for Training of Deep 

Neural Networks 

As discussed in the previous section, deep learning neural networks are trained 

with the aid of stochastic gradient descent optimization algorithms. A metric is 

required to ensure that we are on the right track in the optimization process. During 

the process, the error for the current state of the model must be calculated 

continuously. Therefore, an error function, called "loss function," must be defined 

to estimate the loss of the model. Through the process, weights are updated to 

reduce the loss on the next evaluation [98]–[101].  
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In general, neural network models learn to find the best mapping model from 

input data to output using examples, and the choice of loss function needs to be 

compliant with the type of prediction model. Supervised neural networks are 

divided into two main categories: classification and regression. In this section, we 

are dealing with multi-class classification model; as a result, an appropriate loss 

function is the one that is chosen based on the shape of the output layer and 

classification model.  

In this section, four loss functions are considered to decide which one is the 

best fit for the model. They are: Mean Squared Error (MSE), binary crossentropy, 

categorical crossentropy, and Kullback-Leibler divergence. In the following 

subsections 𝐿(𝑦, �̂�) represents the loss function, where 𝑦 is the actual value of the 

output data and �̂� is the value predicted by the model.  

 

6.6.1 Mean Squared Error Loss 

Mean square error loss is widely used for regression problems and is equal to 

the average of the squared differences between the predicted and actual values:  

 

 L(y, ŷ) =  
1

N
 ∑(y − ŷi)

2

N

i=0

 6.21 

According to the previous equation, (𝑦 − �̂�𝑖)
2 shows that larger errors are more 

significant than smaller ones. The mean squared error loss function can be used in 

Keras by specifying 'mse' or 'mean_squared_error' as the loss function when 

compiling the model. 

6.6.2 Binary Cross-Entropy Loss 

Binary Cross-Entropy Loss is commonly used for classification problems that 

the input is categorized with only two labels. This loss function will remain the 

same unless it becomes updated by a better (lower) value.  In predicting class 1, a 

score is calculated by cross-entropy that includes the average difference between 
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the actual and predicted probability distributions. The final loss is obtained by 

averaging these class-wise errors.   

 

 𝐿(𝑦, �̂�) =  
1

𝑁
 ∑(𝑦 ∗ log (�̂�𝑖) + (𝑖 − 𝑦) ∗ log (1 − �̂�𝑖))

𝑁

𝑖=0

 6.22 

Cross-entropy can be specified as the loss function in Keras by specifying 

'binary_crossentropy' when compiling the model. 

6.6.3 Multi-Class Cross-Entropy Loss 

Cross entropy is the default loss function to use for multi-class classification 

problems. 

Here, score is calculated by cross-entropy that includes the average difference 

between the actual and predicted probability distributions for all classes. The score 

is minimized and a perfect cross-entropy value is 0. The final loss is obtained by 

averaging these class-wise errors. 

 L(y, ŷ) =  − ∑∑(yij ∗ log(ŷij))

N

i=0

M

i=0

 6.23 

Cross-entropy can be specified as the loss function in Keras by specifying 

'categorical_crossentropy 'when compiling the model. 

6.6.4 Kullback-Leibler Divergence Loss 

Kullback-Leibler divergence, or KL divergence for short, measures how much 

one probability distribution differs from another. Practically, KL divergence is 

similar to cross-entropy. In the case of approximating a more complex function 

rather than multi-class classification, the KL divergence loss function is widely 

used. For instance, it is used in an auto-encoder to learn a model to reconstruct an 

original input. However, it can be used in multi-class classification problems with 

equal functionality compared with multi-class entropy. 
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 𝐷𝐾𝐿(𝑦||�̂�) =  ∑𝑦 ∗ 𝑙𝑜𝑔(𝑦 �̂�⁄ ) 6.24 

KL divergence loss can be used in Keras by specifying 

'kullback_leibler_divergence' in the compile() function. 

6.6.5 Comparison of Loss Functions 

To find the best loss function for the model, four different functions are chosen 

in the parameter dictionary. With a glance at the plots in Figure 6.13, it is clear that 

binary cross-entropy keeps the validation accuracy high throughout all epochs and 

batch sizes. The best choice in all steps of optimization strongly depends on the 

type of data and the model one works with. Having basic knowledge about all the 

parameters that are set to the parameters' dictionary helps to select their best 

combination. However, in the end, it is the outcome of hyperparameter optimization 

that sets the optimum parameters for the best network performance. 
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Figure 6.13 Hyperparameter optimization study on various loss functions using validation 

accuracy 
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6.7 Tuning of the Neural Activation Function 

 

 

 

Figure 6.14 Schematic of the activation function 

 

Neural networks are based on algorithms designed to recognize patterns in 

complex data. In simpler language, neurons in the network are interconnected. To 

represent them in math language, we simply assign a number to each neuron, and 

each connection holds a weight. Activation functions are mathematical equations 

that are applied on the neurons in the network to determine whether they should be 

activated or not [102]–[106]. They help the network learn intricate patterns in the 

data. Besides, they add nonlinearity to the multiple layers of the network without 

which hidden layers become meaningless, and any layered network is equivalent to 

the network with just one single layer. Throughout the network, each neuron has 

some activation value ranging from 0 to 1. Zero here means that specific neuron is 

not activated ("fired") since it is not relevant for the model prediction.  

Let's revisit the activation function analytically. From here on, each neuron has 

an activation function 𝜎 and if it is connected to a new neuron, it has a weight 𝑤 as 

follows:  

 

 1 1 2 2

1

n

n n i iw a w a w a w a+ + + =  6.25 
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This means that 𝑛 inputs are weighted and added together to contribute to the 

neuron in the next layer. Next, we consider the bias b in the activation function. 

Similar to any other linear function that use a constant parameter to have a better 

fit, bias adjusts the neuron along with the weighted sum of the inputs. In the absence 

of bias, the model has a poor fit, as all lines without bias have to pass through the 

origin (0,0): 

 

 y mx c= + →       biased weighted sum = ( )i iW a b +  6.26 

 

The final equation subjects this neural internal activity to the activation 

function: 

 

 1 1 2 2( )n nw a w a w a b + + + + =  new neuron   6.27 

 

There is a comprehensive formula to produce all neurons in the subsequent 

layers: 

 

 

0
00,0 0,1 0, 0

0
11,0 1,1 1, 1

0
,0 ,1 ,

l l l

k

l l l

k

l l l

nj j j k n

bw w w a

bw w w a

bw w w a



      
      
      +
      
              

 6.28 

 

where 𝑎𝑛𝑒𝑢𝑟𝑜𝑛
(𝑙𝑎𝑦𝑒𝑟)

 represents the location of specific activation in the network. The 

subscript shows the location of neuron in each layer, while the superscript shows 

indicates the layer this neuron belongs to. For example, 𝑎2
(1)

 corresponds to the third 

neuron in the second layer (start from 0) of the network. Each weight in the first 

matrix is shown in the format of 𝑤𝑡𝑜,   𝑓𝑟𝑜𝑚
𝑙𝑎𝑦𝑒𝑟

. For example, 𝑤𝑗=2,   𝑘=3
𝑙=2  means from 

neuron k+1=4 in the previous layer l = 2 (second layer) to neuron j+1=3 in the third 

(k) layer. To describe all neurons in all layers, the following compact formula is 

used:  
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( ) 1( )l la Wa b −= +  6.29 

 

which says that all activations 𝑎 from layer 𝑙 − 1 are multiplied by all weights 𝑊 

(connecting each neuron from the previous layer to the next one), and a bias value 

(b) is added. This summation is passed as an argument to the activation function to 

provide all the activations for the next layer 𝑙. Here a summarized table is provided 

to show the features of these four activation functions that are considered in the 

dictionary.  

Table 6.1 Activation function definitions 

ReLu 

Function 

 

0 0
( )

0

for x
x

x for x



= 


 

 

ELU 

Function 

 

0
( )

( 1) 0x

x for x
x

e for x





= 

− 
 

 

Sigmoid 

Function 

 

1

1 xe


−
=

+
 

 

 

Softmax 

Function 1

exp( )
( )

exp( )

i
i j

j

j

x
x

x



=

=


 

for i = 0,1,2,…,j 
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Once the features of activation functions (𝜎) are known, an individual study is 

performed on the four different types of functions that were used in the optimization 

process. It should be noted that in the hidden layers, it is better to use activation 

functions such as Relu since they are not only computationally efficient but also 

avoid vanishing gradient descent problem and allow the network to converge faster. 

Here both Relu and elu provide high validation accuracy; thus, there is no 

preference. Elu is fitted to the network since, at epoch 100 and batch size ranging 

from 4 to 32, it performs slightly better. 

 

 

Figure 6.15 Hypermeter optimization study on activation functions, relu and elu, using 

validation accuracy 

 

Two types of activation functions are common to use for classification 

problems, including softmax and sigmoid. As shown in Figure 6.16, softmax, 

regardless of the number of epoch or batch size, works better in all cases. Here, a 
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brief explanation is provided to justify these results. In general, softmax works 

better for multiclass or mutually exclusive categories in classification problems. 

And sigmoid works well for classes that are not mutually exclusive. However, it 

highly depends on the data one works with. Here, as shown in Figure 6.16, both 

softmax and sigmoid perform equally well. However, softmax is considered as an 

activation function for the output layer mainly because of two reasons: first, in this 

study, multi-class classification is conducted, and second, it represents better results 

during the optimization process for all epochs and batch sizes.  

 

Figure 6.16 Hyperparameter optimization study on last activation functions, sigmoid and 

softmax, using validation accuracy 
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6.8 Conclusion 

Reducing the limit of detection is addressed in this chapter to allow application 

of the designed sensor to lower concentrations of materials. It is shown that the 

versatility of an algorithm is desirable as it allows tuning for high-end applications.  

Parameters of the neural network are studied in a broad platform of 

hyperparameter optimization, including all major parameters such as the number of 

layers, number of neurons in each layer, activation function, loss-function, and 

optimizer. This parametric sweep leads to various opportunities to adapt the 

network to specific applications.  

As shown in Figure 6.17(a), the network can reach 95% accuracy at 6 epochs 

and higher. Similarly, the confusion matrix shown below confirms how accurate 

input data mapping is for an optimized neural network that guarantees accurate 

discrimination of concentrations as low as 1% methanol in water from pure water, 

reducing the limit of detection down to 1%. 

 

 

Figure 6.17 (a) Accuracy and loss of training and validation data, (b) Confusion matrix for the 

optimized neural network resulting in 95 % accuracy. 

 

 

  

(a) (b) 
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Chapter 7 Conclusions and Future 

Work 

 

In this chapter, the main findings of the thesis are summarized, and suggestions 

for future work are presented. 

7.1 Thesis conclusions and contributions 

This thesis is concerned with the use of microwave sensors for material 

characterization and with the impact of environmental error sources (especially 

temperature) on its response. The conclusions and contributions can be summarized 

as follows: 

• Understanding whether the sensor response is still reliable or not after the 

undesired effect of temperature on both sensory circuit and material. The sensor 

response is studied when temperature increases and simulation results are 

provide as a proof of concept compared with the experiment described in 

Chapter 3. 

• Compensation of temperature effect from the response besides reporting the 

temperature of the material at the same time is performed using machine 

learning algorithms.  Preparation of the input data fed to the network is 

explained, and a comparison between meaningful and unsatisfactory input data 

is provided in Chapter 4.  

• Development of different machine-learning algorithms for classification 

(removing the effect of temperature from the sensor response) and regression 

(reporting the temperature of the material) is discussed in Chapter 5.  
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• The use of optimization algorithms to improve the performance of the multi-

layer perceptron for better classification in low concentrations of material is 

explained in Chapter 6.  

7.2 Suggestions for future work 

There are a number of way this research can be extended and modified: 

• A study could be performed on the active circuit to make it stable when the 

temperature increases, especially for working in a harsh environmental situation 

when the temperature increases higher than 100°𝐶 (Chapter 4). 

• Other algorithms, such as autoencoder, could be used as a single algorithm to report 

both type and temperature of the material simultaneously (Chapter 5). 

• Algorithms to remove more than one type of error from the sensor response could 

be developed (Chapter 5). 

• Hyperparameter optimization could be extended to other algorithms, such as 

logistic regression, rather than using default functions from Keras (Chapter 6).  

• In order to further optimize the model instead of searching for the optimizer or loss 

functions with their default parameters, one can also stick to one optimizer/loss 

function and delve into its intrinsic parameters (Chapter 6). 

 

 

 

 

 

 

 



References 

112 

 

References 

[1] M. Abdolrazzaghi, M. Daneshmand, and A. K. Iyer, “Strongly Enhanced 

Sensitivity in Planar Microwave Sensors Based on Metamaterial Coupling,” 

IEEE Trans. Microw. Theory Tech., vol. 66, no. 4, pp. 1843–1855, Apr. 

2018, doi: 10.1109/TMTT.2018.2791942. 

[2] H. Moghadas, M. Daneshmand, and P. Mousavi, “A passive non-contact 

microwave loop resonance sensor for liquid interface,” Sens. Actuators B 

Chem., vol. 241, pp. 96–98, Mar. 2017. 

[3] M. Abdolrazzaghi and M. Daneshmand, “Dual Active Resonator for 

Dispersion Coefficient Measurement of Asphaltene Nano-Particles,” IEEE 

Sens. J., vol. 17, no. 22, pp. 7248–7256, Nov. 2017, doi: 

10.1109/JSEN.2017.2734692. 

[4] A. Salim and S. Lim, “Complementary Split-Ring Resonator-Loaded 

Microfluidic Ethanol Chemical Sensor,” Sensors, vol. 16, no. 11, Oct. 2016. 

[5] A. Mason, O. Korostynska, M. Ortoneda-Pedrola, A. Shaw, and A. Al-

Shamma’A, “A resonant co-planar sensor at microwave frequencies for 

biomedical applications,” Sensors Actuators, A Phys., vol. 202, pp. 170–175, 

2013, doi: 10.1016/j.sna.2013.04.015. 

[6] M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, “Design and Application of 

the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex 

Permittivity,” IEEE Sens. J., 2015, doi: 10.1109/JSEN.2015.2469683. 

[7] N. Sharafadinzadeh, M. Abdolrazzaghi, and M. Daneshmand, “Highly 

sensitive microwave split ring resonator sensor using gap extension for 

glucose sensing,” in 2017 IEEE MTT-S International Microwave Workshop 

Series on Advanced Materials and Processes for RF and THz Applications, 

IMWS-AMP 2017, 2018, vol. 2018-Janua, doi: 10.1109/IMWS-

AMP.2017.8247400. 

[8] H. J. Lee, K. A. Hyun, and H. Il Jung, “A high-Q resonator using 

biocompatible materials at microwave frequencies,” Appl. Phys. Lett., vol. 



References 

113 

 

104, no. 2, p. 023509, Jan. 2014, doi: 10.1063/1.4862029. 

[9] M. Abdolrazzaghi, A. Abdolali, and M. Daneshmand, “Highly sensitive 

miniaturized bio-sensor using 2-layer double split ring resonators,” in 2015 

IEEE International Symposium on Antennas and Propagation & 

USNC/URSI National Radio Science Meeting, 2015, pp. 736–737, doi: 

10.1109/APS.2015.7304755. 

[10] C.-Y. Hsiao and Y.-C. Chiang, “A miniaturized open-loop resonator filter 

constructed with floating plate overlays,” Prog. Electromagn. Res. C, vol. 

14, pp. 131–145, 2010, doi: 10.2528/PIERC10051405. 

[11] M. Abdolrazzaghi, A. Abdolali, and S. Hashemy, “Improvements in DNA 

biosensors using joint split ring resonators coupled with thin film microstrip 

line,” Appl. Comput. Electromagn. Soc. J., 2016. 

[12] Z. Abbasi, P. Shariaty, M. Nosrati, Z. Hashisho, and M. Daneshmand, “Dual-

Band Microwave Circuits for Selective Binary Gas Sensing System,” IEEE 

Trans. Microw. Theory Tech., vol. 67, no. 10, pp. 4206–4219, Oct. 2019, doi: 

10.1109/TMTT.2019.2934459. 

[13] A. Bogner, C. Steiner, S. Walter, J. Kita, G. Hagen, and R. Moos, “Planar 

Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design 

Aspects and Initial Transducers for Humidity and Ammonia Sensing,” 

Sensors, vol. 17, no. 10, p. 2422, Oct. 2017, doi: 10.3390/s17102422. 

[14] A. Quddious et al., “Disposable, Paper-Based, Inkjet-Printed Humidity and 

H2S Gas Sensor for Passive Sensing Applications,” Sensors, vol. 16, no. 12, 

p. 2073, Dec. 2016. 

[15] A. Bababjanyan, H. Melikyan, S. Kim, J. Kim, K. Lee, and B. Friedman, 

“Real-Time Noninvasive Measurement of Glucose Concentration Using a 

Microwave Biosensor,” J. Sensors, vol. 2010, pp. 1–7, 2010, doi: 

10.1155/2010/452163. 

[16] A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, 

“Microwave microfluidic sensor for determination of glucose concentration 

in water,” in 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 

2015, pp. 1–3, doi: 10.1109/MMS.2015.7375441. 



References 

114 

 

[17] M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwave-based 

noninvasive concentration measurements for biomedical applications,” 

IEEE Trans. Microw. Theory Tech., 2013, doi: 

10.1109/TMTT.2013.2250516. 

[18] P. Velez, J. Munoz-Enano, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. 

Martin, “Split Ring Resonator-Based Microwave Fluidic Sensors for 

Electrolyte Concentration Measurements,” IEEE Sens. J., vol. 19, no. 7, pp. 

2562–2569, Apr. 2019, doi: 10.1109/JSEN.2018.2890089. 

[19] T. Chretiennot, D. Dubuc, and K. Grenier, “Double stub resonant biosensor 

for glucose concentrations quantification of multiple aqueous solutions,” in 

2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014, 

pp. 1–4, doi: 10.1109/MWSYM.2014.6848570. 

[20] W. Buff, “SAW sensors,” Sensors Actuators A Phys., vol. 30, no. 1, pp. 117–

121, 1992, doi: 10.1016/0924-4247(92)80205-H. 

[21] K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a 

review.,” Anal. Bioanal. Chem., vol. 391, no. 5, pp. 1509–19, Jul. 2008, doi: 

10.1007/s00216-008-1911-5. 

[22] K. Länge, “Bulk and surface acoustic wave sensor arrays for multi-analyte 

detection: A review,” Sensors (Switzerland), 2019, doi: 10.3390/s19245382. 

[23] A. J. Bandodkar et al., “Re-usable electrochemical glucose sensors 

integrated into a smartphone platform,” Biosens. Bioelectron., vol. 101, pp. 

181–187, Mar. 2018, doi: 10.1016/j.bios.2017.10.019. 

[24] L. Wang et al., “Ratiometric electrochemical glucose sensor based on 

electroactive Schiff base polymers,” Sensors Actuators, B Chem., 2019, doi: 

10.1016/j.snb.2019.01.061. 

[25] K. Y. You, Z. Abbas, M. F. A. Malek, and E. M. Cheng, “Non-destructive 

Dielectric Measurements and Calibration for Thin Materials Using 

Waveguide-Coaxial Adaptors,” Meas. Sci. Rev., vol. 14, no. 1, pp. 16–24, 

Feb. 2014, doi: 10.2478/MSR-2014-0003. 

[26] K. Saeed, R. D. Pollard, and I. C. Hunter, “Substrate Integrated Waveguide 

Cavity Resonators for Complex Permittivity Characterization of Materials,” 



References 

115 

 

IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2340–2347, Oct. 

2008, doi: 10.1109/TMTT.2008.2003523. 

[27] Q. Tan, Y. Guo, L. Zhang, F. Lu, H. Dong, and J. Xiong, “Substrate 

Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh 

Environments,” Sensors, vol. 18, no. 5, p. 1406, May 2018, doi: 

10.3390/s18051406. 

[28] A. Salim, S. H. Kim, J. Y. Park, and S. Lim, “Microfluidic Biosensor Based 

on Microwave Substrate-Integrated Waveguide Cavity Resonator,” J. 

Sensors, 2018, doi: 10.1155/2018/1324145. 

[29] A. K. Jha and M. J. Akhtar, “SIW cavity based RF sensor for dielectric 

characterization of liquids,” in 2014 IEEE Conference on Antenna 

Measurements & Applications (CAMA), 2014, pp. 1–4, doi: 

10.1109/CAMA.2014.7003427. 

[30] L. Benkhaoua, M. T. Benhabiles, S. Mouissat, and M. L. Riabi, 

“Miniaturized Quasi-Lumped Resonator for Dielectric Characterization of 

Liquid Mixtures,” IEEE Sens. J., vol. 16, no. 6, pp. 1603–1610, Mar. 2016, 

doi: 10.1109/JSEN.2015.2504601. 

[31] W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, 

and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric 

characterization,” Sensors Actuators A Phys., vol. 189, pp. 233–237, Jan. 

2013, doi: 10.1016/j.sna.2012.10.027. 

[32] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, “High-

Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric 

Characterization,” IEEE Sens. J., vol. 14, no. 5, pp. 1345–1351, May 2014, 

doi: 10.1109/JSEN.2013.2295312. 

[33] M. A. H. Ansari, A. K. Jha, and M. J. Akhtar, “Dual band microwave sensor 

for dielectric characterization of dispersive materials,” Asia-Pacific Microw. 

Conf. Proceedings, APMC, vol. 1, pp. 6–8, 2016, doi: 

10.1109/APMC.2015.7411595. 

[34] M. Abdolrazzaghi and M. Daneshmand, “A Phase-Noise Reduced 

Microwave Oscillator Sensor With Enhanced Limit of Detection Using 



References 

116 

 

Active Filter,” IEEE Microw. Wirel. Components Lett., vol. 28, no. 9, pp. 

837–839, 2018, doi: 10.1109/LMWC.2018.2850283. 

[35] M. Abdolrazzaghi, M. H. Zarifi, W. Pedrycz, and M. Daneshmand, “Robust 

Ultra-High Resolution Microwave Planar Sensor Using Fuzzy Neural 

Network Approach,” IEEE Sens. J., vol. 17, no. 2, pp. 323–332, Jan. 2017, 

doi: 10.1109/JSEN.2016.2631618. 

[36] M. Abdolrazzaghi, M. H. Zarifi, and M. Daneshmand, “Wireless 

Communication in Feedback-Assisted Active Sensors,” IEEE Sens. J., vol. 

16, no. 22, 2016, doi: 10.1109/JSEN.2016.2604855. 

[37] M. Abdolrazzaghi, F. Hariri, M. Chu, H. Naguib, and M. Daneshmand, 

“Relative Humidity Sensing using PANI/PVA integrated with Feedback 

Oscillator Circuit,” in 2019 IEEE SENSORS, 2019, pp. 1–4, doi: 

10.1109/SENSORS43011.2019.8956563. 

[38] M. Abdolrazzaghi and M. Daneshmand, “A 4 GHz Near-Field Monitoring 

Planar Oscillator Sensor,” in 2018 IEEE MTT-S International Microwave 

Workshop Series on Advanced Materials and Processes for RF and THz 

Applications (IMWS-AMP), 2018, pp. 1–3, doi: 10.1109/IMWS-

AMP.2018.8457169. 

[39] M. Abdolrazzaghi and M. Daneshmand, “Multifunctional Ultrahigh 

Sensitive Microwave Planar Sensor to Monitor Mechanical Motion: 

Rotation, Displacement, and Stretch,” Sensors, vol. 20, no. 4, p. 1184, Feb. 

2020, doi: 10.3390/s20041184. 

[40] M. Abdolrazzaghi, “Advances in Active Resonator based Planar Microwave 

Sensors for Material Characterization,” University of Alberta, 2017. 

[41] M. Abdolrazzaghi and M. Daneshmand, “Compelling impact of 

intermodulation products of regenerative active resonators on sensitivity,” in 

2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 

1018–1021, doi: 10.1109/MWSYM.2017.8058764. 

[42] M. Abdolrazzaghi, S. Hashemy, and A. Abdolali, “Fast-forward solver for 

inhomogeneous media using machine learning methods: artificial neural 

network, support vector machine and fuzzy logic,” Neural Comput. Appl., 



References 

117 

 

Nov. 2016, doi: 10.1007/s00521-016-2694-9. 

[43] A. W. Kraszewski and S. O. Nelson, “Observations on resonant cavity 

perturbation by dielectric objects,” ARS Repr. Collect., 1992. 

[44] A. W. Kraszewski and S. O. Nelson, “Resonant-cavity perturbation 

measurement for mass determination of the perturbing object,” in 

Conference Proceedings. 10th Anniversary. IMTC/94. Advanced 

Technologies in I & M. 1994 IEEE Instrumentation and Measurement 

Technolgy Conference (Cat. No.94CH3424-9), pp. 1261–1264, doi: 

10.1109/IMTC.1994.351826. 

[45] A. A. Mohd Bahar, Z. Zakaria, M. K. Md. Arshad, A. A. M. Isa, Y. Dasril, 

and R. A. Alahnomi, “Real Time Microwave Biochemical Sensor Based on 

Circular SIW Approach for Aqueous Dielectric Detection,” Sci. Rep., vol. 9, 

no. 1, p. 5467, 2019, doi: 10.1038/s41598-019-41702-3. 

[46] X. Yi, C. Cho, J. Cooper, Y. Wang, M. M. Tentzeris, and R. T. Leon, 

“Passive wireless antenna sensor for strain and crack sensing - 

Electromagnetic modeling, simulation, and testing,” Smart Mater. Struct., 

2013, doi: 10.1088/0964-1726/22/8/085009. 

[47] M. Abdolrazzaghi, S. Khan, and M. Daneshmand, “A Dual-Mode Split-Ring 

Resonator to Eliminate Relative Humidity Impact,” IEEE Microw. Wirel. 

Components Lett., vol. 28, no. 10, pp. 939–941, Oct. 2018, doi: 

10.1109/LMWC.2018.2860596. 

[48] M. Abdolrazzaghi and M. Daneshmand, “Enhanced Q double resonant active 

sensor for humidity and moisture effect elimination,” in IEEE MTT-S 

International Microwave Symposium Digest, 2016, vol. 2016-Augus, pp. 1–

3, doi: 10.1109/MWSYM.2016.7540006. 

[49] A. Zarnani, S. Karimi, and P. Musilek, “Quantile Regression and Clustering 

Models of Prediction Intervals for Weather Forecasts: A Comparative 

Study,” Forecasting, 2019, doi: 10.3390/forecast1010012. 

[50] T. Barton and P. Musilek, “Day-Ahead Dynamic Thermal Line Rating Using 

Numerical Weather Prediction,” in 2019 IEEE Canadian Conference of 

Electrical and Computer Engineering, CCECE 2019, 2019, doi: 



References 

118 

 

10.1109/CCECE.2019.8861883. 

[51] D. Mocrii, Y. Chen, and P. Musilek, “IoT-based smart homes: A review of 

system architecture, software, communications, privacy and security,” 

Internet of Things, 2018, doi: 10.1016/j.iot.2018.08.009. 

[52] M. Bardwell, J. Wong, S. Zhang, and P. Musilek, “IoT-based MPPT 

Controller for Photovoltaic Array,” in 2018 IEEE Electrical Power and 

Energy Conference, EPEC 2018, 2018, doi: 10.1109/EPEC.2018.8598404. 

[53] M. Bardwell, J. Wong, S. Zhang, and P. Musilek, “Design considerations for 

iot-based pv charge controllers,” in Proceedings - 2018 IEEE World 

Congress on Services, SERVICES 2018, 2018, doi: 

10.1109/SERVICES.2018.00043. 

[54] J. Konecny, M. Prauzek, M. Borova, K. Janosova, and P. Musilek, “A 

Simulation Framework for Energy Harvesting in Wireless Sensor Networks: 

Single Node Architecture Perspective,” in Proceedings of the 23rd 

International Conference Electronics 2019, ELECTRONICS 2019, 2019, 

doi: 10.1109/ELECTRONICS.2019.8765580. 

[55] B. Lashkari, Y. Chen, and P. Musilek, “Energy management for smart 

homes-state of the art,” Applied Sciences (Switzerland). 2019, doi: 

10.3390/app9173459. 

[56] M. Prauzek, N. R. A. Mourcet, J. Hlavica, and P. Musilek, “Q-Learning 

Algorithm for Energy Management in Solar Powered Embedded Monitoring 

Systems,” in 2018 IEEE Congress on Evolutionary Computation, CEC 2018 

- Proceedings, 2018, doi: 10.1109/CEC.2018.8477781. 

[57] Z. Abbasi, H. Niazi, M. Abdolrazzaghi, W. Chen, and M. Daneshmand, 

“Monitoring pH Level Using High-Resolution Microwave Sensor for 

Mitigation of Stress Corrosion in Steel Pipelines,” IEEE Sens. J., pp. 1–1, 

2020, doi: 10.1109/JSEN.2020.2978086. 

[58] Z. Abbasi, M. Baghelani, and M. Daneshmand, “Zero Power Consumption 

Chipless Distant Microwave Moisture Sensor for Smart Home 

Applications,” in Proceedings of IEEE Sensors, 2019, doi: 

10.1109/SENSORS43011.2019.8956753. 



References 

119 

 

[59] Z. Abbasi, M. Baghelani, M. Nosrati, A. Sanati-Nezhad, and M. 

Daneshmand, “Real-Time Non-Contact Integrated Chipless RF Sensor for 

Disposable Microfluidic Applications,” IEEE J. Electromagn. RF 

Microwaves Med. Biol., 2019, doi: 10.1109/jerm.2019.2954219. 

[60] N. Hosseini, M. Baghelani, and M. Daneshmand, “Selective Volume 

Fraction Sensing Using Resonant-Based Microwave Sensor and Its 

Harmonics,” IEEE Trans. Microw. Theory Tech., 2020, doi: 

10.1109/tmtt.2020.2990139. 

[61] N. Hosseini, S. S. Olokede, and M. Daneshmand, “A novel miniaturized 

asymmetric CPW split ring resonator with extended field distribution pattern 

for sensing applications,” Sensors Actuators, A Phys., 2020, doi: 

10.1016/j.sna.2019.111769. 

[62] Y.-H. Kim, K. Jang, Y. J. Yoon, and Y.-J. Kim, “A novel relative humidity 

sensor based on microwave resonators and a customized polymeric film,” 

Sensors Actuators B Chem., vol. 117, no. 2, pp. 315–322, Oct. 2006, doi: 

10.1016/j.snb.2005.11.004. 

[63] H. Yu et al., “Design and analysis of ultrafast and high-sensitivity 

microwave transduction humidity sensor based on belt-shaped MoO3 

nanomaterial,” Sensors Actuators, B Chem., 2020, doi: 

10.1016/j.snb.2019.127138. 

[64] P. Vélez, J. Muñoz-Enano, M. Gil, J. Mata-Contreras, and F. Martín, 

“Differential microfluidic sensors based on dumbbell-shaped defect ground 

structures in microstrip technology: Analysis, optimization, and 

applications,” Sensors (Switzerland), 2019, doi: 10.3390/s19143189. 

[65] A. Ebrahimi, J. Scott, and K. Ghorbani, “Transmission lines terminated with 

LC resonators for differential permittivity sensing,” IEEE Microw. Wirel. 

Components Lett., 2018, doi: 10.1109/LMWC.2018.2875996. 

[66] J. Muñoz-Enano, P. Vélez, M. Gil, and F. Martín, “Microfluidic reflective-

mode differential sensor based on open split ring resonators (OSRRs),” Int. 

J. Microw. Wirel. Technol., 2020, doi: 10.1017/s1759078720000501. 

[67] A. A. Abduljabar, N. Clark, J. Lees, and A. Porch, “Dual Mode Microwave 



References 

120 

 

Microfluidic Sensor for Temperature Variant Liquid Characterization,” 

IEEE Trans. Microw. Theory Tech., vol. 65, no. 7, pp. 2572–2582, Jul. 2017, 

doi: 10.1109/TMTT.2016.2647249. 

[68] A. A. Abduljabar, H. Hamzah, and A. Porch, “Double Microstrip 

Microfluidic Sensor for Temperature Correction of Liquid 

Characterization,” IEEE Microw. Wirel. Components Lett., vol. 28, no. 8, pp. 

735–737, Aug. 2018, doi: 10.1109/LMWC.2018.2849218. 

[69] H. R. Sun et al., “Symmetric coplanar waveguide sensor loaded with 

interdigital capacitor for permittivity characterization,” Int. J. RF Microw. 

Comput. Eng., 2020, doi: 10.1002/mmce.22023. 

[70] L. Harrsion, M. Ravan, D. Tandel, K. Zhang, T. Patel, and R. K. Amineh, 

“Material identification using a microwave sensor array and machine 

learning,” Electron., 2020, doi: 10.3390/electronics9020288. 

[71] M. Abdolrazzaghi, N. Kazemi, and M. Daneshmand, “Sensitive 

Spectroscopy Using DSRR Array and Linvill Negative Impedance,” in 2019 

IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 1080–

1083, doi: 10.1109/MWSYM.2019.8701104. 

[72] H.-Y. Gan et al., “Differential Microwave Microfluidic Sensor Based on 

Microstrip Complementary Split-Ring Resonator (MCSRR) Structure,” 

IEEE Sens. J., 2020, doi: 10.1109/jsen.2020.2973196. 

[73] P. Wang and A. Anderko, “Computation of dielectric constants of solvent 

mixtures and electrolyte solutions,” Fluid Phase Equilib., 2001, doi: 

10.1016/S0378-3812(01)00507-6. 

[74] F. Carpi, G. Gallone, F. Galantini, and D. De Rossi, “Enhancing the 

dielectric permittivity of elastomers,” in Dielectric Elastomers as 

Electromechanical Transducers, Elsevier, 2008, pp. 51–68. 

[75] E. Tuncer, S. M. Gubański, and B. Nettelblad, “Dielectric relaxation in 

dielectric mixtures: Application of the finite element method and its 

comparison with dielectric mixture formulas,” J. Appl. Phys., vol. 89, no. 12, 

pp. 8092–8100, Jun. 2001, doi: 10.1063/1.1372363. 

[76] J. C. M. Garnett and J. Larmor, “Colours in metal glasses and in metallic 



References 

121 

 

films.,” Proc. R. Soc. London, vol. 73, no. 488–496, pp. 443–445, Jul. 1904, 

doi: 10.1098/rspl.1904.0058. 

[77] J. C. M. Garnett, “VII. Colours in metal glasses, in metallic films, and in 

metallic solutions.—II,” Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. 

a Math. or Phys. Character, vol. 205, no. 387–401, pp. 237–288, Jan. 1906, 

doi: 10.1098/rsta.1906.0007. 

[78] V. M. Shalaev, “Electromagnetic properties of small-particle composites,” 

Physics Report. 1996, doi: 10.1016/0370-1573(95)00076-3. 

[79] G. B. Smith, “Dielectric constants for mixed media,” J. Phys. D. Appl. Phys., 

vol. 10, no. 4, pp. L39–L42, Mar. 1977, doi: 10.1088/0022-3727/10/4/004. 

[80] A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. 

V. Lavrinenko, “Water: Promising Opportunities For Tunable All-dielectric 

Electromagnetic Metamaterials,” Sci. Rep., vol. 5, no. 1, p. 13535, Oct. 2015, 

doi: 10.1038/srep13535. 

[81] M. Onimisi, J. Ikyumbur, S. Abdu, and E. Hemba, “Frequency and 

Temperature Effect on Dielectric Properties of Acetone and 

Dimethylformamide,” Phys. Sci. Int. J., 2016, doi: 10.9734/psij/2016/27742. 

[82] A. P. G. and R. N. Clarke, “Tables of the Complex Permittivity of Dielectric 

Reference Liquids at Frequencies up to 5GHz,” NPL Rep. MAT23, 2012, doi: 

10.1007/s13398-014-0173-7.2. 

[83] Y. Li et al., “Separate wind power and ramp predictions based on 

meteorological variables and clustering method,” in 2016 IEEE 6th 

International Conference on Power Systems, ICPS 2016, 2016, doi: 

10.1109/ICPES.2016.7584025. 

[84] P. Musilek, P. Kromer, and T. Barton, “E-BACH: Entropy-based clustering 

hierarchy for wireless sensor networks,” in Proceedings - 2015 

IEEE/WIC/ACM International Joint Conference on Web Intelligence and 

Intelligent Agent Technology, WI-IAT 2015, 2016, doi: 10.1109/WI-

IAT.2015.88. 

[85] “EL-WiFi-TH.” . 

[86] G. Yin, “Stochastic Approximation and Its Applications,” J. Am. Stat. 



References 

122 

 

Assoc., 2004, doi: 10.1198/jasa.2004.s319. 

[87] H. Robbins and S. Monro, “A Stochastic Approximation Method,” Ann. 

Math. Stat., 1951, doi: 10.1214/aoms/1177729586. 

[88] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient 

descent learning,” Constr. Approx., 2007, doi: 10.1007/s00365-006-0663-2. 

[89] G. E. Hinton, “Optimization: How to make the learning go faster,” Coursera, 

2012, doi: https://www.coursera.org/learn/neural-

networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-

average-of-its-recent-magnitude. 

[90] U. Michelucci and U. Michelucci, “Training Neural Networks,” in Applied 

Deep Learning, 2018. 

[91] G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6.5- Divide the 

gradient by a running average of its recent magnitude,” in COURSERA: 

Neural Networks for Machine Learning, 2012. 

[92] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 

in 3rd International Conference on Learning Representations, ICLR 2015 - 

Conference Track Proceedings, 2015. 

[93] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition for 

convergences of adam and rmsprop,” in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, 2019, doi: 

10.1109/CVPR.2019.01138. 

[94] T. Dozat, “Incorporating Nesterov Momentum into Adam,” ICLR Work., 

2016. 

[95] R. Gylberth, R. Adnan, S. Yazid, and T. Basaruddin, “Differentially private 

optimization algorithms for deep neural networks,” in 2017 International 

Conference on Advanced Computer Science and Information Systems, 

ICACSIS 2017, 2018, doi: 10.1109/ICACSIS.2017.8355063. 

[96] S. Indrapriyadarsini, S. Mahboubi, H. Ninomiya, and H. Asai, “A Stochastic 

Quasi-Newton Method with Nesterov’s Accelerated Gradient,” 2020. 

[97] “Optimizing Gradient Descent.” . 

[98] A. L. Caterini and D. E. Chang, “Recurrent neural networks,” in 



References 

123 

 

SpringerBriefs in Computer Science, 2018. 

[99] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep 

feedforward neural networks,” in Journal of Machine Learning Research, 

2010. 

[100] Y. Bengio, “Practical recommendations for gradient-based training of deep 

architectures,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 

Intell. Lect. Notes Bioinformatics), 2012, doi: 10.1007/978-3-642-35289-8-

26. 

[101] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning 

with limited numerical precision,” in 32nd International Conference on 

Machine Learning, ICML 2015, 2015. 

[102] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network 

learning for speech recognition and related applications: An overview,” in 

ICASSP, IEEE International Conference on Acoustics, Speech and Signal 

Processing - Proceedings, 2013, doi: 10.1109/ICASSP.2013.6639344. 

[103] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for 

neural network function approximation in reinforcement learning,” Neural 

Networks, 2018, doi: 10.1016/j.neunet.2017.12.012. 

[104] F. Ertam, “Data classification with deep learning using tensorflow,” in 2nd 

International Conference on Computer Science and Engineering, UBMK 

2017, 2017, doi: 10.1109/UBMK.2017.8093521. 

[105] “Searching for activation functions,” in 6th International Conference on 

Learning Representations, ICLR 2018 - Workshop Track Proceedings, 2018. 

[106] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for 

hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens., 

2017, doi: 10.1109/TGRS.2016.2636241. 

 

 

 


